WorldWideScience

Sample records for automotive exhaust gas

  1. Automotive exhaust gas flow control for an ammonia–water absorption refrigeration system

    International Nuclear Information System (INIS)

    Rêgo, A.T.; Hanriot, S.M.; Oliveira, A.F.; Brito, P.; Rêgo, T.F.U.

    2014-01-01

    A considerable part of the energy generated by an automotive internal combustion engine is wasted as heat in the exhaust system. This wasted heat could be recovered and applied to power auxiliary systems in a vehicle, contributing to its overall energy efficiency. In the present work, the experimental analysis of an absorption refrigeration system was performed. The exhaust system of an automotive internal combustion engine was connected to the generator element of an absorption refrigeration system. The performance of the absorption refrigerator was evaluated as a function of the supplied heat. The use of a control strategy for the engine exhaust gas mass flow rate was implemented to optimize the system. Exhaust gas flow was controlled by step-motor actuated valves commanded by a microcontroller in which a proportional-integral control scheme was implemented. Information such as engine torque, speed, key temperatures in the absorption cycle, as well as internal temperatures of the refrigerator was measured in a transient regime. The results indicated that the refrigeration system exhibited better performance when the amount of input heat is controlled based on the temperature of the absorption cycle generator. It was possible to conclude that, by dynamically controlling the amount of input heat, the utilisation range of the absorption refrigeration system powered by exhaust gas heat could be expanded in order to incorporate high engine speed operating conditions. - Highlights: •An absorption refrigerator was driven by automotive exhaust gas heat. •A system for controlling the refrigeration system heat input was developed. •Excessive exhaust gas heat leads to ineffective operation of the refrigerator. •Control of refrigerator's generator temperature led to better performance. •The use of exhaust gas was possible for high engine speeds

  2. A pathway to eliminate the gas flow dependency of a hydrocarbon sensor for automotive exhaust applications

    Directory of Open Access Journals (Sweden)

    G. Hagen

    2018-02-01

    Full Text Available Gas sensors will play an essential role in future combustion-based mobility to effectively reduce emissions and monitor the exhausts reliably. In particular, an application in automotive exhausts is challenging due to the high gas temperatures that come along with highly dynamic flow rates. Recently, a thermoelectric hydrocarbon sensor was developed by using materials which are well known in the exhausts and therefore provide the required stability. As a sensing mechanism, the temperature difference that is generated between a catalytically activated area during the exothermic oxidation of said hydrocarbons and an inert area of the sensor is measured by a special screen-printed thermopile structure. As a matter of principle, this thermovoltage significantly depends on the mass flow rate of the exhausts under certain conditions. The present contribution helps to understand this cross effect and proposes a possible setup for its avoidance. By installing the sensor in the correct position of a bypass solution, the gas flow around the sensor is almost free of turbulence. Now, the signal depends only on the hydrocarbon concentration and not on the gas flow. Such a setup may open up new possibilities of applying novel sensors in automotive exhausts for on-board-measurement (OBM purposes.

  3. Catalysts as Sensors—A Promising Novel Approach in Automotive Exhaust Gas Aftertreatment

    Directory of Open Access Journals (Sweden)

    Ralf Moos

    2010-07-01

    Full Text Available Sensors that detect directly and in situ the status of automotive exhaust gas catalysts by monitoring the electrical properties of the catalyst coating itself are overviewed. Examples included in this review are the in-situ determination of the electrical impedance of three-way catalysts based on ceria-zirconia solutions and of lean NOx traps of earth-alkaline based coatings, as well as approaches to determine the ammonia loading in Fe-SCR-zeolites with electrical ac measurements. Even more sophisticated approaches based on interactions with electromagnetic waves are also reviewed. For that purpose, metallic stick-like antennas are inserted into the exhaust pipe. The catalyst properties are measured in a contactless manner, directly indicating the catalyst status. The radio frequency probes gauge the oxygen loading degree of three-way catalysts, the NOx-loading of lean NOx traps, and the soot loading of Diesel particulate filters

  4. Catalysts as Sensors—A Promising Novel Approach in Automotive Exhaust Gas Aftertreatment

    Science.gov (United States)

    Moos, Ralf

    2010-01-01

    Sensors that detect directly and in situ the status of automotive exhaust gas catalysts by monitoring the electrical properties of the catalyst coating itself are overviewed. Examples included in this review are the in-situ determination of the electrical impedance of three-way catalysts based on ceria-zirconia solutions and of lean NOx traps of earth-alkaline based coatings, as well as approaches to determine the ammonia loading in Fe-SCR-zeolites with electrical ac measurements. Even more sophisticated approaches based on interactions with electromagnetic waves are also reviewed. For that purpose, metallic stick-like antennas are inserted into the exhaust pipe. The catalyst properties are measured in a contactless manner, directly indicating the catalyst status. The radio frequency probes gauge the oxygen loading degree of three-way catalysts, the NOx-loading of lean NOx traps, and the soot loading of Diesel particulate filters. PMID:22163575

  5. Catalysts as sensors--a promising novel approach in automotive exhaust gas aftertreatment.

    Science.gov (United States)

    Moos, Ralf

    2010-01-01

    Sensors that detect directly and in situ the status of automotive exhaust gas catalysts by monitoring the electrical properties of the catalyst coating itself are overviewed. Examples included in this review are the in-situ determination of the electrical impedance of three-way catalysts based on ceria-zirconia solutions and of lean NO(x) traps of earth-alkaline based coatings, as well as approaches to determine the ammonia loading in Fe-SCR-zeolites with electrical ac measurements. Even more sophisticated approaches based on interactions with electromagnetic waves are also reviewed. For that purpose, metallic stick-like antennas are inserted into the exhaust pipe. The catalyst properties are measured in a contactless manner, directly indicating the catalyst status. The radio frequency probes gauge the oxygen loading degree of three-way catalysts, the NO(x)-loading of lean NO(x) traps, and the soot loading of Diesel particulate filters.

  6. Automotive Fuel and Exhaust Systems.

    Science.gov (United States)

    Irby, James F.; And Others

    Materials are provided for a 14-hour course designed to introduce the automotive mechanic to the basic operations of automotive fuel and exhaust systems incorporated on military vehicles. The four study units cover characteristics of fuels, gasoline fuel system, diesel fuel systems, and exhaust system. Each study unit begins with a general…

  7. Automotive exhaust gas conversion: from elementary step kinetics to prediction of emission dynamics

    NARCIS (Netherlands)

    Hoebink, J.H.B.J.; Harmsen, J.M.A.; Balenovic, M.; Backx, A.C.P.M.; Schouten, J.C.

    2001-01-01

    Elementary step based kinetics show a high added value to describe the performance of catalytic exhaust gas converters under dynamic conditions, as demonstrated with a Euro test cycle. Combination of such kinetic models for individual global reactions covers the mutual interactions via common

  8. Properties of rapidly solidified Fe-Cr-Al ribbons for the use as automotive exhaust gas catalyst substrates

    International Nuclear Information System (INIS)

    Emmerich, K.

    1993-01-01

    Metallic honeycomb structures are used as catalyst substrates in automotive exhaust gas systems. This application requires an outstanding corrosion resistance at elevated temperatures of the substrate material. Technical improvements can be achieved by the use of rapid solidification technology for the production of the Fe-Cr-Al ribbons since the Al content can be substantially increased from about 5% Al in the conventionally rolled material to about 12% Al in the rapid solidified ribbon. As a result the lifetime of the ribbon in a higher-temperature corrosion environment is drastically increased. In addition the scale/metal adherance is improved. The impediment of recrystallization in the rapidly solidified ribbons prevents an embrittlement even in carbonizing atmospheres. (orig.)

  9. Rare earth metals for automotive exhaust catalysts

    International Nuclear Information System (INIS)

    Shinjoh, Hirohumi

    2006-01-01

    The usage of rare earth metals for automotive exhaust catalysts is demonstrated in this paper. Rare earth metals have been widely used in automotive catalysts. In particular, three-way catalysts require the use of ceria compounds as oxygen storage materials, and lanthana as both a stabilizer of alumina and a promoter. The application for diesel catalysts is also illustrated. Effects of inclusion of rare earth metals in automotive catalysts are discussed

  10. Exhaust gas processing facility

    International Nuclear Information System (INIS)

    Terada, Shin-ichi.

    1995-01-01

    The facility of the present invention comprises a radioactive liquid storage vessel, an exhaust gas dehumidifying device for dehumidifying gases exhausted from the vessel and an exhaust gas processing device for reducing radioactive materials in the exhaust gases. A purified gas line is disposed to the radioactive liquid storage vessel for purging exhaust gases generated from the radioactive liquid, then dehumidified and condensed liquid is recovered, and exhaust gases are discharged through an exhaust gas pipe disposed downstream of the exhaust gas processing device. With such procedures, the scale of the exhaust gas processing facility can be reduced and exhaust gases can be processed efficiently. (T.M.)

  11. A Low Cost Ferritic Stainless Steel Microalloyed by Higher Nb for Automotive Exhaust System

    Science.gov (United States)

    Chen, Erhu; Wang, Xuelin; Shang, Chengjia

    Automotive engine exhaust gas after combustion of fuel, and the gas will be liquefied in the rear of automotive exhaust system. A lot of corrosive anions existing in the condensate make corrosion of the exhaust system materials. Therefore, once pitting perforation, automotive exhaust system will fail directly. In 1980s, automotive exhaust manifold was made of Si-Mo ductile iron, mufflers and the tail pipe were made of carbon steel or aluminized steel. But with higher emission standards carried out, the improvement of engine performance and the higher exhaust temperature as well as the needs of the automotive light-weighting, we need the higher corrosion resistance of the material for automotive exhaust systems to meet the requirements.

  12. Investigation of the Performance of HEMT-Based NO, NO₂ and NH₃ Exhaust Gas Sensors for Automotive Antipollution Systems.

    Science.gov (United States)

    Halfaya, Yacine; Bishop, Chris; Soltani, Ali; Sundaram, Suresh; Aubry, Vincent; Voss, Paul L; Salvestrini, Jean-Paul; Ougazzaden, Abdallah

    2016-02-23

    We report improved sensitivity to NO, NO₂ and NH₃ gas with specially-designed AlGaN/GaN high electron mobility transistors (HEMT) that are suitable for operation in the harsh environment of diesel exhaust systems. The gate of the HEMT device is functionalized using a Pt catalyst for gas detection. We found that the performance of the sensors is enhanced at a temperature of 600 °C, and the measured sensitivity to 900 ppm-NO, 900 ppm-NO₂ and 15 ppm-NH₃ is 24%, 38.5% and 33%, respectively, at 600 °C. We also report dynamic response times as fast as 1 s for these three gases. Together, these results indicate that HEMT sensors could be used in a harsh environment with the ability to control an anti-pollution system in real time.

  13. Fast automotive diesel exhaust measurement using quantum cascade lasers

    Science.gov (United States)

    Herbst, J.; Brunner, R.; Lambrecht, A.

    2013-12-01

    Step by step, US and European legislations enforce the further reduction of atmospheric pollution caused by automotive exhaust emissions. This is pushing automotive development worldwide. Fuel efficient diesel engines with SCRtechnology can impede NO2-emission by reduction with NH3 down to the ppm range. To meet the very low emission limits of the Euro6 resp. US NLEV (National Low Emission Vehicle) regulations, automotive manufacturers have to optimize continuously all phases of engine operation and corresponding catalytic converters. Especially nonstationary operation holds a high potential for optimizing gasoline consumption and further reducing of pollutant emissions. Test equipment has to cope with demanding sensitivity and speed requirements. In the past Fraunhofer IPM has developed a fast emission analyzer called DEGAS (Dynamic Exhaust Gas Analyzer System), based on cryogenically cooled lead salt lasers. These systems have been used at Volkswagen AG`s test benches for a decade. Recently, IPM has developed DEGAS-Next which is based on cw quantum cascade lasers and thermoelectrically cooled detectors. The system is capable to measure three gas components (i.e. NO, NO2, NH3) in two channels with a time resolution of 20 ms and 1 ppm detection limits. We shall present test data and a comparison with fast FTIR measurements.

  14. Combustion Noise and Pollutants Prediction for Injection Pattern and Exhaust Gas Recirculation Tuning in an Automotive Common-Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Arsie Ivan

    2015-01-01

    Full Text Available In the last years, emissions standards for internal combustion engines are becoming more and more restrictive, particularly for NOx and soot emissions from Diesel engines. In order to comply with these requirements, OEMs have to face with innovative combustion concepts and/or sophisticate after-treatment devices. In both cases, the role of the Engine Management System (EMS is increasingly essential, following the large number of actuators and sensors introduced and the need to meet customer expectations on performance and comfort. On the other hand, the large number of control variables to be tuned imposes a massive recourse to the experimental testing which is poorly sustainable in terms of time and money. In order to reduce the experimental effort and the time to market, the application of simulation models for EMS calibration has become fundamental. Predictive models, validated against a limited amount of experimental data, allow performing detailed analysis on the influence of engine control variables on pollutants, comfort and performance. In this paper, a simulation analysis on the impact of injection pattern and Exhaust Gas Recirculation (EGR rate on fuel consumption, combustion noise, NO and soot emissions is presented for an automotive Common-Rail Diesel engine. Simulations are accomplished by means of a quasi-dimensional multi-zone model of in-cylinder processes. Furthermore a methodology for in-cylinder pressure processing is presented to estimate combustion noise contribution to radiated noise. Model validation is carried out by comparing simulated in-cylinder pressure traces and exhaust emissions with experimental data measured at the test bench in steady-state conditions. Effects of control variables on engine performance, noise and pollutants are analyzed by imposing significant deviation of EGR rate and injection pattern (i.e. rail pressure, start-of-injection, number of injections. The results evidence that quasi-dimensional in

  15. The AGT 101 advanced automotive gas turbine

    Science.gov (United States)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    A development program is described whose goal is the accumulation of the technology base needed by the U.S. automotive industry for the production of automotive gas turbine powertrains. Such gas turbine designs must exhibit reduced fuel consumption, a multi-fuel capability, and low exhaust emissions. The AGT101 powertrain described is a 74.6 kW, regenerated single-shaft gas turbine, operating at a maximum inlet temperature of 1644 K and coupled to a split differential gearbox and automatic overdrive transmission. The engine's single stage centrifugal compressor and single stage radial inflow turbine are mounted on a common shaft, and will operate at a maximum rotor speed of 100,000 rpm. All high temperature components, including the turbine rotor, are ceramic.

  16. Exhaust gas emissions from various automotive fuels for light-duty vehicles. Effects on health, environment and energy utilization

    International Nuclear Information System (INIS)

    Ahlvik, P.; Brandberg, Aa.

    1999-12-01

    The main aim of the investigation has been to assess the effects on health and environment from various alternative fuels for light-duty vehicles. Effects that can be identified and quantified, such as acidification, ozone formation, cancer risk and climate change, have been of primary interest but other effects, such as respiratory diseases, have also been investigated. Data have been collected through literature surveys for subsequent calculation of the mentioned effects in different time-frames. Corrections have been used to take into consideration the influence of climate, ageing and driving pattern. Emissions generated in fuel production have also been accounted for. The most significant and important differences between the fuels have been found for effects as ozone formation cancer risk and particulate emissions. Alternative fuels, such as methanol and methane (natural gas and biogas), significantly decrease the ozone formation in comparison to petrol, while ethanol, methanol and methane are advantageous concerning cancer risk. The particulate emissions are considerably higher for diesel engines fuelled by diesel oil and RME in comparison to the other fuels. In the future, the importance of acid emissions in the fuel production will increase since the NO x and SO x emissions will decrease from the vehicles. The emissions of climate gases could be significantly reduced by using non-fossil fuels but the efficiency of the drive train is also of importance. The technical development potential for further emission reductions is considerable for all fuels but the advantage for the best fuel options will remain in the future

  17. Selective gas exhaustion method

    International Nuclear Information System (INIS)

    Hirano, Yoichi

    1998-01-01

    The present invention provides a method capable of evacuating gases at an exhaustion rate which varies depending on the kind of gases. For example, in a thermonuclear experimental device, a hydrogen gas exhaustion rate is determined to 0 and an exhaustion rate for other impure gases is made greater. Namely, a baffle plate is cooled to a temperature to a level at which the vapor pressure of gases to evacuate a baffle plate is required in a pump incorporating a baffle plate, for example, a cryopump or a sorption pump. In this case, the level of the vapor pressure required for evacuating the exhaustion gas ingredients is 1 x 10 -8 Torr or less, preferably, 1 x 10 -9 Torr. In a thermonuclear experimental device, a gas having a lower boiling point next to hydrogen is neon, but neon is scarcely present in natural world. Nitrogen has a lower boiling point next thereto, and if the temperature is lowered to such a level that the vapor pressure for evacuating gases such as nitrogen, and carbon monoxide, oxygen, fluorine, argon or methane having a boiling point at or lower than nitrogen is required. Then, evacuation rate sufficient for gases other than hydrogen gas can be obtained. (I.S.)

  18. REVIEW ARTICLE: MODELLING AND ANALYSIS OF A GASOLINE ENGINE EXHAUST GAS SYSTEMS

    OpenAIRE

    Barhm Mohamad

    2018-01-01

    The engine exhaust gas behaviour is strongly influencing the engine performance. This paper presents the modelling and analysis of four stroke - gasoline engine exhaust gas systems. An automotive example is considered whereby the pulsating exhausts gas flow through an exhaust pipe and silencer are considered over a wide range of speeds. Analytical procedures are outlined enabling the general analysis and modelling of vehicle engine exhaust gas systems also in this paper present...

  19. Design and instrumentation of an automotive heat pump system using ambient air, engine coolant and exhaust gas as a heat source

    International Nuclear Information System (INIS)

    Hosoz, M.; Direk, M.; Yigit, K.S.; Canakci, M.; Alptekin, E.; Turkcan, A.

    2009-01-01

    Because the amount of waste heat used for comfort heating of the passenger compartment in motor vehicles decreases continuously as a result of the increasing engine efficiencies originating from recent developments in internal combustion engine technology, it is estimated that heat requirement of the passenger compartment in vehicles using future generation diesel engines will not be met by the waste heat taken from the engine coolant. The automotive heat pump (AHP) system can heat the passenger compartment individually, or it can support the present heating system of the vehicle. The AHP system can also be employed in electric vehicles, which do not have waste heat, as well as vehicles driven by a fuel cell. The authors of this paper observed that such an AHP system using ambient air as a heat source could not meet the heat requirement of the compartment when ambient temperature was extremely low. The reason is the decrease in the amount of heat taken from the ambient air as a result of low evaporating temperatures. Furthermore, the moisture condensed from air freezed on the evaporator surface, thus blocking the air flow through it. This problem can be solved by using the heat of engine coolant or exhaust gases. In this case, the AHP system can have a higher heating capacity and reuse waste heat. (author)

  20. Investigation of the Performance of HEMT-Based NO, NO2 and NH3 Exhaust Gas Sensors for Automotive Antipollution Systems

    Science.gov (United States)

    Halfaya, Yacine; Bishop, Chris; Soltani, Ali; Sundaram, Suresh; Aubry, Vincent; Voss, Paul L.; Salvestrini, Jean-Paul; Ougazzaden, Abdallah

    2016-01-01

    We report improved sensitivity to NO, NO2 and NH3 gas with specially-designed AlGaN/GaN high electron mobility transistors (HEMT) that are suitable for operation in the harsh environment of diesel exhaust systems. The gate of the HEMT device is functionalized using a Pt catalyst for gas detection. We found that the performance of the sensors is enhanced at a temperature of 600 °C, and the measured sensitivity to 900 ppm-NO, 900 ppm-NO2 and 15 ppm-NH3 is 24%, 38.5% and 33%, respectively, at 600 °C. We also report dynamic response times as fast as 1 s for these three gases. Together, these results indicate that HEMT sensors could be used in a harsh environment with the ability to control an anti-pollution system in real time. PMID:26907298

  1. Investigation of the Performance of HEMT-Based NO, NO2 and NH3 Exhaust Gas Sensors for Automotive Antipollution Systems

    Directory of Open Access Journals (Sweden)

    Yacine Halfaya

    2016-02-01

    Full Text Available We report improved sensitivity to NO, NO2 and NH3 gas with specially-designed AlGaN/GaN high electron mobility transistors (HEMT that are suitable for operation in the harsh environment of diesel exhaust systems. The gate of the HEMT device is functionalized using a Pt catalyst for gas detection. We found that the performance of the sensors is enhanced at a temperature of 600 °C, and the measured sensitivity to 900 ppm-NO, 900 ppm-NO 2 and 15 ppm-NH 3 is 24%, 38.5% and 33%, respectively, at 600 °C. We also report dynamic response times as fast as 1 s for these three gases. Together, these results indicate that HEMT sensors could be used in a harsh environment with the ability to control an anti-pollution system in real time.

  2. Mixed graphite cast iron for automotive exhaust component applications

    OpenAIRE

    De-lin Li

    2017-01-01

    Both spheroidal graphite iron and compacted graphite iron are used in the automotive industry. A recently proposed mixed graphite iron exhibits a microstructure between the conventional spheroidal graphite iron and compacted graphite iron. Evaluation results clearly indicate the suitability and benefits of mixed graphite iron for exhaust component applications with respect to casting, machining, mechanical, thermophysical, oxidation, and thermal fatigue properties. A new ASTM standard speci...

  3. Effects of a Dual-Loop Exhaust Gas Recirculation System and Variable Nozzle Turbine Control on the Operating Parameters of an Automotive Diesel Engine

    Directory of Open Access Journals (Sweden)

    Giorgio Zamboni

    2017-01-01

    Full Text Available Reduction of NOX emissions and fuel consumption are the main topics in engine development, forcing the adoption of complex techniques and components, whose interactions have to be clearly understood for proper and reliable operations and management of the whole system. The investigation presented in this paper aimed at the development of integrated control strategies of turbocharging, high pressure (HP and low pressure (LP exhaust gas recirculation (EGR systems for better NOX emissions and fuel consumption, while analyzing their reciprocal influence and the resulting variations of engine quantities. The study was based on an extended experimental program in three part load engine operating conditions. In the paper a comparison of the behavior of the main engine sub-systems (intake and exhaust circuits, turbocharger turbine and compressor, HP and LP EGR loops in a wide range of operating modes is presented and discussed, considering open and closed loop approaches for variable nozzle turbine (VNT control, and showing how these affect engine performance and emissions. The potential of significant decrease in NOX emissions through the integration of HP and LP EGR was confirmed, while a proper VNT management allowed for improved fuel consumption level, if an open loop control scheme is followed. At higher engine speed and load, further actions have to be applied to compensate for observed soot emissions increase.

  4. Device for purifying exhaust gas

    International Nuclear Information System (INIS)

    Makita, Kiyoshi.

    1973-01-01

    Purpose: To ensure the reliability in collection of krypton even on accident in liquidizing distillation tower. Constitution: Exhaust gas flows through active carbon adsorption tower where short half-life rare gas in exhaust gas is separated by adsorption, then through heat exchanger, then continuous distillation tower where krypton 85 is separated, then through batch distillation tower where krypton 85 is condensed, and then flows into storing cylinder. On accident in liquidizing distillation tower, at the first period exhaust gas flows through series connected active carbon adsorption tower, krypton 85 adsorbed in adsorption tower being transferred to cooling type adsorption tower, at the next period exhaust gas flows through tower, krypton 85 adsorbed in adsorption tower being transferred to tower. (M. K.)

  5. Mixed graphite cast iron for automotive exhaust component applications

    Directory of Open Access Journals (Sweden)

    De-lin Li

    2017-11-01

    Full Text Available Both spheroidal graphite iron and compacted graphite iron are used in the automotive industry. A recently proposed mixed graphite iron exhibits a microstructure between the conventional spheroidal graphite iron and compacted graphite iron. Evaluation results clearly indicate the suitability and benefits of mixed graphite iron for exhaust component applications with respect to casting, machining, mechanical, thermophysical, oxidation, and thermal fatigue properties. A new ASTM standard specification (A1095 has been created for compacted, mixed, and spheroidal graphite silicon-molybdenum iron castings. This paper attempts to outline the latest progress in mixed graphite iron published.

  6. La catalyse d'épuration des gaz d'échappement automobiles. Situation actuelle et nouvelles orientations Catalytic Automotive Exhaust Gas Depollution. Present Status and New Trends

    Directory of Open Access Journals (Sweden)

    Prigent M.

    2006-11-01

    Full Text Available Cet article passe en revue les différents systèmes catalytiques de post-traitement utilisés actuellement sur la plupart des automobiles pour limiter leurs rejets de polluants. Les systèmes sont différenciés par leur mode de fonctionnement, le type de moteur à dépolluer (deux-temps, quatre-temps, diesel ou essence ou par leur mode de réalisation. Les nouvelles orientations, prévues pour respecter les futures réglementations antipollution, sont également décrites. On montre que certains véhicules prototypes, équipés de moteurs à combustion interne, sont capables d'avoir des émissions très proches de zéro tout comme les véhicules électriques. A review is made of the various types of exhaust gas aftertreatment systems presently used on most vehicles to reduce pollutant emissions. The systems are differentiated by their mode of action, according to the engine type to be depolluted (two-stroke, four-stroke, diesel or spark-ignition, and by their type of make-up. The major developments foreseen in the future, in view of compliance with the new legislations, are described. It is shown that some prototype vehicles with internal combustion engines are able to emit pollutant quantities really close to zero, such as electric cars.

  7. Optimal Design of an Automotive Exhaust Thermoelectric Generator

    Science.gov (United States)

    Fagehi, Hassan; Attar, Alaa; Lee, Hosung

    2018-07-01

    The consumption of energy continues to increase at an exponential rate, especially in terms of conventional automobiles. Approximately 40% of the applied fuel into a vehicle is lost as waste exhausted to the environment. The desire for improved fuel efficiency by recovering the exhaust waste heat in automobiles has become an important subject. A thermoelectric generator (TEG) has the potential to convert exhaust waste heat into electricity as long as it is improving fuel economy. The remarkable amount of research being conducted on TEGs indicates that this technology will have a bright future in terms of power generation. The current study discusses the optimal design of the automotive exhaust TEG. An experimental study has been conducted to verify the model that used the ideal (standard) equations along with effective material properties. The model is reasonably verified by experimental work, mainly due to the utilization of the effective material properties. Hence, the thermoelectric module that was used in the experiment was optimized by using a developed optimal design theory (dimensionless analysis technique).

  8. Optimal Design of an Automotive Exhaust Thermoelectric Generator

    Science.gov (United States)

    Fagehi, Hassan; Attar, Alaa; Lee, Hosung

    2018-04-01

    The consumption of energy continues to increase at an exponential rate, especially in terms of conventional automobiles. Approximately 40% of the applied fuel into a vehicle is lost as waste exhausted to the environment. The desire for improved fuel efficiency by recovering the exhaust waste heat in automobiles has become an important subject. A thermoelectric generator (TEG) has the potential to convert exhaust waste heat into electricity as long as it is improving fuel economy. The remarkable amount of research being conducted on TEGs indicates that this technology will have a bright future in terms of power generation. The current study discusses the optimal design of the automotive exhaust TEG. An experimental study has been conducted to verify the model that used the ideal (standard) equations along with effective material properties. The model is reasonably verified by experimental work, mainly due to the utilization of the effective material properties. Hence, the thermoelectric module that was used in the experiment was optimized by using a developed optimal design theory (dimensionless analysis technique).

  9. Ship exhaust gas plume cooling

    NARCIS (Netherlands)

    Schleijpen, H.M.A.; Neele, P.P.

    2004-01-01

    The exhaust gas plume is an important and sometimes dominating contributor to the infrared signature of ships. Suppression of the infrared ship signatures has been studied by TNO for the Royal Netherlands Navy over considerable time. This study deals with the suppression effects, which can be

  10. Exhaust gas clean up process

    Science.gov (United States)

    Walker, R.J.

    1988-06-16

    A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ is described. The method involves prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ gas or nitrogen sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt. 4 figs.

  11. Exhaust gas emissions from various automotive fuels for light-duty vehicles. Effects on health, environment and energy utilization; Avgasemissioner fraan laetta fordon drivna med olika drivmedel

    Energy Technology Data Exchange (ETDEWEB)

    Ahlvik, P.; Brandberg, Aa. [Ecotraffic RandD AB, Stockholm (Sweden)

    1999-12-01

    The main aim of the investigation has been to assess the effects on health and environment from various alternative fuels for light-duty vehicles. Effects that can be identified and quantified, such as acidification, ozone formation, cancer risk and climate change, have been of primary interest but other effects, such as respiratory diseases, have also been investigated. Data have been collected through literature surveys for subsequent calculation of the mentioned effects in different time-frames. Corrections have been used to take into consideration the influence of climate, ageing and driving pattern. Emissions generated in fuel production have also been accounted for. The most significant and important differences between the fuels have been found for effects as ozone formation cancer risk and particulate emissions. Alternative fuels, such as methanol and methane (natural gas and biogas), significantly decrease the ozone formation in comparison to petrol, while ethanol, methanol and methane are advantageous concerning cancer risk. The particulate emissions are considerably higher for diesel engines fuelled by diesel oil and RME in comparison to the other fuels. In the future, the importance of acid emissions in the fuel production will increase since the NO{sub x} and SO{sub x} emissions will decrease from the vehicles. The emissions of climate gases could be significantly reduced by using non-fossil fuels but the efficiency of the drive train is also of importance. The technical development potential for further emission reductions is considerable for all fuels but the advantage for the best fuel options will remain in the future.

  12. Natural gas as an automotive fuel

    Energy Technology Data Exchange (ETDEWEB)

    Gritsenko, A I; Vasiliev, Y N; Jankiewicz, A [VPO ' Soyuzgastekhnologiya' All-Union Scientific Research Inst. of Natural gases (VNIIGAS) (SU)

    1990-02-01

    The review presented covers mass production of gas-petrol and gas-diesel automobiles in the USSR, second generation auto gas filling compressor stations, principal exhaust toxicants, and tests indicating natural gas fired autos emit >5 times less NO{sub x} and 10 times less hydrocarbons excluding methane. The switch over to gas as auto fuel and ensuing release of petrol and diesel for other uses are discussed. (UK).

  13. Gas turbine exhaust system silencing design

    International Nuclear Information System (INIS)

    Ozgur, D.

    1991-01-01

    Gas turbines are the preferred prime mover in many applications because of their high efficiency, fuel flexibility, and low environmental impact. A typical mid-size machine might have a power rating of 80 MW, a flow of about 1000 kg/hr, and an exhaust temperature of over 500C. The most powerful single source of noise is generally the exhaust, which may generate over a kilowatt of acoustic energy. This paper reports that there are two important ways in which exhaust systems can radiate noise. The first is through the discharge of the exhaust duct, with the exhaust gas. Because of the large quantity of hot gas, the duct exit is always oriented vertically; it may be fairly high in the air in order to promote dispersion of the exhaust plume. This source is almost always attenuated by means of a silencer located somewhere in the ductwork. The second source of noise is often called breakout; it is the radiation of exhaust noise through the walls of the ducting. Breakout is most important for those sections of the exhaust duct which lie upstream of the silencer, where sound levels inside the ducting are highest. Both exhaust duct exit noise and breakout noise can be calculated from the sound power level of the gas turbine exhaust and the sound transmission loss (TL) of the silencer and ducting

  14. Analysis of noble metal on automotive exhaust catalysts by radioisotope-induce x-ray fluorescence

    International Nuclear Information System (INIS)

    Elgart, M.F.

    1976-01-01

    A technique was developed for the in-situ analysis of noble metals deposited on monolithic automotive exhaust catalysts. This technique is based on radioisotope-induced x-ray fluorescence, and provides a detailed picture of the distribution of palladium and platinum on catalyst samples. The experimental results for the cross section of a monolithic exhaust catalyst, analyzed in increments of 0.2 cm 3 , are compared with analyses for palladium and platinum obtained by instrumental neutron activation analysis

  15. Exhaust gas recirculation system for an internal combustion engine

    Science.gov (United States)

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  16. On-line dynamic monitoring automotive exhausts: using BP-ANN for distinguishing multi-components

    Science.gov (United States)

    Zhao, Yudi; Wei, Ruyi; Liu, Xuebin

    2017-10-01

    Remote sensing-Fourier Transform infrared spectroscopy (RS-FTIR) is one of the most important technologies in atmospheric pollutant monitoring. It is very appropriate for on-line dynamic remote sensing monitoring of air pollutants, especially for the automotive exhausts. However, their absorption spectra are often seriously overlapped in the atmospheric infrared window bands, i.e. MWIR (3 5μm). Artificial Neural Network (ANN) is an algorithm based on the theory of the biological neural network, which simplifies the partial differential equation with complex construction. For its preferable performance in nonlinear mapping and fitting, in this paper we utilize Back Propagation-Artificial Neural Network (BP-ANN) to quantitatively analyze the concentrations of four typical industrial automotive exhausts, including CO, NO, NO2 and SO2. We extracted the original data of these automotive exhausts from the HITRAN database, most of which virtually overlapped, and established a mixed multi-component simulation environment. Based on Beer-Lambert Law, concentrations can be retrieved from the absorbance of spectra. Parameters including learning rate, momentum factor, the number of hidden nodes and iterations were obtained when the BP network was trained with 80 groups of input data. By improving these parameters, the network can be optimized to produce necessarily higher precision for the retrieved concentrations. This BP-ANN method proves to be an effective and promising algorithm on dealing with multi-components analysis of automotive exhausts.

  17. AGT101 automotive gas turbine system development

    Science.gov (United States)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    The AGT101 automotive gas turbine system consisting of a 74.6 kw regenerated single-shaft gas turbine engine, is presented. The development and testing of the system is reviewed, and results for aerothermodynamic components indicate that compressor and turbine performance levels are within one percent of projected levels. Ceramic turbine rotor development is encouraging with successful cold spin testing of simulated rotors to speeds over 12,043 rad/sec. Spin test results demonstrate that ceramic materials having the required strength levels can be fabricated by net shape techniques to the thick hub cross section, which verifies the feasibility of the single-stage radial rotor in single-shaft engines.

  18. Impact of chronic exposure to gasoline automotive exhaust gases on some bio-markers affecting the hormonal sexual function, the kidney function and blood parameters, in the rat

    International Nuclear Information System (INIS)

    Smaoui, M.; Ghorbel, F.; Boujelbene, M.; El Feki, A.; Makni-Ayadi, F.

    2000-01-01

    The automotive exhaust gases constitute an important source of urban pollution. The objective of this study is to explore, in the rat, the effects of repetitive exposure to gasoline automotive exhaust gases on the level variations of serum testosterone, blood lead, bone lead, blood carbon monoxide, on the kidney function and blood parameters. 200 rats inhaling a mixture of air and automotive exhaust gas (10/1, v/v), are distributed in 4 groups treated during 15, 30, 45 and 60 days. They are compared to non treated controls. Our results show a decrease of serum testosterone level. This result is the origin of a masculine sterility already demonstrated in our laboratory. This sterility seems to be reversible because polluted rats regain their sexual activity, 2 months after stopping of the pollutant treatment. An increase of the blood carbon monoxide level with a lead accumulation in blood and in the tail is noticed. Biochemical analyses show that glycaemia, urea, and creatininaemia increase in treated animals. The urinary rate of creatinine decreases. These results indicate kidney deficiency. Our results show also in treated animals an increase of the number of red blood corpuscles, of hematocrit, of the blood level of haemoglobin and of the VGM, and a decrease of the CGMH. The carbon monoxide and the lead detected in blood of the treated animals are the origin of these perturbations. In conclusion, our results show that gasoline automotive exhaust gas induces, in the rat, a decrease of serum testosterone level. The carbon monoxide and the lead present in the exhaust gas, and detected in blood and in the tail of the treated animals, are the origin of sexual, kidney and blood parameters perturbations. (author)

  19. The Influence of the Inner Topology of Cooling Units on the Performance of Automotive Exhaust-Based Thermoelectric Generators

    Science.gov (United States)

    Zhu, D. C.; Su, C. Q.; Deng, Y. D.; Wang, Y. P.; Liu, X.

    2018-06-01

    Automotive exhaust-based thermoelectric generators are currently a hot topic in energy recovery. The waste heat of automotive exhaust gas can be converted into electricity by means of thermoelectric modules. Generally, inserting fins into the cooling unit contributes to enhancing the heat transfer for a higher power output. However, the introduction of fins will result in a pressure drop in the cooling system. In current research, in order to enhance the heat transfer and avoid a large pressure drop, a cooling unit with cylindrical grooves on the interior surface was proposed. To evaluate the performance of the cylindrical grooves, different inner topologies, including a smooth interior surface,a smooth interior surface with inserted fins and an interior surface with cylindrical grooves, were compared. The results revealed that compared with the smooth interior surface, the smooth interior surface with inserted fins and the interior surface with cylindrical grooves both enhanced the heat transfer, but the interior surface with cylindrical grooves obtained a lower pressure drop. To improve the performance of the cylindrical grooves, different groove-depth ratios were tried, and the results showed that a groove-depth ratio of 0.081 could provide the best overall performance.

  20. Refractories for exhaust gas scrubbers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    Primary metal smelters are recovering a greater percentage of their stack emissions because of increased global environmental pressures. Copper and nickel producers processing sulfide ore are under particular scrutiny for sulfur dioxide emissions. The use of various acid plant designs and associated scrubbers to capture the gas is commonplace. Failure of acid plant or sulfur dioxide control devices can be very expensive, both in terms of repair costs and lost production. Close attention should be paid to ensure smooth, long term and proper operation of these vessels. With INCO flash furnace shops smelter gases are treated immediately upon leaving the furnace in a particulate scrubber where the gases are cooled and de-dusted in a water spray chamber. The amount of chlorine and fluorine in the waste gas can vary widely, ranging from non-existent to being a major source of concern for refractory wear. Developed specifically for use in hazardous waste incinerators burning fluorine-containing materials, spall-resistant, high-purity alimina bricks were installed in various gas cleaning units in copper smelting plants. Because of the materials's combination of abrasion resistance, thermal cycling resistance, and chemical durability under conditions of variable SO(3) and fluorine attack, the material has proven to be more than adequate for the challenges of gas cleaning equipment. 2 refs.

  1. Toxicological aspects of fuel and exhaust gas

    International Nuclear Information System (INIS)

    Avella, F.

    1993-01-01

    Some aspects concerning fuels (gasoline) and gas exhaust vehicle emissions toxicology are briefly examined in light of the results reported in recent literature on this argument. Many experimental studies carried out on animals and men turn out incomplete and do not allow thorough evaluations, for every aspect, of the risk to which men and the environment are subjected

  2. Exhaust gas treatment by electron beam irradiation

    International Nuclear Information System (INIS)

    Shibamura, Yokichi; Suda, Shoichi; Kobayashi, Toshiki

    1991-01-01

    Among global environmental problems, atmospheric pollution has been discussed since relatively old days, and various countermeasures have been taken, but recently in connection with acid rain, the efficient and economical treatment technology is demanded. As the denitration and desulfurization technology for the exhaust gas from the combustion of fossil fuel, the incineration of city trash and internal combustion engines, three is the treatment method by electron beam irradiation. By irradiating electron beam to exhaust gas, nitrogen oxides and sulfur oxides are oxidized to nitric acid and sulfuric acid, and by promoting the neutralization of these acids with injected alkali, harmless salts are recovered. This method has the merit that nitrogen oxides and surfur oxides can be removed efficiently with a single system. In this report, as for the exhaust gas treatment by electron beam irradiation, its principle, features, and the present status of research and development are described, and in particular, the research on the recent exhaust gas treatment in city trash incineration is introduced. This treatment method is a dry process, accordingly, waste water disposal is unnecessary. The reaction products are utilized as fertilizer, and waste is not produced. (K.I.)

  3. Exhaust gas afterburner for internal combustion engines

    Energy Technology Data Exchange (ETDEWEB)

    Haertel, G

    1977-05-12

    The invention pertains to an exhaust gas afterburner for internal combustion engines, with an auxiliary fuel device arranged upstream from the afterburner proper and controlled by the rotational speed of the engine, which is additionally controlled by an oxygen or carbon monoxide sensor. The catalytic part of the afterburner, together with a rotochamber, is a separate unit.

  4. Methane oxidation over noble metal catalysts as related to controlling natural gas vehicle exhaust emissions

    International Nuclear Information System (INIS)

    Oh, S.H.; Mitchell, P.J.; Siewert, R.M.

    1992-01-01

    Natural gas has considerable potential as an alternative automotive fuel. This paper reports on methane, the principal hydrocarbon species in natural-gas engine exhaust, which has extremely low photochemical reactivity but is a powerful greenhouse gas. Therefore, exhaust emissions of unburned methane from natural-gas vehicles are of particular concern. This laboratory reactor study evaluates noble metal catalysts for their potential in the catalytic removal of methane from natural-gas vehicle exhaust. Temperature run-up experiments show that the methane oxidation activity decreases in the order Pd/Al 2 O 3 > Rh/Al 2 O 3 > Pt/Al 2 O 3 . Also, for all the noble metal catalysts studied, methane conversion can be maximized by controlling the O 2 concentration of the feedstream at a point somewhat rich (reducing) of stoichiometry

  5. A Framework for Modular Modeling of the Diesel Engine Exhaust Gas Cleaning System

    DEFF Research Database (Denmark)

    Åberg, Andreas; Hansen, Thomas Klint; Linde, Kasper

    2015-01-01

    Pollutants from diesel engines have a negative effect on urban air quality. Because of this and new legislation restricting the emission level, it is necessary to develop exhaust gas treatment systems for diesel engines that can reduce the amount of pollutants. A modular model capable of simulating...... model. Four different models in the automotive diesel exhaust gas cleaning system are presented briefly. Based on the presented methodology, it is discussed which changes are needed to the models to create a modular model of the whole catalytic system....

  6. 46 CFR 52.25-20 - Exhaust gas boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Exhaust gas boilers. 52.25-20 Section 52.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-20 Exhaust gas boilers. Exhaust gas boilers with a maximum allowable working pressure...

  7. The study on preparation of high dispersion and pure cerium dioxide for producing automotive exhaust catalysts

    International Nuclear Information System (INIS)

    Le Minh Tuan; Nguyen Trong Hung; Nguyen Thanh Chung

    2003-01-01

    The multi-stage counter-current solvent extraction process using TBP as the solvent has been carried out for purifying cerium and the ammonium carbonate precipitation method has been used to produce the cerium oxide of high dispersion and pure. The flow sheet of extraction system includes 3 extraction stages with O/A = 0.7,2 stripping stages and 4 scrubbing stages with O/A = 5. The condition for ammonium carbonate precipitation, drying and calcination have been investigated and a procedure that seem to be practically suitable to prepare cerium dioxide powder with great specific surface area for producing automotive exhaust catalyst has been proposed. (LMT)

  8. Numerical Investigation on the Performance of an Automotive Thermoelectric Generator with Exhaust-Module-Coolant Direct Contact

    Science.gov (United States)

    Wang, Yiping; Tang, Yulin; Deng, Yadong; Su, Chuqi

    2018-06-01

    Energy conservation and environmental protection have typically been a concern of research. Researchers have confirmed that in automotive engines, just 12-25% of the fuel energy converts into effective work and 30-40% gets wasted in the form of exhaust. Saidur et al. (Energy Policy 37:3650, 2009) and Hasanuzzaman et al. (Energy 36:233, 2011). It will be significant to enhance fuel availability and decrease environmental pollution if the waste heat in the exhaust could be recovered. Thermoelectric generators (TEGs), which can translate heat into electricity, have become a topic of interest for vehicle exhaust waste heat recovery. In conventional automotive TEGs, the thermoelectric modules (TEMs) are arranged between the exhaust tank and the coolant tank. The TEMs do not contact the hot exhaust and coolant, which leads to low heat transfer efficiency. Moreover, to provide enough packing force to keep good contact with the exhaust tank and the coolant tank, the framework required is so robust that the TEGs become too heavy. Therefore, in current study, an automotive TEG was designed which included one exhaust channel, one coolant channel and several TEMs. In the TEG, the TEMs which contacted the exhaust and coolant directly were inserted into the walls of each coolant channel. To evaluate the performance of the automotive TEG, the flow field and temperature field were computed by computational fluid dynamics (CFD). Based on the temperature distribution obtained by CFD and the performance parameters of the modules, the total power generation was obtained by some proved empirical formulas. Compared with conventional automotive TEGs, the power generation per unit volume exhaust was boosted.

  9. Numerical Investigation on the Performance of an Automotive Thermoelectric Generator with Exhaust-Module-Coolant Direct Contact

    Science.gov (United States)

    Wang, Yiping; Tang, Yulin; Deng, Yadong; Su, Chuqi

    2017-12-01

    Energy conservation and environmental protection have typically been a concern of research. Researchers have confirmed that in automotive engines, just 12-25% of the fuel energy converts into effective work and 30-40% gets wasted in the form of exhaust. Saidur et al. (Energy Policy 37:3650, 2009) and Hasanuzzaman et al. (Energy 36:233, 2011). It will be significant to enhance fuel availability and decrease environmental pollution if the waste heat in the exhaust could be recovered. Thermoelectric generators (TEGs), which can translate heat into electricity, have become a topic of interest for vehicle exhaust waste heat recovery. In conventional automotive TEGs, the thermoelectric modules (TEMs) are arranged between the exhaust tank and the coolant tank. The TEMs do not contact the hot exhaust and coolant, which leads to low heat transfer efficiency. Moreover, to provide enough packing force to keep good contact with the exhaust tank and the coolant tank, the framework required is so robust that the TEGs become too heavy. Therefore, in current study, an automotive TEG was designed which included one exhaust channel, one coolant channel and several TEMs. In the TEG, the TEMs which contacted the exhaust and coolant directly were inserted into the walls of each coolant channel. To evaluate the performance of the automotive TEG, the flow field and temperature field were computed by computational fluid dynamics (CFD). Based on the temperature distribution obtained by CFD and the performance parameters of the modules, the total power generation was obtained by some proved empirical formulas. Compared with conventional automotive TEGs, the power generation per unit volume exhaust was boosted.

  10. Report for fiscal 2000. Part 4. Research on assistance to put recycling technologies into practical use (Research and development of elevating automotive fuel consumption and exhaust gas technologies); 2000 nendo recycle gijutsu nado jitsuyoka shien kenkyu hokokusho. 4. Jidosha nenpi hai gas gijutsu kodoka kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Discussions have been given on identification of actual status of exhaust gas emission during driving, starting, and idling of automobiles, on technologies to enhance fuel consumption and reduce exhaust gas emission, and on technologies to measure harmful substances. In the investigation of effects of environmental temperatures on evaporation gas, it was shown that fuel evaporation generated from the fuel tank increases as the average ambient temperature rises. In the investigation of effects of environmental temperatures on exhaust gas and fuel consumption, it was discovered that the effects of environmental temperatures on 10{center_dot}15 mode regulated exhaust gas differ depending on vehicles, and no definite difference due to combustion systems was recognized. Carbon monoxide and THC under the 11 mode regulation showed a trend to increase when the environmental temperature falls down. In the investigation of effects of fuel properties on exhaust gas, no definite difference due to combustion systems was recognized as a result of measurements using various types of gasoline having different distillation properties. In the investigation of analysis methods for harmful substances, development has been made on an analysis method mainly for 1-3 butadiene. (NEDO)

  11. Exhaust gas recirculation apparatus for internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Shigemori, M; Eguchi, N

    1975-01-07

    An exhaust gas recirculation device to reduce nitrogen oxides emission from internal combustion engines is described. The recirculation is achieved by employing a tube connecting between the exhaust pipe and intake tube. A throttle valve is installed within the exhaust pipe between the muffler and recirculation tube, and regulated by exhaust gas temperature. Whenever the gas temperature is high, the valve closes and increases the gas flow to the intake tube. A temperature sensor is installed within the exhaust pipe and controls a solenoid or magnetic air valve linking to the throttle valve through a relay. The recirculation tube can be cooled by a fan to improve the engine power.

  12. Simulation and experimental study on thermal optimization of the heat exchanger for automotive exhaust-based thermoelectric generators

    Directory of Open Access Journals (Sweden)

    C.Q. Su

    2014-11-01

    Full Text Available Thermoelectric technology has revealed the potential for automotive exhaust-based thermoelectric generator (TEG, which contributes to the improvement of the fuel economy of the engine-powered vehicle. As a major factor, thermal capacity and heat transfer of the heat exchanger affect the performance of TEG effectively. With the thermal energy of exhaust gas harvested by thermoelectric modules, a temperature gradient appears on the heat exchanger surface, so as the interior flow distribution of the heat exchanger. In order to achieve uniform temperature distribution and higher interface temperature, the thermal characteristics of heat exchangers with various heat transfer enhancement features are studied, such as internal structure, material and surface area. Combining the computational fluid dynamics simulations and infrared test on a high-performance engine with a dynamometer, the thermal performance of the heat exchanger is evaluated. Simulation and experiment results show that a plate-shaped heat exchanger made of brass with accordion-shaped internal structure achieves a relatively ideal performance, which can practically improve overall thermal performance of the TEG.

  13. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    Science.gov (United States)

    Duffy, Kevin P [Metamora, IL; Kieser, Andrew J [Morton, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  14. Engine with exhaust gas recirculation system and variable geometry turbocharger

    Science.gov (United States)

    Keating, Edward J.

    2015-11-03

    An engine assembly includes an intake assembly, an internal combustion engine defining a plurality of cylinders and configured to combust a fuel and produce exhaust gas, and an exhaust assembly in fluid communication with a first subset of the plurality of cylinders. Each of the plurality of cylinders are provided in fluid communication with the intake assembly. The exhaust assembly is provided in fluid communication with a first subset of the plurality of cylinders, and a dedicated exhaust gas recirculation system in fluid communication with both a second subset of the plurality of cylinders and with the intake assembly. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the second subset of the plurality of cylinders to the intake assembly. Finally, the engine assembly includes a turbocharger having a variable geometry turbine in fluid communication with the exhaust assembly.

  15. Simulation and Optimization of the Heat Exchanger for Automotive Exhaust-Based Thermoelectric Generators

    Science.gov (United States)

    Su, C. Q.; Huang, C.; Deng, Y. D.; Wang, Y. P.; Chu, P. Q.; Zheng, S. J.

    2016-03-01

    In order to enhance the exhaust waste heat recovery efficiency of the automotive exhaust-based thermoelectric generator (TEG) system, a three-segment heat exchanger with folded-shaped internal structure for the TEG system is investigated in this study. As the major effect factors of the performance for the TEG system, surface temperature, and thermal uniformity of the heat exchanger are analyzed in this research, pressure drop along the heat exchanger is also considered. Based on computational fluid dynamics simulations and temperature distribution, the pressure drop along the heat exchanger is obtained. By considering variable length and thickness of folded plates in each segment of the heat exchanger, response surface methodology and optimization by a multi-objective genetic algorithm is applied for surface temperature, thermal uniformity, and pressure drop for the folded-shaped heat exchanger. An optimum design based on the optimization is proposed to improve the overall performance of the TEG system. The performance of the optimized heat exchanger in different engine conditions is discussed.

  16. 46 CFR 63.25-7 - Exhaust gas boilers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Exhaust gas boilers. 63.25-7 Section 63.25-7 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING AUTOMATIC AUXILIARY BOILERS Requirements for Specific Types of Automatic Auxiliary Boilers § 63.25-7 Exhaust gas boilers. (a) Construction...

  17. 30 CFR 36.26 - Composition of exhaust gas.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Composition of exhaust gas. 36.26 Section 36.26... EQUIPMENT Construction and Design Requirements § 36.26 Composition of exhaust gas. (a) Preliminary engine... methane) is a satisfactory substitute for pure methane in these tests. (c) Coupling or adapter. The...

  18. 40 CFR 86.211-94 - Exhaust gas analytical system.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas analytical system. 86.211-94 Section 86.211-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.211-94 Exhaust gas...

  19. Engine with pulse-suppressed dedicated exhaust gas recirculation

    Science.gov (United States)

    Keating, Edward J.; Baker, Rodney E.

    2016-06-07

    An engine assembly includes an intake assembly, a spark-ignited internal combustion engine, and an exhaust assembly. The intake assembly includes a charge air cooler disposed between an exhaust gas recirculation (EGR) mixer and a backpressure valve. The charge air cooler has both an inlet and an outlet, and the back pressure valve is configured to maintain a minimum pressure difference between the inlet of the charge air cooler and an outlet of the backpressure valve. A dedicated exhaust gas recirculation system is provided in fluid communication with at least one cylinder and with the EGR mixer. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the at least one cylinder to the EGR mixer for recirculation back to the engine.

  20. Heat exchangers for automotive gas turbine power plants

    International Nuclear Information System (INIS)

    Penny, R.N.

    1974-01-01

    Automotive gas turbine power plants are now in the final stages of development for quantity manufacture. A crucial factor in this development is the regenerative heat exchanger. The relative merits of the rotary regenerative and static recuperative heat exchanger are compared. Thermal efficiency and initial cost are two vital issues involved in the design of small gas turbines for the commercial establishment of gas turbine vehicles. The selection of a material for the rotaty regenerator is essentially related to resolving the two vital issues of future small gas turbines and is, therefore, analysed. The account of the pioneering work involved in engineering the glass ceramic and other non-metal regenerators includes a complete failure analysis based on running experience with over 200 ceramic regenerators. The problems of sealing, supporting and manufacturing the ceramic regenerator are discussed and future practical designs are outlined. Heat exchange theory applied to small gas turbines is also reviewed

  1. A New Testing Method for Lifetime Prediction of Automotive Exhaust Silencers

    Directory of Open Access Journals (Sweden)

    Muhammad Yasir

    2011-01-01

    Full Text Available The purpose of this paper is to highlight the problems associated with daily routine corrosion tests performed in an automotive exhaust industry. Estimation of the life time of a complete system under real conditions is always uncertain and often leads to a disagreement. A new testing setup was built in which simulation of external and internal corrosion with additional thermal cycles can be performed simultaneously. Simulation of all real conditions makes this test totally versatile and unique among all the existing testing methods. All test results were investigated quantitatively and a direct comparison was made between some field systems with different mileage and total life. Conformity was accomplished between the results from corrosion tests and parts from the vehicles. Studies carried out on the silencers have shown that the new component testing method could be used for life time estimation of parts having different material and design combinations. On the basis of obtained results it can be stated that the new testing setup can be applied for different materials and design rankings.

  2. Effect of Cooling Units on the Performance of an Automotive Exhaust-Based Thermoelectric Generator

    Science.gov (United States)

    Su, C. Q.; Zhu, D. C.; Deng, Y. D.; Wang, Y. P.; Liu, X.

    2017-05-01

    Currently, automotive exhaust-based thermoelectric generators (AETEGs) are a hot topic in energy recovery. In order to investigate the influence of coolant flow rate, coolant flow direction and cooling unit arrangement in the AETEG, a thermoelectric generator (TEG) model and a related test bench are constructed. Water cooling is adopted in this study. Due to the non-uniformity of the surface temperature of the heat source, the coolant flow direction would affect the output performance of the TEG. Changing the volumetric flow rate of coolant can increase the output power of multi-modules connected in series or/and parallel as it can improve the temperature uniformity of the cooling unit. Since the temperature uniformity of the cooling unit has a strong influence on the output power, two cooling units are connected in series or parallel to research the effect of cooling unit arrangements on the maximum output power of the TEG. Experimental and theoretical analyses reveal that the net output power is generally higher with cooling units connected in parallel than cooling units connected in series in the cooling system with two cooling units.

  3. Reducing greenhouse gas emissions from the Ontario automotive sector

    International Nuclear Information System (INIS)

    Anon.

    1995-11-01

    A variety of options to reduce greenhouse gas emissions from the automotive sector in Ontario over the next decade were discussed. Each option was assessed in terms of practicality and implications for implementation. I was concluded that improvements in fuel economy anticipated from advancing technology, with or without new mandated standards, will not be enough to offset the impact of growth in vehicle fleet size and kilometres driven. If the goal is to stabilize greenhouse gas emissions, other measures such as reducing the fleet size and vehicle kilometres travelled and accelerated vehicle retirement (scrappage) programs must be considered. Key constraints on expansion of the alternative fuel fleet were identified. These include: (1) limited availability of an adequate range of alternative fuel vehicles at competitive prices, (2) limited refuelling facility infrastructure in the case of natural gas, limited range and fuel storage capacity for natural gas; (3)current limited fuel ethanol production capacity, and (4) market perceptions of performance, reliability and safety. tabs

  4. Experimental studies of impact of exhaust gas recirculation on the ...

    African Journals Online (AJOL)

    This paper considers the problem of reducing the nitrogen oxides emissions in exhaust gases (EG) of diesel engine by exhaust gas recirculation (EGR). Based on the carried out study the influence of EGR on technical-and-economic and environmental performance of a diesel engine was found as well as main directions of ...

  5. The influence of inner topology of exhaust heat exchanger and thermoelectric module distribution on the performance of automotive thermoelectric generator

    International Nuclear Information System (INIS)

    Wang, Yiping; Li, Shuai; Zhang, Yifeng; Yang, Xue; Deng, Yadong; Su, Chuqi

    2016-01-01

    Highlights: • Cylindrical grooves to improve the performance of TEG were proposed. • Mainly thermal resistance in TEG was the heat convection in heat exchanger. • Proper height of heat exchanger can improve the TEG performance. • Keeping heat exchanger partly covered with TEM can make full use of each TEM. - Abstract: The waste heat of automotive exhaust gas would be directly transferred into electricity by thermoelectric modules (TEM) because of the temperature difference between heat exchanger and water tank. For the vehicle thermoelectric generator (TEG), the electrical power generation was deeply influenced by temperature difference, temperature uniformity and topological structure of TEG. In previous works, increasing the difference of temperature would significantly enhance the power generation of TEG and inserted fins were always applied to enhance heat transfer in heat exchanger. However the fins would result in a large unwanted back pressure which went against to the efficiency of the engine. In current studies, in order to enhance heat transfer rates and to avoid back pressure increase, a heat exchanger containing cylindrical grooves (the depth-to-width ratio is 0.25) on the interior surface of heat exchanger was proposed. The cylindrical grooves could increase the heat transfer area and enhance the turbulence intensity, meanwhile there was no additional inserts in the fluid to block the flow. The surface temperatures of water tank and heat exchanger with three internal structures, such as grooved surface, flat surface and inserted fins, were studied by numerical simulation at each row of thermoelectric modules. The results showed that comparing to other structures, heat exchanger with cylindrical grooves could improve the TEG efficiency at a low back pressure. The influence of the channel height on the TEG performance was investigated and the TEG with a channel height of 8 mm showed the best overall performance. It was also found that a portion

  6. Dedicated exhaust gas recirculation control systems and methods

    Science.gov (United States)

    Sczomak, David P.; Narayanaswamy, Kushal; Keating, Edward J.

    2018-05-01

    An engine control system of a vehicle includes a fuel control module that controls fuel injection of a first cylinder of an engine based on a first target air/fuel ratio that is fuel lean relative to a stoichiometric air/fuel ratio and that controls fuel injection of a second cylinder of the engine based on a second target air/fuel ratio that is fuel rich relative to stoichiometry. The first cylinder outputs exhaust to a first three way catalyst (TWC), and the second cylinder outputs exhaust to an exhaust gas recirculation (EGR) valve. An EGR control module controls opening of the EGR valve to: (i) a second TWC that reacts with nitrogen oxides (NOx) in the exhaust and outputs ammonia to a selective catalytic reduction (SCR) catalyst; and (ii) a conduit that recirculates exhaust back to an intake system of the engine.

  7. On Gas Dynamics of Exhaust Valves

    OpenAIRE

    Winroth, Marcus

    2017-01-01

    With increasing effects of global warming, efforts are made to make transportation in general more fuel efficient. When it comes to internal combustion engines, the most common way to improve fuel efficiency is through ‘downsizing’. Downsizing means that a smaller engine (with lower losses and less weight) performs the task of a larger engine. This is accomplished by fitting the smaller engine with a turbocharger, to recover some of the energy in the hot exhaust gases. Such engine systems nee...

  8. Simulation of exhaust gas heat recovery from a spray dryer

    International Nuclear Information System (INIS)

    Golman, Boris; Julklang, Wittaya

    2014-01-01

    This study explored various alternatives in improving the energy utilization of spray drying process through the exhaust gas heat recovery. Extensible and user-friendly simulation code was written in Visual Basic for Applications within Microsoft Excel for this purpose. The effects of process parameters were analyzed on the energy efficiency and energy saving in the industrial-scale spray drying system with exhaust gas heat recovery in an air-to-air heat exchanger and in the system with partial recirculation of exhaust air. The spray dryer is equipped with an indirect heater for heating the drying air. The maximum gains of 16% in energy efficiency and 50% in energy saving were obtained for spray drying system equipped with heat exchanger for exhaust air heat recovery. In addition, 34% in energy efficiency and 61% in energy saving for system with recirculation of exhaust air in the present range of process parameters. The high energy efficiency was obtained during drying of large amount of dilute slurry. The energy saving was increased using the large amount of hot drying air. - Highlights: • We model industrial-scale spray drying process with the exhaust gas heat recovery. • We develop an Excel VBA computer program to simulate spray dryer with heat recovery. • We examine effects of process parameters on energy efficiency and energy saving. • High energy efficiency is obtained during drying of large amount of dilute slurry. • Energy saving is increased using the large amount of hot drying air

  9. Field-effect gas sensors and their application in exhaust treatment systems; Feldeffekt-Gassensoren und ihre Anwendung in Abgasnachbehandlungssystemen

    Energy Technology Data Exchange (ETDEWEB)

    Schalwig, Jan

    2002-07-01

    Tightening environmental constraints on exhaust gas emissions of gasoline and Diesel engines led to a growing interest in new and highly sophisticated gas sensors. Such sensors will be required in future exhaust gas aftertreatment systems for the selective real time detection of pollutants such as nitric oxides, hydrocarbons and carbon monoxide. Restrictions on cost and device dimensions imposed by the automobile industry make semiconductor gas sensors promising candidates for the realization of cheap and small-size sensor devices. This work deals with semiconductor field effect devices with catalytically active platinum (Pt) electrodes and potential applications of such devices in automotive exhaust gas aftertreatment systems. To allow for continuous operation at high temperatures, silicon carbide (SiC) and group III-nitrides such as GaN and AlGaN were used as semiconductor materials. Different devices have been realized with such materials: SiC based MOS capacitors (MOSiC), GaN Schottky diodes and GaN/AlGaN high electron mobility transistors (HEMT). The principle feasibility of SiC and GaN based field effect gas sensors for automotive applications was tested under laboratory conditions using synthetic gas mixtures. Exhaust gas components such as carbon monoxide (CO), nitric oxides (NO and NO{sub 2}), various saturated and unsaturated hydro-carbons as well as water vapor, oxygen (O{sub 2}) and hydrogen (H{sub 2}) were used as test gases in appropriate concentrations with the sensor devices being operated in a range of temperatures extending from room temperature up to 600{sup o}C. (orig.)

  10. Reduction method of exhaust gas quantity

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Y.; Morishita, K.

    1975-02-08

    A cleaning method for automobile exhaust through contact with sintered oxide semiconductors consisting of tin, antimony, manganese, and palladium oxides is discussed. This device has a much higher efficiency and lasts longer than any similar device developed previously consisting of oxides of iron, manganese cobalt, nickel, aluminum, and other rare earth metals. This sintered oxide semiconductor device is composed of: tin oxide: 30 wt ratio, tin hydrogen oxide: 30 wt ratio, antimony oxide: 2 wt ratio, manganese chloride: 2 wt ratio, palladium chloride: 1 wt ratio, carbon powder: 4 wt ratio, and ammonium carbonate: 10 wt ratio, for example. This device converts 100 percent of carbon monoxide into carbon dioxide at 350 C. This compound provides oxygen to CO at higher temperatures and absorbs oxygen from air at normal temperatures. There is no effect on efficiency.

  11. The Natural Gas Vehicle Challenge 1992: Exhaust emissions testing and results

    Science.gov (United States)

    Rimkus, W. A.; Larsen, R. P.; Zammit, M. G.; Davies, J. G.; Salmon, G. S.; Bruetsch, R. I.

    The Natural Gas Vehicle (NGV) Challenge '92, was organized by Argonne National Laboratory. The main sponsors were the U.S. Department of Energy the Energy, Mines, and Resources -- Canada, and the Society of Automotive Engineers. It resulted in 20 varied approaches to the conversion of a gasoline-fueled, spark-ignited, internal combustion engine to dedicated natural gas use. Starting with a GMC Sierra 2500 pickup truck donated by General Motors, teams of college and university student engineers worked to optimize Chevrolet V-8 engines operating on natural gas for improved emissions, fuel economy, performance, and advanced design features. This paper focuses on the results of the emission event, and compares engine mechanical configurations, engine management systems, catalyst configurations and locations, and approaches to fuel control and the relationship of these parameters to engine-out and tailpipe emissions of regulated exhaust constituents. Nine of the student modified trucks passed the current levels of exhaust emission standards, and some exceeded the strictest future emissions standards envisioned by the U.S. Environmental Protection Agency. Factors contributing to good emissions control using natural gas are summarized, and observations concerning necessary components of a successful emissions control strategy are presented.

  12. Exhaust gas purifying system for an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Minami, H; Saito, Z

    1976-10-07

    The exhaust gas purification system is a so-called three-way catalytic converter. It consists of an oxidation converter, a reduction converter, or a thermal converter. An exhaust sensor made up of an oxygen sensor, a carbon sensor, a carbon monoxide sensor, hydrocarbon sensor, or a nitrogen peroxide sensor, tests the composition of the exhaust and controls the air-fuel feed system in dependence of the exhaust mixture in such a manner that in the intake system an air-fuel mixture is taken in which the stoichiometric air-fuel relation is produced. Moreover, a thermostatically controlled air intake device is built into the fuel injection system which supplies the air of the fuel injection system with a relatively consistent temperature.

  13. New catalysts for exhaust gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, M [Kemira Metalkat Oy, Oulu (Finland)

    1997-12-31

    Major challenge for future catalyst systems was to develop thermally more stable washcoats for close coupled operating conditions and for engines operating under high speed and load conditions. To design these future emission systems extensive research and development was undertaken to develop methods to disperse and stabilize the key catalytic materials for operation at much higher temperatures. Second priority was to design catalysts that are more effective under low temperature exhaust conditions and have improved oxygen storage properties in the washcoats. Incorporating new materials and modified preparation technology a new generation of metallic catalyst formulations emerged, those being trimetallic K6 (Pt:Pd:Rh and bimetallic K7) (Pd+Pd:Rh). The target was to combine the best property of Pt:Rh (good NO{sub x} reduction) with that of the good HC oxidation activity of Pd and to ensure that precious metal/support interactions were positively maintained. Both K6 and K7 concepts contain special catalyst structures with optimized washcoat performance which can be brick converter configuration. Improvement in light-off, thermal stability and transient performance with these new catalyst formulations have clearly been shown in both laboratory and vehicle testing. (author) (20 refs.)

  14. New catalysts for exhaust gas cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Haerkoenen, M. [Kemira Metalkat Oy, Oulu (Finland)

    1996-12-31

    Major challenge for future catalyst systems was to develop thermally more stable washcoats for close coupled operating conditions and for engines operating under high speed and load conditions. To design these future emission systems extensive research and development was undertaken to develop methods to disperse and stabilize the key catalytic materials for operation at much higher temperatures. Second priority was to design catalysts that are more effective under low temperature exhaust conditions and have improved oxygen storage properties in the washcoats. Incorporating new materials and modified preparation technology a new generation of metallic catalyst formulations emerged, those being trimetallic K6 (Pt:Pd:Rh and bimetallic K7) (Pd+Pd:Rh). The target was to combine the best property of Pt:Rh (good NO{sub x} reduction) with that of the good HC oxidation activity of Pd and to ensure that precious metal/support interactions were positively maintained. Both K6 and K7 concepts contain special catalyst structures with optimized washcoat performance which can be brick converter configuration. Improvement in light-off, thermal stability and transient performance with these new catalyst formulations have clearly been shown in both laboratory and vehicle testing. (author) (20 refs.)

  15. Technique for radiation treatment of exhaust gas due to combustion

    International Nuclear Information System (INIS)

    Machi, Sueo

    1978-01-01

    As the Japanese unique research in the field of preservation of environment, the technique to remove simultaneously sulphur dioxide and nitrogen oxides in exhaust gas using electron beam irradiation is noteworthy. This research was started by the experiment in the central research laboratory of Ebara Manufacturing Co., Ltd., in which it was found that the sulphur dioxide of initial concentration of 1,000 ppm was almost completely vanished when the exhaust gas of heavy oil combustion in a batch type vessel was irradiated for 9 minutes by electron beam. Based on this experiment, JAERI installed a continuous irradiation equipment with a large accelerator, and has investigated the effect of various parameters such as dose rate, irradiation temperature, total dose and agitation. This resulted in the remarkable finding that nitrogen oxides were also completely removed as well as sulphur dioxide when the exhaust gas containing both sulphur dioxide and nitrogen oxides was irradiated for a few seconds. In this case, if water of about 0.3% is added, removal rate of sulphur dioxide is greatly increased. The research group of University of Tokyo obtained other findings concerning removal rates. Then, after the pilot plant stage in Ebara Manufacturing Co., Ltd. from 1974, the test plant of exhaust gas treatment for a sintering machine, having the capacity of 3,000 Nm 3 /hr, has been constructed in Yawata Works of Nippon Steel Corp. This is now operating properly. (Wakatsuki, Y.)

  16. Dual-fuelling of a direct-injection automotive diesel engine by diesel and compressed natural gas

    International Nuclear Information System (INIS)

    Pirouzpanah, V.; Mohammadi Kosha, A.; Mosseibi, A.; Moshirabadi, J.; Gangi, A.; Moghadaspour, M.

    2000-01-01

    Application of Compressed Natural Gas in diesel engines has always been important, especially in the field of automotive engineering. This is due to easy accessibility, better mixing quality and good combustion characteristics of the Compressed Natural Gas fuel. In this study the application of Compressed Natural Gas fuel along with diesel oil in a heavy duty direct-injection automotive diesel engine is experimentally investigated. In order to convert a diesel engine into a diesel-gas one, the so called m ixed diesel-gas a pproach has been used and for this purpose a carbureted Compressed Natural Gas fuel system has been designed and manufactured. For controlling quantity of Compressed Natural Gas, the gas valve is linked to the diesel fuel injection system by means of a set of rods. Then, the dual-fuel system is adjusted so that, at full load conditions, the quantity of diesel fuel is reduced to 20% and 80% of its equivalent energy is substituted by Compressed Natural Gas fuel. Also injection pressure of pilot jet is increased by 11.4%. Performance and emission tests are conducted under variation of load and speed on both diesel and diesel-gas engines. Results show that, with equal power and torque, the diesel-gas engine has the potential to improve overall engine performance and emission. For example, at rated power and speed, fuel economy increases by 5.48%, the amount of smoke decreases by 78%, amount of CO decreases by 64.3% and mean exhaust gas temperature decreases by 6.4%

  17. IC ENGINE SUPERCHARGING AND EXHAUST GAS RECIRCULATION USING JET COMPRESSOR

    Directory of Open Access Journals (Sweden)

    Adhimoulame Kalaisselvane

    2010-01-01

    Full Text Available Supercharging is a process which is used to improve the performance of an engine by increasing the specific power output whereas exhaust gas recirculation reduces the NOx produced by engine because of supercharging. In a conventional engine, supercharger functions as a compressor for the forced induction of the charge taking mechanical power from the engine crankshaft. In this study, supercharging is achieved using a jet compressor. In the jet compressor, the exhaust gas is used as the motive stream and the atmospheric air as the propelled stream. When high pressure motive stream from the engine exhaust is expanded in the nozzle, a low pressure is created at the nozzle exit. Due to this low pressure, atmospheric air is sucked into the expansion chamber of the compressor, where it is mixed and pressurized with the motive stream. The pressure of the mixed stream is further increased in the diverging section of the jet compressor. A percentage volume of the pressurized air mixture is then inducted back into the engine as supercharged air and the balance is let out as exhaust. This process not only saves the mechanical power required for supercharging but also dilutes the constituents of the engine exhaust gas thereby reducing the emission and the noise level generated from the engine exhaust. The geometrical design parameters of the jet compressor were obtained by solving the governing equations using the method of constant rate of momentum change. Using the theoretical design parameters of the jet compressor, a computational fluid dinamics analysis using FLUENT software was made to evaluate the performance of the jet compressor for the application of supercharging an IC engine. This evaluation turned out to be an efficient diagnostic tool for determining performance optimization and design of the jet compressor. A jet compressor was also fabricated for the application of supercharging and its performance was studied.

  18. Test Program for High Efficiency Gas Turbine Exhaust Diffuser

    Energy Technology Data Exchange (ETDEWEB)

    Norris, Thomas R.

    2009-12-31

    This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of “strutlets” to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

  19. The development of natural gas as an automotive fuel in China

    International Nuclear Information System (INIS)

    Ma, Linwei; Geng, Jia; Li, Weqi; Liu, Pei; Li, Zheng

    2013-01-01

    This manuscript aims to systematically review the development of natural gas as an automotive fuel in China and to draw policy implications for decision making. This manuscript presents a brief overview of natural gas development and the potential of natural gas as an automotive fuel in China, followed by an introduction to the development of various technology pathways for using natural gas as an automotive fuel, including CNG (compressed natural gas) vehicles, LNG (liquefied natural gas) vehicles, and others. This material suggests, a large potential to increase the use of natural gas as an automotive fuel, especially for CNG and LNG vehicles. The following activities will promote the development of natural gas vehicles: prioritizing vehicle use in the utilization of natural gas, supporting the construction of natural gas filling stations, developing a favorable pricing policy for natural gas used in vehicles, and enhancing the research and development to further improve the technology performance, especially for the technology of LNG vehicles. -- Highlights: •An overview of the natural gas development in China. •A systematic introduction of the development of natural gas vehicles in China. •A review of the technological performance of natural gas vehicles. •Policy suggestions to promote the development of natural gas vehicles in China

  20. PIXE analysis of exhaust gas from diesel engine

    International Nuclear Information System (INIS)

    Miyake, Hirosi; Michijima, Masami; Onishi, Masayuki; Fujitani, Tatsuya.

    1986-01-01

    The variation of elemental concentrations in exhaust gas of a Diesel engine with the outputs was studied. Particulates in high temperature gas were collected on silica fiber filters and analyzed by PIXE method. Concentrations of S and V were nearly proportional to particulate masses and fuel consumption rates per discharging rates of exhaust gas respectively. While, concentrations of Fe and Mn were markedly increased together with engine outputs, and Mn/Fe ratios were nearly equal to those of the material of piston rings and the cylinder liner. Concentrations of the elements contained in lubricant, such as Ca and Mo, were also conspicuously increased with the outputs. It was shown that PIXE analysis is a useful tool for engine diagonostics owing to its high sensitive multi-elemental availability without chemical treatments. (author)

  1. Development of Exhaust Leak Detector Device for Automotive Service Industry: A Prototype Design

    OpenAIRE

    Eida Nadirah Roslin; Siti Khadijah Ismail; Mohd Zaki Bahrom; Mansor Aluidin

    2016-01-01

    The exhaust system plays a vital role in removing the gaseous emissions that is being produced within the combustion chamber during fuel-air mixture activities. The exhaust system is defined as a series of chambers and pipes that starts at the engine and ends at the back of the car with the tail pipe. However if there are any leaks in the exhaust system, it provide a direct path for the emission gaseous including carbon monoxide to enter can be very dangerous as it provides a direct path for ...

  2. [Poisoning by exhaust gas of the imperfect combustion of natural gas: 22 cases study].

    Science.gov (United States)

    Dong, Li-Min; Zhao, Hai; Zhang, Ming-Chang; He, Meng

    2014-10-01

    To analyze the case characteristics of poisoning by exhaust gas of the imperfect combustion of natural gas and provide references for forensic identification and prevention of such accidents. Twenty-two cases of poisoning by exhaust gas of the imperfect combustion of natural gas in Minhang District during 2004 to 2013 were collected. Some aspects such as general conditions of deaths, incidence time, weather, field investigation, and autopsy were retrospectively analyzed. In the 22 cases, there were 15 males and 16 females. The age range was between 2 and 82 years old. The major occurring time was in January or February (8 cases in each) and the cases almost occurred in small area room (21 cases). There was wide crack next to the exhaust port when the gas water heater was been used in all cases. There are more prone to occurrence of exhaust gas poisoning of imperfect combustion of natural gas in small area room with a ventilation window near the exhaust port of gas water heated. It shows that the scene of combustion exhaust gas poisoning should be more concerned in the cold season.

  3. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    Science.gov (United States)

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  4. Organic positive ions in aircraft gas-turbine engine exhaust

    Science.gov (United States)

    Sorokin, Andrey; Arnold, Frank

    Volatile organic compounds (VOCs) represent a significant fraction of atmospheric aerosol. However the role of organic species emitted by aircraft (as a consequence of the incomplete combustion of fuel in the engine) in nucleation of new volatile particles still remains rather speculative and requires a much more detailed analysis of the underlying mechanisms. Measurements in aircraft exhaust plumes have shown the presence of both different non-methane VOCs (e.g. PartEmis project) and numerous organic cluster ions (MPIK-Heidelberg). However the link between detected organic gas-phase species and measured mass spectrum of cluster ions is uncertain. Unfortunately, up to now there are no models describing the thermodynamics of the formation of primary organic cluster ions in the exhaust of aircraft engines. The aim of this work is to present first results of such a model development. The model includes the block of thermodynamic data based on proton affinities and gas basicities of organic molecules and the block of non-equilibrium kinetics of the cluster ions evolution in the exhaust. The model predicts important features of the measured spectrum of positive ions in the exhaust behind aircraft. It is shown that positive ions emitted by aircraft engines into the atmosphere mostly consist of protonated and hydrated organic cluster ions. The developed model may be explored also in aerosol investigations of the background atmosphere as well as in the analysis of the emission of fine aerosol particles by automobiles.

  5. 4-Nitrophenol, 1-nitropyrene, and 9-nitroanthracene emissions in exhaust particles from diesel vehicles with different exhaust gas treatments

    Science.gov (United States)

    Inomata, Satoshi; Fushimi, Akihiro; Sato, Kei; Fujitani, Yuji; Yamada, Hiroyuki

    2015-06-01

    The dependence of nitro-organic compound emissions in automotive exhaust particles on the type of aftertreatment used was investigated. Three diesel vehicles with different aftertreatment systems (an oxidation catalyst, vehicle-DOC; a particulate matter and NOx reduction system, vehicle-DPNR; and a urea-based selective catalytic reduction system, vehicle-SCR) and a gasoline car with a three-way catalyst were tested. Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) and nitrophenols in the particles emitted were analyzed by thermal desorption gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. The secondary production of nitro-organic compounds on the filters used to collect particles and the adsorption of gaseous nitro-organic compounds by the filters were evaluated. Emissions of 1-nitropyrene, 9-nitroanthracene, and 4-nitrophenol in the diesel exhaust particles were then quantified. The NOx reduction process in vehicle-DPNR appeared to remove nitro-hydrocarbons efficiently but not to remove nitro-oxygenated hydrocarbons efficiently. The nitro-PAH emission factors were lower for vehicle-DOC when it was not fitted with a catalyst than when it was fitted with a catalyst. The 4-nitrophenol emission factors were also lower for vehicle-DOC with a catalyst than vehicle-DOC without a catalyst, suggesting that the oxidation catalyst was a source of both nitro-PAHs and 4-nitrophenol. The time-resolved aerosol mass spectrometry data suggested that nitro-organic compounds are mainly produced when an engine is working under load. The presence of 4-nitrophenol in the particles was not confirmed statistically because of interference from gaseous 4-nitrophenol. Systematic errors in the estimated amounts of gaseous 1-nitropyrene and 9-nitroanthracene adsorbed onto the filters and the estimated amounts of volatile nitro-organic compounds that evaporated during sampling and during post-sampling conditioning could not be excluded. An analytical method

  6. Exhaust gas recirculation for advanced diesel combustion cycles

    International Nuclear Information System (INIS)

    Asad, Usman; Zheng, Ming

    2014-01-01

    Highlights: • Analysis of the incremental (cycle-by-cycle) build-up of EGR. • Proposed one-step equations for transient/steady-state gas concentration estimation. • Defined an in-cylinder excess-air ratio to account for the recycled oxygen with EGR. • Demonstrated the use of intake oxygen as a reliable measure of EGR effectiveness. • Demonstrated the impact of engine load and intake pressure on EGR effectiveness. - Abstract: Modern diesel engines tend to utilize significantly large quantities of exhaust gas recirculation (EGR) and high intake pressures across the engine load range to meet NOx targets. At such high EGR rates, the combustion process and exhaust emissions tend to exhibit a marked sensitivity to small changes in the EGR quantity, resulting in unintended deviations from the desired engine performance characteristics (energy efficiency, emissions, stability). An accurate estimation of EGR and its effect on the intake dilution are, therefore, necessary to enable its application during transient engine operation or unstable combustion regimes. In this research, a detailed analysis that includes estimation of the transient (cycle-by-cycle) build-up of EGR and the time (engine cycles) required to reach the steady-state EGR operation has been carried out. One-step global equations to calculate the transient and steady-state gas concentrations in the intake and exhaust are proposed. The effects of engine load and intake pressure on EGR have been examined and explained in terms of intake charge dilution and in-cylinder excess-air ratio. The EGR analysis is validated against a wide range of empirical data that include low temperature combustion cycles, intake pressure and load sweeps. This research intends to not only formulate a clear understanding of EGR application for advanced diesel combustion but also to set forth guidelines for transient analysis of EGR

  7. Influence of an Optimized Thermoelectric Generator on the Back Pressure of the Subsequent Exhaust Gas System of a Vehicle

    Science.gov (United States)

    Kühn, Roland; Koeppen, Olaf; Kitte, Jens

    2014-06-01

    Numerous research projects in automotive engineering focus on the industrialization of the thermoelectric generator (TEG). The development and the implementation of thermoelectric systems into the vehicle environment are commonly supported by virtual design activities. In this paper a customized simulation architecture is presented that includes almost all vehicle parts which are influenced by the TEG (overall system simulation) but is nevertheless capable of real-time use. Moreover, an optimized planar TEG with minimum nominal power output of about 580 W and pressure loss at nominal conditions of 10 mbar, synthesized using the overall system simulation, and the overall system simulation itself are used to answer a generally neglected question: What influence does the position of a TEG have on the back pressure of the subsequent exhaust gas system of the vehicle? It is found that the influence of the TEG on the muffler is low, but the catalytic converter is strongly influenced. It is shown that the TEG can reduce the back pressure of an exhaust gas system so much that its overall back pressure is less than the back pressure of a standard exhaust gas system.

  8. 40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.

    Science.gov (United States)

    2010-07-01

    ... exhaust duct excludes the length of pipe representative of the vehicle exhaust pipe) shall be minimized... exhaust manifold, immediately after exhaust aftertreatment systems, or after a length of pipe representative of the vehicle exhaust pipe; or (iv) Partial dilution of the exhaust gas prior to entering the...

  9. Exhaust gas turbo-charger for internal combustion engines. Abgasturbolader fuer Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Behnert, R.

    1982-01-07

    The invention is concerned with a exhaust gas turbocharger for internal combustion engines. A turbine driving a compressor, is feeded with the exhaust gas. Intended is the over-temperature protection of the exhaust gas turbocharger. For this reason a ring shaped sheet with a well polished nickel surface, serves as thermal shield. A sealing avoids soiling of the turbine shaft. Due to the heat shielding effect no tinder, oxide or dirt deposition is possible. The heat reflection factor is constant.

  10. Study on waste heat recovery from exhaust gas spark ignition (S.I. engine using steam turbine mechanism

    Directory of Open Access Journals (Sweden)

    Talib Kamarulhelmy

    2017-01-01

    Full Text Available The issue of global warming has pushed the effort of researchers not only to find alternative renewable energy, but also to improve the machine’s energy efficiency. This includes the utilization of waste energy into ‘useful energy’. For a vehicle using internal combustion engine (ICE, the waste energy produce by exhaust gas can be utilize to ‘useful energy’ up to 34%. The energy from the automotive exhaust can be harness by implementing heat pipe heat exchanger in the automotive system. In order to maximize the amount of waste energy that can be turned to ‘useful energy’, the used of appropriate fluid in the heat exchanger is important. In this study, the fluid used is water, thus converting the fluid into steam and thus drive the turbine that coupling with generator. The paper will explore the performance of a naturally aspirated spark ignition (S.I. engine equipped with waste heat recovery mechanism (WHRM that used water as the heat absorption medium. The experimental and simulation test suggest that the concept is thermodynamically feasible and could significantly enhance the system performance depending on the load applied to the engine.

  11. Status of the Ford program to evaluate ceramics for stator applications in automotive gas turbine engines

    Science.gov (United States)

    Trela, W.

    1980-01-01

    The paper reviews the progress of the major technical tasks of the DOE/NASA/Ford program Evaluation of Ceramics for Stator Applications in Automotive Gas Turbine Engines: reliability prediction, stator fabrication, material characterization, and stator evaluation. A fast fracture reliability model was prepared for a one-piece ceramic stator. Periodic inspection results are presented.

  12. Estimation of exhaust gas aerodynamic force on the variable geometry turbocharger actuator: 1D flow model approach

    International Nuclear Information System (INIS)

    Ahmed, Fayez Shakil; Laghrouche, Salah; Mehmood, Adeel; El Bagdouri, Mohammed

    2014-01-01

    Highlights: • Estimation of aerodynamic force on variable turbine geometry vanes and actuator. • Method based on exhaust gas flow modeling. • Simulation tool for integration of aerodynamic force in automotive simulation software. - Abstract: This paper provides a reliable tool for simulating the effects of exhaust gas flow through the variable turbine geometry section of a variable geometry turbocharger (VGT), on flow control mechanism. The main objective is to estimate the resistive aerodynamic force exerted by the flow upon the variable geometry vanes and the controlling actuator, in order to improve the control of vane angles. To achieve this, a 1D model of the exhaust flow is developed using Navier–Stokes equations. As the flow characteristics depend upon the volute geometry, impeller blade force and the existing viscous friction, the related source terms (losses) are also included in the model. In order to guarantee stability, an implicit numerical solver has been developed for the resolution of the Navier–Stokes problem. The resulting simulation tool has been validated through comparison with experimentally obtained values of turbine inlet pressure and the aerodynamic force as measured at the actuator shaft. The simulator shows good compliance with experimental results

  13. Experimental Determination of Exhaust Gas Thrust, Special Report

    Science.gov (United States)

    Pinkel, Benjamin; Voss, Fred

    1940-01-01

    This investigation presents the results of tests made on a radial engine to determine the thrust that can be obtained from the exhaust gas when discharged from separate stacks and when discharged from the collector ring with various discharge nozzles. The engine was provided with a propeller to absorb the power and was mounted on a test stand equipped with scales for measuring the thrust and engine torque. The results indicate that at full open throttle at sea level, for the engine tested, a gain in thrust horsepower of 18 percent using separate stacks, and 9.5 percent using a collector ring and discharge nozzle, can be expected at an air speed of 550 miles per hour.

  14. Exhaust gas turbocharger for internal combustion engines. Abgasturbolader fuer Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Behnert, R.; Dommes, W.; Gerwig, W.

    1982-01-21

    The invention aimes at the heat protection of a turbocharger for internal combustion engines. The turbine is feeded with exhaust gas and drives the shaft of a compressor. For resolving this problem a thermal shield has been installed on the backside of the turbine. The shaft is sealed with an elastic gasket ring. This gasket avoids the deposition of dust and dirt. As a consequence of this constructive measure a growth of tinder and oxides can be avoided as well as the deposition of dirt. A constant reflection factor is ensured. The thermal shield can be manufactured of thin sheet with a nickel surface and can fastened with distance pieces on the backside of the turbine case. Furthermore it is possible to use a ceramic heat shield.

  15. An experimental study on the effects of exhaust gas on spruce (Picea abies L. Karst.)

    Energy Technology Data Exchange (ETDEWEB)

    Hautala, E.L.; Holopainen, J.; Kaerenlampi, L. [Kuopio Univ. (Finland). Dept. of Ecology and Environmental Science; Surakka, J.; Ruuskanen, J. [Kuopio Univ. (Finland). Dept. of Environmental Sciences

    1995-12-31

    Motor vehicle exhausts are significant contributors to air pollution. Besides fine particles and inorganic gases, like CO, SO{sub 2} and NO{sub x}, exhaust gas contains a large group of aromatic hydrocarbon compounds, many of which are phytotoxic. In field studies, exhausts are found to have both direct and indirect harmful effects on roadside plants. However, only few experimental studies have been made about the effects of exhaust gas emissions on coniferous trees. The aim of this study was to survey the effects of exhausts on spruce (Picea abies L. Karst.) in standardized conditions. The concentrations of major exhaust gas components in the chamber atmosphere were detected simultaneously. The effects of exhaust on epistomatal waxes of first-year spruce needles are described. (author)

  16. An experimental study on the effects of exhaust gas on spruce (Picea abies L. Karst.)

    Energy Technology Data Exchange (ETDEWEB)

    Hautala, E L; Holopainen, J; Kaerenlampi, L [Kuopio Univ. (Finland). Dept. of Ecology and Environmental Science; Surakka, J; Ruuskanen, J [Kuopio Univ. (Finland). Dept. of Environmental Sciences

    1996-12-31

    Motor vehicle exhausts are significant contributors to air pollution. Besides fine particles and inorganic gases, like CO, SO{sub 2} and NO{sub x}, exhaust gas contains a large group of aromatic hydrocarbon compounds, many of which are phytotoxic. In field studies, exhausts are found to have both direct and indirect harmful effects on roadside plants. However, only few experimental studies have been made about the effects of exhaust gas emissions on coniferous trees. The aim of this study was to survey the effects of exhausts on spruce (Picea abies L. Karst.) in standardized conditions. The concentrations of major exhaust gas components in the chamber atmosphere were detected simultaneously. The effects of exhaust on epistomatal waxes of first-year spruce needles are described. (author)

  17. Organic Rankine cycle for power recovery of exhaust flue gas

    International Nuclear Information System (INIS)

    Guo, Cong; Du, Xiaoze; Yang, Lijun; Yang, Yongping

    2015-01-01

    To study the effects of different working fluids on the performance of organic Rankine cycle (ORC), three working fluids, a mixture that matches with heat source, a mixture that matches with heat sink and a pure working fluid, are selected in this paper. Thermodynamic models were built in Matlab together with REFPROP, with which, the physical properties of the selected working fluids can be acquired. Heat source of the ORC system is the exhaust flue gas of boiler in a 240 MW pulverized coal-fired power plant. Some indicators such as thermal efficiency, inlet temperature of expander, superheat degree, mass flow, volumetric flow, and exergy destruction distribution, as well as the influence of recuperator are studied. The analytical results show that the mixture that matches with heat sink has the greatest efficiency and the mixture that matches with heat source has the lowest superheat degree. The rate of heat exchanged in recuperator to that in evaporator has a maximum value with evaporating pressure. There exists no optimal working fluid for all indicators (thermal efficiency, heat exchanger area, mass flow and volumetric flow etc.). An appropriate working fluid should be chosen by taking both investment cost and power generating benefits into account. The cost-benefit ratio of the proposed ORC plant was evaluated either. - Highlights: • Three types of working fluids are selected for ORC using exhaust flue gas. • The mixture that matches with heat sink has the greatest efficiency. • The mixture that matches with heat source has the lowest superheat degree. • There does not exist a working fluid that satisfies all the indicators

  18. Application of Pyrolysis - Gas Chromatography/Mass Spectrometry in Failure Analysis in the Automotive Industry

    OpenAIRE

    Kusch, Peter (Dr.)

    2015-01-01

    This book chapter describes application examples of gas chromatography/mass spectrometry and pyrolysis – gas chromatography/mass spectrometry in failure analysis for the identification of chemical materials like mineral oils and nitrile rubber gaskets. Furthermore, failure cases demanding identification of polymers/copolymers in fouling on the compressor wall of a car air conditioner and identification of fouling on the surface of a bearing race from the automotive industry are demonstr...

  19. 30 CFR 36.43 - Determination of exhaust-gas composition.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Determination of exhaust-gas composition. 36.43... TRANSPORTATION EQUIPMENT Test Requirements § 36.43 Determination of exhaust-gas composition. (a) Samples shall be..., hydrogen, methane, nitrogen, oxides of nitrogen, and aldehydes, or any other constituent prescribed by MSHA...

  20. Exhaust Gas Recirculation Control for Large Diesel Engines - Achievable Performance with SISO Design

    DEFF Research Database (Denmark)

    Hansen, Jakob Mahler; Blanke, Mogens; Niemann, Hans Henrik

    2013-01-01

    This paper investigates control possibilities for Exhaust Gas Recirculation (EGR) on large diesel engines. The goal is to reduce the amount of NOx in the exhaust gas by reducing the oxygen concentration available for combustion. Control limitations imposed by the system are assessed using linear...

  1. Removal of methane from compressed natural gas fueled vehicle exhaust

    International Nuclear Information System (INIS)

    Subramanian, S.; Kudla, R.J.; Chattha, M.S.

    1992-01-01

    The objective of this paper is to investigate the modes of methane (CH 4 ) removal from simulated compressed natural gas (CNG) fueled vehicle exhaust under net oxidizing, net reducing, and stoichiometric conditions. Model reaction studies were conducted. The results suggest that the oxidation of methane with oxygen contributes to the removal of methane under net oxidizing conditions. In contrast, the oxidation of methane with oxygen as well as nitric oxide contributes to its removal under net reducing conditions. The steam reforming reaction does not significantly contribute to the removal of methane. The methane conversions under net reducing conditions are higher than those observed under net oxidizing conditions. The study shows that the presence of carbon monoxide in the feed gas leads to a gradual decrease in the methane conversion with increasing redox ratio, under net oxidizing conditions. a minimum in methane conversion is observed at a redox ratio of 0. 8. The higher activity for the methane-oxygen reaction resulting from a lowering in the overall oxidation state of palladium and the contribution of the methane-nitric oxide reaction toward the removal of CH 4 appear to account for the higher CH 4 conversions observed under net reducing conditions

  2. Liquefied Petroleum Gas as Automotive Fuel in Environmental Protection

    Directory of Open Access Journals (Sweden)

    Nada Štrumberger

    2012-10-01

    Full Text Available This paper considers the possibilities of using liquefied petroleumgas (LPG as alternative fuel for propelling Olio enginesin passenger cars. The advantages of using LPG comparedto petrol are reflected in the reduced emission of harmfulgases, lower price. The disadvantages include the costs of installingthe gas equipment, occupying part of the boot, as well asfew gas filling stations. In spite of the disadvantages, liquefiedpetroleum gas is claimed to be the fuel of the future.

  3. Exhaust Gas Temperature Measurements in Diagnostics of Turbocharged Marine Internal Combustion Engines Part I Standard Measurements

    Directory of Open Access Journals (Sweden)

    Korczewski Zbigniew

    2015-01-01

    Full Text Available The article discusses the problem of diagnostic informativeness of exhaust gas temperature measurements in turbocharged marine internal combustion engines. Theoretical principles of the process of exhaust gas flow in turbocharger inlet channels are analysed in its dynamic and energetic aspects. Diagnostic parameters are defined which enable to formulate general evaluation of technical condition of the engine based on standard online measurements of the exhaust gas temperature. A proposal is made to extend the parametric methods of diagnosing workspaces in turbocharged marine engines by analysing time-histories of enthalpy changes of the exhaust gas flowing to the turbocompressor turbine. Such a time-history can be worked out based on dynamic measurements of the exhaust gas temperature, performed using a specially designed sheathed thermocouple.

  4. Exhaust Gas Temperature Measurements in Diagnostics of Turbocharged Marine Internal Combustion Engines Part II Dynamic Measurements

    Directory of Open Access Journals (Sweden)

    Korczewski Zbigniew

    2016-01-01

    Full Text Available The second part of the article describes the technology of marine engine diagnostics making use of dynamic measurements of the exhaust gas temperature. Little-known achievements of Prof. S. Rutkowski of the Naval College in Gdynia (now: Polish Naval Academy in this area are presented. A novel approach is proposed which consists in the use of the measured exhaust gas temperature dynamics for qualitative and quantitative assessment of the enthalpy flux of successive pressure pulses of the exhaust gas supplying the marine engine turbocompressor. General design assumptions are presented for the measuring and diagnostic system which makes use of a sheathed thermocouple installed in the engine exhaust gas manifold. The corrected thermal inertia of the thermocouple enables to reproduce a real time-history of exhaust gas temperature changes.

  5. Session 4: On-board exhaust gas reforming for improved performance of natural gas HCCI engines

    Energy Technology Data Exchange (ETDEWEB)

    Amieiro, A.; Golunski, S.; James, D. [Johnson Matthey Technology Centre, Sonning Common, Reading (United Kingdom); Miroslaw, Wyszynski; Athanasios, Megaritis; Peucheret, S. [Birmingham Univ., School of Engineering, Future Power Systems Research Group (United Kingdom); Hongming, Xu [Jaguar Cars Ltd, W/2/021 Engineering Centre, Whitley, Coventry (United Kingdom)

    2004-07-01

    Although natural gas (NG) is a non-renewable energy source, it is still a very attractive alternative fuel for transportation - it is inexpensive, abundant, and easier to refine than petroleum. Unfortunately the minimum spark energy required for NG ignition is higher than for liquid fuels, and engine performance is reduced since the higher volume of NG limits the air breathing capacity of the cylinders. On the other hand, the flammability range of NG is wider than for other hydrocarbons, so the engine can operate under leaner conditions. Environmentally, the use of NG is particularly attractive since it has a low flame temperature (resulting in reduced NO{sub x} emissions) and a low carbon content compared to diesel or gasoline (resulting in less CO, CO{sub 2} and particulate). In addition, NG is easily made sulphur-free, and has a high octane rating (RON = 110-130) which makes it suitable for high compression engine applications. Exhaust gas recirculation (EGR) into an engine is known to reduce both flame temperature and speed, and therefore produce lower NO{sub x} emissions. In general, a given volume of exhaust gas has a greater effect on flame speed and NO{sub x} emissions than the same quantity of excess air, although there is a limit to the amount of exhaust gas recirculation that can be used without inhibiting combustion. However, hydrogen addition to exhaust gas recirculation has been proved to reduce emissions while increasing flame speed, so improving both the emissions and the thermal efficiency of the engine. On-board reforming of some of the fuel, by reaction with exhaust gas during EGR, is a novel way of adding hydrogen to an engine. We have carried out reforming tests on mixtures of natural gas and exhaust gas at relatively low temperatures (400-600 C), to mimic the low availability of external heat within the integrated system. The reforming catalyst is a nickel-free formulation, containing precious metals promoted by metal oxides. The roles of

  6. Three-dimensional approach to exhaust gas energy analysis

    Science.gov (United States)

    Sekavčnik, M.; Ogorevc, T.; Katrašnik, T.; Rodman-Oprešnik, S.

    2012-06-01

    Presented work is based on an extensive CFD simulation of the exhaust stroke of a single-cylinder four-stroke internal combustion engine with the exhaust manifold attached. Since the dynamics of the exhaust flow are extremely 3D, an innovative approach to calculate the local entropy generation is developed and implemented in the discussed 3D numerical model. It allows temporal and spatial determination of critical regions and periods of entropy generation in the process with objective to reduce it.

  7. Removing method for radon gas exhausted from nuclear fuel material

    International Nuclear Information System (INIS)

    Kato, Kenji.

    1993-01-01

    A centrifugal separator is disposed in the midway of an exhaustion pipe of a nuclear fuel handling facility, and exhausted gases are sent into a rotational cylinder of the separator. Radon gases in the midway of exhaustion are separated from the exhaustion gases by the centrifugal force of the separator and caused to stagnate at the periphery of the circumferential wall of the rotational cylinder. At the same time, the exhaustion gases having the radon gases separated therefrom are exhausted from the periphery of a rotational shaft of the rotational cylinder. Then, the radon gases stagnated in the rotational cylinder are decayed depending on the half-decay time. With such procedures, the radon gases can be removed continuously without discharging them to the outside. Further, it is preferred that an exhaustion blower or the like for putting the inside of the nuclear fuel handing facility to a negative pressure is disposed as in a conventional case. Further, a plurality of centrifugal separators may be disposed to exhaustion pipes, to remove radon gases in the exhaust gases by a multi stage way. Radon gases can be removed in a saved space with no requirement for exchange of adsorbents or temperature control. (T.M.)

  8. Dual-purpose power plants, experiences with exhaust gas purification plants

    International Nuclear Information System (INIS)

    Dietrich, R.

    1993-01-01

    From 1984 to 1988, the research and development project ''pollutant reduction for exhaust gases from heat production systems'' sponsored by the Federal Ministry of Research and Technology (BMFT) has been carried out by TUeV in Bavaria. This project was to show the state of exhaust gas technology for small and medium-sized plants (boilers and motoric heat generators). When publishing the final report, no positive balance could be given. Based on the results, the succession project ''Exhaust gas purification plants in field test'' (ARIF) has been started. This project has the following objectives: -Measuring technical investigation of the exhaust gas purification of motoric driven heat generator systems in field test. - Suitability of hand measuring devices for emissions for a discontinuous control of the exhaust gas purification plat by the operator. - Control of new methods regarding pollutant reduction for motoric and conventional heat generators. (orig.) [de

  9. Parametric study on ship’s exhaust-gas behavior using computational fluid dynamics

    Directory of Open Access Journals (Sweden)

    Sunho Park

    2017-01-01

    Full Text Available The influence of design parameters related to a ship’s exhaust-gas behavior was investigated using computational fluid dynamics (CFD for an 8,000 TEU container carrier. To verify the numerical methods, the results were studied by comparing with experimental results. Several test conditions, i.e. various load conditions of ship, wind angle, deckhouse breadth, radar mast height, and exhaust-pipe height and shape were considered for a ship’s exhaust gas flow around the 8,000 TEU container carrier. The influence of the design parameters on contamination by the exhaust gas was quantified, after which the principal parameters to avoid contamination were selected. Finally, the design guideline of yP/H = 2 was suggested to avoid the contamination from the ship’s exhaust gas using the CFD results, model tests, and sea trials.

  10. Study on using acetylene in dual fuel mode with exhaust gas recirculation

    International Nuclear Information System (INIS)

    Lakshmanan, T.; Nagarajan, G.

    2011-01-01

    Interest in employing gaseous fuels to internal combustion (IC) engines whether for stationary or mobile automotive applications has gained importance because of the economical, sustainable and environmental technical features associated with their usage. However, the incidence of preignition and knock remains a significant barrier in achieving their optimum performance potential. With the advent of latest technologies, the above barriers are eliminated. One such technique is timed manifold injection (TMI) of the gaseous fuel, which is controlled electronically to precisely monitor the induction of fuel to overcome the preignition problem in the intake. In the present investigation, acetylene was injected in the intake manifold in a single cylinder diesel engine, with a gas flow rate of 240 g/h, start of injection time is 10 o aTDC and 90 o CA (9.9 ms) duration, operated in dual fuel mode. In order to decrease the NOx emissions from acetylene-diesel engine, cooled EGR was employed. The cylinder pressure, brake thermal efficiency and emissions such as NOx, smoke, CO, HC, CO 2 and exhaust gas temperature were studied. Dual fuel operation with acetylene induction coupled with cooled EGR results in lowered NOx emissions and improved part load performance. -- Highlights: → Acetylene was tried in SI engines, but due to backfire further research was hindered as an alternative fuel. → But it is not tried in CI engine. Timed manifold injection was tried in diesel engine in the present work to combat backfire. → Author was successful in running the diesel engine in dual fuel mode. → 21% maximum diesel replacement was achieved. Author is confident that acetylene will be commercialised as a fuel for diesel engine in future.

  11. The Performance of Chrome-Coated Copper as Metallic Catalytic Converter to Reduce Exhaust Gas Emissions from Spark-Ignition Engine

    Science.gov (United States)

    Warju; Harto, S. P.; Soenarto

    2018-01-01

    One of the automotive technologies to reduce exhaust gas emissions from the spark-ignition engine (SIE) is by using a catalytic converter. The aims of this research are firstly to conduct a metallic catalytic converter, secondly to find out to what extend chrome-coated copper plate (Cu+Cr) as a catalyst is efficient. To measure the concentration of carbon monoxide (CO) and hydrocarbon (HC) on the frame there are two conditions required. First is when the standard condition, and second is when Cu+Cr metallic catalytic converter is applied using exhaust gas analyzer. Exhaust gas emissions from SIE are measured by using SNI 19-7118.1-2005. The testing of CO and HC emissions were conducted with variable speed to find the trend of exhaust gas emissions from idle speed to high speed. This experiment results in the fact that the use of Cu+Cr metallic catalytic converter can reduce the production of CO and HC of a four-stroke gasoline engine. The reduction of CO and HC emission are 95,35% and 79,28%. Using active metal catalyst in form of metallic catalytic converter, it is gained an optimum effective surface of a catalyst which finally is able to decrease the amount of CO and HC emission significantly in every spinning happened in the engine. Finally, this technology can be applied to the spark ignition engine both car and motorcycle to support blue sky program in Indonesia.

  12. Method for controlling exhaust gas heat recovery systems in vehicles

    Science.gov (United States)

    Spohn, Brian L.; Claypole, George M.; Starr, Richard D

    2013-06-11

    A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

  13. Development of exhaust gas treatment technologies for environment protection

    International Nuclear Information System (INIS)

    David, E.; Stefanescu, I.; Stanciu, V.; Niculescu, V.; Sandru, C.; Armeanu, A.; Bucura, F.; Sisu, C.

    2006-01-01

    Full text: The emission of carbon dioxide (CO 2 ) and other pollutants which result from burning fossil fuels has been identified as the major contributor to global warming and climate change. However, for the immediate term over the next 10 - 20 years at least, the world will continue to rely on fossil fuels as the source of primary energy. The challenge for the fossil fuel industry is to find cost-effective solutions that will reduce the release of CO 2 and other pollutants into the atmosphere. The focus of this paper is on the ability to treat the exhaust gas from fossil fuel power plants in order to capture and store the CO 2 and remove other pollutants such as SO x and NO x which are released in the atmosphere. In summary, capture/separation costs represent the largest financial impediment for this types of plants. Hence, efficient, cost-effective capture/separation technologies will need to be developed in order to allow their large-scale use. (authors)

  14. Real-time exhaust gas modular flowmeter and emissions reporting system for mobile apparatus

    Science.gov (United States)

    Breton, Leo Alphonse Gerard (Inventor)

    2002-01-01

    A real-time emissions reporting system includes an instrument module adapted to be detachably connected to the exhaust pipe of a combustion engine to provide for flow of exhaust gas therethrough. The instrument module includes a differential pressure probe which allows for determination of flow rate of the exhaust gas and a gas sampling tube for continuously feeding a sample of the exhaust gas to a gas analyzer or a mounting location for a non-sampling gas analyzer. In addition to the module, the emissions reporting system also includes an elastomeric boot for detachably connecting the module to the exhaust pipe of the combustion engine, a gas analyzer for receiving and analyzing gases sampled within the module and a computer for calculating pollutant mass flow rates based on concentrations detected by the gas analyzer and the detected flowrate of the exhaust gas. The system may also include a particulate matter detector with a second gas sampling tube feeding same mounted within the instrument module.

  15. On the thermodynamics of waste heat recovery from internal combustion engine exhaust gas

    Science.gov (United States)

    Meisner, G. P.

    2013-03-01

    The ideal internal combustion (IC) engine (Otto Cycle) efficiency ηIC = 1-(1/r)(γ - 1) is only a function of engine compression ratio r =Vmax/Vmin and exhaust gas specific heat ratio γ = cP/cV. Typically r = 8, γ = 1.4, and ηIC = 56%. Unlike the Carnot Cycle where ηCarnot = 1-(TC/TH) for a heat engine operating between hot and cold heat reservoirs at TH and TC, respectively, ηIC is not a function of the exhaust gas temperature. Instead, the exhaust gas temperature depends only on the intake gas temperature (ambient), r, γ, cV, and the combustion energy. The ejected exhaust gas heat is thermally decoupled from the IC engine and conveyed via the exhaust system (manifold, pipe, muffler, etc.) to ambient, and the exhaust system is simply a heat engine that does no useful work. The maximum fraction of fuel energy that can be extracted from the exhaust gas stream as useful work is (1-ηIC) × ηCarnot = 32% for TH = 850 K (exhaust) and TC = 370 K (coolant). This waste heat can be recovered using a heat engine such as a thermoelectric generator (TEG) with ηTEG> 0 in the exhaust system. A combined IC engine and TEG system can generate net useful work from the exhaust gas waste heat with efficiency ηWH = (1-ηIC) × ηCarnot ×ηTEG , and this will increase the overall fuel efficiency of the total system. Recent improvements in TEGs yield ηTEG values approaching 15% giving a potential total waste heat conversion efficiency of ηWH = 4.6%, which translates into a fuel economy improvement approaching 5%. This work is supported by the US DOE under DE-EE0005432.

  16. Compounding Of Ac Compressor Using Waste Heat Recovery From Exhaust Gas

    Directory of Open Access Journals (Sweden)

    Bheshma Yogendra Kiran

    2015-08-01

    Full Text Available This project works on the theme of turbocharger in which a low pressure high speed turbine is placed in the exhaust gas manifold. The exhaust gas from the engine is made to rotate the turbine where the thermal power of exhaust gas is converted into rotary motion through turbine. This rotary motion from turbine is given to the turbocharger compressor which compresses the refrigerant vapor. So through this air conditioning effect is obtained without loss of any crankshaft. The kinetic energy extracted from the turbine is used to run the AC compressor by planetary gear train.

  17. Portable Gas Analyzer Based on Fourier Transform Infrared Spectrometer for Patrolling and Examining Gas Exhaust

    Directory of Open Access Journals (Sweden)

    Yuntao Liang

    2015-01-01

    Full Text Available Aimed at monitoring emission of organic gases such as CH4, C2H6, C3H8, iso-C4H10, n-C4H10, C2H4, C3H6, C2H2, CO, and CO2, from coal mines, petroleum refineries, and other plants, a Fourier Transform Infrared (FT-IR spectrometer was used to develop a portable gas analyzer for patrolling and examining gas exhaust. Firstly, structure of the instrument was introduced. Then, a spectral analysis approach was presented. Finally, instrument was tested with standard gases and with actual gases emitted from a petroleum refinery. For the latter test, a gas chromatograph (GC was used as a reference instrument. The test results showed that the detection limit of every component of analyte was less than 10 × 10−6. The maximum test error of every analyte was less than 15 × 10−6 when its practical concentration was no more than 500 × 10−6. A final comparison showed that the result curves of analytes obtained with FT-IR spectrometer almost overlapped with those obtained with GC, and their resulting noise was less than 6.4% when the practical gas concentration was above 100 × 10−6. As a result, our instrument was suitable to be used as a portable instrument for monitoring exhaust gases.

  18. Effect of EGR on the exhaust gas temperature and exhaust opacity ...

    Indian Academy of Sciences (India)

    In diesel engines, NOx formation is a highly temperature-dependent phenomenon and takes place when the temperature in the combustion chamber exceeds 2000 K. Therefore, in order to reduce NOx emissions in the exhaust, it is necessary to keep peak combustion temperatures under control. One simple way of ...

  19. Impact of chronic exposure to gasoline automotive exhaust gases on some bio-markers affecting the hormonal sexual function, the kidney function and blood parameters, in the rat; Impact de l'exposition chronique aux gaz d'echappement d'origine automobile sur certains biomarqueurs touchant la fonction hormonale sexuelle male, la fonction renale et l'hemogramme chez le rat

    Energy Technology Data Exchange (ETDEWEB)

    Smaoui, M.; Ghorbel, F.; Boujelbene, M.; El Feki, A. [Faculte des Sciences de Sfax, Lab. d' Ecophysiologie Animale (Tunisia); Makni-Ayadi, F. [Faculte de Medecine de Sfax, Lab. de Biochimie (Tunisia)

    2000-09-01

    The automotive exhaust gases constitute an important source of urban pollution. The objective of this study is to explore, in the rat, the effects of repetitive exposure to gasoline automotive exhaust gases on the level variations of serum testosterone, blood lead, bone lead, blood carbon monoxide, on the kidney function and blood parameters. 200 rats inhaling a mixture of air and automotive exhaust gas (10/1, v/v), are distributed in 4 groups treated during 15, 30, 45 and 60 days. They are compared to non treated controls. Our results show a decrease of serum testosterone level. This result is the origin of a masculine sterility already demonstrated in our laboratory. This sterility seems to be reversible because polluted rats regain their sexual activity, 2 months after stopping of the pollutant treatment. An increase of the blood carbon monoxide level with a lead accumulation in blood and in the tail is noticed. Biochemical analyses show that glycaemia, urea, and creatininaemia increase in treated animals. The urinary rate of creatinine decreases. These results indicate kidney deficiency. Our results show also in treated animals an increase of the number of red blood corpuscles, of hematocrit, of the blood level of haemoglobin and of the VGM, and a decrease of the CGMH. The carbon monoxide and the lead detected in blood of the treated animals are the origin of these perturbations. In conclusion, our results show that gasoline automotive exhaust gas induces, in the rat, a decrease of serum testosterone level. The carbon monoxide and the lead present in the exhaust gas, and detected in blood and in the tail of the treated animals, are the origin of sexual, kidney and blood parameters perturbations. (author)

  20. Experimental investigation on the influences of exhaust gas recirculation coupling with intake tumble on gasoline engine economy and emission performance

    International Nuclear Information System (INIS)

    Fu, Jianqin; Zhu, Guohui; Zhou, Feng; Liu, Jingping; Xia, Yan; Wang, Shuqian

    2016-01-01

    Highlights: • In-cylinder residual gas fraction almost increases linearly with exhaust gas recirculation rate. • Heat transfer loss and exhaust gas energy loss decrease with exhaust gas recirculation rate. • Engine indicated thermal efficiency can be increased by 4.29% at 1600 r/min and 2.94 bar. • The effective range of exhaust gas recirculation rate can be extended by intake tumble. - Abstract: To improve the economy and emission performance of gasoline engine under part load, the approach of exhaust gas recirculation coupling with intake tumble was investigated by bench testing. Based on a naturally aspirated gasoline engine, the sweeping test of exhaust gas recirculation rate was conducted in two intake modes (with/without intake tumble), and the parameters related to engine heat-work conversion process and emission performance were measured. Through comparing and analyzing the measured data, the effects of exhaust gas recirculation coupling with intake tumble on gasoline engine economy and emission performance were revealed. The results show that pumping loss decreases gradually while in-cylinder residual gas fraction increases linearly with the exhaust gas recirculation rate increasing; the high-pressure cycle efficiency ascends with exhaust gas recirculation rate increasing due to the decrease of heat transfer loss and exhaust gas energy loss. Thus, the improvement of indicated thermal efficiency is the superposition of double benefits of low-pressure cycle and high-pressure cycle. At 1600 r/min and 2.94 bar, the indicated thermal efficiency can be increased by 4.29%. With the increase of exhaust gas recirculation rate, nitrogen oxide emissions almost fall linearly, but hydrocarbon and carbonic oxide emissions have no obvious change in the effective range of exhaust gas recirculation rate. The biggest advantage of intake tumble is that it can extend the effective range of exhaust gas recirculation rate. As a result, the potential of energy

  1. An overview of aerospace gas turbine technology of relevance to the development of the automotive gas turbine engine

    Science.gov (United States)

    Evans, D. G.; Miller, T. J.

    1978-01-01

    The NASA-Lewis Research Center (LeRC) has conducted, and has sponsored with industry and universities, extensive research into many of the technology areas related to gas turbine propulsion systems. This aerospace-related technology has been developed at both the component and systems level, and may have significant potential for application to the automotive gas turbine engine. This paper summarizes this technology and lists the associated references. The technology areas are system steady-state and transient performance prediction techniques, compressor and turbine design and performance prediction programs and effects of geometry, combustor technology and advanced concepts, and ceramic coatings and materials technology.

  2. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    Science.gov (United States)

    Dutart, Charles H.; Choi, Cathy Y.

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  3. In optics humidity compensation in NDIR exhaust gas measurements of NO2

    DEFF Research Database (Denmark)

    Stolberg-Rohr, Thomine Kirstine; Buchner, Rainer; Clausen, Sønnik

    2015-01-01

    NDIR is proposed for monitoring of air pollutants emitted by ship engines. Careful optical filtering overcomes the challenge of optical detection of NO2 in humid exhaust gas, despite spectroscopic overlap with the water vapour band. © 2014 OSA.......NDIR is proposed for monitoring of air pollutants emitted by ship engines. Careful optical filtering overcomes the challenge of optical detection of NO2 in humid exhaust gas, despite spectroscopic overlap with the water vapour band. © 2014 OSA....

  4. Exhaust gas aftertreatment with online burner; Abgasnachbehandlung mit Online-Brenner

    Energy Technology Data Exchange (ETDEWEB)

    Rembor, Hans-Joerg; Bischler, Thomas [Huss Technologies GmbH, Nuernberg (Germany)

    2010-09-15

    In order to fulfil continuously tightened emission standards, modern Diesel engines for on and off road have to meet demands of catalytic exhaust gas aftertreatment with their thermomanagement. With an online burner from Huss Technologies, even with low load duty cycles, catalytic exhaust gas aftertreatment is possible. Diesel engine development can therefore be redirected again more on efficiency enhancement and other direct customer demands. (orig.)

  5. Gas separation process using membranes with permeate sweep to remove CO.sub.2 from gaseous fuel combustion exhaust

    Science.gov (United States)

    Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA

    2012-05-15

    A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.

  6. Micro- and Nanostructural Characteristics of Particles Before and After an Exhaust Gas Recirculation System Scrubber

    DEFF Research Database (Denmark)

    Lieke, Kirsten Inga; Rosenørn, Thomas; Pedersen, Jannik

    2013-01-01

    microscopy (TEM) grids on two stages. Micro- and nanostructural characteristics of sin-gle particles were studied by TEM. Image analysis was carried out on overview and high-resolution images, revealing influence of the exhaust gas treatment (scrubber) on the particle morphology and mixing state. Soot......This work provides insight into the morphology and mixing state of submicron particles in diesel exhaust from a ship engine with an exhaust gas recirculation scrubber. Particles from this low-speed ship engine on test bed were collected using a microiner-tial impactor with transmission electron...

  7. Exhaust gas concentration of CNG fuelled direct injection engine at MBT timing

    International Nuclear Information System (INIS)

    Hassan, M.K.; Aris, I.; Mahmod, S.; Sidek, R.

    2009-01-01

    Full text: This paper presents an experimental result of exhaust gas concentration of high compression engine fuelled with compressed natural gas (CNG) at maximum brake torque (MBT). The engine uses central direct injection (DI) technique to inject the CNG into the cylinder. The engine geometry bases on gasoline engine with 14:1 compression ratio and called CNGDI engine. The injectors are positioned within a certain degrees of spark plug location. The objective of the experiment is to study the influence and significant of MBT timing in CNGDI engine towards exhaust gases. The experimental tests were carried out using computer-controlled eddy-current dynamometer, which measures the CNGDI engine performance. At MBT region, exhaust gas concentration as such CO, HC, NO x , O 2 and CO 2 , were recorded and analyzed during the test using the Horiba analyzer. A closed loop wide band lambda sensor has been mounted at the exhaust manifold to indicate the oxygen level during the exercise. (author)

  8. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    Science.gov (United States)

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  9. Exhaust gas purification with sodium bicarbonate. Analysis and evaluation; Abgasreinigung mit Natriumhydrogencarbonat. Analyse und Bewertung

    Energy Technology Data Exchange (ETDEWEB)

    Quicker, Peter; Rotheut, Martin; Schulten, Marc [RWTH Aachen Univ. (Germany). Lehr- und Forschungsgebiet Technologie der Energierohstoffe (TEER); Athmann, Uwe [dezentec ingenieurgesellschaft mbH, Essen (Germany)

    2013-03-01

    The dry exhaust gas cleaning uses sodium bicarbonate in order to absorb acid components of exhaust gases such as sulphur dioxide or hydrochloric acid. Recently, sodium and calcium based adsorbents are compared with respect to their economic and ecologic options. None of the investigations performed considered decidedly practical experiences from the system operation such as differences in the management, availability, personnel expenditure and maintenance expenditure. Under this aspect, the authors of the contribution under consideration report on exhaust gas cleaning systems using sodium carbonate as well as lime adsorbents. The operators of these exhaust gas cleaning systems were questioned on their experiences, and all relevant operational data (consumption of additives, consumption of energy, emissions, standstill, maintenance effort) were recorded and evaluated at a very detailed level.

  10. Multiroller traction drive speed reducer: Evaluation for automotive gas turbine engine

    Science.gov (United States)

    Rohn, D. A.; Anderson, N. E.; Loewenthal, S. H.

    1982-01-01

    Tests were conducted on a nominal 14:1 fixed-ratio Nasvytis multiroller traction drive retrofitted as the speed reducer in an automotive gas turbine engine. Power turbine speeds of 45,000 rpm and a drive output power of 102 kW (137 hp) were reached. The drive operated under both variable roller loading (proportional to torque) and fixed roller loading (automatic loading mechanism locked). The drive operated smoothly and efficiently as the engine speed reducer. Engine specific fuel consumption with the traction speed reducer was comparable to that with the original helical gearset.

  11. Current Techniques of Growing Algae Using Flue Gas from Exhaust Gas Industry: a Review.

    Science.gov (United States)

    Huang, Guanhua; Chen, Feng; Kuang, Yali; He, Huan; Qin, An

    2016-03-01

    The soaring increase of flue gas emission had caused global warming, environmental pollution as well as climate change. Widespread concern on reduction of flue gas released from industrial plants had considered the microalgae as excellent biological materials for recycling the carbon dioxide directly emitted from exhaust industries. Microalgae also have the potential to be the valuable feedback for renewable energy production due to their high growth rate and abilities to sequester inorganic carbon through photosynthetic process. In this review article, we will illustrate important relative mechanisms in the metabolic processes of biofixation by microalgae and their recent experimental researches and advances of sequestration of carbon dioxide by microalgae on actual industrial and stimulate flue gases, novel photobioreactor cultivation systems as well as the perspectives and limitations of microalgal cultivation in further development.

  12. Numerical analysis of exhaust gas flow during the gas exchange process and the design optimization; Haiki manihorudonai no hiteijo nagare kaiseki gijutsu to sono oyo

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, K; Takeyama, S; Sakai, E; Tanzawa, K [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    A simulation method was developed to estimate exhaust gas flow during the gas exchange process. In this simulation, one dimensional in-cylinder gas flow calculation and three dimensional exhaust gas flow calculation were combined. Gas flow inside the exhaust manifold catalyst during gas exchange was agreed in experiments. A simulation method was applied to select oxygen sensor location. A prediction of the oxygen sensor sensitivity of each cylinder gas was presented. The possibility of selecting oxygen sensor location in the exhaust manifold using calculation was proved. 5 refs., 10 figs., 1 tab.

  13. Diesel emission reduction using internal exhaust gas recirculation

    Science.gov (United States)

    He, Xin [Denver, CO; Durrett, Russell P [Bloomfield Hills, MI

    2012-01-24

    A method for controlling combustion in a direct-injection diesel engine includes monitoring a crankshaft rotational position of a cylinder of the engine, monitoring an engine load, determining an intake stroke within the cylinder based upon the crankshaft rotational position, and when the engine load is less than a threshold engine load, opening an exhaust valve for the cylinder during a portion of the intake stroke.

  14. Heat-pipe assisted thermoelectric generators for exhaust gas applications

    OpenAIRE

    Gonçalves, L. M.; Martins, Jorge; Antunes, Joaquim; Rocha, Romeu; Brito, F. P.

    2012-01-01

    Millions of hybrid cars are already running on our roads with the purpose of reducing fossil fuel dependence. One of their main advantages is the recovery of wasted energy, namely by brake recovery. However, there are other sources of wasted energy in a car powered by an internal combustion engine, such as the heat lost through the cooling system, lubrication system (oil coolers) and in the exhaust system. These energies can be recuperated by the use of thermoelectric generators (TEG) based o...

  15. Workshop on an Assessment of Gas-Side Fouling in Fossil Fuel Exhaust Environments

    Science.gov (United States)

    Marner, W. J. (Editor); Webb, R. L. (Editor)

    1982-01-01

    The state of the art of gas side fouling in fossil fuel exhaust environments was assessed. Heat recovery applications were emphasized. The deleterious effects of gas side fouling including increased energy consumption, increased material losses, and loss of production were identified.

  16. Experimental study on engine gas-path component fault monitoring using exhaust gas electrostatic signal

    International Nuclear Information System (INIS)

    Sun, Jianzhong; Zuo, Hongfu; Liu, Pengpeng; Wen, Zhenhua

    2013-01-01

    This paper presents the recent development in engine gas-path components health monitoring using electrostatic sensors in combination with signal-processing techniques. Two ground-based engine electrostatic monitoring experiments are reported and the exhaust gas electrostatic monitoring signal-based fault-detection method is proposed. It is found that the water washing, oil leakage and combustor linear cracking result in an increase in the activity level of the electrostatic monitoring signal, which can be detected by the electrostatic monitoring system. For on-line health monitoring of the gas-path components, a baseline model-based fault-detection method is proposed and the multivariate state estimation technique is used to establish the baseline model for the electrostatic monitoring signal. The method is applied to a data set from a turbo-shaft engine electrostatic monitoring experiment. The results of the case study show that the system with the developed method is capable of detecting the gas-path component fault in an on-line fashion. (paper)

  17. Metal foams as gas coolers for exhaust gas recirculation systems subjected to particulate fouling

    International Nuclear Information System (INIS)

    Hooman, K.; Malayeri, M.R.

    2016-01-01

    Highlights: • Fouling of metal foam heat exchangers as EGR gas coolers is tested. • An optimal design was inferred based on the generated data. • A simple cleaning technique was suggested and evaluated. - Abstract: This paper presents experimental results indicating the benefits and challenges associated with the use of metal foams as Exhaust Gas Recirculation (EGR) coolers. Fouling of such heat exchangers is a critical issue and, as such, special attention has been paid to address this very issue in the present study where a soot generator has been employed to simulate the engine running condition. Effects of aluminium foam PPI and height as well as gas velocity are investigated. It has been noted that proper design of the foam can lead to significantly higher heat transfer rate and reasonable pressure drop compared to no-foam cases. More interestingly, it is demonstrated that the foams can be cleaned easily without relying on expensive cleaning techniques. Using simple brush-cleaning, the foams can be reused as EGR gas coolers with a performance penalty of only 17% (compared to a new or clean foam).

  18. An approach for exhaust gas energy recovery of internal combustion engine: Steam-assisted turbocharging

    International Nuclear Information System (INIS)

    Fu, Jianqin; Liu, Jingping; Deng, Banglin; Feng, Renhua; Yang, Jing; Zhou, Feng; Zhao, Xiaohuan

    2014-01-01

    Highlights: • The calculation method for SAT engine was developed and introduced. • SAT can effectively promote the low-speed performances of IC engine. • At 1500 r/min, intake pressure reaches target value and torque is increased by 25%. • The thermal efficiency of SAT engine only has a slight increase. - Abstract: An approach for IC engine exhaust gas energy recovery, named as steam-assisted turbocharging (SAT), is developed to assist the exhaust turbocharger. A steam generating plant is coupled to the exhaust turbocharged engine’s exhaust pipe, which uses the high-temperature exhaust gas to generate steam. The steam is injected into turbine inlet and used as the supplementary working medium for turbine. By this means, turbine output power and then boosting pressure can be promoted due to the increase of turbine working medium. To reveal the advantages and energy saving potentials of SAT, this concept was applied to an exhaust turbocharging engine, and a parameter analysis was carried out. Research results show that, SAT can effectively promote the low-speed performances of IC engine, and make the peak torque shift to low-speed area. At 1500 r/min, the intake gas pressure can reach the desired value and the torque can be increased by 25.0% over the exhaust turbocharging engine, while the pumping mean effective pressure (PMEP) and thermal efficiency only have a slight increase. At 1000 r/min, the improvement of IC engine performances is very limited due to the low exhaust gas energy

  19. Study on performance and emission characteristics of a single cylinder diesel engine using exhaust gas recirculation

    Directory of Open Access Journals (Sweden)

    Anantha Raman Lakshmipathi

    2017-01-01

    Full Text Available Exhaust gas re-circulation is a method used in compression ignition engines to control and reduce NOx emission. These emissions are controlled by reducing the oxygen concentration inside the cylinder and thereby reducing the flame temperature of the charge mixture inside the combustion chamber. In the present investigation, experiments were performed to study the effect of exhaust gas re-circulation on performance and emission characteristics in a four stroke single cylinder, water cooled and constant speed diesel engine. The experiments were performed to study the performance and emissions for different exhaust gas re-circulation ratios of the engine. Performance parameters such as brake thermal efficiency, indicated thermal efficiency, specific fuel consumption, total fuel consumption and emission parameters such as oxides of nitrogen, unburned hydrocarbons, carbon monoxide, carbon dioxide and smoke opacity were measured. Reductions in NOx and CO2 were observed but other emissions like HC, CO, and smoke opacity were found to have increased with the usage of exhaust gas re-circulation. The 15% exhaust gas re-circulation was found optimum for the engine in the aspects of performance and emission.

  20. Modelling and Operation of Diesel Engine Exhaust Gas Cleaning Systems

    DEFF Research Database (Denmark)

    Åberg, Andreas

    . Challenges with this technology include dosing the appropriate amount of urea to reach sufficient NOx conversion, while at the same time keeping NH3- slip from the exhaust system below the legislation. This requires efficient control algorithms. The focus of this thesis is modelling and control of the SCR...... parameters were estimated using bench-scale monolith isothermal data. Validation was done by simulating the out-put from a full-scale SCR monolith that was treating real engine gases from the European Transient Cycle (ETC). Results showed that the models were successfully calibrated, and that some......, and simulating the system....

  1. Ceramic technologies for automotive industry: Current status and perspectives

    International Nuclear Information System (INIS)

    Okada, Akira

    2009-01-01

    The automotive industry has developed substantially through advances in mechanical technologies, and technologies such as electronics and advanced materials have also contributed to further advances in automobiles. The contribution of ceramic materials to automobile technologies ranges over driving performance, exhaust gas purification, and fuel efficiency improvements. Several ceramic components, such as knock sensors, oxygen sensors, exhaust gas catalysts, and silicon nitride parts for automotive engines, have been successfully applied to automobiles. This paper focuses on the contribution of ceramics to automotive technologies. It also mentions potential contributions in the future, including adiabatic turbo-compound diesels, ceramic gas turbines, fuel cells, and electric vehicles because ceramic technologies have been intensively involved in the challenge to achieve advanced power sources.

  2. Control-oriented modeling of two-stroke diesel engines with exhaust gas recirculation for marine applications

    OpenAIRE

    Llamas, Xavier; Eriksson, Lars

    2018-01-01

    Large marine two-stroke diesel engines are widely used as propulsion systems for shipping worldwide and are facing stricter NOx emission limits. Exhaust gas recirculation is introduced to these engines to reduce the produced combustion NOx to the allowed levels. Since the current number of engines built with exhaust gas recirculation is low and engine testing is very expensive, a powerful alternative for developing exhaust gas recirculation controllers for such engines is to use control-orien...

  3. Exhaust Gas Emissions from a Rotating Detonation-wave Engine

    Science.gov (United States)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2015-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. Progress towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model including NOx chemistry is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. The performance of a baseline hydrogen/air RDE increased from 4940 s to 5000 s with the expansion flow chemistry, due to recombination of radicals and more production of H2O, resulting in additional heat release. Work sponsored by the Office of Naval Research.

  4. Implementation of Exhaust Gas Recirculation for Double Stage Waste Heat Recovery System on Large Container Vessel

    DEFF Research Database (Denmark)

    Andreasen, Morten; Marissal, Matthieu; Sørensen, Kim

    2014-01-01

    Concerned to push ships to have a lower impact on the environment, the International Maritime Organization are implementing stricter regulation of NOx and SOx emissions, called Tier III, within emission control areas (ECAs). Waste Heat Recovery Systems (WHRS) on container ships consist...... of recovering some of the waste heat from the exhaust gas. This heat is converted into electrical energy used on-board instead of using auxiliary engines. Exhaust Gas Recirculation (EGR) systems, are recirculating a part of the exhaust gas through the engine combustion chamber to reduce emissions. WHRS combined...... with EGR is a potential way to improve system efficiency while reducing emissions. This paper investigates the feasibility of combining the two systems. EGR dilutes the fuel, lowering the combustion temperature and thereby the formation of NOx, to reach Tier III limitation. A double stage WHRS is set up...

  5. Damage of natural stone tablets exposed to exhaust gas under laboratory conditions

    Science.gov (United States)

    Farkas, Orsolya; Szabados, György; Török, Ákos

    2016-04-01

    Natural stone tablets were exposed to exhaust gas under laboratory conditions to assess urban stone damage. Cylindrical test specimens (3 cm in diameter) were made from travertine, non-porous limestone, porous limestone, rhyolite tuff, sandstone, andesite, granite and marble. The samples were exposed to exhaust gas that was generated from diesel engine combustion (engine type: RÁBA D10 UTSLL 160, EURO II). The operating condition of the internal combustion engine was: 1300 r/m (app 50%). The exhaust gas was diverted into a pipe system where the samples were placed perpendicular to main flow for 1, 2, 4, 8 and 10 hours, respectively. The exhaust emission was measured by using AVL particulate measurement technology; filter paper method (AVL 415). The stone samples were documented and selective parameters were measured prior to and after exhaust gas exposure. Density, volume, ultrasonic pulse velocity, mineral composition and penetration depth of emission related particulate matter were recorded. The first results indicate that after 10 hours of exposure significant amount of particulate matter deposited on the stone surface independently from the surface properties and porosity. The black soot particles uniformly covered all types of stones, making hard to differentiate the specimens.

  6. Thermodynamic control-oriented modeling of cycle-to-cycle exhaust gas temperature in an HCCI engine

    International Nuclear Information System (INIS)

    Dehghani Firoozabadi, M.; Shahbakhti, M.; Koch, C.R.; Jazayeri, S.A.

    2013-01-01

    Highlights: • First thermodynamic model in the literature to predict exhaust temperature in HCCI engines. • The model can be used for integrated control of HCCI combustion and exhaust temperature. • The model is experimentally validated at over 300 steady state and transient conditions. • Results show a good agreement between predicted and measured exhaust temperatures. • Sensitivity of exhaust gas temperature to variation of engine variables is shown. - Abstract: Model-based control of Homogenous Charge Compression Ignition (HCCI) engine exhaust temperature is a viable solution to optimize efficiency of both engine and the exhaust aftertreatment system. Low exhaust temperature in HCCI engines can limit the abatement of hydrocarbon (HC) and carbon monoxide (CO) emissions in an exhaust aftertreatment system. A physical–empirical model is described for control of exhaust temperature in HCCI engines. This model captures cycle-to-cycle dynamics affecting exhaust temperature and is based on thermodynamic relations and semi-empirical correlations. It incorporates intake and exhaust gas flow dynamics, residual gas mixing, and fuel burn rate and is validated with experimental data from a single cylinder engine at over 300 steady state and transient conditions. The validation results indicate a good agreement between predicted and measured exhaust gas temperature

  7. Study of recycling exhaust gas energy of hybrid pneumatic power system with CFD

    International Nuclear Information System (INIS)

    Huang, K. David; Quang, Khong Vu; Tseng, K.-T.

    2009-01-01

    A hybrid pneumatic power system (HPPS) is integrated by an internal combustion engine (ICE), a high efficiency turbine, an air compressor and an energy merger pipe, which can not only recycle and store exhaust gas energy but also convert it into useful mechanical energy. Moreover, it can make the ICE operate in its optimal state of maximum efficiency; and thus, it can be considered an effective solution to improve greatly the exhaust emissions and increase the overall energy efficiency of the HPPS. However, in this system, the flow energy merger of both high pressure compressed air flow and high temperature exhaust gas flow of the ICE greatly depends on the merging capability of the energy merger pipe. If the compressed air pressure (P air ) at the air inlet is too high, smooth transmission and mixture of the exhaust gas flow are prevented, which will interfere with the operation condition of the ICE. This shortcoming is mostly omitted in the previous studies. The purpose of this paper is to study the effect of the level of P air and the contraction of cross-section area (CSA) at the merging position on the flow energy merger and determine their optimum adjustments for a better merging process by using computation fluid dynamics (CFD). In addition, the CFD model was validated on the basis of the experimental data, including the temperature and static pressure of the merger flow at the outlet of the energy merger pipe. It was found that the simulation results were in good agreement with the experimental data. The simulation results show that exhaust gas recycling efficiency and merger flow energy are significantly dependent on the optimum adjustment of the CSA for changes in P air . Under these optimum adjustments, the exhaust gas recycling efficiency can reach about 83%. These results will be valuable bases to research and design the energy merger pipe of the HPPS.

  8. Les possibilités de limitation des émissions de plomb par les véhicules automobiles Possibilities of Limiting Leaded Exhaust from Automotive Vehicles

    Directory of Open Access Journals (Sweden)

    Roth J.

    2006-11-01

    Full Text Available Les additifs plombés permettent de satisfaire les besoins en octane des moteurs automobiles actuels. Dans le cadre de la lutte contre la pollution automobile, il est envisagé de réduire ou de supprimer le plomb présent dans les carburants. La suppression brutale, tout en présentant certains avantages, entraîne de nombreux inconvénients, d'ordre purement technique mais également d'ordre financier. La mise au point d'un dispositif de captation, par les sociétés Texaco et Octel, semble permettre d'envisager de maintenir la présence de plomb dans les carburants, tout en réduisant les émissions à l'échappement. Les travaux effectués à l'UTAC ont permis de tester ces dispositifs sur une endurance de 31 000 km. Les résultats obtenus ont permis de dégager un gain d'efficacité d'environ 60 %, les paramètres, bruit et pollution (CO et HC restant par ailleurs inchangés. Leaded additives enable the octane requirements of existing automotive engines to be satisfied. However, as part of the fight against automotive pollution, plans are being drawn up to reduce or eliminate the lead present in fuels. A sudden elimination, although having some advantages, would create a great many disadvantages of a purely technical as well as financiel nature. Texaco and Octet have developed a trapping device that appears to enable lead to be retained in fuels at the same time as reducing exhaust emissions. This device has undergone a 31,000-kilometer endurance test at UTAC. The results reveal an efficiency gain of 60 %, while the noise and pollution (CO and HC parameters remain the same.

  9. Gas-Dynamic Designing of the Exhaust System for the Air Brake

    Science.gov (United States)

    Novikova, Yu; Goriachkin, E.; Volkov, A.

    2018-01-01

    Each gas turbine engine is tested some times during the life-cycle. The test equipment includes the air brake that utilizes the power produced by the gas turbine engine. In actual conditions, the outlet pressure of the air brake does not change and is equal to atmospheric pressure. For this reason, for the air brake work it is necessary to design the special exhaust system. Mission of the exhaust system is to provide the required level of backpressure at the outlet of the air brake. The backpressure is required for the required power utilization by the air brake (the air brake operation in the required points on the performance curves). The paper is described the development of the gas dynamic canal, designing outlet guide vane and the creation of a unified exhaust system for the air brake. Using a unified exhaust system involves moving the operating point to the performance curve further away from the calculated point. However, the applying of one exhaust system instead of two will significantly reduce the cash and time costs.

  10. Experimentally-determined external heat loss of automotive gas turbine engine

    Science.gov (United States)

    Meng, P. R.; Wulf, R. F.

    1975-01-01

    An external heat balance was conducted on a 150 HP two-shaft automotive gas turbine engine. The engine was enclosed in a calorimeter box and the temperature change of cooling air passing through the box was measured. Cooling airflow ranges of 1.6 to 2.1 lb-per-second and 0.8 to 1.1 lb-per-second were used. The engine housing heat loss increased as the cooling airflow through the calorimeter box was increased, as would be the case in a moving automobile. The heat balance between the total energy input and the sum of shaft power output and various losses compared within 30 percent at engine idle speeds and within 7 percent at full power.

  11. NOx Monitoring in Humid Exhaust Gas Using Non-Dispersive Infrared Spectroscopy

    DEFF Research Database (Denmark)

    Stolberg-Rohr, Thomine Kirstine

    This PhD thesis is concerned with the measurement of NOX in moist exhaust gas onboard ships using non-dispersive infrared (NDIR) spectroscopy. In such a measurement one of the major challenges is spectral interference from water vapour which is present in high concentrations in the exhaust. The Ph......D study investigates a possible solution to this problem, which is to balance out the signal contribution from water vapour by means of carefully designed and manufactured optical bandpass filters. The thesis, presents a thorough theoretical description of the NDIR sensor concept together with simulations...... suggesting that it is possible but challenging to measure NOX in moist exhaust gas using NDIR. The characteristics of optical filters tend to change with temperature, and since this compromises the water signal balancing, much of the work presented in the thesis is devoted to the design of optical bandpass...

  12. A Mathematical Model for the Exhaust Gas Temperature Profile of a Diesel Engine

    Science.gov (United States)

    Brito, C. H. G.; Maia, C. B.; Sodré, J. R.

    2015-09-01

    This work presents a heat transfer model for the exhaust gas of a diesel power generator to determine the gas temperature profile in the exhaust pipe. The numerical methodology to solve the mathematical model was developed using a finite difference method approach for energy equation resolution and determination of temperature profiles considering turbulent fluid flow and variable fluid properties. The simulation was carried out for engine operation under loads from 0 kW to 40 kW. The model was compared with results obtained using the multidimensional Ansys CFX software, which was applied to solve the governor equations of turbulent fluid flow. The results for the temperature profiles in the exhaust pipe show a good proximity between the mathematical model developed and the multidimensional software.

  13. Exhaust gas emission from ships in Norwegian coastal waters

    International Nuclear Information System (INIS)

    Meltzer, F.; Fiskaa, G.

    1991-02-01

    For the following vessel categories bunker consumption and emission of greenhouse gases and SO 2 has been calculated: Norwegian coastal trade, domestic ferries, fishing vessels (Norwegian), Norwegian military vessels, inter-coastal ferries, import and export, ships iron-ore from Narvik and Soviet vessels in transit. The carbon emission (CO 2 as carbon) within 12 nautical miles has been calculated to 0.621 MtC (Mega ton carbon) and to 1.0 MtC within the economic zone for these vessel categories. The calculated ''inland waterways'' bunker consumption in this study deviates from the Central Bureau of Statistics of Norway and OECD/IEA figures by up to 25%. This large deviation supports the need for a uniform method to calculate ''inland waterways'' bunker consumption. Scenarios for the emission outlook for the years 1995, 2000 and 2005 are discussed and calculated. With 1988 as present level it is possible, according to these scenarios, to reduce the emission of NO x by close to 40% and SO 2 by 85%. Reduction of greenhouse- and SO 2 components in the exhaust gases from ships is today technically possible, but the demand for further research and development is significant. Compared with land-based low-emission technologies, the offshore technologies are years behind. 21 refs., 9 figs., 9 tabs

  14. 40 CFR 86.111-94 - Exhaust gas analytical system.

    Science.gov (United States)

    2010-07-01

    ... Using Gas Chromatography,” December 1991, 1994 SAE Handbook—SAE International Cooperative Engineering... liquid chromatography (HPLC) of 2,4-dinitrophenylhydrazine (DNPH) derivatives using ultraviolet (UV.... The analysis for formaldehyde is performed using high-pressure liquid chromatography (HPLC) of 2,4...

  15. An overview of exhaust emissions regulatory requirements and control technology for stationary natural gas engines

    International Nuclear Information System (INIS)

    Ballard, H.N.; Hay, S.C.; Shade, W.N. Jr.

    1992-01-01

    In this paper a practical overview of stationary natural gas engine exhaust emissions control technology and trends in emissions regulatory requirements is presented. Selective and non-selective catalytic reduction and lean burn technologies are compared. Particular emphasis is focussed on implications of the Clean Air Act of 1990. Recent emissions reduction conversion kit developments and a practical approach to continuous monitoring are discussed

  16. System acceptance and operability test report for the RMCS exhauster C on flammable gas tanks

    International Nuclear Information System (INIS)

    Waldo, E.J.

    1998-01-01

    This test report documents the completion of acceptance and operability testing of the rotary mode core sampling (RMCS) exhauster C, as modified for use as a major stack (as defined by the Washington State Department of Health) on flammable gas tanks

  17. Application of a power recovery system to gas turbine exhaust gases

    International Nuclear Information System (INIS)

    Baudat, N.P.; James, O.R.

    1979-01-01

    This paper discusses the application of a power recovery system to recover waste heat from the exhaust gases of gas turbines and convert this energy into shaft horsepower. Also discussed are power cycles, selection of power fluid, equipment selection, and application of the power recovery system to various gas turbines. Several charts and tables are included: process flow diagram, cycle efficiencies, curve for estimating recoverable horsepower

  18. Developing compressed natural gas as an automotive fuel in Nigeria: Lessons from international markets

    International Nuclear Information System (INIS)

    Ogunlowo, Olufemi O.; Bristow, Abigail L.; Sohail, M.

    2015-01-01

    The Nigerian government proposed the use of compressed natural gas (CNG) as an automotive fuel in 1997 as part of the initiatives to harness natural gas (NG) resources but progress has been slow. This paper examines the natural gas vehicle (NGV) implementation approaches and outcomes in seven countries with diverse experiences in order to gain an understanding of the barriers to the NGV market development in Nigeria. The analysis employs hermeneutic principles to secondary data derived from academic literature, published reports from a variety of international agencies, grey literature, and text from online sources and identifies eight success factors for NGV market development namely: strategic intent, legal backing, learning and adaptation, assignment of responsibilities, financial incentives, NG pricing, consumer confidence, and NG infrastructure. The paper concludes that the principal impediment to NGV market development in Nigeria is the uncoordinated implementation approach and that greater government involvement is required in setting strategic goals, developing the legal and regulatory frameworks, setting of clear standards for vehicles and refuelling stations as well as assigning responsibilities to specific agencies. Short-term low cost policy interventions identified include widening the existing NG and gasoline price gap and offering limited support for refuelling and retrofitting facilities. - Highlights: • We examined the NGV policies and implementation strategies in selected countries. • The use of legislative mandates help deepen NGV penetration. • Aligning stakeholder interest is critical to NGV adoption. • Making national interest a priority ahead of regional infrastructure is a critical success factor. • Government support drives participation

  19. HPLC analysis of aldehydes in automobile exhaust gas: Comparison of exhaust odor and irritation in different types of gasoline and diesel engines

    International Nuclear Information System (INIS)

    Roy, Murari Mohon

    2008-01-01

    This study investigated high performance liquid chromatography (HPLC) to identify and measure aldehydes from automobile exhaust gas. Four aldehydes: formaldehyde (HCHO), acetaldehyde (CH 3 CHO), acrolein (H 2 C=CHCHO) and propionaldehyde (CH 3 CH 2 CHO) and one ketone, acetone (CH 3 ) 2 CO are separated. The other higher aldehydes in exhaust gas are very small and cannot be separated. A new method of gas sampling, hereafter called bag sampling in HPLC is introduced instead of the trapping gas sampling method. The superiority of the bag sampling method is its transient gas checking capability. In the second part of this study, HPLC results are applied to compare exhaust odor and irritation of exhaust gases in different types of gasoline and diesel engines. Exhaust odor, irritation and aldehydes are found worst in direct injection (DI) diesel engines and best in some good multi-point injection (MPI) gasoline and direct injection gasoline (DIG) engines. Indirect injection (IDI) diesel engines showed odor, irritation and aldehydes in between the levels of MPI gasoline, DIG and DI diesel engines

  20. Effect of exhaust gas recirculation on diesel engine nitrogen oxide reduction operating with jojoba methyl ester

    Energy Technology Data Exchange (ETDEWEB)

    Saleh, H.E. [Mechanical Power Department, Faculty of Engineering, Mattaria, Helwan University, 9 k Eltaaweniat, Nasr Road, P.O. Box 11718, Cairo (Egypt)

    2009-10-15

    Jojoba methyl ester (JME) has been used as a renewable fuel in numerous studies evaluating its potential use in diesel engines. These studies showed that this fuel is good gas oil substitute but an increase in the nitrogenous oxides emissions was observed at all operating conditions. The aim of this study mainly was to quantify the efficiency of exhaust gas recirculation (EGR) when using JME fuel in a fully instrumented, two-cylinder, naturally aspirated, four-stroke direct injection diesel engine. The tests were carried out in three sections. Firstly, the measured performance and exhaust emissions of the diesel engine operating with diesel fuel and JME at various speeds under full load are determined and compared. Secondly, tests were performed at constant speed with two loads to investigate the EGR effect on engine performance and exhaust emissions including nitrogenous oxides (NO{sub x}), carbon monoxide (CO), unburned hydrocarbons (HC) and exhaust gas temperatures. Thirdly, the effect of cooled EGR with high ratio at full load on engine performance and emissions was examined. The results showed that EGR is an effective technique for reducing NO{sub x} emissions with JME fuel especially in light-duty diesel engines. With the application of the EGR method, the CO and HC concentration in the engine-out emissions increased. For all operating conditions, a better trade-off between HC, CO and NO{sub x} emissions can be attained within a limited EGR rate of 5-15% with very little economy penalty. (author)

  1. Improved methane removal in exhaust gas from biogas upgrading process using immobilized methane-oxidizing bacteria.

    Science.gov (United States)

    Sun, Meng-Ting; Yang, Zhi-Man; Fu, Shan-Fei; Fan, Xiao-Lei; Guo, Rong-Bo

    2018-05-01

    Methane in exhaust gas from biogas upgrading process, which is a greenhouse gas, could cause global warming. The biofilter with immobilized methane-oxidizing bacteria (MOB) is a promising approach for methane removal, and the selections of inoculated MOB culture and support material are vital for the biofilter. In this work, five MOB consortia were enriched at different methane concentrations. The MOB-20 consortium enriched at the methane concentration of 20.0% (v/v) was then immobilized on sponge and two particle sizes of volcanic rock in biofilters to remove methane in exhaust gas from biogas upgrading process. Results showed that the immobilized MOB performed more admirable methane removal capacity than suspended cells. The immobilized MOB on sponge reached the highest methane removal efficiency (RE) of 35%. The rough surface, preferable hydroscopicity, appropriate pore size and particle size of support material might favor the MOB immobilization and accordingly methane removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Treatment of exhaust gas from the semiconductor manufacturing process. 3; Handotai seizo sochi kara no hai gas shori. 3

    Energy Technology Data Exchange (ETDEWEB)

    Fukunaga, A. [Ebara Research Co. Ltd., Kanagawa (Japan); Mori, Y.; Osato, M.; Tsujimura, M. [Ebara Corp., Tokyo (Japan)

    1995-10-20

    Demand has been building up for an individual dry type scrubber for treating exhaust gas from the semiconductor manufacturing process. Some factors for the wide acceptance of such a scrubber would be the capability for complete treatment, easy maintenance and safety features, etc. Practical gas analysis and optimum scrubbing techniques would have to be applied, as well as effective monitoring, alarm, and fail-safe techniques. The overall exhaust gas line, i.e. the line connecting the scrubber system and the upstream process, including that extending to pump system, has to be fully considered for enabling effective scrubbing performance. Such factors, which have until now not been given any priority, would have to be fully studied for the development of a practical, individual dry type scrubber. Cooperation on this matter from the semiconductor manufacturing industry would also be essential. 6 refs., 3 figs., 5 tabs.

  3. Brayton cycle for internal combustion engine exhaust gas waste heat recovery

    Directory of Open Access Journals (Sweden)

    J Galindo

    2015-06-01

    Full Text Available An average passenger car engine effectively uses about one-third of the fuel combustion energy, while the two-thirds are wasted through exhaust gases and engine cooling. It is of great interest to automotive industry to recover some of this wasted energy, thus increasing the engine efficiency and lowering fuel consumption and contamination. Waste heat recovery for internal combustion engine exhaust gases using Brayton cycle machine was investigated. The principle problems of application of such a system in a passenger car were considered: compressor and expander machine selection, machine size for packaging under the hood, efficiency of the cycle, and improvement of engine efficiency. Important parameters of machines design have been determined and analyzed. An average 2-L turbocharged gasoline engine’s New European Driving Cycle points were taken as inlet points for waste heat recovery system. It is theoretically estimated that the recuperated power of 1515 W can be achieved along with 5.7% improvement in engine efficiency, at the point where engine power is 26550 W.

  4. Waste Gas And Particulate Control Measures For Laser Cutters In The Automotive Cloth Industry

    Science.gov (United States)

    Ball, R. D.; Kulik, B. F.; Stoncel, R. J.; Tan, S. L.

    1986-11-01

    Demands for greater flexibility and accuracy in the manufacture of automobile trim parts has made single-ply laser cutting an attractive proposition. Lasers are able to cut a large variety of cloth types, from vinyls to velours. Unlike mechanically cut parts, which in the case of velours produce rough edges and dust problems, laster cutting of parts produces smooth edges, fumes and fine particulate. A detailed study of the nature of the laser effluent from a cross section of typical synthetic cloth found in an automotive trim plant was undertaken. Most samples were cut by a fast axial flow, 500 Watt, continuous wave CO2 laser. A 254 mm (10-inch) focussing optics package was used. The width of the kerf varied with the material, and values were determined at between 0.2 and 0.7 mm. Particle size distribution analysis and rates of particulate emission for each cloth were determined. Gases were collected in gas sample bags and analyzed using Fourier transform infrared analysis. Low boiling point organics were collected on activated charcoal tubes, identified on a gas chromatograph mass spectrometer, and quantified on a gas chromatograph. Inorganic contaminants were collected on filter paper and analysed on an inductively coupled plasma atomic emission spectrometer. A number of different effluent control systems were evaluated. Due to the very fine and sticky nature of the particulate, filters capable of removing particulate sizes in the 10 μm or lower range, tend to clog rapidly. Laboratory scale models of wet scrubbers, and electrostatic precipitators were built and tested. The most effective dust and effluent gas control was given by a wet electrostatic precipitator. This system, in conjunction with a scrubber, should maintain emission levels within environmental standards.

  5. Hydrogen combustion and exhaust emissions in a supercharged gas engine ignited with micro pilot diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Tomita, E.; Kawahara, N. [Okayama Univ., Okayama (Japan); Roy, M.M. [Rajshahi Univ. of Engineering and Technology, Rajshahi (Bangladesh)

    2009-07-01

    A hydrogen combustion and exhaust emissions in a supercharged gas engine ignited with micro pilot diesel fuel was discussed in this presentation. A schematic diagram of the experimental study was first presented. The single cylinder, water-cooled, supercharged test engine was illustrated. Results were presented for the following: fuel energy and energy share (hydrogen and diesel fuel); pressure history and rate of heat release; engine performance and exhaust emissions; effect of nitrogen dilution on heat value per cycle; effect of N{sub 2} dilution on pressure history and rate of heat release; and engine performance and exhaust emissions. This presentation demonstrated that smooth and knock-free engine operation results from the use of hydrogen in a supercharged dual-fuel engine for leaner fuel-air equivalence ratios maintaining high thermal efficiency. It was possible to attain mor3 than 90 per cent hydrogen-energy substitution to the diesel fuel with zero smoke emissions. figs.

  6. Hydrogen combustion and exhaust emissions in a supercharged gas engine ignited with micro pilot diesel fuel

    International Nuclear Information System (INIS)

    Tomita, E.; Kawahara, N.; Roy, M.M.

    2009-01-01

    A hydrogen combustion and exhaust emissions in a supercharged gas engine ignited with micro pilot diesel fuel was discussed in this presentation. A schematic diagram of the experimental study was first presented. The single cylinder, water-cooled, supercharged test engine was illustrated. Results were presented for the following: fuel energy and energy share (hydrogen and diesel fuel); pressure history and rate of heat release; engine performance and exhaust emissions; effect of nitrogen dilution on heat value per cycle; effect of N 2 dilution on pressure history and rate of heat release; and engine performance and exhaust emissions. This presentation demonstrated that smooth and knock-free engine operation results from the use of hydrogen in a supercharged dual-fuel engine for leaner fuel-air equivalence ratios maintaining high thermal efficiency. It was possible to attain mor3 than 90 per cent hydrogen-energy substitution to the diesel fuel with zero smoke emissions. figs.

  7. Effect of exhaust gas recirculation on some combustion characteristics of dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Selim, Mohamed Y.E. [United Arab Emirates Univ., Dept. of Mechanical Engineering, Al-Ain (United Arab Emirates)

    2003-03-01

    Combustion pressure rise rate and thermal efficiency data are measured and presented for a dual fuel engine running on a dual fuel of Diesel and compressed natural gas and utilizing exhaust gas recirculation (EGR). The maximum pressure rise rate during combustion is presented as a measure of combustion noise. The experimental investigation on the dual fuel engine revealed the noise generated from combustion and the thermal efficiency at different EGR ratios. A Ricardo E6 Diesel version engine is converted to run on a dual fuel of Diesel and compressed natural gas and having an exhaust gas recycling system is used throughout the work. The engine is fully computerized, and the cylinder pressure data and crank angle data are stored in a PC for offline analysis. The effects of EGR ratio, engine speeds, loads, temperature of recycled exhaust gases, intake charge pressure and engine compression ratio on combustion noise and thermal efficiency are examined for the dual fuel engine. The combustion noise and thermal efficiency of the dual fuel engine are found to be affected when EGR is used in the dual fuel engine. (Author)

  8. Elimination of methane in exhaust gas from biogas upgrading process by immobilized methane-oxidizing bacteria.

    Science.gov (United States)

    Wu, Ya-Min; Yang, Jing; Fan, Xiao-Lei; Fu, Shan-Fei; Sun, Meng-Ting; Guo, Rong-Bo

    2017-05-01

    Biogas upgrading is essential for the comprehensive utilization of biogas as substitute of natural gas. However, the methane in the biogas can be fully recovered during the upgrading process of biogas, and the exhaust gas produced during biogas upgrading may contain a very low concentration of methane. If the exhaust gas with low concentration methane releases to atmosphere, it will be harmful to environment. In addition, the utilization of large amounts of digestate produced from biogas plant is another important issue for the development of biogas industry. In this study, solid digestate was used to produce active carbon, which was subsequently used as immobilized material for methane-oxidizing bacteria (MOB) in biofilter. Biofilter with MOB immobilized on active carbon was used to eliminate the methane in exhaust gas from biogas upgrading process. Results showed porous active carbon was successfully made from solid digestate. The final methane elimination capacity of immobilized MOB reached about 13molh -1 m -3 , which was more 4 times higher than that of MOB without immobilization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Thermoelectric Power Generation System for Future Hybrid Vehicles Using Hot Exhaust Gas

    Science.gov (United States)

    Kim, Sun-Kook; Won, Byeong-Cheol; Rhi, Seok-Ho; Kim, Shi-Ho; Yoo, Jeong-Ho; Jang, Ju-Chan

    2011-05-01

    The present experimental and computational study investigates a new exhaust gas waste heat recovery system for hybrid vehicles, using a thermoelectric module (TEM) and heat pipes to produce electric power. It proposes a new thermoelectric generation (TEG) system, working with heat pipes to produce electricity from a limited hot surface area. The current TEG system is directly connected to the exhaust pipe, and the amount of electricity generated by the TEMs is directly proportional to their heated area. Current exhaust pipes fail to offer a sufficiently large hot surface area for the high-efficiency waste heat recovery required. To overcome this, a new TEG system has been designed to have an enlarged hot surface area by the addition of ten heat pipes, which act as highly efficient heat transfer devices and can transmit the heat to many TEMs. As designed, this new waste heat recovery system produces a maximum 350 W when the hot exhaust gas heats the evaporator surface of the heat pipe to 170°C; this promises great possibilities for application of this technology in future energy-efficient hybrid vehicles.

  10. A novel aerated surface flow constructed wetland using exhaust gas from biological wastewater treatment: Performance and mechanisms.

    Science.gov (United States)

    Zhang, Xinwen; Hu, Zhen; Zhang, Jian; Fan, Jinlin; Ngo, Huu Hao; Guo, Wenshan; Zeng, Chujun; Wu, Yiwen; Wang, Siyuan

    2018-02-01

    In this study, a novel aerated surface flow constructed wetland (SFCW) using exhaust gas from biological wastewater treatment was investigated. Compared with un-aerated SFCW, the introduction of exhaust gas into SFCW significantly improved NH 4 + -N, TN and COD removal efficiencies by 68.30 ± 2.06%, 24.92 ± 1.13% and 73.92 ± 2.36%, respectively. The pollutants removal mechanism was related to the microbial abundance and the highest microbial abundance was observed in the SFCW with exhaust gas because of the introduction of exhaust gas from sequencing batch reactor (SBR), and thereby optimizing nitrogen transformation processes. Moreover, SFCW would significantly mitigate the risk of exhaust gas pollution. SFCW removed 20.00 ± 1.23%, 34.78 ± 1.39%, and 59.50 ± 2.33% of H 2 S, NH 3 and N 2 O in the exhaust gas, respectively. And 31.32 ± 2.23% and 32.02 ± 2.86% of bacterial and fungal aerosols in exhaust gas were also removed through passing SFCW, respectively. Copyright © 2017. Published by Elsevier Ltd.

  11. Gas-phase polynuclear aromatic hydrocarbons (PAH) in vehicle exhaust: A method for collection and analysis

    International Nuclear Information System (INIS)

    Seigl, W.O.; Chladek, E.

    1990-01-01

    Gas-phase polynuclear aromatic hydrocarbons (PAH) are emitted at low levels in vehicle exhaust compared to other hydrocarbon emissions. A method has been developed involving the trapping of gas phase emissions on Tenax, a macrorecticular porous polymer, followed by thermal desorption onto a capillary gas chromatography column. Gas chromatography/mass spectrometry (GC/MS) was used for the chemical analysis. A detection limit of 0.05 ng was achieved for several gas-phase PAH. This high sensitivity enables the speciation and quantitation of gas-phase PAH collected from a dilution tube during standard driving (test) cycles. The method was demonstrated for the analysis of 9 PAH in the exhaust from a 1987 vehicle (with and without catalyst) during the hot start transient phase of the EPA urban dynamometer driving schedule. The PAH measured include naphthalene, 2-methyl- and 1-methylnaphthalene, biphenyl, fluorene, phenanthrene, anthracene, fluoranthene and pyrene. The four most abundant PAH observed are naphthalene, 2-methyl and 1-methylnaphthalene, and biphenyl, in that order

  12. Modelling for Control of Exhaust Gas Recirculation on Large Diesel Engines

    DEFF Research Database (Denmark)

    Hansen, Jakob Mahler; Zander, Claes-Göran; Pedersen, Nicolai

    2013-01-01

    Exhaust Gas Recirculation (EGR) reduces NOx emissions by reducing O2 concentration for the combustion and is a preferred way to obtain emission regulations that will take effect from 2016. If not properly controlled, reduction of O2 has adverse side eects and proper control requires proper dynami...... principles followed by parameter identication and compares the results of these approaches. The paper performs a validation against experimental data from a test engine and presents a linearised model for EGR control design....

  13. Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine. 2: Materials and coatings

    Science.gov (United States)

    Bhushan, B.; Ruscitto, D.; Gray, S.

    1978-01-01

    Material coatings for an air-lubricated, compliant journal bearing for an automotive gas turbine engine were exposed to service test temperatures of 540 C or 650 C for 300 hours, and to 10 temperature cycles from room temperatures to the service test temperatures. Selected coatings were then put on journal and partial-arc foils and tested in start-stop cycle tests at 14 kPa (2 psi) loading for 2000 cycles. Half of the test cycles were performed at a test chamber service temperature of 540 C (1000 F) or 650 C (1200 F); the other half were performed at room temperature. Based on test results, the following combinations and their service temperature limitations are recommended: HL-800 TM (CdO and graphite) on foil versus chrome carbide on journal up to 370 C (700 F); NASA PS 120 (Tribaloy 400, silver and CaF2 on journal versus uncoated foil up to 540 C (1000 F); and Kaman DES on journal and foil up to 640 C (1200 F). Kaman DES coating system was further tested successfully at 35 kPa (5 psi) loading for 2000 start-stop cycles.

  14. Pyrolysis of automotive shredder residue for the production of fuel-grade gas

    International Nuclear Information System (INIS)

    Sharp, L.L.; Ness, R.O. Jr.

    1993-01-01

    Every year eight to ten million cars and trucks are disposed of by shredding at one of the 200 auto shredders located in the United States. Automotive shredder residue (ASR) is a by-product created in the dismantling of automobiles. Figure 1 illustrates the process by which ASR is generated. An automobile is stripped of useful and/or hazardous items, such as the gas tank, battery, tires, and radiator. Although it is beneficial to have these items removed for safety and environmental concerns, this is not always accomplished. After removal of some or all of these items, the automobile is shredded to provide a material less than 4 inches in size and composed of approximately 50% organic and 50% inorganic fractions. Ferrous scrap is then separated out magnetically. This ferrous scrap supplies the steel industry with 12 to 14 million tons per year for electric arc furnace feedstock. Air cyclone separators isolate a low density open-quotes fluffclose quotes from the nonferrous fraction (aluminum, copper, etc.). This fluff (shredder residue) is composed of a variety of plastics, fabrics, foams, glass, rubber, and an assortment of contaminants. Fluff bulk density is approximately 20 lb/ft

  15. The Measurement of Fuel-Air Ratio by Analysis for the Oxidized Exhaust Gas

    Science.gov (United States)

    Gerrish, Harold C.; Meem, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy fuel Specification No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs for the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124.

  16. The Measurement of Fuel-air Ratio by Analysis of the Oxidized Exhaust Gas

    Science.gov (United States)

    Memm, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy Fuel Specification, No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs or the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124

  17. Electron beam treatment technology for exhaust gas for preventing acid rain

    International Nuclear Information System (INIS)

    Aoki, Shinji

    1990-01-01

    Recently, accompanying the increase of the use of fossil fuel, the damage due to acid rain such as withering of trees and extinction of fishes and shells has occurred worldwide, and it has become a serious problem. The sulfur oxides and nitrogen oxides contained in exhaust gas are oxidized by the action of sunbeam to become sulfuric acid and nitric acid mists, which fall in the form of rain. Acid rain is closely related to the use of the coal containing high sulfur, and it hinders the use of coal which is rich energy source. In order to simplify the processing system for boiler exhaust gas and to reduce waste water and wastes, Ebara Corp. developed the dry simultaneous desulfurizing and denitrating technology utilizing electron beam in cooperation with Japan Atomic Energy Research Institute. The flow chart of the system applied to the exhaust gas treatment in a coal-fired thermal power station is shown. The mechanism of desulfurization and denitration, and the features of this system are described. The demonstration plant was constructed in a coal-fired thermal power station in Indianapolis, Indiana, USA, and the trial operation was completed in July, 1987. The test results are reported. (K.I.)

  18. Prehistory and state of catalytic exhaust gas detoxification of vehicle engines

    Energy Technology Data Exchange (ETDEWEB)

    Pischinger, F

    1985-01-01

    The application of catalyst techniques to exhaust gas detoxification of car engines has a prehistory of about 60 years. There were important attempts at further development in the 1940's and 1950's in connection with efforts to comply with the legal measures in California caused by the smog problem in Los Angeles. The technical difficulties had been overcome by the mid-1970's, so that catalytic converters could be introduced into mass production of cars in the USA. Their function was first mainly limited to oxidation of noxious substances in the exhaust gas. Catalysts were first used to reduce nitrogen oxide emission in 1977. The 3 way catalyst now used in mass production in the USA permits the simultaneous reduction of all three important types of noxious substances emitted from petrol engines. In order to ensure the most favourable composition of the exhaust gas for this purpose, the 3 way catalyst is combined with electronic control of the formation of the mixture. The catalytic converter for cars represents by far the most economically important industrial application of catalyst techniques today. There is not other alternative for achieving the low emission of noxious substances which can be reached by this technique. (HW).

  19. Experimental analysis of diffusion absorption refrigerator driven by electrical heater and engine exhaust gas

    Directory of Open Access Journals (Sweden)

    Mohamed Izzedine Serge ADJIBADE

    2017-09-01

    Full Text Available This work presents an experimental study of H20-NH3-H2 diffusion absorption refrigeration under two types of energy sources, i.e. the conventional electric energy from grid (electric and exhaust gas from internal combustion engine. Dynamic method is used to evaluate the behavior of the components of the system for both energy sources. Results obtained show that the performance of each component under different types of energy sources is almost coherent. For the generator, the electrical heater system requires more time to warm up, around three minutes, compared to the 40 s for system running with exhaust gas. For the evaporator, the decreasing rate is higher for the exhaust gas source and it took only about two hours to reach steady-state while for the electrical heat, the steady-state is reached after about seven hours of operation. For both energy sources, the evaporation temperature stabilizes to 3 °C and the minimum temperature to boil off ammonia is around 140 °C.

  20. 5th international exhaust gas and particulate emissions forum. Proceedings; 5. Internationales Forum Abgas- und Partikelemissionen. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-11

    The Proceedings of the 5th International Exhaust Gas and Particulate Emissions Forum contains 22 printed contributions as well as a CD-ROM. The titles of them are: (1) Diesel Emissions Control in the United States - 2010 and Beyond; (2) The MBE90 commercial vehicle engine for EPA '07 emissions regulations; (3) Concepts for engines and exhaust-gas cleaning systems for heavy duty trucks of the future; (4) HD Engine Technology for Near-Zero Emissions and Lowest Cost of Ownership; (5) (Partially-) Homogeneous Diesel Combustion; (6) Exhaust gas sensors for NOx storage catalysts and ammonia-SCR systems; (7) Sensors for modern exhaust gas after-treatment systems; (8) New reducing agents for low NOx-SCR Techno-logy; (9) Exhaust gas Aftertreatment on Lean Burn Gasoline Direct Injection Engines: The System of TWC and NOx-Storage Catalyst; (10) New Platinum/Palladium based catalyzed filter technologies for future passenger car applications; (11) Development of a Roadway Hydrocarbon Sorption Model and Characterization of a Novel PM Generator; (12) Requirements for current and future particulate measurement instrumentation from the point of view of the Physikalisch-Technische Bundesanstalt; (13) Standardized dilution conditions for gravimetric PM sampling - measures to assure results that correlate; (14) Particle Counting according PMP; (15) Future high-confidence measurement of diesel particulate emissions for approval and development; (16) New developments in optical instrumentation for exhaust gas; (17) Simultaneous Detection of Gaseous and Particulate Exhaust Components by Photoacoustic Spectroscopy; (18) Boundaries of modern exhaust gas instrumentation; (19) Raising quality and reducing application effort through efficient data input to the particulate filter load model for a EURO5 diesel car; (20) Stop-start operation of diesel engines - modified require-ment for exhaust gas after-treatment?; (21) Particulates emission with Biodiesel B30 impact on CSF management; (22

  1. 5th international exhaust gas and particulate emissions forum. Proceedings; 5. Internationales Forum Abgas- und Partikelemissionen. Beitraege

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-12-11

    The Proceedings of the 5th International Exhaust Gas and Particulate Emissions Forum contains 22 printed contributions as well as a CD-ROM. The titles of them are: (1) Diesel Emissions Control in the United States - 2010 and Beyond; (2) The MBE90 commercial vehicle engine for EPA '07 emissions regulations; (3) Concepts for engines and exhaust-gas cleaning systems for heavy duty trucks of the future; (4) HD Engine Technology for Near-Zero Emissions and Lowest Cost of Ownership; (5) (Partially-) Homogeneous Diesel Combustion; (6) Exhaust gas sensors for NOx storage catalysts and ammonia-SCR systems; (7) Sensors for modern exhaust gas after-treatment systems; (8) New reducing agents for low NOx-SCR Techno-logy; (9) Exhaust gas Aftertreatment on Lean Burn Gasoline Direct Injection Engines: The System of TWC and NOx-Storage Catalyst; (10) New Platinum/Palladium based catalyzed filter technologies for future passenger car applications; (11) Development of a Roadway Hydrocarbon Sorption Model and Characterization of a Novel PM Generator; (12) Requirements for current and future particulate measurement instrumentation from the point of view of the Physikalisch-Technische Bundesanstalt; (13) Standardized dilution conditions for gravimetric PM sampling - measures to assure results that correlate; (14) Particle Counting according PMP; (15) Future high-confidence measurement of diesel particulate emissions for approval and development; (16) New developments in optical instrumentation for exhaust gas; (17) Simultaneous Detection of Gaseous and Particulate Exhaust Components by Photoacoustic Spectroscopy; (18) Boundaries of modern exhaust gas instrumentation; (19) Raising quality and reducing application effort through efficient data input to the particulate filter load model for a EURO5 diesel car; (20) Stop-start operation of diesel engines - modified require-ment for exhaust gas after-treatment?; (21) Particulates emission with Biodiesel B30 impact on CSF management; (22

  2. Study on heat pipe assisted thermoelectric power generation system from exhaust gas

    Science.gov (United States)

    Chi, Ri-Guang; Park, Jong-Chan; Rhi, Seok-Ho; Lee, Kye-Bock

    2017-11-01

    Currently, most fuel consumed by vehicles is released to the environment as thermal energy through the exhaust pipe. Environmentally friendly vehicle technology needs new methods to increase the recycling efficiency of waste exhaust thermal energy. The present study investigated how to improve the maximum power output of a TEG (Thermoelectric generator) system assisted with a heat pipe. Conventionally, the driving energy efficiency of an internal combustion engine is approximately less than 35%. TEG with Seebeck elements is a new idea for recycling waste exhaust heat energy. The TEG system can efficiently utilize low temperature waste heat, such as industrial waste heat and solar energy. In addition, the heat pipe can transfer heat from the automobile's exhaust gas to a TEG. To improve the efficiency of the thermal power generation system with a heat pipe, effects of various parameters, such as inclination angle, charged amount of the heat pipe, condenser temperature, and size of the TEM (thermoelectric element), were investigated. Experimental studies, CFD simulation, and the theoretical approach to thermoelectric modules were carried out, and the TEG system with heat pipe (15-20% charged, 20°-30° inclined configuration) showed the best performance.

  3. Mining utilization of residues of exhaust gas cleaning from waste incinerators; Bergtechnische Verwertung von Abgasreinigungsrueckstaenden aus Verbrennungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Werthmann, Rainer [K+S Entsorgung GmbH, Kassel (Germany). Abfallchemie und Zulassungen

    2013-03-01

    The exhaust gas purification of a household incinerator or a substitute fuel power plant intends to remove dust, heavy metal compounds and acid harmful gases from the exhaust gas in order to comply with the immission-control legal limits. The particulate matter contains volatile heavy metal chlorides which precipitate as a solid matter. The enhanced amount of water-soluble salts is conspicuous. The concentration of soluble components is limited to 10,000 mg/L in the 1:10 eluate due to the landfill regulation. Thus, the residues of exhaust gas cleaning are predestined for an underground waste disposal in salt mines. Under this aspect, the author of the contribution under consideration reports on the mining utilization of residues of exhaust gas cleaning from waste incinerators.

  4. Development and performance measurement of micro-power pack using micro-gas turbine driven automotive alternators

    International Nuclear Information System (INIS)

    Sim, Kyuho; Koo, Bonjin; Kim, Chang Ho; Kim, Tae Ho

    2013-01-01

    Highlights: ► We develop micro-power pack using automotive alternator and micro-gas turbine. ► We measure rotordynamic and power generation performance of micro-power pack. ► Micro-power pack shows dramatic increases in mass and volumetric power densities. ► Test results assure feasibility of micro-power pack for electric vehicles. -- Abstract: This paper presents the development of a micro-power pack using automotive alternators powered by a micro-gas turbine (MGT) to recharge battery packs, in particular for electric vehicles (EVs). The thermodynamic efficiency for the MGT with the power turbine is estimated from a simple Brayton cycle analysis. The rotordynamic and power generation performance of the MGT driven alternator was measured during a series of experiments under electrical no-loading and loading conditions, and with belt-pulley and flexible bellows couplings. The flexible coupling showed superior rotordynamic and power generation performance than the belt coupling due to the enhanced alignment of the alternator rotor and the reduced mechanical frictions. Furthermore, the micro-power pack showed dramatic increases in the mass and volumetric power densities by ∼4 times and ∼5 times, respectively, compared with those of a commercial diesel generator with similar power level. As a result, this paper assures the feasibility of the light-weight micro-power pack using a MGT and automotive alternators for EVs.

  5. Utilization of Common Automotive Three-Way NOx Reduction Catalyst for Managing Off- Gas from Thermal Treatment of High-Nitrate Waste - 13094

    International Nuclear Information System (INIS)

    Foster, Adam L.; Ki Song, P.E.

    2013-01-01

    Studsvik's Thermal Organic Reduction (THOR) steam reforming process has been tested and proven to effectively treat radioactive and hazardous wastes streams with high nitrate contents to produce dry, stable mineral products, while providing high conversion (>98%) of nitrates and nitrites directly to nitrogen gas. However, increased NO x reduction may be desired for some waste streams under certain regulatory frameworks. In order to enhance the NO x reduction performance of the THOR process, a common Three-Way catalytic NO x reduction unit was installed in the process gas piping of a recently completed Engineering Scale Technology Demonstration (ESTD). The catalytic DeNO x unit was located downstream of the main THOR process vessel, and it was designed to catalyze the reduction of residual NO x to nitrogen gas via the oxidation of the hydrogen, carbon monoxide, and volatile organic compounds that are inherent to the THOR process gas. There was no need for auxiliary injection of a reducing gas, such as ammonia. The unit consisted of four monolith type catalyst sections positioned in series with a gas mixing section located between each catalyst section. The process gas was monitored for NO x concentration upstream and downstream of the catalytic DeNO x unit. Conversion efficiencies ranged from 91% to 97% across the catalytic unit, depending on the composition of the inlet gas. Higher concentrations of hydrogen and carbon monoxide in the THOR process gas increased the NO x reduction capability of the catalytic DeNO x unit. The NO x destruction performance of THOR process in combination with the Three-Way catalytic unit resulted in overall system NO x reduction efficiencies of greater than 99.9% with an average NO x reduction efficiency of 99.94% for the entire demonstration program. This allowed the NO x concentration in the ESTD exhaust gas to be maintained at less than 40 parts per million (ppm), dry basis with an average concentration of approximately 17 ppm, dry

  6. A GM (1, 1) Markov Chain-Based Aeroengine Performance Degradation Forecast Approach Using Exhaust Gas Temperature

    OpenAIRE

    Zhao, Ning-bo; Yang, Jia-long; Li, Shu-ying; Sun, Yue-wu

    2014-01-01

    Performance degradation forecast technology for quantitatively assessing degradation states of aeroengine using exhaust gas temperature is an important technology in the aeroengine health management. In this paper, a GM (1, 1) Markov chain-based approach is introduced to forecast exhaust gas temperature by taking the advantages of GM (1, 1) model in time series and the advantages of Markov chain model in dealing with highly nonlinear and stochastic data caused by uncertain factors. In this ap...

  7. Applying Systems Engineering to Improve the Main Gas Turbine Exhaust System Maintenance Strategy for the CG-47 Ticonderoga Class Cruiser

    Science.gov (United States)

    2015-09-01

    national security and prosperity (U.S. Navy 2014). In perspective, oceans are the lifeblood of the planet and its entire population . The National...maintenance strategy, reliability-centered maintenance, cost, schedule, performance, growth -work, new-work, optimal fleet response plan, time-directed...76 5. Main Gas Turbine Exhaust System Growth -Work ..................77 E. RECOMMENDATIONS TO IMPROVE THE MAIN GAS TURBINE EXHAUST SYSTEM

  8. Exhaust gas heat recovery through secondary expansion cylinder and water injection in an internal combustion engine

    Directory of Open Access Journals (Sweden)

    Nassiri Toosi Ali

    2017-01-01

    Full Text Available To enhance thermal efficiency and increase performance of an internal combustion engine, a novel concept of coupling a conventional engine with a secondary 4-stroke cylinder and direct water injection process is proposed. The burned gases after working in a traditional 4-stroke combustion cylinder are transferred to a secondary cylinder and expanded even more. After re-compression of the exhaust gases, pre-heated water is injected at top dead center. The evaporation of injected water not only recovers heat from exhaust gases, but also increases the mass of working gas inside the cylinder, therefore improves the overall thermal efficiency. A 0-D/1-D model is used to numerically simulate the idea. The simulations outputs showed that the bottoming cycle will be more efficient at higher engines speeds, specifically in a supercharged/turbocharged engine, which have higher exhaust gas pressure that can reproduce more positive work. In the modeled supercharged engine, results showed that brake thermal efficiency can be improved by about 17%, and brake power by about 17.4%.

  9. State Estimation in the Automotive SCR DeNOx Process

    DEFF Research Database (Denmark)

    Zhou, Guofeng; Jørgensen, John Bagterp; Duwig, Christophe

    2012-01-01

    on exhaust gas emissions. For advanced control, e.g. Model Predictive Control (MPC), of the SCR process, accurate state estimates are needed. We investigate the performance of the ordinary and the extended Kalman filters based on a simple first principle system model. The performance is tested through......Selective catalytic reduction (SCR) of nitrogen oxides (NOx) is a widely applied diesel engine exhaust gas after-treatment technology. For effective NOx removal in a transient operating automotive application, controlled dosing of urea can be used to meet the increasingly restrictive legislations...

  10. Steady-state modelling of the universal exhaust gas oxygen (UEGO) sensor

    International Nuclear Information System (INIS)

    Collings, N; Hegarty, K; Ramsander, T

    2012-01-01

    The universal exhaust gas oxygen (UEGO) sensor is a well-established device which was developed for the measurement of relative air fuel ratio in internal combustion engines. There is, however, little information available which allows for the prediction of the UEGO's behaviour when exposed to arbitrary gas mixtures, pressures and temperatures. Here we present a steady-state model for the sensor, based on a solution of the Stefan–Maxwell equation, and which includes a momentum balance. The response of the sensor is dominated by a diffusion barrier, which controls the rate of diffusion of gas species between the exhaust and a cavity. Determination of the diffusion barrier characteristics, especially the mean pore size, porosity and tortuosity, is essential for the purposes of modelling, and a measurement technique based on identification of the sensor pressure giving zero temperature sensitivity is shown to be a convenient method of achieving this. The model, suitably calibrated, is shown to make good predictions of sensor behaviour for large variations of pressure, temperature and gas composition. (paper)

  11. A unified approach to assess performance of different techniques for recovering exhaust heat from gas turbines

    International Nuclear Information System (INIS)

    Carapellucci, Roberto

    2009-01-01

    Exhaust heat from gas turbines can be recovered externally or internally to the cycle itself. Of the technology options for external recovery, the combined gas-steam power plant is by far the most effective and commonly used worldwide. For internal recovery conventional solutions are based on thermodynamic regeneration and steam injection, while innovative solutions rely on humid air regeneration and steam reforming of fuel. In this paper a unified approach for analysing different exhaust heat recovery techniques is proposed. It has been possible to define a characteristic internal heat recovery plane, based on a few meaningful parameters and to identify an innovative scheme for repowering existing combined cycles. The characteristic plane indicates directly the performance obtainable with the different recovery techniques, showing that performances close to combined cycle plants (external recovery) can only be achieved with combined recovery techniques (humid air regeneration, steam reforming of fuel). The innovative repowering scheme, which requires the addition of a gas turbine and one-pressure level HRSG to an existing combined gas-steam power plant, significantly increases power output with fairly high marginal efficiency.

  12. Variable-geometry turbocharger with asymmetric divided volute for engine exhaust gas pulse optimization

    Science.gov (United States)

    Serres, Nicolas

    2010-11-09

    A turbine assembly for a variable-geometry turbocharger includes a turbine housing defining a divided volute having first and second scrolls, wherein the first scroll has a substantially smaller volume than the second scroll. The first scroll feeds exhaust gas to a first portion of a turbine wheel upstream of the throat of the wheel, while the second scroll feeds gas to a second portion of the wheel at least part of which is downstream of the throat. Flow from the second scroll is regulated by a sliding piston. The first scroll can be optimized for low-flow conditions such that the turbocharger can operate effectively like a small fixed-geometry turbocharger when the piston is closed. The turbine housing defines an inlet that is divided by a dividing wall into two portions respectively feeding gas to the two scrolls, a leading edge of the dividing wall being downstream of the inlet mouth.

  13. Measurement of pollutant species in automotive exhaust: application of a 3D Eulerian model about the photochemical oxidant formation in the troposphere

    International Nuclear Information System (INIS)

    Caplain, I.

    2005-05-01

    Automotive pollution has become a more and more worrying problem. Pollution regulations are more severe today but even if some pollutants have to fulfill strict emission standards, other compounds like volatile organic compounds (VOCs) and carbonyl compounds, are less controlled but remain toxic for human beings in a direct way (primary pollution) or in an indirect way (secondary pollution). This work deals with the experimental measurements of exhaust pollution, the inventory of pollutant emissions from transports, and the modeling of air quality. The experimental measurements are performed in the framework of the European project Artemis (assessment and reliability of transport emission models and inventory systems) under the coordination of INRETS, on a set of 30 gasoline and diesel vehicles of recent technology. These vehicles are submitted to various road tests in order to improve the emissions database for private vehicles. The main pollutants measured are the light VOCs (C2 to C6), the heavy VOCs (C7 to C15) and the carbonyl compounds. About a hundred of compounds are thus measured. The emissions factor of each pollutant has been determined for each vehicle and has been used for the elaboration of an emission map of the Nord-Pas-de-Calais region. These pollutant data have been used as input data for a physicochemical simulation model of troposphere (UAM: urban air-shed model). A previous study about the introduction of the detailed molecular speciation of VOCs and the use of the CBIV mechanism did not lead to concluding results about the speciation impact on ozone formation. The introduction of a new mechanism would allow to take into account the overall compounds and to see their eventual contribution to the ozone formation. This would require a modification of the model and in particular the addition of a flexible chemical mechanism (FCM) interface for the introduction of a new chemical mechanism (SAPRC 99 instead of CBIV) in the model. The overall input

  14. Performance evaluation of an automotive thermoelectric generator

    Science.gov (United States)

    Dubitsky, Andrei O.

    Around 40% of the total fuel energy in typical internal combustion engines (ICEs) is rejected to the environment in the form of exhaust gas waste heat. Efficient recovery of this waste heat in automobiles can promise a fuel economy improvement of 5%. The thermal energy can be harvested through thermoelectric generators (TEGs) utilizing the Seebeck effect. In the present work, a versatile test bench has been designed and built in order to simulate conditions found on test vehicles. This allows experimental performance evaluation and model validation of automotive thermoelectric generators. An electrically heated exhaust gas circuit and a circulator based coolant loop enable integrated system testing of hot and cold side heat exchangers, thermoelectric modules (TEMs), and thermal interface materials at various scales. A transient thermal model of the coolant loop was created in order to design a system which can maintain constant coolant temperature under variable heat input. Additionally, as electrical heaters cannot match the transient response of an ICE, modelling was completed in order to design a relaxed exhaust flow and temperature history utilizing the system thermal lag. This profile reduced required heating power and gas flow rates by over 50%. The test bench was used to evaluate a DOE/GM initial prototype automotive TEG and validate analytical performance models. The maximum electrical power generation was found to be 54 W with a thermal conversion efficiency of 1.8%. It has been found that thermal interface management is critical for achieving maximum system performance, with novel designs being considered for further improvement.

  15. An efficient venturi scrubber system to remove submicron particles in exhaust gas.

    Science.gov (United States)

    Tsai, Chuen-Jinn; Lin, Chia-Hung; Wang, Yu-Min; Hunag, Cheng-Hsiung; Li, Shou-Nan; Wu, Zong-Xue; Wang, Feng-Cai

    2005-03-01

    An efficient venturi scrubber system making use of heterogeneous nucleation and condensational growth of particles was designed and tested to remove fine particles from the exhaust of a local scrubber where residual SiH4 gas was abated and lots of fine SiO2 particles were generated. In front of the venturi scrubber, normal-temperature fine-water mist mixes with high-temperature exhaust gas to cool it to the saturation temperature, allowing submicron particles to grow into micron sizes. The grown particles are then scrubbed efficiently in the venturi scrubber. Test results show that the present venturi scrubber system is effective for removing submicron particles. For SiO2 particles greater than 0.1microm, the removal efficiency is greater than 80-90%, depending on particle concentration. The corresponding pressure drop is relatively low. For example, the pressure drop of the venturi scrubber is approximately 15.4 +/- 2.4 cm H2O when the liquid-to-gas ratio is 1.50 L/m3. A theoretical calculation has been conducted to simulate particle growth process and the removal efficiency of the venturi scrubber. The theoretical results agree with the experimental data reasonably well when SiO2 particle diameter is greater than 0.1 microm.

  16. Evaluation of an exhaust gas evacuation system during propane-fueled lift truck maintenance

    International Nuclear Information System (INIS)

    Roberge, B.; Beaudet, Y.; Lazure, L.; Menard, L.; Turcotte, A.

    2006-01-01

    Exposure to carbon monoxide (CO) gas in the workplace can cause health problem. CO gas is colourless and odourless, and exposure to it can cause intoxication, particularly for mechanics working on internal combustion engines fed by propane-fueled lift trucks. Regular procedures for evacuating the gases emitted during routine mechanical repairs involve the use of rigid evacuating pipes attached to the building and hooked to a flexible pipe at the end of the exhaust pipe. With lift trucks, this procedure is limited because of the configuration of these vehicles, and also because this type of work is often done in places without access to permanent mechanical ventilation. The object of this study was to propose a new evacuation method for CO gas fumes that would lower the exposures of fumes for mechanics and for workstations. It identified the criteria that should be considered, such as the configuration of the existing exhaust system of lift trucks, and feasibility of using this system at a variety of on-site locations. The design of the device was described and evaluated. 7 refs., 6 tabs., 8 figs., 3 appendices

  17. Ion beam analyses of particulate matter in exhaust gas of a ship diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Furuyama, Yuichi, E-mail: furuyama@maritime.kobe-u.ac.jp [Graduate School of Maritime Sciences, Kobe University, Fukae-Minami-Machi, Higashinada-Ku, Kobe 658-0022 (Japan); Fujita, Hirotsugu; Taniike, Akira; Kitamura, Akira [Graduate School of Maritime Sciences, Kobe University, Fukae-Minami-Machi, Higashinada-Ku, Kobe 658-0022 (Japan)

    2011-12-15

    There is an urgent need to reduce emission of the particulate matter (PM) in the exhaust gas from ship diesel engines causing various health hazards and serious environmental pollution. Usually the heavy fuel oil (HFO) for ships is of low quality, and contains various kinds of impurities. Therefore, the emission of PM along with exhaust gas from ship diesel engines is one of the most serious environmental issues. However, the PM fundamental properties are not well known. Therefore, it is important to perform elemental analysis of the PM. The HFO contains sulfur with a relatively high concentration of a few percent. It is important to make quantitative measurements of sulfur in the PM, because this element is poisonous for the human body. In the present work, PM samples were collected from exhaust gas of a test engine, and RBS and PIXE analyses were applied successfully to quantitative analysis of the PM samples. The RBS analysis enabled quantitative analysis of sulfur and carbon in the collected PM, while heavier elements such as vanadium and iron were analyzed quantitatively with the PIXE analysis. It has been found that the concentration ratio of sulfur to carbon was between 0.007 and 0.012, and did not strongly depend on the output power of the engine. The S/C ratio is approximately equal to the original composition of the HFO used in the present work, 0.01. From the known conversion ratio 0.015 of sulfur in the HFO to sulfates, the conversion ratio of carbon in the HFO to the PM is found to be 0.01-0.02 by the RBS measurements. On the other hand, the PIXE analysis revealed a vanadium enrichment of one order of magnitude in the PM.

  18. System for measuring engine exhaust constituents

    International Nuclear Information System (INIS)

    Carduner, K.R.; Colvin, A.D.; Leong, D.Y.W.

    1992-01-01

    This patent describes a system for measuring an automotive engine exhaust constituent. It comprises: a meter for determining the mass of air flowing through the engine and for generating an engine airflow signal corresponding to the airflow; sample handling apparatus; diluent adding means; processor means. This patent also describes a method for using an analyzer to determine the amount of lubricating oil consumed by an automotive engine. It comprises: determining the amount of sulfur dioxide within the room air being drawn into the engine; maintaining a constant total flow comprised of a constant fraction of the engine's exhaust gas and a diluent gas through the analyzer, while: determining the amount of sulfur dioxide contained within the engine's exhaust, determining the amount of sulfur dioxide contained within the engine's exhaust, while operating the engine on room air; determining an efficiency factor for the analyzer; and using the efficiency factor and the concentration of sulfur in the engine oil and the amounts of sulfur dioxide determined in steps a and d to determine the amount of lubrication oil leaving the engine through its exhaust

  19. Remote gas analysis of aircraft exhausts using FTIR-emission-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heland, J; Schaefer, K [Fraunhofer Inst. for Atmospheric Environmental Research, Garmisch-Partenkirchen (Germany)

    1998-12-31

    FITR emission spectroscopy as a remote sensing multi-component analyzing technique was investigated to determine the composition of aircraft exhausts at ground level. A multi-layer radiative transfer interpretation software based on a line-by-line computer algorithm using the HITRAN data base was developed. Measurements were carried out with different engine types to determine the traceable gas species and their detection limits. Finally validation measurements were made to compare the results of the system to those of conventional equipment. (author) 8 refs.

  20. Remote gas analysis of aircraft exhausts using FTIR-emission-spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Heland, J.; Schaefer, K. [Fraunhofer Inst. for Atmospheric Environmental Research, Garmisch-Partenkirchen (Germany)

    1997-12-31

    FITR emission spectroscopy as a remote sensing multi-component analyzing technique was investigated to determine the composition of aircraft exhausts at ground level. A multi-layer radiative transfer interpretation software based on a line-by-line computer algorithm using the HITRAN data base was developed. Measurements were carried out with different engine types to determine the traceable gas species and their detection limits. Finally validation measurements were made to compare the results of the system to those of conventional equipment. (author) 8 refs.

  1. Evaluating tractor performance and exhaust gas emissions using biodiesel from cotton seed oil

    International Nuclear Information System (INIS)

    Al-lwayzy, Saddam H; Yusaf, Talal; Jensen, Troy

    2012-01-01

    Alternative fuels for diesel engines, such as biodiesel, have attracted much attention recently due to increasing fuel prices and the imperative to reduce emissions. The exhaust gas emissions from tractors and other agricultural machinery make a significant contribution to these emissions. The use of biodiesel in internal combustion engines (ICE) has been reported to give comparable performance to conventional diesel (CD), but with generally lower emissions. There is however, contradictory evidence of NO emissions being both higher and lower from the use of biodiesel. In this work, agriculture tractor engine performance and its emission using both CD and biodiesel from cotton seed oil (CSO-B20) mixed at a 20% blend ration has been evaluated and compared. The PTO test results showed comparable exhaust emissions between CD and CSO-B20. However, the use of CSO-B20 led to reductions in the thermal efficiency and exhaust temperature and an increase in the brake specific fuel consumption (BSFC), when compared to CD.

  2. Accounting for exhaust gas transport dynamics in instantaneous emission models via smooth transition regression.

    Science.gov (United States)

    Kamarianakis, Yiannis; Gao, H Oliver

    2010-02-15

    Collecting and analyzing high frequency emission measurements has become very usual during the past decade as significantly more information with respect to formation conditions can be collected than from regulated bag measurements. A challenging issue for researchers is the accurate time-alignment between tailpipe measurements and engine operating variables. An alignment procedure should take into account both the reaction time of the analyzers and the dynamics of gas transport in the exhaust and measurement systems. This paper discusses a statistical modeling framework that compensates for variable exhaust transport delay while relating tailpipe measurements with engine operating covariates. Specifically it is shown that some variants of the smooth transition regression model allow for transport delays that vary smoothly as functions of the exhaust flow rate. These functions are characterized by a pair of coefficients that can be estimated via a least-squares procedure. The proposed models can be adapted to encompass inherent nonlinearities that were implicit in previous instantaneous emissions modeling efforts. This article describes the methodology and presents an illustrative application which uses data collected from a diesel bus under real-world driving conditions.

  3. THIN FILM-BASED SENSOR FOR MOTOR VEHICLE EXHAUST GAS, NH3, AND CO DETECTION

    Directory of Open Access Journals (Sweden)

    S. Sujarwata

    2016-10-01

    Full Text Available A copper phthalocyanine (CuPc thin film based gas sensor with FET structure and channel length 100 μm has been prepared by VE method and lithography technique to detect NH3, motor cycle exhaust gases and CO. CuPc material layer was deposited on SiO2 by the vacuum evaporator (VE method at room temperature and pressure of 8 x10-4 Pa. The stages of manufacturing gas sensor were Si/SiO2 substrate blenching with ethanol in an ultrasonic cleaner, source, and drain electrodes deposition on the substrate by using a vacuum evaporator, thin film deposition between the source/drain and gate deposition. The sensor response times to NH3, motorcycle exhaust gases and CO were 75 s, 135 s, and 150, respectively. The recovery times were 90 s, 150 s and 225, respectively. It is concluded that the CuPc thin film-based gas sensor with FET structure is the best sensor to detect the NH3 gas.Sensor gas berbasis film tipis copper phthalocyanine (CuPc berstruktur FET dengan panjang channel 100 μm telah dibuatdengan metode VE dan teknik lithography untuk mendeteksi NH3 gas buang kendaraan bermotor dan CO. Lapisan bahan CuPc dideposisikan pada permukaan silikon dioksida (SiO2 dengan metode vacuum evaporator (VE pada temperatur ruang dengan tekanan 8 x10-4 Pa. Tahapan pembuatan sensor gas adalah pencucian substrat Si/SiO2 dengan etanol dalam ultrasonic cleaner, deposisi elektroda source dan drain di atas substrat dengan metode vacuum evaporator, deposisi film tipis diantara source/drain dan deposisi gate. Waktu tanggap sensor terhadap NH3, gas buang kendaraan bermotor dan CO berturut-turut adalah 75 s, 135 s,dan 150 s. Waktu pemulihan berturut-turut adalah 90 s, 150 s,dan 225 s. Disimpulkan bahwa sensor gas berstruktur FET berbasis film tipis CuPc merupakan sensor paling baik untuk mendeteksi adanya gas NH3.

  4. Quantitative Analysis of Oxygen Gas Exhausted from Anode through In Situ Measurement during Electrolytic Reduction

    Directory of Open Access Journals (Sweden)

    Eun-Young Choi

    2017-01-01

    Full Text Available Quantitative analysis by in situ measurement of oxygen gas evolved from an anode was employed to monitor the progress of electrolytic reduction of simulated oxide fuel in a molten Li2O–LiCl salt. The electrolytic reduction of 0.6 kg of simulated oxide fuel was performed in 5 kg of 1.5 wt.% Li2O–LiCl molten salt at 650°C. Porous cylindrical pellets of simulated oxide fuel were used as the cathode by loading a stainless steel wire mesh cathode basket. A platinum plate was employed as the anode. The oxygen gas evolved from the anode was exhausted to the instrumentation for in situ measurement during electrolytic reduction. The instrumentation consisted of a mass flow controller, pump, wet gas meter, and oxygen gas sensor. The oxygen gas was successfully measured using the instrumentation in real time. The measured volume of the oxygen gas was comparable to the theoretically calculated volume generated by the charge applied to the simulated oxide fuel.

  5. Plasma and neutral gas jet interactions in the exhaust of a magnetic confinement system

    International Nuclear Information System (INIS)

    Krueger, W.A.

    1990-06-01

    A general purpose 2-1/2 dimensional, multifluid, time dependent computer code has been developed. This flexible tool models the dynamic behavior of plasma/neutral gas interactions in the presence of a magnetic field. The simulation has been used to examine the formation of smoke ring structure in the plasma rocket exhaust by injection of an axial jet of neutral gas. Specifically, the code was applied to the special case of attempting to couple the neutral gas momentum to the plasma in such a manner that plasma smoke rings would form, disconnecting the plasma from the magnetic field. For this scenario several cases where run scanning a wide range of neutral gas input parameters. In all the cases it was found that after an initial transient phase, the plasma eroded the neutral gas and after that followed the original magnetic field. From these findings it is concluded that smoke rings do not form with axial injection of neutral gas. Several suggestions for alternative injection schemes are presented

  6. Exhaust gas cleaning system for handling radioactive fission and activation gases

    International Nuclear Information System (INIS)

    Queiser, H.; Schwarz, H.

    1975-01-01

    An exhaust gas cleaning system utilizing the principle of delaying radioactive gases to permit their radioactive decay to a level acceptable for release to the atmosphere, comprising an adsorbent for adsorbing radioactive gas and a container for containing the adsorbent and for constraining gas to flow through the adsorbent, the adsorbent and the container forming simultaneously an adsorptive delay section and a mechanical delay section, by means of a predetermined ratio of volume of voids in the adsorbent to total volume of the container containing the adsorbent, for delaying radioactive gas to permit its radioactive decay to a level acceptable for release to the atmosphere is described. A method of using an adsorbent for cleaning a radioactive gas containing an isotope which is adsorbed by the adsorbent and containing an isotope whose adsorption by the adsorbent is low as compared to the isotope which is adsorbed and which is short-lived as compared to the isotope which is adsorbed, comprising constraining the gas to flow through the adsorbent with the retention time for the isotope which is adsorbed being at least the minimum for permitting radioactive decay to a level acceptable for release to the atmosphere and with the retention time for the isotope of relatively low adsorption and relatively short life being at least the minimum for permitting radioactive decay to a level acceptable for release to the atmosphere is also described. (U.S.)

  7. Making aerospace technology work for the automotive industry - Introduction

    Science.gov (United States)

    Olson, W. T.

    1978-01-01

    In many cases it has been found that advances made in one technical field can contribute to other fields. An investigation is in this connection conducted concerning subjects from contemporary NASA programs and projects which might have relevance and potential usefulness to the automotive industry. Examples regarding aerospace developments which have been utilized by the automotive industry are related to electronic design, computer systems, quality control experience, a NASA combustion scanner and television display, exhaust gas analyzers, and a device for suppressing noise propagated through ducts. Projects undertaken by NASA's center for propulsion and power research are examined with respect to their value for the automotive industry. As a result of some of these projects, a gas turbine engine and a Stirling engine might each become a possible alternative to the conventional spark ignition engine.

  8. Exhaust gas recirculation – Zero dimensional modelling and characterization for transient diesel combustion control

    International Nuclear Information System (INIS)

    Asad, Usman; Tjong, Jimi; Zheng, Ming

    2014-01-01

    Highlights: • Zero-dimensional EGR model for transient diesel combustion control. • Detailed analysis of EGR effects on intake, cylinder charge and exhaust properties. • Intake oxygen validated as an operating condition-independent measure of EGR. • Quantified EGR effectiveness in terms of NOx emission reduction. • Twin lambda sensor technique for estimation of EGR/in-cylinder parameters. - Abstract: The application of exhaust gas recirculation (EGR) during transient engine operation is a challenging task since small fluctuations in EGR may cause larger than acceptable spikes in NOx/soot emissions or deterioration in the combustion efficiency. Moreover, the intake charge dilution at any EGR ratio is a function of engine load and intake pressure, and typically changes during transient events. Therefore, the management of EGR during transient engine operation or advanced combustion cycles (that are inherently less stable) requires a fundamental understanding of the transient EGR behaviour and its impact on the intake charge development. In this work, a zero-dimensional EGR model is described to estimate the transient (cycle-by-cycle) progression of EGR and the time (engine cycles) required for its stabilization. The model response is tuned to a multi-cylinder engine by using an overall engine system time-constant and shown to effectively track the transient EGR changes. The impact of EGR on the actual air–fuel ratio of the cylinder charge is quantified by defining an in-cylinder excess-air ratio that accounts for the oxygen in the recycled exhaust gas. Furthermore, a twin lambda sensor (TLS) technique is implemented for tracking the intake dilution and in-cylinder excess-air ratio in real-time. The modelling and analysis results are validated against a wide range of engine operations, including transient and steady-state low temperature combustion tests

  9. Performance and Exhaust Emissions in a Natural-Gas Fueled Dual-Fuel Engine

    Science.gov (United States)

    Shioji, Masahiro; Ishiyama, Takuji; Ikegami, Makoto; Mitani, Shinichi; Shibata, Hiroaki

    In order to establish the optimum fueling in a natural gas fueled dual fuel engine, experiments were done for some operational parameters on the engine performances and the exhaust emissions. The results show that the pilot fuel quantity should be increased and its injection timing should be advanced to suppress unburned hydrocarbon emission in the middle and low output range, while the quantity should be reduced and the timing retarded to avoid onset of knock at high loads. Unburned hydrocarbon emission and thermal efficiency are improved by avoiding too lean natural gas mixture by restricting intake charge air. However, the improvement is limited because the ignition of pilot fuel deteriorates with excessive throttling. It is concluded that an adequate combination of throttle control and equivalence ratio ensures low hydrocarbon emission and the thermal efficiency comparable to diesel operation.

  10. An optical method for measuring exhaust gas pressure from an internal combustion engine at high speed.

    Science.gov (United States)

    Leach, Felix C P; Davy, Martin H; Siskin, Dmitrij; Pechstedt, Ralf; Richardson, David

    2017-12-01

    Measurement of exhaust gas pressure at high speed in an engine is important for engine efficiency, computational fluid dynamics analysis, and turbocharger matching. Currently used piezoresistive sensors are bulky, require cooling, and have limited lifetimes. A new sensor system uses an interferometric technique to measure pressure by measuring the size of an optical cavity, which varies with pressure due to movement of a diaphragm. This pressure measurement system has been used in gas turbine engines where the temperatures and pressures have no significant transients but has never been applied to an internal combustion engine before, an environment where both temperature and pressure can change rapidly. This sensor has been compared with a piezoresistive sensor representing the current state-of-the-art at three engine operating points corresponding to both light load and full load. The results show that the new sensor can match the measurements from the piezoresistive sensor except when there are fast temperature swings, so the latter part of the pressure during exhaust blowdown is only tracked with an offset. A modified sensor designed to compensate for these temperature effects is also tested. The new sensor has shown significant potential as a compact, durable sensor, which does not require external cooling.

  11. Optical system for CO and NO gas detection in the exhaust manifold of combustion engines

    International Nuclear Information System (INIS)

    Mello, M.; De Vittorio, M.; Passaseo, A.; Lomascolo, M.; De Risi, A.

    2007-01-01

    The experimental characterization of an innovative optical system for detection of carbon monoxide (CO) and nitride oxide (NO) in the exhaust manifold of otto and diesel engines is reported. A photodetector based on gallium nitride (GaN) and an UV light source are integrated in a chamber of analysis and form the detection system. The UV light source, consisting of a spark produced by an arc discharge, induces electronic transitions in the gas molecules flowing between the light source and the GaN photodetector. The transitions modify the fraction of light in the UV spectral region which is detected by the GaN photodetector, as a function of the species concentration. By means of its structural properties, gallium nitride (GaN) allows to operate at high temperature and high speed and to work in situ in the exhaust manifold of combustion engines at temperatures as high as 600 o C, at which the deposited organic residuals on the detector can be oxidized. This assures a clear surface necessary for a real time optical measurement of the species concentration to be used for a closed loop control of the fuel injection process. The system was applied to the detection of CO and NO with concentration between 0% and 2% in a buffer of pure nitrogen gas, showing an increase in the measured photocurrent as a function of the above gases

  12. An optical method for measuring exhaust gas pressure from an internal combustion engine at high speed

    Science.gov (United States)

    Leach, Felix C. P.; Davy, Martin H.; Siskin, Dmitrij; Pechstedt, Ralf; Richardson, David

    2017-12-01

    Measurement of exhaust gas pressure at high speed in an engine is important for engine efficiency, computational fluid dynamics analysis, and turbocharger matching. Currently used piezoresistive sensors are bulky, require cooling, and have limited lifetimes. A new sensor system uses an interferometric technique to measure pressure by measuring the size of an optical cavity, which varies with pressure due to movement of a diaphragm. This pressure measurement system has been used in gas turbine engines where the temperatures and pressures have no significant transients but has never been applied to an internal combustion engine before, an environment where both temperature and pressure can change rapidly. This sensor has been compared with a piezoresistive sensor representing the current state-of-the-art at three engine operating points corresponding to both light load and full load. The results show that the new sensor can match the measurements from the piezoresistive sensor except when there are fast temperature swings, so the latter part of the pressure during exhaust blowdown is only tracked with an offset. A modified sensor designed to compensate for these temperature effects is also tested. The new sensor has shown significant potential as a compact, durable sensor, which does not require external cooling.

  13. Development of filters for exhaust air or off-gas cleaning

    International Nuclear Information System (INIS)

    Wilhelm, J.

    1988-01-01

    The activities of the 'Laboratorium fuer Aerosolphysik und Filtertechnik II' of the 'Kernforschungszentrum Karlsruhe' concentrate on the development of filters to be used for cleaning nuclear and conventional exhaust air and off-gas. Originally, these techniques were intended to be applied in nuclear facilities only. Their application for conventional gas purification, however, has led to a reorientation of research and development projects. By way of example, it is reported about the use of the multi-way sorption filter for radioiodine removal in nuclear power plants and following flue-gas purification in heating power plants as well as for off-gas cleaning in chemical industry. The improvement of HEPA filters and the development of metal fibre filters has led to components which can be used in the range of high humidity and moisture as well as at high temperatures and an increased differential pressure. The experience obtained in the field of high-efficiency filtering of nuclear airborne particles is made use of during the investigations concerning the removal of particles of conventional pollutants in the submicron range. A technique of radioiodine removal and an improved removal of airborne particles has been developed for use in the future reprocessing plant. Thus, a maximum removal efficiency can be achieved and an optimum waste management is made possible. It is reported about the components obtained as a result of these activities and their use for off-gas cleaning in the Wackersdorf reprocessing plant (WAW). (orig.) [de

  14. Study of SI engine fueled with methanol vapor and dissociation gas based on exhaust heat dissociating methanol

    International Nuclear Information System (INIS)

    Fu, Jianqin; Deng, Banglin; Liu, Jingping; Wang, Linjun; Xu, Zhengxin; Yang, Jing; Shu, Gequn

    2014-01-01

    Highlights: • The full load power decreases successively from gasoline engine, methanol vapor engine to dissociated methanol engine. • Both power and thermal efficiency of dissociated methanol engine can be improved by boosting pressure. • The conversion efficiency of recovered exhaust gas energy is largely influenced by the BMEP. • At the same BMEP, dissociated methanol engine has higher thermal efficiency than methanol vapor engine and gasoline engine. - Abstract: To improve the fuel efficiency of internal combustion (IC) engine and also achieve the goal of direct usage of methanol fuel on IC engine, an approach of exhaust heat dissociating methanol was investigated, which is a kind of method for IC engine exhaust heat recovery (EHR). A bottom cycle system is coupled with the IC engine exhaust system, which uses the exhaust heat to evaporate and dissociate methanol in its catalytic cracker. The methanol dissociation gas (including methanol vapor) is used as the fuel for IC engine. This approach was applied to both naturally aspirated (NA) engine and turbocharged engine, and the engine performance parameters were predicted by the software GT-power under various kinds of operating conditions. The improvement to IC engine performance and the conversion efficiency of recovered exhaust gas energy can be evaluated by comparing the performances of IC engine fueled with various kinds of fuels (or their compositions). Results show that, from gasoline engine, methanol vapor engine to dissociated methanol engine, the full load power decreases successively in the entire speed area due to the declining of volumetric efficiency, while it is contrary in the thermal efficiency at the same brake mean effective pressure (BMEP) level because of the improving of fuel heating value. With the increase of BMEP, the conversion efficiency of recovered exhaust gas energy is promoted. All those results indicate that the approach of exhaust heat dissociating methanol has large

  15. A GM (1, 1 Markov Chain-Based Aeroengine Performance Degradation Forecast Approach Using Exhaust Gas Temperature

    Directory of Open Access Journals (Sweden)

    Ning-bo Zhao

    2014-01-01

    Full Text Available Performance degradation forecast technology for quantitatively assessing degradation states of aeroengine using exhaust gas temperature is an important technology in the aeroengine health management. In this paper, a GM (1, 1 Markov chain-based approach is introduced to forecast exhaust gas temperature by taking the advantages of GM (1, 1 model in time series and the advantages of Markov chain model in dealing with highly nonlinear and stochastic data caused by uncertain factors. In this approach, firstly, the GM (1, 1 model is used to forecast the trend by using limited data samples. Then, Markov chain model is integrated into GM (1, 1 model in order to enhance the forecast performance, which can solve the influence of random fluctuation data on forecasting accuracy and achieving an accurate estimate of the nonlinear forecast. As an example, the historical monitoring data of exhaust gas temperature from CFM56 aeroengine of China Southern is used to verify the forecast performance of the GM (1, 1 Markov chain model. The results show that the GM (1, 1 Markov chain model is able to forecast exhaust gas temperature accurately, which can effectively reflect the random fluctuation characteristics of exhaust gas temperature changes over time.

  16. Effect of hydroxy (HHO) gas addition on performance and exhaust emissions in compression ignition engines

    Energy Technology Data Exchange (ETDEWEB)

    Yilmaz, Ali Can; Uludamar, Erinc; Aydin, Kadir [Department of Mechanical Engineering, Cukurova University, 01330 Adana (Turkey)

    2010-10-15

    In this study, hydroxy gas (HHO) was produced by the electrolysis process of different electrolytes (KOH{sub (aq)}, NaOH{sub (aq)}, NaCl{sub (aq)}) with various electrode designs in a leak proof plexiglass reactor (hydrogen generator). Hydroxy gas was used as a supplementary fuel in a four cylinder, four stroke, compression ignition (CI) engine without any modification and without need for storage tanks. Its effects on exhaust emissions and engine performance characteristics were investigated. Experiments showed that constant HHO flow rate at low engine speeds (under the critical speed of 1750 rpm for this experimental study), turned advantages of HHO system into disadvantages for engine torque, carbon monoxide (CO), hydrocarbon (HC) emissions and specific fuel consumption (SFC). Investigations demonstrated that HHO flow rate had to be diminished in relation to engine speed below 1750 rpm due to the long opening time of intake manifolds at low speeds. This caused excessive volume occupation of hydroxy in cylinders which prevented correct air to be taken into the combustion chambers and consequently, decreased volumetric efficiency was inevitable. Decreased volumetric efficiency influenced combustion efficiency which had negative effects on engine torque and exhaust emissions. Therefore, a hydroxy electronic control unit (HECU) was designed and manufactured to decrease HHO flow rate by decreasing voltage and current automatically by programming the data logger to compensate disadvantages of HHO gas on SFC, engine torque and exhaust emissions under engine speed of 1750 rpm. The flow rate of HHO gas was measured by using various amounts of KOH, NaOH, NaCl (catalysts). These catalysts were added into the water to diminish hydrogen and oxygen bonds and NaOH was specified as the most appropriate catalyst. It was observed that if the molality of NaOH in solution exceeded 1% by mass, electrical current supplied from the battery increased dramatically due to the too much

  17. Exhaust circulation into dry gas desulfurization process to prevent carbon deposition in an Oxy-fuel IGCC power generation

    International Nuclear Information System (INIS)

    Kobayashi, Makoto; Nakao, Yoshinobu; Oki, Yuso

    2014-01-01

    Highlights: • Power plant with semi-closed gas turbine and O 2 –CO 2 coal gasifier was studied. • We adopt dry gas sulfur removal process to establish the system. • The exhaust gas circulation remarkably prevented carbon deposition. • Efficiency loss for exhaust gas circulation is quite small. • Appropriate operating condition of sulfur removal process is revealed. - Abstract: Semi-closed cycle operation of gas turbine fueled by oxygen–CO 2 blown coal gasification provides efficient power generation with CO 2 separation feature by excluding pre-combustion type CO 2 capture that usually brings large efficiency loss. The plant efficiency at transmission end is estimated as 44% at lower heating value (LHV) providing compressed CO 2 with concentration of 93 vol%. This power generation system will solve the contradiction between economical resource utilization and reduction of CO 2 emission from coal-fired power plant. The system requires appropriate sulfur reduction process to protect gas turbine from corrosion and environment from sulfur emission. We adopt dry gas sulfur removal process to establish the system where apprehension about the detrimental carbon deposition from coal gas. The effect of circulation of a portion of exhaust gas to the process on the retardation of carbon deposition was examined at various gas compositions. The circulation remarkably prevented carbon deposition in the sulfur removal sorbent. The impact of the circulation on the thermal efficiency is smaller than the other auxiliary power consumption. Thus, the circulation is appropriate operation for the power generation

  18. Modeling and optimization of integrated exhaust gas recirculation and multi-stage waste heat recovery in marine engines

    DEFF Research Database (Denmark)

    Kyriakidis, Fotis; Sørensen, Kim; Singh, Shobhana

    2017-01-01

    Waste heat recovery combined with exhaust gas recirculation is a promising technology that can address both the issue of NOx (nitrogen oxides) reduction and fuel savings by including a pressurized boiler. In the present study, a theoretical optimization of the performance of two different...... configurations of steam Rankine cycles, with integrated exhaust gas recirculation for a marine diesel engine, is presented. The first configuration employs two pressure levels and the second is configured with three-pressure levels. The models are developed in MATLAB based on the typical data of a large two......-stroke marine diesel engine. A turbocharger model together with a blower, a pre-scrubber and a cooler for the exhaust gas recirculation line, are included. The steam turbine, depending on the configuration, is modeled as either a dual or triple pressure level turbine. The condensation and pre-heating process...

  19. Exhaust gas emissions and mutagenic effects of modern diesel fuels, GTL, biodiesel and biodiesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Munack, Axel; Ruschel, Yvonne; Schroeder, Olaf [Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig (Germany)], E-mail: axel.munack@vti.bund.de; Krahl, Juergen [Coburg Univ. of Applied Sciences (Germany); Buenger, Juergen [University of Bochum (Germany)

    2008-07-01

    Biodiesel can be used alone (B100) or blended with petroleum diesel in any proportion. The most popular biodiesel blend in the U.S.A. is B20 (20% biodiesel, 80% diesel fuel), which can be used for Energy Policy Act of 1992 (EPAct) compliance. In the European Union, the use of biofuel blends is recommended and was introduced by federal regulations in several countries. In Germany, biodiesel is currently blended as B5 (5% biodiesel) to common diesel fuel. In 2008, B7 plus three percent hydrotreated vegetable oil (HVO) as well is intended to become mandatory in Germany. To investigate the influence of blends on the emissions and possible health effects, we performed a series of studies with several engines (Euro 0, III and IV) measuring regulated and non-regulated exhaust compounds and determining their mutagenic effects. Emissions of blends showed an approximate linear dependence on the blend composition, in particular when regulated emissions are considered. However, a negative effect of blends was observed with respect to mutagenicity of the exhaust gas emissions. In detail, a maximum of the mutagenic potency was found in the range of B20. From this point of view, B20 must be considered as a critical blend, in case diesel fuel and biodiesel are used as binary mixtures. (author)

  20. Process and apparatus for separating and recovering krypton-85 from exhaust gas of nuclear reactor or the like

    International Nuclear Information System (INIS)

    Yusa, H.; Kamiya, K.; Murata, T.; Yamaki, H.; Hisatomi, S.

    1975-01-01

    An apparatus is described for separating and recovering radioactive krypton-85 contained in an exhaust gas of a nuclear reactor or the like, which comprises a plurality of adsorption beds connected in parallel with respect to a passageway for the exhaust gas, each being packed with activated carbon, wherein adsorption and desorption of krypton-85 in each of the beds are alternatively and repeatedly performed by operating valves disposed between each of the beds and means for reducing pressure in the beds to be desorbed in accordance with a predetermined time schedule. The adsorption and concentration efficiencies are markedly increased by combining the above adsorption apparatus and a distillation apparatus

  1. Application of Irradiation. Application to polymer processing, exhaust gas treatment, sterilization of medical instruments and food

    Energy Technology Data Exchange (ETDEWEB)

    Sawai, Takeshi; Sawai, Teruko

    2000-03-01

    Many fields such as industry, agriculture, medical treatment and environment use radiation. This report explained some examples of irradiation applications. Radiation source is {sup 60}Co {gamma}-ray. Polymer industry use radiation for radiation curing (thermally stable polymer), tire, expanded polymer, radiation induced graft copolymerization and electron beam curing. On environmental conservation, radiation is used for elimination of NOx and SOx in exhaust combustion gas. In the medical treatment, radiation is applied to sterilization of medical instruments, that occupied about 50% volume, and blood for transfusion, which is only one method to prevent GVHD after transfusion. On agriculture, irradiation to spice, dry vegetable, frozen kitchen, potato and garlic are carried out in 30 countries. However, potato is only a kind food in Japan. Radiation breeding and pest control are put in practice. (S.Y.)

  2. Diesel engine exhaust gas recirculation--a review on advanced and novel concepts

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Ming E-mail: mzheng@uwindsor.ca; Reader, Graham T.; Hawley, J. Gary

    2004-04-01

    Exhaust gas recirculation (EGR) is effective to reduce nitrogen oxides (NO{sub x}) from Diesel engines because it lowers the flame temperature and the oxygen concentration of the working fluid in the combustion chamber. However, as NO{sub x} reduces, particulate matter (PM) increases, resulting from the lowered oxygen concentration. When EGR further increases, the engine operation reaches zones with higher instabilities, increased carbonaceous emissions and even power losses. In this research, the paths and limits to reduce NO{sub x} emissions from Diesel engines are briefly reviewed, and the inevitable uses of EGR are highlighted. The impact of EGR on Diesel operations is analyzed and a variety of ways to implement EGR are outlined. Thereafter, new concepts regarding EGR stream treatment and EGR hydrogen reforming are proposed.

  3. Research on the Flow Field and Structure Optimization in Cyclone Separator with Downward Exhaust Gas

    Directory of Open Access Journals (Sweden)

    Wang Weiwei

    2017-01-01

    Full Text Available A numerical software analysis of the turbulent and strongly swirling flow field of a cyclone separator with downward exhaust gas and its performances is described. The ANSYS 14.0 simulations based on DPM model are also used in the investigation. A new set of geometrical design has been optimized to achieve minimum pressure drop and maximum separation efficiency. A comparison of numerical simulation of the new design confirm the superior performance of the new design compared to the conventional design. The influence of the structure parameters such as the length of the guide pipe, the shape of the guide, the inlet shape on the separation performance was analyzed in this research. This research result has certain reference value for cyclone separator design and performance optimization.

  4. Modeling and Experimental Validation of a Volumetric Expander Suitable for Waste Heat Recovery from an Automotive Internal Combustion Engine Using an Organic Rankine Cycle with Ethanol

    OpenAIRE

    Galindo, José; Dolz Ruiz, Vicente; Royo-Pascual, Lucía; Haller, R.; Melis, J.

    2016-01-01

    Waste heat recovery (WHR) in exhaust gas flow of automotive engines has proved to be a useful path to increase the overall efficiency of internal combustion engines (ICE). Recovery potentials of up to 7% are shown in several works in the literature. However, most of them are theoretical estimations. Some present results from prototypes fed by steady flows generated in an auxiliary gas tank and not with actual engine exhaust gases. This paper deals with the modeling and experimenta...

  5. Evaluation of SI engine exhaust gas emissions upstream and downstream of the catalytic converter

    International Nuclear Information System (INIS)

    Silva, C.M.; Costa, M.; Farias, T.L.; Santos, H.

    2006-01-01

    The conversion efficiency of a catalytic converter, mounted on a vehicle equipped with a 2.8 l spark ignition engine, was evaluated under steady state operating conditions. The inlet and outlet chemical species concentration, temperature and air fuel ratio (A/F) were measured as a function of the brake mean effective pressure (BMEP) and engine speed (rpm). Oil temperature, coolant temperature, brake power and spark advance were also monitored. In parallel, a mathematical model for the catalytic converter has been developed. The main inputs of the model are the temperature, flow rate, chemical species mass flow and local A/F ratio as measured at the catalyst inlet section. The main conclusions are: (i) the exhaust gas and substrate wall temperatures at the catalyst outlet increase with BMEP and rpm; (ii) the HC conversion efficiency increases with the value of BMEP up to a maximum beyond which it decreases; (iii) the CO conversion efficiencies typically increase with BMEP; (iv) the NO x conversion efficiency remains nearly constant regardless of BMEP and rpm; (v) except for idle, the NO x conversion efficiency is typically the highest, followed in turn by the CO and HC conversion efficiencies; (vi) conversion efficiencies are lower for idle conditions, which can be a problem under traffic conditions where idle is a common situation; (vii) regardless of rpm and load, for the same flow rate the conversion efficiency is about the same; (viii) the model predictions slightly over estimate the exhaust gas temperature data at the catalyst outlet section with the observed differences decreasing with BMEP and engine speed; (ix) in general, the model predictions of the conversion efficiencies are satisfactory

  6. Effects of exhaust gas recirculation on the thermal efficiency and combustion characteristics for premixed combustion system

    International Nuclear Information System (INIS)

    Yu, Byeonghun; Kum, Sung-Min; Lee, Chang-Eon; Lee, Seungro

    2013-01-01

    In this research, a boiler in a premixed combustion system used to achieve exhaust gas recirculation was investigated as a way to achieve high thermal efficiencies and low pollutant emissions. The effects of various exhaust gas recirculation (EGR) ratios, equivalence ratios and boiler capacities on thermal efficiency, NO x and CO emissions and the flame behavior on the burner surface were examined both experimentally and numerically. The results of the experiments showed that when EGR was used, the NO x and CO concentrations decreased and the thermal efficiency increased. In the case of a 15% EGR ratio at an equivalence ratio of 0.90, NO x concentrations were found to be smaller than for the current operating condition of the boiler, and the thermal efficiency was approximately 4.7% higher. However, unlike NO x concentrations, although the EGR ratio was increased to 20% at an equivalence ratio of 0.90, the CO concentration was higher than in the current operating condition of the boiler. From the viewpoint of burner safety, the red glow on the burner surface was noticeably reduced when EGR was used. These results confirmed that the EGR method is advantageous from the standpoint of reducing emission concentrations and ensuring burner safety. -- Highlights: ► The premixed boiler system applied EGR was investigated to achieve high thermal efficiencies and low pollutant emissions. ► Thermal efficiency and emission characteristics were examined with EGR ratios, equivalence ratios and boiler capacities. ► EGR method is advantageous from the standpoint of reducing emission concentrations and ensuring burner safety.

  7. Study on the combustion characteristics of a premixed combustion system with exhaust gas recirculation

    International Nuclear Information System (INIS)

    Yu, Byeonghun; Kum, Sung-Min; Lee, Chang-Eon; Lee, Seungro

    2013-01-01

    The boiler of a premixed combustion system with EGR (exhaust gas recirculation) is investigated to explore the potential for increasing thermal efficiency and lowering pollutant emissions. To achieve this purpose, a thermodynamic analysis is performed to predict the effect of EGR on the thermodynamic efficiency for various equivalence ratios. Experiments of a preheated air condensing boiler with EGR were conducted to measure the changes in the thermal efficiency and the characteristics of the pollutant emission. Finally, a 1-D premixed code was calculated to understand the effect of the EGR method on the NO reduction mechanism. The results of the thermodynamic analysis show that the thermodynamic efficiency is not changed because the temperature and the amount of the exhaust gas are unchanged, even though the EGR method is implemented in the system. However, when the EGR method is used with an equivalence ratio near 1.00, it is experimentally verified that the thermal efficiency increases and the NO x concentration decreases. Based on the results from numerical calculations, it is shown that the NO production rates of N + O 2 ↔ NO + O and N + OH ↔ NO + H are remarkably changed due to the decrease in the flame temperature and the NO mole fraction is decreased. - Highlights: • Premixed combustion system with EGR is studied for a high efficiency and low NO x . • All research is performed with various EGR and equivalence ratios. • It verified that efficiency increases and the NO x emission decreases with EGR method. • NO production rates are remarkably changed by N + O 2 ↔ NO + O and N + OH ↔ NO + H with EGR

  8. Cost Benefit Analysis of Using Clean Energy Supplies to Reduce Greenhouse Gas Emissions of Global Automotive Manufacturing

    Directory of Open Access Journals (Sweden)

    Xiang Zhao

    2011-09-01

    Full Text Available Automotive manufacturing is energy-intensive. The consumed energy contributes to the generation of significant amounts of greenhouse gas (GHG emissions by the automotive manufacturing industry. In this paper, a study is conducted on assessing the application potential of such clean energy power systems as solar PV, wind and fuel cells in reducing the GHG emissions of the global auto manufacturing industry. The study is conducted on the representative solar PV, wind and fuel cell clean energy systems available on the commercial market in six representative locations of GM’s global facilities, including the United States, Mexico, Brazil, China, Egypt and Germany. The results demonstrate that wind power is superior to other two clean energy technologies in the economic performance of the GHG mitigation effect. Among these six selected countries, the highest GHG emission mitigation potential is in China, through wind power supply. The maximum GHG reduction could be up to 60 tons per $1,000 economic investment on wind energy supply in China. The application of wind power systems in the United States and Germany could also obtain relatively high GHG reductions of between 40–50 tons per $1,000 economic input. When compared with wind energy, the use of solar and fuel cell power systems have much less potential for GHG mitigation in the six countries selected. The range of median GHG mitigation values resulting from solar and wind power supply are almost at the same level.

  9. Automotive NVH technology

    CERN Document Server

    Nijman, Eugenius; Priebsch, Hans-Herwig

    2016-01-01

    This book presents seven chapters examining selected noise, vibration and harshness (NVH) topics that are highly relevant for automotive vehicle development. These include applications following the major trends toward increased passenger comfort, vehicle electrification and lightweight design. The authors of the seven chapters, all of which are experts from the automotive industry and academia, present the foremost challenges and potential solutions in this demanding field. Among others, applications for sound optimization in downsized engines, noise optimization in electric powertrains, weight reduction options for exhaust systems, porous materials description, and the vibro-acoustic analysis of geared systems are discussed.

  10. CO{sub 2} separation from exhaust gas; CO{sub 2} separasjon fra eksosgass

    Energy Technology Data Exchange (ETDEWEB)

    Magelssen, Paul Fr. [Saga Petroleum A/S, Forus (Norway)

    1998-07-01

    When Saga wanted to reduce the CO{sub 2} emissions from Snorre B, cleaning of CO{sub 2} from exhaust gas was one of several options considered. CO{sub 2} cleaning using membrane/amine technology is under development. Saga required that the technology should be qualified and that the yield of the Snorre B project should not be reduced. This presentation discusses qualification of combined membrane/amine technology, environmental issues, economic issues and implementation on the Snorre B platform. Flue gas from the gas turbine is passed to a CO{sub 2} absorption and desorption stage from which the CO{sub 2} is passed on for compression and disposal while the cleaned flue is let out. The membrane is situated between the flue gas and the absorbent liquid. The pores are large enough for the CO{sub 2} to pass through quickly and small enough to prevent the liquid from penetrating into the pores. The packing factor is high, 500 - 1000 m2/m3, there is no formation of froth, ducts or entrainment of the liquid. New technology implies 65 - 70% size reduction of the main equipment and 39 - 40% reduction of the energy consumption. Research on amines brings out new chemicals which imply 80% reduction in the consumption of chemicals and the quantity of special waste produced. If a CO{sub 2} cleaning plant is installed on a LM 2500, the CO{sub 2} emissions can be reduced by 97,200 ton/year given the right operational conditions. Although it was decided in 1998 not to install the module with the CO{sub 2} pilot cleaning plant, Snorre B is still a good environmental project having CO{sub 2} emission within the values set by Miljoesok.

  11. Utilization of Common Automotive Three-Way NO{sub x} Reduction Catalyst for Managing Off- Gas from Thermal Treatment of High-Nitrate Waste - 13094

    Energy Technology Data Exchange (ETDEWEB)

    Foster, Adam L.; Ki Song, P.E. [Studsvik, Inc. 5605 Glenridge Drive Suite 705, Atlanta, GA 30342 (United States)

    2013-07-01

    Studsvik's Thermal Organic Reduction (THOR) steam reforming process has been tested and proven to effectively treat radioactive and hazardous wastes streams with high nitrate contents to produce dry, stable mineral products, while providing high conversion (>98%) of nitrates and nitrites directly to nitrogen gas. However, increased NO{sub x} reduction may be desired for some waste streams under certain regulatory frameworks. In order to enhance the NO{sub x} reduction performance of the THOR process, a common Three-Way catalytic NO{sub x} reduction unit was installed in the process gas piping of a recently completed Engineering Scale Technology Demonstration (ESTD). The catalytic DeNO{sub x} unit was located downstream of the main THOR process vessel, and it was designed to catalyze the reduction of residual NO{sub x} to nitrogen gas via the oxidation of the hydrogen, carbon monoxide, and volatile organic compounds that are inherent to the THOR process gas. There was no need for auxiliary injection of a reducing gas, such as ammonia. The unit consisted of four monolith type catalyst sections positioned in series with a gas mixing section located between each catalyst section. The process gas was monitored for NO{sub x} concentration upstream and downstream of the catalytic DeNO{sub x} unit. Conversion efficiencies ranged from 91% to 97% across the catalytic unit, depending on the composition of the inlet gas. Higher concentrations of hydrogen and carbon monoxide in the THOR process gas increased the NO{sub x} reduction capability of the catalytic DeNO{sub x} unit. The NO{sub x} destruction performance of THOR process in combination with the Three-Way catalytic unit resulted in overall system NO{sub x} reduction efficiencies of greater than 99.9% with an average NO{sub x} reduction efficiency of 99.94% for the entire demonstration program. This allowed the NO{sub x} concentration in the ESTD exhaust gas to be maintained at less than 40 parts per million (ppm

  12. Algal biodiesel production from power plant exhaust and its potential to replace petrodiesel and reduce greenhouse gas emissions

    OpenAIRE

    K. Hundt; B.V. Reddy

    2011-01-01

    The production of biofuels and other products from algae is a technology that is rapidly developing. This paper presents an overview of algae, its benefits over other biofuel sources and the technology involved in producing algal biofuel. The case study in this report looks at the potential of algal biodiesel, produced using power plant exhaust, to replace our current petrodiesel supply and consequently reduce greenhouse gas emissions. The results suggest that using 60% of all coal and gas po...

  13. Effects of exhaust gas recirculation in diesel engines featuring late PCCI type combustion strategies

    International Nuclear Information System (INIS)

    D’Ambrosio, S.; Ferrari, A.

    2015-01-01

    Highlights: • The effects that a high EGR rate can have on PCCI type combustion strategies have been analyzed. • The dependence of engine emissions and combustion noise on EGR has been addressed. • The time histories of the main in-cylinder variables have been plotted for different EGR rates. - Abstract: The influence of exhaust gas recirculation (EGR) has been analyzed considering experimental results obtained from a Euro 5 diesel engine calibrated with an optimized pilot-main double injection strategy. The engine features a late premixed charge compression ignition (PCCI) type combustion mode. Different steady-state key-points that are representative of the engine application in a passenger car over the New European Driving Cycle (NEDC) have been studied. The engine was fully instrumented to obtain a complete overview of the most important variables. The pressure time history in the combustion chamber has been measured to perform calculations with single and three-zone combustion diagnostic models. These models allow the in-cylinder emissions and the temperature of the burned and unburned zones to be evaluated as functions of the crankshaft angle. The EGR mass fraction was experimentally varied within the 0–50% range. The results of the investigation have shown the influence that high EGR rates can have on intake and exhaust temperatures, in-cylinder pressure and heat release rate time histories, engine-out emissions (CO, HC, NO_x, soot), brake specific fuel consumption and combustion noise for a PCCI type combustion strategy. The outputs of the diagnostic models have been used to conduct a detailed analysis of the cause-and-effect relationships between the EGR rate variations and the engine performance. Finally, the effect of the EGR on the cycle-to-cycle variability of the engine torque has been experimentally investigated.

  14. Application of the water gas shift reaction to fusion fuel exhaust streams

    International Nuclear Information System (INIS)

    McKay, A.M.; Cheh, C.H.; Glass, R.W.

    1983-10-01

    In a Fusion Fuel Clean Up (FCU) system, impurities will be removed from the fusion reactor exhaust and neutral beam line streams. Tritium in this impurity stream will be recovered and recycled to the fuel stream. In one flowsheet configuration of the Tritium Systems Test Assembly (TSTA), tritium is recovered from a simulated impurity stream via uranium hot metal beds and recycled to an isotope separation system. This study has shown, however, that the catalyzed water gas shift reaction, by which (H,D,T) 2 O and CO are converted to (H,D,T) 2 and CO 2 is a better method of (H,D,T) 2 O reduction than the hot metal beds. Catalytic reactors were designed, built and tested to provide data for the design of a prototype reactor to replace the hot metal beds in the FCU system. The prototype reactor contains only 10 g of catalyst and is expected to last at least 5 years. The reactor is small (1.3 cm OD x 13 cm long), operates at low temperatures (approximately 490 K) and will convert water to hydrogen, at a CO/H 2 O ratio of 1.5, with an efficiency of greater than 98 percent. Results show that the catalytic reactor is very stable even during upset conditions. Wide ranges of flow and a CO/H 2 O ratio variance from 1.3 upward have little effect on the conversion efficiency. Short term high temperature excursions do not affect the catalyst and lower temperatures will simply decrease the reaction rate resulting in lower conversions. The reactor appears to be unaffected by NO 2 , CO 2 , O 2 and N 2 in the feed stream at concentration levels expected in a fusion reactor exhaust stream

  15. Automotive Thermoelectric Waste Heat Recovery

    Science.gov (United States)

    Meisner, Gregory P.

    2015-03-01

    Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M

  16. Vehicle exhaust gas clearance by low temperature plasma-driven nano-titanium dioxide film prepared by radiofrequency magnetron sputtering.

    Directory of Open Access Journals (Sweden)

    Shuang Yu

    Full Text Available A novel plasma-driven catalysis (PDC reactor with special structure was proposed to remove vehicle exhaust gas. The PDC reactor which consisted of three quartz tubes and two copper electrodes was a coaxial dielectric barrier discharge (DBD reactor. The inner and outer electrodes firmly surrounded the outer surface of the corresponding dielectric barrier layer in a spiral way, respectively. Nano-titanium dioxide (TiO2 film prepared by radiofrequency (RF magnetron sputtering was coated on the outer wall of the middle quartz tube, separating the catalyst from the high voltage electrode. The spiral electrodes were designed to avoid overheating of microdischarges inside the PDC reactor. Continuous operation tests indicated that stable performance without deterioration of catalytic activity could last for more than 25 h. To verify the effectiveness of the PDC reactor, a non-thermal plasma(NTP reactor was employed, which has the same structure as the PDC reactor but without the catalyst. The real vehicle exhaust gas was introduced into the PDC reactor and NTP reactor, respectively. After the treatment, compared with the result from NTP, the concentration of HC in the vehicle exhaust gas treated by PDC reactor reduced far more obviously while that of NO decreased only a little. Moreover, this result was explained through optical emission spectrum. The O emission lines can be observed between 870 nm and 960 nm for wavelength in PDC reactor. Together with previous studies, it could be hypothesized that O derived from catalytically O3 destruction by catalyst might make a significant contribution to the much higher HC removal efficiency by PDC reactor. A series of complex chemical reactions caused by the multi-components mixture in real vehicle exhaust reduced NO removal efficiency. A controllable system with a real-time feedback module for the PDC reactor was proposed to further improve the ability of removing real vehicle exhaust gas.

  17. High resolution temperature mapping of gas turbine combustor simulator exhaust with femtosecond laser induced fiber Bragg gratings

    Science.gov (United States)

    Walker, Robert B.; Yun, Sangsig; Ding, Huimin; Charbonneau, Michel; Coulas, David; Lu, Ping; Mihailov, Stephen J.; Ramachandran, Nanthan

    2017-04-01

    Femtosecond infrared (fs-IR) laser written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent in advanced gas turbine engines under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper discusses fabrication and deployment of several fs-IR written FBG arrays, for monitoring exhaust temperature gradients of a gas turbine combustor simulator. Results include: contour plots of measured temperature gradients, contrast with thermocouple data.

  18. Extending Lean and Exhaust Gas Recirculation-Dilute Operating Limits of a Modern Gasoline Direct-Injection Engine Using a Low-Energy Transient Plasma Ignition System

    Energy Technology Data Exchange (ETDEWEB)

    Sevik, James; Wallner, Thomas; Pamminger, Michael; Scarcelli, Riccardo; Singleton, Dan; Sanders, Jason

    2016-05-24

    The efficiency improvement and emissions reduction potential of lean and exhaust gas recirculation (EGR)-dilute operation of spark-ignition gasoline engines is well understood and documented. However, dilute operation is generally limited by deteriorating combustion stability with increasing inert gas levels. The combustion stability decreases due to reduced mixture flame speeds resulting in significantly increased combustion initiation periods and burn durations. A study was designed and executed to evaluate the potential to extend lean and EGR-dilute limits using a low-energy transient plasma ignition system. The low-energy transient plasma was generated by nanosecond pulses and its performance compared to a conventional transistorized coil ignition (TCI) system operated on an automotive, gasoline direct-injection (GDI) single-cylinder research engine. The experimental assessment was focused on steady-state experiments at the part load condition of 1500 rpm 5.6 bar indicated mean effective pressure (IMEP), where dilution tolerance is particularly critical to improving efficiency and emission performance. Experimental results suggest that the energy delivery process of the low-energy transient plasma ignition system significantly improves part load dilution tolerance by reducing the early flame development period. Statistical analysis of relevant combustion metrics was performed in order to further investigate the effects of the advanced ignition system on combustion stability. Results confirm that at select operating conditions EGR tolerance and lean limit could be improved by as much as 20% (from 22.7 to 27.1% EGR) and nearly 10% (from λ = 1.55 to 1.7) with the low-energy transient plasma ignition system.

  19. Analysis of benefits of using internal exhaust gas recirculation in biogas-fueled HCCI engines

    International Nuclear Information System (INIS)

    Kozarac, Darko; Vuilleumier, David; Saxena, Samveg; Dibble, Robert W.

    2014-01-01

    Highlights: • The influence of EGR on combustion of biogas fueled HCCI was investigated. • The aim was to reduce intake temperature requirement by internal EGR. • Combustion products caused the delay of combustion in similar conditions. • Internal EGR enabled by negative valve overlap increased cylinder temperature. • This increase was not enough to significantly reduce the intake temperature. - Abstract: This paper describes a numerical study that analyzed the influence of combustion products (CP) concentration on the combustion characteristics (combustion timing and combustion duration) of a biogas fueled homogeneous charge compression ignition (HCCI) engine and the possibility of reducing the high intake temperature requirement necessary for igniting biogas in a HCCI engine by using internal exhaust gas recirculation (EGR) enabled by negative valve overlap (NVO). An engine model created in AVL Boost, and validated against experimental engine data, was used in this study. The results show, somewhat counter-intuitively, that when CP concentrations are increased the required intake temperature for maintaining the same combustion timing must be increased. When greater NVO is used to increase the in-cylinder CP concentration, the in-cylinder temperature does increase, but the chemical dilution influence of CP almost entirely counteracts this thermal effect. Additionally, it has been observed that with larger fractions of CP some instability of combustion in the calculation was obtained which indicates that the increase of internal EGR might produce some combustion instability

  20. Reducing the CO2 emissions from fossil fuel power plans by exhaust gas treatment

    International Nuclear Information System (INIS)

    David, Elena

    2007-01-01

    The emission of carbon dioxide (CO 2 ) and other pollutants which result from burning fossil fuels has been identified as the major contributor to global warming and climate change. However, for the short term, at least for the next 10-20 years, the world will continue to rely on fossil fuels as the source of primary energy. The challenge for the fossil the fuel industry is to find cost-effective solutions that will reduce the release of CO 2 and other pollutants into the atmosphere. The focus of this paper is on the ability to treat the exhaust gas from fossil fuel power plants in order to capture and store the CO 2 and remove the other pollutants such as SO x and NO x which are released into the atmosphere. In summary, capture/separation costs represent the largest financial impediment for this type of plants. Hence, efficient, cost-effective capture/separation technologies need to be developed to allow their large-scale use. (author)

  1. Adsorption of elemental mercury vapors from synthetic exhaust combustion gas onto HGR carbon.

    Science.gov (United States)

    Musmarra, D; Karatza, D; Lancia, A; Prisciandaro, M; Mazziotti di Celso, G

    2016-07-01

    An activated carbon commercially available named HGR, produced by Calgon-Carbon Group, was used to adsorbe metallic mercury. The work is part of a wider research activity by the same group focused on the removal of metallic and divalent mercury from combustion flue gas. With respect to previously published papers, this one is aimed at studying in depth thermodynamic equilibria of metallic mercury adsorption onto a commercial activated carbon. The innovativeness lies in the wider operative conditions explored (temperature and mercury concentrations) and in the evaluation of kinetic and thermodynamic data for a commercially available adsorbing material. In detail, experimental runs were carried out on a laboratory-scale plant, in which Hg° vapors were supplied in a nitrogen gas stream at different temperature and mercury concentration. The gas phase was flowed through a fixed bed of adsorbent material. Adsorbate loading curves for different Hg° concentrations together with adsorption isotherms were achieved as a function of temperature (120, 150, 200°C) and Hg° concentrations (1.0-7.0 mg/m(3)). Experimental runs demonstrated satisfying results of the adsorption process, while Langmuir parameters were evaluated with gas-solid equilibrium data. Especially, they confirmed that adsorption capacity is a favored process in case of lower temperature and they showed that the adsorption heat was -20 kJ/mol. Furthermore, a numerical integration of differential equations that model the adsorption process was proposed. Scanning electron microscopy (SEM) investigation was an useful tool to investigate about fresh and saturated carbon areas. The comparison between them allowed identification of surface sites where mercury is adsorbed; these spots correspond to carbon areas where sulfur concentration is greater. Mercury compounds can cause severe harm to human health and to the ecosystem. There are a lot of sources that emit mercury species to the atmosphere; the main ones are

  2. The Effect of Fuel Dose Division on The Emission of Toxic Components in The Car Diesel Engine Exhaust Gas

    Directory of Open Access Journals (Sweden)

    Pietras Dariusz

    2016-09-01

    Full Text Available The article discusses the effect of fuel dose division in the Diesel engine on smoke opacity and composition of the emitted exhaust gas. The research activities reported in the article include experimental examination of a small Diesel engine with Common Rail type supply system. The tests were performed on the engine test bed equipped with an automatic data acquisition system which recorded all basic operating and control parameters of the engine, and smoke opacity and composition of the exhaust gas. The parameters measured during the engine tests also included the indicated pressure and the acoustic pressure. The tests were performed following the pre-established procedure in which 9 engine operation points were defined for three rotational speeds: 1500, 2500 and 3500 rpm, and three load levels: 25, 40 and 75 Nm. At each point, the measurements were performed for 7 different forms of fuel dose injection, which were: the undivided dose, the dose divided into two or three parts, and three different injection advance angles for the undivided dose and that divided into two parts. The discussion of the obtained results includes graphical presentation of contests of hydrocarbons, carbon oxide, and nitrogen oxides in the exhaust gas, and its smoke opacity. The presented analyses referred to two selected cases, out of nine examined engine operation points. In these cases the fuel dose was divided into three parts and injected at the factory set control parameters. The examination has revealed a significant effect of fuel dose division on the engine efficiency, and on the smoke opacity and composition of the exhaust gas, in particular the content of nitrogen oxides. Within the range of low loads and rotational speeds, dividing the fuel dose into three parts clearly improves the overall engine efficiency and significantly decreases the concentration of nitrogen oxides in the exhaust gas. Moreover, it slightly decreases the contents of hydrocarbons and

  3. Devise of an exhaust gas heat exchanger for a thermal oil heater in a palm oil refinery plant

    Science.gov (United States)

    Chucherd, Panom; Kittisupakorn, Paisan

    2017-08-01

    This paper presents the devise of an exhaust gas heat exchanger for waste heat recovery of the exhausted flue gas of palm oil refinery plant. This waste heat can be recovered by installing an economizer to heat the feed water which can save the fuel consumption of the coal fired steam boiler and the outlet temperature of flue gas will be controlled in order to avoid the acid dew point temperature and protect the filter bag. The decrease of energy used leads to the reduction of CO2 emission. Two designed economizer studied in this paper are gas in tube and water in tube. The gas in tube exchanger refers to the shell and tube heat exchanger which the flue gas flows in tube; this designed exchanger is used in the existing unit. The new designed water in tube refers to the shell and tube heat exchanger which the water flows in the tube; this designed exchanger is proposed for new implementation. New economizer has the overall coefficient of heat transfer of 19.03 W/m2.K and the surface heat transfer area of 122 m2 in the optimized case. Experimental results show that it is feasible to install economizer in the exhaust flue gas system between the air preheater and the bag filter, which has slightly disadvantage effect in the system. The system can raise the feed water temperature from 40 to 104°C and flow rate 3.31 m3/h, the outlet temperature of flue gas is maintained about 130 °C.

  4. A Study on Effect of Recirculated Exhaust Gas upon Performance and Exhaust Emissions in a Power Plant Boiler with FGR System

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Myung-whan; Jung, Kwong-ho; Park, Sung-bum [Gyeongsang Nat’l Univ., Jinju (Korea, Republic of)

    2016-04-15

    The effect of recirculated exhaust gas on performance and exhaust emissions with FGR rate are investigated by using a natural circulation, pressurized draft and water tube boiler with FGR system operating at several boiler loads and over fire air damper openings. The purpose of this study is to apply the FGR system to a power plant boiler for reducing NOx emissions. To activate the combustion, the OFA with 0 to 20% is supplied into the flame. When the suction damper of two stage combustion system installed in the upper side of wind box is opened by handling the lever between 0° and 90°, also, the combustion air supplied to burner is changed. It is found that the fuel consumption rate per evaporation rate did not show an obvious tendency to increase or decrease with rising the FGR rate, and NOx emissions at the same OFA damper opening are decreased, as FGR rates are elevated and boiler loads are dropped. While a trace amount of soot is emitted without regard to the operation conditions of boiler load, OFA damper opening and FGR rate, because soot emissions are eliminated by the electrostatic precipitator with a collecting efficiency of 86.7%.

  5. A Study on Effect of Recirculated Exhaust Gas upon Performance and Exhaust Emissions in a Power Plant Boiler with FGR System

    International Nuclear Information System (INIS)

    Bae, Myung-whan; Jung, Kwong-ho; Park, Sung-bum

    2016-01-01

    The effect of recirculated exhaust gas on performance and exhaust emissions with FGR rate are investigated by using a natural circulation, pressurized draft and water tube boiler with FGR system operating at several boiler loads and over fire air damper openings. The purpose of this study is to apply the FGR system to a power plant boiler for reducing NOx emissions. To activate the combustion, the OFA with 0 to 20% is supplied into the flame. When the suction damper of two stage combustion system installed in the upper side of wind box is opened by handling the lever between 0° and 90°, also, the combustion air supplied to burner is changed. It is found that the fuel consumption rate per evaporation rate did not show an obvious tendency to increase or decrease with rising the FGR rate, and NOx emissions at the same OFA damper opening are decreased, as FGR rates are elevated and boiler loads are dropped. While a trace amount of soot is emitted without regard to the operation conditions of boiler load, OFA damper opening and FGR rate, because soot emissions are eliminated by the electrostatic precipitator with a collecting efficiency of 86.7%.

  6. Cycle-by-cycle exhaust temperature monitoring for detection of misfiring and combustion instability in reciprocating natural gas engines

    Energy Technology Data Exchange (ETDEWEB)

    Gardiner, D.P. [Nexum Research Corp., Kingston, ON (Canada); Bardon, M.F. [Royal Military Coll. of Canada, Kingston, ON (Canada). Dept. of Mechanical Engineering

    2007-07-01

    The effectiveness of a cycle-by-cycle exhaust temperature monitoring system on engines operating at or near their fully rate load capacity was examined. Tests were conducted on stationary industrial natural gas engines. The study evaluated the monitoring system's ability to detect isolated single misfires, as well as combustion instability during misfire-free operations when the air/fuel ratio of the engine was adjusted to progressively lower settings. The combustion instability level of the engines was quantified by determining the relative variability of the groups of consecutive cycles. The coefficient of variation of indicated mean effective pressure (COV of IMEP) was used to examine cyclic variability. A combustion instability index was used to quantify cyclic variability with cycle-by-cycle exhaust temperature monitoring. Two engines were tested, notably a Cummins QSK 19G turbocharged natural gas engine; and a Waukesha VHP L5790G industrial natural gas engine. The tests demonstrated that cycle-by-cycle exhaust temperature monitoring system was capable of detecting misfiring and combustion instabilities in natural gas engines. 6 refs., 9 figs.

  7. 40 CFR 92.114 - Exhaust gas and particulate sampling and analytical system.

    Science.gov (United States)

    2010-07-01

    ... transport sample to analyzers. (I) Temperature sensor. A temperature sensor (T1) to measure the NO2 to NO... feet (1.22 m) from the exhaust duct. (iii) The sample transport system from the engine exhaust duct to.... (A) For diesel fueled and biodiesel fueled locomotives and engines, the wall temperature of the HC...

  8. Comparison of primary and secondary particle formation from natural gas engine exhaust and of their volatility characteristics

    Science.gov (United States)

    Alanen, Jenni; Simonen, Pauli; Saarikoski, Sanna; Timonen, Hilkka; Kangasniemi, Oskari; Saukko, Erkka; Hillamo, Risto; Lehtoranta, Kati; Murtonen, Timo; Vesala, Hannu; Keskinen, Jorma; Rönkkö, Topi

    2017-07-01

    Natural gas usage in the traffic and energy production sectors is a growing trend worldwide; thus, an assessment of its effects on air quality, human health and climate is required. Engine exhaust is a source of primary particulate emissions and secondary aerosol precursors, which both contribute to air quality and can cause adverse health effects. Technologies, such as cleaner engines or fuels, that produce less primary and secondary aerosols could potentially significantly decrease atmospheric particle concentrations and their adverse effects. In this study, we used a potential aerosol mass (PAM) chamber to investigate the secondary aerosol formation potential of natural gas engine exhaust. The PAM chamber was used with a constant UV-light voltage, which resulted in relatively long equivalent atmospheric ages of 11 days at most. The studied retro-fitted natural gas engine exhaust was observed to form secondary aerosol. The mass of the total aged particles, i.e., particle mass measured downstream of the PAM chamber, was 6-268 times as high as the mass of the emitted primary exhaust particles. The secondary organic aerosol (SOA) formation potential was measured to be 9-20 mg kgfuel-1. The total aged particles mainly consisted of organic matter, nitrate, sulfate and ammonium, with the fractions depending on exhaust after-treatment and the engine parameters used. Also, the volatility, composition and concentration of the total aged particles were found to depend on the engine operating mode, catalyst temperature and catalyst type. For example, a high catalyst temperature promoted the formation of sulfate particles, whereas a low catalyst temperature promoted nitrate formation. However, in particular, the concentration of nitrate needed a long time to stabilize - more than half an hour - which complicated the conclusions but also indicates the sensitivity of nitrate measurements on experimental parameters such as emission source and system temperatures. Sulfate was

  9. Comparison of primary and secondary particle formation from natural gas engine exhaust and of their volatility characteristics

    Directory of Open Access Journals (Sweden)

    J. Alanen

    2017-07-01

    Full Text Available Natural gas usage in the traffic and energy production sectors is a growing trend worldwide; thus, an assessment of its effects on air quality, human health and climate is required. Engine exhaust is a source of primary particulate emissions and secondary aerosol precursors, which both contribute to air quality and can cause adverse health effects. Technologies, such as cleaner engines or fuels, that produce less primary and secondary aerosols could potentially significantly decrease atmospheric particle concentrations and their adverse effects. In this study, we used a potential aerosol mass (PAM chamber to investigate the secondary aerosol formation potential of natural gas engine exhaust. The PAM chamber was used with a constant UV-light voltage, which resulted in relatively long equivalent atmospheric ages of 11 days at most. The studied retro-fitted natural gas engine exhaust was observed to form secondary aerosol. The mass of the total aged particles, i.e., particle mass measured downstream of the PAM chamber, was 6–268 times as high as the mass of the emitted primary exhaust particles. The secondary organic aerosol (SOA formation potential was measured to be 9–20 mg kgfuel−1. The total aged particles mainly consisted of organic matter, nitrate, sulfate and ammonium, with the fractions depending on exhaust after-treatment and the engine parameters used. Also, the volatility, composition and concentration of the total aged particles were found to depend on the engine operating mode, catalyst temperature and catalyst type. For example, a high catalyst temperature promoted the formation of sulfate particles, whereas a low catalyst temperature promoted nitrate formation. However, in particular, the concentration of nitrate needed a long time to stabilize – more than half an hour – which complicated the conclusions but also indicates the sensitivity of nitrate measurements on experimental parameters such as emission

  10. A Numerical Study on Using Air Cooler Heat Exchanger for Low Grade Energy Recovery from Exhaust Flue Gas in Natural Gas Pressure Reduction Stations

    OpenAIRE

    Mansoor Naderi; Ghasem Zargar; Ebrahim Khalili

    2018-01-01

    Heat EXchangers (HEX) that are used in City Gate Station (CGS) systems are modeled numerically to recover the exhaust waste heat. It was tried to find the best viscous model to obtain results in accordance with experimental results and to change the heat exchanger design. This HEX is used for recovering heat from exhaust flue gas with a mixture of 40% water and 60% ethylene glycol as the cooling fluid. Then, the effects of sizes and numbers of fins and tube rows on recovered heat rate were in...

  11. Emission Characteristics for a Homogeneous Charged Compression Ignition Diesel Engine with Exhaust Gas Recirculation Using Split Injection Methodology

    Directory of Open Access Journals (Sweden)

    Changhee Lee

    2017-12-01

    Full Text Available Due to the serious issues caused by air pollution and global warming, emission regulations are becoming stricter. New technologies that reduce NOx and PM emissions are needed. To cope with these social exhaust gas regulation demands, many advanced countries are striving to develop eco-friendly vehicles in order to respond to stricter emissions regulations. The homogeneous charged compression ignition engine (HCCI incorporates a multi-stage combustion engine with multiple combustion modes, catalyst, direct fuel injection and partial mixing combustion. In this study, the HCCI combustion was applied to analyze and review the results of engines applying HCCI combustion without altering the conventional engine specifications. The optimization of exhaust gas recirculation (EGR and compression ratio changes provides an optimal fuel economy. In this study, potential for optimum economy within the range of IMEP 0.8 MPa has been evaluated.

  12. A wind-tunnel study on exhaust gas dispersion from road vehicles. Part 1. Velocity and concentration fields behind single vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Isao; Uehara, Kiyoshi; Yamao, Yukio [National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, 305-8506 (Japan); Yoshikawa, Yasuo; Morikawa, Tazuko [Petroleum Energy Center, 4-3-9 Toranomon, Minato-ku, Tokyo, 105-0001 (Japan)

    2006-09-15

    By a reduced-scale model in a wind tunnel, we investigate the dispersion behavior of exhaust gas from automobiles. Two types of vehicles are considered, a passenger car and a small-size truck. Tracer gas experiments show that the exhaust gas dispersion is enhanced significantly by the vehicle wake compared to the case when the vehicle body is absent. The passenger car and the truck promote dispersion in the horizontal and the vertical direction, respectively. The wake field is analyzed by particle image velocimetry (PIV), and the distribution of the mean and the fluctuation fields is found to conform to the concentration field of the exhaust gas. The buoyancy of the exhaust gas has minor effect except on the vertical spread behind the truck whose wake flow amplifies the vertical displacement generated near the pipe exit. (author)

  13. Assessment of institutional barriers to the use of natural gas fuel in automotive vehicle fleets

    Science.gov (United States)

    Jablonski, J.; Lent, L.; Lawrence, M.; White, L.

    1983-01-01

    Institutional barriers to the use of natural gas as a fuel for motor vehicle fleets were identified. Recommendations for barrier removal were developed. Eight types of institutional barriers were assessed: (1) lack of a national standard for the safe design and certification of natural gas vehicles and refueling stations; (2) excessively conservative or misapplied state and local regulations, including bridge and tunnel restrictions, restrictions on types of vehicles that may be fueled by natural gas, zoning regulations that prohibit operation of refueling stations, parking restrictions, application of LPG standards to LNG vehicles, and unintentionally unsafe vehicle or refueling station requirements; (3) need for clarification of EPA's tampering enforcement policy; (4) the U.S. hydrocarbon standard; (5) uncertainty concerning state utility commission jurisdiction; (6) sale for resale prohibitions imposed by natural gas utility companies or state utility commissions; (7) uncertainty of the effects of conversions to natural gas on vehicle manufactures warranties; and (8) need for a natural gas to gasoline equivalent units conversion factor for use in calculation of state road use taxes.

  14. Reduction of exhaust gas emission for marine diesel engine. Hakuyo engine no taisaku (hakuyo engine no mondaiten to tenbo)

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Y. (Mitsui Engineering and Shipbuilding Co. Ltd., Tokyo (Japan))

    1992-05-05

    Since bunker fuel became extremely expensive through the first and second oil crisis, the share of steam turbines having lower thermal efficiency than diesel engines became less, and at present, almost all ships and vessels are equipped with Diesel engines. Also fuel consumption of a diesel engine has successfully been reduced by 24% in about 10 years, but the discharge of air pollutant in the exhaust gas has shown a trend of increase. Air pollutant in exhaust gas of marine engines which has not drawn attention so far has also begun attracting notice, and as marine traffic increases, some control of it will be made sooner or later. Hence economical and effective counter measures against exhaust gas are necessary. In this article, as measures for reducing NO {sub x}, discussions are made on water-emulsion fuel, humidification of air supply, multi-nozzle atomization, injection time delaying and SCR (selective catalitic reduction). Also measures for reducing SO {sub x} is commented upon and the continuation of superiority of Diesel engines in the future is predicted. 5 figs.

  15. Exhaust gas emissions evaluation in the flight of a multirole fighter equipped with a F100-PW-229 turbine engine

    Directory of Open Access Journals (Sweden)

    Markowski Jarosław

    2017-01-01

    Full Text Available The issue of exhaust gas emission generated by turbine engines described in ICAO Annex 16 of the International Civil Aviation Convention includes a number of procedures and requirements. Their implementation is aimed at determining the value of the engine’s environmental parameters and comparing them to the values specified in the norms. The turbine engine exhaust gas emission test procedures are defined as stationary and the operating parameters values are set according to the LTO test. The engine load setting values refer to engine operating parameters that occur when the plane is in the vicinity of airports. Such a procedure is dedicated to civilian passenger and transport aircraft. The operating conditions of a multirole fighter aircraft vary considerably from passenger aircraft and the variability of their flight characteristics requires a special approach in assessing its environmental impact. This article attempts to evaluate the exhaust gas emissions generated by the turbine engine in a multirole fighter flight using the parameters recorded by the onboard flight recorder.

  16. Parametric tests of a traction drive retrofitted to an automotive gas turbine

    Science.gov (United States)

    Rohn, D. A.; Lowenthal, S. H.; Anderson, N. E.

    1980-01-01

    The results of a test program to retrofit a high performance fixed ratio Nasvytis Multiroller Traction Drive in place of a helical gear set to a gas turbine engine are presented. Parametric tests up to a maximum engine power turbine speed of 45,500 rpm and to a power level of 11 kW were conducted. Comparisons were made to similar drives that were parametrically tested on a back-to-back test stand. The drive showed good compatibility with the gas turbine engine. Specific fuel consumption of the engine with the traction drive speed reducer installed was comparable to the original helical gearset equipped engine.

  17. Exhaustive Conversion of Inorganic Nitrogen to Nitrogen Gas Based on a Photoelectro-Chlorine Cycle Reaction and a Highly Selective Nitrogen Gas Generation Cathode.

    Science.gov (United States)

    Zhang, Yan; Li, Jinhua; Bai, Jing; Shen, Zhaoxi; Li, Linsen; Xia, Ligang; Chen, Shuai; Zhou, Baoxue

    2018-02-06

    A novel method for the exhaustive conversion of inorganic nitrogen to nitrogen gas is proposed in this paper. The key properties of the system design included an exhaustive photoelectrochemical cycle reaction in the presence of Cl - , in which Cl· generated from oxidation of Cl - by photoholes selectively converted NH 4 + to nitrogen gas and some NO 3 - or NO 2 - . The NO 3 - or NO 2 - was finally reduced to nitrogen gas on a highly selective Pd-Cu-modified Ni foam (Pd-Cu/NF) cathode to achieve exhaustive conversion of inorganic nitrogen to nitrogen gas. The results indicated total nitrogen removal efficiencies of 30 mg L -1 inorganic nitrogen (NO 3 - , NH 4 + , NO 3 - /NH 4 + = 1:1 and NO 2 - /NO 3 - /NH 4 + = 1:1:1) in 90 min were 98.2%, 97.4%, 93.1%, and 98.4%, respectively, and the remaining nitrogen was completely removed by prolonging the reaction time. The rapid reduction of nitrate was ascribed to the capacitor characteristics of Pd-Cu/NF that promoted nitrate adsorption in the presence of an electric double layer, eliminating repulsion between the cathode and the anion. Nitrate was effectively removed with a rate constant of 0.050 min -1 , which was 33 times larger than that of Pt cathode. This system shows great potential for inorganic nitrogen treatment due to the high rate, low cost, and clean energy source.

  18. Understanding the formative stage of technological innovation system development: The case of natural gas as an automotive fuel

    International Nuclear Information System (INIS)

    Suurs, Roald A.A.; Hekkert, Marko P.; Kieboom, Sander; Smits, Ruud E.H.M.

    2010-01-01

    This study contributes to insights into mechanisms that influence the successes and failures of emerging energy technologies. It is assumed that for an emerging technology to fruitfully develop, it should be fostered by a Technological Innovation System (TIS), which is the network of actors, institutions and technologies in which it is embedded. For an emerging technology a TIS has yet to be built up. This research focuses on the dynamics of this build-up process by mapping the development of seven key activities: so-called system functions. The main contribution revolves around the notion of cumulative causation, or the phenomenon that the build-up of a TIS accelerates due to system functions reinforcing each other over time. As an empirical basis, an analysis is provided of the historical development of the TIS around automotive natural gas technology in the Netherlands (1970-2007). The results show that this TIS undergoes a gradual build-up in the 1970s, followed by a breakdown in the 1980s and, again, a build-up from 2000 to 2007. It is shown that underlying these trends are different forms of cumulative causation, here called motors of innovation. The study provides strategic insights for practitioners that aspire to support such motors of innovation.

  19. The California greenhouse gas initiative and its implications to the automotive industry

    Energy Technology Data Exchange (ETDEWEB)

    Smith, B. C.; Miller, R. T.; Center for Automotive Research

    2006-05-31

    CAR undertook this investigation to better understand the costs and challenges of a local (state) regulation necessitating the implementation of alternative or advanced powertrain technology. CAR will attempt to add insight into the challenges that local regulations present to the automotive industry, and to contribute further to the discussion of how advanced powertrain technology may be used to meet such regulation. Any local law that (directly or indirectly) affects light duty motor vehicle fuel economy creates what in effect is a specialty market for powertrain technology. As such these small markets present significant challenges for automotive manufacturers. First, a small market with unique standards presents significant challenges to an industry that has sustained growth by relying on large volumes to achieve scale economies and deliver products at a cost acceptable to the consumer. Further, the challenges of the additional technology make it likely that any powertrain capable of meeting the stringent emissions standards will include costly additional components, and thus will be more costly to manufacture. It is likely that manufacturers would consider the following actions as steps to deliver products to meet the pending California regulatory requirements anticipated as a result of prior California legislation: (1) Substituting more fuel efficient vehicles: Bring in more efficient vehicles from global operations, while likely dropping existing domestic products. (2) Substituting powertrains: Add existing downsized engines (i.e. turbocharged versions, etc.) into California market-bound vehicles. (3) Powertrain enhancements: Add technology to current engine and transmission offerings to improve efficiency and reduce emissions. (4) Incorporating alternative powertrains into existing vehicle platforms: Develop a hybrid or other type of powertrain for an existing vehicle. (5) New powertrains and new platforms: Develop vehicles specifically intended to

  20. Use of compressed natural gas in automotive vehicles; Uso del gas natural comprimido aplicado en vehiculos automotores

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez R, Adrian [Comision Nacional para el Ahorro de Energia (CONAE) (Mexico)

    2005-07-01

    The natural gas is natural origin energy (fossil fuel); it contains predominantly 90 percent methane; does not require transformation process for its use; is supplied the 24 hours to commerce, industries and homes by underground pipes; it is lighter than air; it is not corrosive, nor absorbent or toxic. For those reasons a study was performed where it is widely justified why the natural gas ought to be used in vehicles. [Spanish] El gas natural es un energetico de origen natural (combustible fosil), contiene predominantemente 90 por ciento de metano, no requiere proceso de transformacion para su utilizacion, llega directamente las 24 horas del dia a los hogares, comercios e industrias por tuberias subterraneas, es mas ligero que el aire, no es corrosivo, no es absorbente y no es toxico. Por esas razones se hizo un estudio donde se justifica ampliamente porque el gas natural debe utilizarse en vehiculos.

  1. Integrating Phase-Change Materials into Automotive Thermoelectric Generators

    Science.gov (United States)

    Klein Altstedde, Mirko; Rinderknecht, Frank; Friedrich, Horst

    2014-06-01

    Because the heat emitted by conventional combustion-engine vehicles during operation has highly transient properties, automotive thermoelectric generators (TEG) are intended for a particular operating state (design point). This, however, leads to two problems. First, whenever the combustion engine runs at low load, the maximum operating temperature cannot be properly utilised; second, a combustion engine at high load requires partial diversion of exhaust gas away from the TEG to protect the thermoelectric modules. An attractive means of stabilising dynamic exhaust behaviour (thereby keeping the TEG operating status at the design point for as long as possible) is use of latent heat storage, also known as phase-change materials (PCM). By positioning PCM between module and exhaust heat conduit, and choosing a material with a phase-change temperature matching the module's optimum operating temperature, it can be used as heat storage. This paper presents results obtained during examination of the effect of integration of latent heat storage on the potential of automotive TEG to convert exhaust heat. The research resulted in the development of a concept based on the initial integration idea, followed by proof of concept by use of a specially created prototype. In addition, the potential amount of energy obtained by use of a PCM-equipped TEG was calculated. The simulations indicated a significant increase in electrical energy was obtained in the selected test cycle.

  2. The Effect of Exhaust Gas Recirculation (EGR on the Emission of a Single Cylinder Spark Ignition Engine

    Directory of Open Access Journals (Sweden)

    Limyaa Mahdi Asaad

    2016-07-01

    Full Text Available A single cylinder variable compression ratio spark ignition engine type PRODIT was used in this study. The  experiments  were  conducted  with  gasoline  fuel  (80  octane  No.at  equivalence  ratio  (Ø  =1.  This study examined the effects of exhaust gas recirculation on emission. It was conducted at engine speeds (1500, 1900, 2300 and 2700 r.p.m..The  exhaust  gases  were  added  in  volumetric  ratios  of  10%,  20%  and  30%  of  the  entering  air/fuel charge. The results showed that the EGR addition decreases the CO2 concentrations, in the same time CO and HC concentrations increase remarkably.  NOx concentration decreased highly with the increase of EGR percentage at variable engine speeds and constant torque. Also, it decreased when the engine run  at  constant  speed  and  variable  engine  torque.  The  exhaust  gas  temperature  decreased  with increasing EGR ratio.

  3. Techno-economic process design of a commercial-scale amine-based CO_2 capture system for natural gas combined cycle power plant with exhaust gas recirculation

    International Nuclear Information System (INIS)

    Ali, Usman; Agbonghae, Elvis O.; Hughes, Kevin J.; Ingham, Derek B.; Ma, Lin; Pourkashanian, Mohamed

    2016-01-01

    Highlights: • EGR is a way to enhance the CO_2 content with reduction in design variables and cost. • Both process and economic analyses are essential to reach the optimum design variables. • Commercial-scale NGCC with and without EGR is presented. • Process design of the amine-based CO_2 capture plant is evaluated for with and without EGR. - Abstract: Post-combustion CO_2 capture systems are gaining more importance as a means of reducing escalating greenhouse gas emissions. Moreover, for natural gas-fired power generation systems, exhaust gas recirculation is a method of enhancing the CO_2 concentration in the lean flue gas. The present study reports the design and scale-up of four different cases of an amine-based CO_2 capture system at 90% capture rate with 30 wt.% aqueous solution of MEA. The design results are reported for a natural gas-fired combined cycle system with a gross power output of 650 MW_e without EGR and with EGR at 20%, 35% and 50% EGR percentage. A combined process and economic analysis is implemented to identify the optimum designs for the different amine-based CO_2 capture plants. For an amine-based CO_2 capture plant with a natural gas-fired combined cycle without EGR, an optimum liquid to gas ratio of 0.96 is estimated. Incorporating EGR at 20%, 35% and 50%, results in optimum liquid to gas ratios of 1.22, 1.46 and 1.90, respectively. These results suggest that a natural gas-fired power plant with exhaust gas recirculation will result in lower penalties in terms of the energy consumption and costs incurred on the amine-based CO_2 capture plant.

  4. Multiroller Traction Drive Speed Reducer. Evaluation for Automotive Gas Turbine Engine

    Science.gov (United States)

    1982-06-01

    Speed is deLermined by a magnetic pickup on a toothed wheel . Gas turbine engine instrumunelLtiouu i -designed 1f0r measurement of specific fuel...buffer seal and the fluid--film bearing measured a maximum total runout of 0.038 mm (0.0015 in.) at low speed. At higher speeds, above 8000 rpm, the...maximum was 0.025 mm (0.001 in.) except near 10 000 rpm, where the oscilloscope indicated an excursion of 0.045 mm (0.0018 in.). This runout was within

  5. Electrochemical cell with integrated hydrocarbon gas sensor for automobile exhaust gas; Elektrochemische Zelle mit integriertem Kohlenwasserstoff-Gassensor fuer das Automobilabgas

    Energy Technology Data Exchange (ETDEWEB)

    Biskupski, D.; Moos, R. [Univ. Bayreuth (Germany). Bayreuth Engine Research Center, Lehrstuhl fuer Funktionsmaterialien; Wiesner, K.; Fleischer, M. [Siemens AG, Corporate Technology, CT PS 6, Muenchen (Germany)

    2007-07-01

    In the future sensors will be necessary to control the compliance with hydrocarbon limiting values, allowing a direct detection of the hydrocarbons. Appropriate sensor-active functional materials are metal oxides, which have a hydrocarbon sensitivity but are also dependent on the oxygen partial pressure. It is proposed that the gas-sensing layer should be integrated into an electrochemical cell. The authors show that the integration of a resistive oxygen sensor into a pump cell allows a defined oxygen concentration level at the sensor layer in any exhaust gas.

  6. Catalysts, systems and methods to reduce NOX in an exhaust gas stream

    Science.gov (United States)

    Castellano, Christopher R.; Moini, Ahmad; Koermer, Gerald S.; Furbeck, Howard

    2010-07-20

    Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having an SCR catalyst comprising silver tungstate on an alumina support. The emissions treatment system may be used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines. An emissions treatment system may further comprise an injection device operative to dispense a hydrocarbon reducing agent upstream of the catalyst.

  7. Automotive Thermoelectric Generator impact on the efficiency of a drive system with a combustion engine

    Directory of Open Access Journals (Sweden)

    Ziolkowski Andrzej

    2017-01-01

    Full Text Available Increasing the combustion engine drive systems efficiency is currently being achieved by structural changes in internal combustion engines and its equipment, which are geared towards limiting mechanical, thermal and outlet losses. For this reason, downsizing. In addition to these changes, all manner of exhaust gas energy recovery systems are being investigated and implemented, including turbocompound, turbogenerators and thermoelectric generators. The article presents the author’s idea of a thermoelectric generator system of automotive applications ATEG (Automotive Thermoelectric Generator and the study of the recovery of exhaust gas energy stream. The ATEG consists of a heat exchanger, thermoelectric modules and a cooling system. In this solution, 24 commercial thermoelectric modules based on Bi2Te3 (bismuth telluride were used. Measurements were made at two engine test sites on which SI and CI engines were installed. The exhaust gas parameters (temperature and mass flow rate, fuel consumption and operating parameters of the ATEG – the intensity and the voltage generated by the thermoelectric modules and the temperature on the walls of the heat exchanger – were all measured in the experiments. Based on the obtained results, the exhaust gas energy flow and the power of the ATEG were determined as well as its effect on the diesel engine drive system efficiency.

  8. 40 CFR 86.1310-90 - Exhaust gas sampling and analytical system; diesel engines.

    Science.gov (United States)

    2010-07-01

    ... avoid moisture condensation. A filter pair loading of 1 mg is typically proportional to a 0.1 g/bhp-hr..., the temperatures where condensation of water in the exhaust gases could occur. This may be achieved by... sampling zone in the primary dilution tunnel and as required to prevent condensation at any point in the...

  9. Fast spatially resolved exhaust gas recirculation (EGR) distribution measurements in an internal combustion engine using absorption spectroscopy.

    Science.gov (United States)

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2015-09-01

    Exhaust gas recirculation (EGR) in internal combustion engines is an effective method of reducing NOx emissions while improving efficiency. However, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder non-uniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. A sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in the intake manifold. The study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.

  10. Effect of Exhaust Gas Recirculation (EGR on the Performance Characteristics of a Direct Injection Multi Cylinders Diesel Engine

    Directory of Open Access Journals (Sweden)

    Khalil Ibrahim Abaas

    2016-07-01

    Full Text Available Owing  to  the  energy  crisis  and  pollution  problems  of  today  investigations  have  concentrated  on decreasing  fuel  consumption  and  on  lowering  the  concentration  of  toxic  components  in  combustion products by using exhaust gas after treatments methods like PM filters and EGR for NOx reduction. In this study, the combustion characteristics of diesel fuel were compared with that pr oduced from adding EGR at several percentages to air manifold. The tests were performed in a four-cylinder direct injection (DI diesel engine at constant engine speed (1500 rpm and variable loads (from no load to 86 kN/m2, the tests were repeated with constant load (77 kN/m2 and variable engine speeds (from 1250 to 3000 rpm.The experimental results showed that adding EGR to diesel engine provided significant reductions in brake power (bp, brake thermal efficiency and exhaust gas temperatures, while high increments in brake specific  fuel  consumption  (bsfc.  High  EGR  percentage  (as  30%  in  this  article  caused  an  11.7% reduction  in  brake  thermal  efficiency,  26.38%  reduction  in  exhaust  gas  temperatures  and  12.28%  in volumetric efficiency at full load conditions.

  11. Making aerospace technology work for the automotive industry, introduction

    Science.gov (United States)

    Olson, W. T.

    1978-01-01

    NASA derived technology already in use in the automotive industry include: (1) developments in electronics design, computer systems, and quality control methods for line testing of cars and trucks; (2) a combustion analysis computer program for automotive engine research and development; (3) an infrared scanner and television display for analyzing tire design and performance, and for studying the effects of heat on the service life of V-belts, shock mounts, brakes, and rubber bearings; (4) exhaust gas analyzers for trouble shooting and emissions certification; (5) a device for reducing noise from trucks; and (6) a low cost test vehicle for measuring highway skid resistance. Services offered by NASA to facilitate access to its technology are described.

  12. Sensitivity of Emissions to Uncertainties in Residual Gas Fraction Measurements in Automotive Engines: A Numerical Study

    Directory of Open Access Journals (Sweden)

    S. M. Aithal

    2018-01-01

    Full Text Available Initial conditions of the working fluid (air-fuel mixture within an engine cylinder, namely, mixture composition and temperature, greatly affect the combustion characteristics and emissions of an engine. In particular, the percentage of residual gas fraction (RGF in the engine cylinder can significantly alter the temperature and composition of the working fluid as compared with the air-fuel mixture inducted into the engine, thus affecting engine-out emissions. Accurate measurement of the RGF is cumbersome and expensive, thus making it hard to accurately characterize the initial mixture composition and temperature in any given engine cycle. This uncertainty can lead to challenges in accurately interpreting experimental emissions data and in implementing real-time control strategies. Quantifying the effects of the RGF can have important implications for the diagnostics and control of internal combustion engines. This paper reports on the use of a well-validated, two-zone quasi-dimensional model to compute the engine-out NO and CO emission in a gasoline engine. The effect of varying the RGF on the emissions under lean, near-stoichiometric, and rich engine conditions was investigated. Numerical results show that small uncertainties (~2–4% in the measured/computed values of the RGF can significantly affect the engine-out NO/CO emissions.

  13. Automotive Catalyst State Diagnosis Using Microwaves

    Directory of Open Access Journals (Sweden)

    Moos Ralf

    2015-01-01

    Full Text Available The state of catalysts plays a key role in automotive exhaust gas aftertreatment. The soot or ash loading of Diesel particulate filters, the oxygen loading degree in three-way catalysts, the amount of stored ammonia in SCR catalysts, or the NOx loading degree in NOx storage catalysts are important parameters that are today determined indirectly and in a model-based manner with gas sensors installed upstream and/or downstream of the catalysts. This contribution gives an overview on a novel approach to determine the catalyst state directly by a microwave-based technique. The method exploits the fact that the catalyst housing acts as a microwave cavity resonator. As “sensing” elements, one or two simple antennas are mounted inside the catalyst canning. The electrical properties of the catalyst device (ceramic honeycomb plus coating and storage material can be measured. Preferably, the resonance characteristics, e.g., the resonance frequencies, of selected cavity modes are observed. The information on the catalyst interior obtained in such a contactless manner is very well correlated with the catalyst state as will be demonstrated for different exhaust gas aftertreatment systems.

  14. Automotive mechatronics automotive networking, driving stability systems, electronics

    CERN Document Server

    2015-01-01

    As the complexity of automotive vehicles increases this book presents operational and practical issues of automotive mechatronics. It is a comprehensive introduction to controlled automotive systems and provides detailed information of sensors for travel, angle, engine speed, vehicle speed, acceleration, pressure, temperature, flow, gas concentration etc. The measurement principles of the different sensor groups are explained and examples to show the measurement principles applied in different types. Contents Basics of mechatronics.- Architecture.- Electronic control unit.- Software development.- Basic principles of networking.- Automotive networking.- Bus systems.- Automotive sensors.- Sensor measuring principles.- Sensor types.- Electric actuators.- Electrohydraulic actuators.- Electronic transmission control.- Electronic transmission control unit.- Modules for transmission control.- Antilock braking system.- Traction control system.- Electronic stability program.- Automatic brake functions.- Hydraulic modu...

  15. Experimental Study on the Plasma Purification for Diesel Engine Exhaust Gas

    Science.gov (United States)

    Chen, Jing; Zu, Kan; Wang, Mei

    2018-02-01

    It is known that the use of ternary catalysis is capable of significantly reducing the emission of pollutants from petrol vehicles. However, the disadvantages such as the temperature and other limitations make it unsuitable for diesel engines. The plasma-assisted catalyst technology has been applied in dealing with the diesel exhaust in the experiment in order to do further research on the effects of plasma in exhaust processing. The paper not only includes the experimental observation on the change of particle concentration after the operation of purification device, but also builds the kinetic model of chemical reactions to simulate the reactions of nitrogen oxides in plasma through using the software of Matlab, then compares the calculation results with experimental samples and finally gets some useful conclusions in practice.

  16. Fundamental study of manganese dioxide for catalytic recombustion of exhaust gas of motor car

    Energy Technology Data Exchange (ETDEWEB)

    Shimoyamada, T

    1974-01-01

    The catalytic activities of five manganese dioxide preparations were tested in a pulse reactor to assess their carbon monoxide-oxidizing capability in relation to the catalytic afterburning of automobile exhaust gases. Catalysts prepared from manganese sulfate showed diminished catalytic activity as a result of sulfate poisoning. Higher oxidation activity was obtained with a catalyst prepared by precipitating the permanganate salt in acidic solution. Two forms of carbon monoxide adsorption were demonstrated, each with a characteristic activation energy and reaction temperature.

  17. [Negligent homicide caused by exhaust gas escaping from a manipulated chimney].

    Science.gov (United States)

    Wirth, Ingo; Varchmin-schultheiss, Karin; Schmeling, Andreas

    2011-01-01

    A chimney built and operated according to the instructions is supposed to ensure that the combustion gases coming from the fireplace can escape safely. If the operational reliability is impaired, this presents a risk of acute poisoning. The report deals with a negligently caused carbon monoxide poisoning of a married couple as a consequence of improper installation of a cover of the chimney opening. Various causes of fatal poisoning due to defective exhaust systems are discussed in connection with the presented case report.

  18. Engine performances and exhaust gas characteristics of methanol-fueled two-cycle engines. Kogata ni cycle ter dot methanol kikan no seino ni oyobosu shoinshi no eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Sawa, N.; Kajitani, S. (Ibaraki Univ., Ibaraki (Japan). Faculty of Engineerineering); Hayashi, S.; Kubota, Y. (Muroran Inst. of Technology, Muroran (Japan))

    1990-10-25

    Regarding crank case compressed two cycle engine, feasibility of methanol-fueled engine was investigated by studying effective factors on properties of power, combustion, and exhaust gas. For the experiment, air-cooling single cylinder engine was used of which specification was shown by table. As for the experiment, quantities of in-taken air, fuel consumption, torque, and composition of exhaust gas were measured under various conditions. As the consideration of experimental results, those were obtained that less exhaust gas with high performance operation of tow-cycle engie was achieved, too, by using diluted mixture gas of methanol, and that problems were found to be studied for the realization of high compression ratio. 12 refs., 13 figs., 1 tab.

  19. Parametric study of a thermoelectric generator system for exhaust gas energy recovery in diesel road freight transportation

    International Nuclear Information System (INIS)

    Vale, S.; Heber, L.; Coelho, P.J.; Silva, C.M.

    2017-01-01

    Highlights: • 1-D numerical TEG model in diesel freight vehicles exhaust pipe. • Over 800 W of electrical power for the heavy-duty vehicle. • Plain fins provide better performance than offset strip fins. • The height of the thermocouple legs plays a significant role. • 2% maximum efficiency needs further improvements. - Abstract: A parametric study and optimization approaches of a thermoelectric generator (TEG) for the recovery of energy from the exhaust gas in Diesel vehicles used in freight transport is reported. The TEG is installed in the tailpipe of a commercial vehicle (3.5 tonnes) and a heavy-duty vehicle (40 tonnes). The exhaust gas is used as the heat source and the cooling water as the heat sink. Two different heat exchanger configurations are considered: plain fins and offset strip fins. The influence of the height, length and spacing of the fins on the electrical and net power is analysed for the fixed width and length of the TEG. The influence of the length and width of the TEG and of the height of the thermocouple legs is also investigated. According to the criteria used in this study, plain fins are the best choice, yielding a maximum electrical power of 188 W for the commercial vehicle and 886 W for the heavy-duty vehicle. The best recovery efficiency is about 2%, with an average thermoelectric material efficiency of approximately 4.4%, for the light-duty vehicle. Accordingly, there is significant room for further improvement and optimisation based on the thermoelectric modules and the system design.

  20. Equipment to reduce the emission of noxious components in the exhaust gas of an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Tatsutomi, Y; Inoue, H

    1976-10-21

    The invention concerns an arrangement for the reduction of emission of noxious components in exhaust gas of an internal combustion engine with automatic drive. According to the invention, there is a further switch in parallel with the usual kickdown switch, which is actuated by a temperature sensor and/or choke. If the operating temperature of the engine is below a certain value, or if the choke is pulled out, then the switch is closed. This has the effect that the downstream valve is brought into the same position as that in which the closed kickdown switch would place it. The automatic drive therefore takes up that position, independently of the position of the accelerator pedal, which it would normally occupy only with the accelerator pedal fully pressed down. This guarantees that the engine is always kept at high speed during the hot running phase, which reduces the portion of the noxious gas components emitted.

  1. Tuning the structure of platinum particles on ceria in situ for enhancing the catalytic performance of exhaust gas catalysts

    International Nuclear Information System (INIS)

    Gaenzler, Andreas M.; Casapu, Maria; Grunwaldt, Jan-Dierk; Vernoux, Philippe; Loridant, Stephane; Cadete Santos Aires, Francisco J.; Epicier, Thierry; Betz, Benjamin; Hoyer, Ruediger

    2017-01-01

    A dynamic structural behavior of Pt nanoparticles on the ceria surface under reducing/oxidizing conditions was found at moderate temperatures (<500 C) and exploited to enhance the catalytic activity of Pt/CeO 2 -based exhaust gas catalysts. Redispersion of platinum in an oxidizing atmosphere already occurred at 400 C. A protocol with reducing pulses at 250-400 C was applied in a subsequent step for controlled Pt-particle formation. Operando X-ray absorption spectroscopy unraveled the different extent of reduction and sintering of Pt particles: The choice of the reductant allowed the tuning of the reduction degree/particle size and thus the catalytic activity (CO>H 2 >C 3 H 6 ). This dynamic nature of Pt on ceria at such low temperatures (250-500 C) was additionally confirmed by in situ environmental transmission electron microscopy. A general concept is proposed to adjust the noble metal dispersion (size, structure), for example, during operation of an exhaust gas catalyst. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Tuning the structure of platinum particles on ceria in situ for enhancing the catalytic performance of exhaust gas catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gaenzler, Andreas M.; Casapu, Maria; Grunwaldt, Jan-Dierk [Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Vernoux, Philippe; Loridant, Stephane; Cadete Santos Aires, Francisco J. [Institut de Recherches sur la Catalyse et l' Environnement de Lyon, UMR 5256, CNRS, Universite Claude Bernard Lyon 1, Universite de Lyon, Villeurbanne (France); Epicier, Thierry [Materiaux, Ingenierie et Science, UMR 5510, CNRS, INSA de Lyon, Universite de Lyon, Villeurbanne (France); Betz, Benjamin [Umicore AG and Co. KG, Hanau (Germany); Ernst-Berl Institut, Technische Universitaet Darmstadt (Germany); Hoyer, Ruediger [Umicore AG and Co. KG, Hanau (Germany)

    2017-10-09

    A dynamic structural behavior of Pt nanoparticles on the ceria surface under reducing/oxidizing conditions was found at moderate temperatures (<500 C) and exploited to enhance the catalytic activity of Pt/CeO{sub 2}-based exhaust gas catalysts. Redispersion of platinum in an oxidizing atmosphere already occurred at 400 C. A protocol with reducing pulses at 250-400 C was applied in a subsequent step for controlled Pt-particle formation. Operando X-ray absorption spectroscopy unraveled the different extent of reduction and sintering of Pt particles: The choice of the reductant allowed the tuning of the reduction degree/particle size and thus the catalytic activity (CO>H{sub 2}>C{sub 3}H{sub 6}). This dynamic nature of Pt on ceria at such low temperatures (250-500 C) was additionally confirmed by in situ environmental transmission electron microscopy. A general concept is proposed to adjust the noble metal dispersion (size, structure), for example, during operation of an exhaust gas catalyst. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. A Fault Diagnosis Approach for Gas Turbine Exhaust Gas Temperature Based on Fuzzy C-Means Clustering and Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Zhi-tao Wang

    2015-01-01

    Full Text Available As an important gas path performance parameter of gas turbine, exhaust gas temperature (EGT can represent the thermal health condition of gas turbine. In order to monitor and diagnose the EGT effectively, a fusion approach based on fuzzy C-means (FCM clustering algorithm and support vector machine (SVM classification model is proposed in this paper. Considering the distribution characteristics of gas turbine EGT, FCM clustering algorithm is used to realize clustering analysis and obtain the state pattern, on the basis of which the preclassification of EGT is completed. Then, SVM multiclassification model is designed to carry out the state pattern recognition and fault diagnosis. As an example, the historical monitoring data of EGT from an industrial gas turbine is analyzed and used to verify the performance of the fusion fault diagnosis approach presented in this paper. The results show that this approach can make full use of the unsupervised feature extraction ability of FCM clustering algorithm and the sample classification generalization properties of SVM multiclassification model, which offers an effective way to realize the online condition recognition and fault diagnosis of gas turbine EGT.

  4. Emission characteristics of iso-propanol/gasoline blends in a spark-ignition engine combined with exhaust gas re-circulation

    Directory of Open Access Journals (Sweden)

    Gong Jing

    2014-01-01

    Full Text Available Experiments were carried out in a spark-ignition engine fueled with iso-propanol/gasoline blends. Emission characteristics of this engine were investigated experimentally, including gaseous emissions (HC, CO, NOx and particulate matter emission in term of number and size distributions. The effects of different iso-propanol percentages, loads and exhaust gas recirculation rates on emissions were analyzed. Results show that the introduction of exhaust gas recirculation reduces the NOx emission and NOx emission gives the highest value at full load condition. HC and CO emissions present inconspicuous variations at all the loads except the load of 10%. Additionally, HC emission shows a sharp increase for pure propanol when the exhaust gas recirculation rate is up to 5%, while little variation is observed at lager exhaust gas recirculation rates. Moreover, the particulate matter number concentration increases monotonically with the increase of load and the decrease of exhaust gas recirculation rate. There exists a critical spark timing that produces the highest particulate matter number concentration at all the blending ratios.

  5. An analysis of the thermodynamic efficiency for exhaust gas recirculation-condensed water recirculation-waste heat recovery condensing boilers (EGR-CWR-WHR CB)

    International Nuclear Information System (INIS)

    Lee, Chang-Eon; Yu, Byeonghun; Lee, Seungro

    2015-01-01

    This study presents fundamental research on the development of a new boiler that is expected to have a higher efficiency and lower emissions than existing boilers. The thermodynamic efficiency of exhaust gas recirculation-condensed water recirculation-waste heat recovery condensing boilers (EGR-CWR-WHR CB) was calculated using thermodynamic analysis and was compared with other boilers. The results show the possibility of obtaining a high efficiency when the temperature of the exhaust gas is controlled within 50–60 °C because water in the exhaust gas is condensed within this temperature range. In addition, the enthalpy emitted by the exhaust gas for the new boiler is smaller because the amount of condensed water is increased by the high dew-point temperature and the low exhaust gas temperature. Thus, the new boiler can obtain a higher efficiency than can older boilers. The efficiency of the EGR-CWR-WHR CB proposed in this study is 93.91%, which is 7.04% higher than that of existing CB that is currently used frequently. - Highlights: • The study presents the development of a new boiler expected to have a high efficiency. • Thermodynamic efficiency of EGR-CWR-WHR condensing boiler was calculated. • Efficiency of EGR-CWR-WHR CB is 93.91%, which is 7.04% higher than existing CB

  6. The pilot plant experiment of electron beam irradiation process for removal of NOx and SOx from sinter plant exhaust gas in the iron and steel industry

    International Nuclear Information System (INIS)

    Kawamura, K.; Katayama, T.; Kawamura, Ke.

    1981-01-01

    Air pollution problem has become more important in the progress of industry. Nitrogen oxides (NOx, mostly NO) and sulfur oxides (SOx, mostly SO 2 ) which are contained in a sinter plant exhaust gas, are known as serious air pollutants. In such circumstances, an attempt has been made to simultaneously remove NOx and SOx from the sinter plant exhaust gas by means of a new electron beam irradiation process. The process consists of adding a small amount of NH 3 to the exhaust gas, irradiating the gas by electron beam, forming ammonium salts by reactions of NOx and SOx with the NH 3 and collecting ammonium salts by dry electrostatic precipitator (E.P.). Basic research on the present process had been performed using heavy oil combustion gas. Based on the results research was launched to study the applicability of the process to the treatment of sinter plant exhaust gas. A pilot plant, capable of treating a gas flow of 3000 Nm 3 /H was set up, and experiments were performed from July 1977 to June 1978. The plant is described and the results are presented. (author)

  7. Efficiency improvement of a spark-ignition engine at full load conditions using exhaust gas recirculation and variable geometry turbocharger – Numerical study

    International Nuclear Information System (INIS)

    Sjerić, Momir; Taritaš, Ivan; Tomić, Rudolf; Blažić, Mislav; Kozarac, Darko; Lulić, Zoran

    2016-01-01

    Highlights: • A cylinder model was calibrated according to experimental results. • A full cycle simulation model of turbocharged spark-ignition engine was made. • Engine performance with high pressure exhaust gas recirculation was studied. • Cooled exhaust gas recirculation lowers exhaust temperature and knock occurrence. • Leaner mixtures enable fuel consumption improvement of up to 11.2%. - Abstract: The numerical analysis of performance of a four cylinder highly boosted spark-ignition engine at full load is described in this paper, with the research focused on introducing high pressure exhaust gas recirculation for control of engine limiting factors such as knock, turbine inlet temperature and cyclic variability. For this analysis the cycle-simulation model which includes modeling of the entire engine flow path, early flame kernel growth, mixture stratification, turbulent combustion, in-cylinder turbulence, knock and cyclic variability was applied. The cylinder sub-models such as ignition, turbulence and combustion were validated by using the experimental results of a naturally aspirated multi cylinder spark-ignition engine. The high load operation, which served as a benchmark value, was obtained by a standard procedure used in calibration of engines, i.e. operation with fuel enrichment and without exhaust gas recirculation. By introducing exhaust gas recirculation and by optimizing other engine operating parameters, the influence of exhaust gas recirculation on engine performance is obtained. The optimum operating parameters, such as spark advance, intake pressure, air to fuel ratio, were found to meet the imposed requirements in terms of fuel consumption, knock occurrence, exhaust gas temperature and variation of indicated mean effective pressure. By comparing the results of the base point with the results that used exhaust gas recirculation the improvement in fuel consumption of 8.7%, 11.2% and 1.5% at engine speeds of 2000 rpm, 3500 rpm and 5000

  8. Natural gas for public and private transportation: Present situation and prospects

    International Nuclear Information System (INIS)

    Gambino, M.; Iannaccone, S.; Unich, A.

    1992-01-01

    In recent years, the use of natural gas as an automotive fuel for private and public vehicles has grown due to its interesting chemical-physical properties which make it an efficient fuel and more environmentally compatible than conventional fuels. This promising consumption trend has led to increased R ampersand D investments in attempts to enhance the fuel's automotive performance and exhaust emission characteristics. This paper reviews the advances in these directions which have been made thus far by research teams around the world and assesses commercialization prospects for natural gas automotive fuels in light of the more stringent air pollution regulations being proposed by the European Communities

  9. Exhaust bypass flow control for exhaust heat recovery

    Science.gov (United States)

    Reynolds, Michael G.

    2015-09-22

    An exhaust system for an engine comprises an exhaust heat recovery apparatus configured to receive exhaust gas from the engine and comprises a first flow passage in fluid communication with the exhaust gas and a second flow passage in fluid communication with the exhaust gas. A heat exchanger/energy recovery unit is disposed in the second flow passage and has a working fluid circulating therethrough for exchange of heat from the exhaust gas to the working fluid. A control valve is disposed downstream of the first and the second flow passages in a low temperature region of the exhaust heat recovery apparatus to direct exhaust gas through the first flow passage or the second flow passage.

  10. Measuring the exhaust gas dew point of continuously operated combustion plants

    Energy Technology Data Exchange (ETDEWEB)

    Fehler, D.

    1985-07-16

    Low waste-gas temperatures represent one means of minimizing the energy consumption of combustion facilities. However, condensation should be prevented to occur in the waste gas since this could result in a destruction of parts. Measuring the waste-gas dew point allows to control combustion parameters in such a way as to be able to operate at low temperatures without danger of condensation. Dew point sensors will provide an important signal for optimizing combustion facilities.

  11. The effects of inlet temperature and turbulence characteristics on the flow development inside a gas turbine exhaust diffuser

    Science.gov (United States)

    Bomela, Christian Loangola

    The overall industrial gas turbine efficiency is known to be influenced by the pressure recovery in the exhaust system. The design and, subsequently, the performance of an industrial gas turbine exhaust diffuser largely depend on its inflow conditions dictated by the turbine last stage exit flow state and the restraints of the diffuser internal geometry. Recent advances in Computational Fluid Dynamics (CFD) tools and the availability of computer hardware at an affordable cost made the virtual tool a very attractive one for the analysis of fluid flow through devices like a diffuser. In this backdrop, CFD analyses of a typical industrial gas turbine hybrid exhaust diffuser, consisting of an annular diffuser followed by a conical portion, have been carried out with the purpose of improving the performance of these thermal devices using an open-source CFD code "OpenFOAM". The first phase in the research involved the validation of the CFD approach using OpenFOAM by comparing CFD results against published benchmark experimental data. The numerical results closely captured the flow reversal and the separated boundary layer at the shroud wall where a steep velocity gradient has been observed. The standard k --epsilon turbulence model slightly over-predicted the mean velocity profile in the casing boundary layer while slightly under-predicted it in the reversed flow region. A reliable prediction of flow characteristics in this region is very important as the presence of the annular diffuser inclined wall has the most dominant effect on the downstream flow development. The core flow region and the presence of the hub wall have only a minor influence as reported by earlier experimental studies. Additional simulations were carried out in the second phase to test the veracity of other turbulence models; these include RNG k--epsilon, the SST k--o, and the Spalart-Allmaras turbulence models. It was found that a high resolution case with 47.5 million cells using the SST k

  12. Automotive websites

    CERN Document Server

    Jensen, Todd A

    2006-01-01

    For anyone buying a new car, restoring an old favorite, collecting license plates or looking for motorsports information, the internet is the place to go and this is the book to help you get there. Now with over 650 internet addresses, this expanded and updated guide provides detailed descriptions and reviews of the biggest, best and most interesting automotive websites on the net. Beginning with a brief internet history and helpful hints, it aids the novice (or not so novice) user in picking through the countless automotive sites on the internet. Websites are arranged by topics such as afterm

  13. Effect of water injection and off scheduling of variable inlet guide vanes, gas generator speed and power turbine nozzle angle on the performance of an automotive gas turbine engine

    Science.gov (United States)

    Warren, E. L.

    1980-01-01

    The Chrysler/ERDA baseline automotive gas turbine engine was used to experimentally determine the power augmentation and emissions reductions achieved by the effect of variable compressor and power engine geometry, water injection downstream of the compressor, and increases in gas generator speed. Results were dependent on the mode of variable geometry utilization. Over 20 percent increase in power was accompanied by over 5 percent reduction in SFC. A fuel economy improvement of at least 6 percent was estimated for a vehicle with a 75 kW (100 hp) engine which could be augmented to 89 kW (120 hp) relative to an 89 Kw (120 hp) unaugmented engine.

  14. Implementation of an experimental pilot reproducing the fouling of the exhaust gas recirculation system in diesel engines

    Directory of Open Access Journals (Sweden)

    Crepeau Gérald

    2012-04-01

    Full Text Available The European emission standards EURO 5 and EURO 6 define more stringent acceptable limits for exhaust emissions of new vehicles. The Exhaust Gas Recirculation (EGR system is a partial but essential solution for lowering the emission of nitrogen oxides and soot particulates. Yet, due to a more intensive use than in the past, the fouling of the EGR system is increased. Ensuring the reliability of the EGR system becomes a main challenge. In partnership with PSA Peugeot Citroën, we designed an experimental setup that mimics an operating EGR system. Its distinctive features are (1 its ability to reproduce precisely the operating conditions and (2 its ability to measure the temperature field on the heat exchanger surface with an Infra Red camera for detecting in real time the evolution of the fooling deposit based on its thermal resistance. Numerical codes are used in conjunction with this experimental setup to determine the evolution of the fouling thickness from its thermal resistance.

  15. Influence of biofuels on exhaust gas and noise emissions of small industrial diesel engines; Einfluss von Biokraftstoffen auf die Abgas- und Geraeuschemission kleiner Industriedieselmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Spessert, B.M. [Fachhochschule Jena (Germany). Fachgebiet Kraft- und Arbeitsmaschinen; Schleicher, A. [Fachhochschule Jena (Germany). Fachgebiet Umweltmesstechnik

    2007-03-15

    At small industrial diesel engines, as they were brought in oftentimes on building sites, in the farming and forest industry and on boats, biofuels are increasingly used. In a research project of the University of Applied Sciences Jena, Germany, thus the changes of the exhaust gas pollutant and noise emissions of these diesel engines were investigated. Test fuels were diesel fuel, and also biofuels as biodiesel (RME), rape seed oil and sun flower oil. Depending on the operating point these biofuels increased or reduced the emissions of exhaust gas and noise of the investigated engines clearly. (orig.)

  16. Estimation of current density distribution of PAFC by analysis of cell exhaust gas

    Energy Technology Data Exchange (ETDEWEB)

    Kato, S.; Seya, A. [Fuji Electric Co., Ltd., Ichihara-shi (Japan); Asano, A. [Fuji Electric Corporate, Ltd., Yokosuka-shi (Japan)

    1996-12-31

    To estimate distributions of Current densities, voltages, gas concentrations, etc., in phosphoric acid fuel cell (PAFC) stacks, is very important for getting fuel cells with higher quality. In this work, we leave developed a numerical simulation tool to map out the distribution in a PAFC stack. And especially to Study Current density distribution in the reaction area of the cell, we analyzed gas composition in several positions inside a gas outlet manifold of the PAFC stack. Comparing these measured data with calculated data, the current density distribution in a cell plane calculated by the simulation, was certified.

  17. Performance and exhaust emissions in a natural-gas fueled dual-fuel engine; Tennen gas dual fuel kikan no seino oyobi haiki tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Shioji, M.; Ishiyama, T.; Shibata, H. [Kyoto Univ., Kyoto (Japan). Inst. of Atomic Energy; Ikegami, M. [Fukui Institute of Technology, Fukui (Japan). Faculty of Engineering

    2000-07-25

    In order to establish the optimum fueling in a natural gas fueled dual fuel engine, tests were made for some operational parameters and their combination on the engine performances and the exhaust emissions. The results show that the gas oil quantity should be increased and gas oil injection timing should be advanced to suppress unburned hydrocarbon emission at middle and low output range, while the quantity should be reduced and the timing should be retarded to avoid onset of knock at high loads. The unburned hydrocarbon emission and the thermal efficiency are improved at the same load avoiding too lean natural gas premixture by restriction of intake charge air. However the improvement is limited because the ignition and initial combustion of pilot diesel fuel is deteriorated when the cylinder pressure is excessively lowered by throttling. The increase in pilot gas oil amount is effective for low-load operation and the adequate combination of throttle control and equivalence ratio ensures low hydrocarbon emission and the thermal efficiency comparable to diesel operation. (author)

  18. Comparison of Airway Responses Induced in a Mouse Model by the Gas and Particulate Fractions of Gasoline Direct Injection Engine Exhaust.

    Science.gov (United States)

    Maikawa, Caitlin L; Zimmerman, Naomi; Ramos, Manuel; Shah, Mittal; Wallace, James S; Pollitt, Krystal J Godri

    2018-03-01

    Diesel exhaust has been associated with asthma, but its response to other engine emissions is not clear. The increasing prevalence of vehicles with gasoline direct injection (GDI) engines motivated this study, and the objective was to evaluate pulmonary responses induced by acute exposure to GDI engine exhaust in an allergic asthma murine model. Mice were sensitized with an allergen to induce airway hyperresponsiveness or treated with saline (non-allergic group). Animals were challenged for 2-h to exhaust from a laboratory GDI engine operated at conditions equivalent to a highway cruise. Exhaust was filtered to assess responses induced by the particulate and gas fractions. Short-term exposure to particulate matter from GDI engine exhaust induced upregulation of genes related to polycyclic aromatic hydrocarbon (PAH) metabolism ( Cyp1b1 ) and inflammation ( TNFα ) in the lungs of non-allergic mice. High molecular weight PAHs dominated the particulate fraction of the exhaust, and this response was therefore likely attributable to the presence of these PAHs. The particle fraction of GDI engine exhaust further contributed to enhanced methacholine responsiveness in the central and peripheral tissues in animals with airway hyperresponsiveness. As GDI engines gain prevalence in the vehicle fleet, understanding the health impacts of their emissions becomes increasingly important.

  19. Comparison of Airway Responses Induced in a Mouse Model by the Gas and Particulate Fractions of Gasoline Direct Injection Engine Exhaust

    Directory of Open Access Journals (Sweden)

    Caitlin L. Maikawa

    2018-03-01

    Full Text Available Diesel exhaust has been associated with asthma, but its response to other engine emissions is not clear. The increasing prevalence of vehicles with gasoline direct injection (GDI engines motivated this study, and the objective was to evaluate pulmonary responses induced by acute exposure to GDI engine exhaust in an allergic asthma murine model. Mice were sensitized with an allergen to induce airway hyperresponsiveness or treated with saline (non-allergic group. Animals were challenged for 2-h to exhaust from a laboratory GDI engine operated at conditions equivalent to a highway cruise. Exhaust was filtered to assess responses induced by the particulate and gas fractions. Short-term exposure to particulate matter from GDI engine exhaust induced upregulation of genes related to polycyclic aromatic hydrocarbon (PAH metabolism (Cyp1b1 and inflammation (TNFα in the lungs of non-allergic mice. High molecular weight PAHs dominated the particulate fraction of the exhaust, and this response was therefore likely attributable to the presence of these PAHs. The particle fraction of GDI engine exhaust further contributed to enhanced methacholine responsiveness in the central and peripheral tissues in animals with airway hyperresponsiveness. As GDI engines gain prevalence in the vehicle fleet, understanding the health impacts of their emissions becomes increasingly important.

  20. Review of homogeneous charge compression ignition (HCCI) combustion engines and exhaust gas recirculation (EGR) effects on HCCI

    Science.gov (United States)

    Akma Tuan Kamaruddin, Tengku Nordayana; Wahid, Mazlan Abdul; Sies, Mohsin Mohd

    2012-06-01

    This paper describes the development in ICE which leads to the new advanced combustion mode named Homogeneous Charge Compression Ignition (HCCI). It explains regarding the theory and working principle of HCCI plus the difference of the process in gasoline and diesel fuelled engines. Many of pioneer and recent research works are discussed to get the current state of art about HCCI. It gives a better indication on the potential of this method in improving the fuel efficiency and emission produced by the vehicles' engine. Apart from the advantages, the challenges and future trend of this technology are also included. HCCI is applying few types of control strategy in producing the optimum performance. This paper looks into Exhaust Gas Recirculation (EGR) as one of the control strategies.

  1. Effect of Exhaust Gas Recirculation (EGR) on the Performance Characteristics of a Direct Injection Multi Cylinders Diesel Engine

    OpenAIRE

    Khalil Ibrahim Abaas

    2016-01-01

    Owing  to  the  energy  crisis  and  pollution  problems  of  today  investigations  have  concentrated  on decreasing  fuel  consumption  and  on  lowering  the  concentration  of  toxic  components  in  combustion products by using exhaust gas after treatments methods like PM filters and EGR for NOx reduction. In this study, the combustion characteristics of diesel fuel were compared with that pr oduced from adding EGR at several percentages to air manifold. The tests were performed in a fo...

  2. A New Perspective at the Ship-Air-Sea-Interface: The Environmental Impacts of Exhaust Gas Scrubber Discharge

    Directory of Open Access Journals (Sweden)

    Sonja Endres

    2018-04-01

    Full Text Available Shipping emissions are likely to increase significantly in the coming decades, alongside increasing emphasis on the sustainability and environmental impacts of the maritime transport sector. Exhaust gas cleaning systems (“scrubbers”, using seawater or fresh water as cleaning media for sulfur dioxide, are progressively used by shipping companies to comply with emissions regulations. Little is known about the chemical composition of the scrubber effluent and its ecological consequences for marine life and biogeochemical processes. If scrubbers become a central tool for atmospheric pollution reduction from shipping, modeling, and experimental studies will be necessary to determine the ecological and biogeochemical effects of scrubber wash water discharge on the marine environment. Furthermore, attention must be paid to the regulation and enforcement of environmental protection standards concerning scrubber use. Close collaboration between natural scientists and social scientists is crucial for progress toward sustainable shipping and protection of the marine environment.

  3. Effect of Exhaust Gas Recirculation on Performance of a Diesel Engine Fueled with Waste Plastic Oil / Diesel Blends

    Directory of Open Access Journals (Sweden)

    Punitharani K.

    2017-11-01

    Full Text Available NOx emission is one of the major sources for health issues, acid rain and global warming. Diesel engine vehicles are the major sources for NOx emissions. Hence there is a need to reduce the emissions from the engines by identifying suitable techniques or by means of alternate fuels. The present investigation deals with the effect of Exhaust Gas Recirculation (EGR on 4S, single cylinder, DI diesel engine using plastic oil/Diesel blends P10 (10% plastic oil & 90% diesel in volume, P20 and P30 at various EGR rates. Plastic oil blends were able to operate in diesel engines without any modifications and the results showed that P20 blend had the least NOx emission quantity.

  4. Specific emissions analysis for a combustion engine in dynamometer operation in relation to the thermal state of the exhaust gas aftertreatment systems in a modified NRSC test

    Directory of Open Access Journals (Sweden)

    Merkisz Jerzy

    2017-01-01

    Full Text Available Exhaust gas aftertreatment systems have been present in motor vehicles for decades and have contributed to reducing their impact on the environment and people. Most of them for oxidation or reduction of harmful emissions of particulates and fumes require a certain temperature to be reached that changes with the exhaust temperature, i.e. the points of engine operation. The article describes the effect of oxidation reactor and particulate filter temperatures on specific emissions of gaseous compounds and particulate matter during the modified NRSC engine test. Before the first measurement cycle, the engine was idling, before the second measurement cycle, the exhaust system was heated with exhaust gases at full engine load until passive regeneration of the particle filter occurred (noticeable decrease in instantaneous particle concentration.

  5. The effect of oxygen storage capacity on the dynamic characteristics of an automotive catalytic converter

    International Nuclear Information System (INIS)

    Shamim, Tariq

    2008-01-01

    Automotive catalytic converters, which are employed to reduce engine exhaust emissions, are subjected to highly transient conditions during a typical driving cycle. These transient conditions arise from changes in driving mode, the hysteresis and flow lags of the feedback control system, and result in fluctuations of air-fuel ratio, exhaust gas flow rates and temperatures. The catalyst performance is also strongly influenced by the oxygen storage capacity. This paper presents a computational investigation of the effect of oxygen storage capacity on the dynamic behavior of an automotive catalytic converter subjected to modulations in exhaust gases. The modulations are generated by forcing the temporal variations in exhaust gases air-fuel ratio, gas flow rates and temperatures. The study employs a single-channel based, one-dimensional, non-adiabatic model. The results show that the imposed modulations cause a significant departure in the catalyst behavior from its steady behavior, and the oxygen storage capacity plays an important role in determining the catalyst's response to the imposed modulations. Modulations and oxygen storage capacity are found to have relatively greater influence on the catalyst's performance near stoichiometric conditions

  6. The effect of oxygen storage capacity on the dynamic characteristics of an automotive catalytic converter

    Energy Technology Data Exchange (ETDEWEB)

    Shamim, Tariq [Department of Mechanical Engineering, The University of Michigan-Dearborn, Dearborn, MI 48128-2406 (United States)

    2008-11-15

    Automotive catalytic converters, which are employed to reduce engine exhaust emissions, are subjected to highly transient conditions during a typical driving cycle. These transient conditions arise from changes in driving mode, the hysteresis and flow lags of the feedback control system, and result in fluctuations of air-fuel ratio, exhaust gas flow rates and temperatures. The catalyst performance is also strongly influenced by the oxygen storage capacity. This paper presents a computational investigation of the effect of oxygen storage capacity on the dynamic behavior of an automotive catalytic converter subjected to modulations in exhaust gases. The modulations are generated by forcing the temporal variations in exhaust gases air-fuel ratio, gas flow rates and temperatures. The study employs a single-channel based, one-dimensional, non-adiabatic model. The results show that the imposed modulations cause a significant departure in the catalyst behavior from its steady behavior, and the oxygen storage capacity plays an important role in determining the catalyst's response to the imposed modulations. Modulations and oxygen storage capacity are found to have relatively greater influence on the catalyst's performance near stoichiometric conditions. (author)

  7. Combustion and exhaust emission characteristics of a dual fuel compression ignition engine operated with pilot Diesel fuel and natural gas

    International Nuclear Information System (INIS)

    Papagiannakis, R.G.; Hountalas, D.T.

    2004-01-01

    Towards the effort of reducing pollutant emissions, especially soot and nitrogen oxides, from direct injection Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. These engines are known as dual fuel combustion engines, i.e. they use conventional Diesel fuel and a gaseous fuel as well. This technology is currently reintroduced, associated with efforts to overcome various difficulties of HCCI engines, using various fuels. The use of natural gas as an alternative fuel is a promising solution. The potential benefits of using natural gas in Diesel engines are both economical and environmental. The high autoignition temperature of natural gas is a serious advantage since the compression ratio of conventional Diesel engines can be maintained. The present contribution describes an experimental investigation conducted on a single cylinder DI Diesel engine, which has been properly modified to operate under dual fuel conditions. The primary amount of fuel is the gaseous one, which is ignited by a pilot Diesel liquid injection. Comparative results are given for various engine speeds and loads for conventional Diesel and dual fuel operation, revealing the effect of dual fuel combustion on engine performance and exhaust emissions

  8. Automotive Mechanics.

    Science.gov (United States)

    Linder, Ralph C.; And Others

    This curriculum guide, which was validated by vocational teachers and mechanics in the field, describes the competencies needed by entry-level automotive mechanics. This guide lists 15 competencies; for each competency, various tasks with their performance objective, student learning experiences, suggested instructional techniques, instructional…

  9. Effects of valve timing, valve lift and exhaust backpressure on performance and gas exchanging of a two-stroke GDI engine with overhead valves

    International Nuclear Information System (INIS)

    Dalla Nora, Macklini; Lanzanova, Thompson Diórdinis Metzka; Zhao, Hua

    2016-01-01

    Highlights: • Two-stroke operation was achieved in a four-valve direct injection gasoline engine. • Shorter valve opening durations improved torque at lower engine speeds. • The longer the valve opening duration, the lower was the air trapping efficiency. • Higher exhaust backpressure and lower valve lift reduced the compressor work. - Abstract: The current demand for fuel efficient and lightweight powertrains, particularly for application in downsized and hybrid electric vehicles, has renewed the interest in two-stroke engines. In this framework, an overhead four-valve spark-ignition gasoline engine was modified to run in the two-stroke cycle. The scavenging process took place during a long valve overlap period around bottom dead centre at each crankshaft revolution. Boosted intake air was externally supplied at a constant pressure and gasoline was directly injected into the cylinder after valve closure. Intake and exhaust valve timings and lifts were independently varied through an electrohydraulic valve train, so their effects on engine performance and gas exchanging were investigated at 800 rpm and 2000 rpm. Different exhaust backpressures were also evaluated by means of exhaust throttling. Air trapping efficiency, charging efficiency and scavenge ratio were calculated based on air and fuel flow rates, and exhaust oxygen concentration at fuel rich conditions. The results indicated that longer intake and exhaust valve opening durations increased the charge purity and hence torque at higher engine speeds. At lower speeds, although, shorter valve opening durations increased air trapping efficiency and reduced the estimated supercharger power consumption due to lower air short-circuiting. A strong correlation was found between torque and charging efficiency, while air trapping efficiency was more associated to exhaust valve opening duration. The application of exhaust backpressure, as well as lower intake/exhaust valve lifts, made it possible to increase

  10. [Target and non-target screening of volatile organic compounds in industrial exhaust gas using thermal desorption-gas chromatography-mass spectrometry].

    Science.gov (United States)

    Ma, Huilian; Jin, Jing; Li, Yun; Chen, Jiping

    2017-10-08

    A method of comprehensive screening of the target and non-target volatile organic compounds (VOCs) in industrial exhaust gas using thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) has been developed. In this paper, two types of solid phase adsorption column were compared, and the Tenex SS TD Tube was selected. The analytes were enriched into the adsorption tube by constant flow sampling, and detected by TD-GC-MS in full scan mode. Target compounds were quantified by internal standard method, and the quantities of non-target compounds were calculated by response coefficient of toluene. The method detection limits (MDLs) for the 24 VOCs were 1.06 to 5.44 ng, and MDLs could also be expressed as 0.004 to 0.018 mg/m 3 assuming that the sampling volume was 300 mL. The average recoveries were in the range of 78.4% to 89.4% with the relative standard deviations (RSDs) of 3.9% to 14.4% ( n =7). The established analytical method was applied for the comprehensive screening of VOCs in a waste incineration power plant in Dalian city. Twenty-nine VOCs were identified. In these compounds, only five VOCs were the target compounds set in advance, which accounted for 26.7% of the total VOCs identified. Therefore, this study further proved the importance of screening non-target compounds in the analysis of VOCs in industrial exhaust gas, and has certain reference significance for the complete determination of VOCs distribution.

  11. Control of PCDDs/PCDFs, PCBs and PAHs emissions in exhaust of landfill gas fed engines

    Energy Technology Data Exchange (ETDEWEB)

    Idczak, F.; Dengis, P.; Duchateau, P.; Petitjean, S. [ISSeP, Liege (Belgium)

    2004-09-15

    Wallonia in Belgium, like many countries around the world, planned to reduce amounts of waste generated by human activity and stored in landfills. Since they experienced a couple of crisis situations in the past, both with former and presently used landfill sites, authorities launched a demanding landfill monitoring program which covers now 9 out of the 10 major sites. Biogas produced in these landfills are collected and eliminated in two different ways. Either simply burned in a flare, or, when the methane grade and flow are high enough, the biogas can be burned in electricity producing engines. This later use represents an energy recovery from the waste. In the context of difficulty for landfill sites to be accepted by the public (the well-known NIMBY phenomenon), the question has been raised whether combustion of the biogas did not entail production of dioxins and other polyaromatic compounds. For the exhaust gases of engines operated with biogas, a check on the presence of dioxins and associated organic pollutants, composed of three different runs or days of sampling for each of 5 landfill sites was performed upon demand of responsible authorities.

  12. Regulated and unregulated exhaust gas components from LD vehicles on petrol, diesel, LPG and CNG

    NARCIS (Netherlands)

    Hendriksen, P.; Rijkeboer, R.C.

    1993-01-01

    Four fuels (petrol, LPG, CNG and diesel) are compared on passenger cars and lighter vans. The comparisons are made for the usual regulated components, but also for a number of unregulated components. The project was financed by the Dutch government, the association of gas suppliers, a number of

  13. Desulfurization of the exhaust gas with zeolite synthesized from diatomaceous earth

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, M

    1975-07-01

    Both A type and X type zeolites were prepared from diatomaceous earth and tested for use in flue gas desulfurization. Several diatomaceous earths of known chemical compositions were mixed to obtain a desired molar ratio of silicates, whose maturation was achieved in two steps; room temperature maturation and reflux maturation by heating. If the second maturation was carried out for more than 12 hr, the X type zeolite formation was low. At the best conditions, 80% pure zeolite could be prepared for both types according to their x-ray diffraction spectra. The synthesized x type zeolite adsorbed sulfur dioxide more efficiently than A type zeolite. When a simulated flue gas containing 680 to 840 ppM sulfur dioxide was passed at a flow rate of 9.0 Nl/min through a 250 g zeolite column, the column breaking time (time required for the SO/sub 2/ concentration of the column effluent to reach 10% of the initial SO/sub 2/ concentration) was 5.3 hr, while that for the commercial zeolite and activated carbon was 6.8 hr and 8.0 hr, respectively. If the flue gas contained more than 1% moisture, the adsorbed water reacted with SO/sub 2/ and the zeolite crystal tended to break down. The use of zeolite for flue gas desulfurization was more costly than the use of activated carbon.

  14. 78 FR 63017 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Science.gov (United States)

    2013-10-23

    [email protected] . For legal questions concerning this action contact Karen Petronis, International Law... adopting the gas turbine engine test procedures of the International Civil Aviation Organization (ICAO... regulation did not apply. The word ``exemption'' has a specific legal meaning. In 14 CFR Part 11 the FAA uses...

  15. Selective mixed potential based ammonia exhaust gas sensor; Selektiver Ammoniakabgassensor auf Mischpotentialbasis

    Energy Technology Data Exchange (ETDEWEB)

    Schoenauer, D.; Moos, R. [Bayreuth Univ. (Germany). Lehrstuhl fuer Funktionsmaterialien; Wiesner, K.; Fleischer, M. [Siemens AG, CT PS 6, Muenchen (Germany)

    2007-07-01

    Mixed potential sensors with additional catalytic deposits on one of two electrodes show a high potential for NH{sub 3} detection. With defined reactions at the covered electrode it is possible to derive a temperature dependent correlation between the gas concentration/composition and the sensor signal which is characteristic for the used electrode material and the catalyst.

  16. General Mechanical Repair. Minor Automotive Maintenance. Volume 1. Teacher's Guide.

    Science.gov (United States)

    East Texas State Univ., Commerce. Occupational Curriculum Lab.

    Fourteen units on minor automotive maintenance are presented in this teacher's guide. The units are the following: introduction to minor automotive maintenance, shop safety, engine principles, fuel system operation and repair, electrical system, ignition system, lubrication system, engine cooling system, exhaust system, wheel bearings and tires,…

  17. Device for the catalytic after-burning of exhaust gases in the exhaust gas system of an internal-combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Lange, K

    1975-06-19

    The invention deals with a device which protects the catalyst for the after-burning of exhaust gases against damage by high temperatures. When the catalyst temperature reaches a certain limiting value, a throttle is activated by an electrical control device influenced by a temperature sensor via a servomotor. The throttle valve opens a by-pass for the exhaust gases which had previously flowed through the system for catalytic after-burning. In order to prevent the throttle from rusting due to its rare use, it is regularly put into use after switching off the ignition of the internal-combustion engine by the still briefly present oil pressure in the engine via an oil pressure switch and the mentioned control device.

  18. A Numerical Study on Using Air Cooler Heat Exchanger for Low Grade Energy Recovery from Exhaust Flue Gas in Natural Gas Pressure Reduction Stations

    Directory of Open Access Journals (Sweden)

    Mansoor Naderi

    2018-01-01

    Full Text Available Heat EXchangers (HEX that are used in City Gate Station (CGS systems are modeled numerically to recover the exhaust waste heat. It was tried to find the best viscous model to obtain results in accordance with experimental results and to change the heat exchanger design. This HEX is used for recovering heat from exhaust flue gas with a mixture of 40% water and 60% ethylene glycol as the cooling fluid. Then, the effects of sizes and numbers of fins and tube rows on recovered heat rate were investigated under various pump speeds. As the first step in solving the problem, SST k–ω and RNG k–ε suitable viscous models were chosen for these kinds of problems. Secondly, a new HEX is designed at a fixed coolant speed, pipe and fin thickness, and shell dimension because of operational constraints. Finally, the best HEX with the minimum pressure drop (minimum fin number is numerically analyzed, and the new HEX specifications were extracted.

  19. Influence of cooled exhaust gas recirculation on performance, emissions and combustion characteristics of LPG fuelled lean burn SI engine

    Science.gov (United States)

    Ravi, K.; Pradeep Bhasker, J.; Alexander, Jim; Porpatham, E.

    2017-11-01

    On fuel perspective, Liquefied Petroleum Gas (LPG) provides cleaner emissions and also facilitates lean burn signifying less fuel consumption and emissions. Lean burn technology can attain better efficiencies and lesser combustion temperatures but this temperature is quite sufficient to facilitate formation of nitrogen oxide (NOx). Exhaust Gas Recirculation (EGR) for NOx reduction has been considered allover but extremely little literatures exist on the consequence of EGR on lean burn LPG fuelled spark ignition (SI) engine. The following research is carried out to find the optimal rate of EGR addition to reduce NOx emissions without settling on performance and combustion characteristics. A single cylinder diesel engine is altered to operate as LPG fuelled SI engine at a compression ratio of 10.5:1 and arrangements to provide different ratios of cooled EGR in the intake manifold. Investigations are done to arrive at optimum ratio of the EGR to reduce emissions without compromising on performance. Significant reductions in NOx emissions alongside HC and CO emissions were seen. Higher percentages of EGR further diluted the charge and lead to improper combustion and thus increased hydrocarbon emissions. Cooled EGR reduced the peak in-cylinder temperature which reduced NOx emissions but lead to misfire at lower lean limits.

  20. Storage of Nitrous Oxide (NOx in Diesel Engine Exhaust Gas using Alumina-Based Catalysts: Preparation, Characterization, and Testing

    Directory of Open Access Journals (Sweden)

    A. Alsobaai

    2017-03-01

    Full Text Available This work investigated the nitrous oxide (NOx storage process using alumina-based catalysts (K2 O/Al2 O3 , CaO/Al2 O3,  and BaO/Al2 O3 . The feed was a synthetic exhaust gas containing 1,000 ppm of nitrogen monoxide (NO, 1,000 ppm i-C4 H10 , and an 8% O2  and N2  balance. The catalyst was carried out at temperatures between 250–450°C and a contact time of 20 minutes. It was found that NOx was effectively adsorbed in the presence of oxygen. The NOx storage capacity of K2 O/Al2 O3 was higher than that of BaO/Al2 O3.  The NOx storage capacity for K2 O/Al2 O3  decreased with increasing temperature and achieved a maximum at 250°C. Potassium loading higher than 15% in the catalyst negatively affected the morphological properties. The combination of Ba and K loading in the catalyst led to an improvement in the catalytic activity compared to its single metal catalysts. As a conclusion, mixed metal oxide was a potential catalyst for de-NOx process in meeting the stringent diesel engine exhaust emissions regulations. The catalysts were characterized by a number of techniques and measurements, such as X-ray diffraction (XRD, electron affinity (EA, a scanning electron microscope (SEM, Brunner-Emmett-Teller (BET to measure surface area, and pore volume and pore size distribution assessments.

  1. Automotive turbogenerator design options

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, C. [ITC, San Diego, CA (United States); McDonald, C. [McDonald Thermal Engineering, La Jolla, CA (United States)

    1998-12-31

    For the small turbogenerator to find reception in the hybrid electric automotive market its major features must be dominated by the following considerations, low cost, high performance, low emissions, compact size and high reliability. Not meeting the first two criteria has been the nemesis of earlier attempts to introduce the small gas turbine for automotive service. With emphasis on the design for low cost and high performance, this paper presents several turbogenerator design flowpath configuration options for the major engine components. The projected evolution from today`s state-of-the-art all metallic engines, to advanced technology ceramic units for service in the early decade of the 21st century, is the major topic of this paper. (author)

  2. Multidimensional modeling of the effect of Exhaust Gas Recirculation (EGR) on exergy terms in an HCCI engine fueled with a mixture of natural gas and diesel

    International Nuclear Information System (INIS)

    Jafarmadar, Samad; Nemati, Peyman; Khodaie, Rana

    2015-01-01

    Highlights: • The exergy efficiency decreases by 41.3%. • The irreversibility increases by 46.80%. • The cumulative heat loss exergy decreases by 68.10%. • The cumulative work exergy decreases by 63.4%. • The exhaust losses exergy increases by 28.79%. - Abstract: One of the most important issues in HCCI engines is auto-ignition timing control. EGR introduction into intake charge can be a method to control combustion phasing and its duration. In the current study, a FORTRAN-based code which includes 10 species (O_2, N_2, H_2O, CO_2, CO, H_2, OH, O, N, NO) associated with combustion products was employed to study the exergy analysis in a dual fuel (natural gas + diesel) HCCI engine at four EGR (exhaust gas recirculation) mass fractions (0%, 10%, 20%, and 30%) while the diesel fuel amount was held constant. In order to achieve this task, a 3-D CFD code was employed to model the energy balance during a closed cycle of running engine simulation. Moreover, an efficient Extend Coherent Flame Model-Three Zone model (ECFM-3Z) method was employed to analyze the combustion process. With crank positions at different EGR mass fractions, the exergy terms were identified and calculated separately. It was found that as EGR mass fraction increased from 0% to 30% (in 10% increment steps), exergy efficiency decreased from 48.9% to 28.7%. Furthermore, with the change in EGR mass fraction, the cumulative heat loss exergy decreased from 10.1% to 5.64% of mixture fuels chemical exergy.

  3. Mutagenicity of diesel engine exhaust is eliminated in the gas phase by an oxidation catalyst but only slightly reduced in the particle phase.

    Science.gov (United States)

    Westphal, Götz A; Krahl, Jürgen; Munack, Axel; Ruschel, Yvonne; Schröder, Olaf; Hallier, Ernst; Brüning, Thomas; Bünger, Jürgen

    2012-06-05

    Concerns about adverse health effects of diesel engine emissions prompted strong efforts to minimize this hazard, including exhaust treatment by diesel oxidation catalysts (DOC). The effectiveness of such measures is usually assessed by the analysis of the legally regulated exhaust components. In recent years additional analytical and toxicological tests were included in the test panel with the aim to fill possible analytical gaps, for example, mutagenic potency of polycyclic aromatic hydrocarbons (PAH) and their nitrated derivatives (nPAH). This investigation focuses on the effect of a DOC on health hazards from combustion of four different fuels: rapeseed methyl ester (RME), common mineral diesel fuel (DF), SHELL V-Power Diesel (V-Power), and ARAL Ultimate Diesel containing 5% RME (B5ULT). We applied the European Stationary Cycle (ESC) to a 6.4 L turbo-charged heavy load engine fulfilling the EURO III standard. The engine was operated with and without DOC. Besides regulated emissions we measured particle size and number distributions, determined the soluble and solid fractions of the particles and characterized the bacterial mutagenicity in the gas phase and the particles of the exhaust. The effectiveness of the DOC differed strongly in regard to the different exhaust constituents: Total hydrocarbons were reduced up to 90% and carbon monoxide up to 98%, whereas nitrogen oxides (NO(X)) remained almost unaffected. Total particle mass (TPM) was reduced by 50% with DOC in common petrol diesel fuel and by 30% in the other fuels. This effect was mainly due to a reduction of the soluble organic particle fraction. The DOC caused an increase of the water-soluble fraction in the exhaust of RME, V-Power, and B5ULT, as well as a pronounced increase of nitrate in all exhausts. A high proportion of ultrafine particles (10-30 nm) in RME exhaust could be ascribed to vaporizable particles. Mutagenicity of the exhaust was low compared to previous investigations. The DOC reduced

  4. Gas Turbine Engine Having Fan Rotor Driven by Turbine Exhaust and with a Bypass

    Science.gov (United States)

    Suciu, Gabriel L. (Inventor); Chandler, Jesse M. (Inventor)

    2016-01-01

    A gas turbine engine has a core engine incorporating a core engine turbine. A fan rotor is driven by a fan rotor turbine. The fan rotor turbine is in the path of gases downstream from the core engine turbine. A bypass door is moveable from a closed position at which the gases from the core engine turbine pass over the fan rotor turbine, and moveable to a bypass position at which the gases are directed away from the fan rotor turbine. An aircraft is also disclosed.

  5. Reduction of nitrogen oxides from simulated exhaust gas by using plasma-catalytic process

    International Nuclear Information System (INIS)

    Mok, Young Sun; Koh, Dong Jun; Shin, Dong Nam; Kim, Kyong Tae

    2004-01-01

    Removal of nitrogen oxides (NO x ) using a nonthermal plasma reactor (dielectric-packed bed reactor) combined with monolith V 2 O 5 /TiO 2 catalyst was investigated. The effect of initial NO x concentration, feed gas flow rate (space velocity), humidity, and reaction temperature on the removal of NO x was examined. The plasma reactor used can be energized by either ac or pulse voltage. An attempt was made to utilize the electrical ignition system of an internal combustion engine as a high-voltage pulse generator for the plasma reactor. When the plasma reactor was energized by the electrical ignition system, NO was readily oxidized to NO 2 . Performance was as good as with ac energization. Increasing the fraction of NO 2 in NO x , which is the main role of the plasma reactor, largely enhanced the NO x removal efficiency. In the plasma-catalytic reactor, the increases in initial NO x concentration, space velocity (feed gas flow rate) and humidity lowered the NO x removal efficiency. However, the reaction temperature in the range up to 473 K did not significantly affect the NO x removal efficiency in the presence of plasma discharge

  6. Exhaust gas sensors for NO{sub x} storage catalysts and ammonia SCR systems; Abgassensoren fuer NO{sub x}-Speicherkatalysatoren und Ammoniak-SCR-Systeme

    Energy Technology Data Exchange (ETDEWEB)

    Moos, R. [Bayreuth Univ. (DE). Bayreuth Engine Research Center (BERC)

    2008-07-01

    Measuring of the air-to-fuel ratio and/or the exhaust gas oxygen content with the help of an exhaust gas sensor has been established thirty years ago. Whereas the original thimble type lambda probe, which is still shown today in textbooks, is a product of classical ceramic technology, newer sensors are manufactured in planar multilayer technology stemming from electronic technology. This is the basis for additional functionalities like NO{sub x} or ammonia sensitivities. Due to increasing requirements for OBD, the sensor of the future might be a multifunctional device which allows for measuring application specific components as well as lambda in a wide range. From a technical standpoint, it would even today be feasible to manufacture an integrated exhaust gas sensor that can measure ammonia, NO{sub x}, and lambda at the same time. Whether the direct catalyst status diagnosis will become ripe for serial application does not depends only on technical questions and cost considerations but also on the issue whether one is willing to establish a completely novel way of catalyst detection in the exhaust pipe. (orig.)

  7. Automotive sensors

    Science.gov (United States)

    Marek, Jiri; Illing, Matthias

    2003-01-01

    Sensors are an essential component of most electronic systems in the car. They deliver input parameters for comfort features, engine and emission control as well as for the active and passive safety systems. New technologies such as silicon micromachining play an important role for the introduction of these sensors in all vehicle classes. The importance and use of these sensor technologies in today"s automotive applications will be shown in this article. Finally an outlook on important current developments and new functions in the car will be given.

  8. An Approach to the Prototyping of an Optimized Limited Stroke Actuator to Drive a Low Pressure Exhaust Gas Recirculation Valve.

    Science.gov (United States)

    Gutfrind, Christophe; Dufour, Laurent; Liebart, Vincent; Vannier, Jean-Claude; Vidal, Pierre

    2016-05-20

    The purpose of this article is to describe the design of a limited stroke actuator and the corresponding prototype to drive a Low Pressure (LP) Exhaust Gas Recirculation (EGR) valve for use in Internal Combustion Engines (ICEs). The direct drive actuator topology is an axial flux machine with two air gaps in order to minimize the rotor inertia and a bipolar surface-mounted permanent magnet in order to respect an 80° angular stroke. Firstly, the actuator will be described and optimized under constraints of a 150 ms time response, a 0.363 N·m minimal torque on an angular range from 0° to 80° and prototyping constraints. Secondly, the finite element method (FEM) using the FLUX-3D(®) software (CEDRAT, Meylan, France) will be used to check the actuator performances with consideration of the nonlinear effect of the iron material. Thirdly, a prototype will be made and characterized to compare its measurement results with the analytical model and the FEM model results. With these electromechanical behavior measurements, a numerical model is created with Simulink(®) in order to simulate an EGR system with this direct drive actuator under all operating conditions. Last but not least, the energy consumption of this machine will be estimated to evaluate the efficiency of the proposed EGR electromechanical system.

  9. Switching strategy between HP (high pressure)- and LPEGR (low pressure exhaust gas recirculation) systems for reduced fuel consumption and emissions

    International Nuclear Information System (INIS)

    Luján, José Manuel; Guardiola, Carlos; Pla, Benjamín; Reig, Alberto

    2015-01-01

    EGR (Exhaust gas recirculation) plays a major role in current Diesel internal combustion engines as a cost-effective solution to reduce NO_x emissions. EGR systems will suffer a significant evolution with the introduction of NO_x after-treatment and the proliferation of more complex EGR architectures such as low pressure EGR or dual EGR. In this paper the combination of HPEGR (high pressure EGR) LPEGR (low pressure EGR) is presented as a method to minimise fuel consumption with reduced NO_x emissions. Particularly, the paper proposes to switch between HPEGR and LPEGR architectures depending on the engine operating conditions in order to exploit the potential of both systems. In this sense, given a driving cycle, in the case at hand the NEDC, the proposed strategy seeks the EGR layout to use at each instant of the cycle to minimise the fuel consumption such that NO_x emissions are kept below a certain limit. The experimental results obtained show that combining both EGR systems sequentially along the NEDC allows to keep NO_x emission below a much lower limit with minimum fuel consumption. - Highlights: • The combination of HP–LPEGR reduces the NO_x with a small impact on consumption. • The switching strategy between HP – LPEGR is derived from Optimal Control Theory. • The proposed strategy is validated experimentally.

  10. An Approach to the Prototyping of an Optimized Limited Stroke Actuator to Drive a Low Pressure Exhaust Gas Recirculation Valve

    Science.gov (United States)

    Gutfrind, Christophe; Dufour, Laurent; Liebart, Vincent; Vannier, Jean-Claude; Vidal, Pierre

    2016-01-01

    The purpose of this article is to describe the design of a limited stroke actuator and the corresponding prototype to drive a Low Pressure (LP) Exhaust Gas Recirculation (EGR) valve for use in Internal Combustion Engines (ICEs). The direct drive actuator topology is an axial flux machine with two air gaps in order to minimize the rotor inertia and a bipolar surface-mounted permanent magnet in order to respect an 80° angular stroke. Firstly, the actuator will be described and optimized under constraints of a 150 ms time response, a 0.363 N·m minimal torque on an angular range from 0° to 80° and prototyping constraints. Secondly, the finite element method (FEM) using the FLUX-3D® software (CEDRAT, Meylan, France) will be used to check the actuator performances with consideration of the nonlinear effect of the iron material. Thirdly, a prototype will be made and characterized to compare its measurement results with the analytical model and the FEM model results. With these electromechanical behavior measurements, a numerical model is created with Simulink® in order to simulate an EGR system with this direct drive actuator under all operating conditions. Last but not least, the energy consumption of this machine will be estimated to evaluate the efficiency of the proposed EGR electromechanical system. PMID:27213398

  11. Effect on Vehicle Turbocharger Exhaust Gas Energy Utilization for the Performance of Centrifugal Compressors under Plateau Conditions

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2017-12-01

    Full Text Available This paper is focused on the performance of centrifugal compressors for vehicle turbochargers operating at high altitude. The reasons for turbocharged diesel engine power loss increases and bad economy performance caused by exhaust gas energy utilization are investigated. The atmosphere’s impact on the turbocharger centrifugal compressor’s energy distribution characteristics under the plateau is discussed. The key parameters that affect compressor characteristics are concluded in a theoretical method. A simulation calculation model is established to accurately predict compressor performance at high altitude. By comparing the experimental results, the calculation results are validated. The details of the internal flow fields analysis, including critical parameters of a compressor operating at high altitude, are analyzed. The results show that with the increase of altitude from 0 m to 4500 m, the peak efficiency of the compressor is reduced by 2.4%, while the peak pressure ratio is increased by 7%. The main influence characters of the plateau environment on the turbocharger centrifugal compressor performance, such as blade loads, exergy utilization and entropy distribution are concluded. The key factors for compressor performance and compressor energy flow control design method operated at high altitude are obtained.

  12. Combustion and exhaust emission characteristics of a compression ignition engine using liquefied petroleum gas-Diesel blended fuel

    International Nuclear Information System (INIS)

    Qi, D.H.; Bian, Y.ZH.; Ma, ZH.Y.; Zhang, CH.H.; Liu, SH.Q.

    2007-01-01

    Towards the effort of reducing pollutant emissions, especially smoke and nitrogen oxides, from direct injection (DI) Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. The use of liquefied petroleum gas (LPG) as an alternative fuel is a promising solution. The potential benefits of using LPG in Diesel engines are both economical and environmental. The high auto-ignition temperature of LPG is a serious advantage since the compression ratio of conventional Diesel engines can be maintained. The present contribution describes an experimental investigation conducted on a single cylinder DI Diesel engine, which has been properly modified to operate under LPG-Diesel blended fuel conditions, using LPG-Diesel blended fuels with various blended rates (0%, 10%, 20%, 30%, 40%). Comparative results are given for various engine speeds and loads for conventional Diesel and blended fuels, revealing the effect of blended fuel combustion on engine performance and exhaust emissions

  13. Investigation into relative temperature measurement of pulsed constrained gas flow using passive acoustic means

    OpenAIRE

    Moss, Joseph Brian

    2011-01-01

    peer-reviewed The requirement to measure the real time, dynamic temperature of exhaust system gases is becoming more and more important in the areas of aeronautics, automotive (cars, trucks, etc), marine and industrial/environmental applications, in particular on a cycleby-cycle (CBC) basis. Monitoring exhaust gas temperatures of any power-plant can give important diagnostic information for the monitoring of fuel mixture, combustion efficiency etc. This 'diagnostic' information can b...

  14. Developing Computational Fluid Dynamics (CFD Models to Evaluate Available Energy in Exhaust Systems of Diesel Light-Duty Vehicles

    Directory of Open Access Journals (Sweden)

    Pablo Fernández-Yáñez

    2017-06-01

    Full Text Available Around a third of the energy input in an automotive engine is wasted through the exhaust system. Since numerous technologies to harvest energy from exhaust gases are accessible, it is of great interest to find time- and cost-efficient methods to evaluate available thermal energy under different engine conditions. Computational fluid dynamics (CFD is becoming a very valuable tool for numerical predictions of exhaust flows. In this work, a methodology to build a simple three-dimensional (3D model of the exhaust system of automotive internal combustion engines (ICE was developed. Experimental data of exhaust gas in the most used part of the engine map in passenger diesel vehicles were employed as input for calculations. Sensitivity analyses of different numeric schemes have been conducted in order to attain accurate results. The model built allows for obtaining details on temperature and pressure fields along the exhaust system, and for complementing the experimental results for a better understanding of the flow phenomena and heat transfer through the system for further energy recovery devices.

  15. Positional Arrangements of Waste Exhaust Gas Ducts of C-Type Balanced Chimney Heating Devices on Building Façades

    Directory of Open Access Journals (Sweden)

    Erkan AVLAR

    2009-01-01

    Full Text Available In Turkey today, with the increase in availability of natural gas,detached heating devices are being preferred over existingheating devices. Due to the lack of chimneys in existing buildingsin Turkey or the presence of chimneys that fail to conformto standards, the use of C-type balanced chimney devices has increased.C-type balanced chimney devices take the combustionair directly from the outside by a specific air duct as detachedheating equipment, with enclosed combustion chambers anda specific waste gas exhaust duct, and they are ventilated independentlyof the field of equipment. Because of their essentiality,the use of a chimney is not required in these devices;the waste gas is exhausted through walls, windows, doors, orbalconies. The natural gas is a clean fossil fuel that requires nostorage in buildings and is easy to use. However, water vapor,carbon dioxide and nitrogen oxides are produced by the combustionof natural gas. It is widely known that high concentrationsof these products can have some adverse effects onhumans such as dizziness, headaches and nausea. As a result,the waste products could recoil through wall openings on thefaçade to create unhealthy indoor environments that could bedangerous to human health. Therefore, the importance of standardsand regulations about the positional arrangements of thewaste gas exhaust ducts of C-type balanced chimney devices onbuilding façades is increasing. In this research, we analyze thestudies of the Institution of Turkish Standards, Chamber of MechanicalEngineers, gas distribution companies, municipalitiesand authorized firms and compare the criteria to determine thenecessary application method. According to our comparison ofthe references accessed, the criteria are not uniform.

  16. Antenna Arrays and Automotive Applications

    CERN Document Server

    Rabinovich, Victor

    2013-01-01

    This book throws a lifeline to designers wading through mounds of antenna array patents looking for the most suitable systems for their projects. Drastically reducing the research time required to locate solutions to the latest challenges in automotive communications, it sorts and systematizes material on cutting-edge antenna arrays that feature multi-element communication systems with enormous potential for the automotive industry. These new systems promise to make driving safer and more efficient, opening up myriad applications, including vehicle-to-vehicle traffic that prevents collisions, automatic toll collection, vehicle location and fine-tuning for cruise control systems. This book’s exhaustive coverage begins with currently deployed systems, frequency ranges and key parameters. It proceeds to examine system geometry, analog and digital beam steering technology (including "smart" beams formed in noisy environments), maximizing signal-to-noise ratios, miniaturization, and base station technology that ...

  17. Studi Experimental Penggunaan Venturi Scrubber Dan Cyclonic Separator Untuk Meningkatkan Kinerja Pada Sistem Exhaust Gas Recirculation (EGR) Dalam Menurunkan NOX Pada Motor Diesel

    OpenAIRE

    N, Samsu Dlukha; Ariana, I Made; Fathallah, Aguk Z. M

    2012-01-01

    Salah satu cara yang efektif untuk mengurangi NOX adalah dengan menggunakan metode Exhaust Gas Recirculation (EGR). Dengan metode EGR, oksigen yang masuk ke ruang bakar akan berkurang sehingga NOX dapat diturunkan dengan signifikan, akan tetapi power dari mesin tersebut juga akan berkurang dan Particulate Matter (PM) akan naik secara signifikan. Dalam penelitian ini dibahas penggunaan EGR yang telah di optimalkan dengan penambahan venturi scrubber dan cyclonic separator, tujuannya mengurangi ...

  18. Investigations towards the use of Gd0.7Ca0.3CoOx as membrane in an exhaust gas sensor for NOx

    NARCIS (Netherlands)

    Romer, E.W.J.; Nigge, Ulrich; Schulte, Thomas; Wiemhöfer, Hans-Dieter; Bouwmeester, Henricus J.M.

    2001-01-01

    Application of a material with the nominal composition Gd0.7Ca0.3CoOx is considered for use as membrane material in an exhaust gas sensor for NOx. SEM–EDX and XRD measurements revealed that after sintering at 1200°C in air, three co-existing phases are present: (Gd0.6Ca0.4)2CoOx (60 vol.%), GdCoO3

  19. Environmental potential of the alternative automotive fuels biogas, ethanol, methanol, natural gas, rape oil methyl ester, and dimethyl ether

    International Nuclear Information System (INIS)

    Egebaeck, K.E.; Westerholm, R.

    1997-09-01

    The aim of the project was to estimate the future emission levels when using alternative fuels, as a contribution to the Committee for Evaluation of Alternative Automotive Fuels (organized by the Swedish Ministry of Environment). The method used for the project was to use the today's knowledge about the emission levels and the emission control technology as a base for the estimation of what additional potential there is to decrease the emissions by coming development of vehicles and the emission control technology. The results of the analysis and the estimations show that there exist a positive development for all types of vehicles and alternative fuels. However, there will be a difference between the different fuel alternatives depending on chemical and physical differences between the different fuels. There will also be a difference in the possibilities of the different fuels to capture a market which will have certain impact on the willingness and the economic possibilities for the car manufacturers to invest in the development needed to reach low emission levels. 124 refs

  20. Carbon nanotube-like materials in the exhaust from a diesel engine using gas oil/ethanol mixing fuel with catalysts and sulfur.

    Science.gov (United States)

    Suzuki, Shunsuke; Mori, Shinsuke

    2017-08-01

    Particulate matter from a diesel engine, including soot and carbon nanomaterials, was collected on a sampling holder and the structure of the materials was studied by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). As a result of employing gas oil/ethanol mixing fuel with sulfur and ferrocene/molybdenum as catalyst sources, formation of carbon nanotubes (CNT)-like materials in addition to soot was observed in the exhaust gas from a diesel engine. It was revealed that CNT-like materials were included among soot in our system only when the following three conditions were satisfied simultaneously: high ethanol fraction in fuel, high sulfur loading, and presence of catalyst sources in fuel. This study confirmed that if at least one of these three conditions was not satisfied, CNT-like materials were not observed in the exhaust from a diesel engine. These experimental results shown in this work provide insights into understanding CNT-like material formation mechanism in a diesel engine. Recent papers reported that carbon nanotube-like materials were included in the exhaust gas from engines, but conditions for carbon nanotube-like material formation have not been well studied. This work provides the required conditions for carbon nanotube-like material growth in a diesel engine, and this will be helpful for understanding the carbon nanotube-like material formation mechanism and taking countermeasures to preventing carbon nanotube-like material formation in a diesel engine.

  1. Emission and performance analysis on the effect of exhaust gas recirculation in alcohol-biodiesel aspirated research diesel engine.

    Science.gov (United States)

    Mahalingam, Arulprakasajothi; Munuswamy, Dinesh Babu; Devarajan, Yuvarajan; Radhakrishnan, Santhanakrishnan

    2018-05-01

    In this study, the effect of blending pentanol to biodiesel derived from mahua oil on emissions and performance pattern of a diesel engine under exhaust gas recirculation (EGR) mode was examined and compared with diesel. The purpose of this study is to improve the feasibility of employing biofuels as a potential alternative in an unmodified diesel engine. Two pentanol-biodiesel blends denoted as MOBD90P10 and MOBD80P20 which matches to 10 and 20 vol% of pentanol in biodiesel, respectively, were used as fuel in research engine at 10 and 20% EGR rates. Pentanol is chosen as a higher alcohol owing to its improved in-built properties than the other first-generation alcohols such as ethanol or methanol. Experimental results show that the pentanol and biodiesel blends (MOBD90P10 and MOBD80P20) have slightly higher brake thermal efficiency (0.2-0.4%) and lower brake-specific fuel consumption (0.6 to 1.1%) than that of neat biodiesel (MOBD100) at all engine loads. Nitrogen oxide (NOx) emission and smoke emission are reduced by 3.3-3.9 and 5.1-6.4% for pentanol and biodiesel blends compared to neat biodiesel. Introduction of pentanol to biodiesel reduces the unburned hydrocarbon (2.1-3.6%) and carbon monoxide emissions (3.1-4.2%) considerably. In addition, at 20% EGR rate, smoke, NO X emissions, and BTE drop by 7.8, 5.1, and 4.4% respectively. However, CO, HC emissions, and BSFC increased by 2.1, 2.8, and 3.8%, respectively, when compared to 0% EGR rate.

  2. Determination of benzene in exhaust gas from biofuels. Final report; Bestimmung von Benzol im Abgas von Biokraftstoffen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Dutz, M.; Buenger, J.; Gnuschke, H.; Halboth, H.; Gruedl, P.; Krahl, J.

    2001-10-01

    With the advance of environmental legislation and practices oriented towards sustainability renewable energy resources are becoming increasingly important. Use of replenishable raw materials helps preserve fossil resources. In the fuel sector the most widely used replenishable materials are rape methyl ester (RME) and ethyl tertiary butyl ether (ETBE). The purpose of the present project on the ''Determination of benzene in exhaust gas from biofuels'' was to generate orienting data on the potential health relevance of mixtures of fossil and renewable fuel intended for use in spark ignition and diesel engines. This included a determination of benzene emissions and the mutagenicity of particles. Beyond the applied-for scope of research measurements were also performed on the test engine's toluene, ethyl benzene and xylene emissions as well as on the smoke spot number and nitrogen oxide (NO{sub x}) and hydrocarbon (HC) emissions of the diesel engine. [German] Regenerative Energien gewinnen durch die Umweltgesetzgebungen und das Streben nach einer nachhaltigen Entwicklung zunehmend an Bedeutung. Durch die Verwendung nachwachsender Rohstoffe koennen die fossilen Ressourcen geschont werden. Im Kraftstoffsektor sind hier hauptsaechlich Rapsoelmethylester (RME) und optional Ethyltertiaerbutylether (ETBE) zu nennen. Um fuer Diesel- und Ottomotoren insbesondere mit Blick auf Kraftstoffgemische aus fossilen und regenerativen Komponenten orientierende Daten ueber eine potenzielle Gesundheitsrelevanz zu generieren, wurde das Projekt 'Bestimmung von Benzol im Abgas von Biokraftstoffen' durchgefuehrt. Neben der Benzolemission wurde die Mutagenitaet der Partikeln ermittelt. Ueber den beantragten Untersuchungsrahmen hinaus wurden die Tuluol-, Ethylbenzol-, und Xylolemissionen der eingesetzten Motoren, sowie die Russzahl (RZ) und die Stickoxid- (NO{sub x}) und Kohlenwasserstoffemissionen (HC) des Dieselmotors bestimmt. (orig.)

  3. Black carbon from ships: a review of the effects of ship speed, fuel quality and exhaust gas scrubbing

    Science.gov (United States)

    Lack, D. A.; Corbett, J. J.

    2012-05-01

    The International Maritime Organization (IMO) has moved to address the health and climate impact of the emissions from the combustion of low-quality residual fuels within the commercial shipping industry. Fuel sulfur content (FS) limits and an efficiency design index for future ships are examples of such IMO actions. The impacts of black carbon (BC) emissions from shipping are now under review by the IMO, with a particular focus on the potential impacts of future Arctic shipping. Recognizing that associating impacts with BC emissions requires both ambient and onboard observations, we provide recommendations for the measurement of BC. We also evaluate current insights regarding the effect of ship speed (engine load), fuel quality and exhaust gas scrubbing on BC emissions from ships. Observations demonstrate that BC emission factors (EFBC) increases 3 to 6 times at very low engine loads (engine load, even with reduced load fuel savings. If fleets were required to operate at lower maximum engine loads, presumably associated with reduced speeds, then engines could be re-tuned, which would reduce BC emissions. Ships operating in the Arctic are likely running at highly variable engine loads (25-100%) depending on ice conditions and ice breaking requirements. The ships operating at low load may be emitting up to 50% more BC than they would at their rated load. Such variable load conditions make it difficult to assess the likely emissions rate of BC. Current fuel sulfur regulations have the effect of reducing EFBC by an average of 30% and potentially up to 80% regardless of engine load; a removal rate similar to that of scrubbers. Uncertainties among current observations demonstrate there is a need for more information on a) the impact of fuel quality on EFBC using robust measurement methods and b) the efficacy of scrubbers for the removal of particulate matter by size and composition.

  4. Thermodynamic and economic performances optimization of an organic Rankine cycle system utilizing exhaust gas of a large marine diesel engine

    International Nuclear Information System (INIS)

    Yang, Min-Hsiung; Yeh, Rong-Hua

    2015-01-01

    Highlights: • A new parameter is proposed for optimizing economic performance of the ORC system. • Maximal thermodynamic and economic performances of an ORC system are presented. • The corresponding operating pressures in turbine of optimum thermodynamic and economic performances are investigated. • An optimal effectiveness of pre-heater is obtained for the ORC system. - Abstract: The aim of this study is to investigate the thermodynamic and economic performances optimization for an ORC system recovering the waste heat of exhaust gas from a large marine diesel engine of the merchant ship. Parameters of net power output index and thermal efficiency are used to represent the economic and thermodynamic performances, respectively. The maximum net power output index and thermal efficiency are obtained and the corresponding turbine inlet pressure, turbine outlet pressure, and effectiveness of pre-heater of the ORC system are also evaluated using R1234ze, R245fa, R600, and R600a. Furthermore, the analyses of the effects of turbine inlet temperature and cooling water temperature on the optimal economic and thermodynamic performances of the ORC system are carried out. The results show that R245fa performs the most satisfactorily followed by R600, R600a, and R1234ze under optimal economic performance. However, in the optimal thermodynamic performance evaluations, R1234ze has the largest thermal efficiency followed by R600a, R245fa, and R600. The payback periods will decrease from 0.5 year for R245fa to 0.65 year for R1234ze respectively as the system is equipped with a pre-heater. In addition, compared with conventional diesel oil feeding, the proposed ORC system can reduce 76% CO 2 emission per kilowatt-hour

  5. Controlling exhaust gas recirculation

    Science.gov (United States)

    Zurlo, James Richard [Madison, WI; Konkle, Kevin Paul [West Bend, WI; May, Andrew [Milwaukee, WI

    2012-01-31

    In controlling an engine, an amount of an intake charge provided, during operation of the engine, to a combustion chamber of the engine is determined. The intake charge includes an air component, a fuel component and a diluent component. An amount of the air component of the intake charge is determined. An amount of the diluent component of the intake charge is determined utilizing the amount of the intake charge, the amount of the air component and, in some instances, the amount of the fuel component. An amount of a diluent supplied to the intake charge is adjusted based at least in part on the determined amount of diluent component of the intake charge.

  6. Life-cycle analysis of energy and greenhouse gas emissions of automotive fuels in India: Part 1 – Tank-to-Wheel analysis

    International Nuclear Information System (INIS)

    Gupta, S.; Patil, V.; Himabindu, M.; Ravikrishna, R.V.

    2016-01-01

    As part of a two-part life cycle efficiency and greenhouse gas emission analysis for various automotive fuels in the Indian context, this paper presents the first part, i.e., Tank-to-Wheel analysis of various fuel/powertrain configurations for a subcompact passenger car. The Tank-to-Wheel analysis was applied to 28 fuel/powertrain configurations using fuels such as gasoline, diesel, compressed natural gas, liquefied petroleum gas and hydrogen with various conventional and hybrid electric powertrains. The gasoline-equivalent fuel economy and carbon dioxide emission results for individual fuel/powertrain configuration are evaluated and compared. It is found that the split hybrid configuration is best among hybrids as it leads to fuel economy improvement and carbon dioxide emissions reduction by 20–40% over the Indian drive cycle. Further, the engine efficiency, engine on-off time and regenerative braking energy assessment is done to evaluate the causes for higher energy efficiency of hybrid electric vehicles. The hybridization increases average engine efficiency by 10–60% which includes 19–23% of energy recovered at wheel through regenerative braking over the drive cycle. Overall, the Tank-to-Wheel energy use and efficiency results are evaluated for all fuel/powertrain configurations which show Battery Electric Vehicle, fuel cell vehicles and diesel hybrids are near and long term energy efficient vehicle configurations. - Highlights: • Tank-to-Wheel energy use & CO_2 emissions for subcompact car on Indian driving cycle. • Gasoline, diesel, CNG, LPG, hydrogen and electric vehicles are evaluated in this study. • First comprehensive Tank-to-Wheel analysis for India on small passenger car platform. • Parallel, series and split hybrid electric vehicles with various fuels are analysed.

  7. Novel thermocouples for automotive applications

    Directory of Open Access Journals (Sweden)

    P. Gierth

    2018-02-01

    Full Text Available Measurement of temperatures in engine and exhaust systems in automotive applications is necessary for thermal protection of the parts and optimizing of the combustion process. State-of-the-art temperature sensors are very limited in their response characteristic and installation space requirement. Miniaturized sensor concepts with a customizable geometry are needed. The basic idea of this novel sensor concept is to use thick-film technology on component surfaces. Different standardized and especially nonstandard material combinations of thermocouples have been produced for the validation of this technology concept. Application-oriented measurements took place in the exhaust system of a test vehicle and were compared to standard laboratory conditions.

  8. Natural gas as an alternative to crude oil in automotive fuel chains well-to-wheel analysis and transition strategy development

    International Nuclear Information System (INIS)

    Hekkert, M.P.; Hendriks, F.H.J.F.; Faaij, A.P.C.; Neelis, M.L.

    2005-01-01

    Road transport produces significant amounts of CO 2 by using crude oil as primary energy source. A reduction of CO 2 emissions can be achieved by implementing alternative fuel chains. This article studies CO 2 emissions and energy efficiencies by means of a well to wheel analysis of alternative automotive fuel chains, using natural gas (NG) as an alternative primary energy source to replace crude oil. The results indicate that NG-based hydrogen applied in fuel cell vehicles (FCVs) lead to largest CO 2 emission reductions (up to 40% compared to current practice). However, large implementation barriers for this option are foreseen, both technically and in terms of network change. Two different transition strategies are discussed to gradually make the transition to these preferred fuel chains. Important transition technologies that are the backbone of these routes are traditional engine technology fuelled by compressed NG and a FCV fuelled by gasoline. The first is preferred in terms of carbon emissions. The results furthermore indicate that an innovation in the conventional chain, the diesel hybrid vehicle, is more efficient than many NG-based chains. This option scores well in terms of carbon emissions and implementation barriers and is a very strong option for the future

  9. High-Speed Multiplexed Spatiotemporally Resolved Measurements of Exhaust Gas Recirculation Dynamics in a Multi-Cylinder Engine Using Laser Absorption Spectroscopy.

    Science.gov (United States)

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2016-04-01

    The need for more environmentally friendly and efficient energy conversion is of paramount importance in developing and designing next-generation internal combustion (IC) engines for transportation applications. One effective solution to reducing emissions of mono-nitrogen oxides (NOx) is exhaust gas recirculation (EGR), which has been widely implemented in modern vehicles. However, cylinder-to-cylinder and cycle-to-cycle variations in the charge-gas uniformity can be a major barrier to optimum EGR implementation on multi-cylinder engines, and can limit performance, stability, and efficiency. Precise knowledge and fine control over the EGR system is therefore crucial, particularly for optimizing advanced engine concepts such as reactivity controlled compression ignition (RCCI). An absorption-based laser diagnostic was developed to study spatiotemporal charge-gas distributions in an IC engine intake manifold in real-time. The laser was tuned to an absorption band of carbon dioxide (CO2), a standard exhaust-gas marker, near 2.7 µm. The sensor was capable of probing four separate measurement locations simultaneously, and independently analyzing EGR fraction at speeds of 5 kHz (1.2 crank-angle degree (CAD) at 1 k RPM) or faster with high accuracy. The probes were used to study spatiotemporal EGR non-uniformities in the intake manifold and ultimately promote the development of more efficient and higher performance engines. © The Author(s) 2016.

  10. Effect of exhaust gas recirculation (EGR) and multiple injections on diesel soot nano-structure and reactivity

    International Nuclear Information System (INIS)

    Rohani, Behzad; Bae, Choongsik

    2017-01-01

    Highlights: • EGR reduced the nano-structural order, regardless of injection strategy. • EGR reduces both VOF and reactivity, regardless of injection strategy. • Longer dwell time between pilot and main injection increases VOF and reactivity. • With EGR, VOF and reactivity are both reduced and un-affected by injection strategy. • VOF-reactivity correlation (without causality) suggests role of surface roughness. - Abstract: The physio-chemical characteristics of soot particles are of importance with regard to performance of diesel after-treatment systems. In this study, the soot particles generated in a single-cylinder heavy-duty diesel engine are examined in terms of nanostructure, oxidative reactivity and volatile organic fraction (VOF), using thermogravimetric analysis (TGA), X-ray diffraction (XRD), Raman micro-spectroscopy, and high resolution transmission electron microscopy (HRTEM). Five different injection strategies including single injection and multiple injections with various pilot injection amounts and dwell times were tested with and without exhaust gas recirculation (EGR), while combustion phasing, engine speed, and fuel injection quantity was matched for all cases. Results indicate that for the soot produced under EGR condition, nano-structural order (indicated by crystallite size obtained from XRD and AD1/AG resulted from the Raman Analysis) can explain the soot reactivity. However, in the absence of EGR, the reactivity trend cannot be explained by the structural order. It is discussed that a possible reason can be a higher level of in-cylinder oxidation in non-EGR cases (indicated by higher level of surface functional groups) which roughens the soot surface, and enhances the oxidation by increasing the specific soot surface area. It is also found that in the absence of EGR, different injection strategies impact the soot reactivity and VOF content, which can be explained mainly through the level of charge premixed-ness and the in

  11. Black carbon from ships: a review of the effects of ship speed, fuel quality and exhaust gas scrubbing

    Directory of Open Access Journals (Sweden)

    D. A. Lack

    2012-05-01

    Full Text Available The International Maritime Organization (IMO has moved to address the health and climate impact of the emissions from the combustion of low-quality residual fuels within the commercial shipping industry. Fuel sulfur content (FS limits and an efficiency design index for future ships are examples of such IMO actions. The impacts of black carbon (BC emissions from shipping are now under review by the IMO, with a particular focus on the potential impacts of future Arctic shipping.

    Recognizing that associating impacts with BC emissions requires both ambient and onboard observations, we provide recommendations for the measurement of BC. We also evaluate current insights regarding the effect of ship speed (engine load, fuel quality and exhaust gas scrubbing on BC emissions from ships. Observations demonstrate that BC emission factors (EFBC increases 3 to 6 times at very low engine loads (<25% compared to EFBC at 85–100% load; absolute BC emissions (per nautical mile of travel also increase up to 100% depending on engine load, even with reduced load fuel savings. If fleets were required to operate at lower maximum engine loads, presumably associated with reduced speeds, then engines could be re-tuned, which would reduce BC emissions.

    Ships operating in the Arctic are likely running at highly variable engine loads (25–100% depending on ice conditions and ice breaking requirements. The ships operating at low load may be emitting up to 50% more BC than they would at their rated load. Such variable load conditions make it difficult to assess the likely emissions rate of BC.

    Current fuel sulfur regulations have the effect of reducing EFBC by an average of 30% and potentially up to 80% regardless of engine load; a removal rate similar to that of scrubbers.

    Uncertainties among current observations demonstrate there is a need for more information on a the impact of fuel quality

  12. Principle Findings from Development of a Recirculated Exhaust Gas Intake Sensor (REGIS) Enabling Cost-Effective Fuel Efficiency Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Schnabel, Claus [Robert Bosch LLC, Farmington Hills, MI (United States)

    2016-03-30

    Kick-off of the Bosch scope of work for the REGIS project started in October 2012. The primary work-packages included in the Bosch scope of work were the following: overall project management, development of the EGR sensor (design of sensor element, design of protection tube, and design of mounting orientation), development of EGR system control strategy, build-up of prototype sensors, evaluation of system performance with the new sensor and the new control strategy, long-term durability testing, and development of a 2nd generation sensor concept for continued technology development after the REGIS project. The University of Clemson was a partner with Bosch in the REGIS project. The Clemson scope of work for the REGIS project started in June 2013. The primary work-packages included in the Clemson scope of work were the following: development of EGR system control strategy, and evaluation of system performance with the new sensor and new control strategy. This project was split into phase I, phase II and phase III. Phase I work was completed by the end of June 2014 and included the following primary work packages: development of sensor technical requirements, assembly of engine testbench at Clemson, design concept for sensor housing, connector, and mounting orientation, build-up of EGR flow test benches at Bosch, and build-up of first sensor prototypes. Phase II work was completed by the end of June 2015 and included the following primary work pack ages: development of an optimizing function and demonstration of robustness of sensor, system control strategy implementation and initial validation, completion of engine in the loop testing of developed control algorithm, completion of sensor testing including characteristic line, synthetic gas test stand, and pressure dependency characterization, demonstration of benefits of control w/o sensing via simulation, development of 2nd generation sensor concept. Notable technical achievements from phase II were the following

  13. IDENTIFICATION OF SOME CARCINOGENIC POLYCYCLIC AROMATIC HYDROCARBONS IN BANGLADESHI VEHICLES EXHAUST TAR BY GAS CHROMATOGRAPHY-MASS SPECTROPHOTOMETER

    Directory of Open Access Journals (Sweden)

    M. Amzad Hossain

    2010-06-01

    Full Text Available A more sensitive GC-MS method has been established for the determination of some carcinogenic polycyclic aromatic hydrocarbons (PAHs in vehicles exhaust tar samples. The tar samples were extracted using dichloromethane (DMC: n-hexane solvent mixture. A multi-layer clean-up (silica gel/sodium sulphate column was used, followed by glass fiber filter (GFF paper. The method was successfully applied to determine a number of PAHs present in exhaust tar sample of different vehicles of the Atomic Energy Centre, Dhaka, Bangladesh.   Keywords: Carcinogenic polycyclic aromatic hydrocarbons, vehicles tar samples, identification, GC-MS/MS

  14. Swirl and blade wakes in the interaction between gas turbines and exhaust diffusers investigated by endoscopic particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Opilat, Victor

    2011-10-21

    Exhaust diffusers studied in this thesis are installed behind the last turbine stage of gas turbines, including those used in combined cycle power plants. Extensive research made in recent years proved that effects caused by an upstream turbine need to be taken into account when designing efficient diffusers. Under certain conditions these effects can stabilize the boundary layer in diffusers and prevent separation. In this research the impact of multiple parameters, such as tip leakage flow, swirl, and rotating blade wakes, on the performance of a diffuser is studied. Experiments were conducted using a diffuser test rig with a rotating bladed wheel as a turbine effect generator and with an additional tip leakage flow insert. The major advantages of this test rig are modularity and easy variation of the main parameters. To capture the complexity and understand the physics of diffuser flow, and to clarify the phenomenon of the flow stabilisation, the 2D endoscopic laser optical measurement technique Partide Image Velocimetry (PIV) was adopted to the closed ''rotating'' diffuser test rig. Intensity and distribution of vortices in the blade tip area are decisive for diffuser performance. Large vortices in the annular diffuser inlet behind the blade tips interact with the boundary layer in diffusers. At design point these vortices are very early suppressed by the main flow. For the operating point with a low value of the flow coefficient (negative swirl), vortices are ab out two tim es stronger than for design point and the boundary layer is destabilized. V mtices develop in the direction contrary to swirl in the main flow and just cause flow destabilization. Coherent back flow zones are induced and reduction of diffuser performance occurs. For the operating point with positive swirl (for a high flow coefficient value), these vortices are also strong but do not counteract the main flow because they develop in the same direction with the swirl in the

  15. Acetylene and carbon monoxide oxidation over a Pt/Rh/CeO2/γ-Al2O3 automotive exhaust gas catalyst: kinetic modelling of transient experiments

    NARCIS (Netherlands)

    Harmsen, J.M.A.; Hoebink, J.H.B.J.; Schouten, J.C.

    2001-01-01

    The transient kinetics of acetylene (C2H2) conversion by oxygen over a commercial Pt/Rh/CeO2/¿-Al2O3 three-way catalyst have been modelled. Experiments to validate the model were carried out in a fixed-bed reactor with two separate inlets, enabling alternate feeding of acetylene and oxygen.

  16. Combustion Noise and Pollutants Prediction for Injection Pattern and Exhaust Gas Recirculation Tuning in an Automotive Common-Rail Diesel Engine

    OpenAIRE

    Arsie Ivan; Di Leo Rocco; Pianese Cesare; De Cesare Matteo

    2015-01-01

    In the last years, emissions standards for internal combustion engines are becoming more and more restrictive, particularly for NOx and soot emissions from Diesel engines. In order to comply with these requirements, OEMs have to face with innovative combustion concepts and/or sophisticate after-treatment devices. In both cases, the role of the Engine Management System (EMS) is increasingly essential, following the large number of actuators and sensors introduced and the need to meet customer ...

  17. The effect of oxygen storage capacity on the dynamic characteristics of an automotive catalytic converter

    Energy Technology Data Exchange (ETDEWEB)

    Shamim, T. [Michigan-Dearborn Univ., Dearborn, MI (United states). Dept. of Mechanical Engineering

    2007-07-01

    Automotive catalytic converters that reduce engine exhaust emissions are subject to transient conditions during a typical driving cycle. These conditions arise from changes in driving mode, the hysteresis and flow lags of the feedback control system, and result in fluctuations of air-fuel, exhaust gas flow rates and temperatures. The catalyst performance is also highly influenced by the oxygen storage capacity (OSC). This paper examined the influence of OSC on the catalyst dynamic behavior. The transient conditions were simulated by considering the catalyst subjected to temporal modulation in air-fuel ratio, exhaust gas composition and temperature. The paper presented the mathematical formulation including the development of governing equations. The governing equations were developed by considering the conservation of mass, energy and chemical species. It also presented the results and discussed the effect of sinusoidal modulation in the air-fuel ratio as well as the effect of sinusoidal modulation in exhaust composition. It was concluded that the presence of the OSC sensitivity influenced its response to the imposed modulation. The specific effect was dependent on the operating conditions and the type of the imposed modulations. 10 refs., 1 tab., 3 figs.

  18. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling and Baseline Model Analysis

    Science.gov (United States)

    Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.; Meisner, Gregory P.

    2013-04-01

    A numerical model has been developed to simulate coupled thermal and electrical energy transfer processes in a thermoelectric generator (TEG) designed for automotive waste heat recovery systems. This model is capable of computing the overall heat transferred, the electrical power output, and the associated pressure drop for given inlet conditions of the exhaust gas and the available TEG volume. Multiple-filled skutterudites and conventional bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from exhaust into usable electrical power. Heat transfer between the hot exhaust gas and the hot side of the TEMs is enhanced with the use of a plate-fin heat exchanger integrated within the TEG and using liquid coolant on the cold side. The TEG is discretized along the exhaust flow direction using a finite-volume method. Each control volume is modeled as a thermal resistance network which consists of integrated submodels including a heat exchanger and a thermoelectric device. The pressure drop along the TEG is calculated using standard pressure loss correlations and viscous drag models. The model is validated to preserve global energy balances and is applied to analyze a prototype TEG with data provided by General Motors. Detailed results are provided for local and global heat transfer and electric power generation. In the companion paper, the model is then applied to consider various TEG topologies using skutterudite and bismuth telluride TEMs.

  19. Exhaust purification with on-board ammonia production

    Science.gov (United States)

    Robel, Wade J [Peoria, IL; Driscoll, James Joshua [Dunlap, IL; Coleman, Gerald N [Peterborough, GB

    2008-05-13

    A system of ammonia production for a selective catalytic reduction system is provided. The system includes producing an exhaust gas stream within a cylinder group, wherein the first exhaust gas stream includes NOx. The exhaust gas stream may be supplied to an exhaust passage and cooled to a predetermined temperature range, and at least a portion of the NOx within the exhaust gas stream may be converted into ammonia.

  20. Tokamak fusion reactor exhaust

    International Nuclear Information System (INIS)

    Harrison, M.F.A.; Harbour, P.J.; Hotston, E.S.

    1981-08-01

    This report presents a compilation of papers dealing with reactor exhaust which were produced as part of the TIGER Tokamak Installation for Generating Electricity study at Culham. The papers are entitled: (1) Exhaust impurity control and refuelling. (2) Consideration of the physical problems of a self-consistent exhaust and divertor system for a long burn Tokamak. (3) Possible bundle divertors for INTOR and TIGER. (4) Consideration of various magnetic divertor configurations for INTOR and TIGER. (5) A appraisal of divertor experiments. (6) Hybrid divertors on INTOR. (7) Refuelling and the scrape-off layer of INTOR. (8) Simple modelling of the scrape-off layer. (9) Power flow in the scrape-off layer. (10) A model of particle transport within the scrape-off plasma and divertor. (11) Controlled recirculation of exhaust gas from the divertor into the scrape-off plasma. (U.K.)

  1. Studi Experimental Penggunaan Venturi Scrubber dan Cyclonic Separator Untuk Meningkatkan Kinerja pada Sistem Exhaust Gas Recirculation (EGR dalam Menurunkan NOX pada Motor Diesel

    Directory of Open Access Journals (Sweden)

    Samsu Dlukha N

    2012-09-01

    Full Text Available Salah satu cara yang efektif untuk mengurangi NOX adalah dengan menggunakan metode Exhaust Gas Recirculation (EGR. Dengan metode EGR, oksigen yang masuk ke ruang bakar akan berkurang sehingga NOX dapat diturunkan dengan signifikan, akan tetapi power dari mesin tersebut juga akan berkurang dan Particulate Matter (PM akan naik secara signifikan. Dalam penelitian ini dibahas penggunaan EGR yang telah di optimalkan dengan penambahan venturi scrubber dan cyclonic separator, tujuannya mengurangi NOX tanpa meningkatkan PM. Hasil pengujian menunjukkan NOX turun sebesar 48.89% dan PM turun dari 69,87%  menjadi 9.87%.

  2. Effect of isothermal dilution on emission factors of organic carbon and n-alkanes in the particle and gas phases of diesel exhaust

    Science.gov (United States)

    Fujitani, Yuji; Saitoh, Katsumi; Fushimi, Akihiro; Takahashi, Katsuyuki; Hasegawa, Shuich; Tanabe, Kiyoshi; Kobayashi, Shinji; Furuyama, Akiko; Hirano, Seishiro; Takami, Akinori

    2012-11-01

    To investigate the effect of isothermal dilution (30 °C) on emission factors (EFs) of semivolatile and nonvolatile compounds of heavy-duty diesel exhaust, we measured EFs for particulate matter (PM), organic carbon (OC), and elemental carbon (EC) in the particle phase, and EFs for n-alkanes in both the particle phase and the gas phase of exhaust produced under high-idle engine operating conditions at dilution ratios (DRs) ranging from 8 to 1027. The EC EFs did not vary with DR, whereas the OC EFs in the particle phase determined at DR = 1027 were 13% of the EFs determined at DR = 8, owing to evaporation of organic compounds. Using partitioning theory and n-alkane EFs measured at DR = 14 and 238, we calculated the distributions of compounds between the particle and gas phases at DR = 1760, which corresponds to the DR for tailpipe emissions as they move from the tailpipe to the roadside atmosphere. The gas-phase EF of a compound with a vapor pressure of 10-7 Pa was 0.01 μg kg-1-fuel at DR = 14, and this value is 1/330 the value derived at DR = 1760. Our results suggest that the EFs of high-volatility compounds in the particle phase will be overestimated and that the EFs of low-volatility compounds in the gas phase will be underestimated if the estimates are derived from data obtained at the low DRs and they are applied to the real world. Therefore, extrapolation from EFs derived at low DR values to EFs at atmospherically relevant DRs will be a source of error in predictions of the concentrations of particulate matter and gas-phase precursors to secondary organic aerosols in air quality models.

  3. Corrosion Behavior of Metal Active Gas Welded Joints of a High-Strength Steel for Automotive Application

    Science.gov (United States)

    Garcia, Mainã Portella; Mantovani, Gerson Luiz; Vasant Kumar, R.; Antunes, Renato Altobelli

    2017-10-01

    In this work, the corrosion behavior of metal active gas-welded joints of a high-strength steel with tensile yield strength of 900 MPa was investigated. The welded joints were obtained using two different heat inputs. The corrosion behavior has been studied in a 3.5 wt.% NaCl aqueous solution using electrochemical impedance spectroscopy and potentiodynamic polarization tests. Optical microscopy images, scanning electron microscopy and transmission electron microscopy with energy-dispersive x-ray revealed different microstructural features in the heat-affected zone (HAZ) and the weld metal (WM). Before and after the corrosion process, the sample was evaluated by confocal laser scanning microscopy to measure the depth difference between HAZ and WM. The results showed that the heat input did not play an important role on corrosion behavior of HSLA steel. The anodic and cathodic areas of the welded joints could be associated with depth differences. The HAZ was found to be the anodic area, while the WM was cathodic with respect to the HAZ. The corrosion behavior was related to the amount and orientation nature of carbides in the HAZ. The microstructure of the HAZ consisted of martensite and bainite, whereas acicular ferrite was observed in the weld metal.

  4. Exhaust catalysis studies using in-situ positron emission

    International Nuclear Information System (INIS)

    Vonkeman, K.A.

    1990-01-01

    In this thesis the kinetics of noble metal catalysts with a formulation related to that of commercial automotive exhaust catalysts, have been examined. The application of a new radioisotope tracer technique in studies of catalyst kinetics is described. Reactant and product molecules were pulsed over a catalyst under conditions such, that the reaction rates were kinetically controlled. Labelling of the reacting molecules enables the in-situ measurement of transient phenomena in a reactor as a function of time and position, if a tomograph is used as detection system. Integral reactor profiles are measured, by which concentration gradients occurring in the reactor can be studied. The large amount of data obtained during each experiment were used to quantify the kinetics. To this end, a refined mathematical model of the kinetics based on the elementary steps of adsorption, desorption and surface reaction was used to simulate the experiments. The experimental conditions in this study were representative for the cold start of a car, when the catalyst is heating up. By applying small catalyst particles and high linear velocities the influence of transport phenomena was excluded so that the experiments were carried out in the kinetically controlled regime. Reaction kinetics of carbon monoxide oxidation by oxygen and nitrogen oxide were studied. Experimental data obtained with surface science techniques were very useful in constructing the kinetic model. By simulating the experiments, the relevant kinetic parameters could be quantified and information on the elementary reaction steps was obtained. Since carbon dioxide adsorbs strongly to the catalyst carrier; 10% carbon dioxide was added to the gas phase (in actual automotive exhaust gas the concentration of carbon dioxide is 10 - 15%). This enabled the determination of the transients due to the interaction of gas components with the catalytically active compounds of the catalyst. (author). 446 refs.; 57 figs.; 21 tabs

  5. Application of modern online instrumentation for chemical analysis of gas and particulate phases of exhaust at the European Commission heavy-duty vehicle emission laboratory.

    Science.gov (United States)

    Adam, T W; Chirico, R; Clairotte, M; Elsasser, M; Manfredi, U; Martini, G; Sklorz, M; Streibel, T; Heringa, M F; Decarlo, P F; Baltensperger, U; De Santi, G; Krasenbrink, A; Zimmermann, R; Prevot, A S H; Astorga, C

    2011-01-01

    The European Commission recently established a novel test facility for heavy-duty vehicles to enhance more sustainable transport. The facility enables the study of energy efficiency of various fuels/scenarios as well as the chemical composition of evolved exhaust emissions. Sophisticated instrumentation for real-time analysis of the gas and particulate phases of exhaust has been implemented. Thereby, gas-phase characterization was carried out by a Fourier transform infrared spectrometer (FT-IR; carbonyls, nitrogen-containing species, small hydrocarbons) and a resonance-enhanced multiphoton ionization time-of-flight mass spectrometer (REMPI-TOFMS; monocyclic and polycyclic aromatic hydrocarbons). For analysis of the particulate phase, a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS; organic matter, chloride, nitrate), a condensation particle counter (CPC; particle number), and a multiangle absorption photometer (MAAP; black carbon) were applied. In this paper, the first application of the new facility in combination with the described instruments is presented, whereby a medium-size truck was investigated by applying different driving cycles. The goal was simultaneous chemical characterization of a great variety of gaseous compounds and particulate matter in exhaust on a real-time basis. The time-resolved data allowed new approaches to view the results; for example, emission factors were normalized to time-resolved consumption of fuel and were related to emission factors evolved during high speeds. Compounds could be identified that followed the fuel consumption, others showed very different behavior. In particular, engine cold start, engine ignition (unburned fuel), and high-speed events resulted in unique emission patterns.

  6. A review on the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends.

    Science.gov (United States)

    Damanik, Natalina; Ong, Hwai Chyuan; Tong, Chong Wen; Mahlia, Teuku Meurah Indra; Silitonga, Arridina Susan

    2018-06-01

    Biodiesels have gained much popularity because they are cleaner alternative fuels and they can be used directly in diesel engines without modifications. In this paper, a brief review of the key studies pertaining to the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends, exhaust aftertreatment systems, and low-temperature combustion technology is presented. In general, most biodiesel blends result in a significant decrease in carbon monoxide and total unburned hydrocarbon emissions. There is also a decrease in carbon monoxide, nitrogen oxide, and total unburned hydrocarbon emissions while the engine performance increases for diesel engines fueled with biodiesels blended with nano-additives. The development of automotive technologies, such as exhaust gas recirculation systems and low-temperature combustion technology, also improves the thermal efficiency of diesel engines and reduces nitrogen oxide and particulate matter emissions.

  7. New processes for the reduction and capture of mercury emissions in the exhaust gas treatment; Neue Verfahren zur Minderung und Erfassung von Quecksilber-Emissionen in der Abgasbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Boness, Michael [Sick Maihak GmbH, Meersburg (Germany); Kanefke, Rico [Currenta GmbH und Co. OHG, Leverkusen (Germany). Sonderabfallverbrennung Leverkusen; Vosteen, Bernhard W. [Vosteen Consulting GmbH, Koeln (Germany)

    2013-03-01

    The highly volatile heavy metal mercury is deemed to be very toxic. There exist a lot of natural as well as anthropogenic sources for the pollution of the environment with mercury such as the coal-fired power generation, the electrolytic production of chlorine, the cement burning including the release of mercury from the cement raw meal, the waste incineration and the artisanal production of gold by amalgamation with liquid mercury. The authors of the contribution under consideration report on new procedures for the reduction and capture of mercury emissions in the exhaust gas treatment. The bromine supported precipitation of mercury in the exhaust gas treatment is an efficient and economic process which takes account of the future requirements of lower limit values for mercury. Simultaneously, a new measurement technique for a continuous capture of mercury with new standards on detection sensitivity, accuracy and reliability in connection with a more simple and cost-effective maintenance is developed. The bromine supported precipitation as well as the continuous capture of mercury are trendsetters and are actually the best available technologies for the reduction of mercury emissions.

  8. Coke-free dry reforming of model diesel fuel by a pulsed spark plasma at low temperatures using an exhaust gas recirculation (EGR) system

    Energy Technology Data Exchange (ETDEWEB)

    Sekine, Yasushi; Furukawa, Naotsugu; Matsukata, Masahiko; Kikuchi, Eiichi, E-mail: ysekine@waseda.jp [Department of Applied Chemistry, Waseda University, 65-301, Okubo, Shinjuku, Tokyo 169-8555 (Japan)

    2011-07-13

    Dry reforming of diesel fuel, an endothermic reaction, is an attractive process for on-board hydrogen/syngas production to increase energy efficiency. For operating this dry reforming process in a vehicle, we can use the exhaust gas from an exhaust gas recirculation (EGR) system as a source of carbon dioxide. Catalytic dry reforming of heavy hydrocarbon is a very difficult reaction due to the high accumulation of carbon on the catalyst. Therefore, we attempted to use a non-equilibrium pulsed plasma for the dry reforming of model diesel fuel without a catalyst. We investigated dry reforming of model diesel fuel (n-dodecane) with a low-energy pulsed spark plasma, which is a kind of non-equilibrium plasma at a low temperature of 523 K. Through the reaction, we were able to obtain syngas (hydrogen and carbon monoxide) and a small amount of C{sub 2} hydrocarbon without coke formation at a ratio of CO{sub 2}/C{sub fuel} = 1.5 or higher. The reaction can be conducted at very low temperatures such as 523 K. Therefore, it is anticipated as a novel and effective process for on-board syngas production from diesel fuel using an EGR system.

  9. LaFePdO3 perovskite automotive catalyst having a self-regenerative function

    International Nuclear Information System (INIS)

    Tanaka, Hirohisa; Tan, Isao; Uenishi, Mari; Taniguchi, Masashi; Kimura, Mareo; Nishihata, Yasuo; Mizuki, Jun'ichiro

    2006-01-01

    An automotive gasoline engine is operated close to the stoichiometric air-to-fuel ratio to convert the pollutant emissions simultaneously, accompanying with redox (reduction and oxidation) fluctuations in exhaust-gas composition through adjusting the air-to-fuel ratio. An innovative LaFe 0.95 Pd 0.05 O 3 perovskite catalyst, named 'the intelligent catalyst', has been developed, and which has a new self-regenerative function of the precious metal in the inherent fluctuations of automotive exhaust-gas. The LaFe 0.95 Pd 0.05 O 3 perovskite catalyst, La located at the A-site, was prepared by the alkoxide method. Pd located at the B-site of the perovskite lattice in the oxidative atmosphere, and segregated out to form small metallic particles in the reductive atmosphere. The catalyst retained a predominantly perovskite structure throughout a redox cycle of the exhaust-gas, while the local structure around Pd could be changed in a completely reversible manner. The agglomeration and growth of Pd particles is suppressed, even under the severe environment, as a result of the movement between inside and outside the perovskite lattice. It is revealed that the self-regenerative function of Pd occurs even at 200 deg. C, unexpectedly low temperature, in the LaFe 0.95 Pd 0.05 O 3 catalyst. Since the high catalytic activity is maintained, the great reduction of Pd loading has been achieved. The intelligent catalyst is expected as a new application of the rare earth, and then the technology is expected in the same way in the global standard of the catalyst designing

  10. Numerical investigation of exhaust gas emissions for a dual fuel engine configuration using diesel and pongamia oil.

    Science.gov (United States)

    Mohamed Ibrahim, N H; Udayakumar, M

    2016-12-01

    The investigation presented in this paper focuses on determination of gaseous exhaust emissions by computational simulation during combustion in compression ignition engine with pongamia oil substitution. Combustion is modeled using Equilibrium Constants Method (ECM) with MATLAB program to calculate the mole fraction of 10 combustion products when pongamia oil is burnt along with diesel at variable equivalence ratio and blend ratio. It had been observed that pongamia oil substitution causes decrease in the CO emission and increase in the NO x emission as the blend ratio as well as equivalence ratio increases. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Simulation of a thermoelectric gas sensor that determines hydrocarbon concentrations in exhausts and the light-off temperature of catalyst materials

    Directory of Open Access Journals (Sweden)

    T. Ritter

    2017-12-01

    Full Text Available Catalyst materials can be characterized with a thermoelectric gas sensor. Screen-printed thermopiles measure the temperature difference between an inert part of the planar sensor and a part that is coated with the catalyst material to be analyzed. If the overall sensor temperature is modulated, the catalytic activity of the material can be varied. Exothermic reactions that occur at the catalyst layer cause a temperature increase that can then be measured as a sensor voltage due to the Seebeck coefficient of the thermopiles. This mechanism can also be employed at stationary conditions at constant sensor temperature to measure gas concentrations. Then, the sensor signal changes linearly with the analyte concentration. Many variables influence the sensing performance, for example, the offset voltage due to asymmetric inflow and the resulting inhomogeneous temperature distributions are an issue. For even better understanding of the whole sensing principle, it is simulated in this study by a 3-D finite element model. By coupling all influencing physical effects (fluid flow, gas diffusion, heat transfer, chemical reactions, and electrical properties a model was set up that is able to mirror the sensor behavior precisely, as the comparison with experimental data shows. A challenging task was to mesh the geometry due to scaling problems regarding the resolution of the thin catalyst layer in the much larger gas tube. Therefore, a coupling of a 3-D and a 1-D geometry is shown. This enables to calculate the overall temperature distribution, fluid flow, and gas concentration distribution in the 3-D model, while a very accurate calculation of the chemical reactions is possible in a 1-D dimension. This work does not only give insight into the results at stationary conditions for varying feed gas concentrations and used substrate materials but shows also how various exhaust gas species behave under transient temperature modulation.

  12. Analyze Experiment For Vigas and Pertamax to Performance and Exhaust Gas Emission for Gasoline Motor 2000cc

    Science.gov (United States)

    As'adi, Muhamad; Chrisna Ayu Dwiharpini Tupan, Diachirta

    2018-02-01

    The purpose and target for this analyze experiment is we get the performance variabel from gasoline motor which used LGV for fuel and Pertamax, so can give knowledge to community if LGV can be using LGV for fuel to transportation industry and more economic. We used experiment method of engine gasoline motor with 2000 cc which is LGV and Pertamax for fuel. The experiment with static experiment tes above Dyno Test. The result is engine perform to subscribe Torque, power, fuel consumption. Beside the static test we did the Exhaust Steam Emission. The result is the used LGV with the commercial brand Vigas can increase the maximum Engine Power 20.86% and Average Power 14.1%, the maximum torque for Motor which is use LGV as fuel is smaller than Motor with Pertamax, the decrease is 0.94%.Using Vigas in Motor can increase the mileage until 6.9% compare with the Motor with pertamax.Air Fuel Ratio (AFR) for both of the fuels still below the standard, so still happen waste of fuel, specially in low compression.Using Vigas can reduce the Exhaust Steam Emission especially CO2

  13. European Automotive Congress

    CERN Document Server

    Clenci, Adrian

    2016-01-01

    The volume includes selected and reviewed papers from the European Automotive Congress held in Bucharest, Romania, in November 2015. Authors are experts from research, industry and universities coming from 14 countries worldwide. The papers are covering the latest developments in fuel economy and environment, automotive safety and comfort, automotive reliability and maintenance, new materials and technologies, traffic and road transport systems, advanced engineering methods and tools, as well as advanced powertrains and hybrid and electric drives.

  14. Effects of diluent admissions and intake air temperature in exhaust gas recirculation on the emissions of an indirect injection dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Alla, G.H.; Soliman, H.A.; Badr, O.A.; Abd-Rabbo, M.F. [Zagazig University, Cairo (Egypt). Shoubra Faculty of Engineering

    2001-05-01

    The operation of Diesel engines on gaseous fuels, commonly known as dual fuel engines, uses Diesel fuel as the pilot fuel and gaseous fuel (methane and sometimes propane in the present work) as the main fuel. The gaseous fuel was inducted in the intake manifold to mix with the intake air. The investigation was conducted on a high speed indirect injection (Ricardo-E6) dual fuel engine and was concerned with the effects of exhaust gas recirculation (EGR) on the dual fuel engine combustion and emissions, in particular, the effects of intake air temperature and diluent admissions (N{sub 2} and CO{sub 2}) on combustion and emissions. The use of diluents to displace oxygen (O{sub 2}) in the intake air resulted in a reduction in the O{sub 2} supplied to the engine, increased the inlet charge thermal capacity (thermal effect) and, potentially, CO{sub 2} and N{sub 2} participated in the combustion process (chemical effect). In a separate series of tests, the temperature of the engine inlet charge was raised gradually in order to simulate the effect of mixing hot EGR with the engine inlet gaseous fuel air mixture. It was found that the admission of diluents resulted in reductions in the exhaust oxides of nitrogen (NO{sub x}). Higher inlet charge temperature increases the exhaust NO{sub x} but reduces the unburned hydrocarbon emissions. Finally, when carbon dioxide was added to the inlet gaseous fuel air charge, large reductions in NO{sub x} were observed. (author)

  15. Effect of cooled EGR on performance and exhaust gas emissions in EFI spark ignition engine fueled by gasoline and wet methanol blends

    Science.gov (United States)

    Rohadi, Heru; Syaiful, Bae, Myung-Whan

    2016-06-01

    Fuel needs, especially the transport sector is still dominated by fossil fuels which are non-renewable. However, oil reserves are very limited. Furthermore, the hazardous components produced by internal combustion engine forces many researchers to consider with alternative fuel which is environmental friendly and renewable sources. Therefore, this study intends to investigate the impact of cooled EGR on the performance and exhaust gas emissions in the gasoline engine fueled by gasoline and wet methanol blends. The percentage of wet methanol blended with gasoline is in the range of 5 to 15% in a volume base. The experiment was performed at the variation of engine speeds from 2500 to 4000 rpm with 500 intervals. The re-circulated exhaust gasses into combustion chamber was 5%. The experiment was performed at the constant engine speed. The results show that the use of cooled EGR with wet methanol of 10% increases the brake torque up to 21.3%. The brake thermal efficiency increases approximately 39.6% using cooled EGR in the case of the engine fueled by 15% wet methanol. Brake specific fuel consumption for the engine using EGR fueled by 10% wet methanol decreases up to 23% at the engine speed of 2500 rpm. The reduction of CO, O2 and HC emissions was found, while CO2 increases.

  16. Effect of Ce on performance and physicochemical properties of Pt-containing automotive emission control catalysts

    International Nuclear Information System (INIS)

    Nunan, J.G.; Silver, R.G.; Bradley, S.A.

    1992-01-01

    Present-day automotive emission control catalysts contain noble metals such as Pt, Pd and Rh all on an alumina support with a variety of promoters. Ce is one of the most important promoters. In this paper, the interaction between Pt and Ce is studied using TPR and STEM on a variety of catalysts. The degree of Pt/Ce interaction is increased by decreasing CeO 2 crystallite size, and to a lesser extent by increasing CeO 2 loading. Direct Pt/Ce interaction leads to a synergistic reduction of both Pt and surface Ce. This reduction qualitatively correlates with catalyst performance after activation in a reducing gas. It is proposed that this synergistic reduction of Pt and Ce is associated with observed improvements in catalyst performance using a non-oscillating exhaust gas

  17. Utilisation of CO2, fixation of nitrogen and exhaust gas cleaning in electric discharge with electrode catalysis

    International Nuclear Information System (INIS)

    Marcela, M.; Imrich, M.; Mario, J.

    2001-01-01

    The method reported here provides a contribution to CO 2 utilisation, nitrogen fixation and combustion exhaust cleaning using synergetic effect of electric discharge with heterogeneous catalysis on electrodes. The efficiency of CO 2 removal is about 40-65%. The process of CO 2 removal is always accompanied by NO x , VOC, SX and other component removal and is connected with O 2 formation. The final product of process is powder with fractal microstructure, low specific weight, water insoluble suitable for use as nitrogen containing fertilizer. The main component (95%) of solid product is amorphous condensate of amino acids with about 5% of metal organic compound with catalytic properties. The condensate has character of statistical proteinoid. Its creation seems to play important role during formation of life in pre-biotic Earth

  18. A comparative study of the elemental composition of the exhaust emissions of cars powered by liquefied petroleum gas and unleaded petrol

    Science.gov (United States)

    Lim, McKenzie C. H.; Ayoko, Godwin A.; Morawska, Lidia; Ristovski, Zoran D.; Jayaratne, E. Rohan; Kokot, Serge

    Elements emitted from the exhausts of new Ford Falcon Forte cars powered by unleaded petrol (ULP) and liquefied petroleum gas (LPG) were measured on a chassis dynamometer. The measurements were carried out in February, June and August 2001, and at two steady state driving conditions (60 and 80 km h -1). Thirty seven elements were quantified in the exhaust samples by inductively coupled plasma mass spectrometry (ICPMS). The total emission factors of the elements from the exhausts of ULP cars were higher than those of LPG cars at both engine speeds even though high variability in the exhaust emissions from different cars was noted. The effect of the operating conditions such as mileage of the cars, engine speed, fuel and lubricating oil compositions on the emissions was studied. To investigate the effects of these conditions, multivariate data analysis methods were employed including exploratory principal component analysis (PCA), and the multi-criteria decision making methods (MCDM), preference ranking organization method for enrichment evaluation (PROMETHEE) and geometrical analysis for interactive aid (GAIA), for ranking the cars on the basis of the emission factors of the elements. PCA biplot of the complete data matrix showed a clear discrimination of the February, June and August emission test results. In addition, (i) platinum group elements (PGE) emissions were separated from each other in the three different clusters viz. Pt with February, Pd with June and Rh with August; (ii) the motor oil related elements, Zn and P, were particularly associated with the June and August tests (these vectors were also grouped with V, Al and Cu); and (iii) highest emissions of most major elements were associated with the August test after the cars have recorded their highest mileage. Extensive analysis with the aid of the MCDM ranking methods demonstrated clearly that cars powered by LPG outperform those powered by ULP. In general, cars tested in June perform better than

  19. Amperometric NOx-sensor for Combustion Exhaust Gas Control. Studies on transport properties and catalytic activity of oxygen permeable ceramic membranes

    International Nuclear Information System (INIS)

    Romer, E.W.J.

    2001-01-01

    The aim of the research described in this thesis is the development of a mixed conducting oxide layer, which can be used as an oxygen permselective membrane in an amperometric NOx sensor. The sensor will be used in exhaust gas systems. The exhaust gas-producing engine will run in the lean mix mode. The preparation of this sensor is carried out using screen-printing technology, in which the different layers of the sensor are applied successively. Hereafter, a co-firing step is applied in which all layers are sintered together. This co-firing step imposes several demands on the selection of materials. The design specifications of the sensor further include requirements concerning the operating temperature, measurement range and overall stability. The operating temperature of the sensor varies between 700 and 850C, enabling measurement of NOx concentrations between 50 and 1200 ppm with a measurement accuracy of 10 ppm. Concerning the stability of the sensor, it must withstand the exhaust gas atmosphere containing, amongst others, smoke, acids, abrasive particles and sulphur. Because of the chosen lean-mix engine concept, in which the fuel/air mixture switches continuously between lean (excess oxygen) and fat (excess fuel) mixtures, the sensor must withstand alternately oxidising and reducing atmospheres. Besides, it should be resistant to thermal shock and show no cross-sensitivity of NOx with other exhaust gas constituents like oxygen and hydrocarbons. The response time should be short, typically less than 500 ms. Because of the application in combustion engines of cars, the operational lifetime should be longer than 10 years. Demands on the mixed conducting oxide layer include the following ones. The layer should show minimal catalytic activity towards NOx-reduction. The oxygen permeability must be larger than 6.22 10 -8 mol/cm 2 s at a layer thickness between 3-50 μm. Since the mixed conducting oxide layer is coated on the YSZ electrolyte embodiment, the two

  20. Inverted Fuel Cell: Room-Temperature Hydrogen Separation from an Exhaust Gas by Using a Commercial Short-Circuited PEM Fuel Cell without Applying any Electrical Voltage.

    Science.gov (United States)

    Friebe, Sebastian; Geppert, Benjamin; Caro, Jürgen

    2015-06-26

    A short-circuited PEM fuel cell with a Nafion membrane has been evaluated in the room-temperature separation of hydrogen from exhaust gas streams. The separated hydrogen can be recovered or consumed in an in situ olefin hydrogenation when the fuel cell is operated as catalytic membrane reactor. Without applying an outer electrical voltage, there is a continuous hydrogen flux from the higher to the lower hydrogen partial pressure side through the Nafion membrane. On the feed side of the Nafion membrane, hydrogen is catalytically split into protons and electrons by the Pt/C electrocatalyst. The protons diffuse through the Nafion membrane, the electrons follow the short-circuit between the two brass current collectors. On the cathode side, protons and electrons recombine, and hydrogen is released. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A study on the concentration of CO by the length and the variation of the bent tube of the exhaust pipe for a household gas boiler

    International Nuclear Information System (INIS)

    Leem, Sa Hwan; Huh, Yong Jeong; Lee, Jong Rark

    2008-01-01

    Energy and environment become increasingly serious after the industrial revolution. The demand for gas as an ecofriendly energy source is also increasing. With the demand, the installation and the use of gas boilers have also increased, so the damage to human life by the waste gas (CO and CO 2 ) continues increasing every year. Hence, the aim of this study was to investigate the concentration of CO (Carbon Monoxide) by the length and the variation of the bent tube of the exhaust pipe by installing a boiler with the same method as a household boiler and to discover the harm to humans. For the effect of the length, the allowable concentration of CO is 50ppm, and the 3m of the once bent tube starts exceeding the allowable concentration of CO after 5 minutes, and the 4m and 5m starts exceeding after 3 minutes. In addition, the 1m of three times bent tube starts exceeding the allowable concentration of CO after 3 minutes

  2. Quantification of benzene, toluene, ethylbenzene and o-xylene in internal combustion engine exhaust with time-weighted average solid phase microextraction and gas chromatography mass spectrometry.

    Science.gov (United States)

    Baimatova, Nassiba; Koziel, Jacek A; Kenessov, Bulat

    2015-05-11

    A new and simple method for benzene, toluene, ethylbenzene and o-xylene (BTEX) quantification in vehicle exhaust was developed based on diffusion-controlled extraction onto a retracted solid-phase microextraction (SPME) fiber coating. The rationale was to develop a method based on existing and proven SPME technology that is feasible for field adaptation in developing countries. Passive sampling with SPME fiber retracted into the needle extracted nearly two orders of magnitude less mass (n) compared with exposed fiber (outside of needle) and sampling was in a time weighted-averaging (TWA) mode. Both the sampling time (t) and fiber retraction depth (Z) were adjusted to quantify a wider range of Cgas. Extraction and quantification is conducted in a non-equilibrium mode. Effects of Cgas, t, Z and T were tested. In addition, contribution of n extracted by metallic surfaces of needle assembly without SPME coating was studied. Effects of sample storage time on n loss was studied. Retracted TWA-SPME extractions followed the theoretical model. Extracted n of BTEX was proportional to Cgas, t, Dg, T and inversely proportional to Z. Method detection limits were 1.8, 2.7, 2.1 and 5.2 mg m(-3) (0.51, 0.83, 0.66 and 1.62 ppm) for BTEX, respectively. The contribution of extraction onto metallic surfaces was reproducible and influenced by Cgas and t and less so by T and by the Z. The new method was applied to measure BTEX in the exhaust gas of a Ford Crown Victoria 1995 and compared with a whole gas and direct injection method. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Analysis of an Increase in the Efficiency of a Spark Ignition Engine Through the Application of an Automotive Thermoelectric Generator

    Science.gov (United States)

    Merkisz, Jerzy; Fuc, Pawel; Lijewski, Piotr; Ziolkowski, Andrzej; Galant, Marta; Siedlecki, Maciej

    2016-08-01

    We have analyzed the increase of the overall efficiency of a spark ignition engine through energy recovery following the application of an automotive thermoelectric generator (ATEG) of our own design. The design of the generator was developed following emission investigations during vehicle driving under city traffic conditions. The measurement points were defined by actual operation conditions (engine speed and load), subsequently reproduced on an engine dynamometer. Both the vehicle used in the on-road tests and the engine dynamometer were fit with the same, downsized spark ignition engine (with high effective power-to-displacement ratio). The thermodynamic parameters of the exhaust gases (temperature and exhaust gas mass flow) were measured on the engine testbed, along with the fuel consumption and electric current generated by the thermoelectric modules. On this basis, the power of the ATEG and its impact on overall engine efficiency were determined.

  4. Automotive Technology Skill Standards

    Science.gov (United States)

    Garrett, Tom; Asay, Don; Evans, Richard; Barbie, Bill; Herdener, John; Teague, Todd; Allen, Scott; Benshoof, James

    2009-01-01

    The standards in this document are for Automotive Technology programs and are designed to clearly state what the student should know and be able to do upon completion of an advanced high-school automotive program. Minimally, the student will complete a three-year program to achieve all standards. Although these exit-level standards are designed…

  5. Denuder for measuring emissions of gaseous organic exhaust gas constituents; Denuder zur Emissionsmessung von gasfoermigen organischen Abgasinhaltsstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Gerchel, B; Jockel, W; Kallinger, G; Niessner, R

    1997-05-01

    Industrial plants which emit carcinogenic or other noxious substances should be given top priority in any policy to ward off harmful environmental effects. This also applies to many volatile and semi-volatile air constituents such as volatile aliphatic carbonyls or amines. To date there are no satisfactory methods for determining trace organic components of exhaust gases. It is true that aldehydes are considered in the VDI Guideline 3862, but the measuring methods given there are based on absorption in liquids and are accordingly difficult to use and show a high cross-sensitivity for other substances. No VDI Guideline exists to date on amine emissions. In view of the complexity of exhaust gases a selective enrichment of certain families of substances would appear indicated. Sampling trouble could be reduced if it was possible only to accumulate the gaseous phase, or even just one family of gaseous constituents. A particularly suitable air sampling method is that of diffusion separation. These diffusion separators (denuders) are well known as a powerful measuring system which is able to accumulate trace pollutants in the outside air. The purpose of the present study was to find out whether the concept of diffusion separation is also applicable to emission monitoring, and in particular whether it is suitable for detecting volatile aliphatic aldehydes and amines (primary and secondary) at extremely low concentrations (<10 ppb). (orig./SR) [Deutsch] Fuer Anlagen mit Emissionen von krebserzeugenden und gesundheitsgefaehrdenden Stoffen ergibt sich ein besonderer Handlungsbedarf zum Schutz vor schaedlichen Umwelteinwirkungen. Zu diesen Stoffen gehoeren auch viele leicht- und mittelfluechtigen Luftinhaltsstoffe, wie z.B. die leichtfluechtigen aliphatischen Carbonyle oder Amine. Fuer organische Komponenten, die nur in geringen Konzentrationen im Abgas vorkommen, existieren bisher keine zufriedenstellenden Messverfahren. Fuer die Aldehyde liegt zwar die VDI-Richtlinie 3862

  6. Automotive electronics design fundamentals

    CERN Document Server

    Zaman, Najamuz

    2015-01-01

    This book explains the topology behind automotive electronics architectures and examines how they can be profoundly augmented with embedded controllers. These controllers serve as the core building blocks of today’s vehicle electronics. Rather than simply teaching electrical basics, this unique resource focuses on the fundamental concepts of vehicle electronics architecture, and details the wide variety of Electronic Control Modules (ECMs) that enable the increasingly sophisticated "bells & whistles" of modern designs.  A must-have for automotive design engineers, technicians working in automotive electronics repair centers and students taking automotive electronics courses, this guide bridges the gap between academic instruction and industry practice with clear, concise advice on how to design and optimize automotive electronics with embedded controllers.

  7. Development and testing of a washing process for exhaust gas of stationary operated internal combustion engines. Final report. Entwicklung und Erprobung eines Verfahrens der Abgaswaesche fuer stationaere Verbrennungsmotoren. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Coutelle, R; Huss, R; Wimberger, H J

    1986-01-01

    An exhaust gas washer for stationary operated diesel engines has been developed and tested in combination with a heat pump. The exhaust gas is washed with its own condensate in a packed column. The condensate circulation is performed by mammoth pumps. The pollutant emissions have been reduced depending on operating conditions (speed, temperature, pH of the condensate) by the following rates: HC by 30-85%, aldehydes by 35-99%, phenols by 50-80%, PAH by 80-95%, soot by 25-70%, SO/sub 2/ by 65-90%, NOsub(x) by 5-20%. It has been possible to reduce the NOsub(x) emissions by 75% at an inconsiderably increased fuel consumption by recycling exhaust gases. But higher soot emissions have to be accepted in this case. The condensate is completely degradable in a septic tank after being mixed with waste water containing phosphate. With 42 refs., 13 tabs., 32 figs.

  8. 76 FR 77974 - U.S. Automotive Parts and Components Business Development Mission to Russia

    Science.gov (United States)

    2011-12-15

    ... became a valuable barter commodity. As the Russian market opened to imports, the few wealthy Russians... Tenneco make, respectively, car seats and exhaust systems. Given the current dynamics in this automotive... electronic components, trim, exhaust systems, plastic parts and instrumentation. In addition, there are...

  9. Development of automatic air intake door control system for exhaust gas. Prevention of contaminated air by controlling A/C air intake door; Haiki gas taio auto naigaiki system no kaihatsu. Eakon suikomiguchi seigyo ni yoru haiki gas no shashitsunai eno shinnyu boshi

    Energy Technology Data Exchange (ETDEWEB)

    Honda, Y; Samukawa, K [Denso Corp., Aichi (Japan)

    1997-10-01

    Thermal comfort in the cabin of vehicle is upgraded by developing the climate control system Passengers must control the intake door of air conditioner to reduce entering Exhaust Gas into the cabin. This paper is concerned with development the automatic intake door control system to acquire high comfort performance of passengers. 8 figs., 1 tab.

  10. Generating usable and safe CO{sub 2} for enrichment of greenhouses from the exhaust gas of a biomass heating system

    Energy Technology Data Exchange (ETDEWEB)

    Dion, L.M.; Lefsrud, M. [McGill Univ., Macdonald Campus, Ste-Anne-deBellevue, PQ (Canada). Dept. of Bioresource Engineering

    2010-07-01

    This study demonstrated the use of biomass as a renewable fuel to enrich a greenhouse with carbon dioxide (CO{sub 2}). CO{sub 2} enrichment of greenhouses has been shown to improve crop production whether it occurs from liquid CO{sub 2} or combustion of fossil fuels. Biomass, in the form of wood chips or pellets, has received much interest as a sustainable and economically viable alternative to heat greenhouses. As such, the opportunity exists to convert exhaust gases from a greenhouse wood heating system into a useful resource. CO{sub 2} can be extracted from flue gas via membrane separation instead of electrostatic precipitators. This technique has shown potential for large industries trying to reduce and isolate CO{sub 2} emissions for sequestration and may be applicable to the greenhouse industry. Some research has also been done with wet scrubbers using catalysts to obtain plant fertilizers. Sulphur dioxide (SO{sub 2}) and nitrogen (NO) emissions can be stripped from flue gas to form ammonium sulphate as a valuable byproduct for fertilizer markets. This study will review the potential of these techniques in the summer of 2010 when experiments will be conducted at the Macdonald Campus of McGill University.

  11. Online Reputation in Automotive

    Directory of Open Access Journals (Sweden)

    Vodák Josef

    2017-01-01

    Full Text Available This paper deals with the issue of online reputation, namely the social networking profile of businesses. Selected companies in the automotive industry through social profiles communicate with their customers, the public and they trying to improve their name and the name of their products in the public eye. Online reputation analysis was carried out to determine the current situation on the territory of Slovakia. On the basis of the data found, measures were proposed to improve the current state and reputation of automotive companies. Recommendations suggested by the findings can be used on any market to improve the current state and increase the competitiveness of automotive companies.

  12. Method for removing soot from exhaust gases

    Science.gov (United States)

    Suib, Steven L.; Dharmarathna, D. A. Saminda; Pahalagedara, Lakshitha R.

    2018-01-16

    A method for oxidizing soot from diesel exhaust gas from a diesel engine. The method involves providing a diesel particulate filter for receiving the diesel exhaust gas; coating a catalyst composition on the diesel particulate filter; and contacting the soot from the diesel exhaust gas with the catalyst coated diesel particulate filter at a temperature sufficient to oxidize the soot to carbon dioxide. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2) material. A diesel exhaust gas treatment system that includes a diesel particulate filter for receiving diesel exhaust gas from a diesel engine and collecting soot; and a catalyst composition coated on the diesel particulate filter. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2).

  13. 46 CFR 182.430 - Engine exhaust pipe installation.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Engine exhaust pipe installation. 182.430 Section 182... 100 GROSS TONS) MACHINERY INSTALLATION Specific Machinery Requirements § 182.430 Engine exhaust pipe... equipment might come in contact with an exhaust pipe. (b) Exhaust gas must not leak from the piping or any...

  14. 46 CFR 119.430 - Engine exhaust pipe installation.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Engine exhaust pipe installation. 119.430 Section 119... INSTALLATION Specific Machinery Requirements § 119.430 Engine exhaust pipe installation. (a) The design of all... an exhaust pipe. (b) Exhaust gas must not leak from the piping or any connections. The piping must be...

  15. National Automotive Center - NAC

    Data.gov (United States)

    Federal Laboratory Consortium — Encouraged by the advantages of collaboration, the U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC) worked with the Secretary of the...

  16. Thermo-economic optimization of heat recovery steam generator for a range of gas turbine exhaust temperatures

    International Nuclear Information System (INIS)

    Nadir, Mahmoud; Ghenaiet, Adel; Carcasci, Carlo

    2016-01-01

    Highlights: • Thermo-economic optimization of HRSG configurations. • The maximum value of the net present value was targeted for the economic optimization. • Three level HRSG is the best option in respect of power output and high priced medium. • Two level HRSG is the best for net benefit in low and intermediate priced mediums. - Abstract: This paper illustrates the effect of selling price on the optimum design parameters of a heat recovery steam generator (HRSG) and the selection of its ideal configuration for an outlet temperature range of 350–650 °C. The Particle Swarm Optimization (PSO) method was used, considering the steam cycle specific work as an objective to be maximized, the net present value as another objective to be maximized for the economic optimization and a combination of both. Three configurations of heat recovery steam generators are considered with one, two and three pressure levels and a reheat. The results show that, the three pressure level system is the best configuration from a thermodynamic point of view, but with respect to the economical aspect the two pressure levels is the best configuration for the low and medium selling prices (0.04 $/kW h, 0.08 $/kW h and 0.2 $/kW h), whereas the three pressure level configuration would only be interesting for a high selling price of 0.3 $/kW h and a temperature range 450–600 °C. For a temperature of 650 °C, the high cost of the three level system leads to a decrease in the net present value. As the selling price increases the optimized design parameters of the three pressure level HRSG based on economic or thermodynamic optimization are similar. The obtained results are used to elaborate a new correlation relating the net present value with the gas turbine outlet temperature, gas mass flow rate, number of levels of HRSG and selling price.

  17. Component Analysis of Deposits in Selective Catalytic Reduction System for Automotive Diesel Engine

    Directory of Open Access Journals (Sweden)

    Zhu Neng

    2016-01-01

    Full Text Available In this paper, deposits in exhaust pipes for automotive diesel engines were studied by various chemical analysis methods and a kind of analysis process to determine the compositions of organic matter was proposed. Firstly, the elements of the deposits were determined through the element analysis method. Then using characteristic absorption properties of organic functional groups to the infrared spectrum, the functional groups in the deposits were determined. Finally, by GC-MS (gas chromatography - mass spectrometry test, the content of each main component was determined quantitatively. Element analysis results indicated that the deposits adsorbed metal impurities from fuel oil, lubricating oil, mechanical wear and urea water solution. The result of GC-MS test showed that the area percentage of cyanuric acid was the biggest (about 85%, the second was urea (about 4%, and the content of biuret and biurea was scarce.

  18. FY 1999 report on the results of the study to support the commercialization of recycling technology, etc. 4. R and D for enhancement of automobile fuel consumption/exhaust gas technology; 1999 nendo recycle gijutsu nado jitsuyoka shien kenkyu seika hokokusho. 4. Jidosha nenpi hai gas gijutsu kodoka kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of clarifying measures for reducing fuel consumption and exhaust gas of automobiles, survey was made of effects of environmental temperatures and fuel properties on exhaust gas. In the survey of effects of environmental temperatures, experiment on exhaust gas was carried out by changing the laboratory temperature from 5 degrees C to 35 degrees C using direct injection gasoline engine. As a result, it was found out that environmental temperatures have effects exhaust gas according to changes in purification rate by rise in catalytic temperature, changes in air/fuel ratio by changes in air density, control methods to secure starting-up/drivability, etc. In the survey of effects of gasoline properties, study was made on effects of distillation properties, especially, 90% distillation temperature (T90) on exhaust gas. As a result, in 10(center dot)15 mode, CO and THC decreased with a decrease in T90 both in three-way catalytic car and direct injection car. Especially, CO decreased to about 1/4 when decreasing T90 from 151 degrees C to 116 degrees C. NOx increased in three-way catalytic car and decreased in direct injection car with a decrease in T90. (NEDO)

  19. Impact of intake CO 2 addition and exhaust gas recirculation on NO x emissions and soot reactivity in a common rail diesel engine

    KAUST Repository

    Al-Qurashi, Khalid

    2012-10-18

    The impact of intake CO 2 addition and exhaust gas recirculation (EGR) on engine combustion characteristics, NO x emissions, and soot oxidative reactivity was studied in a common rail diesel engine equipped with a cooled EGR system. The engine test results and the heat release analysis show that the reduced flame temperature, induced by the reduction of the oxygen concentration (dilution effect) is the dominant mechanism via which CO 2 and EGR lower NO x emissions in diesel engines. On the other hand, the collected soot from the engine tests was examined for its oxidative reactivity using a thermogravimetric analyzer (TGA). Results show that EGR has a significant effect on soot reactivity and results in higher initial active sites compared to the CO 2 case. We conclude that the reduced flame temperature (thermal effect) which is a consequence of the dilution effect is responsible for the observed increase in soot reactivity. These results confirm observations from our past work on flame soot, which showed that the peak adiabatic flame temperature is the governing factor affecting soot reactivity. These findings imply that driving the combustion concepts toward low temperature is favorable to effectively control engine pollutants, including soot reactivity. © 2012 American Chemical Society.

  20. Activity enhancement of Ag/mordenite catalysts by addition of palladium for the removal of nitrogen oxides from diesel engine exhaust gas

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, K.; Tsujimura, K. [New A.C.E. Institute Co., Ltd., Ibaraki (Japan); Shinoda, K.; Kato, T. [Mitsui Mining and Smelting Co., Ltd., Saitama (Japan)

    1998-01-15

    Various Ag-Pd/mordenite catalysts were prepared on washcoated honeycombs and tested in terms of NO{sub x} removal from diesel exhaust gas with (CH{sub 3}){sub 2}O as a reducing agent at a practical high level of space velocity. The activity was dependent upon the palladium loading. In terms of NO{sub x} removal, the order of catalytic activity was Ag(3)/Pd(0.01)/mordenite Ag(3)/Pd(0.1)/mordenite Ag(3)/mordenite catalyst Ag(3)/Pd(1.0)/mordenite. It was found that a relatively small loading of palladium on Ag/mordenite catalysts led to a significant improvement in catalytic activity over a wide range of temperatures. The properties of these catalysts were also investigated by the NH{sub 3} temperature programed desorption (TPD) and BET method. It was found that Ag(3)/Pd(0.01)/mordenite had a larger amount of acid sites. It was concluded that Ag/mordenite catalyst with a small amount of palladium can effectively remove NO{sub x} over a wide range of temperatures using (CH{sub 3}){sub 2}O as a reducing agent

  1. Impact of intake CO 2 addition and exhaust gas recirculation on NO x emissions and soot reactivity in a common rail diesel engine

    KAUST Repository

    Al-Qurashi, Khalid; Zhang, Yu; Boehman, André Louis

    2012-01-01

    The impact of intake CO 2 addition and exhaust gas recirculation (EGR) on engine combustion characteristics, NO x emissions, and soot oxidative reactivity was studied in a common rail diesel engine equipped with a cooled EGR system. The engine test results and the heat release analysis show that the reduced flame temperature, induced by the reduction of the oxygen concentration (dilution effect) is the dominant mechanism via which CO 2 and EGR lower NO x emissions in diesel engines. On the other hand, the collected soot from the engine tests was examined for its oxidative reactivity using a thermogravimetric analyzer (TGA). Results show that EGR has a significant effect on soot reactivity and results in higher initial active sites compared to the CO 2 case. We conclude that the reduced flame temperature (thermal effect) which is a consequence of the dilution effect is responsible for the observed increase in soot reactivity. These results confirm observations from our past work on flame soot, which showed that the peak adiabatic flame temperature is the governing factor affecting soot reactivity. These findings imply that driving the combustion concepts toward low temperature is favorable to effectively control engine pollutants, including soot reactivity. © 2012 American Chemical Society.

  2. Simultaneous high-speed gas property measurements at the exhaust gas recirculation cooler exit and at the turbocharger inlet of a multicylinder diesel engine using diode-laser-absorption spectroscopy.

    Science.gov (United States)

    Jatana, Gurneesh S; Magee, Mark; Fain, David; Naik, Sameer V; Shaver, Gregory M; Lucht, Robert P

    2015-02-10

    A diode-laser-absorption-spectroscopy-based sensor system was used to perform high-speed (100 Hz to 5 kHz) measurements of gas properties (temperature, pressure, and H(2)O vapor concentration) at the turbocharger inlet and at the exhaust gas recirculation (EGR) cooler exit of a diesel engine. An earlier version of this system was previously used for high-speed measurements of gas temperature and H(2)O vapor concentration in the intake manifold of the diesel engine. A 1387.2 N m tunable distributed feedback diode laser was used to scan across multiple H(2)O absorption transitions, and the direct absorption signal was recorded using a high-speed data acquisition system. Compact optical connectors were designed to conduct simultaneous measurements in the intake manifold, the EGR cooler exit, and the turbocharger inlet of the engine. For measurements at the turbocharger inlet, these custom optical connectors survived gas temperatures as high as 800 K using a simple and passive arrangement in which the temperature-sensitive components were protected from high temperatures using ceramic insulators. This arrangement reduced system cost and complexity by eliminating the need for any active water or oil cooling. Diode-laser measurements performed during steady-state engine operation were within 5% of the thermocouple and pressure sensor measurements, and within 10% of the H(2)O concentration values derived from the CO(2) gas analyzer measurements. Measurements were also performed in the engine during transient events. In one such transient event, where a step change in fueling was introduced, the diode-laser sensor was able to capture the 30 ms change in the gas properties; the thermocouple, on the other hand, required 7.4 s to accurately reflect the change in gas conditions, while the gas analyzer required nearly 600 ms. To the best of our knowledge, this is the first implementation of such a simple and passive arrangement of high-temperature optical connectors as well

  3. Reduction of exhaust gases an fuel consumption. Impacts on air qulity and greenhouse effect; Abgas- und Verbrauchsverringerung. Auswirkungen auf Luftqualitaet und Treibhauseffekt

    Energy Technology Data Exchange (ETDEWEB)

    Metz, N. (ed.)

    2007-07-01

    The book includes contributions on European exhaust gas limits for stationary and mobile pollution sources, challenges for the automotive industry, NO{sub 2}, CO{sub 2} and fine dust emissions of power plants, potential for emission reductions of modern engines, comparison of CO{sub 2} avoidance costs with costs for mitigation measures, CO{sub 2} saving potentials in buildings, characterization of diesel particulates, concepts for emission reductions, development of air quality and greenhouse gases, impact of fine dust and NO{sub 2} on public health, new combustion processes based on new fuel specifications.

  4. Self-regenerative function of the intelligent automotive catalyst

    International Nuclear Information System (INIS)

    Tanaka, Hirohisa; Nishihata, Yasuo

    2007-01-01

    Intelligent catalyst, in which noble metals are used as an active part of automotive catalyst, has been considered for keeping up their sufficient activity. The noble metals have a function of cleaning up the exhaust gas as well as that of self-regeneration. In 2002, a Pd system has been put to practical use, and continuously Rh and Pt systems have been commercialized. Now the catalyst has been used in more than three million vehicles. In this report, the atomic level mechanism of the catalyst and its self-regeneration function getting from analyses using synchrotron radiation are introduced. By the analysis using the Spring-8, the mechanism of keeping the active state of the Pd Perovskite Oxide without degradation was identified. The DXAFS (Dispersive X-ray Absorption Fine Structure) analysis in the ESRF (European Synchrotron Radiation Facility) made clear the self-regeneration mechanism of the Pd Perovskite Oxide. This knowledge could lead to the practical development of the Rh and Pt systems. The catalyst technology is counted on balancing resources of the noble metal and environmental sustainability. (A.H.)

  5. Exhaust system of an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    1974-09-04

    A catalytic converter system for internal combustion engines is described that includes a means to maintain the catalyst temperature within a predetermined range for the efficient reduction of nitrogen oxides in the exhaust gas. Upstream of the catalytic converter, the exhaust pipe is encased in a structure such that a space is provided for the flow of a coolant around the exhaust pipe in response to the sensed catalytic temperature. A coolant control valve is actuated in response to the temperature sensor.

  6. Argon/UF6 plasma exhaust gas reconstitution experiments using preheated fluorine and on-line diagnostics. [fissioning uranium plasma core reactor design

    Science.gov (United States)

    Roman, W. C.

    1979-01-01

    The feasibility of employing a flowing, high-temperature, pure fluorine/UF6 regeneration system to efficiently convert a large fraction of the effluent plasma exhaust back to pure UF6 was demonstrated. The custom built T.O.F. mass spectrometer sampling system permitted on-line measurements of the UF6 concentration at different locations in the exhaust system. Negligible amounts ( 100 ppm) of UF6 were detected in the axial bypass exhaust duct and the exhaust ducts downstream of the cryogenic trap system used to collect the UF6, thus verifying the overall system efficiency over a range of operating conditions. Use of a porous Monel duct as part of the exhaust duct system, including provision for injection of pure fluorine, provided a viable technique to eliminate uranium compound residue on the inside surface of the exhaust ducts. Typical uranium compound mass deposition per unit area of duct was 2 micron g/sq cm. This porous duct technique is directly applicable to future uranium compound transfer exhaust systems. Throughout these experiments, additional basic data on the corrosion aspects of hot, pressurized UF6/fluorine were also accumulated.

  7. Identification for automotive systems

    CERN Document Server

    Hjalmarsson, Håkan; Re, Luigi

    2012-01-01

    Increasing complexity and performance and reliability expectations make modeling of automotive system both more difficult and more urgent. Automotive control has slowly evolved from an add-on to classical engine and vehicle design to a key technology to enforce consumption, pollution and safety limits. Modeling, however, is still mainly based on classical methods, even though much progress has been done in the identification community to speed it up and improve it. This book, the product of a workshop of representatives of different communities, offers an insight on how to close the gap and exploit this progress for the next generations of vehicles.

  8. Standardized Curriculum for Automotive Mechanics.

    Science.gov (United States)

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: automotive mechanics I and II. The six units in automotive mechanics I are as follows: orientation and safety; tools, equipment, and manuals; measurement; automotive engines; basic electrical systems; and fuel systems. Automotive…

  9. Effects of 2,5-dimethylfuran fuel properties coupling with EGR (exhaust gas recirculation) on combustion and emission characteristics in common-rail diesel engines

    International Nuclear Information System (INIS)

    Chen, Guisheng; Di, Lei; Zhang, Quanchang; Zheng, Zunqing; Zhang, Wei

    2015-01-01

    The effects of DMF (2,5-dimethylfuran) fuel properties combined with EGR (exhaust gas recirculation), CA50, EHN (2-Ethylhexyl nitrate) and multi-injection strategies on combustion and emission characteristics were experimentally investigated in two common-rail diesel engines including a single-cylinder engine and a multi-cylinder engine. Results demonstrate that, with DMF addition into diesel, ID (ignition delay) prolongs and smoke decreases more greatly as EGR rate increases. When DMF addition fraction increases up to 40%, the inherent trade-off between NO_x and smoke can be eliminated, but the MPRR (maximum pressure rise rate) is too high. However, the higher MPRR can be reduced efficiently without serious penalties in smoke and BTE (brake thermal efficiency) by delaying CA50 and adding EHN reasonably. Although DMF and gasoline have very similar physic-chemical properties, DMF/diesel blends are much more efficient than gasoline/diesel wide-distillation blends to reduce soot with high EGR rates due to its much longer ID and atomic oxygen. With increasing DMF addition fraction, BTE is affected less by the delay of CA50, meanwhile, multi-injection strategies have less impact on soot generation. Additionally, as compared to the delay of CA50 and the addition of EHN, the employ of pilot injection is poor to reduced MPRR for DMF/diesel blends. - Highlights: • D40 can solve the NO_x-smoke trade-off relationship, but leading to higher MPRR. • Adding EHN into D40 can reduce MPRR efficiently with a little increase in soot. • Compared to gasoline, DMF is much more efficient to reduce soot in CI engines. • With DMF addition, multi-injection strategies have less impact on MPRR and soot. • DMF may be a promising alternative for reducing soot emissions in CI engine LTC.

  10. Catalytic cleaning of automotive exhaust gases; Katalytische Reinigung von Kraftfahrzeugabgasen

    Energy Technology Data Exchange (ETDEWEB)

    Domesle, R [Degussa AG, Hanau (Germany)

    1998-12-31

    In the Clean Air Act of 1970 the US American Government set itself the goal of reducing pollutant emissions from automobiles to 10% of the original level. While it was very ambitious at the time, this goal has meanwhile been reached, at least in terms of the amount of pollution per vehicle. The period between 1981 and 1986 alone saw emission reductions in the USA of 65% for CO, 60% for HC, and 40% for NO{sub x}. The introduction of stringent limit values in Europe is in particular predicted to bring about drastic reductions in HC emissions. By the year 2010, after the phase-out of old vehicles without a cat, HC emissions are expected to have decreased to 20% of the 1990 level. A similar development has been predicted for CO emissions. As for NO{sub x} emissions there will at least be drastic reductions in spark ignition vehicles. However, this success will be neutralised for some part by the growing number of diesel vehicles and by increasing mileage. These figures show impressively that the use of catalytic converters in road vehicles has made a substantial contribution to relieving the environment and improving the quality of life and will continue to do so in future. [Deutsch] Die amerikanische Regierung trat 1970 im Clean Air Act mit der Vorgabe an, die Schadstoffe aus Kraftfahrzeugen auf 10% des urspruenglichen Wertes mindern zu wollen. Dieses Ziel war zum damaligen Zeitpunkt sehr hochgesteckt, ist aber inzwischen erreicht worden, was die Schadstoffmenge pro Fahrzeug angeht. Allein zwischen den Jahren 1981-86 wurde eine Schadstoffreduzierung um 65% fuer CO, 60% fuer HC und 40% fuer NO{sub x} in den USA festgestellt. Durch Einfuehrung der strengen Grenzwerte in Europa ist vor allem eine drastische Verminderung der HC-Emissionen prognostiziert. Diese sollen im Jahre 2010 nach Auslaufen der Altfahrzeuge ohne Katalysator noch 20% des Niveaus von 1990 betragen. Fuer CO werden aehnliche Verhaeltnisse erwartet. Bei den NO{sub x}-Emissionen wird im PKW-Bereich fuer Ottomotorfahrzeuge ebenfalls eine drastische Reduktion erreicht werden. Jedoch werden diese Erfolge zum Teil kompensiert durch steigenden Anteil von Dieselfahrzeugen und die hoehere Fahrleistung. Diese Zahlen zeigen eindrucksvoll, dass der Katalysatoreinsatz im Bereich der Strassenfahrzeuge einen wesentlichen Beitrag zur Entlastung der Umwelt und zur Erhoehung der Lebensqualitaet geleistet hat und auch in Zukunft noch leisten wird. (orig.)

  11. Catalytic cleaning of automotive exhaust gases; Katalytische Reinigung von Kraftfahrzeugabgasen

    Energy Technology Data Exchange (ETDEWEB)

    Domesle, R. [Degussa AG, Hanau (Germany)

    1997-12-31

    In the Clean Air Act of 1970 the US American Government set itself the goal of reducing pollutant emissions from automobiles to 10% of the original level. While it was very ambitious at the time, this goal has meanwhile been reached, at least in terms of the amount of pollution per vehicle. The period between 1981 and 1986 alone saw emission reductions in the USA of 65% for CO, 60% for HC, and 40% for NO{sub x}. The introduction of stringent limit values in Europe is in particular predicted to bring about drastic reductions in HC emissions. By the year 2010, after the phase-out of old vehicles without a cat, HC emissions are expected to have decreased to 20% of the 1990 level. A similar development has been predicted for CO emissions. As for NO{sub x} emissions there will at least be drastic reductions in spark ignition vehicles. However, this success will be neutralised for some part by the growing number of diesel vehicles and by increasing mileage. These figures show impressively that the use of catalytic converters in road vehicles has made a substantial contribution to relieving the environment and improving the quality of life and will continue to do so in future. [Deutsch] Die amerikanische Regierung trat 1970 im Clean Air Act mit der Vorgabe an, die Schadstoffe aus Kraftfahrzeugen auf 10% des urspruenglichen Wertes mindern zu wollen. Dieses Ziel war zum damaligen Zeitpunkt sehr hochgesteckt, ist aber inzwischen erreicht worden, was die Schadstoffmenge pro Fahrzeug angeht. Allein zwischen den Jahren 1981-86 wurde eine Schadstoffreduzierung um 65% fuer CO, 60% fuer HC und 40% fuer NO{sub x} in den USA festgestellt. Durch Einfuehrung der strengen Grenzwerte in Europa ist vor allem eine drastische Verminderung der HC-Emissionen prognostiziert. Diese sollen im Jahre 2010 nach Auslaufen der Altfahrzeuge ohne Katalysator noch 20% des Niveaus von 1990 betragen. Fuer CO werden aehnliche Verhaeltnisse erwartet. Bei den NO{sub x}-Emissionen wird im PKW-Bereich fuer Ottomotorfahrzeuge ebenfalls eine drastische Reduktion erreicht werden. Jedoch werden diese Erfolge zum Teil kompensiert durch steigenden Anteil von Dieselfahrzeugen und die hoehere Fahrleistung. Diese Zahlen zeigen eindrucksvoll, dass der Katalysatoreinsatz im Bereich der Strassenfahrzeuge einen wesentlichen Beitrag zur Entlastung der Umwelt und zur Erhoehung der Lebensqualitaet geleistet hat und auch in Zukunft noch leisten wird. (orig.)

  12. Exhaust Gas Scrubber Washwater Effluent

    Science.gov (United States)

    2011-11-01

    variations in the chemistry. Rivers running through soil rich in carbonates will be high in alkalinity. For example, the southern rivers of the Baltic Sea... enviro /Scrubber Test_Report_onboard_Suula.pdf) Waterco. 2010. MultiCyclone for Cooling Towers (http://www.waterco.eu/installations/water- treatment

  13. Hydrogen as automotive fuel

    International Nuclear Information System (INIS)

    Ambrosini, G.; Ciancia, A.; Pede, G.; Brighigna, M.

    1993-01-01

    Hydrogen fueled vehicles may just be the answer to the air pollution problem in highly polluted urban environments where the innovative vehicle's air pollution abatement characteristics would justify its high operating costs as compared with those of conventional automotive alternatives. This paper examines the feasibility of hydrogen as an automotive fuel by analyzing the following aspects: the chemical-physical properties of hydrogen in relation to its use in internal combustion engines; the modifications necessary to adapt internal combustion engines to hydrogen use; hydrogen fuel injection systems; current production technologies and commercialization status of hydrogen automotive fuels; energy efficiency ratings; environmental impacts; in-vehicle storage systems - involving the use of hydrides, high pressure systems and liquid hydrogen storage systems; performance in terms of pay-load ratio; autonomous operation; and operating costs. With reference to recent trial results being obtained in the USA, an assessment is also made of the feasibility of the use of methane-hydrogen mixtures as automotive fuels. The paper concludes with a review of progress being made by ENEA (the Italian Agency for New Technology, Energy and the Environment) in the development of fuel storage and electronic fuel injection systems for hydrogen powered vehicles

  14. Automotive Brake Systems.

    Science.gov (United States)

    Marine Corps Inst., Washington, DC.

    This correspondence course, orginally developed for the Marine Corps, is designed to provide mechanics with an understanding of the basic operations of automotive brake systems on military vehicles. The course contains four study units covering hydraulic brakes, air brakes, power brakes, and auxiliary brake systems. A troubleshooting guide for…

  15. Catalytic removal of methane and NO{sub x} in lean-burn natural-gas engine exhaust; Elimination par catalyse du methane et des NO{sub x} dans les echappements de moteur au gaz naturel a basse combustion

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H.; Satokawa, S.; Yahagi, M.; Yamaseki, K.; Hoshi, F.; Uchida, H.; Yokota, H. [Tokyo Gas Co., Ltd. (Japan)

    2000-07-01

    We have developed a new catalytic system to reduce the emissions of hydrocarbons, carbon monoxide (CO), and nitrogen oxides (NO{sub x}) contained in the exhaust gases from a lean-burn natural-gas engine. Catalytic oxidation of unburned hydrocarbons and CO in the exhaust has been studied for noble metals supported on alumina. (1) A low-loading catalyst comprising platinum supported on alumina (Pt/alumina) was efficient for the oxidation of CO and hydrocarbons without methane. The CO conversions were maintained at more than 98 % for 20,000 hours over the Pt/alumina. (2) A catalyst comprising platinum and palladium supported on alumina (Pt-Pd/alumina) exhibited higher levels of oxidation of hydrocarbons (including methane) than a catalyst comprising only palladium supported on alumina (Pd/alumina). Its oxidation also lasted longer. The combined effects of the platinum and palladium metals achieved high sulfur dioxide resistance. Increasing the palladium content in the Pt-Pd/alumina catalyst increased the level of oxidation and extended the lifetime of the catalyst. (3) A catalyst comprising silver supported on alumina (Ag/alumina) was effective at reducing the amount of NO{sub X} by using the unburned hydrocarbons in the exhaust gas. The NO{sub x} conversions over Ag/alumina were maintained at more than 30 % for 3,500 hours. We describe a total clean-up system consisting of a Ag/alumina catalyst and a Pt-Pd/alumina catalyst in series on the exhaust gas stream. (authors)

  16. Catalysis and automotive pollution control

    International Nuclear Information System (INIS)

    Crucq, A.; Frennet, A.

    1987-01-01

    In these proceedings seven lectures are presented dealing with the effects of exhaust gas on human health and the environment, with the economical and legislative problems associated with the new EEC standards and with the points of view of the oil and motor industries. Three papers deal with catalytic converters and problems such as specific pollution control of diesel engines, synthesis of adequate fuels and additives adapted to catalytic converters. Twentyfour papers are devoted to fundamental and applied studies on catalytic converters, support preparation and base metal catalysts. refs.; figs.; tabs

  17. The status of ceramic turbine component fabrication and quality assurance relevant to automotive turbine needs

    Energy Technology Data Exchange (ETDEWEB)

    Richerson, D.W.

    2000-02-01

    This report documents a study funded by the U.S. Department of Energy (DOE) Office of Transportation Technologies (OTT) with guidance from the Ceramics Division of the United States Automotive Materials Partnership (USAMP). DOE and the automotive companies have funded extensive development of ceramic materials for automotive gas turbine components, the most recent effort being under the Partnership for a New Generation of Vehicles (PNGV) program.

  18. Exhaust Recirculation Control for Reduction of NOx from Large Two-Stroke Diesel Engines

    DEFF Research Database (Denmark)

    Nielsen, Kræn Vodder

    Increased awareness of the detrimental effects on climate, ecosystems and human health have led to numerous restrictions of the emissions from internal combustion engines. Recently the International Maritime Organization has introduced the Tier III standard, which includes a significantly stricter...... the automotive industry, but have only recently been introduced commercially to large two-stroke diesel engines. Recirculation of exhaust gas to the cylinders lowers the oxygen availability and increases the heat capacity during combustion, which in turn leads to less formation of NOx. Experience shows...... of the Tier III standard, while still maintaining maneuverability performance without smoke formation. The design methods acknowledge that engine specific parameter tuning is a scarce resource in the industry and controller complexity is kept to a minimum. An existing dynamic model of the engine and EGR...

  19. Automotive fuels. Quality current and future perspectives

    International Nuclear Information System (INIS)

    Avella, F.

    1999-01-01

    In the present paper, a general view of the automotive fuel characteristics and of the influence of the most important fuel parameters on the engine performance and emissions are presented. At short term, the future scenario is conditioned by the application of the next European Directive on fuel specifications, that will came into effect on 1 January 2000. The composition of liquid fuels shall be subject to modifications nd restrictions to meet the new specifications Among alternative fuels, natural gas and Lpg (liquefied petroleum gases) are the most interesting in the view point of environmental protection. Biodiesel constitutes a potential and valid alternative to mineral gas oil in diesel engines [it

  20. Rotordynamics of automotive turbochargers

    CERN Document Server

    Nguyen-Schäfer, Hung

    2015-01-01

    Rotordynamics of automotive turbochargers is dealt with in this book encompassing the widely working field of small turbomachines under real operating conditions at the very high rotor speeds up to 300000 rpm. The broadly interdisciplinary field of turbocharger rotordynamics involves 1) Thermodynamics and Turbo-Matching of Turbochargers 2) Dynamics of Turbomachinery 3) Stability Analysis of Linear Rotordynamics with the Eigenvalue Theory 4) Stability Analysis of Nonlinear Rotordynamics with the Bifurcation Theory 5) Bearing Dynamics of the Oil Film using the Two-Phase Reynolds Equation 6) Computation of Nonlinear Responses of a Turbocharger Rotor 7) Aero and Vibroacoustics of Turbochargers 8) Shop and Trim Balancing at Two Planes of the Rotor 9) Tribology of the Bearing Surface Roughness 10) Design of Turbocharger Platforms using the Similarity Laws The rotor response of an automotive turbocharger at high rotor speeds is studied analytically, computationally, and experimentally. Due to the nonlinear character...

  1. Automotive systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Markus [Technische Univ. Braunschweig (Germany). Inst. fuer Regelungstechnik; Winner, Hermann (eds.) [Technische Univ. Darmstadt (Germany). Fachgebiet Fahrzeugtechnik

    2013-06-01

    Innovative state-of-the-art book. Presents brand new results of a joint workshop in the field of automotive systems engineering. Recommendable to students for further reading even though not a primary text book. This book reflects the shift in design paradigm in automobile industry. It presents future innovations, often referred as ''automotive systems engineering''. These cause fundamental innovations in the field of driver assistance systems and electro-mobility as well as fundamental changes in the architecture of the vehicles. New driving functionalities can only be realized if the software programs of multiple electronic control units work together correctly. This volume presents the new and innovative methods which are mandatory to master the complexity of the vehicle of the future.

  2. Low Cost Advanced Thermoelectric (TE) Technology for Automotive Waste Heat Recovery

    Science.gov (United States)

    Meisner, G. P.

    2014-03-01

    Low cost, fully integrated TE generators (TEGs) to recover waste heat from vehicle exhaust will reduce transportation sector energy consumption and emissions. TEGs will be the first application of high-temperature TE materials for high-volume use and establish new industrial sectors with scaled up production capability of TEG materials and components. We will create a potential supply chain for practical automotive TEGs and identify manufacturing and assembly processes for large scale production of TEG materials and components. Our work focusses on several innovative R&D paths: (1) enhanced TE material performance by doping and compositional tuning, (2) optimized TE material fabrication and processing to reduce thermal conductivity and improve fracture strength, (3) high volume production for successful skutterudite commercialization, (4) new material, nanostructure, and nanoscale approaches to reduce thermal interface and electrical contact resistances, (5) innovative heat exchangers for high efficiency heat flows and optimum temperature profiles despite highly variable exhaust gas operating conditions, (6) new modeling and simulation tools, and (7) inexpensive materials for thermal insulation and coatings for TE encapsulation. Recent results will be presented. Supported by the U.S. DOE Vehicle Technology Program.

  3. Hydrogen as automotive fuel

    International Nuclear Information System (INIS)

    Dini, D.; Ciancia, A.; Pede, G.; Sglavo, V.; ENEA, Rome

    1992-01-01

    An assessment of the technical/economic feasibility of the use of hydrogen as an automotive fuel is made based on analyses of the following: the chemical- physical properties of hydrogen in relation to its use in internal combustion engines; the modifications necessary to adapt internal combustion engines to hydrogen use; hydrogen fuel injection systems - with water vapour injection, cryogenic injection, and the low or high pressure injection of hydrogen directly into the combustion chamber; the current commercialization status of hydrogen automotive fuels; energy efficiency ratings; environmental impacts; in-vehicle storage systems - involving the use of hydrides, high pressure systems and liquid hydrogen storage systems; performance in terms of pay-load ratio; autonomous operation; and operating costs. The paper concludes that, considering current costs for hydrogen fuel production, distribution and use, at present, the employment of hydrogen fuelled vehicles is feasible only in highly polluted urban environments where the innovative vehicle's air pollution abatement characteristics would justify its high operating costs as compared with those of conventional automotive alternatives

  4. Polymer matrix nanocomposites for automotive structural components

    Science.gov (United States)

    Naskar, Amit K.; Keum, Jong K.; Boeman, Raymond G.

    2016-12-01

    Over the past several decades, the automotive industry has expended significant effort to develop lightweight parts from new easy-to-process polymeric nanocomposites. These materials have been particularly attractive because they can increase fuel efficiency and reduce greenhouse gas emissions. However, attempts to reinforce soft matrices by nanoscale reinforcing agents at commercially deployable scales have been only sporadically successful to date. This situation is due primarily to the lack of fundamental understanding of how multiscale interfacial interactions and the resultant structures affect the properties of polymer nanocomposites. In this Perspective, we critically evaluate the state of the art in the field and propose a possible path that may help to overcome these barriers. Only once we achieve a deeper understanding of the structure-properties relationship of polymer matrix nanocomposites will we be able to develop novel structural nanocomposites with enhanced mechanical properties for automotive applications.

  5. FISITA 2012 World Automotive Congress

    CERN Document Server

    2013-01-01

    Proceedings of the FISITA 2012 World Automotive Congress are selected from nearly 2,000 papers submitted to the 34th FISITA World Automotive Congress, which is held by Society of Automotive Engineers of China (SAE-China ) and the International Federation of Automotive Engineering Societies (FISITA). This proceedings focus on solutions for sustainable mobility in all areas of passenger car, truck and bus transportation. Volume 8: Vehicle Design and Testing (II) focuses on: •Automotive Reliability Technology •Lightweight Design Technology •Design for Recycling •Dynamic Modeling •Simulation and Experimental Validation •Virtual Design, Testing and Validation •Testing of Components, Systems and Full Vehicle Above all researchers, professional engineers and graduates in fields of automotive engineering, mechanical engineering and electronic engineering will benefit from this book.   SAE-China is a national academic organization composed of enterprises and professionals who focus on research, design a...

  6. WLAN Hot Spot services for the automotive and oil industries :a business analysis Or : "Refuel the car with petrol and information, both ways at the gas station"

    NARCIS (Netherlands)

    L-F. Pau (Louis-François); M.H.P. Oremus

    2003-01-01

    textabstractWhile you refuel for gas ,why not refuel for information or download vehicle data ? This paper analyzes in extensive detail the user segmentation by vehicle usage , service offering , and full business models from WLAN hot spot services delivered to vehicles (private, professional ,

  7. Catalytic exhaust control

    Energy Technology Data Exchange (ETDEWEB)

    Heinemann, H

    1973-09-01

    Recent achievements and problems in the development of exhaust control devices in the USA are reviewed. To meet the 1976 emission standards, catalytic systems for the oxidation of carbon monoxide and hydrocarbons and for the reduction of nitrogen oxides to nitrogen and water are needed. While oxidizing catalysts using platinum, palladium, copper, vanadium, and chromium appplied on alumina or ceramic materials are more or less effective in emission control, there are no catalytic devices for the reduction of nitrogen oxides with the required useful life of 25,000 to 50,000 miles as yet available. In the case of platinum catalysts on monolithic supports, the operating temperature of 650 to 750/sup 0/C as required for the oxidation process may cause inactivation of the catalysts and fusion of the support material. The oxidation of CO and hydrocarbons is inhibited by high concentrations of CO, nitric oxide, and hydrocarbons. The use of catalytic converters requires the use of lead-free or low-lead gasoline. The nitrogen oxides conversion efficiency is considerably influenced by the oxygen-to-CO ratio of the exhaust gas, which makes limitation of this ratio necessary.

  8. An investigation of noise produced by unsteady gas flow through silencer elements

    Science.gov (United States)

    Mawhinney, Graeme Hugh

    This thesis presents an investigation of the noise produced by unsteady gas flow through silencer elements. The central aim of the research project was to produce a tool for assistance in the design of the exhaust systems of diesel powered electrical generator sets, with the modelling techniques developed having a much wider application in reciprocating internal combustion engine exhaust systems. An automotive cylinder head was incorporated in a purpose built test rig to supply exhaust pulses, typical of those found in the exhaust system of four stroke diesel engines, to various experimental exhaust systems. Exhaust silencer elements evaluated included expansion, re- entrant, concentric tube resonator and absorptive elements. Measurements taken on the test rig included, unsteady superposition pressure in the exhaust ducting, cyclically averaged mass flow rate through the system and exhaust noise levels radiated into a semi-anechoic measurement chamber. The entire test rig was modelled using the 1D finite volume method developed previously developed at Queen's University Belfast. Various boundary conditions, developed over the years, were used to model the various silencer elements being evaluated. The 1D gas dynamic simulation thus estimated the mass flux history at the open end of the exhaust system. The mass flux history was then broken into its harmonic components and an acoustic radiation model was developed to model the sound pressure level produced by an acoustic monopole over a reflecting plane. The accuracy of the simulation technique was evaluated by correlation of measured and simulated superposition pressure and noise data. In general correlation of superposition pressure was excellent for all of the silencer elements tested. Predicted sound pressure level radiated from the open end of the exhaust tailpipe was seen to be accurate in the 100 Hz to 1 kHz frequency range for all of the silencer elements tested.

  9. State Estimation for the Automotive SCR Process

    DEFF Research Database (Denmark)

    Zhou, Guofeng; Huusom, Jakob Kjøbsted; Jørgensen, John Bagterp

    2012-01-01

    Selective catalytic reduction (SCR) of NOx is a widely applied diesel engine exhaust gas aftertreatment technology. For advanced SCR process control, like model predictive control, full state information of the process is required. The ammonia coverage ratio inside the catalyst is difficult to me...

  10. Get Your Automotive Program Nationally Certified!

    Science.gov (United States)

    Lundquist, Patricia A.

    2000-01-01

    Automotive programs that nationally certified enhance student recruitment and give students better employment opportunities. Technicians who earn the Automotive Service Excellence credential have joined the ranks of professionals in the automotive service industry. (Author/JOW)

  11. Automotive dual-mode hydrogen generation system

    Science.gov (United States)

    Kelly, D. A.

    The automotive dual mode hydrogen generation system is advocated as a supplementary hydrogen fuel means along with the current metallic hydride hydrogen storage method for vehicles. This system consists of utilizing conventional electrolysis cells with the low voltage dc electrical power supplied by two electrical generating sources within the vehicle. Since the automobile engine exhaust manifold(s) are presently an untapped useful source of thermal energy, they can be employed as the heat source for a simple heat engine/generator arrangement. The second, and minor electrical generating means consists of multiple, miniature air disk generators which are mounted directly under the vehicle's hood and at other convenient locations within the engine compartment. The air disk generators are revolved at a speed which is proportionate to the vehicles forward speed and do not impose a drag on the vehicles motion.

  12. Automotive Engines; Automotive Mechanics I: 9043.03.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This automotive engines course studies and demonstrates the theory and principles of operation of the automotive four stroke cycle engine. The student will develop an understanding of the systems necessary to make the engine perform as designed, such as cooling, fuel, ignition and lubrication. This is a one or two quinmester credit course of 45…

  13. Automotive Chassis; Automotive Mechanics-Basic: 9043.02.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This automotive chassis course is designed to familiarize the beginning student of the history and development of the automobile with basic concepts common to the automobile industry, and general information that is required for successful advancement in the automotive mechanics field. It is one quinmester in a series of quinmester outlines…

  14. Automotive systems engineering

    CERN Document Server

    Winner, Hermann

    2013-01-01

    This book reflects the shift in design paradigm in automobile industry. It presents future innovations, often referred as  “automotive systems engineering”.  These cause fundamental innovations in the field of driver assistance systems and electro-mobility as well as fundamental changes in the architecture of the vehicles. New driving functionalities can only be realized if the software programs of multiple electronic control units work together correctly. This volume presents the new and innovative methods which are mandatory to master the complexity of the vehicle of the future.

  15. The automotive transmission book

    CERN Document Server

    Fischer, Robert; Jürgens, Gunter; Najork, Rolf; Pollak, Burkhard

    2015-01-01

    This book presents essential information on systems and interactions in automotive transmission technology and outlines the methodologies used to analyze and develop transmission concepts and designs. Functions of and interactions between components and subassemblies of transmissions are introduced, providing a basis for designing transmission systems and for determining their potentials and properties in vehicle-specific applications: passenger cars, trucks, buses, tractors, and motorcycles. With these fundamentals the presentation provides universal resources for both state-of-the-art and future transmission technologies, including systems for electric and hybrid electric vehicles.

  16. Ultracapacitors for automotive applications

    Science.gov (United States)

    Ashtiani, Cyrus; Wright, Randy; Hunt, Gary

    In response to a growing consensus in the auto industry that ultracapacitors can potentially play a key role in the modern vehicle power distribution network, a task force was created at the United States Advanced Battery Consortium (USABC) to tackle issues facing the fledging industry. The task force embarked on first developing and establishing standards for performance and abuse tolerance of ultracapacitors in collaboration with the U.S. Department of Energy and National Labs. Subsequently, potential applications in the automotive industry were identified and a consensus requirement specification was drawn as a development guide for the industry.

  17. Ultracapacitors for automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Ashtiani, Cyrus [DaimlerChrysler Corp., CIMS 526-00-00, 1870 Technology Dr., Troy, MI 48083 (United States); Wright, Randy; Hunt, Gary [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 834415-3830 (United States)

    2006-03-21

    In response to a growing consensus in the auto industry that ultracapacitors can potentially play a key role in the modern vehicle power distribution network, a task force was created at the United States Advanced Battery Consortium (USABC) to tackle issues facing the fledging industry. The task force embarked on first developing and establishing standards for performance and abuse tolerance of ultracapacitors in collaboration with the U.S. Department of Energy and National Labs. Subsequently, potential applications in the automotive industry were identified and a consensus requirement specification was drawn as a development guide for the industry. (author)

  18. Automotive battery technology

    CERN Document Server

    Watzenig, Daniel

    2014-01-01

    The use of electrochemical energy storage systems in automotive applications also involves new requirements for modeling these systems, especially in terms of model depth and model quality. Currently, mainly simple application-oriented models are used to describe the physical behavior of batteries. This book provides a step beyond of state-of-the-art modeling showing various different approaches covering following aspects: system safety, misuse behavior (crash, thermal runaway), battery state estimation and electrochemical modeling with the needed analysis (pre/post mortem). All this different approaches are developed to support the overall integration process from a multidisciplinary point-of-view and depict their further enhancements to this process.

  19. Reliability in automotive ethernet networks

    DEFF Research Database (Denmark)

    Soares, Fabio L.; Campelo, Divanilson R.; Yan, Ying

    2015-01-01

    This paper provides an overview of in-vehicle communication networks and addresses the challenges of providing reliability in automotive Ethernet in particular.......This paper provides an overview of in-vehicle communication networks and addresses the challenges of providing reliability in automotive Ethernet in particular....

  20. Effects of fuel properties and oxidation catalyst on diesel exhaust emissions; Keiyu seijo oyobi sanka shokubai no diesel haishutsu gas eno eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Aihara, S; Morihisa, H; Tamanouchi, M; Araki, H; Yamada, S [Petroleum Energy Center, Advanced Technology and Research Institute, Tokyo (Japan)

    1997-10-01

    Effects of fuel properties (T90 and Poly-Aromatic Hydrocarbons: PAH) and oxidation catalyst on diesel exhaust emissions were studied using three DI diesel engines and two diesel passenger cars. (IDI engine) PM emissions were found to increase as T90 and PAH increased and could be decreased considerably for each fuel if an oxidation catalyst was installed. 5 refs., 9 figs., 3 tabs.

  1. Effects of gasoline properties on exhaust emission and photochemical reactivity; Gasoline seijo ga haiki gas sosei, kokagaku hannosei ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, R; Usui, K; Moriya, A; Sato, M; Nomura, T; Sue, H [Petroleum Energy Center, Advanced Technology and Research Institute, Tokyo (Japan)

    1997-10-01

    In order to investigate the effects of fuel properties on emissions, four passenger cars were tested under Japanese 11 and 10-15 modes using two series gasoline fuels. The test results suggest that the distillation property (T90) affects A/F ratio which in turn influences exhaust emissions. The results of regression analysis show that both ozone forming potential and air toxics are highly corrected with the composition of aromatic hydrocarbons in gasoline. 3 refs., 10 figs., 6 tabs.

  2. Performance Analysis of a Reciprocating Piston Expander and a Plate Type Exhaust Gas Recirculation Boiler in a Water-Based Rankine Cycle for Heat Recovery from a Heavy Duty Diesel Engine

    Directory of Open Access Journals (Sweden)

    Gunnar Latz

    2016-06-01

    Full Text Available The exhaust gas in an internal combustion engine provides favorable conditions for a waste-heat recovery (WHR system. The highest potential is achieved by the Rankine cycle as a heat recovery technology. There are only few experimental studies that investigate full-scale systems using water-based working fluids and their effects on the performance and operation of a Rankine cycle heat recovery system. This paper discusses experimental results and practical challenges with a WHR system when utilizing heat from the exhaust gas recirculation system of a truck engine. The results showed that the boiler’s pinch point necessitated trade-offs between maintaining adequate boiling pressure while achieving acceptable cooling of the EGR and superheating of the water. The expander used in the system had a geometric compression ratio of 21 together with a steam outlet timing that caused high re-compression. Inlet pressures of up to 30 bar were therefore required for a stable expander power output. Such high pressures increased the pump power, and reduced the EGR cooling in the boiler because of pinch-point effects. Simulations indicated that reducing the expander’s compression ratio from 21 to 13 would allow 30% lower steam supply pressures without adversely affecting the expander’s power output.

  3. INTEGRATED AUTOMOTIVE MANUFACTURING SUPPLY

    Directory of Open Access Journals (Sweden)

    P.J.S. Van Dyk

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Supply planning and traffic flow planning are major activities in the automotive manufacturing environment worldwide. Traditionally, the impact of supply planning strategies on plant traffic is rarely considered. This paper describes the development of a Decision Support System (DSS that will assist automotive manufacturers to analyse the effect of supply planning decisions on plant traffic during the supply planning phase of their logistics planning process. In essence, this DSS consists of a Supply Medium Decision Support Tool (SMDST (an interactive MS-Excel model with Visual Basic interfacing and a traffic flow simulation model tool (using eMPlant simulation software.

    AFRIKAANSE OPSOMMING: Verskaffingsbeplanning en verkeersvloeibeplanning is belangrike aktiwiteite in die motorvervaardigingsbedryf wêreldwyd. Tradisioneel word die uitwerking van verskaffings-beplanningsstrategië op aanlegverkeer selde in ag geneem. Hierdie artikel beskryf die ontwikkeling van ’n Besluitnemings Ondersteuningstelsel (DSS wat motorvervaardigers sal ondersteun in die analise van die effek van verskaffingsbeplanningbesluite op aanlegverkeer tydens die verskaffingsbeplanningsfase van hulle logistieke beplanningsproses. Hierdie DSS bestaan hoofsaaklik uit ’n Verskaffings-vervoermiddel Besluitnemingshulpmiddel (SMDST (’n interaktiewe MS-Excel model met “Visual Basic” koppelling asook ’n simulasiemodel van verkeersvloei (met eM-Plant simulasiesagteware.

  4. The future of automotive technology

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, J.A.Jr.; Hamilton, D. [USDOE, Washington, DC (United States); Shah, R.; Belanger, M. [Computer Systems Management Inc., Alexandria, VA (United States)

    2000-07-01

    An overview of the technological advances that have been made in the automotive industry worldwide in recent years were presented with a brief insight into the potential ramifications in terms of fuel efficiency and pollution abatement. Developments in power trains, materials and alternative fuels were reviewed. Up to and including the 1980's most vehicles consisted of internal combustion engines. Today, advanced spark ignition and electric vehicles/hybrid electric vehicles are already in production in Japan, North America and Europe and all major automakers are working on vehicles powered by fuel cells. The use of alternative fuels such as natural gas, propane, alcohols, biodiesel and hydrogen will be encouraged for economic, environmental and energy security reasons. These alternative fuels, however, will not reduce emissions of carbon dioxide as long as they are made from fossil-carbon sources. Cars with all aluminum or fiber-reinforced polymetric-matrix composite bodies and aluminum chassis are emerging as a challenge to steel's domination. Also family sedans with fuel efficiencies of 80 miles per US gallon will be common place. It was emphasized that the extent to which these new technologies will be implemented will depend on consumer acceptance and on governmental regulations. 8 refs., 1 tab.

  5. Automotive Stirling Engine Development Project

    Science.gov (United States)

    Ernst, William D.; Shaltens, Richard K.

    1997-01-01

    The development and verification of automotive Stirling engine (ASE) component and system technology is described as it evolved through two experimental engine designs: the Mod 1 and the Mod 2. Engine operation and performance and endurance test results for the Mod 1 are summarized. Mod 2 engine and component development progress is traced from the original design through hardware development, laboratory test, and vehicle installation. More than 21,000 hr of testing were accomplished, including 4800 hr with vehicles that were driven more dm 59,000 miles. Mod 2 engine dynamometer tests demonstrated that the engine system configuration had accomplished its performance goals for power (60 kW) and efficiency (38.5%) to within a few percent. Tests with the Mod 2 engine installed in a delivery van demonstrated combined metro-highway fuel economy improvements consistent with engine performance goals and the potential for low emission levels. A modified version of the Mod 2 has been identified as a manufacturable design for an ASE. As part of the ASE project, the Industry Test and Evaluation Program (ITEP), NASA Technology Utilization (TU) project, and the industry-funded Stirling Natural Gas Engine program were undertaken to transfer ASE technology to end users. The results of these technology transfer efforts are also summarized.

  6. Portable Exhauster Position Paper

    International Nuclear Information System (INIS)

    KRISKOVICH, J.R.

    1999-01-01

    This document identifies the tasks that are involved in preparing the ''standby'' portable exhauster to support Interim Stabilization's schedule for saltwell pumping. A standby portable exhaust system will be assigned to any facility scheduled to be saltwell pumped with the exception of 241-S farm, 241-SX farm or 241-T farm. The standby portable exhauster shall be prepared for use and placed in storage. The standby portable exhaust system shall be removed from storage and installed to ventilate tanks being pumped that reach 25% LFL. There are three tasks that are evaluated in this document. Each task shall be completed to support portable exhaust system installation and operation. They are: Pre Installation Task; Portable Exhaust System Storage Task; and Portable Exhaust System Installation and Operation Task

  7. Measurement of Soot Deposition in Automotive Components Using Neutron Radiography

    Energy Technology Data Exchange (ETDEWEB)

    Zekveld, David; Liu, Liaohui [AMEC NSS, 700 University Ave, Toronto, Ontario, M5G 1X6 (Canada); UOIT, 2000 Simcoe Street North, Oshawa, Ontario, L1H 7K4 (Canada); Harrison, Andrew; Gill, Spencer; Harvel, Glenn [UOIT, 2000 Simcoe Street North, Oshawa, Ontario, L1H 7K4 (Canada); Chang, Jen-Shih [McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8 (Canada)

    2008-07-01

    About 40% of air pollution is generated by vehicles and transportation. The particulate matter (PM) emission significantly impacts human health. Fine particles below 2.5 {mu}m (PM2.5) can enter the lungs and lead to respiratory problems. These particles not only influence human health, but also reduce the capability of many automobile exhaust heat exchanging devices. Neutron radiography is a non-destructive method of analyzing carbonaceous PM. While neutron radiography has been demonstrated for soot measurement in the past, the application has not considered the presence of unburned hydrocarbons, significant amounts of moisture nor examined complex geometrical configurations. The purpose of this work is to study a reliable non-destructive testing methodology using neutron radiography for measurement of soot distribution in automotive components. A soot standard (aluminium target) was designed and manufactured as a calibration tool. The standard is radiographed and used to measure the differences between various soot thickness and compositions. The radiograph images are analyzed to determine a calibration curve based upon the composition of the materials which can then be used for analysis of the automotive components. Experiments are performed using a diesel engine to produce soot deposits on exhaust piping. Soot distribution on exhaust piping is measured using neutron radiography. (authors)

  8. Measurement of Soot Deposition in Automotive Components Using Neutron Radiography

    International Nuclear Information System (INIS)

    Zekveld, David; Liu, Liaohui; Harrison, Andrew; Gill, Spencer; Harvel, Glenn; Chang, Jen-Shih

    2008-01-01

    About 40% of air pollution is generated by vehicles and transportation. The particulate matter (PM) emission significantly impacts human health. Fine particles below 2.5 μm (PM2.5) can enter the lungs and lead to respiratory problems. These particles not only influence human health, but also reduce the capability of many automobile exhaust heat exchanging devices. Neutron radiography is a non-destructive method of analyzing carbonaceous PM. While neutron radiography has been demonstrated for soot measurement in the past, the application has not considered the presence of unburned hydrocarbons, significant amounts of moisture nor examined complex geometrical configurations. The purpose of this work is to study a reliable non-destructive testing methodology using neutron radiography for measurement of soot distribution in automotive components. A soot standard (aluminium target) was designed and manufactured as a calibration tool. The standard is radiographed and used to measure the differences between various soot thickness and compositions. The radiograph images are analyzed to determine a calibration curve based upon the composition of the materials which can then be used for analysis of the automotive components. Experiments are performed using a diesel engine to produce soot deposits on exhaust piping. Soot distribution on exhaust piping is measured using neutron radiography. (authors)

  9. The impact of carbon dioxide and exhaust gas recirculation on the oxidative reactivity of soot from ethylene flames and diesel engines

    Science.gov (United States)

    Al-Qurashi, Khalid O.

    Restrictive emissions standards to reduce nitrogen oxides (NOx) and particulate matter (PM) emissions from diesel engines necessitate the development of advanced emission control technology. The engine manufacturers in the United States have implemented the exhaust gas recirculation (EGR) and diesel particulate filters (DPF) to meet the stringent emissions limits on NOx and PM, respectively. Although the EGR-DPF system is an effective means to control diesel engine emissions, there are some concerns associated with its implementation. The chief concern with this system is the DPF regenerability, which depends upon several factors, among which are the physicochemical properties of the soot. Despite the plethora of research that has been conducted on DPF regenerability, the impact of EGR on soot reactivity and DPF regenerability is yet to be examined. This work concerns the impact of EGR on the oxidative reactivity of diesel soot. It is part of ongoing research to bridge the gap in establishing a relationship between soot formation conditions, properties, and reactivity. This work is divided into three phases. In the first phase, carbon dioxide (CO2) was added to the intake charge of a single cylinder engine via cylinders of compressed CO2. This approach simulates the cold-particle-free EGR. The results showed that inclusion of CO2 changes the soot properties and yields synergistic effects on the oxidative reactivity of the resulting soot. The second phase of this research was motivated by the findings from the first phase. In this phase, post-flame ethylene soot was produced from a laboratory co-flow laminar diffusion flame to better understand the mechanism by which the CO2 affects soot reactivity. This phase was accomplished by successfully isolating the dilution, thermal, and chemical effects of the CO2. The results showed that all of these effects account for a measurable increase in soot reactivity. Nevertheless, the thermal effect was found to be the most

  10. Tank-automotive robotics

    Science.gov (United States)

    Lane, Gerald R.

    1999-07-01

    To provide an overview of Tank-Automotive Robotics. The briefing will contain program overviews & inter-relationships and technology challenges of TARDEC managed unmanned and robotic ground vehicle programs. Specific emphasis will focus on technology developments/approaches to achieve semi- autonomous operation and inherent chassis mobility features. Programs to be discussed include: DemoIII Experimental Unmanned Vehicle (XUV), Tactical Mobile Robotics (TMR), Intelligent Mobility, Commanders Driver Testbed, Collision Avoidance, International Ground Robotics Competition (ICGRC). Specifically, the paper will discuss unique exterior/outdoor challenges facing the IGRC competing teams and the synergy created between the IGRC and ongoing DoD semi-autonomous Unmanned Ground Vehicle and DoT Intelligent Transportation System programs. Sensor and chassis approaches to meet the IGRC challenges and obstacles will be shown and discussed. Shortfalls in performance to meet the IGRC challenges will be identified.

  11. Fast monitoring of motor exhaust components by resonant multi-photon ionisation and time-of-flight mass spectrometry

    Science.gov (United States)

    Franzen, Jochen; Frey, Rüdiger; Nagel, Holger

    1995-03-01

    A new analytical procedure is provided by the combination of two types of spectroscopy. Resonant ionization of selected compounds by multiphoton ionization is based on results of absorption spectroscopy for the compound molecules of interest and time-of-flight mass spectrometry serves for the unambigious detection of these compounds. An interesting application of this method is the fast exhaust gas analysis. In the development of future combustion engines, the management of dynamic motor processes becomes predominant because by more than 90 % of all the dangerous exhaust pollutions are produced in instationary motor phases such as fast speed or load changes. The investigation of dynamic processes however, requires fast analytical procedures with millisecond time resolution together with the capability to measure individual components in a very complex gas mixture The objectives for a development project of such an instrument were set by the Research Association for Combustion Engines (Forschungsvereinigung Verbrennungskraftmaschinen, FVV, Germany): Up to ten substances should be monitored synchroneously with a time resolution of about 10 milliseconds, with concentration limits of 1 part per million and with a precision better than 10 % relative standard deviation. Such a laser mass spectrometer for fast multi-component automotive exhaust analyses has been developed in a joint research project by Bruker-Franzen Analytik GmbH, Dornier GmbH and the Technical University of Munich. The system has been applied at a motor test facility to investigate the emissions of the aromatic hydrocarbons benzene, toluene and xylene, of nitric oxide and acetaldehyde in stationary and dynamic engine operation. These measurements demonstrate that strong emission of these pollutants takes place at instationary engine operation and in particular that these compounds are emitted at different times, giving new information about the processes in the combustion chamber and in the exhaust pipe.

  12. Catalytic control of automotive NO{sub x}: a review

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, Souvik [Canterbury Univ., Mechanical Engineering Dept., Christchurch (New Zealand); Das, Randip K. [Mahindra and Mahindra Ltd., R and D Centre, Nashik (India)

    1999-07-01

    This article summarises several technical studies reported in the literature on catalytic conversion technology to control pollution due to automotive exhausts with specific focus on NO{sub x} reduction. While simple theoretical reactions are stated, the review concisely presents the various techniques available with their specifications and performances. Noble-metal converters, in spite of their proven-technology advantage, are considered expensive while zeolite-based catalysts are preferred today as increasingly more research findings have made this technology more mature. Conclusion and recommendations on specific applications have been presented as well. (Author)

  13. Performance analysis of a waste heat recovery thermoelectric generation system for automotive application

    International Nuclear Information System (INIS)

    Liu, X.; Deng, Y.D.; Li, Z.; Su, C.Q.

    2015-01-01

    Graphical abstract: A new automotive exhaust-based thermoelectric generator and its “four-TEGs” system are constructed, and the performance characteristics of system are discussed through road test and revolving drum test. - Highlights: • The automotive thermoelectric generator system was constructed and studied. • Road test and revolving drum test were used to measure the output power. • A performance of 201.7 V (open circuit voltage)/944 W obtained. - Abstract: Thermoelectric power generators are one of the promising green energy sources. In this case study, an energy-harvesting system which extracts heat from an automotive exhaust pipe and turns the heat into electricity by using thermoelectric power generators (TEGs) has been constructed. The test bench is developed to analysis the performance of TEG system characteristics, which are undertaken to assess the feasibility of automotive applications. Based on the test bench, a new system called “four-TEGs” system is designed and assembled into prototype vehicle called “Warrior”, through the road test and revolving drum test table, characteristics of the system such as hot-side temperature, cold-side temperature, open circuit voltage and power output are studied, and a maximum power of 944 W was obtained, which completely meets the automotive application. The present study shows the promising potential of using this kind of thermoelectric generator for low-temperature waste heat recovery vehicle

  14. The European automotive LPG market

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    The European automotive LPG market could reach at least 4 % of the European fuel market in 2005 versus 1 % in 1990. This would represent a rise of about 35 % in automotive LPG sales (from 2,4 million tonnes in 1997 to 7 million tonnes estimated for 2005). This was underlined by Alain Deleuse, Primagaz group's Marketing Director, in the paper he delivered at the AEGPL Budapest Convention. We publish large excepts of this paper. (author)

  15. Local Exhaust Ventilation

    DEFF Research Database (Denmark)

    Madsen, Ulla; Breum, N. O.; Nielsen, Peter V.

    Capture efficiency of a local exhaust system, e.g. a kitchen hood, should include only contaminants being direct captured. In this study basic concepts of local exhaust capture efficiency are given, based on the idea of a control box. A validated numerical model is used for estimation of the capt......Capture efficiency of a local exhaust system, e.g. a kitchen hood, should include only contaminants being direct captured. In this study basic concepts of local exhaust capture efficiency are given, based on the idea of a control box. A validated numerical model is used for estimation...

  16. Exhaustion from prolonged gambling

    Directory of Open Access Journals (Sweden)

    Fatimah Lateef

    2013-01-01

    Full Text Available Complaints of fatigue and physical exhaustion are frequently seen in the acute medical setting, especially amongst athletes, army recruits and persons involved in strenuous and exertional physical activities. Stress-induced exhaustion, on the other hand, is less often seen, but can present with very similar symptoms to physical exhaustion. Recently, three patients were seen at the Department of Emergency Medicine, presenting with exhaustion from prolonged involvement in gambling activities. The cases serve to highlight some of the physical consequences of prolonged gambling.

  17. Preliminary study of Low-Cost Micro Gas Turbine

    Science.gov (United States)

    Fikri, M.; Ridzuan, M.; Salleh, Hamidon

    2016-11-01

    The electricity consumption nowadays has increased due to the increasing development of portable electronic devices. The development of low cost micro gas turbine engine, which is designed for the purposes of new electrical generation Micro turbines are a relatively new distributed generation technology being used for stationary energy generation applications. They are a type of combustion turbine that produces both heat and electricity on a relatively small scaled.. This research are focusing of developing a low-cost micro gas turbine engine based on automotive turbocharger and to evaluation the performance of the developed micro gas turbine. The test rig engine basically was constructed using a Nissan 45V3 automotive turbocharger, containing compressor and turbine assemblies on a common shaft. The operating performance of developed micro gas turbine was analyzed experimentally with the increment of 5000 RPM on the compressor speed. The speed of the compressor was limited at 70000 RPM and only 1000 degree Celsius at maximum were allowed to operate the system in order to avoid any failure on the turbocharger bearing and the other components. Performance parameters such as inlet temperature, compressor temperature, exhaust gas temperature, and fuel and air flow rates were measured. The data was collected electronically by 74972A data acquisition and evaluated manually by calculation. From the independent test shows the result of the system, The speed of the LP turbine can be reached up to 35000 RPM and produced 18.5kw of mechanical power.

  18. Risk assessment of LPG automotive refuelling facilities

    Energy Technology Data Exchange (ETDEWEB)

    Melchers, R.E. [University of Newcastle, Newcastle (Australia). Dept. of Civil, Surveying and Enviromental Engineering; Feutrill, W.R. [Wesfarmers Kleenheat Gas Pty. Ltd., Perth (Australia)

    2001-12-01

    Quantified risk analysis (QRA) was used for the revision of regulatory separation distances associated with medium size liquefied petroleum gas (LPG) refuelling facilities used in automotive service (gas) stations. Typically these facilities consist of a 7.5 kl pressure vessel, pump, pipework, dispensing equipment and safety equipment. Multi-tank installations are relatively uncommon. This paper describes the hazard scenarios considered, the risk analysis procedure and the selection and application of data for initiating events and for rates of failure of mechanical components and of the pressure vessel. Human errors and intervention possibilities were also considered. Because of the inapplicability of established consequence models and the relatively small scale of the facilities, a number of tests were performed to estimate flame length, flame impingement effects, ignition probabilities and the effectiveness of screening devices. (author)

  19. Lightweight Exhaust Manifold and Exhaust Pipe Ducting for Internal Combustion Engines

    Science.gov (United States)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    An improved exhaust system for an internal combustion gasoline-and/or diesel-fueled engine includes an engine exhaust manifold which has been fabricated from carbon- carbon composite materials in operative association with an exhaust pipe ducting which has been fabricated from carbon-carbon composite materials. When compared to conventional steel. cast iron. or ceramic-lined iron paris. the use of carbon-carbon composite exhaust-gas manifolds and exhaust pipe ducting reduces the overall weight of the engine. which allows for improved acceleration and fuel efficiency: permits operation at higher temperatures without a loss of strength: reduces the "through-the wall" heat loss, which increases engine cycle and turbocharger efficiency and ensures faster "light-off" of catalytic converters: and, with an optional thermal reactor, reduces emission of major pollutants, i.e. hydrocarbons and carbon monoxide.

  20. Automotive mechatronics operational and practical issues

    CERN Document Server

    Fijalkowski, B T

    2011-01-01

    This book presents operational and practical issues of automotive mechatronics with special emphasis on the heterogeneous automotive vehicle systems approach, and is intended as a graduate text as well as a reference for scientists and engineers involved in the design of automotive mechatronic control systems. As the complexity of automotive vehicles increases, so does the dearth of high competence, multi-disciplined automotive scientists and engineers. This book provides a discussion into the type of mechatronic control systems found in modern vehicles and the skills required by automotive scientists and engineers working in this environment. Divided into two volumes and five parts, Automotive Mechatronics aims at improving automotive mechatronics education and emphasises the training of students' experimental hands-on abilities, stimulating and promoting experience among high education institutes and produce more automotive mechatronics and automation engineers. The main subject that are treated are: VOLUME...

  1. Study on the utilization of the energy produced by the exhaust gases and the cooling water of a internal combustion engine; Estudo do aproveitamento da energia obtida pelos gases de escapamento e pela agua de resfriamento de um motor de combustao interna

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Andre Luiz dos; Arroyo, Narciso Angel Ramos [Santa Catarina Univ., Florianopolis (Brazil). Dept. de Engenharia Mecanica. Lab. de Combustao e Motores Termicos]. E-mail: als2000@tutopia.com.br; arroyo@sinmec.ufsc.br

    2000-07-01

    This work is about heat balance of an automotive internal combustion engine of 4 cylinders, using ethylic alcohol, and utilize the energy obtained in the exhaust gas and the water cooling system. This paper show an theoretical - experimental model for use this energy in an absorption refrigeration system using the work fluid water and Li Br. In this paper are analyzed engines charges of 30%, 50% and 100%. The results shows that for this charges and for any speed of the engines, the energy obtained in the evaporator are significant. (author)

  2. Unemployment Benefit Exhaustion

    DEFF Research Database (Denmark)

    Filges, Trine; Pico Geerdsen, Lars; Knudsen, Anne-Sofie Due

    2015-01-01

    This systematic review studied the impact of exhaustion of unemployment benefits on the exit rate out of unemployment and into employment prior to benefit exhaustion or shortly thereafter. Method: We followed Campbell Collaboration guidelines to prepare this review, and ultimately located 12...

  3. Duplex tab exhaust nozzle

    Science.gov (United States)

    Gutmark, Ephraim Jeff (Inventor); Martens, Steven (nmn) (Inventor)

    2012-01-01

    An exhaust nozzle includes a conical duct terminating in an annular outlet. A row of vortex generating duplex tabs are mounted in the outlet. The tabs have compound radial and circumferential aft inclination inside the outlet for generating streamwise vortices for attenuating exhaust noise while reducing performance loss.

  4. MEMS for automotive and aerospace applications

    CERN Document Server

    Kraft, Michael

    2013-01-01

    MEMS for automotive and aerospace applications reviews the use of Micro-Electro-Mechanical-Systems (MEMS) in developing solutions to the unique challenges presented by the automotive and aerospace industries.Part one explores MEMS for a variety of automotive applications. The role of MEMS in passenger safety and comfort, sensors for automotive vehicle stability control applications and automotive tire pressure monitoring systems are considered, along with pressure and flow sensors for engine management, and RF MEMS for automotive radar sensors. Part two then goes on to explore MEMS for

  5. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  6. 40 CFR 86.1310-2007 - Exhaust gas sampling and analytical system for gaseous emissions from heavy-duty diesel-fueled...

    Science.gov (United States)

    2010-07-01

    ... SAE Recommended Practice J1151, “Methane Measurement Using Gas Chromatography” (1994 SAE Handbook... the filter holder may be adapted, using sound engineering judgment and leak-free construction, to an... shows acceptable variation from the design in 40 CFR part 50, appendix L. Similar variations using sound...

  7. Automotive fuel efficiency

    International Nuclear Information System (INIS)

    Abelson, P.H.

    1992-01-01

    For at least the remainder of this century, the United States faces a growing dependence on imported oil. Costs are substantial, and they will mount. In June 1992, net imports provided nearly 50% of supplies, and their cost was $4.3 billion. Cost of net imports of motor vehicles and parts amounted to $3.0 billion. The two items combined totaled more than the negative trade balance of $6.6 billion. The light-duty highway fleet alone accounted for 38.2% of U.S. oil consumption in 1988. Correspondingly, the fleet was a substantial emitter of air pollutants - NO x , CO, and nonmethane hydrocarbons. In addition, it was a major source of CO 2 . The twin problems of oil imports and pollution would be ameliorated if the fuel economy if cars and trucks could be improved and their emissions were also reduced. In principle, the mileage of US automobiles could be substantially improved. But on purchasing a car, U.S. buyers rank fuel efficiency eight when making their choice. They are attracted to options that lower mileage. Consumers also tend to prefer large cars over small ones for reasons of safety. Increasingly, buyers are purchasing light trucks and vans that have inferior fuel efficiency. As a result of the above trends, the average mileage of the US automotive fleet has been diminishing. As long as fuel is available at comparatively low prices and there is no federal requirement for better mileage, improvement is unlikely. Moreover, even if improvements were mandated, change would be slow

  8. Chemical hydrogen storage material property guidelines for automotive applications

    Science.gov (United States)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  9. Modeling and Experimental Validation of a Volumetric Expander Suitable for Waste Heat Recovery from an Automotive Internal Combustion Engine Using an Organic Rankine Cycle with Ethanol

    Directory of Open Access Journals (Sweden)

    José Galindo

    2016-04-01

    Full Text Available Waste heat recovery (WHR in exhaust gas flow of automotive engines has proved to be a useful path to increase the overall efficiency of internal combustion engines (ICE. Recovery potentials of up to 7% are shown in several works in the literature. However, most of them are theoretical estimations. Some present results from prototypes fed by steady flows generated in an auxiliary gas tank and not with actual engine exhaust gases. This paper deals with the modeling and experimental validation of an organic Rankine cycle (ORC with a swash-plate expander integrated in a 2 L turbocharged petrol engine using ethanol as working fluid. A global simulation model of the ORC was developed with a maximum difference of 5%, validated with experimental results. Considering the swash-plate as the main limiting factor, an additional specific submodel was implemented to model the physical phenomena in this element. This model allows simulating the fluid dynamic behavior of the swash-plate expander using a 0D model (Amesim. Differences up to 10.5% between tests and model results were found.

  10. The comparison of fossil carbon fraction and greenhouse gas emissions through an analysis of exhaust gases from urban solid waste incineration facilities.

    Science.gov (United States)

    Kim, Seungjin; Kang, Seongmin; Lee, Jeongwoo; Lee, Seehyung; Kim, Ki-Hyun; Jeon, Eui-Chan

    2016-10-01

    In this study, in order to understand accurate calculation of greenhouse gas emissions of urban solid waste incineration facilities, which are major waste incineration facilities, and problems likely to occur at this time, emissions were calculated by classifying calculation methods into 3 types. For the comparison of calculation methods, the waste characteristics ratio, dry substance content by waste characteristics, carbon content in dry substance, and (12)C content were analyzed; and in particular, CO2 concentration in incineration gases and (12)C content were analyzed together. In this study, 3 types of calculation methods were made through the assay value, and by using each calculation method, emissions of urban solid waste incineration facilities were calculated then compared. As a result of comparison, with Calculation Method A, which used the default value as presented in the IPCC guidelines, greenhouse gas emissions were calculated for the urban solid waste incineration facilities A and B at 244.43 ton CO2/day and 322.09 ton CO2/day, respectively. Hence, it showed a lot of difference from Calculation Methods B and C, which used the assay value of this study. It is determined that this was because the default value as presented in IPCC, as the world average value, could not reflect the characteristics of urban solid waste incineration facilities. Calculation Method B indicated 163.31 ton CO2/day and 230.34 ton CO2/day respectively for the urban solid waste incineration facilities A and B; also, Calculation Method C indicated 151.79 ton CO2/day and 218.99 ton CO2/day, respectively. This study intends to compare greenhouse gas emissions calculated using (12)C content default value provided by the IPCC (Intergovernmental Panel on Climate Change) with greenhouse gas emissions calculated using (12)C content and waste assay value that can reflect the characteristics of the target urban solid waste incineration facilities. Also, the concentration and (12)C content

  11. Application of plasma techniques for exhaust aftertreatment

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, M.; Viden, I.; Šimek, Milan; Pekárek, S.

    2001-01-01

    Roč. 27, 1-4 (2001), s. 306-314 ISSN 0143-3369 R&D Projects: GA ČR GA202/99/1298 Institutional research plan: CEZ:AV0Z2043910 Keywords : Non-thermal plasma, elctrical discharge, exhaust aftertreatment Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.190, year: 2001

  12. Characterization of metallic micro sieves for gas purification on the example of fine dedusting of exhaust gases of wood burning firing systems; Charakterisierung metallischer Mikrosiebe zur Gasreinigung am Beispiel der Feinentstaubung von Holzfeuerungsabgasen

    Energy Technology Data Exchange (ETDEWEB)

    Stahl, Esther

    2011-07-15

    Metallic micro sieves are a promising filter media for fine particulate-removal from gas streams due to their flexible and precisely adaptable pore geometry and their material properties. A current field of application is the particle removal from exhaust gas from biomass heating appliances. The generated aerosol particles are considerably smaller than 1 {mu}m. As a consequence they pose a significant health risk. In order to promote new developments in the field of gas cleaning, this study explores the filtration characteristics of metallic micro sieves theoretically and practically. For the purpose of the design layout of micro sieve filters, the fundamental process of the filtration kinetics, that is the time-dependent development of filtration efficiency and pressure drop, were displayed in a physically based and algebraically solvable calculation model. The filtration kinetics is subdivided in three parts: The flow and the capture of particles in micro sieves (instant of time 0), the dynamic accrue of the pores due to captured particles (phase 1) and the build-up of a filter cake (phase 2). Each section was covered by the formulation of separate mathematic solutions or by further development respectively adaption of existing models. Both the section models and the total model were in good compliance with experimental results. The model as well as the experimental results were used to assess possible applications in the field of the removal of fine particulate matter from exhaust gases of wood fired heating appliances. Exemplary for a wood fired heating appliance with a heating capacity of 100 kW, the required filter surface and achievable filtration efficiencies were calculated. Due to present high particle concentrations, relatively big pore diameters between 15 and 20 {mu}m are sufficient to obtain significant filtration efficiencies above 99 % after a short operation time. Adequate micro sieve porosities of more than 5 % are available. Thus, the realization

  13. 30 CFR 36.25 - Engine exhaust system.

    Science.gov (United States)

    2010-07-01

    ... (see § 36.23(b)(2)). (3) In lieu of a space-place flame arrester, an exhaust-gas cooling box or... exhaust system for convenient, temporary attachment of a pressure gage at a point suitable for measuring the total back pressure in the system. The connection also shall be suitable for temporary attachment...

  14. Thermodynamic modelling and performance study of an engine waste heat driven adsorption cooling for automotive air-conditioning

    International Nuclear Information System (INIS)

    Ali, Syed Muztuza; Chakraborty, Anutosh

    2015-01-01

    Waste heat from engine can be utilized to drive an adsorption cooling system for air conditioning purposes in the vehicle cabin, which not only improves the fuel economy but also reduces the carbon footprint. It is also important to reduce the size of the adsorption bed to adopt the adsorption technology for air-conditioning applications in passenger cars, buses and trucks or even trains. In this article, we present a two stage indirect exhaust heat recovery system of automotive engine employing an effective lumped parameter model to simulate the dynamic behaviors of an adsorption chiller that ranges from the transient to the cyclic steady states. The thermodynamic framework of adsorption chiller is developed from the rigor of mass and energy balances of each component of the system and experimentally confirmed isotherms and kinetics data of various adsorbent–adsorbate pairs. The performance factors are calculated in terms of COP (Coefficient of Performance) and SCP (Specific Cooling Power) for different operating parameters such as cycle time, exhaust gas temperatures, cooling water temperatures and flow rates. From the simulation results, it is found that the exhaust energy of a six cylinder 3000 cc private car is able to produce nearly 3 kW of cooling power for the car cabin. It is also observed that the driving heat source temperature does not remain constant throughout the cycle time unlike the conventional adsorption chiller, and the hot water temperatures as driving source vary from 65 to 95 °C. CaCl 2 -in-silica gel–water system is found better in terms of COP and SCP as compared with other adsorbents – water systems. - Highlights: • Adsorption cooling for car air conditioning. • Thermodynamic frameworks with adsorption isotherms and kinetics. • Various adsorbents such as silica gel, zeolites (AQSOA-Z01, Z-02), CaCl 2 -in-silica gel are tested. • Cooling power for car cabin employing waste heat recovery.

  15. Engineering task plan for five portable exhausters

    International Nuclear Information System (INIS)

    Rensink, G.E.

    1997-01-01

    Exhausters will be employed to ventilate certain single-shell tanks (SSTs) during salt well pumping campaigns. Active ventilation is necessary to reduce the potential flammable gas inventory (LANL 1996a) in the dome space that may accumulate during steady-state conditions or during/after postulated episodic gas release events. The tanks described in this plan support the activities required to fabricate and test three 500 cfm portable exhausters in the 200 W area shops, and to procure, design, fabricate and test two 1000 cfm units. Appropriate Notice of Construction (NOC) radiological and toxic air pollutant permits will be obtained for the portable exhausters. The portable exhauster design media to be employed to support this task was previously developed for the 241-A-101 exhauster. The same design as A101 will be fabricated with only minor improvements to the design based upon operator input/lessons learned. The safety authorization basis for this program effort will follow SAD 36 (LANL 1996b), and each tank will be reviewed against this SAD for changes or updates. The 1000 cfm units will be designed by the selected offsite contractor according to the specification requirements in KHC-S-O490. The offsite units have been specified to utilize as many of the same components as the 500 cfm units to ensure a more cost effective operation and maintenance through the reduction of spare parts and additional procedures

  16. Sustainable automotive energy system in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiliang (ed.) [Tsinghua Univ. Beijing (China). China Automotive Energy Research Center

    2013-06-01

    The latest research available on automotive energy system analysis in China. Thorough introduction on automotive energy system in China. Provides the broad perspective to aid in planning sustainable road transport in China. Sustainable Automotive Energy System in China aims at identifying and addressing the key issues of automotive energy in China in a systematic way, covering demography, economics, technology and policy, based on systematic and in-depth, multidisciplinary and comprehensive studies. Five scenarios of China's automotive energy development are created to analyze the possible contributions in the fields of automotive energy, vehicle fuel economy improvement, electric vehicles, fuel cell vehicles and the 2nd generation biofuel development. Thanks to this book, readers can gain a better understanding of the nature of China's automotive energy development and be informed about: (1) the current status of automotive energy consumption, vehicle technology development, automotive energy technology development and policy; (2) the future of automotive energy development, fuel consumption, propulsion technology penetration and automotive energy technology development, and (3) the pathways of sustainable automotive energy transformation in China, in particular, the technological and the policy-related options. This book is intended for researchers, engineers and graduates students in the low-carbon transportation and environmental protection field.

  17. Action Handbook for Automotive Service Instruction.

    Science.gov (United States)

    Motor Vehicle Manufacturers Association of the U.S., Inc., Detroit, MI.

    The document is a handbook for a vocational automotive service education program which was formulated as a result of a four-day series of intensive workshops called the National Automotive Service Vocational Education Conference. The handbook discusses the major components of an automotive service vocational education program and aspects of their…

  18. Twenty-five years after introduction of automotive catalysts. What next?

    Energy Technology Data Exchange (ETDEWEB)

    Shelef, M.; McCabe, R.W. [Chemical and Physical Sciences Laboratory, Ford Research Laboratory, Ford Motor Company, MD-3179, SRL, PO Box 2053, 48121 Dearborn, MI (United States)

    2000-09-25

    The union of catalysts and the automobile has been one of the greatest successes of heterogeneous catalysis over the last 25 years. Here, the history of automotive catalysis is briefly reviewed, followed by an assessment of where automotive catalysis stands today and where it is headed in the future. A key distinction between past automotive catalysis experience and that projected for the future is an increased focus on catalysts in upstream of power plant applications, such as on-board fuel processing units for fuel cell vehicles. Driven by ever tighter regulations, there will be continued research and development activity focused also on downstream applications (i.e. exhaust emission aftertreatment), especially for fuel-efficient, lean-burn vehicles, both diesel and spark-ignited.

  19. Design of lightweight multi-material automotive bodies using new material performance indices of thin-walled beams for the material selection with crashworthiness consideration

    International Nuclear Information System (INIS)

    Cui, Xintao; Zhang, Hongwei; Wang, Shuxin; Zhang, Lianhong; Ko, Jeonghan

    2011-01-01

    Currently, automotive bodies are constructed usually using a single material, e.g. steel or aluminum. Compared to single-material automotive bodies, multi-material automotive bodies allow optimal material selection in each structural component for higher product performance and lower cost. This paper presents novel material performance indices and procedures developed to guide systematic material selection for multi-material automotive bodies. These new indices enable to characterize the crashworthiness performance of complex-shaped thin-walled beams in multi-material automotive bodies according to material types. This paper also illustrates the application of these performance indices and procedures by designing a lightweight multi-material automotive body. These procedures will help to design a lightweight and affordable body favored by the automotive industry, thus to reduce fuel consumption and greenhouse gas emissions.

  20. Natural gas passenger vehicles: challenges and way forward

    International Nuclear Information System (INIS)

    Sahari, B. B.; Hamouda, A. M. S.

    2006-01-01

    Natural gas vehicles have been used in the world for many years: at present, there are about 3 million vehicles running on natural gas and many governments and vehicle manufactures are involved in programs for further developing the market for natural gas vehicles. In comparison to other forms of energy for vehicles, natural gas (NG) engenders low pressures on the environment. At the same time, because of its technical characteristics, NG is very suitable for motor use. The economic advantage of converting a vehicles (NGVs) would be expected to attract the interest of a great number of people, and achieve rapid and widespread diffusion. On the contrary, traditional fuels still dominate the scene, and show no sign of going out of fashion. The use of natural gas as automotive fuel has become of national and worldwide interests particularly so with the recent increase in petrol price, depleting petrol reserves and stringent control of exhaust emission levels. For automotive applications, shifting from petrol to gas needs technological research and development. Within the framework of the reciprocating piston based engine this development is very challenging with technological issues of low range, refueling infrastructure, heavy fuel storage, safety, emissions control and gas operating pressures. Other issues include available expertise and experience in research management. This paper describes the advances being made with passenger vehicles natural gas engines worldwide and in Malaysia more specific. The significant milestones in the development of NGV in Malaysia and the rationale behind the choice of NGV industry including the NGV vehicle population growth, the development of service station as well as the expansion of the sales volume will be illustrated. The presentation presents also development stages and advances in development, fabrication and testing a Compressed Natural Gas Direct Injection vehicle and NGV refueling station. This presentation discuses the

  1. Determining organic pollutants in automotive industry sludge.

    Science.gov (United States)

    Munaretto, Juliana S; Wonghon, Audrey L; von Mühlen, Carin

    2012-12-01

    In Brazil, the policy for disposing industrial sludge is changing from an emphasis on using controlled landfills to other treatment or co-processing methods; however, the monitoring of organic pollutants is not mandatory. The present study evaluated two general screening methods for organic pollutants in sludge generated in an automotive industrial complex in southern Brazil. The screening was performed using Soxhlet and sonication extractions and Gas Chromatograph coupled with Quadrupole Mass Spectrometry (GC/qMS). It was concluded that both techniques were effective and that most of the compounds identified were alkanes, phenols and esters. Important pollutants were detected in the sludge, which confirms the necessity of monitoring this type of residue.

  2. Sampling and preparation method for mutagenicity test of exhaust gas from municipal waste incinerator; Haikibutsu shokyakuro hai gas no hen`i gensei shiken no tameno shiryo saishu/chosei hoho

    Energy Technology Data Exchange (ETDEWEB)

    Yoshino, H. [Kanagawa Environmental Research Center, Kanagawa (Japan); Urano, K. [Yokohama National Univ. (Japan)

    1994-09-10

    It is well known that many kinds of hazardous organic compounds in incinerator exhaust gases. In this study, a simple sampling method to test mutagenicity on exhaust gases in flue and its extracting and its solvent converting methods by organic solvents were examined. In sampling 100 to 300 l at about 2 l/min in aspirating speed of the extract gases, the most of mutagenic substance were collected almost completely by condensed water and qualtz wool column. And, the collected materials into the condensed water could almost perfectly recovered by extracting the condensed water with about its one fourth volume of ethylacetate on vibrating once in 5 min., extracting the quartz wool column on flowing 20 ml of ethylacetate at the speed of about 3 ml/min., and others. After mixing such effluents and dewatering with about 5 g of sodium sulfate, they are evaporated out ethylacetate and resolved with 5 ml of dimethylsulfoxide (DMSO) to execute Ames mutagenicity test. As a result, more than about 3000 net rev./Nm{sup 3} of the mutagenicity was estmated on TA 98 strain. 9 refs., 5 figs., 8 tabs.

  3. Quantitative planar laser-induced fluorescence imaging of multi-component fuel/air mixing in a firing gasoline-direct-injection engine: Effects of residual exhaust gas on quantitative PLIF

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Ben; Ewart, Paul [Department of Physics, Oxford University, Parks Road, Oxford OX1 3PU (United Kingdom); Wang, Xiaowei; Stone, Richard [Department of Engineering Science, Oxford University, Parks Road, Oxford OX1 3PJ (United Kingdom); Ma, Hongrui; Walmsley, Harold; Cracknell, Roger [Shell Global Solutions (UK), Shell Research Centre Thornton, P. O. Box 1, Chester, CH1 3SH (United Kingdom); Stevens, Robert; Richardson, David; Fu, Huiyu; Wallace, Stan [Jaguar Cars, Engineering Centre, Abbey Road, Whitley, Coventry, CV3 4LF (United Kingdom)

    2010-10-15

    A study of in-cylinder fuel-air mixing distributions in a firing gasoline-direct-injection engine is reported using planar laser-induced fluorescence (PLIF) imaging. A multi-component fuel synthesised from three pairs of components chosen to simulate light, medium and heavy fractions was seeded with one of three tracers, each chosen to co-evaporate with and thus follow one of the fractions, in order to account for differential volatility of such components in typical gasoline fuels. In order to make quantitative measurements of fuel-air ratio from PLIF images, initial calibration was by recording PLIF images of homogeneous fuel-air mixtures under similar conditions of in-cylinder temperature and pressure using a re-circulation loop and a motored engine. This calibration method was found to be affected by two significant factors. Firstly, calibration was affected by variation of signal collection efficiency arising from build-up of absorbing deposits on the windows during firing cycles, which are not present under motored conditions. Secondly, the effects of residual exhaust gas present in the firing engine were not accounted for using a calibration loop with a motored engine. In order to account for these factors a novel method of PLIF calibration is presented whereby 'bookend' calibration measurements for each tracer separately are performed under firing conditions, utilising injection into a large upstream heated plenum to promote the formation of homogeneous in-cylinder mixtures. These calibration datasets contain sufficient information to not only characterise the quantum efficiency of each tracer during a typical engine cycle, but also monitor imaging efficiency, and, importantly, account for the impact of exhaust gas residuals (EGR). By use of this method EGR is identified as a significant factor in quantitative PLIF for fuel mixing diagnostics in firing engines. The effects of cyclic variation in fuel concentration on burn rate are analysed for

  4. Automotive, the Future of Mobility

    NARCIS (Netherlands)

    Rieck, Frank; Machielsen, C.; van Duin, Ron

    2017-01-01

    Will the Automotive era come to an end in the 21th century? Looking at today’s environmental and economic challenges of the use of cars based on last century technology and listening to some trend watchers one could think so. Cars can be regarded, as an old school status product indeed, for which

  5. Future perspectives on automotive CAE

    NARCIS (Netherlands)

    Bensler, Henry; Eller, Tom; Kabat vel Job, Alexander; Magoulas, Nikolaos; Yigit, Emrah; Van Tongeren, A.

    2014-01-01

    Computer Aided Engineering (CAE) is an integral part of today’s automotive design process. Very often OEM’s rely solely on software vendors to provide appropriate solutions. On the other hand, some companies still use in-house developed software for specific applications. It is, however, a

  6. Automotive the Future of Mobility

    NARCIS (Netherlands)

    ir. F.G. Rieck; ir. Cees Machielse; Ron van Duin

    2017-01-01

    Will the Automotive era come to an end in the 21th century? Looking at today’s environmental and economic challenges of the use of last century technology cars and listening to some trend watchers one could think so. Cars can be regarded, as an old school status product indeed, for which there is

  7. Automotive Mechanics. Student Learning Guides.

    Science.gov (United States)

    Ridge Vocational-Technical Center, Winter Haven, FL.

    These 33 learning guides are self-instructional packets for 33 tasks identified as essential for performance on an entry-level job in automotive mechanics. Each guide is based on a terminal performance objective (task) and 1-9 enabling objectives. For each enabliing objective, some or all of these materials may be presented: learning steps…

  8. Automotive Electronics. Teacher Edition (Revised).

    Science.gov (United States)

    Mackert, Howard C.; Heiserman, Russell L.

    This learning module addresses computers and their applications in contemporary automobiles. The text provides students with information on automotive microcomputers and hands-on activities that will help them see how semiconductors and digital logic devices fit into the modern repair facility. The module contains nine instructional units that…

  9. On Ugliness and the Automotive

    DEFF Research Database (Denmark)

    Herriott, Richard

    2016-01-01

    The function of this essay is to to see what consequences a consideration of ugliness in automotive styling has for the theories of three writers on aesthetics in design: David Pye, Roger Scruton and Ralf Weber. As such, the concepts of beauty and ugliness will be treated in brief before moving...

  10. Innovative Technology in Automotive Technology

    Science.gov (United States)

    Gardner, John

    2007-01-01

    Automotive Technology combines hands-on training along with a fully integrated, interactive, computerized multistationed facility. Our program is a competency based, true open-entry/open-exit program that utilizes flexible self-paced course outlines. It is designed around an industry partnership that promotes community and economic development,…

  11. Efficiency Standard in automotive industry

    International Nuclear Information System (INIS)

    Goldoni, G.

    2008-01-01

    A technological transition in the transport sector could be only be possible with a convergence of objectives of the automotive and the fuel industries, which is not very simple to obtain. Fuel economy standards could differently reduce the growing trend of CO 2 emissions in this sector but regulators should avoid capture from domestic industry. [it

  12. A system recovering heat from exhaust gases. Abgasenergie-Rueckgewinnungseinrichtung

    Energy Technology Data Exchange (ETDEWEB)

    John, E; Hultsch, H; Brendorp, W

    1990-08-16

    The proposed exhaust gas heat recovery system is provided with a hydraulic clutch (8) which is located between a gas tubine (2) to be driven by the exhaust gases of an internal combustion engine (20) and a drive unit (18) of the internal combustion engine (20). A mechanical blocking device (6) prevents the turbine from running at explosion speed when the hydraulic clutch (8) is emptied or when the oil pressure of the hydraulic clutch drops below a certain minimum.

  13. Exhaust purification with on-board ammonia production

    Science.gov (United States)

    Robel, Wade J.; Driscoll, James J.; Coleman, Gerald N.; Knox, Kevin J.

    2009-06-30

    A power source is provided for use with selective catalytic reduction systems for exhaust-gas purification. The power source includes a first cylinder group with a first air-intake passage and a first exhaust passage, and a second cylinder group with a second air-intake passage and a second exhaust passage. The second air-intake passage is fluidly isolated from the first air-intake passage. A fuel-supply device may be configured to supply fuel into the first exhaust passage, and a catalyst may be disposed downstream of the fuel-supply device to convert at least a portion of the exhaust stream in the first exhaust passage into ammonia.

  14. High temperature sensors for exhaust diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Svenningstorp, Henrik

    2000-07-01

    One of the largest problems that we will have to deal with on this planet this millennium is to stop the pollution of our environment. In many of the ongoing works to reduce toxic emissions, gas sensors capable of enduring rough environments and high temperatures, would be a great tool. The different applications where sensors like this would be useful vary between everything from online measurement in the paper industry and food industry to measurement in the exhaust pipe of a car. In my project we have tested Schottky diodes and MlSiCFET sensor as gas sensors operating at high temperatures. The measurement condition in the exhaust pipe of a car is extremely tough, not only is the temperature high and the different gases quite harmful, there are also a lot of particles that can affect the sensors in an undesirable way. In my project we have been testing Schottky diodes and MlSiCFET sensors based on SiC as high temperature sensors, both in the laboratory with simulated exhaust and after a real engine. In this thesis we conclude that these sensors can work in the hostile environment of an engines exhaust. It is shown that when measuring in a gas mixture with a fixed I below one, where the I-value is controlled by the O{sub 2} concentration, a sensor with a catalytic gate metal as sensitive material respond more to the increased O{sub 2} concentration than the increased HC concentration when varying the two correspondingly. A number of different sensors have been tested in simulated exhaust towards NO{sub x}. It was shown that resistivity changes in the thin gate metal influenced the gas response. Tests have been performed where sensors were a part of a SCR system with promising results concerning NH{sub 3} sensitivity. With a working temperature of 300 deg C there is no contamination of the metal surface.

  15. Experiments and simulations on heat exchangers in thermoelectric generator for automotive application

    International Nuclear Information System (INIS)

    Liu, X.; Deng, Y.D.; Zhang, K.; Xu, M.; Xu, Y.; Su, C.Q.

    2014-01-01

    In this work, an energy-harvesting system which extracts heat from an automotive exhaust pipe and turns the heat into electricity by using thermoelectric power generators (TEGs) was built. Experiments show that the temperature difference in automotive system is not constant, especially the heat exchanger, which cannot provide the thermoelectric modules (TMs) large amount of heat. The thermal performance of different heat exchangers in exhaust-based TEGs is studied in this work, and the thermal characteristics of heat exchangers with different internal structures and thickness are discussed, to obtain higher interface temperature and thermal uniformity. Following computational fluid dynamics simulations, infrared experiments and output power testing system are carried out on a high-performance production engine with a dynamometer. Results show that a plate-shaped heat exchanger with chaos-shaped internal structure and thickness of 5 mm achieves a relatively ideal thermal performance, which is practically useful to enhance the thermal performance of the TEG, and larger total output power can be thus obtained. - Graphical abstract: The thermal and electrical characteristics of different heat exchangers of automotive exhaust-based thermoelectric generator are discussed, to obtain higher interface temperature and thermal uniformity. - Highlights: • Different internal structures and thickness of heat exchangers were proposed. • Power output testing system of the two heat exchangers was characterized. • Chaos-shaped heat exchanger (5 mm thickness) shows better performance

  16. In vitro assessment of human airway toxicity from major aldehydes in automotive emissions

    Energy Technology Data Exchange (ETDEWEB)

    Grafstroem, R.C. [Karolinska Inst., Stockholm (Sweden). Inst. of Environmental Medicine

    1997-09-01

    Automotive exhausts can significantly contribute to the levels of reactive aldehydes, including formaldehyde, acetaldehyde and acrolein, in urban air. The use of alcohols as an alternative fuel for gasoline or diesel may further increase these emissions. Since it is unclear if aldehyde inhalation may induce pathological states, including cancer, in human airways, the toxic properties of the above-mentioned aldehydes were studied in cultured target cell types. Each aldehyde modified vital cellular functions in a dose-dependent manner, and invariably inhibited growth and induced abnormal terminal differentiation. Decreases of cellular thiols and increases of intracellular Ca{sup 2+} were observed, and moreover, variable types and amounts of short-lived or persistent genetic damage were induced. The concentrations required for specified levels of a particular type of injury varied up to 10000-fold among the aldehydes. Overall, distinctive patterns of cytopathological activity were observed, which differed both qualitatively and quantitatively among the aldehydes. Finally, aldehydes inhibited DNA repair processes and increased cytotoxicity and mutagenesis in synergy with other known toxicants, indicating that aldehydes may also enhance damage by other constituents in automotive exhausts. In summary, the aldehydes, notably {sup m}u{sup M}-mM formaldehyde, caused pathological effects and induced mechanisms that relate to acute toxicity and cancer development in airway epithelial cells. Since `no-effect` levels may not exist for carcinogenic agents, the overall results support a need for elimination of aldehydes in automotive exhausts. 41 refs

  17. Effects of exhaust temperature on helicopter infrared signature

    International Nuclear Information System (INIS)

    Cheng-xiong, Pan; Jing-zhou, Zhang; Yong, Shan

    2013-01-01

    The effects of exhaust temperature on infrared signature (in 3–5 μm band) for a helicopter equipped with integrative infrared suppressor were numerically investigated. The internal flow of exhaust gas and the external downwash flow, as well as the mixing between exhaust gas and downwash were simulated by CFD software to determine the temperature distributions on the helicopter skin and in the exhaust plume. Based on the skin and plume temperature distributions, a forward–backward ray-tracing method was used to calculate the infrared radiation intensity from the helicopter with a narrow-band model. The results show that for a helicopter with its integrative infrared suppressor embedded inside its rear airframe, the exhaust temperature has significant influence on the plume radiation characteristics, while the helicopter skin radiation intensity has little impact. When the exhaust temperature is raised from 900 K to 1200 K, the plume radiation intensity in 3–5 μm band is increased by about 100%, while the skin radiation intensity is increased by only about 5%. In general, the effects of exhaust temperature on helicopter infrared radiation intensity are mainly concentrated on plume, especially obvious for a lower skin emissivity case. -- Highlights: ► The effect of exhaust temperature on infrared signature for a helicopter is numerically investigated. ► The impact of exhaust temperature on helicopter skin temperature is revealed. ► The impact of exhaust temperature on plume radiation characteristics is revealed. ► The impact of exhaust temperature on helicopter skin radiation is revealed. ► The impact of exhaust temperature on helicopter's total infrared radiation intensity is revealed

  18. Considerations over the effects caused by a heat recovery system for exhaust gases, adapted to gas turbines originally designed for the operation in a simple cycle; Consideraciones sobre los efectos causados por un sistema de recuperacion de calor de gases de escape, adaptado a turbinas de gas disenadas originalmente para operar bajo un ciclo simple

    Energy Technology Data Exchange (ETDEWEB)

    Cuesta Escobar, Cesar A [Instituto Mexicano del Petroleo, Mexico, D. F. (Mexico)

    1994-12-31

    This article sets out the considerations on what a heat recovery system from exhaust gases, to already installed and in operation gas turbines, and that were not originally designed to operate with this system, can cause. The potential effects are set forth on the control systems, on the combustion chambers, and in the gas turbine blades, utilized for natural gas pumping or power generation in land installations or in offshore platforms in trying to adapt to them a regenerative cycle or a heating system. Observed effects, fundamentally in the flame stability loop, flow velocity, thermal intensity coefficient, air/fuel relationships and mass flow. Also are presented the consequences that primary production system would suffer, mainly due to the natural gas pumping reduction, the space availability, the fuel consumption, and the maximum amount of heat susceptible to be recovered, comparing the requirements of this in the system. [Espanol] En este articulo se plantean las consideraciones sobre lo que puede provocar un sistema de recuperacion de calor de gases de escape adaptado a turbinas de gas ya instaladas, operando y que no fueron disenadas originalmente para operar con este sistema. Se plantean los probables efectos en los sistemas de control, en las camaras de combustion y en los empaletados de las turbinas de gas usadas para bombeo de gas natural o generacion electrica en instalaciones de tierra o plataformas marinas, al tratar de adaptarseles un ciclo regenerativo o un sistema para calentamiento. Efectos observados, fundamentalmente, en el LOOP de estabilidad de flama, velocidad del flujo, coeficiente de intensidad termica, relaciones aire-combustible y flujo masico. Tambien se presentan las consecuencias que sufriria el sistema primario de produccion debido, principalmente, a la reduccion del bombeo de gas natural, a la disponibilidad de espacio, al consumo de combustible y a la cantidad maxima de calor susceptible de recuperarse, comparada con los

  19. Emergency gas processing device

    International Nuclear Information System (INIS)

    Taruishi, Yoshiaki; Sasaki, Susumu.

    1984-01-01

    Purpose: To enable the reduction of radioactive substances released out of reactor buildings irrespective of the aging change in the buildings. Constitution: There are provided an exhaust gas flow channel for cleaning contaminated airs within a reactor building by way of a series of filters and exhausting the cleaned airs by means of exhaust fans to the outside and a gas recycling flow channel having a cooler in connection with the exhaust gas flow channel at a position downstream of the exhaust fans for returning the cleaned airs in the exhaust gas flow channel to the inside of the reactor buildings. The pressure difference between the outside and the inside of the reactor buildings is made constant by controlling the air flow channel within the gas recycling flow channel by a flow control valve. The airs cleaned by the series of the filters are recycled to the inside of the buildings to decrease the radioactive substance within the buildings. (Horiuchi, T.)

  20. Toxicity and mutagenicity of exhaust from compressed natural gas: Could this be a clean solution for megacities with mixed-traffic conditions?

    Science.gov (United States)

    Agarwal, Avinash K; Ateeq, Bushra; Gupta, Tarun; Singh, Akhilendra P; Pandey, Swaroop K; Sharma, Nikhil; Agarwal, Rashmi A; Gupta, Neeraj K; Sharma, Hemant; Jain, Ayush; Shukla, Pravesh C

    2018-04-20

    Despite intensive research carried out on particulates, correlation between engine-out particulate emissions and adverse health effects is not well understood yet. Particulate emissions hold enormous significance for mega-cities like Delhi that have immense traffic diversity. Entire public transportation system involving taxis, three-wheelers, and buses has been switched from conventional liquid fuels to compressed natural gas (CNG) in the Mega-city of Delhi. In this study, the particulate characterization was carried out on variety of engines including three diesel engines complying with Euro-II, Euro-III and Euro-IV emission norms, one Euro-II gasoline engine and one Euro-IV CNG engine. Physical, chemical and biological characterizations of particulates were performed to assess the particulate toxicity. The mutagenic potential of particulate samples was investigated at different concentrations using two different Salmonella strains, TA98 and TA100 in presence and absence of liver S9 metabolic enzyme fraction. Particulates emitted from diesel and gasoline engines showed higher mutagenicity, while those from CNG engine showed negligible mutagenicity compared to other test fuels and engine configurations. Polycyclic aromatic hydrocarbons (PAHs) adsorbed onto CNG engine particulates were also relatively fewer compared to those from equivalent diesel and gasoline engines. Taken together, our findings indicate that CNG is comparatively safer fuel compared to diesel and gasoline and can offer a cleaner transport energy solution for mega-cities with mixed-traffic conditions, especially in developing countries. Copyright © 2018 Elsevier Ltd. All rights reserved.