WorldWideScience

Sample records for automotive exhaust gas

  1. Exhaust gas energy recovery system of pneumatic driving automotive engine

    Institute of Scientific and Technical Information of China (English)

    Han Yongqiang; Sun Wenxu; Li Qinghua; Zhong Ming; Hao Wei; Du Wenchang

    2011-01-01

    Almost the same quantity to net output work of energy has been carried out and wasted by exhaust gas in typical automotive engine. Recovering the energy from exhaust gas and converting to mechanical energy will dramatically increase the heat efficiency and decrease the fuel consumption. With the increasing demand of fuel conservation, exhaust gas energy recovery technologies have been a hot topic. At present, many researches have been focused on heating or cooling the cab, mechanical energy using and thermo-electronic converting. Unfortunately, the complicated transmission of mechanical energy using and the depressed efficiency of thermo-electronic converting restrict their widely applying. In this paper, a kind of exhaust gas energy recovery system of pneumatic driving automotive engine, in which highly compressed air acts as energy storing and converting carrier, has been established. Pneumatic driving motor can produce moderate speed and high torque output, which is compatible for engine using. The feasibility has been certificated by GT-Power simulation and laboratory testes. The technologies about increasing recovery efficiency have been discussed in detail. The results demonstrated that the in parallel exhaust gas energy recovery system, which is similar to the compound turbo-charger structure can recovery 8 to 10 percent of rated power output. At last, a comprehensive system,which includes Rankine cycle based power wheel cycle unit etc. , has been introduced.

  2. Histological examination of the rat after long-term exposure to subtoxic automotive exhaust gas.

    Science.gov (United States)

    Roggendorf, W; Neumann, H; Thron, H L; Schneider, H; Sarasa-Corral, J L

    1981-07-01

    Regarding the potential impact of traffic-born air pollutants on public health, in recent years attention has increasingly been focused on the possible effects on the cardiovascular system. In order to investigate this problem further, the influence of long-term exhaust gas exposure on rats has been studied. One hundred Wistar rats of either sex were exposed 5 X 8 h/week up to 28 months to an atmosphere polluted by the emissions of an idling Otto engine, CO concentrations held constant at 90 ppm. A second group (50 rats) was exposed to 250 ppm for 6 months. Blood parameters and body weight were controlled. Specimens of CNS, heart, vessels, kidney etc. were investigated light microscopically. Focal necroses of the myocardium with inflammatory reactions as well as interstitial fibrosis were found in the heart muscle of the 90 ppm group. In the 250 ppm group endothelial proliferations, edema of the intima and deposits of proteoglycanes in the media were observed. We conclude that subtoxic concentrations of CO which only lead to slight morphologic changes may aggravate preexisting lesions caused by high risk conditions, e.g., hypertension or hypercholesteremia.

  3. Ceramic hot film sensor for exhaust gas mass flow measurements in automotive applications; Keramischer Heissfilmsensor zur Abgasmassenstrommessung in automotiven Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Dismon, Heinrich; Grimm, Karsten; Toennesmann, Andres; Nigrin, Sven [Pierburg GmbH, Neuss (Germany); Wienand, Karlheinz; Muziol, Matthias [Heraeus Sensor Technology GmbH, Kleinostheim (Germany)

    2008-07-01

    Due to increasingly stringent emission standards, a number of internal measures as well as exhaust gas aftertreatment systems have become state-of-the-art technology for passenger car and heavy duty engines. However, the full potential of these measures, for example the cooled external exhaust gas recirculation, can only be utilized if the engine control is adapted adequately well in all engine states. Thus, the requirements for future engine controls become more demanding and consequently the standards for sensors used in the control loop will increase. In this context this article introduces a new exhaust gas mass flow sensor based or the principle of hot film anemometry. The sensor comprising a ceramic sensor element is developed especially for the use in engine exhaust gases providing the exhaust gas mass flow as a direct measurement and control variable. Next to the sensor technology first results of engine tests are presented in this paper. (orig.)

  4. 汽车燃料和排放物的快速气相色谱分析%HIGH-SPEED GAS CHROMATOGRAPHY ANALYSIS OF AUTOMOTIVE FUELS AND EXHAUST SPECIES

    Institute of Scientific and Technical Information of China (English)

    AKIYAMAK

    2003-01-01

    The chemical analysis of organic compounds in the automotive fuels and exhaust species is an extremely important and complex procedure. For these compounds analysis, gas chromatography is the most widely method used because of its excellent selectivity, and wide dynamic concentration range. Although, analysis time of automotive fuels and exhausts are very long because these are complex mixtures, and target compounds in these samples are very low concentration. Concentrations of some species for example 13-butadiene are change after collection. Long analysis turnaround time make cost increase. The high-speed gas chromatography analysis techniques of automotive fuels and exhaust species are developed, because to decrease turnaround of analysis time is very important for cutback the cost of experiments and ensure of reliability.

  5. Investigation of the Performance of HEMT-Based NO, NO₂ and NH₃ Exhaust Gas Sensors for Automotive Antipollution Systems.

    Science.gov (United States)

    Halfaya, Yacine; Bishop, Chris; Soltani, Ali; Sundaram, Suresh; Aubry, Vincent; Voss, Paul L; Salvestrini, Jean-Paul; Ougazzaden, Abdallah

    2016-02-23

    We report improved sensitivity to NO, NO₂ and NH₃ gas with specially-designed AlGaN/GaN high electron mobility transistors (HEMT) that are suitable for operation in the harsh environment of diesel exhaust systems. The gate of the HEMT device is functionalized using a Pt catalyst for gas detection. We found that the performance of the sensors is enhanced at a temperature of 600 °C, and the measured sensitivity to 900 ppm-NO, 900 ppm-NO₂ and 15 ppm-NH₃ is 24%, 38.5% and 33%, respectively, at 600 °C. We also report dynamic response times as fast as 1 s for these three gases. Together, these results indicate that HEMT sensors could be used in a harsh environment with the ability to control an anti-pollution system in real time.

  6. Fast automotive diesel exhaust measurement using quantum cascade lasers

    Science.gov (United States)

    Herbst, J.; Brunner, R.; Lambrecht, A.

    2013-12-01

    Step by step, US and European legislations enforce the further reduction of atmospheric pollution caused by automotive exhaust emissions. This is pushing automotive development worldwide. Fuel efficient diesel engines with SCRtechnology can impede NO2-emission by reduction with NH3 down to the ppm range. To meet the very low emission limits of the Euro6 resp. US NLEV (National Low Emission Vehicle) regulations, automotive manufacturers have to optimize continuously all phases of engine operation and corresponding catalytic converters. Especially nonstationary operation holds a high potential for optimizing gasoline consumption and further reducing of pollutant emissions. Test equipment has to cope with demanding sensitivity and speed requirements. In the past Fraunhofer IPM has developed a fast emission analyzer called DEGAS (Dynamic Exhaust Gas Analyzer System), based on cryogenically cooled lead salt lasers. These systems have been used at Volkswagen AG`s test benches for a decade. Recently, IPM has developed DEGAS-Next which is based on cw quantum cascade lasers and thermoelectrically cooled detectors. The system is capable to measure three gas components (i.e. NO, NO2, NH3) in two channels with a time resolution of 20 ms and 1 ppm detection limits. We shall present test data and a comparison with fast FTIR measurements.

  7. Effects of chronic exposure to diluted automotive exhaust gas on the CNS of normotensive and hypertensive rats.

    Science.gov (United States)

    Roggendorf, W; Thron, N L; Ast, D; Köhler, P R

    1981-01-01

    Regarding the potential impact of traffic-born air pollutants on public health, attention during the last years has been increasingly focused on the possible effects in high-risk groups of the population. In order to evaluated this point further, the combined influence of both, chronic arterial hypertension and long-time exhaust gas exposure on the CNS has been studied. Both, normotensive Wistar) and spontaneously hypertensive rats (SHR) of either sex were exposed 5 X 8 hours per week for up to 18 months to atmospheres polluted by the emissions of an idling Otto engine with CO concentrations held constant at about 0,90 and 250 ppm, respectively. Biochemical data, body weight, and blood pressure were checked regularly. Characteristic histomorphological findings in the non-exposed SHR brains were hyalinosis and hyperplasia of intracerebral arterioles and -- in some cases -- small focal hemorrhages and infarcts. In the exposed SHR brains, large infarcts of the hemisphere and in the basal ganglia were found, which possibly corresponds to the increase of the mortality rate in SHR. We assume that the increase hematocrit plays an important role in the disturbance of microcirculation of the CNS.

  8. Measuring soot particles from automotive exhaust emissions

    Science.gov (United States)

    Andres, Hanspeter; Lüönd, Felix; Schlatter, Jürg; Auderset, Kevin; Jordan-Gerkens, Anke; Nowak, Andreas; Ebert, Volker; Buhr, Egbert; Klein, Tobias; Tuch, Thomas; Wiedensohler, Alfred; Mamakos, Athanasios; Riccobono, Francesco; Discher, Kai; Högström, Richard; Yli-Ojanperä, Jaakko; Quincey, Paul

    2014-08-01

    The European Metrology Research Programme participating countries and the European Union jointly fund a three year project to address the need of the automotive industry for a metrological sound base for exhaust measurements. The collaborative work on particle emissions involves five European National Metrology Institutes, the Tampere University of Technology, the Joint Research Centre for Energy and Transport and the Leibniz Institute for Tropospheric Research. On one hand, a particle number and size standard for soot particles is aimed for. Eventually this will allow the partners to provide accurate and comparable calibrations of measurement instruments for the type approval of Euro 5b and Euro 6 vehicles. Calibration aerosols of combustion particles, silver and graphite proof partially suitable. Yet, a consensus choice together with instrument manufactures is pending as the aerosol choice considerably affects the number concentration measurement. Furthermore, the consortium issued consistent requirements for novel measuring instruments foreseen to replace today's opacimeters in regulatory periodic emission controls of soot and compared them with European legislative requirements. Four partners are conducting a metrological validation of prototype measurement instruments. The novel instruments base on light scattering, electrical, ionisation chamber and diffusion charging sensors and will be tested at low and high particle concentrations. Results shall allow manufacturers to further improve their instruments to comply with legal requirements.

  9. Measuring soot particles from automotive exhaust emissions

    Directory of Open Access Journals (Sweden)

    Andres Hanspeter

    2014-01-01

    Full Text Available The European Metrology Research Programme participating countries and the European Union jointly fund a three year project to address the need of the automotive industry for a metrological sound base for exhaust measurements. The collaborative work on particle emissions involves five European National Metrology Institutes, the Tampere University of Technology, the Joint Research Centre for Energy and Transport and the Leibniz Institute for Tropospheric Research. On one hand, a particle number and size standard for soot particles is aimed for. Eventually this will allow the partners to provide accurate and comparable calibrations of measurement instruments for the type approval of Euro 5b and Euro 6 vehicles. Calibration aerosols of combustion particles, silver and graphite proof partially suitable. Yet, a consensus choice together with instrument manufactures is pending as the aerosol choice considerably affects the number concentration measurement. Furthermore, the consortium issued consistent requirements for novel measuring instruments foreseen to replace today’s opacimeters in regulatory periodic emission controls of soot and compared them with European legislative requirements. Four partners are conducting a metrological validation of prototype measurement instruments. The novel instruments base on light scattering, electrical, ionisation chamber and diffusion charging sensors and will be tested at low and high particle concentrations. Results shall allow manufacturers to further improve their instruments to comply with legal requirements.

  10. Combustion Noise and Pollutants Prediction for Injection Pattern and Exhaust Gas Recirculation Tuning in an Automotive Common-Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Arsie Ivan

    2015-01-01

    Full Text Available In the last years, emissions standards for internal combustion engines are becoming more and more restrictive, particularly for NOx and soot emissions from Diesel engines. In order to comply with these requirements, OEMs have to face with innovative combustion concepts and/or sophisticate after-treatment devices. In both cases, the role of the Engine Management System (EMS is increasingly essential, following the large number of actuators and sensors introduced and the need to meet customer expectations on performance and comfort. On the other hand, the large number of control variables to be tuned imposes a massive recourse to the experimental testing which is poorly sustainable in terms of time and money. In order to reduce the experimental effort and the time to market, the application of simulation models for EMS calibration has become fundamental. Predictive models, validated against a limited amount of experimental data, allow performing detailed analysis on the influence of engine control variables on pollutants, comfort and performance. In this paper, a simulation analysis on the impact of injection pattern and Exhaust Gas Recirculation (EGR rate on fuel consumption, combustion noise, NO and soot emissions is presented for an automotive Common-Rail Diesel engine. Simulations are accomplished by means of a quasi-dimensional multi-zone model of in-cylinder processes. Furthermore a methodology for in-cylinder pressure processing is presented to estimate combustion noise contribution to radiated noise. Model validation is carried out by comparing simulated in-cylinder pressure traces and exhaust emissions with experimental data measured at the test bench in steady-state conditions. Effects of control variables on engine performance, noise and pollutants are analyzed by imposing significant deviation of EGR rate and injection pattern (i.e. rail pressure, start-of-injection, number of injections. The results evidence that quasi-dimensional in

  11. Investigation of the Performance of HEMT-Based NO, NO2 and NH3 Exhaust Gas Sensors for Automotive Antipollution Systems

    Directory of Open Access Journals (Sweden)

    Yacine Halfaya

    2016-02-01

    Full Text Available We report improved sensitivity to NO, NO2 and NH3 gas with specially-designed AlGaN/GaN high electron mobility transistors (HEMT that are suitable for operation in the harsh environment of diesel exhaust systems. The gate of the HEMT device is functionalized using a Pt catalyst for gas detection. We found that the performance of the sensors is enhanced at a temperature of 600 °C, and the measured sensitivity to 900 ppm-NO, 900 ppm-NO 2 and 15 ppm-NH 3 is 24%, 38.5% and 33%, respectively, at 600 °C. We also report dynamic response times as fast as 1 s for these three gases. Together, these results indicate that HEMT sensors could be used in a harsh environment with the ability to control an anti-pollution system in real time.

  12. Investigation of the Performance of HEMT-Based NO, NO2 and NH3 Exhaust Gas Sensors for Automotive Antipollution Systems

    Science.gov (United States)

    Halfaya, Yacine; Bishop, Chris; Soltani, Ali; Sundaram, Suresh; Aubry, Vincent; Voss, Paul L.; Salvestrini, Jean-Paul; Ougazzaden, Abdallah

    2016-01-01

    We report improved sensitivity to NO, NO2 and NH3 gas with specially-designed AlGaN/GaN high electron mobility transistors (HEMT) that are suitable for operation in the harsh environment of diesel exhaust systems. The gate of the HEMT device is functionalized using a Pt catalyst for gas detection. We found that the performance of the sensors is enhanced at a temperature of 600 °C, and the measured sensitivity to 900 ppm-NO, 900 ppm-NO2 and 15 ppm-NH3 is 24%, 38.5% and 33%, respectively, at 600 °C. We also report dynamic response times as fast as 1 s for these three gases. Together, these results indicate that HEMT sensors could be used in a harsh environment with the ability to control an anti-pollution system in real time. PMID:26907298

  13. Comparison between a Water-Based and a Solvent-Based Impregnation Method towards Dispersed CuO/SBA-15 Catalysts: Texture, Structure and Catalytic Performance in Automotive Exhaust Gas Abatement

    Directory of Open Access Journals (Sweden)

    Qi Xin

    2016-10-01

    Full Text Available Supported copper oxide nanoparticles are a potential candidate for replacing the rare and expensive precious metals within the automotive three-way catalyst. However, a well-designed dispersion method is necessary to allow a stable high loading of active material, compensating its lower intrinsic activity and stability. In this work, a CuO-loaded SBA-15 catalyst has been manufactured by two methods. The ammonia-driven deposition precipitation (ADP and the molecular designed dispersion (MDD methods are both considered as efficient deposition methods to provide well-dispersed copper oxide-based catalysts. Their morphology, copper dispersion and the chemical state of copper were characterized and compared. Due to the differences in the synthesis approach, a difference in the obtained copper oxide phases has been observed, leading to a distinct behavior in the catalytic performance. The structure-activity correlation of both catalysts has also been revealed for automotive exhaust gas abatement. Results demonstrate that various copper species can be formed depending on the precursor–support interaction, affecting selectivity and conversion during the catalytic reaction.

  14. Development of Exhaust Leak Detector Device for Automotive Service Industry: A Prototype Design

    Directory of Open Access Journals (Sweden)

    Eida Nadirah Roslin

    2016-08-01

    Full Text Available The exhaust system plays a vital role in removing the gaseous emissions that is being produced within the combustion chamber during fuel-air mixture activities. The exhaust system is defined as a series of chambers and pipes that starts at the engine and ends at the back of the car with the tail pipe. However if there are any leaks in the exhaust system, it provide a direct path for the emission gaseous including carbon monoxide to enter can be very dangerous as it provides a direct path for carbon monoxide and other dangerous gaseous emissions to enter the cowl vent at the base of the windshield and directly to the passenger compartment. The risk of exposure to these hazardous gaseous is also high especially during vehicle maintenance services in suspected cases of leakages to the exhaust system.  The inspection of the exhaust system is done manually in most of the automotive services workshops. In this paper, accidental risks of performing these inspection jobs on a vehicle’s exhaust system, performed by a technician are discussed. In order to minimize the risks to technicians or mechanics, a prototype device to detect exhaust leakage was developed using a gas sensor module and a web camera. This device was successfully operated in detecting possible leakages of the exhaust system.

  15. Acoustic Optimization of Automotive Exhaust Heat Thermoelectric Generator

    Science.gov (United States)

    Su, C. Q.; Ye, B. Q.; Guo, X.; Hui, P.

    2012-06-01

    The potential for thermoelectric exhaust heat recovery in vehicles has been increasing with recent advances in the efficiency of thermoelectric generators (TEGs). This study analyzes the acoustic attenuation performance of exhaust-based TEGs. The acoustic characteristics of two different thermal designs of exhaust gas heat exchanger in TEGs are discussed in terms of transmission loss and acoustic insertion loss. GT-Power simulations and bench tests on a dynamometer with a high-performance production engine are carried out. Results indicate that the acoustic attenuation of TEGs could be determined and optimized. In addition, the feasibility of integration of exhaust-based TEGs and engine mufflers into the exhaust line is tested, which can help to reduce space and improve vehicle integration.

  16. La catalyse d'épuration des gaz d'échappement automobiles. Situation actuelle et nouvelles orientations Catalytic Automotive Exhaust Gas Depollution. Present Status and New Trends

    Directory of Open Access Journals (Sweden)

    Prigent M.

    2006-11-01

    Full Text Available Cet article passe en revue les différents systèmes catalytiques de post-traitement utilisés actuellement sur la plupart des automobiles pour limiter leurs rejets de polluants. Les systèmes sont différenciés par leur mode de fonctionnement, le type de moteur à dépolluer (deux-temps, quatre-temps, diesel ou essence ou par leur mode de réalisation. Les nouvelles orientations, prévues pour respecter les futures réglementations antipollution, sont également décrites. On montre que certains véhicules prototypes, équipés de moteurs à combustion interne, sont capables d'avoir des émissions très proches de zéro tout comme les véhicules électriques. A review is made of the various types of exhaust gas aftertreatment systems presently used on most vehicles to reduce pollutant emissions. The systems are differentiated by their mode of action, according to the engine type to be depolluted (two-stroke, four-stroke, diesel or spark-ignition, and by their type of make-up. The major developments foreseen in the future, in view of compliance with the new legislations, are described. It is shown that some prototype vehicles with internal combustion engines are able to emit pollutant quantities really close to zero, such as electric cars.

  17. Precious metal-support interaction in automotive exhaust catalysts

    Institute of Scientific and Technical Information of China (English)

    郑婷婷; 何俊俊; 赵云昆; 夏文正; 何洁丽

    2014-01-01

    Precious metal-support interaction plays an important role in thermal stability and catalytic performance of the automotive exhaust catalysts. The support is not only a carrier for active compounds in catalysts but also can improve the dispersion of precious metals and suppress the sintering of precious metals at high temperature;meanwhile, noble metals can also enhance the redox per-formance and oxygen storage capacity of support. The mechanism of metal-support interactions mainly includes electronic interaction, formation of alloy and inward diffusion of metal into the support or covered by support. The form and degree of precious metal-sup-port interaction depend on many factors, including the content of precious metal, the species of support and metal, and preparation methods. The research results about strong metal-support interaction (SMSI) gave a theory support for developing a kind of new cata-lyst with excellent performance. This paper reviewed the interaction phenomenon and mechanism of precious metals (Pt, Pd, Rh) and support such as Al2O3, CeO2, and CeO2-based oxides in automotive exhaust catalysts. The factors that affect SMSI and the catalysts developed by SMSI were also discussed.

  18. Controlling automotive exhaust emissions: successes and underlying science.

    Science.gov (United States)

    Twigg, Martyn V

    2005-04-15

    Photochemical reactions of vehicle exhaust pollutants were responsible for photochemical smog in many cities during the 1960s and 1970s. Engine improvements helped, but additional measures were needed to achieve legislated emissions levels. First oxidation catalysts lowered hydrocarbon and carbon monoxide, and later nitrogen oxides were reduced to nitrogen in a two-stage process. By the 1980s, exhaust gas could be kept stoichiometric and hydrocarbons, carbon monoxide and nitrogen oxides were simultaneously converted over a single 'three-way catalyst'. Today, advanced three-way catalyst systems emissions are exceptionally low. NOx control from lean-burn engines demands an additional approach because NO cannot be dissociated under lean conditions. Current lean-burn gasoline engine NOx control involves forming a nitrate phase and periodically enriching the exhaust to reduce it to nitrogen, and this is being modified for use on diesel engines. Selective catalytic reduction with ammonia is an alternative that can be very efficient, but it requires ammonia or a compound from which it can be obtained. Diesel engines produce particulate matter, and, because of health concerns, filtration processes are being introduced to control these emissions. On heavy duty diesel engines the exhaust gas temperature is high enough for NO in the exhaust to be oxidised over a catalyst to NO2 that smoothly oxidises particulate material (PM) in the filter. Passenger cars operate at lower temperatures, and it is necessary to periodically burn the PM in air at high temperatures.

  19. Exhaust Gas Scrubber Washwater Effluent

    Science.gov (United States)

    2011-11-01

    Kent by Newcastle University and the Terramare Institute. Samples of raw seawater and scrubber washwater were collected at the inlet and discharge of...from Ships. Research Centre Terramare . Wilhelmshaven, Germany. Couple Systems. 2010. Dry EGCS Process Dry Exhaust Gas Cleaning System (http...BP Marine. Research Centre Terramare , Wilhelmshaven, Germany and School of Marine Science and Technology, University of Newcastle, Newcastle upon

  20. I. Textural/Structural tuning and nanoparticle stabilization of copper-containing nanocomposite materials. II. Generation of reducing agents for automotive exhaust gas purification via the processing of hydrocarbons in a PACT (plasma and catalysis integrated technologies) reactor

    Science.gov (United States)

    Xing, Yu

    This research consists of two parts. The first part deals with the preparation and properties of copper-containing nanocomposite materials. For studies of textural tuning, structural tuning, or material sintering, copper/aluminum and copper/zinc nanocomposites were prepared via various inorganic synthesis methods including conventional coprecipitation methods and a novel urea-gelation/thermal-modification method that produces narrow distributions of pore sizes, high surface areas, and significantly higher specific metal loadings. Solid-solid reaction analysis and differential scanning calorimetry (DSC) analysis were developed for the determination of the mixing homogeneities of the copper/aluminum nanocomposites. A sintering experiment at 250-600°C for 350 h under methanol-steam reforming conditions was carried out to compare the stability of supported Cu0 nanoparticles. The mixing homogeneities of CuO/Al2O3 nanocomposites significantly affected the thermal stability of their reduced Cu0 crystallites. Creation of relatively narrow distributions of pore sizes with relatively small major pore diameters (e.g., 3.5 nm) can also be used for the stabilization of supported Cu0 nanoparticles. The supported nanoparticles with a relatively small initial size cannot ensure good thermal stability. A "hereditary" character on the homogeneity of copper/aluminum nanocomposites was revealed. Stepwise reduction and reoxidation were studied for the structural tuning and purification of Cu-Al-O spinels with isotropic and gradual unit-cell contractions. The second part of the research deals with the processing of hydrocarbons. Conversion of a model hydrocarbon (n-hexane or n-octane) in an AC discharge PACT (plasma and catalysis integrated technologies) reactor was verified to be an effective method to instantly produce reducing agents (e.g., hydrogen or/and light alkanes and alkenes), at room temperature and atmospheric pressure for automotive exhaust gas purification. Effects of

  1. Exhaust gas emissions from various automotive fuels for light-duty vehicles. Effects on health, environment and energy utilization; Avgasemissioner fraan laetta fordon drivna med olika drivmedel

    Energy Technology Data Exchange (ETDEWEB)

    Ahlvik, P.; Brandberg, Aa. [Ecotraffic RandD AB, Stockholm (Sweden)

    1999-12-01

    The main aim of the investigation has been to assess the effects on health and environment from various alternative fuels for light-duty vehicles. Effects that can be identified and quantified, such as acidification, ozone formation, cancer risk and climate change, have been of primary interest but other effects, such as respiratory diseases, have also been investigated. Data have been collected through literature surveys for subsequent calculation of the mentioned effects in different time-frames. Corrections have been used to take into consideration the influence of climate, ageing and driving pattern. Emissions generated in fuel production have also been accounted for. The most significant and important differences between the fuels have been found for effects as ozone formation cancer risk and particulate emissions. Alternative fuels, such as methanol and methane (natural gas and biogas), significantly decrease the ozone formation in comparison to petrol, while ethanol, methanol and methane are advantageous concerning cancer risk. The particulate emissions are considerably higher for diesel engines fuelled by diesel oil and RME in comparison to the other fuels. In the future, the importance of acid emissions in the fuel production will increase since the NO{sub x} and SO{sub x} emissions will decrease from the vehicles. The emissions of climate gases could be significantly reduced by using non-fossil fuels but the efficiency of the drive train is also of importance. The technical development potential for further emission reductions is considerable for all fuels but the advantage for the best fuel options will remain in the future.

  2. AGT 100 automotive gas turbine system development

    Science.gov (United States)

    Helms, H. E. G.

    1982-01-01

    General Motors is developing an automotive gas turbine system that can be an alternate powerplant for future automobiles. Work sponsored by DOE and administered by NASA Lewis Research Center is emphasizing small component aerodynamics and high-temperature structural ceramics. Reliability requirements of the AGT 100 turbine system include chemical and structural ceramic component stability in the gas turbine environment. The power train system, its configuration and schedule are presented, and its performance tested. The aerodynamic component development is reviewed with discussions on the compressor, turbine, regenerator, interturbine duct and scroll, and combustor. Ceramic component development is also reviewed, and production cost and required capital investment are taken into consideration.

  3. Effect of Thermoelectric Modules' Topological Connection on Automotive Exhaust Heat Recovery System

    Science.gov (United States)

    Deng, Y. D.; Zheng, S. J.; Su, C. Q.; Yuan, X. H.; Yu, C. G.; Wang, Y. P.

    2016-03-01

    In automotive exhaust-based thermoelectric generators (AETEGs), a certain number of thermoelectric modules are connected in series and/or parallel to recover energy from exhaust gas, which provides a way to improve fuel efficiency of the vehicle. Because of the temperature distribution on the surfaces of heat exchanger, several types of modules are planned for use in an AETEG; however, property disparities among modules exist and wire resistance cannot be neglected in practical application, so experiments have been carried out to research effects of the two factors on the maximum output power of series and parallel connection. The performance of series and parallel connections have been characterized, and mathematic models have been built to analyze and predict the performance of each connection. Experiments and theoretical analysis reveal that parallel connection shows a better performance than series connection when large differences of Seebeck coefficient and resistivity exist. However, wire resistance will cause more significant power dissipation in parallel connection. The authors believe the research presented in this paper is the first to carry out an examination of the impact of module property disparity and wire resistance on the output power of an array of thermoelectric modules connected in series and parallel, which provides a reference for choosing module connection in AETEGs.

  4. Using engine exhaust gas as energy source for an absorption refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Manzela, Andre Aleixo [PETROBRAS, Exploration and Production, Av. Rui Barbosa, 1940 - 3 andar, 27915-012 - Macae - RJ (Brazil); Hanriot, Sergio Morais; Cabezas-Gomez, Luben; Sodre, Jose Ricardo [Pontifical Catholic University of Minas Gerais, Department of Mechanical Engineering, Av. Dom Jose Gaspar, 500, 30535-610 - Belo Horizonte - MG (Brazil)

    2010-04-15

    This work presents an experimental study of an ammonia-water absorption refrigeration system using the exhaust of an internal combustion engine as energy source. The exhaust gas energy availability and the impact of the absorption refrigeration system on engine performance, exhaust emissions, and power economy are evaluated. A production automotive engine was tested in a bench test dynamometer, with the absorption refrigeration system adapted to the exhaust pipe. The engine was tested for 25%, 50%, 75% and wide-open throttle valve. The refrigerator reached a steady state temperature between 4 and 13 C about 3 h after system start up, depending on engine throttle valve opening. The calculated exhaust gas energy availability suggests the cooling capacity can be highly improved for a dedicated system. Exhaust hydrocarbon emissions were higher when the refrigeration system was installed in the engine exhaust, but carbon monoxide emissions were reduced, while carbon dioxide concentration remained practically unaltered. (author)

  5. Sorption dehumidification of natural gas exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Lazzarin, R.M.; Longo, G.A. (Padua Univ. (Italy)); Piccininni, F. (Politecnico di Bari (Italy). Ist. di Fisica Tecnica)

    1992-09-01

    The calorific value of natural gas can be fully utilized only if the water vapour in the exhaust gases is condensed. This can be achieved in condensing boilers. Another possibility is to dry the exhaust before discharge by sorption dehumidification. The sorbent can be regenerated directly by the boiler. The vapour developed in the regenerator can be condensed in a condenser with useful effect. Simulations given an efficiency higher than 97% with respect to the Gross Calorific value. (author).

  6. A Framework for Modular Modeling of the Diesel Engine Exhaust Gas Cleaning System

    DEFF Research Database (Denmark)

    Åberg, Andreas; Hansen, Thomas Klint; Linde, Kasper

    2015-01-01

    Pollutants from diesel engines have a negative effect on urban air quality. Because of this and new legislation restricting the emission level, it is necessary to develop exhaust gas treatment systems for diesel engines that can reduce the amount of pollutants. A modular model capable of simulating...... model. Four different models in the automotive diesel exhaust gas cleaning system are presented briefly. Based on the presented methodology, it is discussed which changes are needed to the models to create a modular model of the whole catalytic system....

  7. Exhaust gas system for space heating equipment. Abgassystem fuer Raumheizgeraete

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, D.; Kramp, A.

    1980-11-06

    The invention concerns an exhaust gas system for space heating equipment, particularly for equipment operated by liquid gas and used in caravans and similar vehicles. According to the invention, the exhaust gas system consists of a double walled pipe and a damming valve. This exhaust gas system makes it possible to cool the exhaust gas and therefore prevents too much heating at the outlet of the exhaust chimney and the penetration through the appropriate roof. If the outlet opening of the exhaust chimney should be blocked, the exhaust gases are taken to the outside through the space between the double-walled pipe via the damming valve. The usual non-return valve only operates if there is direct return flow in the exhaust chimney and therefore in the inner exhaust gas pipe of the double-walled pipe. This considerably increases the working safety of the whole system of space hating.

  8. 46 CFR 52.25-20 - Exhaust gas boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Exhaust gas boilers. 52.25-20 Section 52.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-20 Exhaust gas boilers. Exhaust gas boilers with a maximum allowable working...

  9. Modelling for Control of Exhaust Gas Recirculation on Large Diesel Engines

    DEFF Research Database (Denmark)

    Hansen, Jakob Mahler; Zander, Claes-Göran; Pedersen, Nicolai

    2013-01-01

    models. While literature is rich on four-stroke automotive engines, this paper considers two-stroke engines and develops a non-linear dynamic model of the exhaust gas system. Parameters are determined by system identication. The paper uses black-box nonlinear model identication and modelling from rst...... principles followed by parameter identication and compares the results of these approaches. The paper performs a validation against experimental data from a test engine and presents a linearised model for EGR control design....

  10. 40 CFR 86.1509 - Exhaust gas sampling system.

    Science.gov (United States)

    2010-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum... Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1509 Exhaust gas sampling system. (a) The exhaust gas sampling system shall transport...

  11. Research on Integration of an Automotive Exhaust-Based Thermoelectric Generator and a Three-Way Catalytic Converter

    Science.gov (United States)

    Deng, Y. D.; Chen, Y. L.; Chen, S.; Xianyu, W. D.; Su, C. Q.

    2015-06-01

    A key research topic related to thermoelectric generators (TEGs) for automotive applications is to improve their compatibility with the original vehicle exhaust system, which determines the quality of the exhaust gas treatment and the realization of energy conservation and emission reduction. A new TEG integrated with a three-way catalytic converter (CTEG) by reshaping the converter as the heat exchanger is proposed. A heat-flux coupling simulation model of the integrated TEG is established at the light-off stage of the original three-way catalytic converter (TWC). Temperature distribution maps of the integrated heat exchanger, thermoelectric modules, and cooling-water tank are obtained to present the process of energy flow among the parts of the CTEG. Based on the simulation results, the output power of the CTEG is calculated by a mathematical model. A minimum output power of 31.93 W can be obtained by conversion when the TWC starts working at steady conditions. Theoretically, this case study demonstrates the great potential for use of CTEGs in vehicles.

  12. Simulation and experimental study on thermal optimization of the heat exchanger for automotive exhaust-based thermoelectric generators

    Directory of Open Access Journals (Sweden)

    C.Q. Su

    2014-11-01

    Full Text Available Thermoelectric technology has revealed the potential for automotive exhaust-based thermoelectric generator (TEG, which contributes to the improvement of the fuel economy of the engine-powered vehicle. As a major factor, thermal capacity and heat transfer of the heat exchanger affect the performance of TEG effectively. With the thermal energy of exhaust gas harvested by thermoelectric modules, a temperature gradient appears on the heat exchanger surface, so as the interior flow distribution of the heat exchanger. In order to achieve uniform temperature distribution and higher interface temperature, the thermal characteristics of heat exchangers with various heat transfer enhancement features are studied, such as internal structure, material and surface area. Combining the computational fluid dynamics simulations and infrared test on a high-performance engine with a dynamometer, the thermal performance of the heat exchanger is evaluated. Simulation and experiment results show that a plate-shaped heat exchanger made of brass with accordion-shaped internal structure achieves a relatively ideal performance, which can practically improve overall thermal performance of the TEG.

  13. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    Science.gov (United States)

    Duffy, Kevin P.; Kieser, Andrew J.; Rodman, Anthony; Liechty, Michael P.; Hergart, Carl-Anders; Hardy, William L.

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  14. Simulation and Optimization of the Heat Exchanger for Automotive Exhaust-Based Thermoelectric Generators

    Science.gov (United States)

    Su, C. Q.; Huang, C.; Deng, Y. D.; Wang, Y. P.; Chu, P. Q.; Zheng, S. J.

    2016-03-01

    In order to enhance the exhaust waste heat recovery efficiency of the automotive exhaust-based thermoelectric generator (TEG) system, a three-segment heat exchanger with folded-shaped internal structure for the TEG system is investigated in this study. As the major effect factors of the performance for the TEG system, surface temperature, and thermal uniformity of the heat exchanger are analyzed in this research, pressure drop along the heat exchanger is also considered. Based on computational fluid dynamics simulations and temperature distribution, the pressure drop along the heat exchanger is obtained. By considering variable length and thickness of folded plates in each segment of the heat exchanger, response surface methodology and optimization by a multi-objective genetic algorithm is applied for surface temperature, thermal uniformity, and pressure drop for the folded-shaped heat exchanger. An optimum design based on the optimization is proposed to improve the overall performance of the TEG system. The performance of the optimized heat exchanger in different engine conditions is discussed.

  15. Exhaust gas provides alternative gas source for cyclic EOR

    Energy Technology Data Exchange (ETDEWEB)

    Stoeppelwerth, G.P.

    1993-04-26

    Injected exhaust gas from a natural gas or propane engine enhanced oil recovery from several Nebraska and Kansas wells. The gas, containing nitrogen and carbon dioxide, is processed through a catalytic converted and neutralized as necessary before being injected in a cyclic (huff and puff) operation. The process equipment is skid or trailer mounted. The engine in these units drives the gas-injection compressor. The gas after passing through the converter and neutralizers is approximately 13% CO[sub 2] and 87% N[sub 2]. The pH is above 6.0 and dew point is near 0 F at atmospheric pressure. Water content is 0.0078 gal/Mscf. This composition is less corrosive than pure CO[sub 2] and reduces oil viscosity by 30% at 1,500 psi. The nitrogen supplies reservoir energy and occupies pore space. The paper describes gas permeability, applications, and field examples.

  16. An assessment of consistence of exhaust gas emission test results obtained under controlled NEDC conditions

    Science.gov (United States)

    Balawender, K.; Jaworski, A.; Kuszewski, H.; Lejda, K.; Ustrzycki, A.

    2016-09-01

    Measurements concerning emissions of pollutants contained in automobile combustion engine exhaust gases is of primary importance in view of their harmful impact on the natural environment. This paper presents results of tests aimed at determining exhaust gas pollutant emissions from a passenger car engine obtained under repeatable conditions on a chassis dynamometer. The test set-up was installed in a controlled climate chamber allowing to maintain the temperature conditions within the range from -20°C to +30°C. The analysis covered emissions of such components as CO, CO2, NOx, CH4, THC, and NMHC. The purpose of the study was to assess repeatability of results obtained in a number of tests performed as per NEDC test plan. The study is an introductory stage of a wider research project concerning the effect of climate conditions and fuel type on emission of pollutants contained in exhaust gases generated by automotive vehicles.

  17. 46 CFR 63.25-7 - Exhaust gas boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Exhaust gas boilers. 63.25-7 Section 63.25-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-7 Exhaust gas boilers. (a)...

  18. 40 CFR 1065.127 - Exhaust gas recirculation.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use...

  19. Effect of EGR on the exhaust gas temperature and exhaust opacity in compression ignition engines

    Indian Academy of Sciences (India)

    Avinash Kumar Agrawal; Shrawan Kumar Singh; Shailendra Sinha; Mritunjay Kumar Shukla

    2004-06-01

    In diesel engines, NOx formation is a highly temperature-dependent phenomenon and takes place when the temperature in the combustion chamber exceeds 2000 K. Therefore, in order to reduce NOx emissions in the exhaust, it is necessary to keep peak combustion temperatures under control. One simple way of reducing the NOx emission of a diesel engine is by late injection of fuel into the combustion chamber. This technique is effective but increases fuel consumption by 10–15%, which necessitates the use of more effective NOx reduction techniques like exhaust gas recirculation (EGR). Re-circulating part of the exhaust gas helps in reducing NOx, but appreciable particulate emissions are observed at high loads, hence there is a trade-off between NOx and smoke emission. To get maximum benefit from this trade-off, a particulate trap may be used to reduce the amount of unburnt particulates in EGR, which in turn reduce the particulate emission also. An experimental investigation was conducted to observe the effect of exhaust gas re-circulation on the exhaust gas temperatures and exhaust opacity. The experimental setup for the proposed experiments was developed on a two-cylinder, direct injection, air-cooled, compression ignition engine. A matrix of experiments was conducted for observing the effect of different quantities of EGR on exhaust gas temperatures and opacity.

  20. Engine with pulse-suppressed dedicated exhaust gas recirculation

    Science.gov (United States)

    Keating, Edward J.; Baker, Rodney E.

    2016-06-07

    An engine assembly includes an intake assembly, a spark-ignited internal combustion engine, and an exhaust assembly. The intake assembly includes a charge air cooler disposed between an exhaust gas recirculation (EGR) mixer and a backpressure valve. The charge air cooler has both an inlet and an outlet, and the back pressure valve is configured to maintain a minimum pressure difference between the inlet of the charge air cooler and an outlet of the backpressure valve. A dedicated exhaust gas recirculation system is provided in fluid communication with at least one cylinder and with the EGR mixer. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the at least one cylinder to the EGR mixer for recirculation back to the engine.

  1. Development of Exhaust Gas Driven Absorption Chiller-Heater

    Science.gov (United States)

    Inoue, Naoyuki; Endou, Tetsuya; Saito, Kiyoshi; Kawai, Sunao

    Waste heat from co-generation systems are usually recovered by hot water or steam, those are used to drive absorption refrigerators at cooling time, and those are used for heating via heat exchangers at heating time. However waste heat from micro gas turbines are discharged in the form of exhaust gas, it is simple that exhaust gas is directly supplied to absorption chiller-heaters. In the first report we studied cooling cycle, and this second paper, we evaluated various absorption heating cycles for exhaust gas driven absorption chiller-heaters, and adopted one of these cycles for the prototype machine. Also, we experimented with the prototype for wide range condition and got the heating characteristics. Based on the experimental data, we developed a simulation model of the static characteristics, and then studied how to increase the output by limited exhaust gas.

  2. Thermoelectric Generators for the Integration into Automotive Exhaust Systems for Passenger Cars and Commercial Vehicles

    Science.gov (United States)

    Frobenius, Fabian; Gaiser, Gerd; Rusche, Ulrich; Weller, Bernd

    2016-03-01

    A special thermoelectric generator system design and the setup of a thermoelectric generator for the integration into the exhaust line of combustion engine-driven vehicles are described. A prototype setup for passenger cars and the effects on the measured power output are shown. Measurement results using this setup show the potential and the limitations of a setup based on thermoelectric modules commercially available today. In a second step, a short outline of the detailed mathematical modeling of the thermoelectric generator and simulation studies based on this model are presented. By this means, it can be shown by which measures an improvement of the system power output can be achieved—even if today's modules are used. Furthermore, simulation studies show how the exhaust gas conditions of diesel- and Otto-engines significantly affect the requirements on thermoelectric materials as well as the potential and the design of the thermoelectric generator. In a further step, the design and the setup of a thermoelectric generator for an application in a commercial vehicle are presented. This thermoelectric generator is designed to be integrated into the exhaust aftertreatment box of the vehicle. Experimental results with this setup are performed and presented. The results show that thermoelectric generators can become an interesting technology for exhaust waste heat recovery due to the fact that they comprise non-moving parts. However, the efficiency of the modules commercially available today is still far from what is required. Hence, modules made of new materials known from laboratory samples are urgently required. With regard to future CO2 regulations, a large market opportunity for modules with a high efficiency can be expected.

  3. 40 CFR 86.211-94 - Exhaust gas analytical system.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas analytical system. 86.211-94 Section 86.211-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.211-94 Exhaust...

  4. Exhaust Gas Energy Recovery Technology Applications

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Robert M [ORNL; Szybist, James P [ORNL

    2014-01-01

    Exhaust waste heat recovery systems have the potential to significantly improve vehicle fuel economy for conventional and hybrid electric powertrains spanning passenger to heavy truck applications. This chapter discusses thermodynamic considerations and three classes of energy recovery technologies which are under development for vehicle applications. More specifically, this chapter describes the state-of-the-art in exhaust WHR as well as challenges and opportunities for thermodynamic power cycles, thermoelectric devices, and turbo-compounding systems.

  5. Soot filter for the exhaust gas of internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Abthoff, J.; Schuster, H.D.; Langer, H.J.

    1980-06-19

    In the previously known soot filters, the exhaust gas flows through the cylindrical filter radially from the outside to the inside. The exhaust gas touches a relatively large area of the filter housing and therefore loses a large part of the thermal energy required for post-combustion. According to the invention, these disadvantages are avoided in the new filter, where the filter material forms hollow spaces at the internal wall of the filter, which take the exhaust gas after it has flowed through the filter and carry it in an axial direction of the filter housing to the exhaust. Due to this design of the filter and the saving in heat, the areas on which the exhaust gas impinges can be kept appreciably smaller and better use can be made of the heat in the exhaust gas. The ceramic filter material can consist of an outer layer of loose ceramic fibres and an inner woven ceramic fibre mat. In order to increase the effectiveness of the filter, the soot filter can be used as a fine filter after a coarse filter.

  6. Non-thermal plasma based technologies for the after-treatment of automotive exhaust particulates and marine diesel exhaust NOx

    Energy Technology Data Exchange (ETDEWEB)

    McAdams, R; Beech, P; Gillespie, R; Guy, C; Jones,S; Liddell, T; Morgan, R; Shawcross, J; Weeks, D; Hughes, D; Oesterle, J; Eberspdcher,

    2003-08-24

    The trend in environmental legislation is such that primary engine modifications will not be sufficient to meet all future emissions requirements and exhaust aftertreatment technologies will need to be employed. One potential solution that is well placed to meet those requirements is non-thermal plasma technology. This paper will describe our work with some of our partners in the development of a plasma based diesel particulate filter (DPF) and plasma assisted catalytic reduction (PACR) for NOx removal. This paper describes the development of non-thermal plasma technology for the aftertreatment of particulates from a passenger car engine and NOx from a marine diesel exhaust application.

  7. Low-pressure-ratio regenerative exhaust-heated gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Tampe, L.A.; Frenkel, R.G.; Kowalick, D.J.; Nahatis, H.M.; Silverstein, S.M.; Wilson, D.G.

    1991-01-01

    A design study of coal-burning gas-turbine engines using the exhaust-heated cycle and state-of-the-art components has been completed. In addition, some initial experiments on a type of rotary ceramic-matrix regenerator that would be used to transfer heat from the products of coal combustion in the hot turbine exhaust to the cool compressed air have been conducted. Highly favorable results have been obtained on all aspects on which definite conclusions could be drawn.

  8. Exhaust gas side corrosion of oil fired central heating boilers

    Energy Technology Data Exchange (ETDEWEB)

    Koebel, M.; Elsener, M.

    1987-09-01

    While Swiss boiler producers aim primarily at achieving low exhaust gas temperatures, in our northern neighbouring country, lower boiler water temperatures are being set as favourite objectives to be met. The first method aims at reducing the exhaust gas losses, i.e. of the heat content of the exhaust gases; the second one aims at reducing service life losses (= losses in the off-air of the boiler). Flue-gas caused corrosion, however, sets practical limits to the energy-saving reduction of the exhaust gas and boiler water temperatures. To be able to define this practical limit more exactly is the main goal of this project which is supported by NEFF and which is carried out in cooperation with the Institute for Energy Engineering of the ETHZ (Professor P. Suter). In addition to this, however, the author also head to find out about sill inexplained cases of corrosion in boilers which are being operated correctly, i.e. with comparably high boiler water and exhaust gas temperatures.

  9. Field-effect gas sensors and their application in exhaust treatment systems; Feldeffekt-Gassensoren und ihre Anwendung in Abgasnachbehandlungssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Schalwig, Jan

    2002-07-01

    Tightening environmental constraints on exhaust gas emissions of gasoline and Diesel engines led to a growing interest in new and highly sophisticated gas sensors. Such sensors will be required in future exhaust gas aftertreatment systems for the selective real time detection of pollutants such as nitric oxides, hydrocarbons and carbon monoxide. Restrictions on cost and device dimensions imposed by the automobile industry make semiconductor gas sensors promising candidates for the realization of cheap and small-size sensor devices. This work deals with semiconductor field effect devices with catalytically active platinum (Pt) electrodes and potential applications of such devices in automotive exhaust gas aftertreatment systems. To allow for continuous operation at high temperatures, silicon carbide (SiC) and group III-nitrides such as GaN and AlGaN were used as semiconductor materials. Different devices have been realized with such materials: SiC based MOS capacitors (MOSiC), GaN Schottky diodes and GaN/AlGaN high electron mobility transistors (HEMT). The principle feasibility of SiC and GaN based field effect gas sensors for automotive applications was tested under laboratory conditions using synthetic gas mixtures. Exhaust gas components such as carbon monoxide (CO), nitric oxides (NO and NO{sub 2}), various saturated and unsaturated hydro-carbons as well as water vapor, oxygen (O{sub 2}) and hydrogen (H{sub 2}) were used as test gases in appropriate concentrations with the sensor devices being operated in a range of temperatures extending from room temperature up to 600{sup o}C. (orig.)

  10. Exhaust gas emission from a two-stroke engine

    Energy Technology Data Exchange (ETDEWEB)

    Lippitsch, H.H.; Eichlseder, H.

    1986-01-01

    According to present day ideas, carbon monoxide CO, hydrocarbons HC and nitrogen oxide NO are regarded as harmful substances in the exhaust gas and are therefore limited by law in some countries. After a survey of the regulations in Europe and the USA, the origin of these substances in a two-stroke engine is briefly described. The effect of the type of engine is then shown by results from various engines. It was found that emission can be drastically reduced by new engine designs. The introduction of exhaust gas regulations in Austria has caused the firm of Bombadier-Rotax to intensify their development work in this field. The state of exhaust gas emission of present day mass-produced engines was compared with previous engines at this opportunity.

  11. New catalysts for exhaust gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, M. [Kemira Metalkat Oy, Oulu (Finland)

    1996-12-31

    Major challenge for future catalyst systems was to develop thermally more stable washcoats for close coupled operating conditions and for engines operating under high speed and load conditions. To design these future emission systems extensive research and development was undertaken to develop methods to disperse and stabilize the key catalytic materials for operation at much higher temperatures. Second priority was to design catalysts that are more effective under low temperature exhaust conditions and have improved oxygen storage properties in the washcoats. Incorporating new materials and modified preparation technology a new generation of metallic catalyst formulations emerged, those being trimetallic K6 (Pt:Pd:Rh and bimetallic K7) (Pd+Pd:Rh). The target was to combine the best property of Pt:Rh (good NO{sub x} reduction) with that of the good HC oxidation activity of Pd and to ensure that precious metal/support interactions were positively maintained. Both K6 and K7 concepts contain special catalyst structures with optimized washcoat performance which can be brick converter configuration. Improvement in light-off, thermal stability and transient performance with these new catalyst formulations have clearly been shown in both laboratory and vehicle testing. (author) (20 refs.)

  12. 40 CFR 86.509-90 - Exhaust gas sampling system.

    Science.gov (United States)

    2010-07-01

    ... the exhaust gas dilution function at the motorcycle tailpipe exit. (3) Positive displacement pump. The Positive Displacement Pump-Constant Volume Sampler (PDP-CVS), Figure F90-1 satisfies the first condition by... the revolutions made by the calibrated positive displacement pump. The proportional samples...

  13. IC ENGINE SUPERCHARGING AND EXHAUST GAS RECIRCULATION USING JET COMPRESSOR

    Directory of Open Access Journals (Sweden)

    Adhimoulame Kalaisselvane

    2010-01-01

    Full Text Available Supercharging is a process which is used to improve the performance of an engine by increasing the specific power output whereas exhaust gas recirculation reduces the NOx produced by engine because of supercharging. In a conventional engine, supercharger functions as a compressor for the forced induction of the charge taking mechanical power from the engine crankshaft. In this study, supercharging is achieved using a jet compressor. In the jet compressor, the exhaust gas is used as the motive stream and the atmospheric air as the propelled stream. When high pressure motive stream from the engine exhaust is expanded in the nozzle, a low pressure is created at the nozzle exit. Due to this low pressure, atmospheric air is sucked into the expansion chamber of the compressor, where it is mixed and pressurized with the motive stream. The pressure of the mixed stream is further increased in the diverging section of the jet compressor. A percentage volume of the pressurized air mixture is then inducted back into the engine as supercharged air and the balance is let out as exhaust. This process not only saves the mechanical power required for supercharging but also dilutes the constituents of the engine exhaust gas thereby reducing the emission and the noise level generated from the engine exhaust. The geometrical design parameters of the jet compressor were obtained by solving the governing equations using the method of constant rate of momentum change. Using the theoretical design parameters of the jet compressor, a computational fluid dinamics analysis using FLUENT software was made to evaluate the performance of the jet compressor for the application of supercharging an IC engine. This evaluation turned out to be an efficient diagnostic tool for determining performance optimization and design of the jet compressor. A jet compressor was also fabricated for the application of supercharging and its performance was studied.

  14. Experimental study on exhaust gas after treatment using limestone

    Directory of Open Access Journals (Sweden)

    Sakhrieh Ahmad

    2013-01-01

    Full Text Available In this study a simple low-cost exhaust gas after-treatment filter using limestone was developed and tested on a four cylinder DI diesel engine coupled with dynamometer under variable engine running conditions. Limestone was placed in cast iron housing through which exhaust gases passes. The concentration of both carbon dioxide and nitrogen oxides were measured with and without the filter in place. It was found that both pollutants were decreased significantly when the filter is in place, with no increase in the fuel consumption rate.

  15. Test Program for High Efficiency Gas Turbine Exhaust Diffuser

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Thomas R.

    2009-12-31

    This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of “strutlets” to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

  16. Dynamic Test Bed Analysis of Gas Energy Balance for a Diesel Exhaust System Fit with a Thermoelectric Generator

    Science.gov (United States)

    Fuc, Pawel; Lijewski, Piotr; Ziolkowski, Andrzej; Dobrzyński, Michal

    2017-02-01

    Analysis of the energy balance for an exhaust system of a diesel engine fit with an automotive thermoelectric generator (ATEG) of our own design has been carried out. A special measurement system and dedicated software were developed to measure the power generated by the modules. The research object was a 1.3-l small diesel engine with power output of 66 kW. The tests were carried out on a dynamic engine test bed that allows reproduction of an actual driving cycle expressed as a function V = f(t), simulating drivetrain (clutch, transmission) operating characteristics, vehicle geometrical parameters, and driver behavior. Measurements of exhaust gas thermodynamic parameters (temperature, pressure, and mass flow) as well as the voltage and current generated by the thermoelectric modules were performed during tests of our own design. Based on the results obtained, the flow of exhaust gas energy in the entire exhaust system was determined along with the ATEG power output. The ideal area of the exhaust system for location of the ATEG was defined to ensure the highest thermal energy recovery efficiency.

  17. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    Science.gov (United States)

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  18. Certification of Pd and Pt single spikes and application to the quantification of Pt and Pd in automotive exhaust emissions

    Science.gov (United States)

    Vogl, Jochen; Meyer, Christian; Noordmann, Janine; Rienitz, Olaf; Geilert, Sonja

    2014-05-01

    Numerous epidemiological studies show the effect of increased ambient pollution. Therefore measurement networks for air quality have been installed worldwide and legislation requires the monitoring of air pollution. Besides monitoring it is also important to be able to identify, to quantify and finally to regulate the emission of distinct sources in order to improve the quality of life. Automotive vehicles are a major source of environmental pollution especially through contaminants such as CO, NOX, SOX and hydrocarbons which derive from petrol combustion, while for example Platinum Group Elements (PGE) can be present from catalytic converters. The release of PGE into the environment, however, may be damaging in terms of public health, ecological and economic interests. In order to reliably assess the risks from PGEs, traceable and thus comparable data on the release rates of PGE from automotive catalysers are needed. As no Certified Reference Materials (CRM) are available for such samples the development of analytical procedures enabling SI-traceable results will be challenging. Therefore reference procedures for Pd and Pt in automotive exhaust emissions based on isotope dilution mass spectrometry (IDMS) have been developed and applied to specifically sampled automotive exhaust emissions. Due to the commonly known advantages, IDMS often is applied for quantification PGEs, as is the case within this work. The main reasons here are the required accuracy and the low PGE mass fractions in the sample. In order to perform IDMS analysis the analyte element must be available in an isotopically enriched form as so-called spike material or solution thereof, which is mixed with the sample. Unfortunately, no certified PGE spike solutions are available yet. To fill this gap two single PGE spikes, one 106Pd and one 194Pt spike, have been produced and characterized. The selection of the isotopes, the production of the solutions and the ampoulation will be described in this

  19. Investigation of Diesel Exhaust Gas Toxicity on Transient Modes

    Directory of Open Access Journals (Sweden)

    Ivashchenko Nikolay Antonovich

    2014-12-01

    Full Text Available Currently, the generation of heat engines and their control systems are based on ecological indices such as the toxicity of the fulfilled gases. When designing motors, software packages are widely used. These software packages provide the ability to calculate the workflow of engine at steady-state conditions. The definition of indicators emissions is a difficult task. The distribution statistics of the modes shows that the engines of the transport units work on unsteady modes most of the time. The calculation of toxicity indicators is even less developed. In this article experimental and numeric study of the diesel engine with turbocharger exhaust toxicity was considered. As a result of the experimental study, which was conducted with single-cylinder diesel engine compartment simulated work on the transient state, working process characteristics of a diesel engine were obtained, including carbon and nitrogen oxides concentrations. Functional dependencies of concentrations of toxic exhaust components, such as carbon and nitrogen oxides, on excess air ratio and exhaust temperature were obtained. Diesel engine transient processes were simulated using developed mathematical dynamic model of combined engine in locomotive power plant with a change in control signal (position of locomotive driver’s controller and external influence signal (resistance moment. The analysis of exhaust gas toxicity was conducted.

  20. Experiments and Simulations on a Heat Exchanger of an Automotive Exhaust Thermoelectric Generation System Under Coupling Conditions

    Science.gov (United States)

    Liu, X.; Yu, C. G.; Chen, S.; Wang, Y. P.; Su, C. Q.

    2014-06-01

    The present experimental and computational study investigates an exhaust gas waste heat recovery system for vehicles, using thermoelectric modules and a heat exchanger to produce electric power. It proposes a new plane heat exchanger of a thermoelectric generation (TEG) system, producing electricity from a limited hot surface area. To investigate the new plane heat exchanger, we make a coupling condition of heat-flow and flow-solid coupling analysis on it to obtain the temperature, heat, and pressure field of the heat exchanger, and compared it with the old heat exchanger. These fields couple together to solve the multi-field coupling of the flow, solid, and heat, and then the simulation result is compared with the test bench experiment of TEG, providing a theoretical and experimental basis for the present exhaust gas waste heat recovery system.

  1. 4-Nitrophenol, 1-nitropyrene, and 9-nitroanthracene emissions in exhaust particles from diesel vehicles with different exhaust gas treatments

    Science.gov (United States)

    Inomata, Satoshi; Fushimi, Akihiro; Sato, Kei; Fujitani, Yuji; Yamada, Hiroyuki

    2015-06-01

    The dependence of nitro-organic compound emissions in automotive exhaust particles on the type of aftertreatment used was investigated. Three diesel vehicles with different aftertreatment systems (an oxidation catalyst, vehicle-DOC; a particulate matter and NOx reduction system, vehicle-DPNR; and a urea-based selective catalytic reduction system, vehicle-SCR) and a gasoline car with a three-way catalyst were tested. Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) and nitrophenols in the particles emitted were analyzed by thermal desorption gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. The secondary production of nitro-organic compounds on the filters used to collect particles and the adsorption of gaseous nitro-organic compounds by the filters were evaluated. Emissions of 1-nitropyrene, 9-nitroanthracene, and 4-nitrophenol in the diesel exhaust particles were then quantified. The NOx reduction process in vehicle-DPNR appeared to remove nitro-hydrocarbons efficiently but not to remove nitro-oxygenated hydrocarbons efficiently. The nitro-PAH emission factors were lower for vehicle-DOC when it was not fitted with a catalyst than when it was fitted with a catalyst. The 4-nitrophenol emission factors were also lower for vehicle-DOC with a catalyst than vehicle-DOC without a catalyst, suggesting that the oxidation catalyst was a source of both nitro-PAHs and 4-nitrophenol. The time-resolved aerosol mass spectrometry data suggested that nitro-organic compounds are mainly produced when an engine is working under load. The presence of 4-nitrophenol in the particles was not confirmed statistically because of interference from gaseous 4-nitrophenol. Systematic errors in the estimated amounts of gaseous 1-nitropyrene and 9-nitroanthracene adsorbed onto the filters and the estimated amounts of volatile nitro-organic compounds that evaporated during sampling and during post-sampling conditioning could not be excluded. An analytical method

  2. Exhaust gas bypass valve control for thermoelectric generator

    Science.gov (United States)

    Reynolds, Michael G; Yang, Jihui; Meisner, Greogry P.; Stabler, Francis R.; De Bock, Hendrik Pieter Jacobus; Anderson, Todd Alan

    2012-09-04

    A method of controlling engine exhaust flow through at least one of an exhaust bypass and a thermoelectric device via a bypass valve is provided. The method includes: determining a mass flow of exhaust exiting an engine; determining a desired exhaust pressure based on the mass flow of exhaust; comparing the desired exhaust pressure to a determined exhaust pressure; and determining a bypass valve control value based on the comparing, wherein the bypass valve control value is used to control the bypass valve.

  3. Multi-Objective Optimization Design for Cooling Unit of Automotive Exhaust-Based Thermoelectric Generators

    Science.gov (United States)

    Qiang, J. W.; Yu, C. G.; Deng, Y. D.; Su, C. Q.; Wang, Y. P.; Yuan, X. H.

    2016-03-01

    In order to improve the performance of cooling units for automotive thermoelectric generators, a study is carried out to optimize the cold side and the fin distributions arranged on its inner faces. Based on the experimental measurements and numerical simulations, a response surface model of different internal structures is built to analyze the heat transfer and pressure drop characteristics of fluid flow in the cooling unit. For the fin distributions, five independent variables including height, length, thickness, space and distance from walls are considered. An experimental study design incorporating the central composite design method is used to assess the influence of fin distributions on the temperature field and the pressure drop in the cooling units. The archive-based micro genetic algorithm (AMGA) is used for multi-objective optimization to analyze the sensitivity of the design variables and to build a database from which to construct the surrogate model. Finally, improvement measures are proposed for optimization of the cooling system and guidelines are provided for future research.

  4. Treating exhaust gas from a pressurized fluidized bed reaction system

    Science.gov (United States)

    Isaksson, Juhani; Koskinen, Jari

    1995-01-01

    Hot gases from a pressurized fluidized bed reactor system are purified. Under superatmospheric pressure conditions hot exhaust gases are passed through a particle separator, forming a flitrate cake on the surface of the separator, and a reducing agent--such as an NO.sub.x reducing agent (like ammonia), is introduced into the exhaust gases just prior to or just after particle separation. The retention time of the introduced reducing agent is enhanced by providing a low gas velocity (e.g. about 1-20 cm/s) during passage of the gas through the filtrate cake while at superatmospheric pressure. Separation takes place within a distinct pressure vessel the interior of which is at a pressure of about 2-100 bar, and-introduction of reducing agent can take place at multiple locations (one associated with each filter element in the pressure vessel), or at one or more locations just prior to passage of clean gas out of the pressure vessel (typically passed to a turbine).

  5. Influence of an Optimized Thermoelectric Generator on the Back Pressure of the Subsequent Exhaust Gas System of a Vehicle

    Science.gov (United States)

    Kühn, Roland; Koeppen, Olaf; Kitte, Jens

    2014-06-01

    Numerous research projects in automotive engineering focus on the industrialization of the thermoelectric generator (TEG). The development and the implementation of thermoelectric systems into the vehicle environment are commonly supported by virtual design activities. In this paper a customized simulation architecture is presented that includes almost all vehicle parts which are influenced by the TEG (overall system simulation) but is nevertheless capable of real-time use. Moreover, an optimized planar TEG with minimum nominal power output of about 580 W and pressure loss at nominal conditions of 10 mbar, synthesized using the overall system simulation, and the overall system simulation itself are used to answer a generally neglected question: What influence does the position of a TEG have on the back pressure of the subsequent exhaust gas system of the vehicle? It is found that the influence of the TEG on the muffler is low, but the catalytic converter is strongly influenced. It is shown that the TEG can reduce the back pressure of an exhaust gas system so much that its overall back pressure is less than the back pressure of a standard exhaust gas system.

  6. Measurement of Gas-phase Acids in Diesel Exhaust

    Science.gov (United States)

    Wentzell, J. J.; Liggio, J.; Li, S.; Vlasenko, A. L.; Staebler, R. M.; Brook, J.; Lu, G.; Poitras, M.; Chan, T.

    2012-12-01

    Gas-phase acids were measured using chemical ionization mass spectrometry (CIMS) as part of the Diesel Engine Emission Research Experiment (DEERE). The CIMS technique, utilizing acetate ion (CH3COO-) as a reagent ion, proved to be a rapid (measurements on the order of seconds) and sensitive (several counts/pptv) method of quantifying the acid emissions. Diluted diesel exhaust measurements were made from a Constant Volume Sampling dilution tunnel using a light duty (1.9L turbocharged Volkswagen Jetta TDI) diesel engine equipped with an OEM diesel oxidation catalyst and exhaust gas recirculation, mounted on an engine dynamometer. Acids measured included isocyanic, nitrous, nitric, propionic and sum of lactic and oxalic, as well as other unidentified compounds. Complimentary measurements of CO, CO2, Total Hydrocarbon (THC), and NOx, were also performed. Several engine modes (different engine rpm and torque outputs) at steady state were examined to determine their effect on acid emissions. Emission rates with respect to NOx and fuel based emission factors were determined. Measurements of HONO fuel emission factors agree well with real-world measurements within a traffic tunnel.1 The first estimate of isocyanic acid emission factors from a diesel engine is reported, and suggests that the emission of this highly toxic compound in diesel exhaust should not be ignored. 1. Kurtenbach, R., Becker, K. H., Gomes, J. A. G., Kleffmann, J.,Lorzer, J. C., Spittler, M., Wiesen, P., Ackermann, R., Geyer, A.,and Platt, U.: Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel, Atmos. Environ., 35, 3385-3394, doi:10.1016/S1352-2310(01)00138-8, 2001.

  7. Study on waste heat recovery from exhaust gas spark ignition (S.I. engine using steam turbine mechanism

    Directory of Open Access Journals (Sweden)

    Talib Kamarulhelmy

    2017-01-01

    Full Text Available The issue of global warming has pushed the effort of researchers not only to find alternative renewable energy, but also to improve the machine’s energy efficiency. This includes the utilization of waste energy into ‘useful energy’. For a vehicle using internal combustion engine (ICE, the waste energy produce by exhaust gas can be utilize to ‘useful energy’ up to 34%. The energy from the automotive exhaust can be harness by implementing heat pipe heat exchanger in the automotive system. In order to maximize the amount of waste energy that can be turned to ‘useful energy’, the used of appropriate fluid in the heat exchanger is important. In this study, the fluid used is water, thus converting the fluid into steam and thus drive the turbine that coupling with generator. The paper will explore the performance of a naturally aspirated spark ignition (S.I. engine equipped with waste heat recovery mechanism (WHRM that used water as the heat absorption medium. The experimental and simulation test suggest that the concept is thermodynamically feasible and could significantly enhance the system performance depending on the load applied to the engine.

  8. 降低车用汽油机排气污染物技术研究%Reduction of Exhaust Emission from an Automotive Gasoline Engine

    Institute of Scientific and Technical Information of China (English)

    徐百龙; 郭英男; 刘金山; 刘忠长; 姜立永; 刘巽俊

    2001-01-01

    介绍了同时降低车用汽油机NOx、CO、HC三种有害排放物的一套技术方案。其中NOx排放通过排气再循环降低,开发出了具有较优排气再循环率特性的排气压力控制式EGR系统,并阐明了其结构及工作原理,由于采用EGR系统而产生的整机小负荷油耗恶化状况可通过适当提前点火加以弥补;CO排放通过严格控制空燃比加以限制;强制怠速工况HC排放可通过采用强制怠速断油装置消除。给出了相应的整机排放控制和优化试验结果,证实了所提方案是有效、可行的。%A strategy for controlling NOx、CO and HC emissions from an automotive gasoline engine was proposed. NOx emission was decreased by exhaust gas recirculation(EGR) and a set of EGR system, which could give the optimizing EGR characteristics needed by engine emission test cycle was developed.The structure and constitution of these EGR system were also introduced.The fuel economy penalty at low load conditions caused by EGR was alleviated by a little advance of ignition.CO emission was controlled by strict adjustment of air-fuel ratio.HC emission at high speed idling was eliminated by a corresponding fuel cut-off device.This strategy as well as its validity were proved by the engine tests.

  9. An experimental study on the effects of exhaust gas on spruce (Picea abies L. Karst.)

    Energy Technology Data Exchange (ETDEWEB)

    Hautala, E.L.; Holopainen, J.; Kaerenlampi, L. [Kuopio Univ. (Finland). Dept. of Ecology and Environmental Science; Surakka, J.; Ruuskanen, J. [Kuopio Univ. (Finland). Dept. of Environmental Sciences

    1995-12-31

    Motor vehicle exhausts are significant contributors to air pollution. Besides fine particles and inorganic gases, like CO, SO{sub 2} and NO{sub x}, exhaust gas contains a large group of aromatic hydrocarbon compounds, many of which are phytotoxic. In field studies, exhausts are found to have both direct and indirect harmful effects on roadside plants. However, only few experimental studies have been made about the effects of exhaust gas emissions on coniferous trees. The aim of this study was to survey the effects of exhausts on spruce (Picea abies L. Karst.) in standardized conditions. The concentrations of major exhaust gas components in the chamber atmosphere were detected simultaneously. The effects of exhaust on epistomatal waxes of first-year spruce needles are described. (author)

  10. Exhaust Gas Recirculation Control for Large Diesel Engines - Achievable Performance with SISO Design

    DEFF Research Database (Denmark)

    Hansen, Jakob Mahler; Blanke, Mogens; Niemann, Hans Henrik

    2013-01-01

    This paper investigates control possibilities for Exhaust Gas Recirculation (EGR) on large diesel engines. The goal is to reduce the amount of NOx in the exhaust gas by reducing the oxygen concentration available for combustion. Control limitations imposed by the system are assessed using linear...

  11. Method for controlling exhaust gas heat recovery systems in vehicles

    Science.gov (United States)

    Spohn, Brian L.; Claypole, George M.; Starr, Richard D

    2013-06-11

    A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

  12. Evaluation of Changes and Stability on the Surroundings Adjacent to Exhaust-Gas Emitting Port

    Institute of Scientific and Technical Information of China (English)

    AO Yong'an; Marc A. Rosen; WANG Yueren

    2011-01-01

    The exergy and entropy changes of the surroundings adjacent to exhaust-gas emitting ports, and the probable effects on the atmosphere, are investigated and the current stable state changing point of atmosphere is determined and compared in the paper. The potential of doing work is described and the effects of the amount of exhaust gas on the atmosphere are studied through exergy and entropy change functions. The exergy change function accounts for the flow direction of the exhaust gas without local wind. It appears that exergy can be used as a state function to describe the change, the stability and the order of a system.

  13. 40 CFR 86.1310-90 - Exhaust gas sampling and analytical system; diesel engines.

    Science.gov (United States)

    2010-07-01

    ... deflections or voltage output of analyzers with non-linear calibration curves shall be converted to... system; diesel engines. 86.1310-90 Section 86.1310-90 Protection of Environment ENVIRONMENTAL PROTECTION... Particulate Exhaust Test Procedures § 86.1310-90 Exhaust gas sampling and analytical system; diesel...

  14. Fuel economy screening study of advanced automotive gas turbine engines

    Science.gov (United States)

    Klann, J. L.

    1980-01-01

    Fuel economy potentials were calculated and compared among ten turbomachinery configurations. All gas turbine engines were evaluated with a continuously variable transmission in a 1978 compact car. A reference fuel economy was calculated for the car with its conventional spark ignition piston engine and three speed automatic transmission. Two promising engine/transmission combinations, using gasoline, had 55 to 60 percent gains over the reference fuel economy. Fuel economy sensitivities to engine design parameter changes were also calculated for these two combinations.

  15. 汽车排气歧管材料现状及发展趋势%Present Situation and Development Tendency of Materials Used for Automotive Exhaust Manifold

    Institute of Scientific and Technical Information of China (English)

    万仁芳

    2011-01-01

    介绍了汽车排气歧管的功能、结构特点和失效形式,认为排气歧管材料应耐热性好、耐热疲劳性好、高温强度高、加工性能好和铸造成形性好.概述了我国排歧气管用材料现状及发展动向,指出铸态高铁素体量球铁、蠕墨铸铁、中Si-Mo球铁、高Ni奥氏体球铁排气歧管的生产要点.%The function, configuration characteristics and failure modes of the automotive exhaust manifold were introduced. It's considered that the materials used for exhaust manifolds must have high heat resistance, high strength at high temperature, good machinability and cast-ability. The present situation and development tendency of materials used for exhaust manifolds of China was summarized, and the production outlines of as-cast high-ferrite content nodular iron, vermicular iron, medium Si-Mo nodular iron and high Ni austenite nodular iron manifolds were described.

  16. Portable Gas Analyzer Based on Fourier Transform Infrared Spectrometer for Patrolling and Examining Gas Exhaust

    Directory of Open Access Journals (Sweden)

    Yuntao Liang

    2015-01-01

    Full Text Available Aimed at monitoring emission of organic gases such as CH4, C2H6, C3H8, iso-C4H10, n-C4H10, C2H4, C3H6, C2H2, CO, and CO2, from coal mines, petroleum refineries, and other plants, a Fourier Transform Infrared (FT-IR spectrometer was used to develop a portable gas analyzer for patrolling and examining gas exhaust. Firstly, structure of the instrument was introduced. Then, a spectral analysis approach was presented. Finally, instrument was tested with standard gases and with actual gases emitted from a petroleum refinery. For the latter test, a gas chromatograph (GC was used as a reference instrument. The test results showed that the detection limit of every component of analyte was less than 10 × 10−6. The maximum test error of every analyte was less than 15 × 10−6 when its practical concentration was no more than 500 × 10−6. A final comparison showed that the result curves of analytes obtained with FT-IR spectrometer almost overlapped with those obtained with GC, and their resulting noise was less than 6.4% when the practical gas concentration was above 100 × 10−6. As a result, our instrument was suitable to be used as a portable instrument for monitoring exhaust gases.

  17. Method for generating a highly reactive plasma for exhaust gas after treatment and enhanced catalyst reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2000-07-01

    This patent application describes a method and apparatus of exhaust gas remediation that enhance the reactivity of the material catalysts found within catalytic converters of cars, trucks, and power stations.

  18. Nonlinear Adaptive Control of Exhaust Gas Recirculation for Large Diesel Engines

    DEFF Research Database (Denmark)

    Nielsen, Kræn Vodder; Blanke, Mogens; Vejlgaard-Laursen, Morten

    2015-01-01

    A nonlinear adaptive controller is proposed for the exhaust gas recirculation systemon large two-stroke diesel engines. The control design is based on a control oriented model ofthe nonlinear dynamics at hand that incorporates load and engine speed changes as knowndisturbances to the exhaust gas...... will make the system converge exponentiallyto the best achievable state. Simulation examples confirm convergence and good disturbancerejection over relevant operational ranges of the engine....

  19. Selection оf Parameters for System of Diesel Engine Exhaust Gas Recirculation

    Directory of Open Access Journals (Sweden)

    G. M. Kukharionok

    2014-01-01

    Full Text Available The paper presents research results of various methods for recirculation of diesel engine exhaust gases. An influence of recirculation parameters on economic and ecological diesel engine characteristics has been evaluated in the paper. The paper considers an influence of turbocharger configuration on the intensity of gas recirculation. Specific features of the recirculation system operation in dynamic modes have been shown in the paper. The paper provides recommendations for selection of a diesel engine exhaust gas recirculation system.

  20. γ-TiAl基合金汽车排气阀吸铸充型过程水模拟%WATER MODELING OF MOULD FILLING DURING SUCTION CASTING PROCESS OF AUTOMOTIVE EXHAUST VALVES OF γ-TiAl BASED ALLOYS

    Institute of Scientific and Technical Information of China (English)

    熊超; 马颖澈; 陈波; 刘奎; 李依依

    2011-01-01

    Investment and suction casting represents a more cost effective route to produce automotive exhaust valves of 7-TiAl based alloys, but the castings have severe gas porosities in the preliminary suction casting. It has been conferred that the generation of the porosity defects in the castings is a result directly associated with the entrapped air during filling flow. In order to investigate the filling patterns and the entrapped air during the suction casting process of automotive exhaust valves of 7-TiAl based alloys, water modeling experiments have been done. The effect of three types of filling pressure control methods and two types of moulds on the filling patterns are systematically investigated in this paper. Results show that serious entrapped air occur during the filling flow with an rough pressure control method by means of the vents at the top of the moulds (called a general suction casting); Tranquil filling patterns are obtained under an accurate pressure control method ( "gas charging" or "air leakage" ), and if the gas charging flow is smaller than 1.7 m3/h or the air leakage flow is smaller than 1.5 m3/h, the entrapped air phenomenon disappear. Meanwhile, the general and the "air leakage" suction casting of TiAl automotive exhaust valves are implemented using the conclusions of the corresponding water modeling experiments, and the real casting results claim good qualitative agreement with that of the water modeling experiments. Finally, The reasonable explanation for the aforementioned results of the water modeling experiments is given using the filling kinetic principle of suction casting.%熔模吸铸是一种经济的γ-TiAl基合金汽车排气阀成型方法,但早期的吸铸气阀存在严重的气孔缺陷,这种缺陷的产生与吸铸充型过程的合金液流动密切相关.为了直接观察和测量γ-TiAl基合金汽车排气阀吸铸充型过程中合金液的形态和卷气现象,采用水模拟实验模拟了3种充型压力控制

  1. Workshop on an Assessment of Gas-Side Fouling in Fossil Fuel Exhaust Environments

    Science.gov (United States)

    Marner, W. J. (Editor); Webb, R. L. (Editor)

    1982-01-01

    The state of the art of gas side fouling in fossil fuel exhaust environments was assessed. Heat recovery applications were emphasized. The deleterious effects of gas side fouling including increased energy consumption, increased material losses, and loss of production were identified.

  2. Tracer Gas Technique Versus a Control Box Method for Estimating Direct Capture Efficiency of Exhaust Systems

    DEFF Research Database (Denmark)

    Madsen, U.; Aubertin, G.; Breum, N. O.;

    Numerical modelling of direct capture efficiency of a local exhaust is used to compare the tracer gas technique of a proposed CEN standard against a more consistent approach based on an imaginary control box. It is concluded that the tracer gas technique is useful for field applications....

  3. Carbon dioxide capture and use: organic synthesis using carbon dioxide from exhaust gas.

    Science.gov (United States)

    Kim, Seung Hyo; Kim, Kwang Hee; Hong, Soon Hyeok

    2014-01-13

    A carbon capture and use (CCU) strategy was applied to organic synthesis. Carbon dioxide (CO2) captured directly from exhaust gas was used for organic transformations as efficiently as hyper-pure CO2 gas from a commercial source, even for highly air- and moisture-sensitive reactions. The CO2 capturing aqueous ethanolamine solution could be recycled continuously without any diminished reaction efficiency.

  4. Low-pressure-ratio regenerative exhaust-heated gas turbine. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tampe, L.A.; Frenkel, R.G.; Kowalick, D.J.; Nahatis, H.M.; Silverstein, S.M.; Wilson, D.G.

    1991-01-01

    A design study of coal-burning gas-turbine engines using the exhaust-heated cycle and state-of-the-art components has been completed. In addition, some initial experiments on a type of rotary ceramic-matrix regenerator that would be used to transfer heat from the products of coal combustion in the hot turbine exhaust to the cool compressed air have been conducted. Highly favorable results have been obtained on all aspects on which definite conclusions could be drawn.

  5. On the use of Rotary Gas/gas Heat Exchangers as a Novel Integration Option for Heat and Water Management in Exhaust Gas Recycling Gas Turbine Plants

    OpenAIRE

    Herraiz, Laura; Hogg, Dougal; Cooper, Jim; Gibbins, Jon; Lucquiaud, Mathieu

    2014-01-01

    This work is a first-of-a-kind feasibility study investigating technology options with gas/gas rotary heat exchangers for the water management in the integration of Natural Gas Combined Cycle (NGCC) plants with post-combustion carbon capture, with and without exhaust gas recirculation (EGR). A range of configurations are examined for wet and dry cooling of the flue gas entering a post- combustion capture (PCC) absorption system, and regenerative heating of the CO2-depleted flue gas prior to t...

  6. Implementation of Exhaust Gas Recirculation for Double Stage Waste Heat Recovery System on Large Container Vessel

    DEFF Research Database (Denmark)

    Andreasen, Morten; Marissal, Matthieu; Sørensen, Kim;

    2014-01-01

    of recovering some of the waste heat from the exhaust gas. This heat is converted into electrical energy used on-board instead of using auxiliary engines. Exhaust Gas Recirculation (EGR) systems, are recirculating a part of the exhaust gas through the engine combustion chamber to reduce emissions. WHRS combined......Concerned to push ships to have a lower impact on the environment, the International Maritime Organization are implementing stricter regulation of NOx and SOx emissions, called Tier III, within emission control areas (ECAs). Waste Heat Recovery Systems (WHRS) on container ships consist...... with EGR is a potential way to improve system efficiency while reducing emissions. This paper investigates the feasibility of combining the two systems. EGR dilutes the fuel, lowering the combustion temperature and thereby the formation of NOx, to reach Tier III limitation. A double stage WHRS is set up...

  7. Removal of Carbon Dioxide Gas From the Exhaust Gases Generated at the Takoradi Thermal Power Station

    Directory of Open Access Journals (Sweden)

    M. Charles

    2010-10-01

    Full Text Available Takoradi Thermal Power Station (TTPS generates electricity by burning fossil-fuel and hence it also generates greenhouse gases especially carbon dioxide, which is vented into the atmosphere. These greenhouse gases are pollutants known to cause global warming. A method for the removal of carbon dioxide gas from the exhaust gases generated at TTPS is proposed in this research. It aims at reducing the plant’s carbon dioxide emission into the atmosphere and hence reducing the plant’s rate of pollution into the atmosphere. The method employed is a modification of a method known as the Fluor Daniel ECONAMINE FG process. This method removes carbon dioxide from exhaust gas by using an amine solution which comes into “contact” with the exhaust gas in a counter-current manner. This method has been applied by 23 companies which produce CO2 on a large scale. However, before TTPS apply this method a cost feasibility study is recommended.

  8. Application of exhaust gas fuel reforming in diesel and homogeneous charge compression ignition (HCCI) engines fuelled with biofuels

    Energy Technology Data Exchange (ETDEWEB)

    Tsolakis, A. [School of Engineering, Mechanical and Manufacturing Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Megaritis, A. [Department of Mechanical Engineering, School of Engineering and Design, Brunel University, West London, Uxbridge UB8 3PH (United Kingdom); Yap, D. [Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore)

    2008-03-15

    This paper documents the application of exhaust gas fuel reforming of two alternative fuels, biodiesel and bioethanol, in internal combustion engines. The exhaust gas fuel reforming process is a method of on-board production of hydrogen-rich gas by catalytic reaction of fuel and engine exhaust gas. The benefits of exhaust gas fuel reforming have been demonstrated by adding simulated reformed gas to a diesel engine fuelled by a mixture of 50% ultra low sulphur diesel (ULSD) and 50% rapeseed methyl ester (RME) as well as to a homogeneous charge compression ignition (HCCI) engine fuelled by bioethanol. In the case of the biodiesel fuelled engine, a reduction of NO{sub x} emissions was achieved without considerable smoke increase. In the case of the bioethanol fuelled HCCI engine, the engine tolerance to exhaust gas recirculation (EGR) was extended and hence the typically high pressure rise rates of HCCI engines, associated with intense combustion noise, were reduced. (author)

  9. A method for removal of CO from exhaust gas using pulsed corona discharge.

    Science.gov (United States)

    Li, X; Yang, L; Lei, Y; Wang, J; Lu, Y

    2000-10-01

    An experimental study of the oxidation of CO in exhaust gas from a motorcycle has been carried out using plasma chemical reactions in a pulsed corona discharge. In the process, some main parameters, such as the initial CO concentration, amplitude and frequency of pulses, residence time, reactor volume, and relative humidity (RH), as well as their effects on CO removal characteristics, were investigated. O3, which is beneficial to reducing CO, was produced during CO removal. When the exhaust gas was at ambient temperature, more than 80% CO removal efficiency was realized at an initial concentration of 288 ppm in a suitable range of the parameters.

  10. ANALYSIS OF EXHAUST GAS EMISSION IN THE MARINE TWO-STROKE SLOW-SPEED DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    Branko Lalić

    2016-09-01

    Full Text Available This paper explores the problem of exhaust emissions of the marine two-stroke slow-speed diesel engines. After establishing marine diesel engine regulations and defining the parameters influencing exhaust emissions, the simulation model of the marine two-stroke slow-speed diesel engine has been developed. Furthermore, the comparison of numerical and experimentally obtained data has been performed, resulting in achieving the model validity at 100% load, which represents a requirement for further exhaust gas analysis. Deviations obtained at the real engine and the model range from 2% to 7%. An analysis of the influential parameters such as compression ratio, exhaust valve timing and fuel injection timing has been performed. The obtained results have been compared and conclusions have been drawn.

  11. A Mathematical Model for the Exhaust Gas Temperature Profile of a Diesel Engine

    Science.gov (United States)

    Brito, C. H. G.; Maia, C. B.; Sodré, J. R.

    2015-09-01

    This work presents a heat transfer model for the exhaust gas of a diesel power generator to determine the gas temperature profile in the exhaust pipe. The numerical methodology to solve the mathematical model was developed using a finite difference method approach for energy equation resolution and determination of temperature profiles considering turbulent fluid flow and variable fluid properties. The simulation was carried out for engine operation under loads from 0 kW to 40 kW. The model was compared with results obtained using the multidimensional Ansys CFX software, which was applied to solve the governor equations of turbulent fluid flow. The results for the temperature profiles in the exhaust pipe show a good proximity between the mathematical model developed and the multidimensional software.

  12. Build-up of lead in the bodies of beetles living in an environment contaminated by automotive exhaust gases

    Energy Technology Data Exchange (ETDEWEB)

    Zhulidov, A.V.; Yemets, V.M.

    1979-01-01

    Lead in automobile exhaust gases gets deposited on and builds up in roadside soils, grasses, plants, trees, shrubs, mosses, and the bodies of birds and mammals. Insects, and particularly beetles, have not been studied in this respect. This gap is now filled by investigating the build-up of lead in the bodies of the beetles inhabiting these milieux. To this end, insects of 12 species were gathered from forested areas in neighborhood of a heavily traveled highway, along with samples of soil and vegetation. The lead content in all these samples was determined in the form of the colloidal ash of a sulfur compound. For comparison, beetles of 5 species gathered in the same area during 1930 to 1939 were also analyzed. The build-up of lead in the beetles was markedly higher than in the soil and vegetation samples. The lead content of the beetles varied depending on species: the soil-infesting beetles (Carabidae) contained much more lead in their bodies than the plant infesting beetles such as the Scarabeidae, the Buprestidae, and the Cerambycidae. Compared with the beetles collected during 1930 to 1939, the beetles collected in 1975 in the Voronezh Natural Preserve (through which the highway runs) display a much higher lead content. The build-up of lead in beetle bodies can be used as an index of environmental pollution to monitor the state of roadside ecosystems. This is particularly important for natural preserves on which, in general, heavy motor vehicle traffic is not justified.

  13. Effect of exhaust gas recirculation on diesel engine nitrogen oxide reduction operating with jojoba methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, H.E. [Mechanical Power Department, Faculty of Engineering, Mattaria, Helwan University, 9 k Eltaaweniat, Nasr Road, P.O. Box 11718, Cairo (Egypt)

    2009-10-15

    Jojoba methyl ester (JME) has been used as a renewable fuel in numerous studies evaluating its potential use in diesel engines. These studies showed that this fuel is good gas oil substitute but an increase in the nitrogenous oxides emissions was observed at all operating conditions. The aim of this study mainly was to quantify the efficiency of exhaust gas recirculation (EGR) when using JME fuel in a fully instrumented, two-cylinder, naturally aspirated, four-stroke direct injection diesel engine. The tests were carried out in three sections. Firstly, the measured performance and exhaust emissions of the diesel engine operating with diesel fuel and JME at various speeds under full load are determined and compared. Secondly, tests were performed at constant speed with two loads to investigate the EGR effect on engine performance and exhaust emissions including nitrogenous oxides (NO{sub x}), carbon monoxide (CO), unburned hydrocarbons (HC) and exhaust gas temperatures. Thirdly, the effect of cooled EGR with high ratio at full load on engine performance and emissions was examined. The results showed that EGR is an effective technique for reducing NO{sub x} emissions with JME fuel especially in light-duty diesel engines. With the application of the EGR method, the CO and HC concentration in the engine-out emissions increased. For all operating conditions, a better trade-off between HC, CO and NO{sub x} emissions can be attained within a limited EGR rate of 5-15% with very little economy penalty. (author)

  14. Brayton cycle for internal combustion engine exhaust gas waste heat recovery

    Directory of Open Access Journals (Sweden)

    J Galindo

    2015-06-01

    Full Text Available An average passenger car engine effectively uses about one-third of the fuel combustion energy, while the two-thirds are wasted through exhaust gases and engine cooling. It is of great interest to automotive industry to recover some of this wasted energy, thus increasing the engine efficiency and lowering fuel consumption and contamination. Waste heat recovery for internal combustion engine exhaust gases using Brayton cycle machine was investigated. The principle problems of application of such a system in a passenger car were considered: compressor and expander machine selection, machine size for packaging under the hood, efficiency of the cycle, and improvement of engine efficiency. Important parameters of machines design have been determined and analyzed. An average 2-L turbocharged gasoline engine’s New European Driving Cycle points were taken as inlet points for waste heat recovery system. It is theoretically estimated that the recuperated power of 1515 W can be achieved along with 5.7% improvement in engine efficiency, at the point where engine power is 26550 W.

  15. A COUPLING MODEL OF WATER FLOWS AND GAS FLOWS IN EXHAUSTED GAS BUBBLE ON MISSILE LAUNCHED UNDERWATER

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The gas and water flows during an underwater missile launch are numerically studied. For the gas flow, the explicit difference scheme of Non-oscillation and Non-free-parameter Dissipation (NND) is utilized to solve the Euler equations for compressible fluids in the body-fitted coordinates. For the water flow, the Hess-Smith method is employed to solve the Laplace equation for the velocity potential of irrotational water flows based on the potential theory and the boundary element method. The hybrid Eulerian-Lagrangian formulation for the free boundary conditions is used to compute the changes of the free surface of the exhausted gas bubble in time stepping. On the free surface of the exhausted gas bubble, the matched conditions of both the normal velocities and pressures are satisfied. From the numerical simulation, it is found that the exhausted gas bubble grows more rapidly in the axial direction than in the radial direction and the bubble will shrink at its "neck" finally. Numerical results of the movement of the shock wave and the distribution of the Mach number and the gas pressure within the bubble were presented, which reveals that at some time, the gas flow in the Laval nozzle is subsonic and the gas pressure in the nozzle is very high. Influences of various initial missile velocities and chamber total pressures and water depths on both the time interval when the gas flow in the nozzle is subsonic and the peak of the gas pressure at the nozzle end were discussed. It was suggested that a reasonable adjustment of the chamber total pressure can improve the performance of the engine during the underwater launch of missiles.

  16. Analysis of Exhaust Gas Waste Heat Recovery and Pollution Processing for Z12V190 Diesel Engine

    Directory of Open Access Journals (Sweden)

    Hou Xuejun

    2012-06-01

    Full Text Available With the increasingly prominent problem regarding rapid economy development and the gradually serious environmental pollution, the waste heat recovery and waste gas pollution processing have received significant attention. Z12V190 diesel engine has high fuel consumption and low thermal efficiency and releases large amounts of exhaust gas and waste heat into the atmosphere, causing serious problems of energy waste and environmental pollution. In this work, the diesel engine exhaust gas components are analysed and the diesel engine exhaust emission rates and exhaust gas waste heat rates are calculated. The calculating results proved the economic feasibility of waste heat recovery from Z12V190 diesel engine exhaust gas. Then, the mainly harmful components are analysed and the corresponding methods of purification and processing about Z12V190 diesel engine exhaust gas pollution discussed. In order to achieve full recovery of waste heat, save energy, purify treatment pollution and ultimate to lay the foundation for waste gas recovery and pollution treatment, the comprehensive process flows of Z12V190 diesel engine exhaust gas pollution processing and waste heat recovery are preliminary designed.

  17. Study of modeling theory of multiphase gas distribution in exhaust process of automobile

    Institute of Scientific and Technical Information of China (English)

    臧杰

    2004-01-01

    According to experiments and the phenomena that tailpipes often have dirty particulate matter, this paper takes dynamic theory analysis as its study aim, beginning with the description method of multiphase gas distribution differential equation. According to the characteristics that exhaust gas will flow with high velocity in a tailpipe, it is supposed that gas mass that differ largely will layer when flowing with high velocity in a tailpipe.This means the exhaust gas is mixed with particulate matter, gas with large mass (CO2 ,HC,NOx ) and gas with small mass (CO,H2O,N2 ,O2). The interface of two phase fluid will be become clearer as it flows in the pipe for a long distance. The fluid continuous equation between gas phase and solid phase and the mathematical relationship between the geometry parameter and the flowing are established by a multiphase gas flowing theory. Analyzing the interface and state of layers will provide a basic theory for developing a catalytic converter with high efficiency.

  18. Exhaust Gas Recirculation in Gas Turbines for Reduction of CO2 Emissions; Combustion Testing with Focus on Stability and Emissions

    Directory of Open Access Journals (Sweden)

    Johan E. Hustad

    2005-12-01

    Full Text Available Exhaust gas recirculation can be applied with the intention of reducing CO2 emissions. When a fraction of the exhaust gas is injected in the entry of a gas turbine, the amount of CO2 in the exhaust gas not being recirculated will be higher and less complicated to capture. However, with this change in combustion air composition, especially the reduced concentration of oxygen, the combustion process will be affected. The lower oxygen concentration decreases the stability and the increased amount of CO2, H2O and N2 will decrease the combustion temperature and thus, the NOx emissions. Testing has been performed on a 65 kW gas turbine combustor, to investigate the effect of adding N2, CO2 and O2 in the combustion process, with focus on stability and emissions of NOx. Results show that adding N2 and CO2 decreases the NOx emissions, whereas O2 addition increases the NOx emissions. The tests have been performed both in a diffusion flame (pilot burner and a premixed flame (main burner, and for additives being injected with the fuel or with the air stream. Addition into the fuel stream is proven to affect the NOx emissions the most. The stability limits of the flames are indicated with respect to mass-based additive-to-fuel ratios.

  19. Final report on EURAMET.QM-S10/1274: supplementary comparison of preparative capabilities for automotive gas mixtures

    Science.gov (United States)

    Val'ková, M.; Ďurišová, Z.; Szilágyi, Z. N.; Büki, T.; Fükű, J.

    2016-01-01

    This bilateral supplementary preparative comparison involves standard gas mixtures of automotive gas containing carbon monoxide, carbon dioxide and propane in nitrogen. Two laboratories (SMU, Slovakia and MKEH, Hungary) participated in this supplementary comparison. SMU was the coordinating laboratory, responsible for collecting and reporting measurement results. The participants have established facilities for automotive gas gravimetric preparation and analysis. The agreement of the results in this supplementary comparison is good. All the results with their reported uncertainties are in agreement with the reference values for the participants. SMU participated and obtained good results in the previous preparative comparison organised within EURAMET in this field. Both laboratories have existing claims for their Calibration and Measurement Capabilities (CMCs) for automotive gas mixtures. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  20. Effect of Gas Turbine Exhaust Temperature, Stack Temperature and Ambient Temperature on Overall Efficiency of Combine Cycle Power Plant

    OpenAIRE

    Khan, M N; K.P.Tyagi

    2010-01-01

    The gas turbine exhaust temperature, stack temperature and ambient temperature play a very important role during the predication of the performance of combine cycle power plant. This paper covers parametric analysis of effects of gas turbine exhaust temperature, stack temperature and ambient temperature on the overall efficiency of combine cycle power plant keeping the gas turbine efficiency as well as steam turbine efficiency constant. The results shows that out of three variables i.e. turbi...

  1. A new online exhaust gas monitoring system in hydrochloric acid regeneration of cold rolling mills.

    Science.gov (United States)

    Tuo, Long; Zheng, Xiang; Chen, Xiong

    2015-07-07

    Measuring the content of hydrogen chloride (HCl) in exhaust gas used to take time and energy. In this paper, we introduce a new online monitoring system which can output real-time data to the monitoring center. The system samples and cools exhaust gas, and after a series of processing, it will be analyzed by a specific instrument. The core part of this system is remote terminal unit (RTU) which is designed on Cortex-A8 embedded architecture. RTU runs a scaled-down version of Linux which is a good choice of OS for embedded applications. It controls the whole processes, does data acquisition and data analysis, and communicates with monitoring center through Ethernet. In addition, through a software developed for windows, the monitoring process can be remotely controlled. The new system is quite beneficial for steel industry to do environment monitoring.

  2. Analysis of impulse electric field effect on organic exhaust gas decomposition

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The technique of organic exhaust gas decomposition with impulse corono-dischrge plasma has been investigated in this study. It has been discovered that the impulse electric fieldaffected the decomposition efficiency with the secondary electron emission coefficient (δ of the corona electrode as an intermediate: when W was fixed the corona electrode material with higher δcould induce higher decomposition efficiency. In these experiments,wolfram electrode which has the highest δhas really induced the highest decomposition efficiency.

  3. 5th international exhaust gas and particulate emissions forum. Proceedings; 5. Internationales Forum Abgas- und Partikelemissionen. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-11

    The Proceedings of the 5th International Exhaust Gas and Particulate Emissions Forum contains 22 printed contributions as well as a CD-ROM. The titles of them are: (1) Diesel Emissions Control in the United States - 2010 and Beyond; (2) The MBE90 commercial vehicle engine for EPA '07 emissions regulations; (3) Concepts for engines and exhaust-gas cleaning systems for heavy duty trucks of the future; (4) HD Engine Technology for Near-Zero Emissions and Lowest Cost of Ownership; (5) (Partially-) Homogeneous Diesel Combustion; (6) Exhaust gas sensors for NOx storage catalysts and ammonia-SCR systems; (7) Sensors for modern exhaust gas after-treatment systems; (8) New reducing agents for low NOx-SCR Techno-logy; (9) Exhaust gas Aftertreatment on Lean Burn Gasoline Direct Injection Engines: The System of TWC and NOx-Storage Catalyst; (10) New Platinum/Palladium based catalyzed filter technologies for future passenger car applications; (11) Development of a Roadway Hydrocarbon Sorption Model and Characterization of a Novel PM Generator; (12) Requirements for current and future particulate measurement instrumentation from the point of view of the Physikalisch-Technische Bundesanstalt; (13) Standardized dilution conditions for gravimetric PM sampling - measures to assure results that correlate; (14) Particle Counting according PMP; (15) Future high-confidence measurement of diesel particulate emissions for approval and development; (16) New developments in optical instrumentation for exhaust gas; (17) Simultaneous Detection of Gaseous and Particulate Exhaust Components by Photoacoustic Spectroscopy; (18) Boundaries of modern exhaust gas instrumentation; (19) Raising quality and reducing application effort through efficient data input to the particulate filter load model for a EURO5 diesel car; (20) Stop-start operation of diesel engines - modified require-ment for exhaust gas after-treatment?; (21) Particulates emission with Biodiesel B30 impact on CSF management; (22

  4. State Estimation in the Automotive SCR DeNOx Process

    DEFF Research Database (Denmark)

    Zhou, Guofeng; Jørgensen, John Bagterp; Duwig, Christophe;

    2012-01-01

    Selective catalytic reduction (SCR) of nitrogen oxides (NOx) is a widely applied diesel engine exhaust gas after-treatment technology. For effective NOx removal in a transient operating automotive application, controlled dosing of urea can be used to meet the increasingly restrictive legislations...... on exhaust gas emissions. For advanced control, e.g. Model Predictive Control (MPC), of the SCR process, accurate state estimates are needed. We investigate the performance of the ordinary and the extended Kalman filters based on a simple first principle system model. The performance is tested through...

  5. Performance evaluation of an automotive thermoelectric generator

    Science.gov (United States)

    Dubitsky, Andrei O.

    Around 40% of the total fuel energy in typical internal combustion engines (ICEs) is rejected to the environment in the form of exhaust gas waste heat. Efficient recovery of this waste heat in automobiles can promise a fuel economy improvement of 5%. The thermal energy can be harvested through thermoelectric generators (TEGs) utilizing the Seebeck effect. In the present work, a versatile test bench has been designed and built in order to simulate conditions found on test vehicles. This allows experimental performance evaluation and model validation of automotive thermoelectric generators. An electrically heated exhaust gas circuit and a circulator based coolant loop enable integrated system testing of hot and cold side heat exchangers, thermoelectric modules (TEMs), and thermal interface materials at various scales. A transient thermal model of the coolant loop was created in order to design a system which can maintain constant coolant temperature under variable heat input. Additionally, as electrical heaters cannot match the transient response of an ICE, modelling was completed in order to design a relaxed exhaust flow and temperature history utilizing the system thermal lag. This profile reduced required heating power and gas flow rates by over 50%. The test bench was used to evaluate a DOE/GM initial prototype automotive TEG and validate analytical performance models. The maximum electrical power generation was found to be 54 W with a thermal conversion efficiency of 1.8%. It has been found that thermal interface management is critical for achieving maximum system performance, with novel designs being considered for further improvement.

  6. Effects of injection pressure and injection timing to exhaust gas opacity for a conventional indirect diesel engine

    Science.gov (United States)

    Budiman, Agus; Majid, Akmal Irfan; Pambayun, Nirmala Adhi Yoga; Yuswono, Lilik Chaerul; Sukoco

    2016-06-01

    In relation to pollution control and environmental friendliness, the quality of exhaust gas from diesel engine needs to be considered. The influences of injection pressure and timing to exhaust gas opacity were investigated. A series of experiments were conducted in a one-cylinder conventional diesel engine with a naturally aspirated system and indirect injection. The default specification of injection pressure was 120 kg/cm2. To investigate the injection pressure, the engine speed was retained on 1000 rpm with pressure variations from 80 to 215 kg/cm2. On the other hand, the various injection timing (8, 10, 12, 16 degrees before TDC point and exact 18 degrees before TDC point) were used to determine their effects to exhaust gas opacity. In this case, the engine speed was varied from 1000 to 2400 rpm. The injector tester was used to measure injection pressure whereas the exhaust gas opacity was determined by the smoke meter. Those data were also statistically analyzed by product moment correlation. As the results, the injection pressure of diesel engine had a non-significant positive correlation to the exhaust gas opacity with r = 0.113 and p > 5 %. Injection pressure should be adjusted to the specification listed on the diesel engine as if it was too high or too low will lead to the higher opacity. Moreover, there was a significant positive correlation between injection timing and the exhaust gas opacity in all engine speeds.

  7. NOx Monitoring in Humid Exhaust Gas Using Non-Dispersive Infrared Spectroscopy

    DEFF Research Database (Denmark)

    Stolberg-Rohr, Thomine Kirstine

    This PhD thesis is concerned with the measurement of NOX in moist exhaust gas onboard ships using non-dispersive infrared (NDIR) spectroscopy. In such a measurement one of the major challenges is spectral interference from water vapour which is present in high concentrations in the exhaust. The Ph...... filters in general, and temperature invariant filters in particular. This work has led to the derivation of the thermo-optical expansion coefficients of embedded PbTe and ZnSe thin films, frequently used in optical bandpass filters for the mid-infrared range. Knowledge of these coefficients allows...... accurate prediction of temperature invariant filters, previously realised based on experience and trial and error. Finally, the absorption spectrum of CO2 at elevated temperatures and pressures has been experimentally investigated, and the absorption cross section of CO2 at 1000 K and 100 bar is revealed...

  8. Making aerospace technology work for the automotive industry - Introduction

    Science.gov (United States)

    Olson, W. T.

    1978-01-01

    In many cases it has been found that advances made in one technical field can contribute to other fields. An investigation is in this connection conducted concerning subjects from contemporary NASA programs and projects which might have relevance and potential usefulness to the automotive industry. Examples regarding aerospace developments which have been utilized by the automotive industry are related to electronic design, computer systems, quality control experience, a NASA combustion scanner and television display, exhaust gas analyzers, and a device for suppressing noise propagated through ducts. Projects undertaken by NASA's center for propulsion and power research are examined with respect to their value for the automotive industry. As a result of some of these projects, a gas turbine engine and a Stirling engine might each become a possible alternative to the conventional spark ignition engine.

  9. Variable-geometry turbocharger with asymmetric divided volute for engine exhaust gas pulse optimization

    Science.gov (United States)

    Serres, Nicolas

    2010-11-09

    A turbine assembly for a variable-geometry turbocharger includes a turbine housing defining a divided volute having first and second scrolls, wherein the first scroll has a substantially smaller volume than the second scroll. The first scroll feeds exhaust gas to a first portion of a turbine wheel upstream of the throat of the wheel, while the second scroll feeds gas to a second portion of the wheel at least part of which is downstream of the throat. Flow from the second scroll is regulated by a sliding piston. The first scroll can be optimized for low-flow conditions such that the turbocharger can operate effectively like a small fixed-geometry turbocharger when the piston is closed. The turbine housing defines an inlet that is divided by a dividing wall into two portions respectively feeding gas to the two scrolls, a leading edge of the dividing wall being downstream of the inlet mouth.

  10. Remote gas analysis of aircraft exhausts using FTIR-emission-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heland, J.; Schaefer, K. [Fraunhofer Inst. for Atmospheric Environmental Research, Garmisch-Partenkirchen (Germany)

    1997-12-31

    FITR emission spectroscopy as a remote sensing multi-component analyzing technique was investigated to determine the composition of aircraft exhausts at ground level. A multi-layer radiative transfer interpretation software based on a line-by-line computer algorithm using the HITRAN data base was developed. Measurements were carried out with different engine types to determine the traceable gas species and their detection limits. Finally validation measurements were made to compare the results of the system to those of conventional equipment. (author) 8 refs.

  11. Suspended particle filter for Diesel engine exhaust gas. Schwebeteilchenfilter fuer Dieselmaschinenabgase

    Energy Technology Data Exchange (ETDEWEB)

    Mann, G.S.

    1981-06-19

    The purpose of the invention is to create a filter which has a reduced flow resistance for exhaust gases with better separation of the suspended particles. According to the invention this problem is solved by having a filter element consisting of a monolith of very heat-resisting ceramics and a large number of micropores, which permit a large volume of gas to pass through. There are a large number of fine ceramic fibres in the monolith, which extend freely into the ducts. The monolith consists of foam-like material, which has connected walls limiting the pores. The monolith has internal intermediate walls adjacent to inlet and outlet ducts.

  12. Experimental investigation of an improved exhaust recovery system for liquid petroleum gas fueled spark ignition engine

    Directory of Open Access Journals (Sweden)

    Gürbüz Habib

    2015-01-01

    Full Text Available In this study, we have investigated the recovery of energy lost as waste heat from exhaust gas and engine coolant, using an improved thermoelectric generator (TEG in a LPG fueled SI engine. For this purpose, we have designed and manufactured a 5-layer heat exchanger from aluminum sheet. Electrical energy generated by the TEG was then used to produce hydrogen in a PEM water electrolyzer. The experiment was conducted at a stoichiometric mixture ratio, 1/2 throttle position and six different engine speeds at 1800-4000 rpm. The results of this study show that the configuration of 5-layer counterflow produce a higher TEG output power than 5-layer parallel flow and 3-layer counterflow. The TEG produced a maximum power of 63.18 W when used in a 5-layer counter flow configuration. This resulted in an improved engine performance, reduced exhaust emission as well as an increased engine speed when LPG fueled SI engine is enriched with hydrogen produced by the PEM electrolyser supported by TEG. Also, the need to use an extra evaporator for the LPG fueled SI engine is eliminated as LPG heat exchangers are added to the fuel line. It can be concluded that an improved exhaust recovery system for automobiles can be developed by incorporating a PEM electrolyser, however at the expense of increasing costs.

  13. Evaluating tractor performance and exhaust gas emissions using biodiesel from cotton seed oil

    Science.gov (United States)

    Al-lwayzy, Saddam H.; Yusaf, Talal; Jensen, Troy

    2012-09-01

    Alternative fuels for diesel engines, such as biodiesel, have attracted much attention recently due to increasing fuel prices and the imperative to reduce emissions. The exhaust gas emissions from tractors and other agricultural machinery make a significant contribution to these emissions. The use of biodiesel in internal combustion engines (ICE) has been reported to give comparable performance to conventional diesel (CD), but with generally lower emissions. There is however, contradictory evidence of NO emissions being both higher and lower from the use of biodiesel. In this work, agriculture tractor engine performance and its emission using both CD and biodiesel from cotton seed oil (CSO-B20) mixed at a 20% blend ration has been evaluated and compared. The PTO test results showed comparable exhaust emissions between CD and CSO-B20. However, the use of CSO-B20 led to reductions in the thermal efficiency and exhaust temperature and an increase in the brake specific fuel consumption (BSFC), when compared to CD.

  14. Accounting for exhaust gas transport dynamics in instantaneous emission models via smooth transition regression.

    Science.gov (United States)

    Kamarianakis, Yiannis; Gao, H Oliver

    2010-02-15

    Collecting and analyzing high frequency emission measurements has become very usual during the past decade as significantly more information with respect to formation conditions can be collected than from regulated bag measurements. A challenging issue for researchers is the accurate time-alignment between tailpipe measurements and engine operating variables. An alignment procedure should take into account both the reaction time of the analyzers and the dynamics of gas transport in the exhaust and measurement systems. This paper discusses a statistical modeling framework that compensates for variable exhaust transport delay while relating tailpipe measurements with engine operating covariates. Specifically it is shown that some variants of the smooth transition regression model allow for transport delays that vary smoothly as functions of the exhaust flow rate. These functions are characterized by a pair of coefficients that can be estimated via a least-squares procedure. The proposed models can be adapted to encompass inherent nonlinearities that were implicit in previous instantaneous emissions modeling efforts. This article describes the methodology and presents an illustrative application which uses data collected from a diesel bus under real-world driving conditions.

  15. 对废气中氮化物的测量%Measurement of nitrogen compounds in exhaust gas

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Environmental standards and technological advances continue to cut emission levels. The lowering of pollutant concentrations in exhaust gas is increasing demands on measurement technology. Measurement of pollutants is required for monitoring and adjusting pollutant reduction systems. Such measurement equipment must be reliable and low maintenance. Continuous gas analyzers from ABB show how innovative approaches permit industrial metrology to achieve higher sensitivity.

  16. Fuel composition and secondary organic aerosol formation: gas-turbine exhaust and alternative aviation fuels.

    Science.gov (United States)

    Miracolo, Marissa A; Drozd, Greg T; Jathar, Shantanu H; Presto, Albert A; Lipsky, Eric M; Corporan, Edwin; Robinson, Allen L

    2012-08-07

    A series of smog chamber experiments were performed to investigate the effects of fuel composition on secondary particulate matter (PM) formation from dilute exhaust from a T63 gas-turbine engine. Tests were performed at idle and cruise loads with the engine fueled on conventional military jet fuel (JP-8), Fischer-Tropsch synthetic jet fuel (FT), and a 50/50 blend of the two fuels. Emissions were sampled into a portable smog chamber and exposed to sunlight or artificial UV light to initiate photo-oxidation. Similar to previous studies, neat FT fuel and a 50/50 FT/JP-8 blend reduced the primary particulate matter emissions compared to neat JP-8. After only one hour of photo-oxidation at typical atmospheric OH levels, the secondary PM production in dilute exhaust exceeded primary PM emissions, except when operating the engine at high load on FT fuel. Therefore, accounting for secondary PM production should be considered when assessing the contribution of gas-turbine engine emissions to ambient PM levels. FT fuel substantially reduced secondary PM formation in dilute exhaust compared to neat JP-8 at both idle and cruise loads. At idle load, the secondary PM formation was reduced by a factor of 20 with the use of neat FT fuel, and a factor of 2 with the use of the blend fuel. At cruise load, the use of FT fuel resulted in no measured formation of secondary PM. In every experiment, the secondary PM was dominated by organics with minor contributions from sulfate when the engine was operated on JP-8 fuel. At both loads, FT fuel produces less secondary organic aerosol than JP-8 because of differences in the composition of the fuels and the resultant emissions. This work indicates that fuel reformulation may be a viable strategy to reduce the contribution of emissions from combustion systems to secondary organic aerosol production and ultimately ambient PM levels.

  17. Application of Ceria and Lanthana in Catalyst for Cleansing Exhaust Gas of Car

    Institute of Scientific and Technical Information of China (English)

    Yang Chunsheng; Chen Jianhua; Dai Shaojun

    2004-01-01

    The importanCe of rare earths being applied in the catalyst for cleansing the exhaust gas out of car was introduced. The acting mechanism of ceria and lanthana in catalyst and its influencing factors were discussed, and its prospect was forecasted. Pt-Rh precious metals three-way catalyst is widely used for decontaminating the exhaust gas of car now. Ceria and lanthana, which can decrease the content of Pt-Rh and increase the content of Pd in the catalyst, are used as additive in the decontaminating catalyst in order to solve the problem of the supply and demand of Pt and Rh.It is reported that increasing the activity of the coat on catalyst, regulating automatically the ratio of air and fuel, acting as catalyst-accelerator, and improving its properties such as thermal stability and strength may primarily amount for the catalyzing, mechanism of ceria and lanthana. The factors, such as their interaction, additive methods, and effects of cocatalyst ZrO2, CuO, AgO, etc. , will remarkably influence the catalyzing function of ceria and lanthana.

  18. A GM (1, 1 Markov Chain-Based Aeroengine Performance Degradation Forecast Approach Using Exhaust Gas Temperature

    Directory of Open Access Journals (Sweden)

    Ning-bo Zhao

    2014-01-01

    Full Text Available Performance degradation forecast technology for quantitatively assessing degradation states of aeroengine using exhaust gas temperature is an important technology in the aeroengine health management. In this paper, a GM (1, 1 Markov chain-based approach is introduced to forecast exhaust gas temperature by taking the advantages of GM (1, 1 model in time series and the advantages of Markov chain model in dealing with highly nonlinear and stochastic data caused by uncertain factors. In this approach, firstly, the GM (1, 1 model is used to forecast the trend by using limited data samples. Then, Markov chain model is integrated into GM (1, 1 model in order to enhance the forecast performance, which can solve the influence of random fluctuation data on forecasting accuracy and achieving an accurate estimate of the nonlinear forecast. As an example, the historical monitoring data of exhaust gas temperature from CFM56 aeroengine of China Southern is used to verify the forecast performance of the GM (1, 1 Markov chain model. The results show that the GM (1, 1 Markov chain model is able to forecast exhaust gas temperature accurately, which can effectively reflect the random fluctuation characteristics of exhaust gas temperature changes over time.

  19. 利用汽车余热的吸收式制冷系统的研究%Study on LiBr Absorption Refrigeration System with Automotive Engines’ Exhausted Heat

    Institute of Scientific and Technical Information of China (English)

    李小华; 唐景立

    2013-01-01

      根据奇瑞A3轿车空调系统和冷却水及排气系统的结构特点,结合溴化锂吸收式制冷系统的工作原理,提出将汽车排气管和发动机冷却水箱进行结构改造作为溴化锂吸收式制冷机的发生器,代替传统的汽车空调系统和发动机的冷却系统。并应用工程热力学、传热学和流体力学的方法对溴化锂吸收式制冷机和现有的空调系统进行热力计算和各传热设备的传热面积计算,并进行了比较,结果表明:单效溴化锂吸收式冷热水机组在汽车空调系统中的应用是可行的,并且溴化锂制冷机组结构紧凑,使原有的汽车空调系统小型化。%Based on the structure and characteristic of automotive refrigeration system and engine circulation cooling water system and exhausted heat system, combing the working principle of lithium bromide absorption refrigeration system, the authors used the automotive exhaust pipe and cooling water tank improved as the generator of the lithium bromide absorption refrigeration system, which might realize the objective with the lithium bromide absorption hot-cold water unit to replace the automobile air conditioning refrigeration and heating system and the automobile engine cooling system. The methods of thermodynamics, heat transfer, and hydrodynamics are used to do the computation of the thermodynamic and the heat transfer area of the lithium bromide absorption refrigeration system. And has carried on the comparison with the existing air-conditioning system, the results show LiBr Absorption Refrigeration System with Automotive Engines’ Exhausted Heat is feasible, and its system structure is simple.

  20. 汽车排气系统用超纯铁素体不锈钢的焊接%Welding of Ultra-pure Ferrite Stainless Steel for Automotive Exhaust System

    Institute of Scientific and Technical Information of China (English)

    薛春霞; 朱云龙

    2012-01-01

    分析了超纯铁素体不锈钢的焊接性,概括了汽车排气系统不锈钢管常用的焊接方法和焊接工艺.分析认为,超纯铁素体不锈钢焊接时的主要问题是焊接接头易产生晶间腐蚀和脆化,用超纯铁素体不锈钢制造汽车排气管,需要选择能量集中、热输入小、保护效果好的焊接方法和焊接参数.主要焊接方法有钨极氩弧焊、激光焊、高频焊和等离子弧焊.此外,组合焊接技术尤其是激光与其他热源复合加热的铁素体不锈钢管焊接研究等,是汽车排气管先进焊接方法的发展方向.%In this article, the weldability of ultra-pure ferrite stainless steel was analyzed, the welding methods and technologies which were commonly used on the stainless steel pipes for automotive exhaust system were summarized. The results indicated that the main problems which appear in welding of ultra-pure ferrite stainless steel are the intercrystalline corrosion and embrittlement in the welded joints. It should select some welding methods and welding parameters with the characteristics of energy concentration, low-heat input and good protective effect, such as argon tungsten arc welding, laser welding, high frequency welding and plasma arc welding to produce automotive exhaust system using ultra-pure ferrite stainless steel. In addition, the composite welding technologies are the developing direction of advanced welding methods used for automotive exhaust pipes, especially for the research on compound heating welding ferrite stainless steel pipes by laser and other heat sources.

  1. Effect of Exhaust Gas Recirculation (EGR on Performance and Emission characteristics of a Three Cylinder Direct Injection Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    Jaffar Hussain

    2012-12-01

    Full Text Available Exhaust Gas Recirculation (EGR is being used widely to reduce and control the oxides of nitrogen (NOx emission from diesel engines. EGR controls the NOx because it lowers oxygen concentration and flame temperature of the working fluid in the combustion chamber. However, the use of EGR leads to a trade-off in terms of soot emissions moreover it exhausted more unburned hydrocarbons (20–30% compared to conventional engines. Present experimental study has been carried out to investigate the effect of EGR on performance and emissions in a three cylinders, air cooled and constant speed direct injection diesel engine, which is typically used in agricultural farm machinery. Such engines are normally not operated with EGR. The experiments were carried out to experimentally evaluate the performance and emissions for different EGR rates of the engine. Emissions of hydrocarbons (HC, NOx, carbon monoxide (CO, exhaust gas temperature, and smoke opacity of the exhaust gas, etc. were measured. Performance parameters such as thermal efficiency, brake specific fuel consumption (BSFC were calculated. Reductions in NOx and exhaust gas temperature were observed but emissions of particulate matter (PM, HC, and CO were found to have increased with usage of EGR. The engine was operated for normal running conditions with EGR and the performance and emission readings were observed.

  2. Exhaust gas analysis and formation mechanism of SiC nanowires synthesized by thermal evaporation method

    Directory of Open Access Journals (Sweden)

    Noppasint Jiraborvornpongsa

    2014-09-01

    Full Text Available Silicon carbide nanowires (SiCNWs are a set of promising reinforcement materials due to their superior properties. However, formation mechanism of the SiCNWs synthesized by the thermal evaporation method without metal catalyst is still unclear. To understand the formation mechanism, SiCNWs were synthesized by the thermal evaporation method at 1350 °C using a pre-oxidized Si powder and CH4 gas as precursors. SiCNWs obtained by this method were β-SiC/SiO2 core–shell nanowires with average diameter about 55 nm and with a length up to 1 mm. The exhaust gases during the SiCNWs synthesis process were examined by gas chromatography and the photographs of growth activity of SiCNWs inside the furnace were captured. CO gas was detected during the active formation of SiCNWs. It was clarified that CO gas was one of the byproducts from SiCNWs synthesis process, and the formation reaction of SiCNWs should be 3SiO(g + 3C(s → 2SiC(s + SiO2(s + CO(g. The formation of SiCNWs was discussed based on the oxide-assisted-growth mechanism.

  3. Toward gas exhaustion in the W51 high-mass protoclusters

    Science.gov (United States)

    Ginsburg, A.; Goss, W. M.; Goddi, C.; Galván-Madrid, R.; Dale, J. E.; Bally, J.; Battersby, C. D.; Youngblood, A.; Sankrit, R.; Smith, R.; Darling, J.; Kruijssen, J. M. D.; Liu, H. B.

    2016-10-01

    We present new JVLA observations of the high-mass cluster-forming region W51A from 2 to 16 GHz with resolution θfwhm ≈ 0.3-0.5″. The data reveal a wealth of observational results: (1) Currently forming, very massive (proto-O) stars are traced by o - H2CO21,1-21,2 emission, suggesting that this line can be used efficiently as a massive protostar tracer; (2) there is a spatially distributed population of ≲mJy continuum sources, including hypercompact H ii regions and candidate colliding wind binaries, in and around the W51 proto-clusters; and (3) there are two clearly detected protoclusters, W51e and W51 IRS2, that are gas-rich but may have most of their mass in stars within their inner ≲0.05 pc. The majority of the bolometric luminosity in W51 most likely comes from a third population of OB stars between these clusters. The presence of a substantial population of exposed O-stars coincident with a population of still-forming massive stars, together with a direct measurement of the low mass loss rate via ionized gas outflow from W51 IRS2, implies that feedback is ineffective at halting star formation in massive protoclusters. Instead, feedback may shut off the large-scale accretion of diffuse gas onto the W51 protoclusters, implying that they are evolving toward a state of gas exhaustion rather than gas expulsion. Recent theoretical models predict gas exhaustion to be a necessary step in the formation of gravitationally bound stellar clusters, and our results provide an observational validation of this process. This paper and all related analysis code are available on the web at http://https://github.com/adamginsburg/paper_w51_evlaTable A.1 and final data (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A27

  4. Life cycle analysis and choice of natural gas-based automotive alternative fuels in Chongqing Municipality,China

    Institute of Scientific and Technical Information of China (English)

    WU Rui; LI Guangyi; ZHANG Zongyi; REN Yulong; HAN Weijian

    2007-01-01

    Road transport produces significant amounts of emissions by using crude oil as the primary energy source.A reduction of emissions can be achieved by implementing alternative fuel chains.The objective of this study is to carry out an economic,environmental and energy (EEE) life cycle study on natural gas-based automotive fuels with conventional gasoline in an abundant region of China.A set of indices of four fuels/vehicle systems on the basis of life cycle are assessed in terms of impact of EEE,in which natural gas produces compressed natural gas (CNG),methanol,dimethylether (DME) and Fischer Tropsch diesel (FTD).The study included fuel production,vehicle production,vehicle operation,infrastructure and vehicle end of life as a system for each fuel/vehicle system.A generic gasoline fueled car is used as a baseline.Data have been reviewed and modified based on the best knowledge available to Chongqing local sources.Results indicated that when we could not change electric and hydrogen fuel cell vehicles into commercial vehicles on a large scale,direct use of CNG in a dedicated or bi-fuel vehicle is an economical choice for the region which is most energy efficient and more environmental friendly.The study can be used to support decisions on how natural gas resources can best be utilized as a fuel/energy resource for automobiles,and what issues need to be resolved in Chongqing.The models and approaches for this study can be applied to other regions of China as long as all the assumptions are well defined and modified to find a substitute automotive energy source and establish an energy policy in a specific region.

  5. Automotive NVH technology

    CERN Document Server

    Nijman, Eugenius; Priebsch, Hans-Herwig

    2016-01-01

    This book presents seven chapters examining selected noise, vibration and harshness (NVH) topics that are highly relevant for automotive vehicle development. These include applications following the major trends toward increased passenger comfort, vehicle electrification and lightweight design. The authors of the seven chapters, all of which are experts from the automotive industry and academia, present the foremost challenges and potential solutions in this demanding field. Among others, applications for sound optimization in downsized engines, noise optimization in electric powertrains, weight reduction options for exhaust systems, porous materials description, and the vibro-acoustic analysis of geared systems are discussed.

  6. Numerical analysis of heat transfer in the exhaust gas flow in a diesel power generator

    Science.gov (United States)

    Brito, C. H. G.; Maia, C. B.; Sodré, J. R.

    2016-09-01

    This work presents a numerical study of heat transfer in the exhaust duct of a diesel power generator. The analysis was performed using two different approaches: the Finite Difference Method (FDM) and the Finite Volume Method (FVM), this last one by means of a commercial computer software, ANSYS CFX®. In FDM, the energy conservation equation was solved taking into account the estimated velocity profile for fully developed turbulent flow inside a tube and literature correlations for heat transfer. In FVM, the mass conservation, momentum, energy and transport equations were solved for turbulent quantities by the K-ω SST model. In both methods, variable properties were considered for the exhaust gas composed by six species: CO2, H2O, H2, O2, CO and N2. The entry conditions for the numerical simulations were given by experimental data available. The results were evaluated for the engine operating under loads of 0, 10, 20, and 37.5 kW. Test mesh and convergence were performed to determine the numerical error and uncertainty of the simulations. The results showed a trend of increasing temperature gradient with load increase. The general behaviour of the velocity and temperature profiles obtained by the numerical models were similar, with some divergence arising due to the assumptions made for the resolution of the models.

  7. Exhaust gas emissions and mutagenic effects of modern diesel fuels, GTL, biodiesel and biodiesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Munack, Axel; Ruschel, Yvonne; Schroeder, Olaf [Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig (Germany)], E-mail: axel.munack@vti.bund.de; Krahl, Juergen [Coburg Univ. of Applied Sciences (Germany); Buenger, Juergen [University of Bochum (Germany)

    2008-07-01

    Biodiesel can be used alone (B100) or blended with petroleum diesel in any proportion. The most popular biodiesel blend in the U.S.A. is B20 (20% biodiesel, 80% diesel fuel), which can be used for Energy Policy Act of 1992 (EPAct) compliance. In the European Union, the use of biofuel blends is recommended and was introduced by federal regulations in several countries. In Germany, biodiesel is currently blended as B5 (5% biodiesel) to common diesel fuel. In 2008, B7 plus three percent hydrotreated vegetable oil (HVO) as well is intended to become mandatory in Germany. To investigate the influence of blends on the emissions and possible health effects, we performed a series of studies with several engines (Euro 0, III and IV) measuring regulated and non-regulated exhaust compounds and determining their mutagenic effects. Emissions of blends showed an approximate linear dependence on the blend composition, in particular when regulated emissions are considered. However, a negative effect of blends was observed with respect to mutagenicity of the exhaust gas emissions. In detail, a maximum of the mutagenic potency was found in the range of B20. From this point of view, B20 must be considered as a critical blend, in case diesel fuel and biodiesel are used as binary mixtures. (author)

  8. Optimization of Low-Temperature Exhaust Gas Waste Heat Fueled Organic Rankine Cycle

    Institute of Scientific and Technical Information of China (English)

    WANGHui—tao; WANGHua; ZHANGZhu—ming

    2012-01-01

    Low temperature exhaust gases carrying large amount of waste heat are released by steel-making process and many other industries, Organic Rankine Cycles (ORCs) are proven to be the most promising technology to re- cover the low-temperature waste heat, thereby to get more financial benefits for these industries. The exergy analysis of ORC units driven by low-temperature exhaust gas waste heat and charged with dry and isentropic fluid was per- formed, and an intuitive approach with simple impressions was developed to calculate the performances of the ORC unit. Parameter optimization was conducted with turbine inlet temperature simplified as the variable and exergy effi- ciency or power output as the objective function by means of Penalty Function and Golden Section Searching algo- rithm based on the formulation of the optimization problem. The power generated by the optimized ORC unit can be nearly as twice as that generated by a non-optimized ORC unit. In addition, cycle parametric analysis was performed to examine the effects of thermodynamic parameters on the cycle performances such as thermal efficiency and exergy efficiency. It is proven that performance of ORC unit is mainly affected by the thermodynamic property of working fluid, the waste heat temperature, the pinch point temperature of the evaporator, the specific heat capacity of the heat carrier and the turbine inlet temperature under a given environment temperature.

  9. Effect of the Sequence of the Thermoelectric Generator and the Three-Way Catalytic Converter on Exhaust Gas Conversion Efficiency

    Science.gov (United States)

    Su, Chuqi; Tong, Naiqiang; Xu, Yuman; Chen, Shan; Liu, Xun

    2013-07-01

    The potential for thermoelectric exhaust heat recovery in vehicles has increased with recent improvements in the efficiency of thermoelectric generators (TEGs). The problem with using thermoelectric generators for vehicle applications is whether the device is compatible with the original vehicle exhaust system, which determines the quality of the exhaust gas treatment and the realization of energy conservation and emission reduction. Based on ANSYS CFX simulation analysis of the impact of two positional relationships between the TEG and three-way catalytic converter in the exhaust system on the working efficiency of both elements, it is concluded that the layout with the front three-way catalytic converter has an advantage over the other layout mode under current conditions. New ideas for an improvement program are proposed to provide the basis for further research.

  10. EFFECTS OF COOLED EXTERNAL EXHAUST GAS RECIRCULATION ON DIESEL HOMOGENEOUS CHARGE COMPRESSION IGNITION ENGINE

    Institute of Scientific and Technical Information of China (English)

    SHI Lei; CUI Yi; DENG Kangyao

    2007-01-01

    The effects of cooled external exhaust gas recirculation (EGR) on the combustion and emission performance of diesel fuel homogeneous charge compression ignition (HCCI) are studied. Homogeneous mixture is formed by injecting fuel in-cylinder in the negative valve overlap (NVO) period. So, the HCCI combustion which has low NOx and smoke emission is achieved. Cooled external EGR can delay the start of combustion effectively, which is very useful for high cetane fuel (diesel) HCCI, because these fuels can easily self-ignition, which makes the start of combustion more early. External EGR can avoid the knock combustion of HCCI at high load which means that the EGR can expand the high load limit. HCCI maintains low smoke emission at various EGR rate and various load compared with conventional diesel engine because there is no fuel-rich area in cylinder.

  11. Exhaust gas catalysts for heavy-duty vehicles fuelled by alcohol or biogas

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, L.J.; Wahlberg, A.M.; Jaeraas, S.G. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemical Engineering and Technology

    1997-06-01

    The long-term objective for the project is to develop tailor-made exhaust gas catalysts for heavy-duty ethanol fuelled diesel vehicles operating in urban traffic. Due to special problems, related to emissions of unregulated compounds emanating from ethanol fuelled buses in Swedish fleet tests, a catalyst research programme has been initiated. The engineering target was to achieve a light-off temperature (T{sub 50}) for ethanol conversion below 110 deg C and a selectivity for total oxidation over 90 %. In this report results from laboratory-reactor tests are described. The results indicate that by combining two different precious metals both activity and selectivity can be positively affected compared to the properties of the corresponding mono metallic catalysts. The best results show a light-off temperature for ethanol conversion below 100 deg C. The base metal oxides were more selective for total oxidation than the corresponding precious metal catalysts. The results also indicate a considerable interaction between support and active material which affects the product distribution in catalytic oxidation of ethanol. At temperatures below 250 deg C the by-product formation can be quite high and the major by-product is acetaldehyde. The metal support interaction also has a certain influence on the oxidation of NO to NO{sub 2}. The results show that the NO{sub 2} formation can be suppressed without considerably affecting the activity of the catalyst. This report also includes a preliminary life cycle analysis (LCA) and life cycle cost (LCC) estimate for exhaust gas catalysts intended for heavy-duty ethanol vehicles in urban traffic. 22 refs, numerous figs and tabs

  12. Automotive Thermoelectric Waste Heat Recovery

    Science.gov (United States)

    Meisner, Gregory P.

    2015-03-01

    Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M

  13. CO{sub 2} separation from exhaust gas; CO{sub 2} separasjon fra eksosgass

    Energy Technology Data Exchange (ETDEWEB)

    Magelssen, Paul Fr. [Saga Petroleum A/S, Forus (Norway)

    1998-07-01

    When Saga wanted to reduce the CO{sub 2} emissions from Snorre B, cleaning of CO{sub 2} from exhaust gas was one of several options considered. CO{sub 2} cleaning using membrane/amine technology is under development. Saga required that the technology should be qualified and that the yield of the Snorre B project should not be reduced. This presentation discusses qualification of combined membrane/amine technology, environmental issues, economic issues and implementation on the Snorre B platform. Flue gas from the gas turbine is passed to a CO{sub 2} absorption and desorption stage from which the CO{sub 2} is passed on for compression and disposal while the cleaned flue is let out. The membrane is situated between the flue gas and the absorbent liquid. The pores are large enough for the CO{sub 2} to pass through quickly and small enough to prevent the liquid from penetrating into the pores. The packing factor is high, 500 - 1000 m2/m3, there is no formation of froth, ducts or entrainment of the liquid. New technology implies 65 - 70% size reduction of the main equipment and 39 - 40% reduction of the energy consumption. Research on amines brings out new chemicals which imply 80% reduction in the consumption of chemicals and the quantity of special waste produced. If a CO{sub 2} cleaning plant is installed on a LM 2500, the CO{sub 2} emissions can be reduced by 97,200 ton/year given the right operational conditions. Although it was decided in 1998 not to install the module with the CO{sub 2} pilot cleaning plant, Snorre B is still a good environmental project having CO{sub 2} emission within the values set by Miljoesok.

  14. 热处理废气治理及环保标准%Handling of Exhaust Gas Originating from Heat Treatment and Related Environmental Standards

    Institute of Scientific and Technical Information of China (English)

    夏永辉; 苏兴武; 沈合利; 王红伟; 张峦

    2015-01-01

    The main source of exhaust gas in heat treatment trade and the standards related to exhaust gas discharging were introduced.The ways of handling exhaust gas were put forward.The exhaust gas originating from heat treatment should be strictly handled according to the relevant environmental standard,rendering discharged exhaust gas up to the standard.%介绍了热处理行业废气的主要来源及废气排放的相关标准,提出了治理废气的方法。热处理废气应该严格按相关的环保标准进行处理,使废气排放达标。

  15. PERFORMANCE AND EXHAUST GAS EMISSIONS ANALYSIS OF DIRECT INJECTION CNG-DIESEL DUAL FUEL ENGINE

    Directory of Open Access Journals (Sweden)

    RANBIR SINGH

    2012-03-01

    Full Text Available Existing diesel engines are under stringent emission regulation particularly of smoke and particulate matter in their exhaust. Compressed Natural Gas and Diesel dual fuel operation is regarded as one of the best ways to control emissions from diesel engines and simultaneously saving petroleum based diesel fuel. Dual fuel engineis a conventional diesel engine which burn either gaseous fuel or diesel or both at the same time. In the present paper an experimental research was carried out on a laboratory single cylinder, four-stroke variable compression ratio, direct injection diesel engine converted to CNG-Diesel dual fuel mode to analyze the performance and emission characteristics of pure diesel first and then CNG-Diesel dual fuel mode. The measurements were recorded for the compression ratio of 15 and 17.5 at CNG substitution rates of 30% and 60% and varying theload from idle to rated load of 3.5kW in steps of 1 up to 3kW and then to 3.5kW. The results reveal that brake thermal efficiency of dual fuel engine is in the range of 30%-40% at the rated load of 3.5 kW which is 11%-13% higher than pure diesel engine for 30% and 60% CNG substitution rates. This trend is observed irrespective of the compression ratio of the engine. Brake specific fuel consumption of dual fuel engine is found better than pure diesel engine at all engine loads and for both CNG substitution rates. It is found that there is drastic reduction in CO, CO2, HC, NOx and smoke emissions in the exhaust of dual fuel engine at all loads and for 30% and 60% CNG substitution rates by employing some optimum operating conditions set forth for experimental investigations in this study.

  16. Development of low cost ceramic recuperator technology applicable to automotive gas turbine engines. Final report, April 1972--April 1977

    Energy Technology Data Exchange (ETDEWEB)

    Kormanyos, K.R.

    1978-02-01

    Oxide glass--ceramic recuperators for application to automotive gas turbine engines were investigated. Design data and fabrication feasibility were established. Evaluation of glass--ceramic recuperator structures was carried out on a series of experimental test specimens. Parametric design data for plate--fin type glass--ceramic recuperator configurations was developed over a range of engine operating conditions. Recuperator sizing procedures were developed to fit four conceptual recuperator designs to the DOE/Chrysler Baseline regenerated gas turbine engine. Assumed pressure drop and effectiveness value constraints on sizing yielded two design packages with acceptable dimensions to fit an automobile engine compartment. Four conceptual recuperator designs were fabricated as demonstration samples using CER-VIT C-132 glass--ceramic material. Single-pass cross-flow cores were fabricated using CER-VIT C-126 material for laboratory scale tests of cross-circuit leakage and hot-gas flow thermal cycling effects. The laboratory tests precipitated the development effect of a modified material system for test core fabrication. The modified material system proved successful in initial studies on small core sections; however, upon scale up to test core size unacceptably high cross-leakage resulted.

  17. Vehicle exhaust gas clearance by low temperature plasma-driven nano-titanium dioxide film prepared by radiofrequency magnetron sputtering.

    Directory of Open Access Journals (Sweden)

    Shuang Yu

    Full Text Available A novel plasma-driven catalysis (PDC reactor with special structure was proposed to remove vehicle exhaust gas. The PDC reactor which consisted of three quartz tubes and two copper electrodes was a coaxial dielectric barrier discharge (DBD reactor. The inner and outer electrodes firmly surrounded the outer surface of the corresponding dielectric barrier layer in a spiral way, respectively. Nano-titanium dioxide (TiO2 film prepared by radiofrequency (RF magnetron sputtering was coated on the outer wall of the middle quartz tube, separating the catalyst from the high voltage electrode. The spiral electrodes were designed to avoid overheating of microdischarges inside the PDC reactor. Continuous operation tests indicated that stable performance without deterioration of catalytic activity could last for more than 25 h. To verify the effectiveness of the PDC reactor, a non-thermal plasma(NTP reactor was employed, which has the same structure as the PDC reactor but without the catalyst. The real vehicle exhaust gas was introduced into the PDC reactor and NTP reactor, respectively. After the treatment, compared with the result from NTP, the concentration of HC in the vehicle exhaust gas treated by PDC reactor reduced far more obviously while that of NO decreased only a little. Moreover, this result was explained through optical emission spectrum. The O emission lines can be observed between 870 nm and 960 nm for wavelength in PDC reactor. Together with previous studies, it could be hypothesized that O derived from catalytically O3 destruction by catalyst might make a significant contribution to the much higher HC removal efficiency by PDC reactor. A series of complex chemical reactions caused by the multi-components mixture in real vehicle exhaust reduced NO removal efficiency. A controllable system with a real-time feedback module for the PDC reactor was proposed to further improve the ability of removing real vehicle exhaust gas.

  18. Vehicle exhaust gas clearance by low temperature plasma-driven nano-titanium dioxide film prepared by radiofrequency magnetron sputtering.

    Science.gov (United States)

    Yu, Shuang; Liang, Yongdong; Sun, Shujun; Zhang, Kai; Zhang, Jue; Fang, Jing

    2013-01-01

    A novel plasma-driven catalysis (PDC) reactor with special structure was proposed to remove vehicle exhaust gas. The PDC reactor which consisted of three quartz tubes and two copper electrodes was a coaxial dielectric barrier discharge (DBD) reactor. The inner and outer electrodes firmly surrounded the outer surface of the corresponding dielectric barrier layer in a spiral way, respectively. Nano-titanium dioxide (TiO2) film prepared by radiofrequency (RF) magnetron sputtering was coated on the outer wall of the middle quartz tube, separating the catalyst from the high voltage electrode. The spiral electrodes were designed to avoid overheating of microdischarges inside the PDC reactor. Continuous operation tests indicated that stable performance without deterioration of catalytic activity could last for more than 25 h. To verify the effectiveness of the PDC reactor, a non-thermal plasma(NTP) reactor was employed, which has the same structure as the PDC reactor but without the catalyst. The real vehicle exhaust gas was introduced into the PDC reactor and NTP reactor, respectively. After the treatment, compared with the result from NTP, the concentration of HC in the vehicle exhaust gas treated by PDC reactor reduced far more obviously while that of NO decreased only a little. Moreover, this result was explained through optical emission spectrum. The O emission lines can be observed between 870 nm and 960 nm for wavelength in PDC reactor. Together with previous studies, it could be hypothesized that O derived from catalytically O3 destruction by catalyst might make a significant contribution to the much higher HC removal efficiency by PDC reactor. A series of complex chemical reactions caused by the multi-components mixture in real vehicle exhaust reduced NO removal efficiency. A controllable system with a real-time feedback module for the PDC reactor was proposed to further improve the ability of removing real vehicle exhaust gas.

  19. Some implications of applying the theory of the economics of exhaustible resources to oil and gas pricing

    Energy Technology Data Exchange (ETDEWEB)

    Inyang, E.D.; Stultz-Karim, S.P.; Thackeray, F.

    1986-01-01

    The theory of the economics of exhaustible resources is reviewed and discussed in terms of its applicability to the complex structure of the international petroleum industry. Particular attention is given to the implications of uncertainty in reserves estimations for corporate, public, and financial institutions which have the responsibilities of oil and gas pricing and depletion policy formulation. A modification of the model of the economics of exhaustible resources under a freely competitive market structure is analyzed to determine the effect of uncertainty in reserves estimations on the optimal net price and on depletion profiles. The uncertainty in the resultant time until economic exhaustion and the discount present value is found to be directly proportional to the uncertainty in the reserves estimations. These results should be carefully considered in the difficult conflicts between short-term profit maximization and long-term social objectives in the formulation of public and private pricing and depletion policies.

  20. The Effect of Fuel Dose Division on The Emission of Toxic Components in The Car Diesel Engine Exhaust Gas

    Directory of Open Access Journals (Sweden)

    Pietras Dariusz

    2016-09-01

    Full Text Available The article discusses the effect of fuel dose division in the Diesel engine on smoke opacity and composition of the emitted exhaust gas. The research activities reported in the article include experimental examination of a small Diesel engine with Common Rail type supply system. The tests were performed on the engine test bed equipped with an automatic data acquisition system which recorded all basic operating and control parameters of the engine, and smoke opacity and composition of the exhaust gas. The parameters measured during the engine tests also included the indicated pressure and the acoustic pressure. The tests were performed following the pre-established procedure in which 9 engine operation points were defined for three rotational speeds: 1500, 2500 and 3500 rpm, and three load levels: 25, 40 and 75 Nm. At each point, the measurements were performed for 7 different forms of fuel dose injection, which were: the undivided dose, the dose divided into two or three parts, and three different injection advance angles for the undivided dose and that divided into two parts. The discussion of the obtained results includes graphical presentation of contests of hydrocarbons, carbon oxide, and nitrogen oxides in the exhaust gas, and its smoke opacity. The presented analyses referred to two selected cases, out of nine examined engine operation points. In these cases the fuel dose was divided into three parts and injected at the factory set control parameters. The examination has revealed a significant effect of fuel dose division on the engine efficiency, and on the smoke opacity and composition of the exhaust gas, in particular the content of nitrogen oxides. Within the range of low loads and rotational speeds, dividing the fuel dose into three parts clearly improves the overall engine efficiency and significantly decreases the concentration of nitrogen oxides in the exhaust gas. Moreover, it slightly decreases the contents of hydrocarbons and

  1. Establishing isokinetic flow for a plasma torch exhaust gas diagnostic for a plasma hearth furnace

    Energy Technology Data Exchange (ETDEWEB)

    Pollack, Brian R. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1996-05-01

    Real time monitoring of toxic metallic effluents in confined gas streams can be accomplished through use of Microwave Induced Plasmas to perform atomic emission spectroscopy, For this diagnostic to be viable it is necessary that it sample from the flowstream of interest in an isokinetic manner. A method of isokinetic sampling was established for this device for use in the exhaust system of a plasma hearth vitrification furnace. The flow and entrained particulate environment were simulated in the laboratory setting using a variable flow duct of the same dimensions (8-inch diameter, schedule 40) as that in the field and was loaded with similar particulate (less than 10 μm in diameter) of lake bed soil typically used in the vitrification process. The flow from the furnace was assumed to be straight flow. To reproduce this effect a flow straightener was installed in the device. An isokinetic sampling train was designed to include the plasma torch, with microwave power input operating at 2.45 GHz, to match local freestream velocities between 800 and 2400 ft/sec. The isokinetic sampling system worked as planned and the plasma torch had no difficulty operating at the required flowrates. Simulation of the particulate suspension was also successful. Steady particle feeds were maintained over long periods of time and the plasma diagnostic responded as expected.

  2. Establishing isokinetic flow for a plasma torch exhaust gas diagnostic for a plasma hearth furnace

    Energy Technology Data Exchange (ETDEWEB)

    Pollack, B.R.

    1996-05-01

    Real time monitoring of toxic metallic effluents in confined gas streams can be accomplished through use of Microwave Induced Plasmas to perform atomic emission spectroscopy, For this diagnostic to be viable it is necessary that it sample from the flowstream of interest in an isokinetic manner. A method of isokinetic sampling was established for this device for use in the exhaust system of a plasma hearth vitrification furnace. The flow and entrained particulate environment were simulated in the laboratory setting using a variable flow duct of the same dimensions (8-inch diameter, schedule 40) as that in the field and was loaded with similar particulate (less than 10 {mu}m in diameter) of lake bed soil typically used in the vitrification process. The flow from the furnace was assumed to be straight flow. To reproduce this effect a flow straightener was installed in the device. An isokinetic sampling train was designed to include the plasma torch, with microwave power input operating at 2.45 GHz, to match local freestream velocities between 800 and 2400 ft/sec. The isokinetic sampling system worked as planned and the plasma torch had no difficulty operating at the required flowrates. Simulation of the particulate suspension was also successful. Steady particle feeds were maintained over long periods of time and the plasma diagnostic responded as expected.

  3. Gas-oil/water emulsion fuel for automotive diesel engines. energia

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    In this paper the work performed within the contract EE-C-201-I is reported. The results achieved in the tests of high speed diesel engines with water in oil emulsion feeding system are summarized. First, carried out trials on test bench are described; then operation in light duty truck on the road and on roller test bench is reported and trials with constant speed diesel engine are related. Finally, the work about emulsion characterization is synthetized. The conclusion shows as the water in oil emulsion is a feeding system suitable for high speed diesel engine operation because BSFC, grade of smoke, exhaust temperature and emission are lowered without considerable troubles.

  4. Annual Report of Air Exhaust Center for Radioactive Gas in 2015

    Institute of Scientific and Technical Information of China (English)

    DU; Guang-fei; XU; De-chun; ZHAO; Da-peng; YAN; Hong-xia; DU; Hong-ming

    2015-01-01

    The new air exhaust center for radioactive work area 111-2#,which replaced original workshop 111#,111-1#and 144-2#,was put into trial operation in December,2012.It was in charge of air exhaust of the radiochemistry experimental facilities in 301 area,the radioactive

  5. Transient kinetic modeling of the ethylene and carbon monoxide oxidation over a commercial automotive exhaust gas catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Harmsen, J.M.A.; Hoebink, J.H.B.J.; Schouten, J.C.

    2000-03-01

    The transient kinetics of ethylene oxidation by oxygen over a commercial Pt/Rh/CeO{sub 2}/{gamma}-Al{sub 2}O{sub 3} three-way catalyst were modeled. Experiments were carried out in a fixed-bed microreactor with two separate inlets, enabling alternate feeding of ethylene and oxygen with frequencies up to {1/4} Hz. The experimental conditions resemble the cold-start period of an Otto engine in a car. Two types of adsorbed ethylene species seem to exist. A selective catalyst deactivation for oxygen adsorption, due to deposition of carbonaceous species, was found. A kinetic model was developed, based on elementary reaction steps, that allows one to describe the experiments quantitatively. Furthermore, this model was combined with the published model for transient carbon monoxide oxidation over the same catalyst, which enables one to predict the results of simultaneous ethylene and carbon monoxide oxidation. Both components react in rather distinct zones, with ethylene being converted only when carbon monoxide oxidation is almost complete.

  6. Effect of fuel composition on the emission of phenols in the exhaust gas from a European car.

    Science.gov (United States)

    Candeli, A; Morozzi, G; Zoccolillo, L

    1977-01-01

    The emission of phenols from a European car working with leaded and unleaded fuels with different percentage of aromatics has been considered. Fuels having the same aromatic content, but with a different composition of aromatic fraction, have also been taken into account. The results obtained showed that the emission of phenols increases with the increase of the aromatic content of fuel and also when unleaded instead of leaded fuels are used. The type of aromatic present in fuels was found to be important in forming the amount of both total and individual phenols emitted in the exhaust gas and in determining the number of phenolic compounds formed during combustion, although the phenol and isomer cresols were produced by combustion of all the fuels tested. The quantitative determination of individual phenols has been carried out on the benzene extract of the aqueous condensate and of the particulate matter of exhaust gas by the NaOH-extraction-GC-chromatographic method.

  7. Application of exhaust gas fuel reforming in diesel and homogeneous charge compression ignition (HCCI) engines fuelled with biofuels

    OpenAIRE

    A. Megaritis; Yap, D

    2008-01-01

    This is the post-print version of the final paper published in Energy. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2007 Elsevier B.V. This paper documents the application of exhaust gas fuel reforming ...

  8. Vehicle Exhaust Gas Clearance by Low Temperature Plasma-Driven Nano-Titanium Dioxide Film Prepared by Radiofrequency Magnetron Sputtering

    OpenAIRE

    Shuang Yu; Yongdong Liang; Shujun Sun; Kai Zhang; Jue Zhang; Jing Fang

    2013-01-01

    A novel plasma-driven catalysis (PDC) reactor with special structure was proposed to remove vehicle exhaust gas. The PDC reactor which consisted of three quartz tubes and two copper electrodes was a coaxial dielectric barrier discharge (DBD) reactor. The inner and outer electrodes firmly surrounded the outer surface of the corresponding dielectric barrier layer in a spiral way, respectively. Nano-titanium dioxide (TiO2) film prepared by radiofrequency (RF) magnetron sputtering was coated on t...

  9. The California greenhouse gas initiative and its implications to the automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B. C.; Miller, R. T.; Center for Automotive Research

    2006-05-31

    CAR undertook this investigation to better understand the costs and challenges of a local (state) regulation necessitating the implementation of alternative or advanced powertrain technology. CAR will attempt to add insight into the challenges that local regulations present to the automotive industry, and to contribute further to the discussion of how advanced powertrain technology may be used to meet such regulation. Any local law that (directly or indirectly) affects light duty motor vehicle fuel economy creates what in effect is a specialty market for powertrain technology. As such these small markets present significant challenges for automotive manufacturers. First, a small market with unique standards presents significant challenges to an industry that has sustained growth by relying on large volumes to achieve scale economies and deliver products at a cost acceptable to the consumer. Further, the challenges of the additional technology make it likely that any powertrain capable of meeting the stringent emissions standards will include costly additional components, and thus will be more costly to manufacture. It is likely that manufacturers would consider the following actions as steps to deliver products to meet the pending California regulatory requirements anticipated as a result of prior California legislation: (1) Substituting more fuel efficient vehicles: Bring in more efficient vehicles from global operations, while likely dropping existing domestic products. (2) Substituting powertrains: Add existing downsized engines (i.e. turbocharged versions, etc.) into California market-bound vehicles. (3) Powertrain enhancements: Add technology to current engine and transmission offerings to improve efficiency and reduce emissions. (4) Incorporating alternative powertrains into existing vehicle platforms: Develop a hybrid or other type of powertrain for an existing vehicle. (5) New powertrains and new platforms: Develop vehicles specifically intended to

  10. Development of a metal hydride refrigeration system as an exhaust gas-driven automobile air conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Feng; Chen, Jiangping; Chen, Zhijiu [Institute of Refrigeration and Cryogenics Engineering, Shanghai Jiaotong University, Shanghai 200030 (China); Lu, Manqi; Yang, Ke [Engineering Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, Liaoning Province 110016 (China); Zhou, Yimin [Research Center, Zhejiang Yinlun Machinery Co. Ltd., Tiantai County, Zhejiang Province 317200 (China)

    2007-10-15

    Aiming at developing exhaust gas-driven automobile air conditioners, two types of systems varying in heat carriers were preliminarily designed. A new hydride pair LaNi{sub 4.61}Mn{sub 0.26}Al{sub 0.13}/La{sub 0.6}Y{sub 0.4}Ni{sub 4.8}Mn{sub 0.2} was developed working at 120-200 C/20-50 C/-10-0 C. P-C isotherms and reaction kinetics were tested. Reaction enthalpy, entropy and theoretical cycling coefficient of performance (COP) were deducted from Van't-Hoff diagram. Test results showed that the hydride pair has flat plateau slopes, fast reaction dynamics and small hystereses; the reaction enthalpy of the refrigeration hydride is -27.1 kJ/mol H{sub 2} and system theoretical COP is 0.711. Mean particle sizes during cycles were verified to be an intrinsic property affected by constitution, heat treatment and cycle numbers rather than initial grain sizes. Based on this work pair, cylindrical reactors were designed and a function proving metal hydride intermittent refrigeration system was constructed with heat conducting oil as heat source and water as heat sink. The reactor equivalent thermal conductivity is merely 1.3 W/(m K), which still has not meet practical requirement. Intermittent refrigeration cycles were achieved and the average cooling power is 84.6 W at 150 C/30 C/0 C with COP being 0.26. The regulations of cycling performance and minimum refrigeration temperature (MRT) were determined by altering heat source temperature. Results showed that cooling power and system COP increase while MRT decreases with the growth of heat source temperature. This study develops a new hydride pair and confirms its application in automobile refrigeration systems, while their heat transfer properties still need to be improved for better performance. (author)

  11. Understanding the formative stage of technological innovation system development: The case of natural gas as an automotive fuel

    Energy Technology Data Exchange (ETDEWEB)

    Suurs, Roald A.A., E-mail: roald.suurs@tno.n [Innovation Studies Group, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands); TNO Built Environment and Geosciences, Business Unit Innovation and Environment, Van Mourik Broekmanweg 6, 2628 XE Delft (Netherlands); Hekkert, Marko P.; Kieboom, Sander; Smits, Ruud E.H.M. [Innovation Studies Group, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands)

    2010-01-15

    This study contributes to insights into mechanisms that influence the successes and failures of emerging energy technologies. It is assumed that for an emerging technology to fruitfully develop, it should be fostered by a Technological Innovation System (TIS), which is the network of actors, institutions and technologies in which it is embedded. For an emerging technology a TIS has yet to be built up. This research focuses on the dynamics of this build-up process by mapping the development of seven key activities: so-called system functions. The main contribution revolves around the notion of cumulative causation, or the phenomenon that the build-up of a TIS accelerates due to system functions reinforcing each other over time. As an empirical basis, an analysis is provided of the historical development of the TIS around automotive natural gas technology in the Netherlands (1970-2007). The results show that this TIS undergoes a gradual build-up in the 1970s, followed by a breakdown in the 1980s and, again, a build-up from 2000 to 2007. It is shown that underlying these trends are different forms of cumulative causation, here called motors of innovation. The study provides strategic insights for practitioners that aspire to support such motors of innovation.

  12. Understanding the formative stage of technological innovation system development. The case of natural gas as an automotive fuel

    Energy Technology Data Exchange (ETDEWEB)

    Suurs, Roald A.A. [Innovation Studies Group, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands); TNO Built Environment and Geosciences, Business Unit Innovation and Environment, Van Mourik Broekmanweg 6, 2628 XE Delft (Netherlands); Hekkert, Marko P.; Kieboom, Sander; Smits, Ruud E.H.M. [Innovation Studies Group, Copernicus Institute for Sustainable Development and Innovation, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht (Netherlands)

    2010-01-15

    This study contributes to insights into mechanisms that influence the successes and failures of emerging energy technologies. It is assumed that for an emerging technology to fruitfully develop, it should be fostered by a Technological Innovation System (TIS), which is the network of actors, institutions and technologies in which it is embedded. For an emerging technology a TIS has yet to be built up. This research focuses on the dynamics of this build-up process by mapping the development of seven key activities: so-called system functions. The main contribution revolves around the notion of cumulative causation, or the phenomenon that the build-up of a TIS accelerates due to system functions reinforcing each other over time. As an empirical basis, an analysis is provided of the historical development of the TIS around automotive natural gas technology in the Netherlands (1970-2007). The results show that this TIS undergoes a gradual build-up in the 1970s, followed by a breakdown in the 1980s and, again, a build-up from 2000 to 2007. It is shown that underlying these trends are different forms of cumulative causation, here called motors of innovation. The study provides strategic insights for practitioners that aspire to support such motors of innovation. (author)

  13. The California greenhouse gas initiative and its implications to the automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B. C.; Miller, R. T.; Center for Automotive Research

    2006-05-31

    CAR undertook this investigation to better understand the costs and challenges of a local (state) regulation necessitating the implementation of alternative or advanced powertrain technology. CAR will attempt to add insight into the challenges that local regulations present to the automotive industry, and to contribute further to the discussion of how advanced powertrain technology may be used to meet such regulation. Any local law that (directly or indirectly) affects light duty motor vehicle fuel economy creates what in effect is a specialty market for powertrain technology. As such these small markets present significant challenges for automotive manufacturers. First, a small market with unique standards presents significant challenges to an industry that has sustained growth by relying on large volumes to achieve scale economies and deliver products at a cost acceptable to the consumer. Further, the challenges of the additional technology make it likely that any powertrain capable of meeting the stringent emissions standards will include costly additional components, and thus will be more costly to manufacture. It is likely that manufacturers would consider the following actions as steps to deliver products to meet the pending California regulatory requirements anticipated as a result of prior California legislation: (1) Substituting more fuel efficient vehicles: Bring in more efficient vehicles from global operations, while likely dropping existing domestic products. (2) Substituting powertrains: Add existing downsized engines (i.e. turbocharged versions, etc.) into California market-bound vehicles. (3) Powertrain enhancements: Add technology to current engine and transmission offerings to improve efficiency and reduce emissions. (4) Incorporating alternative powertrains into existing vehicle platforms: Develop a hybrid or other type of powertrain for an existing vehicle. (5) New powertrains and new platforms: Develop vehicles specifically intended to

  14. 40 CFR 86.1710-99 - Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Fleet average non-methane organic gas....1710-99 Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles...

  15. Making aerospace technology work for the automotive industry, introduction

    Science.gov (United States)

    Olson, W. T.

    1978-01-01

    NASA derived technology already in use in the automotive industry include: (1) developments in electronics design, computer systems, and quality control methods for line testing of cars and trucks; (2) a combustion analysis computer program for automotive engine research and development; (3) an infrared scanner and television display for analyzing tire design and performance, and for studying the effects of heat on the service life of V-belts, shock mounts, brakes, and rubber bearings; (4) exhaust gas analyzers for trouble shooting and emissions certification; (5) a device for reducing noise from trucks; and (6) a low cost test vehicle for measuring highway skid resistance. Services offered by NASA to facilitate access to its technology are described.

  16. Use of compressed natural gas in automotive vehicles; Uso del gas natural comprimido aplicado en vehiculos automotores

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez R, Adrian [Comision Nacional para el Ahorro de Energia (CONAE) (Mexico)

    2005-07-01

    The natural gas is natural origin energy (fossil fuel); it contains predominantly 90 percent methane; does not require transformation process for its use; is supplied the 24 hours to commerce, industries and homes by underground pipes; it is lighter than air; it is not corrosive, nor absorbent or toxic. For those reasons a study was performed where it is widely justified why the natural gas ought to be used in vehicles. [Spanish] El gas natural es un energetico de origen natural (combustible fosil), contiene predominantemente 90 por ciento de metano, no requiere proceso de transformacion para su utilizacion, llega directamente las 24 horas del dia a los hogares, comercios e industrias por tuberias subterraneas, es mas ligero que el aire, no es corrosivo, no es absorbente y no es toxico. Por esas razones se hizo un estudio donde se justifica ampliamente porque el gas natural debe utilizarse en vehiculos.

  17. Carbon dioxide enrichment of greenhouse vegetable through the use of diesel exhaust gas. [Cucumis sativus; Lactuca sp

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M.H.; Hodges, C.N.

    1970-01-01

    Two cucumber and eight lettuce varieties were grown in two air-supported, closed-environment plastic greenhouses, one with approximately ambient CO2 levels, and the other enriched with 1400 ppm CO2. Diesel exhaust gas was the source of the carbon dioxide. Once the exhaust gases were scrubbed through seawater and put through an activated charcoal filter, essentially no other gases entered the greenhouse along with the CO2. Cucumbers grown in the enriched environment came into production one week earlier, and one variety produced significantly higher yields, than those grown at near ambient levels of CO2. Lettuce grown in the CO2 enriched greenhouse weighed, at market maturity, nearly twice as much as lettuce grown at ambient levels.

  18. Design and Application of Automotive Gas Leak Sensor%车用燃气泄漏传感器的设计与应用

    Institute of Scientific and Technical Information of China (English)

    杨淑玲; 王文群; 黄伦正

    2016-01-01

    This paper proposes an automotive gas leak detecting sensor, and introduces details of its working principle, electrical characteristics, sensor locating and controlling strategy, which provides valuable reference in alarm system development for gas-powered vehicle manufacturers.%提出一种车用燃气泄漏传感器;详细介绍该传感器的工作原理、电气特性、传感器布置及控制策略;为燃气汽车生产厂家燃气报警系统开发提供经验。

  19. Catalysts, systems and methods to reduce NOX in an exhaust gas stream

    Science.gov (United States)

    Castellano, Christopher R.; Moini, Ahmad; Koermer, Gerald S.; Furbeck, Howard

    2010-07-20

    Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having an SCR catalyst comprising silver tungstate on an alumina support. The emissions treatment system may be used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines. An emissions treatment system may further comprise an injection device operative to dispense a hydrocarbon reducing agent upstream of the catalyst.

  20. Automotive mechatronics automotive networking, driving stability systems, electronics

    CERN Document Server

    2015-01-01

    As the complexity of automotive vehicles increases this book presents operational and practical issues of automotive mechatronics. It is a comprehensive introduction to controlled automotive systems and provides detailed information of sensors for travel, angle, engine speed, vehicle speed, acceleration, pressure, temperature, flow, gas concentration etc. The measurement principles of the different sensor groups are explained and examples to show the measurement principles applied in different types. Contents Basics of mechatronics.- Architecture.- Electronic control unit.- Software development.- Basic principles of networking.- Automotive networking.- Bus systems.- Automotive sensors.- Sensor measuring principles.- Sensor types.- Electric actuators.- Electrohydraulic actuators.- Electronic transmission control.- Electronic transmission control unit.- Modules for transmission control.- Antilock braking system.- Traction control system.- Electronic stability program.- Automatic brake functions.- Hydraulic modu...

  1. Automotive Catalyst State Diagnosis Using Microwaves

    Directory of Open Access Journals (Sweden)

    Moos Ralf

    2015-01-01

    Full Text Available The state of catalysts plays a key role in automotive exhaust gas aftertreatment. The soot or ash loading of Diesel particulate filters, the oxygen loading degree in three-way catalysts, the amount of stored ammonia in SCR catalysts, or the NOx loading degree in NOx storage catalysts are important parameters that are today determined indirectly and in a model-based manner with gas sensors installed upstream and/or downstream of the catalysts. This contribution gives an overview on a novel approach to determine the catalyst state directly by a microwave-based technique. The method exploits the fact that the catalyst housing acts as a microwave cavity resonator. As “sensing” elements, one or two simple antennas are mounted inside the catalyst canning. The electrical properties of the catalyst device (ceramic honeycomb plus coating and storage material can be measured. Preferably, the resonance characteristics, e.g., the resonance frequencies, of selected cavity modes are observed. The information on the catalyst interior obtained in such a contactless manner is very well correlated with the catalyst state as will be demonstrated for different exhaust gas aftertreatment systems.

  2. 77 FR 76842 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Science.gov (United States)

    2012-12-31

    ... abbreviation for the term ``W Watt(s)'' and add the abbreviations for the terms ``Carbon dioxide'', ``Gram(s... 2 Carbon dioxide * * * * * g Gram(s) * * * * * kN Kilonewton(s) kW Kilowatt(s) lb Pound(s... exhaust emissions, smoke and fuel venting from aircraft in 1973, with occasional revision. Since the...

  3. 40 CFR 89.421 - Exhaust gas analytical system; CVS bag sample.

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust... for analyzing CVS bag samples from compression- ignition engines. Since various configurations can... as instruments, valves, solenoids, pumps and switches may be used to provide additional...

  4. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Science.gov (United States)

    2010-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test... CVS grab “bag” samples from spark-ignition engines. Since various configurations can produce accurate..., valves, solenoids, pumps and switches may be used to provide additional information and coordinate...

  5. A well-based cost function and the economics of exhaustible resources: The case of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Chermak, J.M. [Naval Postgraduate School, Monterey, CA (United States); Patrick, R.H. [Rutgers Univ., Newark, NJ (United States)

    1995-03-01

    A cost function for natural gas production is estimated, using a pool of data from 29 wells. Statistically exact tests are performed for parameter stability across locations, formations, wells, and producing firms. Costs are determined to be inversely related to remaining recoverable reserves, and marginal costs of production are decreasing in all cases. Theoretical implications of these cost characteristics on optimal exhaustible resource extraction are analyzed. Although marginal cost is decreasing, production effects on the resource stock imply that an interior production path may be optimal. Conditions under which production optimally occurs at the capacity bound are delineated, and optimal interior production paths are characterized. 21 refs., 2 tabs.

  6. Gas purge-microsyringe extraction: a rapid and exhaustive direct microextraction technique of polycyclic aromatic hydrocarbons from plants.

    Science.gov (United States)

    Wang, Juan; Yang, Cui; Li, Huijie; Piao, Xiangfan; Li, Donghao

    2013-12-17

    Gas purge-microsyringe extraction (GP-MSE) is a rapid and exhaustive microextraction technique for volatile and semivolatile compounds. In this study, a theoretical system of GP-MSE was established by directly extracting and analyzing 16 kinds of polycyclic aromatic hydrocarbons (PAHs) from plant samples. On the basis of theoretical consideration, a full factorial experimental design was first used to evaluate the main effects and interactions of the experimental parameters affecting the extraction efficiency. Further experiments were carried out to determine the extraction kinetics and desorption temperature-dependent. The results indicated that three factors, namely desorption temperature (temperature of sample phase) Td, extraction time t, and gas flow rate u, had a significantly positive effect on the extraction efficiency of GP-MSE for PAHs. Extraction processes of PAHs in plant samples followed by first-order kinetics (relative coefficient R(2) of simulation curves were 0.731-1.000, with an average of 0.958 and 4.06% relative standard deviation), and obviously depended on the desorption temperature. Furthermore, the effect of the matrix was determined from the difference in Eapp,d. Finally, satisfactory recoveries of 16 PAHs were obtained using optimal parameters. The study demonstrated that GP-MSE could provide a rapid and exhaustive means of direct extraction of PAHs from plant samples. The extraction kinetics were similar that of the inverse process of the desorption kinetics of the sample phase.

  7. Exhaust Gas Recirculation Technology (EGR)%废气再循环系统EGR的探讨

    Institute of Scientific and Technical Information of China (English)

    桂林; 孙亮

    2012-01-01

    With the continuous improvement of economic level and living standards, an explosion of car makes easier to people in the life, but also causes serious air pollution. Exhaust gas recirculation technology (EGR) is the more effective emission control means. By a typical structure introduction, this paper gives an indepth analysis about how exhaust gas recirculation system works and the control strategies.%随着经济水平、生活水平的不断提高,汽车保有量激增,在给人们生活带来便利的同时,也造成了十分严重的大气污染。废气再循环技术(EGR),是目前比较有效地尾气控制手段。通过典型结构的介绍,深入分析废气再循环系统的工作原理、控制策略等。

  8. Emission characteristics of iso-propanol/gasoline blends in a spark-ignition engine combined with exhaust gas re-circulation

    Directory of Open Access Journals (Sweden)

    Gong Jing

    2014-01-01

    Full Text Available Experiments were carried out in a spark-ignition engine fueled with iso-propanol/gasoline blends. Emission characteristics of this engine were investigated experimentally, including gaseous emissions (HC, CO, NOx and particulate matter emission in term of number and size distributions. The effects of different iso-propanol percentages, loads and exhaust gas recirculation rates on emissions were analyzed. Results show that the introduction of exhaust gas recirculation reduces the NOx emission and NOx emission gives the highest value at full load condition. HC and CO emissions present inconspicuous variations at all the loads except the load of 10%. Additionally, HC emission shows a sharp increase for pure propanol when the exhaust gas recirculation rate is up to 5%, while little variation is observed at lager exhaust gas recirculation rates. Moreover, the particulate matter number concentration increases monotonically with the increase of load and the decrease of exhaust gas recirculation rate. There exists a critical spark timing that produces the highest particulate matter number concentration at all the blending ratios.

  9. A Fault Diagnosis Approach for Gas Turbine Exhaust Gas Temperature Based on Fuzzy C-Means Clustering and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhi-tao Wang

    2015-01-01

    Full Text Available As an important gas path performance parameter of gas turbine, exhaust gas temperature (EGT can represent the thermal health condition of gas turbine. In order to monitor and diagnose the EGT effectively, a fusion approach based on fuzzy C-means (FCM clustering algorithm and support vector machine (SVM classification model is proposed in this paper. Considering the distribution characteristics of gas turbine EGT, FCM clustering algorithm is used to realize clustering analysis and obtain the state pattern, on the basis of which the preclassification of EGT is completed. Then, SVM multiclassification model is designed to carry out the state pattern recognition and fault diagnosis. As an example, the historical monitoring data of EGT from an industrial gas turbine is analyzed and used to verify the performance of the fusion fault diagnosis approach presented in this paper. The results show that this approach can make full use of the unsupervised feature extraction ability of FCM clustering algorithm and the sample classification generalization properties of SVM multiclassification model, which offers an effective way to realize the online condition recognition and fault diagnosis of gas turbine EGT.

  10. 基于AVR单片机的汽车尾气检测系统设计%Design of automobile exhaust gas detection system based on AVR

    Institute of Scientific and Technical Information of China (English)

    姚宁; 郭朝龙; 翁凌云; 葛承滨

    2014-01-01

    针对当前汽车尾气污染加重和检测标准日益完善的现状,为了弥补传统汽车尾气检测系统在测量精度、稳定性、人机操作等方面存在的不足,提出了一种基于AVR单片机的汽车尾气检测系统设计方案。系统以ATMEGA8L为核心控制器,主要由传感器模块、信号采集调理电路、A/D转换器以及显示模块等组成。实验结果表明,系统具有测量精度高、稳定可靠、人机交互性好等优点。%Nowadays the automotive exhaust pollution has been increasing and the detecting standard is increasingly sophis⁃ticated. A design scheme of an automobile exhaust detecting system based on AVR is proposed to overcome the shortage of tradi⁃tional automotive exhaust detection systems in measuring accuracy,stability and man⁃machine operation. ATMEGA8L is taken as the core controller of the system,which is composed of the sensor module,signal acquisition and conditioning circuit,A/D converter,and display module. The tested results show that the system has the advantages of high⁃accuracy,high stability,high reliability and good human⁃computer interaction.

  11. Influence of Main Components in Exhaust Gas on Mercury Adsorption Capacity of Brominated Activated Carbon

    Directory of Open Access Journals (Sweden)

    Tran Hong Con

    2016-01-01

    Full Text Available Brominated activated carbon (AC-Br, which was produced from coconut shell activated carbon (AC and brominated by wet way with elemental bromine, was determined as a material with super high adsorption capacity of mercury vapor. But in real exhaust gases, there are many components such as SO2, NOx, CO, CO2, HCl, H2O can influence on adsorption ability of the AC-Br. In this paper, these influences were studied and compared them between initial AC and AC-Br. Each component has different effect on AC and AC-Br and followed by its particular mechanism.

  12. Quantification of diesel exhaust gas phase organics by a thermal desorption proton transfer reaction mass spectrometer

    Directory of Open Access Journals (Sweden)

    M. H. Erickson

    2012-02-01

    Full Text Available A new approach was developed to measure the total abundance of long chain alkanes (C12 and above in urban air using thermal desorption with a proton transfer reaction mass spectrometer (PTR-MS. These species are emitted in diesel exhaust and may be important precursors to secondary organic aerosol production in urban areas. Long chain alkanes undergo dissociative proton transfer reactions forming a series of fragment ions with formula CnH2n+1. The yield of the fragment ions is a function of drift conditions. At a drift field strength of 80 Townsends, the most abundant ion fragments from C10 to C16 n-alkanes were m/z 57, 71 and 85. The PTR-MS is insensitive to n-alkanes less than C8 but displays an increasing sensitivity for larger alkanes. Higher drift field strengths yield greater normalized sensitivity implying that the proton affinity of the long chain n-alkanes is less than H2O. Analysis of diesel fuel shows the mass spectrum was dominated by alkanes (CnH2n+1, monocyclic aromatics, and an ion group with formula CnH2n−1 (m/z 97, 111, 125, 139. The PTR-MS was deployed in Sacramento, CA during the Carbonaceous Aerosols and Radiative Effects Study field experiment in June 2010. The ratio of the m/z 97 to 85 ion intensities in ambient air matched that found in diesel fuel. Total diesel exhaust alkane concentrations calculated from the measured abundance of m/z 85 ranged from the method detection limit of ~1 μg m−3 to 100 μg m−3 in several air pollution episodes. The total diesel exhaust alkane concentration determined by this method was on average a factor of 10 greater than the sum of alkylbenzenes associated with spark ignition vehicle exhaust.

  13. Exhaust Gas Analysis and Parametric Study of Ethanol Blended Gasoline Fuel in Spark Ignition Engine

    Directory of Open Access Journals (Sweden)

    Jitendra kumar

    2013-07-01

    Full Text Available It is well known that the future availability of energy resources, as well as the need for reducing CO2 emissions from the fuels used has increased the need for the utilization of regenerative fuels. This research is done taking commercial gasoline as reference which is originally blended with 5% ethanol. Hence 5%, 10%, 15%, 20% ethanol blended with Gasoline initially was tested in SI engines. Physical properties relevant to the fuel were determined for the four blends of gasoline. A four cylinder, four stroke, varying rpm, Petrol (MPFI engine was tested on blends containing 5%,10%,15%,20% ethanol and performance characteristics, and exhaust emissions were evaluated. Even though higher blends can replace gasoline in a SI engine, results showed that there is a reduction in exhaust gases, such as HC, O2, CO, CO2 and increase in Brake Thermal Efficiency on blending. Hence we can conclude from the result that using 10% ethanol blend is most effective and we can utilize it for further use in SI engines with little constraint on material used to sustain little increase in pressure.

  14. Market structure and exhaustible resources: The case of natural gas and crude oil in California

    Science.gov (United States)

    Czastkiewicz, Carolina

    Using a dataset of natural gas and crude oil production in the state of California, evidence shows overextraction incentives among market participants that shared a common pool. Due to these incentives the supply of gas and crude oil extraction tends to become more inelastic as the number of firms in the pool increases. Using an instrumental variables estimation of the supply function, the results show that the common pool externality caused an average overproduction rate of 11% and 4% over the 1977--2001 period, in natural gas and crude oil, respectively. These figures imply 1 year and 4 years of additional production for natural gas and crude oil, respectively.

  15. Bicycle Painting Exhaust Gas Treatment Technology Comparison%自行车涂装废气治理技术的对比

    Institute of Scientific and Technical Information of China (English)

    杜万义; 张晓燕

    2015-01-01

    The exhaust gas of bicycle spraying mainly contains two parts. The first part is the mist particles which appear during spraying process. The second part is VOC which appear during the process of spraying and drying. This paper describes the main treatment method of the exhaust gas during bicycle spraying.%自行车涂装废气主要有两部分,一是喷涂过程中产生的漆雾颗粒物,二是喷涂和烘干过程中产生的VOC。本文阐述了涂装废气的治理主要方法。

  16. Influence of biofuels on exhaust gas and noise emissions of small industrial diesel engines; Einfluss von Biokraftstoffen auf die Abgas- und Geraeuschemission kleiner Industriedieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Spessert, B.M. [Fachhochschule Jena (Germany). Fachgebiet Kraft- und Arbeitsmaschinen; Schleicher, A. [Fachhochschule Jena (Germany). Fachgebiet Umweltmesstechnik

    2007-03-15

    At small industrial diesel engines, as they were brought in oftentimes on building sites, in the farming and forest industry and on boats, biofuels are increasingly used. In a research project of the University of Applied Sciences Jena, Germany, thus the changes of the exhaust gas pollutant and noise emissions of these diesel engines were investigated. Test fuels were diesel fuel, and also biofuels as biodiesel (RME), rape seed oil and sun flower oil. Depending on the operating point these biofuels increased or reduced the emissions of exhaust gas and noise of the investigated engines clearly. (orig.)

  17. Discussions on denitration technology for exhaust gas of coke oven battery%焦炉烟气脱硝工艺技术探讨

    Institute of Scientific and Technical Information of China (English)

    李良华; 刘杰; 曹银平

    2015-01-01

    介绍了控制焦炉烟气氮氧化物生成的低氮燃烧技术和焦炉烟气脱硝技术,阐述了干法和湿法烟气脱硝技术的适用性和需解决的问题。%This paper introduces the low-nitrogen combustion technology to control NOx generation in exhaust gas of coke oven battery and the denitration technology for exhaust gas,and it also elaborates the applicability of dry denitration and wet denitration method and the problems to be solved.

  18. Effect of water injection and off scheduling of variable inlet guide vanes, gas generator speed and power turbine nozzle angle on the performance of an automotive gas turbine engine

    Science.gov (United States)

    Warren, E. L.

    1980-01-01

    The Chrysler/ERDA baseline automotive gas turbine engine was used to experimentally determine the power augmentation and emissions reductions achieved by the effect of variable compressor and power engine geometry, water injection downstream of the compressor, and increases in gas generator speed. Results were dependent on the mode of variable geometry utilization. Over 20 percent increase in power was accompanied by over 5 percent reduction in SFC. A fuel economy improvement of at least 6 percent was estimated for a vehicle with a 75 kW (100 hp) engine which could be augmented to 89 kW (120 hp) relative to an 89 Kw (120 hp) unaugmented engine.

  19. Estimation of current density distribution of PAFC by analysis of cell exhaust gas

    Energy Technology Data Exchange (ETDEWEB)

    Kato, S.; Seya, A. [Fuji Electric Co., Ltd., Ichihara-shi (Japan); Asano, A. [Fuji Electric Corporate, Ltd., Yokosuka-shi (Japan)

    1996-12-31

    To estimate distributions of Current densities, voltages, gas concentrations, etc., in phosphoric acid fuel cell (PAFC) stacks, is very important for getting fuel cells with higher quality. In this work, we leave developed a numerical simulation tool to map out the distribution in a PAFC stack. And especially to Study Current density distribution in the reaction area of the cell, we analyzed gas composition in several positions inside a gas outlet manifold of the PAFC stack. Comparing these measured data with calculated data, the current density distribution in a cell plane calculated by the simulation, was certified.

  20. Review of homogeneous charge compression ignition (HCCI) combustion engines and exhaust gas recirculation (EGR) effects on HCCI

    Science.gov (United States)

    Akma Tuan Kamaruddin, Tengku Nordayana; Wahid, Mazlan Abdul; Sies, Mohsin Mohd

    2012-06-01

    This paper describes the development in ICE which leads to the new advanced combustion mode named Homogeneous Charge Compression Ignition (HCCI). It explains regarding the theory and working principle of HCCI plus the difference of the process in gasoline and diesel fuelled engines. Many of pioneer and recent research works are discussed to get the current state of art about HCCI. It gives a better indication on the potential of this method in improving the fuel efficiency and emission produced by the vehicles' engine. Apart from the advantages, the challenges and future trend of this technology are also included. HCCI is applying few types of control strategy in producing the optimum performance. This paper looks into Exhaust Gas Recirculation (EGR) as one of the control strategies.

  1. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emission in Engines Operating on E85 Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ko-Jen

    2011-12-31

    This report summarizes activities conducted for the project “The Use of Exhaust Gas Recirculation to Optimized Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel” under COOPERATIVE AGREEMENT NUMBER DE-FC26-07NT43271, which are as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated March 2007 and in the supplemental SOPO dated October 2010. The project objective was to develop and demonstrate an internal combustion engine that is optimized for E85 (85% ethanol and 15% gasoline) fuel operation to achieve substantially improved fuel economy while operating with E85 fuel and that is also production viable in the near- to medium-term. The key engine technology selected for research and development was turbocharging, which is known to improve fuel economy thru downsizing and is in particular capable of exploiting ethanol fuel’s characteristics of high octane number and high latent heat of vaporization. The engine further integrated synergistic efficiency improving technologies of cooled exhaust gas recirculation (EGR), direct fuel injection and dual continuously variable intake and exhaust cam phasers. On the vehicle level, fuel economy was furthered thru powertrain system optimization by mating a state-of-the-art six-speed automatic transmission to the engine. In order to achieve the project’s objective of near- to medium-term production viability, it was essential to develop the engine to be flex-fuel capable of operating with fuels ranging from E0 (0% ethanol and 100% gasoline) to E85 and to use three-way type of catalyst technology for exhaust aftertreatment. Within these scopes, various technologies were developed through systems approach to focus on ways to help accelerate catalyst light-off. Significant amount of development took place during the course of the project within General Motors, LLC. Many prototype flex-fuel engines were designed, built and developed with various hardware configurations selected to achieve the project

  2. Conversion of an Existing Gas Turbine to an Intercooled Exhaust-Heated Coal-Burning Engine

    Science.gov (United States)

    1990-12-01

    possibilities of using biomass is also included. The engine chosen for conversion is the 2.8 MW F olar 5650 industrial gas turbine. The conversion... alkali -laden gas which can result in particulate and chemical action on the turbine as well as pollution. Particulate matter has a powerful erosive effect...rate is then adjusted by altering the pressure difference between the tank and the carrier line at the orifice [45]. Pretreatment of the coal is

  3. A Review of the Utilisation of Natural Gas with High Carbon Dioxide Content as Automotive Fuel in an Indirect Injection Diesel Engine

    Directory of Open Access Journals (Sweden)

    Opatola Rasheed Adewale

    2014-07-01

    Full Text Available The persistent consumption of fossil fuels by modern transportation tends toward feared depletion in crude oil and infliction of health risks on human beings and the environment due to the noxious emissions from the combustion of fossil fuels. This work examines the prospects of fuel modification in improving engine performance by utilising compressed natural gas (CNG mixed with varying proportions of carbon dioxide (CO2 as fuel in Diesel engines. The extent to which the addition of CO2 to CNG could help simulate the effects of exhaust gas recirculation (EGR as employed in modern engine technology will be established.

  4. 78 FR 63017 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Science.gov (United States)

    2013-10-23

    ... adopting the gas turbine engine test procedures of the International Civil Aviation Organization (ICAO... in the final rule, noting that the changes would harmonize U.S. regulations with those of ICAO. The... ICAO's Committee of Aviation Environmental Protection. The AIA stated that these differences...

  5. 78 FR 63015 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Science.gov (United States)

    2013-10-23

    ... Aircraft Gas Turbine Engines and Identification Plate for Aircraft Engines AGENCY: Federal Aviation... aircraft engines which, in the EPA Administrator's judgment, causes or contributes to air pollution that... aircraft engine emission standards for oxides of nitrogen (NO X ), compliance flexibilities, and...

  6. Inhalation of diesel engine exhaust affects spermatogenesis in growing male rats; Diesel enigne hai gas bakuro ni yoru seicho yusei rat no seishi keisei eno eiky

    Energy Technology Data Exchange (ETDEWEB)

    Kawai, A. [Japan Automobile Research Institute Inc., Tsukuba (Japan)

    2000-04-01

    The paper investigated effects of the exposure of diesel engine exhaust on internal secretion function of genital organs of rats being in growth. Exposure tests were divided into a group of exposing rats to total exhaust gas (TG), a group of exposing rats to particulate-free exhaust gas (PFG), and a group of exposing rats to clean air (comparison group). The tests were carried out for 6 hours/day, for 5 days/week, and for 3 months from the birth. As to the weight at the time of finishing tests, there were no significant differences in weights of testicle and epididymis in each group. About the concentration of male/female sex hormones in serum, the values were significantly higher in TG and PFG groups than the comparison group. The follide stimulating hormone significantly decreased in both exposure groups as compared with the comparison group. The luteinizing hormone significantly decreased in TG group as compared with the comparison group and PFG group. Further, the sperm productivity and testicle hyaluronidase activity significantly decreased in both exhaust exposure groups as compared with the comparison group. It is indicated that the diesel engine exhaust stimulates the secretion of adrenal cortical hormone, reduces emission of gonadotropic hormone, and controls the spermatogenesis of rats. (NEDO)

  7. Mutagenicity of diesel engine exhaust is eliminated in the gas phase by an oxidation catalyst but only slightly reduced in the particle phase.

    Science.gov (United States)

    Westphal, Götz A; Krahl, Jürgen; Munack, Axel; Ruschel, Yvonne; Schröder, Olaf; Hallier, Ernst; Brüning, Thomas; Bünger, Jürgen

    2012-06-05

    Concerns about adverse health effects of diesel engine emissions prompted strong efforts to minimize this hazard, including exhaust treatment by diesel oxidation catalysts (DOC). The effectiveness of such measures is usually assessed by the analysis of the legally regulated exhaust components. In recent years additional analytical and toxicological tests were included in the test panel with the aim to fill possible analytical gaps, for example, mutagenic potency of polycyclic aromatic hydrocarbons (PAH) and their nitrated derivatives (nPAH). This investigation focuses on the effect of a DOC on health hazards from combustion of four different fuels: rapeseed methyl ester (RME), common mineral diesel fuel (DF), SHELL V-Power Diesel (V-Power), and ARAL Ultimate Diesel containing 5% RME (B5ULT). We applied the European Stationary Cycle (ESC) to a 6.4 L turbo-charged heavy load engine fulfilling the EURO III standard. The engine was operated with and without DOC. Besides regulated emissions we measured particle size and number distributions, determined the soluble and solid fractions of the particles and characterized the bacterial mutagenicity in the gas phase and the particles of the exhaust. The effectiveness of the DOC differed strongly in regard to the different exhaust constituents: Total hydrocarbons were reduced up to 90% and carbon monoxide up to 98%, whereas nitrogen oxides (NO(X)) remained almost unaffected. Total particle mass (TPM) was reduced by 50% with DOC in common petrol diesel fuel and by 30% in the other fuels. This effect was mainly due to a reduction of the soluble organic particle fraction. The DOC caused an increase of the water-soluble fraction in the exhaust of RME, V-Power, and B5ULT, as well as a pronounced increase of nitrate in all exhausts. A high proportion of ultrafine particles (10-30 nm) in RME exhaust could be ascribed to vaporizable particles. Mutagenicity of the exhaust was low compared to previous investigations. The DOC reduced

  8. Gas Turbine Engine Having Fan Rotor Driven by Turbine Exhaust and with a Bypass

    Science.gov (United States)

    Suciu, Gabriel L. (Inventor); Chandler, Jesse M. (Inventor)

    2016-01-01

    A gas turbine engine has a core engine incorporating a core engine turbine. A fan rotor is driven by a fan rotor turbine. The fan rotor turbine is in the path of gases downstream from the core engine turbine. A bypass door is moveable from a closed position at which the gases from the core engine turbine pass over the fan rotor turbine, and moveable to a bypass position at which the gases are directed away from the fan rotor turbine. An aircraft is also disclosed.

  9. Experimental Study on the Absorption of Toluene from Exhaust Gas by Paraffin/Surfactant/Water Emulsion

    Directory of Open Access Journals (Sweden)

    Ping Fang

    2016-01-01

    Full Text Available A new paraffin/surfactant/water emulsion (PSW for volatile organic compounds (VOCs controlling was prepared and its potential for VOCs removal was investigated. Results indicated that PSW-5 (5%, v/v provided higher toluene absorption efficiency (90.77% than the other absorbents used. The saturation pressure, Henry’s constant, and activity coefficient of toluene in PSW-5 were significantly lower than those in water, and toluene solubility (1.331 g·L−1 in the PSW-5 was more than 2.5 times higher than the value in water. Several factors potentially affecting the toluene absorption efficiency were systematically investigated. The results suggested that concentration and pH of PSW, absorption temperature, and gas flow rate all had a strong influence on the toluene absorption, but the inlet concentration of toluene had little effect on the toluene absorption. There were different absorbing performances of PSW-5 on different VOCs, and the ketones, esters, and aromatics were more easily removed by the PSW-5 than the alkanes. Regeneration and reuse of the PSW were possible; after 3 runs of regeneration the absorption efficiency of PSW-5 for toluene also could reach 82.42%. So, the PSW is an economic, efficient, and safe absorbent and has a great prospect in organic waste gas treatment.

  10. Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy

    Science.gov (United States)

    Weikl, Markus C.; Beyrau, Frank; Leipertz, Alfred

    2006-05-01

    Pure rotational coherent anti-Stokes Raman spectroscopy was used for the simultaneous determination of temperature and exhaust-gas recirculation in a homogeneous charge-compression ignition engine. Measurements were performed in a production-line four-cylinder gasoline engine operated with standard gasoline fuel through small optical line-of-sight accesses. The homogenization process of fresh intake air with recirculated exhaust gas was observed during the compression stroke, and the effect of charge temperature on combustion timing is shown. Single-pulse coherent anti-Stokes Raman spectroscopy spectra could not only be taken in the compression stroke but also during the gas-exchange cycle and after combustion. Consequently, the used method has been shown to be suitable for the investigation of two of the key parameters for self-ignition, namely temperature and charge composition.

  11. Automotive sensors

    Science.gov (United States)

    Marek, Jiri; Illing, Matthias

    2003-01-01

    Sensors are an essential component of most electronic systems in the car. They deliver input parameters for comfort features, engine and emission control as well as for the active and passive safety systems. New technologies such as silicon micromachining play an important role for the introduction of these sensors in all vehicle classes. The importance and use of these sensor technologies in today"s automotive applications will be shown in this article. Finally an outlook on important current developments and new functions in the car will be given.

  12. Antenna Arrays and Automotive Applications

    CERN Document Server

    Rabinovich, Victor

    2013-01-01

    This book throws a lifeline to designers wading through mounds of antenna array patents looking for the most suitable systems for their projects. Drastically reducing the research time required to locate solutions to the latest challenges in automotive communications, it sorts and systematizes material on cutting-edge antenna arrays that feature multi-element communication systems with enormous potential for the automotive industry. These new systems promise to make driving safer and more efficient, opening up myriad applications, including vehicle-to-vehicle traffic that prevents collisions, automatic toll collection, vehicle location and fine-tuning for cruise control systems. This book’s exhaustive coverage begins with currently deployed systems, frequency ranges and key parameters. It proceeds to examine system geometry, analog and digital beam steering technology (including "smart" beams formed in noisy environments), maximizing signal-to-noise ratios, miniaturization, and base station technology that ...

  13. An Approach to the Prototyping of an Optimized Limited Stroke Actuator to Drive a Low Pressure Exhaust Gas Recirculation Valve

    Directory of Open Access Journals (Sweden)

    Christophe Gutfrind

    2016-05-01

    Full Text Available The purpose of this article is to describe the design of a limited stroke actuator and the corresponding prototype to drive a Low Pressure (LP Exhaust Gas Recirculation (EGR valve for use in Internal Combustion Engines (ICEs. The direct drive actuator topology is an axial flux machine with two air gaps in order to minimize the rotor inertia and a bipolar surface-mounted permanent magnet in order to respect an 80° angular stroke. Firstly, the actuator will be described and optimized under constraints of a 150 ms time response, a 0.363 N·m minimal torque on an angular range from 0° to 80° and prototyping constraints. Secondly, the finite element method (FEM using the FLUX-3D® software (CEDRAT, Meylan, France will be used to check the actuator performances with consideration of the nonlinear effect of the iron material. Thirdly, a prototype will be made and characterized to compare its measurement results with the analytical model and the FEM model results. With these electromechanical behavior measurements, a numerical model is created with Simulink® in order to simulate an EGR system with this direct drive actuator under all operating conditions. Last but not least, the energy consumption of this machine will be estimated to evaluate the efficiency of the proposed EGR electromechanical system.

  14. An Approach to the Prototyping of an Optimized Limited Stroke Actuator to Drive a Low Pressure Exhaust Gas Recirculation Valve.

    Science.gov (United States)

    Gutfrind, Christophe; Dufour, Laurent; Liebart, Vincent; Vannier, Jean-Claude; Vidal, Pierre

    2016-05-20

    The purpose of this article is to describe the design of a limited stroke actuator and the corresponding prototype to drive a Low Pressure (LP) Exhaust Gas Recirculation (EGR) valve for use in Internal Combustion Engines (ICEs). The direct drive actuator topology is an axial flux machine with two air gaps in order to minimize the rotor inertia and a bipolar surface-mounted permanent magnet in order to respect an 80° angular stroke. Firstly, the actuator will be described and optimized under constraints of a 150 ms time response, a 0.363 N·m minimal torque on an angular range from 0° to 80° and prototyping constraints. Secondly, the finite element method (FEM) using the FLUX-3D(®) software (CEDRAT, Meylan, France) will be used to check the actuator performances with consideration of the nonlinear effect of the iron material. Thirdly, a prototype will be made and characterized to compare its measurement results with the analytical model and the FEM model results. With these electromechanical behavior measurements, a numerical model is created with Simulink(®) in order to simulate an EGR system with this direct drive actuator under all operating conditions. Last but not least, the energy consumption of this machine will be estimated to evaluate the efficiency of the proposed EGR electromechanical system.

  15. Influence of Voltage Rise Time for Oxidation Treatment of NO in Simulated Exhausted Gas by Polarity-Reversed Pulse Discharge

    Science.gov (United States)

    Shinmoto, Kazuya; Kadowaki, Kazunori; Nishimoto, Sakae; Kitani, Isamu

    This paper describes experimental study on NO removal from a simulated exhausted-gas using repetitive surface discharge on a glass barrier subjected to polarity-reversed voltage pulses. The very fast polarity-reversal with a rise time of 20ns is caused by direct grounding of a charged coaxial cable of 10m in length. Influence of voltage rise time on energy efficiency for NO removal is studied. Results of NO removal using a barrier-type plasma reactor with screw-plane electrode system indicates that the energy efficiency for the very fast polarity reversal caused by direct grounding becomes higher than that for the slower polarity reversal caused by grounding through an inductor at the cable end. The energy efficiency for the direct grounding is about 80g/kWh for 50% NO removal ratio and is about 60g/kWh for 100% NO removal ratio. Very intense discharge light is observed at the initial time of 10ns for the fast polarity reversal, whereas the intensity in the initial discharge light for the slower polarity reversal is relatively small. To confirm the effectiveness of the polarity-reversed pulse application, comparison of the energy efficiency between the polarity-reversed voltage pulse and ac 60Hz voltage will be presented.

  16. Effects of Exhaust Gas Recirculation on the Homogeneous Charge Combustion Process of n-Heptane at Different Load Conditions

    Institute of Scientific and Technical Information of China (English)

    LIU Dexin; FENG Hongqing; ZHENG Jincai; MILLER David L; CERNANSKY Nicholas P

    2005-01-01

    Effects of exhaust gas recirculation (EGR) on homogeneous charge combustion of n-heptane was studied through simulation and experiment. Experiments were carried out in a single cylinder, four-stroke, air cooled engine and a single cylinder, two-stroke, water cooled engine. In the four-stroke engine, experiments of the effects of EGR were examined using heated N2 addition as a surrogate for external EGR and modifying engine to increase internal EGR. The ignition timing was sensitive to EGR due to thermal and chemical effects. EGR or extra air is a key factor in eliminating knock during mid-load conditions. For higher load operation the only way to avoid knock is to control reaction timing through the use of spark ignition. Experimental and modeling results from the two-stroke engine show that auto-ignition can be avoided by increasing the engine speed. The two-stroke engine experiments indicate that high levels of internal EGR can enable spark ignition at lean conditions. At higher load conditions, increasing the engine speed is an effective method to control transition from homogeneous charge compression ignition (HCCI) operation to non-HCCI operation and successful spark ignition of a highly dilute mixture can avoid serious knock.

  17. Toward gas exhaustion in the W51 high-mass protoclusters

    CERN Document Server

    Ginsburg, Adam; Goddi, Ciriaco; Galván-Madrid, Roberto; Dale, James E; Bally, John; Battersby, Cara D; Youngblood, Allison; Sankrit, Ravi; Smith, Rowan; Darling, Jeremy; Kruijssen, J M Diederik; Liu, Hauyu Baobab

    2016-01-01

    We present new JVLA observations of the high-mass cluster-forming region W51A from 2 to 16 GHz with resolution ${\\theta}_{fwhm} \\approx$ 0.3 - 0.5". The data reveal a wealth of observational results: (1) Currently-forming, very massive (proto-O) stars are traced by o-H2CO $2_{1,1}-2_{1,2}$ emission, suggesting that this line can be used efficiently as a massive protostar tracer. (2) There is a spatially distributed population of $\\sim$mJy continuum sources, including hypercompact H ii regions and candidate colliding wind binaries, in and around the W51 proto-clusters. (3) There are two clearly detected protoclusters, W51e and W51 IRS2, that are gas-rich but may have most of their mass in stars within their inner $\\sim$ 0.05 pc. The majority of the bolometric luminosity in W51 most likely comes from a third population of OB stars between these clusters. The presence of a substantial population of exposed O-stars coincident with a population of still-forming massive stars, along with a direct measurement of the...

  18. Diesel engines with low-pressure exhaust-gas recirculation. Challenges for the turbocharger; Dieselmotoren mit Niederdruck-Abgasrueckfuehrung. Herausforderungen an den Turbolader

    Energy Technology Data Exchange (ETDEWEB)

    Muenz, S.; Roemuss, C.; Schmidt, P. (Borg-Warner Turbo Systems Engineering GmbH, Kirchheimbolanden); Brune, K.H.; Schiffer, H.P. [Technische Hochschule Darmstadt (Germany). Fachgebiet fuer Gasturbinen, Luft- und Raumfahrtantriebe

    2008-02-15

    Excellent driving performance and low fuel consumption make the diesel engine an attractive power unit for road traffic. It is an essential component for achieving fuel consumption targets demanded in future. The disadvantages of the compression ignition engine are the high, functional-related nitrogen oxide and particulate emissions, in addition to costs. Compliance with future emission standards poses a technological challenge for it. Intensive experimental and numerical work allowed BorgWarner Turbo and Emissions Systems to determine the relevant influencing parameters of low-pressure-circuit exhaust-gas recirculation for the turbocharger and develop measures to protect the aerodynamic components in targeted manner. These measures would lead to anticipate that series use of low-pressure-circuit exhaust-gas recirculation would appear realistic as a contribution to further reducing pollutant emissions of the diesel engine. (orig.)

  19. Impact of recycling on cradle-to-gate energy consumption and greenhouse gas emissions of automotive lithium-ion batteries.

    Science.gov (United States)

    Dunn, Jennifer B; Gaines, Linda; Sullivan, John; Wang, Michael Q

    2012-11-20

    This paper addresses the environmental burdens (energy consumption and air emissions, including greenhouse gases, GHGs) of the material production, assembly, and recycling of automotive lithium-ion batteries in hybrid electric, plug-in hybrid electric, and battery electric vehicles (BEV) that use LiMn(2)O(4) cathode material. In this analysis, we calculated the energy consumed and air emissions generated when recovering LiMn(2)O(4), aluminum, and copper in three recycling processes (hydrometallurgical, intermediate physical, and direct physical recycling) and examined the effect(s) of closed-loop recycling on environmental impacts of battery production. We aimed to develop a U.S.-specific analysis of lithium-ion battery production and in particular sought to resolve literature discrepancies concerning energy consumed during battery assembly. Our analysis takes a process-level (versus a top-down) approach. For a battery used in a BEV, we estimated cradle-to-gate energy and GHG emissions of 75 MJ/kg battery and 5.1 kg CO(2)e/kg battery, respectively. Battery assembly consumes only 6% of this total energy. These results are significantly less than reported in studies that take a top-down approach. We further estimate that direct physical recycling of LiMn(2)O(4), aluminum, and copper in a closed-loop scenario can reduce energy consumption during material production by up to 48%.

  20. Determination of benzene in exhaust gas from biofuels. Final report; Bestimmung von Benzol im Abgas von Biokraftstoffen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Dutz, M.; Buenger, J.; Gnuschke, H.; Halboth, H.; Gruedl, P.; Krahl, J.

    2001-10-01

    With the advance of environmental legislation and practices oriented towards sustainability renewable energy resources are becoming increasingly important. Use of replenishable raw materials helps preserve fossil resources. In the fuel sector the most widely used replenishable materials are rape methyl ester (RME) and ethyl tertiary butyl ether (ETBE). The purpose of the present project on the ''Determination of benzene in exhaust gas from biofuels'' was to generate orienting data on the potential health relevance of mixtures of fossil and renewable fuel intended for use in spark ignition and diesel engines. This included a determination of benzene emissions and the mutagenicity of particles. Beyond the applied-for scope of research measurements were also performed on the test engine's toluene, ethyl benzene and xylene emissions as well as on the smoke spot number and nitrogen oxide (NO{sub x}) and hydrocarbon (HC) emissions of the diesel engine. [German] Regenerative Energien gewinnen durch die Umweltgesetzgebungen und das Streben nach einer nachhaltigen Entwicklung zunehmend an Bedeutung. Durch die Verwendung nachwachsender Rohstoffe koennen die fossilen Ressourcen geschont werden. Im Kraftstoffsektor sind hier hauptsaechlich Rapsoelmethylester (RME) und optional Ethyltertiaerbutylether (ETBE) zu nennen. Um fuer Diesel- und Ottomotoren insbesondere mit Blick auf Kraftstoffgemische aus fossilen und regenerativen Komponenten orientierende Daten ueber eine potenzielle Gesundheitsrelevanz zu generieren, wurde das Projekt 'Bestimmung von Benzol im Abgas von Biokraftstoffen' durchgefuehrt. Neben der Benzolemission wurde die Mutagenitaet der Partikeln ermittelt. Ueber den beantragten Untersuchungsrahmen hinaus wurden die Tuluol-, Ethylbenzol-, und Xylolemissionen der eingesetzten Motoren, sowie die Russzahl (RZ) und die Stickoxid- (NO{sub x}) und Kohlenwasserstoffemissionen (HC) des Dieselmotors bestimmt. (orig.)

  1. High temporal resolution measurement of the exhaust gas mass flow and temperature by means of ultrasound; Die hochaufloesende Messung von Abgasmassenstrom und -temperatur mittels Ultraschall

    Energy Technology Data Exchange (ETDEWEB)

    Klee, P. [Kaiserslautern Univ. (Germany). Arbeitsgruppe Verbrennungskraftmaschinen; Gebhardt, W. [Fraunhofer-Inst. fuer Zerstoerungsfreie Materialpruefung, Saarbruecken (Germany)

    1998-03-01

    Within this research project at the Fraunhofer-Institute for Non-Destructive Test Methods (IzfP Saarbruecken) an ultrasonic time measurement technique was devised for high temporal resolution measurement of exhaust gas mass flow and temperature. To make it suitable for everything from tailpipes to cylinder exhaust it was necessary first and foremost to develop high temperature resistant airborne ultrasonic sensors. The developed sensors and the water-cooled measurement assembly can be utilised up to an exhaust gas temperature of 600 C. An extension of the temperature range up to 1000 C has been dispensed with up to now in favour of solving turbulence and solid-borne sound problems. The sensors and the measurement method were tested at a motor test bench at the Chair of Internal Combustion Engines at the University of Kaiserslautern. The average values of exhaust gas flow and temperature were in good agreement with the values determined from fuel/air consumption. It was demonstrated that this technique can be used up to 6000 rpm. (orig.) [Deutsch] Die Ultraschall-Laufzeitmesstechnik wurde im Verlauf dieses Forschungsvorhabens durch das Fraunhofer-Institut fuer zerstoerungsfreie Pruefverfahren (IzfP), Saarbruecken, als Verfahren zur zeitlich hochaufgeloesten Erfassung von Abgasmassenstrom und -temperatur etabliert. Eine Eignung von Auspuffendrohr bis zur Naehe Zylinderauslass erforderte in erster Linie die Schaffung einer hochtemperaturresistenten Ultraschallsensorik. Die entwickelte Sensorik und die Messstrecke sind mit Wasserkuehlung bis zu 600 C Abgastemperatur einsetzbar. Auf eine Erweiterung des Temperaturbereiches in Richtung 1000 C wurde bisher zugunsten der Loesung der Turbulenz- und Koerperschallproblematik verzichtet. Die am Motorpruefstand des Lehrstuhls fuer Kraft- und Arbeitsmaschinen der Universitaet Kaiserslautern gemessenen, zeitlich hochaufgeloesten Massenstroeme stimmen in ihren zeitlichen Mittelwerten gut mit den aus Kraftstoff- und Luftdurchsatz

  2. High-Speed Multiplexed Spatiotemporally Resolved Measurements of Exhaust Gas Recirculation Dynamics in a Multi-Cylinder Engine Using Laser Absorption Spectroscopy.

    Science.gov (United States)

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2016-04-01

    The need for more environmentally friendly and efficient energy conversion is of paramount importance in developing and designing next-generation internal combustion (IC) engines for transportation applications. One effective solution to reducing emissions of mono-nitrogen oxides (NOx) is exhaust gas recirculation (EGR), which has been widely implemented in modern vehicles. However, cylinder-to-cylinder and cycle-to-cycle variations in the charge-gas uniformity can be a major barrier to optimum EGR implementation on multi-cylinder engines, and can limit performance, stability, and efficiency. Precise knowledge and fine control over the EGR system is therefore crucial, particularly for optimizing advanced engine concepts such as reactivity controlled compression ignition (RCCI). An absorption-based laser diagnostic was developed to study spatiotemporal charge-gas distributions in an IC engine intake manifold in real-time. The laser was tuned to an absorption band of carbon dioxide (CO2), a standard exhaust-gas marker, near 2.7 µm. The sensor was capable of probing four separate measurement locations simultaneously, and independently analyzing EGR fraction at speeds of 5 kHz (1.2 crank-angle degree (CAD) at 1 k RPM) or faster with high accuracy. The probes were used to study spatiotemporal EGR non-uniformities in the intake manifold and ultimately promote the development of more efficient and higher performance engines.

  3. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling and Baseline Model Analysis

    Science.gov (United States)

    Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.; Meisner, Gregory P.

    2013-04-01

    A numerical model has been developed to simulate coupled thermal and electrical energy transfer processes in a thermoelectric generator (TEG) designed for automotive waste heat recovery systems. This model is capable of computing the overall heat transferred, the electrical power output, and the associated pressure drop for given inlet conditions of the exhaust gas and the available TEG volume. Multiple-filled skutterudites and conventional bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from exhaust into usable electrical power. Heat transfer between the hot exhaust gas and the hot side of the TEMs is enhanced with the use of a plate-fin heat exchanger integrated within the TEG and using liquid coolant on the cold side. The TEG is discretized along the exhaust flow direction using a finite-volume method. Each control volume is modeled as a thermal resistance network which consists of integrated submodels including a heat exchanger and a thermoelectric device. The pressure drop along the TEG is calculated using standard pressure loss correlations and viscous drag models. The model is validated to preserve global energy balances and is applied to analyze a prototype TEG with data provided by General Motors. Detailed results are provided for local and global heat transfer and electric power generation. In the companion paper, the model is then applied to consider various TEG topologies using skutterudite and bismuth telluride TEMs.

  4. Principle Findings from Development of a Recirculated Exhaust Gas Intake Sensor (REGIS) Enabling Cost-Effective Fuel Efficiency Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, Claus [Robert Bosch LLC, Farmington Hills, MI (United States)

    2016-03-30

    Kick-off of the Bosch scope of work for the REGIS project started in October 2012. The primary work-packages included in the Bosch scope of work were the following: overall project management, development of the EGR sensor (design of sensor element, design of protection tube, and design of mounting orientation), development of EGR system control strategy, build-up of prototype sensors, evaluation of system performance with the new sensor and the new control strategy, long-term durability testing, and development of a 2nd generation sensor concept for continued technology development after the REGIS project. The University of Clemson was a partner with Bosch in the REGIS project. The Clemson scope of work for the REGIS project started in June 2013. The primary work-packages included in the Clemson scope of work were the following: development of EGR system control strategy, and evaluation of system performance with the new sensor and new control strategy. This project was split into phase I, phase II and phase III. Phase I work was completed by the end of June 2014 and included the following primary work packages: development of sensor technical requirements, assembly of engine testbench at Clemson, design concept for sensor housing, connector, and mounting orientation, build-up of EGR flow test benches at Bosch, and build-up of first sensor prototypes. Phase II work was completed by the end of June 2015 and included the following primary work pack ages: development of an optimizing function and demonstration of robustness of sensor, system control strategy implementation and initial validation, completion of engine in the loop testing of developed control algorithm, completion of sensor testing including characteristic line, synthetic gas test stand, and pressure dependency characterization, demonstration of benefits of control w/o sensing via simulation, development of 2nd generation sensor concept. Notable technical achievements from phase II were the following

  5. Black carbon from ships: a review of the effects of ship speed, fuel quality and exhaust gas scrubbing

    Directory of Open Access Journals (Sweden)

    D. A. Lack

    2012-01-01

    Full Text Available The International Maritime Organization (IMO has moved to address the health and climate impact of the emissions from the combustion of low-quality residual fuels within the commercial shipping industry. Fuel sulfur content (FS limits and an efficiency design index for future ships are examples of such IMO actions. The impacts of black carbon (BC emissions from shipping are now under review by the IMO, with a particular focus on the potential impacts of future Arctic shipping.

    Recognizing that associating impacts with BC emissions requires both ambient and onboard observations, we provide recommendations for the measurement of BC. We also evaluate current insights regarding the effect of ship speed (engine load, fuel quality and exhaust gas scrubbing on BC emissions from ships. Observations demonstrate that BC emission factors (EFBC increases 3 to 6 times at very low engine loads (<25% compared to EFBC at 85–100% load; absolute BC emissions (per nautical mile of travel also increase up to 100% depending on engine load, even with reduced load fuel savings. If fleets were required to operate at lower maximum engine loads, presumably associated with reduced speeds, then engines could be re-tuned, which would reduce BC emissions.

    Ships operating in the Arctic are likely running at highly variable engine loads (25–100% depending on ice conditions and ice breaking requirements. The ships operating at low load may be emitting up to 50% more BC than they would at their rated load. Such variable load conditions make it difficult to assess the likely emissions rate of BC.

    Current fuel sulfur regulations have the effect of reducing EFBC by an average of 30% and potentially up to 80% regardless of engine load; a removal rate similar to that of scrubbers.

    Uncertainties among current observations demonstrate there is a need for more information on (a the impact of fuel

  6. Black carbon from ships: a review of the effects of ship speed, fuel quality and exhaust gas scrubbing

    Directory of Open Access Journals (Sweden)

    D. A. Lack

    2012-05-01

    Full Text Available The International Maritime Organization (IMO has moved to address the health and climate impact of the emissions from the combustion of low-quality residual fuels within the commercial shipping industry. Fuel sulfur content (FS limits and an efficiency design index for future ships are examples of such IMO actions. The impacts of black carbon (BC emissions from shipping are now under review by the IMO, with a particular focus on the potential impacts of future Arctic shipping.

    Recognizing that associating impacts with BC emissions requires both ambient and onboard observations, we provide recommendations for the measurement of BC. We also evaluate current insights regarding the effect of ship speed (engine load, fuel quality and exhaust gas scrubbing on BC emissions from ships. Observations demonstrate that BC emission factors (EFBC increases 3 to 6 times at very low engine loads (<25% compared to EFBC at 85–100% load; absolute BC emissions (per nautical mile of travel also increase up to 100% depending on engine load, even with reduced load fuel savings. If fleets were required to operate at lower maximum engine loads, presumably associated with reduced speeds, then engines could be re-tuned, which would reduce BC emissions.

    Ships operating in the Arctic are likely running at highly variable engine loads (25–100% depending on ice conditions and ice breaking requirements. The ships operating at low load may be emitting up to 50% more BC than they would at their rated load. Such variable load conditions make it difficult to assess the likely emissions rate of BC.

    Current fuel sulfur regulations have the effect of reducing EFBC by an average of 30% and potentially up to 80% regardless of engine load; a removal rate similar to that of scrubbers.

    Uncertainties among current observations demonstrate there is a need for more information on a the impact of fuel quality

  7. Automotive vehicle sensors

    Energy Technology Data Exchange (ETDEWEB)

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  8. Exhaust purification with on-board ammonia production

    Science.gov (United States)

    Robel, Wade J.; Driscoll, James Joshua; Coleman, Gerald N.

    2008-05-13

    A system of ammonia production for a selective catalytic reduction system is provided. The system includes producing an exhaust gas stream within a cylinder group, wherein the first exhaust gas stream includes NOx. The exhaust gas stream may be supplied to an exhaust passage and cooled to a predetermined temperature range, and at least a portion of the NOx within the exhaust gas stream may be converted into ammonia.

  9. Automotive gas turbine ceramic regenerator design and reliability program. Final annual report, July 1, 1975--September 30, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J.A.; Fucinari, C.A.; Lingscheit, J.N.; Rahnke, C.J.

    1976-10-01

    The primary objective of the ERDA/Ford Ceramic Regenerator Design and Reliability Program is to develop ceramic regenerator cores that can be used in passenger car gas turbine engines, Stirling engines, and industrial/truck gas turbine engines. Specific durability objectives are defined as achieving a B/sub 10/ life of 10,000 hours on a truck/industrial gas turbine engine duty cycle. Previous reports, under this program, summarized operating experience on lithium aluminum silicate (LAS) ceramic regenerator cores obtained at Ford Motor Company. The primary cause of failure of these regenerators was determined to be chemical attack of the LAS material. Improved materials and design concepts aimed at reducing or eliminating chemical attack were placed on durability test in Ford 707 industrial gas turbine engines late in 1974. A description is given of the results of 18,500 hours of turbine engine durability testing accumulated during the period from July 1, 1975 to Sept. 30, 1976. Two materials, aluminum silicate and magnesium aluminum silicate continue to show promise toward achieving the durability objectives of this program. Regenerator cores made from aluminum silicate show no evidence of chemical attack damage after 5600 hours of engine test.

  10. Swirl and blade wakes in the interaction between gas turbines and exhaust diffusers investigated by endoscopic particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Opilat, Victor

    2011-10-21

    Exhaust diffusers studied in this thesis are installed behind the last turbine stage of gas turbines, including those used in combined cycle power plants. Extensive research made in recent years proved that effects caused by an upstream turbine need to be taken into account when designing efficient diffusers. Under certain conditions these effects can stabilize the boundary layer in diffusers and prevent separation. In this research the impact of multiple parameters, such as tip leakage flow, swirl, and rotating blade wakes, on the performance of a diffuser is studied. Experiments were conducted using a diffuser test rig with a rotating bladed wheel as a turbine effect generator and with an additional tip leakage flow insert. The major advantages of this test rig are modularity and easy variation of the main parameters. To capture the complexity and understand the physics of diffuser flow, and to clarify the phenomenon of the flow stabilisation, the 2D endoscopic laser optical measurement technique Partide Image Velocimetry (PIV) was adopted to the closed ''rotating'' diffuser test rig. Intensity and distribution of vortices in the blade tip area are decisive for diffuser performance. Large vortices in the annular diffuser inlet behind the blade tips interact with the boundary layer in diffusers. At design point these vortices are very early suppressed by the main flow. For the operating point with a low value of the flow coefficient (negative swirl), vortices are ab out two tim es stronger than for design point and the boundary layer is destabilized. V mtices develop in the direction contrary to swirl in the main flow and just cause flow destabilization. Coherent back flow zones are induced and reduction of diffuser performance occurs. For the operating point with positive swirl (for a high flow coefficient value), these vortices are also strong but do not counteract the main flow because they develop in the same direction with the swirl in the

  11. Rejuvenation of automotive fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yu Seung; Langlois, David A.

    2016-08-23

    A process for rejuvenating fuel cells has been demonstrated to improve the performance of polymer exchange membrane fuel cells with platinum/ionomer electrodes. The process involves dehydrating a fuel cell and exposing at least the cathode of the fuel cell to dry gas (nitrogen, for example) at a temperature higher than the operating temperature of the fuel cell. The process may be used to prolong the operating lifetime of an automotive fuel cell.

  12. Review on desulfurization and denitration technologies for ship exhaust gas treatment%船舶尾气脱硫脱硝技术研究进展

    Institute of Scientific and Technical Information of China (English)

    张欢; 钟鹭斌; 陈进生; 郑煜铭

    2016-01-01

    NOx and SOx,which account for high proportions in the exhaust gas of ocean ships burning low quality heavy oil,result in threats to the marine ecological environment and the health of residents in the coastal area. In this paper,various types of post-treatment technologies for purification of marine exhaust were introduced,and their main advantages and disadvantages were analyzed. The techniques of desulfurization,denitration,and desulfurization-denitration integrated technology for the control of ship exhaust gas pollutants emission,were reviewed. It is concluded that,in practice,the current post-treatment technologies which can only treat a single pollutant was not suitable for effective marine exhaust emission reduction,while the desulfurization-denitration integrated technology would be the main direction which can achieve the comprehensive treatment of ship exhaust gas currently. The future direction of marine exhaust post-treatment technology development is still being explored. There are two main bottlenecks of the desulfurization-denitration integrated technology. First,although low temperature plasma and photocatalysis which were developed in recent years show great potentials,thehigh cost and security concerns still hinder their applications in ships. On the other hand,sea water modification method which shows high treatment efficiency,small foot print and lower cost,may become one of the most promising methods in the effective treatment of ship exhaust gas in the future.%远洋船舶燃烧低品质重油所释放的尾气中,NOx与SOx等有害成分比例高,严重威胁海洋的生态环境和沿海居民健康。本文介绍了现有国内外船舶尾气后处理技术的分类、原理及优缺点,综述了船舶尾气脱硫、脱硝和脱硫脱硝一体化处理技术的研究进展,认为现有的大部分船舶尾气后处理技术去除污染物成分单一,不能高效地实现船舶尾气污染物的减排,研究脱

  13. 低温等离子体在废气处理中的应用%Application of Low Temperature Plasm in Exhaust Gas Treatment

    Institute of Scientific and Technical Information of China (English)

    王玲玲; 张建平

    2013-01-01

    The treatment methods for exhaust gas of peculiar smel and malodor show shortcomings, such as high op-eration costs, strict requirement of equipment and operation management, big area of land required, low purification eficiency, the secondary pol ution caused, influence of pol utant concentration and temperature. Pol utant is degraded by low temperature plasm that uses the effect of active particle and pol utant of energetic electron and free-radials and cause the degradation of pol utant molecule in a short periood of time so as to degrade the pol utants. Through the application example of exhaust gas treatment project in a certain pharmacy company of Shandong, it shows the effect of low temperature plasm in treatment of exhaust gas and the advange of economic benefits.%  目前对异味恶臭废气的常用处理方法存在运转费用高、设备及运行管理要求高、占地面积大、净化效率不高、极易产生二次污染、易受污染物浓度及温度影响等缺点。低温等离子体降解污染物是利用高能电子、自由基等活性粒子与废气中的污染物作用,使污染物分子在极短的时间内发生分解,以达到降解污染物的目的。通过山东某制药公司废气处理项目应用实例,显示出低温等离子体处理废气的效果和经济效益的优势。

  14. The Heat Exchanger Performance of Shell and Multi Tube Helical Coil as a Heater through the Utilization of a Diesel Machine’s Exhaust Gas

    Directory of Open Access Journals (Sweden)

    . Zainuddin

    2016-04-01

    Full Text Available A review on reutilization of heat waste from a diesel machine is absolutely important. This is because the exhaust gas potential of a Diesel machine keeps increasing and not much has been utilized by the industry. One of the techniques of reutilizing the heat waste in industry is by using a heat exchanger. The technique is also very useful for the environment because it can reduce air pollution caused by the exhaust gas of the diesel machine. The main purpose of the research is to find out the capability of shell and multi-tube helical coil HE as an air heater by utilizing the exhaust gas of the Diesel machine. The heat exchanger of shell and multi-tube helical coil  utilizes the exhaust thermal gas of the Diesel machine as the air heater already made. The apparatus has the following dimension: the shell length of 1.05 m, diameter 0.1524 m, tube length of 3.25 m with 20 coils, tube diameter of 0.011 m, coil diameter of 0.0508 m with 4 helical coils. The type of Diesel machine to use in the testing is 4FB1 Isuzu Diesel engine. The machine has the maximum machine power and rotation of 54 kW and 3,600 rpm. The performance testing of heat exchanger has been conducted in some variations of Diesel machine rotations of 1,500 rpm, 1,750 rpm, 2,000 rpm, 2,250 rpm and 2,500 rpm. The testing result shows a maximum effectiveness to happen at the machine rotation of 1,500 rpm. The maximum effectiveness to get is 67.8% and then it goes down drastically in accordance with the increase of air mass flow rate. The hot air temperature created is from 47.1°C to 52.3°C so that it can be used for the purpose of drying up the unhulled rice.

  15. Aging of a Pt/Al$_2$O$_3$ Exhaust Gas Catalyst Monitored by Quasi in Situ X-ray Micro Computed Tomography

    OpenAIRE

    Hofmann, Georg; Rochet, Amélie; Ogel, Elen; Casapu, Maria; Ritter, Stephan; Ogurreck, Malte; Grunwaldt, Jan-Dierk

    2015-01-01

    Catalyst aging effects were analyzed using X-ray absorption micro-computed tomography in combination with conventional characterization methods on various length scales ranging from nm to μm to gain insight into deactivation mechanisms. For this purpose, a 4 wt% Pt/Al2O3 model exhaust gas catalyst was coated on a cordierite honeycomb and subjected to sequential thermal aging in static air at 950 °C for 4, 8, 12 and 24 hours. The aging was followed on the one hand by traditional methods, i.e. ...

  16. Aging of a Pt/Al₂O₃ exhaust gas catalyst monitored by quasi in situ X-ray micro computed tomography

    OpenAIRE

    Hofmann, Georg; Rochet, Amelie; Ogel, Elen; Casapu, Maria; Ritter, Stephan; Ogurreck, Malte; Grunwaldt, Jan-Dierk

    2015-01-01

    Catalyst aging effects were analyzed using X-ray absorption micro-computed tomography in combination with conventional characterization methods on various length scales ranging from nm to [small mu ]m to gain insight into deactivation mechanisms. For this purpose, a 4 wt% Pt/Al2O3 model exhaust gas catalyst was coated on a cordierite honeycomb and subjected to sequential thermal aging in static air at 950 [degree]C for 4, 8, 12 and 24 hours. The aging was followed on the one hand by tradition...

  17. LaFePdO{sub 3} perovskite automotive catalyst having a self-regenerative function

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hirohisa [Materials Research and Development Division, Daihatsu Motor Co., Ltd., Osaka 563-8651 (Japan)]. E-mail: hirohisa_tanaka@mail.daihatsu.co.jp; Tan, Isao [Materials Research and Development Division, Daihatsu Motor Co., Ltd., Osaka 563-8651 (Japan); Uenishi, Mari [Materials Research and Development Division, Daihatsu Motor Co., Ltd., Osaka 563-8651 (Japan); Taniguchi, Masashi [Materials Research and Development Division, Daihatsu Motor Co., Ltd., Osaka 563-8651 (Japan); Kimura, Mareo [Research and Development Division, Cataler Corporation, Shizuoka 437-1492 (Japan); Nishihata, Yasuo [Synchrotron Radiation Research Center, Japan Atomic Energy Research Institute, Hyogo 679-5148 (Japan); Mizuki, Jun' ichiro [Synchrotron Radiation Research Center, Japan Atomic Energy Research Institute, Hyogo 679-5148 (Japan)

    2006-02-09

    An automotive gasoline engine is operated close to the stoichiometric air-to-fuel ratio to convert the pollutant emissions simultaneously, accompanying with redox (reduction and oxidation) fluctuations in exhaust-gas composition through adjusting the air-to-fuel ratio. An innovative LaFe{sub 0.95}Pd{sub 0.05}O{sub 3} perovskite catalyst, named 'the intelligent catalyst', has been developed, and which has a new self-regenerative function of the precious metal in the inherent fluctuations of automotive exhaust-gas. The LaFe{sub 0.95}Pd{sub 0.05}O{sub 3} perovskite catalyst, La located at the A-site, was prepared by the alkoxide method. Pd located at the B-site of the perovskite lattice in the oxidative atmosphere, and segregated out to form small metallic particles in the reductive atmosphere. The catalyst retained a predominantly perovskite structure throughout a redox cycle of the exhaust-gas, while the local structure around Pd could be changed in a completely reversible manner. The agglomeration and growth of Pd particles is suppressed, even under the severe environment, as a result of the movement between inside and outside the perovskite lattice. It is revealed that the self-regenerative function of Pd occurs even at 200 deg. C, unexpectedly low temperature, in the LaFe{sub 0.95}Pd{sub 0.05}O{sub 3} catalyst. Since the high catalytic activity is maintained, the great reduction of Pd loading has been achieved. The intelligent catalyst is expected as a new application of the rare earth, and then the technology is expected in the same way in the global standard of the catalyst designing.

  18. Application of modern online instrumentation for chemical analysis of gas and particulate phases of exhaust at the European Commission heavy-duty vehicle emission laboratory.

    Science.gov (United States)

    Adam, T W; Chirico, R; Clairotte, M; Elsasser, M; Manfredi, U; Martini, G; Sklorz, M; Streibel, T; Heringa, M F; Decarlo, P F; Baltensperger, U; De Santi, G; Krasenbrink, A; Zimmermann, R; Prevot, A S H; Astorga, C

    2011-01-01

    The European Commission recently established a novel test facility for heavy-duty vehicles to enhance more sustainable transport. The facility enables the study of energy efficiency of various fuels/scenarios as well as the chemical composition of evolved exhaust emissions. Sophisticated instrumentation for real-time analysis of the gas and particulate phases of exhaust has been implemented. Thereby, gas-phase characterization was carried out by a Fourier transform infrared spectrometer (FT-IR; carbonyls, nitrogen-containing species, small hydrocarbons) and a resonance-enhanced multiphoton ionization time-of-flight mass spectrometer (REMPI-TOFMS; monocyclic and polycyclic aromatic hydrocarbons). For analysis of the particulate phase, a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS; organic matter, chloride, nitrate), a condensation particle counter (CPC; particle number), and a multiangle absorption photometer (MAAP; black carbon) were applied. In this paper, the first application of the new facility in combination with the described instruments is presented, whereby a medium-size truck was investigated by applying different driving cycles. The goal was simultaneous chemical characterization of a great variety of gaseous compounds and particulate matter in exhaust on a real-time basis. The time-resolved data allowed new approaches to view the results; for example, emission factors were normalized to time-resolved consumption of fuel and were related to emission factors evolved during high speeds. Compounds could be identified that followed the fuel consumption, others showed very different behavior. In particular, engine cold start, engine ignition (unburned fuel), and high-speed events resulted in unique emission patterns.

  19. 1025t/h锅炉排烟温度高改造%Treatment of high exhaust gas temperature for 1025t / h boiler

    Institute of Scientific and Technical Information of China (English)

    刘勋川; 周胜利

    2011-01-01

    This paper briefly introduces the structure of 1025t/h boiler and its operation in Guizhou Qianbei Power Plant, aiming at its existing problems, such as high exhaust gas temperature and high desuperheating water flow, etc. By analyzing the boiler operation pa- rameters, this article presents some proposals to reduce exhaust gas temperature and boiler desuperheating water flow, and to improve the efficiency of the heating boiler. After the transformation, while receiving obvious effects, compared with the design value, it still has bigger difference. The author also puts forward views and opinions.%简要介绍了贵州西电黔北发电总厂1025t/h锅炉的结构及运行情况,针对锅炉排烟温度高、减温水流量大等问题。通过对锅炉运行参数的分析,提出了旨在降低锅炉排烟温度和减温水流量,提高了锅炉效率的受热面改造的建议。

  20. Utilization of exhaust gas from predistillation column of methanol plant%甲醇装置预精馏塔放空气的利用

    Institute of Scientific and Technical Information of China (English)

    乔思怀; 周文生; 齐辉; 马新广; 王会升

    2012-01-01

    The non-condensable gas from the predistillation column of methanol plants was seldom utilized, but discharged to air directly, that could cause safety and environmental problems. Recycling of this gas, which contained mainly carbon dioxide, to natural gas reformer to increase the hydrogen/carbon ratio of the syngas in a natural gas-based methanol plant was made, and some questions referring to the technique were discussed. Reuse of the exhaust gas could reduce carbon dioxide emission and increase methanol output.%甲醇装置预精馏塔排放的不凝气大部分没有得到利用而是直接放空,存在安全隐患、污染环境的问题.在一个天然气甲醇厂中将该主要含二氧化碳的不凝气循环回天然气转化炉作为原料,提高所得合成气的氢碳比,讨论了该循环利用技术中涉及的一些问题.该不凝气的利用降低了二氧化碳排放,增加了甲醇产量.

  1. 汽油和甲醇燃烧尾气对肺巨噬细胞免疫功能影响的比较%Comparison on effects between gasoline exhaust gas and methanol exhaust gas on the immune function of pulmonary macrophage

    Institute of Scientific and Technical Information of China (English)

    温静; 王希峰

    2013-01-01

    目的 比较汽油汽车燃烧尾气和甲醇汽车燃烧尾气对肺巨噬细胞免疫功能的影响,为筛选清洁能源提供依据.方法 利用肺巨噬细胞受体能与致敏的绵羊红细胞反应形成玫瑰花环并有一定的结合率,将灌洗出的兔肺巨噬细胞培养一定时间后再按0.500、0.250、0.125、0.062、0.031 L/ml浓度将汽油和甲醇燃烧尾气的提取物对巨噬细胞染毒,在37℃、5% CO2孵箱中培养3h后加入致敏的绵羊红细胞,放入冰箱内反应2h.取出后计数玫瑰花环形成率.并进行了抗体介导的细胞毒作用试验.结果 汽油和甲醇燃烧尾气作用都使巨噬细胞花环形成率降低,未染毒组的结合率为85.7%,汽油和甲醇在最低试验浓度0.031 L/ml时花环结合率分别为47.0%和70.0%,汽油燃烧尾气结合率明显低于甲醇燃烧尾气;汽油尾气提取物对抗体介导的细胞毒作用有显著的抑制作用,汽油燃烧尾气使其降低的幅度明显大于甲醇燃烧尾气.结论 甲醇燃烧尾气对巨噬细胞的免疫功能的影响明显小于汽油燃烧尾气,所以更适合做清洁能源.%[Objective] To compare the effects between gasohne automobile exhaust gas and methanol automobile exhaust gas on the immune function of pulmonary macrophage,provide the basis for the selection of clean energy.[Methods] Based on the reaction that pulmonary macrophage receptor can present the rosettes combined with sensitized sheep erythrocytes with the different formation rate,the rabbit lung macrophages cultured for a certain period of time after lavage were exposed to gasoline and methanol exhaust gas extract according to the following concentration of 0.500 L/ml,0.250 L/ml,0.125 L/ml,0.062 L/ml and 0.031 L/ml,and were stored at 37 ℃ in 5% CO2 incubator for 3 hours.The sensitized sheep erythrocytes were added to the culture,placed in the refrigerator for 2 hours.The formation rate of rosettes was counted,and the antibody-dependent cell

  2. European Automotive Congress

    CERN Document Server

    Clenci, Adrian

    2016-01-01

    The volume includes selected and reviewed papers from the European Automotive Congress held in Bucharest, Romania, in November 2015. Authors are experts from research, industry and universities coming from 14 countries worldwide. The papers are covering the latest developments in fuel economy and environment, automotive safety and comfort, automotive reliability and maintenance, new materials and technologies, traffic and road transport systems, advanced engineering methods and tools, as well as advanced powertrains and hybrid and electric drives.

  3. Exhaust heat recovery in internal combustion engine; Netsukokan ni yoru nainen kikan no hainetsu kaishu no kento

    Energy Technology Data Exchange (ETDEWEB)

    Goto, E.; Kase, S.; Dong, D. [Institute of Physical and Chemical Research, Tokyo (Japan)

    1995-04-20

    Discussions were given as measures to solve thermal efficiency and environmental problems on recovery of waste heat from an internal combustion engine by means of heat exchange. Means are used to increase the thermal efficiency and the output without changing any of the compression ratio, maximum temperature and maximum pressure in the internal combustion engine. The means consist of nearly isothermal compression of suction air and simultaneous exchange of heat in the compressed suction air with that in high-temperature exhaust gas to recover the heat. Since the isothermal compression and simultaneous heat exchange with the exhaust gas are carried out in place of adiabatic compression, the thermal efficiency increases by 4% to 11% in the compression ratio ranging from 10 to 20, and the output per working fluid unit flow rate increases by 19% to 37%. If the heat generated in catalytically purifying exhaust gas from an internal combustion engine is recovered by means of heat exchange, the thermal efficiency in an automotive engine may improve by more than 10%, serving for reducing pollutant production and saving the fuel consumption. Such concepts may also be conceivable as recovering vehicle braking energy as air pressure to be re-utilized for accelerating the restarting, and recovering the backpressure of exhaust gas by converting it into mechanical energy through expansion. 4 refs., 6 figs.

  4. Laser mass spectrometry for high sensitive and multi-com- ponent analysis of exhaust gas from vehicles

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Laser mass spectrometry is a newly developed method for pollutantdetection. It combines resonance-en- hanced multiphoton ionization (REMPI) and time-of-flight mass spectro- metry (TOF-MS). It may detect pollutants with high sensitivity, high selectivity and in a multi-com- ponent way. In this note, laser mass spectrometry was used to detect the pollutants in exhaust gases from vehicles. With one-color REMPI (at 266 nm), several aromatic hydrocarbons, including benzene, toluene, xylene, C3-benzene, etc., were detected. These substances were selectively ionized by (1+1) REMPI and their mass resolution was detected by a TOF mass spectrometer. And a quantitative analysis was achieved.

  5. Pd catalysts supported on modified Zr0.5Al0.5O1.75 used for lean-burn natural gas vehicles exhaust purification

    Institute of Scientific and Technical Information of China (English)

    Hongyan Shang; Yun Wang; Maochu Gong; Yaoqiang Chen

    2012-01-01

    Composite supports Zr0.5Al0.5O1.75 modified by metal oxides,such as La2O3,ZnO,Y2O3 or BaO,were prepared by co-precipitation method,and palladium catalysts supported on the modified composite supports were prepared by impregnation method.Their properties were characterized by X-ray diffraction (XRD),NH3 temperature-programmed desorption (NH3-TPD),H2 temperature-programmed reduction (H2-TPR),N2 adsorption/desorption,and CO-chemisorption.The catalytic activity and the resistance to water poisoning of the prepared Pd catalysts were tested in a simulated exhaust gas from lean-burn natural gas vehicles with and without water vapor.The results demonstrated that the modified supports had an apparent effect on the performance of Pd catalysts,compared with the Pd catalyst supported on the unmodified ZrAl.The addition of ZnO or Y2O3 promoted the conversion of CH4.In the absence of water vapor,Pd/ZnZrAl exhibited the best activity for CH4 conversion with the light-off temperature (T50) of 275 ℃ and the complete conversion temperature (T90) of 314 ℃,respectively.However,in the presence of water vapor,Pd/YZrAl was the best one over which the light-off temperature (T50) of methane was 339 ℃ and the complete conversion temperature (T90) was 371 ℃.These results indicated that Pd catalyst supported on the modified composite ZrAl support showed excellent catalytic activity at low temperature and high resistance to H2O poisoning for the exhaust purification of lean-burn natural gas vehicles.

  6. Analysis of an Increase in the Efficiency of a Spark Ignition Engine Through the Application of an Automotive Thermoelectric Generator

    Science.gov (United States)

    Merkisz, Jerzy; Fuc, Pawel; Lijewski, Piotr; Ziolkowski, Andrzej; Galant, Marta; Siedlecki, Maciej

    2016-08-01

    We have analyzed the increase of the overall efficiency of a spark ignition engine through energy recovery following the application of an automotive thermoelectric generator (ATEG) of our own design. The design of the generator was developed following emission investigations during vehicle driving under city traffic conditions. The measurement points were defined by actual operation conditions (engine speed and load), subsequently reproduced on an engine dynamometer. Both the vehicle used in the on-road tests and the engine dynamometer were fit with the same, downsized spark ignition engine (with high effective power-to-displacement ratio). The thermodynamic parameters of the exhaust gases (temperature and exhaust gas mass flow) were measured on the engine testbed, along with the fuel consumption and electric current generated by the thermoelectric modules. On this basis, the power of the ATEG and its impact on overall engine efficiency were determined.

  7. Effects of diluent admissions and intake air temperature in exhaust gas recirculation on the emissions of an indirect injection dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Alla, G.H.; Soliman, H.A.; Badr, O.A.; Abd-Rabbo, M.F. [Zagazig University, Cairo (Egypt). Shoubra Faculty of Engineering

    2001-05-01

    The operation of Diesel engines on gaseous fuels, commonly known as dual fuel engines, uses Diesel fuel as the pilot fuel and gaseous fuel (methane and sometimes propane in the present work) as the main fuel. The gaseous fuel was inducted in the intake manifold to mix with the intake air. The investigation was conducted on a high speed indirect injection (Ricardo-E6) dual fuel engine and was concerned with the effects of exhaust gas recirculation (EGR) on the dual fuel engine combustion and emissions, in particular, the effects of intake air temperature and diluent admissions (N{sub 2} and CO{sub 2}) on combustion and emissions. The use of diluents to displace oxygen (O{sub 2}) in the intake air resulted in a reduction in the O{sub 2} supplied to the engine, increased the inlet charge thermal capacity (thermal effect) and, potentially, CO{sub 2} and N{sub 2} participated in the combustion process (chemical effect). In a separate series of tests, the temperature of the engine inlet charge was raised gradually in order to simulate the effect of mixing hot EGR with the engine inlet gaseous fuel air mixture. It was found that the admission of diluents resulted in reductions in the exhaust oxides of nitrogen (NO{sub x}). Higher inlet charge temperature increases the exhaust NO{sub x} but reduces the unburned hydrocarbon emissions. Finally, when carbon dioxide was added to the inlet gaseous fuel air charge, large reductions in NO{sub x} were observed. (author)

  8. Effect of cooled EGR on performance and exhaust gas emissions in EFI spark ignition engine fueled by gasoline and wet methanol blends

    Science.gov (United States)

    Rohadi, Heru; Syaiful, Bae, Myung-Whan

    2016-06-01

    Fuel needs, especially the transport sector is still dominated by fossil fuels which are non-renewable. However, oil reserves are very limited. Furthermore, the hazardous components produced by internal combustion engine forces many researchers to consider with alternative fuel which is environmental friendly and renewable sources. Therefore, this study intends to investigate the impact of cooled EGR on the performance and exhaust gas emissions in the gasoline engine fueled by gasoline and wet methanol blends. The percentage of wet methanol blended with gasoline is in the range of 5 to 15% in a volume base. The experiment was performed at the variation of engine speeds from 2500 to 4000 rpm with 500 intervals. The re-circulated exhaust gasses into combustion chamber was 5%. The experiment was performed at the constant engine speed. The results show that the use of cooled EGR with wet methanol of 10% increases the brake torque up to 21.3%. The brake thermal efficiency increases approximately 39.6% using cooled EGR in the case of the engine fueled by 15% wet methanol. Brake specific fuel consumption for the engine using EGR fueled by 10% wet methanol decreases up to 23% at the engine speed of 2500 rpm. The reduction of CO, O2 and HC emissions was found, while CO2 increases.

  9. A comparative study of the elemental composition of the exhaust emissions of cars powered by liquefied petroleum gas and unleaded petrol

    Science.gov (United States)

    Lim, McKenzie C. H.; Ayoko, Godwin A.; Morawska, Lidia; Ristovski, Zoran D.; Jayaratne, E. Rohan; Kokot, Serge

    Elements emitted from the exhausts of new Ford Falcon Forte cars powered by unleaded petrol (ULP) and liquefied petroleum gas (LPG) were measured on a chassis dynamometer. The measurements were carried out in February, June and August 2001, and at two steady state driving conditions (60 and 80 km h -1). Thirty seven elements were quantified in the exhaust samples by inductively coupled plasma mass spectrometry (ICPMS). The total emission factors of the elements from the exhausts of ULP cars were higher than those of LPG cars at both engine speeds even though high variability in the exhaust emissions from different cars was noted. The effect of the operating conditions such as mileage of the cars, engine speed, fuel and lubricating oil compositions on the emissions was studied. To investigate the effects of these conditions, multivariate data analysis methods were employed including exploratory principal component analysis (PCA), and the multi-criteria decision making methods (MCDM), preference ranking organization method for enrichment evaluation (PROMETHEE) and geometrical analysis for interactive aid (GAIA), for ranking the cars on the basis of the emission factors of the elements. PCA biplot of the complete data matrix showed a clear discrimination of the February, June and August emission test results. In addition, (i) platinum group elements (PGE) emissions were separated from each other in the three different clusters viz. Pt with February, Pd with June and Rh with August; (ii) the motor oil related elements, Zn and P, were particularly associated with the June and August tests (these vectors were also grouped with V, Al and Cu); and (iii) highest emissions of most major elements were associated with the August test after the cars have recorded their highest mileage. Extensive analysis with the aid of the MCDM ranking methods demonstrated clearly that cars powered by LPG outperform those powered by ULP. In general, cars tested in June perform better than

  10. Automotive electronics design fundamentals

    CERN Document Server

    Zaman, Najamuz

    2015-01-01

    This book explains the topology behind automotive electronics architectures and examines how they can be profoundly augmented with embedded controllers. These controllers serve as the core building blocks of today’s vehicle electronics. Rather than simply teaching electrical basics, this unique resource focuses on the fundamental concepts of vehicle electronics architecture, and details the wide variety of Electronic Control Modules (ECMs) that enable the increasingly sophisticated "bells & whistles" of modern designs.  A must-have for automotive design engineers, technicians working in automotive electronics repair centers and students taking automotive electronics courses, this guide bridges the gap between academic instruction and industry practice with clear, concise advice on how to design and optimize automotive electronics with embedded controllers.

  11. Optimizing the locations of the measuring points for an online calculation of the exhaust flue-gas loss

    Energy Technology Data Exchange (ETDEWEB)

    Drobnic, B.; Oman, J.; Kustrin, I.; Rotnik, U. [Faculty of Mechanical Engineering, Ljubljana (Slovenia); Uros Rotnik Sostanj Power Plant, Sostanj (Slovenia)

    2005-03-01

    Flue gas properties are very important for evaluation of a boiler's performance. Non-homogeneity of the properties and large dimensions of flue-gas ducts require measurements with large number of measuring points to provide high accuracy of measurement results. An analysis of simpler measuring methods is presented. It is shown that high accuracy can be achieved with small number of measuring points if their positions are optimised with respect to pre-determined conditions in the flue gas duct. The methods can be used as operational measurements to monitor boiler's performance and for on-line calculation of boiler's efficiency. (orig.)

  12. New concepts for exhaust gas turbo charging of a four-cylinder direct injection Otto engine; Neue Konzepte zur Abgasturboaufladung eines direkteinspritzenden Vierzylinder-Ottomotors

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Tilo

    2008-07-01

    This work is supposed to be understood as a contribution to developing a new generation of Otto engines, which meet the increasing ecological and economical demands. The charge concept has a key position in this development. Its design in particular at the four cylinder engine that dominates the market and whose charge changes are very specific, proves to be a special challenge. Based upon known techniques new concepts are developed in this work by means of numeric simulation and experiments and then compared with each other under stationary and transient conditions. On the one hand several exhaust gas turbo chargers in form a register and a two-phase charging are combined with a variable control of the outlet valves, on the other hand the shock-back-up changing is evaluated combined with a biturbo system as well as a twin-current turbine. (orig.)

  13. NOx abatement in the exhaust of lean-burn natural gas engines over Ag-supported γ-Al2O3 catalysts

    Science.gov (United States)

    Azizi, Y.; Kambolis, A.; Boréave, A.; Giroir-Fendler, A.; Retailleau-Mevel, L.; Guiot, B.; Marchand, O.; Walter, M.; Desse, M.-L.; Marchin, L.; Vernoux, P.

    2016-04-01

    A series of Ag catalysts supported on γ-Al2O3, including two different γ-Al2O3 supports and various Ag loadings (2-8 wt.%), was prepared, characterized (SEM, TEM, BET, physisorption, TPR, NH3-TPD) and tested for the selective catalytic reduction of NOx by CH4 for lean-burn natural gas engines exhausts. The catalysts containing 2 wt.% Ag supported on γ-Al2O3 were found to be most efficient for the NOx reduction into N2 with a maximal conversion of 23% at 650 °C. This activity was clearly linked with the ability of the catalyst to concomitantly produce CO, via the methane steam reforming, and NO2. The presence of small AgOx nanoparticles seems to be crucial for the methane activation and NOx reduction.

  14. Radon and Thoron Measured in Petrol and Gas-oil Exhaust Fumes by Using CR-39 and LR-115 II Nuclear Track Detectors: Radiation Doses to the Respiratory Tract of Mechanic Workers.

    Science.gov (United States)

    Misdaq, M A; Chaouqi, A; Ouguidi, J; Touti, R; Mortassim, A

    2015-06-01

    Mechanic workers are exposed to exhaust fumes when controlling vehicle engines in motion inside repair shops. To assess radiation doses due to radon short-lived progeny from the inhalation of exhaust fumes by mechanic workers, concentrations of these radionuclides were measured in petrol (gasoline) and gas-oil exhaust fumes by evaluating mean critical angles of etching of the CR-39 and LR-115 type II SSNTDs for alpha particles emitted by the radon and thoron decay series. Committed effective doses due to ²¹⁸Po and ²¹⁴Po short-lived radon decay products from the inhalation of petrol and gas-oil exhaust fumes by workers were evaluated. A maximum value of 1.35 mSv y⁻¹ due to radon short-lived decay products from the inhalation of gas-oil exhaust fumes by mechanic workers was found, which is lower than the (3-10 mSv y⁻¹) dose limit interval for workers.

  15. 基于 Glyphworks 的汽车排气系统加速耐久试验载荷谱的研究%Study on the durability accelerated experimental load spectrum for automotive exhaust system based on Glyphworks

    Institute of Scientific and Technical Information of China (English)

    徐华平; 崔京宝

    2014-01-01

    On the premise of the same failure mode and damage equivalence,the loading spectra of the exhaust system of a passenger car were edited by using fatigue strength analysis software Glyphworks. Then both the test duration and fatigue editing were displayed with various damage retained,and validation test was conducted. Compared with traditional durability tests,the test duration and cost of our method were reduced markedly.%在损伤等效和失效模式相同的前提下,应用疲劳分析软件 Glyphworks,对从试验场采集的汽车排气系统道路载荷谱进行编辑。得到预计试验时间和保留不同损伤量的台架试验加速载荷谱编辑结果,并进行试验验证。结果表明:与传统耐久试验方法相比,该方法能在更短的时间内准确再现失效模式。

  16. Denuder for measuring emissions of gaseous organic exhaust gas constituents; Denuder zur Emissionsmessung von gasfoermigen organischen Abgasinhaltsstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Gerchel, B.; Jockel, W.; Kallinger, G.; Niessner, R.

    1997-05-01

    Industrial plants which emit carcinogenic or other noxious substances should be given top priority in any policy to ward off harmful environmental effects. This also applies to many volatile and semi-volatile air constituents such as volatile aliphatic carbonyls or amines. To date there are no satisfactory methods for determining trace organic components of exhaust gases. It is true that aldehydes are considered in the VDI Guideline 3862, but the measuring methods given there are based on absorption in liquids and are accordingly difficult to use and show a high cross-sensitivity for other substances. No VDI Guideline exists to date on amine emissions. In view of the complexity of exhaust gases a selective enrichment of certain families of substances would appear indicated. Sampling trouble could be reduced if it was possible only to accumulate the gaseous phase, or even just one family of gaseous constituents. A particularly suitable air sampling method is that of diffusion separation. These diffusion separators (denuders) are well known as a powerful measuring system which is able to accumulate trace pollutants in the outside air. The purpose of the present study was to find out whether the concept of diffusion separation is also applicable to emission monitoring, and in particular whether it is suitable for detecting volatile aliphatic aldehydes and amines (primary and secondary) at extremely low concentrations (<10 ppb). (orig./SR) [Deutsch] Fuer Anlagen mit Emissionen von krebserzeugenden und gesundheitsgefaehrdenden Stoffen ergibt sich ein besonderer Handlungsbedarf zum Schutz vor schaedlichen Umwelteinwirkungen. Zu diesen Stoffen gehoeren auch viele leicht- und mittelfluechtigen Luftinhaltsstoffe, wie z.B. die leichtfluechtigen aliphatischen Carbonyle oder Amine. Fuer organische Komponenten, die nur in geringen Konzentrationen im Abgas vorkommen, existieren bisher keine zufriedenstellenden Messverfahren. Fuer die Aldehyde liegt zwar die VDI-Richtlinie 3862

  17. Ageing characterization of exhaust flexible couplings

    OpenAIRE

    2012-01-01

    The aim of this work is to investigate the mechanical strength of automotive exhaust flexible couplings subjected to thermo-mechanical fatigue and corrosion. Five different types of flexible coupling have been considered, realised by four different king of materials: three stainless steels (AISI 309, AISI 321, AISI 321 Ti) and a nickel alloy (Incoloy 825). These components have been tested by a dedicated procedure consisting of different cycles of fatigue, heating and corrosion. Performances ...

  18. Method for the removal of smut, fine dust and exhaust gas particles, particle catch arrangement for use in this method and use of the particle catch arrangement to generate a static electric field

    NARCIS (Netherlands)

    Ursem, W.N.J.; Marijnissen, J.C.; Roos, R.A.

    2007-01-01

    This inventions provides a method for the removal of smut, fine dust and exhaust gas particles from polluted air comprising providing a particle catch arrangement with a charged surface, the particle catch arrangement being arranged to generate a static electric field, wherein the electric field is

  19. 论多晶硅生产废气回收的必要性%On the Necessity for Recycling of Exhaust Gas in Polysilicon Production

    Institute of Scientific and Technical Information of China (English)

    陆大军

    2011-01-01

    介绍了某企业多晶硅生产过程中废气的来源和组成,对废气回收的必要性进行了论述。%In a 3,000 t/a polysilicon project with modified Siemens process,the low-boiling-point compositions which are produced in production systems are not recycled for some design and production reasons.As a result,the severe exceeding standard of low-boiling-point compositions in the production systems makes the systems always excess pressure,which makes it is not easy for the safety operation for the system.Besides,the recycling systems do not classify the discharge,then the off gas scrubber system do not work properly and the treatment cost is increased.This makes a lot of material waste and increases the production cost.In order to save production costs and reduce the treatment costs,it is urgent to recycle the exhaust gas.

  20. National Automotive Center - NAC

    Data.gov (United States)

    Federal Laboratory Consortium — Encouraged by the advantages of collaboration, the U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC) worked with the Secretary of the...

  1. Component Analysis of Deposits in Selective Catalytic Reduction System for Automotive Diesel Engine

    Directory of Open Access Journals (Sweden)

    Zhu Neng

    2016-01-01

    Full Text Available In this paper, deposits in exhaust pipes for automotive diesel engines were studied by various chemical analysis methods and a kind of analysis process to determine the compositions of organic matter was proposed. Firstly, the elements of the deposits were determined through the element analysis method. Then using characteristic absorption properties of organic functional groups to the infrared spectrum, the functional groups in the deposits were determined. Finally, by GC-MS (gas chromatography - mass spectrometry test, the content of each main component was determined quantitatively. Element analysis results indicated that the deposits adsorbed metal impurities from fuel oil, lubricating oil, mechanical wear and urea water solution. The result of GC-MS test showed that the area percentage of cyanuric acid was the biggest (about 85%, the second was urea (about 4%, and the content of biuret and biurea was scarce.

  2. Cold-air performance of a 15.41-cm-tip-diameter axial-flow power turbine with variable-area stator designed for a 75-kW automotive gas turbine engine

    Science.gov (United States)

    Mclallin, K. L.; Kofskey, M. G.; Wong, R. Y.

    1982-01-01

    An experimental evaluation of the aerodynamic performance of the axial flow, variable area stator power turbine stage for the Department of Energy upgraded automotive gas turbine engine was conducted in cold air. The interstage transition duct, the variable area stator, the rotor, and the exit diffuser were included in the evaluation of the turbine stage. The measured total blading efficiency was 0.096 less than the design value of 0.85. Large radial gradients in flow conditions were found at the exit of the interstage duct that adversely affected power turbine performance. Although power turbine efficiency was less than design, the turbine operating line corresponding to the steady state road load power curve was within 0.02 of the maximum available stage efficiency at any given speed.

  3. Impact of intake CO 2 addition and exhaust gas recirculation on NO x emissions and soot reactivity in a common rail diesel engine

    KAUST Repository

    Al-Qurashi, Khalid

    2012-10-18

    The impact of intake CO 2 addition and exhaust gas recirculation (EGR) on engine combustion characteristics, NO x emissions, and soot oxidative reactivity was studied in a common rail diesel engine equipped with a cooled EGR system. The engine test results and the heat release analysis show that the reduced flame temperature, induced by the reduction of the oxygen concentration (dilution effect) is the dominant mechanism via which CO 2 and EGR lower NO x emissions in diesel engines. On the other hand, the collected soot from the engine tests was examined for its oxidative reactivity using a thermogravimetric analyzer (TGA). Results show that EGR has a significant effect on soot reactivity and results in higher initial active sites compared to the CO 2 case. We conclude that the reduced flame temperature (thermal effect) which is a consequence of the dilution effect is responsible for the observed increase in soot reactivity. These results confirm observations from our past work on flame soot, which showed that the peak adiabatic flame temperature is the governing factor affecting soot reactivity. These findings imply that driving the combustion concepts toward low temperature is favorable to effectively control engine pollutants, including soot reactivity. © 2012 American Chemical Society.

  4. Amperometric NOx-sensor for Combustion Exhaust Gas Control. Studies on transport properties and catalytic activity of oxygen permeable ceramic membranes

    Energy Technology Data Exchange (ETDEWEB)

    Romer, E.W.J.

    2001-04-27

    The aim of the research described in this thesis is the development of a mixed conducting oxide layer, which can be used as an oxygen permselective membrane in an amperometric NOx sensor. The sensor will be used in exhaust gas systems. The exhaust gas-producing engine will run in the lean mix mode. The preparation of this sensor is carried out using screen-printing technology, in which the different layers of the sensor are applied successively. Hereafter, a co-firing step is applied in which all layers are sintered together. This co-firing step imposes several demands on the selection of materials. The design specifications of the sensor further include requirements concerning the operating temperature, measurement range and overall stability. The operating temperature of the sensor varies between 700 and 850C, enabling measurement of NOx concentrations between 50 and 1200 ppm with a measurement accuracy of 10 ppm. Concerning the stability of the sensor, it must withstand the exhaust gas atmosphere containing, amongst others, smoke, acids, abrasive particles and sulphur. Because of the chosen lean-mix engine concept, in which the fuel/air mixture switches continuously between lean (excess oxygen) and fat (excess fuel) mixtures, the sensor must withstand alternately oxidising and reducing atmospheres. Besides, it should be resistant to thermal shock and show no cross-sensitivity of NOx with other exhaust gas constituents like oxygen and hydrocarbons. The response time should be short, typically less than 500 ms. Because of the application in combustion engines of cars, the operational lifetime should be longer than 10 years. Demands on the mixed conducting oxide layer include the following ones. The layer should show minimal catalytic activity towards NOx-reduction. The oxygen permeability must be larger than 6.22 10{sup -8} mol/cm{sup 2}s at a layer thickness between 3-50 {mu}m. Since the mixed conducting oxide layer is coated on the YSZ electrolyte embodiment

  5. Engine performance and emissions of a diesel engine operating on diesel-RME (rapeseed methyl ester) blends with EGR (exhaust gas recirculation)

    Energy Technology Data Exchange (ETDEWEB)

    Tsolakis, A.; Wyszynski, M.L.; Theinnoi, K. [Mechanical and Manufacturing Engineering, School of Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Megaritis, A. [Mechanical Engineering, School of Engineering and Design, Brunel University, West London, Uxbridge UB8 3PH (United Kingdom)

    2007-11-15

    The effects of biodiesel (rapeseed methyl ester, RME) and different diesel/RME blends on the diesel engine NO{sub x} emissions, smoke, fuel consumption, engine efficiency, cylinder pressure and net heat release rate are analysed and presented. The combustion of RME as pure fuel or blended with diesel in an unmodified engine results in advanced combustion, reduced ignition delay and increased heat release rate in the initial uncontrolled premixed combustion phase. The increased in-cylinder pressure and temperature lead to increased NO{sub x} emissions while the more advanced combustion assists in the reduction of smoke compared to pure diesel combustion. The lower calorific value of RME results in increased fuel consumption but the engine thermal efficiency is not affected significantly. When similar percentages (% by volume) of exhaust gas recirculation (EGR) are used in the cases of diesel and RME, NO{sub x} emissions are reduced to similar values, but the smoke emissions are significantly lower in the case of RME. The retardation of the injection timing in the case of pure RME and 50/50 (by volume) blend with diesel results in further reduction of NO{sub x} at a cost of small increases of smoke and fuel consumption. (author)

  6. Wastes to Reduce Emissions from Automotive Diesel Engines

    Directory of Open Access Journals (Sweden)

    Manuel Jiménez Aguilar

    2014-01-01

    Full Text Available The objective of the study was actually the investigation of the effect of various treatments on the ability of urine in absorbing greenhouse gases. Urine alone or mixed with olive-oil-mill waste waters (O, poultry litter (P, or sewage sludge (S was used on the absorption of CO2 and NOx from diesel exhaust. The absorption coefficient (0.98–0.29 g CO2/grNH4 was similar to other solvents such as ammonia and amines. The ranges of CO2 absorption(1.7–5.6 g/l and NO reduction (0.9–3.7 g/l in six hours indicate that on average 20 litres of urine could be needed to capture CO2 and NOx vehicle emissions from each covered kilometre. The best results of CO2 absorption and NOx reduction were for urine mixed with O, P and urine alone. These wastes could be used to capture CO2 and NOx from automotive diesel engines to reduce gas emissions. The proposed strategy requires further research to increase CO2 absorption and reduce the risks associated with waste-water reuse.

  7. A bearing temperature stability control method and application of axial exhaust coal gas turbine machine%轴向排气型煤气透平的轴承温度稳定控制方法及应用

    Institute of Scientific and Technical Information of China (English)

    张亚军; 叶欣

    2012-01-01

    This paper concisely analyses the reasons for bearing temperature rise of the exhaust side which happened to radial intake and axial exhaust gas turbo-expanders. How to avoid the exhaust side's bearing temperature rise of the gas turbo-expanders is very important to guarantee the normal operation of turbine unit. This paper put forward through the control of the turbine exhaust temperature method of lateral bearing, making the process control function of TRT unit's automation system further improving.%简要分析了径向进气、轴向排气型煤气透平膨胀机的排气侧轴承温度增高的原因,如何避免煤气透平膨胀机排气侧支撑轴承温度的升高,对保证TRT机组的正常运行非常重要.通过该文提出的控制透平排气侧轴承温度升高的方法,使TRT机组自动化系统的控制功能更加完善.

  8. The impact of alternate fuels on future candidate automotive engines

    Energy Technology Data Exchange (ETDEWEB)

    Rahnke, C.J.; Nichols, R.J.

    1982-06-01

    The thermal efficiency that could occur in the future for a variety of automotive engine candidates operating on conventional and alternate fuels is projected based on current automotive engine development trends and the special characteristics of the various alternate fuels. The multi-fuel engine candidates include mixture cycle and direct injection reciprocating engines, as well as adiabatic turbocompound engines and advanced gas turbine and Stirling engines. The alternate fuels considered are propane, methanol, ethanol, diesel and methane.

  9. High integrity automotive castings

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, D. [Eck Industries Inc., St. Manitowoc, WI (United States)

    2007-07-01

    This paper described the High Integrity Magnesium Automotive Casting (HI-MAC) program, which was developed to ensure the widespread adoption of magnesium in structural castings. The program will encourage the use of low pressure permanent molds, squeeze casting, and electromagnetic pumping of magnesium into dies. The HI-MAC program is currently investigating new heat treatment methods, and is in the process of creating improved fluid flow and solidification modelling to produce high volume automotive components. In order to address key technology barriers, the program has been divided into 8 tasks: (1) squeeze casting process development; (2) low pressure casting technology; (3) thermal treatment; (4) microstructure control; (5) computer modelling and properties; (6) controlled molten metal transfer and filling; (7) emerging casting technologies; and (8) technology transfer throughout the automotive value chain. Technical challenges were outlined for each of the tasks. 1 ref., 3 tabs., 5 figs.

  10. Identification for automotive systems

    CERN Document Server

    Hjalmarsson, Håkan; Re, Luigi

    2012-01-01

    Increasing complexity and performance and reliability expectations make modeling of automotive system both more difficult and more urgent. Automotive control has slowly evolved from an add-on to classical engine and vehicle design to a key technology to enforce consumption, pollution and safety limits. Modeling, however, is still mainly based on classical methods, even though much progress has been done in the identification community to speed it up and improve it. This book, the product of a workshop of representatives of different communities, offers an insight on how to close the gap and exploit this progress for the next generations of vehicles.

  11. Study and Application of United-Incineration Treatment Technology on the Organic Wastewater and Exhaust Gas%有机废液和废气联合焚烧处理技术的研究与应用

    Institute of Scientific and Technical Information of China (English)

    张绍坤

    2012-01-01

    针对医药企业产生的有机废液和废气必须进行无害化处理的问题,提出了一种联合焚烧处理工艺,对废液和废气同时进行处理,并将该工艺在工程中进行了应用.应用实践表明,该工艺能够同时对废液和废气进行无害化处理,初投资较低.且该工艺对废液和废气焚烧产生的热量进行了回收再利用,运行成本较低,在危险废物处置领域具有广阔的应用前景.%The organic waste water and exhaust gas produced in the medicine company must be harmlessly treated. Aiming at this problem, an united-incineration treatment technology for both the organic waslewater and exhaust gas were put forward. The application of the united-incineration in the project showed that this craft could do harmless treatment for wastewater and exhaust gas at the same time and has lower riginal investment. The craft could also recycle and reuse the generated heat from the incineration of the wastewater and exhaust gas, the lower running cost is lower. It had a broad application prospects in the field of hazardous waste treatment.

  12. Performance Analysis of a Reciprocating Piston Expander and a Plate Type Exhaust Gas Recirculation Boiler in a Water-Based Rankine Cycle for Heat Recovery from a Heavy Duty Diesel Engine

    OpenAIRE

    Gunnar Latz; Olof Erlandsson; Thomas Skåre; Arnaud Contet; Sven Andersson; Karin Munch

    2016-01-01

    The exhaust gas in an internal combustion engine provides favorable conditions for a waste-heat recovery (WHR) system. The highest potential is achieved by the Rankine cycle as a heat recovery technology. There are only few experimental studies that investigate full-scale systems using water-based working fluids and their effects on the performance and operation of a Rankine cycle heat recovery system. This paper discusses experimental results and practical challenges with a WHR system when u...

  13. Modeling of Filling and Solidification Process for TiAl Exhaust Valves During Suction Casting

    Institute of Scientific and Technical Information of China (English)

    Chao XIONG; Yingche MA; Bo CHEN; Kui LIU; Yiyi LI

    2013-01-01

    Investment and suction casting (ISC) represents an economic and promising process route to fabricate automotive exhaust valves ofγ-TiAl based alloys,but information available on the metal flow and the temperature changes during mould filling and solidification process for the ISC process is meager.A sequentially coupled mathematical flow-thermal model,based on the commercial finite-volume/finite-difference code FLOW-3D and the finite-element code PROCAST,has been developed to investigate the ISC process.In term of calculating the flow and temperature fields during the filling and solidification stages,potential defects including the gas bubbles and the surface air entrainment occurred in the mould filling process and the shrinkage porosities formed in the solidification process are predicted and the reasons for the formation of these defects are also analyzed.The effects of filling pressure difference control methods and moulds on gas bubble and surface air entrainment behavior are presented.It is found that by changing the filling pressure difference control methods from general suction casting to "air leakage" suction casting and reducing air leakage flow rates,the gas bubbles are eliminated effectively,and the surface air entrainment attenuate dramatically.With resort to a mould with a tetragonal runner,the surface air entrainment decrease to the lowest level.Finally,the water analogue and suction casting experiments of exhaust valves are implemented for further validation of the simulation results.

  14. Sol-gel processed alumina based materials in microcalorimeter sensor device fabrication for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Nakouzi, S.R.; McBride, J.R.; Nietering, K.E.; Narula, C.K. [Ford Motor Co., Dearborn, MI (United States)

    1996-12-31

    The application of sol-gel processed materials in a variety of sensors has been proposed. The authors describe microcalorimeter sensor devices employing sol-gel processed alumina based materials which can be used to monitor pollutants in automotive exhaust. These sensors operate by measuring changes in resistance upon catalysis and are economically acceptable for automotive applications. It is important to point out that automobiles will be required to have a means of monitoring exhaust gases by on-board sensors as mandated by the EPA and the California Air Resources Board (OBD-II).

  15. Catalytic cleaning of automotive exhaust gases; Katalytische Reinigung von Kraftfahrzeugabgasen

    Energy Technology Data Exchange (ETDEWEB)

    Domesle, R. [Degussa AG, Hanau (Germany)

    1997-12-31

    In the Clean Air Act of 1970 the US American Government set itself the goal of reducing pollutant emissions from automobiles to 10% of the original level. While it was very ambitious at the time, this goal has meanwhile been reached, at least in terms of the amount of pollution per vehicle. The period between 1981 and 1986 alone saw emission reductions in the USA of 65% for CO, 60% for HC, and 40% for NO{sub x}. The introduction of stringent limit values in Europe is in particular predicted to bring about drastic reductions in HC emissions. By the year 2010, after the phase-out of old vehicles without a cat, HC emissions are expected to have decreased to 20% of the 1990 level. A similar development has been predicted for CO emissions. As for NO{sub x} emissions there will at least be drastic reductions in spark ignition vehicles. However, this success will be neutralised for some part by the growing number of diesel vehicles and by increasing mileage. These figures show impressively that the use of catalytic converters in road vehicles has made a substantial contribution to relieving the environment and improving the quality of life and will continue to do so in future. [Deutsch] Die amerikanische Regierung trat 1970 im Clean Air Act mit der Vorgabe an, die Schadstoffe aus Kraftfahrzeugen auf 10% des urspruenglichen Wertes mindern zu wollen. Dieses Ziel war zum damaligen Zeitpunkt sehr hochgesteckt, ist aber inzwischen erreicht worden, was die Schadstoffmenge pro Fahrzeug angeht. Allein zwischen den Jahren 1981-86 wurde eine Schadstoffreduzierung um 65% fuer CO, 60% fuer HC und 40% fuer NO{sub x} in den USA festgestellt. Durch Einfuehrung der strengen Grenzwerte in Europa ist vor allem eine drastische Verminderung der HC-Emissionen prognostiziert. Diese sollen im Jahre 2010 nach Auslaufen der Altfahrzeuge ohne Katalysator noch 20% des Niveaus von 1990 betragen. Fuer CO werden aehnliche Verhaeltnisse erwartet. Bei den NO{sub x}-Emissionen wird im PKW-Bereich fuer Ottomotorfahrzeuge ebenfalls eine drastische Reduktion erreicht werden. Jedoch werden diese Erfolge zum Teil kompensiert durch steigenden Anteil von Dieselfahrzeugen und die hoehere Fahrleistung. Diese Zahlen zeigen eindrucksvoll, dass der Katalysatoreinsatz im Bereich der Strassenfahrzeuge einen wesentlichen Beitrag zur Entlastung der Umwelt und zur Erhoehung der Lebensqualitaet geleistet hat und auch in Zukunft noch leisten wird. (orig.)

  16. Bringing Excellence to Automotive

    Science.gov (United States)

    Večeřa, Pavel; Paulová, Iveta

    2012-12-01

    Market situation and development in recent years shows, that organization's ability to meet customer requirements is not enough. Successful organizations are able to exceed the expectations of all stakeholders. They are building their excellence systematically. Our contribution basically how the excellence in automotive is created using EFQM Excellence Model in Total Quality Management.

  17. The determination of regulated and some unregulated exhaust gas components from ethanol blended diesel fuels in comparison with neat diesel and ethanol fuel

    Energy Technology Data Exchange (ETDEWEB)

    Haupt, D.; Nordstroem, F.; Niva, M.; Bergenudd, L.; Hellberg, S. [Luleaa Univ. of Technology (Sweden)

    1999-02-01

    Investigations that have been carried out at Luleaa University of Technology (LTU) show how exhaust gas emissions and engine performance are affected by the composition of the fuels. The fuels that have been tested and compared are two different ethanol blended diesel fuels, `neat` diesel fuels and neat ethanol fuels. Two different, heavy-duty engines were used for the investigations; one for the neat ethanol fuels and the other for the ethanol blended diesel fuels and neat diesel fuels. The investigation also includes some tests with two oxidizing catalysts. Results from the investigation show that none of the fuels produce emissions exceeding the values of the 13-mode test (ECE R-49, 1997). Lowest HC-emission levels were found for the two `neat` ethanol fuels although the difference between the HC-emissions can be considered negligible for the studied fuels. An effective reduction in the hydrocarbon emissions was achieved by using a catalyst. The investigation also shows that the NO{sub x} emissions were much lower for the neat ethanol fuels than for the other fuels. Even if the CO emissions from the two ethanol fuels were approximately three times higher than for the other investigated fuels the use of a catalyst equalize the CO emissions from the studied fuels. The formaldehyde and acetaldehyde emissions were clearly higher for the neat ethanol fuels than for the other investigated fuels. However, by using a catalyst the formaldehyde emission from the ethanol fuels could be decreased. Unfortunately, the use of a catalyst also resulted in an increase in the emission of acetaldehyde from the ethanol fuelled engine 10 refs, 11 figs, 5 tabs, 6 appendixes

  18. Extraction of Mg(OH)2 from Mg silicate minerals with NaOH assisted with H2O: implications for CO2 capture from exhaust flue gas.

    Science.gov (United States)

    Madeddu, Silvia; Priestnall, Michael; Godoy, Erik; Kumar, R Vasant; Raymahasay, Sugat; Evans, Michael; Wang, Ruofan; Manenye, Seabelo; Kinoshita, Hajime

    2015-01-01

    The utilisation of Mg(OH)2 to capture exhaust CO2 has been hindered by the limited availability of brucite, the Mg(OH)2 mineral in natural deposits. Our previous study demonstrated that Mg(OH)2 can be obtained from dunite, an ultramafic rock composed of Mg silicate minerals, in highly concentrated NaOH aqueous systems. However, the large quantity of NaOH consumed was considered an obstacle for the implementation of the technology. In the present study, Mg(OH)2 was extracted from dunite reacted in solid systems with NaOH assisted with H2O. The consumption of NaOH was reduced by 97% with respect to the NaOH aqueous systems, maintaining a comparable yield of Mg(OH)2 extraction, i.e. 64.8-66%. The capture of CO2 from a CO2-N2 gas mixture was tested at ambient conditions using a Mg(OH)2 aqueous slurry. Mg(OH)2 almost fully dissolved and reacted with dissolved CO2 by forming Mg(HCO3)2 which remained in equilibrium storing the CO2 in the aqueous solution. The CO2 balance of the process was assessed from the emissions derived from the power consumption for NaOH production and Mg(OH)2 extraction together with the CO2 captured by Mg(OH)2 derived from dunite. The process resulted as carbon neutral when dunite is reacted at 250 °C for durations of 1 and 3 hours and CO2 is captured as Mg(HCO3)2.

  19. The status of ceramic turbine component fabrication and quality assurance relevant to automotive turbine needs

    Energy Technology Data Exchange (ETDEWEB)

    Richerson, D.W.

    2000-02-01

    This report documents a study funded by the U.S. Department of Energy (DOE) Office of Transportation Technologies (OTT) with guidance from the Ceramics Division of the United States Automotive Materials Partnership (USAMP). DOE and the automotive companies have funded extensive development of ceramic materials for automotive gas turbine components, the most recent effort being under the Partnership for a New Generation of Vehicles (PNGV) program.

  20. 低压洗涤塔在尿素装置低压尾气回收中的应用%Application of low-pressure scrubber in low-pressure exhaust gas recycling of urea plant

    Institute of Scientific and Technical Information of China (English)

    侯立志

    2014-01-01

    简要介绍二氧化碳汽提尿素装置低压回收工序采用低压洗涤塔工艺,有效降低了尾气中氨、二氧化碳的排放,大大降低了生产成本。%The paper briefly introduces low-pressure scrubber process in low-pressure exhaust gas recycling of CO2 stripping urea plant,reducing ammonia and carbon dioxide emissions effectively in tail gas,and reducing the cost of production greatly.

  1. Lanthanide Catalysts for Conversion of Exhaust Gas from Compressed Natural Gas Automobiles%压缩天然气汽车稀土型尾气转化催化剂

    Institute of Scientific and Technical Information of China (English)

    姚如杰; 董新彬

    2004-01-01

    Aiming at improving the air quality, more and more automobiles with compressed natural gas (CNG) fuel are being used in some big cities now. The three way catalysts (TWC) for gasoline cars are not suitable for CNG cars. In the exhaust gases from CNG cars, the hydrocarbon is mainly methane, which is converted into carbon dioxide quite difficultly compared with other hydrocarbons. In this paper, a specially designed catalyst dosage was developed, which contained lanthanide oxides, transition element oxides and a minor part of noble metal oxides. The catalysts can reach a high conversion ratio for the exhaust pollutants above 700℃. More than 98.0 per cent of CH4 and CO in CNG engine exhaust gases can be converted into CO2 and H2O. At 1 000℃, the catalyst maintains a 99.0 per cent conversion ratio for CH4 and CO in 1.5 h, showing a high thermal stability. A resistance to sulfur oxides was also behaved.%压缩天然气(CNG)汽车因其良好的排放特性,正被越来越多的大型城市公交系统使用,但是汽油车辆用尾气净化催化剂对天然气汽车的主要烃类排放物甲烷转化效率低.针对天然气车辆排放物特点,设计了天然气汽车尾气净化催化剂,其成分包括稀土金属和过渡金属化合物、少量贵金属氧化物、结构稳定剂等.试验结果表明,在700℃以上,CO和CH4转化率达到98%以上,催化剂耐高温性能好,在1 000℃,1.5 h试验时间内HC和CO转化率达到99%,此外该催化剂具有一定的抗硫化物中毒能力.

  2. Low Cost Advanced Thermoelectric (TE) Technology for Automotive Waste Heat Recovery

    Science.gov (United States)

    Meisner, G. P.

    2014-03-01

    Low cost, fully integrated TE generators (TEGs) to recover waste heat from vehicle exhaust will reduce transportation sector energy consumption and emissions. TEGs will be the first application of high-temperature TE materials for high-volume use and establish new industrial sectors with scaled up production capability of TEG materials and components. We will create a potential supply chain for practical automotive TEGs and identify manufacturing and assembly processes for large scale production of TEG materials and components. Our work focusses on several innovative R&D paths: (1) enhanced TE material performance by doping and compositional tuning, (2) optimized TE material fabrication and processing to reduce thermal conductivity and improve fracture strength, (3) high volume production for successful skutterudite commercialization, (4) new material, nanostructure, and nanoscale approaches to reduce thermal interface and electrical contact resistances, (5) innovative heat exchangers for high efficiency heat flows and optimum temperature profiles despite highly variable exhaust gas operating conditions, (6) new modeling and simulation tools, and (7) inexpensive materials for thermal insulation and coatings for TE encapsulation. Recent results will be presented. Supported by the U.S. DOE Vehicle Technology Program.

  3. Rotordynamics of automotive turbochargers

    CERN Document Server

    Nguyen-Schäfer, Hung

    2015-01-01

    Rotordynamics of automotive turbochargers is dealt with in this book encompassing the widely working field of small turbomachines under real operating conditions at the very high rotor speeds up to 300000 rpm. The broadly interdisciplinary field of turbocharger rotordynamics involves 1) Thermodynamics and Turbo-Matching of Turbochargers 2) Dynamics of Turbomachinery 3) Stability Analysis of Linear Rotordynamics with the Eigenvalue Theory 4) Stability Analysis of Nonlinear Rotordynamics with the Bifurcation Theory 5) Bearing Dynamics of the Oil Film using the Two-Phase Reynolds Equation 6) Computation of Nonlinear Responses of a Turbocharger Rotor 7) Aero and Vibroacoustics of Turbochargers 8) Shop and Trim Balancing at Two Planes of the Rotor 9) Tribology of the Bearing Surface Roughness 10) Design of Turbocharger Platforms using the Similarity Laws The rotor response of an automotive turbocharger at high rotor speeds is studied analytically, computationally, and experimentally. Due to the nonlinear character...

  4. Automotive Industry in Malaysia

    DEFF Research Database (Denmark)

    Wad, Peter; Govindaraju, V.G.R. Chandran

    2011-01-01

    expanded in terms of sales, production, employment and local content, but failed in industrial upgrading and international competitiveness. The failures can be attributed to (a) lack of political promotion for high challenge-high support environment, (b) low technological and marketing capabilities and (c......This paper explains the evolution and assesses the development of the Malaysian automotive industry within the premise of infant industry and trade protection framework as well as extended arguments of infant industry using a global value chain perspective. The Malaysian automotive industry......) limited participation in the global value chain. Although the Malaysian infant industry protection policy comprised many promising initiatives, the national and the overall domestic automobile industry ended up as a captive of the regionalised Japanese keiretsu system in automobile manufacturing. A new...

  5. Current Automotive Holometry Studies

    Science.gov (United States)

    Marchi, Mitchell M.; Snyder, D. S.

    1990-04-01

    Holometry studies of automotive body and powertrain components have become a very useful high resolution test methodology to knowledgeable Ford engineering personnel. Current examples of studies that represent the static or dynamic operational conditions of the automotive test component are presented. Continuous wave laser holometry, computer aided holometry (CAH) and pulsed laser holometry were the holometric techniques used to study the following subjects: (1) body in prime (BIP) vibration modes, (2) transmission flexplate stud-torque converter deformation due to engine torque pulses, (3) engine cylinder head and camshaft support structure deformation due to cylinder pressure and (4) engine connecting rod/cap lift-off. Static and dynamic component loading and laboratory techniques required to produce usable and valid test results are discussed along with possible conclusions for the engineering concerns.

  6. FISITA 2012 World Automotive Congress

    CERN Document Server

    2013-01-01

    Proceedings of the FISITA 2012 World Automotive Congress are selected from nearly 2,000 papers submitted to the 34th FISITA World Automotive Congress, which is held by Society of Automotive Engineers of China (SAE-China ) and the International Federation of Automotive Engineering Societies (FISITA). This proceedings focus on solutions for sustainable mobility in all areas of passenger car, truck and bus transportation. Volume 8: Vehicle Design and Testing (II) focuses on: •Automotive Reliability Technology •Lightweight Design Technology •Design for Recycling •Dynamic Modeling •Simulation and Experimental Validation •Virtual Design, Testing and Validation •Testing of Components, Systems and Full Vehicle Above all researchers, professional engineers and graduates in fields of automotive engineering, mechanical engineering and electronic engineering will benefit from this book.   SAE-China is a national academic organization composed of enterprises and professionals who focus on research, design a...

  7. Polymer matrix nanocomposites for automotive structural components

    Science.gov (United States)

    Naskar, Amit K.; Keum, Jong K.; Boeman, Raymond G.

    2016-12-01

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this Perspective, we critically evaluate the state of the art in the field and propose a possible path that may help to overcome these barriers. Only once we achieve a deeper understanding of the structure-properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.

  8. State Estimation for the Automotive SCR Process

    DEFF Research Database (Denmark)

    Zhou, Guofeng; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp

    2012-01-01

    Selective catalytic reduction (SCR) of NOx is a widely applied diesel engine exhaust gas aftertreatment technology. For advanced SCR process control, like model predictive control, full state information of the process is required. The ammonia coverage ratio inside the catalyst is difficult...... present for SCR in engine applications, we recommend to estimating the ammonia coverage using the extended Kalman filter....

  9. Exhaust emission control and diagnostics

    Science.gov (United States)

    Mazur, Christopher John; Upadhyay, Devesh

    2006-11-14

    A diesel engine emission control system uses an upstream oxidation catalyst and a downstream SCR catalyst to reduce NOx in a lean exhaust gas environment. The engine and upstream oxidation catalyst are configured to provide approximately a 1:1 ratio of NO to NO2 entering the downstream catalyst. In this way, the downstream catalyst is insensitive to sulfur contamination, and also has improved overall catalyst NOx conversion efficiency. Degradation of the system is determined when the ratio provided is no longer near the desired 1:1 ratio. This condition is detected using measurements of engine operating conditions such as from a NOx sensor located downstream of the catalysts. Finally, control action to adjust an injected amount of reductant in the exhaust gas based on the actual NO to NO2 ratio upstream of the SCR catalyst and downstream of the oxidation catalyst.

  10. CeO2-ZrO2-La2O3-Al2O3 composite oxide and its supported palladium catalyst for the treatment of exhaust of natural gas engined vehicles

    Institute of Scientific and Technical Information of China (English)

    Xiaoyu Zhang; Enyan Long; Yile Li; Jiaxiu Guo; Lijuan Zhang; Maochu Gong; Minghua Wang; Yaoqiang Chen

    2009-01-01

    Composite supports CeO2-ZrO2-Al2O3 (CZA) and CeO2-ZrO2-Al2O3-La2O3 (CZALa) were prepared by co-precipitation method. Palladium catalysts were prepared by impregnation and their purification ability for CH4, CO and NOx in the mixture gas simulated the exhaust from natural gas vehicles (NGVs) operated under stoichiometric condition was investigated. The effect of La2O3 on the physicochemical properties of supports and catalysts was characterized by various techniques. The characterizations with X-ray diffraction (XRD) and Raman spectroscopy revealed that the doping of La2O3 restrained effectively the sintering of crystallite particles, maintained the crystallite particles in nanoscale and stabilized the crystal phase after calcination at 1000 ℃. The results of N2-adsorption, H2-temperature-programmed reduction (H2-TPR) and oxygen storage capacity (OSC) measurements indicated that La2O3 improved the textural properties, reducibility and OSC of composite supports. Activity testing results showed that the catalysts exhibit excellent activities for the simultaneous removal of methane, CO and NOx in the simulated exhaust gas. The catalysts supported on CZALa showed remarkable thermal stability and catalytic activity for the three pollutants, especially for NOx. The prepared palladium catalysts have high ability to remove NOx, CH4 and CO, and they can be used as excellent catalysts for the purification of exhaust from NGVs operated under stoichiometric condition. The catalysts reported in this work also have significant potential in industrial application because of their high performance and low cost.

  11. WLAN Hot Spot services for the automotive and oil industries :a business analysis Or : "Refuel the car with petrol and information, both ways at the gas station"

    NARCIS (Netherlands)

    L-F. Pau (Louis-François); M.H.P. Oremus

    2003-01-01

    textabstractWhile you refuel for gas ,why not refuel for information or download vehicle data ? This paper analyzes in extensive detail the user segmentation by vehicle usage , service offering , and full business models from WLAN hot spot services delivered to vehicles (private, professional , publ

  12. Reliability in automotive ethernet networks

    DEFF Research Database (Denmark)

    Soares, Fabio L.; Campelo, Divanilson R.; Yan, Ying;

    2015-01-01

    This paper provides an overview of in-vehicle communication networks and addresses the challenges of providing reliability in automotive Ethernet in particular.......This paper provides an overview of in-vehicle communication networks and addresses the challenges of providing reliability in automotive Ethernet in particular....

  13. Automotive battery technology

    CERN Document Server

    Watzenig, Daniel

    2014-01-01

    The use of electrochemical energy storage systems in automotive applications also involves new requirements for modeling these systems, especially in terms of model depth and model quality. Currently, mainly simple application-oriented models are used to describe the physical behavior of batteries. This book provides a step beyond of state-of-the-art modeling showing various different approaches covering following aspects: system safety, misuse behavior (crash, thermal runaway), battery state estimation and electrochemical modeling with the needed analysis (pre/post mortem). All this different approaches are developed to support the overall integration process from a multidisciplinary point-of-view and depict their further enhancements to this process.

  14. Automotive systems engineering

    CERN Document Server

    Winner, Hermann

    2013-01-01

    This book reflects the shift in design paradigm in automobile industry. It presents future innovations, often referred as  “automotive systems engineering”.  These cause fundamental innovations in the field of driver assistance systems and electro-mobility as well as fundamental changes in the architecture of the vehicles. New driving functionalities can only be realized if the software programs of multiple electronic control units work together correctly. This volume presents the new and innovative methods which are mandatory to master the complexity of the vehicle of the future.

  15. The automotive transmission book

    CERN Document Server

    Fischer, Robert; Jürgens, Gunter; Najork, Rolf; Pollak, Burkhard

    2015-01-01

    This book presents essential information on systems and interactions in automotive transmission technology and outlines the methodologies used to analyze and develop transmission concepts and designs. Functions of and interactions between components and subassemblies of transmissions are introduced, providing a basis for designing transmission systems and for determining their potentials and properties in vehicle-specific applications: passenger cars, trucks, buses, tractors, and motorcycles. With these fundamentals the presentation provides universal resources for both state-of-the-art and future transmission technologies, including systems for electric and hybrid electric vehicles.

  16. Ultracapacitors for automotive applications

    Science.gov (United States)

    Ashtiani, Cyrus; Wright, Randy; Hunt, Gary

    In response to a growing consensus in the auto industry that ultracapacitors can potentially play a key role in the modern vehicle power distribution network, a task force was created at the United States Advanced Battery Consortium (USABC) to tackle issues facing the fledging industry. The task force embarked on first developing and establishing standards for performance and abuse tolerance of ultracapacitors in collaboration with the U.S. Department of Energy and National Labs. Subsequently, potential applications in the automotive industry were identified and a consensus requirement specification was drawn as a development guide for the industry.

  17. Study of Vehicle Exhaust Variation with Test Modes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Nowadays harmful gas in vehicle exhaust has pollute d air heavily. To prevent the environment from polluting, the request of emissions control legislation becomes more stringent. New legislation prescribes not only the emissions limitation of vehicles, but also testing instruments and methods. Test car must be operated on the chassis dynamometer and data must be collect ed and analyzed with prescriptive exhaust analysis system as well. The mass of harmful exhaust gas, containing the concentration an...

  18. Characterization of the main automotive gasoline compounds by using gas chromatography; Caracterizacao dos principais componentes da gasolina automotiva atraves de cromatografia gasosa

    Energy Technology Data Exchange (ETDEWEB)

    Assis, Julio Cesar Rosa; Jaeger, Helena Valli; Almeida, Selmo Queiroz; Teixeira, Leonardo Sena Gomes; Pontes, Luiz Antonio Magalhaes; Vitor Sobrinho, Eledir; Guimaraes, Paulo Roberto Britto; Vianna, Regina Ferreira [Universidade Salvador - UNIFACS, Salvador, BA (Brazil). Dept. de Engenharia e Arquitetura]. E-mail: julio.assis@posgrad.unifacs.br

    2003-07-01

    Gasoline is composed of a number of hydrocarbons of varied structure and different functional groups, which have a marked influence on the final quality of the former. It is thus important to identify the main components of gasoline and how they influence some of its characteristics. This research work is concerned with the development of a technique, based on gas chromatography, for the separation and identification of more than 350 organic compounds likely to be present in gasoline. The study involved 50 gasoline samples collected at gas stations located in Salvador-Bahia (Brazil). The hydrocarbons identified were classified according to their main functional groups and compositions were obtained via a statistical treatment of the raw data. The results have shown that the gasoline used in Salvador has isopentane as the prevalent saturated compound, while m-xylene and methyl-butene are the most frequently found aromatic and olefin, respectively. (author)

  19. The purification of internal combustion engine exhaust emissions

    Energy Technology Data Exchange (ETDEWEB)

    Davies, M.J.; Jorgensen, Norman; Carlow, J.S.; Raybone, David.

    1994-03-02

    In this patent, improved catalytic reduction of exhaust gas pollutants from internal combustion engines is described. During the warm-up phase of the cycle, a plasma discharge is initiated in the exhaust gases upstream of the catalytic converter. The plasma is controlled using sensors which detect the catalyst temperature and gas pressure and flow rate. (UK)

  20. INTEGRATED AUTOMOTIVE MANUFACTURING SUPPLY

    Directory of Open Access Journals (Sweden)

    P.J.S. Van Dyk

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Supply planning and traffic flow planning are major activities in the automotive manufacturing environment worldwide. Traditionally, the impact of supply planning strategies on plant traffic is rarely considered. This paper describes the development of a Decision Support System (DSS that will assist automotive manufacturers to analyse the effect of supply planning decisions on plant traffic during the supply planning phase of their logistics planning process. In essence, this DSS consists of a Supply Medium Decision Support Tool (SMDST (an interactive MS-Excel model with Visual Basic interfacing and a traffic flow simulation model tool (using eMPlant simulation software.

    AFRIKAANSE OPSOMMING: Verskaffingsbeplanning en verkeersvloeibeplanning is belangrike aktiwiteite in die motorvervaardigingsbedryf wêreldwyd. Tradisioneel word die uitwerking van verskaffings-beplanningsstrategië op aanlegverkeer selde in ag geneem. Hierdie artikel beskryf die ontwikkeling van ’n Besluitnemings Ondersteuningstelsel (DSS wat motorvervaardigers sal ondersteun in die analise van die effek van verskaffingsbeplanningbesluite op aanlegverkeer tydens die verskaffingsbeplanningsfase van hulle logistieke beplanningsproses. Hierdie DSS bestaan hoofsaaklik uit ’n Verskaffings-vervoermiddel Besluitnemingshulpmiddel (SMDST (’n interaktiewe MS-Excel model met “Visual Basic” koppelling asook ’n simulasiemodel van verkeersvloei (met eM-Plant simulasiesagteware.

  1. Effects of fuel properties and oxidation catalyst on diesel exhaust emissions; Keiyu seijo oyobi sanka shokubai no diesel haishutsu gas eno eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, S.; Morihisa, H.; Tamanouchi, M.; Araki, H.; Yamada, S. [Petroleum Energy Center, Advanced Technology and Research Institute, Tokyo (Japan)

    1997-10-01

    Effects of fuel properties (T90 and Poly-Aromatic Hydrocarbons: PAH) and oxidation catalyst on diesel exhaust emissions were studied using three DI diesel engines and two diesel passenger cars. (IDI engine) PM emissions were found to increase as T90 and PAH increased and could be decreased considerably for each fuel if an oxidation catalyst was installed. 5 refs., 9 figs., 3 tabs.

  2. Effects of gasoline properties on exhaust emission and photochemical reactivity; Gasoline seijo ga haiki gas sosei, kokagaku hannosei ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, R.; Usui, K.; Moriya, A.; Sato, M.; Nomura, T.; Sue, H. [Petroleum Energy Center, Advanced Technology and Research Institute, Tokyo (Japan)

    1997-10-01

    In order to investigate the effects of fuel properties on emissions, four passenger cars were tested under Japanese 11 and 10-15 modes using two series gasoline fuels. The test results suggest that the distillation property (T90) affects A/F ratio which in turn influences exhaust emissions. The results of regression analysis show that both ozone forming potential and air toxics are highly corrected with the composition of aromatic hydrocarbons in gasoline. 3 refs., 10 figs., 6 tabs.

  3. Performance Analysis of a Reciprocating Piston Expander and a Plate Type Exhaust Gas Recirculation Boiler in a Water-Based Rankine Cycle for Heat Recovery from a Heavy Duty Diesel Engine

    Directory of Open Access Journals (Sweden)

    Gunnar Latz

    2016-06-01

    Full Text Available The exhaust gas in an internal combustion engine provides favorable conditions for a waste-heat recovery (WHR system. The highest potential is achieved by the Rankine cycle as a heat recovery technology. There are only few experimental studies that investigate full-scale systems using water-based working fluids and their effects on the performance and operation of a Rankine cycle heat recovery system. This paper discusses experimental results and practical challenges with a WHR system when utilizing heat from the exhaust gas recirculation system of a truck engine. The results showed that the boiler’s pinch point necessitated trade-offs between maintaining adequate boiling pressure while achieving acceptable cooling of the EGR and superheating of the water. The expander used in the system had a geometric compression ratio of 21 together with a steam outlet timing that caused high re-compression. Inlet pressures of up to 30 bar were therefore required for a stable expander power output. Such high pressures increased the pump power, and reduced the EGR cooling in the boiler because of pinch-point effects. Simulations indicated that reducing the expander’s compression ratio from 21 to 13 would allow 30% lower steam supply pressures without adversely affecting the expander’s power output.

  4. A comparison of exhaust emissions from vehicles fuelled with petrol, LPG and CNG

    Science.gov (United States)

    Bielaczyc, P.; Szczotka, A.; Woodburn, J.

    2016-09-01

    This paper presents an analysis of THC, NMHC, CO, NOx and CO2 emissions during testing of two bi-fuel vehicles, fuelled with petrol and gaseous fuels, on a chassis dynamometer in the context of the Euro 6 emissions requirements. The analyses were performed on one Euro 5 bi-fuel vehicle (petrol/LPG) and one Euro 5 bi-fuel vehicle (petrol/CNG), both with SI engines equipped with MPI feeding systems operating in closed-loop control, typical three-way-catalysts and heated oxygen sensors. The vehicles had been adapted by their manufacturers for fuelling with LPG or CNG by using additional special equipment mounted onto the existing petrol fuelling system. The vehicles tested featured multipoint gas injection systems. The aim of this paper was an analysis of the impact of the gaseous fuels on the exhaust emission in comparison to the emission of the vehicles fuelled with petrol. The tests subject to the analyses presented here were performed in the Engine Research Department of BOSMAL Automotive Research and Development Institute Ltd in Bielsko-Biala, Poland, within a research programme investigating the influence of alternative fuels on exhaust emissions from light duty vehicle vehicles with spark-ignition and compression-ignition engines.

  5. Planned Operation of Tritium Recovery System Based on Investigation of LHD Exhaust System

    OpenAIRE

    ASAKURA, Yamato; Suzuki, Naoyuki

    2012-01-01

    o understand the conditions of exhaust gas treatment at the transition point between the Large Helical Device (LHD) vacuum pumping system and the exhaust gas tritium recovery system, the gas flow rate and hydrogen concentration were measured. Simultaneous measurement of the exhaust gas flow rate and hydrogen concentration was made possible by applying two types of hydrogen monitors: a thermal conductivity sensor and a combustible gas sensor. The obtained results have led to remodeling of the ...

  6. The trapping system for the recirculated gases at different locations of the exhaust gas recirculation (EGR) pipe of a homogeneous charge compression ignition (HCCI) engine

    Science.gov (United States)

    Piperel, A.; Montagne, X.; Dagaut, P.

    2008-10-01

    Nowadays, in diesel engines, it is typical to recycle exhaust gases (EGR) in order to decrease pollutant emissions. However, few studies report the precisely measured composition of the recycled gases. Indeed, in order to know precisely the composition of the EGR gases, they have to be sampled hot and not diluted, in contrast to the usual practice. Thus, a new system to collect such samples was developed. With this new trapping system, it is possible to measure the concentrations of NOx, CO, CO2, O2, hydrocarbons (HCs) in the range C1-C9, aldehydes, ketones and PAHs. The trapping system and the analytical protocol used are described in this paper.

  7. Hyperventilation and exhaustion syndrome

    OpenAIRE

    Ristiniemi, Heli; Perski, Aleksander; Lyskov, Eugene; Emtner, Margareta

    2014-01-01

    Chronic stress is among the most common diagnoses in Sweden, most commonly in the form of exhaustion syndrome (ICD-10 classification - F43.8). The majority of patients with this syndrome also have disturbed breathing (hyperventilation). The aim of this study was to investigate the association between hyperventilation and exhaustion syndrome. Thirty patients with exhaustion syndrome and 14 healthy subjects were evaluated with the Nijmegen Symptom Questionnaire (NQ). The participants completed ...

  8. The impact of carbon dioxide and exhaust gas recirculation on the oxidative reactivity of soot from ethylene flames and diesel engines

    Science.gov (United States)

    Al-Qurashi, Khalid O.

    Restrictive emissions standards to reduce nitrogen oxides (NOx) and particulate matter (PM) emissions from diesel engines necessitate the development of advanced emission control technology. The engine manufacturers in the United States have implemented the exhaust gas recirculation (EGR) and diesel particulate filters (DPF) to meet the stringent emissions limits on NOx and PM, respectively. Although the EGR-DPF system is an effective means to control diesel engine emissions, there are some concerns associated with its implementation. The chief concern with this system is the DPF regenerability, which depends upon several factors, among which are the physicochemical properties of the soot. Despite the plethora of research that has been conducted on DPF regenerability, the impact of EGR on soot reactivity and DPF regenerability is yet to be examined. This work concerns the impact of EGR on the oxidative reactivity of diesel soot. It is part of ongoing research to bridge the gap in establishing a relationship between soot formation conditions, properties, and reactivity. This work is divided into three phases. In the first phase, carbon dioxide (CO2) was added to the intake charge of a single cylinder engine via cylinders of compressed CO2. This approach simulates the cold-particle-free EGR. The results showed that inclusion of CO2 changes the soot properties and yields synergistic effects on the oxidative reactivity of the resulting soot. The second phase of this research was motivated by the findings from the first phase. In this phase, post-flame ethylene soot was produced from a laboratory co-flow laminar diffusion flame to better understand the mechanism by which the CO2 affects soot reactivity. This phase was accomplished by successfully isolating the dilution, thermal, and chemical effects of the CO2. The results showed that all of these effects account for a measurable increase in soot reactivity. Nevertheless, the thermal effect was found to be the most

  9. Exhaustion from prolonged gambling

    Directory of Open Access Journals (Sweden)

    Fatimah Lateef

    2013-01-01

    Full Text Available Complaints of fatigue and physical exhaustion are frequently seen in the acute medical setting, especially amongst athletes, army recruits and persons involved in strenuous and exertional physical activities. Stress-induced exhaustion, on the other hand, is less often seen, but can present with very similar symptoms to physical exhaustion. Recently, three patients were seen at the Department of Emergency Medicine, presenting with exhaustion from prolonged involvement in gambling activities. The cases serve to highlight some of the physical consequences of prolonged gambling.

  10. Exhaustion from prolonged gambling

    Institute of Scientific and Technical Information of China (English)

    Fatimah Lateef

    2013-01-01

    Complaints of fatigue and physical exhaustion are frequently seen in the acute medical setting, especially amongst athletes, army recruits and persons involved in strenuous and exertional physical activities.Stress-induced exhaustion, on the other hand, is less often seen, but can present with very similar symptoms to physical exhaustion.Recently, three patients were seen at theDepartment ofEmergencyMedicine, presenting with exhaustion from prolonged involvement in gambling activities.The cases serve to highlight some of the physical consequences of prolonged gambling.

  11. Local Exhaust Ventilation

    DEFF Research Database (Denmark)

    Madsen, Ulla; Breum, N. O.; Nielsen, Peter V.

    Capture efficiency of a local exhaust system, e.g. a kitchen hood, should include only contaminants being direct captured. In this study basic concepts of local exhaust capture efficiency are given, based on the idea of a control box. A validated numerical model is used for estimation of the capt......Capture efficiency of a local exhaust system, e.g. a kitchen hood, should include only contaminants being direct captured. In this study basic concepts of local exhaust capture efficiency are given, based on the idea of a control box. A validated numerical model is used for estimation...

  12. Capture efficiency measurement of pollutants over a workbench with the reinforced slot exhaust system

    Directory of Open Access Journals (Sweden)

    Pavelek M.

    2013-04-01

    Full Text Available The paper deals with the measurement of the capture efficiency of pollutants by the slot reinforced exhaust system situated in two positions over the workbench. The slot reinforced exhaust system, which is known as REEXS, is the traditional slot exhaust hood equipped with an air supply inlet that intensifies exhausting along the axis of the exhaust hood. It can operate in traditional or reinforced exhaust modes. Measurements were made for the same air velocity in the suction slot and with the different momentum flux ratio of supplied and exhausted air flow. The tracer gas method was used for the capture efficiency measurement of the system. As the tracer gas the carbon dioxide was chosen. The knowledge of the shape and range of the effective exhaust area for various configurations in front of the exhaust hood is important for the exhaust hood setting according to a source of pollutants.

  13. The practice of closed full pressure exhaust gas equipment under the bunker%煤仓下口封闭式全风压排瓦斯装置实践研究

    Institute of Scientific and Technical Information of China (English)

    刘晋隆; 韩剑

    2015-01-01

    成庄矿井下东、西主煤仓给煤机同时给煤时,放煤口及下风侧瓦斯与粉尘浓度往往超限.通过分析现场瓦斯及粉尘参数,结合现场条件,实践了"封闭式全风压排瓦斯装置"方案,成功解决了煤仓下口瓦斯及粉尘超限问题,确保了矿井安全高效生产.%In ChengZhuang Coal Mining,When the east and west main bunkers underground put coal in the same time, gas and dust concentration often over limited in the putting coal port and downwind . By analyzing the gas and dust parameters with the conditions, practice a "closed full pressure exhaust gas equipment",successfully resolved the problems of gas and dust over limited at coal bunker, to ensure the safe and efficient production.

  14. Large-scale time-resolved digital particle image velocimetry (TR-DPIV) for measurement of high subsonic hot coaxial jet exhaust of a gas turbine engine

    Science.gov (United States)

    Timmerman, B. H.; Skeen, A. J.; Bryanston-Cross, P. J.; Graves, M. J.

    2009-07-01

    The development of a highly configurable triple digital particle image velocimetry (DPIV) system is described, which is capable of acquiring both continuous, statistically independent measurements at up to 14 Hz and time-resolved PIV data at MHz rates. The system was used at QinetiQ's Noise Test Facility (NTF) as part of the EU-funded CoJeN programme to obtain measurements from high subsonic (Mach <= 0.9), hot (~500 °C), large (1/10th) scale coaxial jet flows at a standoff distance of ~1 m. High-resolution time-averaged velocity and turbulence data were obtained for complete coaxial engine exhaust plumes down to 4 m (20 jet diameters) from the nozzle exit in less than 1 h. In addition, the system allowed volumetric data to be obtained, enabling fast assessment of spatial alignment of nozzle configurations. Furthermore, novel six-frame time-series data-capture is demonstrated up to 330 kHz, used to calculate time-space correlations within the exhaust, allowing for study of spatio-temporal developments in the jet, associated with jet-noise production. The highly automated system provides synchronization triggers for simultaneous acquisition from different measurement systems (e.g. LDA) and is shown to be versatile, rugged, reliable and portable, operating remotely in a hostile environment. Data are presented for three operating conditions and two nozzle geometries, providing a database to be used to validate CFD models of coaxial jet flow.

  15. Study on the utilization of the energy produced by the exhaust gases and the cooling water of a internal combustion engine; Estudo do aproveitamento da energia obtida pelos gases de escapamento e pela agua de resfriamento de um motor de combustao interna

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Andre Luiz dos; Arroyo, Narciso Angel Ramos [Santa Catarina Univ., Florianopolis (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Motores Termicos]. E-mail: als2000@tutopia.com.br; arroyo@sinmec.ufsc.br

    2000-07-01

    This work is about heat balance of an automotive internal combustion engine of 4 cylinders, using ethylic alcohol, and utilize the energy obtained in the exhaust gas and the water cooling system. This paper show an theoretical - experimental model for use this energy in an absorption refrigeration system using the work fluid water and Li Br. In this paper are analyzed engines charges of 30%, 50% and 100%. The results shows that for this charges and for any speed of the engines, the energy obtained in the evaporator are significant. (author)

  16. 己二酸生产中的废气净化技术及其影响因素%Decontamination technology of exhaust gas in adipic acid production and the influence factors

    Institute of Scientific and Technical Information of China (English)

    周禹君; 李多春

    2012-01-01

    以辽阳石化公司硝酸氧化醇酮制备己二酸装置为研究对象,研究了己二酸生产中废气的净化技术及废气消减过程中的影响因素.NO,NO2的净化采用水吸收法,以尾气中NOx含量和回收硝酸浓度为主要考察指标,设计了四因素三水平的正交试验,通过试验得出的优化工艺条件为:喷淋水流量7m3/h、补充空气量900 m3/h、吸收温度14℃、吸收压力0.155 MPa,尾气中NOx体积分数为420×10-6,回收硝酸质量分数35%.N2O的净化采用催化分解法,并对影响其分解效果的3个因素进行了研究.结果表明,入口温度应随催化剂活性减弱逐渐升高,进气浓度最好维持在11.0%~11.2%,原料气中含水不利于催化分解.%It will release a great deal of exhaust gas which contain NO, NO2 and N2O in the process of adipic acid produc-tion by oxidation of alcohol ketone with nitric acid. The decontamination technology of the exhaust gas and the influence factors are studied based on the adipic acid plant in Liaoyang Petrochemical Company. NO and NO2 gas are absorbed by water. Setting the content of NOT in the exhaust gas and the concentration of reclaimed nitric acid as main targets, the 4 factors and 3 levels orthogonal test is carried out. The optimum conditions of NOX absorbing is achieved as follows: absorbed water capacity is 7 m3/h, inlet air quantity is 900 m3/rw operation temperature is 14 ℃ and operation pressure is 0. 155 MPa. Under above condi-tions, the volume fraction of NOX in the exhaust gas is 420×10-6 and the mass fraction of reclaimed nitric acid is 35%. N2O is decomposed by catalyst, and three factors which influence the N2O decomposition is discussed. The results show that the inlet air temperature should rise with the activation of the catalyst reducing, the concentration of N2O in inlet air between 11. 0%-11. 2% is better, and the containing moisture is not good for decomposition.

  17. Preliminary study of Low-Cost Micro Gas Turbine

    Science.gov (United States)

    Fikri, M.; Ridzuan, M.; Salleh, Hamidon

    2016-11-01

    The electricity consumption nowadays has increased due to the increasing development of portable electronic devices. The development of low cost micro gas turbine engine, which is designed for the purposes of new electrical generation Micro turbines are a relatively new distributed generation technology being used for stationary energy generation applications. They are a type of combustion turbine that produces both heat and electricity on a relatively small scaled.. This research are focusing of developing a low-cost micro gas turbine engine based on automotive turbocharger and to evaluation the performance of the developed micro gas turbine. The test rig engine basically was constructed using a Nissan 45V3 automotive turbocharger, containing compressor and turbine assemblies on a common shaft. The operating performance of developed micro gas turbine was analyzed experimentally with the increment of 5000 RPM on the compressor speed. The speed of the compressor was limited at 70000 RPM and only 1000 degree Celsius at maximum were allowed to operate the system in order to avoid any failure on the turbocharger bearing and the other components. Performance parameters such as inlet temperature, compressor temperature, exhaust gas temperature, and fuel and air flow rates were measured. The data was collected electronically by 74972A data acquisition and evaluated manually by calculation. From the independent test shows the result of the system, The speed of the LP turbine can be reached up to 35000 RPM and produced 18.5kw of mechanical power.

  18. MEMS for automotive and aerospace applications

    CERN Document Server

    Kraft, Michael

    2013-01-01

    MEMS for automotive and aerospace applications reviews the use of Micro-Electro-Mechanical-Systems (MEMS) in developing solutions to the unique challenges presented by the automotive and aerospace industries.Part one explores MEMS for a variety of automotive applications. The role of MEMS in passenger safety and comfort, sensors for automotive vehicle stability control applications and automotive tire pressure monitoring systems are considered, along with pressure and flow sensors for engine management, and RF MEMS for automotive radar sensors. Part two then goes on to explore MEMS for

  19. Automotive powerplant evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Stamper, K.R.

    1976-06-01

    A program to obtain automotive engine performance data for use in estimating vehicle emission and fuel economy in varied service and duty is described. An experimental test procedure for generating fuel consumption and emissions data adequate to characterize an engine over its full operating range was developed for steady-state tests. The development of a test procedure for transient testing is currently under way. The steady-state data will be collected from approximately 23 different engines, including: (1) 16 current production spark-ignition engines; (2) 3 pre-production or prototype advanced design spark-ignition engines; and (3) 4 light-duty diesel engines which are, or could be, used in passenger car applications. To date, steady-state ''engine maps'' were completed on 10 engines. A simplified model used to compare steady-state data with chassis dynamometer data indicates that results thus far can be used to obtain estimates of fuel economy in automobiles.

  20. Utilization of coal mine ventilation exhaust as combustion air in gas-fired turbines for electric and/or mechanical power generation. Semi-annual topical report, June 1995--August 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Methane emitted during underground coal mining operations is a hazard that is dealt with by diluting the methane with fresh air and exhausting the contaminated air to the atmosphere. Unfortunately this waste stream may contain more than 60% of the methane resource from the coal, and in the atmosphere the methane acts as a greenhouse gas with an effect about 24.5 times greater than CO{sub 2}. Though the waste stream is too dilute for normal recovery processes, it can be used as combustion air for a turbine-generator, thereby reducing the turbine fuel requirements while reducing emissions. Preliminary analysis indicates that such a system, built using standard equipment, is economically and environmentally attractive, and has potential for worldwide application.

  1. 乳化液膜法对模拟乙酸乙酯废气吸收的研究%Investigation on the acetic ether absorption of simulated exhaust gas by emulsion liquid membrane

    Institute of Scientific and Technical Information of China (English)

    王浩; 梅敏雅; 金一中

    2011-01-01

    针对水吸收法难于处理非(弱)水溶性有机废气的问题,以煤油为油相,失水山梨醇三油酸酯(Span-85)为乳化剂,制得水相/油相(W/O)乳化液膜,进行了吸收模拟乙酸乙酯废气的研究.结果表明:乳化液膜体系对乙酸乙酯废气吸收效率最高可达89%,1h内吸收效率大于50%以上;低温、低表面活性剂体积分数和高废气质量浓度有利于提高吸收速率,在实验条件下存在最佳油水比1:1.%Considering that water absorption is difficult to treat insoluble VOCs, this paper used emulsion liquid membrane (ELM), with kerosene as oil phase and Span-85 as emulsifier, as the advanced treatment agents to absorb simulated exhaust gas of acetic ether. The results showed that emulsion liquid membrane system have the highest absorption efficiency for acetic ether by 89% , and the absorption efficiency could be more than 50% in one hour. Some factors, such as low temperature, low surfactant concentration and high exhaust gas concentration, are helpful to improve the absorption rate. There was an optimal oil-water ratio of 1:1 under the condition of the experiments.

  2. Thermal Economy Analysis on Waste Heat Recovery of the Exhaust Flue Gas of Boiler in Power Plant%发电厂锅炉烟气余热回收方案热经济性研究

    Institute of Scientific and Technical Information of China (English)

    龙群力; 朱彦雷; 刘继平

    2012-01-01

    分析某发电厂锅炉排烟余热回收利用的热经济性,提出了供暖期利用烟气余热进行供暖、非供暖期利用烟气余热加热凝结水的回收方案。研究表明,采用该方案,供暖期可节约标准煤987.9da,非供暖期可节约标准煤883.1t/a,合计每年可节约标准煤1871t,具有良好的节能减排效果。%This paper presents a case study of recovering waste heat of the exhaust flue gas of boiler in a power plant. The waste heat can be recovered by installing a low temperature economizer. The low temperature economizer can save the steam extracted from the turbine to heat the condensed water to gain extra work in un-heating period, in the heating period, it heat the circulating water for civilian using. Analysis results show that it is feasible to install a low temperature economizer for recovering the heat of exhaust flue gas in power plant, which has sound effect on energy saving and emission reduction. The benefits generated include saving of standard coal equivalent about 987.9 t in the heating period and 883.1 t in un-heating period. The total annual saving of standard coal is about 1 871 t.

  3. Exhaust Gas Pollution and Control of Import Waste Plastics Recycling Industry%进口废塑料再生加工行业废气污染及防治对策

    Institute of Scientific and Technical Information of China (English)

    陈瑜; 赵艳

    2015-01-01

    With large quantities of China’s import waste plastics, exhaust gas could be produced in the recycling process of waste plastics. Without effective treatment, the production will bring great harm to the environment. Typical regeneration of waste plastics process and the production process were analyzed. The main sources and types of waste gas were identified. Effective treatments and countermeasures of organic waste gas, dust and odor pollution produced in the process of hot-melt granulation, crushing were presented.%我国进口废塑料数量大,废塑料再生加工生产过程中伴随着工艺废气的产生,若不进行处理将对环境带来较大的危害。通过分析典型的废塑料再生加工工艺及产污环节,识别主要工艺废气来源及种类,提出了有效处理热熔造粒、破碎等加工过程产生的有机废气、粉尘及恶臭等废气污染物的防治对策与措施。

  4. Escalation Practices in Automotive Development

    Directory of Open Access Journals (Sweden)

    Tomaž Jurejevčič

    2016-12-01

    Full Text Available Research Question (RQ: In automotive business many risk-involved situations occur and when detected, an escalation process takes place. Although defined and controlled by process guidelines and being supported by experts, escalation brings increased emotional pressure and stress for parties involved. Do escalation processes in automotive industry maintain all implied challenges? Purpose: The purpose of the article is to present current status of escalation processes and gaps between theory and practice cases. Results of the analysis are recommendations of good engineering practice derived also from actual experiences and learned lessons. Method: The method involves analysis of practical cases from automotive development process, lessons learned, anonymous survey of automotive engineers and classification of experiences. Results: Results of the survey have shown that the controlled escalation process for know-how related escalations is needed in order to establish the environment where the team is able to provide new, sometimes unconventional ideas for the problem to be solved. Organization: Presented recommendations and measures enable organization and managers to put the expertise and experiences of employees into action for problem solving during escalation. Originality: In this article some practices are presented that, although simple and some yet seen, with proper adjustment stemming from real life processes give a fruitful settlement of escalations in automotive development business.

  5. Modeling and Experimental Validation of a Volumetric Expander Suitable for Waste Heat Recovery from an Automotive Internal Combustion Engine Using an Organic Rankine Cycle with Ethanol

    Directory of Open Access Journals (Sweden)

    José Galindo

    2016-04-01

    Full Text Available Waste heat recovery (WHR in exhaust gas flow of automotive engines has proved to be a useful path to increase the overall efficiency of internal combustion engines (ICE. Recovery potentials of up to 7% are shown in several works in the literature. However, most of them are theoretical estimations. Some present results from prototypes fed by steady flows generated in an auxiliary gas tank and not with actual engine exhaust gases. This paper deals with the modeling and experimental validation of an organic Rankine cycle (ORC with a swash-plate expander integrated in a 2 L turbocharged petrol engine using ethanol as working fluid. A global simulation model of the ORC was developed with a maximum difference of 5%, validated with experimental results. Considering the swash-plate as the main limiting factor, an additional specific submodel was implemented to model the physical phenomena in this element. This model allows simulating the fluid dynamic behavior of the swash-plate expander using a 0D model (Amesim. Differences up to 10.5% between tests and model results were found.

  6. Performance Analysis of the Automotive TEG with Respect to the Geometry of the Modules

    Science.gov (United States)

    Yu, C. G.; Zheng, S. J.; Deng, Y. D.; Su, C. Q.; Wang, Y. P.

    2016-11-01

    Recently there has been increasing interest in applying thermoelectric technology to recover waste heat in automotive exhaust gas. Due to the limited space in the vehicle, it's meaningful to improve the TEG (thermoelectric generator) performance by optimizing the module geometry. This paper analyzes the performance of bismuth telluride modules for two criteria (power density and power output per area), and researches the relationship between the performance and the geometry of the modules. A geometry factor is defined for the thermoelectric element to describe the module geometry, and a mathematical model is set up to study the effects of the module geometry on its performance. It has been found out that the optimal geometry factors for maximum output power, power density and power output per unit area are different, and the value of the optimal geometry factors will be affected by the volume of the thermoelectric material and the thermal input. The results can be referred to as the basis for optimizing the performance of the thermoelectric modules.

  7. Unemployment Benefit Exhaustion

    DEFF Research Database (Denmark)

    Filges, Trine; Pico Geerdsen, Lars; Knudsen, Anne-Sofie Due

    2015-01-01

    studies for final analysis and interpretation. Twelve studies could be included in the data synthesis. Results: We found clear evidence that the prospect of exhaustion of benefits results in a significantly increased incentive for finding work. Discussion: The theoretical suggestion that the prospect......This systematic review studied the impact of exhaustion of unemployment benefits on the exit rate out of unemployment and into employment prior to benefit exhaustion or shortly thereafter. Method: We followed Campbell Collaboration guidelines to prepare this review, and ultimately located 12...... of exhaustion of benefits results in an increased incentive for finding work has been confirmed empirically by measures from seven different European countries, the United States, and Canada. The results are robust in the sense that sensitivity analyses evidenced no appreciable changes in the results. We found...

  8. COOMET.QM-S5 (COOMET project No 576/RU/12) 'Supplementary comparison of national standards in the field of analysis of gas mixtures containing CO2, CO, C3H8 in nitrogen ("automotive" gas mixtures)'

    Science.gov (United States)

    Konopelko, L. A.; Kolobova, A. V.; Rozhnov, M. S.; Melnyk, D. M.; Petryshyn, P. V.; Shpilnyi, S. A.; Iakubov, S. E.; Bakovec, N. V.; Kluchits, A. S.; Kipphardt, H.; Aleksandrov, V. V.

    2016-01-01

    The relevance of the COOMET.QM-S5 comparison is founded on tightening of requirements to a control of automobile emissions (realization of environmental standards of EURO 4, EURO-5). Participating laboratories: VNIIM, BAM, BelGIM, Ukrmetrteststandart, KazInMetr. This comparison was carried out in 2013-2014. This supplementary comparison supports CMC claims for: CO2 in the range (4-16) . 10-2 mol/mol; CO in the range (0.5-5) . 10-2 mol/mol; C3H8 in the range (0.01-0.3) . 10-2 mol/mol. Results: Component CO: All laboratories identified the values of carbon monoxide mole fraction in the gas mixture within +/-0.9134%. Component CO2: All laboratories identified the values of carbon dioxide mole fraction in the gas mixture within +/-0.3042%. Component C3H8: All laboratories identified the values of propane mole fraction in the gas mixture within +/-0.443%. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  9. Modelling, Analysis, Control and Experimental Validation of Electromechanical Valve Actuators in Automotive Systems

    OpenAIRE

    Hoyos Velasco, Carlos Ildefonso

    2011-01-01

    This Thesis is concerned with the modelling, analysis and control of novel mechatronic valve actuators for automotive systems, specifically, the control of the mechanical valves to intake and exhaust gases in Internal Combustion Engines (ICE). Scientific studies have shown that significant benefits in terms of engine efficiency and emissions can be obtained through the adoption of variable valve actuation. Current engine technology are based on the use of a mechanical driven camshaft, which i...

  10. Decision aid tool and design approach for plastic recycling chain integration in the automotive industry

    OpenAIRE

    Maudet-Charbuillet, Carole; Bertoluci, Gwenola

    2012-01-01

    The many uses of plastics in our society are now compromised because of the social and environmental impacts they generate: exhaustion of petroleum resources, waste management... Plastics recycling appears to be one of the best ways to solve these problems. But Plastics Recycling Chains (PRC) are still emerging system. The automotive industry is directly concerned by plastic recycling through the End of Life Vehicles (ELV) directive which compels it to respect recycling rate for their product...

  11. Improvement of emissions and performance by using of air jet, exhaust gas re-circulation and insulation methods in a direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Jafarmadara S.

    2013-01-01

    Full Text Available This article investigates the improvement of operation characteristics and emissions reduction by means of creating an air-cell inside the piston body, exhaust gases recirculating and insulating combustion chamber in a direct injection diesel engine simultaneously. The engine considered is a caterpillar 3401 which was modeled with an air-cell included as part of the piston geometry. This air-cell demonstrates that air injection in late combustion period can be effective in a significant reduction of Soot emission while cold EGR can be effective in reduction of NOx emission. Also for increasing of performance parameters, combustion chamber with air-cell is insulated. The analyses are carried out at part (75% of full load and full load conditions at the same engine speed 1600 rpm. The obtained results indicate that creating the air-cell has a slight effect on improvement of performance parameters and it has significantly effect on Soot reduction. The air-cell decreases the Soot pollutant as a factor of two at both part and full load conditions. Also, the adding 5% of cold EGR in inlet air decreases NOx by about half and insulating the engine increases the power and IMEP by about 7.7% and 8.5% and decreases the ISFC by about 7.5% at part load and increases power and IMEP by 8.5%, 8.5% and decreases ISFC by 8% at full load condition, respectively. Using this method, it was possible to control emissions formation and increase performance parameters simultaneously. The predicted results for mean in-cylinder pressure and emissions are compared to the corresponding experimental results and show good agreements.

  12. 催化氧化活性炭法净化磷化氢熏蒸尾气综述%Purification of exhausted gas from phosphine fumigation with catalytic oxidation activated carbon

    Institute of Scientific and Technical Information of China (English)

    李云玲; 黄健翔

    2016-01-01

    在磷化氢进行熏蒸保护粮食、烟草仓储过程中,会产生有剧毒的磷化氢熏蒸尾气,对周围人和环境产生重大影响,催化氧化活性炭是解决这一问题最有效的方法之一。简述了历来磷化氢气体净化技术的优缺点,较详细的论述了催化氧化活性炭净化磷化氢工作原理、处理工艺及再生方法。%In the process of fumigation with phosphine for protecting food and tobacco in store,highly toxic exhausted gas containing phosphine is likely to be produced,which may produce significant im-pact on the surrounding environment. Catalytic oxidation activated carbon is one of the most effective ways to solve this problem. The paper mainly introduces the advantages and disadvantages of tradi-tionally phosphine gas purification technology ,with more detailed discussion on the principles of work,treatment process and regeneration methods for catalytic oxidation activated carbon purification of phosphine.

  13. THE ESTIMATION OF THE AUTOMOTIVE FUEL DEMAND IN IRAN: ALMOST IDEAL DEMAND SYSTEM APPROACH

    Directory of Open Access Journals (Sweden)

    Saeedeh Ahmadi

    2011-10-01

    Full Text Available This paper analyzes the demand for fuels in Iran automotive sector, using the Almost Ideal Demand System to estimate price and income elasticities for all the available fuels in the automotive sector: gasoline, automotive gas oil and Liquefied Petroleum Gas (LPG. These estimates can be very useful in predicting the overall impacts of price policies designed to reduce fuel consumption and to address concerns of carbon emissions or energy security. Empirical results indicate all own-price elasticities are negative and significant at 5% level. The own-price elasticity for gas oil, gasoline and LPG were estimated by about -0.22, -1.01 and -3.58, respectively. The findings also show that gasoline and gas oil are normal goods and LPG being an inferior good.

  14. French approval procedures for pyrotechnical automotive safety equipments

    OpenAIRE

    Aufauvre, Lionel; Branka, Ruddy

    2005-01-01

    International audience; Pyrotechnical articles for civil uses may be subject to national procedures before placing on the market According to the French decree n°90-153, 16 February 1990 as modified; explosives that are dispensed with EC marking and that are not excluded of the decree application have to conform to approved types. Pyrotechnical automotive safety equipments such gas generators for airbag modules or seat-belt pretensioners, pyrotechnie relay compositions and/or igniters inside ...

  15. Determining organic pollutants in automotive industry sludge.

    Science.gov (United States)

    Munaretto, Juliana S; Wonghon, Audrey L; von Mühlen, Carin

    2012-12-01

    In Brazil, the policy for disposing industrial sludge is changing from an emphasis on using controlled landfills to other treatment or co-processing methods; however, the monitoring of organic pollutants is not mandatory. The present study evaluated two general screening methods for organic pollutants in sludge generated in an automotive industrial complex in southern Brazil. The screening was performed using Soxhlet and sonication extractions and Gas Chromatograph coupled with Quadrupole Mass Spectrometry (GC/qMS). It was concluded that both techniques were effective and that most of the compounds identified were alkanes, phenols and esters. Important pollutants were detected in the sludge, which confirms the necessity of monitoring this type of residue.

  16. In vitro assessment of human airway toxicity from major aldehydes in automotive emissions

    Energy Technology Data Exchange (ETDEWEB)

    Grafstroem, R.C. [Karolinska Inst., Stockholm (Sweden). Inst. of Environmental Medicine

    1997-09-01

    Automotive exhausts can significantly contribute to the levels of reactive aldehydes, including formaldehyde, acetaldehyde and acrolein, in urban air. The use of alcohols as an alternative fuel for gasoline or diesel may further increase these emissions. Since it is unclear if aldehyde inhalation may induce pathological states, including cancer, in human airways, the toxic properties of the above-mentioned aldehydes were studied in cultured target cell types. Each aldehyde modified vital cellular functions in a dose-dependent manner, and invariably inhibited growth and induced abnormal terminal differentiation. Decreases of cellular thiols and increases of intracellular Ca{sup 2+} were observed, and moreover, variable types and amounts of short-lived or persistent genetic damage were induced. The concentrations required for specified levels of a particular type of injury varied up to 10000-fold among the aldehydes. Overall, distinctive patterns of cytopathological activity were observed, which differed both qualitatively and quantitatively among the aldehydes. Finally, aldehydes inhibited DNA repair processes and increased cytotoxicity and mutagenesis in synergy with other known toxicants, indicating that aldehydes may also enhance damage by other constituents in automotive exhausts. In summary, the aldehydes, notably {sup m}u{sup M}-mM formaldehyde, caused pathological effects and induced mechanisms that relate to acute toxicity and cancer development in airway epithelial cells. Since `no-effect` levels may not exist for carcinogenic agents, the overall results support a need for elimination of aldehydes in automotive exhausts. 41 refs

  17. Numerical analyses on reforming of high-temperature gas of smelting reduction using itself exhaust heat%熔融还原高温煤气余热改质的数值分析

    Institute of Scientific and Technical Information of China (English)

    李强; 高攀; 冯明霞; 邹宗树

    2013-01-01

    To solve the problem that high temperature gas of final reduction reactor of smelt reduction process cannot be directly introduced into the pre-reduction reactor,the new gas reforming reactor was presented in combination with the two-step smelting reduction process.Based on the energy balance and thermodynamic model,the relationship between the temperature,and composition and reduce potential energy,and rich-hydrogen content was calculated.After that,it was quantities discussed effect of height of packed bed and size of carbon particle,which were the two key parameters for the design of reforming reactor.The results show that through the reforming the oxidation degree of the COREX gas decreases to 0.065,from original 0.100,the oxidation degree of the HiSMELT gas decreases to 0.223,from original 0.625.The gas reforming made the physical energy of high temperature gas exhaust heat convert into chemical potential energy,and energy utilities is more efficient and reasonable.%针对熔融还原反应器产生的高温煤气不能直接进入预还原反应器,提出在两步法熔融还原工艺中耦合煤气改质反应器,建立能量平衡和动力学模型,对待改质气的温度和成分与改质后还原势及富氢程度的关系进行计算,定量给出改质炉设计的2个关键参数碳基填充床高度和碳颗粒粒度对改质过程的影响.研究结果表明:在满足预还原要求温度条件下,COREX终还原炉煤气经改质氧化度可由0.100降至0.065,HiSMELT熔融还原炉炉顶煤气氧化度可由0.625降至0.223.煤气改质使熔融还原产生的高温煤气自身废热物理能转变为还原势化学能,使煤气的能量利用更加高效、合理.

  18. High temperature sensors for exhaust diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Svenningstorp, Henrik

    2000-07-01

    One of the largest problems that we will have to deal with on this planet this millennium is to stop the pollution of our environment. In many of the ongoing works to reduce toxic emissions, gas sensors capable of enduring rough environments and high temperatures, would be a great tool. The different applications where sensors like this would be useful vary between everything from online measurement in the paper industry and food industry to measurement in the exhaust pipe of a car. In my project we have tested Schottky diodes and MlSiCFET sensor as gas sensors operating at high temperatures. The measurement condition in the exhaust pipe of a car is extremely tough, not only is the temperature high and the different gases quite harmful, there are also a lot of particles that can affect the sensors in an undesirable way. In my project we have been testing Schottky diodes and MlSiCFET sensors based on SiC as high temperature sensors, both in the laboratory with simulated exhaust and after a real engine. In this thesis we conclude that these sensors can work in the hostile environment of an engines exhaust. It is shown that when measuring in a gas mixture with a fixed I below one, where the I-value is controlled by the O{sub 2} concentration, a sensor with a catalytic gate metal as sensitive material respond more to the increased O{sub 2} concentration than the increased HC concentration when varying the two correspondingly. A number of different sensors have been tested in simulated exhaust towards NO{sub x}. It was shown that resistivity changes in the thin gate metal influenced the gas response. Tests have been performed where sensors were a part of a SCR system with promising results concerning NH{sub 3} sensitivity. With a working temperature of 300 deg C there is no contamination of the metal surface.

  19. Remote sensing of temperature and concentration profiles of a gas jet by coupling infrared emission spectroscopy and LIDAR for characterization of aircraft engine exhaust

    Science.gov (United States)

    Offret, J.-P.; Lebedinsky, J.; Navello, L.; Pina, V.; Serio, B.; Bailly, Y.; Hervé, P.

    2015-05-01

    Temperature data play an important role in the combustion chamber since it determines both the efficiency and the rate of pollutants emission of engines. Air pollution problem concerns the emissions of gases such as CO, CO2, NO, NO2, SO2 and also aerosols, soot and volatile organic compounds. Flame combustion occurs in hostile environments where temperature and concentration profiles are often not easy to measure. In this study, a temperature and CO2 concentration profiles optical measurement method, suitable for combustion analysis, is discussed and presented. The proposed optical metrology method presents numerous advantages when compared to intrusive methods. The experimental setup comprises a passive radiative emission measurement method combined with an active laser-measurement method. The passive method is based on the use of gas emission spectroscopy. The experimental spectrometer device is coupled with an active method. The active method is used to investigate and correct complex flame profiles. This method similar to a LIDAR (Light Detection And Ranging) device is based on the measurement of Rayleigh scattering of a short laser pulse recorded using a high-speed streak camera. The whole experimental system of this new method is presented. Results obtained on a small-scale turbojet are shown and discussed in order to illustrate the potentials deliver by the sophisticated method. Both temperature and concentration profiles of the gas jet are presented and discussed.

  20. Characterization and analysis of diesel exhaust odor

    Energy Technology Data Exchange (ETDEWEB)

    Partridge, P.A.; Shala, F.J.; Cernansky, N.P.; Suffet, I.H.

    1987-04-01

    An analytical method was developed to determine which compound or compounds in the oxygenated fraction of diesel exhaust were changing in intensity and number with respect to the odor correlation between human sensory panels and diesel exhaust samples as developed at Arthur D. Little, Inc. A sample fractionation with silica Sep-Pak cartridges and gas chromatography analysis procedures were developed to analyze exhaust odor samples. By use of a chromatographic computer profiling method, correlations were developed indicating a linear relation between log (odor intensity) and log (concentration) of specific character impact peaks (which may or may not be odorous themselves). Excellent correlations were obtained with the character impact peaks identified as benzaldehyde and a methylbenzaldehyde isomer in this study. Correlation coefficients of 0.97 and 0.90, respectively, were obtained for the sample set. 17 references, 5 figures, 2 tables.

  1. High Temperature Resistant Exhaust Valve Spindle

    DEFF Research Database (Denmark)

    Bihlet, Uffe Ditlev

    the alloy development work, extensive microstructure quantification was performed, the results of which validated the predictive thermodynamical calculations. The heat treatment results showed that a relation exists between the solution treated microstructure and the mechanical properties. This lead......Transport by ship remains the most economical and environmentally friendly mode of transport with a very low weight specific CO2 footprint. Further increase of the fuel efficiency of large ships will results in a higher internal engine temperature. To allow this without compromising the reliability...... of the engine, new high temperature alloys are required for a specific engine component, the exhaust valve spindle. Two alloys are used for an exhaust valve spindle; one for the bottom of the spindle, and one for the spindle seat. Being placed in the exhaust gas stream, combustion products such as V2O5 and Na2...

  2. Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Gregory Meisner

    2011-08-31

    , and integration costs into the material selection criteria in order to balance various materials, module and subsystem design, and vehicle integration options. Our work on advanced TE materials development and on TEG system design, assembly, vehicle integration, and testing proceeded in parallel efforts. Results from our two preliminary prototype TEGs using only Bi-Te TE modules allowed us to solve various mechanical challenges and to finalize and fine tune aspects of the design and implementation. Our materials research effort led us to quickly abandon work on PbTe and focus on the skutterudite materials due to their superior mechanical performance and suitability at automotive exhaust gas operating temperatures. We synthesized a sufficiently large quantity of skutterudite material for module fabrication for our third and final prototype. Our TEG#3 is the first of its kind to contain state-of-the-art skutterudite-based TE modules to be installed and tested on a production vehicle. The design, which consisted of 24 skutterudite modules and 18 Bi-Te modules, attempted to optimize electrical power generation by using these two kinds of TE modules that have their peak performance temperatures matched to the actual temperature profile of the TEG during operation. The performance of TEG#3 was limited by the maximum temperature allowable for the Bi-Te TE modules located in the colder end of the TEG, resulting in the operating temperature for the skutterudite modules to be considerably below optimum. We measured the power output for (1) the complete TEG (25 Watts) and (2) an individual TE module series string (1/3 of the TEG) operated at a 60°C higher temperature (19 Watts). We estimate that under optimum operating temperature conditions, TEG#3 will generate about 235 Watts. With additional improvements in thermal and electrical interfaces, temperature homogeneity, and power conditioning, we estimate TEG#3 could deliver a power output of about 425 Watts.

  3. Considerations over the effects caused by a heat recovery system for exhaust gases, adapted to gas turbines originally designed for the operation in a simple cycle; Consideraciones sobre los efectos causados por un sistema de recuperacion de calor de gases de escape, adaptado a turbinas de gas disenadas originalmente para operar bajo un ciclo simple

    Energy Technology Data Exchange (ETDEWEB)

    Cuesta Escobar, Cesar A. [Instituto Mexicano del Petroleo, Mexico, D. F. (Mexico)

    1994-12-31

    This article sets out the considerations on what a heat recovery system from exhaust gases, to already installed and in operation gas turbines, and that were not originally designed to operate with this system, can cause. The potential effects are set forth on the control systems, on the combustion chambers, and in the gas turbine blades, utilized for natural gas pumping or power generation in land installations or in offshore platforms in trying to adapt to them a regenerative cycle or a heating system. Observed effects, fundamentally in the flame stability loop, flow velocity, thermal intensity coefficient, air/fuel relationships and mass flow. Also are presented the consequences that primary production system would suffer, mainly due to the natural gas pumping reduction, the space availability, the fuel consumption, and the maximum amount of heat susceptible to be recovered, comparing the requirements of this in the system. [Espanol] En este articulo se plantean las consideraciones sobre lo que puede provocar un sistema de recuperacion de calor de gases de escape adaptado a turbinas de gas ya instaladas, operando y que no fueron disenadas originalmente para operar con este sistema. Se plantean los probables efectos en los sistemas de control, en las camaras de combustion y en los empaletados de las turbinas de gas usadas para bombeo de gas natural o generacion electrica en instalaciones de tierra o plataformas marinas, al tratar de adaptarseles un ciclo regenerativo o un sistema para calentamiento. Efectos observados, fundamentalmente, en el LOOP de estabilidad de flama, velocidad del flujo, coeficiente de intensidad termica, relaciones aire-combustible y flujo masico. Tambien se presentan las consecuencias que sufriria el sistema primario de produccion debido, principalmente, a la reduccion del bombeo de gas natural, a la disponibilidad de espacio, al consumo de combustible y a la cantidad maxima de calor susceptible de recuperarse, comparada con los

  4. The Ammonia of Ambient Atmosphere and Exhaust Gas was Determined by Flow Injection Spectrophotometer%流动注射-光度法测定环境空气和工业废气中氨含量

    Institute of Scientific and Technical Information of China (English)

    陈凤凰; 曾议; 杨书昌; 洪涛; 沈方祥

    2012-01-01

    Facing to gradually in creasing the workload of analysis, the ammonia of ambient atmosphere and exhaust gas was determined by flow injection spectrophotometer in order to shorten the time of analysis, improve efficiency. The method is interference small, sensitive, good correlation in comparison with the national standard methods, and is worthy to promoting and applying.%针对分析工作量的逐渐增大,为缩短分析时间,提高工作效率,采用流动注射-光度法分析环境空气和工业废气中氨的含量.该方法主要特点是可以不经过前处理,干扰小、准确度高、精密度高,与国标方法比较,相关性较好,各项指标达到分析要求,是一种值得推广运用的分析方法.

  5. 汽车发动机尾气余热温差发电装置结构研究%A Study on the Structure of Thermoelectric Power Generation Device for Vehicle Exhaust Gas Waste Heat

    Institute of Scientific and Technical Information of China (English)

    涂小亮; 倪计民; 石秀勇

    2014-01-01

    Thermoelectric power generation technology has huge potentiality in the field of low-grade waste heat recovery technology,while vehicle exhaust gas takes away 40%of total engine heat,and ther-moelectric power generation technology converts waste energy directly into electrical energy recycling. This article introduces design principle of a thermoelectric power generation unit,as well as the impact of struc-tural parameters on the performance of the device output performance. Besides,we analyze heat transfer and output performance of the power generation unit through experiment and propose appropriate improve-ment scheme.%半导体温差发电技术在低品位余热回收技术领域具有重要的应用价值。汽车尾气温度高,带走的热量约占发动机总量的40%,温差发电技术能直接将废热能量转化为电能回收利用。介绍温差发电装置的设计原理,结构参数对性能影响以及装置输出性能参数,并结合试验对温差发电装置的传热性能和电功率输出性能进行分析以及提出有效的改进方案。

  6. The role of transport sector within the German energy system under greenhouse gas reduction constraints and effects on other exhaust gases

    Energy Technology Data Exchange (ETDEWEB)

    Walbeck, M.; Martinsen, D. [Research Center Juelich (Germany)

    1996-12-01

    The German Federal Government pledged itself to make a 25% reduction in national CO{sub 2} emissions by 2005 on the basis of 1990 CO{sub 2} emissions. This reduction target is valid for the entire Federal Republic. Within that context the Federal Ministry of Education, Science, Research and Technology initiated the IKARUS project (Instruments for Greenhouse Gas Reduction Strategies) in 1990. The aim of the project is to provide tools for developing strategies to reduce energy-related emissions of greenhouse gases in Germany. A range of instruments has been developed consisting of models, a data base and various tools with the aid of which different action sequences can be simulated and evaluated until the year 2020. By using the database and mainly one of the models of the project a scenario in terms of energy and carbon dioxide emissions will be sown as it could be expected for the year 2005. For this scenario as base two different strategies that hit the 25% reduction target will be discussed. Special attention is given to the transport sector. (au)

  7. Hyperventilation and exhaustion syndrome.

    Science.gov (United States)

    Ristiniemi, Heli; Perski, Aleksander; Lyskov, Eugene; Emtner, Margareta

    2014-12-01

    Chronic stress is among the most common diagnoses in Sweden, most commonly in the form of exhaustion syndrome (ICD-10 classification - F43.8). The majority of patients with this syndrome also have disturbed breathing (hyperventilation). The aim of this study was to investigate the association between hyperventilation and exhaustion syndrome. Thirty patients with exhaustion syndrome and 14 healthy subjects were evaluated with the Nijmegen Symptom Questionnaire (NQ). The participants completed questionnaires about exhaustion, mental state, sleep disturbance, pain and quality of life. The evaluation was repeated 4 weeks later, after half of the patients and healthy subjects had engaged in a therapy method called 'Grounding', a physical exercise inspired by African dance. The patients reported significantly higher levels of hyperventilation as compared to the healthy subjects. All patients' average score on NQ was 26.57 ± 10.98, while that of the healthy subjects was 15.14 ± 7.89 (t = -3.48, df = 42, p therapy such as Grounding.

  8. Aerodynamic Control of Exhaust

    DEFF Research Database (Denmark)

    Hyldgård, Carl-Erik

    In the autumn of 1985 the Unive!Sity of Aalborg was approached by the manufacturer C. P. Aaberg, who had obtained aerodynilmic control of the exhaust by means of injection. The remaining investigations comprising optimizations of the system with regard to effect, consumption, requirements...

  9. Hybrid Exhaust Component

    Science.gov (United States)

    Pelletier, Gerard D. (Inventor); Logan, Charles P. (Inventor); McEnerney, Bryan William (Inventor); Haynes, Jeffrey D. (Inventor)

    2015-01-01

    An exhaust includes a wall that has a first composite material having a first coefficient of thermal expansion and a second composite material having a second coefficient of the thermal expansion that is less than the first coefficient of thermal expansion.

  10. Recycling used automotive oil filters

    Science.gov (United States)

    Peaslee, Kent D.

    1994-02-01

    Over 400 million used automotive oil filters are discarded in the United States each year, most of which are disposed of in landfills wasting valuable resources and risking contamination of ground- and surface-water supplies. This article summarizes U.S. bureau of Mines research evaluating scrap prepared from used automotive oil filters. Experimental results show that crushed and drained oil filters have a bulk density that is higher than many typical scrap grades, a chemical analysis low in residual elements (except tin due to use of tin plate in filters), and an overall yield, oil-filter scrap to cast steel, of 76% to 85%, depending on the method used to prepare the scrap.

  11. GLOBAL PERSPECTIVES IN AUTOMOTIVE INDUSTRY

    Directory of Open Access Journals (Sweden)

    NICOLETA ISAC

    2010-01-01

    Full Text Available The automotive sector is characterised by a relatively low trade/salesratio. While the production of most automotive producers in the world is spread over variouscountries in the value chain, the brands are still considered to reflect some national identity.Internationalisation strategies may change over the lifecycle of the product and automakerstend to pursue diametrically opposed strategies. In mature markets, it is about managing whatgoes on beneath a static surface; in emerging markets’ dynamic environments, companies muststrategically position themselves to benefit from growth opportunities. However, without theright strategy and execution in mature markets, it is clear that traditional OEMs cannot profitfrom emerging markets-the persistence of structural issues in mature market operationseventually will rob all but the most resilient competitors of the opportunity to compete inemerging markets.

  12. [Remote passive sensing of aeroengine exhausts using FTIR system].

    Science.gov (United States)

    Xia, Qing; Zuo, Hong-Fu; Li, Shao-Cheng; Wen, Zhen-Hua; Li, Yao-Hua

    2009-03-01

    The traditional method of measuring the aeroengine exhausts is intrusive gas sampling analysis techniques. The disadvantages of the techniques include complex system, difficult operation, high costs and potential danger because of back-pressure effects. The non-intrusive methods have the potential to overcome these problems. So the remote FTIR passive sensing is applied to monitor aeroengine exhausts and determine the concentration of the exhausts gases of aeroengines. The principle of FTIR remote passive sensing is discussed. The model algorithm for the calibration of FTIR system, the radiance power distribution and gas concentration are introduced. TENSOR27 FTIR-system was used to measure the spectra of infrared radiation emitted by the hot gases of exhausts in a test rig. The emission spectra of exhausts were obtained under different thrusts. By analyzing the spectra, the concentrations of CO2, CO and NO concentration were calculated under 4 thrusts. Researches on the determination of concentration of the exhausts gases of aeroengines by using the remote FTIR sensing are still in early stage in the domestic aeronautics field. The results of the spectra and concentration in the aeroengine test are published for the first time. It is shown that the remote FTIR passive sensing techniques have a great future in monitoring the hot gas of the aeroengines exhausts.

  13. International Congress of Automotive and Transport Engineering

    CERN Document Server

    Ispas, Nicolae

    2017-01-01

    The volume will include selected and reviewed papers from CONAT - International Congress of Automotive and Transport Engineering to be held in Brasov, Romania, in October 2016. Authors are experts from research, industry and universities coming from 14 countries worldwide. The papers are covering the latest developments in automotive vehicles and environment, advanced transport systems and road traffic, heavy and special vehicles, new materials, manufacturing technologies and logistics, accident research and analysis and innovative solutions for automotive vehicles. The conference will be organized by SIAR (Society of Automotive Engineers from Romania) in cooperation with FISITA. .

  14. Planned Operation of Tritium Recovery System Based on Investigation of LHD Exhaust System

    Science.gov (United States)

    Asakura, Yamato; Suzuki, Naoyuki

    To understand the conditions of exhaust gas treatment at the transition point between the Large Helical Device (LHD) vacuum pumping system and the exhaust gas tritium recovery system, the gas flow rate and hydrogen concentration were measured. Simultaneous measurement of the exhaust gas flow rate and hydrogen concentration was made possible by applying two types of hydrogen monitors: a thermal conductivity sensor and a combustible gas sensor. The obtained results have led to remodeling of the LHD vacuum pumping system and an optimised plan of operation for the tritium recovery system.

  15. US Department of Energy - Office of FreedomCar and Vehicle Technologies and US Centers for Disease Control and Prevention - National Institute for Occupational Safety and Health Inter-Agency Agreement Research on "The Analysis of Genotoxic Activities of Exhaust Emissions from Mobile Natural Gas, Diesel, and Spark-Ignition Engines"

    Energy Technology Data Exchange (ETDEWEB)

    William E. Wallace

    2006-09-30

    The US Department of Energy-Office of Heavy Vehicle Technologies (now the DOE-Office of FreedomCar and Vehicle Technologies) signed an Interagency Agreement (IAA) with National Institute for Occupational Safety and Health (NIOSH), No.01-15 DOE, 9/4/01, for 'The analysis of genotoxic activities of exhaust emissions from mobile natural gas, diesel, and spark-ignition engines'; subsequently modified on 3/27/02 (DOE IAG No.01-15-02M1); subsequently modified 9/02/03 (IAA Mod No. 01-15-03M1), as 'The analysis of genotoxic activities of exhaust emissions from mobile internal combustion engines: identification of engine design and operational parameters controlling exhaust genotoxicity'. The DOE Award/Contract number was DE-AI26-01CH11089. The IAA ended 9/30/06. This is the final summary technical report of National Institute for Occupational Safety and Health research performed with the US Department of Energy-Office of FreedomCar and Vehicle Technologies under that IAA: (A) NIOSH participation was requested by the DOE to provide in vitro genotoxicity assays of the organic solvent extracts of exhaust emissions from a suite of in-use diesel or spark-ignition vehicles; (B) research also was directed to develop and apply genotoxicity assays to the particulate phase of diesel exhaust, exploiting the NIOSH finding of genotoxicity expression by diesel exhaust particulate matter dispersed into the primary components of the surfactant coating the surface of the deep lung; (C) from the surfactant-dispersed DPM genotoxicity findings, the need for direct collection of DPM aerosols into surfactant for bioassay was recognized, and design and developmental testing of such samplers was initiated.

  16. Study on Variable Capacity Control Mechanism of Scroll Compressor for Automotive Air Conditioner

    Science.gov (United States)

    Hirano, Takahisa; Shigeoka, Tetsuo

    As for the automotive air conditioner, (1) to keep the automotive cabin temperature in a comfortable region, (2) to improve driving feeling, (3) to drive the air conditioning system economically through all seasons, are universally required. Recently, from these points, compressors with variable capacity control mechanism for automotive air conditioners have been remarkably requested. We have developed a scroll comoressor with variable capacity control mechanism. The capacity control mechanism, which changes the channel area of the bypass hole continuously, according to the suction gas pressure and the discharge gas pressure, has been developed. In this report, we describe the mechanism of variable capacity control and the performance simulation program that has been developed for the scroll compressor. Further, we describe the measuring results of cylinder pressure behavior, the results of energy loss analysis and the effect of comfort, drivability, power saving in the refrigerating cycle using the developed capacity control compressor.

  17. Direct numerical simulations of exhaust gas recirculation effect on multistage autoignition in the negative temperature combustion regime for stratified HCCI flow conditions by using H2O2 addition

    Science.gov (United States)

    El-Asrag, Hossam A.; Ju, Yiguang

    2013-04-01

    Direct numerical simulations (DNSs) of a stratified flow in a homogeneous compression charge ignition (HCCI) engine are performed to investigate the exhaust gas recirculation (EGR) and temperature/mixture stratification effects on the autoignition of synthetic dimethyl ether (DME) in the negative temperature combustion region. Detailed chemistry for a DME/air mixture is employed and solved by a hybrid multi-time scale (HMTS) algorithm to reduce the computational cost. The effect of ? to mimic the EGR effect on autoignition are studied. The results show that adding ? enhances autoignition by rapid OH radical pool formation (34-46% reduction in ignition delay time) and changes the ignition heat release rates at different ignition stages. Sensitivity analysis is performed and the important reactions pathways affecting the autoignition are specified. The DNS results show that the scales introduced by thermal and mixture stratifications have a strong effect after the low temperature chemistry (LTC) ignition especially at the locations of high scalar dissipation rates. Compared to homogenous ignition, stratified ignitions show similar first autoignition delay times, but 18% reduction in the second and third ignition delay times. The results also show that molecular transport plays an important role in stratified low temperature ignition, and that the scalar mixing time scale is strongly affected by local ignition in the stratified flow. Two ignition-kernel propagation modes are observed: a wave-like, low-speed, deflagrative mode and a spontaneous, high-speed, ignition mode. Three criteria are introduced to distinguish these modes by different characteristic time scales and Damkhöler numbers using a progress variable conditioned by an ignition kernel indicator. The low scalar dissipation rate flame front is characterized by high displacement speeds and high mixing Damkhöler number. The proposed criteria are applied successfully at the different ignition stages and

  18. Exploitation of the TRIP Effect for the Development of Formable, Fracture and Fatigue Resistant Steels for Automotive Applications

    Science.gov (United States)

    Haidemenopoulos, Gregory N.

    The present paper summarizes recent and on-going work on the exploitation of TRansformation-Induced Plasticity (TRIP) in an effort to develop automotive steels which would possess high-strength combined with high formability while these steels could also exhibit high fracture and fatigue resistance. Especially for the automotive industry, the driving force for these developments is the vehicle weight reduction, which could eventually lead to lower fuel consumption combined with reduced greenhouse gas emissions.

  19. Study on Thermoelectric Generators Based on Exhaust Gas and Cryogenic Fuel for LNG Vehicles%面向 LNG 汽车的发动机排气与低温燃料温差发电器研究

    Institute of Scientific and Technical Information of China (English)

    郑江; 厉彦忠; 王春燕; 谭宏博

    2014-01-01

    To enhance the energy efficiency in the liquefied natural gas (LNG) vehicles, thermoelectric generator (TEG) is suggested in recovering the waste heat of the exhaust gas (EG) and the cold energy of the LNG.The TEGs here get higher efficiency than conventional ones, for they work with heat sinks at cryogenic temperatures and there are large temperature differences between EG and LNG.Based on the analyzing of the typical fuel system in the small LNG vehicles, two recovery systems for the LNG vehicles are proposed and the correla_tive parameters of systems are calculated and analyzed.The generation efficiency of TEGs is calculated and the recovery power of each sys_tem is analyzed.It is concluded that the output power of the vaporizer system is larger than that of the self_warming system; TEG with opti_mized multi_layer material brings larger output power than that with single_layer material for both systems.%为实现液化天然气(LNG)汽车的节能,提出了利用温差发电器(TEG)回收发动机排气(EG)的废热和低温燃料的冷能。指出了基于冷源所在的低温区,以及 EG 与 LNG 之间的大温差这两个特点,TEG 的热电转换效率会高于常规。基于对小型 LNG汽车中典型燃料系统的分析,设计了进行能量回收的两种系统流程,计算了其中各状态点的参数﹑及各换热器中布置温差发电器后的热电转换效率,得到了系统总的回收功率。结果表明,汽化器系统的回收功率大于自复温系统;在两种系统中,合理选取多种材料相较于仅用单种材料,TEG 的回收功率更大。

  20. Long term continuous use of auto LPG causes thermal pitting in automotive S. I. engine parts

    Energy Technology Data Exchange (ETDEWEB)

    Mandloi, R.K.; Rehman, A. [Maulana Azad National Institute of Technology, Bhopal (India). Mechanical Engineering Dept.

    2010-07-01

    The increasing cost of liquid hydrocarbons in recent years accompanied by the tough rules and regulations regarding exhaust emissions has stimulated interest in alternative fuels for automotive engines. Liquefied Petroleum Gas (LPG) has been suggested as a convenient, clean burning less pollutant fuel. Therefore it is also known as green fuel. However, the selection of an alternative fuel is not the end of the task. The selected fuel has to be exploited to its best capacity to serve the task for which it was chosen. Fuel consumption and heat losses from the engine are related; in a country like ours fuel consumption can be improved by optimizing the amount of heat generated in combustion chamber and surroundings. Since LPG burns cleaner with less carbon build-up, oil contamination, engine wear is reduced and the life of some components such as piston rings, and bearings is much longer than with gasoline. The high octane of LPG also minimizes wear from engine knock. On the other hand in the LPG-run SI Engine it is observed that the hot spots lead to surface pitting on the Engine Cylinder Block, Head, Valves, Valve stem and clearance increase in Valve guides. Apart from this, with some time it may lead to development of cracks and distortion in Cylinder Heads. This can be attributed to rise in temperature of the damaged / pitted area near combustion chamber. Experimental research into the use of LPG in spark ignition outboard engines presented with bottled LPG dosed gaseous form. The aim of the study was to determine the basic parameters and quantify the emission index, when LPG is used instead of gasoline. The results obtained indicate that with the use of LPG, specific fuel consumption, CO{sub 2} and CO emissions were much lower without noticeable power loss but in contrast, NO{sub x} emissions were much higher.

  1. Automotive Battery Modelling and Management

    Directory of Open Access Journals (Sweden)

    N. M. Hammad

    2014-06-01

    Full Text Available The estimation of vehicle battery performance is typically addressed by testing the battery under specific operation conditions by using a model to represent the test results. Approaches for representing test results range from simple statistical models to neural networks to complex, physics-based models. Basing the model on test data could be problematical when testing becomes impractical with many years life time tests. So, real time estimation of battery performance, an important problem in automotive applications, falls into this area. In vehicles it is important to know the state of charge of the batteries in order to prevent vehicle stranding and to ensure that the full range of the vehicle operation is exploited. In this paper, several battery models have studied including analytical, electrical circuits, stochastic and electro- chemical models. Valve Regulated Lead Acid “VRLA” battery has been modelled using electric circuit technique. This model is considered in the proposed Battery Monitoring System “BMS”. The proposed BMS includes data acquisition, data analysis and prediction of battery performance under a hypothetical future loads. Based on these criteria, a microprocessor based BMS prototype had been built and tested in automotive Lab,. The tests show promising results that can be used in industrial applications

  2. Automotive stamped part fatigue design

    Directory of Open Access Journals (Sweden)

    Caudoux Mélanie

    2014-06-01

    Full Text Available Fatigue design of automotive axle parts is of prior concern because of these are high safety parts and they are expected to drive the overall vehicle mass reduction. In this framework, the stamping process is widely used to form axle parts, before assembling them by welding. Consequently, the mechanical and physical characteristics of the blank sheet are modified, having a strong influence on the fatigue behavior. In this paper, we address the consequences of the stamped process on the fatigue design and how they may be effectively taken into account in the automotive industry. Actually, the coupling between the stamping process and the fatigue design is under development at PSA Peugeot Citroën Company since several years. Such an analysis deals with some major topics: thickness variation, plastic hardening and deformation, and residual stress. All of these ingredients result in fatigue criteria evolutions: it is important to stress that the stamping process can have advantageous or disadvantageous consequences on the fatigue design. This is here highlighted on some examples, dealing with front and rear axles.

  3. Situation of compressed natural gas vehicles in Japan; CNG jidosha wo torimaku josei (kanreki wo sugita CNG jidosha)

    Energy Technology Data Exchange (ETDEWEB)

    Higashino, K. [Osaka Gas Co. Ltd. Osaka (Japan)

    1998-07-01

    The history of the development, the current state and future outlook, and the features of natural gas as automotive fuel are discussed, with reference made to compressed natural gas (CNG) vehicles in Japan. A CNG vehicle was tentatively constructed in 1937, and there were 1000-odd CNG vehicles in service two years later. Natural gas was the energy to be substituted for oil those days. The popularization of CNG vehicles is meaningful in that they will decelerate the advancing pollution of the atmosphere due to engine exhaust gas. CNG vehicles have come to enjoy a high appreciation in terms of exhaust gas and noise level as vehicles that will replace diesel vehicles. Before CNG vehicles can replace the conventional stocks, however, they have to solve various problems. Fuel economy has to be improved before they can be substituted for the diesel stock; power performance has to be enhanced and the coverage per refuel has to be extended if to take the place of the gasoline-powered stock. CNG vehicles are capable of meeting the future demands of society through encouraging the adoption of substitute energies for oil, generating less carbon dioxide gas which is thanks to the peculiarities of the CNG fuel, elevating engine efficiency making use of the high octane value, and through producing less black smoke or particulate matters. 6 refs., 5 figs., 3 tabs.

  4. Exhaust particle number and size distribution from a diesel engine with gas-to- liquids fuel%发动机燃用GTL柴油的排气颗粒数量及粒径分布规律

    Institute of Scientific and Technical Information of China (English)

    谭丕强; 鲍锡君; 胡志远; 楼狄明

    2012-01-01

    以一台汽车电控高压共轨柴油机为样机,采用发动机尾气颗粒粒径谱仪EEPS研究了发动机燃用天然气制油(GTL柴油)的排气颗粒数量及粒径分布规律.所用燃油分别为纯柴油(GO)、纯GTL柴油(G100)及GTL柴油掺混比为10%、20%的燃料(分别表示为G10、G20).试验工况为最大转矩转速1500r·min^-1和标定转速2300r·min^-1的负荷特性试验,负荷百分比分别为10%、25%、50%、75%和100%.结果表明:无论燃用柴油,还是GTL柴油或混合燃料,该机排气颗粒数量随粒径变化大都呈现明显的双峰对数分布状态,其排气核态颗粒的峰值粒径在10nm附近,聚集态颗粒峰值集中出现在40-50mm之间.随着GTL柴油配比的增加,各工况下不同粒径的颗粒数量大都持续下降,其中,排气核态颗粒数量明显下降,在高速高负荷下更为显著;而聚集态颗粒也较纯柴油有一定的降幅,其中,G20和G100柴油更为明显.%Exhaust particle number and size distribution of an electronic control high-pressure common-rail diesel engine, fueled with gas-to-liquids (GTL) , are studied by an Engine Exhaust Particle Sizer ( EEPS). The fuels are pure diesel fuel (GO) , pure GTL fuel (G100) , G10 and G20 with GTL blend ratios of 10% and 20%. Two typical engine speeds of 1500 r· min^-1 and 2300 r·min^-1 are tested, with the load ratios of 10% , 25% , 50%, 75% and 100% , respectively. The results show the size distribution of particle number from the engine has clear bimodal logarithmic distribution, with a nucleation mode peak value around 10nm particle diameter, and an accumulation mode peak value in 40 nm to 50 nm particle diameter. With the increasing blend ratio of GTL fuel, the number of nucleation mode particles decreases significantly, and has greater decline at high speed engine operating conditions. The number of accumulation mode particles of GTL fuel

  5. Performance of an innovative 120 kWe natural gas cogeneration system

    Energy Technology Data Exchange (ETDEWEB)

    Badami, M.; Casetti, A. [Dipartimento di Energetica, Politecnico di Torino, C.so Duca degli Abruzzi 24, Torino (Italy); Campanile, P.; Anzioso, F. [Centro Ricerche FIAT, Strada Torino 50, Orbassano, Torino (Italy)

    2007-05-15

    The paper deals with an innovative (120 kWe, 195 kWt) natural gas (NG) combined heat and power (CHP) system, at present under development, which has been set up at the FIAT Centre of Research (CRF), Turin, Italy. The main characteristics of the CHP system are: the use of an automotive derived internal combustion engine, a high part load electrical efficiency due to a variable speed operation strategy and an advanced exhaust gas after-treatment to meet the most stringent pollutant emission regulations. In the paper, the electrical efficiency and pollutant emissions of the new CHP unit are compared with those of some traditional small-scale cogeneration systems. Some comparison criteria and performance indices which are, in the authors' opinion, the most representative of the real operative conditions, have been proposed to evaluate the performance of the different technologies. (author)

  6. Health effects of exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Pihlava, T.; Uuppo, M.; Niemi, S.

    2013-11-01

    This report introduces general information about diesel particles and their health effects. The purpose of this report is to introduce particulate matter pollution and present some recent studies made regarding the health effects of particulate matter. The aim is not to go very deeply into the science, but instead to keep the text understandable for the average layman. Particulate matter is a complex mixture of extremely small particles and liquid droplets. These small particles are made up of a number of components that include for example acids, such as nitrates and sulphates, as well as organic chemicals, metals and dust particles from the soil. Particulate matter comes from several sources, such as transportation emissions, industrial emissions, forest fires, cigarette smoke, volcanic ash and climate variations. Particles are divided into coarse particles with diameters less than 10 ..m, fine particles with diameters smaller than 2.5 ..m and ultra-fine particles with diameters less than 0.1 ..m. The particulate matter in diesel exhaust gas is a highly complex mixture of organic, inorganic, solid, volatile and partly volatile compounds. Many of these particles do not form until they reach the air. Many carcinogenic compounds have been found in diesel exhaust gas and it is considered carcinogenic to humans. Particulate matter can cause several health effects, such as premature death in persons with heart or lung disease, cancer, nonfatal heart attacks, irregular heartbeat, aggravated asthma, decreased lung function and an increase in respiratory symptoms, such as irritation of the airways, coughing or difficulty breathing. It is estimated that in Finland about 1300 people die prematurely due to particles and the economic loss in the EU due to the health effects of particles can be calculated in the billions. Ultra-fine particles are considered to be the most harmful to human health. Ultrafine particles usually make the most of their quantity and surface area

  7. Understanding Exhaustive Pattern Learning

    CERN Document Server

    Shen, Libin

    2011-01-01

    Pattern learning in an important problem in Natural Language Processing (NLP). Some exhaustive pattern learning (EPL) methods (Bod, 1992) were proved to be flawed (Johnson, 2002), while similar algorithms (Och and Ney, 2004) showed great advantages on other tasks, such as machine translation. In this article, we first formalize EPL, and then show that the probability given by an EPL model is constant-factor approximation of the probability given by an ensemble method that integrates exponential number of models obtained with various segmentations of the training data. This work for the first time provides theoretical justification for the widely used EPL algorithm in NLP, which was previously viewed as a flawed heuristic method. Better understanding of EPL may lead to improved pattern learning algorithms in future.

  8. Reverse Brayton Cycle with Bladeless Turbo Compressor for Automotive Environmental Cooling

    Science.gov (United States)

    Cepeda-Rizo, Juan (Inventor); Ganapathi, Gani B. (Inventor)

    2016-01-01

    An automotive cabin cooling system uses a bladeless turbocompressor driven by automobile engine exhaust to compress incoming ambient air. The compressed air is directed to an intercooler where it is cooled and then to another bladeless turbine used as an expander where the air cools as it expands and is directed to the cabin interior. Excess energy may be captured by an alternator couple to the expander turbine. The system employs no chemical refrigerant and may be further modified to include another intercooler on the output of the expander turbine to isolate the cooled cabin environment.

  9. a Vibrational Model of Open Celled Polyurethane Foam Automotive Seat Cushions

    Science.gov (United States)

    Patten, W. N.; Sha, S.; Mo, C.

    1998-10-01

    A mechanistic model of a seat cushion is developed. The work relates the kinematic motion of the seat to the geometric and constitutive properties of the cellular foam used in the seat. The model includes the influence of pneumatic damping caused by friction between the gas within the open-celled foam and matrix polymer. A continuous shape function is introduced to characterize the piecewise continuous stress-strain characteristic of flexible open-celled foam. After some simplification, a non-linear dynamic automotive seat cushion model is derived, which relies explicitly on the constitutive properties of polyurethane foams and on the geometry of the seat cushion. Experimental and analytical models of the two automotive seats are compared to verify the model. The comparisons indicate that the new model is able to predict the dynamic performance of an automotive seat cushion with fidelity.

  10. Neuralfussy multivariable control applied to the control of velocity, power, and exhaust gas temperature of a turbo gas unit; Control neurodifuso multivariable aplicado al control de velocidad, potencia y temperatura de gases de escape de una unidad turbogas

    Energy Technology Data Exchange (ETDEWEB)

    Segura Ozuna, Victor Octavio

    2004-11-15

    The electric power demand in Mexico has forced to the electric sector to be in a constant search of methods and systems that, among other objectives, improve the operation of the generating power stations of electric power continually. As part of their mission, the Electrical Research Institute (IIE) has promoted and leaning the applied research and the technological development to improve the indexes of security, readiness, dependability, efficiency and durability of central generating by means of the development and the installation of big digital systems of information and control. At the present time, inside the scheme of electric power generation, the gas turbine (UTG) represent 7% of the generation of the national electric sector [1]. These units have become the dominant way of the new electric generation in the U.S, either in simple cycle or combined. The above-mentioned, is attributable at less installation cost for generated kilowatt, to the shortest construction programs, at first floor levels of emission of pollutants and competitive operation costs. The control system of the gas turbine is based on conventional control algorithms of the type PI [2]. This control scheme is dedicated for regulation tasks and rejection to interferences, and it doesn't stop pursuit of reference points. The controllers act all on a control valve, that which represents a strong interaction among the same ones, for example an adjustment in the parameters of the algorithm of the digital PI of temperature, it can improve their acting but it can also affect the acting of the speed control or that of power. The gas turbine presents a non lineal behavior and variant in the time, mainly in the starting stage where several important disturbances are presented. At the moment, the controllers used in the scheme of control of the turbines are lineal, which are syntonized for a specific operation point and they are conserved this way by indefinite time. In this thesis the

  11. Ecological effects and environmental fate of solid rocket exhaust

    Science.gov (United States)

    Nimmo, B.; Stout, I. J.; Mickus, J.; Vickers, D.; Madsen, B.

    1974-01-01

    Specific target processes were classified as to the chemical, chemical-physical, and biological reactions and toxic effects of solid rocket emissions within selected ecosystems at Kennedy Space Center. Exposure of Citris seedlings, English peas, and bush beans to SRM exhaust under laboratory conditions demonstrated reduced growth rates, but at very high concentrations. Field studies of natural plant populations in three diverse ecosystems failed to reveal any structural damage at the concentration levels tested. Background information on elemental composition of selected woody plants from two terrestrial ecosystems is reported. LD sub 50 for a native mouse (peromysous gossypinus) exposed to SRM exhaust was determined to be 50 ppm/g body weight. Results strongly indicate that other components of the SRM exhaust act synergically to enhance the toxic effects of HCl gas when inhaled. A brief summary is given regarding the work on SRM exhaust and its possible impact on hatchability of incubating bird eggs.

  12. INFLUENCE OF AUTOMOTIVE CLUSTERS IN REGIONAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Constantin BORDEI

    2014-11-01

    Full Text Available This paper proposes an overview of the evolution in the automotive sector in the process of regional development. The fundamental changes made by the component supplier sector improved the regional development and manufacturing process. Automotive industry is one of the modern sectors in many countries that benefits of a high technology impact and creates jobs that reduces unemployment across Europe. The auto industry changed cities, regions and countries into poles of development and it becomes more and more efficient. The high foreign direct investments from the automotive sector play an important role in regional development process. Continuous changes are being made in the economy, society, and company; in conclusion the automotive clusters will always be a subject of analysis.

  13. Nonlinear estimation and control of automotive drivetrains

    CERN Document Server

    Chen, Hong

    2014-01-01

    Nonlinear Estimation and Control of Automotive Drivetrains discusses the control problems involved in automotive drivetrains, particularly in hydraulic Automatic Transmission (AT), Dual Clutch Transmission (DCT) and Automated Manual Transmission (AMT). Challenging estimation and control problems, such as driveline torque estimation and gear shift control, are addressed by applying the latest nonlinear control theories, including constructive nonlinear control (Backstepping, Input-to-State Stable) and Model Predictive Control (MPC). The estimation and control performance is improved while the calibration effort is reduced significantly. The book presents many detailed examples of design processes and thus enables the readers to understand how to successfully combine purely theoretical methodologies with actual applications in vehicles. The book is intended for researchers, PhD students, control engineers and automotive engineers. Hong Chen is a professor at the State Key Laboratory of Automotive Simulation and...

  14. Fatal exit the automotive black box debate

    CERN Document Server

    Kowalick, Tom

    2005-01-01

    "Fatal Exit: The Automotive Black Box Debate cuts through thirty years of political wrangling and institutional biases to provide an argument for the Motor Vehicle Event Data Recorder (MVEDR). This automotive equivalent of an airplane's flight recorder or black box is intended to solve the mysteries of car crashes and improve the safety of our roads. The reader is taken inside the automotive industry and the government highway safety establishment to foster an understanding of the politics and the positions on all sides of this safety debate. The author takes an unbiased approach, chronologically presenting each argument and uncovering the agendas and mandates of each of the stakeholders." "This publication is essential reading for all consumers who need to have their voices heard on this critical issue, as well as for attorneys, public safety advocates, public policy administrators, engineers, automotive professionals, journalists, and insurance executives."--Jacket.

  15. 78 FR 36633 - National Automotive Sampling System

    Science.gov (United States)

    2013-06-18

    ... National Highway Traffic Safety Administration National Automotive Sampling System AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of the Transportation (DOT). ACTION: Notice of public... regarding vehicle design and traffic safety. The NASS system currently has two components: the...

  16. 77 FR 37471 - National Automotive Sampling System

    Science.gov (United States)

    2012-06-21

    ... National Highway Traffic Safety Administration National Automotive Sampling System AGENCY: National Highway Traffic Safety Administration (NHTSA), Department of Transportation (DOT). ACTION: Notice and request for... make informed regulatory, program, and policy decisions regarding vehicle design and traffic...

  17. Sustainable automotive energy system in China

    CERN Document Server

    CAERC, Tsinghua University

    2014-01-01

    This book identifies and addresses key issues of automotive energy in China. It covers demography, economics, technology and policy, providing a broad perspective to aid in the planning of sustainable road transport in China.

  18. 14 CFR 27.1123 - Exhaust piping.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust piping. 27.1123 Section 27.1123... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Exhaust System § 27.1123 Exhaust piping. (a) Exhaust piping... operating temperatures. (b) Exhaust piping must be supported to withstand any vibration and inertia loads...

  19. SELECTION METHOD FOR AUTOMOTIVE PARTS RECONDITIONING

    Directory of Open Access Journals (Sweden)

    Dan Florin NITOI

    2015-05-01

    Full Text Available Paper presents technological methods for metal deposition, costs calculation and clasification for the main process that helps in automotive technologies to repair or to increase pieces properties. Paper was constructed based on many technological experiments that starts from practicans and returns to them. The main aim is to help young engineers or practicians engineers to choose the proper reconditioning process with the best information in repairing pieces from automotive industry.

  20. Precious Metals in Automotive Technology: An Unsolvable Depletion Problem?

    Directory of Open Access Journals (Sweden)

    Ugo Bardi

    2014-04-01

    Full Text Available Since the second half of the 20th century, various devices have been developed in order to reduce the emissions of harmful substances at the exhaust pipe of combustion engines. In the automotive field, the most diffuse and best known device of this kind is the “three way” catalytic converter for engines using the Otto cycle designed to abate the emissions of carbon monoxide, nitrogen oxides and unburnt hydrocarbons. These catalytic converters can function only by means of precious metals (mainly platinum, rhodium and palladium which exist in a limited supply in economically exploitable ores. The recent increase in prices of all mineral commodities is already making these converters significantly expensive and it is not impossible that the progressive depletion of precious metals will make them too expensive for the market of private cars. The present paper examines how this potential scarcity could affect the technology of road transportation worldwide. We argue that the supply of precious metals for automotive converters is not at risk in the short term, but that in the future it will not be possible to continue using this technology as a result of increasing prices generated by progressive depletion. Mitigation methods such as reducing the amounts of precious metals in catalysts, or recycling them can help but cannot be considered as a definitive solution. We argue that precious metal scarcity is a critical factor that may determine the future development of road transportation in the world. As the problem is basically unsolvable in the long run, we must explore new technologies for road transportation and we conclude that it is likely that the clean engine of the future will be electric and powered by batteries.

  1. Element pollution of exhaust aftertreatment systems by using biodiesel; Elementbelastungen von Abgasnachbehandlungssystemen durch Biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Hendrik; Wilharm, Thomas [ASG Analytik-Service Gesellschaft mbH, Neusaess (Germany); Winkler, Markus [DEUTZ AG, Koeln (Germany); Knuth, Hans-Walter

    2012-06-15

    Biodiesel is a particularly attractive fuel for agricultural machinery. However, the introduction of new emission standards has made the use of exhaust gas treatment systems in agricultural vehicles essential. The combination of biodiesel and exhaust gas treatment causes problems, because the biodiesel contains traces of inorganic elements. These turn into ash during the combustion process in the engine, which can result in permanent damage to the components of the exhaust gas treatment system. Deutz and ASG have investigated the impact of current grades of biodiesel on the systems in real-life operation. (orig.)

  2. 75 FR 34170 - Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC...

    Science.gov (United States)

    2010-06-16

    ... Employment and Training Administration Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium... Assistance on March 18, 2010, applicable to workers of Plastic Omnium Automotive Exteriors, LLC, Anderson... have occurred involving workers in support of the Anderson, South Carolina location of Plastic...

  3. Aircraft exhaust sulfur emissions

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Anderson, M.R.; Miake-Lye, R.C.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics; Sorokin, A.A.; Buriko, Y.I. [Scientific Research Center `Ecolen`, Moscow (Russian Federation)

    1997-12-31

    The extent to which fuel sulfur is converted to SO{sub 3} during combustion and the subsequent turbine flow in supersonic and subsonic aircraft engines is estimated numerically. The analysis is based on: a flamelet model with non-equilibrium sulfur chemistry for the combustor, and a one-dimensional, two-stream model with finite rate chemical kinetics for the turbine. The results indicate that between 2% and 10% of the fuel sulfur is emitted as SO{sub 3}. It is also shown that, for a high fuel sulfur mass loading, conversion in the turbine is limited by the level of atomic oxygen at the combustor exit, leading to higher SO{sub 2} oxidation efficiency at lower fuel sulfur loadings. While SO{sub 2} and SO{sub 3} are the primary oxidation products, the model results further indicate H{sub 2}SO{sub 4} levels on the order of 0.1 ppm for supersonic expansions through a divergent nozzle. This source of fully oxidized S(6) (SO{sub 3} + H{sub 2}SO{sub 4}) exceeds previously calculated S(6) levels due to oxidation of SO{sub 2} by OH in the exhaust plume outside the engine nozzle. (author) 26 refs.

  4. The Exhaustive Lexicalisation Principle

    Directory of Open Access Journals (Sweden)

    Antonio Fábregas

    2007-12-01

    Full Text Available In this article I revisit the well-known empirical problem of manner of motion verbs with directional complements in Spanish. I present some data that, to my mind, had not received due attention in previous studies and I show that some manner of motion verbs actually allow directionals with the preposition a, while all of them allow them with prepositions like hacia or hasta. I argue that this pattern is due to a principle that states that every syntactic feature must be identified by lexical insertion, the Exhaustive Lexicalisation Principle. The crucial problem with directional complements is that the Spanish preposition a is locative, in contrast with English to, and, therefore, unable to identify the Path feature. Some verbs license the directional with a because they can lexicalise Path altogether with the verb; all verbs can combine with hasta or hacia because these prepositions lexicalise Path. When neither the verb nor the preposition lexicalise the Path, the construction is ungrammatical.

  5. Economics of exhaustible resources

    Energy Technology Data Exchange (ETDEWEB)

    Rabhan, S.A.

    1986-01-01

    This dissertation deals with various issues of resource depletion, beginning with a rather comprehensive review of the literature. The resource scarcity is the first issue dealt with, where differentiation is made between Ricardian and Pure scarcities of exhaustible resources. While the Ricardian scarcity is properly acknowledged and modeled in the resource literature, the fact that the resource stocks are always decreasing with extraction (i.e., the pure scarcity) is overlooked. One important conclusion of the scarcity analysis is that the steady-state point defining the equilibrium values for the nonresource output to capital and the resource flow to resource stock ratios, is found to be a moving one, as a result of the increasing scarcity mechanism. Another observation about the literature is that there is a marked bias in favor of long run, developed economies' problems and resource inputs as opposed to the problems of developing economies and resource exports. Thus, a theoretical framework is developed where not only resource inputs and exports are analyzed but resource exports are advanced as a vehicle for development. Within the context of this theoretical framework, it is concluded that optimality dictates that the resource inputs and exports, expressed per unit of the capital stock, be declining over time. Furthermore, the resource exports are proposed as the domestic substitute for foreign aid.

  6. 40 CFR 86.544-90 - Calculations; exhaust emissions.

    Science.gov (United States)

    2010-07-01

    ...)). (B) ER06OC93.235 Where: (iv) Vo = Volume of gas pumped by the positive displacement pump, in cubic... displacement pump. (See calibration techniques in § 86.519.) (v) N = Number of revolutions of the positive... pump, kPa. (viii) Tp = Average temperature of dilute exhaust entering positive displacement pump...

  7. Green competitiveness research on Chinese automotive enterprises

    Directory of Open Access Journals (Sweden)

    Yuanhui Li

    2014-05-01

    Full Text Available Purpose: More and more executives of automobileindustry in China start to recognize the concept of green competitiveness recently. However, relatively less research attention has been devoted to the consideration of measurement. This paper aims to find empirical approach to quantify green competitiveness for automotive enterprises. The connotation of green competitiveness is explored and one suite of evaluation index system has been proposed with four dimensions including environmental, resource, capability and knowledge.Design/methodology/approach: By introducing the factor analysis method, green competitiveness has been measured through an empirical analysis of 24 automotive enterprises within China.Findings: The results indicate that those elements, such as enterprise resource possession and utilization; environment, responsibility and knowledge; profitability; management efficiency, have significant effect on the green competitiveness for automotive enterprises. The further analysis also unveils the advantages and disadvantages of green competitiveness for each company and the direction for improvement.Research limitations/implications: Guide regulators and managers of automobile industry to take some measures to enhance their green competitive advantage.Practical implications: Provide practical methods to measure green competitiveness for automotive enterprises.Originality/value: This paper proposes an evaluation index system of green competitiveness for automotive enterprises. The suggestions of our research will be beneficial to enterprise executives and industry regulators.

  8. Design and Application of CO2 Compressor Used for Exhaust Gas Recovery in the Process of Supercritical CO2 Fluid Extraction%超临界CO2流体萃取流程中CO2尾气回收压缩机的设计及应用

    Institute of Scientific and Technical Information of China (English)

    王高平; 张和平

    2012-01-01

    某公司超临界CO2流体萃取流程中CO2尾气回收压缩机抽气时间比预期时间超出4倍以上,为解决这一问题,通过对超临界流体萃取流程和CO2的特性分析,提出了萃取流程中CO2尾气回收压缩机的设计方法及回收流程方案的选择,并对压缩机的使用与保养做了阐述.%The suction time for the CO2 compressor used for exhaust gas recovery in the process of supercritical CO2 fluid extraction is the four times above than expected time.In order to solve the problem,the design method for CO2 compressor used for exhaust gas recovery in the extraction process and the selection of recycling process scheme are pointed out based on the characteristic analysis of supercritical fluid extraction process and of CO2-And the use and maintenance of compressor are specified in this paper.

  9. 汽车用液化天然气钢瓶绝热性能在线检测技术研究%Research on Thermal Insulation Performance of Liquefied Nature Gas Cylinders for Automotive Through Online Inspection Technology

    Institute of Scientific and Technical Information of China (English)

    瞿伟健; 肖超波

    2015-01-01

    为开展汽车用液化天然气钢瓶绝热性能的在线检验,研究了汽车用液化天然气钢瓶初始充满率与静态升压值和静态蒸发率的相互关系。结果表明,其静态蒸发率与静态升压值呈正比,静态蒸发率越大,静态升压值越大。初始充满率在70%~90%内,静态升压值的变化能够较准确、快速、直观地反映钢瓶的绝热性能,可作为评价液化天然气钢瓶绝热性能在线测试的一种方法。%The relationship of the initial filling rate,the static pressure value,the static rate of evaporation are researched,in order to provide the theoretical basis for the online inspection of liquefied nature gas cylinders.The results showed that,static rate of evaporation of liquefied nat-ural gas cylinder and static boost value is proportional to the static rate of evaporation,static e-vaporation rate is greater,the greater the value of static pressure rise.When the initial rate of e-vaporation of liquefied nature gas cylinders is 70% ~90%,static boost can accurately,quickly and intuitively reflect the performance of heat insulation cylinder,can be used as a method to e-valuate the insulation performance of liquefied natural gas cylinder for online testing.

  10. Branding through trade shows in the automotive industry

    OpenAIRE

    Narui, Jahan

    2013-01-01

    The automotive industry is a major global industry with a great history of exhibitions. As trade shows are getting more attention within studies, the same is not the case for automotive trade shows. Noteworthy, automotive trade shows emphasize non-selling roles such as image-building. This paper seeks to investigate image-building purposes of exhibiting automotive companies using integrated marketing communications (IMC). Data has been gathered from four participating companies in the Geneva ...

  11. My father’s automotive dream

    Institute of Scientific and Technical Information of China (English)

    Rain Chen

    2005-01-01

    <正>Memories of Changchun Changchun literally means ’Long Spring’. The city is located in northeast China’s Jilin province, which literally means ’Lucky Forest’. Since my father is an old worker of Changchun’s Yi Qi(the abbreviation of Changchun First Automotive Factory) plant - China’s earliest automotive plant, I have spent 60 years in the city, graduating from the well-established Jilin University and currently working for a periodical association. A friend from Beijing encouraged me to write my family’s history, and since my family’s story is really a story about the good name of Changchun, an automotive city and a college town, I couldn’t refuse.

  12. Advanced casting technologies for lightweight automotive applications

    Directory of Open Access Journals (Sweden)

    Alan A. Luo

    2010-11-01

    Full Text Available This paper provides an overview of alloy and process developments in aluminum and magnesium castings for lightweight automotive applications. Wear-resistant aluminum alloys, creep-resistant and high strength/ductility magnesium alloys have been developed for automotive applications. On the process front, vacuum-assisted die casting and high vacuum die casting technologies have been developed for high-integrity body and chassis applications. Thin-wall and hollow casting components are being produced by low-pressure die casting processes for structural applications. Overcasting technology is gaining traction and has enabled mixed material designs for automotive sub-systems such as engine cradles and instrument panel beams. Simulation tools developed to predict the interfacial interactions of the dissimilar components and the structural integrity of the overcast systems are being validated in the casting trials.

  13. Optimization and optimal control in automotive systems

    CERN Document Server

    Kolmanovsky, Ilya; Steinbuch, Maarten; Re, Luigi

    2014-01-01

    This book demonstrates the use of the optimization techniques that are becoming essential to meet the increasing stringency and variety of requirements for automotive systems. It shows the reader how to move away from earlier  approaches, based on some degree of heuristics, to the use of  more and more common systematic methods. Even systematic methods can be developed and applied in a large number of forms so the text collects contributions from across the theory, methods and real-world automotive applications of optimization. Greater fuel economy, significant reductions in permissible emissions, new drivability requirements and the generally increasing complexity of automotive systems are among the criteria that the contributing authors set themselves to meet. In many cases multiple and often conflicting requirements give rise to multi-objective constrained optimization problems which are also considered. Some of these problems fall into the domain of the traditional multi-disciplinary optimization applie...

  14. Automotive Radar Sensors in Silicon Technologies

    CERN Document Server

    Jain, Vipul

    2013-01-01

    This book presents architectures and design techniques for mm-wave automotive radar transceivers. Several fully-integrated transceivers and receivers operating at 22-29 GHz and 77-81 GHz are demonstrated in both CMOS and SiGe BiCMOS technologies. Excellent performance is achieved indicating the suitability of silicon technologies for automotive radar sensors.  This book bridges an existing gap between information available on dependable system/architecture design and circuit design.  It provides the background of the field and detailed description of recent research and development of silicon-based radar sensors.  System-level requirements and circuit topologies for radar transceivers are described in detail. Holistic approaches towards designing radar sensors are validated with several examples of highly-integrated radar ICs in silicon technologies. Circuit techniques to design millimeter-wave circuits in silicon technologies are discussed in depth.  Describes concepts and fundamentals of automotive rada...

  15. 14 CFR 29.1123 - Exhaust piping.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust piping. 29.1123 Section 29.1123... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Exhaust System § 29.1123 Exhaust piping. (a) Exhaust piping must be heat and corrosion resistant, and must have provisions to prevent failure due to...

  16. 14 CFR 25.1123 - Exhaust piping.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust piping. 25.1123 Section 25.1123... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1123 Exhaust piping. For powerplant and auxiliary power unit installations, the following apply: (a) Exhaust piping must be heat...

  17. Dynamics of aircraft exhaust plumes in the jet-regime

    Directory of Open Access Journals (Sweden)

    P. Fabian

    Full Text Available A computational model describing the two-dimensional, turbulent mixing of a single jet of exhaust gas from aircraft engines with the ambient atmosphere is presented. The underlying assumptions and governing equations are examined and supplemented by a discussion of analytical solutions. As an application, the jet dynamics of a B747-400 aircraft engine in cruise and its dependence on key parameters is investigated in detail. The computer code for this dynamical model is computationally fast and can easily be coupled to complex chemical and microphysical models in order to perform comprehensive studies of atmospheric effects from aircraft exhaust emissions in the jet regime.

  18. Best Practices in School-to-Careers: The Automotive Industry.

    Science.gov (United States)

    National Employer Leadership Council, Washington, DC.

    This document highlights the school-to-careers (STC) partnerships connecting workplace experiences to classroom learning to prepare students for successful employment in the automotive industry. First, the current state of the automotive industry is reviewed and the role of STC in addressing automotive service needs is explained. Next, the…

  19. 25 CFR 117.10 - Purchase of automotive equipment.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Purchase of automotive equipment. 117.10 Section 117.10... COMPETENCY § 117.10 Purchase of automotive equipment. The superintendent may disburse from the surplus funds of an adult Indian not to exceed $2,000 for the purchase of automotive equipment when the...

  20. Can Distance Learning Be Used to Teach Automotive Management Skills?

    Science.gov (United States)

    Noto, Teresa L.

    2011-01-01

    Today's automotive college students will shape the future of the automobile industry. The success of college-level automotive programs has long been dependent on the students' ability to participate in hands-on classroom based interactions. In this article, distance learning and how it can be used to teach automotive management skills, as well as…

  1. Gas-operated motor systems

    Energy Technology Data Exchange (ETDEWEB)

    Rilett, J.W.

    1980-09-30

    A gas-operated motor system of the stored energy type-as disclosed in U.S. Pat. No. 4,092,830-in which the gas exhausted from the motor is ducted to a chamber during operation of the motor and thereafter compressed back into the gas reservoir vessel. Recompression may be achieved, e.g., by providing the exhaust gas chamber with a movable piston, or by running the motor in the reverse mode as a compressor.

  2. Modeling a Thermoelectric Generator Applied to Diesel Automotive Heat Recovery

    Science.gov (United States)

    Espinosa, N.; Lazard, M.; Aixala, L.; Scherrer, H.

    2010-09-01

    Thermoelectric generators (TEGs) are outstanding devices for automotive waste heat recovery. Their packaging, lack of moving parts, and direct heat to electrical conversion are the main benefits. Usually, TEGs are modeled with a constant hot-source temperature. However, energy in exhaust gases is limited, thus leading to a temperature decrease as heat is recovered. Therefore thermoelectric properties change along the TEG, affecting performance. A thermoelectric generator composed of Mg2Si/Zn4Sb3 for high temperatures followed by Bi2Te3 for low temperatures has been modeled using engineering equation solver (EES) software. The model uses the finite-difference method with a strip-fins convective heat transfer coefficient. It has been validated on a commercial module with well-known properties. The thermoelectric connection and the number of thermoelements have been addressed as well as the optimum proportion of high-temperature material for a given thermoelectric heat exchanger. TEG output power has been estimated for a typical commercial vehicle at 90°C coolant temperature.

  3. Nanotechnology impact on the automotive industry.

    Science.gov (United States)

    Wong, Kaufui V; Paddon, Patrick A

    2014-01-01

    Nanotechnology has been implemented widely in the automotive industry. This technology is particularly useful in coatings, fabrics, structural materials, fluids, lubricants, tires, and preliminary applications in smart glass/windows and video display systems. A special sub-class of improved materials, alternative energy, has also seen a boost from advances in nanotechnology, and continues to be an active research area. A correlation exists in the automotive industry between the areas with increased nanotechnology incorporation and those with increased profit margins via improvements and customer demands.

  4. Magnetic analyses of powders from exhausted cabin air filters

    Science.gov (United States)

    Winkler, Aldo; Sagnotti, Leonardo

    2013-04-01

    The automotive cabin air filter is a pleated-paper filter placed in the outside-air intake for the car's passenger compartment. Dirty and saturated cabin air filters significantly reduce the airflow from the outside and introduce particulate matter (PM) and allergens (for example, pollen) into the cabin air stream. Magnetic measurements and analyses have been carried out on powders extracted from exhausted cabin air filters to characterize their magnetic properties and to compare them to those already reported for powders collected from disk brakes, gasoline exhaust pipes and Quercus ilex leaves. This study is also aimed at the identification and quantification of the contribution of the ultrafine fraction, superparamagnetic (SP) at room temperature, to the overall magnetic properties of these powders. This contribution was estimated by interpreting and comparing data from FORCs, isothermal remanent magnetization vs time decay curves, frequency and field dependence of the magnetic susceptibility and out-of-phase susceptibility. The magnetic properties and the distribution of the SP particles are generally homogenous and independent of the brand of the car, of the model of the filter and of its level of usage. The relatively high concentration of magnetic PM trapped in these filters poses relevant questions about the air quality inside a car.

  5. Inlet Exhaust Gas Temperature Condition for a Burner-type DPF at the Low and Moderate Load Steady State%喷油助燃再生DPF过滤体入口废气温度条件研究

    Institute of Scientific and Technical Information of China (English)

    伏军; 龚金科; 吴钢; 余明果; 吁璇; 张文强

    2011-01-01

    阐述了DPF喷油助燃再生的工作原理,在考虑过滤体内沉积微粒氧化反应次模型的基础上,以壁流式蜂窝陶瓷过滤体为研究对象,建立柴油机稳态工况下过滤体人口孔道的再生简化模型.考虑到柴油机中小负荷排气富氧条件,通过无量纲化,结合DPF的排气背压模型,得到了喷油助燃再生DPF时过滤体入口端所需的温度条件.试验表明,以该条件获得的理论过滤体入口废气温度所对应的喷油率来调节燃烧器功率可顺利实现DPF的再生过程,为DPF喷油助燃再生系统的设计提供了一定的理论依据.%The operation principle of a burner-type diesel particulate filter was presented. Taking the subordinate oxidation reaction model into consideration, and taking the honeycomb wall-flow ceramic monolith filter as a research object, the simplified regeneration model in the single inlet channel of the filter was built at the steady state of the diesel engine. Based on the non-dimensionalization and the exhaust back-pressure model of DPF, the required temperature condition of the inlet exhaust for the burner-type DPF was obtained. The tests showed that the DPF regeneration could be smoothly completed by the burner power adjustment according to the oil spray rate correspond to the theoretical inlet exhaust temperature. It provided a definite theory basis to the design of the burner-type DPF.

  6. Automobile air pollution: Automotive fuels. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The bibliography contains citations concerning the use of fuels and fuel additives for the reduction of automotive air pollution. Alternative fuels discussed include gasohol, methane, natural gas, and hydrogen. Improvements to gasoline and its properties which affect air pollution are considered, as well as lead and other fuel additives. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  7. Third annual report to Congress on the automotive technology development program

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-01

    The Automotive Propulsion Research and Development Act of 1978 focused on advancing the technology of automotive propulsion systems. In formulating the Act, Congress found that: (1) existing automobiles do not meet the Nation's long-term environmental and energy goals; (2) insufficient resources are being devoted to research and development (R and D) on advanced automobile propulsion systems; (3) with sufficient R and D, alternatives to existing systems could meet long-term goals at reasonable cost; and (4) expanded R and D would complement and stimulate corresponding private sector efforts. Because of the Nation's energy problems, Congress felt that advanced automobile propulsion system technology should be developed quickly. Through the Act, Congress expressed its intent for the Department of Energy (DOE) to: (1) make R and D contracts and grants for development of advanced automobile propulsion systems within five years, or within the shortest practicable time consistent with appropriate R and D techniques; (2) evaluate and disseminate information about advanced automobile propulsion system technology; (3) preserve, enhance, and facilitate competition in R and D of existing and alternative automotive propulsion systems; and (4) supplement, but neither supplant nor duplicate, private industry R and D efforts. Summaries of the status of conventional powertrain technology, automotive technology development program, and the management plan and policy transition are given. Tables on contracts and grant procurement for advanced gas turbine engine systems, advanced Stirling engine systems, and the vehicle systems project are given. (WHK)

  8. Research progress of aluminum alloy automotive sheet and application technology

    Institute of Scientific and Technical Information of China (English)

    Ma Mingtu; You Jianghai; Lu Hongzhou; Wang Zhiwen

    2012-01-01

    Pretrcatment technology is deeply discussed to explain its importance in guaranteeing properties and form- ability of aluminum alloy automotive sheet. Some typical applications of aluminum alloy automotive sheet to automotive industry are listed. Based on the author's knowledge and recognition and research progress presently, the important re- search contents about aluminum alloy automotive sheet are emphasized. Reducing cost and price of sheet and going deeply into application research are the main work for expending the application of aluminum alloy automotive sheet in the automobile.

  9. Market Opportunities for Automotive Components Used in Non-automotive Applications Manufacturing : Estonian Industrial Market

    OpenAIRE

    Kalajärv, Jaana

    2012-01-01

    This thesis examines the opportunities available for automotive components in the Esto-nian non-automotive industrial market. The literature review part is mainly covers the theory of marketing research, because of the approach chosen for this paper. Only small part of marketing research process is re-searched closer in literature review section, because of the scope of the research. Three most relevant steps for the thesis are chosen from research process for further more in-vestigation,...

  10. Effects of a flexible utilization of biogas on the electrical efficiency and the exhaust gas emissions from cogeneration plants; Auswirkungen einer flexiblen Biogasverwertung auf den elektrischen Wirkungsgrad und die Abgasemissionen von Blockheizkraftwerken

    Energy Technology Data Exchange (ETDEWEB)

    Tappen, Simon Juan; Effenberger, Mathias [Bayerische Landesanstalt fuer Landwirtschaft (LfL), Freising (Germany). Arbeitsgruppe Technikfolgenabschaetzung

    2016-08-01

    The German Renewable Energy Act of 2014 implements improved conditions to support market and grid integration of renewable energies, which resulted in the generated electricity to be sold directly to the market. In supporting the application of start-stop procedure and part load condition (e.g. during operating reserve), new requirements need to be set for biogas driven eo-generation units (CGU). Seven CGUs were analyzed during on-field measurements in Bavaria. The following article shows how results of part load adjustments affect the electrical efficiency and emissions, such as carbon monoxide (CO), nitrous oxide (NO{sub x}) and unburned hydrocarbons (C{sub n}H{sub m}). Under part load condition, the CGU showed a decrease in electrical efficiency and NO{sub x}-concentration. No significant changes have been identified in the exhaust treated emissions. In general, part load response leads to higher environmental impact. However, the environmental impact is expected to be low, since the application and extent of using flexible driving behavior is still limited. In contrast, stricter emission limit values set by TA Luft 2017 could impact the electrical efficiency and lead to higher costs for monitoring and exhaust treatment.

  11. A listening test system for automotive audio

    DEFF Research Database (Denmark)

    Christensen, Flemming; Geoff, Martin; Minnaar, Pauli;

    2005-01-01

    This paper describes a system for simulating automotive audio through headphones for the purposes of conducting listening experiments in the laboratory. The system is based on binaural technology and consists of a component for reproducing the sound of the audio system itself and a component...

  12. Metrics for Automotive Merchandising, Petroleum Marketing.

    Science.gov (United States)

    Cooper, Gloria S., Ed.; Magisos, Joel H., Ed.

    Designed to meet the job-related metric measurement needs of students in automotive merchandising and petroleum marketing classes, this instructional package is one of five for the marketing and distribution cluster, part of a set of 55 packages for metric instruction in different occupations. The package is intended for students who already know…

  13. On credibility improvements for automotive navigation systems

    NARCIS (Netherlands)

    Schaub, Florian; Hipp, Markus; Kargl, Frank; Weber, Michael

    2012-01-01

    Automotive navigation systems are becoming ubiquitous as driver assistance systems. Vendors continuously aim to enhance route guidance by adding new features to their systems. However, we found in an analysis of current navigation systems that many share interaction weaknesses, which can damage the

  14. Techno-economic requirements for automotive composites

    Science.gov (United States)

    Arnold, Scot

    1993-01-01

    New technology generally serves two main goals of the automotive industry: one is to enable vehicles to comply with various governmental regulations and the other is to provide a competitive edge in the market. The latter goal can either be served through improved manufacturing and design capabilities, such as computer aided design and computer aided manufacturing, or through improved product performance, such as anti-lock braking (ABS). Although safety features are sometimes customer driven, such as the increasing use of airbags and ABS, most are determined by regulations as outlined by the Federal Motor Vehicle Safety Standards (FMVSS). Other standards, set by the Environmental Protection Agency, determine acceptable levels of emissions and fuel consumption. State governments, such as in California, are also setting precedent standards, such as requiring manufacturers to offer zero-emission vehicles as a certain fraction of their sales in the state. The drive to apply new materials in the automobile stems from the need to reduce weight and improve fuel efficiency. Topics discussed include: new lightweight materials; types of automotive materials; automotive composite applications; the role for composite materials in automotive applications; advantages and disadvantages of composite materials; material substitution economics; economic perspective; production economics; and composite materials production economics.

  15. International Conference on Vehicle and Automotive Engineering

    CERN Document Server

    Bolló, Betti

    2017-01-01

    This book presents the proceedings of the first vehicle engineering and vehicle industry conference. It captures the outcome of theoretical and practical studies as well as the future development trends in a wide field of automotive research. The themes of the conference include design, manufacturing, economic and educational topics.

  16. Aero and vibroacoustics of automotive turbochargers

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen-Schaefer, Hung [Bosch Mahle Turbo Systems GmbH, Stuttgart (Germany)

    2013-02-01

    First book about the aeroacoustics of automotive turbochargers. Author of the book ''Rotordynamics of Automotive Turbochargers'', Springer, 2012. Written by an R and D expert in the turbocharger industry. Aero and Vibroacoustics of Automotive Turbochargers is a topic involving aspects from the working fields of thermodynamics of turbomachinery, aerodynamics, rotordynamics, and noise propagation computation. In this broadly interdisciplinary subject, thermodynamics of turbomachinery is used to design the turbocharger and to determine its operating conditions. Aerodynamics is needed to study the compressor flow dynamics and flow instabilities of rotating stall and surge, which can produce growling and whining-type noises. Rotordynamics is necessary to study rotor unbalance and self-excited oil-whirl instabilities, which lead to whistling and constant tone-type noises in rotating floating oil-film type bearings. For the special case of turbochargers using ball bearings, some high-order harmonic and wear noises also manifest in the rotor operating range. Lastly, noise propagation computation, based on Lighthill's analogy, is required to investigate airborne noises produced by turbochargers in passenger vehicles. The content of this book is intended for advanced undergraduates, graduates in mechanical engineering, research scientists and practicing engineers who want to better understand the interactions between these working fields and the resulting impact on the interesting topic of Aero and Vibroacoustics of Automotive Turbochargers.

  17. Zeolite-based Impedimetric Gas Sensor Device in Low-cost Technology for Hydrocarbon Gas Detection

    Directory of Open Access Journals (Sweden)

    Gunter Hagen

    2008-12-01

    Full Text Available Due to increasing environmental concerns the need for inexpensive selective gas sensors is increasing. This work deals with transferring a novel zeolite-based impedimetric hydrocarbon gas sensor principle, which has been originally manufactured in a costly combination of photolithography, thin-film processes, and thick-film processes to a lowcost technology comprising only thick-film processes and one electroplating step. The sensing effect is based on a thin chromium oxide layer between the interdigital electrodes and a Pt-loaded ZSM-5 zeolite film. When hydrocarbons are present in the sensor ambient, the electrical sensor impedance increases strongly and selectively. In the present work, the chromium oxide film is electroplated on Au screen-printed interdigital electrodes and then oxidized to Cr2O3. The electrode area is covered with the screen-printed zeolite. The sensor device is self-heated utilizing a planar platinum heater on the backside. The best sensor performance is obtained at a frequency of 3 Hz at around 350 °C. The good selectivity of the original sensor setup could be confirmed, but a strong cross-sensitivity to ammonia occurs, which might prohibit its original intention for use in automotive exhausts.

  18. Semiconductor industry wafer fab exhaust management

    CERN Document Server

    Sherer, Michael J

    2005-01-01

    Given the myriad exhaust compounds and the corresponding problems that they can pose in an exhaust management system, the proper choice of such systems is a complex task. Presenting the fundamentals, technical details, and general solutions to real-world problems, Semiconductor Industry: Wafer Fab Exhaust Management offers practical guidance on selecting an appropriate system for a given application. Using examples that provide a clear understanding of the concepts discussed, Sherer covers facility layout, support facilities operations, and semiconductor process equipment, followed by exhaust types and challenges. He reviews exhaust point-of-use devices and exhaust line requirements needed between process equipment and the centralized exhaust system. The book includes information on wet scrubbers for a centralized acid exhaust system and a centralized ammonia exhaust system and on centralized equipment to control volatile organic compounds. It concludes with a chapter devoted to emergency releases and a separ...

  19. 吸附管采样-毛细管柱气相色谱法测定环境空气和工业废气中的丙酮%Determination of acetone in ambient air and exhaust air by tube adsorption and capillary gas chromatography

    Institute of Scientific and Technical Information of China (English)

    李承

    2016-01-01

    文章建立了以活性炭为填料的吸附管采集环境空气或工业废气中的丙酮,CS2进行解吸,并用毛细管柱气相色谱进行定性定量的方法。结果表明该方法简单灵敏,线性范围良好,检出限低,精密度好,定性定量准确;经实际样品测定,完全能满足环境空气和工业废气中丙酮的监测要求。%The method of determination of acetone in ambient air and exhaust air was established in the pa-per, which was using activated charcoal tube adsorption/carbon disulfide desorption and determined by capillary gas chromatography. The method was simple and sensitive, it also had broad linear scale, low MDL, good precision, accuracy qualitative and quantitative accuracy. The method can satisfy the demand of monitoring of acetone in am-bient air and exhaust air via the sample test.

  20. A Preliminary Model of Infrared Image Generation for Exhaust Plume

    Directory of Open Access Journals (Sweden)

    Fei Mei

    2011-06-01

    Full Text Available Based on the irradiance calculation of all pixels on the focal plane array, a preliminary infrared imaging prediction model of exhaust plume that have considered the geometrical and the thermal resolution of the camera was developed to understanding the infrared characteristics of exhaust plume. In order to compute the irradiance incident on each pixel, the gas radiation transfer path in the plume for the instantaneous field of view corresponds to the pixel was solved by the simultaneous equation of a enclosure cylinder which covers the exhaust plume and the line of sight. Radiance of the transfer path was calculated by radiation transfer equation for nonscattering gas. The radiative properties of combustion needed in the equation was provided by employing Malkmus model with EM2C narrow band database(25cm-1. The pressure, species concentration along the path was determination by CFD analysis. The relative irradiance intensity of each pixel was converted to color in the display according to gray map coding and hot map coding. Infrared image of the exhaust plumes from a subsonic axisymmetric nozzle with different relative position of camera and the plume was predicted with the model. By changing the parameters, such as FOV and space resolution, the image of different imaging system can be predicted.

  1. Methemoglobinemia secondary to automobile exhaust fumes

    Energy Technology Data Exchange (ETDEWEB)

    Laney, R.F.; Hoffman, R.S. (Department of Emergency Medicine, Morristown Memorial Hospital, NJ (United States))

    1992-09-01

    Methemoglobinemia is an uncommon cause of cyanosis. A 28-year-old male presented to the emergency department cyanotic and short of breath after exposure to noxious automobile fumes. He did not improve with the administration of 100% oxygen therapy. The initial arterial blood gas with cooximetry was: pH of 7.38, PaCO2 of 43 mm Hg, PaO2 of 118 mm Hg, measured oxygen saturation of 70%, and a methemoglobin level of 24.8%. Methylene blue was given (2 mg/kg intravenously) and the patient's symptoms resolved. On the following day he was discharged home without complication. A comprehensive review of the literature revealed no reported cases of methemoglobinemia secondary to accidental exposure to exhaust fumes.17 references.

  2. Carburation automobile. Contribution à l' étude d'un dispositif d'injection de GPL en phase gazeuse Automotive Fuel: Research on a New Gas-Phase Lpg Injection System

    Directory of Open Access Journals (Sweden)

    Dubois J. P.

    2006-11-01

    Full Text Available Les systèmes de carburation traditionnels aux GPL (induction donnent lieu à un certain nombre d'insatisfactions dues, en particulier, aux difficultés de réglages et à une adéquation imparfaite entre matériels et véhicules. Le système d'injection gazeuse mis au point comporte : - un débitmètre à volet mesurant le débit d'air admis au moteur; - un doseur, lié mécaniquement au volet, et fournissant le mélange air-gaz prédéterminé. Un dispositif d'ouverture forcée du volet permet, lorsqu'on fonctionne à l'essence, de ne pas perturber les performances du carburateur; - un vaporiseur détendeur à deux étages dont les fonctions essentielles sont : - la prédétente à 1,5 bar; - la détente finale à 250 mbar; - l'enrichissement à haut régime; - la sécurité intégrée en cas d'arrêt moteur; - un module de démarrage à froid évitant l'envahissement liquide du vaporiseur jusqu'à 10°C Les avantages de ce dispositif sont : - l'universalité : le même modèle est utilisé sur tous véhicules de 60 à 130 ch; - l'absence de réglage : seul le ralenti est à ajuster; - la maîtrise du rapport air/gaz à la valeur choisie; - le bon compromis performances/consommations; - la prise en compte des paramètres réels de fonctionnement. Conventional LPG induction systems used for transportation purposes do not usually work satisfactory, in particular due to adjustment difficulties and to unsuitable equipment/vehicle matching. The LPG injection system that has been developed comprises:(aa flap flowmeter measuring the air flow into the- engine;(b a proportioning device mechanically connected to the flap and supplying the predetermined air/gas mixture (a device forcing the flap open keeps carburettor performances the same when running on gasoline;(c a two-stage pressure regulator having the following main functions:- initial expansion down to 1. 5 bar;- final expansion down to 250 mbar;- high-speed enrichment;- built-in safety in case

  3. Catalyst for automotive emissions control in next generation. Relation of the intelligent property to its structure

    CERN Document Server

    Mizuki, J; Tanaka, H

    2003-01-01

    We use X-ray diffraction and absorption to show that the perovskite-based Pd catalyst retains its high metal dispersion owing to structural responses to the fluctuations in exhaust-gas composition that occur in state-of-the-art petrol engines. We find that as the catalyst is cycled between oxidative and reductive atmospheres typically encountered in exhaust gas, Pd reversibly moves into and out of the perovskite lattice. This movement appears to suppress the growth of metallic Pd particles, and hence explains the retention of high catalytic activity. (J.P.N.)

  4. Lightweight Steel Solutions for Automotive Industry

    Science.gov (United States)

    Lee, Hong Woo; Kim, Gyosung; Park, Sung Ho

    2010-06-01

    Recently, improvement in fuel efficiency and safety has become the biggest issue in worldwide automotive industry. Although the regulation of environment and safety has been tightened up more and more, the majority of vehicle bodies are still manufactured from stamped steel components. This means that the optimized steel solutions enable to demonstrate its ability to reduce body weight with high crashworthiness performance instead of expensive light weight materials such as Al, Mg and composites. To provide the innovative steel solutions for automotive industry, POSCO has developed AHSS and its application technologies, which is directly connected to EVI activities. EVI is a technical cooperation program with customer covering all stages of new car project from design to mass production. Integrated light weight solutions through new forming technologies such as TWB, hydroforming and HPF are continuously developed and provided for EVI activities. This paper will discuss the detailed status of these technologies especially light weight steel solutions based on innovative technologies.

  5. Springback prediction of TWIP automotive sheets

    Science.gov (United States)

    Ahn, Kanghwan; Yoo, Donghoon; Seo, Min Hong; Park, Sung-Ho; Chung, Kwansoo

    2009-08-01

    In an effort to reduce the weight of vehicles, automotive companies are replacing conventional steel parts with light weight alloys and/or with advanced high strength steels (AHSS) such as dual-phase (DP), twinning induced plasticity (TWIP), and transformation induced plasticity (TRIP) steels. The main objective of this work is to experimentally and numerically evaluate the macro-performance of the automotive TWIP sheet in conjunction with springback. In order to characterize the mechanical properties, simple tension and tension-compression tests were performed to determine anisotropic properties, as well as the Bauschinger, transient, and permanent softening behaviors during reverse loading. For numerical simulations, the anisotropic yield function Yld2000-2d was utilized along with the combined isotropic-kinematic hardening law based on the modified Chaboche model. Springback verification was performed for the unconstrained cylindrical bending and 2D draw bending tests.

  6. Development of light metals automotive structural subsystems

    Energy Technology Data Exchange (ETDEWEB)

    Luo, A.A.; Sachdev, A.K. [General Motors Research and Development Center, Warren, MI (United States)

    2007-07-01

    Key technological developments in aluminum and magnesium alloys were reviewed in relation to the manufacturing processes that enable lightweight automotive structural subsystems. Examples included the materials and processes evolution of lightweight body structures, chassis systems, and instrument panel beams. New aluminum and magnesium alloys and manufacturing technologies used to reduce mass and improve performance in vehicle cradle structures were discussed. Hydroforming processes used to enable the use of lightweight aluminum alloy tubes in automotive body structures were also reviewed, in addition to body architectures enabled by different materials and manufacturing processes. The review noted that magnesium instrument panels are now being designed to provide significant performance improvement, reduced vibration, and enhanced crashworthiness in new automobiles. It was concluded that vehicles will incorporate more lightweight materials such as nanocomposites and aluminum and magnesium sheets. 9 refs., 10 figs.

  7. Green innovation adoption in automotive supply chain

    DEFF Research Database (Denmark)

    Zailani, Suhaiza; Govindan, Kannan; Iranmanesh, Mohammad;

    2015-01-01

    using the partial least squares technique. Environmental regulations, market demand, and firm internal initiatives have a positive effect on green innovation initiatives (GII), while GIIs have a positive effect on the three categories of sustainable performance (i.e., environmental, social, and economic......Green innovation has currently been receiving a great deal of international attention because of the growing concern of consumers, governments, and the community as a whole with regard to the degradation of natural resources and environmental pollution. The automotive sector is one of the leading...... generators of industrial waste that affect the quality of the natural environment. This study aims to investigate the determinants of green innovation adoption and its effect on firm performance. Data were gathered by surveying 153 firms in the Malaysian automotive supply chain industry. Data were analyzed...

  8. Platform Based Design for Automotive Sensor Conditioning

    CERN Document Server

    Fanucci, L; Iozzi, F; Marino, C; Rocchi, A

    2011-01-01

    In this paper a general architecture suitable to interface several kinds of sensors for automotive applications is presented. A platform based design approach is pursued to improve system performance while minimizing time-to-market.. The platform is composed by an analog front-end and a digital section. The latter is based on a microcontroller core (8051 IP by Oregano) plus a set of dedicated hardware dedicated to the complex signal processing required for sensor conditioning. The microcontroller handles also the communication with external devices (as a PC) for data output and fast prototyping. A case study is presented concerning the conditioning of a Gyro yaw rate sensor for automotive applications. Measured performance results outperform current state-of-the-art commercial devices.

  9. Innovation and Entrepreneurship in the Automotive Business

    DEFF Research Database (Denmark)

    2011-01-01

    invention have appropriate benefits. The timing of the dialog with a potential user or business partner is important when it comes to which issues that have highest priorities or are most frequently discussed in the organization of said user or business partner. If there exist a special issue that your idea......The global automotive business is one of the most competitive environment you can imagine. As an independent inventor or as a small development company it is very challenging to be successful in implementing new ideas and components. In this mature and somewhat conservative technical environment...... address you will have a much better access the decision making process and get enough interest for a potential business deal. After 20 years as a supplier of engineering services to the automotive industry and 10 years as head of Global R&D at Scania CV AB, I have experienced pros and cons both from...

  10. Exhaust System Reinforced by Jet Flow

    DEFF Research Database (Denmark)

    Pedersen, Lars Germann; Nielsen, Peter V.

    Since 1985 the University of Aalborg and Nordfab A/S have been working on an exhaust principle which is quite different from traditional exhaust systems. The REEXS principle (Reinforced Exhaust System), which originally was designed for the agricultural sector, is particularly well-suited for ind...

  11. The Effects of Diesel Exhaust Pollution on Floral Volatiles and the Consequences for Honey Bee Olfaction.

    Science.gov (United States)

    Lusebrink, Inka; Girling, Robbie D; Farthing, Emily; Newman, Tracey A; Jackson, Chris W; Poppy, Guy M

    2015-10-01

    There is growing evidence of a substantial decline in pollinators within Europe and North America, most likely caused by multiple factors such as diseases, poor nutrition, habitat loss, insecticides, and environmental pollution. Diesel exhaust could be a contributing factor to this decline, since we found that diesel exhaust rapidly degrades floral volatiles, which honey bees require for flower recognition. In this study, we exposed eight of the most common floral volatiles to diesel exhaust in order to investigate whether it can affect volatile mediated plant-pollinator interaction. Exposure to diesel exhaust altered the blend of common flower volatiles significantly: myrcene was considerably reduced, β-ocimene became undetectable, and β-caryophyllene was transformed into its cis-isomer isocaryophyllene. Proboscis extension response (PER) assays showed that the alterations of the blend reduced the ability of honey bees to recognize it. The chemically reactive nitrogen oxides fraction of diesel exhaust gas was identified as capable of causing degradation of floral volatiles.

  12. MICROALLOYED STEELS FOR THE AUTOMOTIVE INDUSTRY

    OpenAIRE

    Debanshu Bhattacharya

    2014-01-01

    Two major drivers for the use of newer steels in the automotive industry are fuel efficiency and increased safety performance. Fuel efficiency is mainly a function of weight of steel parts, which in turn, is controlled by gauge and design. Safety is determined by the energy absorbing capacity of the steel used to make the part. All of these factors are incentives for the U.S. automakers to use both Highly Formable and Advanced High Strength Steels (AHSS) to replace the conventional ...

  13. INNOVATION LEAN PRINCIPLES IN AUTOMOTIVE GREEN MANUFACTURING

    Directory of Open Access Journals (Sweden)

    Dušan Sabadka

    2014-12-01

    Full Text Available Today, industries such as automotive and manufacturing industries deal with a lot of environmental regulations. Lean is a production strategy whose fundamental principles drive the industry towards a more effective production of goods and services. The eco-efficiency concept is primary to sustainable development and intends to provide more value with less environmental impact. The aim of this study is to identify and explore the contributions of Lean to reduce environmental impacts that naturally result from industrial activity.

  14. Mapping automotive like controls to a general aviation aircraft

    Science.gov (United States)

    Carvalho, Christopher G.

    The purpose of this thesis was to develop fly-by-wire control laws enabling a general aviation aircraft to be flown with automotive controls, i.e. a steering wheel and gas/brake pedals. There was a six speed shifter used to change the flight mode of the aircraft. This essentially allows the pilot to have control over different aspects of the flight profile such as climb/descend or cruise. A highway in the sky was used to aid in the navigation since it is not intuitive to people without flight experience how to navigate from the sky or when to climb and descend. Many believe that general aviation could become as widespread as the automobile. Every person could have a personal aircraft at their disposal and it would be as easy to operate as driving an automobile. The goal of this thesis is to fuse the ease of drivability of a car with flight of a small general aviation aircraft. A standard automotive control hardware setup coupled with variably autonomous control laws will allow new pilots to fly a plane as easily as driving a car. The idea is that new pilots will require very little training to become proficient with these controls. Pilots with little time to stay current can maintain their skills simply by driving a car which is typically a daily activity. A human factors study was conducted to determine the feasibility of the applied control techniques. Pilot performance metrics were developed to compare candidates with no aviation background and experienced pilots. After analyzing the relative performance between pilots and non-pilots, it has been determined that the control system is robust and easy to learn. Candidates with no aviation experience whatsoever can learn to fly an aircraft as safely and efficiently as someone with hundreds of hours of flight experience using these controls.

  15. Fume hood exhaust re-entry into a chemistry building.

    Science.gov (United States)

    Lamb, B K; Cronn, D R

    1986-02-01

    The rooftop air intakes are in close proximity to the fume hood exhaust vents on the roof of the attached chemistry buildings (Fulmer Hall and Fulmer Annex) at Washington State University. Complaints resulted from the apparent re-entry of hazardous and odorous exhaust vapors and gases returning into the building fresh air supplies. An atmospheric tracer study of the flow patterns and exhaust gas dilution rates determined the suitability of other potential air intake locations. Isopleth maps showed concentration patterns for tests conducted during the different wind regimes (southwest prevailing winds and substantial wintertime southeast periods). As expected, the observed dilution rates were greater than the conservative minimum dilution rates calculated from models. Tracer gas concentrations indicated large areas over which odor thresholds would exceeded for vapors resulting from typical evaporation rates of solvents. Tracer gas concentrations at the building air intakes were about the same as inside building concentrations because little dilution occurred between the intakes and building interiors. Significant infiltration was observed due to negative building pressure relative to outside. The recommendation to move the intakes down the south building walls is being followed since roof-level concentrations are typically a factor of ten or more higher than below-roof levels.

  16. Characterization of three-way automotive catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kenik, E.A.; More, K.L. [Oak Ridge National Lab., TN (United States); LaBarge, W. [Delphi Automotive Systems, Flint, MI (United States)] [and others

    1997-04-01

    The CRADA between Delphi Automotive Systems (Delphi; formerly General Motors - AC Delco, Systems) and Lockheed Martin Energy Research (LMER) on automotive catalysts was completed at the end of FY96, after a ten month, no-cost extension. The CRADA was aimed at improved performance and lifetime of noble metal based three-way-catalysts (TWC), which are the primary catalytic system for automotive emission control systems. While these TWC can meet the currently required emission standards, higher than optimum noble metal loadings are often required to meet lifetime requirements. In addition, more stringent emission standards will be imposed in the near future, demanding improved performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts. Initially in a fresh catalyst, the active material is often distributed on a very fine scale, approaching single atoms or small atomic clusters. As such, a wide range of analytical techniques have been employed to provide high spatial resolution characterization of the evolving state of the catalytic material.

  17. Essentials of natural gas microturbines

    CERN Document Server

    Boicea, Valentin A

    2013-01-01

    Addressing a field which, until now, has not been sufficiently investigated, Essentials of Natural Gas Microturbines thoroughly examines several natural gas microturbine technologies suitable not only for distributed generation but also for the automotive industry. An invaluable resource for power systems, electrical, and computer science engineers as well as operations researchers, microturbine operators, policy makers, and other industry professionals, the book: Explains the importance of natural gas microturbines and their use in distributed energy resource (DER) systemsDiscusses the histor

  18. POTENTIAL USE OF MAGNESIUM ALLOYS FOR THE AUTOMOTIVE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Kudret KANDEMİR

    2003-01-01

    Full Text Available Recently, there is a high interest in using lightweight materials for automotive applications where weight reduction and improvement in comfort are needed. Magnesium alloys with excellent specific strength and stiffness properties can be comparable with steel and aluminum alloys for applications in the automotive industry. For this reason, the properties of magnesium alloys are in the focus of research. This study aims at reviewing and evaluating the prospects of magnesium alloys use and applications in the automotive industry.

  19. 40 CFR 426.70 - Applicability; description of the automotive glass laminating subcategory.

    Science.gov (United States)

    2010-07-01

    ... automotive glass laminating subcategory. 426.70 Section 426.70 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS GLASS MANUFACTURING POINT SOURCE CATEGORY Automotive Glass Laminating Subcategory § 426.70 Applicability; description of the automotive...

  20. AUTOMOTIVE MARKET- FROM A GENERAL TO A MARKET SEGMENTATION APPROACH

    Directory of Open Access Journals (Sweden)

    Liviana Andreea Niminet

    2014-01-01

    Full Text Available Automotive market and its corresponding industry are undoubtedly of outmost importance and therefore proper market segmentation is crucial for market players, potential competitors and customers as well. Time has proved that market economic analysis often shown flaws in determining the relevant market, by using solely or mainly the geographic aspect and disregarding the importance of segments on the automotive market. For these reasons we propose a new approach of the automotive market proving the importance of proper market segmentation and defining the strategic groups within the automotive market.

  1. Final report: U.S. competitive position in automotive technologies

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Michael B.; Cheney, Margaret; Thomas, Patrick; Kroll, Peter

    2002-09-30

    Patent data are presented and analyzed to assess the U.S. competitive position in eleven advanced automotive technology categories, including automotive fuel cells, hydrogen storage, advanced batteries, hybrid electric vehicles and others. Inventive activity in most of the technologies is found to be growing at a rapid pace, particularly in advanced batteries, automotive fuel cells and ultracapacitors. The U.S. is the clear leader in automotive fuel cells, on-board hydrogen storage and light weight materials. Japan leads in advanced batteries, hybrid electric vehicles, ultracapacitors, and appears to be close to overtaking the U.S. in other areas of power electronics.

  2. [Passive detection of aeroengine exhaust based on Fourier transform infrared system].

    Science.gov (United States)

    Li, Shao-cheng; Zuo, Hong-fu; Xia, Qing

    2008-10-01

    Since the composition and concentration of aeroengine exhaust can reflect the combustion efficiency, they can provide the basis for condition based maintenance, and also the basis for the analysis of environment pollution caused by aeroengine exhaust. So the importance of aeroengine exhaust detection is evident. Up to now, the measurement of aeroengine exhaust is based on sampling analysis which is not convenient and can't meet the detection requirements when an aeroplane is flying-off or flying in the sky. Hence, new methods of exhaust detection must be studied. The passive measurement technology based on Fourier transform infrared spectroscopy (FTIR) was applied to the measurement of aeroengine exhaust in the present paper. At first, the principle of passive measurement based on FTIR was introduced in detail. On this basis, a model algorithm for gas concentration calculation was deduced based on the principle of infrared transmission. Then the feasibility of aeroengine exhaust measurement based on passive FTIR was analyzed, and the passive measurement method of aeroengine exhaust based on FTIR was given. In the end, an experiment of aeroengine exhaust passive measurement was carried out by a FTIR with the type of Tensor 27 produced by BRUKER. Good quality spectra of the exhaust and the background were measured. Based on the model algo rithm of passive measurement, the absorbance spectra of CO and NO were obtained respectively, and the concentrations of CO and NO were figured out. To check up the veracity of this method, a comparison was made with another apparatus. There were only little differences between the results of the two experiments, showing that the passive measurement technology based on FTIR could meet the requirements of aeroengine exhaust detection.

  3. United States Automotive Materials Partnership LLC (USAMP)

    Energy Technology Data Exchange (ETDEWEB)

    United States Automotive Materials Partnership

    2011-01-31

    The United States Automotive Materials Partnership LLC (USAMP) was formed in 1993 as a partnership between Chrysler Corporation, Ford Motor Company, and General Motors Corporation. Since then the U.S. Department of Energy (DOE) has supported its activities with funding and technical support. The mission of the USAMP is to conduct vehicle-oriented research and development in materials and materials processing to improve the competitiveness of the U.S. Auto Industry. Its specific goals are: (1) To conduct joint research to further the development of lightweight materials for improved automotive fuel economy; and (2) To work with the Federal government to explore opportunities for cooperative programs with the national laboratories, Federal agencies such as the DOE and universities. As a major component of the DOE's Office of FreedomCAR and Vehicle Technologies Program (FCVT) collaboration with the USAMP, the Automotive Lightweighting Materials (ALM) program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The FCVT was announced in FY 2002 and implemented in FY 2003, as a successor of the Partnership for a New Generation of Vehicles (PNGV), largely addressed under the first Cooperative Agreement. This second USAMP Cooperative Agreement with the DOE has expanded a unique and valuable framework for collaboratively directing industry and government research efforts toward the development of technologies capable of solving important societal problems related to automobile transportation. USAMP efforts are conducted by the domestic automobile manufacturers, in collaboration with materials and manufacturing suppliers, national laboratories, universities, and other technology or trade organizations. These interactions provide a direct route for implementing newly

  4. EXPERIMENTAL INVESTIGATION ON TWO-DIMENSIONAL UNSTEADY COLD FLOW IN MPC EXHAUST MANIFOLD

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The gas flow in exhaust manifolds has much effect on scavenge, pumping loss and exhaust energy utilization of turbocharged diesel engines. This paper presented experimental investigation on two-dimensional unsteady flow in MPC(modular pulse converter) exhaust manifold model. The pressure and velocity distributions in six sections of the manifold model were measured when the diesel engine was motored. The probe with slitted sleeve was used to determine flow direction. The experimental results show that velocity distributions vary with place and time; the pressure traces at different points of the same section are not different obviously.

  5. Future Automotive Aftertreatment Solutions: The 150°C Challenge Workshop Report

    Energy Technology Data Exchange (ETDEWEB)

    Zammit, Michael; DiMaggio, Craig L.; Kim, Chang H.; Lambert, Christine; Muntean, George G.; Peden, Charles HF; Parks, James E.; Howden, Ken

    2013-10-15

    With future fuel economy standards enacted, the U.S. automotive manufacturers (OEMs) are committed to pursuing a variety of high risk/highly efficient stoichiometric and lean combustion strategies to achieve superior performance. In recognition of this need, the U.S. Department of Energy (DOE) has partnered with domestic automotive manufacturers through U.S. DRIVE to develop these advanced technologies. However, before these advancements can be introduced into the U.S. market, they must also be able to meet increasingly stringent emissions requirements. A significant roadblock to this implementation is the inability of current catalyst and aftertreatment technologies to provide the required activity at the much lower exhaust temperatures that will accompany highly efficient combustion processes and powertrain strategies. Therefore, the goal of this workshop and report is to create a U.S. DRIVE emission control roadmap that will identify new materials and aftertreatment approaches that offer the potential for 90% conversion of emissions at low temperature (150°C) and are consistent with highly efficient combustion technologies currently under investigation within U.S. DRIVE Advanced Combustion and Emission Control (ACEC) programs.

  6. The fuel quality and its impact on off-gas emissions of modern Diesel engines. Zum Einfluss der Kraftstoffqualitaet auf die Abgasemissionen moderner Fahrzeugdieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Dabelstein, W.E.A.; Cooke, J.A.; Marriott, J.M.

    1991-12-01

    Compared to a market average baseline fuel quality, improvements in terms of ignition quality and volatility resulted in significant reductions of CO, HC and particulate emissions. It was also demonstrated that the previously predicted long term fuel quality deterioration would habe been detrimental from the point of view of exhaust emissions. The influence of fuel quality on particulate emissions can be described by conventional properties without reference to aromatic content, which is difficult to define and measure unambiguously. Fuel sulphur level is also seen to be an important variable as far as particulate emissions are concerned and while Stage A (01.07.92) of the EEC proposal of 15th June 1990 exhaust emissions legislation for commercial vehicles maintains sulphur content at 0.3/0.2%wt, for Stage B (01.10.96), a reduction of sulphur content to 0.05%wt is required. The interdependence of fuel quality and exhaust emissions is taken into account in the European Standardisation of automotive gas oil for 1992/93 by more exacting requirements in terms of ignition quality, density, viscosity and volatility. The definition of an ideal diesel fuel with higher ignition quality and lower sulphur content must take into account not only economic but also environmental factors including refinery energy usage and carbon dioxide emissions. An ERGA-type study for diesel fuel production encompassing these factors as well as vehicle performance is needed. (orig./EF).

  7. Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust

    Science.gov (United States)

    Meisner, Gregory P; Yang, Jihui

    2014-02-11

    Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

  8. Validated analytical modeling of diesel engine regulated exhaust CO emission rate

    Directory of Open Access Journals (Sweden)

    Waleed F Faris

    2016-06-01

    Full Text Available Albeit vehicle analytical models are often favorable for explainable mathematical trends, no analytical model has been developed of the regulated diesel exhaust CO emission rate for trucks yet. This research unprecedentedly develops and validates for trucks a model of the steady speed regulated diesel exhaust CO emission rate analytically. It has been found that the steady speed–based CO exhaust emission rate is based on (1 CO2 dissociation, (2 the water–gas shift reaction, and (3 the incomplete combustion of hydrocarbon. It has been found as well that the steady speed–based CO exhaust emission rate based on CO2 dissociation is considerably less than the rate that is based on the water–gas shift reaction. It has also been found that the steady speed–based CO exhaust emission rate based on the water–gas shift reaction is the dominant source of CO exhaust emission. The study shows that the average percentage of deviation of the steady speed–based simulated results from the corresponding field data is 1.7% for all freeway cycles with 99% coefficient of determination at the confidence level of 95%. This deviation of the simulated results from field data outperforms its counterpart of widely recognized models such as the comprehensive modal emissions model and VT-Micro for all freeway cycles.

  9. Automotive Air Conditioning and Heating; Automotive Mechanics (Advanced): 9047.04.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to provide the student with all the foundations necessary to become employable in the automotive air conditioning and heating trade. The course of study includes an orientation to the world of work, the elementary physics of air conditioning and heating, and laboratory experiments…

  10. Schlieren imaging of microthruster exhausts for qualitative and quantitative analysis

    Science.gov (United States)

    Lekholm, Ville; Palmer, Kristoffer; Thornell, Greger

    2012-08-01

    Schlieren imaging is a method used to visualize differences in refractive index within a medium. It is a powerful and straightforward tool for sensitive and high-resolution visualization of, e.g., gas flows. Here, heated cold gas microthrusters were studied with this technique. The thrusters are manufactured using microelectromechanical systems technology and measure 22 × 22 × 0.85 mm3. The nozzles are approximately 20 µm wide at the throat and 350 µm wide at the exit. Through these studies, verification of the functionality of the thrusters and direct visualization of the thruster exhausts were possible. At atmospheric pressure, slipping of the exhaust was observed, due to severe overexpansion of the nozzle. In vacuum (3 kPa), the exhaust was imaged while feed pressure was varied from 100 to 450 kPa. The nozzle was overexpanded, and the flow was seen to be supersonic. The shock cell period, ranging from 320 to 610 µm, was linearly dependent on feed pressure. With activated heaters, the shock cell separation increased. The effect of the heaters was more prominent at low feed pressure, and an increase in specific impulse of 20% was calculated. It was also shown that schlieren imaging can be used to detect leaks, making it a valuable, safe and noninvasive aid in quality control of the thrusters.

  11. Electrohydraulic Forming of Near Net Shape Automotive Panels

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-01-01

    This factsheet describes a research project whose goal is to develop the electrohydraulic forming (EHF) process as a near net shape automotive panel manufacturing technology that simultaneously reduces the energy embedded in vehicles and the energy consumed while producing automotive structures.

  12. Building best practice automotive after sales network : The Volkswagen case

    NARCIS (Netherlands)

    Mikolik, Gerlinde

    2017-01-01

    This thesis aims to analyze the service operations and networks in the automotive industry as research into the automotive After Sales service network lacks the necessary fine details and industrial feedback. Its purpose is to present the insights and lessons learned from studying the After Sales se

  13. 76 FR 40591 - Coordinating Policies on Automotive Communities and Workers

    Science.gov (United States)

    2011-07-11

    ... Policies on Automotive Communities and Workers By the authority vested in me as President by the.... Over the last decade, the United States has experienced a decline in employment in the automotive industry and among part suppliers. This decline accelerated dramatically from 2008 to 2009, with more...

  14. An Overview of NASA Automotive Component Reliability Studies

    Science.gov (United States)

    Sampson, Michael J.

    2016-01-01

    The results of NASAs studies into the appropriateness of using US Automotive electronic parts in NASA spaceflight systems will be presented. The first part of the presentation provides an overview of the United States Automotive Electronics Councils AECQ standardization program, the second part provides a summary of the results of NASAs procurement and testing experiences and other lessons learned along with preliminary test results.

  15. Dynamic characteristics of automotive steel sheets

    Directory of Open Access Journals (Sweden)

    M. Mihaliková

    2016-10-01

    Full Text Available The aim of this experimental research was to perform an analysis of deformation characteristics on two different types of steel: IF steel, and micro-alloyed steel were used automotive industry. For that purpose changes of properties of these materials were carried out by static 10-3 · s-1 and dynamic 103 · s-1 strain rate assess its plastic properties. Vickers micro hardness test was carried out by the static and dynamic loading condition and describes different hardness distribution. The higher strain hardening of materials was obtained too that was confirmed by distribution of dislocations.

  16. Industrial thermoforming simulation of automotive fuel tanks

    Energy Technology Data Exchange (ETDEWEB)

    Wiesche, S. aus der [Kautex Textron GmbH and Co., Bonn (Germany)

    2004-11-01

    An industrial thermoforming simulation with regard to automotive plastic fuel tanks is presented including all relevant process stages. The radiative and conductive heat transfer during the reheat stage, the deformation and stress behaviour during the forming stage, and the final cooling stage are simulated. The modelling of the thermal and rheological behaviour of the involved material is investigated in greater detail. By means of experimental data it is found that modelling of the phase transition during the process is highly important for predicting correct wall thickness distributions. (author)

  17. Characterization of three-way automotive catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kenik, E.A.; More, K.L. [Oak Ridge National Laboratory, TN (United States); LaBarge, W. [General Motors-AC Delco Systems, Flint, MI (United States)] [and others

    1995-05-01

    This has been the second year of a CRADA between General Motors - AC Delco Systems (GM-ACDS) and Martin Marietta Energy Systems (MMES) aimed at improved performance/lifetime of platinum-rhodium based three-way-catalysts (TWC) for automotive emission control systems. While current formulations meet existing emission standards, higher than optimum Pt-Rh loadings are often required. In additionk, more stringent emission standards have been imposed for the near future, demanding improved performance and service life from these catalysts. Understanding the changes of TWC conversion efficiency with ageing is a critical need in improving these catalysts.

  18. Advanced sheet steels for automotive applications

    Science.gov (United States)

    Fekete, James R.; Strugala, Donald C.; Yao, Zhicong

    1992-01-01

    Vacuum degassing has recently been used by sheet steel producers to improve their products' ductility and strength. Carbon contents can be reduced by an order of magnitude to less than 0.0030 wt.%. Through careful alloying and processing, a range of new steel products has been developed for the automotive industry. These products include interstitial-free, deep-drawing-quality steels; formable, high-strength, interstitial-free steels; and bake-hardenable steels. This article summarizes the chemistry and processing needed to produce these products.

  19. Systems Approach for Designing Cordierite Ceramic Converters for Automotive Emissions Control

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The successful application of porous cordierite ceramic monolithic converters for automotive emissions control over the past 24 years in North America has been attributed to systems approach for optimizing the total converter package from reliability point of view. The systems approach examines the interaction between various components of monolithic converter package, namely the cordierite substrate, the alumina washcoat, the braided wire-rope end seals, the intumescent ceramic mat or steel wiremesh, and the stainless steel can, from long-term durability point of view. Such an approach has also proven successful in the Japanese, European, Korean and South American automotive industries. The key objectives of this paper are: i) to describe Corning′s methodology for assessing the impact of alumina washcoat on mechanical and thermal integrities of cordierite converter; ii) to examine the impact of mount density of ceramic mat or steel wiremesh on containment of cordierite converter against engine vibrations, gas pulsations and thermal gradients, and; iii) to analyze the impact of can design on strength and thermal shock resistance of cordierite converter. The above objectives will be illustrated by several examples of successful converter design for automobiles. This paper also addresses the Chinese automotive converter requirements and how they might be met via systems approach.

  20. Multispectral imaging of aircraft exhaust

    Science.gov (United States)

    Berkson, Emily E.; Messinger, David W.

    2016-05-01

    Aircraft pollutants emitted during the landing-takeoff (LTO) cycle have significant effects on the local air quality surrounding airports. There are currently no inexpensive, portable, and unobtrusive sensors to quantify the amount of pollutants emitted from aircraft engines throughout the LTO cycle or to monitor the spatial-temporal extent of the exhaust plume. We seek to thoroughly characterize the unburned hydrocarbon (UHC) emissions from jet engine plumes and to design a portable imaging system to remotely quantify the emitted UHCs and temporally track the distribution of the plume. This paper shows results from the radiometric modeling of a jet engine exhaust plume and describes a prototype long-wave infrared imaging system capable of meeting the above requirements. The plume was modeled with vegetation and sky backgrounds, and filters were selected to maximize the detectivity of the plume. Initial calculations yield a look-up chart, which relates the minimum amount of emitted UHCs required to detect the presence of a plume to the noise-equivalent radiance of a system. Future work will aim to deploy the prototype imaging system at the Greater Rochester International Airport to assess the applicability of the system on a national scale. This project will help monitor the local pollution surrounding airports and allow better-informed decision-making regarding emission caps and pollution bylaws.

  1. Eye and respiratory irritants in jet engine exhaust.

    Science.gov (United States)

    Miyamoto, Y

    1986-11-01

    It has been noted that eye and respiratory irritation frequently occurred in the ground crews and pilots working on the field behind an aircraft with a low smoke combustor (LSC) engine. This study was attempted to analyze the exhaust sampled at about 50 m behind the LSC J79 engines at idle power setting by means of a high performance liquid chromatography (HPLC) technique. Nine kinds of lower aliphatic carbonyl compound (seven aldehydes and two ketones) were identified. The concentration of formaldehyde was the highest among them, showing the value above the threshold reported by previous investigators. Concentration of NOx was simultaneously measured by a gas detector tube in the same sample. The exhaust of a conventional J79 engine, which has rarely caused irritation, was also analyzed by the same technique and the results were compared. It was concluded that formaldehyde plays a major role in causing irritation.

  2. Desulphurization of exhaust gases in chemical processes

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, K.; Wischnewski, W.

    1981-01-01

    The sulfur content of exhaust gases can be reduced by: desulphurization of fuels; modification of processes; or treatment of resultant gases. In this paper a few selected examples from the chemical industry in the German Democratic Republic are presented. Using modified processes and treating the resultant gases, the sulphuric content of exhaust gases is effectively reduced. Methods to reduce the sulfur content of exhaust gases are described in the field of production of: sulphuric acid; viscose; fertilizers; and paraffin.

  3. Mechanical vibrations emitted by Husqvarna 357XP power saw with resonance exhaust system

    Directory of Open Access Journals (Sweden)

    Roman Wojtkowiak

    2012-09-01

    Full Text Available The paper presents a concept, known for many years and commonly applied in the automotive industry, to improve engine performance of the chain saw (higher maximum power rating and more advantageous torque parameters. The analyses were conducted on a Husqvarna 357XP power saw, equipped with a modified resonance exhaust system with variable dimensions. The system was designed at the Department of Forest Technology (Poznań University of Life Sciences to the already existing power unit, with specific timing gear, size, shape and angle of cylinder ducts. The aim of the study was to assess mechanical vibrations, recorded at the handles of a Husqvarna 357XP chain saw, at three operation regimes of its engine. Analyses were conducted on the same chain saw equipped with an original vibration damper and a modified resonance system in its three variants and it may be stated that the introduction of design changes in the exhaust system has a significant effect on an increase in the power and torque of the tested chain saw. On the basis of recorded results it may be stated that the acceleration of vibrations both on the rear and front handles of the chain saw significantly differs in case of the application of the modified exhaust system in comparison to the original vibration damper. The application of the resonance system in the chain saw exhaust system leads to increased mechanical vibrations produced by the machine. However, it needs to be observed that the volume of the admissible standard is exceeded both for the chainsaw with the original damper and that with the used exhaust system. Vibrations of the chain saw with a resonance damper on the front handle are higher than those of the chain saw with the original damper on average by 28%, while on the rear handle it is by 27%. We need to stress the significantly higher difference when applying in the chain saw modified damper variants 1 and 3 in comparison with the original design.

  4. Graduate Automotive Technology Education (GATE) Center

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Hodgson; David Irick

    2005-09-30

    The Graduate Automotive Technology Education (GATE) Center at the University of Tennessee, Knoxville has completed its sixth year of operation. During this period the Center has involved thirteen GATE Fellows and ten GATE Research Assistants in preparing them to contribute to advanced automotive technologies in the center's focus area: hybrid drive trains and control systems. Eighteen GATE students have graduated, and three have completed their course work requirements. Nine faculty members from three departments in the College of Engineering have been involved in the GATE Center. In addition to the impact that the Center has had on the students and faculty involved, the presence of the center has led to the acquisition of resources that probably would not have been obtained if the GATE Center had not existed. Significant industry interaction such as internships, equipment donations, and support for GATE students has been realized. The value of the total resources brought to the university (including related research contracts) exceeds $4,000,000. Problem areas are discussed in the hope that future activities may benefit from the operation of the current program.

  5. Pedestrian recognition using automotive radar sensors

    Science.gov (United States)

    Bartsch, A.; Fitzek, F.; Rasshofer, R. H.

    2012-09-01

    The application of modern series production automotive radar sensors to pedestrian recognition is an important topic in research on future driver assistance systems. The aim of this paper is to understand the potential and limits of such sensors in pedestrian recognition. This knowledge could be used to develop next generation radar sensors with improved pedestrian recognition capabilities. A new raw radar data signal processing algorithm is proposed that allows deep insights into the object classification process. The impact of raw radar data properties can be directly observed in every layer of the classification system by avoiding machine learning and tracking. This gives information on the limiting factors of raw radar data in terms of classification decision making. To accomplish the very challenging distinction between pedestrians and static objects, five significant and stable object features from the spatial distribution and Doppler information are found. Experimental results with data from a 77 GHz automotive radar sensor show that over 95% of pedestrians can be classified correctly under optimal conditions, which is compareable to modern machine learning systems. The impact of the pedestrian's direction of movement, occlusion, antenna beam elevation angle, linear vehicle movement, and other factors are investigated and discussed. The results show that under real life conditions, radar only based pedestrian recognition is limited due to insufficient Doppler frequency and spatial resolution as well as antenna side lobe effects.

  6. Energy economics of automotive power generation

    Energy Technology Data Exchange (ETDEWEB)

    Tipler, W.

    1975-01-01

    Replacement of 50 percent of the liquid fuels used in static industrial applications by solid fuel would reduce the crude oil offtake by 17 percent; elimination of the demand for high octane gasoline would increase the thermal efficiency of the production of road fuels by 5 percent; replacement of the gasoline engine by diesel or stratified charge engines could reduce the total consumption of automotive fuels by 20 and 10 percent, respectively, and reduce refinery intake by over 25 and 20 percent, respectively; adequate gasoline substitutes can be produced from coal using known technology, but the over-all thermal efficiency of this use of coal is unacceptable because of the 30 to 40 percent efficiency of the fuel production process and the moderate fuel economy of the gasoline engine; replacement of the gasoline engine by the diesel engine could reduce the consumption of coal for automotive purposes by 20 percent and replacement of both by the spark-assisted diesel engine could reduce consumption by 60 percent; the Stirling engine is comparable to the spark-assisted diesel but is bulky and unproven.

  7. Requirements for future automotive batteries - a snapshot

    Science.gov (United States)

    Karden, Eckhard; Shinn, Paul; Bostock, Paul; Cunningham, James; Schoultz, Evan; Kok, Daniel

    Introduction of new fuel economy, performance, safety, and comfort features in future automobiles will bring up many new, power-hungry electrical systems. As a consequence, demands on automotive batteries will grow substantially, e.g. regarding reliability, energy throughput (shallow-cycle life), charge acceptance, and high-rate partial state-of-charge (HRPSOC) operation. As higher voltage levels are mostly not an economically feasible alternative for the short term, the existing 14 V electrical system will have to fulfil these new demands, utilizing advanced 12 V energy storage devices. The well-established lead-acid battery technology is expected to keep playing a key role in this application. Compared to traditional starting-lighting-ignition (SLI) batteries, significant technological progress has been achieved or can be expected, which improve both performance and service life. System integration of the storage device into the vehicle will become increasingly important. Battery monitoring systems (BMS) are expected to become a commodity, penetrating the automotive volume market from both highly equipped premium cars and dedicated fuel-economy vehicles (e.g. stop/start). Battery monitoring systems will allow for more aggressive battery operating strategies, at the same time improving the reliability of the power supply system. Where a single lead-acid battery cannot fulfil the increasing demands, dual-storage systems may form a cost-efficient extension. They consist either of two lead-acid batteries or of a lead-acid battery plus another storage device.

  8. NICKEL AS AN ALTERNATIVE AUTOMOTIVE BODY MATERIAL

    Directory of Open Access Journals (Sweden)

    T. Joseph Sahaya Anand

    2012-06-01

    Full Text Available The study of the thermal, chemical and mechanical properties of pure nickel as an alternative automotive body material is presented in this paper. Current automotive components mainly use steel as the body material. Due to the increasing demand for high performance and related issues, interest is moving towards alternative materials to steel. The hardness values of both heat-treated and non-heat treated pure nickel do not change after annealing; the hardness values are in the range of 118 to 123 HV. As the annealing temperature increases, the ultimate tensile strength, yield strength and Young’s modulus decrease, which indicates that the ductility increases. The highest ultimate tensile strength of pure nickel at 300 °C annealed temperature is 758.78 MPa. X-ray diffraction (XRD studies confirmed pure nickel as a face centred cubic (FCC structure with a lattice constant measured as 0.3492 nm for the unannealed sample, which increases to 0.3512 nm for the annealed samples. The corrosion rate of both annealed and non-heat treated pure nickel is in the range of 0.0266 to 0.048 mm/year.

  9. Specifications for gas treatment apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Teraoka, Yuden; Yoshigoe, Akitaka [Japan Atomic Energy Research Inst., Kansai Research Establishment, Synchrotron Radiation Research Center, Mikazuki, Hyogo (Japan)

    2001-03-01

    A surface reaction analysis apparatus was installed as an experimental end-station for the study of surface chemistry at the JAERI soft x-ray beamline in the SPring-8. The surface reaction analysis apparatus is devoted to the study of reaction mechanisms on solid surfaces with incident gas molecules. It is necessary to supply reagent gases to the apparatus. Chlorine and metal organic molecules will be used in the apparatus as well as oxygen molecules. Since the chlorine is corrosive and virulent, the metal organic molecules are flammable, the satiety treatments and the removal of virulence from the exhaust gas are needed. This gas supply and exhaust system is mainly composed of a cylinder cabinet, a gas mixer, a virulence removal cell and an urgent virulence removal apparatus. The former three devices are considered to take a countermeasure against virulent gas leak. The detail specifications concerning the gas supply and exhaust system are described in this report. (author)

  10. Design and Experiment for Exhaust Pipes of Pressure Wave Supercharged Diesel Engine

    Institute of Scientific and Technical Information of China (English)

    JI Chang-wei; ZHAO Yong; MA Hui; HAN Ai-min; LI Chao

    2007-01-01

    NOx and soot emissions from diesel engines can be greatly reduced by pressure wave supercharging (PWS). The diesel engine matched with PWS needs redesigning its exhaust pipes. Except for meeting the installation requirements, the exhaust gas must be stable in pressure before rushing into PWS. In this paper the lateral and center ported divergent exhaust pipes are designed, modeled geometrically and analyzed structurally based on a 3-D design software-CATIA to determine the structure of two exhaust pipes having the required inner volume. Then flow analysis for two exhaust pipes is done using a flow analysis software-ANASYS. Moreover, the optimal exhaust pipes are determined comprehensively and cast for engine test. Engine test results show that PWS is superior to turbocharging at low engine speeds and inferior to turbocharging in power and emissions at medium-to-high engine speeds. The performance of PWS engine under high speed operating conditions can be improved by contriving larger surge volume intake and exhaust pipes.

  11. Development of Auto Exhaust Catalysts and Associated Application of Rare Earths in China

    Institute of Scientific and Technical Information of China (English)

    吴晓东; 翁端

    2004-01-01

    There are at least three obvious trends in the developments of automotive market in China: the evolution of emission standards from Euro Ⅱ to Euro Ⅲ, the demand of lean-burn gasoline engine and the time of diesel vehicles. The latest application and advances of exhaust catalysts by Chinese researchers, using some high effcient, economical and durable methods to meet these changes in emission regulations laws and engine technologies, were described. Rare earth oxides, such as lanthana, ceria-based solid solutions and perovskite-type oxides, are widely used as excellent promoters for thermal stability, oxygen storage capacity and oxidation/reduction activity in these catalysts. Four phases in the development of the auto exhaust catalyst industry in China since the mid 1970s were reviewed. It is argued that China will become the center of global auto exhaust catalysts industry in the next decades with its economic, technical and environmental incentives, which greatly depends on the research and development of rare earth.

  12. Utilization of Infrared Fiber Optic in the Automotive Industry

    Science.gov (United States)

    Tucker, Dennis S.; Brantley, Lott W. (Technical Monitor)

    2001-01-01

    Fiber optics are finding a place in the automotive industry. Illumination is the primary application today. Soon, however, fiber optics will be used for data communications and sensing applications. Silica fiber optics and plastic fibers are sufficient for illumination and communication applications however, sensing applications involving high temperature measurement and remote gas analysis would benefit from the use of infrared fiber optics. Chalcogonide and heavy metal fluoride glass optical fibers are two good candidates for these applications. Heavy metal fluoride optical fibers are being investigated by NASA for applications requiring transmission in the infrared portion of the electromagnetic spectrum. Zirconium-Barium-Lanthanum-Aluminum-Sodium-Fluoride (ZBLAN) is one such material which has been investigated. This material has a theoretical attenuation coefficient 100 times lower than that of silica and transmits into the mid-IR. However, the measured attenuation coefficient is higher than silica due to impurities and crystallization. Impurities can be taken care of by utilizing cleaner experimental protocol. It has been found that crystallization can be suppressed by processing in reduced gravity. Fibers processed in reduced gravity on the KC135 reduced gravity aircraft were found to be free of crystals while those processed on the ground were found to have crystals. These results will be presented along with plans for producing continuous lengths of ZBLAN optical fiber on board the International Space Station.

  13. INVESTIGATION OF PEM FUEL CELL FOR AUTOMOTIVE USE

    Directory of Open Access Journals (Sweden)

    A. K. M. Mohiuddin

    2015-11-01

    Full Text Available This paper provides a brief investigation on suitability of Proton-exchange  membrane fuel cells (PEMFCs as the source of power for transportation purposes. Hydrogen is an attractive alternative transportation fuel. It is the least polluting fuel that can be used in an internal combustion engine (ICE and it is widely available. If hydrogen is used in a fuel cell which converts the chemical energy of hydrogen into electricity, (NOx emissions are eliminated. The investigation was carried out on a  fuel cell car model by implementing polymer electrolyte membrane (PEM types of fuel cell as the source of power to propel the prototype car. This PEMFC has capability to propel the electric motor by converting chemical energy stored in hydrogen gas into useful electrical energy. PEM fuel cell alone is used as the power source for the electric motor without the aid of any other power source such as battery associated with it. Experimental investigations were carried out to investigate the characteristics of fuel cell used and the performance of the fuel cell car. Investigated papameters are the power it develops, voltage, current and speed it produces under different load conditions. KEYWORDS: fuel cell; automotive; proton exchange membrane; polymer electrolyte membrane; internal combustion engine

  14. Numerical and experimental characterizations of automotive catalytic converter internal flows

    Science.gov (United States)

    Lai, M.-C.; Lee, T.; Kim, J.-Y.; Cheng, C.-Y.; Li, P.; Chui, G.

    1992-07-01

    The three-dimensional non-reacting flow field inside a typical dual-monolith automotive catalytic converter subject to different flow and structural conditions is studied numerically and experimentally. In the numerical analysis, the monolith brick resistance is formulated by using the pressure gradient of a fully developed laminar duct-flow and is corrected for the entrance effect. This correlation is found to agree with experimental pressure drop data and is introduced as an additional source term into the governing nondimensional momentum equation within the monolith brick. Simulation results show that the level of gas flow maldistribution in the monolith depends on the inlet flow Reynolds number, the brick resistance, and the inlet pipe length and its bending angles. The flow distribution is found to be more uniform inside a monolith brick with a lower inlet flow Reynolds number, a larger brick resistance, a shorter inlet pipe, and a straight inlet pipe instead of a bent one. Point-velocity measurements using laser Doppler velocimetry and smoke-flow visualization techniques at selected flow sections are also conducted to verify the simulation results.

  15. On-board ammonia generation and exhaust after treatment system using same

    Science.gov (United States)

    Driscoll, Josh; Robel, Wade J.; Brown, Cory A.; Urven, Jr., Roger L.

    2010-03-30

    Often NOx selective catalysts that use ammonia to reduce NOx within exhaust to a harmless gas require on-board storage of ammonia which can be hazardous and inconvenient. In order to generate ammonia in exhaust, the present disclosure increases a NOx concentration in exhaust from at least one combustion chamber, at least in part, by injecting fuel in a predetermined increased NOx generation sequence that includes a first injection during non-auto ignition conditions and a second injection during auto ignition conditions. At least a portion of the NOx is converted to ammonia by passing at least a portion of the exhaust with the increased NOx concentration over an ammonia-producing catalyst.

  16. Transport of exhaust products in the near trail of a jet engine under atmospheric conditions

    Energy Technology Data Exchange (ETDEWEB)

    Karcher, B. [Universitat Muenchen, Freising (Germany)

    1994-07-01

    The transport of exhaust effluents and the possibility of water ice contrail formation are investigated under the specific fluid dynamical conditions in the near exhaust trail of a subsonic jet aircraft at cruise altitude. By means of a computational model describing the two-dimensional turbulent mixing of a single jet of hot exhaust gas with the atmosphere, representative results are discussed on the temperature and saturation ratio evolutions of air parcels in the jet flow field as well as on radial distributions of exhaust effluents undergoing chemical reactions behind the nozzle exit with prescribed, typical net reaction rates. The results underline the importance of a simultaneous treatment of spatially resolved jet expansion together with microphysical and chemical processes, because this coupling leads to distinct concentration patterns for various classes of chemical reactants and is essential for the detailed prediction of contrails.

  17. United States Automotive Materials Partnership LLC (USAMP)

    Energy Technology Data Exchange (ETDEWEB)

    United States Automotive Materials Partnership

    2011-01-31

    The United States Automotive Materials Partnership LLC (USAMP) was formed in 1993 as a partnership between Chrysler Corporation, Ford Motor Company, and General Motors Corporation. Since then the U.S. Department of Energy (DOE) has supported its activities with funding and technical support. The mission of the USAMP is to conduct vehicle-oriented research and development in materials and materials processing to improve the competitiveness of the U.S. Auto Industry. Its specific goals are: (1) To conduct joint research to further the development of lightweight materials for improved automotive fuel economy; and (2) To work with the Federal government to explore opportunities for cooperative programs with the national laboratories, Federal agencies such as the DOE and universities. As a major component of the DOE's Office of FreedomCAR and Vehicle Technologies Program (FCVT) collaboration with the USAMP, the Automotive Lightweighting Materials (ALM) program focuses on the development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost. The FCVT was announced in FY 2002 and implemented in FY 2003, as a successor of the Partnership for a New Generation of Vehicles (PNGV), largely addressed under the first Cooperative Agreement. This second USAMP Cooperative Agreement with the DOE has expanded a unique and valuable framework for collaboratively directing industry and government research efforts toward the development of technologies capable of solving important societal problems related to automobile transportation. USAMP efforts are conducted by the domestic automobile manufacturers, in collaboration with materials and manufacturing suppliers, national laboratories, universities, and other technology or trade organizations. These interactions provide a direct route for implementing newly

  18. Bosch automotive electrics and automotive electronics systems and components, networking and hybrid drive

    CERN Document Server

    2014-01-01

    The significance of electrical and electronic systems has increased considerably in the last few years and this trend is set to continue. The characteristics feature of innovative systems is the fact that they can work together in a network. This requires powerful bus systems that the electronic control units can use to exchange information. Networking and the various bus systems used in motor vehicles are the prominent new topic in the 5th edition of the "Automotive Electric, Automotive Electronics" technical manual. The existing chapters have also been updated, so that this new edition brings the reader up to date on the subjects of electrical and electronic systems in the motor vehicle. Content Electrical and electronical systems – Basic principles of networking - Examples of networked vehicles – Bus systems – Architecture of electronic systems – Mechatronics – Elektronics – Electronic control Units – Software – Sensors – Actuators – Hybrid drives – Vehicle electrical system – Start...

  19. Advances in LEDs for automotive applications

    Science.gov (United States)

    Bhardwaj, Jy; Peddada, Rao; Spinger, Benno

    2016-03-01

    High power LEDs were introduced in automotive headlights in 2006-2007, for example as full LED headlights in the Audi R8 or low beam in Lexus. Since then, LED headlighting has become established in premium and volume automotive segments and beginning to enable new compact form factors such as distributed low beam and new functions such as adaptive driving beam. New generations of highly versatile high power LEDs are emerging to meet these application needs. In this paper, we will detail ongoing advances in LED technology that enable revolutionary styling, performance and adaptive control in automotive headlights. As the standards which govern the necessary lumens on the road are well established, increasing luminance enables not only more design freedom but also headlight cost reduction with space and weight saving through more compact optics. Adaptive headlighting is based on LED pixelation and requires high contrast, high luminance, smaller LEDs with high-packing density for pixelated Matrix Lighting sources. Matrix applications require an extremely tight tolerance on not only the X, Y placement accuracy, but also on the Z height of the LEDs given the precision optics used to image the LEDs onto the road. A new generation of chip scale packaged (CSP) LEDs based on Wafer Level Packaging (WLP) have been developed to meet these needs, offering a form factor less than 20% increase over the LED emitter surface footprint. These miniature LEDs are surface mount devices compatible with automated tools for L2 board direct attach (without the need for an interposer or L1 substrate), meeting the high position accuracy as well as the optical and thermal performance. To illustrate the versatility of the CSP LEDs, we will show the results of, firstly, a reflector-based distributed low beam using multiple individual cavities each with only 20mm height and secondly 3x4 to 3x28 Matrix arrays for adaptive full beam. Also a few key trends in rear lighting and impact on LED light

  20. MICROALLOYED STEELS FOR THE AUTOMOTIVE INDUSTRY

    Directory of Open Access Journals (Sweden)

    Debanshu Bhattacharya

    2014-12-01

    Full Text Available Two major drivers for the use of newer steels in the automotive industry are fuel efficiency and increased safety performance. Fuel efficiency is mainly a function of weight of steel parts, which in turn, is controlled by gauge and design. Safety is determined by the energy absorbing capacity of the steel used to make the part. All of these factors are incentives for the U.S. automakers to use both Highly Formable and Advanced High Strength Steels (AHSS to replace the conventional steels used to manufacture automotive parts in the past. AHSS is a general term used to describe various families of steels. The most common AHSS is the dual-phase steel that consists of a ferrite-martensite microstructure. These steels are characterized by high strength, good ductility, low tensile to yield strength ratio and high bake hardenability. Another class of AHSS is the complex-phase or multi-phase steel which has a complex microstructure consisting of various phase constituents and a high yield to tensile strength ratio. Transformation Induced Plasticity (TRIP steels is another class of AHSS steels finding interest among the U.S. automakers. These steels consist of a ferrite-bainite microstructure with significant amount of retained austenite phase and show the highest combination of strength and elongation, so far, among the AHSS in use. High level of energy absorbing capacity combined with a sustained level of high n value up to the limit of uniform elongation as well as high bake hardenability make these steels particularly attractive for safety critical parts and parts needing complex forming. A relatively new class of AHSS is the Quenching and Partitioning (Q&P steels. These steels seem to offer higher ductility than the dual-phase steels of similar strengths or similar ductility as the TRIP steels at higher strengths. Finally, martensitic steels with very high strengths are also in use for certain parts. The most recent initiative in the area of AHSS

  1. Vital exhaustion and risk for cancer

    DEFF Research Database (Denmark)

    Bergelt, Corinna; Christensen, Jane Hvarregaard; Prescott, Eva;

    2005-01-01

    Vital exhaustion, defined as feelings of depression and fatigue, has previously been investigated mainly as a risk factor for cardiovascular disease. The authors investigated the association between depressive feelings and fatigue as covered by the concept of vital exhaustion and the risk...

  2. 49 CFR 393.83 - Exhaust systems.

    Science.gov (United States)

    2010-10-01

    ... would likely result in burning, charring, or damaging the electrical wiring, the fuel supply, or any... immediately below the fuel tank or the fuel tank filler pipe. (c) The exhaust system of a bus powered by a... bus. (d) The exhaust system of a bus using fuels other than gasoline shall discharge to the...

  3. Radiation characteristics of intermittence exhaust noise

    Institute of Scientific and Technical Information of China (English)

    ZHAO Shengdun; SHANG Chunyang; ZHAO Zhigang; SHI Weixiang

    2000-01-01

    Aerodynamic characteristics, the noise characteristics in the course of intermittence exhaust are investigated and the expressions for sound pressure level of the noise generated by single-pole source and quadrupole source in the intermittence exhaust noise are established. The effects of all parameters in pneumatic system on the noise are also comprehensively studied.

  4. Carbon fiber reinforced thermoplastic composites for future automotive applications

    Science.gov (United States)

    Friedrich, K.

    2016-05-01

    After a brief introduction to polymer composite properties and markets, the state of the art activities in the field of manufacturing of advanced composites for automotive applications are elucidated. These include (a) long fiber reinforced thermoplastics (LFT) for secondary automotive components, and (b) continuous carbon fiber reinforced thermosetting composites for car body applications. It is followed by future possibilities of carbon fiber reinforced thermoplastic composites for e.g. (i) crash elements, (ii) racing car seats, and (iii) production and recycling of automotive fenders.

  5. Hydrogenated nitrile rubber for improved durability of automotive rubber parts

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, J.; Leibbrandt, F.; Thoermer, J.

    1987-01-01

    Rubber articles with improved heat resistance and better performance characteristics are becoming of increasing importance for the automotive industry. A new type of elastomer has therefore been developed based on saturated hydrocarbon backbone - for improved heat resistance - with nitrile side groups providing good resistance to swelling. Some of the typical characteristics of hydrogenated nitrile rubber (HNBR) vulcanizates such as good physical properties pattern at elevated low temperatures dynamic properties, ozone resistance and swelling in automotive fluids are discussed. Potential applications are suggested to improve the performance of various rubber parts used in automotive applications such as high performance seals.

  6. Automotive Technology Evolved by Electrical and Electronic Systems

    Science.gov (United States)

    Teratani, Tatsuo; Okuma, Shigeru

    Automotive electrical and electronic systems, e.g. EHV, FCV, future X-By-Wire, have recently been introduced or planned in place of mechanical systems. Drivers are demanding environmental performance (fuel consumption and weight reduction), safety and comfort. For general use of the new technologies, evolution of the automotive technology is required, including energy conversion efficiency improvement, size and weight reduction of components, cost reduction and high reliability. This paper discusses and summarizes the next generation power systems, the future vehicle image, power source combinations, and problems to be solved for development of automotive electronics.

  7. Study and management of atmospheric exhaust gas in acetic acid fermentation developing a new process for alcohol vinegar production; Etude et maitrise des rejets atmospheriques en vinaigrerie, developpement d'un procede nouveau de conduite de la fermentation acetique

    Energy Technology Data Exchange (ETDEWEB)

    Pochat Bohatier, C.

    1999-12-06

    The aim of the study was to examine emissions of volatile organic compounds (VOCs) during acetic (acid) fermentation. The first part of the study presents the methodology developed to reproduce production cycles for spirit vinegar and to analyse gas effluents. The second part describes the origin and quantification of the emissions (ethanol, acetic acid, acetaldehyde and ethyl acetate). The acetic acid is produced by bacterial metabolism while the ethyl acetate is a result of the chemical reaction of esterification. By modelling the emissions during batch processing we were able to identify the various parameters involved when VOCs are carried along by the fermentation gases. The quantities of ethyl acetate depend on the length of time the diluted alcohol is stored, and on its composition. By using a fed-batch method with a continuous supply of ethanol we could reduce alcohol emissions. The third part of the study develops the kinetics studies carried out to adapt the fed-batch process to acetic acid fermentation. The influence of ethanol, either in terms of deficiency or inhibition, is minimized between 8 and 16 g.1-1. A study of the growth rate of bacteria in relation to the amount of acetic acid showed that the latter was highly inhibitive. There is a critical concentration of acetic acid at which the growth of bacteria stops, and the death rate of the culture increases rapidly. The latter depends on the composition of the culture's medium; the corresponding pH of the concentration is between 2.25 and 2.28. By limiting the formation of ethyl acetate in the diluted alcohol and by controlling the concentration of ethanol at 16 g.l -1 per fermentation, the VOC emissions are reduced by 30% and the yield increases as a result. (author)

  8. A highly efficient six-stroke internal combustion engine cycle with water injection for in-cylinder exhaust heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Conklin, James C.; Szybist, James P. [Oak Ridge National Laboratory, 2360 Cherahala Blvd, Knoxville, TN 37932 (United States)

    2010-04-15

    A concept adding two strokes to the Otto or Diesel engine cycle to increase fuel efficiency is presented here. It can be thought of as a four-stroke Otto or Diesel cycle followed by a two-stroke heat recovery steam cycle. A partial exhaust event coupled with water injection adds an additional power stroke. Waste heat from two sources is effectively converted into usable work: engine coolant and exhaust gas. An ideal thermodynamics model of the exhaust gas compression, water injection and expansion was used to investigate this modification. By changing the exhaust valve closing timing during the exhaust stroke, the optimum amount of exhaust can be recompressed, maximizing the net mean effective pressure of the steam expansion stroke (MEP{sub steam}). The valve closing timing for maximum MEP{sub steam} is limited by either 1 bar or the dew point temperature of the expansion gas/moisture mixture when the exhaust valve opens. The range of MEP{sub steam} calculated for the geometry of a conventional gasoline engine and is from 0.75 to 2.5 bars. Typical combustion mean effective pressures (MEP{sub combustion}) of naturally aspirated gasoline engines are up to 10 bar, thus this concept has the potential to significantly increase the engine efficiency and fuel economy. (author)

  9. Downsizing assessment of automotive Stirling engines

    Science.gov (United States)

    Knoll, R. H.; Tew, R. C., Jr.; Klann, J. L.

    1983-01-01

    A 67 kW (90 hp) Stirling engine design, sized for use in a 1984 1440 kg (3170 lb) automobile was the focal point for developing automotive Stirling engine technology. Since recent trends are towards lighter vehicles, an assessment was made of the applicability of the Stirling technology being developed for smaller, lower power engines. Using both the Philips scaling laws and a Lewis Research Center (Lewis) Stirling engine performance code, dimensional and performance characteristics were determined for a 26 kW (35 hp) and a 37 kW (50 hp) engine for use in a nominal 907 kg (2000 lb) vehicle. Key engine elements were sized and stressed and mechanical layouts were made to ensure mechanical fit and integrity of the engines. Fuel economy estimates indicated that the Stirling engine would maintain a 30 to 45 percent fuel economy advantage comparable spark ignition and diesel powered vehicles in the 1984 period.

  10. An Assembly Line Balancing Problem Automotive Cables

    Directory of Open Access Journals (Sweden)

    Triki Hager

    2015-02-01

    Full Text Available In this paper, an Assembly Line Balancing Problem (ALBP is presented in a real-world automotive cables manufacturer company. This company found it necessary to balance its line, since it needs to increase the production rate. In this ALBP, the number of stations is known and the objective is to minimize cycle time where both precedence and zoning constrains must be satisfied. This problem is formulated as a binary linear program (BLP. Since this problem is NP-hard, an innovative Genetic Algorithm (GA is implemented. The full factorial design is used to obtain the better combination GA parameters and a simple convergence experimental study is performed on the stopping criteria to reduce computational time. Comparison of the proposed GA results with CPLEX software shows that, in a reasonable time, the GA generates consistent solutions that are very close to their optimal ones. Therefore, the proposed GA approach is very effective and competitive.

  11. Design of Polymer Coatings in Automotive Engines

    Institute of Scientific and Technical Information of China (English)

    LIAO Han-lin; ZHANG Ga; BORDES Jean-Michel; CHRISTIAN Coddet

    2004-01-01

    Driven by economical and ecological reasons, thermoplastics based coatings were more and more used in automotive engines. Two design concepts, flame spraying and serigraphy PEEK coatings on light metal substrate, were introduced in this paper. The friction and wear behavior of PEEK based coatings were investigated systematically. Coatings with different crystallinities can be obtained when cooling speed is controlled. Among three sprayed coatings considered with different crystallinities, the one with highest crystallinity exhibits best friction and wear behavior under dry sliding condition. Under lubricated sliding condition, however, the amorphous coating gives lower friction coefficient. The micron particles such as SiC,MoS2 and graphite in composite coatings can improve significantly the coating wear resistance and have a impact on coating friction behavior.

  12. Multi-channel automotive night vision system

    Science.gov (United States)

    Lu, Gang; Wang, Li-jun; Zhang, Yi

    2013-09-01

    A four-channel automotive night vision system is designed and developed .It is consist of the four active near-infrared cameras and an Mulit-channel image processing display unit,cameras were placed in the automobile front, left, right and rear of the system .The system uses near-infrared laser light source,the laser light beam is collimated, the light source contains a thermoelectric cooler (TEC),It can be synchronized with the camera focusing, also has an automatic light intensity adjustment, and thus can ensure the image quality. The principle of composition of the system is description in detail,on this basis, beam collimation,the LD driving and LD temperature control of near-infrared laser light source,four-channel image processing display are discussed.The system can be used in driver assistance, car BLIS, car parking assist system and car alarm system in day and night.

  13. Spectroscopic analysis of automotive engine oil

    Science.gov (United States)

    Dahmani, Rachid; Gupta, Neelam

    2002-02-01

    Infrared absorption spectroscopy (IR) and acousto-optic tunable filter (AOTF) technology were combined to develop a portable spectrophotometer for use in engine oil analysis to identify and quantify oil contaminants and residue products, Preliminary measurements were taken with a field-portable AOTF-based spectrometer (2 to 4.5 micrometers ) and an FTIR spectrometer (2 to 25 micrometers ) for comparison. Absorption spectra of used and unused oil samples were measured and compared to determine absorption changes between the various samples resulting from oil degradation and any chemical reactions that might have taken place during high- temperature engine lubrication. These preliminary results indicate that IR spectroscopy can be used for oil quality monitoring in automotive engines, which will help predict and prevent engine failure and degradation. This work can be extended to other remote sensing applications, such as the monitoring of environmental oil spills.

  14. Improvement of Automotive Part Supplier Performance Evaluation

    Science.gov (United States)

    Kongmunee, Chalermkwan; Chutima, Parames

    2016-05-01

    This research investigates the problem of the part supplier performance evaluation in a major Japanese automotive plant in Thailand. Its current evaluation scheme is based on experiences and self-opinion of the evaluators. As a result, many poor performance suppliers are still considered as good suppliers and allow to supply parts to the plant without further improvement obligation. To alleviate this problem, the brainstorming session among stakeholders and evaluators are formally conducted. The result of which is the appropriate evaluation criteria and sub-criteria. The analytical hierarchy process is also used to find suitable weights for each criteria and sub-criteria. The results show that a newly developed evaluation method is significantly better than the previous one in segregating between good and poor suppliers.

  15. Visual comparison testing of automotive paint simulation

    Science.gov (United States)

    Meyer, Gary; Fan, Hua-Tzu; Seubert, Christopher; Evey, Curtis; Meseth, Jan; Schnackenberg, Ryan

    2015-03-01

    An experiment was performed to determine whether typical industrial automotive color paint comparisons made using real physical samples could also be carried out using a digital simulation displayed on a calibrated color television monitor. A special light booth, designed to facilitate evaluation of the car paint color with reflectance angle, was employed in both the real and virtual color comparisons. Paint samples were measured using a multi-angle spectrophotometer and were simulated using a commercially available software package. Subjects performed the test quicker using the computer graphic simulation, and results indicate that there is only a small difference between the decisions made using the light booth and the computer monitor. This outcome demonstrates the potential of employing simulations to replace some of the time consuming work with real physical samples that still characterizes material appearance work in industry.

  16. Automotive radar - investigation of mutual interference mechanisms

    Science.gov (United States)

    Goppelt, M.; Blöcher, H.-L.; Menzel, W.

    2010-09-01

    In the past mutual interference between automotive radar sensors has not been regarded as a major problem. With an increasing number of such systems, however, this topic is receiving more and more attention. The investigation of mutual interference and countermeasures is therefore one topic of the joint project "Radar on Chip for Cars" (RoCC) funded by the German Federal Ministry of Education and Research (BMBF). RoCC's goal is to pave the way for the development of high-performance, low-cost 79 GHz radar sensors based on Silicon-Germanium (SiGe) Monolithic Microwave Integrated Circuits (MMICs). This paper will present some generic interference scenarios and report on the current status of the analysis of interference mechanisms.

  17. Aero and vibroacoustics of automotive turbochargers

    CERN Document Server

    Nguyen-Schäfer, Hung

    2013-01-01

    Aero and Vibroacoustics of Automotive Turbochargers is a topic involving aspects from the working fields of thermodynamics of turbomachinery, aerodynamics, rotordynamics, and noise propagation computation.   In this broadly interdisciplinary subject, thermodynamics of turbomachinery is used to design the turbocharger and to determine its operating conditions.  Aerodynamics is needed to study the compressor flow dynamics and flow instabilities of rotating stall and surge, which can produce growling and whining-type noises. Rotordynamics is necessary to study rotor unbalance and self-excited oil-whirl instabilities, which lead to whistling and constant tone-type noises in rotating floating oil-film type bearings. For the special case of turbochargers using ball bearings, some high-order harmonic and wear noises also manifest in the rotor operating range. Lastly, noise propagation computation, based on Lighthill’s analogy, is required to investigate airborne noises produced by turbochargers in passenger vehi...

  18. Advancing Material Models for Automotive Forming Simulations

    Science.gov (United States)

    Vegter, H.; An, Y.; ten Horn, C. H. L. J.; Atzema, E. H.; Roelofsen, M. E.

    2005-08-01

    Simulations in automotive industry need more advanced material models to achieve highly reliable forming and springback predictions. Conventional material models implemented in the FEM-simulation models are not capable to describe the plastic material behaviour during monotonic strain paths with sufficient accuracy. Recently, ESI and Corus co-operate on the implementation of an advanced material model in the FEM-code PAMSTAMP 2G. This applies to the strain hardening model, the influence of strain rate, and the description of the yield locus in these models. A subsequent challenge is the description of the material after a change of strain path. The use of advanced high strength steels in the automotive industry requires a description of plastic material behaviour of multiphase steels. The simplest variant is dual phase steel consisting of a ferritic and a martensitic phase. Multiphase materials also contain a bainitic phase in addition to the ferritic and martensitic phase. More physical descriptions of strain hardening than simple fitted Ludwik/Nadai curves are necessary. Methods to predict plastic behaviour of single-phase materials use a simple dislocation interaction model based on the formed cells structures only. At Corus, a new method is proposed to predict plastic behaviour of multiphase materials have to take hard phases into account, which deform less easily. The resulting deformation gradients create geometrically necessary dislocations. Additional micro-structural information such as morphology and size of hard phase particles or grains is necessary to derive the strain hardening models for this type of materials. Measurements available from the Numisheet benchmarks allow these models to be validated. At Corus, additional measured values are available from cross-die tests. This laboratory test can attain critical deformations by large variations in blank size and processing conditions. The tests are a powerful tool in optimising forming simulations

  19. Theoretical and experimental validation study on automotive air-conditioning based on heat pipe and LNG cold energy for LNG-fueled heavy vehicles

    Science.gov (United States)

    Deng, Dong; Cheng, Jiang-ping; Zhang, Sheng-chang; Ge, Fang-gen

    2017-03-01

    As a clean fuel, LNG has been used in heavy vehicles widely in China. Before reaching the engine for combustion, LNG store in a high vacuum multi-layer thermal insulation tank and need to be evaporated from its cryogenic state to natural gas. During the evaporation, the available cold energy of LNG has been calculated. The concept has been proposed that the separated type heat pipe technology is employed to utilize the available cold energy for automotive air-conditioning. The experiment has been conducted to validate the proposal. It is found that it is feasible to use the separated type heat pipe to convey the cold energy from LNG to automotive air-conditioning. And the cooling capacity of the automotive air-conditioning increase with the LNG consumption and air flow rate increasing.

  20. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases.

    Science.gov (United States)

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay.

  1. In situ measurements of HO{sub x} in super- and subsonic aircraft exhaust plumes

    Energy Technology Data Exchange (ETDEWEB)

    Hanisco, T.F.; Wennberg, P.O.; Cohen, R.C.; Anderson, J.G. [Harvard Univ., Cambridge, MA (United States). Dept. of Chemistry; Fahey, D.W.; Keim, E.R.; Gao, R.S.; Wamsley, R.C.; Donnelly, S.G.; Del Negro, L.A. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Aeronomy Lab.; and others

    1997-12-31

    Concentrations of HO{sub x} (OH and HO{sub 2}) have been obtained in the exhaust plumes of an Air France Concorde and a NASA ER-2 in the lower stratosphere and the NASA DC-8 in the upper troposphere using instruments aboard the NASA ER-2. These fast-time response in situ measurements are used in conjunction with simultaneous in situ measurements of other key exhaust species (NO, NO{sub 2}, NO{sub y}, H{sub 2}O, and CO) to analyze the emissions of HO{sub x} from each aircraft under a variety of conditions. The data are used to establish a general description of gas phase plume chemistry that is easily implemented in a photochemical model. This model is used to determine the amount of HO{sub x} emitted from the engines and the gas phase oxidation rates of nitrogen and sulfur species in the exhaust plumes. (author) 10 refs.

  2. Reducing drag of a commuter train, using engine exhaust momentum

    Science.gov (United States)

    Ha, Dong Keun

    The objective of this thesis was to perform numerical investigations of two different methods of injecting fluid momentum into the air flow above a commuter train to reduce its drag. Based on previous aerodynamic modifications of heavy duty trucks in improving fuel efficiency, two structural modifications were designed and applied to a Metrolink Services commuter train in the Los Angeles (LA) County area to reduce its drag and subsequently improve fuel efficiency. The first modification was an L-shaped channel, added to the exhaust cooling fan above the locomotive roof to divert and align the exhaust gases in the axial direction. The second modification was adding an airfoil shaped lid over the L-shape channel, to minimize the drag of the perturbed structure, and thus reduce the overall drag. The computational fluid dynamic (CFD) software CCM+ from CD-Adapco with the ?-? turbulence model was used for the simulations. A single train set which consists of three vehicles: one locomotive, one trailer car and one cab car were used. All the vehicles were modeled based on the standard Metrolink fleet train size. The wind speed was at 90 miles per hour (mph), which is the maximum speed for the Orange County Metrolink line. Air was used as the exhaust gas in the simulation. The temperature of the exhausting air emitting out of the cooling fan on the roof was 150 F and the average fan speed was 120 mph. Results showed that with the addition of the lid, momentum injection results in reduced flow separation and pressure recovery behind the locomotive, which reduces the overall drag by at least 30%.

  3. Conference on Future Automotive Technology Focus Electro Mobility

    CERN Document Server

    2013-01-01

    The increasing trend towards electric cars leads to several challenges for the automobile industry, research institutes and politics as well as for the society. Research and serial development move closer together to meet automotive standards with new components such as traction batteries integrated into hybrid and electrical drivetrains. Furthermore, the influence of e-mobility on the daily mobility behavior, the effects on the automotive supply chain and the impact on industrial production have to be taken into account. According to these complex aspects it is crucial to not only acquire specific knowledge in the particular fields but also to consider their functional interaction. Therefore, it seems essential to merge competence from science, economy and politics. This year, the annual „Conference on Future Automotive Technology“ as the follow-up of the „2. Automobiltechnisches Kolloquium München” focuses on the economical realization of widespread automotive electro mobility. Contents - Energy St...

  4. COMPOSITION CHANGES IN REFRIGERANT BLENDS FOR AUTOMOTIVE AIR CONDITIONING

    Science.gov (United States)

    Three refrigerant blends used to replace CFC-12 in automotive air conditioners were evaluated for composition changes due to typical servicing and leakage. When recommended service procedures were followed, changes in blend compositions were relatively small. Small changes in b...

  5. THE AUTOMOTIVE INDUSTRY IN A NEW TEHNOLOGICAL ERA

    Directory of Open Access Journals (Sweden)

    Simona Catalina ALBULESCU

    2014-11-01

    Full Text Available The business world is changing at an impressive speed: the global financial crisis, challenging markets, technology and talent crisis have a major impact on business. The last century can be associated with the triumph of the automobile industry. At the beginning of the 21st century the automotive industry has experienced one of the largest shifts in the automotive history. The new CO2 regulations on global level have determined the automotove industry to adopt new and original technologies faster than anticipated. The emerging tendency of car sharing in larger cities added to the media information related to the negative environmental effects of car mobility generate concerns that customers were seeking a replacement to the traditional, individual car ownership. The automotive industry will face challenging years ahead taking into consideration the shifting paradigm in auto-mobility. In this context, this article aims to provide a general perspective of the tendencies in the automotive sector.

  6. Firm and Product Heterogeneity in China's Automotive Exports

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2015-12-01

    Full Text Available The main purpose of this paper is to provide an in-depth analysis of the anatomy of China's automotive exports, relying on the literature on firm and product heterogeneity. For this purpose, we use highly disaggregated HS 8-digit product-category level data collected by the Chinese Customs Office for 2000 and 2008, and we distinguish between foreign firms, domestic public firms, and domestic private firms. We also decompose automotive products into autos and auto parts and components (P/C. We then calculate both the extensive margins – number of products exported – and intensive margins – average value of exports per product – of China's automotive exports. We estimate gravity equations to assess the determinants of China's exports of autos and auto P/C. Overall, our analysis yields a number of new, interesting stylized facts about China's automotive exports by confirming the need for taking into account different types of heterogeneity in analyzing international trade.

  7. Kenaf Fiber Composite in Automotive Industry: An Overview

    Directory of Open Access Journals (Sweden)

    F. Hassan

    2017-02-01

    Full Text Available Recently, natural fibers become an attractive to automotive industry as an alternative reinforcement for glass fiber reinforced thermoplastics. Additionally, natural fiber components in the automotive industry can provide numerous advantages compared to synthetic conventional such as reduction of weight and cost,  recyclability, renewability and in addition to eco-efficiency. Thus, the use of natural fibers in automotive industry has shown increasingly stringent environmental criteria. Furthermore, amongst grouped bast fibers such as flax, hemp, jute, ramie and kenaf; kenaf fiber seen as potential natural fiber with robust mechanical properties. Kenaf fiber had been explored to enhance desired mechanical properties as an automotive structural components. As usual, natural fibres have some issues and disadvantages when used as reinforcements for polymeric composites. Therefore, some modification performed on fibers such as chemical treatment was carried out. In addition, the use of a coupling agent and a plasticizer can also increase fiber-matrix adhesive bonding.

  8. Springback Compensation Process for High Strength Steel Automotive Parts

    Science.gov (United States)

    Onhon, M. Fatih

    2016-08-01

    This paper is about an advanced stamping simulation methodology used in automotive industry to shorten total die manufacturing times in a new vehicle project by means of benefiting leading edge virtual try-out technology.

  9. Recovery of exhaust waste heat for a hybrid car using steam turbine

    Science.gov (United States)

    Ababatin, Yasser

    A number of car engines operate with an efficiency rate of approximately 22% to 25% [1]. The remainder of the energy these engines generate is wasted through heat escape out of the exhaust pipe. There is now an increasing desire to reuse this heat energy, which would improve the overall efficiency of car engines by reducing their consumption of fuel. Another benefit is that such reuse would minimize harmful greenhouse gases that are emitted into the environment. Therefore, the purpose of this project is to examine how the wasted heat energy can be reused and/or recovered by use of a heat recovery system that would store this energy in a hybrid car battery. Green turbines will be analyzed as a possible solution to recycle the lost energy in a way that will also improve the overall automotive energy efficiency.

  10. Conductometric Sensor for Soot Mass Flow Detection in Exhausts of Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Markus Feulner

    2015-11-01

    Full Text Available Soot sensors are required for on-board diagnostics (OBD of automotive diesel particulate filters (DPF to detect filter failures. Widely used for this purpose are conductometric sensors, measuring an electrical current or resistance between two electrodes. Soot particles deposit on the electrodes, which leads to an increase in current or decrease in resistance. If installed upstream of a DPF, the “engine-out” soot emissions can also be determined directly by soot sensors. Sensors were characterized in diesel engine real exhausts under varying operation conditions and with two different kinds of diesel fuel. The sensor signal was correlated to the actual soot mass and particle number, measured with an SMPS. Sensor data and soot analytics (SMPS agreed very well, an impressing linear correlation in a double logarithmic representation was found. This behavior was even independent of the used engine settings or of the biodiesel content.

  11. Meeting the Embedded Design Needs of Automotive Applications

    CERN Document Server

    Lyons, Wayne

    2011-01-01

    The importance of embedded systems in driving innovation in automotive applications continues to grow. Understanding the specific needs of developers targeting this market is also helping to drive innovation in RISC core design. This paper describes how a RISC instruction set architecture has evolved to better meet those needs, and the key implementation features in two very different RISC cores are used to demonstrate the challenges of designing for real-time automotive systems.

  12. Joining Technology of Dissimilar Materials for Automotive Components(Ⅱ)

    Institute of Scientific and Technical Information of China (English)

    Meung Ho Rhee; Jong Ho Song; Woo Young Chung; Young Myoung Kim

    2004-01-01

    Joining techniques of dissimilar materials for lightweight multi-material automotive body structure were discussed. The joining of 1 .4 mm thickness steel and 2 mm thickness of Al were performed by the new method that is hybrid laser welding system. After aluminum and steel were welded by laser hybrid welding process, the micro-structure investment and the micro-hardness test were carried out. Hybrid laser welding promises a bright future in joining technology of dissimilar materials for automotive components.

  13. Second annual report to Congress on the Automotive Technology Development Program

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-30

    Progress in the Automotive Technology Development Program for the year ending September 30, 1980 is reported. This program is aimed at developing for commercialization advanced gas turbine (AGT) engines, advanced Stirling engines (ASE), and innovative, more efficient vehicles and vehicle components to use with advanced, energy-conserving automotive propulsion systems. For the AGT, the major accomplishments for this period included: awarded contracts for AGT development; completed reference powertrain design; initiated design and fabrication of testing facilities; and testing of components. For the ASE, design review is on schedule, and components have been tested up to 4000 h. A turbocompound diesel engine completed 54,000 miles of road testing and showed a 5% fuel economy improvement. Ten thousand miles of road testing a prototype Diesel Organic Rankine Bottoming Cycle in a heavy truck engine showed a 10% fuel economy gain. Three hundred standard GSA vehicles, operated with a Controlled Speed Accessory Drive showed, a 6 to 8% fuel economy gain. Four gas turbines have been installed in intercity buses, and five more are being installed in intracity buses in Baltimore. (LCL)

  14. Exhaustion and the Pathologization of Modernity.

    Science.gov (United States)

    Schaffner, Anna Katharina

    2016-09-01

    This essay analyses six case studies of theories of exhaustion-related conditions from the early eighteenth century to the present day. It explores the ways in which George Cheyne, George Beard, Richard von Krafft-Ebing, Sigmund Freud, Alain Ehrenberg and Jonathan Crary use medical ideas about exhaustion as a starting point for more wide-ranging cultural critiques related to specific social and technological transformations. In these accounts, physical and psychological symptoms are associated with particular external developments, which are thus not just construed as pathology-generators but also pathologized. The essay challenges some of the persistently repeated claims about exhaustion and its unhappy relationship with modernity.

  15. Diesel Exhaust-Induced Pulmonary and Cardiovascular Impairment: The Role of Hypertension Intervention

    Science.gov (United States)

    Background–Exposure to diesel exhaust (DE) particles and associated gases is linked to cardiovascular impairments; however the susceptibility of hypertensive individuals is less well understood. Objective–1) To determine cardiopulmonary effects of gas-phase versus whole-DE, and 2...

  16. Control-Oriented Model of Molar Scavenge Oxygen Fraction for Exhaust Recirculation in Large Diesel Engines

    DEFF Research Database (Denmark)

    Nielsen, Kræn Vodder; Blanke, Mogens; Eriksson, Lars;

    2016-01-01

    Exhaust gas recirculation (EGR) systems have been introduced to large marine engines in order to reduce NOx formation. Adequate modelling for control design is one of the bottlenecks to design EGR control that also meets emission requirements during transient loading conditions. This paper...

  17. Boiler Stack Gas Heat Recovery

    Science.gov (United States)

    1987-09-01

    recover about 17 million Btu/hr. The fact that the exhaust gas was loaded with fiber made the spray recu- perator a prime candidate since it could also wash... properties of water, heating feedwater is more effective than heating air. Research in heat-recovery material technology has identified materials which are...and Acidic fluids up to 180 OF. Piping Fans and Blowers 350 OF flue gas. Scrubbers 300 to 350 OF bagasse flue gas, trash burner flue gas. Electrostatic

  18. FTIR Determination of Pollutants in Automobile Exhaust: An Environmental Chemistry Experiment Comparing Cold-Start and Warm-Engine Conditions

    Science.gov (United States)

    Medhurst, Laura L.

    2005-01-01

    An experiment developed from the Advanced Integrated Environmental Laboratory illustrates the differences in automobile exhaust before and after the engine is warmed, using gas-phase Fourier transform infrared spectroscopy (FTIR). The apparatus consists of an Avatar 360 FTIR spectrometer from Nicolet fitted with a variable path length gas cell,…

  19. 火焰原子吸收光谱法测定尾气净化金属载体催化剂中铂钯铑%Determination of platinum, palladium, rhodium in metal carrier catalyst for exhaust gas purification by flame atomic absorption spectrometry

    Institute of Scientific and Technical Information of China (English)

    施意华; 王晟; 杨仲平; 靳晓珠; 胡圣虹; 邓水平

    2012-01-01

    建立了火焰原子吸收光谱法测定尾气净化金属载体催化剂中Pt、Pd、Rh含量的新方法.研究了试样分解方法、共沉淀条件、测定干扰因素及消除方法.采用盐酸-超声波处理尾气净化金属载体催化剂,过滤,不溶物用过氧化钠分解,盐酸酸化后全部转化为样品溶液.在含2~3 mol/L盐酸的样品溶液.中,加入10 mg氧化碲和10 mL 200 g/L氯化亚锡溶液共沉淀富集样品溶液中的Pt、Pd、Rh,与基体元素Fe、Ni、Al、Cr、Na等完全分离,共沉淀物用王水溶解后,采用火焰原子吸收光谱法测定Pt、Pd、Rh.方法的检出限分别为:Pt 4.72 μg/g,Pd1.13μg/g,Rh 1.06 μg/g.将本方法用于实际样品分析,结果与电感耦合等离子体原子发射光谱法测定值一致,相对标准偏差(RSD,n=11)分别为:3.0%(Pt),1.9%(Pd),4.2%(Rh).%A novel method for the determination of platinum, palladium and rhodium in metal carrier catalyst for exhaust gas purification was established by flame atomic absorption spectrometrometry (FAAS). The sample decomposition method) coprecipitation condition, interference factor and elimination method were studied. The metal carrier catalyst sample for exhaust gas purification was treated by hydrochloric acid-ultrasonic wave, and filtrated. The insoluble substance was decomposed with sodium peroxide and acidized with hydrochloric acid, and then it was mixed with sample solution. 10 mg of tellurium oxide and 10 mL of 200 g/L SnCl2 solution were added to sample solution in the medium of 2-3 mol/L hydrochloric acid for the coprecipitation, enrichment and separation of palladium, platinum and rhodium from matrix elements such as Fe, Ni, Al, Cr and Na. After the coprecipitate was dissolved with aqua regia, the content of palladium, platinum and rhodium was determined by flame a-tomic absorption spectrometry. The detection limits of method for Pt, Pd and Rh are 4. 72,1.13 and 1. 06,respectively. The proposed method was applied to

  20. An evaluation of 1D loss model collections for the off-design performance prediction of automotive turbocharger compressors

    Science.gov (United States)

    Harley, P.; Spence, S.; Early, J.; Filsinger, D.; Dietrich, M.

    2013-12-01

    Single-zone modelling is used to assess different collections of impeller 1D loss models. Three collections of loss models have been identified in literature, and the background to each of these collections is discussed. Each collection is evaluated using three modern automotive turbocharger style centrifugal compressors; comparisons of performance for each of the collections are made. An empirical data set taken from standard hot gas stand tests for each turbocharger is used as a baseline for comparison. Compressor range is predicted in this study; impeller diffusion ratio is shown to be a useful method of predicting compressor surge in 1D, and choke is predicted using basic compressible flow theory. The compressor designer can use this as a guide to identify the most compatible collection of losses for turbocharger compressor design applications. The analysis indicates the most appropriate collection for the design of automotive turbocharger centrifugal compressors.