WorldWideScience

Sample records for automotive engine oils

  1. Automotive Engines; Automotive Mechanics I: 9043.03.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This automotive engines course studies and demonstrates the theory and principles of operation of the automotive four stroke cycle engine. The student will develop an understanding of the systems necessary to make the engine perform as designed, such as cooling, fuel, ignition and lubrication. This is a one or two quinmester credit course of 45…

  2. Petroleum Diesel Fuel and Linseed Oil Mixtures as Engine Fuels

    Science.gov (United States)

    Markov, V. A.; Kamaltdinov, V. G.; Savastenko, A. A.

    2018-01-01

    The actual problem is the use of alternative biofuels in automotive diesel engines. Insufficiently studied are the indicators of toxicity of exhaust gases of these engines operating on biofuel. The aim of the study is to identify indicators of the toxicity of exhaust gases when using of petroleum diesel fuel and linseed oil mixtures as a fuel for automotive diesel engines. Physical and chemical properties of linseed oil and its mixtures with petroleum diesel fuel are considered. Experimental researches of D-245.12C diesel are carried out on mixtures of diesel fuel and corn oil with a different composition. An opportunity of exhaust toxicity indexes improvement using these mixtures as a fuel for automobiles engine is shown.

  3. Excessive Additive Effect On Engine Oil Viscosity

    Directory of Open Access Journals (Sweden)

    Vojtěch Kumbár

    2014-01-01

    Full Text Available The main goal of this paper is excessive additive (for oil filling effect on engine oil dynamic viscosity. Research is focused to commercially distribute automotive engine oil with viscosity class 15W–40 designed for vans. There were prepared blends of new and used engine oil without and with oil additive in specific ratio according manufacturer’s recommendations. Dynamic viscosity of blends with additive was compared with pure new and pure used engine oil. The temperature dependence dynamic viscosity of samples was evaluated by using rotary viscometer with standard spindle. Concern was that the oil additive can moves engine oil of several viscosity grades up. It is able to lead to failure in the engine. Mathematical models were used for fitting experimental values of dynamic viscosity. Exponential fit function was selected, which was very accurate because the coefficient of determination R2 achieved high values (0.98–0.99. These models are able to predict viscosity behaviour blends of engine oil and additive.

  4. Automotive systems engineering

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Markus [Technische Univ. Braunschweig (Germany). Inst. fuer Regelungstechnik; Winner, Hermann (eds.) [Technische Univ. Darmstadt (Germany). Fachgebiet Fahrzeugtechnik

    2013-06-01

    Innovative state-of-the-art book. Presents brand new results of a joint workshop in the field of automotive systems engineering. Recommendable to students for further reading even though not a primary text book. This book reflects the shift in design paradigm in automobile industry. It presents future innovations, often referred as ''automotive systems engineering''. These cause fundamental innovations in the field of driver assistance systems and electro-mobility as well as fundamental changes in the architecture of the vehicles. New driving functionalities can only be realized if the software programs of multiple electronic control units work together correctly. This volume presents the new and innovative methods which are mandatory to master the complexity of the vehicle of the future.

  5. International Congress of Automotive and Transport Engineering

    CERN Document Server

    Ispas, Nicolae

    2017-01-01

    The volume will include selected and reviewed papers from CONAT - International Congress of Automotive and Transport Engineering to be held in Brasov, Romania, in October 2016. Authors are experts from research, industry and universities coming from 14 countries worldwide. The papers are covering the latest developments in automotive vehicles and environment, advanced transport systems and road traffic, heavy and special vehicles, new materials, manufacturing technologies and logistics, accident research and analysis and innovative solutions for automotive vehicles. The conference will be organized by SIAR (Society of Automotive Engineers from Romania) in cooperation with FISITA. .

  6. Automotive Stirling engine: Mod 2 design report

    Science.gov (United States)

    Nightingale, Noel P.

    1986-01-01

    The design of an automotive Stirling engine that achieves the superior fuel economy potential of the Stirling cycle is described. As the culmination of a 9-yr development program, this engine, designated the Mod 2, also nullifies arguments that Stirling engines are heavy, expensive, unreliable, demonstrating poor performance. Installed in a General Motors Chevrolet Celebrity car, this engine has a predicted combined fuel economy on unleaded gasoline of 17.5 km/l (41 mpg)- a value 50% above the current vehicle fleet average. The Mod 2 Stirling engine is a four-cylinder V-drive design with a single crankshaft. The engine is also equipped with all the controls and auxiliaries necessary for automotive operation.

  7. Conductometric Sensors for Monitoring Degradation of Automotive Engine Oil

    Directory of Open Access Journals (Sweden)

    Franz L. Dickert

    2011-09-01

    Full Text Available Conductometric sensors have been fabricated by applying imprinted polymers as receptors for monitoring engine oil quality. Titania and silica layers are synthesized via the sol-gel technique and used as recognition materials for acidic components present in used lubricating oil. Thin-film gold electrodes forming an interdigitated structure are used as transducers to measure the conductance of polymer coatings. Optimization of layer composition is carried out by varying the precursors, e.g., dimethylaminopropyltrimethoxysilane (DMAPTMS, and aminopropyl-triethoxysilane (APTES. Characterization of these sensitive materials is performed by testing against oil oxidation products, e.g., carbonic acids. The results depict that imprinted aminopropyltriethoxysilane (APTES polymer is a promising candidate for detecting the age of used lubricating oil. In the next strategy, polyurethane-nanotubes composite as sensitive material is synthesized, producing appreciable differentiation pattern between fresh and used oils at elevated temperature with enhanced sensitivity.

  8. Advanced ignition for automotive engines

    OpenAIRE

    Pineda, Daniel Ivan

    2017-01-01

    Spark plugs have been igniting combustible mixtures like those found in automotive engines for over a century, and the principles of the associated ignition techniques using thermal plasma (inductive or capacitive sparks) have remained relatively unchanged during that time. However, internal combustion engines are increasingly operating with boosted intake pressures (i.e. turbo- or super-charged) in order to maintain power output while simultaneously reducing engine size and weight, and they ...

  9. Palm oil as a fuel for agricultural diesel engines: Comparative testing against diesel oil

    Directory of Open Access Journals (Sweden)

    Teerawat Apichato

    2003-05-01

    Full Text Available Due to unstable oil price situation in the world market, many countries have been looking for alternative energy sources to substitute for petroleum. Vegetable oil is one of the alternatives which can be used as fuel in automotive engines either in the form of straight vegetable oil, or in the form of ethyl or methyl ester. This paper presents a comparative performance testing of diesel engine using diesel oil and refined palm oil over 2,000 hours of continuous running time. Short-term performance testing was conducted for each fuel on the dynamometer engine test bed. Specific fuel consumption, exhaust temperature and black smoke density were determined and measured. Long-term performance testing (or endurance test was also done by running the engines coupled with a generator in order to supply load (electricity to a lightbulb board. For each 500 hours of engine run time, the engines were dissembled for engine wear inspection. It was found that the fuel pump and fuel valve weight losses from both engines showed insignificant differences either at the first 500 hours of running time or at the second 500 hours of running time but the inlet valve from the engine fueled by diesel oil had a higher weight loss than the engine fueled by refined palm oil at the first 500 hours and at the second 500 hours of running time. The compression rings from the engine fueled by refined palm oil showed a significant weight loss compared to the engine fueled by diesel oil both after 500 hours and after 1000 hours of running time.

  10. OASIS: An automotive analysis and safety engineering instrument

    International Nuclear Information System (INIS)

    Mader, Roland; Armengaud, Eric; Grießnig, Gerhard; Kreiner, Christian; Steger, Christian; Weiß, Reinhold

    2013-01-01

    In this paper, we describe a novel software tool named OASIS (AutOmotive Analysis and Safety EngIneering InStrument). OASIS supports automotive safety engineering with features allowing the creation of consistent and complete work products and to simplify and automate workflow steps from early analysis through system development to software development. More precisely, it provides support for (a) model creation and reuse, (b) analysis and documentation and (c) configuration and code generation. We present OASIS as a part of a tool chain supporting the application of a safety engineering workflow aligned with the automotive safety standard ISO 26262. In particular, we focus on OASIS' (1) support for property checking and model correction as well as its (2) support for fault tree generation and FMEA (Failure Modes and Effects Analysis) table generation. Finally, based on the case study of hybrid electric vehicle development, we demonstrate that (1) and (2) are able to strongly support FTA (Fault Tree Analysis) and FMEA

  11. Palm oil transesterified by metanolysis as diesel engine biofuel

    International Nuclear Information System (INIS)

    Agudelo Santamaria, John R; Pena, Diego Leon; Mejia, Ricardo

    2001-01-01

    This paper reviews a general background of biodiesel and its potentialities and possibilities as automotive fuel. The paper also compares the colombian production capacity in the world context, and shows its advantages and disadvantages as diesel engine biofuel. The paper discusses some relevant processing techniques of crude palm oil, the methanol transesterification technique being found to be the most suitable one. Finally it shows the results of some important physicochemical characterization of a crude palm oil transesterificated with methanol at the Universidad de Antioquia

  12. Application of tunable diode laser spectroscopy to the real-time analysis of engine oil economy

    International Nuclear Information System (INIS)

    Carduner, K.R.; Colvin, A.D.; Leong, D.Y.; Schuetzle, D.; Mackay, G.I.

    1991-01-01

    This paper reports that Tunable Diode Laser Spectroscopy (TDLAS) of oil derived SO 2 in automotive exhaust demonstrated acceptable repeatability in determination of oil consumption at steady state engine operating conditions. The response time of the instrument was approximately 30 sec, the time related to the flow rate of the sampling system. Instrument sensitivity is sufficient to measure SO 2 levels of 0.1 to 1 ppm required for the oil consumption determination. Typical exhaust gas species were investigated for their interference effects and were observed to have less than a 10% interference on the SO 2 signal for mixing ratios with SO 2 typical of automotive exhaust. Water, on the other hand, did show a significant, but compensatible interference. Carbon deposition under rich engine conditions was observed and is expected to be a problem for any analytical device and is best solved by using a heated sampling line

  13. Effects of Crude Oil and Oil Products on Growth of Some Edible ...

    African Journals Online (AJOL)

    The vegetative growth response of three local edible mushrooms: Pleurotus pulmonarius (Pp), Pleurotus tuber-regium (Pt) and Lentinus squarrosulus (Ls) on different concentrations of Crude oil (COIL), Automotive Gasoline Oil (AGO), Fresh Engine Oil (ENGOIL) and Spent Engine Oil (SENGOIL) was investigated. The result ...

  14. Automotive Stirling engine development program: A success

    Science.gov (United States)

    Tabata, W. K.

    1987-01-01

    The original 5-yr Automotive Stirling Engine Development Program has been extended to 10 years due to reduced annual funding levels. With an estimated completion date of April 1988, the technical achievements and the prospectives of meeting the original program objectives are reviewed. Various other applications of this developed Stirling engine technology are also discussed.

  15. Advanced high temperature materials for the energy efficient automotive Stirling engine

    International Nuclear Information System (INIS)

    Titran, R.H.; Stephens, J.R.

    1984-01-01

    The Stirling engine is under investigation jointly by the Department of Energy and NASA Lewis as an alternative to the internal combustion engine for automotive applications. The Stirling engine is an external combustion engine that offers the advantage of high fuel economy, low emissions, low noise, and low vibrations compared to current internal combustion automotive engines. The most critical component from a materials viewpoint is the heater head consisting of the cylinders, heating tubes, and regenerator housing. Materials requirements for the heater head include compatibility with hydrogen, resistance to hydrogen permeation, high temperature oxidation/corrosion resistance, and high temperature creep-rupture and fatigue properties. A continuing supporting materials research and technology program has identified the wrought alloys CG-27 and 12RN72, and the cast alloys XF-818 and NASAUT 4G-A1 as candidate replacements for the cobalt containing alloys used in current prototype engines. Based on the materials research program in support of the automotive Stirling engine it is concluded that manufacture of the engine is feasible from low cost iron-base alloys rather than the cobalt alloys used in prototype engines. This paper presents results of research that led to this conclusion

  16. Aero and vibroacoustics of automotive turbochargers

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen-Schaefer, Hung [Bosch Mahle Turbo Systems GmbH, Stuttgart (Germany)

    2013-02-01

    First book about the aeroacoustics of automotive turbochargers. Author of the book ''Rotordynamics of Automotive Turbochargers'', Springer, 2012. Written by an R and D expert in the turbocharger industry. Aero and Vibroacoustics of Automotive Turbochargers is a topic involving aspects from the working fields of thermodynamics of turbomachinery, aerodynamics, rotordynamics, and noise propagation computation. In this broadly interdisciplinary subject, thermodynamics of turbomachinery is used to design the turbocharger and to determine its operating conditions. Aerodynamics is needed to study the compressor flow dynamics and flow instabilities of rotating stall and surge, which can produce growling and whining-type noises. Rotordynamics is necessary to study rotor unbalance and self-excited oil-whirl instabilities, which lead to whistling and constant tone-type noises in rotating floating oil-film type bearings. For the special case of turbochargers using ball bearings, some high-order harmonic and wear noises also manifest in the rotor operating range. Lastly, noise propagation computation, based on Lighthill's analogy, is required to investigate airborne noises produced by turbochargers in passenger vehicles. The content of this book is intended for advanced undergraduates, graduates in mechanical engineering, research scientists and practicing engineers who want to better understand the interactions between these working fields and the resulting impact on the interesting topic of Aero and Vibroacoustics of Automotive Turbochargers.

  17. Coupling effect of waste automotive engine oil in the preparation of wood reinforced LDPE plastic composites for panels

    Directory of Open Access Journals (Sweden)

    Maame Adwoa Bentumah Animpong

    2017-12-01

    Full Text Available We demonstrated the formulation of wood plastic composite (WPC materials with flexural strength of 13.69 ± 0.09 MPa for applications in outdoor fencing using municipal waste precursors like low density polyethylene (LDPE plastics (54.0 wt. %, sawn wood dust with particle size between 64 and 500 μm derived from variable hardwood species (36.0 wt. % and used automotive engine oil (10 wt. %. The WPC panels were prepared by pre-compounding, extruding at a screw auger torque of 79.8 Nm and pressing through a rectangular mould of dimension 132 mm × 37 mm × 5 mm at temperature 150 °C. The efficacy of black waste oil, as a coupling agent, was demonstrated by the absence of voids and pull-outs on microscopic examination using scanning electron microscopy. No hazardous substances were exhaled during thermo-gravimetric mass spectrometry analysis. The percentage crystallinity of the LDPE in the as-prepared material determined by differential scanning calorimetry was 11.3%. Keywords: Wood plastic composites, Low density polyethylene, Wood dust, Physical, Thermal and mechanical properties

  18. 1996 Fall Meeting of JSAE (Japan Society of Automotive Engineers). Preprint of the academic lecture (No. 966); JSAE 1996 nendo shuki taikai. Gakujutsu koenkai maezurishu (No.966)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The JSAE 1996 Fall Meeting was held in Sapporo during October 22-24, and 232 papers were reported. As for the lubricating oil, the papers with the following titles were made public: Influence of engine oil viscosity and friction modifiers on coefficients of friction; Study on diesel fuel lubricity; Effect of diesel fuel components on lubricity; etc. As to the driving sensation, reported were: Study of incidence factor of car sickness and the evaluation of a passenger`s feeling and his physiological responses; A study on evaluation of drowsiness; Experimental study on vigilance decline during a monotonous-driving simulation task; etc. In the computer soft relation, Development of ECU data acquisition and analysis support system; Development of software engineering system for automotive control system; etc. In addition, a lot of papers were read including the following: A study on the heat transfer performance improvement of condenser for automotive air conditioning system; A study for preventing corrosion for tube of aluminum oil coolers; A study of engine cooling fan.

  19. Component Analysis of Deposits in Selective Catalytic Reduction System for Automotive Diesel Engine

    Directory of Open Access Journals (Sweden)

    Zhu Neng

    2016-01-01

    Full Text Available In this paper, deposits in exhaust pipes for automotive diesel engines were studied by various chemical analysis methods and a kind of analysis process to determine the compositions of organic matter was proposed. Firstly, the elements of the deposits were determined through the element analysis method. Then using characteristic absorption properties of organic functional groups to the infrared spectrum, the functional groups in the deposits were determined. Finally, by GC-MS (gas chromatography - mass spectrometry test, the content of each main component was determined quantitatively. Element analysis results indicated that the deposits adsorbed metal impurities from fuel oil, lubricating oil, mechanical wear and urea water solution. The result of GC-MS test showed that the area percentage of cyanuric acid was the biggest (about 85%, the second was urea (about 4%, and the content of biuret and biurea was scarce.

  20. Dual-fuelling of a direct-injection automotive diesel engine by diesel and compressed natural gas

    International Nuclear Information System (INIS)

    Pirouzpanah, V.; Mohammadi Kosha, A.; Mosseibi, A.; Moshirabadi, J.; Gangi, A.; Moghadaspour, M.

    2000-01-01

    Application of Compressed Natural Gas in diesel engines has always been important, especially in the field of automotive engineering. This is due to easy accessibility, better mixing quality and good combustion characteristics of the Compressed Natural Gas fuel. In this study the application of Compressed Natural Gas fuel along with diesel oil in a heavy duty direct-injection automotive diesel engine is experimentally investigated. In order to convert a diesel engine into a diesel-gas one, the so called m ixed diesel-gas a pproach has been used and for this purpose a carbureted Compressed Natural Gas fuel system has been designed and manufactured. For controlling quantity of Compressed Natural Gas, the gas valve is linked to the diesel fuel injection system by means of a set of rods. Then, the dual-fuel system is adjusted so that, at full load conditions, the quantity of diesel fuel is reduced to 20% and 80% of its equivalent energy is substituted by Compressed Natural Gas fuel. Also injection pressure of pilot jet is increased by 11.4%. Performance and emission tests are conducted under variation of load and speed on both diesel and diesel-gas engines. Results show that, with equal power and torque, the diesel-gas engine has the potential to improve overall engine performance and emission. For example, at rated power and speed, fuel economy increases by 5.48%, the amount of smoke decreases by 78%, amount of CO decreases by 64.3% and mean exhaust gas temperature decreases by 6.4%

  1. Automotive Control Systems: For Engine, Driveline, and Vehicle

    Science.gov (United States)

    Kiencke, Uwe; Nielsen, Lars

    Advances in automotive control systems continue to enhance safety and comfort and to reduce fuel consumption and emissions. Reflecting the trend to optimization through integrative approaches for engine, driveline, and vehicle control, this valuable book enables control engineers to understand engine and vehicle models necessary for controller design, and also introduces mechanical engineers to vehicle-specific signal processing and automatic control. The emphasis on measurement, comparisons between performance and modeling, and realistic examples derive from the authors' unique industrial experience

  2. Cold neutron fluoroscopy of operating automotive engines

    International Nuclear Information System (INIS)

    Stewart, P.A.E.; Heritage, J.

    1983-01-01

    The application of neutron fluoroscopy in the automotive industry is a natural extension of previous studies with aircraft engines. This paper describes investigations with two sub-compact car engines. The extent and manner in which lubricants reached the various parts of the engines are compared and contrasted. The paper goes on to describe a study of the deposits inside turbochargers and postulates future topics worthy of investigation. The authors confirm that there is a place for neutron fluoroscopy both as a design tool and for investigations of ''in-service'' phenomena. (Auth.)

  3. Sulphur removal from used automotive lubricating oil by ionizing radiation

    International Nuclear Information System (INIS)

    Scapin, Marcos Antonio; Duarte, Celina Lopes; Sato, Ivone Mulako

    2007-01-01

    Following the worldwide evolution with the purpose of a higher control of vehicular emissions, the specialists have looked for clean technologies and efficient procedures to make vehicular emissions free of pollutants. Much attention is given to the sulphur concentration in the gasoline, diesel and lubricating oils. The ionizing radiation is a promising technology for the removal of this pollutant when compared to other conventional treatment methods. In this work, the ionizing radiation was used to remove in significant levels the presence of sulphur in automotive motor oil. A 1000 mL sample of used automotive lubricating oil from a gas station was collected. This sample was fractioned and irradiated with 10, 20 50, 100, 200 and 500 kGy doses in a 60 Co irradiator (GAMMACELL-220 - 12 kCi). The 50 and 70% (v/v) of MilliQ water and 30% (v/v) of hydrogen peroxide was used to improve the radiolysis The sulphur element before and after the irradiation was determined by X-ray fluorescence technique (WDXRF) using the Fundamental Parameters Method. The results showed approximately 70% sulphur removal at 500 kGy irradiation dose with 70% (v/v) of MilliQ water addition. (author)

  4. Downsizing assessment of automotive Stirling engines

    Science.gov (United States)

    Knoll, R. H.; Tew, R. C., Jr.; Klann, J. L.

    1983-01-01

    A 67 kW (90 hp) Stirling engine design, sized for use in a 1984 1440 kg (3170 lb) automobile was the focal point for developing automotive Stirling engine technology. Since recent trends are towards lighter vehicles, an assessment was made of the applicability of the Stirling technology being developed for smaller, lower power engines. Using both the Philips scaling laws and a Lewis Research Center (Lewis) Stirling engine performance code, dimensional and performance characteristics were determined for a 26 kW (35 hp) and a 37 kW (50 hp) engine for use in a nominal 907 kg (2000 lb) vehicle. Key engine elements were sized and stressed and mechanical layouts were made to ensure mechanical fit and integrity of the engines. Fuel economy estimates indicated that the Stirling engine would maintain a 30 to 45 percent fuel economy advantage comparable spark ignition and diesel powered vehicles in the 1984 period.

  5. International Conference on Vehicle and Automotive Engineering

    CERN Document Server

    Bolló, Betti

    2017-01-01

    This book presents the proceedings of the first vehicle engineering and vehicle industry conference. It captures the outcome of theoretical and practical studies as well as the future development trends in a wide field of automotive research. The themes of the conference include design, manufacturing, economic and educational topics.

  6. Hybrid Automotive Engine Using Ethanol-Burning Miller Cycle

    Science.gov (United States)

    Weinstein, Leonard

    2004-01-01

    A proposed hybrid (internal-combustion/ electric) automotive engine system would include as its internal-combustion subsystem, a modified Miller-cycle engine with regenerative air preheating and with autoignition like that of a Diesel engine. The fuel would be ethanol and would be burned lean to ensure complete combustion. Although the proposed engine would have a relatively low power-to-weight ratio compared to most present engines, this would not be the problem encountered if this engine were used in a non-hybrid system since hybrid systems require significantly lower power and thus smaller engines than purely internal-combustion-engine-driven vehicles. The disadvantage would be offset by the advantages of high fuel efficiency, low emission of nitrogen oxides and particulate pollutants, and the fact that ethanol is a renewable fuel. The original Miller-cycle engine, named after its inventor, was patented in the 1940s and is the basis of engines used in some modern automobiles, but is not widely known. In somewhat oversimplified terms, the main difference between a Miller-cycle engine and a common (Otto-cycle) automobile engine is that the Miller-cycle engine has a longer expansion stroke while retaining the shorter compression stroke. This is accomplished by leaving the intake valve open for part of the compression stroke, whereas in the Otto cycle engine, the intake valve is kept closed during the entire compression stroke. This greater expansion ratio makes it possible to extract more energy from the combustion process without expending more energy for compression. The net result is greater efficiency. In the proposed engine, the regenerative preheating would be effected by running the intake air through a heat exchanger connected to the engine block. The regenerative preheating would offer two advantages: It would ensure reliable autoignition during operation at low ambient temperature and would help to cool the engine, thereby reducing the remainder of the

  7. Case Study of Engineering Risk in Automotive Industry

    Science.gov (United States)

    Popa, Dan Mihai

    2018-03-01

    The primary objective of this paper is to show where the engineering of risk management is placed and how its implementation has been tried in multinational companies in automotive industry from Romania. A large number of companies don't use a strategy to avoid the engineering risk in their design products. The main reason is not because these companies haven't heard about standards for risk management such as ISO 31000; the problem is that the business units which were summed up, have just set up a risk list at the beginning of the project, without any follow up. The purpose of this article is to create an implementation risk tracking in automotive industry companies in Romania, due to a change request from customers according to supply companies within the quality process, in the research and development phase.

  8. Automotive Stirling Engine Development Project

    Science.gov (United States)

    Ernst, William D.; Shaltens, Richard K.

    1997-01-01

    The development and verification of automotive Stirling engine (ASE) component and system technology is described as it evolved through two experimental engine designs: the Mod 1 and the Mod 2. Engine operation and performance and endurance test results for the Mod 1 are summarized. Mod 2 engine and component development progress is traced from the original design through hardware development, laboratory test, and vehicle installation. More than 21,000 hr of testing were accomplished, including 4800 hr with vehicles that were driven more dm 59,000 miles. Mod 2 engine dynamometer tests demonstrated that the engine system configuration had accomplished its performance goals for power (60 kW) and efficiency (38.5%) to within a few percent. Tests with the Mod 2 engine installed in a delivery van demonstrated combined metro-highway fuel economy improvements consistent with engine performance goals and the potential for low emission levels. A modified version of the Mod 2 has been identified as a manufacturable design for an ASE. As part of the ASE project, the Industry Test and Evaluation Program (ITEP), NASA Technology Utilization (TU) project, and the industry-funded Stirling Natural Gas Engine program were undertaken to transfer ASE technology to end users. The results of these technology transfer efforts are also summarized.

  9. NASA/DOE automotive Stirling engine project: Overview 1986

    Science.gov (United States)

    Beremand, D. G.; Shaltens, R. K.

    1986-01-01

    The DOE/NASA Automotive Stirling Engine Project is reviewed and its technical progress and status are presented. Key technologies in materials, seals, and piston rings are progressing well. Seven first-generation engines, and modifications thereto, have accumulated over 15,000 hr of test time, including 1100hr of in-vehicle testing. Results indicate good progress toward the program goals. The first second-generation engine is now undergoing initial testing. It is expected that the program goal of a 30-percent improvement in fuel economy will be achieved in tests of a second-generation engine in a Celebrity vehicle.

  10. Engine Fundamentals: Automotive Mechanics Instructional Program. Block 2.

    Science.gov (United States)

    O'Brien, Ralph D.

    The second of six instructional blocks in automotive mechanics, the lessons and supportive information in the document provide a guide for teachers in planning an instructional program in engine fundamentals at the secondary and postsecondary level. The material, as organized, is a suggested sequence of instruction within each block. Each lesson…

  11. Metal matrix composites: custom-made materials for automotive and aerospace engineering

    National Research Council Canada - National Science Library

    Kainer, K. U

    2005-01-01

    ... in traffic engineering, especially in automotive and transport technology. New applications are, for example, partially fiber-reinforced pistons and hybrid reinforced crank cases in passenger cars and truck engines, and particle-reinforced brake discs for light trucks, motorcycles, passenger cars and rail-mounted vehicles...

  12. FISITA 2012 World Automotive Congress

    CERN Document Server

    2013-01-01

    Proceedings of the FISITA 2012 World Automotive Congress are selected from nearly 2,000 papers submitted to the 34th FISITA World Automotive Congress, which is held by Society of Automotive Engineers of China (SAE-China ) and the International Federation of Automotive Engineering Societies (FISITA). This proceedings focus on solutions for sustainable mobility in all areas of passenger car, truck and bus transportation. Volume 8: Vehicle Design and Testing (II) focuses on: •Automotive Reliability Technology •Lightweight Design Technology •Design for Recycling •Dynamic Modeling •Simulation and Experimental Validation •Virtual Design, Testing and Validation •Testing of Components, Systems and Full Vehicle Above all researchers, professional engineers and graduates in fields of automotive engineering, mechanical engineering and electronic engineering will benefit from this book.   SAE-China is a national academic organization composed of enterprises and professionals who focus on research, design a...

  13. Fuel saver based on electromagnetic induction for automotive engine

    Science.gov (United States)

    Siregar, Houtman P.; Sibarani, Maradu

    2007-12-01

    In the considered research is designed and analyzed the performance of the fuel saver which is based on electromagnetic induction for automotive diesel engine. The fuel saver which is based on permanent magnet has sold in market and its performance has tested. In comparison to the former fuel saver, in the proposed work is produced fuel saver which is based on electromagnetic induction. The considered research is the continuation of my former work. Performance of the produced fuel saver which is installed in the fuel line of internal combustion engine rig is compared to the performance of the standard internal combustion engine rig Speed of the engine, wire diameter of coil, and number of coil which is coiled in the winding of the the fuel saver are chosen as the testing variables. The considered research has succeeded to design the fuel saver which is based on electromagnetic induction for saving the automotive fuel consumption. Results of the research show that the addition of the fuel saver which is based on electromagnetic induction to the flow of the diesel fuel can significantly save the automative fuel consumption. In addition the designed fuel saver can reduce the opacity of the emission gas.

  14. Automotive mechatronics operational and practical issues

    CERN Document Server

    Fijalkowski, B T

    2011-01-01

    This book presents operational and practical issues of automotive mechatronics with special emphasis on the heterogeneous automotive vehicle systems approach, and is intended as a graduate text as well as a reference for scientists and engineers involved in the design of automotive mechatronic control systems. As the complexity of automotive vehicles increases, so does the dearth of high competence, multi-disciplined automotive scientists and engineers. This book provides a discussion into the type of mechatronic control systems found in modern vehicles and the skills required by automotive scientists and engineers working in this environment. Divided into two volumes and five parts, Automotive Mechatronics aims at improving automotive mechatronics education and emphasises the training of students' experimental hands-on abilities, stimulating and promoting experience among high education institutes and produce more automotive mechatronics and automation engineers. The main subject that are treated are: VOLUME...

  15. Fundamentals of automotive and engine technology standard drives, hybrid drives, brakes, safety systems

    CERN Document Server

    2014-01-01

    Hybrid drives and the operation of hybrid vehicles are characteristic of contemporary automotive technology. Together with the electronic driver assistant systems, hybrid technology is of the greatest importance and both cannot be ignored by today’s car drivers. This technical reference book provides the reader with a firsthand comprehensive description of significant components of automotive technology. All texts are complemented by numerous detailed illustrations. Contents History of the automobile.- History of the Diesel engine.- Areas of use for Diesel engines.- Basic principles of the Diesel engine.- Basic principles of Diesel fuel-injection.- Basic principles of the gasoline engine.- Inductive ignition system.- Transmissions for motor vehicles.- Motor vehicle safety.- Basic principles of vehicle dynamics.- Car braking systems.- Vehicle electrical systems.- Overview of electrical and electronic systems in the vehicle.- Control of gasoline engines.- Control of Diesel engines.- Lighting technology.- Elec...

  16. General Mechanical Repair. Minor Automotive Maintenance, Small Engine [Repair, and] Welding: Student Manual.

    Science.gov (United States)

    Hamlin, Larry

    This document is a student manual for a general mechanical repair course. Following a list of common essential elements of trade and industrial education, the manual is divided into three sections. The first section, on minor automotive maintenance, contains 13 units: automotive shop safety; engine principles; fuel system operation and repair;…

  17. System for measuring engine exhaust constituents

    International Nuclear Information System (INIS)

    Carduner, K.R.; Colvin, A.D.; Leong, D.Y.W.

    1992-01-01

    This patent describes a system for measuring an automotive engine exhaust constituent. It comprises: a meter for determining the mass of air flowing through the engine and for generating an engine airflow signal corresponding to the airflow; sample handling apparatus; diluent adding means; processor means. This patent also describes a method for using an analyzer to determine the amount of lubricating oil consumed by an automotive engine. It comprises: determining the amount of sulfur dioxide within the room air being drawn into the engine; maintaining a constant total flow comprised of a constant fraction of the engine's exhaust gas and a diluent gas through the analyzer, while: determining the amount of sulfur dioxide contained within the engine's exhaust, determining the amount of sulfur dioxide contained within the engine's exhaust, while operating the engine on room air; determining an efficiency factor for the analyzer; and using the efficiency factor and the concentration of sulfur in the engine oil and the amounts of sulfur dioxide determined in steps a and d to determine the amount of lubrication oil leaving the engine through its exhaust

  18. A study of the Armstrong Whitworth swing beam engine for automotive application

    Science.gov (United States)

    1983-01-01

    The introduction of ceramics to those parts suffering high thermal loading was successfully demonstrated, and there is no question that the 100 kw (134 hp) naturally aspirated engine of the future will be developed to produce up to 300 kw (402 hp) by the application of turbocharging or its equivalent. However, at the 60 - 80 kw (80 - 107 hp) size needed for the economic automotive engine, scaling down the 300 kw (402 hp) is beset by the laws of scale. The conventional four stroke diesel was not shown to be successful at the small high speed engine size. The opposed piston two stroke engine does not suffer the same laws of scale and engines in the low power range have already been marketed successfully. The half liter/cylinder Armstrong Whitworth Swing Beam Engine is the latest to be designed with the automotive market in mind. Its low noise structure and balanced linkage system coupled with advantages for easy start and potential use of low grade fuels, derived from its variable compression ratio and slow piston motion, qualifies it for the application.

  19. Sensor fault diagnosis for automotive engines with real data ...

    African Journals Online (AJOL)

    In this paper, a new fault diagnosis method using an adaptive neural network for automotive engines is developed. A redial basis function (RBF) network is used as a ... The real data experiments confirm that sensor faults as small as 2% can be detected and isolated clearly. The developed scheme is capable of diagnosing ...

  20. The flow in an oil/water plate heat exchanger for the automotive industry

    OpenAIRE

    Lozano , A.; Barreras , F.; Fueyo , N.; Santodomingo , S.

    2008-01-01

    The flow in an oil/water plate heat exchanger for the automotive industry correspondence: Corresponding author. Tel.: +34976716463; fax: +34976716456. (Lozano, A.) (Lozano, A.) LITEC/CSIC--> , Mar?'a de Luna 10--> , 50018--> , Zaragoza--> - SPAIN (Lozano, A.) SPAIN (Lozano, A.) LITEC/CSIC--> , Mar?'a de Luna 10--> , 50018--> , Zaragoza--> - S...

  1. Sensitivities of Internal Combustion Automotive Engines to Variations in Fuel Properties

    Science.gov (United States)

    1982-02-01

    An assessment of the sensitivity of the automotive gasoline and diesel engines to variations in fuel properties has been made. The variables studied include H/C ratio, distillation range, aromatic content, ignition quality as determined by the octane...

  2. Automotive Stirling engine development program. [fuel economy assessment

    Science.gov (United States)

    Kitzner, E. W.

    1978-01-01

    The Ford/DOE automotive Stirling engine development program is directed towards establishing the technological and developmental base that would enable a decision on whether an engineering program should be directed at Stirling engine production. The fuel economy assessment aims to achieve, with a high degree of confidence, the ERDA proposal estimate of 20.6 MPG (gasoline) for a 4500 lb 1WC Stirling engine passenger car. The current M-H fuel economy projection for the 170 HP Stirling engine is 15.7 MPG. The confidence level for this projection is 32%. A confidence level of 29% is projected for a 22.1 MPG estimate. If all of the planned analyses and test work is accomplished at the end of the one year effort, and the projected improvements are substantiated, the confidence levels would rise to 59% for the 20.6 MPG projection and 54% for the 22.1 MPG projection. Progress achieved thus far during the fuel economy assessment is discussed.

  3. Oil and Cars: The Impact of Crude Oil Prices on the Stock Returns of Automotive Companies

    Directory of Open Access Journals (Sweden)

    Bettina Lis

    2012-01-01

    Full Text Available In this paper we are testing whether the impact of oil prices is different on the overall market and automotive companies. In addition we investigate, if this relationship is nonlinear. For this we use stock return data of US, German and Japanese car companies, and returns of share indices from the same countries as control variables, and Brent crude oil price changes. We first estimate the impact of crude oil on the indices, then clean the indices from these influences, and afterwards estimate the impact on the stocks. For this we are using OLS and EGARCH (1,1. We conclude that in general the car companies‘ stocks do not react more adversely as the overall market to crude oil price increases, while Japanese companies do not show any excess sensitivity at all. German companies tend to be sensitive, and US and German companies are together more sensitive in the more recent time periods.

  4. Pocket dictionary of automotive engineering. German - English. Taschenwoerterbuch Kraftfahrzeugtechnik. Deutsch - Englisch

    Energy Technology Data Exchange (ETDEWEB)

    Junge, H D; Lukhaup, D [eds.

    1987-01-01

    This book comprises the main technical terms in automotive engineering, some of them with definitions and explanations and many examples to illustrate the laws governing the formation of word combinations. Some general terms have been included. Source languages are indicated.

  5. Systems engineering approach for future automotive microcontroller solutions; Systems-Engineering-Ansatz zur Entwicklung zukuenftiger Mikrocontroller

    Energy Technology Data Exchange (ETDEWEB)

    Hilgert, J.; Turski, K.; Vollhardt, S. [NEC Electronics Europe, Duesseldorf (Germany)

    2005-09-01

    In the future, microcontrollers used in automotive applications will have to meet escalating demands from different areas. For this reason, NEC Electronics (Europe) regards the concept of Systems Engineering as the key to handling the development of the complex system vehicle. This article describes how the Systems Engineering approach is applied to the development of new microcontrollers. The example used is the development platform for NEC's upcoming gateway product. (orig.)

  6. Applicability of advanced automotive heat engines to solar thermal power

    Science.gov (United States)

    Beremand, D. G.; Evans, D. G.; Alger, D. L.

    The requirements of a solar thermal power system are reviewed and compared with the predicted characteristics of automobile engines under development. A good match is found in terms of power level and efficiency when the automobile engines, designed for maximum powers of 65-100 kW (87 to 133 hp) are operated to the nominal 20-40 kW electric output requirement of the solar thermal application. At these reduced power levels it appears that the automotive gas turbine and Stirling engines have the potential to deliver the 40+ percent efficiency goal of the solar thermal program.

  7. Automotive mechatronics automotive networking, driving stability systems, electronics

    CERN Document Server

    2015-01-01

    As the complexity of automotive vehicles increases this book presents operational and practical issues of automotive mechatronics. It is a comprehensive introduction to controlled automotive systems and provides detailed information of sensors for travel, angle, engine speed, vehicle speed, acceleration, pressure, temperature, flow, gas concentration etc. The measurement principles of the different sensor groups are explained and examples to show the measurement principles applied in different types. Contents Basics of mechatronics.- Architecture.- Electronic control unit.- Software development.- Basic principles of networking.- Automotive networking.- Bus systems.- Automotive sensors.- Sensor measuring principles.- Sensor types.- Electric actuators.- Electrohydraulic actuators.- Electronic transmission control.- Electronic transmission control unit.- Modules for transmission control.- Antilock braking system.- Traction control system.- Electronic stability program.- Automatic brake functions.- Hydraulic modu...

  8. Experimentally-determined external heat loss of automotive gas turbine engine

    Science.gov (United States)

    Meng, P. R.; Wulf, R. F.

    1975-01-01

    An external heat balance was conducted on a 150 HP two-shaft automotive gas turbine engine. The engine was enclosed in a calorimeter box and the temperature change of cooling air passing through the box was measured. Cooling airflow ranges of 1.6 to 2.1 lb-per-second and 0.8 to 1.1 lb-per-second were used. The engine housing heat loss increased as the cooling airflow through the calorimeter box was increased, as would be the case in a moving automobile. The heat balance between the total energy input and the sum of shaft power output and various losses compared within 30 percent at engine idle speeds and within 7 percent at full power.

  9. Multiroller traction drive speed reducer: Evaluation for automotive gas turbine engine

    Science.gov (United States)

    Rohn, D. A.; Anderson, N. E.; Loewenthal, S. H.

    1982-01-01

    Tests were conducted on a nominal 14:1 fixed-ratio Nasvytis multiroller traction drive retrofitted as the speed reducer in an automotive gas turbine engine. Power turbine speeds of 45,000 rpm and a drive output power of 102 kW (137 hp) were reached. The drive operated under both variable roller loading (proportional to torque) and fixed roller loading (automatic loading mechanism locked). The drive operated smoothly and efficiently as the engine speed reducer. Engine specific fuel consumption with the traction speed reducer was comparable to that with the original helical gearset.

  10. Automotive fuels. Quality current and future perspectives

    International Nuclear Information System (INIS)

    Avella, F.

    1999-01-01

    In the present paper, a general view of the automotive fuel characteristics and of the influence of the most important fuel parameters on the engine performance and emissions are presented. At short term, the future scenario is conditioned by the application of the next European Directive on fuel specifications, that will came into effect on 1 January 2000. The composition of liquid fuels shall be subject to modifications nd restrictions to meet the new specifications Among alternative fuels, natural gas and Lpg (liquefied petroleum gases) are the most interesting in the view point of environmental protection. Biodiesel constitutes a potential and valid alternative to mineral gas oil in diesel engines [it

  11. Profiles of Automotive Suppliers Industries--Engineered Mechanical Components and Systems : Volume II, Appendices.

    Science.gov (United States)

    1981-09-01

    The profile describes and analyzes that segment of the automotive supplier industry which provides engineered mechanical components/assemblies/systems to the prime auto manufacturers. It presents an overview of the role and structure of this industry...

  12. Profiles of Automotive Suppliers Industries--Engineered Mechanical Components and Systems : Volume I, Text.

    Science.gov (United States)

    1981-09-01

    This profile describes and analyzes that segment of the automotive supplier industry which provides engineered mechanical components/assemblies/systems to the prime auto manufacturers. It presents an overview of the role and structure of this industr...

  13. Comparison of Quality Engineering Practices in Malaysian and Indonesian Automotive Related Companies

    Science.gov (United States)

    Putri, Nilda Tri; Sha'ri Mohd, Yusof; Irianto, Dradjad

    2016-02-01

    The main motivating factor driving this research is to find differences between the automotive related companies in Malaysia and Indonesia with regard to quality engineering (QE) implementation. A comparative study between Malaysia and Indonesia provides the opportunity to gain perspective and thorough understanding of the similarities and differences on the critical factors for successful QE practices in the context of both these countries. Face to face interviews are used to compare the QE practices in two automotive companies in Malaysia and Indonesia, respectively. The findings of study showed that both countries have clear quality objectives to achieving zero defects in processes and products and total customer satisfaction. Top and middle management in both countries were found to be directly involved in quality improvement on the shop floor to provide On-The-Job training and actively encourage team members to perform quality problem solving through the formation of quality control circles (QCC) particularly in Indonesia automotive industry. In Malaysia automotive industry, the implementation was not fully effective, but they have started to cultivate those values in the daily execution. Based on the case study results and analysis, the researcher has provided suggestions for both countries as an improvement plan for successful QE implementation. These recommendations will allow management to implement appropriate strategies for better QE implementation which hopefully can improve company's performance and ultimately the making the automotive industry in both countries to reach world class quality. It is strongly believed that the findings of this study can help Malaysia and Indonesia automotive industries in their efforts to become more effective and competitive.

  14. Standardized Curriculum for Automotive Mechanics.

    Science.gov (United States)

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized curricula are provided for two courses for the secondary vocational education program in Mississippi: automotive mechanics I and II. The six units in automotive mechanics I are as follows: orientation and safety; tools, equipment, and manuals; measurement; automotive engines; basic electrical systems; and fuel systems. Automotive…

  15. European Automotive Congress

    CERN Document Server

    Clenci, Adrian

    2016-01-01

    The volume includes selected and reviewed papers from the European Automotive Congress held in Bucharest, Romania, in November 2015. Authors are experts from research, industry and universities coming from 14 countries worldwide. The papers are covering the latest developments in fuel economy and environment, automotive safety and comfort, automotive reliability and maintenance, new materials and technologies, traffic and road transport systems, advanced engineering methods and tools, as well as advanced powertrains and hybrid and electric drives.

  16. Rotordynamics of automotive turbochargers. Linear and nonlinear rotordynamics - Bearing design - Rotor balancing

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen-Schaefer, Hung [Bosch Mahle Turbo Systems GmbH und Co. KG, Stuttgart (Germany)

    2012-11-01

    Describes the rotordynamics of automotive turbochargers. Requires only a minimum of mathematical background. Written by an R and D expert from industry. This book deals with rotordynamics of automotive turbochargers while encompassing the analysis of the dynamics of rotating machines at very high rotor speeds of 300,000 rpm and above. This interdisciplinary field involves 1. thermodynamics and turbo-matching knowledge to compute working conditions of turbochargers, 2. fluid and bearing dynamics to calculate various operating thrust loads and to design the rotating floating ring bearings (two-oil-film bearings), and 3. tribology to improve the rotor stability and to reduce the bearing friction. Mathematical background in modeling and simulation methods is necessary; however, the prerequisites have been kept to a minimum. The book addresses both practitioners working in the field of rotordynamics of automotive turbochargers and graduate students in mechanical engineering.

  17. Dictionary for automotive engineering. English - French - German. 2. Enl. Ed. Dictionnaire du genie automobile. Woerterbuch fuer Kraftfahrzeugtechnik. Anglais - francais - allemand. Englisch - Franzoesisch - Deutsch

    Energy Technology Data Exchange (ETDEWEB)

    Coster, J de

    1986-01-01

    Given the success of the first edition of the Dictionary for Automotive Engineering, and the recognition it found among its users, it seemed worthwhile to publish a second expanded edition, using the basic layout of the dirst. The editor has attempted, above all, to further research the area of autoelectronics, since this is the most rapidly changing field. For this reason, electronic equipment have been given special attention. Other areas, for example, auto-body painting, tools for maintenance and repair, car-radio installation, noise suppression, and exhaust detoxification, oil products, road traffic etc., have been either expanded or newly added.

  18. Experimental investigation and performance evaluation of DI diesel engine fueled by waste oil-diesel mixture in emulsion with water

    Directory of Open Access Journals (Sweden)

    Nanthagopal Kasianantham

    2009-01-01

    Full Text Available Exploitation of the natural reserves of petroleum products has put a tremendous onus on the automotive industry. Increasing pollution levels and the depletion of the petroleum reserves have lead to the search for alternate fuel sources for internal combustion engines. Usage of vegetable oils poses some challenges like poor spray penetration, valve sticking and clogging of injector nozzles. Most of these problems may be solved by partial substitution of diesel with vegetable oil. In this work, the performance and emission characteristics of a direct injection diesel engine fueled by waste cooking oil-diesel emulsion with different water contents are evaluated. The use of waste cooking oil-diesel emulsion lowers the peak temperature, which reduces the formation of NOx. Moreover the phenomenon of micro explosion that results during the combustion of an emulsified fuel finely atomizes the fuel droplets and thus enhances combustion. Experiments show that CO concentration is reduced as the water content is increased and it is seen that 20% water content gives optimum results. Also, there is a significant reduction in NOx emissions.

  19. Preliminary collection 891 of lectures/papers in symposium by Society of Automotive Engineers of Japan. Jidosha gijutsukai gakujutsu koenkai maezurishu 891

    Energy Technology Data Exchange (ETDEWEB)

    1989-05-29

    This preliminary collection collected lectures given and papers presented in the symposium by the Society of Automotive Engineers of Japan to be held in May, 1989. Totally 86 papers, together with two basic lectures, were presented therein. The categories comprise two basic lectures titled Future problems on CVT and automatic transmission and Advances of gasoline engine and measuring techniques, ten papers for the gasoline engine, covering the supercharger, air/fuel mixture, noise, bore deformation, etc., ten papers for the diesel engine, covering the exhaust gas, supercharger, methanol engine, etc., ten papers for the car body, covering the aerodynamical characteristics and movement of car body, movement analysis of motor bicycle, head lamp, painting, etc., ten papers for the car parts, ten papers for the fuel injection, ten papers for the engine parts, covering the piston, oil ring, cylinder, connecting rod, plug, rotary, car heater, etc., three papers for the car production, covering the line control, welding, production method, etc., seven papers for the car steering and stability, eight papers for the vibration and noise attenuation and three papers for the others. 370 refs., 857 figs., 100 tabs.

  20. Oil soot measurement system of diesel engine; Diesel engine no oil sutsu sokutei sochi

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, Y; Moritsugu, M; Kato, N [Nippon Soken, Inc., Tokyo (Japan); Osaki, R [Denso Corp., Aichi (Japan)

    1997-10-01

    For use evaluate diesel engine in laboratory, we have developed a apparatus which can measure soot density in engine oil instantly and accurately. We have achieved accuracy of 0.03 wt% by employing the following; (1) utilize a ligh-reflecting oil soot sensor, (2) regurate the temperature and flow of the in-coming oil to be constant. 4 refs., 12 figs., 2 tabs.

  1. A conceptual study of the potential for automotive-derived and free-piston Stirling engines in 30- to 400-kilowatt stationary power applications

    Science.gov (United States)

    Vatsky, A.; Chen, H. S.; Dineen, J.

    1982-01-01

    The technical feasibility of applying automotive-derived kinematic and free-piston Stirling engine concepts for stationary applications was explored. Automotive-derived engines offer cost advantages by providing a mature and developd engine technology base with downrating and parts commonality options for specific applications. Two engine sizes (30 and 400 kW), two Stirling engine configurations (kinematic and free-piston), and two output systems (crankshaft and hydraulic pump) were studied. The study includes the influences of using either hydrogen or helium as the working gas. The first kinematic configuration selects an existing Stirling engine design from an automotive application and adapts it to stationary requirements. A 50,000-hour life requirement was established by downrating the engine to 40 kW and reducing auxiliary loads. Efficiency improvements were gained by selective material and geometric variations and peak brake efficiency of 36.8 percent using helium gas was achieved. The second design was a four-cylinder, 400 kW engine, utilizing a new output drive system known as the z-crank, which provides lower friction losses and variable stroke power control. Three different material and working gas combinations were considered. Brake efficiency levels varied from 40.5 percent to 45.6 percent. A 37.5 kW single-cycle, free-piston hydraulic output design was generated by scaling one cylinder of the original automotive engine and mating it to a counterbalanced reciprocal hydraulic pump. Metallic diaphragms were utilized to transmit power.

  2. A conceptual study of the potential for automotive-derived and free-piston Stirling engines in 30- to 400-kilowatt stationary power applications

    Science.gov (United States)

    Vatsky, A.; Chen, H. S.; Dineen, J.

    1982-05-01

    The technical feasibility of applying automotive-derived kinematic and free-piston Stirling engine concepts for stationary applications was explored. Automotive-derived engines offer cost advantages by providing a mature and developd engine technology base with downrating and parts commonality options for specific applications. Two engine sizes (30 and 400 kW), two Stirling engine configurations (kinematic and free-piston), and two output systems (crankshaft and hydraulic pump) were studied. The study includes the influences of using either hydrogen or helium as the working gas. The first kinematic configuration selects an existing Stirling engine design from an automotive application and adapts it to stationary requirements. A 50,000-hour life requirement was established by downrating the engine to 40 kW and reducing auxiliary loads. Efficiency improvements were gained by selective material and geometric variations and peak brake efficiency of 36.8 percent using helium gas was achieved. The second design was a four-cylinder, 400 kW engine, utilizing a new output drive system known as the z-crank, which provides lower friction losses and variable stroke power control. Three different material and working gas combinations were considered. Brake efficiency levels varied from 40.5 percent to 45.6 percent. A 37.5 kW single-cycle, free-piston hydraulic output design was generated by scaling one cylinder of the original automotive engine and mating it to a counterbalanced reciprocal hydraulic pump. Metallic diaphragms were utilized to transmit power.

  3. MEMS for automotive and aerospace applications

    CERN Document Server

    Kraft, Michael

    2013-01-01

    MEMS for automotive and aerospace applications reviews the use of Micro-Electro-Mechanical-Systems (MEMS) in developing solutions to the unique challenges presented by the automotive and aerospace industries.Part one explores MEMS for a variety of automotive applications. The role of MEMS in passenger safety and comfort, sensors for automotive vehicle stability control applications and automotive tire pressure monitoring systems are considered, along with pressure and flow sensors for engine management, and RF MEMS for automotive radar sensors. Part two then goes on to explore MEMS for

  4. Automotive Stirling engine Market and Industrial Readiness Program (MIRP), phase 1

    Science.gov (United States)

    1982-05-01

    A program, begun in 1978, has the goal of transferring Stirling engine technology from United Stirling of Sweden to the US and, then, following design, fabrication, and prototype testing, to secure US manufacturers for the engine. The ultimate objective is the large-scale commercial use of the Automotive Stirling Engine (ASE) by the year 2000. The fist phase of the Market and Industrial Readiness Program for the ASE was concerned with defining the market, product, economic and technical factors necessary to be addressed to assure a reasonable chance of ultimate commercial acceptance. Program results for this first phase are reported and discussed. These results pertain to licensing strategy development, economic analysis, market factors, product planning, market growth, cost studies, and engine performance as measured by fuel economy using conventional fuels and by vehicle speed and acceleration characteristics.

  5. Enhancement of Engine Oil Wear and Friction Control Performance Through Titanium Additive Chemistry

    International Nuclear Information System (INIS)

    Guevremont, J.; Guinther, G.; Szemenyei, D.; Devlin, M.; Jao, T.; Jaye, C.; Woicik, J.; Fischer, D.

    2008-01-01

    Traditionally, wear protection and friction modification by engine oil is provided by zinc dithiophosphate (ZDDP) or other phosphorus compounds. These additives provide effective wear protection and friction control on engine parts through formation of a glassy polyphosphate antiwear film. However, the deposition of phosphorus species on automotive catalytic converters from lubricants has been known for some time to have a detrimental effect of poisoning the catalysts. To mitigate the situation, the industry has been making every effort to find ZDDP-replacement additives that are friendly to catalysts. Toward this goal we have investigated a titanium additive chemistry as a ZDDP replacement. Fully formulated engine oils incorporating this additive component have been found to be effective in reducing wear and controlling friction in a high-frequency reciprocating rig (HFRR), 4-ball bench wear, Sequence IIIG, and Sequence IVA engine tests. Surface analysis of the tested parts by Auger electron spectroscopy, secondary ion mass spectrometry (SIMS), and X-ray photoelectron spectroscopy (XPS) have shown that Ti species have been incorporated into the wear tracks and can only be found on the wear tracks. We used synchrotron based near edge X-ray absorption fine structure (NEXAFS) to investigate the chemical bonding mechanism of the Ti additive with the metal surface that affects the wear improvement mechanism. We postulate that Ti provides antiwear enhancement through inclusion in the metal/metal oxide structure of the ferrous surface by forming FeTiO3.

  6. Automotive Thermoelectric Generator impact on the efficiency of a drive system with a combustion engine

    Directory of Open Access Journals (Sweden)

    Ziolkowski Andrzej

    2017-01-01

    Full Text Available Increasing the combustion engine drive systems efficiency is currently being achieved by structural changes in internal combustion engines and its equipment, which are geared towards limiting mechanical, thermal and outlet losses. For this reason, downsizing. In addition to these changes, all manner of exhaust gas energy recovery systems are being investigated and implemented, including turbocompound, turbogenerators and thermoelectric generators. The article presents the author’s idea of a thermoelectric generator system of automotive applications ATEG (Automotive Thermoelectric Generator and the study of the recovery of exhaust gas energy stream. The ATEG consists of a heat exchanger, thermoelectric modules and a cooling system. In this solution, 24 commercial thermoelectric modules based on Bi2Te3 (bismuth telluride were used. Measurements were made at two engine test sites on which SI and CI engines were installed. The exhaust gas parameters (temperature and mass flow rate, fuel consumption and operating parameters of the ATEG – the intensity and the voltage generated by the thermoelectric modules and the temperature on the walls of the heat exchanger – were all measured in the experiments. Based on the obtained results, the exhaust gas energy flow and the power of the ATEG were determined as well as its effect on the diesel engine drive system efficiency.

  7. Automotive electronics design fundamentals

    CERN Document Server

    Zaman, Najamuz

    2015-01-01

    This book explains the topology behind automotive electronics architectures and examines how they can be profoundly augmented with embedded controllers. These controllers serve as the core building blocks of today’s vehicle electronics. Rather than simply teaching electrical basics, this unique resource focuses on the fundamental concepts of vehicle electronics architecture, and details the wide variety of Electronic Control Modules (ECMs) that enable the increasingly sophisticated "bells & whistles" of modern designs.  A must-have for automotive design engineers, technicians working in automotive electronics repair centers and students taking automotive electronics courses, this guide bridges the gap between academic instruction and industry practice with clear, concise advice on how to design and optimize automotive electronics with embedded controllers.

  8. Diesel Engine Services. An Instructor's Guide for a Program in Trade and Technical Education. Automotive Industries Occupations.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    Designed to prepare students to be engine mechanics working on automotive and large stationary diesel engines, this instructor's guide contains eight units arranged from simple to complex to facilitate student learning. Each contains behavioral objectives, a content outline, understandings and teaching approaches necessary to develop the content,…

  9. Engine Tune-Up Service. Unit 4: Secondary Circuit. Student Guide. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Bacon, E. Miles

    This student guide is for Unit 4, Secondary Circuit, in the Engine Tune-Up Service portion of the Automotive Mechanics Curriculum. It deals with how to test and service the secondary ignition circuit. A companion review exercise book and posttests are available separately as CE 031 215-216. An introduction tells how this unit fits into the total…

  10. Engine Tune-up Service. Unit 2: Charging System. Student Guide. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Richardson, Roger L.; Bacon, E. Miles

    This student guide is for Unit 2, Charging System, in the Engine Tune-Up Service portion of the Automotive Mechanics Curriculum. It deals with how to test the charging system. A companion review exercise book and posttests are available separately as CE 031 209-210. An introduction tells how this unit fits into the total tune-up service, defines…

  11. Capacitive sensor for engine oil deterioration measurement

    Science.gov (United States)

    Shinde, Harish; Bewoor, Anand

    2018-04-01

    A simple system or mechanism for engine Oil (lubricating oil) deterioration monitoring is a need. As engine oil is an important element in I C engines and it is exposed to various strains depending on the operating conditions. If it becomes contaminated with dirt and metal particles, it can become too thick or thin and loses its protective properties, leads to unwanted friction. In turn, to avoid an engine failure, the oil must be changed before it loses its protective properties, which may be harmful to engine which deteriorates vehicle performance. At the same time, changing the lubricant too early, cause inefficient use of already depleting resources, also unwanted impact on the environment and economic reasons. Hence, it will be always helpful to know the quality of the oil under use. With this objective, the research work had been undertaken to develop a simple capacitance sensor for quantification of the quality of oil under use. One of the investigated parameter to quantify oil degradation is Viscosity (as per standard testing procedure: DIN 51562-1). In this research work, an alternative method proposed which analyzing change in capacitance of oil, to quantify the quality of oil underuse and compared to a conventional standard method. The experimental results reported in this paper shows trend for the same. Engine oil of grade SAE 15W40 used for light-duty vehicle, vans and passenger cars is used for experimentation. Suggested method can form a base for further research to develop a cost-effective method for indicating the time to change in engine oil quality have been presented.

  12. Effect of soot on oil properties and wear of engine components

    International Nuclear Information System (INIS)

    Green, D A; Lewis, R

    2007-01-01

    The objective of the work outlined in this paper was to increase the understanding of the wear mechanisms that occur within a soot contaminated contact zone, to help in future development of a predictive wear model to assist in the automotive engine valve train design process. The paper builds on previous work by the author, through testing of different lubricants and increased levels of soot contamination. Wear testing has been carried out using specimens operating under realistic engine conditions, using a reciprocating test-rig specifically designed for this application, where a steel disc is held in a heated bath of oil and a steel ball is attached to a reciprocating arm (replicating a sliding elephant's foot valve train contact). Detailed analysis of the test specimens has been performed using scanning electron microscopy to identify wear features relating to the proposed wear mechanisms. Analysis of worn engine components from durability engine tests has also been carried out for a comparison between specimen tests and engine testing. To assist the understanding of the wear test results obtained, the physical properties of contaminated lubricants were investigated, through viscosity, traction and friction measurements. The results have revealed how varying lubrication conditions change the wear rate of engine components and determine the wear mechanism that dominates in specific situations. Testing has also shown the positive effects of advanced engine lubricants to reduce the amount of wear produced with soot present

  13. Experimental investigation on the flow around a simplified geometry of automotive engine compartment

    Science.gov (United States)

    D'Hondt, Marion; Gilliéron, Patrick; Devinant, Philippe

    2011-05-01

    In the current sustainable development context, car manufacturers have to keep doing efforts to reduce the aerodynamic drag of automotive vehicle in order to decrease their CO2 and greenhouse gas emissions. The cooling airflow, through the engine compartment of vehicles, contributes from 5 to 10% to the total aerodynamic drag. By means of simplified car geometry, equipped with an engine compartment, the configurations that favor a low contribution to total drag are identified. PIV (particle image velocimetry) velocity measurements in the wake of the geometry allow explaining these drag reductions. Besides, the cooling flow rate is also assessed and gives indications on the configurations that favor the engine cooling.

  14. General Mechanical Repair. Minor Automotive Maintenance, Small Engine [Repair, and] Welding: Competency Test Package.

    Science.gov (United States)

    Hamlin, Larry

    This document contains the competency test package for three sections of a general mechanical repair course: minor automotive maintenance, small engine mechanics, and welding. Following a list of the common essential elements for trade and industrial education, competency tests for the three sections are provided. Each test includes unit name,…

  15. The Institute of Automotive Engineering at the Technical University of Dresden; Das Institut fuer Verbrennungsmotoren und Kraftfahrzeuge (IVK) an der TU Dresden

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, M.

    1995-05-01

    The Institute of Automotive Engineering belongs to the oldest German Institutes of this kind at all. Founded in 1918, the Institute reviews a history of over 75 years. Students training at the Institute takes aim at a future emloyment in fields of research and development and design and computing. Both car manufactures and suppliers appreciate the practice-oriented education given at the Institute. Corresponding to the internal structure the Institute provides a training at following teaching and research fields: Internal Combustion Engines, Automotive Drive Engineering and Automotive Electrics/Electronics. For that the Institute is equipped with modern test bench facilities and CAD/CAE workstations. (orig.) [Deutsch] Das IVK blickt auf eine lange Tradition zurueck und zaehlt noch heute zu den fuehrenden Ausbildungs- und Forschungsstaetten fuer Kraftfahrzeug- und Motoreningenieure. Derzeit bestehen drei Professuren: Verbrennungsmotoren, Kraftfahrzeug- und Antriebstechnik sowie Kraftfahrzeug-Elektronik/-Elektrik. (orig.)

  16. Automotive systems engineering

    CERN Document Server

    Winner, Hermann

    2013-01-01

    This book reflects the shift in design paradigm in automobile industry. It presents future innovations, often referred as  “automotive systems engineering”.  These cause fundamental innovations in the field of driver assistance systems and electro-mobility as well as fundamental changes in the architecture of the vehicles. New driving functionalities can only be realized if the software programs of multiple electronic control units work together correctly. This volume presents the new and innovative methods which are mandatory to master the complexity of the vehicle of the future.

  17. Titanium oxide nanoparticles as additives in engine oil

    Directory of Open Access Journals (Sweden)

    Meena Laad

    2018-04-01

    Full Text Available This research study investigates the tribological behaviour of titanium oxide (TiO2 nanoparticles as additives in mineral based multi-grade engine oil. All tests were performed under variable load and varying concentrations of nanoparticles in lubricating oil. The friction and wear experiments were performed using pin-on-disc tribotester. This study shows that mixing of TiO2 nanoparticles in engine oil significantly reduces the friction and wear rate and hence improves the lubricating properties of engine oil. The dispersion analysis of TiO2 nanoparticles in lubricating oil using UV spectrometer confirms that TiO2 nanoparticles possess good stability and solubility in the lubricant and improve the lubricating properties of the engine oil. Keywords: Titanium oxide, Nanoparticles, UV spectrometer, Tribotester, Engine oil

  18. Engine Tune-Up Service. Unit 3: Primary Circuit. Student Guide. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Bacon, E. Miles

    This student guide is for Unit 3, Primary Circuit, in the Engine Tune-Up Service portion of the Automotive Mechanics Curriculum. It deals with how to test the primary ignition circuit. A companion review exercise book and posttests are available separately as CE 031 212-213. An introduction tells how this unit fits into the total tune-up service,…

  19. Case-based Reasoning for Automotive Engine Performance Tune-up

    International Nuclear Information System (INIS)

    Vong, C. M.; Huang, H.; Wong, P. K.

    2010-01-01

    The automotive engine performance tune-up is greatly affected by the calibration of its electronic control unit (ECU). The ECU calibration is traditionally done by trial-and-error method. This traditional method consumes a large amount of time and money because of a large number of dynamometer tests. To resolve this problem, case based reasoning (CBR) is employed, so that an existing and effective ECU setup can be adapted to fit another similar class of engines. The adaptation procedure is done through a more sophisticated step called case-based adaptation (CBA)[1, 2]. CBA is an effective knowledge management tool, which can interactively learn the expert adaptation knowledge. The paper briefly reviews the methodologies of CBR and CBA. Then the application to ECU calibration is described via a case study. With CBR and CBA, the efficiency of calibrating an ECU can be enhanced. A prototype system has also been developed to verify the usefulness of CBR in ECU calibration.

  20. Hydrogen as automotive fuel

    International Nuclear Information System (INIS)

    Ambrosini, G.; Ciancia, A.; Pede, G.; Brighigna, M.

    1993-01-01

    Hydrogen fueled vehicles may just be the answer to the air pollution problem in highly polluted urban environments where the innovative vehicle's air pollution abatement characteristics would justify its high operating costs as compared with those of conventional automotive alternatives. This paper examines the feasibility of hydrogen as an automotive fuel by analyzing the following aspects: the chemical-physical properties of hydrogen in relation to its use in internal combustion engines; the modifications necessary to adapt internal combustion engines to hydrogen use; hydrogen fuel injection systems; current production technologies and commercialization status of hydrogen automotive fuels; energy efficiency ratings; environmental impacts; in-vehicle storage systems - involving the use of hydrides, high pressure systems and liquid hydrogen storage systems; performance in terms of pay-load ratio; autonomous operation; and operating costs. With reference to recent trial results being obtained in the USA, an assessment is also made of the feasibility of the use of methane-hydrogen mixtures as automotive fuels. The paper concludes with a review of progress being made by ENEA (the Italian Agency for New Technology, Energy and the Environment) in the development of fuel storage and electronic fuel injection systems for hydrogen powered vehicles

  1. 7 CFR 2902.25 - 2-Cycle engine oils.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false 2-Cycle engine oils. 2902.25 Section 2902.25... Items § 2902.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle engines to... procurement preference for qualifying biobased 2-cycle engine oils. By that date, Federal agencies that have...

  2. Automotive fuels survey. Part 4. Innovations or illusions

    International Nuclear Information System (INIS)

    Troelstra, W.P.; Van Walwijk, M.; Bueckmann, M.

    1999-01-01

    Volumes 1 to 3 of the IEA/AFIS Automotive Fuels Survey, address the most well-known automotive fuels and fuel production routes. Less well-known fuels and energy sources that are not used in combustion engines, e.g. electricity, were excluded from these volumes. In this report fuel routes and fuels that have not been addressed in the first volumes will be analysed. In this report, each chapter starts with a short description of the fuel(route) and its status of development (e.g. if the idea has been abandoned or if the fuel is already sold at a fuel station). Then the different aspects of that fuel are described as far as the information is available. This is limited to information that can not be found in volumes one and two of the Automotive Fuels Survey. For example: for the diesel-water mixtures, the production of diesel is not be described. If comparisons are made, they are made either relative to an already described fuel(route) that is related (e.g. biogas will be compared with natural gas) or relative to diesel and gasoline as was done in volume 1 and 2 of the Automotive Fuels Survey. For some of the fuels, the relation with a fuel already covered in volume one and two is very strong. For these fuels more information can be found in the chapters on the related fuel in the other volumes of the Automotive Fuels Survey. The following fuels are covered in this report: biodiesel from used oil and fat, biodiesel and biogasoline from algae, diesel from hydrothermal upgrading, biogas, hythane, Fischer-Tropsch diesel, diesel-water blends, higher ethers, and electricity. 74 refs

  3. SELECTION METHOD FOR AUTOMOTIVE PARTS RECONDITIONING

    Directory of Open Access Journals (Sweden)

    Dan Florin NITOI

    2015-05-01

    Full Text Available Paper presents technological methods for metal deposition, costs calculation and clasification for the main process that helps in automotive technologies to repair or to increase pieces properties. Paper was constructed based on many technological experiments that starts from practicans and returns to them. The main aim is to help young engineers or practicians engineers to choose the proper reconditioning process with the best information in repairing pieces from automotive industry.

  4. Engine Tune-up Service. Unit 6: Emission Control Systems. Student Guide. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Bacon, E. Miles

    This student guide is for Unit 6, Emission Control Systems, in the Engine Tune-Up Service portion of the Automotive Mechanics Curriculum. It deals with inspecting, testing, and servicing an emission control system. A companion review exercise book and posttests are available separately as CE 031 221-222. An introduction tells how this unit fits…

  5. Reliability in automotive and mechanical engineering determination of component and system reliability

    CERN Document Server

    Bertsche, Bernd

    2008-01-01

    In the present contemporary climate of global competition in every branch of engineering and manufacture it has been shown from extensive customer surveys that above every other attribute, reliability stands as the most desired feature in a finished product. To survive this relentless fight for survival any organisation, which neglect the plea of attaining to excellence in reliability, will do so at a serious cost Reliability in Automotive and Mechanical Engineering draws together a wide spectrum of diverse and relevant applications and analyses on reliability engineering. This is distilled into this attractive and well documented volume and practising engineers are challenged with the formidable task of simultaneously improving reliability and reducing the costs and down-time due to maintenance. The volume brings together eleven chapters to highlight the importance of the interrelated reliability and maintenance disciplines. They represent the development trends and progress resulting in making this book ess...

  6. Comparison of lubricant properties of castor oil and commercial engine oil

    Directory of Open Access Journals (Sweden)

    Binfa Bongfa

    2015-06-01

    Full Text Available The tribological performance of crude Nigeria-based castor oil has been investigated and compared with that of a foreign, 20W-50 high quality crankcase oil, to see its suitability as base oil for lubricating oils in indigenous vehicle and power plants engines. The experiment was conducted using a four ball tester. The results showed that unrefined castor oil has superior friction reduction and load bearing capability in an unformulated form than the commercial oil; can compete favourably with the commercial oil in wear protection when formulated with suitable antiwear agent, hence can be a good alternative base stock for crankcase oils suitable for Nigeria serviced vehicles, and plants engines from tribological, environmental, and non-food competitive points of view.

  7. Modularity analysis of automotive control software

    OpenAIRE

    Dajsuren, Y.; Brand, van den, M.G.J.; Serebrenik, A.

    2013-01-01

    A design language and tool like MATLAB/Simulink is used for the graphical modelling and simulation of automotive control software. As the functionality based on electronics and software systems increases in motor vehicles, it is becoming increasingly important for system/software architects and control engineers in the automotive industry to ensure the quality of the highly complex MATLAB/Simulink control software. For automotive software, modularity is recognized as being a crucial quality a...

  8. Applications of nuclear methods in the automotive industry

    International Nuclear Information System (INIS)

    Schneider, E.W.; Yusuf, S.O.

    1996-01-01

    Over the years nuclear methods have proved to be a valuable asset to industry in general and to the automotive industry in particular. This paper summarizes some of the most important recent contributions of nuclear technology to the development of vehicles having high quality and long-term durability. Radiotracer methods are used to measure engine oil consumption and the wear rates of inaccessible components. Radiographic and tomographic methods are used to image fluids and structures in engines and accessory components. Tracers are used to understand combustion chemistry and quantify fluid flow. Gauging methods are used for inspection and process control. Nuclear analytical methods are used routinely for materials characterization and problem solving. Although nuclear methods are usually considered as the means of last resort, they can often be applied more easily and quickly than conventional methods when those in industrial engineering and R and D are aware of their unique capabilities. (author). 51 refs., 5 figs

  9. Nonlinear estimation and control of automotive drivetrains

    CERN Document Server

    Chen, Hong

    2014-01-01

    Nonlinear Estimation and Control of Automotive Drivetrains discusses the control problems involved in automotive drivetrains, particularly in hydraulic Automatic Transmission (AT), Dual Clutch Transmission (DCT) and Automated Manual Transmission (AMT). Challenging estimation and control problems, such as driveline torque estimation and gear shift control, are addressed by applying the latest nonlinear control theories, including constructive nonlinear control (Backstepping, Input-to-State Stable) and Model Predictive Control (MPC). The estimation and control performance is improved while the calibration effort is reduced significantly. The book presents many detailed examples of design processes and thus enables the readers to understand how to successfully combine purely theoretical methodologies with actual applications in vehicles. The book is intended for researchers, PhD students, control engineers and automotive engineers. Hong Chen is a professor at the State Key Laboratory of Automotive Simulation and...

  10. Sustainable automotive energy system in China

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiliang (ed.) [Tsinghua Univ. Beijing (China). China Automotive Energy Research Center

    2013-06-01

    The latest research available on automotive energy system analysis in China. Thorough introduction on automotive energy system in China. Provides the broad perspective to aid in planning sustainable road transport in China. Sustainable Automotive Energy System in China aims at identifying and addressing the key issues of automotive energy in China in a systematic way, covering demography, economics, technology and policy, based on systematic and in-depth, multidisciplinary and comprehensive studies. Five scenarios of China's automotive energy development are created to analyze the possible contributions in the fields of automotive energy, vehicle fuel economy improvement, electric vehicles, fuel cell vehicles and the 2nd generation biofuel development. Thanks to this book, readers can gain a better understanding of the nature of China's automotive energy development and be informed about: (1) the current status of automotive energy consumption, vehicle technology development, automotive energy technology development and policy; (2) the future of automotive energy development, fuel consumption, propulsion technology penetration and automotive energy technology development, and (3) the pathways of sustainable automotive energy transformation in China, in particular, the technological and the policy-related options. This book is intended for researchers, engineers and graduates students in the low-carbon transportation and environmental protection field.

  11. New lube oil for stationary heavy fuel engines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    An extensively field-tested diesel engine lubricating oil for medium speed, heavy fuel stationary engine applications has been introduced by Caltex Petroleum, in Dallas, Texas. The new oil is similar to a product developed and marketed for marine medium speed heavy fuel propulsion and auxillary engine applications by one of its two parent companies, Chevron. Detailed are results of two field evaluations in Caterpillar 3600 series engines installed at Kimberly Clark (KCPI) and Sime Darby (SDPI), both in the Philippines. Both were one year, 7000-plus hour field evaluations of a new, 40 BN trunk piston engine oil (TPEO), identified as Caltex Delo 3400, SAE 40 engine lube oil. The oil uses the new Phenalate additive technology developed by Chevron Chemical Company`s Oronite Additives Division. This technology is designed to improve engine cleanliness in regard to soft black sludge and piston deposits. The focus of the field evaluations was the performance of the lubricating oil. During controlled tests at Sime Darby, the most noticeable improvement over another technology was in the control of sludge deposits. This improvement was seen in all areas where black sludge forms, such as the rocker cover, crankcase cover and valve assemblies. 4 figs.

  12. Fuels for homogeneous charge compression ignition (HCCI) engines. Automotive fuels survey. Part 6

    Energy Technology Data Exchange (ETDEWEB)

    Van Walwijk, M.

    2001-01-01

    . - So far, HCCI operation is only possible at light engine loads. - Engine-out emissions of HC and CO are not low. A low-temperature exhaust catalyst is required. Because it is possible to operate HCCI engines using a wide range of fuels, the conventional fuel specifications are not appropriate for HCCI engines. A fuel characteristic like cetane number for example, which is important for fuels in conventional diesel engines, has lost its significance for HCCI engines. Fuels like gasoline and natural gas, for which no cetane number is defined, can be used in HCCI engines. Research to establish the fuel requirements for HCCI engines has commenced. The first results indicate that the auto-ignition temperature of the fuel is important, because it has to be below the temperature that is reached in the combustion chamber after compression. The auto-ignition temperature is not specified for conventional fuel applications. Also fuel characteristics that affect the formation of a homogeneous air/fuel mixture are important, because inhomogeneities in the mixture lead to increased emission of NOx and particulates from HCCI engines. Consequently, volatility of the fuel and also boiling point may be considered important. Volatility of diesel fuel is low for example. To obtain a homogeneous air/fuel mixture with diesel, the inlet charge must be heated. A low sulphur content of the fuel is important in order to obtain high exhaust gas aftertreatment conversion efficiency. HCCI operation of internal combustion engines if possible with the fuels that are currently considered for automotive use. There are minor operational differences between the fuels, but no fundamental barriers seem to exist. This means that the conventional fuels from crude oil can be used in HCCI engines. Because the infrastructure to produce and distribute these fuels already exists, this is a plus for market introduction of HCCI engines. Fuel specifications for conventional fuels are becoming more and more

  13. Automotive Mechanics Curriculum Outline for Secondary Schools. Vocational Education Curriculum Guide.

    Science.gov (United States)

    Louisiana State Dept. of Education, Baton Rouge. Div. of Vocational Education.

    This curriculum outline for secondary automotive mechanics is structured around Louisiana's Vocational-Technical Automotive Mechanics Curriculum. The curriculum is composed of 16 units of instruction, covering the following topics: benchwork, fundamentals of automotive engines, preventive maintenance, automotive brakes, steering and front…

  14. Automotive fuels - environmental and health implications

    International Nuclear Information System (INIS)

    Lucas, A.G.

    1992-01-01

    This document covers papers presented to the Institute of Petroleum's conference ''Automotive Fuels: Environmental and Health Implications'' held on the 9th October 1991. This wide ranging title meant that topics covered included the biochemistry, pathology and epidemiology of automotive fuel use, combustion science, environmental chemistry and atmospheric modelling. Also discussed are the technology of fuel and engine manufacture, limiting and containing emissions and social and political aspects relating to the use of automotive fuels. (UK)

  15. RELATED VOCATIONAL INTEREST TO LEARNING AND ENTREPRENEURIAL LEARNING ACHIEVEMENT WITH ENTREPRENEURSHIP INTEREST ON THE STUDENS AUTOMOTIVE ENGINEERING ISLAMIC VOCATIONAL SCHOOL YOGYAKARTA ACADEMIC YEAR 2013/2014

    OpenAIRE

    Choiruddin Nurcholis Suwondo; Subagyo Subagyo

    2014-01-01

    The purpose of the study (1) to determine whether there is a positive relationship between vocational interest to learning with entrepreneurship interest on the studens Automotive Engineering Islamic Vocational School Yogyakarta Academic Year 2013/2014; (2) to determine whether there is a positive relationship between entrepreneurial learning achivement with entrepreneurship interest on the studens Automotive Engineering Islamic Vocational School Yogyakarta Academic Year 2013/2014; (3) to det...

  16. Minimizing of the boundary friction coefficient in automotive engines using Al2O3 and TiO2 nanoparticles

    International Nuclear Information System (INIS)

    Ali, Mohamed Kamal Ahmed; Xianjun, Hou; Elagouz, Ahmed; Essa, F.A.; Abdelkareem, Mohamed A. A.

    2016-01-01

    Minimizing of the boundary friction coefficient is critical for engine efficiency improvement. It is known that the tribological behavior has a major role in controlling the performance of automotive engines in terms of the fuel consumption. The purpose of this research is an experimental study to minimize the boundary friction coefficient via nano-lubricant additives. The tribological characteristics of Al 2 O 3 and TiO 2 nano-lubricants were evaluated under reciprocating test conditions to simulate a piston ring/cylinder liner interface in automotive engines. The nanoparticles were suspended in a commercially available lubricant in a concentration of 0.25 wt.% to formulate the nano-lubricants. The Al 2 O 3 and TiO 2 nanoparticles had sizes of 8–12 and 10 nm, respectively. The experimental results have shown that the boundary friction coefficient reduced by 35–51% near the top and bottom dead center of the stroke (TDC and BDC) for the Al 2 O 3 and TiO 2 nano-lubricants, respectively. The anti-wear mechanism was generated via the formation of protective films on the worn surfaces of the ring and liner. These results will be a promising approach for improving fuel economy in automotive.

  17. Automotive turbogenerator design options

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, C. [ITC, San Diego, CA (United States); McDonald, C. [McDonald Thermal Engineering, La Jolla, CA (United States)

    1998-12-31

    For the small turbogenerator to find reception in the hybrid electric automotive market its major features must be dominated by the following considerations, low cost, high performance, low emissions, compact size and high reliability. Not meeting the first two criteria has been the nemesis of earlier attempts to introduce the small gas turbine for automotive service. With emphasis on the design for low cost and high performance, this paper presents several turbogenerator design flowpath configuration options for the major engine components. The projected evolution from today`s state-of-the-art all metallic engines, to advanced technology ceramic units for service in the early decade of the 21st century, is the major topic of this paper. (author)

  18. Low-temperature behaviour of the engine oil

    Directory of Open Access Journals (Sweden)

    Vojtěch Kumbár

    2013-01-01

    Full Text Available The behaviour of engine oil is very important. In this paper has been evaluated temperature dependence kinematic viscosity of engine oils in the low temperatures. Five different commercially distributed engine oils (primarily intended for automobile engines with viscosity class 0W–40, 5W–40, 10W–40, 15W–40, and 20W–40 have been evaluated. The temperature dependence kinematic viscosity has been observed in the range of temperature from −15 °C to 15 °C (for all oils. Considerable temperature dependence kinematic viscosity was found and demonstrated in case of all samples, which is in accordance with theoretical assumptions and literature data. Mathematical models have been developed and tested. Temperature dependence dynamic viscosity has been modeled using a polynomials 3rd and 4th degree. The proposed models can be used for prediction of flow behaviour of oils. With monitoring and evaluating we can prevent technical and economic losses.

  19. Radial basis function neural network in fault detection of automotive ...

    African Journals Online (AJOL)

    Radial basis function neural network in fault detection of automotive engines. ... Five faults have been simulated on the MVEM, including three sensor faults, one component fault and one actuator fault. The three sensor faults ... Keywords: Automotive engine, independent RBFNN model, RBF neural network, fault detection

  20. National Automotive Center - NAC

    Data.gov (United States)

    Federal Laboratory Consortium — Encouraged by the advantages of collaboration, the U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC) worked with the Secretary of the...

  1. Toxicological effects of spent engine oil from automechanic ...

    African Journals Online (AJOL)

    Toxicological effects of spent engine oil from automechanic workshops on the gills ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING ... Engine oil, a major lubricant in automobile engines is often discharged in its ...

  2. EXPERIMENTAL COMBUSTION ANALYSIS OF A HSDI DIESEL ENGINE FUELLED WITH PALM OIL BIODIESEL-DIESEL FUEL BLENDS

    Directory of Open Access Journals (Sweden)

    JOHN AGUDELO

    2009-01-01

    Full Text Available Differences in the chemical nature between petroleum diesel fuels and vegetable oils-based fuels lead to differences in their physical properties affecting the combustion process inside the engine. In this work a detailed combustion diagnosis was applied to a turbocharged automotive diesel engine operating with neat palm oil biodiesel (POB, No. 2 diesel fuel and their blends at 20 and 50% POB by volume (B20 and B50 respectively. To isolate the fuel effect, tests were executed at constant power output without carrying out any modification of the engine or its fuel injection system. As the POB content in the blend increased, there was a slight reduction in the fuel/air equivalence ratio from 0.39 (B0 to 0.37 (B100, an advance of injection timing and of start of combustion. Additionally, brake thermal efficiency, combustion duration, maximum mean temperature, temperature at exhaust valve opening and exhaust gas efficiency decreased; while the peak pressure, exergy destruction rate and specific fuel consumption increased. With diesel fuel and the blends B20 and B50 the same combustion stages were noticed. However, as a consequence of the differences pointed out, the thermal history of the process was affected. The diffusion combustion stage became larger with POB content. For B100 no premixed stage was observed.

  3. Hydrogen as automotive fuel

    International Nuclear Information System (INIS)

    Dini, D.; Ciancia, A.; Pede, G.; Sglavo, V.; ENEA, Rome

    1992-01-01

    An assessment of the technical/economic feasibility of the use of hydrogen as an automotive fuel is made based on analyses of the following: the chemical- physical properties of hydrogen in relation to its use in internal combustion engines; the modifications necessary to adapt internal combustion engines to hydrogen use; hydrogen fuel injection systems - with water vapour injection, cryogenic injection, and the low or high pressure injection of hydrogen directly into the combustion chamber; the current commercialization status of hydrogen automotive fuels; energy efficiency ratings; environmental impacts; in-vehicle storage systems - involving the use of hydrides, high pressure systems and liquid hydrogen storage systems; performance in terms of pay-load ratio; autonomous operation; and operating costs. The paper concludes that, considering current costs for hydrogen fuel production, distribution and use, at present, the employment of hydrogen fuelled vehicles is feasible only in highly polluted urban environments where the innovative vehicle's air pollution abatement characteristics would justify its high operating costs as compared with those of conventional automotive alternatives

  4. Engine Tune-Up Service. Unit 5: Fuel and Carburetion Systems. Student Guide. Automotive Mechanics Curriculum.

    Science.gov (United States)

    Goodson, Ludy

    This student guide is for Unit 5, Fuel and Carburetion Systems, in the Engine Tune-Up Service portion of the Automotive Mechanics Curriculum. It deals with inspecting and servicing the fuel and carburetion systems. A companion review exercise book and posttests are available separately as CE 031 218-219. An introduction tells how this unit fits…

  5. Natural gas as an alternative to crude oil in automotive fuel chains well-to-wheel analysis and transition strategy development

    International Nuclear Information System (INIS)

    Hekkert, M.P.; Hendriks, F.H.J.F.; Faaij, A.P.C.; Neelis, M.L.

    2005-01-01

    Road transport produces significant amounts of CO 2 by using crude oil as primary energy source. A reduction of CO 2 emissions can be achieved by implementing alternative fuel chains. This article studies CO 2 emissions and energy efficiencies by means of a well to wheel analysis of alternative automotive fuel chains, using natural gas (NG) as an alternative primary energy source to replace crude oil. The results indicate that NG-based hydrogen applied in fuel cell vehicles (FCVs) lead to largest CO 2 emission reductions (up to 40% compared to current practice). However, large implementation barriers for this option are foreseen, both technically and in terms of network change. Two different transition strategies are discussed to gradually make the transition to these preferred fuel chains. Important transition technologies that are the backbone of these routes are traditional engine technology fuelled by compressed NG and a FCV fuelled by gasoline. The first is preferred in terms of carbon emissions. The results furthermore indicate that an innovation in the conventional chain, the diesel hybrid vehicle, is more efficient than many NG-based chains. This option scores well in terms of carbon emissions and implementation barriers and is a very strong option for the future

  6. General Mechanical Repair. Minor Automotive Maintenance. Volume 1. Teacher's Guide.

    Science.gov (United States)

    East Texas State Univ., Commerce. Occupational Curriculum Lab.

    Fourteen units on minor automotive maintenance are presented in this teacher's guide. The units are the following: introduction to minor automotive maintenance, shop safety, engine principles, fuel system operation and repair, electrical system, ignition system, lubrication system, engine cooling system, exhaust system, wheel bearings and tires,…

  7. Gear shift strategies for automotive transmissions

    NARCIS (Netherlands)

    Ngo, D.V.

    2012-01-01

    The development history of automotive engineering has shown the essential role of transmissions in road vehicles primarily powered by internal combustion engines. The engine with its physical constraints on the torque and speed requires a transmission to have its power converted to the drive power

  8. Alloy chemistry and microstructural control to meet the demands of the automotive Stirling engine

    Science.gov (United States)

    Stephens, J. R.

    1986-01-01

    The automotive Stirling engine now under development by DOE/NASA as an alternative to the internal combustion engine, imposes severe materials requirements for the hot portion of the engine. Materials selected must be low cost and contain a minimum of strategic elements so that availability is not a problem. Heater head tubes contain high pressure hydrogen on the inside and are exposed to hot combustion gases on the outside surface. The cylinders and regenerator housings must be readily castable into complex shapes having varying wall thicknesses and be amenable to brazing and welding operations. Also, high strength, oxidation resistance, resistance to hydrogen permeation, cyclic operation, and long-life are required. A research program conducted by NASA Lewis focused on alloy chemistry and microstructural control to achieve the desired properties over the life of the engine. Results of alloy selection, characterization, evaluation, and actual engine testing of selected materials are presented.

  9. Tamanu oil. An alternative fuel for variable compression ratio engine

    Energy Technology Data Exchange (ETDEWEB)

    Raj, Mohan T. [SASTRA Univ., Thanjavur, Tamilnadu (India). Dept. of Mechanical Engineering; Kandasamy, Murugumohan Kumar K. [Pavendar Bharathidasan College of Engineering and Technology, Trichy, Tamilnadu (India). Dept. of Mechanical Engineering

    2012-11-01

    Biodiesel can be produced from vegetable oils and also from waste fats. Biodiesel is a monoalkyl- ester of long chain fatty acids derived from renewable feedstock such as vegetable oils by transesterification process. The esterified cotton seed oil, pungam oil, rice bran oil, and tamanu oil are chosen as the alternative fuels. Among these oils, tamanu oil is considered for the first time as an alternative fuel. An experiment is conducted to obtain the operating characteristics of the variable compression ratio (VCR) engine run by chosen esterified oils, and the results are compared with esterified tamanu oil. From the comparison of results, it is inferred that the engine performance is improved with significant reduction in emissions for the chosen oils without any engine modification. The effective compression ratio can be fixed based on the experimental results obtained in the engine since the findings of the present research work infer that the biodiesel obtained from tamanu oil is a promising alternative fuel for direct-injection four-stroke VCR engine. (orig.)

  10. General Mechanical Repair. Minor Automotive Maintenance, Small Engine [Repair, and] Welding: Curriculum Guide and Lesson Plans.

    Science.gov (United States)

    Hamlin, Larry

    This document contains a curriculum guide and lesson plans for a general mechanical repair course with three sections: minor automotive maintenance, small engine repair, and welding. The curriculum guide begins with a matrix that relates the lesson plans to essential elements of math, science, language arts, and social studies and to Texas…

  11. Automotive NVH technology

    CERN Document Server

    Nijman, Eugenius; Priebsch, Hans-Herwig

    2016-01-01

    This book presents seven chapters examining selected noise, vibration and harshness (NVH) topics that are highly relevant for automotive vehicle development. These include applications following the major trends toward increased passenger comfort, vehicle electrification and lightweight design. The authors of the seven chapters, all of which are experts from the automotive industry and academia, present the foremost challenges and potential solutions in this demanding field. Among others, applications for sound optimization in downsized engines, noise optimization in electric powertrains, weight reduction options for exhaust systems, porous materials description, and the vibro-acoustic analysis of geared systems are discussed.

  12. Development of dielectric sensor to monitor the engine lubricating oil degradation

    Directory of Open Access Journals (Sweden)

    Balashanmugam Vasanthan

    2016-01-01

    Full Text Available Present day practice of following fixed schedules of oil change intervals could result in loss for the equipment owner, as the oil is not utilized up-to its maximum useful life. Similarly, the extended use of engine oil beyond maximum useful life is of high risk, which could lead irreversible and catastrophic damages to engine parts. Engine oil condition indicates the condition of engine parts, in any application. Therefore, monitoring the condition of the oil in real time is of paramount importance. Researchers had established that the engine oil degradation correlates with change in dielectric property of the engine oil. The important factor to realize the on-line real time monitoring of the changes in dielectric property of the engine oil is, the cost of dielectric sensor within affordable limit for an operator. Current work aims at developing such a low cost affordable dielectric sensor and engine oil samples (SAE 15W40 grade were collected from durability test engines used in engine test rig and on-road vehicles. These samples were tested for physical and chemical properties. Any changes in the properties, of engine oil monitored, indicate that it undergoes degradation due to usage. A prototype of capacitive type sensor was developed and validated with reference fluids. The dielectric values measured using proto type sensor in the used oil samples show a correlation with change in physical properties. This trend and thresholds of dielectric provides effective plat form to monitor the engine oil degradation. The sensor could be coupled to a suitable warning device by incorporating specific algorithms.

  13. Time-dependent stability of used engine oil degradation by cultures ...

    African Journals Online (AJOL)

    Pseudomonas fragi and Achromobacter aerogenes isolated from used engine oil polluted soils were grown in minimal salts medium (MSM) supplemented with used engine oil as sole carbon and energy source to evaluate their ability to biodegrade used engine oil. The two organisms utilized 73.3 and 80.0% of the oil with ...

  14. Status of the Ford program to evaluate ceramics for stator applications in automotive gas turbine engines

    Science.gov (United States)

    Trela, W.

    1980-01-01

    The paper reviews the progress of the major technical tasks of the DOE/NASA/Ford program Evaluation of Ceramics for Stator Applications in Automotive Gas Turbine Engines: reliability prediction, stator fabrication, material characterization, and stator evaluation. A fast fracture reliability model was prepared for a one-piece ceramic stator. Periodic inspection results are presented.

  15. Performance and emission of CI engine fuelled with camelina sativa oil

    International Nuclear Information System (INIS)

    Kruczyński, Stanisław W.

    2013-01-01

    Highlights: ► Camelina sativa as a potential source of alternative fuel. ► Neat camelina sativa oil as a fuel for CI engine. ► The engine performance and emissions of CI engine fuelled with neat camelina sativa oil. ► Comparison of rate of heat release for camelina sativa oil and diesel oil. - Abstract: The paper describes the results of the tests of CI Perkins 1104C-44 engine fuelled with camelina sativa oil. The engine was not especially calibrated for fuelling with the vegetable fuel. During the test the engine performance and emissions were analysed. For comparison the same speed characteristic was examined for standard fuelling of the engine with diesel oil. In order to understand the engine performance and emission the mass fraction burnt and the rate of heat release was calculated and compared for the same energy provided to the engine cylinder with the injected fuels. The results show that there is possible to receive relatively good engine performance for fuelling the engine with camelina sativa oil but there is a need to change the calibration parameters of the engine fuel system when the engine is fuelled with this fuel.

  16. Characterization of Bottom and Fly Ashes Generated Co-incineration of Biomass with Automotive Shredder Residue

    Directory of Open Access Journals (Sweden)

    Othaman Muhamad Fazli

    2017-01-01

    Full Text Available One of the viable techniques to reduce land filling of automotive shredder residue is by co-incinerating them with biomass. This study focuses on characterization of bottom and fly ashes produced from the coincineration of the automotive shredded residue with oil palm biomass. The co-incineration was carried out in a pilot-scale fluidized bed incinerator. The oil palm biomass used was oil palm shell while the automotive shredded residue was obtained from a local recycling company. The characterization was done based on particle size distribution, morphology (SEM analysis and chemical composition (EDS analysis. In term of chemical composition the ashes contain C (Carbon, O (Oxygen, Si (Silicon, K (Potassium, Ca (Calcium and Fe (Ferum.

  17. Determining oil consumption of an I.C. engine

    International Nuclear Information System (INIS)

    Dale, B.W.

    1981-01-01

    A method of measuring the consumption of lubricating oil by an internal combustion engine comprising the operations of isotopically labelling representative fractions of oil with deuterium atoms, circulating the lubricating oil through an engine under test, and measuring the amount of deuterium emitted from the exhaust pipe of the engine. Apparatus comprising means for subjecting the exhaust gas to an oxidizing environment and an infra-red transmissive region in which the infrared spectrum of the gas can be observed for the determination of HDO from the O-D band stretch is also described. Preferably at least 10% of the hydrocarbons in the oil are deuterated. (author)

  18. Signal Analysis of Automotive Engine Spark Ignition System using Case-Based Reasoning (CBR) and Case-based Maintenance (CBM)

    International Nuclear Information System (INIS)

    Huang, H.; Vong, C. M.; Wong, P. K.

    2010-01-01

    With the development of modern technology, modern vehicles adopt electronic control system for injection and ignition. In traditional way, whenever there is any malfunctioning in an automotive engine, an automotive mechanic usually performs a diagnosis in the ignition system of the engine to check any exceptional symptoms. In this paper, we present a case-based reasoning (CBR) approach to help solve human diagnosis problem. Nevertheless, one drawback of CBR system is that the case library will be expanded gradually after repeatedly running the system, which may cause inaccuracy and longer time for the CBR retrieval. To tackle this problem, case-based maintenance (CBM) framework is employed so that the case library of the CBR system will be compressed by clustering to produce a set of representative cases. As a result, the performance (in retrieval accuracy and time) of the whole CBR system can be improved.

  19. Carbon composite manufacturing in automotive volume production

    DEFF Research Database (Denmark)

    Geiger, Raphael; Pahl, Julia

    2017-01-01

    Lightweight constructions are a continuously increasing trend in the automotive industry. Main drivers for that trend are the challenging emission reduction targets regarding combustion engines and increasing ranges in electric mobility. This article presents different composite production methods...... and discusses their ability within mass production giving also an example within the automotive production....

  20. Making aerospace technology work for the automotive industry - Introduction

    Science.gov (United States)

    Olson, W. T.

    1978-01-01

    In many cases it has been found that advances made in one technical field can contribute to other fields. An investigation is in this connection conducted concerning subjects from contemporary NASA programs and projects which might have relevance and potential usefulness to the automotive industry. Examples regarding aerospace developments which have been utilized by the automotive industry are related to electronic design, computer systems, quality control experience, a NASA combustion scanner and television display, exhaust gas analyzers, and a device for suppressing noise propagated through ducts. Projects undertaken by NASA's center for propulsion and power research are examined with respect to their value for the automotive industry. As a result of some of these projects, a gas turbine engine and a Stirling engine might each become a possible alternative to the conventional spark ignition engine.

  1. Comparison of different lubricating oil pump systems for combustion engines. Vergleich verschiedener Schmieroelpumpen-Systeme bei Verbrennungsmotoren

    Energy Technology Data Exchange (ETDEWEB)

    Eisenmann, S; Haerle, C; Schreiber, B

    1994-10-01

    The present day and future legislative requirements with regard to fuel consumption and improvement of emission values are forcing the automotive industry to continually improve its technology. However, the investments made in such technical innovations should be set-off by the results. The lubricating oil pump can make an important contribution with optimum design and through the choice of the most adequate pump system. Over the last 17 years, SHW has worked very closely with the automotive industry on the development of lubricating oil pumps. One of the results of this research work is a Suction Regulated Pump (SRP) which distinguishes itself from conventional pumps through its lower drive power. We will proceed to explain this pump system, comparing it with the present day pump systems. (orig.)

  2. Simulation and control of an automotive dry clutch

    NARCIS (Netherlands)

    Serrarens, A.F.A.; Dassen, M.; Steinbuch, M.

    2004-01-01

    In this paper the dynamic behavior and control of an automotive dry clutch is analyzed. Thereto, a straight-forward model of the clutch is embedded within a dynamic model of an automotive powertrain comprising an internal combustion engine, drivetrain and wheels moving a vehicle through tire-road

  3. Using vegetable oils and animal fats in Diesel Engines: chemical analyses and engine texts

    International Nuclear Information System (INIS)

    Marmino, I.; Verhelst, S.; Sierens, R.

    2008-01-01

    In this work, some vegetable oils (rapeseed oil, palm oil) and animal fat were tested in a Diesel engine at a range of engine spreads and torque settings, after preheating at 70 0 C. Engine performance, fuel consumption and NOx, unburnt hydrocarbons and soot emissions have been recorded. The results have been compared to those obtained with diesel fuel in the same test conditions. The oils and fats were also analyzed for their physical and chemical properties (viscosity, composition, unsaturation, heating value). NOx emissions were found to be lower for the oils than for the diesel fuel. This, combined with higher HC emissions, can probably be explained through less effective atomization due to the higher viscosity of the oils and fat. On the other hand, soot emissions were found to decrease. [it

  4. Performance of Diesel Engine Using Blended Crude Jatropha Oil

    Science.gov (United States)

    Kamarudin, Kamarul Azhar; Mohd Sazali, Nor Shahida Akma; Mohd Ali, Mas Fauzi; Alimin, Ahmad Jais; Khir, Saffiah Abdullah

    2010-06-01

    Vegetable oil presents a very promising alternative to diesel oil since it is renewable and has similar properties to the diesel. In view of this, crude jatropha oil is selected and its viscosity is reduced by blending it with diesel. Since jatropha oil has properties which are similar to mineral diesel, it can be used in compression ignition engines without any engine modification. This paper presents the results of investigation carried out on a four-cylinder, four strokes and indirect-injection diesel engine. The engine, operated using composition blends of crude jatropha oil and diesel, were compared with mineral diesel. An experimental investigation has been carried out to analyze the performance characteristics of a compression ignition engine from the blended fuel (5%, 10%, 20% and 30%). A naturally aspirated four-stroke indirect injection diesel engine was tested at full load conditions, speeds between 1000 and 3500 rpm with intervals of 500 rpm. Results obtained from the measures of torque, power, specific fuel consumptions, thermal efficiency and brake mean effective pressure are nearly the same between blended and diesel fuel. An overall graph shows that the performance of relevant parameters from blended fuel is most likely similar to the performance produced from diesel. The experimental results proved that the use of crude jatropha oil in compression ignition engines is a viable alternative to diesel.

  5. Study on the engine oil's wear based on the flash point

    Science.gov (United States)

    Niculescu, R.; Iorga-Simăn, V.; Trică, A.; Clenci, A.

    2016-08-01

    Increasing energy performance of internal combustion engines is largely influenced by frictional forces that arise between moving parts. Thus, in this respect, the nature and quality of the engine oil used is an important factor. Equally important is the effect of various engine injection strategies upon the oil quality. In other words, it's of utmost importance to maintain the quality of engine oil during engine's operation. Oil dilution is one of the most common causes that lead to its wear, creating lubrication problems. Moreover, at low temperatures operating conditions, the oil dilution with diesel fuel produces wax. When starting the engine, this may lead to lubrication deficiencies and even oil starvation with negative consequences on the engine mechanism parts wear (piston, rings and cylinders) but also crankcase bearings wear.Engine oil dilution with diesel fuel have several causes: wear of rings and/or injectors, late post-injection strategy for the sake of particulate filter regeneration, etc.This paper presents a study on the degree of deterioration of engine oils as a result of dilution with diesel fuel. The analysed oils used for this study were taken from various models of engines equipped with diesel particulate filter. The assessment is based on the determination of oil flash point and dilution degree using the apparatus Eraflash produced by Eralytics, Austria. Eraflash measurement is directly under the latest and safest standards ASTM D6450 & D7094), which are in excellent correlation with ASTM D93 Pensky - Martens ASTM D56 TAG methods; it uses the Continuous Closed Cup method for finding the Flash Point (CCCFP).

  6. Computational intelligence in automotive applications

    Energy Technology Data Exchange (ETDEWEB)

    Prokhorov, Danil (ed.) [Toyota Motor Engineering and Manufacturing (TEMA), Ann Arbor, MI (United States). Toyota Technical Center

    2008-07-01

    What is computational intelligence (CI)? Traditionally, CI is understood as a collection of methods from the fields of neural networks (NN), fuzzy logic and evolutionary computation. This edited volume is the first of its kind, suitable to automotive researchers, engineers and students. It provides a representative sample of contemporary CI activities in the area of automotive technology. The volume consists of 13 chapters, including but not limited to these topics: vehicle diagnostics and vehicle system safety, control of vehicular systems, quality control of automotive processes, driver state estimation, safety of pedestrians, intelligent vehicles. All chapters contain overviews of state of the art, and several chapters illustrate their methodologies on examples of real-world systems. About the Editor: Danil Prokhorov began his technical career in St. Petersburg, Russia, after graduating with Honors from Saint Petersburg State University of Aerospace Instrumentation in 1992 (MS in Robotics). He worked as a research engineer in St. Petersburg Institute for Informatics and Automation, one of the institutes of the Russian Academy of Sciences. He came to the US in late 1993 for Ph.D. studies. He became involved in automotive research in 1995 when he was a Summer intern at Ford Scientific Research Lab in Dearborn, MI. Upon his graduation from the EE Department of Texas Tech University, Lubbock, in 1997, he joined Ford to pursue application-driven research on neural networks and other machine learning algorithms. While at Ford, he took part in several production-bound projects including neural network based engine misfire detection. Since 2005 he is with Toyota Technical Center, Ann Arbor, MI, overseeing important mid- and long-term research projects in computational intelligence. (orig.)

  7. A Low Cost Ferritic Stainless Steel Microalloyed by Higher Nb for Automotive Exhaust System

    Science.gov (United States)

    Chen, Erhu; Wang, Xuelin; Shang, Chengjia

    Automotive engine exhaust gas after combustion of fuel, and the gas will be liquefied in the rear of automotive exhaust system. A lot of corrosive anions existing in the condensate make corrosion of the exhaust system materials. Therefore, once pitting perforation, automotive exhaust system will fail directly. In 1980s, automotive exhaust manifold was made of Si-Mo ductile iron, mufflers and the tail pipe were made of carbon steel or aluminized steel. But with higher emission standards carried out, the improvement of engine performance and the higher exhaust temperature as well as the needs of the automotive light-weighting, we need the higher corrosion resistance of the material for automotive exhaust systems to meet the requirements.

  8. Integrated computer-aided design in automotive development development processes, geometric fundamentals, methods of CAD, knowledge-based engineering data management

    CERN Document Server

    Mario, Hirz; Gfrerrer, Anton; Lang, Johann

    2013-01-01

    The automotive industry faces constant pressure to reduce development costs and time while still increasing vehicle quality. To meet this challenge, engineers and researchers in both science and industry are developing effective strategies and flexible tools by enhancing and further integrating powerful, computer-aided design technology. This book provides a valuable overview of the development tools and methods of today and tomorrow. It is targeted not only towards professional project and design engineers, but also to students and to anyone who is interested in state-of-the-art computer-aided development. The book begins with an overview of automotive development processes and the principles of virtual product development. Focusing on computer-aided design, a comprehensive outline of the fundamentals of geometry representation provides a deeper insight into the mathematical techniques used to describe and model geometrical elements. The book then explores the link between the demands of integrated design pr...

  9. Mockup Didatic Set for Students Development in Automotive Electronic

    Directory of Open Access Journals (Sweden)

    Fabio Delatore

    2013-05-01

    Full Text Available The automotive engineering education area, specifically on internal combustion engine, requires the use of suitable systems, capable to simulate, test and obtain specifics data from its operation. Automotive engines are so complex due to it is a mix of engineering subjects, so, a mockup was created to help its study. The mockup is an exactly the same engine that equips a vehicle, but assembled in a mechanical base, equipped with all the necessary components for running it up. The objective of this work is to develop a mockup with a suitable Electronic Control Unit (ECU board, in order to obtain the sensors/actuators signals from the engine and control some important engine functions by using an external ECU, so that the students may test their own strategies, compare with the original ECU.

  10. Minimizing of the boundary friction coefficient in automotive engines using Al{sub 2}O{sub 3} and TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Mohamed Kamal Ahmed, E-mail: eng.m.kamal@mu.edu.eg; Xianjun, Hou, E-mail: houxj@whut.edu.cn; Elagouz, Ahmed [Wuhan University of Technology, Hubei Key Laboratory of Advanced Technology for Automotive Components (China); Essa, F.A. [Kafrelsheikh University, Mechanical Engineering Department, Faculty of Engineering (Egypt); Abdelkareem, Mohamed A. A. [Wuhan University of Technology, Hubei Key Laboratory of Advanced Technology for Automotive Components (China)

    2016-12-15

    Minimizing of the boundary friction coefficient is critical for engine efficiency improvement. It is known that the tribological behavior has a major role in controlling the performance of automotive engines in terms of the fuel consumption. The purpose of this research is an experimental study to minimize the boundary friction coefficient via nano-lubricant additives. The tribological characteristics of Al{sub 2}O{sub 3} and TiO{sub 2} nano-lubricants were evaluated under reciprocating test conditions to simulate a piston ring/cylinder liner interface in automotive engines. The nanoparticles were suspended in a commercially available lubricant in a concentration of 0.25 wt.% to formulate the nano-lubricants. The Al{sub 2}O{sub 3} and TiO{sub 2} nanoparticles had sizes of 8–12 and 10 nm, respectively. The experimental results have shown that the boundary friction coefficient reduced by 35–51% near the top and bottom dead center of the stroke (TDC and BDC) for the Al{sub 2}O{sub 3} and TiO{sub 2} nano-lubricants, respectively. The anti-wear mechanism was generated via the formation of protective films on the worn surfaces of the ring and liner. These results will be a promising approach for improving fuel economy in automotive.

  11. Identification for automotive systems

    CERN Document Server

    Hjalmarsson, Håkan; Re, Luigi

    2012-01-01

    Increasing complexity and performance and reliability expectations make modeling of automotive system both more difficult and more urgent. Automotive control has slowly evolved from an add-on to classical engine and vehicle design to a key technology to enforce consumption, pollution and safety limits. Modeling, however, is still mainly based on classical methods, even though much progress has been done in the identification community to speed it up and improve it. This book, the product of a workshop of representatives of different communities, offers an insight on how to close the gap and exploit this progress for the next generations of vehicles.

  12. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    Science.gov (United States)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  13. Temperature dependent kinematic viscosity of different types of engine oils

    Directory of Open Access Journals (Sweden)

    Libor Severa

    2009-01-01

    Full Text Available The objective of this study is to measure how the viscosity of engine oil changes with temperature. Six different commercially distributed engine oils (primarily intended for motorcycle engines of 10W–40 viscosity grade have been evaluated. Four of the oils were of synthetic type, two of semi–synthetic type. All oils have been assumed to be Newtonian fluids, thus flow curves have not been determined. Oils have been cooled to below zero temperatures and under controlled temperature regulation, kinematic viscosity (mm2 / s have been measured in the range of −5 °C and +115 °C. Anton Paar digital viscometer with concentric cylinders geometry has been used. In accordance with expected behavior, kinematic viscosity of all oils was decreasing with increasing temperature. Viscosity was found to be independent on oil’s density. Temperature dependence has been modeled using se­ve­ral mathematical models – Vogel equation, Arrhenius equation, polynomial, and Gaussian equation. The best match between experimental and computed data has been achieved for Gaussian equation (R2 = 0.9993. Knowledge of viscosity behavior of an engine oil as a function of its temperature is of great importance, especially when considering running efficiency and performance of combustion engines. Proposed models can be used for description and prediction of rheological behavior of engine oils.

  14. Investigating impact of motor oil quality on vehicles engine induced noise level

    Directory of Open Access Journals (Sweden)

    I. Arefian

    2015-09-01

    Full Text Available Introduction: Vehicle engine id one of the main sources of noise which its level is influenced by various parameters. The aim of this study was to investigate the impact of motor oils quality before and after oil change on the variability of vehicle engine induced noise level. In this study it is tried to follow-up the efficacy of motor oil quality on engines sound level. Material and Method: First, engine noise of 94 vehicles were recorded for 30 seconds before and after oil change and all the vehicles technical information including mileage, type of motor oil, and type of vehicle were registered. Following, the recorded noises were calibrated in semi-anechoic chamber and the sound pressure levels were measured with A and C-weighting network and main octav bands, using a sound level meters. The obtained results analyzed using SPSS software version 17. Results: The effects of motor oil quality on different noise levels of engines were determined and a significant reduction in noise level of vehicles engine was observed. Investigation of the relationship between mileage and motor oil quality on various engines sound level manifested that vehicles with mileage ranged 100000-150000 miles had significant reduction in their sound pressure levels in comparison with other vehicles. Conclusion: The results revealed that engine oil is among factors reducing the vehicle engine induced noise level. Moreover, the engine oil type and the vehicle mileage are key variables which determine the impact of engine oil quality on reduction of the sound level of vehicles engine.

  15. Design and development of an automotive propulsion system utilizing a Rankine cycle engine (water based fluid). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Demler, R.L.

    1977-09-01

    Under EPA and ERDA sponsorship, SES successfully designed, fabricated and tested the first federally sponsored steam powered automobile. The automobile - referred to as the simulator - is a 1975 Dodge Monaco standard size passenger car with the SES preprototype Rankine cycle automotive propulsion system mounted in the engine compartment. In the latter half of 1975, the simulator successfully underwent test operations at the facilities of SES in Watertown, Massachusetts and demonstrated emission levels below those of the stringent federally established automotive requirements originally set for implementation by 1976. The demonstration was accomplished during testing over the Federal Driving Cycle on a Clayton chassis dynamometer. The design and performance of the vehicle are described.

  16. An Experimental Study on the Diesel Engine Performance with Rape Seed Oil

    International Nuclear Information System (INIS)

    Oh, Yeong Og

    2002-02-01

    A four cycle diesel engine performance test was performed with four kinds of oils such as rape seed oil, effective micro-organism rape seed oil, activated clay rape seed oil and light oil. The experiment was conducted at full load condition with constant injection time of the engine and the test oil temperature was maintained at 70±2 .deg. C. 1. The torque and the horsepower with rape seed fuel is increased about 10% compare with light seed oil at full load condition of the engine. High viscosity of the rape makes oil films in the combustor which leads to higher compression ratio and explosion. The results of the high viscosity make higher torque of the engine. The brake specific fuel consumption of the rape seed fuel increased 8%∼10% than that of the light oil. This effect could be the difference of heating value between the two kinds of oil. 2. The emission of the smoke gas was decreased 29%, 38% and 52% compare with light oil in rape seed oil, effective micro-organism rape seed oil and activated clay rape respectively due to the low volatility and high viscosity of the soot. The NOx emission with rape seed oil is twice larger than that of the light oil at full load condition. The reason is that the fuel temperature increment effects on the combustor temperature and it makes thermal NOx of the engine. 3. The test engine could be started over 40 .deg. C of the rape seed oil. Engine inspection results shows that the soot adherence amount of the cylinder head piston head is higher in following order; activated clay rape seed oil > effective micro-organism rape seed oil > rape seed oil > light oil

  17. Improving Engine Oil Warm Up through Waste Heat Recovery

    Directory of Open Access Journals (Sweden)

    Davide Di Battista

    2017-12-01

    Full Text Available In the transportation sector, engine oil thermal management has not yet received the attention it deserves in the path towards carbon dioxide and pollutants reduction. During the homologation cycle (which represents a typical daily trip, oil temperature reaches its thermal steady value, which insures best performances in terms of viscosity, only in the final part of the trip, when most part of the harmful emissions have been already emitted; therefore, a warm up acceleration would surely represent a strong beneficial action. In this paper, a faster warming up of the lubricant oil was done using the heat owned by the exhaust gases, which was almost immediately ready after the engine ignition, in the early part of a driving cycle. An experimental activity has been developed in a turbocharged engine (F1C 3L IVECO, modifying the oil circuit in order to heat up the oil during the cold phase of a homologation cycle by the exhaust gases. A significant reduction of fuel consumption and pollutant emissions savings has been experimentally demonstrated. Also, the interaction between the modified oil circuit, engine, coolant circuit, and exhaust line has been investigated in order to have a system view of the new heating oil technology.

  18. Clerget 100 hp heavy-oil engine

    Science.gov (United States)

    Leglise, Pierre

    1931-01-01

    A complete technical description of the Clerget heavy-oil engine is presented along with the general characteristics. The general characteristics are: 9 cylinders, bore 120 mm, stroke 130 mm, four-stroke cycle engine, rated power limited to 100 hp at 1800 rpm; weight 228 kg; propeller with direct drive and air cooling. Moving parts, engine block, and lubrication are all presented.

  19. Dictionary of automotive engineering. English/German - German/English. Woerterbuch Kraftfahrzeugtechnik. Englisch/Deutsch - Deutsch/Englisch

    Energy Technology Data Exchange (ETDEWEB)

    Junge, H D; Lukhaup, D

    1991-01-01

    This Pocket Dictionary is thought to facilitate the jump from the every-day language to the scientific-technical language. Furthermore, it should be a helpful tool for the translator who deals with specialized literature. This Pocket Dictionary summarizes the most important and frequently used terms in the field of automotive engineering, partially supplemented by definitions or other statements. Numerous examples of word combinations are included for better understanding of the linguistic laws. Some general terms are also included which have a special meaning in the scope of this book. (orig.).

  20. Design of Epoxy based Resin Composites for Automotive Applications: A Case Study on IC Engine Valve Guide

    Science.gov (United States)

    Sidhu, J. S.; Lathkar, G. S.; Sharma, S. B.

    2018-01-01

    The present attempt in this project is to reduce the vibrations, temperature due to friction, noise and weight of I C engine valve guide by replacing conventional metal valve guide with composite valve guide. Composite materials have been used in automotive components because of their properties such as low weight, high specific stiffness, corrosion resistance, ability to produce complex shapes, high specific strength and good impact energy absorption etc. The Internal combustion engine valve guides are the parts that support the valves in the cylinder head, besides this it keeps lubricating oil from getting sucked into the combustion chamber past the intake valve stem, it keeps exhaust gases from getting into the crankcase past the exhaust valve stem and it also keeps the valve face in perfect alignment with the valve seat. A valve guide test rig is indigenously fabricated. Valve guides are manufactured using the developed composite material (Resin ARL-136, Hardener AH-126 and 4 vol% WS2), on a CNC lathe. The performance of the developed composite guide under varied conditions of speeds, that is, fixed change in rpm and modulated changes in rpm is assessed. Noise, temperature and vibrations are measured. The experimental data revealed that contribution of composite guide in respect of acceleration, velocity and displacement components of vibration is not substantial. A substantial reduction in noise levels is seen. As far as temperature rise due to friction is concerned maximum components fail at elevated temperatures, with composite guides the temperature generated due to friction at higher speeds is less, a considerable weight reduction is also observed.

  1. Biodiesel's Characteristics Preparation from Palm Oil

    Directory of Open Access Journals (Sweden)

    Tilani Hamid

    2010-10-01

    Full Text Available Using vegetable oils directly as an alternative diesel fuel has presented engine problems. The problems have been attributed to high viscosity of vegetable oil that causes the poor atomization of fuel in the injector system and pruduces uncomplete combustion. Therefore, it is necessary to convert the vegetable oil into ester (metil ester by tranesterification process to decrease its viscosity. In this research has made biodiesel by reaction of palm oil and methanol using lye (NaOH as catalyst with operation conditions: constant temperature at 60 oC in atmosferic pressure, palm oil : methanol volume ratio = 5 : 1, amount of NaOH used as catalyst = 3.5 gr, 4.5 gr, 5 gr and 5.5 gr and it takes about one hour time reaction. The ester (metil ester produced are separated from glycerin and washed until it takes normal pH (6-7 where more amount of catalyst used will decrease the ester (biodiesel produced. The results show that biodiesels' properties made by using 3.5 (M3.5 gr, 4.5 gr (M4.5 and 5 (M5.0 gr catalyst close to industrial diesel oil and the other (M5.5 closes to automotive diesel oil, while blending diesel oil with 20 % biodiesel (B20 is able to improve the diesel engine performances.

  2. Concentration measurements of biodiesel in engine oil and in diesel fuel

    International Nuclear Information System (INIS)

    Mäder, A; Eskiner, M; Burger, C; Rossner, M; Krahl, J; Ruck, W

    2012-01-01

    This work comprised a method for concentration measurements of biodiesel in engine oil as well as biodiesel in diesel fuel by a measurement of the permittivity of the mixture at a frequency range from 100 Hz to 20 kHz. For this purpose a special designed measurement cell with high sensitivity was designed. The results for the concentration measurements of biodiesel in the engine oil and diesel fuel shows linearity to the measurement cell signal for the concentration of biodiesel in the engine oil between 0.5% Vol. to 10% Vol. and for biodiesel in the diesel fuel between 0% Vol. to 100% Vol. The method to measure the concentration of biodiesel in the engine oil or the concentration of biodiesel in the diesel fuel is very accurate and low concentration of about 0.5% Vol. biodiesel in engine oil or in diesel fuel can be measured with high accuracy.

  3. Comparison of performance of biodiesels of mahua oil and gingili oil in dual fuel engine

    Directory of Open Access Journals (Sweden)

    Nadar Kapilan N.

    2008-01-01

    Full Text Available In this work, an experimental work was carried out to compare the performance of biodiesels made from non edible mahua oil and edible gingili oil in dual fuel engine. A single cylinder diesel engine was modified to work in dual fuel mode and liquefied petroleum gas was used as primary fuel. Biodiesel was prepared by transesterification process and mahua oil methyl ester (MOME and gingili oil methyl ester (GOME were used as pilot fuels. The viscosity of MOME is slightly higher than GOME. The dual fuel engine runs smoothly with MOME and GOME. The test results show that the performance of the MOME is close to GOME, at the pilot fuel quantity of 0.45 kg/h and at the advanced injection timing of 30 deg bTDC. Also it is observed that the smoke, carbon monoxide and unburnt hydro carbon emissions of GOME lower than the MOME. But the GOME results in slightly higher NOx emissions. From the experimental results it is concluded that the biodiesel made from mahua oil can be used as a substitute for diesel in dual fuel engine.

  4. Effects of Spent Engine Oil Polluted Soil and Organic Amendment ...

    African Journals Online (AJOL)

    Effects of Spent Engine Oil Polluted Soil and Organic Amendment on Soil ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search · USING AJOL ... of using organic fertilizer as bioremediant for spent engine oil polluted soils.

  5. Rotordynamics of automotive turbochargers

    CERN Document Server

    Nguyen-Schäfer, Hung

    2015-01-01

    Rotordynamics of automotive turbochargers is dealt with in this book encompassing the widely working field of small turbomachines under real operating conditions at the very high rotor speeds up to 300000 rpm. The broadly interdisciplinary field of turbocharger rotordynamics involves 1) Thermodynamics and Turbo-Matching of Turbochargers 2) Dynamics of Turbomachinery 3) Stability Analysis of Linear Rotordynamics with the Eigenvalue Theory 4) Stability Analysis of Nonlinear Rotordynamics with the Bifurcation Theory 5) Bearing Dynamics of the Oil Film using the Two-Phase Reynolds Equation 6) Computation of Nonlinear Responses of a Turbocharger Rotor 7) Aero and Vibroacoustics of Turbochargers 8) Shop and Trim Balancing at Two Planes of the Rotor 9) Tribology of the Bearing Surface Roughness 10) Design of Turbocharger Platforms using the Similarity Laws The rotor response of an automotive turbocharger at high rotor speeds is studied analytically, computationally, and experimentally. Due to the nonlinear character...

  6. application of used engine oil on of used engine oil in soil on of ...

    African Journals Online (AJOL)

    eobe

    Keywords: soil stabilization, used engine oil, s. 1. INTRODUCTION ... cement, lime, fly ash and a combination of ot additives is meant to ... California bearing ratio (CBR) of the soil. This p of the soil. ... range of silty-clay and sandy. CBR of ...

  7. The potential of using vegetable oil fuels as fuel for diesel engines

    International Nuclear Information System (INIS)

    Altin, Recep; Cetinkaya, Selim; Yucesu, Huseyin Serdar

    2001-01-01

    Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. The effects of vegetable oil fuels and their methyl esters (raw sunflower oil, raw cottonseed oil, raw soybean oil and their methyl esters, refined corn oil, distilled opium poppy oil and refined rapeseed oil) on a direct injected, four stroke, single cylinder diesel engine performance and exhaust emissions was investigated in this paper. The results show that from the performance viewpoint, both vegetable oils and their esters are promising alternatives as fuel for diesel engines. Because of their high viscosity, drying with time and thickening in cold conditions, vegetable oil fuels still have problems, such as flow, atomisation and heavy particulate emissions. (Author)

  8. The potential of using vegetable oil fuels as fuel for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Altin, Recep [Ministry of Education, Projects Coordination Unit, Ankara (Turkey); Cetinkaya, Selim [Gazi Univ., Technical Education Faculty, Ankara (Turkey); Yucesu, Huseyin Serdar [Karaelmas Univ., Technical Education Faculty, Karabuk (Turkey)

    2001-03-01

    Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. The effects of vegetable oil fuels and their methyl esters (raw sunflower oil, raw cottonseed oil, raw soybean oil and their methyl esters, refined corn oil, distilled opium poppy oil and refined rapeseed oil) on a direct injected, four stroke, single cylinder diesel engine performance and exhaust emissions was investigated in this paper. The results show that from the performance viewpoint, both vegetable oils and their esters are promising alternatives as fuel for diesel engines. Because of their high viscosity, drying with time and thickening in cold conditions, vegetable oil fuels still have problems, such as flow, atomisation and heavy particulate emissions. (Author)

  9. Model of predicting proportion of diesel fuel and engine oil in diesel ...

    African Journals Online (AJOL)

    Viscosity of diesel adulterated SAE 40 engine oil at varying proportions of the mixture is presented. Regression, variation of intercept and the power parameters methods are used for developing polynomial and power law functions for predicting proportion of either diesel or engine oil in diesel adulterated SAE 40 engine oil ...

  10. GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-07-31

    This report summarizes the accomplishments of the UAB GATE Center of Excellence in Lightweight Materials for Automotive Applications. The first Phase of the UAB DOE GATE center spanned the period 2005-2011. The UAB GATE goals coordinated with the overall goals of DOE's FreedomCAR and Vehicles Technologies initiative and DOE GATE program. The FCVT goals are: (1) Development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost; (2) To provide a new generation of engineers and scientists with knowledge and skills in advanced automotive technologies. The UAB GATE focused on both the FCVT and GATE goals in the following manner: (1) Train and produce graduates in lightweight automotive materials technologies; (2) Structure the engineering curricula to produce specialists in the automotive area; (3) Leverage automotive related industry in the State of Alabama; (4) Expose minority students to advanced technologies early in their career; (5) Develop innovative virtual classroom capabilities tied to real manufacturing operations; and (6) Integrate synergistic, multi-departmental activities to produce new product and manufacturing technologies for more damage tolerant, cost-effective, and lighter automotive structures.

  11. Fatal exit the automotive black box debate

    CERN Document Server

    Kowalick, Tom

    2005-01-01

    "Fatal Exit: The Automotive Black Box Debate cuts through thirty years of political wrangling and institutional biases to provide an argument for the Motor Vehicle Event Data Recorder (MVEDR). This automotive equivalent of an airplane's flight recorder or black box is intended to solve the mysteries of car crashes and improve the safety of our roads. The reader is taken inside the automotive industry and the government highway safety establishment to foster an understanding of the politics and the positions on all sides of this safety debate. The author takes an unbiased approach, chronologically presenting each argument and uncovering the agendas and mandates of each of the stakeholders." "This publication is essential reading for all consumers who need to have their voices heard on this critical issue, as well as for attorneys, public safety advocates, public policy administrators, engineers, automotive professionals, journalists, and insurance executives."--Jacket.

  12. Introduction to Analytical Methods for Internal Combustion Engine Cam Mechanisms

    CERN Document Server

    Williams, J J

    2013-01-01

    Modern design methods of Automotive Cam Design require the computation of a range of parameters. This book provides a logical sequence of steps for the derivation of the relevant equations from first principles, for the more widely used cam mechanisms. Although originally derived for use in high performance engines, this work is equally applicable to the design of mass produced automotive and other internal combustion engines.   Introduction to Analytical Methods for Internal Combustion Engine Cam Mechanisms provides the equations necessary for the design of cam lift curves with an associated smooth acceleration curve. The equations are derived for the kinematics and kinetics of all the mechanisms considered, together with those for cam curvature and oil entrainment velocity. This permits the cam shape, all loads, and contact stresses to be evaluated, and the relevant tribology to be assessed. The effects of asymmetry on the manufacture of cams for finger follower and offset translating curved followers is ...

  13. Biodiesel from Mustard oil: a Sustainable Engine Fuel Substitute for Bangladesh

    Directory of Open Access Journals (Sweden)

    M.M. Alam

    2013-10-01

    Full Text Available Various attractive features of mustard oil based biodiesel as a potential substitute for engine fuel are investigated in this paper for use in Bangladesh. Although the use of mustard oil as edible oil has been reduced, Bangladesh still produces 0.22 million metric tons of mustard oil per year. This surplus mustard oil would satisfactorily be used as an alternative to diesel fuel, and thus could contribute in reducing the expenses for importing fuel from foreign countries. Moreover, the rural people of Bangladesh are capable of producing mustard oil themselves using indigenous machines. Fuel properties of biodiesel obtained from mustard oil were determined in the laboratory using standard procedure and an experimental setup was constructed to study the performance of a small diesel engine. It is observed that with biodiesel, the engine is capable of running without difficulty. Initially different lower blends of biodiesel (e.g., B20, B30 etc. have been used to avoid complicated modification of the engine and the fuel supply system. It is also found in some condition that mustard oil based biodiesel have better properties than those made from other vegetable oils. These properties of mustard oil based biodiesel were evaluated to validate its sustainability in Bangladesh. Keywords: biodiesel, indigenous machines, mustard oil, renewable energy policy, sustainability

  14. Recycling of waste engine oil for diesel production.

    Science.gov (United States)

    Maceiras, R; Alfonsín, V; Morales, F J

    2017-02-01

    The aim of this work was to recycle waste engine oil until converting it into reusable product, diesel fuel. The waste oil was treated using pyrolytic distillation. The effect of two additives (sodium hydroxide and sodium carbonate) in the purification of the obtained fuel was also studied. Moreover, the influence of the number of distillations were analysed. Some thermal and physicochemical properties (density, viscosity, colour, turbidity, acidity value, distillation curves, cetane number, corrosiveness to Cu, water content, flash point and hydrocarbons) were determined to analyse the quality of the obtained fuel. The best results were obtained with 2% of sodium carbonate and two successive distillations. The obtained results showed that pyrolytic distillation of waste engine oil is an excellent way to produce diesel fuel to be used in engines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Future perspectives on automotive CAE

    NARCIS (Netherlands)

    Bensler, Henry; Eller, Tom; Kabat vel Job, Alexander; Magoulas, Nikolaos; Yigit, Emrah; Van Tongeren, A.

    2014-01-01

    Computer Aided Engineering (CAE) is an integral part of today’s automotive design process. Very often OEM’s rely solely on software vendors to provide appropriate solutions. On the other hand, some companies still use in-house developed software for specific applications. It is, however, a

  16. Fuel saving performances of marine diesel engine oils on board

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Yasunori; Henmi, Takashi; Minamitani, Hiromu; Akizawa, Hayao; Hamada, Minoru; Ashida, Jiro

    1988-05-01

    After the second oil crisis, the percentage of the fuel cost against the operational cost of a ship has been showing the rising tendency, engine manufacturers have placed the top priority on the improvement of fuel consumption, operators have been conducting various energy saving measures and refiners have been paying efforts to improve lubricating oil. This article reports the study on the lubricating oil characteristics affecting the fuel consumption per power output, particularly the viscosity and the adding effect of friction modifier additives by using dynamo-generator diesel engines on board the ships already in commission. The investigation was conducted by comparing the cases of using several sample oils with the cases of using the reference oils. According to the results, the viscous property of engine oil was most effective on fuel consumption and the lower the viscosity of oil, the more the fuel consumption effect was. However, the addition of friction modifier additives did hardly show any improvement of the above effect. (5 figs, 4 tabs, 3 refs)

  17. COMBUSTION CHARACTERISTICS OF DIESEL ENGINE OPERATING ON JATROPHA OIL METHYL ESTER

    Directory of Open Access Journals (Sweden)

    Doddayaraganalu Amasegoda Dhananjaya

    2010-01-01

    Full Text Available Fuel crisis because of dramatic increase in vehicular population and environmental concerns have renewed interest of scientific community to look for alternative fuels of bio-origin such as vegetable oils. Vegetable oils can be produced from forests, vegetable oil crops, and oil bearing biomass materials. Non-edible vegetable oils such as jatropha oil, linseed oil, mahua oil, rice bran oil, karanji oil, etc., are potentially effective diesel substitute. Vegetable oils have reasonable energy content. Biodiesel can be used in its pure form or can be blended with diesel to form different blends. It can be used in diesel engines with very little or no engine modifications. This is because it has combustion characteristics similar to petroleum diesel. The current paper reports a study carried out to investigate the combustion, performance and emission characteristics of jatropha oil methyl ester and its blend B20 (80% petroleum diesel and 20% jatropha oil methyl ester and diesel fuel on a single-cylinder, four-stroke, direct injections, water cooled diesel engine. This study gives the comparative measures of brake thermal efficiency, brake specific energy consumption, smoke opacity, HC, NOx, ignition delay, cylinder peak pressure, and peak heat release rates. The engine performance in terms of higher thermal efficiency and lower emissions of blend B20 fuel operation was observed and compared with jatropha oil methyl ester and petroleum diesel fuel for injection timing of 20° bTDC, 23° bTDC and 26° bTDC at injection opening pressure of 220 bar.

  18. Assessment of lubricating oil degradation in small motorcycle engine fueled with gasohol

    Directory of Open Access Journals (Sweden)

    Nakorn Tippayawong

    2010-05-01

    Full Text Available Assessment of the degradation of lubricating oil was performed on the lubricants which had been used in a small motorcycle engine fueled with gasohol in comparison with the lubricants from gasoline-run engine. The lubricant properties examined in the assessment were lubricating capacity, viscosity and stability to oxidation. Lubricating capacity was evaluated by accelerated wear test on the Timken tester. Lubricating oils from gasohol-run engine appeared to produce about 10% greater wear than that made in oils from gasoline-run engine. There was no significant difference between the effect of gasohol and gasoline on the viscosity of the used lubricating oils. Moreover, no oxidation products in any used oil samples could be detected.

  19. Multichip module technology for automotive application

    Science.gov (United States)

    Johnson, R. Wayne; Evans, John L.; Bosley, Larry

    1995-01-01

    Advancements in multichip module technology are creating design freedoms previously unavailable to design engineers. These advancements are opening new markets for laminate based multichip module products. In particular, material improvements in laminate printed wiring boards are allowing multichip module technology to meet more stringent environmental conditions. In addition, improvements in encapsulants and adhesives are enhancing the capabilities of multichip module technology to meet harsh environment. Furthermore, improvements in manufacturing techniques are providing the reliability improvements necessary for use in high quality electronic systems. These advances are making multichip module technology viable for high volume, harsh environment applications like under-the-hood automotive electronics. This paper will provide a brief review of multichip module technology, a discussion of specific research activities with Chrysler for use of multichip modules in automotive engine controllers and finally a discussion of prototype multichip modules fabricated and tested.

  20. Experimental evaluation of diesel engine performance and emission using blends of jojoba oil and diesel fuel

    Energy Technology Data Exchange (ETDEWEB)

    Huzayyin, A.S.; Rady, M.A.; Dawood, A. [Benha High Inst. of Technology (Egypt). Dept. of Mechanical Engineering Technology; Bawady, A.H. [University of Ain Shams, Cairo (Egypt). Faculty of Engineering

    2004-08-01

    An experimental evaluation of using jojoba oil as an alternate diesel engine fuel has been conducted in the present work. Measurements of jojoba oil chemical and physical properties have indicated a good potential of using jojoba oil as an alternative diesel engine fuel. Blending of jojoba oil with gas oil has been shown to be an effective method to reduce engine problems associated with the high viscosity of jojoba oil. Experimental measurements of different performance parameters of a single cylinder, naturally aspirated, direct injection, diesel engine have been performed using gas oil and blends of gas oil with jojoba oil. Measurements of engine performance parameters at different load conditions over the engine speed range have generally indicated a negligible loss of engine power, a slight increase in brake specific fuel consumption and a reduction in engine NO{sub x} and soot emission using blends of jojoba oil with gas oil as compared to gas oil. The reduction in engine soot emission has been observed to increase with the increase of jojoba oil percentage in the fuel blend. (Author)

  1. Experimental evaluation of Diesel engine performance and emission using blends of jojoba oil and Diesel fuel

    International Nuclear Information System (INIS)

    Huzayyin, A.S.; Bawady, A.H.; Rady, M.A.; Dawood, A.

    2004-01-01

    An experimental evaluation of using jojoba oil as an alternate Diesel engine fuel has been conducted in the present work. Measurements of jojoba oil chemical and physical properties have indicated a good potential of using jojoba oil as an alternative Diesel engine fuel. Blending of jojoba oil with gas oil has been shown to be an effective method to reduce engine problems associated with the high viscosity of jojoba oil. Experimental measurements of different performance parameters of a single cylinder, naturally aspirated, direct injection, Diesel engine have been performed using gas oil and blends of gas oil with jojoba oil. Measurements of engine performance parameters at different load conditions over the engine speed range have generally indicated a negligible loss of engine power, a slight increase in brake specific fuel consumption and a reduction in engine NO x and soot emission using blends of jojoba oil with gas oil as compared to gas oil. The reduction in engine soot emission has been observed to increase with the increase of jojoba oil percentage in the fuel blend

  2. Societal lifecycle costs of cars with alternative fuels/engines

    International Nuclear Information System (INIS)

    Ogden, Joan M.; Williams, Robert H.; Larson, Eric D.

    2004-01-01

    Effectively addressing concerns about air pollution (especially health impacts of small-particle air pollution), climate change, and oil supply insecurity will probably require radical changes in automotive engine/fuel technologies in directions that offer both the potential for achieving near-zero emissions of air pollutants and greenhouse gases and a diversification of the transport fuel system away from its present exclusive dependence on petroleum. The basis for comparing alternative automotive engine/fuel options in evolving toward these goals in the present analysis is the 'societal lifecycle cost' of transportation, including the vehicle first cost (assuming large-scale mass production), fuel costs (assuming a fully developed fuel infrastructure), externality costs for oil supply security, and damage costs for emissions of air pollutants and greenhouse gases calculated over the full fuel cycle. Several engine/fuel options are considered--including current gasoline internal combustion engines and a variety of advanced lightweight vehicles: internal combustion engine vehicles fueled with gasoline or hydrogen; internal combustion engine/hybrid electric vehicles fueled with gasoline, compressed natural gas, Diesel, Fischer-Tropsch liquids or hydrogen; and fuel cell vehicles fueled with gasoline, methanol or hydrogen (from natural gas, coal or wind power). To account for large uncertainties inherent in the analysis (for example in environmental damage costs, in oil supply security costs and in projected mass-produced costs of future vehicles), lifecycle costs are estimated for a range of possible future conditions. Under base-case conditions, several advanced options have roughly comparable lifecycle costs that are lower than for today's conventional gasoline internal combustion engine cars, when environmental and oil supply insecurity externalities are counted--including advanced gasoline internal combustion engine cars, internal combustion engine

  3. Heat transfer characteristics of some oils used for engine cooling

    International Nuclear Information System (INIS)

    Abou-Ziyan, Hosny Z.

    2004-01-01

    This paper reports the results of an experimental investigation of heat transfer from a cast iron test specimen to engine oils under boiling conditions. The work is aimed at evaluating the thermal characteristics of some engine oils in contact with high temperature parts in internal combustion engines. Three mono-grade oils and two multi-grade oils are examined at heat fluxes from about 30 to more than 400 kW/m 2 for bulk temperatures of 40, 60, 80, 100, 125, 150 and 175 deg. C. The considered oils are analyzed and tested according to some ASTM standards to determine their additives concentration and to obtain some of their thermophysical properties. The results indicated that oil additives, oil properties and bulk temperatures have substantial effects on the oil characteristics. The boiling heat flux, for the best oil, rises by a factor of 1.65 as the bulk temperature decreases from 175 to 40 deg. C. The mono-grade oils produce superior heat transfer characteristics compared to those produced by multi-grade oils. The oil with the best additive concentrations produces boiling heat fluxes up to 4.44 times higher than those produced by some other oils. Comparing the results of the tested oils revealed that the oil that has the largest concentrations of boron, magnesium, phosphorus and zinc with low concentration of calcium yields the best heat transport characteristics among the other tested oils. These additives provide superior detergent and dispersant characteristics, reflected in the large alkalinity and low corrosivity of the oil. On the other side, calcium has a negative interaction with other additives and yields an adverse effect on heat transfer characteristics even when it exists in oil with large concentrations of boron, magnesium, phosphorus and zinc

  4. Characterization of Thermal Stability of Synthetic and Semi-Synthetic Engine Oils

    Directory of Open Access Journals (Sweden)

    Anand Kumar Tripathi

    2015-03-01

    Full Text Available Engine oils undergo oxidative degradation and wears out during service. Hence it is important to characterize ageing of engine oils at different simulated conditions to evaluate the performance of existing oils and also design new formulations. This work focuses on characterizing the thermo-oxidative degradation of synthetic and semi-synthetic engine oils aged at 120, 149 and 200 °C. Apparent activation energy of decomposition of aged oils evaluated using the isoconversional Kissinger-Akahira-Sunose technique was used as a thermal stability marker. The temporal variation of stability at different ageing temperatures was corroborated with kinematic viscosity, oxidation, sulfation and nitration indices, total base number, antiwear additive content and molecular structure of the organic species present in the oils. At the lowest temperature employed, synthetic oil underwent higher rate of oxidation, while semi-synthetic oil was stable for longer time periods. At higher temperatures, the initial rate of change of average apparent activation energy of synthetic oil correlated well with a similar variation in oxidation number. A mixture of long chain linear, branched, and cyclic hydrocarbons were observed when semi-synthetic oil was degraded at higher temperatures.

  5. Performance of jatropha oil blends in a diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Forson, F.K.; Oduro, E.K.; Hammond-Donkoh, E. [Kwame Nkrumah University of Science and Technology, Kumasi (Ghana). Dept. of Mechanical Engineering

    2004-06-01

    Results are presented on tests on a single-cylinder direct-injection engine operating on diesel fuel, jatropha oil, and blends of diesel and jatropha oil in proportions of 97.4%/2.6%; 80%120%; and 50%150% by volume. The results covered a range of operating loads on the engine. Values are given for the chemical and physical properties of the fuels, brake specific fuel consumption, brake power, brake thermal efficiency, engine torque, and the concentrations of carbon monoxide, carbon dioxide and oxygen in the exhaust gases. Carbon dioxide emissions were similar for all fuels, the 97.4% diesel/2.6% jatropha fuel blend was observed to be the lower net contributor to the atmospheric level. The trend of carbon monoxide emissions was similar for the fuels but diesel fuel showed slightly lower emissions to the atmosphere. The test showed that jatropha oil could be conveniently used as a diesel substitute in a diesel engine. The test further showed increases in brake thermal efficiency, brake power and reduction of specific fuel consumption for jatropha oil and its blends with diesel generally, but the most significant conclusion from the study is that the 97.4% diesel/2.6% jatropha fuel blend produced maximum values of the brake power and brake thermal efficiency as well as minimum values of the specific fuel consumption. The 97.4%12.6% fuel blend yielded the highest cetane number and even better engine performance than the diesel fuel suggesting that jatropha oil can be used as an ignition- accelerator additive for diesel fuel. (author)

  6. Improving magnetic properties of MgB_2 bulk superconductors by synthetic engine oil treatment

    International Nuclear Information System (INIS)

    Taylan Koparan, E.; Savaskan, B.; Yanmaz, E.

    2016-01-01

    Highlights: • The effects of synthetic engine oil treatment on magnetic properties of bulk MgB_2 superconductors has been first time investigated and reported. • Synthetic engine oil used as a product which is cheap and a rich carbon source obviously has improved the superconducting magnetic properties of MgB_2. • The critical current density of all of MgB_2 samples immersed at different standby time in engine oil in whole field range has been better than that of the pure MgB_2 sample. • The MgB_2 sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. - Abstract: The present study focuses on the effects of standby time of the MgB_2 samples immersed in synthetic engine oil on the critical current density ( J_c(H)), magnetic field dependence of the pinning force density f_p(b) and T_c performances of MgB_2 bulk superconductors. Synthetic engine oil was used as a product which is cheap and a rich carbon source. Manufactured MgB_2 pellet samples were immersed at different standby time of 30 min, 120 min, 300 min and 1440 min in synthetic engine oil after the first heating process. Finally, MgB_2 samples immersed in synthetic engine oil were sintered at 1000 °C and kept for 15 min in Ar atmosphere. The critical current density of all of MgB_2 samples immersed at different standby time in engine oil in whole field range was better than that of the pure MgB_2 sample because of the number of the pinning centers. The MgB_2 sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. The J_c value for the pure sample is 2.0 × 10"3 A/cm"2, whereas for the MgB_2 sample immersed at 300 min standby time in engine oil the J_c is enhanced to 4.8 × 10"3 A/cm"2 at 5 K and 3 T. The superconducting transition temperature (T_c) did not change with the increasing standby time of the samples in synthetic engine oil at all. The best diamagnetic property was

  7. Utilization of used oil. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mascetti, G.J.; White, H.M.

    1978-08-01

    This report assesses the potential impact of re-refining used automotive and industrial lubricating oils on the national petroleum consumption. The technical base for this assessment is derived from a comprehensive review of the processes utilized in re-refining used oil and those processes used to produce lube oil from crude. Both existing and recently proposed processes are considered. Additionally, an extensive review of processes described in the patent literature is provided. Re-refining processes are surveyed and evaluated. Process descriptions are provided; hardware is identified; and process energy and economic requirements are calculated. Factors affecting the profitability of a re-refining operation are discussed. Economic projections of the demand for lube oil and the ability to satisfy this demand from crude oil are made and the value of lube oil as a vital resource and the need for conservation are addressed. Other factors related to re-refining are discussed, including lube oil characteristics, degradation, lube oil quality and engine sequence testing, and legislative and institutional barriers. Finally, an energy assessment of used oil utilization is made. Two options are considered in this assessment: (1) all used oil is re-refined and recycled back to lube oil; (2) all used oil is burned to recover its heat content.

  8. Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications

    International Nuclear Information System (INIS)

    Hirsch, J.; Al-Samman, T.

    2013-01-01

    Aluminum and magnesium are two highly important lightweight metals used in automotive applications to reduce vehicle weight. Crystallographic texture engineering through a combination of intelligent processing and alloying is a powerful and effective tool to obtain superior aluminum and magnesium alloys with optimized strength and ductility for automotive applications. In the present article the basic mechanisms of texture formation of aluminum and magnesium alloys during wrought processing are described and the major aspects and differences in deformation and recrystallization mechanisms are discussed. In addition to the crystal structure, the resulting properties can vary significantly, depending on the alloy composition and processing conditions, which can cause drastic texture and microstructure changes. The elementary mechanisms of plastic deformation and recrystallization comprising nucleation and growth and their orientation dependence, either within the homogeneously formed microstructure or due to inhomogeneous deformation, are described along with their impact on texture formation, and the resulting forming behavior. The typical face-centered cubic and hexagonal close-packed rolling and recrystallization textures, and related mechanical anisotropy and forming conditions are analyzed and compared for standard aluminum and magnesium alloys. New aspects for their modification and advanced strategies of alloy design and microstructure to improve material properties are derived

  9. Temperature control of an automotive engine cooling system utilizing a magneto-rheological fan clutch

    International Nuclear Information System (INIS)

    Kim, Eun-Seok; Choi, Seung-Bok; Park, Young-Gee; Lee, Soojin

    2010-01-01

    In this note, the temperature control of an automotive engine cooling system is undertaken using a magneto-rheological (MR) fluid-based fan clutch (MR fan clutch in short). In order to achieve this goal, an appropriate size of controllable fan clutch using an MR fluid is firstly devised by considering the design parameters of a conventional fan clutch to reflect the practical application. Then, the principal design parameters of the MR fan clutch such as the length of the disc are optimally determined through finite element analysis. The drum-type MR fan clutch is manufactured and its time response to input current is experimentally evaluated. A robust sliding mode controller is then formulated by treating the time constant of the fan clutch system as an uncertain parameter. After identifying the relationship between angular velocity of the MR fan clutch and the temperature of the cooling system, the sliding mode controller is experimentally realized for the cooling system. It has been clearly demonstrated that the proposed sliding mode controller follows well the desired temperature with a small regulating error. It is expected from this feasibility work that the proposed control system associated with an MR fan clutch can be effectively utilized for the automotive cooling system to improve the fuel efficiency. (technical note)

  10. Use of tobacco seed oil methyl ester in a turbocharged indirect injection diesel engine

    International Nuclear Information System (INIS)

    Usta, N.

    2005-01-01

    Vegetable oils and their methyl/ethyl esters are alternative renewable fuels for compression ignition engines. Different kinds of vegetable oils and their methyl/ethyl esters have been tested in diesel engines. However, tobacco seed oil and tobacco seed oil methyl ester have not been tested in diesel engines, yet. Tobacco seed oil is a non-edible vegetable oil and a by-product of tobacco leaves production. To the author's best knowledge, this is the first study on tobacco seed oil methyl ester as a fuel in diesel engines. In this study, potential tobacco seed production throughout the world, the oil extraction process from tobacco seed and the transesterification process for biodiesel production were examined. The produced tobacco seed oil methyl ester was characterized by exposing its major properties. The effects of tobacco seed oil methyl ester addition to diesel No. 2 on the performance and emissions of a four cycle, four cylinder turbocharged indirect injection (IDI) diesel engine were examined at both full and partial loads. Experimental results showed that tobacco seed oil methyl ester can be partially substituted for the diesel fuel at most operating conditions in terms of performance parameters and emissions without any engine modification and preheating of the blends. (Author)

  11. Ferrographic and spectrometer oil analysis from a failed gas turbine engine

    Science.gov (United States)

    Jones, W. R., Jr.

    1982-01-01

    An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. It was concluded that a severe surge may have caused interference between rotating and stationary compressor that either directly or indirectly ignited the titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph, a plasma, an atomic absorption, and an emission spectrometer to see if this information would aid in the engine failure diagnosis. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism nor a high level of wear debris was detected in the engine oil sample taken just prior to the test in which the failure occurred. However, low concentrations (0.2 to 0.5 ppm) of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations ( 2 ppm) were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure. The oil analyses eliminated a lubrication system bearing or shaft seal failure as the cause of the engine failure.

  12. Experimental researches about the influence of the additives for engine oils upon the work of the engine

    International Nuclear Information System (INIS)

    Dimitrovski, Mile; Mucevski, Kiril

    2003-01-01

    In this paper an attempt to get some cognitions about the influence of the additives for engine oils upon the working parameters of the internal combustion engines is made. During the experimental researches the changes of the basic parameters which determine the work of the engine, such as: the pressure of compression, the noise, the vibrations, the friction of the engine mechanism, the internal cleanliness of the engine and similar, were observed. It was conclude that the use of additives into the engine oil resulted with smoother work of the engine and cleaner exhausted as well. (Author)

  13. The stretch zone of automotive steel sheets

    Indian Academy of Sciences (India)

    The stretch zone of automotive steel sheets. L' AMBRIŠKO1,∗ and L PEŠEK2. 1Institute of Structural Engineering, Faculty of Civil Engineering,. Technical University of Košice, Vysokoškolská 4, 042 00 Košice, Slovak Republic. 2Department of Materials Science, Faculty of Metallurgy,. Technical University of Košice, Letná 9, ...

  14. Final Report for NFE-07-00912: Development of Model Fuels Experimental Engine Data Base & Kinetic Modeling Parameter Sets

    Energy Technology Data Exchange (ETDEWEB)

    Bunting, Bruce G [ORNL

    2012-10-01

    The automotive and engine industries are in a period of very rapid change being driven by new emission standards, new types of after treatment, new combustion strategies, the introduction of new fuels, and drive for increased fuel economy and efficiency. The rapid pace of these changes has put more pressure on the need for modeling of engine combustion and performance, in order to shorten product design and introduction cycles. New combustion strategies include homogeneous charge compression ignition (HCCI), partial-premixed combustion compression ignition (PCCI), and dilute low temperature combustion which are being developed for lower emissions and improved fuel economy. New fuels include bio-fuels such as ethanol or bio-diesel, drop-in bio-derived fuels and those derived from new crude oil sources such as gas-to-liquids, coal-to-liquids, oil sands, oil shale, and wet natural gas. Kinetic modeling of the combustion process for these new combustion regimes and fuels is necessary in order to allow modeling and performance assessment for engine design purposes. In this research covered by this CRADA, ORNL developed and supplied experimental data related to engine performance with new fuels and new combustion strategies along with interpretation and analysis of such data and consulting to Reaction Design, Inc. (RD). RD performed additional analysis of this data in order to extract important parameters and to confirm engine and kinetic models. The data generated was generally published to make it available to the engine and automotive design communities and also to the Reaction Design Model Fuels Consortium (MFC).

  15. Automotive sensors

    Science.gov (United States)

    Marek, Jiri; Illing, Matthias

    2003-01-01

    Sensors are an essential component of most electronic systems in the car. They deliver input parameters for comfort features, engine and emission control as well as for the active and passive safety systems. New technologies such as silicon micromachining play an important role for the introduction of these sensors in all vehicle classes. The importance and use of these sensor technologies in today"s automotive applications will be shown in this article. Finally an outlook on important current developments and new functions in the car will be given.

  16. Analysis of an Increase in the Efficiency of a Spark Ignition Engine Through the Application of an Automotive Thermoelectric Generator

    Science.gov (United States)

    Merkisz, Jerzy; Fuc, Pawel; Lijewski, Piotr; Ziolkowski, Andrzej; Galant, Marta; Siedlecki, Maciej

    2016-08-01

    We have analyzed the increase of the overall efficiency of a spark ignition engine through energy recovery following the application of an automotive thermoelectric generator (ATEG) of our own design. The design of the generator was developed following emission investigations during vehicle driving under city traffic conditions. The measurement points were defined by actual operation conditions (engine speed and load), subsequently reproduced on an engine dynamometer. Both the vehicle used in the on-road tests and the engine dynamometer were fit with the same, downsized spark ignition engine (with high effective power-to-displacement ratio). The thermodynamic parameters of the exhaust gases (temperature and exhaust gas mass flow) were measured on the engine testbed, along with the fuel consumption and electric current generated by the thermoelectric modules. On this basis, the power of the ATEG and its impact on overall engine efficiency were determined.

  17. Engineering-economic analyses of automotive fuel economy potential in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Greene, D.L.; DeCicco, J.

    2000-02-01

    Over the past 25 years more than 20 major studies have examined the technological potential to improve the fuel economy of passenger cars and light trucks in the US. The majority has used technology/cost analysis, a combination of analytical methods from the disciplines of economics and automotive engineering. In this paper the authors describe the key elements of this methodology, discuss critical issues responsible for the often widely divergent estimates produced by different studies, review the history of its use, and present results from six recent assessments. Whereas early studies tended to confine their scope to the potential of proven technology over a 10-year time period, more recent studies have focused on advanced technologies, raising questions about how best to include the likelihood of technological change. The paper concludes with recommendations for further research.

  18. Performance of compression ignition engine with indigenous castor oil bio diesel in Pakistan

    International Nuclear Information System (INIS)

    Chakrabarti, M.H.

    2009-01-01

    Castor oil available indigenously in Pakistan was converted successfully to bio diesel and blended to 10% quantity (by volume) with high speed mineral diesel (HSD) fuel. This fuel was tested in a compression-ignition engine in order to assess its environmental emissions as well as engine performance parameters. The blended fuel was found to give lower environmental emissions in most accounts except for higher CO/sub 2/ and higher NOx. In addition, three engine performance parameters were assessed; which were engine brake power, engine torque and exhaust temperature. In the first two cases, blended bio diesel fuel gave lower figures than pure mineral diesel due to lower calorific value. However, its higher flash point resulted in higher engine exhaust temperatures than pure mineral diesel. Overall, in terms of engine performance, castor oil bio diesel (from non edible oil of castor bean -growing on marginal lands of Pakistan) fared better in comparison to canola oil bio diesel (from expensive edible oil) and can be recommended for further tests at higher blend ratios. (author)

  19. Polyalhpaolefins and VHVI base oils - base oils for high performance lubricants; Polyalfaolefine und VHVI-Grundoele - Grundoele fuer hochwertige Schmierstoffe

    Energy Technology Data Exchange (ETDEWEB)

    Lehmus, M.; Nissfolk, F.; Kulmala, K. [Fortum Oil and Gas Oyj / Base Oils, Fortum (Finland)

    2002-01-01

    Next to polyalphaolefines (PAOs base oils of the API/ATIEL Group IV), VHVI base oils (belonging to API/ATIEL Group III) are being increasingly used in high-performance automotive and industrial lubricants. A comparative study of the properties of VHVI base oils and polyalphaolefins shows that high-quality VHVI base oils have comparable volatility, oxidation stability and viscosity indices to polyalphaolefins, whereas the most pronounced differences are viscometric properties in the low-temperature range. However, there are noticeable differences between different market-typical VHVI base oils, depending primarily on the manufacturing process. The differences in the physicochemical properties of PAOs and various VHVI base oils are attributable to differences in the typical molecular composition. This is illustrated by a compositional analysis of several VHVI base oils, in which the (iso)paraffin content and the content of different naphthenic and aromatic compounds is analyzed. The base oil influence on specific properties of formulated lubricants is discussed on the basis of several examples, and studies conducted with passenger car engine oils (PCMOs), heavy-duty engine oils (HDEOs) and gear oils are described in detail. As a result of extremely low CCS viscosities, PAOs are optimally suited for use in 0W-X PCMOs whereas 5W-X PCMOs meeting highest performance requirements can also be formulated with high-quality VHVI base oils. Emission measurements with HDEOs formulated with either SN mineral base oil or VHVI base oil demonstrated that the base oil type affects tailpipe particle emissions in the particle size range <5 {mu}m as replacement of SN mineral base oil with VHVI base oil resulted in lower particle emissions. Test stand measurements with gear oils formulated with either VHVI base oils or PAOs yielded comparable results in terms of power transfer ratio and oil temperature increase. (orig.)

  20. Dynamic Oil Consumption Measurement of Internal Combustion Engines using Laser Spectroscopy.

    Science.gov (United States)

    Sellmeier, Stefan; Alonso, Eduardo; Boesl, Ulrich

    2014-01-07

    A new approach has been developed to measure dynamic consumption of lubricant oil in an internal combustion engine. It is based on the already known technique where sulfur is used as a natural tracer of the engine oil. Since ejection of motor oil in gaseous form into the exhaust is by far the main source of engine oil consumption, detection of sulfur in the exhaust emission is a valuable way to measure engine oil consumption in a dynamic way. In earlier approaches, this is done by converting all sulfur containing chemical components into SO2 by thermal pyrolysis in a high temperature furnace at atmospheric pressure. The so-formed SO2 then is detected by broadband-UV-induced fluorescence or mass spectrometric methods. The challenge is to reach the necessary detection limit of 50 ppb. The new approach presented here includes sulfur conversion in a low-pressure discharge cell and laser-induced fluorescence with wavelength and fluorescence lifetime selection. A limit of detection down to 10 ppb at a temporal resolution in the time scale of few seconds is reached. Extensive, promising studies have been performed at a real engine test bench. Future developments of a compact, mobile device based on these improvements are discussed.

  1. An experiment of used palm oil refinery using the value engineering method

    Science.gov (United States)

    Sumiati; Waluyo, M.

    2018-01-01

    Palm Oil is one of prime materials which very necessary for Indonesia. In the development of palm oil industry the constraint which faced is raw material availability and the economic crisis that attack Indonesia which cause increasing of cost industry so that the salaes price become very expensive . With using alternative raw material namely used palm oil them be made palm oil design to solve this problems. In the designing which comply the consideration of good pal oil planning aspect be use value engineer study. While the criteria parameter of hygienic palm oil which obtained from the questioner area free fatty acid, water content, Iodine number, peroxide number, odor, taste and the color. The research which use value engineer study is throught any phase that is information phase, analyzes phase, creative phase, development phase and presentation phase. This research began with doing the identification of palm oil demand, continued by methodology development in order to measure oil design. By using creative process could be obtained flow rate position, the amount of adsorbent and the best settling time for palm oil alternative that is in the flow rate 70 ml/sec, 4% of adsorbent and the 70 minute for the settling time with free fatty acid value: 0.299. While the best palm oil alternative are palm oil with free fatty acid value = 0.299, water content = 0.31, Iodine number = 40.08, Peroxide number = 3.72, odor and taste = Normal, the color = Normal. The Evalution which done by value engineer study generate the value from alternative palm oil is 1.330 and market palm oil 1.392. Thus, can be conclude thet the value engineer study can be good implemented in the alternative palm oil planning so that alternative palm oil can be produced largely because they have better value that market palm oil and appropriate for little industries.

  2. Straight vegetable oils usage in a compression ignition engine - A review

    Energy Technology Data Exchange (ETDEWEB)

    Misra, R.D.; Murthy, M.S. [Mechanical Engineering Department, National Institute of Technology, Silchar 788010, Assam (India)

    2010-12-15

    The ever increasing fossil fuel usage and cost, environmental concern has forced the world to look for alternatives. Straight vegetable oils in compression ignition engine are a ready solution available, however, with certain limitations and with some advantages as reported by many researchers. A comprehensive and critical review is presented specifically pertaining to straight vegetable oils usage in diesel engine. A detailed record of historical events described. Research carried out specifically under Indian conditions and international research work on the usage of straight vegetable oils in the diesel engine is separately reviewed. Many researchers have reported that straight vegetable oils in small percentage blends with diesel when used lower capacity diesel engines have shown great promise with regards to the thermal performance as well exhaust emissions. This has been explained in detail. Finally based on the review of international as well as Indian research a SWOT analysis is carried out. The review concludes that there is still scope for research in this area. (author)

  3. Quality control of mixtures consisting of engine oil and rapeseed oil by means of online oil sensors; Qualitaetsueberwachung von Motoroel-Rapsoelmischungen mit Online-Oelsensoren. Labortests

    Energy Technology Data Exchange (ETDEWEB)

    Thuneke, Klaus; Schreiber, Katja [Technologie- und Foerderzentrum, Straubing (Germany)

    2013-10-01

    It was the goal of the work to investigate interactions between motor oils and rapeseed oil fuel and to test oil sensors for monitoring the quality of aged mixtures of motor oil and rapeseed oil. At first oil samples were aged in the laboratory, whereby motor oil type, share of rapeseed oil and aeration was varied. Depending on type of engine oil different ageing effects were noticed. Higher shares of rapeseed and aeration stimulate increase of viscosity and acid value. In a further step online oil sensors were tested in both, a model of a lubrication system and a test engine. The signals of the sensors plausibly described the oil ageing process by the indicators dynamic or acoustic viscosity, permittivity number, specific electric conductivity. In particular viscosity and permittivity are suitable for showing changes in different motor oil rapeseed oil mixtures during oil ageing. However, for a reliable control system detecting critical rapeseed oil enrichment in the motor oil onboard, further work has to be done. (orig.)

  4. Ceramic technologies for automotive industry: Current status and perspectives

    International Nuclear Information System (INIS)

    Okada, Akira

    2009-01-01

    The automotive industry has developed substantially through advances in mechanical technologies, and technologies such as electronics and advanced materials have also contributed to further advances in automobiles. The contribution of ceramic materials to automobile technologies ranges over driving performance, exhaust gas purification, and fuel efficiency improvements. Several ceramic components, such as knock sensors, oxygen sensors, exhaust gas catalysts, and silicon nitride parts for automotive engines, have been successfully applied to automobiles. This paper focuses on the contribution of ceramics to automotive technologies. It also mentions potential contributions in the future, including adiabatic turbo-compound diesels, ceramic gas turbines, fuel cells, and electric vehicles because ceramic technologies have been intensively involved in the challenge to achieve advanced power sources.

  5. International Conference on Innovative Design and Development Practices in Aerospace and Automotive Engineering

    CERN Document Server

    Chandrasekhar, U

    2017-01-01

    The book presents the best articles presented by researchers, academicians and industrial experts in the International Conference on “Innovative Design and Development Practices in Aerospace and Automotive Engineering (I-DAD 2016)”. The book discusses new concept designs, analysis and manufacturing technologies, where more swing is for improved performance through specific and/or multifunctional linguistic design aspects to downsize the system, improve weight to strength ratio, fuel efficiency, better operational capability at room and elevated temperatures, reduced wear and tear, NVH aspects while balancing the challenges of beyond Euro IV/Barat Stage IV emission norms, Greenhouse effects and recyclable materials. The innovative methods discussed in the book will serve as a reference material for educational and research organizations, as well as industry, to take up challenging projects of mutual interest.

  6. AUTOMOTIVE DIESEL MAINTENANCE, UNIT V, MAINTAINING THE LUBRICATION SYSTEM--DETROIT DIESEL ENGINE.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE LUBRICATION SYSTEM. TOPICS ARE LUBE OILS USED, MAINTENANCE OF THE LUBRICATION SYSTEM, AND CRANKCASE VENTILATION COMPONENTS. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "BASIC ENGINE…

  7. Performance Assessment and Scooter Verification of Nano-Alumina Engine Oil

    Directory of Open Access Journals (Sweden)

    Yu-Feng Lue

    2016-09-01

    Full Text Available The performance assessment and vehicle verification of nano-alumina (Al2O3 engine oil (NAEO were conducted in this study. The NAEO was produced by mixing Al2O3 nanoparticles with engine oil using a two-step synthesis method. The weight fractions of the Al2O3 nanoparticles in the four test samples were 0 (base oil, 0.5, 1.5, and 2.5 wt. %. The measurement of basic properties included: (1 density; (2 viscosity at various sample temperatures (20–80 °C. A rotary tribology testing machine with a pin-on-disk apparatus was used for the wear test. The measurement of the before-and-after difference of specimen (disk weight (wear test indicates that the NAEO with 1.5 wt. % Al2O3 nanoparticles (1.5 wt. % NAEO was the chosen candidate for further study. For the scooter verification on an auto-pilot dynamometer, there were three tests, including: (1 the European Driving Cycle (ECE40 driving cycle; (2 constant speed (50 km/h; and (3 constant throttle positions (20%, 40%, 60%, and 90%. For the ECE40 driving cycle and the constant speed tests, the fuel consumption was decreased on average by 2.75%, while it was decreased by 3.57% for the constant throttle case. The experimental results prove that the engine oil with added Al2O3 nanoparticles significantly decreased the fuel consumption. In the future, experiments with property tests of other nano-engine oils and a performance assessment of the nano-engine-fuel will be conducted.

  8. Pistons and engine testing

    CERN Document Server

    2016-01-01

    The ever-increasing demands placed on combustion engines are just as great when it comes to this centerpiece—the piston. Achieving less weight or friction, or even greater wear resistance, requires in-depth knowledge of the processes taking place inside the engine, suitable materials, and appropriate design and manufacturing processes for pistons, including the necessary testing measures. It is no longer possible for professionals in automotive engineering to manage without specific expertise of this kind, whether they work in the field of design, development, testing, or maintenance. This technical book answers these questions in detail and in a very clear and comprehensible way. In this second, revised edition, every chapter has been revised and expanded. The chapter on “Engine testing”, for example, now include extensive results in the area of friction power loss measurement and lube oil consumption measurement. Contents Piston function, requirements, and types Design guidelines Simulation of the ope...

  9. Improving magnetic properties of MgB{sub 2} bulk superconductors by synthetic engine oil treatment

    Energy Technology Data Exchange (ETDEWEB)

    Taylan Koparan, E., E-mail: etaylan20@gmail.com [Department of Science Education, Eregli Faculty of Education, Bulent Ecevit University, TR-67300, Zonguldak (Turkey); Savaskan, B. [Energy Systems Engineering, Faculty of Technology, Karadeniz Technical University, 61830, Of, Trabzon (Turkey); Yanmaz, E. [Department of Mechatronics, Faculty of Engineering and Architecture, İstanbul Gelişim University, İstanbul (Turkey)

    2016-08-15

    Highlights: • The effects of synthetic engine oil treatment on magnetic properties of bulk MgB{sub 2} superconductors has been first time investigated and reported. • Synthetic engine oil used as a product which is cheap and a rich carbon source obviously has improved the superconducting magnetic properties of MgB{sub 2}. • The critical current density of all of MgB{sub 2} samples immersed at different standby time in engine oil in whole field range has been better than that of the pure MgB{sub 2} sample. • The MgB{sub 2} sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. - Abstract: The present study focuses on the effects of standby time of the MgB{sub 2} samples immersed in synthetic engine oil on the critical current density ( J{sub c}(H)), magnetic field dependence of the pinning force density f{sub p}(b) and T{sub c} performances of MgB{sub 2} bulk superconductors. Synthetic engine oil was used as a product which is cheap and a rich carbon source. Manufactured MgB{sub 2} pellet samples were immersed at different standby time of 30 min, 120 min, 300 min and 1440 min in synthetic engine oil after the first heating process. Finally, MgB{sub 2} samples immersed in synthetic engine oil were sintered at 1000 °C and kept for 15 min in Ar atmosphere. The critical current density of all of MgB{sub 2} samples immersed at different standby time in engine oil in whole field range was better than that of the pure MgB{sub 2} sample because of the number of the pinning centers. The MgB{sub 2} sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. The J{sub c} value for the pure sample is 2.0 × 10{sup 3} A/cm{sup 2}, whereas for the MgB{sub 2} sample immersed at 300 min standby time in engine oil the J{sub c} is enhanced to 4.8 × 10{sup 3} A/cm{sup 2} at 5 K and 3 T. The superconducting transition temperature (T{sub c}) did not change

  10. ORNL-GM: Development of Ionic Liquid-Additized, GF-5/6 Compatible Low-Viscosity Oils for Automotive Engine and Rear Axle Lubrication for 4% Improved Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Jun [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Zhou, Yan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Luo, Huimin [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Toops, Todd J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brookshear, Daniel W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stump, Benjamin C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Viola, Michael B. [General Motors (GM) Technical Center, Pontiac, MI (United States); Zreik, Khaled [General Motors (GM) Technical Center, Pontiac, MI (United States); Ahmed, Tasfia [General Motors (GM) Technical Center, Pontiac, MI (United States)

    2017-01-01

    The overall objective of this project are as follows: Further develop ionic liquid (IL)-additized lowviscosity engine oils meeting the GF-5/6 specifications and possessing superior lubricating characteristics; Expand the IL additive technology to rear axle lubricants; and Seek a combined improvement in the vehicle fuel economy

  11. Effect of Magnetic Field on Diesel Engine Power Fuelled with Jatropha-Diesel Oil

    Directory of Open Access Journals (Sweden)

    Sukarni Sukarni

    2017-08-01

    Full Text Available Jatropha oil has characteristics very close to the diesel fuel, so it has good prospects as a substitute or as a mixture of diesel fuel. Previous research showed that jatropha oil usage in diesel engines caused power to decrease. It was probably owing to the higher viscosity of the Jatropha oil compared to that of diesel oil. Installing the magnetic field in the fuel line of a diesel engine fueled with jatropha-diesel oil is expected to reduce the viscosity of jatropha-diesel oil mixture, hence improve the combustion reaction process. This research aims to know the influence of the magnetic field strength in the fuel lines to the power of diesel engines fueled with a mixture of jatropha-diesel oil. The composition of Jatropha oil-diesel was 20% jatropha oil and 80% diesel oil. Magnetic field variations were 0.122, 0.245 and 0.368 Tesla. The results showed that the higher the strength of the magnetic field was, the higher the average diesel engine’s power would be.

  12. Experimental investigation of engine emissions with marine gas oil-oxygenate blends

    Energy Technology Data Exchange (ETDEWEB)

    Nabi, Md. Nurun, E-mail: nurun.nabi@ntnu.no [Rajshahi University of Engineering and Technology (Bangladesh); Norwegian University of Science and Technology (NTNU) (Norway); Hustad, Johan Einar, E-mail: johan.e.hustad@ntnu.no [Norwegian University of Science and Technology (NTNU) (Norway)

    2010-07-15

    This paper investigates the diesel engine performance and exhaust emissions with marine gas oil-alternative fuel additive. Marine gas oil (MGO) was selected as base fuel for the engine experiments. An oxygenate, diethylene glycol dimethyl ether (DGM), and a biodiesel (BD) jatropha oil methyl ester (JOME) with a volume of 10% were blended with the MGO fuel. JOME was derived from inedible jatropha oil. Lower emissions with diesel-BD blends (soybean methyl ester, rapeseed methyl ester etc.) have been established so far, but the effect of MGO-BD (JOME) blends on engine performance and emissions has been a growing interest as JOME (BD) is derived from inedible oil and MGO is frequently used in maritime transports. No phase separation between MGO-DGM and MGO-JOME blends was found. The neat MGO, MGO-DGM and MGO-JOME blends are termed as MGO, Ox10 and B10 respectively. The experiments were conducted with a six-cylinder, four-stroke, turbocharged, direct-injection Scania DC 1102 (DI) diesel engine. The experimental results showed significant reductions in fine particle number and mass emissions, PM and smoke emissions with Ox10 and B10 fuels compared to the MGO fuel. Other emissions including total unburned hydrocarbon (THC), carbon monoxide (CO) and engine noise were also reduced with the Ox10 and B10 fuels, while maintaining similar brake specific fuel consumption (BSFC) and thermal efficiency with MGO fuel. Oxides of nitrogen (NOx) emissions, on the other hand, were slightly higher with the Ox10 and B10 fuels at high engine load conditions.

  13. A prototype knowledge-based system for material selection of ceramic matrix composites of automotive engine components

    Energy Technology Data Exchange (ETDEWEB)

    Sapuan, S.M.; Jacob, M.S.D.; Mustapha, F.; Ismail, N

    2002-12-15

    A prototype knowledge based system (KBS) for material selection of ceramic matrix composites (CMC) for engine components such as piston, connecting rod and piston ring is proposed in this paper. The main aim of this research work is to select the most suitable material for the automotive engine components. The selection criteria are based upon the pre-defined constraint value. The constraint values are mechanical, physical properties and manufacturing techniques. The constraint values are the safety values for the product design. The constraint values are selected from the product design specification. The product design specification values are selected from the past design calculation and some values are calculated by the help of past design data. The knowledge-based system consists of several modules such as knowledge acquisition module, inference module and user interface module. The domains of the knowledge-based system are defined as objects and linked together by hierarchical graph. The system is capable of selecting the most suitable materials and ranks the materials with respect to their properties. The design engineers can choose the required materials related to the materials property.

  14. Modeling and Experimental Validation of a Volumetric Expander Suitable for Waste Heat Recovery from an Automotive Internal Combustion Engine Using an Organic Rankine Cycle with Ethanol

    OpenAIRE

    Galindo, José; Dolz Ruiz, Vicente; Royo-Pascual, Lucía; Haller, R.; Melis, J.

    2016-01-01

    Waste heat recovery (WHR) in exhaust gas flow of automotive engines has proved to be a useful path to increase the overall efficiency of internal combustion engines (ICE). Recovery potentials of up to 7% are shown in several works in the literature. However, most of them are theoretical estimations. Some present results from prototypes fed by steady flows generated in an auxiliary gas tank and not with actual engine exhaust gases. This paper deals with the modeling and experimenta...

  15. Effect of spent engine oil on germination and growth parameters of ...

    African Journals Online (AJOL)

    This study investigated the effects of spent engine oil on the germination and growth parameters of fluted pumpkin (Telfairia occidentalis). Fluted pumpkin was grown on soils contaminated with 20ml, 40ml, 60ml, 80ml and 100ml of spent engine oil to obtain 1, 2, 3, 4 and 5% contaminations respectively and monitored for ...

  16. Performance and emission study of preheated Jatropha oil on medium capacity diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Chauhan, Bhupendra Singh; Du Jun, Yong; Lee, Kum Bae [Division of Automobile and Mechanical Engineering, Kongju National University (Korea); Kumar, Naveen [Department of Mechanical Engineering, Delhi Technological University, Bawana Road, Delhi 42 (India)

    2010-06-15

    Diesel engines have proved their utility in transport, agriculture and power sector. Environmental norms and scared fossil fuel have attracted the attention to switch the energy demand to alternative energy source. Oil derived from Jatropha curcas plant has been considered as a sustainable substitute to diesel fuel. However, use of straight vegetable oil has encountered problem due to its high viscosity. The aim of present work is to reduce the viscosity of oil by heating from exhaust gases before fed to the engine, the study of effects of FIT (fuel inlet temperature) on engine performance and emissions using a dual fuel engine test rig with an appropriately designed shell and tube heat exchanger (with exhaust bypass arrangement). Heat exchanger was operated in such a way that it could give desired FIT. Results show that BTE (brake thermal efficiency) of engine was lower and BSEC (brake specific energy consumption) was higher when the engine was fueled with Jatropha oil as compared to diesel fuel. Increase in fuel inlet temperature resulted in increase of BTE and reduction in BSEC. Emissions of NO{sub x} from Jatropha oil during the experimental range were lower than diesel fuel and it increases with increase in FIT. CO (carbon monoxide), HC (hydrocarbon), CO{sub 2} (carbon dioxide) emissions from Jatropha oil were found higher than diesel fuel. However, with increase in FIT, a downward trend was observed. Thus, by using heat exchanger preheated Jatropha oil can be a good substitute fuel for diesel engine in the near future. Optimal fuel inlet temperature was found to be 80 C considering the BTE, BSEC and gaseous emissions. (author)

  17. Determination of wear metals in engine oil by PIXE and RBS technique

    Energy Technology Data Exchange (ETDEWEB)

    Alkofahi, M M [Physics Dept., Yarmouk university, Irbid, (Jordan)

    1995-10-01

    The constituents of fresh and used engine oil were determined by PIXE and RBS techniques using 2 MeV He{sup ++} ion beams. The concentration of generated wear metals in used engine oil was measured as a function of running kilometers. The fresh oil was found to contain the elements: Si, P, S, Cl, K, Ca, and Fe. In addition to theses elements, Pb and Br were found in the used oil. Changes in the concentrations of S, Zn and Br were noticed as the running kilometers increased. 6 figs., 2 tabs.

  18. Direct Injection Compression Ignition Diesel Automotive Technology Education GATE Program

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Carl L

    2006-09-25

    The underlying goal of this prqject was to provide multi-disciplinary engineering training for graduate students in the area of internal combustion engines, specifically in direct injection compression ignition engines. The program was designed to educate highly qualified engineers and scientists that will seek to overcome teclmological barriers preventing the development and production of cost-effective high-efficiency vehicles for the U.S. market. Fu1iher, these highly qualified engineers and scientists will foster an educational process to train a future workforce of automotive engineering professionals who are knowledgeable about and have experience in developing and commercializing critical advanced automotive teclmologies. Eight objectives were defmed to accomplish this goal: 1. Develop an interdisciplinary internal co1nbustion engine curriculum emphasizing direct injected combustion ignited diesel engines. 2. Encourage and promote interdisciplinary interaction of the faculty. 3. Offer a Ph.D. degree in internal combustion engines based upon an interdisciplinary cuniculum. 4. Promote strong interaction with indusuy, develop a sense of responsibility with industry and pursue a self sustaining program. 5. Establish collaborative arrangements and network universities active in internal combustion engine study. 6. Further Enhance a First Class educational facility. 7. Establish 'off-campus' M.S. and Ph.D. engine programs of study at various indusuial sites. 8. Extend and Enhance the Graduate Experience.

  19. The evolution of automotive technology : a handbook

    NARCIS (Netherlands)

    Mom, G.P.A.

    2015-01-01

    This book covers one and a quarter century of the automobile, conceived as a cultural history of its technology, aimed at engineering students and all those who wish to have a concise introduction into the basics of automotive technology and its long-term development. Its approach is systemic and

  20. Operation of neat pine oil biofuel in a diesel engine by providing ignition assistance

    International Nuclear Information System (INIS)

    Vallinayagam, R.; Vedharaj, S.; Yang, W.M.; Lee, P.S.

    2014-01-01

    Highlights: • Operational feasibility of neat pine oil biofuel has been examined. • Pine oil suffers lower cetane number, which mandates for necessary ignition assistance. • Ignition support is provided by preheating the inlet air and incorporating a glow plug. • At an inlet air temperature of 60 °C, the BTE for pine oil was found to be in par with diesel. • CO and smoke emissions were reduced by 13.2% and 16.8%, respectively, for neat pine oil. - Abstract: The notion to provide ignition support for the effective operation of lower cetane fuels in a diesel engine has been ably adopted in the present study for the sole fuel operation of pine oil biofuel. Having noted that the lower cetane number and higher self-ignition temperature of pine oil biofuel would inhibit its direct use in a diesel engine, combined ignition support in the form of preheating the inlet air and installing a glow plug in the cylinder head has been provided to improve the auto-ignition of pine oil. While, an air preheater, installed in the inlet manifold of the engine, preheated the inlet air so as to provide ignition assistance partially, the incorporation of glow plug in the cylinder head imparted the further required ignition support appropriately. Subsequently, the operational feasibility of neat pine oil biofuel has been examined in a single cylinder diesel engine and the engine test results were analyzed. From the experimental investigation, though the engine performance and emissions such as CO (carbon monoxide) and smoke were noted to be better for pine oil with an inlet air temperature of 40 °C, the engine suffered the setback of knocking due to delayed SOC (start of combustion). However, with the ignition support through glow plug and preheating of inlet air, the engine knocking was prevented and the normal operation of the engine was ensured. Categorically, at an inlet air temperature of 60 °C, BTE (brake thermal efficiency) was found to be in par with diesel, while

  1. Automotive Stirling Engine Development Program

    Science.gov (United States)

    Nightingale, N.; Ernst, W.; Richey, A.; Simetkosky, M.; Smith, G.; Antonelli, M. (Editor)

    1983-01-01

    Mod I engine testing and test results, the test of a Mod I engine in the United States, Mod I engine characterization and analysis, Mod I Transient Test Bed fuel economy, Mod I-A engine performance are discussed. Stirling engine reference engine manufacturing and reduced size studies, components and subsystems, and the study and test of low-cost casting alloys are also covered. The overall program philosophy is outlined, and data and results are presented.

  2. A structured hazard analysis and risk assessment method for automotive systems—A descriptive study

    International Nuclear Information System (INIS)

    Beckers, Kristian; Holling, Dominik; Côté, Isabelle; Hatebur, Denis

    2017-01-01

    The 2011 release of the first version of the ISO 26262 standard for automotive systems demand the elicitation of safety goals following a rigorous method for hazard and risk analysis. Companies are struggling with the adoption of the standard due to ambiguities, documentation demands and the alignment of the standards demands to existing processes. We previously proposed a structured engineering method to deal with these problems developed in applying action research together with an OEM. In this work, we evaluate how applicable the method is for junior automotive software engineers by a descriptive study. We provided the method to 8 members of the master course Automotive Software Engineering (ASE) at the Technical University Munich. The participants have each been working in the automotive industry for 1–4 years in parallel to their studies. We investigated their application of our method to an electronic steering column lock system. The participants applied our method in a first round alone and afterwards discussed their results in groups. Our data analysis revealed that the participants could apply the method successfully and the hazard analysis and risk assessment achieved a high precision and productivity. Moreover, the precision could be improved significantly during group discussions.

  3. Effect of poultry fat oil biodiesel on tractor engine performance

    Directory of Open Access Journals (Sweden)

    M Bavafa

    2016-04-01

    Full Text Available Introduction: Depletion of fossil fuels and environmental degradation are two major problems faced by the world. Today fossil fuels take up to 80% of the primary energy consumed in the world, of which 58% is consumed by the transport sector alone (Mard et al., 2012. The combustion products cause global warming, which is caused of emissions like carbon monoxide (CO, sulfur dioxide (SO2 and nitrogen oxides (NOX. Thus it is essential that low emission alternative fuels to be developed for useing in diesel engines. Many researchers have concluded that biodiesel holds promise as an alternative fuel for diesel engines. Biodiesel is oxygenated, biodegradable, non-toxic, and environmentally friendly (Qi et al., 2010. Materials and Methods: In this study transesterification method was used to produce biodiesel, because of its simplicity in biodiesel production process and holding the highest conversion efficiency. Transesterification of poultry fat oil and the properties of the fuels: Fatty acid methyl ester of poultry fat oil was prepared by transesterification of oil with methanol in the presence of KOH as catalyst. The fuel properties of poultry fat oil methyl ester and diesel fuel were determined. These properties are presented in Table 1. Tests of engine performance and emissions: After securing the qualitative characteristics of produced biodiesel, different biodiesel fuels of 5%, 10%, 15%, and 20% blended with diesel fuel were prepared. A schematic diagram of the engine setup is shown in Fig.1. The MF-399 tractor engine was used in the tests. The basic specifications of the engine are shown in Table 3. The engine was loaded with an electromagnetic dynamometer. The Σ5 model dynamometer manufactured by NJ-FROMENT was used to measure the power and the torque of the tractor engine. The speed range and capacity of this device are shown in Table 2. A FTO Flow Meter, manufactured by American FLOWTECH Company, was used to measure the fuel consumption

  4. Correlation between electrical, mechanical and chemical properties of fresh and used aircraft engine oils

    Science.gov (United States)

    Gajewski, Juliusz B.; Głogowski, Marek J.; Paszkowski, Maciej; Czarnik-Matusewicz, Bogusława

    2011-06-01

    In this paper the results are presented of measurements of electrical, mechanical and chemical properties of fresh and used aircraft engine oils. Oils were used in a four-stroke aircraft engine and their samples were taken after the 50-hour work of the engine. The resistivity, permittivity and viscosity of oils were measured as a function of temperature. Additionally, some measurements of the absorbance spectra and size of particles contained in the oils were carried out. The significant reduction in the resistivity of the used Total oil was observed. The relative permittivity of both used oils was slightly increased. The oil's relative viscosity depends on temperature of oil and given time that elapsed from the very first moment when the shear force was applied in a rheometer. The results obtained allowed one to identify more precisely the chemical and physico-chemical interactions occurring in the tested samples, as compared with a typical infrared spectroscopy.

  5. Correlation between electrical, mechanical and chemical properties of fresh and used aircraft engine oils

    International Nuclear Information System (INIS)

    Gajewski, Juliusz B; Glogowski, Marek J; Paszkowski, Maciej; Czarnik-Matusewicz, Boguslawa

    2011-01-01

    In this paper the results are presented of measurements of electrical, mechanical and chemical properties of fresh and used aircraft engine oils. Oils were used in a four-stroke aircraft engine and their samples were taken after the 50-hour work of the engine. The resistivity, permittivity and viscosity of oils were measured as a function of temperature. Additionally, some measurements of the absorbance spectra and size of particles contained in the oils were carried out. The significant reduction in the resistivity of the used Total oil was observed. The relative permittivity of both used oils was slightly increased. The oil's relative viscosity depends on temperature of oil and given time that elapsed from the very first moment when the shear force was applied in a rheometer. The results obtained allowed one to identify more precisely the chemical and physico-chemical interactions occurring in the tested samples, as compared with a typical infrared spectroscopy.

  6. Lemon peel oil – A novel renewable alternative energy source for diesel engine

    International Nuclear Information System (INIS)

    Ashok, B.; Thundil Karuppa Raj, R.; Nanthagopal, K.; Krishnan, Rahul; Subbarao, Rayapati

    2017-01-01

    Highlights: • Novel biofuel is extracted from lemon peels through steam distillation process. • Lemon peel oil is found to be a potential, renewable alternate eco-friendly fuel. • Significant vibration is observed with 100% lemon peel oil. • Reduction of CO, HC and smoke emission are observed with lemon peel oil blends. • Lemon peel oil blends are showed higher brake thermal efficiency than diesel fuel. - Abstract: The present research work has embarked on to exploit the novel renewable and biodegradable source of energy from lemon fruit rinds. A systematic approach has been made in this study to find the suitability of lemon peel oil for internal combustion engines and gensets applications. Extracted lemon peel oil is found to exhibit comparatively very low viscosity, flash point and boiling point than that of conventional diesel. Various blends of lemon peel oil have been prepared with conventional diesel with volumetric concentration of 20%, 40%, 50% and 100% and their physical and chemical properties are evaluated for its suitability in direct injection diesel engine. Lower cetane index of lemon peel oil significantly influences the ignition delay period and peak heat release rate that lead to the penalty in NOx emissions. Interestingly, the diesel engine performance characteristics have been improved to a remarkable level with higher proportions of lemon peel oil in the blends. In addition, the reduction of BSCO, BSHC and smoke emission is proportional to the lemon oil concentration in the blends. Overall diesel engine characteristics indicated that lemon peel oil can partially or completely replace the petroleum diesel usage to a great extent in developing countries like India.

  7. Performance and Combustion Characteristics Analysis of Multi-Cylinder CI Engine Using Essential Oil Blends

    Directory of Open Access Journals (Sweden)

    S. M. Ashrafur Rahman

    2018-03-01

    Full Text Available Essential oils are derived from not-fatty parts of plants and are mostly used in aromatherapy, as well as cosmetics and perfume production. The essential oils market is growing rapidly due to their claimed health benefits. However, because only therapeutic grade oil is required in the medicinal sector, there is a substantial low-value waste stream of essential oils that can be used in the transportation and agricultural sectors. This study investigated the influence of orange, eucalyptus, and tea tree oil on engine performance and combustion characteristics of a multi-cylinder compression ignition engine. Orange, eucalyptus, and tea tree oil were blended with diesel at 10% by volume. For benchmarking, neat diesel and 10% waste cooking biodiesel-diesel blend were also tested. The selected fuels were used to conduct engine test runs with a constant engine speed (1500 RPM (revolutions per minute at four loads. As the load increased, frictional power losses decreased for all of the fuel samples and thus mechanical efficiency increased. At higher loads (75% and 100%, only orange oil-diesel blends produced comparable power to diesel and waste cooking biodiesel-diesel blends. Fuel consumption (brake and indicated for the essential oil-diesel blends was higher when compared to base diesel and waste cooking biodiesel-diesel blends. Thermal efficiency for the essential oil-diesel blends was comparable to base diesel and waste cooking biodiesel-diesel blends. At higher loads, blow-by was lower for essential oil blends as compared to base diesel and waste cooking biodiesel-diesel blends. At 50% and 100% load, peak pressure was lower for all of the essential oil-diesel blends when compared to base diesel and waste cooking biodiesel-diesel blends. From the heat release rate curve, the essential oil-diesel blends ignition delay times were longer because the oils have lower cetane values. Overall, the low-value streams of these essential oils were found to be

  8. Engineered microbes and methods for microbial oil production

    Energy Technology Data Exchange (ETDEWEB)

    Stephanopoulos, Gregory; Tai, Mitchell; Chakraborty, Sagar

    2018-01-09

    Some aspects of this invention provide engineered microbes for oil production. Methods for microbe engineering and for use of engineered microbes are also provided herein. In some embodiments, microbes are provided that are engineered to modulate a combination of rate-controlling steps of lipid synthesis, for example, a combination of a step generating metabolites, acetyl-CoA, ATP or NADPH for lipid synthesis (a push step), and a step sequestering a product or an intermediate of a lipid synthesis pathway that mediates feedback inhibition of lipid synthesis (a pull step). Such push-and-pull engineered microbes exhibit greatly enhanced conversion yields and TAG synthesis and storage properties.

  9. Engineered microbes and methods for microbial oil production

    Science.gov (United States)

    Stephanopoulos, Gregory; Tai, Mitchell; Chakraborty, Sagar

    2015-02-10

    Some aspects of this invention provide engineered microbes for oil production. Methods for microbe engineering and for use of engineered microbes are also provided herein. In some embodiments, microbes are provided that are engineered to modulate a combination of rate-controlling steps of lipid synthesis, for example, a combination of a step generating metabolites, acetyl-CoA, ATP or NADPH for lipid synthesis (a push step), and a step sequestering a product or an intermediate of a lipid synthesis pathway that mediates feedback inhibition of lipid synthesis (a pull step). Such push-and-pull engineered microbes exhibit greatly enhanced conversion yields and TAG synthesis and storage properties.

  10. Fuel properties and engine performance of biodiesel from waste cooking oil collected in Dhaka city

    Science.gov (United States)

    Islam, R. B.; Islam, R.; Uddin, M. N.; Ehsan, Md.

    2016-07-01

    Waste cooking oil can be a potential source of biodiesel that has least effect on the edible oil consumption. Increasing number of hotel-restaurants and more active monitoring by health authorities have increased the generation of waste cooking oil significantly in densely populated cities like Dhaka. If not used or disposed properly, waste cooking oil itself may generate lot of environmental issues. In this work, waste cooking oils from different restaurants within Dhaka City were collected and some relevant properties of these waste oils were measured. Based on the samples studied one with the highest potential as biodiesel feed was identified and processed for engine performance. Standard trans-esterification process was used to produce biodiesel from the selected waste cooking oil. Biodiesel blends of B20 and B40 category were made and tested on a single cylinder direct injection diesel engine. Engine performance parameters included - bhp, bsfc and exhaust emission for rated and part load conditions. Results give a quantitative assessment of the potential of using biodiesel from waste cooking oil as fuel for diesel engines in Bangladesh.

  11. Application of Canola Oil Biodiesel/Diesel Blends in a Common Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Jun Cong Ge

    2016-12-01

    Full Text Available In this study, the application effects of canola oil biodiesel/diesel blends in a common rail diesel engine was experimentally investigated. The test fuels were denoted as ULSD (ultra low sulfur diesel, BD20 (20% canola oil blended with 80% ULSD by volume, and PCO (pure canola oil, respectively. These three fuels were tested under an engine speed of 1500 rpm with various brake mean effective pressures (BMEPs. The results indicated that PCO can be used well in the diesel engine without engine modification, and that BD20 can be used as a good alternative fuel to reduce the exhaust pollution. In addition, at low engine loads (0.13 MPa and 0.26 MPa, the combustion pressure of PCO is the smallest, compared with BD20 and ULSD, because the lower calorific value of PCO is lower than that of ULSD. However, at high engine loads (0.39 MPa and 0.52 MPa, the rate of heat release (ROHR of BD20 is the highest because the canola oil biodiesel is an oxygenated fuel that promotes combustion, shortening the ignition delay period. For exhaust emissions, by using canola oil biodiesel, the particulate matter (PM and carbon monoxide (CO emissions were considerably reduced with increased BMEP. The nitrogen oxide (NOx emissions increased only slightly due to the inherent presence of oxygen in biodiesel.

  12. Use of a non-edible vegetable oils as an alternative fuel in compression ignition engines

    International Nuclear Information System (INIS)

    Jayaraj, S.; Ramadhas, A.S.; Muraleedharan, C.

    2006-01-01

    Shortage of petroleum fuels is assumed predominance globally and hence efforts are being made in every country to look for alternative fuels, especially for running internal compression ignition engines. However, the limited availability of edible vegetable oils in excess amounts is a limiting factors, which limits their large usage as an alternative fuel. A remedy for this is the use of non-edible oils obtained mainly from seeds, which are otherwise dumped as waste material. An effort is made here to use rubber seed oil as fuel in compression ignition engine at various proportions, mixed with diesel oil. The performance and emission characteristics of the engine are measured under dual fuel operation. The compression ignition engine could be run satisfactorily without any noticeable problem, even with 100% rubber seed oil. A multi-layer artificial neural network model was developed for predicting the performance and emission characteristics of the engine under dual fuel operation. Experimental data has been used to train the network. The predicted engine performance and emission characteristics obtained by neural network model are validated by using the experimental data. The neural network model is found to be quite efficient in predicting engine performance and emission characteristics. It has been found that 60-80% diesel replacement by rubber seed oil is the optimum in order to get maximum engine performance and minimum exhaust emission

  13. Virgin and recycled engine oil differentiation: a spectroscopic study.

    Science.gov (United States)

    Al-Ghouti, Mohammad A; Al-Atoum, Lina

    2009-01-01

    As a result of the changes that occur during their use, used engine oils tend to differ in chemical and physical composition from a virgin oil. In general recycled oils have: much higher water and sediment levels than virgin oil; relatively higher concentrations of organic compounds (oxidation products); and relatively higher levels of metals such as Fe, Cd, Cr, Pb, etc. Therefore, the aim of this work was to investigate, assess and to observe, by means of the physical and the chemical properties of the oils, atomic absorption (AA), inductive couple plasma (ICP) and Fourier transform infrared (FTIR) analyses the extent of the differences occurring between the virgin and recycled oil. In important part of this work was also the development of analytical techniques based on the use of FTIR spectroscopy; in relation to the rapid analysis of lubricants; in particular for the differentiation of virgin and recycled oil. The results obtained were expected to be useful for differentiation purposes, providing information on whether the metal concentrations and oxidation products could be an appropriate feature for differentiating a particular oil sample from the others. This work is categorized into a two-step procedure. Firstly, an evaluation of a typical FTIR spectrum of an engine oil sample (mono- and multigrade) is presented. The broad feature centered at 1716 cm(-1) is due to the presence of carbonyl containing degradation products of oil. A band observed at 1732, 1169, 1154 and 1270 cm(-1) assigned to the polymethacrylate stretching vibrations, allows the determination of viscosity modifier and pour point depressant additives. The observed differences in the specific spectral bands (1732, 1169, 1154 and 1270 and 1716 cm(-1)) are investigated and discussed. Secondly, an analytical technique for the measurement of the levels of the wear metals is also applied.

  14. Integrated Computational Materials Engineering for Magnesium in Automotive Body Applications

    Science.gov (United States)

    Allison, John E.; Liu, Baicheng; Boyle, Kevin P.; Hector, Lou; McCune, Robert

    This paper provides an overview and progress report for an international collaborative project which aims to develop an ICME infrastructure for magnesium for use in automotive body applications. Quantitative processing-micro structure-property relationships are being developed for extruded Mg alloys, sheet-formed Mg alloys and high pressure die cast Mg alloys. These relationships are captured in computational models which are then linked with manufacturing process simulation and used to provide constitutive models for component performance analysis. The long term goal is to capture this information in efficient computational models and in a web-centered knowledge base. The work is being conducted at leading universities, national labs and industrial research facilities in the US, China and Canada. This project is sponsored by the U.S. Department of Energy, the U.S. Automotive Materials Partnership (USAMP), Chinese Ministry of Science and Technology (MOST) and Natural Resources Canada (NRCan).

  15. Analysis of lubricant oil contamination and degradation and wear of a biogas-fed otto cycle engine

    Directory of Open Access Journals (Sweden)

    Rovian Bertinatto

    2017-09-01

    Full Text Available The increasing deployment of biodigesters for the treatment of waste on farms and the use of the biogas generated in the production of energy have highlighted the need for knowing the influence of this fuel on internal combustion engines. This study aimed to analyze the influence of filtrated biogas on lubricant oil contamination and degradation, as well as on engine wear and corrosion. Lubricant oil samples were collected every 75 engine operating hours (EOH and then correlated between each other and with a sample of new oil, determining the elements present in the biogas that contribute to lubricant oil contamination and degradation, as well as lubricant oil performance in the course of EOH and engine wear. The results demonstrate that hydrogen sulfide affects the performance of the lubricant oil and engine wear. Among the metals, we observed that the copper concentration exceeded the maximum limit recommended in the literature. As for the additives, the variation in concentrations of magnesium impacted on lubricant performance. By monitoring lubricant oil quality were able to extend the engine oil change interval of this study by 50%, what resulted in a savings of 33.3% in the cost of lubricant per hour worked.

  16. Fueling diesel engines with methyl-ester soybean oil

    International Nuclear Information System (INIS)

    Schumacher, L.G.; Hires, W.G.; Borgelt, S.C.

    1993-01-01

    Two 5.9 liter Cummins engines were fueled for a combined total of more than 80,467 km (50,000 miles). One truck, a 1991 Dodge, has been driven approximately 48,280 km (30,000 miles). The other, a 1992 Dodge, has been driven approximately 32,187 km (20,000 miles). Fueling these engines with soydiesel increase engine power by 3 percent (1991 engine) and reduced power by 6 percent (1992 engine). The pickups averaged more than 7.1 km/L (16.7 mpg). Analysis of used engine oil samples indicated that the engines were wearing at normal rate. The black exhaust smoke normally observed when a diesel engine accelerates was reduced as much as 86 percent when the diesel engine was fueled with 100% soydiesel. Increased EPA exhaust emissions requirements for diesel engines have created much interest in the use of soydiesel as fuel for diesel engines

  17. The effect of used engine oil on carbohydrate, mineral content and ...

    African Journals Online (AJOL)

    MICHAEL

    reductase activity in plants that were exposed to engine oil. Therefore ... change oil from motor vehicles and power generating machines. ... The availability of essential mineral element is ... representing each treatment and this was replicated.

  18. Fuel Continuous Mixer ? an Approach Solution to Use Straight Vegetable Oil for Marine Diesel Engines

    Directory of Open Access Journals (Sweden)

    Đặng Van Uy

    2018-03-01

    Full Text Available The vegetable oil is well known as green fuel for diesel engines due to its low sunphur content and renewable stock. However, there are some problems raising when vegetable oil is used as fuel for diesel engines such as highly effected by cold weather, lower general efficiency, separation in layer if mixed with diesel oil and so on. To overcome that disadvantiges, the authors propose a new idea that to use a continuous fuel mixer to blend vegetable oil with diesel oil to make so called a mixed fuel supplying to diesel engines inline. In order to ensure a quality of the mixed fuel created by continuous mixer, a homogeneous testing was introduced with believable results. Then, the continuous mixer has been installed into fuel supply system of diesel engine 6LU32 at a lab of Vietnam Maritime University in terms of checking a real operation of the fuel continuous mixer with diesel engine.

  19. Radial oil injection applied to main engine bearings: evaluation of injection control rules

    DEFF Research Database (Denmark)

    Estupiñan, EA; Santos, Ilmar

    2012-01-01

    , the dynamic behaviour of the main bearing of a medium-size engine is theoretically analysed when the engine operates with controllable radial oil injection and four different injection control rules. The theoretical investigation is based on a single-cylinder combustion engine model. The performance......The performance of main bearings in a combustion engine affects key functions such as durability, noise and vibration. Thus, with the aim of reducing friction losses and vibrations between the crankshaft and the bearings, the work reported here evaluates different strategies for applying...... controllable radial oil injection to main crankshaft journal bearings. In an actively lubricated bearing, conventional hydrodynamic lubrication is combined with controllable hydrostatic lubrication, where the oil injection pressures can be modified depending on the operational conditions. In this study...

  20. Fast automotive diesel exhaust measurement using quantum cascade lasers

    Science.gov (United States)

    Herbst, J.; Brunner, R.; Lambrecht, A.

    2013-12-01

    Step by step, US and European legislations enforce the further reduction of atmospheric pollution caused by automotive exhaust emissions. This is pushing automotive development worldwide. Fuel efficient diesel engines with SCRtechnology can impede NO2-emission by reduction with NH3 down to the ppm range. To meet the very low emission limits of the Euro6 resp. US NLEV (National Low Emission Vehicle) regulations, automotive manufacturers have to optimize continuously all phases of engine operation and corresponding catalytic converters. Especially nonstationary operation holds a high potential for optimizing gasoline consumption and further reducing of pollutant emissions. Test equipment has to cope with demanding sensitivity and speed requirements. In the past Fraunhofer IPM has developed a fast emission analyzer called DEGAS (Dynamic Exhaust Gas Analyzer System), based on cryogenically cooled lead salt lasers. These systems have been used at Volkswagen AG`s test benches for a decade. Recently, IPM has developed DEGAS-Next which is based on cw quantum cascade lasers and thermoelectrically cooled detectors. The system is capable to measure three gas components (i.e. NO, NO2, NH3) in two channels with a time resolution of 20 ms and 1 ppm detection limits. We shall present test data and a comparison with fast FTIR measurements.

  1. Nano-crystalline P/M aluminium for automotive applications

    International Nuclear Information System (INIS)

    Hummert, K; Schattevoy, R; Broda, M; Knappe, M; Beiss, P; Klubberg, F; Schubert, T H; Leuschner, R

    2009-01-01

    The reduction of total vehicle weight and lowering of moving masses within the engine are key elements to overcome future emission challenges of the automotive industry. Within a German BMBF funded project the melt spinning technology will be driven to a series production status. The very fast cooling condition of the melt leads to a nano-structure of the aluminium material. This results in new material properties of known alloys. The strength increases dramatically without lowered forming behaviour. With this process the freedom of designing complex alloys is very flexible. Different alloys have been investigated for several applications, where high strength at room and elevated temperatures and/or high wear resistance is required. This paper presents some results regarding the processing, microstructure and mechanical properties of a developed Al-Ni-Fe alloy. This joined research project with partners from the automotive industry as well as automotive suppliers and universities is funded by the German BMBF 'NanoMobile' Program under Project number 03X3008.

  2. The Impact of Technology on Hawaii's Automotive Mechanics: An Analysis with Recommendations. Technological Impact Study Series.

    Science.gov (United States)

    Allen, Robert

    Because of the increasing use of microelectronic componentry in automobiles, vocational educators must reexamine existing automotive mechanics curricula to ensure that they can continue to provide relevant job training. After examining recent trends in the impact of computers and electronics on automotive design and engineering, existing auto…

  3. Automotive Chassis; Automotive Mechanics-Basic: 9043.02.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This automotive chassis course is designed to familiarize the beginning student of the history and development of the automobile with basic concepts common to the automobile industry, and general information that is required for successful advancement in the automotive mechanics field. It is one quinmester in a series of quinmester outlines…

  4. Analysis of oil consumption in cylinder of diesel engine for optimization of piston rings

    Science.gov (United States)

    Zhang, Junhong; Zhang, Guichang; He, Zhenpeng; Lin, Jiewei; Liu, Hai

    2013-01-01

    The performance and particulate emission of a diesel engine are affected by the consumption of lubricating oil. Most studies on oil consumption mechanism of the cylinder have been done by using the experimental method, however they are very costly. Therefore, it is very necessary to study oil consumption mechanism of the cylinder and obtain the accurate results by the calculation method. Firstly, four main modes of lubricating oil consumption in cylinder are analyzed and then the oil consumption rate under common working conditions are calculated for the four modes based on an engine. Then, the factors that affect the lubricating oil consumption such as working conditions, the second ring closed gap, the elastic force of the piston rings are also investigated for the four modes. The calculation results show that most of the lubricating oil is consumed by evaporation on the liner surface. Besides, there are three other findings: (1) The oil evaporation from the liner is determined by the working condition of an engine; (2) The increase of the ring closed gap reduces the oil blow through the top ring end gap but increases blow-by; (3) With the increase of the elastic force of the ring, both the left oil film thickness and the oil throw-off at the top ring decrease. The oil scraping of the piston top edge is consequently reduced while the friction loss between the rings and the liner increases. A neural network prediction model of the lubricating oil consumption in cylinder is established based on the BP neural network theory, and then the model is trained and validated. The main piston rings parameters which affect the oil consumption are optimized by using the BP neural network prediction model and the prediction accuracy of this BP neural network is within 8%, which is acceptable for normal engineering applications. The oil consumption is also measured experimentally. The relative errors of the calculated and experimental values are less than 10%, verifying the

  5. An overview of aerospace gas turbine technology of relevance to the development of the automotive gas turbine engine

    Science.gov (United States)

    Evans, D. G.; Miller, T. J.

    1978-01-01

    The NASA-Lewis Research Center (LeRC) has conducted, and has sponsored with industry and universities, extensive research into many of the technology areas related to gas turbine propulsion systems. This aerospace-related technology has been developed at both the component and systems level, and may have significant potential for application to the automotive gas turbine engine. This paper summarizes this technology and lists the associated references. The technology areas are system steady-state and transient performance prediction techniques, compressor and turbine design and performance prediction programs and effects of geometry, combustor technology and advanced concepts, and ceramic coatings and materials technology.

  6. The AGT 101 advanced automotive gas turbine

    Science.gov (United States)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    A development program is described whose goal is the accumulation of the technology base needed by the U.S. automotive industry for the production of automotive gas turbine powertrains. Such gas turbine designs must exhibit reduced fuel consumption, a multi-fuel capability, and low exhaust emissions. The AGT101 powertrain described is a 74.6 kW, regenerated single-shaft gas turbine, operating at a maximum inlet temperature of 1644 K and coupled to a split differential gearbox and automatic overdrive transmission. The engine's single stage centrifugal compressor and single stage radial inflow turbine are mounted on a common shaft, and will operate at a maximum rotor speed of 100,000 rpm. All high temperature components, including the turbine rotor, are ceramic.

  7. Proceedings of the First International Workshop on Automotive Software Architecture (WASA'15, Montreal, Canada, May 4, 2015)

    NARCIS (Netherlands)

    Kruchten, P.; Dajsuren, Y.; Altinger, H.; Staron, M.

    2015-01-01

    It is our great pleasure to welcome you to the First International Workshop on Automotive Software Architectures -- WASA'15. More than a decade ago, the term automotive software engineering was officially introduced in the software community addressing research challenges and technical issues

  8. Improvement of a Vertical Falling Ball Viscometer for Measuring Engine Oil Properties using 532nm diode laser, with Estimation of the Concentration of operated Oil

    Directory of Open Access Journals (Sweden)

    Dawood O. Altaify

    2017-05-01

    Full Text Available In this work, an improvement of falling ball viscometer was presented using laser beam. Several parameters such as viscosity, shear stress, shear rate, Reynolds number and drag coefficient were calculated for a sample of unused engine oil. In the other words, during the operation of engine, the variation of viscosity occurs due to the increasing in the engine temperature and may in the increasing of the concentration of engine body particles inside the oil due to friction force even with existing the oil filter there are tiny particles that pass through the oil filter, therefore a Lambert’s law was used to estimate the particles concentrations of the operated oil, the resulted graphs show increasing of the impurities concentration with operation time.

  9. Potentials and limitations of alternative fuels for diesel engine

    Directory of Open Access Journals (Sweden)

    Gligorijević Radinko

    2009-01-01

    Full Text Available The primary energy consumption in the world has increased continuously. The most important primary energy source is oil. The supply of automotive fuels today is based almost entirely on oil, and the demand for liquid transportation fuels worldwide will rise significantly in the next fifty years. Growing energy consumption and decreasing fossil resources are reasons for increasing prices of fossil fuel. Besides limited availability, contribution to greenhouse effect and pollutant emission represent another problem of fossil fuel. Both of these problems can be overcome by increased application of renewable biofuels. Therefore, great effort is made to supplement the primary energy sources by including renewable energies. There are alternative fuels 1st and 2nd generation. Some of them show high potential for reduction of engine out emission. But there are economical and technical barriers when such fuels are applied. This paper shows both advantage and disadvantage of alternative fuels, especially when used for diesel engines.

  10. Automotive engineering partners

    Energy Technology Data Exchange (ETDEWEB)

    Liebl, Johannes; Siebenpfeiffer, Wolfgang (eds.)

    2012-05-15

    The brochure under consideration consists of contributions to the following aspects: (1) the ATZ ranking of the Top 75 of the companies providing development service; (2) Challenges and opportunities of hybrid vehicles: (3) Localization of sound sources; (4) Sectoral index engineering services.

  11. Studies on exhaust emissions of mahua oil operated compression ignition engine.

    Science.gov (United States)

    Kapilan, N; Reddy, R P

    2009-07-01

    The world is confronted with fossil fuel depletion and environmental degradation. The energy demand and pollution problems lead to research for an alternative renewable energy sources. Vegetable oils and biodiesel present a very promising alternative fuel to diesel. In this work, an experimental work was carried out to study the feasibility of using raw mahua oil (MO) as a substitute for diesel in dual fuel engine. A single cylinder diesel engine was modified to work in dual fuel mode and liquefied petroleum gas (LPG) was used as primary fuel and mahua oil was used as pilot fuel. The results show that the performance of the dual fuel engine at the injector opening pressure of 220 bar and the advanced injection timing of 30 degrees bTDC results in performance close to diesel base line (DBL) operation and lower smoke and oxides of nitrogen emission.

  12. Bioremediation of engine oil polluted soil by the tropical white rot fungus, Lentinus squarrosulus Mont. (Singer).

    Science.gov (United States)

    Adenipekun, Clementina O; Isikhuemhen, Omoanghe S

    2008-06-15

    This study was conducted to test the efficacy of an indigenous white rot fungus Lentinus squarrosulus in degrading engine oil in soil. Flasks containing sterilized garden soil (100 g) moistened with 75% distilled water (w/v) were contaminated with engine oil 1, 2.5, 5, 10, 20 and 40% w/w concentrations, inoculated with L. squarrosulus and incubated at room temperature for 90 days. Levels of organic matter, pH, total hydrocarbon and elemental content (C, Cu, Fe, K, N, Ni, Zn and available P) were determined post-fungal treatment. Results indicate that contaminated soils inoculated with L. squarrosulus had increased organic matter, carbon and available phosphorus, while the nitrogen and available potassium was reduced. A relatively high percentage degradation of Total Petroleum Hydrocarbon (TPH) was observed at 1% engine oil concentration (94.46%), which decreased to 64.05% TPH degradation at 40% engine oil contaminated soil after 90 days of incubation. The concentrations of Fe, Cu, Zn and Ni recovered from straw/fungal biomass complex increased with the increase of engine-oil contamination and bio-accumulation by the white-rot fungus. The improvement of nutrient content values as well as the bioaccumulation of heavy metals at all levels of engine oil concentrations tested through inoculations with L. squarrosulus is of importance for the bioremediation of engine-oil polluted soils.

  13. Biodiesel from plant seed oils as an alternate fuel for compression ignition engines-a review.

    Science.gov (United States)

    Vijayakumar, C; Ramesh, M; Murugesan, A; Panneerselvam, N; Subramaniam, D; Bharathiraja, M

    2016-12-01

    The modern scenario reveals that the world is facing energy crisis due to the dwindling sources of fossil fuels. Environment protection agencies are more concerned about the atmospheric pollution due to the burning of fossil fuels. Alternative fuel research is getting augmented because of the above reasons. Plant seed oils (vegetable oils) are cleaner, sustainable, and renewable. So, it can be the most suitable alternative fuel for compression ignition (CI) engines. This paper reviews the availability of different types of plant seed oils, several methods for production of biodiesel from vegetable oils, and its properties. The different types of oils considered in this review are cashew nut shell liquid (CNSL) oil, ginger oil, eucalyptus oil, rice bran oil, Calophyllum inophyllum, hazelnut oil, sesame oil, clove stem oil, sardine oil, honge oil, polanga oil, mahua oil, rubber seed oil, cotton seed oil, neem oil, jatropha oil, egunsi melon oil, shea butter, linseed oil, Mohr oil, sea lemon oil, pumpkin oil, tobacco seed oil, jojoba oil, and mustard oil. Several methods for production of biodiesel are transesterification, pre-treatment, pyrolysis, and water emulsion are discussed. The various fuel properties considered for review such as specific gravity, viscosity, calorific value, flash point, and fire point are presented. The review also portrays advantages, limitations, performance, and emission characteristics of engine using plant seed oil biodiesel are discussed. Finally, the modeling and optimization of engine for various biofuels with different input and output parameters using artificial neural network, response surface methodology, and Taguchi are included.

  14. WLAN Hot Spot services for the automotive and oil industries. A business analysis

    International Nuclear Information System (INIS)

    Pau, F.; Oremus, M.H.P.

    2003-04-01

    While you refuel for gas, why not refuel for information or download vehicle data? This paper analyzes in extensive detail the user segmentation by vehicle usage, service offering, and full business models from WLAN (Wireless Local Area Network) hot spot services delivered to vehicles (private, professional, public) around gas stations. Also analyzed are the parties which play a role in such service authorization, provisioning and delivery, with all the dependencies modelled by attributed digraphs. Service planning is included as to WLAN base station capabilities. Five year financial models (CAPEX,OPEX), and data pertain to two possible service suppliers: multi-service oil companies, and mobile service operators (or MVNO). Model optimization on the return-on-investment (ROI) is carried out for different deployment scenarios, geographical coverage assumptions, as well as tariff structures. Comparison is also being made with public GPRS data services, as precursors for 3G services, and the effect of WLAN roaming is analyzed. Analysis shows that due to manpower costs and marketing costs, suitable ROI will not be achieved unless externalities are accounted for and innovative tariff structures are introduced. Open issues and further research are outlined. Further work is carried out, also with automotive electronics sector, wireless systems providers, wireless terminals platform suppliers, and vehicle manufacturers

  15. WLAN Hot Spot services for the automotive and oil industries. A business analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pau, F. [Rotterdam School of Management, Erasmus Research Institute of Management ERIM, Rotterdam (Netherlands); Oremus, M.H.P. [Rolls Royce (BMW) Germany, Dahlewitz (Germany)

    2003-04-01

    While you refuel for gas, why not refuel for information or download vehicle data? This paper analyzes in extensive detail the user segmentation by vehicle usage, service offering, and full business models from WLAN (Wireless Local Area Network) hot spot services delivered to vehicles (private, professional, public) around gas stations. Also analyzed are the parties which play a role in such service authorization, provisioning and delivery, with all the dependencies modelled by attributed digraphs. Service planning is included as to WLAN base station capabilities. Five year financial models (CAPEX,OPEX), and data pertain to two possible service suppliers: multi-service oil companies, and mobile service operators (or MVNO). Model optimization on the return-on-investment (ROI) is carried out for different deployment scenarios, geographical coverage assumptions, as well as tariff structures. Comparison is also being made with public GPRS data services, as precursors for 3G services, and the effect of WLAN roaming is analyzed. Analysis shows that due to manpower costs and marketing costs, suitable ROI will not be achieved unless externalities are accounted for and innovative tariff structures are introduced. Open issues and further research are outlined. Further work is carried out, also with automotive electronics sector, wireless systems providers, wireless terminals platform suppliers, and vehicle manufacturers.

  16. Effect of crude oil contamination on the engineering behavior of clay soils

    International Nuclear Information System (INIS)

    Rehman, H.; Abdoljaowad, S.N.

    2005-01-01

    Humans are, unintentionally or intentionally contaminating soil from different sources. The contaminated soil are not only a challenge for the environmentalists but also for geotechnical engineers. When contaminated by crude oil, the soil is subjected to a change in its engineering properties. The soil, which is mostly affected by its environment, is clay, being active electro-chemically. So, a comprehensive laboratory-testing program was performed to compare the engineering properties of an uncontaminated and a contaminated clay. Laboratory tests included all basic and advanced geotechnical tests along with Scanning Electron Microscope (SEM). Crude oil was chosen as the contaminant. The clay was taken from the Al-Qatif area of the Eastern province of Saudi Arabia. The selected soil is considered to be highly expansive in nature. The comparison between uncontaminated and crude oil contaminated clay showed that there would be a significant change in the engineering behavior of the clay if it were contaminated by crude oil. The contaminated clay behaves more like sand, owing to the formation of agglomerates. The coarse-grained soil-like behavior was observed in the strength of the oil-contaminated clay. The contamination has affected the plasticity and the cation exchange capacity of the investigated clay. The swelling pressure of the contaminated clay is 1/3 of that of the uncontaminated clay while the swelling is almost the same. (author)

  17. Degradation of automotive materials in palm biodiesel

    International Nuclear Information System (INIS)

    Fazal, M.A.; Haseeb, A.S.M.A.; Masjuki, H.H.

    2012-01-01

    As compared to petroleum diesel, biodiesel is more corrosive for automotive materials. Studies on the characterization of corrosion products of fuel exposed automotive materials are scarce. Automotive fuel system and engine components are made from different ferrous and non-ferrous materials. The present study aims to investigate the corrosion products of different types of automotive materials such as copper, brass, aluminum and cast iron upon exposure to diesel and palm biodiesel. Changes in fuel properties due to exposure of different materials were also examined. Degradation of metal surface was characterized by digital camera, SEM/EDS and X-ray diffraction (XRD). Fuel properties were examined by measuring TAN (total acid number), density and viscosity. Among the metal investigated, copper is found to be least resistant in biodiesel and formed comparatively more corrosion products than other metals. Upon exposure of metals in biodiesel, TAN number crosses the limit given by standard while density and viscosity remain within the acceptable range of limit. -- Highlights: ► Order of incompatible metals in palm biodiesel: copper > brass > aluminum > cast iron. ► The possible reactions for the degradation of copper and cast iron have been discussed. ► For metal exposed biodiesel, only TAN number crosses the limit while density and viscosity remain within the limit. ► Copper and copper based alloy (brass) increase TAN number comparatively more than other metals.

  18. Achievement report on research and development in the Sunshine Project in fiscal 1976. Comprehensive discussion on hydrogen utilizing subsystems and researches on peripheral technologies (Research related to automotive engines); 1976 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Jidosha engine ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-03-01

    This paper discusses hydrogen fueled automotive engines. Because hydrogen has a very wide ignition mixture ratio limit for spark ignition engines, very lean combustion is possible without a need of throttling, and thermal efficiency in partial load is high. Thermal efficiency while a car is being driven is reportedly higher by 30% to 50%. Values for CO and CH in exhaust gas are negligible, while NOx is at about the same degree as in gasoline engines, which can be made extremely low during lean burn operation. The spontaneous ignition temperature is higher by about 200 degrees C than that of light oil, which presents difficulty in use for diesel engines. Because of small ignition energy and high combustion velocity, excessively early ignition and reverse ignition can occur easily. Hydrogen would be promising if new manufacturing systems are developed and production cost is reduced, and on the other hand, if petroleum price rises sharply. Hydrogen is also expected as a measure to prevent pollution, including that from soot, odor and CO2. The largest difficulty is in the transportation method, and the only possible method at the present is transportation in liquefied hydrogen form. However, practical application will have such problems as tanks, feeding devices, and cost. Development is desired on light-weight metallic hydrides. Technologies for safety and engine performance must also be developed. (NEDO)

  19. Optical Methods For Automatic Rating Of Engine Test Components

    Science.gov (United States)

    Pritchard, James R.; Moss, Brian C.

    1989-03-01

    In recent years, increasing commercial and legislative pressure on automotive engine manufacturers, including increased oil drain intervals, cleaner exhaust emissions and high specific power outputs, have led to increasing demands on lubricating oil performance. Lubricant performance is defined by bench engine tests run under closely controlled conditions. After test, engines are dismantled and the parts rated for wear and accumulation of deposit. This rating must be consistently carried out in laboratories throughout the world in order to ensure lubricant quality meeting the specified standards. To this end, rating technicians evaluate components, following closely defined procedures. This process is time consuming, inaccurate and subject to drift, requiring regular recalibration of raters by means of international rating workshops. This paper describes two instruments for automatic rating of engine parts. The first uses a laser to determine the degree of polishing of the engine cylinder bore, caused by the reciprocating action of piston. This instrument has been developed to prototype stage by the NDT Centre at Harwell under contract to Exxon Chemical, and is planned for production within the next twelve months. The second instrument uses red and green filtered light to determine the type, quality and position of deposit formed on the piston surfaces. The latter device has undergone feasibility study, but no prototype exists.

  20. Future directions for the development of Virtual Reality within an automotive manufacturer

    OpenAIRE

    Lawson, Glyn; Salanitri, Davide; Waterfield, Brian

    2016-01-01

    Virtual Reality (VR) can reduce time and costs, and lead to increases in quality, in the development of a product. Given the pressure on car companies to reduce time-to-market and to continually improve quality, the automotive industry has championed the use of VR across a number of applications, including design, manufacturing, and training. This paper describes interviews with 11 engineers and employees of allied disciplines from an automotive manufacturer about their current physical and ...

  1. Prospects of pyrolysis oil from plastic waste as fuel for diesel engines: A review

    Science.gov (United States)

    Mangesh, V. L.; Padmanabhan, S.; Ganesan, S.; PrabhudevRahul, D.; Reddy, T. Dinesh Kumar

    2017-05-01

    The purpose ofthis study is to review the existing literature about chemical recycling of plastic waste and its potential as fuel for diesel engines. This is a review covering on the field of converting waste plastics into liquid hydrocarbon fuels for diesel engines. Disposal and recycling of waste plastics have become an incremental problem and environmental threat with increasing demand for plastics. One of the effective measures is by converting waste plastic into combustible hydrocarbon liquid as an alternative fuel for running diesel engines. Continued research efforts have been taken by researchers to convert waste plastic in to combustible pyrolysis oil as alternate fuel for diesel engines. An existing literature focuses on the study of chemical structure of the waste plastic pyrolysis compared with diesel oil. Converting waste plastics into fuel oil by different catalysts in catalytic pyrolysis process also reviewed in this paper. The methodology with subsequent hydro treating and hydrocracking of waste plastic pyrolysis oil can reduce unsaturated hydrocarbon bonds which would improve the combustion performance in diesel engines as an alternate fuel.

  2. The use of tyre pyrolysis oil in diesel engines.

    Science.gov (United States)

    Murugan, S; Ramaswamy, M C; Nagarajan, G

    2008-12-01

    Tests have been carried out to evaluate the performance, emission, and combustion characteristics of a single cylinder direct injection diesel engine fueled with 10%, 30%, and 50% of tyre pyrolysis oil (TPO) blended with diesel fuel (DF). The TPO was derived from waste automobile tyres through vacuum pyrolysis. The combustion parameters such as heat release rate, cylinder peak pressure, and maximum rate of pressure rise also analysed. Results showed that the brake thermal efficiency of the engine fueled with TPO-DF blends increased with an increase in blend concentration and reduction of DF concentration. NO(x), HC, CO, and smoke emissions were found to be higher at higher loads due to the high aromatic content and longer ignition delay. The cylinder peak pressure increased from 71 bars to 74 bars. The ignition delays were longer than with DF. It is concluded that it is possible to use tyre pyrolysis oil in diesel engines as an alternate fuel in the future.

  3. Emissions Characteristics of Small Diesel Engine Fuelled by Waste Cooking Oil

    Directory of Open Access Journals (Sweden)

    Khalid Amir

    2014-07-01

    Full Text Available Biodiesel is an alternative, decomposable and biological-processed fuel that has similar characteristics with mineral diesel which can be used directly into diesel engines. However, biodiesel has oxygenated, more density and viscosity compared to mineral diesel. Despite years of improvement attempts, the key issue in using waste cooking oil-based fuels is oxidation stability, stoichiometric point, bio-fuel composition, antioxidants on the degradation and much oxygen with comparing to diesel gas oil. Thus, the improvement of emission exhausted from diesel engines fueled by biodiesel derived from waste cooking oil (WCO is urgently required to meet the future stringent emission regulations. The purpose of this research is to investigate the influences of WCO blended fuel and combustion reliability in small engine on the combustion characteristics and exhaust emissions. The engine speed was varied from 1500-2500 rpm and WCO blending ratio from 5-15 vol% (W5-W15. Increased blends of WCO ratio is found to influences to the combustion process, resulting in decreased the HC emissions and also other exhaust emission element. The improvement of combustion process is expected to be strongly influenced by oxygenated fuel in biodiesel content.

  4. The Cenelec EEx'e' concept in oil and petrochemical engineering

    International Nuclear Information System (INIS)

    Bennett, P.A.

    1993-01-01

    Although a long established practice throughout Europe initially covered by the individual standards of what is now the European community and now harmonized under Cenelec (Comite Europeen de Normalisation Electrotechnique) under standards EN 50-014-039 the EEx'e' concept for hazardous atmospheres is little known, little understood and, because of differing standards, little used on the North American Continent. This is a pity because the application of the concept can make the engineering design of an oil or petrochemical plant, oil-rig etc. simpler and more cost-effective in that zone classification can be significantly less onerous, cheaper and virtually maintenance free apparatus can be used. This means, particularly on offshore oil and gas platforms that substantial savings in cost can be effected by means of the possible top-side weight reduction achieved by its use. These factors which are to the benefit of all should no longer be ignored by the major oil producing companies and the many competent engineers, consultants and contractors who serve them. References, figures, and bibliography appear at the end of the paper

  5. Diode-laser-illuminated automotive lamp systems

    Science.gov (United States)

    Marinelli, Michael A.; Remillard, Jeffrey T.

    1998-05-01

    We have utilized the high brightness of state-of-the-art diode laser sources, and a variety of emerging optical technologies to develop a new class of thin, uniquely styled automotive brake and signal lamps. Using optics based on thin (5 mm) plastic sheets, these lamps provide appearance and functional advantages not attainable with traditional automotive lighting systems. The light is coupled into the sheets using a 1 mm diameter glass fiber, and manipulated using refraction and reflection from edges, surfaces, and shaped cut-outs. Light can be extracted with an efficiency of approximately 50% and formed into a luminance distribution that meets the Society of Automotive Engineers (SAE) photometric requirements. Prototype lamps using these optics have been constructed and are less than one inch in thickness. Thin lamps reduce sheet metal costs, complexity, material usage, weight, and allow for increased trunk volume. In addition, these optics enhance lamp design flexibility. When the lamps are not energized, they can appear body colored, and when lighted, the brightness distribution across the lamp can be uniform or structured. A diode laser based brake lamp consumes seven times less electrical power than one using an incandescent source and has instant on capability. Also, diode lasers have the potential to be 10-year/150,000 mile light sources.

  6. Fuel Continuous Mixer ? an Approach Solution to Use Straight Vegetable Oil for Marine Diesel Engines

    OpenAIRE

    Đặng Van Uy; Tran The Nam

    2018-01-01

    The vegetable oil is well known as green fuel for diesel engines due to its low sunphur content and renewable stock. However, there are some problems raising when vegetable oil is used as fuel for diesel engines such as highly effected by cold weather, lower general efficiency, separation in layer if mixed with diesel oil and so on. To overcome that disadvantiges, the authors propose a new idea that to use a continuous fuel mixer to blend vegetable oil with diesel oil to make so called a mixe...

  7. Development of fuel economy 5W-20 gasoline engine oil; Teinenpi 5W-20 gasoline engine yu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, K; Ueda, F; Kurono, K; Kawai, H; Sugiyama, S [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    A 5W-20 gasoline engine oil which improves vehicle fuel efficiency by more than 1.5% relative to a conventional 5W-30 gasoline engine oil was newly developed. Its high fuel economy performance lasts 10,000 km. The viscosity was optimized to satisfy both fuel economy and antiwear performances. Thiadiazole was used to retain the initial fuel economy performance provided by MoDTC. 5 refs., 7 figs., 2 tabs.

  8. Engineering the biosynthesis of novel rhamnolipids in Escherichia coli for enhanced oil recovery.

    Science.gov (United States)

    Han, L; Liu, P; Peng, Y; Lin, J; Wang, Q; Ma, Y

    2014-07-01

    The interfacial tension of rhamnolipids and their applications in enhanced oil recovery are dependent on their chemical structures and compositions. To improve their performances of interfacial tension and enhanced oil recovery, the engineered strategies were applied to produce novel rhamnolipids with different chemical structures and compositions. By introducing different key genes for rhamnolipid biosynthesis, Escherichia coli was firstly constructed to produce rhamnolipids that showed different performances in interfacial tension from those from Pseudomonas aeruginosa due to the different fatty acyl compositions. Then, the mutant RhlBs were created by directed evolution and subsequent site-directed mutagenesis and resulted in the production of the novel rhamnolipids with the different performances in interfacial tension as well as enhanced oil recovery. Lastly, computational modelling elucidates that the single amino acid mutation at the position 168 in RhlB would change the volume of binding pocket for substrate and thus affect the selectivity of rhamnolipid formation in E. coli. The novel rhamnolipids that showed the improved performances of interfacial tension and the potential different applications in enhanced oil recovery were successfully produced by engineered E. coli. This study proved that the combination of metabolic engineering and protein engineering is an important engineered strategy to produce many novel metabolites in micro-organisms. © 2014 The Society for Applied Microbiology.

  9. Combustion characteristics of lemongrass (Cymbopogon flexuosus oil in a partial premixed charge compression ignition engine

    Directory of Open Access Journals (Sweden)

    Avinash Alagumalai

    2015-09-01

    Full Text Available Indeed, the development of alternate fuels for use in internal combustion engines has traditionally been an evolutionary process in which fuel-related problems are met and critical fuel properties are identified and their specific limits defined to resolve the problem. In this regard, this research outlines a vision of lemongrass oil combustion characteristics. In a nut-shell, the combustion phenomena of lemongrass oil were investigated at engine speed of 1500 rpm and compression ratio of 17.5 in a 4-stroke cycle compression ignition engine. Furthermore, the engine tests were conducted with partial premixed charge compression ignition-direct injection (PCCI-DI dual fuel system to profoundly address the combustion phenomena. Analysis of cylinder pressure data and heat-release analysis of neat and premixed lemongrass oil were demonstrated in-detail and compared with conventional diesel. The experimental outcomes disclosed that successful ignition and energy release trends can be obtained from a compression ignition engine fueled with lemongrass oil.

  10. Simulation work of fatigue life prediction of rubber automotive components

    International Nuclear Information System (INIS)

    Samad, M S A; Ali, Aidy

    2010-01-01

    The usage of rubbers has always been so important, especially in automotive industries. Rubbers have a hyper elastic behaviour which is the ability to withstand very large strain without failure. The normal applications for rubbers are used for shock absorption, sound isolation and mounting. In this study, the predictions of fatigue life of an engine mount of rubber automotive components were presented. The finite element analysis was performed to predict the critical part and the strain output were incorporated into fatigue model for prediction. The predicted result shows agreement in term of failure location of rubber mount.

  11. Biodegradation of engine oil by fungi from mangrove habitat.

    Science.gov (United States)

    Ameen, Fuad; Hadi, Sarfaraz; Moslem, Mohamed; Al-Sabri, Ahmed; Yassin, Mohamed A

    2015-01-01

    The pollution of land and water by petroleum compounds is a matter of growing concern necessitating the development of methodologies, including microbial biodegradation, to minimize the impending impacts. It has been extensively reported that fungi from polluted habitats have the potential to degrade pollutants, including petroleum compounds. The Red Sea is used extensively for the transport of oil and is substantially polluted, due to leaks, spills, and occasional accidents. Tidal water, floating debris, and soil sediment were collected from mangrove stands on three polluted sites along the Red Sea coast of Saudi Arabia and forty-five fungal isolates belonging to 13 genera were recovered from these samples. The isolates were identified on the basis of a sequence analysis of the 18S rRNA gene fragment. Nine of these isolates were found to be able to grow in association with engine oil, as the sole carbon source, under in vitro conditions. These selected isolates and their consortium accumulated greater biomass, liberated more CO2, and produced higher levels of extracellular enzymes, during cultivation with engine oil as compared with the controls. These observations were authenticated by gas chromatography-mass spectrophotometry (GC-MS) analysis, which indicated that many high mass compounds present in the oil before treatment either disappeared or showed diminished levels.

  12. Multi-surface topography targeted plateau honing for the processing of cylinder liner surfaces of automotive engines

    Science.gov (United States)

    Lawrence, K. Deepak; Ramamoorthy, B.

    2016-03-01

    Cylinder bores of automotive engines are 'engineered' surfaces that are processed using multi-stage honing process to generate multiple layers of micro geometry for meeting the different functional requirements of the piston assembly system. The final processed surfaces should comply with several surface topographic specifications that are relevant for the good tribological performance of the engine. Selection of the process parameters in three stages of honing to obtain multiple surface topographic characteristics simultaneously within the specification tolerance is an important module of the process planning and is often posed as a challenging task for the process engineers. This paper presents a strategy by combining the robust process design and gray-relational analysis to evolve the operating levels of honing process parameters in rough, finish and plateau honing stages targeting to meet multiple surface topographic specifications on the final running surface of the cylinder bores. Honing experiments were conducted in three stages namely rough, finish and plateau honing on cast iron cylinder liners by varying four honing process parameters such as rotational speed, oscillatory speed, pressure and honing time. Abbott-Firestone curve based functional parameters (Rk, Rpk, Rvk, Mr1 and Mr2) coupled with mean roughness depth (Rz, DIN/ISO) and honing angle were measured and identified as the surface quality performance targets to be achieved. The experimental results have shown that the proposed approach is effective to generate cylinder liner surface that would simultaneously meet the explicit surface topographic specifications currently practiced by the industry.

  13. CORRELATION OF INTEREST TO LEARN AND USE TIME LEARNING WITH LEARNING ACHIEVEMENT AUTOMOTIVE ELECTRICAL IN CLASS XII LIGHT VEHICLE ENGINEERING SMK PIRI I YOGYAKARTA ACADEMIC YEAR 2013/2014

    Directory of Open Access Journals (Sweden)

    Ari Pujiatmoko

    2014-06-01

    Full Text Available The purpose of this study were: 1 to determine whether there is a correlation between students' interest in learning and the learning achievement of automotive electrical, 2 to determine whether there is a correlation between the use of time studying the learning achievement of automotive electrical, 3 to determine whether there is a correlation between student interest and use the time to learn and the learning achievement of students of class XII automotive electrical TKR SMK PIRI 1 Yogyakarta academic year 2013/2014.  This research was conducted in class XII TKR SMK PIRI 1 Yogyakarta academic year 2013/2014. This study is an ex-post facto. This study used two independent variables and the interest in learning the use of learning time, while the dependent variable is the electrical automotive learning achievement. This study is a population study by the respondent amounted to 100 students. Techniques of data collection using questionnaire techniques and engineering documentation. Research instrument in this study is a questionnaire interest in learning, inquiry learning time management and documentation of student achievement. Trials using the instrument validity and reliability test. The analysis technique used is the prerequisite test for normality, linearity, and multicollinearity. Then test hypotheses using partial correlation analysis techniques and correlation.  The results showed that: 1 students' interest to have a strong positive correlation with school performance automotive electrical ρ value of 0.737; 2 the use of learning time have a low positive correlation with school performance automotive electrical ρ value of 0.275; 3 interest student learning and the use of study time has a very strong positive correlation with learning achievement of students of class XII automotive electrical TKR SMK PIRI I Yogyakarta academic year 2013/2014 as evidenced by the value of R = 0.811.

  14. Automotive exhaust gas flow control for an ammonia–water absorption refrigeration system

    International Nuclear Information System (INIS)

    Rêgo, A.T.; Hanriot, S.M.; Oliveira, A.F.; Brito, P.; Rêgo, T.F.U.

    2014-01-01

    A considerable part of the energy generated by an automotive internal combustion engine is wasted as heat in the exhaust system. This wasted heat could be recovered and applied to power auxiliary systems in a vehicle, contributing to its overall energy efficiency. In the present work, the experimental analysis of an absorption refrigeration system was performed. The exhaust system of an automotive internal combustion engine was connected to the generator element of an absorption refrigeration system. The performance of the absorption refrigerator was evaluated as a function of the supplied heat. The use of a control strategy for the engine exhaust gas mass flow rate was implemented to optimize the system. Exhaust gas flow was controlled by step-motor actuated valves commanded by a microcontroller in which a proportional-integral control scheme was implemented. Information such as engine torque, speed, key temperatures in the absorption cycle, as well as internal temperatures of the refrigerator was measured in a transient regime. The results indicated that the refrigeration system exhibited better performance when the amount of input heat is controlled based on the temperature of the absorption cycle generator. It was possible to conclude that, by dynamically controlling the amount of input heat, the utilisation range of the absorption refrigeration system powered by exhaust gas heat could be expanded in order to incorporate high engine speed operating conditions. - Highlights: •An absorption refrigerator was driven by automotive exhaust gas heat. •A system for controlling the refrigeration system heat input was developed. •Excessive exhaust gas heat leads to ineffective operation of the refrigerator. •Control of refrigerator's generator temperature led to better performance. •The use of exhaust gas was possible for high engine speeds

  15. Aero and vibroacoustics of automotive turbochargers

    CERN Document Server

    Nguyen-Schäfer, Hung

    2013-01-01

    Aero and Vibroacoustics of Automotive Turbochargers is a topic involving aspects from the working fields of thermodynamics of turbomachinery, aerodynamics, rotordynamics, and noise propagation computation.   In this broadly interdisciplinary subject, thermodynamics of turbomachinery is used to design the turbocharger and to determine its operating conditions.  Aerodynamics is needed to study the compressor flow dynamics and flow instabilities of rotating stall and surge, which can produce growling and whining-type noises. Rotordynamics is necessary to study rotor unbalance and self-excited oil-whirl instabilities, which lead to whistling and constant tone-type noises in rotating floating oil-film type bearings. For the special case of turbochargers using ball bearings, some high-order harmonic and wear noises also manifest in the rotor operating range. Lastly, noise propagation computation, based on Lighthill’s analogy, is required to investigate airborne noises produced by turbochargers in passenger vehi...

  16. Upgrading the Center for Lightweighting Automotive Materials and Processing - a GATE Center of Excellence at the University of Michigan-Dearborn

    Energy Technology Data Exchange (ETDEWEB)

    Mallick, P. K.

    2012-08-30

    The Center for Lightweighting Materials and Processing (CLAMP) was established in September 1998 with a grant from the Department of Energy’s Graduate Automotive Technology Education (GATE) program. The center received the second round of GATE grant in 2005 under the title “Upgrading the Center for Lightweighting Automotive Materials and Processing”. Using the two grants, the Center has successfully created 10 graduate level courses on lightweight automotive materials, integrated them into master’s and PhD programs in Automotive Systems Engineering, and offered them regularly to the graduate students in the program. In addition, the Center has created a web-based lightweight automotive materials database, conducted research on lightweight automotive materials and organized seminars/symposia on lightweight automotive materials for both academia and industry. The faculty involved with the Center has conducted research on a variety of topics related to design, testing, characterization and processing of lightweight materials for automotive applications and have received numerous research grants from automotive companies and government agencies to support their research. The materials considered included advanced steels, light alloys (aluminum, magnesium and titanium) and fiber reinforced polymer composites. In some of these research projects, CLAMP faculty have collaborated with industry partners and students have used the research facilities at industry locations. The specific objectives of the project during the current funding period (2005 – 2012) were as follows: (1) develop new graduate courses and incorporate them in the automotive systems engineering curriculum (2) improve and update two existing courses on automotive materials and processing (3) upgrade the laboratory facilities used by graduate students to conduct research (4) expand the Lightweight Automotive Materials Database to include additional materials, design case studies and make it more

  17. Wood pyrolysis oil for diesel engines

    Energy Technology Data Exchange (ETDEWEB)

    Paro, D.; Gros, S.; Hellen, G.; Jay, D.; Maekelae, T.; Rantanen, O.; Tanska, T. [Wartsila Diesel International Ltd Oy, Vaasa (Finland)

    1996-12-01

    Wood Pyrolysis oil (WPO) has been identified by the Technical Research Centre of Finland (VTT) as the most competitive biofuel product which can be produced from biomass. The fuel is produced by a fast pyrolysis technique, using wood chipping`s or sawdust. The process can be applied to other recycling products such as straw etc. The use of WPO as a Diesel power plant fuel has been studied, and a fuel specification has been developed. The fuel characteristics have been analysed. There are several fuel properties addressed in the paper which have had to be overcome. New materials have been used in the fuel injection system. The fuel injection system development has progressed from a pump-line-pipe system to a common rail system. The fuel requires a pilot fuel oil injection to initiate combustion. The targets for the fuel injection system have been 1500 bar and 30 deg C injection period with a fuel of 15 MJ/kg lower heating value and 1220 Kg/m{sup 3} density. The combustion characteristics from both a small 80 mm bore engine initially, and then later with a single cylinder test of a 320 mm bore Waertsilae engine, have been evaluated. (author)

  18. Innovative automotive industry II. Trend-setting activities of young scientists in the industry and at universities; Innovative Automobiltechnik II. Zukunftsweisende Arbeiten von Nachwuchsforschern in der Industrie und an Universitaeten

    Energy Technology Data Exchange (ETDEWEB)

    Tschoeke, Helmut; Krahl, Juergen; Munack, Axel (eds.)

    2011-07-01

    Within the 2nd Science Symposium Automotive Engineering at 14th to 15th October, 2010 in Coburg (Federal Republic of Germany) the following lectures were held: (1) New fuel characteristics and ignition delay times with alternative fuels (Andreas Janssen); (2) Investigation of the interaction of engine oil with new fuels as well as the design of measures for lengthening the interval of oil change (Alexander Maeder); (3) Emissions from the combustion of vegetable oils and their esters and synthetic fuels in diesel engines under consideration of polycyclic aromatic hydrocarbons (Jens Schaak); (4) Optimization of the combustion of pure rapeseed oil in modern heavy-duty diesel engines (Markus Lueft); (5) Classification of accident scenarios by means of wavelet transformed and artificial neural networks (Bastian Fuhr); (6) A real-time parallel computer for the re-centralization of control units in automobiles (Stefan Aust); (7) Minimizing the gas formation in fuel pumps of spark ignition engines by means of re-cooling (Joerg Heyse); (8) Model-assisted management of air systems for a diesel engine of passenger cars by means of exhaust gas recirculation systems at low and high pressures (Markus Heuck); (9) Comparison of hybridization and two-step charging concepts enabling enhanced degrees of downsizing (Christian Wiegand); (10) Contaminant behaviour and load-bearing capacity of the 'Premixed Charge Compression Ignition' (Maximilian Brauer); (11) An approach for the metrological determination of the pressure boundary condition for the charge exchange calculation by means of the flow method (Jan Dreves); (12) Simulation of the charge exchange and combustion of a self-igniting spark ignition engines with direct injection (Lars Hartkopf); (13) Fundamental research on diesel injection nozzles with two rows of holes and self-penetrating injection jets (Christoph Menne); (14) Oscillating axial bearings in a diesel injection pump at boundary friction and fuel

  19. Monitoring and evaluation of production processes an analysis of the automotive industry

    CERN Document Server

    Panda, Anton; Pandová, Iveta

    2016-01-01

    This book presents topics on monitoring and evaluation of production processes in the automotive industry. Regulation of production processes is also described in details. The text deals with the implementation and evaluation of these processes during the mass production of components useful in the automotive industry. It evaluates the effects and results achieved after implementation in practice. The book takes into account the different methodologies of the world's automakers and applicable standards, such as standard EN ISO 9001 and the requirements of VDA and ISO/TS 16949. The content is used to those working with the development, production and quality control of new products in the demanding automotive industry. The information provided may also be useful to engineers and technical staff in organizations working with series production and production of spare parts for the automotive and other demanding industries. The content presented was written based on discussions with various companies and organiza...

  20. Combined effects of thermal barrier coating and blending with diesel fuel on usability of vegetable oils in diesel engines

    International Nuclear Information System (INIS)

    Aydin, Hüseyin

    2013-01-01

    The possibility of using pure vegetable oils in a thermally insulated diesel engine has been experimentally investigated. Initially, the standard diesel fuel was tested in the engine, as base experiment for comparison. Then the engine was thermally insulated by coating some parts of it, such as piston, exhaust and intake valves surfaces with zirconium oxide (ZrO 2 ). The main purpose of engine coating was to reduce heat rejection from the walls of combustion chamber and to increase thermal efficiency and thus to increase performance of the engine that using vegetable oil blends. Another aim of the study was to improve the usability of pure vegetable oils in diesel engines without performing any fuel treatments such as pyrolysis, emulsification and transesterification. Pure inedible cottonseed oil and sunflower oil were blended with diesel fuel. Blends and diesel fuel were then tested in the coated diesel engine. Experimental results proved that the main purpose of this study was achieved as the engine performance parameters such as power and torque were increased with simultaneous decrease in fuel consumption (bsfc). Furthermore, exhaust emission parameters such as CO, HC, and Smoke opacity were decreased. Also, sunflower oil blends presented better performance and emission parameters than cottonseed oil blends. -- Highlights: ► Usability of two different vegetable oils in a coated diesel engine was experimentally investigated. ► A diesel engine was coated with ZrO 2 layer to make the combustion chamber insulated. ► Test results showed significant improvements in performance parameters. ► While only minor reductions were observed in emissions with coated engine operation

  1. Future automotive fuels

    International Nuclear Information System (INIS)

    Lepik, M.

    1993-01-01

    There are several important factors which are fundamental to the choice of alternative automobile fuels: the chain of energetic efficiency of fuels; costs; environmental friendliness; suitability for usual engines or adapting easiness; existing reserves of crude oil, natural gas or the fossil energy sources; and, alternatively, agricultural potentiality. This paper covers all these factors. The fuels dealt with in this paper are alcohol, vegetable oil, gaseous fuel, hydrogen and ammonia fuels. Renewable fuels are the most valuable forms of renewable energy. In addition to that rank, they can contribute to three other problem areas: agricultural surpluses, environmental degradation, and conservation of natural resources. Due to the competitive utilization of biomass for food energy production, bio-fuels should mainly be produced in those countries where an energy shortage is combined with a food surplus. The fuels arousing the most interest are alcohol and vegetable oil, the latter for diesel engines, even in northern countries. (au)

  2. Making aerospace technology work for the automotive industry, introduction

    Science.gov (United States)

    Olson, W. T.

    1978-01-01

    NASA derived technology already in use in the automotive industry include: (1) developments in electronics design, computer systems, and quality control methods for line testing of cars and trucks; (2) a combustion analysis computer program for automotive engine research and development; (3) an infrared scanner and television display for analyzing tire design and performance, and for studying the effects of heat on the service life of V-belts, shock mounts, brakes, and rubber bearings; (4) exhaust gas analyzers for trouble shooting and emissions certification; (5) a device for reducing noise from trucks; and (6) a low cost test vehicle for measuring highway skid resistance. Services offered by NASA to facilitate access to its technology are described.

  3. Bond graph modeling and simulation of impact dynamics of an automotive crash

    International Nuclear Information System (INIS)

    Khurshid, A.; Malik, M.A.

    2007-01-01

    With increase in the speeds of automotives, safety has become more and more important aspect of designers to care for. Thus, it is necessary to design the automobile body structure keeping in view all the safety requirements. As a result of the above-mentioned facts, in the recent years, the designers in making automotives more safe, more collision resistant and crash worthy have focused increased attention on designing automotives, which provides greater protection for the drivers and the passengers in case of an accident. Before a new model is launched into the market, a complete collision analysis is carried out to check the damage reduction capabilities and impact protection of automotives in case of an accident. Research in the field of automotive collision and impact analysis is a continuing activity and dedicated groups of engineers are devoting their full time and efforts for this. In this research work, the main attention is focused to provide a detailed knowledge about automotive collision analysis. The objective of this research paper is to develop an understanding of the automotive collision response. For this, we have done a simulation experiment in which, on a railroad, a train car is separated from a train and is moving towards two stationary train cars. By using a bond graph model of the system its state-space equations are found. Then by using software, the simulation is carried out. The bond graph method is a graphical presentation of the power flow using bonds. (author)

  4. A feasibility work on the applications of MRE to automotive components

    Science.gov (United States)

    Kim, S. H.; Park, Y. J.; Cha, A. R.; Kim, G. W.; Bang, J. H.; Lim, C. S.; Choi, S. B.

    2018-03-01

    A feasibility work on the application of magneto-rheological elastomers (MREs) to automotive components, such as engine mounts is presented. While vehicle components require the high resonance frequency in terms of ride quality and handling, it is required to have the low resonance frequency to isolate the incoming vibration. With the conventional automotive technologies, it is challenging to combine these two conflicting performance trade-offs, ride quality including handling, and NVH (noise, vibration and harshness). Over the last decades, MREs, one of the new emerging smart materials, have been widely used to resolve this technical limitation. For example, an advanced engine mount was developed by using MRE to isolate the vibration transmitting from engines. In this paper, we will focus on rear cross member bushes, which is a key component for isolating the vibration from the road, and demonstrate their improved performance by utilizing MRE. The resonance frequency shift induced by the stiffness change of MRE will be presented through the frequency response functions estimated by simulation result.

  5. Mechatronics - a discipline with a future in automotive development; Die Mechatronik als Zukunftsdisziplin der Automobilentwicklung

    Energy Technology Data Exchange (ETDEWEB)

    Runge, W. [ZF Friedrichshafen AG (Germany)

    2000-12-01

    Modern motor vehicles are increasingly determined by electrical and electronic systems. Experts have estimated that, in future, 90% of all innovations in automotive engineering would not be possible without the use of electronic components and the corresponding software. But, when it comes to integrating all of these new electric components and drives, the developers come up against a natural boundary - the space available in the vehicle itself. Future developments in automotive engineering will therefore be largely determined by the spatial integration of electrical and electronic systems in the vehicle. This - besides other factors - is the main reason for the major importance of mechatronics in automotive engineering. (orig.) [German] Moderne Kraftfahrzeuge werden immer mehr von der Elektrik und Elektronik gepraegt. Nach Einschaetzung von Experten werden kuenftig 90% aller fahrzeugtechnischen Innovationen durch die Verwendung elektronischer Komponenten und entsprechender Software erst moeglich werden. Bei der Integration aller neuen elektrischen Komponenten und Antriebe stossen die Entwickler aber auf eine natuerliche Grenze - den im Automobil vorhandenen Bauraum. Die kuenftige Entwicklung im Automobil wird daher massgeblich durch die raeumliche Integration der Elektrik und Elektronik im Kfz bestimmt. Dies ist - neben anderen Faktoren - der wesentliche Treiber fuer die zunehmende Bedeutung der Mechatronik im Automobilbau. (orig.)

  6. Control of automotive waste heat recovery systems with parallel evaporators

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; Rascanu, G.C.; Jager, de A.G.; Steinbuch, M.

    2014-01-01

    In this paper, Model Predictive Control (MPC) is applied to control a Waste Heat Recovery system for a highly dynamic automotive application. As a benchmark, a commonly applied control strategy is used that consists of a feedforward based on engine conditions and of two PI controllers that

  7. 1994 JSAE (Society of Automotive Engineers of Japan) Spring Convention Proceedings. No. 941 (115-165); JSAE 1994 nen shunki taikai gakujutsu koenkai maezurishu. No.941, 115-165

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-20

    The science conference on the automotive technology research and development was held on May 11-13, 1994 in Yokohama, and 165 papers were reported. As for driving simulation(DS) for vehicles, reports are made on driving simulator with large displacement motion base - its evolution and the development of basic research tool, experimental analysis of avoidance maneuver using a driving simulator, comparison of handling characteristics between a driving simulator for tracked vehicles and a real vehicle, etc. As to auto parts, pitting fatigue strength of caburized gears, evaluation of corrosion protection of automotive chromated galvanized bolts, development of aluminum powder metallurgy composites for cylinder liners, development of a new nitrided stainless steel piston ring, etc. Further studied were made on development of new protocol for in-vehicle LAN, development of YONDEN electric vehicle `PIVOT,` development of electric scooter for practical use, etc. With regard to diesel engines, reported were diesel combustion improvement and emissions reduction with high pressure fuel injection, exhaust emission behaviors of a heavy duty diesel engine under various driving conditions, etc.

  8. Automotive fuel efficiency

    International Nuclear Information System (INIS)

    Abelson, P.H.

    1992-01-01

    For at least the remainder of this century, the United States faces a growing dependence on imported oil. Costs are substantial, and they will mount. In June 1992, net imports provided nearly 50% of supplies, and their cost was $4.3 billion. Cost of net imports of motor vehicles and parts amounted to $3.0 billion. The two items combined totaled more than the negative trade balance of $6.6 billion. The light-duty highway fleet alone accounted for 38.2% of U.S. oil consumption in 1988. Correspondingly, the fleet was a substantial emitter of air pollutants - NO x , CO, and nonmethane hydrocarbons. In addition, it was a major source of CO 2 . The twin problems of oil imports and pollution would be ameliorated if the fuel economy if cars and trucks could be improved and their emissions were also reduced. In principle, the mileage of US automobiles could be substantially improved. But on purchasing a car, U.S. buyers rank fuel efficiency eight when making their choice. They are attracted to options that lower mileage. Consumers also tend to prefer large cars over small ones for reasons of safety. Increasingly, buyers are purchasing light trucks and vans that have inferior fuel efficiency. As a result of the above trends, the average mileage of the US automotive fleet has been diminishing. As long as fuel is available at comparatively low prices and there is no federal requirement for better mileage, improvement is unlikely. Moreover, even if improvements were mandated, change would be slow

  9. Hybrid-electric propulsion for automotive and aviation applications

    OpenAIRE

    Friedrich, C; Robertson, Paul Andrew

    2014-01-01

    In parallel with the automotive industry, hybrid-electric propulsion is becoming a viable alternative propulsion technology for the aviation sector and reveals potential advantages including fuel savings, lower pollution, and reduced noise emission. Hybrid-electric propulsion systems can take advantage of the synergy between two technologies by utilizing both internal combustion engines and electric motors together, each operating at their respective optimum conditions...

  10. Performance and exhaust emission characteristics of direct-injection Diesel engine when operating on shale oil

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys

    2005-01-01

    This article presents the comparative bench testing results of a naturally aspirated, four stroke, four cylinder, water cooled, direct injection Diesel engine when running on Diesel fuel and shale oil that is produced in Estonia from local oil shale. The purpose of this research is to investigate the possibility of practical usage of the shale oil as the alternative fuel for a high speed Diesel engine as well as to evaluate the combustion efficiency, brake specific fuel consumption, emission composition changes and the smoke opacity of the exhausts. Test results show that when fuelling a fully loaded engine with shale oil, the brake specific fuel consumption at the maximum torque and rated power is correspondingly higher by 12.3% and 20.4%. However, the brake thermal efficiencies do not differ widely and their maximum values remain equal to 0.36-0.37 for Diesel fuel and 0.32-0.33 for shale oil. The total nitrogen oxide emissions from the shale oil at engine partial loads remain considerably lower although when running at the maximum torque and rated power, the NO x emissions become correspondingly higher by 21.8% and 27.6%. The smoke opacity of the fully loaded engine at a wide range of speeds is lower by 30-35%, whereas the carbon monoxide and unburned hydrocarbon emissions in the exhausts at moderate and full load regimes do not undergo significant changes

  11. What has led the automotive industry to offshore engineering services to low cost countries?

    DEFF Research Database (Denmark)

    Simplay, Steve; Hansen, Zaza Nadja Lee

    2013-01-01

    of this area and present a case study of a global multinational premium automotive organization with headquarters in Germany. The findings showed that an outsourced offshore delivery center is multi-dimensional and difficult to manage when faced with such complexity.The case company decided to outsource again...... to a specialized third party, also with headquarters in Germany, to minimize complexity. This paper adds to theoretical knowledge in the field by expanding on existing research in diversified areas and gives practitioners insights into why the premium automotive organization outsourced offshore, what the drivers...

  12. Thermoelectric automotive waste heat energy recovery using maximum power point tracking

    International Nuclear Information System (INIS)

    Yu Chuang; Chau, K.T.

    2009-01-01

    This paper proposes and implements a thermoelectric waste heat energy recovery system for internal combustion engine automobiles, including gasoline vehicles and hybrid electric vehicles. The key is to directly convert the heat energy from automotive waste heat to electrical energy using a thermoelectric generator, which is then regulated by a DC-DC Cuk converter to charge a battery using maximum power point tracking. Hence, the electrical power stored in the battery can be maximized. Both analysis and experimental results demonstrate that the proposed system can work well under different working conditions, and is promising for automotive industry.

  13. Integrating Phase-Change Materials into Automotive Thermoelectric Generators

    Science.gov (United States)

    Klein Altstedde, Mirko; Rinderknecht, Frank; Friedrich, Horst

    2014-06-01

    Because the heat emitted by conventional combustion-engine vehicles during operation has highly transient properties, automotive thermoelectric generators (TEG) are intended for a particular operating state (design point). This, however, leads to two problems. First, whenever the combustion engine runs at low load, the maximum operating temperature cannot be properly utilised; second, a combustion engine at high load requires partial diversion of exhaust gas away from the TEG to protect the thermoelectric modules. An attractive means of stabilising dynamic exhaust behaviour (thereby keeping the TEG operating status at the design point for as long as possible) is use of latent heat storage, also known as phase-change materials (PCM). By positioning PCM between module and exhaust heat conduit, and choosing a material with a phase-change temperature matching the module's optimum operating temperature, it can be used as heat storage. This paper presents results obtained during examination of the effect of integration of latent heat storage on the potential of automotive TEG to convert exhaust heat. The research resulted in the development of a concept based on the initial integration idea, followed by proof of concept by use of a specially created prototype. In addition, the potential amount of energy obtained by use of a PCM-equipped TEG was calculated. The simulations indicated a significant increase in electrical energy was obtained in the selected test cycle.

  14. Automotive dual-mode hydrogen generation system

    Science.gov (United States)

    Kelly, D. A.

    The automotive dual mode hydrogen generation system is advocated as a supplementary hydrogen fuel means along with the current metallic hydride hydrogen storage method for vehicles. This system consists of utilizing conventional electrolysis cells with the low voltage dc electrical power supplied by two electrical generating sources within the vehicle. Since the automobile engine exhaust manifold(s) are presently an untapped useful source of thermal energy, they can be employed as the heat source for a simple heat engine/generator arrangement. The second, and minor electrical generating means consists of multiple, miniature air disk generators which are mounted directly under the vehicle's hood and at other convenient locations within the engine compartment. The air disk generators are revolved at a speed which is proportionate to the vehicles forward speed and do not impose a drag on the vehicles motion.

  15. Field Engineers' Scheduling at Oil Rigs: a Case Study

    Directory of Open Access Journals (Sweden)

    Y. S. Usmani

    2012-02-01

    Full Text Available Oil exploration and production operations face a number of challenges. Professional planners have to design solutions for various practical problems or issues. However, the time consumed is often very extensive because of the large number of possible solutions. Further, the matter of choosing the best solution remains. The present paper investigates a problem related to leading companies in the energy and chemical manufacturing sector of the oil and gas industry. Each company’s field engineers are expensive and valuable assets. Therefore, an optimized roster is rather important. In the present paper, the objective is to design a field engineers’ schedule which would be both feasible and satisfying towards the various demands of rigs, with minimum operational cost to the company. An efficient and quick optimization technique is presented to schedule the shifts of field engineers.

  16. The impact of global warming on the automotive industry

    Science.gov (United States)

    Hannappel, Ralf

    2017-08-01

    One cause of global warming of the earth's atmosphere is the emission of human made gases (methane, CO2, nitrous oxygen, etc.) into the environment. Of the total global CO2 emissions the transportation sector contributes to about 14%. In order to control the emissions of the automotive sector, in all major countries (USA, Europe, China, Japan) of the world, tough emissions targets were being set to reduce the vehicle traffic's contribution of CO2. These are derived from the global climate conference' target to limit the maximum temperature increase of the earth of 2 degrees Celsius until 2100. In order to achieve these stringent targets the automotive industry will face a major change in its drivetrain. It will move from combustion to electrical engines. The technical realization of these engines will most likely be battery and fuel cell driven propulsion systems. In order to achieve that transition a major effort is required in 4 industrial areas, i.e. growing electrical charging infrastructure, lowering battery cost, increasing the battery-electric vehicle ranges and developing new environmental friendly hydrogen production methods.

  17. Acoustically damped metal oil trough for internal combustion engines. Schallgedaempfte Blech-Oelwanne fuer Brennkraftmaschinen

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, H.

    1991-03-28

    The invention refers to an acoustically damped oil trough. As there are strict requirements for reducing the noise emission from internal combustion engines, according to the invention it is proposed that the oil trough should be surrounded by an outer trough, where the outer trough is made of plastic or sheet steel in one or more layers. To avoid noise bridges, the oil trough and outer trough are separated by elastomer elements. The outer trough achieves a reasonably priced increase in sound insulation. It is also possible to backfit an outer trough on engines.

  18. Reduction of CO{sub 2} emission by means of innovative, tailor-made gear oils. What gear oils may contribute to fuel savings; Reduktion der CO{sub 2}-Emission durch innovative, massgeschneiderte Getriebeoele. Was Getriebeoele zur Kraftstoffeinsparung beitragen koennen

    Energy Technology Data Exchange (ETDEWEB)

    Kraneburg, Peter; Vomhof, Ulrich [Castrol, Hamburg (Germany)

    2009-07-01

    To achieve the ACEA self commitment the automotive OEMs have worked hard to make their cars more energy efficient. Various steps on aerodynamics, engines and transmissions led to significant steps to reduce the CO{sub 2} emissions. Further steps will become smaller and more expensive but the EU regulation will enforce them. In this article we will show what benefit a fuel efficient lubricant for transmissions can contribute to this targets. The universal API GL4 and API GL5 oils belong to the past. Today the challenge is to tailor-made transmission oil for a specific transmission to release the maximum potential of fuel economy. A reduced viscosity can allow up to 2% lower fuel consumption. New transmission concepts like Dual Clutch Tranmissions can only deliver their benefits with specially designed fluids. Applying a ''Co-engineering'' concept during the transmission design phase even bigger potentials can be realised. This will lead to further reduction of viscosity, synthetic oils, spray lubrication and heat management. The lubricant is an important construction element for modern transmissions. (orig.)

  19. Short term endurance results on a single cylinder diesel engine fueled with upgraded bio oil biodiesel emulsion

    Science.gov (United States)

    Prakash, R.; Murugan, S.

    2017-11-01

    This paper deliberates the endurance test outcomes obtained from a single cylinder, diesel engine fueled with an upgraded bio oil biodiesel emulsion. In this investigation a bio oil obtained by pyrolysis of woody biomass was upgraded with acid treatment. The resulted bio oil was emulsified with addition of biodiesel and suitable surfactant which is termed as ATJOE15. The main objective of the endurance test was to evaluate the wear characteristics of the engine components and lubrication oil properties, when the engine is fueled with the ATJOE15 emulsion. The photographic views taken before and after the end of 100 hrs endurance test, and visual inspection of the engine components, wear and carbon deposit results, are discussed in this paper.

  20. Emission characteristics of a diesel engine using waste cooking oil ...

    African Journals Online (AJOL)

    In this study, the use of waste cooking oil (WCO) methyl ester as an alternative fuel in a four-stroke turbo diesel engine with four cylinders, direct injection and 85 HP was analyzed. A test was applied in which an engine was fueled with diesel and three different blends of diesel/biodiesel (B25, B50 and B75) made from WCO.

  1. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Science.gov (United States)

    2010-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... vehicles or nonroad diesel engines? No person may introduce used motor oil, or used motor oil blended with... later nonroad diesel engines (not including locomotive or marine diesel engines), unless both of the...

  2. Performance Testing of Diesel Engine using Cardanol-Kerosene oil blend

    Directory of Open Access Journals (Sweden)

    Ravindra

    2018-01-01

    Full Text Available Awareness of environmental pollution and fossil fuel depletion has necessitated the use of biofuels in engines which have a relatively cleaner emissions. Cardanol is a biofuel, abundantly available in India, which is a by-product of cashew processing industries. In this study performance of raw Cardanol blended with kerosene has been tested in diesel engine. Volumetric blend BK30 (30% kerosene and 70% Cardanol has been used for the test. The properties like flash point, viscosity and calorific value of the blend have been determined. The test was carried out in four stroke diesel engine connected with an eddy current dynamometer. Performance of the engine has been analysed by finding the brake specific fuel consumption (BSFC and brake thermal efficiency (BTE. The results showed that the brake thermal efficiency of the blend is 29.87%, with less CO and smoke emission compared to diesel. The results were also compared with the performance of Cardanol diesel blend and Cardanol camphor oil blend, which were already tested in diesel engines by other researchers. Earlier research work reveals that the blend of 30% camphor oil and 70% Cardanol performs very closer to diesel fuel with a thermal efficiency of 29.1%. Similarly, higher brake thermal efficiency was obtained for 20% Cardanol and 80% diesel blend.

  3. AGT101 automotive gas turbine system development

    Science.gov (United States)

    Rackley, R. A.; Kidwell, J. R.

    1982-01-01

    The AGT101 automotive gas turbine system consisting of a 74.6 kw regenerated single-shaft gas turbine engine, is presented. The development and testing of the system is reviewed, and results for aerothermodynamic components indicate that compressor and turbine performance levels are within one percent of projected levels. Ceramic turbine rotor development is encouraging with successful cold spin testing of simulated rotors to speeds over 12,043 rad/sec. Spin test results demonstrate that ceramic materials having the required strength levels can be fabricated by net shape techniques to the thick hub cross section, which verifies the feasibility of the single-stage radial rotor in single-shaft engines.

  4. Effect of water injection and off scheduling of variable inlet guide vanes, gas generator speed and power turbine nozzle angle on the performance of an automotive gas turbine engine

    Science.gov (United States)

    Warren, E. L.

    1980-01-01

    The Chrysler/ERDA baseline automotive gas turbine engine was used to experimentally determine the power augmentation and emissions reductions achieved by the effect of variable compressor and power engine geometry, water injection downstream of the compressor, and increases in gas generator speed. Results were dependent on the mode of variable geometry utilization. Over 20 percent increase in power was accompanied by over 5 percent reduction in SFC. A fuel economy improvement of at least 6 percent was estimated for a vehicle with a 75 kW (100 hp) engine which could be augmented to 89 kW (120 hp) relative to an 89 Kw (120 hp) unaugmented engine.

  5. Esters of ricebran oil with short chain alcohols as alternative fuel for diesel engines

    Directory of Open Access Journals (Sweden)

    F.A. Zaher

    2016-06-01

    Full Text Available The potential of ricebran oil as a feedstock for the production of a fuel for diesel engines alternative to regular diesel fuel has been assessed. Esterification rate of crude ricebran oil with methyl alcohol was studied using different volumetric ratios of alcohol to oil, different catalyst loads and catalyst types. Catalysts used were sulfuric acid at a concentration of 2% of the oil/alcohol mixture in addition to hydrochloric acid and Amberlite IR-120 cation exchange resin at the same molar concentration of H+ as in case of sulfuric acid. The reaction was fastest using sulfuric acid which has been then used to prepare esters of ricebran oil with methyl, ethyl, propyl and butyl alcohols. The four products have been evaluated as a fuel for diesel engines according to their fuel properties compared to regular diesel fuel. These properties include the calorific value, flash point, viscosity, pour point, cetane number, sulfur content and ASTM distillation characteristics. The results have shown that the methyl as well as the ethyl esters have the closest properties to those of regular diesel fuel. Diesel engine performance using blends of regular diesel fuel with methyl and ethyl esters of ricebran oil have been tested and compared to that using regular diesel fuel. The results have shown that the engine performance using a blend of 50% regular diesel fuel and 50% methyl esters of ricebran oil is better than that using regular diesel fuel. The brake thermal efficiency at full load was 30.2% using the fuel blend compared to 27.5% in case of regular fuel.

  6. Experimental investigation on a diesel engine using neem oil and its methyl ester

    Directory of Open Access Journals (Sweden)

    Sivalakshmi S.

    2011-01-01

    Full Text Available Fuel crisis and environmental concerns have led to look for alternative fuels of bio-origin sources such as vegetable oils, which can be produced from forests, vegetable oil crops and oil bearing biomass materials. Vegetable oils have energy content comparable to diesel fuel. The effect of neem oil (NeO and its methyl ester (NOME on a direct injected four stroke, single cylinder diesel engine combustion, performance and emission is investigated in this paper. The results show that at full load, peak cylinder pressure is higher for NOME; peak heat release rate during the premixed combustion phase is lower for neat NeO and NOME. Ignition delay is lower for neat NeO and NOME when compared with diesel at full load. The brake thermal efficiency is slightly lower for NeO at all engine loads, but in the case of NOME slightly higher at full load. It has been observed that there is a reduction in NOx emission for neem oil and its methyl ester along with an increase in CO, HC and smoke emissions.

  7. Preprint of the Fall 1997 JSAE (Japan Society of Automotive Engineers) Meeting Science Lecture. No. 976; Jidosha gijutsukai 1997 nen shuki taikai gakujutsu koenkai maezurishu. 976

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Fall 1997 JSAE Meeting Science Lecture was held in Hiroshima on October 21-23, 1997. This report summarized 90 out of the total 244 lectures. As for reports on gasoline engines, the following were included: Effects of fuel and air mixing on WOT output in direct injection gasoline engine, Mixture formation of direct gasoline injection engine, etc. As to sensors, Study of a fuel injection quantity sensor in diesel engine, Development of air fuel ratio sensor, etc. Concerning automotive parts, Prediction and optimization of friction characteristics of brake pads, The new conceptual copper alloy bearing for diesel engine to achieve longer life under higher load, A study of improvement in 1st ring`s gas-seal, etc. In relation to driving, accidents, etc., Effects of cellular telephone manipulation on driver`s performance, Study on traffic accidents mechanism with automatic recording systems, etc

  8. The Stability of Lubricant Oil Acidity of Biogas Fuelled Engine due to Biogas Desulfurization

    Science.gov (United States)

    Gde Tirta Nindhia, Tjokorda; Wayan Surata, I.; Wardana, Ari

    2017-05-01

    This research is established for the purpose of the understanding the stability of the acidity of lubricant oil in biogas fuelled engine due to the absence of hydrogen sulfide (H2S). As was recognized that other than Methane (CH4), there are also other gas impurities in the biogas such as carbon dioxide (CO2), hydrogen sulfide (H2S), moisture (H2O) and ammonia (NH3). Due to H2S contents in the biogas fuel, the engine was found failure. This is caused by corrosion in the combustion chamber due to increase of lubricant acidity. To overcome this problem in practical, the lubricant is increased the pH to basic level with the hope will be decrease to normal value after several time use. Other method is by installing pH measurement sensor in the engine lubricant so that when lubricant is known turn to be acid, then lubricant replacement should be done. In this research, the effect of biogas desulfurization down to zero level to the acidity of lubricant oil in the four stroke engine was carried out with the hope that neutral lubrication oil to be available during running the engine. The result indicates that by eliminating H2S due desulfurization process, effect on stability and neutrality of pH lubricant. By this method the engine safety can be obtained without often replacement the lubricant oil.

  9. Effect of Di-Tertiary Butyl Peroxide on the performance, combustion and emission characteristics of ethanol blended cotton seed methyl ester fuelled automotive diesel engine

    International Nuclear Information System (INIS)

    Kumar, K. Senthil; Raj, R. Thundil Karuppa

    2016-01-01

    Highlights: • Effect of di-tertiary butyl peroxide on ethanol blended biodiesel is investigated. • Cetane enhanced ethanol up to 10% can be blended with cotton seed biodiesel. • Nitrogen oxides emissions are lower for cetane enhanced ethanol biodiesels. • Performance characteristics of cetane improved ethanol biodiesels are reasonable. • Cetane enhanced ethanol blended biodiesel is an promising renewable energy source. - Abstract: An experimental study is carried out to examine and analyze the influence of Di-Tertiary Butyl Peroxide in bioethanol diesel blends on the performance, combustion and emission characteristics in a single cylinder, 4-stroke, naturally aspirated, automotive diesel engine for variable speed at full load conditions. Esterified cotton seed oil of 5% by volume is emulsified with 95% pure diesel to get the base fuel (BE0) for the experiments. Bioethanol diesel blends are produced from base fuel by adding 5% and 10% pure ethanol on a volumetric basis to obtain BE5 and BE10 respectively. The bioethanol fuels are low in Cetane number and hence Di-Tertiary Butyl Peroxide a Cetane enhancer is added by 0.4% by volume to produce BE5CN0.4% and BE10CN0.4% emulsions respectively. It is found from the experiments carried out, that an inverse trend exists between brake thermal efficiency and percentage of ethanol in base fuel. This is due to the lower calorific value of ethanol and an improvement in brake thermal efficiency is observed with ignition improver added blends. The presence of Cetane improver significantly reduced oxides of nitrogen and unburned hydro carbon emissions for overall engine speed and carbon monoxide emissions for low to medium speed range.

  10. Comparative study on adsorption of crude oil and spent engine oil from seawater and freshwater using algal biomass.

    Science.gov (United States)

    Boleydei, Hamid; Mirghaffari, Nourollah; Farhadian, Omidvar

    2018-05-15

    Efficiency of a biosorbent prepared from the green macroalga Enteromorpha intestinalis biomass for decontamination of seawater and freshwater polluted by crude oil and engine spent oil was compared. The effect of different experimental conditions including contact time, pH, particle size, initial oil concentration, and biosorbent dose on the oil biosorption was studied in the batch method. The biosorbent was characterized by CHNOS, FTIR, and SEM analysis. The experimental data were well fitted to the pseudo-second-order kinetic model and the Langmuir adsorption isotherm model. Based on the obtained results, the adsorption of spent oil with higher viscosity was better than crude oil. The biosorption of oil hydrocarbons from seawater was more efficient than freshwater. The algal biomasses which are abundantly available could be effectively used as a low-cost and environmentally friendly adsorbent for remediation of oil spill in the marine environments or in the water and wastewater treatment.

  11. Automotive Thermoelectric Waste Heat Recovery

    Science.gov (United States)

    Meisner, Gregory P.

    2015-03-01

    Considerable fuel energy, as much as 70%, is not converted to useful work by internal combustion engines but is instead rejected as waste heat, and more than half of the waste heat, nearly 40% of fuel energy, is contained in vehicle exhaust gas. This provides an opportunity to recover some of the wasted fuel energy and convert it from heat into useful work, subject to the laws of thermodynamics, and thereby improve vehicle energy efficiency. Thermoelectric (TE) materials have been extensively researched and TE devices are now being developed for operation at high temperatures corresponding to automotive exhaust gases for direct solid-state conversion of heat into electricity. This has stimulated substantial progress in the development of practical TE generator (TEG) systems for large-scale commercialization. A significant enabler of this progress has been the US Department of Energy's Vehicle Technologies Program through funding for low cost solutions for automotive TE waste heat recovery to improve fuel economy. Our current project at General Motors has culminated in the identification of the potential supply chain for all components and assembly of an automotive TEG. A significant focus has been to develop integrated and iterative modeling tools for a fully optimized TEG design that includes all components and subsystems (TE modules, heat exchangers, thermal interfaces, electrical interconnects, power conditioning, and vehicle integration for maximal use of TEG power). We have built and tested a new, low-cost Initial TEG prototype based on state-of-the-art production-scale skutterudite TE modules, novel heat exchanger designs, and practical solutions to the many technical challenges for optimum TEG performance. We will use the results for our Initial TEG prototype to refine our modeling and design tools for a Final automotive TEG system prototype. Our recent results will be presented. Thanks to: J.R. Salvador, E.R. Gundlach, D. Thompson, N.K. Bucknor, M

  12. Optical limiting in suspension of detonation nanodiamonds in engine oil

    Science.gov (United States)

    Mikheev, Konstantin G.; Krivenkov, Roman Yu.; Mogileva, Tatyana N.; Puzyr, Alexey P.; Bondar, Vladimir S.; Bulatov, Denis L.; Mikheev, Gennady M.

    2017-07-01

    The optical limiting (OL) of detonation nanodiamond (DND) suspensions in engine oil was studied at a temperature range of 20°C to 100°C. Oil suspensions were prepared on the basis of the DNDs with an average nanoparticle cluster size in hydrosols (Daver) of 50 and 110 nm. Raman spectroscopy was used to characterize the samples. The OL investigation was carried out by the z-scan technique. The fundamental (1064 nm) and second (532 nm) harmonic radiations of YAG:Nd3+ laser with passive Q-switching as an excitation source were used. The OL thresholds for both suspensions at 532 and 1064 nm were determined. It is shown that a decrease in the average nanoparticle cluster size as well as an increase of the wavelength of the incident radiation leads to the OL threshold increase. It is established that the OL performance is not influenced by increasing the temperature from 20°C to 100°C. The results obtained show the possibility of using the DNDs suspensions in engine oil as an optical limiter in a wide temperature range.

  13. (cucumis sativus l.) in spent engine oil contaminated soil amended

    African Journals Online (AJOL)

    compost treatment recorded the highest number of leaves while the number of leaves for 0% ... KEYWORDS: Growth, Cucumis sativus, Urena lobata, spent engine oil, contamination, .... sawdust, peat, waste cotton and organic manures are.

  14. PERFORMANCE AND EMISSION CHARACTERISTICS OF A CI ENGINE OPERATED ON VEGETABLE OILS AS ALTERNATIVE FUELS

    Directory of Open Access Journals (Sweden)

    K. Rajagopal

    2011-12-01

    Full Text Available An experimental analysis was done using a four-stroke, single cylinder, constant speed, water-cooled diesel engine, which was interfaced with Engine software. Performance and emission characteristics were evaluated for three non-edible vegetable oils, i.e. thumba, jojoba, neem oil, as well as jojoba methyl ester, to study the effect of injection pressure at 205, 220, 240 and 260 bar with a variation in injection timing at 23°bTDC and 28°bTDC. The performance of jojoba methyl ester improved with an increase in injection pressure. A maximum brake thermal efficiency of 29.72% was obtained with lower emissions compared to the other vegetable oils; this might be explained by low viscosity and better combustion. Further investigations were carried out with a new lubricant, SAE 5W-30, which improved the performance of the CI engine by 1.59%. All of the abovementioned investigations were fruitful and these results are expected to lead to substantial contributions in the development of a viable vegetable oil engine.

  15. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine.

    Science.gov (United States)

    Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A

    2013-01-01

    Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine.

  16. The performance characteristics of groundnut ( Arachis hypogea , L ...

    African Journals Online (AJOL)

    The ethyl-esters were blended with automotive gas oil at (0 to 20%) mix with 5% increment of groundnut ethyl-esters to produce biodiesel. The performance of a 2.46 kW diesel engine was evaluated using the groundnut biodiesel at five loading conditions (0, 25, 50, 75 and 100% of full load). Automotive gas oil was used as ...

  17. Emission Characterization of Diesel Engine Run on Coconut Oil ...

    African Journals Online (AJOL)

    PROF HORSFALL

    KEYWORDS: Diesel engine, diesel, coconut oil biodiesel, blends, emissions. Introduction ... Automobile exhaust ... power loss, the increase in fuel consumption and the increase in ... diesel fuel in terms of power and torque and none or ... gas analyzer (Motorscan 8050) made in Italy which .... different injection pressures.

  18. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid

    Science.gov (United States)

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2016-08-01

    Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2-16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process.

  19. Offshoring trends in the manufacturing process within the automotive industry

    DEFF Research Database (Denmark)

    Simplay, S.; Hansen, Zaza Nadja Lee

    2014-01-01

    consisting of original equipment manufacturers and engineering service providers. The findings indicated some offshoring trends in the automotive industry. Offshoring in this industry is moving from a manufacturing focus to incorporate large parts of the process, including high-level product development...... engineering activities. This development has created several challenges. These challenges arose as organisations are not considering how offshoring activities could be integrated with an increasingly global supply chain for the manufacturing of the final product. The paper contributes to manufacturing theory...

  20. Performance and emission characteristics of a DI compression ignition engine operated on Honge, Jatropha and sesame oil methyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Banapurmath, N.R.; Tewari, P.G. [Department of Mechanical Engineering, B.V.B. College of Engineering and Technology, Vidyanagar, Poona-Bangalore Road, Hubli 580031 (India); Hosmath, R.S. [Department of Mechanical Engineering, K.L.E' s C.E.T., Belgaum (India)

    2008-09-15

    The high viscosity of vegetable oils leads to problem in pumping and spray characteristics. The inefficient mixing of vegetable oils with air contributes to incomplete combustion. The best way to use vegetable oils as fuel in compression ignition (CI) engines is to convert it into biodiesel. Biodiesel is a methyl or ethyl ester of fatty acids made from vegetable oils (both edible and non-edible) and animal fat. The main resources for biodiesel production can be non-edible oils obtained from plant species such as Pongamia pinnata (Honge oil), Jatropha curcas (Ratanjyot), Hevea brasiliensis (Rubber) and Calophyllum inophyllum (Nagchampa). Biodiesel can be used in its pure form or can be blended with diesel to form different blends. It can be used in CI engines with very little or no engine modifications. This is because it has properties similar to mineral diesel. This paper presents the results of investigations carried out on a single-cylinder, four-stroke, direct-injection, CI engine operated with methyl esters of Honge oil, Jatropha oil and sesame oil. Comparative measures of brake thermal efficiency, smoke opacity, HC, CO, NO{sub X}, ignition delay, combustion duration and heat release rates have been presented and discussed. Engine performance in terms of higher brake thermal efficiency and lower emissions (HC, CO, NO{sub X}) with sesame oil methyl ester operation was observed compared to methyl esters of Honge and Jatropha oil operation. (author)

  1. Study on Combustion Performance of Diesel Engine Fueled by Synthesized Waste Cooking Oil Biodiesel Blends

    Directory of Open Access Journals (Sweden)

    Duraid F. Maki

    2018-02-01

    Full Text Available The waste cooking oil or used cooking oil is the best source of biodiesel synthesizing because it enters into the so-called W2E field whereas not only get rid of the used cooking oils but produce energy from waste fuel. In this study, biodiesel was synthesized from the used cooking oil and specifications are tested. From 1 liter of used cooking oil, 940 ml is gained. The remaining of liter is glycerin and water. Blend of 20% of biodiesel with 80% of net diesel by volume is formed. Blends of 100% diesel and 100% biodiesel are prepared too. The diesel engine combustion performance is studied. Brake thermal efficiency, brake specific fuel consumption, volumetric efficiency, mean effective pressure, and engine outlet temperature. Cylinder pressure variation with crank angle is analyzed. At last not least, the concentrations of hydro carbon and nitrogen pollutants are measured. The results showed significant enhancement in engine power and pollutant gases emitted. There is positive compatible with other critical researches.

  2. Experimental investigation on a Common Rail Diesel engine partially fuelled by syngas

    International Nuclear Information System (INIS)

    Rinaldini, Carlo Alberto; Allesina, Giulio; Pedrazzi, Simone; Mattarelli, Enrico; Savioli, Tommaso; Morselli, Nicolò; Puglia, Marco; Tartarini, Paolo

    2017-01-01

    Highlights: • A current automotive Diesel engine is tested running on both Diesel fuel and syngas. • The syngas HHV is about 5 MJ/Nm"3, allowing a 60% of Diesel substitution. • The engine brake efficiency is slightly increased running on syngas at high load. • In-cylinder pressure do not change very much even if Diesel fuel is strongly reduced. - Abstract: The high efficiency, reliability and flexibility of modern passenger car Diesel engines makes these power units quite attractive for steady power plants totally or partially running on fuels derived from biomass, in particular on syngas. The engine cost, which is obviously higher than that of current industrial engines, may not be a big obstacle, provided that the re-engineering work is limited and that performance and efficiency are enhanced. The goal of this work is to explore the potential of a current automotive turbocharged Diesel engine running on both Diesel fuel and syngas, by means of a comprehensive experimental investigation focused on the combustion process. The engine is operated at the most typical speed employed in steady power plants (3000 rpm), considering three different loads (50–100–300 Nm/16–31–94 kW). For each operating condition, the syngas rate is progressively increased until it provides a maximum heating power of 85 kW, while contemporarily reducing the amount of injected Diesel oil. Maximum care is applied to guarantee a constant quality of the syngas flow throughout the tests, as well as to maintain the same engine control parameters, in particular the boost pressure. It is found that in-cylinder pressure traces do not change very much, even when drastically reducing the amount of Diesel fuel: this is a very encouraging result, because it demonstrates that there is no need to radically modify the standard stock engine design. Another promising outcome is the slight but consistent enhancement of the engine brake efficiency: the use of syngas not only reduces the

  3. Study of effects of engine oil additives on the properties of fluorelastomers; Fusso gomu ni oyobosu engine yu tenkazai no eikyo chosa

    Energy Technology Data Exchange (ETDEWEB)

    Kurono, K; Owaki, M; Suzuki, Y; Akiyama, K; Shionoya, M [Toyota Motor Corp., Aichi (Japan)

    1997-10-01

    Fluoroelastmers are well known for their resistance to heat and fluids and have become major material for crankcase oil sealers. On the other hand new additive formulations are developed for engine lubricants used for fuel economic gasoline engines. In this paper the effects of those additives on properties of fluoroelastmers are investigated. The results of the immersion tests of both test plaques and oil sealer products indicates that dithiocarbamates friction modifier have hardening effects on fluoroelastomers. The fluoroelastmer deterioration mechanism is presumed by analysis of elastmer samples after immersion in oil. 6 refs., 9 figs., 3 tabs.

  4. Conceptual Design of Automotive Compressor for Integrated Portable Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Ishak Muhammad Ikman

    2017-01-01

    Full Text Available This study introduces a new concept of portable air conditioner which integrated with some available components in automotive air conditioning system. This new idea intends to solve the storage problems as well as to reduce the price of current portable air conditioner since some devices could directly be used from the automotive air conditioning system. The primary emphasis of this study was on the modification of automotive compressor design so as the system may alternately be operated. The length of conventional compressor shaft is extended to place an additional clutch pulley, a drive plate and a clutch coil. The new concept particularly the shaft and pulley were analysed through slope deflection and computational finite element analyses. The result of engineering analyses exhibited that the new design of compressor shaft and clutch pulleys promote a low risk of failure as the data values recorded are lower than the critical value for each criterion investigated.

  5. Experimental investigations on a diesel engine operated with fuel blends derived from a mixture of Pakistani waste tyre oil and waste soybean oil biodiesel.

    Science.gov (United States)

    Qasim, Muhammad; Ansari, Tariq Mahmood; Hussain, Mazhar

    2017-10-18

    The waste tyre and waste cooking oils have a great potential to be used as alternative fuels for diesel engines. The aim of this study was to convert light fractions of pyrolysis oil derived from Pakistani waste vehicle tyres and waste soybean oil methyl esters into valuable fuel and to reduce waste disposal-associated environmental problems. In this study, the waste tyre pyrolysis liquid (light fraction) was collected from commercial tyre pyrolysis plant and biodiesel was prepared from waste soybean oil. The fuel blends (FMWO10, FMWO20, FMWO30, FMWO40 and FMWO50) were prepared from a 30:70 mixture of waste tyre pyrolysis liquid and waste soybean oil methyl esters with different proportions of mineral diesel. The mixture was named as the fuel mixture of waste oils (FMWO). FT-IR analysis of the fuel mixture was carried out using ALPHA FT-IR spectrometer. Experimental investigations on a diesel engine were carried out with various FMWO blends. It was observed that the engine fuel consumption was marginally increased and brake thermal efficiency was marginally decreased with FMWO fuel blends. FMWO10 has shown lowest NOx emissions among all the fuel blends tested. In addition, HC, CO and smoke emissions were noticeably decreased by 3.1-15.6%, 16.5-33.2%, and 1.8-4.5%, respectively, in comparison to diesel fuel, thereby qualifying the blends to be used as alternative fuel for diesel engines.

  6. The 2003 guidebook of petroleum, gas and LPG. Every professional and web site in the oil and gas industry

    International Nuclear Information System (INIS)

    Legros, E.

    2003-01-01

    This guidebook is a joint special issue of 'Petrole et Gaz Informations' and 'GPL Actualites' journals. It is a complete and practical information tool which takes stock of: the economical activity during 2001 and 2002 (exploration/production, deep offshore activities, maritime transport and tanker-ships, European refining and new specifications, automotive fuels and future engines, lubricants, maritime transport of liquefied petroleum gas (LPG), storage facilities and capacity, new standards for bitumen binders, natural gas prospects, sustainable development and ethical investment, air pollution abatement etc..); the 2002 economical key-data of oil and gas summarized in an atlas of maps and statistical tables; a list of public organizations and associations, and of oil and gas companies settled in France; a list of companies involved in oil and gas equipments, services and products sorted by sector; and a yearbook of the oil and gas professionals with their corporate and web sites. (J.S.)

  7. Motor SUS i životna sredina / IC engine and environment

    Directory of Open Access Journals (Sweden)

    Zoran Građin

    2002-03-01

    Full Text Available Ekološki pokreti u svetu su sve aktivniji, zbog stvarne ugroženosti Zemlje Mnogobrojni su oblici i izvori zagađenja, a jedan od najvećih su motori sa unutrašnjim sagorevanjem, za koje se pretpostavlja da će još dugo dominirati kao pogonski agregati u mnogim oblastima primene. U vezi s tim moguće je delovati u dva smera: zamenom konvencionalnih goriva alternativnim i konstrukcionim izmenama na motorima radi smanjenja emisije i potrošnje goriva. Jedna od mogućnosti konstrukcionog poboljšanja motora je i smanjenje mehaničkih gubitaka, koji kod današnjih konstrukcija još uvek imaju znatan udeo u gubicima, pogotovo na parcijalnim režimima. Treba naglasiti da kompleksni problemi smanjenja potrošnje goriva i emisije izduvnih gasova motora (vozila mogu da se reše samo spregom razvoja automobilske i naftne industrije. / Ecological trends and movements in the modern world grow stronger and more active, due to a real danger of Earth pollution. One of the main sources of pollution are IC engines and their influence on environment is significant. However, conventional combustion engines still are and will be dominant powering systems for numerous future applications. Two solutions are possible answers to this problem: first, the replacement of conventional fuels by alternative ones and second, modifications on the IC engine design in order to decrease fuel emission and consumption. One of the solutions for the improvement of IC engine design is the modification of engine parts or their design, with great influence on the decrease of mechanical losses, especially on partial rating. Therefore, it is important to say that complex problems of engine (automotive decrease of fuel consumption and exhaust gas emission can be solved only by simultaneous development of oil and engine (automotive industry.

  8. Heat engine development for solar thermal power systems

    Science.gov (United States)

    Pham, H. Q.; Jaffe, L. D.

    The parabolic dish solar collector systems for converting sunlight to electrical power through a heat engine will, require a small heat engine of high performance long lifetime to be competitive with conventional power systems. The most promising engine candidates are Stirling, high temperature Brayton, and combined cycle. Engines available in the current market today do not meet these requirements. The development of Stirling and high temperature Brayton for automotive applications was studied which utilizes much of the technology developed in this automotive program for solar power engines. The technical status of the engine candidates is reviewed and the components that may additional development to meet solar thermal system requirements are identified.

  9. Development of the institutional framework of interaction with engineering UFD Russian oil and gas complex

    Directory of Open Access Journals (Sweden)

    S. Y. Yurpalov

    2005-03-01

    Full Text Available The trends developing in the Russian market of equipment for the oil and gas industry. The main reasons for the decline in production in the oil and gas engineering. The estimation of the negative trends of decrease in volumes of exploration works, the institutional environment of economic activity. The directions of cooperation of engineering enterprises of the Urals Federal District, serving the energy industry, with consumers. A set of measures to strengthen cooperation with Innovative Energy Engineering at the various levels of state regulation.

  10. A Novel Transporting System Model for Oil Refinery

    OpenAIRE

    Razman M. Tahar; Waleed K. Abduljabbar

    2010-01-01

    Problem statement: Oil refineries are widely used to store various liquids and gases. Petroleum products are in high demand. Oil companies have abundant resources of petroleum products in pipelines and storage tanks. Approach: Included are storage tanks at retail gasoline station, home heating oil tanks, lubricant storage at automotive service facilities, propane tanks in all sorts of application, and oil company terminals across the world. The aim of this study is to present a model by which...

  11. Castor oil biodiesel as an alternative fuel for diesel engines

    International Nuclear Information System (INIS)

    Benavides, Alirio; Benjumea, Pedro; Pashova, Veselina

    2007-01-01

    In this paper, a study related to the production and use of castor oil biodiesel is presented. The maximum methyl esters yield of the castor oil transesterification reaction is obtained under the following conditions: ambient temperature, a molar ratio of methanol to vegetable oil equal to 9 and a catalyst percentage equal to 0.8%. The castor oil biodiesel can be blended with petroleum diesel as far as 15% in such way that the resulting blend complies with national and international technical standards for diesel fuels. Its high viscosity becomes the main difficulty for using castor oil biodiesel in engines. However this biofuel exhibits excellent cold flow properties (low values of cloud and pour points). The motor tests using castor oil biodiesel petroleum diesel blends, for the biodiesel proportion tested; show that a biodiesel percentage increase leads to an increase in the specific fuel consumption, a decrease in the fuel air ratio, a slight decrease in smoke opacity, while the fuel conversion efficiency and the CO and CO 2 emissions practically remain constants

  12. EEE (environmental engineering economics) attributes for oil and gas industry

    International Nuclear Information System (INIS)

    Isreb, M.

    2006-01-01

    This paper outlined the basic attributes of environmental engineering economics (EEE) with reference to the oil and gas industry in Australia. The paper was designed as a reference guide for policy-makers, educators, and environmental engineers. Methods of calculating the Pareto Optimum status were discussed, and environmental values and principles were identified. Air quality indicators were outlined. The paper considered multidisciplinary approaches to EEE and sustainable development, as well as the application of statistics and qualitative methods in addressing contemporary issues. The ethical aspects of environmental policies were discussed. Issues related to environmental toxicity and public health were also examined. Various taxation approaches and financial incentives were reviewed. Environmental laws related to the oil and gas industry were outlined. Environmental assessment procedures were presented. It was concluded that environmental regulations within the industry will help to ensure appropriate pollution reductions. 7 refs

  13. 75 FR 34170 - Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC...

    Science.gov (United States)

    2010-06-16

    ... Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC, Troy, MI... the Anderson, South Carolina location of Plastic Omnium Automotive Exteriors, LLC, working out of Troy... certification to include workers in support of the Anderson, South Carolina facility working out of Troy...

  14. Biodiesel Production from Castor Oil and Its Application in Diesel Engine

    Directory of Open Access Journals (Sweden)

    S Ismail

    2014-12-01

    Full Text Available In this study, the optimum biodiesel conversion from crude castor oil to castor biodiesel (CB through transesterification method was investigated. The base catalyzed transesterification under different reactant proportion such as the molar ratio of alcohol to oil and mass ratio of catalyst to oil was studied for optimum production of castor biodiesel. The optimum condition for base catalyzed transesterification of castor oil was determined to be 1:4.5 of oil to methanol ratio and 0.005:1 of potassium hydroxide to oil ratio. The fuel properties of the produced CB such as the calorific value, flash point and density were analyzed and compared to conventional diesel. Diesel engine performance and emission test on different CB blends proved that CB was suitable to be used as diesel blends. CB was also proved to have lower emission compared to conventional diesel.

  15. Advanced Automotive Diesel Assessment Program, executive summary

    Science.gov (United States)

    1983-01-01

    The objectives of this analytical study were: to select one advanced automotive diesel engine (AAD) concept which would increase the tank mileage of a 3,000 pound passenger car from the present 35 mpg to at least 52 mpg; to identify long term component research and development work required to bring the selected concept to fruition; and to prepare a development strategy that will bring the selected concept to a prototype testing phase. Cummins Engine Company has completed this study. The selected concept is a 4 stroke cycle, direct injection, spark assisted, advanced adiabatic diesel engine with positive displacement compounding plus expander and part load air preheating. The engine does not use a liquid coolant nor liquid lubricants. It is a 4 cylinder, in-line, 77 mm bore x 77 mm stroke, 1.434 liters displacement engine weighing 300 lb, and rated at 70 BHP at 3000 rpm. Installation dimensions are 621 mm length x 589 mm width x 479 mm height (24.4 inch x 22 inch x 18.9 inch).

  16. Effects of synergetic and antagonistic additive elements on the thermal performance of engine oils at various bulk temperatures

    International Nuclear Information System (INIS)

    Abou-Ziyan, H.; Mahmoud, M.; Al-Ajmi, R.; Shedid, M.

    2015-01-01

    This paper reports effects of additive elements on thermal performance of engine oils during cooling of different engine parts at bulk temperatures from 40 to 150 °C and average wall superheat of 100 °C. The analysis is performed using a back propagation neural network that was trained on experimentally obtained sub-cooled boiling data of engine oils. The results demonstrate that sodium, boron, molybdenum, magnesium and barium additive elements are thermally synergetic while phosphorous, zinc, calcium and silicon elements are thermally antagonistic. Experimental thermal performance of oils could potentially be improved by increasing the concentration of synergetic additive elements or decreasing antagonistic additive elements concentration. - Highlights: • Oil additives enhance lubrication properties but may hinder oil thermal performance. • Sodium, boron, molybdenum, magnesium and barium additives enhance heat transfer. • Additives containing phosphorous, zinc, calcium and silicon hinder the heat transfer. • Oil thermal performance is improved by changing some oil additives concentrations. • Some additives are highly sensitive to interaction with other additives in the oil.

  17. Synthesis of cracked Calophyllum inophyllum oil using fly ash catalyst for diesel engine application

    KAUST Repository

    Muthukumaran, N.

    2015-04-16

    In this study, production of hydrocarbon fuel from Calophyllum inophyllum oil has been characterized for diesel engine application, by appraising essential fuel processing parameters. As opposed to traditional trans-esterification process, the reported oil was cracked using a catalyst, as the latter improves the fuel properties better than the former. In a bid to make the production process economically viable, a waste and cheap catalyst, RFA (raw fly ash), has been capitalized for the cracking process as against the conventional zeolite catalyst. The fuel production process, which is performed in a fixed bed catalytic reactor, was done methodologically after comprehensively studying the characteristics of fly ash catalyst. Significantly, fly ash characterization was realized using SEM and EDS, which demarcated the surface and internal structures of fly ash particles before and after cracking. After the production of hydrocarbon fuel from C. inophyllum oil, the performed compositional analysis in GC-MS revealed the presence of esters, parfins and olefins. Followed by the characterization of catalytically cracked C. inophyllum oil, suitable blends of it with diesel were tested in a single cylinder diesel engine. From the engine experimental results, BTE (brake thermal efficiency) of the engine for B25 (25% cracked C. inophyllum oil and 75% diesel) was observed to be closer to diesel, while it decreased for higher blends. On the other hand, emissions such as HC (hydrocarbon), CO (carbon monoxide) and smoke were found to be comparable for B25 with diesel. © 2015 Elsevier Ltd. All rights reserved.

  18. Oil seed marketing prospects

    International Nuclear Information System (INIS)

    Ceroni, G.

    1992-01-01

    With its 100 million tonnes annual production, the American continent is by far the world's biggest producer of oil seed, followed by Asia - 52 million, and Europe - 27 million tonnes. The Italian and European Communities have the farming capacity to double their production, but international agreements currently prohibit such initiatives. After first providing a panorama of the world oil seed market, this paper discusses new reforms in European Communities internal agricultural policies which currently limit production. These reforms, intended to encourage the production of oil seed for use as an ecological automotive fuel alternative, call for an obligatory set-aside of 15% of producing farm-land in exchange for the compensatory removal of oil seed production limits

  19. Influence of injection timing on DI diesel engine characteristics fueled with waste transformer oil

    Directory of Open Access Journals (Sweden)

    S. Prasanna Raj Yadav

    2015-12-01

    Full Text Available This research work targets on the effective utilization of WTO (waste transformer oil in a diesel engine, which would rather reduce environmental problems caused by disposing of it in the open land. The waste transformer oil was compared with the conventional diesel fuel and found that it can also be used as fuel in compression ignition engines since the WTO is also a derivative of crude oil. In this present work, the WTO has been subjected to traditional base-catalyzed trans-esterification process in order to reduce the high viscosity of the WTO which helps to effectively utilize WTO as a fuel in DI diesel engine. The objective of the work is to study the influence of injection timing on the performance, emission and combustion characteristics of a single cylinder, four stroke, direct injection diesel engine using TWTO (trans-esterified waste transformer oil as a fuel. Experiments were performed at four injection timings (23°, 22°, 21°, and 20° bTDC. The results indicate that the retarded injection timing of 20° bTDC resulted in decreased oxides of nitrogen, carbon monoxide and unburned hydrocarbon by 11.57%, 17.24%, and 10% respectively while the brake thermal efficiency and smoke increased under all the load conditions when compared to that of standard injection timing.

  20. Environmentally friendly, oil-free free piston engine. Displacement engines in distributed energy systems. Research funding decision. Subproject: Free piston engine. Final report; Ympaeistoeystaevaellinen, oeljytoen vapaamaentaemoottori. Syrjaeytysmoottoriprosessit hajautetussa energiahuollossa. Lineaarimoottori-osaprojekti. Loppuraportti

    Energy Technology Data Exchange (ETDEWEB)

    Larjola, J.; Honkatukia, J.; Sallinen, P.

    2005-07-01

    A free piston engine suitable for small-scale energy production in distributed energy systems was preliminarily designed in this project, including a manufacturing survey as well. The properties of the engine were simulated using a simulation program developed in this project, and the results were utilized in preliminary constructional design. The engine simulation program was developed by combining and modifying the source codes of the simulation and calculation programs obtained from Helsinki University of Technology, Tampere University of Technology, and Lappeenranta University of Technology. Because of the contact-free labyrinth seal used in the piston, the efficiency of the motor is about 5 percentage points lower than the efficiency of a conventional motor with oil-lubricated piston rings. On the other hand, the lack of bearing losses, and the lack of losses associated with a crankshaft system and a gearbox, as well as the lack of lubrication oil expenses, compensates this effect. As a net result, it can be estimated, that the operating expenses of this new motor could be about one percentage point lower than with a conventional motor; that is, the new motor would be slightly better than the conventional one. An oil-free free piston engine is particularly suitable for distributed energy systems using natural gas, biogas, or liquid fuel made from biomass. Because it is completely oil-free, it is very environmentally friendly, and its exhaust gases are completely free of oil residuals which are causing problems in normal gas motors. In principle the oil-free free piston engine could be used also in road vehicles which are provided with an electric power transmission system. This could enable a complete oil-free traffic system, where DME (dimethyl ether) or alcohol produced from domestic biomass would be used as a fuel. The distribution of this kind of a fuel would be easier with the present service station network than the distribution of hydrogen. Because this

  1. Genotoxicity of diesel engine emissions during combustion of vegetable oils, mineral oil, and their blends; Gentoxizitaet von Dieselmotoremissionen bei Verbrennung von Pflanzenoelen, Mineraloeldiesel und deren Mischkraftstoffen

    Energy Technology Data Exchange (ETDEWEB)

    Buenger, Joern

    2013-07-09

    High particle emissions and strong mutagenic effects were observed after combustion of vegetable oil in diesel engines. This study tested the hypothesis that these results are affected by the amount of unsaturated or polyunsaturated fatty acids of vegetable oils and that blends of diesel fuel and vegetable oil are mutagenic. Three different vegetable oils (linseed oil, LO; palm tree oil, PO; rapeseed oil, RO), blends of 20% vegetable oil and 80% diesel fuel (B20) and 50% vegetable oil and 50% diesel fuel (B50) as well as common diesel fuel (DF) were combusted in a heavy duty diesel engine. The exhaust was investigated for particle emissions and its mutagenic effect in comparison to emissions of DF. The engine was operated using European Stationary Cycle. Particle mass was determined gravimetrically while mutagenicity was determined using the bacterial reverse mutation assay with tester strains TA98 and TA100. Combustion of LO caused the largest amount of total particulate matter (TPM). In comparison to DF it particularly raised the soluble organic fraction (SOF). RO presented second highest TPM and SOF, followed by PO which was scarcely above DF. B50 revealed the lowest amount of TPM while B20 reached as high as DF. RO revealed the highest number of mutations of the vegetable oils closely followed by LO. PO was less mutagenic, but still induced stronger effects than DF. B50 showed higher mutagenic potential than B20. While TPM and SOF were strongly correlated with the content of polyunsaturated fatty acids in the vegetable oils, mutagenicity had a significant correlation with the amount of total unsaturated fatty acids. Vegetable oil blends seem to be less mutagenic than the pure oils with a shifted maximum compared to blends with biodiesel and DF. This study supports the hypothesis that numbers of double bounds in unsaturated fatty acids of vegetable oils combusted in diesel engines influence the amount of emitted particles and the mutagenicity of the exhaust. And

  2. A low cost mid-infrared sensor for on line contamination monitoring of lubricating oils in marine engines

    Science.gov (United States)

    Ben Mohammadi, L.; Kullmann, F.; Holzki, M.; Sigloch, S.; Klotzbuecher, T.; Spiesen, J.; Tommingas, T.; Weismann, P.; Kimber, G.

    2010-04-01

    The chemical and physical condition of oils in marine engines must be monitored to ensure optimum performance of the engine and to avoid damage by degraded oil not adequately lubricating the engine. Routine monitoring requires expensive laboratory testing and highly skilled analysts. This work describes the adaptation and implementation of a mid infrared (MIR) sensor module for continued oil condition monitoring in two-stroke and four-stroke diesel engines. The developed sensor module will help to reduce costs in oil analysis by eliminating the need to collect and send samples to a laboratory for analysis. The online MIR-Sensor module measures the contamination of oil with water, soot, as well as the degradation indicated by the TBN (Total Base Number) value. For the analysis of water, TBN, and soot in marine engine oils, four spectral regions of interest have been identified. The optical absorption in these bands correlating with the contaminations is measured simultaneously by using a four-field thermopile detector, combined with appropriate bandpass filters. Recording of the MIR-absorption was performed in a transmission mode using a flow-through cell with appropriate path length. Since in this case no spectrometer is required, the sensor including the light source, the flowthrough- cell, and the detector can be realised at low cost and in a very compact manner. The optical configuration of the sensor with minimal component number and signal intensity optimisation at the four-field detector was implemented by using non-sequential ray tracing simulation. The used calibration model was robust enough to predict accurately the value for soot, water, and TBN concentration for two-stroke and four-stroke engine oils. The sensor device is designed for direct installation on the host engine or machine and, therefore, becoming an integral part of the lubrication system. It can also be used as a portable stand-alone system for machine fluid analysis in the field.

  3. Use of crude filtered vegetable oil as a fuel in diesel engines state of the art: Literature review

    Energy Technology Data Exchange (ETDEWEB)

    Sidibe, S.S.; Azoumah, Y. [Institut Internationale d' ingenierie de l' Eau et de l' Environnement (2iE), rue de science 01 Ouagadougou 01 BP 594 (Burkina Faso); Blin, J. [Institut Internationale d' ingenierie de l' Eau et de l' Environnement (2iE), rue de science 01 Ouagadougou 01 BP 594 (Burkina Faso); Centre International de Recherche Agronomique pour le Developpement (CIRAD), UPR Biomasse energie, TA B-42/16, 73 rue JF Breton, 34398 Montpellier Cedex 5 (France); Vaitilingom, G. [Centre International de Recherche Agronomique pour le Developpement (CIRAD), UPR Biomasse energie, TA B-42/16, 73 rue JF Breton, 34398 Montpellier Cedex 5 (France)

    2010-12-15

    Many studies have been published on vegetable oil use in diesel engines. The different authors unanimously acknowledge the potential and merits of this renewable fuel. Typically, Straight Vegetable Oils (SVOs) produced locally on a small scale, have proven to be easy to produce with very little environmental impact. However, as their physico-chemical characteristics differ from those of diesel oil, their use in diesel engines can lead to a certain number of technical problems over time. In bibliography, there is substantial disagreement between authors regarding the advanced phenomena linked to this problems and the recommended solutions. Some of these publications treat options individually without any real comparison between them. Another observation is that the literature rarely tackles problems linked to vegetable oil quality. This paper sets out to review the state of the art for SVO use as fuel in diesel engines, based on a bibliographic study (literature review). The first section of the document examines the influence of the type and quality of vegetable oils for fuel use in diesel engines. The second section discusses the advantages and disadvantages of two options recommended for SVO use in diesel engines: dual fuelling and blending with diesel fuel. (author)

  4. Exhaust emissions reduction from diesel engine using combined Annona-Eucalyptus oil blends and antioxidant additive

    Science.gov (United States)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2017-03-01

    The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.

  5. Plain bearing stresses due to forming and oil film pressure

    International Nuclear Information System (INIS)

    Burke-Veliz, A; Reed, P A S; Syngellakis, S; Wang, D; Wahdy, N; Merritt, D

    2009-01-01

    This paper describes a methodology for assessing critical stress ranges arising in automotive plain bearings during engine operations. An industry-produced and run simulation program provides information on oil film pressure and overall bearing deformation during accelerated performance tests. This code performs an elasto-hydrodynamic lubrication analysis accounting for the compliance of the housing and journal. Finite element analyses of a multilayer bearing are performed to assess the conditions responsible for possible fatigue damage over the bearing lining. The residual stresses arising from the forming and fitting process are first assessed. The stress analyses over the engine cycle show the intensity and distribution of cyclic tensile and compressive stresses in the bearing. The location of maximum stress range is found to be consistent with the damage observed in accelerated fatigue tests. Critical zones are identified in the lining for possible fatigue crack initiation and growth studies.

  6. Plain bearing stresses due to forming and oil film pressure

    Energy Technology Data Exchange (ETDEWEB)

    Burke-Veliz, A; Reed, P A S; Syngellakis, S [University of Southampton, School of Engineering Sciences, Southampton SO17 1BJ (United Kingdom); Wang, D; Wahdy, N; Merritt, D, E-mail: allan.burke@itesm.m [MAHLE Engine Systems UK Ltd, 2 Central park Drive, Rugby CV23 0WE (United Kingdom)

    2009-08-01

    This paper describes a methodology for assessing critical stress ranges arising in automotive plain bearings during engine operations. An industry-produced and run simulation program provides information on oil film pressure and overall bearing deformation during accelerated performance tests. This code performs an elasto-hydrodynamic lubrication analysis accounting for the compliance of the housing and journal. Finite element analyses of a multilayer bearing are performed to assess the conditions responsible for possible fatigue damage over the bearing lining. The residual stresses arising from the forming and fitting process are first assessed. The stress analyses over the engine cycle show the intensity and distribution of cyclic tensile and compressive stresses in the bearing. The location of maximum stress range is found to be consistent with the damage observed in accelerated fatigue tests. Critical zones are identified in the lining for possible fatigue crack initiation and growth studies.

  7. Automotive Electrical and Electronic System II; Automotive Mechanics-Intermediate: 9045.04.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    This automotive electrical and electronic system course is an intermediate course designed for the student who has completed automotive Electrical and Electronic System I. The theory and principles of operation of the components of the starting and charging systems and other electrical accessory systems in the automobile will be learned by the…

  8. Crude palm oil as fuel extender for diesel engines

    International Nuclear Information System (INIS)

    Mohamed M El-Awad; Fuad Abas; Mak Kian Sin

    2000-01-01

    In this work an investigation has been conducted into the use of Crude Palm Oil (CPO) as an extender fuel for diesel engines. Mixtures of CPO with normal diesel fuel (with a percentage of 25%, 50% and 75% CPO by volume) were used to fuel a stationary diesel engine and the engine performance variables, i.e., power output, fuel consumption, and exhaust-gas emission, were compared to those of normal diesel fuel. The results obtained, for a fixed throttle opening and variable speed, indicate that at high engine speeds, the engine performance with CP0/diesel mixtures with up to 50% CPO is comparable to that of diesel fuel. However, the results of the 75% CPO mixture showed a higher temperature and emission of CO and NO compared to the diesel fuel. At low engine speeds, the engine performance with CPO mixtures gave higher power output and lower emission of NO compared to that with diesel fuel, but showed higher specific fuel consumption and higher emission of CO. Based on these results, the study recommends that CPO can be used to extend diesel fuel in a mixture of up to 50% CPO by volume for an unmodified engine. (Author)

  9. Learning, Upgrading, Innovation in the South African Automotive Industry

    DEFF Research Database (Denmark)

    Barnes, Justin; Lorentzen, Jochen

    2003-01-01

    contradicts at least part of the conventional wisdom concerning the location of innovation activities in global car value chains. Results also point to a deficient NIS insofar as there appears to be a disjuncture between the demand for engineering competence in the manufacturing sector on the one hand......This paper addresses the innovation activities of automotive component manufacturers in South Africa. It looks at the technological trajectory of a handful of firms that stand out from the crowd and analyses the results of their endeavours in the context of their interaction with foreign capital......, their internal upgrading and R&D agenda, and their interface with South Africa's national innovation system (NIS). The analysis makes use of eight case studies, and illustrates the conditions under which indigenous innovation in the automotive industries can happen in a developing country. This finding...

  10. Jatropha oil and biogas in a dual fuel CI engine for rural electrification

    NARCIS (Netherlands)

    Luijten, C.C.M.; Kerkhof, E.

    2011-01-01

    This work presents the first dual fuel measurements with pure jatropha oil and biogas, using a 12 kW diesel engine generator. Reference tests are done with pure jatropha oil and with diesel to characterize the engine’s thermal efficiency eta_t, volumetric efficiency eta_v and air excess ratio lambda

  11. Automotive Electrical and Electronic Systems I; Automotive Mechanics 2: 9045.03.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The automotive electrical and electronic system I course is designed as one of a group of quinmester courses offered in the field of automotive mechanics. General information will be given along with technical knowledge, basic skills, attitudes and values that are required for job entry level. The nine week (135 clock hour) course overcomes some…

  12. Get Your Automotive Program Nationally Certified!

    Science.gov (United States)

    Lundquist, Patricia A.

    2000-01-01

    Automotive programs that nationally certified enhance student recruitment and give students better employment opportunities. Technicians who earn the Automotive Service Excellence credential have joined the ranks of professionals in the automotive service industry. (Author/JOW)

  13. Model predictive control of a waste heat recovery system for automotive diesel engines

    NARCIS (Netherlands)

    Feru, E.; Willems, F.P.T.; de Jager, A.G.; Steinbuch, M.

    2014-01-01

    In this paper, a switching Model Predictive Control strategy is designed for an automotive Waste Heat Recovery system with two parallel evaporators. The objective is to maximize Waste Heat Recovery system output power, while satisfying safe operation under highly dynamic disturbances from the

  14. Combustion Characteristics of CI Diesel Engine Fuelled With Blends of Jatropha Oil Biodiesel

    Science.gov (United States)

    Singh, Manpreet; Yunus Sheikh, Mohd.; Singh, Dharmendra; Nageswara rao, P.

    2018-03-01

    Jatropha Curcas oil is a non-edible oil which is used for Jatropha biodiesel (JBD) production. Jatropha biodiesel is produced using transesterification technique and it is used as an alternative fuel in CI diesel engine without any hardware modification. Jatropha biodiesel is used in CI diesel engine with various volumetric concentrations (blends) such as JBD5, JBD15, JBD25, JBD35 and JBD45. The combustion parameters such as in-cylinder pressure, rate of pressure rise, net heat release, cumulative heat release, mass fraction burned are analyzed and compared for all blends combustion data with mineral diesel fuel (D100).

  15. Design and instrumentation of an automotive heat pump system using ambient air, engine coolant and exhaust gas as a heat source

    International Nuclear Information System (INIS)

    Hosoz, M.; Direk, M.; Yigit, K.S.; Canakci, M.; Alptekin, E.; Turkcan, A.

    2009-01-01

    Because the amount of waste heat used for comfort heating of the passenger compartment in motor vehicles decreases continuously as a result of the increasing engine efficiencies originating from recent developments in internal combustion engine technology, it is estimated that heat requirement of the passenger compartment in vehicles using future generation diesel engines will not be met by the waste heat taken from the engine coolant. The automotive heat pump (AHP) system can heat the passenger compartment individually, or it can support the present heating system of the vehicle. The AHP system can also be employed in electric vehicles, which do not have waste heat, as well as vehicles driven by a fuel cell. The authors of this paper observed that such an AHP system using ambient air as a heat source could not meet the heat requirement of the compartment when ambient temperature was extremely low. The reason is the decrease in the amount of heat taken from the ambient air as a result of low evaporating temperatures. Furthermore, the moisture condensed from air freezed on the evaporator surface, thus blocking the air flow through it. This problem can be solved by using the heat of engine coolant or exhaust gases. In this case, the AHP system can have a higher heating capacity and reuse waste heat. (author)

  16. Dual fuel mode operation in diesel engines using renewable fuels: Rubber seed oil and coir-pith producer gas

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhas, A.S.; Jayaraj, S.; Muraleedharan, C. [Department of Mechanical Engineering, National Institute of Technology Calicut, Calicut-673601 (India)

    2008-09-15

    Partial combustion of biomass in the gasifier generates producer gas that can be used as supplementary or sole fuel for internal combustion engines. Dual fuel mode operation using coir-pith derived producer gas and rubber seed oil as pilot fuel was analyzed for various producer gas-air flow ratios and at different load conditions. The engine is experimentally optimized with respect to maximum pilot fuel savings in the dual fuel mode operation. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. Specific energy consumption in the dual-fuel mode of operation with oil-coir-pith operation is found to be in the higher side at all load conditions. Exhaust emission was found to be higher in the case of dual fuel mode of operation as compared to neat diesel/oil operation. Engine performance characteristics are inferior in fully renewable fueled engine operation but it suitable for stationary engine application, particularly power generation. (author)

  17. Pegasus project. DLC coating and low viscosity oil reduce energy losses significantly

    Energy Technology Data Exchange (ETDEWEB)

    Doerwald, Dave; Jacobs, Ruud [Hauzer Techno Coating (Netherlands). Tribological Coatings

    2012-03-15

    Pegasus, the flying horse from Greek mythology, is a suitable name for the research project initiated by a German automotive OEM with participation of Hauzer Techno Coating and several automotive suppliers. It will enable future automotive vehicles to reduce fuel consumption without losing power. The project described in this article focuses on the rear differential, because reducing friction here can contribute considerably to efficiency improvement of the whole vehicle. Surfaces, coating and oil viscosity have been investigated and interesting conclusions have been reached. (orig.)

  18. Engineering and service activities in the Cogema group

    International Nuclear Information System (INIS)

    1998-03-01

    This short document presents the engineering and service daughter companies of the Cogema group: SGN (nuclear engineering, fuel cycle, wastes and spent fuels management, decontamination and dismantling); Euriware group (advice, expertise and information systems in nuclear, pharmacy, petroleum, automotive and steel making industries); Game group (industrial maintenance in nuclear, chemistry, petroleum, automotive and steel making industries); Eurisys Mesures (nuclear measurements, instrumentation, radiation protection and nuclear imaging); SICN (mechanics); STMI and Socodei (nuclear cleansing and management of low level radioactive wastes); Krebs/Speichim (chemical engineering, divisions of SGN and Technip). (J.S.)

  19. Health aspects of automotive pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Jouan, M

    1973-01-01

    General health aspects of carbon monoxide, lead, nitrogen oxides, unburned hydrocarbons, and aldehydes are described. Unlike spark ignition engines, diesel engines emit but minimal quantities of carbon monoxide. Automotive carbon monoxide may cause chronic poisoning by its combination with hemoglobin. The threshold value beyond which physiological changes occur lies at 2.5 percent carboxyhemoglobin. Nitric oxide, and especially nitrogen dioxide cause pulmonary edema, impaired respiratory function, and chronic bronchitis in very low concentrations. According to regulations implemented in France, a CO concentration of 40 ppM/hr must occur not more than 1 percent of the time on a yearly basis. A level of 15 ppm must not be exceeded for more than 15 percent of the time in any 9-hour period. The maximum allowable 1-hour nitrogen oxide concentration is set at 0.25 ppM. The emission standards implemented, as well as favorable meteorological conditions have resulted in an abatement of the CO concentrations in Paris.

  20. Combustion Performance and Exhaust Emission of DI Diesel Engine Using Various Sources of Waste Cooking Oil

    Science.gov (United States)

    Afiq, Mohd; Azuhairi, Mohd; Jazair, Wira

    2010-06-01

    In Malaysia, more than 200-tone of cooking oil are used by domestic users everyday. After frying process, about a quarter of these cooking oil was remained and drained into sewage system. This will pollutes waterways and affects the ecosystem. The use of waste cooking oil (WCO) for producing bio-diesel was considered in economical factor which current production cost of bio-diesel production is higher in Malaysia due to higher price of palm oil. Thus, the aim of this study is to investigate the most suitable source of WCO to become a main source of bio-diesel for bio-diesel production in this country. To perform this research, three type of WCO were obtained from house's kitchen, cafeteria and mamak's restaurant. In this study, prospect of these bio-diesel source was evaluated based on its combustion performance and exhaust emissions operated in diesel engine in the form of waste cooking oil methyl ester (WCOME) and have been compared with pure diesel fuel. A 0.6 liter, single-cylinder, air-cooled direct injection diesel engine was used to perform this experiment. Experiment was done at variable engine loads and constant engine speed. As the result, among three stated WCOMEs, the one collected from house's kitchen gives the best performance in term of brake specific fuel consumption (bsfc) and brake power (BP) with lowest soot emission.

  1. Evaluation of palm kernel fibers (PKFs for production of asbestos-free automotive brake pads

    Directory of Open Access Journals (Sweden)

    K.K. Ikpambese

    2016-01-01

    Full Text Available In this study, asbestos-free automotive brake pads produced from palm kernel fibers with epoxy-resin binder was evaluated. Resins varied in formulations and properties such as friction coefficient, wear rate, hardness test, porosity, noise level, temperature, specific gravity, stopping time, moisture effects, surface roughness, oil and water absorptions rates, and microstructure examination were investigated. Other basic engineering properties of mechanical overload, thermal deformation fading behaviour shear strength, cracking resistance, over-heat recovery, and effect on rotor disc, caliper pressure, pad grip effect and pad dusting effect were also investigated. The results obtained indicated that the wear rate, coefficient of friction, noise level, temperature, and stopping time of the produced brake pads increased as the speed increases. The results also show that porosity, hardness, moisture content, specific gravity, surface roughness, and oil and water absorption rates remained constant with increase in speed. The result of microstructure examination revealed that worm surfaces were characterized by abrasion wear where the asperities were ploughed thereby exposing the white region of palm kernel fibers, thus increasing the smoothness of the friction materials. Sample S6 with composition of 40% epoxy-resin, 10% palm wastes, 6% Al2O3, 29% graphite, and 15% calcium carbonate gave better properties. The result indicated that palm kernel fibers can be effectively used as a replacement for asbestos in brake pad production.

  2. Towards industry strength mapping of AUTOSAR automotive functionality on multicore architectures

    DEFF Research Database (Denmark)

    Avasalcai, Cosmin Florin; Budhrani, Dhanesh; Pop, Paul

    2017-01-01

    The automotive electronic architectures have moved from federated architectures, where one function is implemented in one ECU (Electronic Control Unit), to distributed architectures, consisting of several multicore ECUs. In addition, multicore ECUs are being adopted because of better performance,...... engineer in the mapping task. We have successfully evaluated AUTOMAP on several realistic use cases from Volvo Trucks....

  3. FPGA implementation of predictive degradation model for engine oil lifetime

    Science.gov (United States)

    Idros, M. F. M.; Razak, A. H. A.; Junid, S. A. M. Al; Suliman, S. I.; Halim, A. K.

    2018-03-01

    This paper presents the implementation of linear regression model for degradation prediction on Register Transfer Logic (RTL) using QuartusII. A stationary model had been identified in the degradation trend for the engine oil in a vehicle in time series method. As for RTL implementation, the degradation model is written in Verilog HDL and the data input are taken at a certain time. Clock divider had been designed to support the timing sequence of input data. At every five data, a regression analysis is adapted for slope variation determination and prediction calculation. Here, only the negative value are taken as the consideration for the prediction purposes for less number of logic gate. Least Square Method is adapted to get the best linear model based on the mean values of time series data. The coded algorithm has been implemented on FPGA for validation purposes. The result shows the prediction time to change the engine oil.

  4. Design of automotive engine coolant hoses

    Directory of Open Access Journals (Sweden)

    Hrishikesh D BACHCHHAV

    2018-03-01

    Full Text Available In this paper, we are present the performance of engine coolant hoses (radiator hoses used in passenger cars by checking various physical behaviours such as hose leakage, hose burst, hose collapse or any mechanical damage as studied-thru design guidelines, CFD analysis and product validation testing and also check pressure drop of the hoses when engine will be running. The design term is more likely used for technical part modelling using CAD tool. Later on, we will focus on the transformation of the part design to process design. The process design term is more likely used for "tooling design" for manufacturing of the product using CAD Tool. Then inlet hose carries coolant from engine to radiator inlet tank, then coolant circulated in radiator and passed through radiator outlet tank to water pump of engine with the help of outlet hose. After that …nding any leakage, Burst, damage or collapse of hose and pressure drop of the hose with the help of design checklist, CFD Analysis and product validation testing.

  5. The performance and emissions of diesel engines with biodiesel of sunan pecan seed and diesel oil blends

    Science.gov (United States)

    Ariani, F.; Sitorus, T. B.; Ginting, E.

    2017-12-01

    An observation was performed to evaluate the performance of direct injection stationary diesel engine which used a blends of biodiesel of Sunan pecan seed. The experiments were done with diesel oil, B5, B10, B15 and B20 in the engine speed variety. Results showed that the values of torque, power and thermal efficiency tend to decrease when the engine is using B5, B10, B15 and B20, compared to diesel oil. It also shown that the specific fuel consumption is increased when using B5, B10, B15 and B20. From the results of experiments and calculations, the maximum power of 3.08 kW, minimum specific fuel consumption of 189.93 g/kWh and maximum thermal efficiency of 45.53% when engine using diesel oil. However, exhaust gases were measured include opacity, carbon monoxide and hydrocarbon when the engine using biodiesel B5, B10, B15 and B20 decreased.

  6. Combustion characteristics of lemongrass (Cymbopogon flexuosus) oil in a partial premixed charge compression ignition engine

    OpenAIRE

    Avinash Alagumalai

    2015-01-01

    Indeed, the development of alternate fuels for use in internal combustion engines has traditionally been an evolutionary process in which fuel-related problems are met and critical fuel properties are identified and their specific limits defined to resolve the problem. In this regard, this research outlines a vision of lemongrass oil combustion characteristics. In a nut-shell, the combustion phenomena of lemongrass oil were investigated at engine speed of 1500 rpm and compression ratio of 17....

  7. Technology for semi-endless use of lubricating oil, no waste oil, improvement of reliability and keeping high thermal efficiency in engines; Jinzo kino seijo gijutsu ni yoru engine oil no han`eikyu shiyo to haiyu zero, oyobi shinraisei kojo to netsukoritsu teika no boshi (joyosha ni yoru shiken oyobi truck ni okeru jitsuyoka)

    Energy Technology Data Exchange (ETDEWEB)

    Azuma, T [Teikyo University, Tokyo (Japan); Sumimoto, M; Kimura, I

    1997-10-01

    The authors have developed a new technology which enables it to use lubricating oil almost forever without any waste oil, only compensating lost oil and additives. The system has been working well in many marine and co-generation diesel engines. These engines have been also free from most of engine troubles. This paper reports the test results made on a car and some trucks. Besides above mentioned advantages, the results show that high thermal efficiency has been kept for more than ten years in the car tested and that the exhaust gas brake is much improved in the trucks. 8 refs., 4 figs.

  8. 3D modeling design and engineering analysis of automotive suspension beam

    Directory of Open Access Journals (Sweden)

    Ju Zhi Lan

    2016-01-01

    Full Text Available Automotive suspension is an important device for transmission and torque. The main parameters and dimensions of 40 tons of heavy duty truck spring suspension system are designed in the paper. According to the data, the 3D modeling and virtual assembly of the leaf spring suspension are carried out by using parametric design. Structural stress of spring suspension is analyzed which can provide a guide and basis for the design of the leaf spring suspension.

  9. IPI tax relief policy and its impact on automotive and related sectors

    Directory of Open Access Journals (Sweden)

    Luiz Antônio Abrantes

    2017-09-01

    Full Text Available The policy of IPI tax relief in the automotive industry came from the need of answers to the Global Financial Crisis of 2008, which affected Brazil. This way, Brazilian Government set the reduction of the percentages of rates applied to automotive products and related sectors, according to several factors such as engine power, fuel type and production site, in order to restore the sector demand and stimulate the economy. In this context, this work aims to evaluate the implications of IPI tax relief policy, since 2009, on the turnover of joint-stock companies of the automotive and related sectors. The methodology was a multiple regression analysis model with Dynamic Panel data, in order to explain the variations of companies' turnover in the sector, regarding IPI tax relief. The data used were of 84 companies of this sector, for the period from 1998 to 2015, based on the software Economática. The results showed a decrease of IPI tax collection in the periods of relief, both in general and specific scope. In addition, we verified that the adoption of the policy had a negative influence on the turnover of the evaluated companies. Thus, we concluded that the tax policy under analysis did not contribute to an increase of automotive sector companies' turnover.

  10. Production of biodiesel by enzymatic transesterification of waste sardine oil and evaluation of its engine performance.

    Science.gov (United States)

    Arumugam, A; Ponnusami, V

    2017-12-01

    Waste sardine oil, a byproduct of fish industry, was employed as a low cost feedstock for biodiesel production. It has relatively high free fatty acid (FFA) content (32 mg KOH/g of oil). Lipase enzyme immobilized on activated carbon was used as the catalyst for the transesterification reaction. Process variables viz. reaction temperature, water content and oil to methanol molar ratio were optimized. Optimum methanol to oil molar ratio, water content and temperature were found to be 9:1, 10 v/v% and 30 °C respectively. Reusability of immobilized lipase was studied and it was found after 5 cycles of reuse there was about 13% drop in FAME yield. Engine performance of the produced biodiesel was studied in a Variable Compression Engine and the results confirm that waste sardine oil is a potential alternate and low-cost feedstock for biodiesel production.

  11. Effect of Exhaust Gas Recirculation on Performance of a Diesel Engine Fueled with Waste Plastic Oil / Diesel Blends

    Directory of Open Access Journals (Sweden)

    Punitharani K.

    2017-11-01

    Full Text Available NOx emission is one of the major sources for health issues, acid rain and global warming. Diesel engine vehicles are the major sources for NOx emissions. Hence there is a need to reduce the emissions from the engines by identifying suitable techniques or by means of alternate fuels. The present investigation deals with the effect of Exhaust Gas Recirculation (EGR on 4S, single cylinder, DI diesel engine using plastic oil/Diesel blends P10 (10% plastic oil & 90% diesel in volume, P20 and P30 at various EGR rates. Plastic oil blends were able to operate in diesel engines without any modifications and the results showed that P20 blend had the least NOx emission quantity.

  12. The Effects of Spent Engine Oil on Soil Properties and Growth of ...

    African Journals Online (AJOL)

    The effect of spent engine oil (SEO) on soil properties and growth of maize (Zea mays L.) was investigated. Five treatments (0.0, 0.2, 0.4, 0.6 and 0.8 l/kg) of the spent oil were applied to soil in perforated poly bags with maize stands at four weeks after sowing. Soil analysis showed that SEO had no effect on both the pH and ...

  13. The effect of oil additives on exhaust emission of internal combustion engines

    International Nuclear Information System (INIS)

    Dimitrovski, M.B.; Kuzmanovski, K.A.

    1999-01-01

    An attempt was conducted to acquire data on connection between motor oil and motor oil additives and exhaust emission of internal combustion engine. The consulted literature did not contain enough data, so experiments were conducted. The results of the experiments are presented on diagrams that have been processed in the computer program EXCEL. Conclusions that were made out of that work show the need of expanding research on the subject. (Author)

  14. Modeling and analysis of flow and heat transfer in a large PEM fuel cell suitable for automotive applications

    OpenAIRE

    Yiğinsu, Berk; Yiginsu, Berk

    2016-01-01

    Based on the Zero Emission Vehicle (ZEV) targets, automotive manufacturers realize the necessities to develop new technologies that replace the Internal Combustion Engine (ICE). Nowadays there are two major trends in the automotive industry; First, hybrid vehicles which combine hydrogen energy with combustion energy, and second there is a down-sizing trend. By using hybrid technologies auto makers can obtain a significant drop in emission levels and the efficiencies increase up to 80%. Reachi...

  15. Irradiation Crosslinking of Polyamides for the Electrical and Automotive Industry

    International Nuclear Information System (INIS)

    Gehring, J.

    2006-01-01

    Irradiation crosslinking of electrical cables and heat shrinkable tubes have been widely accepted in the automotive and electrical industry for a long time. Due higher demands regarding temperature resistance, arc resistance and good chemical resistance against oil and greases crosslinked injection moulded parts made out of polyamid and polybutylentherephtalate become also more and more interesting. Crosslinked polyamide can also replace thermosets for switches and offers therefore additional financial benefits. It will be shown on the basis of already realized projects, which basic requirements exist and how irradiation crosslinking can fulfil these demands

  16. Automotive History and Development of the Automobile; Automotive Mechanics I: 9043.01.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The automotive history and development of the automobile course is designed to familiarize the beginning student with basic concepts common to the automobile history and general information that is required for successful advancement in the automotive mechanics field. A course outline is provided and seven pages of post-tests are included in the…

  17. Combustion of biodiesel fuel produced from hazelnut soapstock/waste sunflower oil mixture in a Diesel engine

    International Nuclear Information System (INIS)

    Usta, N.; Oeztuerk, E.; Can, Oe.; Conkur, E.S.; Nas, S.; Con, A.H.; Can, A.C.; Topcu, M.

    2005-01-01

    Biodiesel is considered as an alternative fuel to Diesel fuel No. 2, which can be generally produced from different kinds of vegetable oils. Since the prices of edible vegetable oils are higher than that of Diesel fuel No. 2, waste vegetable oils and non-edible crude vegetable oils are preferred as potential low priced biodiesel sources. In addition, it is possible to use soapstock, a by-product of edible oil production, for cheap biodiesel production. In this study, a methyl ester biodiesel was produced from a hazelnut soapstock/waste sunflower oil mixture using methanol, sulphuric acid and sodium hydroxide in a two stage process. The effects of the methyl ester addition to Diesel No. 2 on the performance and emissions of a four cycle, four cylinder, turbocharged indirect injection (IDI) Diesel engine were examined at both full and partial loads. Experimental results showed that the hazelnut soapstock/waste sunflower oil methyl ester can be partially substituted for the Diesel fuel at most operating conditions in terms of the performance parameters and emissions without any engine modification and preheating of the blends

  18. Automotive emission standards. (Latest citations from Pollution Abstracts). Published Search

    International Nuclear Information System (INIS)

    1993-07-01

    The bibliography contains citations concerning emission standards and air quality standards applied to automobile emissions. Included are federal and state regulations and policies regarding these emission standards. Techniques to meet emission standards are also addressed, involving fuel injection, catalysts, alternate engines, and automotive fuel refinery operations. Studies concerning implementation of automobile emission standards explore economic and environmental effects, testing and inspection procedures, and the automobile industry point of view. Most of the citations refer to gasoline engines, but a few pertain to diesel and other fuels. (Contains 250 citations and includes a subject term index and title list.)

  19. Novel thermocouples for automotive applications

    Directory of Open Access Journals (Sweden)

    P. Gierth

    2018-02-01

    Full Text Available Measurement of temperatures in engine and exhaust systems in automotive applications is necessary for thermal protection of the parts and optimizing of the combustion process. State-of-the-art temperature sensors are very limited in their response characteristic and installation space requirement. Miniaturized sensor concepts with a customizable geometry are needed. The basic idea of this novel sensor concept is to use thick-film technology on component surfaces. Different standardized and especially nonstandard material combinations of thermocouples have been produced for the validation of this technology concept. Application-oriented measurements took place in the exhaust system of a test vehicle and were compared to standard laboratory conditions.

  20. Study of ignition characteristics of microemulsion of coconut oil under off diesel engine conditions

    Directory of Open Access Journals (Sweden)

    Mahir H. Salmani

    2015-09-01

    Full Text Available The increasing awareness of the depletion of fossil fuel resources and the environmental benefits motivates the use of vegetable oils, however there is little known information about ignition and combustion characteristics of vegetable oil based fuels under off diesel engine conditions. These conditions are normally reached either during starting or when the engine is sufficiently worn out. A fuel was prepared by co-solvent blending of coconut oil with 20% butyl alcohol and was analysed. An experimental study of the measurement of ignition delay (ID characteristics of conical fuel sprays impinging on hot surface in cylindrical combustion chamber was carried out. The objective of the study was to investigate the effect of hot surface temperatures on ignition delays of microemulsion of coconut oil at various ambient air pressures and temperatures which would have reached under off diesel engine conditions. An experimental set-up was designed and developed for a maximum air pressure of 200 bar and a maximum temperature of 800 °C with the emphasis on optical method for the measurement of ignition delay. Hot surface temperature range chosen was 300–450 °C and ambient air pressure (inside the combustion chamber range chosen was 10–25 bar. Present study shows that at fixed injection pressure and fixed ambient (hot surface temperature, at higher ambient air pressure (25 bar inside the combustion chamber, ignition delay of diesel and microemulsion of coconut oil are comparable and therefore are having matching combustion characteristics. Although a pressure of 25 bar is much less than the precombustion pressure of most diesel engines but again conclusively establish that combustion characteristics are same despite lower air pressure, temperature and lower injection pressure. At higher injection pressure ignition delay of microemulsion of coconut oil and pure diesel attains the lower value at the same ambient air pressure inside the

  1. Evaluation of hazelnut kernel oil of Turkish origin as alternative fuel in diesel engines

    International Nuclear Information System (INIS)

    Gumus, M.

    2008-01-01

    In the present study, hazelnut kernel oil of Turkish origin was evaluated as alternative fuel in a diesel engine. Potential hazelnut production throughout the world and the status of Turkey were examined. Hazelnut (Corylus avellana L.) kernel oil was transesterified with methanol using potassium hydroxide as catalyst to obtain hazelnut kernel oil methyl ester (HOME) and a comprehensive experimental investigation was carried out to examine performance and emissions of a direct injection diesel engine running with HOME and its blends with diesel fuel. Experimental parameters included the percentage of HOME in the blend, engine load, injection timing, compression ratio, and injector. The cost analysis of HOME production comparing to the price of conventional diesel fuel was performed for last decade was performed. Results showed that HOME and its blends with diesel fuel are generally comparable to diesel fuel and small modifications such as increasing injection timing, compression ratio and injector opening pressure provide significant improvement in performance and emissions. It is also expected that the price of HOME will be lower than the price of conventional diesel fuel in the near future. (author)

  2. Secondary-Postsecondary Curriculum Development in Automotive Mechanics. Automotive Electrical Competencies. Final Report.

    Science.gov (United States)

    Hoepner, Ronald

    Developed as part of a competency-based curriculum in automotive mechanics which is usable by students at both the secondary and postsecondary levels, this learning package focuses on automotive electrical systems. It is the first unit to be published in a series of eight which will cover the eight subject areas on the national certification…

  3. Effects of antioxidant additives on exhaust emissions reduction in compression ignition engine fueled with methyl ester of annona oil

    Directory of Open Access Journals (Sweden)

    Ramalingam Senthil

    2016-01-01

    Full Text Available In this present study, biodiesel is a cleaner burning alternative fuel to the Neat diesel fuel. However, several studies are pointed out that increase in NOx emission for biodiesel when compared with the Neat diesel fuel. The aim of the present study is to analyze the effect of antioxidant (p-phenylenediamine on engine emissions of a Diesel engine fuelled with methyl ester of annona oil. The antioxidant is mixed in various concentrations (0.010 to 0.040% (w/w with methyl ester of annona oil. Result shows that antioxidant additive mixture (MEAO+P200 is effective in control of NOx and HC emission of methyl ester of annona oil fuelled engine without doing any engine modification.

  4. Update of development on the new Audi NSU rotary engine generation. [for application to aircraft engines

    Science.gov (United States)

    Vanbasshuysen, R.

    1978-01-01

    Rotary engines with a chamber volume of 750 cc as a two rotor automotive powerplant, called KKM 871 are described. This engine is compared to a 3 liter or 183 cubic inch, six-cylinder reciprocating engine. Emphasis is placed on exhaust emission control and fuel economy.

  5. Action Handbook for Automotive Service Instruction.

    Science.gov (United States)

    Motor Vehicle Manufacturers Association of the U.S., Inc., Detroit, MI.

    The document is a handbook for a vocational automotive service education program which was formulated as a result of a four-day series of intensive workshops called the National Automotive Service Vocational Education Conference. The handbook discusses the major components of an automotive service vocational education program and aspects of their…

  6. Dual fuel operation of used transformer oil with acetylene in a DI diesel engine

    International Nuclear Information System (INIS)

    Behera, Pritinika; Murugan, S.; Nagarajan, G.

    2014-01-01

    Highlights: • Utilisation of Used transformer oil (UTO) as a fuel in a diesel engine. • UTO with acetylene in a diesel engine, on a dual fuel mode technique. • Analysis of combustion characteristics of the diesel engine. • Analysis of performance and emission characteristics of the diesel engine. - Abstract: Used transformer oil (UTO) is a waste oil obtained from power transformers and welding transformers. It possesses considerable heating value and properties similar to diesel fuel. A preliminary investigation on the utilization of the UTO in a single cylinder, four stroke small powered direct injection (DI) diesel engine revealed that at an optimum injection timing of 20°CA the engine exhibited lower nitric oxide (NO) and higher smoke emissions, compared to that of diesel operation. In order to improve the performance and reduce the smoke emission, a dual fuel operation was attempted in the present investigation. Acetylene was inducted as a primary fuel at four different flow rates viz 132 g/h, 198 g/h, 264 g/h and 330 g/h along with the air, to study the combustion, performance and emission behavior of a four-stroke, 4.4 kW diesel engine, while the UTO was injected as pilot fuel with the optimized injection timing. The experimental results were compared with diesel-acetylene dual fuel operation in the same engine. Acetylene aspiration reduced the ignition delay and maximum cylinder pressure by about 3°CA, and 25% respectively at full load in comparison with the sole UTO operation. Higher thermal efficiency and lower exhaust gas were also observed at full load. Smoke was reduced by about 13.7%, in comparison with the UTO operation at full load

  7. Production of biodiesel by enzymatic transesterification of waste sardine oil and evaluation of its engine performance

    Directory of Open Access Journals (Sweden)

    A. Arumugam

    2017-12-01

    Full Text Available Waste sardine oil, a byproduct of fish industry, was employed as a low cost feedstock for biodiesel production. It has relatively high free fatty acid (FFA content (32 mg KOH/g of oil. Lipase enzyme immobilized on activated carbon was used as the catalyst for the transesterification reaction. Process variables viz. reaction temperature, water content and oil to methanol molar ratio were optimized. Optimum methanol to oil molar ratio, water content and temperature were found to be 9:1, 10 v/v% and 30 °C respectively. Reusability of immobilized lipase was studied and it was found after 5 cycles of reuse there was about 13% drop in FAME yield. Engine performance of the produced biodiesel was studied in a Variable Compression Engine and the results confirm that waste sardine oil is a potential alternate and low-cost feedstock for biodiesel production.

  8. Automotive websites

    CERN Document Server

    Jensen, Todd A

    2006-01-01

    For anyone buying a new car, restoring an old favorite, collecting license plates or looking for motorsports information, the internet is the place to go and this is the book to help you get there. Now with over 650 internet addresses, this expanded and updated guide provides detailed descriptions and reviews of the biggest, best and most interesting automotive websites on the net. Beginning with a brief internet history and helpful hints, it aids the novice (or not so novice) user in picking through the countless automotive sites on the internet. Websites are arranged by topics such as afterm

  9. Comparative evaluation of the effect of sweet orange oil-diesel blend on performance and emissions of a multi-cylinder compression ignition engine

    Science.gov (United States)

    Rahman, S. M. Ashrafur; Hossain, F. M.; Van, Thuy Chu; Dowell, Ashley; Islam, M. A.; Rainey, Thomas J.; Ristovski, Zoran D.; Brown, Richard J.

    2017-06-01

    In 2014, global demand for essential oils was 165 kt and it is expected to grow 8.5% per annum up to 2022. Every year Australia produces approximately 1.5k tonnes of essential oils such as tea tree, orange, lavender, eucalyptus oil, etc. Usually essential oils come from non-fatty areas of plants such as the bark, roots, heartwood, leaves and the aromatic portions (flowers, fruits) of the plant. For example, orange oil is derived from orange peel using various extraction methods. Having similar properties to diesel, essential oils have become promising alternate fuels for diesel engines. The present study explores the opportunity of using sweet orange oil in a compression ignition engine. Blends of sweet orange oil-diesel (10% sweet orange oil, 90% diesel) along with neat diesel fuel were used to operate a six-cylinder diesel engine (5.9 litres, common rail, Euro-III, compression ratio 17.3:1). Some key fuel properties such as: viscosity, density, heating value, and surface tension are presented. Engine performance (brake specific fuel consumption) and emission parameters (CO, NOX, and Particulate Matter) were measured to evaluate running with the blends. The engine was operated at 1500 rpm (maximum torque condition) with different loads. The results from the property analysis showed that sweet orange oil-diesel blend exhibits lower density, viscosity and surface tension and slightly higher calorific value compared to neat diesel fuel. Also, from the engine test, the sweet orange oil-diesel blend exhibited slightly higher brake specific fuel consumption, particulate mass and particulate number; however, the blend reduced the brake specific CO emission slightly and brake specific NOX emission significantly compared to that of neat diesel.

  10. Jatropha oil in compression ignition engines. Effects on the engine, environment and Tanzania as supplying country

    International Nuclear Information System (INIS)

    Rabe, E.L.M.

    2006-05-01

    Energy from biomass and more specific, biodiesel, is one of the opportunities that could cover the future energy demand. This thesis investigates the possibilities for biofuels produced from Jatropha Curcas, a plant that grows in countries around the equator, including Tanzania, on which this thesis focuses. The energy crop has several advantages; it grows on degraded, dry, wasted and even salty land, which can be re-cultivated afterwards; it is toxic, which makes it preferable to other energy crops, because it does not compete with food crops; it gives seeds already after one year and the life-span of the plant is more than 50 years; it is good for the economics and employment of the country; etc. The oil that was gained by pressing the Jatropha seeds and part of it has had a chemical treatment called esterification, which results in the less viscous Jatropha Methyl Ester, a biodiesel. The fuels were tested in an engine set-up and compared to two reference fuels; fossil diesel and the well-known biodiesel Rape Methyl Ester. The engine in the set-up was originally a 6-cylinder II.6 DAF WS engine. It had been adjusted in order to make one measuring cylinder optically accessible. Hereby the combustion process could be filmed with a high speed camera. The experiment yielded the in-cylinder pressure as function of the crank angle, NO/NOx measurements, a photo diode signal that represents the amount of soot produced and from the pressure also heat release and in-cylinder temperature could be computed. The investigation of both the experiments and the broader literature study did not lead to any findings that could hamper the application of Jatropha oil or Methyl Ester in diesel engines. In the short term however, the use should be restricted to Tanzania. In the longer term there might be possibilities for export to Europe as well. This depends on whether European regulation will stimulate the use of bio-oil and bio-diesel or not

  11. Satisfaction of the Automotive Fleet Fuel Demand and Its Impact on the Oil Refining Industry

    Science.gov (United States)

    1980-12-01

    Because virtually all transportation fuels are based on petroleum, it is essential to include petroleum refining in any assessment of potential changes in the transportation system. A number of changes in the automotive fleet have been proposed to im...

  12. Lubrication fundamentals

    International Nuclear Information System (INIS)

    Wills, J.G.

    1990-01-01

    This book is organized under the following headings: lubricating oils; lubricating greases; synthetic lubricants; machine elements; lubricant application; internal combustion engines; stationary gas turbines; steam turbines; hydraulic turbines; nuclear power plants; automotive chassis components; automotive power transmissions; compressors; handling, storing, and dispensing lubricants, in-plant handling for lubricant conservation

  13. Online Reputation in Automotive

    Directory of Open Access Journals (Sweden)

    Vodák Josef

    2017-01-01

    Full Text Available This paper deals with the issue of online reputation, namely the social networking profile of businesses. Selected companies in the automotive industry through social profiles communicate with their customers, the public and they trying to improve their name and the name of their products in the public eye. Online reputation analysis was carried out to determine the current situation on the territory of Slovakia. On the basis of the data found, measures were proposed to improve the current state and reputation of automotive companies. Recommendations suggested by the findings can be used on any market to improve the current state and increase the competitiveness of automotive companies.

  14. Bioremediation of engine-oil polluted soil by Pleurotus tuber-regium ...

    African Journals Online (AJOL)

    White-rot fungi have been used in various parts of the world for bioremediation of polluted sites. Pleurotus tuber-regium was noted to have the ability to increase nutrient contents in soils polluted with 1 - 40% engine-oil concentration after six months of incubation. P. tuber-regium increased organic matter, carbon and ...

  15. A comparative estimation of C.I. engine fuelled with methyl esters of punnai, neem and waste cooking oil

    Energy Technology Data Exchange (ETDEWEB)

    Subramaniam, D.; Avinash, A. [Department of Mechanical Engineering - K.S.Rangasamy College of Technology –Tiruchengode, 637215 Tamil Nadu (India); Murugesan, A. [Department of Mechatronics Engineering - K.S.Rangasamy College of Technology – Tiruchengode, 637215 Tamil Nadu (India)

    2013-07-01

    In this experimental study, performance, emission, and combustion characteristics of methyl esters of Punnai, Neem, Waste Cooking Oil and their diesel blends in a C.I. engine was experimentally examined. For the study, Punnai oil methyl esters (POME), neem oil methyl esters (NOME), and Waste Cooking Oil Methyl Esters (WCOME) were prepared by tranesterification process. The Bio diesel-diesel blends were prepared by mixing 10%, 30%, 50%, and 70% of bio diesel with diesel. The effects of three methyl esters and their diesel blends on engine performance, combustion, and exhaust emissions were examined at different engine loads. Experimental results concluded that up to 30% of methyl esters did not affect the performance, combustion, and emissions characteristics. On the other hand, above B30 (30% Bio diesel with 70% diesel) a reduction in performance, combustion, and emission characteristics were clear from the study.

  16. 5th International Conference on Sustainable Automotive Technologies

    CERN Document Server

    Subic, Aleksandar; Trufin, Ramona

    2014-01-01

    This book captures selected peer reviewed papers presented at the 5th International Conference on Sustainable Automotive Technologies, ICSAT 2013, held in Ingolstadt, Germany. ICSAT is the state-of-the-art conference in the field of new technologies for transportation. The book brings together the work of international researchers and practitioners under the following interrelated headings: fuel transportation and storage, material recycling, manufacturing and management costs, engines and emission reduction. The book provides a very good overview of research and development activities focused on new technologies and approaches capable of meeting the challenges to sustainable mobility. About the Editors: Prof. Dr. Jörg Wellnitz is the Dean of the Faculty of Mechanical Engineering, Technische Hochschule Ingolstadt, Germany. Prof. Dr. Aleksandar Subic is the Head of the School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Australia. Ramona Trufin, M.A. is the coordinator of the Facul...

  17. An application of Six Sigma methodology to reduce the engine-overheating problem in an automotive company

    Energy Technology Data Exchange (ETDEWEB)

    Antony, J. [Glasgow Caledonian University (United Kingdom). Six Sigma and Process Improvement Research Centre; Kumar, M. [Glasgow Caledonian University (United Kingdom). Division of Management; Tiwari, M.K. [National Institute of Foundry and Forge Technology, Ranchi (India). Department of Manufacturing Engineering

    2005-08-15

    Six Sigma is a systematic methodology for continuous process quality improvement and for achieving operational excellence. The overstatement that often accompanies the presentation and adoption of Six Sigma in industry can lead to unrealistic expectations as to what Six Sigma is truly capable of achieving. This paper deals with the application of Six Sigma based methodology in eliminating an engine-overheating problem in an automotive company. The DMAIC (define-measure-analyse-improve-control) approach has been followed here to solve an underlying problem of reducing process variation and the associated high defect rate. This paper explores how a foundry can use a systematic and disciplined approach to move towards the goal of Six Sigma quality level. The application of the Six Sigma methodology resulted in a reduction in the jamming problem encountered in the cylinder head and increased the process capability from 0.49 to 1.28. The application of DMAIC has had a significant financial impact (saving over $US110 000 per annum) on the bottom-line of the company. (author)

  18. Flow visualization with laser light-sheet techniques in automotive research

    International Nuclear Information System (INIS)

    Hentschel, W.; Stoffregen, B.

    1987-01-01

    This paper presents different set-ups for the visualization of flow fields in automotive research i.e. aerodynamics and i.c. engines, with the help of laser light-sheet techniques. Special efforts are made to apply these techniques to temporarily resolved studies of unsteady flows and for the quantitative analysis of a flow field in two dimensions in a full plane instantaneously. Several examples taken from current work are presented

  19. POWER PERFOMANCE UNDER CONSTANT SPEED TEST WITH PALM OIL BIODIESEL AND ITS BLENDS WITH DIESEL

    Directory of Open Access Journals (Sweden)

    E. U. U. Ituen

    2010-06-01

    Full Text Available The torque and power performance tests were carried out with a single cylinder techno four-stroke diesel engine under constant speeds of 2000, 1500 and 1100 rpm. Five fuels, the Dura Palm Oil biodiesel/diesel blend at 10/90 vol/vol, B210 and the diesel or Automotive gas oil (ago, the reference fuel, were involved. Brake torque and brake power data were plotted against brake mean effective pressure (Bmep since the latter is independent of engine speed and size and it is an indication of how power and torque are obtained per litre of fuel. The curves for the torque versus Bmep for the five fuels merged into single straight line curve which extended to the origin and with a gradient of 0.0719 m3 for all the three speed tests of 2000, 1500 and 1100 rpm. Similarly, the power versus Bmep curves for the five fuels merged into one straight curve which also extended to the origin but with different gradients of 0.0151, 0.0113, 0.0083 for 2000, 1500 and 1100 rpm respectively. Therefore, the five fuels had similar torque and power performance characteristics in the engine. The straight line curve which can be extrapolated to any value can be used for the engine designs, that is determining vd from the relation, T=V/4 or Bp=VdN/2

  20. Derivation of Performance Statements for the Automotive Mechanics Basic Trade Course: Research Documentation.

    Science.gov (United States)

    Fox, A. P.; Kuhl, D. H.

    A project was conducted to derive a comprehensive list of the performances of a competence mechanic to satisfy the planning needs of automotive engineering lecturers, curriculum committees, researchers, course designers, and staff developers. A list of 127 tasks together with information about their relative importance and the frequency with which…

  1. A Study on Performance, Combustion and Emission Characteristics of Compression Ignition Engine Using Fish Oil Biodiesel Blends

    Science.gov (United States)

    Ramesha, D. K.; Thimmannachar, Rajiv K.; Simhasan, R.; Nagappa, Manjunath; Gowda, P. M.

    2012-07-01

    Bio-fuel is a clean burning fuel made from natural renewable energy resource; it operates in C. I. engine similar to the petroleum diesel. The rising cost of diesel and the danger caused to the environment has led to an intensive and desperate search for alternative fuels. Among them, animal fats like the fish oil have proven to be a promising substitute to diesel. In this experimental study, A computerized 4-stroke, single cylinder, constant speed, direct injection diesel engine was operated on fish oil-biodiesel of different blends. Three different blends of 10, 20, and 30 % by volume were used for this study. Various engine performance, combustion and emission parameters such as Brake Thermal Efficiency, Brake Specific Fuel Consumption, Heat Release Rate, Peak Pressure, Exhaust Gas Temperature, etc. were recorded from the acquired data. The data was recorded with the help of an engine analysis software. The recorded parameters were studied for varying loads and their corresponding graphs have been plotted for comparison purposes. Petroleum Diesel has been used as the reference. From the properties and engine test results it has been established that fish oil biodiesel is a better replacement for diesel without any engine modification.

  2. Fuel and engine characterization study of catalytically cracked waste transformer oil

    KAUST Repository

    Prasanna Raj Yadav, S.

    2015-05-01

    This research work targets on the effective utilization of WTO (waste transformer oil) in a diesel engine and thereby, reducing the environmental problems caused by its disposal into open land. The novelty of the work lies in adoption of catalytic cracking process to chemically treat WTO, wherein waste fly ash has been considered as a catalyst for the first time. Interestingly, both the oil and catalyst used are waste products, enabling reduction in total fuel cost and providing additional benefit of effective waste management. With the considerable token that use of activated fly ash as catalyst requires lower reaction temperature, catalytic cracking was performed only in the range of 350-400°C. As a result of this fuel treatment process, the thermal and physical properties of CCWTO (catalytically cracked waste transformer oil), as determined by ASTM standard methods, were found to be agreeable for its use in a diesel engine. Further, FTIR analysis of CCWTO discerned the presence of essential hydrocarbons such as carbon and hydrogen. From the experimental investigation of CCWTO - diesel blends in a diesel engine, performance and combustion characteristics were shown to be improved, with a notable increase in BTE (brake thermal efficiency) and PHRR (peak heat release rate) for CCWTO 50 by 7.4% and 13.2%, respectively, than that of diesel at full load condition. In the same note, emissions such as smoke, HC (hydrocarbon) and CO (carbon monoxide) were noted to be reduced at the expense of increased NOx (nitrogen oxides) emission. © 2015 Elsevier Ltd. All rights reserved.

  3. Fuel and engine characterization study of catalytically cracked waste transformer oil

    KAUST Repository

    Prasanna Raj Yadav, S.; Saravanan, Chinnusamy G.; Vallinayagam, R.; Vedharaj, S.; Roberts, William L.

    2015-01-01

    This research work targets on the effective utilization of WTO (waste transformer oil) in a diesel engine and thereby, reducing the environmental problems caused by its disposal into open land. The novelty of the work lies in adoption of catalytic cracking process to chemically treat WTO, wherein waste fly ash has been considered as a catalyst for the first time. Interestingly, both the oil and catalyst used are waste products, enabling reduction in total fuel cost and providing additional benefit of effective waste management. With the considerable token that use of activated fly ash as catalyst requires lower reaction temperature, catalytic cracking was performed only in the range of 350-400°C. As a result of this fuel treatment process, the thermal and physical properties of CCWTO (catalytically cracked waste transformer oil), as determined by ASTM standard methods, were found to be agreeable for its use in a diesel engine. Further, FTIR analysis of CCWTO discerned the presence of essential hydrocarbons such as carbon and hydrogen. From the experimental investigation of CCWTO - diesel blends in a diesel engine, performance and combustion characteristics were shown to be improved, with a notable increase in BTE (brake thermal efficiency) and PHRR (peak heat release rate) for CCWTO 50 by 7.4% and 13.2%, respectively, than that of diesel at full load condition. In the same note, emissions such as smoke, HC (hydrocarbon) and CO (carbon monoxide) were noted to be reduced at the expense of increased NOx (nitrogen oxides) emission. © 2015 Elsevier Ltd. All rights reserved.

  4. Optimization of biodiesel production and engine performance from high free fatty acid Calophyllum inophyllum oil in CI diesel engine

    International Nuclear Information System (INIS)

    Ong, Hwai Chyuan; Masjuki, H.H.; Mahlia, T.M.I.; Silitonga, A.S.; Chong, W.T.; Leong, K.Y.

    2014-01-01

    Highlights: • Calophyllum inophyllum has been evaluated as a potential feedstock for biodiesel. • Acid and base catalyzed transesterification processes was used to produce biodiesel. • The physiochemical properties of CIME fulfilled specification of ASTM D6751. • Engine performance and emission are conducted for CIME and its blends. - Abstract: In the present study, crude Calophyllum inophyllum oil (CCIO) has been evaluated as a potential feedstock for biodiesel production. C.inophyllum oil has high acid value which is 59.30 mg KOH/g. Therefore, the degumming, esterification, neutralization and transesterification process are carried out to reduce the acid value to 0.34 mg KOH/g. The optimum yield was obtained at 9:1 methanol to oil ratio with 1 wt.%. NaOH catalyst at 50 °C for 2 h. On the other hand, the C.inophyllum biodiesel properties fulfilled the specification of ASTM D6751 and EN 14214 biodiesel standards. After that, the C.inophyllum biodiesel diesel blends were tested to evaluate the engine performance and emission characteristic. The performance and emission of 10% C.inophyllum biodiesel blends (CIB10) give a satisfactory result in diesel engines as the brake thermal increase 2.30% and fuel consumption decrease 3.06% compared to diesel. Besides, CIB10 reduces CO and smoke opacity compared to diesel. In short, C.inophyllum biodiesel can become an alternative fuel in the future

  5. Parts giants will bring enormous change to China’s automotive aftersales market

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    <正> The fourth worldwide largest independent automotive parts supplier-DENSO-is beefing up its presence in China by means of regional agents or chain stores, establishing its marketing system and developing the aftersales market in China. Some insiders have noticed that, recently, harvests at the engine OEM market, these giants have also flocked into the aftersales market.

  6. Investigation of Performance and Emissions Effects of Waste Vegetable Oil Methyl Ester in A Diesel Engine

    Directory of Open Access Journals (Sweden)

    Yahya ULUSOY

    2016-12-01

    Full Text Available In this study engine and emission performance of a 4-stroke, 4 cylinder, direct injection 62,5 kW engine, with three different biodiesel blends (B25, B50, B75,  was compared with those obtained with use of normal diesel (B0 through a 8-mode experimental test procedure, in convention with ISO 8178-C1. The results of the study showed that, performance and emission values of biodiesel fuels produced from vegetable oil and those obtained with diesel fuel (B0 are very close to each other.  In this context, the waste cooking oil, which is a serious risk to the environment and should be collected according to related legistlative measures,  could be processed to and used as biodiesel without creating any significant loss in terms of engine performance, while providing significant advantages in terms of engine emissions. These results revealed that, waste frying oils can be used as diesel fuel and to create an adding value for the economy instead of being potential environmental risk. 

  7. Application of Pyrolysis - Gas Chromatography/Mass Spectrometry in Failure Analysis in the Automotive Industry

    OpenAIRE

    Kusch, Peter (Dr.)

    2015-01-01

    This book chapter describes application examples of gas chromatography/mass spectrometry and pyrolysis – gas chromatography/mass spectrometry in failure analysis for the identification of chemical materials like mineral oils and nitrile rubber gaskets. Furthermore, failure cases demanding identification of polymers/copolymers in fouling on the compressor wall of a car air conditioner and identification of fouling on the surface of a bearing race from the automotive industry are demonstr...

  8. Bioremediation of engine-oil polluted soil by Pleurotus tuber-regium ...

    African Journals Online (AJOL)

    SERVER

    2008-01-04

    Jan 4, 2008 ... White-rot fungi have been used in various parts of the world for bioremediation of polluted sites. Pleurotus tuber-regium was noted to have the ability to increase nutrient contents in soils polluted with. 1 - 40% engine-oil concentration after six months of incubation. P. tuber-regium increased organic matter ...

  9. Modelling Electrical Energy Consumption in Automotive Paint Shop

    Science.gov (United States)

    Oktaviandri, Muchamad; Safiee, Aidil Shafiza Bin

    2018-03-01

    Industry players are seeking ways to reduce operational cost to sustain in a challenging economic trend. One key aspect is an energy cost reduction. However, implementing energy reduction strategy often struggle with obstructions, which slow down their realization and implementation. Discrete event simulation method is an approach actively discussed in current research trend to overcome such obstructions because of its flexibility and comprehensiveness. Meanwhile, in automotive industry, paint shop is considered the most energy consumer area which is reported consuming about 50%-70% of overall automotive plant consumption. Hence, this project aims at providing a tool to model and simulate energy consumption at paint shop area by conducting a case study at XYZ Company, one of the automotive companies located at Pekan, Pahang. The simulation model was developed using Tecnomatix Plant Simulation software version 13. From the simulation result, the model was accurately within ±5% for energy consumption and ±15% for maximum demand after validation with real system. Two different energy saving scenarios were tested. Scenario 1 was based on production scheduling approach under low demand situation which results energy saving up to 30% on the consumption. Meanwhile scenario 2 was based on substituting high power compressor with the lower power compressor. The results were energy consumption saving of approximately 1.42% and maximum demand reduction about 1.27%. This approach would help managers and engineers to justify worthiness of investment for implementing the reduction strategies.

  10. Biostimulatory Effect Of Processed Sewage Sludge In Bioremediation Of Engine Oil Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Kamaluddeen

    2015-08-01

    Full Text Available A study was conducted to evaluate the influence of sewage sludge on biodegradation of engine oil in contaminated soil. Soil samples were collected from a mechanics workshop in Sokoto metropolis. The Soil samples were taken to the laboratory for isolation of engine oil degrading bacteria. About 1 g of soil sample was used to inoculate 9 ml of trypticase soy broth and incubated at 28oC for 24 h. The growth obtained was sub-cultured in mineral salt medium overlaid with crude oil and allowed to stand at 28oC for 72 h. The culture obtained was then maintained on tryticase soy agar plates at 28oC for 48 h. A combination of microscopy and biochemical tests was carried out to identify the colonies. The sewage sludge was obtained from sewage collection point located behind Jibril Aminu Hall of Usmanu Danfodiyo University Sokoto and processed i.e. dried grounded and sterilized. A portion of land obtained in a botanical garden was divided into small portions 30 X 30 cm and the soil was excavated in-situ and sterilized in the laboratory. A polythene bag was subsequently used to demarcate between the sterilized soil and the garden soil. The sterilized soil plots were artificially contaminated with equal amount of used engine oil to represent a typical farmland oil spill. The plots were amended with various amount of processed sewage sludge i.e. 200 g 300 g and 400 g respectively. A pure culture of the bacteria was maintained on trypticase soy broth and was introduced into the sterile amended soil. The plots were watered twice daily for ten days. The degree of biodegradation and heavy metal content were assessed using standard procedures and the results obtained indicate a remarkable reduction in poly aromatic hydrocarbons PAHs total petroleum hydrocarbon TPH and heavy metal content.

  11. Indigenous oil crops as a source for production of biodiesel in Kenya

    Directory of Open Access Journals (Sweden)

    R.L.A. Mahunnah

    2009-12-01

    Full Text Available In this study, oils extracted from four crops, Jatropha curcas L., Croton megalocarpus Hutch, Calodendrum capense (L.f. Thunb. (cape chestnut and Cocos nucifera L. (coconut were transesterified in methanol using sodium hydroxide as a catalyst. Methyl esters obtained were characterized by GC-MS and further tested for fuel properties relative to convectional diesel fuels (automotive and kerosene. Methyl esters of commercial oils: sunflower and soybean were also tested for fuel properties for comparison. Some of parameters tested included kinematic viscosity, flash point, distillation temperatures, copper corrosion, cetane number, ash content, and gross heating value. The results showed hexadecanoate and octadecanoate were common fatty acids esters identified in the four analyzed methyl esters. Total unsaturation was highest for Croton ester with 86.6 %, Jatropha and C. capense esters had unsaturation of 65.2 % and 61.2 %, respectively, while coconut ester recorded only 2.8 %. The ester viscosities at 40 °C were with range of 4.16-4.63 mm2/s except coconut ester with viscosity 2.71 mm2/s, which is close to that of kerosene 2.35 mm2/s. The esters were found to be less volatile that diesel fuels with coconut esters registering as most volatile among the esters. Esters of sunflower and soybean have their volatility very close to that of Jatropha ester. The flash points of the esters were typically much higher (> 100 °C than petroleum diesels, automotives and kerosene (74 and 45.5 °C, respectively. Jatropha, sunflower and soybean esters passed the ASTM standard D6751 for flash point; 130 °C minimum, all the esters however were within the European standard EN-14214 for biodiesel of above 101 °C. The density of the esters was found to be 2-4 % higher than that of petroleum automotive diesel and 10-12 % more than that of kerosene. The heating values of the esters were however 12 % lower than diesel fuels on average. In general, coconut esters were

  12. Automotive Technology Skill Standards

    Science.gov (United States)

    Garrett, Tom; Asay, Don; Evans, Richard; Barbie, Bill; Herdener, John; Teague, Todd; Allen, Scott; Benshoof, James

    2009-01-01

    The standards in this document are for Automotive Technology programs and are designed to clearly state what the student should know and be able to do upon completion of an advanced high-school automotive program. Minimally, the student will complete a three-year program to achieve all standards. Although these exit-level standards are designed…

  13. Effect of vegetable de-oiled cake-diesel blends on diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Raj, C.S. [Bharathiyar College of Engineering and Technology, Karaikal (India). MGR Educational and Research Inst.; Arivalagar, A.; Sendilvelan, S. [MGR Univ., Chennai (India). MGR Educational and Research Inst.; Arul, S. [Panimalar College of Engineering, Channai (India)

    2009-07-01

    This study evaluated the use of coconut oil methyl ester (COME) as a blending agent with the vegetable de-oiled cakes used in biodiesel production. Different proportions of the de-oiled cake were combined with diesel in order to investigate performance, emissions, and combustion characteristics. The experiments were conducted on a 4-stroke single cylinder, air-cooled diesel engine. Fuel flow rates were measured and a thermocouple was used to measure exhaust gas temperatures. A combustion analyzer was used to measure cylinder pressure and heat release rates. Brake thermal efficiency, brake power, and specific fuel consumption performance was monitored. Results of the study showed that rates of heat release were reduced for the de-oiled cake blended fuels as a result of the change in fuel molecular weight. The variation of NOx with load for neat diesel blends was examined. There was no variation of NOx emission up to 50 per cent of load for all blended oils, and it increased with load. Smoke density was reduced for all blends. Soot production was decreased by the oxygen present in the de-oiled cake. The study showed that fossil fuel oil consumption decreased by 14 to 15 per cent when the de-oiled biodiesel was used at low loads, and 4 to 5 per cent at peak loads. 10 refs., 4 tabs., 9 figs.

  14. THE EFFECT OF KARANJA OIL METHYL ESTER ON KIRLOSKAR HA394DI DIESEL ENGINE PERFORMANCE AND EXHAUST EMISSIONS

    Directory of Open Access Journals (Sweden)

    Sharanappa K Godiganur

    2010-01-01

    Full Text Available Biofuels are being investigated as potential substitutes for current high pollutant fuels obtained from the conventional sources. The primary problem associated with using straight vegetable oil as fuel in a compression ignition engine is caused by viscosity. The process of transesterifiction of vegetable oil with methyl alcohol provides a significant reduction in viscosity, thereby enhancing the physical properties of vegetable oil. The Kirloskar HA394 compression ignition, multi cylinder diesel engine does not require any modification to replace diesel by karanja methyl ester. Biodiesel can be used in its pure form or can be blended with diesel to form different blends. The purpose of this research was to evaluate the potential of karanja oil methyl ester and its blend with diesel from 20% to 80% by volume. Engine performance and exhaust emissions were investigated and compared with the ordinary diesel fuel in a diesel engine. The experimental results show that the engine power of the mixture is closed to the values obtained from diesel fuel and the amounts of exhaust emissions are lower than those of diesel fuel. Hence, it is seen that the blend of karanja ester and diesel fuel can be used as an alternative successfully in a diesel engine without any modification and in terms of emission parameters; it is an environmental friendly fuel

  15. Advantages and challenges of dissimilar materials in automotive lightweight construction

    Science.gov (United States)

    Weberpals, Jan-Philipp; Schmidt, Philipp A.; Böhm, Daniel; Müller, Steffen

    2015-03-01

    The core of future automotive lightweight materials is the joining technology of various material mixes. The type of joining will be essential, particularly in electrified propulsion systems, especially as an improved electrical energy transmission leads to a higher total efficiency of the vehicle. The most evident parts to start the optimization process are the traction battery, the electrical performance modules and the engines. Consequently aluminum plays a very central role for lightweight construction applications. However, the physical-technical requirements of components often require the combination with other materials. Thus the joining of mixed material connections is an essential key technology for many of the current developments, for example in the areas E-Mobility, solar energy and lightweight construction. Due to these advantages mixed material joints are already established in the automotive industry and laser beam remote welding is now a focus technology for mixed material connections. The secret of the laser welding process with mixed materials lies within the different areas of the melting phase diagram depending on the mixing ratio and the cooling down rate. According to that areas with unwanted, prim, intermetallic phases arise in the fusion zone. Therefore, laser welding of mixed material connections can currently only be used with additional filler in the automotive industry.

  16. Influence of distillation on performance, emission, and combustion of a DI diesel engine, using tyre pyrolysis oil diesel blends

    Directory of Open Access Journals (Sweden)

    Murugan Sivalingam

    2008-01-01

    Full Text Available Conversion of waste to energy is one of the recent trends in minimizing not only the waste disposal but also could be used as an alternate fuel for internal combustion engines. Fuels like wood pyrolysis oil, rubber pyrolysis oil are also derived through waste to energy conversion method. Early investigations report that tyre pyrolysis oil derived from vacuum pyrolysis method seemed to possess properties similar to diesel fuel. In the present work, the crude tyre pyrolisis oil was desulphurised and distilled to improve the properties and studied the use of it. Experimental studies were conducted on a single cylinder four-stroke air cooled engine fuelled with two different blends, 30% tyre pyrolysis oil and 70% diesel fuel (TPO 30 and 30% distilled tyre pyrolysis oil and 70% diesel fuel (DTPO 30. The results of the performance, emission and combustion characteristics of the engine indicated that NOx is reduced by about 8% compared to tire pyrolysis oil and by about 10% compared to diesel fuel. Hydrocarbon emission is reduced by about 2% compared to TPO 30 operation. Smoke increased for DTPO 30 compared to TPO 30 and diesel fuel.

  17. Jatropha oil methyl ester and its blends used as an alternative fuel in diesel engine

    Directory of Open Access Journals (Sweden)

    Yarrapathruni Rao Hanumantha Venkata

    2009-01-01

    Full Text Available Biomass derived vegetable oils are quite promising alternative fuels for agricultural diesel engines. Use of vegetable oils in diesel engines leads to slightly inferior performance and higher smoke emissions due to their high viscosity. The performance of vegetable oils can be improved by modifying them through the transesterification process. In this present work, the performance of single cylinder water-cooled diesel engine using methyl ester of jatropha oil as the fuel was evaluated for its performance and exhaust emissions. The fuel properties of biodiesel such as kinematic viscosity, calorific value, flash point, carbon residue, and specific gravity were found. Results indicate that B25 has closer performance to diesel and B100 has lower brake thermal efficiency mainly due to its high viscosity compared to diesel. The brake thermal efficiency for biodiesel and its blends was found to be slightly higher than that of diesel fuel at tested load conditions and there was no difference of efficiency between the biodiesel and its blended fuels. For jatropha biodiesel and its blended fuels, the exhaust gas temperature increased with the increase of power and amount of biodiesel. However, its diesel blends showed reasonable efficiency, lower smoke, and CO2 and CO emissions.

  18. Functionalized Vegetable Oils for Utilization as Polymer Building Blocks: Office of Industrial Technologies (OIT) Agriculture Project Fact Sheet

    International Nuclear Information System (INIS)

    Carde, T.

    2001-01-01

    Vegetable oils such as soybean oil will be converted to novel polymers using hydroformylation and other catalytic processes. These polymers can be used in the construction, automotive, packaging, and electronic sectors

  19. Jatropha oil and biogas in a dual fuel CI engine for rural electrification

    International Nuclear Information System (INIS)

    Luijten, C.C.M.; Kerkhof, E.

    2011-01-01

    This work presents the first dual fuel measurements with pure jatropha oil and biogas, using a 12 kW diesel engine generator. Reference tests are done with pure jatropha oil and with diesel to characterize the engine's thermal efficiency η t , volumetric efficiency η v and air-excess ratio λ versus output power. An extensive parameter study is done to predict/explain the effect of dual fuel operation on η v and λ. Dual fuel experiments, adding different qualities (CH 4 /CO 2 ratios) of synthetic biogas to the intake air, show that thermal efficiency is hardly affected for higher loads. For lower loads, biogas addition results in a decrease up to 10% in thermal efficiency, independent of biogas quality. Both η v and λ decrease with addition of biogas, in quantitative agreement with predictions. The engine runs well up to a certain heat release fraction of methane; at higher fractions irregularities are observed, probably attributable to light end-gas knock.

  20. Quality evaluation of rapeseed oils used as engine fuels

    Directory of Open Access Journals (Sweden)

    Marek Světlík

    2012-01-01

    Full Text Available Samples from six reference decentralised facilities and one industrial production unit of rapeseed oils were taken for the evaluation of the influence of production processes to the properties specified in the technical standard; in the laboratories, the properties limited by the standard for rapeseed oils were determined. In addition, long-term monitoring of changes in the oxidation stability in the storage test of rapeseed oils additived in the quantities of 200, 400 and 600 mg.kg−1 of the Baynox antioxidant was started. The results confirmed that the critical points in the rapeseed oil production process consist in the contamination with ash-forming elements, such as phosphorus, magnesium, calcium and overall impurities. Not only in the case of hot pressing, but also in two-step cold pressing of rapeseed it is necessary to reduce the content of ash-forming elements using additional processes, such as degumming, neutralisation and whitening. The safety step consisting of filtration down to maximum particle size of 1 μm must be always in place before the oil distribution. A positive effect of the Baynox antioxidant was clearly proved. As 200 mg.kg−1 of Baynox was added, the oxidation stability value increased from 8 to 9.05 hrs immediately after the pressing with a consequent decrease to 6 hrs after 270 days. With using of addition 400 ppm Baynox decreased oxidation stability under 6 hours not until after 390 days of storage. With addition 600 ppm Baynox the oxidation stability of rapeseed oil even after 510 days of storage makes 6.5 hours. The quality monitoring brought about necessary findings and knowledge for the optimisation of the rapeseed oil production and distribution as engine fuels. In addition, it serves as an initial supporting document for the creation of the necessary quality control system.

  1. EVALUATION OF POLLUTANT EMISSIONS FROM TWO-STROKE MARINE DIESEL ENGINE FUELED WITH BIODIESEL PRODUCED FROM VARIOUS WASTE OILS AND DIESEL BLENDS

    Directory of Open Access Journals (Sweden)

    Danilo Nikolić

    2016-12-01

    Full Text Available Shipping represents a significant source of diesel emissions, which affects global climate, air quality and human health. As a solution to this problem, biodiesel could be used as marine fuel, which could help in reducing the negative impact of shipping on environment and achieve lower carbon intensity in the sector. In Southern Europe, some oily wastes, such as wastes from olive oil production and used frying oils could be utilized for production of the second-generation biodiesel. The present research investigates the influence of the second-generation biodiesel on the characteristics of gaseous emissions of NOx, SO2, and CO from marine diesel engines. The marine diesel engine that was used, installed aboard a ship, was a reversible low-speed two-stroke engine, without any after-treatment devices installed or engine control technology for reducing pollutant emission. Tests were carried out on three regimes of engine speeds, 150 rpm, 180 rpm and 210 rpm under heavy propeller condition, while the ship was berthed in the harbor. The engine was fueled by diesel fuel and blends containing 7% and 20% v/v of three types of second-generation biodiesel made of olive husk oil, waste frying sunflower oil, and waste frying palm oil. A base-catalyzed transesterification was implemented for biodiesel production. According to the results, there are trends of NOx, SO2, and CO emission reduction when using blended fuels. Biodiesel made of olive husk oil showed better gaseous emission performances than biodiesel made from waste frying oils.

  2. Modeling and Experimental Validation of a Volumetric Expander Suitable for Waste Heat Recovery from an Automotive Internal Combustion Engine Using an Organic Rankine Cycle with Ethanol

    Directory of Open Access Journals (Sweden)

    José Galindo

    2016-04-01

    Full Text Available Waste heat recovery (WHR in exhaust gas flow of automotive engines has proved to be a useful path to increase the overall efficiency of internal combustion engines (ICE. Recovery potentials of up to 7% are shown in several works in the literature. However, most of them are theoretical estimations. Some present results from prototypes fed by steady flows generated in an auxiliary gas tank and not with actual engine exhaust gases. This paper deals with the modeling and experimental validation of an organic Rankine cycle (ORC with a swash-plate expander integrated in a 2 L turbocharged petrol engine using ethanol as working fluid. A global simulation model of the ORC was developed with a maximum difference of 5%, validated with experimental results. Considering the swash-plate as the main limiting factor, an additional specific submodel was implemented to model the physical phenomena in this element. This model allows simulating the fluid dynamic behavior of the swash-plate expander using a 0D model (Amesim. Differences up to 10.5% between tests and model results were found.

  3. A COMPREHENSIVE STUDY OF DI DIESEL ENGINE PERFORMANCE WITHVEGETABLE OIL: AN ALTERNATIVE BIO-FUEL SOURCE OF ENERGY

    Directory of Open Access Journals (Sweden)

    A. K. Azad

    2012-06-01

    Full Text Available This study offers comprehensive details on the use of bio-fuel as a viable and alternative source of energy. The bio-fuel was prepared from vegetable oil, i.e., mustard oil and tested in a diesel engine in both pure form and as a diesel blend. The mustard oil blend proportions were 20%, 30%, 40% and 50% and named as bio-diesel blends B20, B30, B40 and B50. A fuel-testing laboratory determined the properties of the pure mustard oil fuel and its blends, i.e., density, viscosity, dynamic viscosity, carbon residue, flash point, fire point and calorific value. An assessment of engine performance, i.e., brake horsepower (bhp, brake specific fuel consumption (bsfc, brake thermal efficiency (bte and brake mean effective pressure (bmep etc., was carried out for pure diesel, pure mustard and the blends, both in laboratory conditions and under British Standard (BS conditions. Finally, an analysis and comparison was made of the effects of the various fuels on the different engine properties.

  4. Future Students | College of Engineering & Applied Science

    Science.gov (United States)

    race car with the Society of Automotive Engineers. Members of the American Society of Mechanical . icons_100x100_Engage Over 20 engineering and computer science organizations await! Race a Baja car or concrete canoe

  5. PERFORMANCE AND EMISSION CHARACTERISTICS OF CI ENGINE FUELLED WITH NON EDIBLE VEGETABLE OIL AND DIESEL BLENDS

    Directory of Open Access Journals (Sweden)

    T. ELANGO

    2011-04-01

    Full Text Available This study investigates performance and emission characteristics of a diesel engine which is fuelled with different blends of jatropha oil and diesel (10–50%. A single cylinder four stroke diesel engine was used for the experiments at various loads and speed of 1500 rpm. An AVL 5 gas analyzer and a smoke meter were used for the measurements of exhaust gas emissions. Engine performance (specific fuel consumption SFC, brake thermal efficiency, and exhaust gas temperature and emissions (HC, CO, CO2, NOx and Smoke Opacity were measured to evaluate and compute the behaviour of the diesel engine running on biodiesel. The results showed that the brake thermal efficiency of diesel is higher at all loads. Among the blends maximum brake thermal efficiency and minimum specific fuel consumption were found for blends upto 20% Jatropha oil. The specific fuel consumption of the blend having 20% Jatropha oil and 80% diesel (B20 was found to be comparable with the conventional diesel. The optimum blend is found to be B20 as the CO2 emissions were lesser than diesel while decrease in brake thermal efficiency is marginal.

  6. Fuel and engine characterization study of catalytically cracked waste transformer oil

    International Nuclear Information System (INIS)

    Prasanna Raj Yadav, S.; Saravanan, C.G.; Vallinayagam, R.; Vedharaj, S.; Roberts, William L.

    2015-01-01

    Highlights: • Waste resources such as WTO and waste fly ash have been effectively harnessed. • WTO has been catalytically cracked using fly ash catalyst for the first time. • Characteristics of a diesel engine were evaluated for CCWTO-diesel blends. • BTE and PHRR were increased by 7.4% and 13.2%, respectively, for CCWTO 50. • HC and CO emissions were reduced for CCWTO 50 with the increased NO X emission. - Abstract: This research work targets on the effective utilization of WTO (waste transformer oil) in a diesel engine and thereby, reducing the environmental problems caused by its disposal into open land. The novelty of the work lies in adoption of catalytic cracking process to chemically treat WTO, wherein waste fly ash has been considered as a catalyst for the first time. Interestingly, both the oil and catalyst used are waste products, enabling reduction in total fuel cost and providing additional benefit of effective waste management. With the considerable token that use of activated fly ash as catalyst requires lower reaction temperature, catalytic cracking was performed only in the range of 350–400 °C. As a result of this fuel treatment process, the thermal and physical properties of CCWTO (catalytically cracked waste transformer oil), as determined by ASTM standard methods, were found to be agreeable for its use in a diesel engine. Further, FTIR analysis of CCWTO discerned the presence of essential hydrocarbons such as carbon and hydrogen. From the experimental investigation of CCWTO – diesel blends in a diesel engine, performance and combustion characteristics were shown to be improved, with a notable increase in BTE (brake thermal efficiency) and PHRR (peak heat release rate) for CCWTO 50 by 7.4% and 13.2%, respectively, than that of diesel at full load condition. In the same note, emissions such as smoke, HC (hydrocarbon) and CO (carbon monoxide) were noted to be reduced at the expense of increased NO X (nitrogen oxides) emission

  7. Reliability in automotive ethernet networks

    DEFF Research Database (Denmark)

    Soares, Fabio L.; Campelo, Divanilson R.; Yan, Ying

    2015-01-01

    This paper provides an overview of in-vehicle communication networks and addresses the challenges of providing reliability in automotive Ethernet in particular.......This paper provides an overview of in-vehicle communication networks and addresses the challenges of providing reliability in automotive Ethernet in particular....

  8. Oil-refinery and automotive emissions of rare earth elements

    International Nuclear Information System (INIS)

    Kitto, M.E.; Gordon, G.E.; Anderson, D.L.; Olmez, I.

    1991-01-01

    The concentration pattern of rare-earth elements (REEs) in emissions from oil refineries and newer-model automobiles shows a distortion from the crustal abundance pattern. The REEs arise from the zeolite cracking catalysts used in petroleum refining and emission-control substrates used in automobile catalytic converters, respectively. Ten petroleum cracking catalysts from four countries and 12 catalytic converters from five automobile manufacturers were characterized for their REE content. The cracking catalysts are highly enriched in light REEs, whereas the automobile catalysts are enriched primarily in Ce. Incorporation of zeolite catalysts into refined oil provides new atmospheric elemental signatures for tracing emissions from refineries and oil-fired power plants on a regional scale. Though both have enhanced La/REE ratios, emissions from these two sources can be distinguished by their La/V ratios. Although REE demand by the petroleum industry has dropped considerably in recent years, automobile catalytic converters containing REEs are expected to increase dramatically as more stringent emission regulations are adopted in Europe, Japan and the US

  9. WiFi Hot Spot Service Business for the Automotive and Oil Industries: A Competitive Analysis

    Directory of Open Access Journals (Sweden)

    Louis-Francois PAU

    2010-01-01

    Full Text Available While you refuel for gas, why not refuel for information or upload vehicle data, using a cheap wireless technology as WiFi? This paper analyzes in extensive detail the user segmentation by vehicle usage, service offering, and full business models from WiFi hot spot services delivered to and from vehicles (private, professional, public around gas stations. Are also analyzed the parties which play a role in such services: authorization, provisioning and delivery, with all the dependencies modelled by attributed digraphs. Account is made of WiFi base station technical capabilities and costs. Five year financial models (CAPEX, OPEX, and data pertain to two possible service suppliers: multi-service oil companies, and mobile service operators (or MVNOs. Model optimization on the return-on-investment (R.O.I. is carried out for different deployment scenarios, geographical coverage assumptions, as well as tariff structures. Comparison is also being made with public GPRS and 3G data services, as precursors to HSPA/LTE, and the effect of WiFi roaming is analyzed. Regulatory implications, including those dealing with public safety, are addressed. Analysis shows that due to manpower costs and marketing costs, suitable R.O.I. will not be achieved unless externalities are accounted for and innovative tariff structures are introduced. Open issues and further research are outlined. Further work is currently carried out with automotive electronics sector, wireless systems providers, wireless terminals platform suppliers, and vehicle manufacturers. Future relevance of this work is also discussed for the emerging electrical reloading grids for electrical vehicles.

  10. 78 FR 64394 - Airworthiness Directives; Lycoming Engines and Continental Motors, Inc. Reciprocating Engines

    Science.gov (United States)

    2013-10-29

    ... turbine wheel failure, reduction or complete loss of engine power, loss of engine oil, oil fire, and... after receipt. FOR FURTHER INFORMATION CONTACT: Christopher Richards, Aerospace Engineer, Chicago... failure, reduction or complete loss of engine power, loss of engine oil, oil fire, and damage to the...

  11. Oil dependence. Myths and realities of a strategic stake

    International Nuclear Information System (INIS)

    Chaliand, G.; Jafalian, A.

    2005-04-01

    Using a series of regional studies, this collective book proposes to evaluate the strategic dimensions of the oil dependence and to determine its geopolitical impacts in the Middle East, Russia, China, USA and Europe. Content: the oil stakes at the beginning of the 21. century; in the center of the oil scene: the Middle East; oil dependence and US foreign policy: beyond myths; the Russian oil, instrument of influence and of alliances re-knitting; China and oil: security feelings and strategic approach; towards a European supply strategy; beyond petroleum: what alternatives; 150 years of petroleum history; the energy dependence; energy economy; automotive fuels and pollution abatement; limitation of greenhouse gas emissions; glossary; bibliography; index; Web links. (J.S.)

  12. Power and Torque Characteristics of Diesel Engine Fuelled by Palm-Kernel Oil Biodiesel

    Directory of Open Access Journals (Sweden)

    Oguntola J. ALAMU

    2009-07-01

    Full Text Available Short-term engine performance tests were carried out on test diesel engine fuelled with Palm kernel oil (PKO biodiesel. The biodiesel fuel was produced through transesterification process using 100g PKO, 20.0% ethanol (wt%, 1.0% potassium hydroxide catalyst at 60°C reaction temperature and 90min. reaction time. The diesel engine was attached to a general electric dynamometer. Torque and power delivered by the engine were monitored throughout the 24-hour test duration at 1300, 1500, 1700, 2000, 2250 and 2500rpm. At all engine speeds tested, results showed that torque and power outputs for PKO biodiesel were generally lower than those for petroleum diesel. Also, Peak torque for PKO biodiesel occurred at a lower engine speed compared to diesel.

  13. 77 FR 72203 - Airworthiness Directives; Lycoming Engines and Continental Motors, Inc. Reciprocating Engines

    Science.gov (United States)

    2012-12-05

    ..., reduction or complete loss of engine power, loss of engine oil, oil fire, and damage to the airplane. DATES... after receipt. FOR FURTHER INFORMATION CONTACT: Christopher Richards, Aerospace Engineer, Chicago... wheel failure, reduction or complete loss of engine power, loss of engine oil, oil fire, and damage to...

  14. Application of FTIR Spectrometry Using Multivariate Analysis For Prediction Fuel in Engine Oil

    Directory of Open Access Journals (Sweden)

    Marie Sejkorová

    2017-01-01

    Full Text Available This work presents the potentiality of partial least squares (PLS regression associated with Fourier transform infrared spectroscopy (FTIR spectrometry for detecting penetration of diesel fuel into the mineral engine oil SAE 15W‑40 in the concentration range from 0 % to 9.5 % (w/w. As a best practice has proven FTIR‑PLS model, which uses the data file in the spectral range 835 – 688 cm−1.The quality of the model was evaluated using the root mean square error of calibration (RMSEC and cross validation (RMSECV. A correlation coefficient R = 0.999 and values of RMSEC, RMSECV were obtained 0.11 % and 0.38 % respectively. After the calibration of the FTIR spectrometer, the contamination engine oil with diesel fuel could be obtained in 1 – 2 min per sample.

  15. Efficiency of sugarcane bagasse-based sorbents for oil removal from engine washing wastewater.

    Science.gov (United States)

    Guilharduci, Viviane Vasques da Silva; Martelli, Patrícia Benedini; Gorgulho, Honória de Fátima

    2017-01-01

    This work evaluates the efficiency of sugarcane bagasse-based sorbents in the sorption of oil from engine washing wastewater. The sorbents were obtained from sugarcane bagasse in the natural form (SB-N) and modified with either acetic anhydride (SB-Acet) or 3-aminopropyltriethoxysilane (SB-APTS). The results showed that the sorption capacity of these materials decreased in the following order: SB-APTS > SB-N > SB-Acet. The superior oil sorption capacity observed for SB-APTS was attributed to the polar amino end groups in the silane structure, which acted to increase the hydrophilic character of the fibers. However, all the sorbents obtained in this study were able to clean a real sample of wastewater from engine washing, leading to significant reductions in suspended matter, sediment, anionic surfactants, and turbidity.

  16. PERENCANAAN PEMANFAATAN MARINE FUEL OIL (MFO SEBAGAI BAHAN BAKAR ENGINE DIESEL MaK

    Directory of Open Access Journals (Sweden)

    Hendra Poeswanto

    2015-06-01

    Full Text Available PT. PLN (Persero Area Bontang tengah berupaya melakukan penggantian jenis bahan bakar pada engine diesel merk MaK yang semula menggunakan High Speed Diesel (HSD menjadi Marine Fuel Oil (MFO. Tujuan penelitian ini untuk mengetahui proses treatment bahan bakar MFO untuk menurunkan viscositas dan penyeragaman ukuran partikel bahan bakar pada engine diesel merk MaK dan mengetahui perbandingan biaya penghematan dan evisiensi pemakaian bahan bakar HSD dengan bahan bakar MFO. Metode yang digunakan analisa perpindaahan panas pada oil heater dan viskositas bahan bakar yang digunakan untuk menentukan proses treatment bahan bakar MFO. Dari hasil perencanaan, proses treatment menggunakan oli heater dimana proses pemanasan oli dengan memanfaatkan panas dari gas buang hasil pembakaran. Dengan penggunaan bahan bakar MFO dapat menghemat biaya konsumsi bahan bakar sebesar Rp. 21.827.520,- per harinya.

  17. [Exposure to electrocution by automotive ignition system in the work environment of car service employees].

    Science.gov (United States)

    Fryśkowski, Bernard; Swiatek-Fryśkowska, Dorota

    2014-01-01

    Automotive ignition system diagnostic procedures involve a specific kind of action due to the presence of high voltage pulses rated of roughly several dozen kilovolts. Therefore, the repairers employed at car service coming into direct contact with electrical equipment of ignition systems are exposed to risk of electric shock. Typically, the electric discharge energy of automotive ignition systems is not high enough to cause fibrillation due to the electric effect on the heart. Nevertheless, there are drivers and car service employees who use electronic cardiac pacemakers susceptible to high voltage pulses. The influence of high-voltage ignition systems on the human body, especially in case of electric injury, has not been comprehensively elucidated. Therefore, relatively few scientific papers address this problem. The aim of this paper is to consider the electrical injury danger from automotive ignition systems, especially in people suffering from cardiac diseases. Some examples of the methods to reduce electric shock probability during diagnostic procedures of spark-ignition combustion engines are presented and discussed.

  18. Hydrodynamic air lubricated compliant surface bearing for an automotive gas turbine engine. 2: Materials and coatings

    Science.gov (United States)

    Bhushan, B.; Ruscitto, D.; Gray, S.

    1978-01-01

    Material coatings for an air-lubricated, compliant journal bearing for an automotive gas turbine engine were exposed to service test temperatures of 540 C or 650 C for 300 hours, and to 10 temperature cycles from room temperatures to the service test temperatures. Selected coatings were then put on journal and partial-arc foils and tested in start-stop cycle tests at 14 kPa (2 psi) loading for 2000 cycles. Half of the test cycles were performed at a test chamber service temperature of 540 C (1000 F) or 650 C (1200 F); the other half were performed at room temperature. Based on test results, the following combinations and their service temperature limitations are recommended: HL-800 TM (CdO and graphite) on foil versus chrome carbide on journal up to 370 C (700 F); NASA PS 120 (Tribaloy 400, silver and CaF2 on journal versus uncoated foil up to 540 C (1000 F); and Kaman DES on journal and foil up to 640 C (1200 F). Kaman DES coating system was further tested successfully at 35 kPa (5 psi) loading for 2000 start-stop cycles.

  19. Parliament tears up 'feeble' auto-oil proposals

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    Recent discussions in the European Parliament concerning the ''auto-oil'' proposals, i.e. the effects of automotive fuel specifications on the environment, are described in this paper. Legislative changes or amendments proposed by various national, or other interest groups are also noted. In particular, the sulphur content of diesel fuels is a matter of widespread concern because of its use for city taxis and buses. Further fuel proposals in the ''auto-oil'' style are expected in the near future. (UK)

  20. Influences of Fuel Additive, Crude Palm and Waste Cooking Oil on Emission Characteristics of Small Diesel Engine

    Science.gov (United States)

    Khalid, Amir; Jaat, Norrizam; Manshoor, Bukhari; Zaman, Izzuddin; Sapit, Azwan; Razali, Azahari; Basharie, Mariam

    2017-08-01

    Major research has been conducted on the use of input products, such as rapeseed, canola, soybean, sunflower oil, waste cooking oil (WCO), crude palm oil (CPO) and crude jatropha oil as alternative fuels. Biodiesel is renewable, biodegradable and oxygenated, where it can be easily adopted by current existing conventional diesel engine without any major modification of the engine. To meet the future performance and emission regulations, is urged to improve the performance and exhaust emissions from biodiesel fuels. Hence, further investigation have been carried out on the emission characteristics of small diesel engine that fuelled by variant blending ratio of WCO and CPO with booster additive. For each of the biodiesel blends ratio from 5 to 15 percent volume which are WCO5, WCO10 and WCO15 for WCO biodiesel and CPO5, CPO10 and CPO15 for CPO biodiesel. The exhaust emissions were measured at engine speeds varied at 2000 rpm and 2500 rpm with different booster additive volume DRA (biodiesel without additive), DRB (0.2 ml) and DRC (0.4 ml). Emissions characteristics that had been measured were Hydrocarbon (HC), Carbon Monoxide (CO), Carbon Dioxide (CO2), Nitrogen Oxide (NOx), and smoke opacity. The results showed that increased of blending ratio with booster additive volume significantly decreased the CO emission, while increased in NOx and CO2 due to changes of fuel characteristics in biodiesel fuel blends.

  1. Synthetic lubrication oil influences on performance and emission characteristic of coated diesel engine fuelled by biodiesel blends

    International Nuclear Information System (INIS)

    Mohamed Musthafa, M.

    2016-01-01

    Highlights: • Synthetic lubricant provides the maximum performance benefits. • Synthetic lubricant is capable of retaining satisfactory viscosity. • Synthetic lubricant is to increase the life of the engine. • Improvement in efficiency of the coated engine with synthetic lubrication. • No significant changes in the coated engine emission with synthetic lubricants. - Abstract: In this study, the effects of using synthetic lubricating oil on the performance and exhaust emissions in a low heat rejection diesel engine running on Pongamia methyl ester blends and diesel have been investigated experimentally compared to those obtained from a conventional diesel engine with SAE 40 lubrication oil fuelled by diesel. For this purpose, direct injection diesel engine was converted to Yttria-stabilized zirconia (YSZ) coated engine. The results showed 5–9% increase in engine efficiency and 8–17% decrease in specific fuel consumption, as well as significant improvements in exhaust gas emissions (except NO_X) for all tested fuels (pure diesel, B10 and B20) used in coated engine with synthetic lubricants compared to that of the uncoated engine with SAE 40 lubricant running on diesel fuel.

  2. Automotive fuels from biomass via gasification

    International Nuclear Information System (INIS)

    Zhang, Wennan

    2010-01-01

    There exists already a market of bio-automotive fuels i.e. bioethanol and biodiesel produced from food crops in many countries. From the viewpoint of economics, environment, land use, water use and chemical fertilizer use, however, there is a strong preference for the use of woody biomass and various forest/agricultural residues as the feedstock. Thus, the production of 2nd generation of bio-automotive fuels i.e. synthetic fuels such as methanol, ethanol, DME, FT-diesel, SNG and hydrogen through biomass gasification seems promising. The technology of producing synthetic fuels is well established based on fossil fuels. For biomass, however, it is fairly new and the technology is under development. Starting from the present market of the 1st generation bio-automotive fuels, this paper is trying to review the technology development of the 2nd generation bio-automotive fuels from syngas platform. The production of syngas is emphasized which suggests appropriate gasifier design for a high quality syngas production. A number of bio-automotive fuel demonstration plant will be presented, which gives the state of the art in the development of BTS (biomass to synthetic fuels) technologies. It can be concluded that the 2nd generation bio-automotive fuels are on the way to a breakthrough in the transport markets of industrial countries especially for those countries with a strong forest industry. (author)

  3. Combustion Noise and Pollutants Prediction for Injection Pattern and Exhaust Gas Recirculation Tuning in an Automotive Common-Rail Diesel Engine

    Directory of Open Access Journals (Sweden)

    Arsie Ivan

    2015-01-01

    Full Text Available In the last years, emissions standards for internal combustion engines are becoming more and more restrictive, particularly for NOx and soot emissions from Diesel engines. In order to comply with these requirements, OEMs have to face with innovative combustion concepts and/or sophisticate after-treatment devices. In both cases, the role of the Engine Management System (EMS is increasingly essential, following the large number of actuators and sensors introduced and the need to meet customer expectations on performance and comfort. On the other hand, the large number of control variables to be tuned imposes a massive recourse to the experimental testing which is poorly sustainable in terms of time and money. In order to reduce the experimental effort and the time to market, the application of simulation models for EMS calibration has become fundamental. Predictive models, validated against a limited amount of experimental data, allow performing detailed analysis on the influence of engine control variables on pollutants, comfort and performance. In this paper, a simulation analysis on the impact of injection pattern and Exhaust Gas Recirculation (EGR rate on fuel consumption, combustion noise, NO and soot emissions is presented for an automotive Common-Rail Diesel engine. Simulations are accomplished by means of a quasi-dimensional multi-zone model of in-cylinder processes. Furthermore a methodology for in-cylinder pressure processing is presented to estimate combustion noise contribution to radiated noise. Model validation is carried out by comparing simulated in-cylinder pressure traces and exhaust emissions with experimental data measured at the test bench in steady-state conditions. Effects of control variables on engine performance, noise and pollutants are analyzed by imposing significant deviation of EGR rate and injection pattern (i.e. rail pressure, start-of-injection, number of injections. The results evidence that quasi-dimensional in

  4. TEM and HRTEM of Soot-in-oil particles and agglomerates from internal combustion engines

    International Nuclear Information System (INIS)

    Fay, M W; Rocca, A La; Shayler, P J

    2014-01-01

    Over time, the performance of lubricating oil in a diesel engine is affected by the build-up of carbon soot produced by the combustion process. TEM and HRTEM are commonly used to investigate the characteristics of individual and agglomerated particles from diesel exhaust, to understand the structure and distribution of the carbon sheets in the primary particles and the nanostructure morphology. However, high resolution imaging of soot-in-oil is more challenging, as mineral oil is a contaminant for the electron microscope and leads to instability under the electron beam. In this work we compare solvent extraction and centrifugation techniques for removing the mineral oil contaminant, and the effect on particle size distribution

  5. Effects of spent engine oil contamination on soybean (Glycine max L ...

    African Journals Online (AJOL)

    ADOWIE PERE

    Research Farm to determine the effect of spent auto-engine oil on soil and soybean ... importance and diverse domestic usage, nevertheless, ... 3 % equivalent to 0, 10, 000, 20,000 and 30,000 mg ... moisture content to obtain the yield. ... (Table 1) revealed that the texture of the ..... cowpea in two contrasting soil types from.

  6. Jatropha oil and biogas in a dual fuel CI engine for rural electrification

    Energy Technology Data Exchange (ETDEWEB)

    Luijten, C.C.M.; Kerkhof, E. [Department of Mechanical Engineering, Eindhoven University of Technology, P.O. Box 513, 6500 MB Eindhoven (Netherlands)

    2011-02-15

    This work presents the first dual fuel measurements with pure jatropha oil and biogas, using a 12 kW diesel engine generator. Reference tests are done with pure jatropha oil and with diesel to characterize the engine's thermal efficiency {eta}{sub t}, volumetric efficiency {eta}{sub v} and air-excess ratio {lambda} versus output power. An extensive parameter study is done to predict/explain the effect of dual fuel operation on {eta}{sub v} and {lambda}. Dual fuel experiments, adding different qualities (CH{sub 4}/CO{sub 2} ratios) of synthetic biogas to the intake air, show that thermal efficiency is hardly affected for higher loads. For lower loads, biogas addition results in a decrease up to 10% in thermal efficiency, independent of biogas quality. Both {eta}{sub v} and {lambda} decrease with addition of biogas, in quantitative agreement with predictions. The engine runs well up to a certain heat release fraction of methane; at higher fractions irregularities are observed, probably attributable to light end-gas knock. (author)

  7. Experimental investigation of a diesel engine with methyl ester of mango seed oil and diesel blends

    Directory of Open Access Journals (Sweden)

    K. Vijayaraj

    2016-03-01

    Full Text Available Petroleum based fuels worldwide have not only resulted in the rapid depletion of conventional energy sources, but have also caused severe air pollution. The search for an alternate fuel has led to many findings due to which a wide variety of alternative fuels are available at our disposal now. The existing studies have revealed the use of vegetable oils for engines as an alternative for diesel fuel. However, there is a limitation in using straight vegetable oils in diesel engines due to their high viscosity and low volatility. In the present work, neat mango seed oil is converted into their respective methyl ester through transesterification process. Experiments are conducted using various blends of methyl ester of mango seed oil with diesel in a single cylinder, four stroke vertical and air cooled Kirloskar diesel engine. The experimental results of this study showed that the MEMSO biodiesel has similar characteristics to those of diesel. The brake thermal efficiency, unburned hydrocarbon and smoke density are observed to be lower in case of MEMSO biodiesel blends than diesel. The CO emission for B25, B50 and B75 is observed to be lower than diesel at full load, whereas for B100 it is higher at all loads. On the other hand, BSFC and NOx of MEMSO biodiesel blends are found to be higher than diesel. It is found that the combustion characteristics of all blends of methyl ester of mango seed oil showed similar trends with those of the baseline diesel. From this study, it is concluded that optimized blend is B25 and could be used as a viable alternative fuel in a single cylinder direct injection diesel engine without any modifications.

  8. The future of the Canadian oil sands: Engineering and project management advances

    Energy Technology Data Exchange (ETDEWEB)

    Madden, Peter; Morawski, Jacek

    2010-09-15

    Production technology and project management developments in Canada's oil sands industry, in the context of AMEC's experience as EPCM service provider, are discussed. Effective project management systems and workfront planning are critical to achieve cost and schedule targets and optimum construction execution. Construction Work Packages divide work into discrete pieces and Construction Work Execution Plans influence scheduling of engineering and procurement deliverables. AMEC's Engineering Data Warehouse works with intelligent engineering design tools to ensure information related to a piece of equipment is consistent across all systems. HSSE systems are proactively developed and AMEC's progressive improvement in safety performance is demonstrated.

  9. An experimental study on performance and exhaust emissions of a diesel engine fuelled with tobacco seed oil methyl ester

    International Nuclear Information System (INIS)

    Usta, N.

    2005-01-01

    Tobacco seeds are a by product of tobacco leaves production. To the author's best knowledge, unlike tobacco leaves, tobacco seeds are not collected from fields and are not commercial products. However, tobacco seeds contain significant amounts of oil. Although tobacco seed oil is a non-edible vegetable oil, it can be utilized for biodiesel production as a new renewable alternative diesel engine fuel. In this study, an experimental study on the performance and exhaust emissions of a turbocharged indirect injection diesel engine fuelled with tobacco seed oil methyl ester was performed at full and partial loads. The results showed that the addition of tobacco seed oil methyl ester to the diesel fuel reduced CO and SO 2 emissions while causing slightly higher NO x emissions. Meanwhile, it was found that the power and the efficiency increased slightly with the addition of tobacco seed oil methyl ester. (Author)

  10. Evaluation of a diesel engine running with stationary mixtures of soybean oil and reused oil diesel; Avaliacao de um motor diesel estacionario funcionando com misturas de oleo de soja reutilizado e oleo diesel

    Energy Technology Data Exchange (ETDEWEB)

    Maronhas, Maite E.S.; Fernandes, Haroldo C.; Siqueira, Wagner C.; Figueiredo, Augusto C. [Universidade Federal de Vicosa (UFV), MG (Brazil)], Emails: maronhas@gmail.com, haroldo@ufv.br, augusto.figueiredo@ufv.br

    2009-07-01

    The tests were conducted at the Laboratory of Agricultural Mechanization Department of Agricultural Engineering, Federal University of Vicosa using a stationary diesel engine Yanmar brand NS{sub B} 75, with nominal power of 5.8 kw at 2400 rpm, direct injection, and water cooled. This work aimed to examine the reuse of soybean oil to drive the engine stationary. Were used as fuel five mixtures of diesel oil (DO) and soybean oil (OS) re-used in the kitchen of the restaurant of the university in the proportions of 0-100%, 25-75%, 50-50%, 75-25 % and 100-0% respectively. The power and torque of the engine is higher for the mixture showed a 75% OD and 25% OS and 25% lower for DO and 75% OS. The lowest hourly consumption was with a mixture of 25% and 75% OD and OS was 15% lower than for the pure diesel. The values found justifying the use of mixtures of diesel and soybean oil reused, but the technical aspects, especially regarding the wear of the engine, must be evaluated to indicate the use after a long period of engine operation. (author)

  11. Eucalyptus-Palm Kernel Oil Blends: A Complete Elimination of Diesel in a 4-Stroke VCR Diesel Engine

    Directory of Open Access Journals (Sweden)

    Srinivas Kommana

    2015-01-01

    Full Text Available Fuels derived from biomass are mostly preferred as alternative fuels for IC engines as they are abundantly available and renewable in nature. The objective of the study is to identify the parameters that influence gross indicated fuel conversion efficiency and how they are affected by the use of biodiesel relative to petroleum diesel. Important physicochemical properties of palm kernel oil and eucalyptus blend were experimentally evaluated and found within acceptable limits of relevant standards. As most of vegetable oils are edible, growing concern for trying nonedible and waste fats as alternative to petrodiesel has emerged. In present study diesel fuel is completely replaced by biofuels, namely, methyl ester of palm kernel oil and eucalyptus oil in various blends. Different blends of palm kernel oil and eucalyptus oil are prepared on volume basis and used as operating fuel in single cylinder 4-stroke variable compression ratio diesel engine. Performance and emission characteristics of these blends are studied by varying the compression ratio. In the present experiment methyl ester extracted from palm kernel oil is considered as ignition improver and eucalyptus oil is considered as the fuel. The blends taken are PKE05 (palm kernel oil 95 + eucalyptus 05, PKE10 (palm kernel oil 90 + eucalyptus 10, and PKE15 (palm kernel 85 + eucalyptus 15. The results obtained by operating with these fuels are compared with results of pure diesel; finally the most preferable combination and the preferred compression ratio are identified.

  12. Incumbents' asymmetric responses to environmentally friendly entrants in the automotive industry

    OpenAIRE

    Diekhof, Josefine; Cantner, Uwe

    2017-01-01

    In the context of technological change, the influence of innovative entrants on incumbents is considered a major driving force. Using global patent data, we analyze this influence for the case of the transition from combustion engine vehicles towards alternative technology vehicles (ATVs). Entrants play a key role in developing ATV-related patents, whereas automotive incumbents are considered as being less motivated in pursuing this new technology. Our results indicate that entrants' ATV-rela...

  13. Fatigue analysis of welding seams in automotive structures

    International Nuclear Information System (INIS)

    Halaszi, C.; Gaier, C.; Dannbauer, H.; Hofwimmer, K.

    2006-01-01

    For lightweight automotive structures, the stiffness and the fatigue behavior is greatly influenced by the properties of the joints. The joining technology used and the number and locations of the joints are of high importance for both engineers and cost accountants. An overview of common computational procedures including European and national standards is given for the assessments of the fatigue behavior of thin sheet structures with arc welds. The influence of the quality and size of finite shell elements on the fatigue results are investigated and it is shown how this influence can be minimized. (author)

  14. Automotive Fuel and Exhaust Systems.

    Science.gov (United States)

    Irby, James F.; And Others

    Materials are provided for a 14-hour course designed to introduce the automotive mechanic to the basic operations of automotive fuel and exhaust systems incorporated on military vehicles. The four study units cover characteristics of fuels, gasoline fuel system, diesel fuel systems, and exhaust system. Each study unit begins with a general…

  15. Effects of trout-oil methyl ester on a diesel engine performance and emission characteristics

    International Nuclear Information System (INIS)

    Buyukkaya, Ekrem; Benli, Serdar; Karaaslan, Salih; Guru, Metin

    2013-01-01

    Highlights: ► Maximum engine power was obtained at 2400 rpm for all fuels. ► The maximum torque of engine was obtained at 1500 rpm for blend fuels. ► The BSFC of TOME’s blends became less. ► HC emissions were found to be lower for blends. ► NO x was obtained to decrease in particularly high engine loads. - Abstract: In this study, trout oil methyl ester fuel (TOME) was prepared by transesterification using potassium hydroxide as catalyst. The trout oil and its blends (B10, B20, B40 and B50) were tested in a single-cylinder natural aspirated indirect injection diesel engine. The tests showed significant changes in engine’s power and particularly torque as well as major improvements in the engine emission for B40 and B50 in general, except the increasing of nitrogen oxide (NO x ) emission due to high combustion temperature resulted by better combustion process. The brake specific fuel consumption of B50 fuel was almost the same as that of diesel fuel at the maximum torque and rated power conditions. Carbon monoxide (CO) and hydrocarbon emissions (HC) were reduced around on average 13% and 45%, respectively, in case of TOME compared to diesel

  16. THE CORRELATION BETWEEN STUDENTS’ LEARNING STYLES AND PARENTS’ ATTENTION WITH MEASURING EQUIPMENT ACHIEVEMENT OF THE TENTH GRADE STUDENTS OF AUTOMOTIVE ENGINEERING EXPERTISE PROGRAM OF STATE VOCATIONAL HIGH SCHOOL PIRI SLEMAN IN THE ACADEMIC YEAR 2013/2014

    Directory of Open Access Journals (Sweden)

    Moh. Sulhan Haidi

    2014-12-01

    Full Text Available This research is aimed at finding out (1 the correlation  between students’ learning styles and measuring equipment achievement of the tenth grade students of Automotive Engineering Expertise Program of State Vocational High School Piri Sleman in the academic year 2013/2014; (2 the correlation between parents’ attention with measuring equipment achievement of the tenth grade students of Automotive Engineering Expertise Program of State Vocational High School Piri Sleman in the academic year 2013/2014; (3 the correlation between students’ learning styles and parents’ attention with measuring equipment achievement of the tenth grade students of Automotive Engineering Expertise Program of State Vocational High School Piri Sleman in the Academic Year 2013/2014. The kind of this research is correlation study and categorized as ex post facto. The population of the research was 105 students while the sample was 82 students counted from Isaac and Michael formula. The technique of sampling used in this research was simple random sampling. The technique of the data collection was questionnaire and documentation. Item validity was computed from product moment correlation. Item reliability was calculated by using alpha formula. The technique of data analysis used in this study was partial correlation and doubled correlation analyses. Precondition testing analysis (normality, linearity, and multi co linearity testing, Based on the data analysis, the results were as follows: (1 there is a positive and significant correlation between students’ learning styles (X1 and measuring equipment achievement (Y; (2 there is a positive and significant correlation between parents’ attention (X2 with measuring equipment achievement (Y; (3 there is a positive and significant correlation between students’ learning styles (X1 and parents’ attention (X2 with measuring equipment achievement (Y.

  17. Experimental studies on the combustion and emission characteristics of a diesel engine fuelled with used cooking oil methyl ester and its diesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmi Narayana Rao, G.; Sampath, S. [Sri Venkateswara College of Engineering, Sriperumbudur (India); Rajagopal, K. [Jawaharlal Nehru Technological Univ., Hyderabad (India)

    2008-04-01

    Transesterified vegetable oils (biodiesel) are promising alternative fuel for diesel engines. Used vegetable oils are disposed from restaurants in large quantities. But higher viscosity restricts their direct use in diesel engines. In this study, used cooking oil was dehydrated and then transesterified using an alkaline catalyst. The combustion, performance and emission characteristics of Used Cooking oil Methyl Ester (UCME) and its blends with diesel oil are analyzed in a direct injection C.I. engine. The fuel properties and the combustion characteristics of UCME are found to be similar to those of diesel. A minor decrease in thermal efficiency with significant improvement in reduction of particulates, carbon monoxide and unburnt hydrocarbons is observed compared to diesel. The use of transesterified used cooking oil and its blends as fuel for diesel engines will reduce dependence on fossil fuels and also decrease considerably the environmental pollution. Of the various alternate fuels under consideration, biodiesel is the most promising due to the following reasons: (1) Biodiesel can be used in the existing engine without any modifications. (2) Biodiesel is made entirely from vegetable sources; it does not contain any sulfur, aromatic hydrocarbons, metals or crude oil residues. (3) Biodiesel is an oxygenated fuel; emissions of carbon monoxide and soot tend to reduce. (4) Unlike fossil fuels, the use of biodiesel does not contribute to global warming as CO{sub 2} emitted is once again absorbed by the plants grown for vegetable oil/biodiesel production. Thus CO{sub 2} balance is maintained. (5) The Occupational Safety and Health Administration classifies biodiesel as a non-flammable liquid. (6) The use of biodiesel can extend the life of diesel engines because it is more lubricating than petroleum diesel fuel. (7) Biodiesel is produced from renewable vegetable oils/animal fats and hence improves the fuel or energy security and economy independence.

  18. State Estimation in the Automotive SCR DeNOx Process

    DEFF Research Database (Denmark)

    Zhou, Guofeng; Jørgensen, John Bagterp; Duwig, Christophe

    2012-01-01

    on exhaust gas emissions. For advanced control, e.g. Model Predictive Control (MPC), of the SCR process, accurate state estimates are needed. We investigate the performance of the ordinary and the extended Kalman filters based on a simple first principle system model. The performance is tested through......Selective catalytic reduction (SCR) of nitrogen oxides (NOx) is a widely applied diesel engine exhaust gas after-treatment technology. For effective NOx removal in a transient operating automotive application, controlled dosing of urea can be used to meet the increasingly restrictive legislations...

  19. Automotive battery energy density — past, present and future

    Science.gov (United States)

    Peters, K.

    Energy and power densities of automotive batteries at engine starting rates have doubled over the past twenty years. Most recent improvements can be credited to the use of both very thin plates with optimized grid design and low-resistance polyethylene separators with a thin backweb and a reduced rib height. Opportunities for further improvements using the same design approach and similar processing techniques are limited. The effect of some recent innovative developments on weight reduction and performance improvement are reviewed, together with possible changes to the electrical system of vehicles.

  20. Performance and emissions of an engine fuelled by biogas of palm oil mill effluent

    Science.gov (United States)

    Arjuna, J.; Sitorus, T. B.; Ambarita, H.; Abda, S.

    2018-02-01

    This research investigates the performance and emissions of an engine by biogas and gasoline. The experiments use biogas of palm oil mill effluent (POME) with turbocharger at engine loading conditions (100, 200, 300, 400, and 500 Watt). Specific fuel consumption and thermal efficiency are used to compare engine performance, and emission analysis is based on parameters such as carbon monoxide (CO), hydrocarbon (HC), carbon dioxide (CO2) and oxide (O2). The experimental data show that the maximum thermal efficiency when engine use biogas and gasoline is 20.44% and 22.22% respectively. However, there was CO emission reduction significantly when the engine using POME biogas.

  1. Performance and emission of generator Diesel engine using methyl esters of palm oil and diesel blends at different compression ratio

    Science.gov (United States)

    Aldhaidhawi, M.; Chiriac, R.; Bădescu, V.; Pop, H.; Apostol, V.; Dobrovicescu, A.; Prisecaru, M.; Alfaryjat, A. A.; Ghilvacs, M.; Alexandru, A.

    2016-08-01

    This study proposes engine model to predicate the performance and exhaust gas emissions of a single cylinder four stroke direct injection engine which was fuelled with diesel and palm oil methyl ester of B7 (blends 7% palm oil methyl ester with 93% diesel by volume) and B10. The experiment was conducted at constant engine speed of 3000 rpm and different engine loads operations with compression ratios of 18:1, 20:1 and 22:1. The influence of the compression ratio and fuel typeson specific fuel consumption and brake thermal efficiency has been investigated and presented. The optimum compression ratio which yields better performance has been identified. The result from the present work confirms that biodiesel resulting from palm oil methyl ester could represent a superior alternative to diesel fuel when the engine operates with variable compression ratios. The blends, when used as fuel, result in a reduction of the brake specific fuel consumption and brake thermal efficiency, while NOx emissions was increased when the engine is operated with biodiesel blends.

  2. Precious Metals in Automotive Technology: An Unsolvable Depletion Problem?

    Directory of Open Access Journals (Sweden)

    Ugo Bardi

    2014-04-01

    Full Text Available Since the second half of the 20th century, various devices have been developed in order to reduce the emissions of harmful substances at the exhaust pipe of combustion engines. In the automotive field, the most diffuse and best known device of this kind is the “three way” catalytic converter for engines using the Otto cycle designed to abate the emissions of carbon monoxide, nitrogen oxides and unburnt hydrocarbons. These catalytic converters can function only by means of precious metals (mainly platinum, rhodium and palladium which exist in a limited supply in economically exploitable ores. The recent increase in prices of all mineral commodities is already making these converters significantly expensive and it is not impossible that the progressive depletion of precious metals will make them too expensive for the market of private cars. The present paper examines how this potential scarcity could affect the technology of road transportation worldwide. We argue that the supply of precious metals for automotive converters is not at risk in the short term, but that in the future it will not be possible to continue using this technology as a result of increasing prices generated by progressive depletion. Mitigation methods such as reducing the amounts of precious metals in catalysts, or recycling them can help but cannot be considered as a definitive solution. We argue that precious metal scarcity is a critical factor that may determine the future development of road transportation in the world. As the problem is basically unsolvable in the long run, we must explore new technologies for road transportation and we conclude that it is likely that the clean engine of the future will be electric and powered by batteries.

  3. Synthesis of cracked Calophyllum inophyllum oil using fly ash catalyst for diesel engine application

    KAUST Repository

    Muthukumaran, N.; Saravanan, Chinnusamy G.; Prasanna Raj Yadav, S.; Vallinayagam, R.; Vedharaj, S.; Roberts, William L.

    2015-01-01

    In this study, production of hydrocarbon fuel from Calophyllum inophyllum oil has been characterized for diesel engine application, by appraising essential fuel processing parameters. As opposed to traditional trans-esterification process

  4. Inorganic elements and organic compounds degradation studies by gamma irradiation in used lubricating oils

    International Nuclear Information System (INIS)

    Scapin, Marcos Antonio

    2008-01-01

    The automotive lubricating oils have partial degradation of organic compounds and addition of undesirable inorganic elements, during its use. These substances classify the used lubricating oils as dangerous and highly toxic. According to global consensus, concerning the environmental conservation, the best is to perform a reuse treatment of these lubricating oils. For this purpose, the uses of an alternative and effective technology have been sought. In this work, the efficacy and technical feasibility of the advanced oxidation process (AOP), by gamma radiation, for used automotive lubricating oil treatment has been studied. Different quantities of hydrogen peroxide and water Milli-Q were added to oil samples. They were submitted to the Cobalt-60 irradiator, type Gammacell, with 100, 200 and 500 kGy absorbed doses. The inorganic analysis by X-ray fluorescence (WDXRF) showed inorganic elements removal, mainly to sulphur, calcium, iron and nickel elements at acceptable levels by environmental protection law for oils reusing. The gas chromatography (GC/MS) analysis showed that the advanced oxidation process promotes the organic compounds degradation. The main identified compounds were tridecane, 2-methyl-naphthalene, and trietilamina-tetramethyl urea, which have important industrial applications. The multivariate analysis, Cluster Analysis, showed that advanced oxidation process application is a viable and promising treatment for used lubricating oil reusing. (author)

  5. Analysis of the piston ring/liner oil film development during warm-up for an SI-engine

    DEFF Research Database (Denmark)

    Frølund, Kent; Schramm, Jesper; Tian, T.

    2001-01-01

    A one-dimensional ring-pack lubrication model developed at MIT is applied to simulate the oil film behavior during the warm-up period of a Kohler spark ignition engine. This is done by making assumptions for the evolution of the ail temperatures during warm-up and that the oil control ring during...

  6. Applications of thermal spraying for automotive parts. Jidosha ni okeru yosha no tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Mori, K [Toyota Motor Co. Ltd., Aichi (Japan)

    1992-10-31

    Application of thermal spraying for automotive parts is described. Outlines of the spraying types that are materialized recently, like 'gel-double spraying of turbo-compressor housing part' and 'iron alloy spraying to outer portion of valve lifter made with Al alloy', are introduced. Gel-double spraying technology is widely used in the jet engine of aeroplane, however its use in automotive turbo was difficult from the reason like quality assurance relating to continuous production of automotives. As a result of the research and development based on the above reasons, a low speed torque is confirmed by the formation of gel-double spray layer. Spraying to the outer part of the valve lifter made from Al alloy is cited as the best example of thermal spraying. Relation between flying speed of spraying particles and degree of flattening, etc., relating to the conformity of adhesion power of coated layer, is explained. Further research topics are given as; improvement of spraying efficiency, improvement of resistance of spraying equipments, unification of equipments standards, quantification of spray coatings, design of spray materials, etc. 9 refs., 8 figs., 1 tab.

  7. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT VII, ENGINE TUNE-UP--DETROIT DIESEL ENGINE.

    Science.gov (United States)

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF TUNE-UP PROCEDURES FOR DIESEL ENGINES. TOPICS ARE SCHEDULING TUNE-UPS, AND TUNE-UP PROCEDURES. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL BRANCH PROGRAMED TRAINING FILM "ENGINE TUNE-UP--DETROIT DIESEL ENGINE" AND OTHER MATERIALS. SEE VT 005 655 FOR FURTHER INFORMATION.…

  8. Design of a predictive control strategy for an automotive electrically-assisted waste heat recovery system with preview

    NARCIS (Netherlands)

    Seretis, M.

    2017-01-01

    This report regards the development of a predictive control strategy for an automotive electrically-assisted Waste Heat Recovery System (eWHR) with preview information. In this system, the energy recovery is decoupled from the energy supply to the engine. For such dynamical systems with energy

  9. Rare earth metals for automotive exhaust catalysts

    International Nuclear Information System (INIS)

    Shinjoh, Hirohumi

    2006-01-01

    The usage of rare earth metals for automotive exhaust catalysts is demonstrated in this paper. Rare earth metals have been widely used in automotive catalysts. In particular, three-way catalysts require the use of ceria compounds as oxygen storage materials, and lanthana as both a stabilizer of alumina and a promoter. The application for diesel catalysts is also illustrated. Effects of inclusion of rare earth metals in automotive catalysts are discussed

  10. Application of bioethanol/RME/diesel blend in a Euro5 automotive diesel engine: Potentiality of closed loop combustion control technology

    International Nuclear Information System (INIS)

    Guido, Chiara; Beatrice, Carlo; Napolitano, Pierpaolo

    2013-01-01

    Highlights: ► Effects of a bioethanol/biodiesel/diesel blend on Euro5 diesel engine. ► Potentiality of combustion control technology with alternative fuels. ► Strong smoke and NOx emissions reduction. ► No power penalties burning bioethanol blend by means of combustion control activation. -- Abstract: The latest European regulations require the use of biofuels by at least 10% as energy source in transport by 2020. This goal could be reached by means of the use of different renewable fuels; bioethanol (BE) is one of the most interesting for its low production cost and availability. BE usually replaces gasoline in petrol engines but it can be also blended in low concentrations to feed diesel engines. In this paper the results of an experimental activity aimed to study the impact of a BE/biodiesel/mineral diesel blend on performance and emissions in a last generation automotive diesel engine are presented. The tests were performed in steady-state in eight partial load engine conditions and at 2500 rpm in full load. Two fuel blends have been compared: the Rapeseed Methyl Ester (RME)/diesel with 10% of biodiesel by volume (B10), and the BE/RME/diesel with 20% of BE and 10% of biodiesel by volume (E20B10). The experimental campaign was carried out on a 2.0 L diesel engine compliant with Euro5 regulation. The engine features the closed loop combustion control (CLCC), which enables individual and real-time control of injection phasing and cylinder inner torque by means of in-cylinder pressure sensors connected with the Electronic Control Unit (ECU). As expected, the results showed a strong smoke emissions reduction for E20B10 in all tested conditions, mainly due to the high oxygen content of BE. Also a reduction of NOx emissions were observed with BE addiction. The results confirm that the CLCC adoption enables a significant improvement in the robustness of the engine performance and emissions when blends with low heat content and very low cetane number (as BE

  11. Comparative study of regulated and unregulated gaseous emissions during NEDC in a light-duty diesel engine fuelled with Fischer Tropsch and biodiesel fuels

    Energy Technology Data Exchange (ETDEWEB)

    Bermudez, Vicente; Lujan, Jose M.; Pla, Benjamin; Linares, Waldemar G. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2011-02-15

    In this study, regulated and unregulated gaseous emissions and fuel consumption with five different fuels were tested in a 4-cylinder, light-duty diesel EURO IV typically used for the automotive vehicles in Europe. Three different biodiesel fuels obtained from soybean oil, rapeseed oil and palm oil, a Fischer Tropsch fuel and an ultra low sulphur diesel were studied. The test used was the New European Driving Cycle (NEDC), this allowed tests to be carried out on an engine warmed up beforehand to avoid the effect of cold starts and several tests a day. Regulated emissions of NO{sub X}, CO, HC and CO{sub 2} were measured for each fuel. Unburned Hydrocarbon Speciation and formaldehyde were also measured in order to determine the maximum incremental reactivity (MIR) of the gaseous emissions. Pollutants were measured without the diesel oxidation catalyst (DOC) to gather data about raw emissions. When biodiesel was used, increases in regulated and unregulated emissions were observed and also significant increases in engine fuel consumption. The use of Fischer Tropsch fuel, however, caused lower regulated and unregulated emissions and fuel consumption than diesel. (author)

  12. Quantification of the carcinogenic effect of polycyclic aromatic hydrocarbons in used engine oil by topical application onto the skin of mice.

    Science.gov (United States)

    Grimmer, G; Dettbarn, G; Brune, H; Deutsch-Wenzel, R; Misfeld, J

    1982-01-01

    The purpose of this investigation was to identify the substances mainly responsible for the carcinogenic effect of used engine oil from gasoline engines using topical application as a carcinogen-specific bioassay. This was performed by comparison of the tumorigenic effect of single fractions with that of an unseparated sample of the lubricating oil. The probit analysis of the results shows: 1) The used engine oil, from gasoline-driven automobiles, investigated provoked local tumors after long-term application to the dorsal skin of mice. The incidence of carcinoma depended on the dose of the oil. 2) The fraction of the polycyclic aromatic hydrocarbons (PAH) containing more than three rings accounts for about 70% of the total carcinogenicity in the case of crankcase oil. This fraction constitutes only up to 1.14% by weight of the total oil sample. 3) The content of benzo(a)pyrene (216.8 mg/kg) accounts for 18% of the total carcinogenicity of the used oil. 4) Regarding the reduced carcinogenicity of the oil sample, which was reconstituted from all fractions, it seems possible that some of the carcinogenic substances were lost due to volatility, with evaporation of the solvents from the oil-fractionation processes. 5) Regarding the small effect of the PAH-free fraction, as well as the equal carcinogenic effects of the PAH-fraction (containing more than three rings) and the reconstituted oil sample, no hints for a co-carcinogenic activity were obtained.

  13. Performance, emissions and lubricant oil analysis of diesel engine running on emulsion fuel

    International Nuclear Information System (INIS)

    Hasannuddin, A.K.; Wira, J.Y.; Sarah, S.; Wan Syaidatul Aqma, W.M.N.; Abdul Hadi, A.R.; Hirofumi, N.; Aizam, S.A.; Aiman, M.A.B.; Watanabe, S.; Ahmad, M.I.; Azrin, M.A.

    2016-01-01

    Highlights: • The rate of NO x and PM reduction was lower than the rate of CO increase when using emulsion fuel. • The lubricant oil viscosity variation did not exceed the limits during the engine operation. • Emulsion fuel offers beneficial properties in terms of lower wear and friction. • Average depletions of lubricant oil additives were found at the lowest level for emulsion fuel in compared with D2. - Abstract: Emulsion fuel is one of the alternative fuels for diesel engines which are well-known for simultaneous reduction of Particulate Matter (PM) and Nitrogen Oxides (NO x ) emissions. However lack of studies have been conducted to investigate the effect of emulsion fuel usage for long run. Therefore, this study aims to investigate the effect of lubricant oil in diesel engine that operated using emulsion fuels for 200 h in comparison with Malaysian conventional diesel fuel (D2). Two emulsion fuels were used in the experiment comprising of water, low grade diesel fuel and surfactant; with ratio of 10:89:1 v/v% (E10) and 20:79:1 v/v% (E20). Engine tests were focused on fuel consumption, NO x , PM, Carbon Monoxide (CO), Carbon Dioxide (CO 2 ), Oxygen (O 2 ) and exhaust temperature. Parameters for the lubricant oil analysis measured were included kinematic viscosity, Total Acid Number (TAN), ash, water content, flash point, soot, wear metals and additive elements. The findings showed the fuel consumption were up to 33.33% (including water) and lower 9.57% (without water) using emulsion. The NO x and PM were reduced by 51% and 14% respectively by using emulsion fuel. Kinematic viscosity, TAN, ash, water content, flash point and soot for emulsion fuel were observed to be better or no changes in comparison to D2. The emulsion fuel did not cause any excessive amount of metals or degraded the additive. The average percentage of wear debris concentration reduction by emulsion fuel were 8.2%, 9.1%, 16.3% and 21.0% for Iron (Fe) Aluminum (Al), Copper (Cu) and

  14. The Battle Command Sustainment Support System: Initial Analysis Report

    Science.gov (United States)

    2016-09-01

    products including jet fuels, distillate fuels, residual fuels, automotive gasoline , specified bulk lubricating oils, aircraft engine oils, fuel...contained within this report. 15. SUBJECT TERMS Mission command Software Tactical applications (TacApps) Command post ...computing environment (CPCE) Command post client Battle command sustainment support System (BCS3) Logistics

  15. Multi-Cultural Competency-Based Vocational Curricula. Automotive Mechanics. Multi-Cultural Competency-Based Vocational/Technical Curricula Series.

    Science.gov (United States)

    Hepburn, Larry; Shin, Masako

    This document, one of eight in a multi-cultural competency-based vocational/technical curricula series, is on automotive mechanics. This program is designed to run 36 weeks and cover 10 instructional areas: the engine; drive trains--rear ends/drive shafts/manual transmission; carburetor; emission; ignition/tune-up; charging and starting;…

  16. Development of a New Bio-Kinetic Model for Assessing the Environmental Property of Military Hydraulic Fluids

    National Research Council Canada - National Science Library

    Rhee, In-Sik

    2006-01-01

    The U.S. Army Tank-Automotive Research. Development and Engineering Center (TARDEC) is actively developing biodegradation technologies that can be used to minimize waste stream of Petroleum, Oils, and Lubricant...

  17. Bosch automotive electrics and automotive electronics. Systems and components, networking and hybrid drive. 5. ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    Complete reference guide to automotive electrics and electronics. The significance of electrical and electronic systems has increased considerably in the last few years and this trend is set to continue. The characteristics feature of innovative systems is the fact that they can work together in a network. This requires powerful bus systems that the electronic control units can use to exchange information. Networking and the various bus systems used in motor vehicles are the prominent new topic in the 5th edition of the ''Automotive Electric, Automotive Electronics'' technical manual. The existing chapters have also been updated, so that this new edition brings the reader up to date on the subjects of electrical and electronic systems in the motor vehicle.

  18. Nuclear technique for automotive tribology

    International Nuclear Information System (INIS)

    Yamamoto, Masago; Kawamoto, Junichi

    1991-01-01

    In this report, the methods and the features are described on the measurement of wear, lubricating oil consumption, leakage of liquid, the behavior of rotating objects and so on related to engines by using radioisotopes as the tracer. The neutrons from nuclear reactors and the charged particles generated with high energy accelerators used for irradiation, and the method of measuring wear using residual radioactivity or the intensity of worn particles in lubricating oil are explained. For the measurement of oil consumption, the labeling with oleic acid sulfide (S-35) is utilized. The measurement of the rotating motion of piston rings is carried out by labeling both sides of the ring openings. The liquid leakage of very small quantity from seals and others can be measured by labeling working liquid with a tracer. (K.I.)

  19. Exposure to electrocution by automotive ignition system in the work environment of car service employees

    Directory of Open Access Journals (Sweden)

    Bernard Fryśkowski

    2014-06-01

    Full Text Available Automotive ignition system diagnostic procedures involve a specific kind of action due to the presence of high voltage pulses rated of roughly several dozen kilovolts. Therefore, the repairers employed at car service coming into direct contact with electrical equipment of ignition systems are exposed to risk of electric shock. Typically, the electric discharge energy of automotive ignition systems is not high enough to cause fibrillation due to the electric effect on the heart. Nevertheless, there are drivers and car service employees who use electronic cardiac pacemakers susceptible to high voltage pulses. The influence of high-voltage ignition systems on the human body, especially in case of electric injury, has not been comprehensively elucidated. Therefore, relatively few scientific papers address this problem. The aim of this paper is to consider the electrical injury danger from automotive ignition systems, especially in people suffering from cardiac diseases. Some examples of the methods to reduce electric shock probability during diagnostic procedures of spark-ignition combustion engines are presented and discussed. Med Pr 2014;65(3:419–427

  20. Effect of Coating Palm Oil Clinker Aggregate on the Engineering Properties of Normal Grade Concrete

    Directory of Open Access Journals (Sweden)

    Fuad Abutaha

    2017-10-01

    Full Text Available Palm oil clinker (POC is a waste material generated in large quantities from the palm oil industry. POC, when crushed, possesses the potential to serve as an aggregate for concrete production. Experimental investigation on the engineering properties of concrete incorporating POC as aggregate and filler material was carried out in this study. POC was partially and fully used to replace natural coarse aggregate. The volumetric replacements used were 0%, 20%, 40%, 60%, 80%, and 100%. POC, being highly porous, negatively affected the fresh and hardened concrete properties. Therefore, the particle-packing (PP method was adopted to measure the surface and inner voids of POC coarse aggregate in the mixtures at different substitution levels. In order to enhance the engineering properties of the POC concrete, palm oil clinker powder (POCP was used as a filler material to fill up and coat the surface voids of POC coarse, while the rest of the mix constituents were left as the same. Fresh and hardened properties of the POC concrete with and without coating were determined, and the results were compared with the control concrete. The results revealed that coating the surface voids of POC coarse with POCP significantly improved the engineering properties as well as the durability performance of the POC concrete. Furthermore, using POC as an aggregate and filler material may reduce the continuous exploitation of aggregates from primary sources. Also, this approach offers an environmental friendly solution to the ongoing waste problems associated with palm oil waste material.

  1. Characterization and effect of using Mahua oil biodiesel as fuel in compression ignition engine

    Science.gov (United States)

    Kapilan, N.; Ashok Babu, T. P.; Reddy, R. P.

    2009-12-01

    There is an increasing interest in India, to search for suitable alternative fuels that are environment friendly. This led to the choice of Mahua Oil (MO) as one of the main alternative fuels to diesel. In this investigation, Mahua Oil Biodiesel (MOB) and its blend with diesel were used as fuel in a single cylinder, direct injection and compression ignition engine. The MOB was prepared from MO by transesterification using methanol and potassium hydroxide. The fuel properties of MOB are close to the diesel and confirm to the ASTM standards. From the engine test analysis, it was observed that the MOB, B5 and B20 blend results in lower CO, HC and smoke emissions as compared to diesel. But the B5 and B20 blends results in higher efficiency as compared to MOB. Hence MOB or blends of MOB and diesel (B5 or B20) can be used as a substitute for diesel in diesel engines used in transportation as well as in the agriculture sector.

  2. INFLUENCE OF AUTOMOTIVE CLUSTERS IN REGIONAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Constantin BORDEI

    2014-11-01

    Full Text Available This paper proposes an overview of the evolution in the automotive sector in the process of regional development. The fundamental changes made by the component supplier sector improved the regional development and manufacturing process. Automotive industry is one of the modern sectors in many countries that benefits of a high technology impact and creates jobs that reduces unemployment across Europe. The auto industry changed cities, regions and countries into poles of development and it becomes more and more efficient. The high foreign direct investments from the automotive sector play an important role in regional development process. Continuous changes are being made in the economy, society, and company; in conclusion the automotive clusters will always be a subject of analysis.

  3. Oil Coking Prevention Using Electric Water Pump for Turbo-Charge Spark-Ignition Engines

    Directory of Open Access Journals (Sweden)

    Han-Ching Lin

    2014-01-01

    Full Text Available Turbocharger has been widely implemented for internal combustion engine to increase an engine's power output and reduce fuel consumption. However, its operating temperature would rise to 340°C when engine stalls. This higher temperature may results in bearing wear, run-out, and stick, due to oil coking and insufficient lubrication. In order to overcome these problems, this paper employs Electric Water Pump (EWP to supply cool liquid to turbocharger actively when the engine stalls. The system layout, operating timing, and duration of EWP are investigated for obtaining optimal performance. The primarily experimental results show that the proposed layout and control strategy have a lower temperature of 100°C than the conventional temperature 225°C.

  4. Influence of alumina oxide nanoparticles on the performance and emissions in a methyl ester of neem oil fuelled direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Balaji Gnanasikamani

    2017-01-01

    Full Text Available The experimental investigation of the influence of Al2O3 nanoadditive on performance and emissions in a methyl ester of neem oil fueled direct injection Diesel engine is reported in this paper. The Al2O3 nanoparticles are mixed in various proportions (100 to 300 ppm with methyl ester of neem oil. The performance and emissions are tested in a single cylinder computerized, 4-stroke, stationary, water-cooled Diesel engine of 3.5 kW rated power. Results show that the nanoadditive is effective in increasing the performance and controlling the NO emissions of methyl ester of neem oil fueled Diesel engines.

  5. Effect of the use of olive–pomace oil biodiesel/diesel fuel blends in a compression ignition engine: Preliminary exergy analysis

    International Nuclear Information System (INIS)

    López, I.; Quintana, C.E.; Ruiz, J.J.; Cruz-Peragón, F.; Dorado, M.P.

    2014-01-01

    Highlights: • Olive–pomace oil (OPO) biodiesel constitute a new second-generation biofuel. • Exergy efficiency and performance of OPO biodiesel, straight and blended with diesel fuel was evaluated. • OPO biodiesel, straight and blended, provided similar performance parameters. • OPO biodiesel, straight and blended, provided similar exergy efficiency compared to diesel fuel. • OPO biodiesel, straight and blended, provided no exergy cost increment compared to diesel fuel. - Abstract: Although biodiesel is among the most studied biofuels for diesel engines, it is usually produced from edible oils, which gives way to controversy between the use of land for fuel and food. For this reason, residues like olive–pomace oil are considered alternative raw materials to produce biodiesel that do not compete with the food industry. To gain knowledge about the implications of its use, olive–pomace oil methyl ester, straight and blended with diesel fuel, was evaluated as fuel in a direct injection diesel engine Perkins AD 3-152 and compared to the use of fossil diesel fuel. Performance curves were analyzed at full load and different speed settings. To perform the exergy balance of the tested fuels, the operating conditions corresponding to maximum engine power values were considered. It was found that the tested fuels offer similar performance parameters. When straight biodiesel was used instead of diesel fuel, maximum engine power decreased to 5.6%, while fuel consumption increased up to 7%. However, taking into consideration the Second Law of the Thermodynamics, the exergy efficiency and unitary exergetic cost reached during the operation of the engine under maximum power condition for the assessed fuels do not display significant differences. Based on the exergy results, it may be concluded that olive–pomace oil biodiesel and its blends with diesel fuel may substitute the use of diesel fuel in compression ignition engines without any exergy cost increment

  6. Automated design system for a rotor with an ellipse lobe profile

    International Nuclear Information System (INIS)

    Jung, Sung Yuen; Kim Chul; Han, Seung Moo; Cho, Hae Yong

    2009-01-01

    An internal lobe pump (ILP) is suitable for machine tool oil hydraulics, automotive engines, compressors, and various other devices. In particular, the ILP is an essential component of an automotive engine, used to feed lubricant oil through the system. The main components of an ILP are its rotors. The outer rotor is typically characterized by lobes with an elliptical shape, and the inner rotor profile is a conjugate to the outer profile. This paper describes a theoretical analysis of an ILP and the development of an integrated automated system for rotor design. This system is composed of three main modules and has been developed using AutoLISP for the AutoCAD program. The system generates a new lobe profile and automatically calculates flow rate and flow rate irregularity according to the lobe profile generated. Results obtained from the analysis can enable oil pump designers and manufacturers to become more efficient

  7. Automated design system for a rotor with an ellipse lobe profile

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Sung Yuen; Kim Chul [Pusan National University, Busan (Korea, Republic of); Han, Seung Moo [Kyung Hee University, Seoul (Korea, Republic of); Cho, Hae Yong [Chungbuk National University, Cheongju (Korea, Republic of)

    2009-11-15

    An internal lobe pump (ILP) is suitable for machine tool oil hydraulics, automotive engines, compressors, and various other devices. In particular, the ILP is an essential component of an automotive engine, used to feed lubricant oil through the system. The main components of an ILP are its rotors. The outer rotor is typically characterized by lobes with an elliptical shape, and the inner rotor profile is a conjugate to the outer profile. This paper describes a theoretical analysis of an ILP and the development of an integrated automated system for rotor design. This system is composed of three main modules and has been developed using AutoLISP for the AutoCAD program. The system generates a new lobe profile and automatically calculates flow rate and flow rate irregularity according to the lobe profile generated. Results obtained from the analysis can enable oil pump designers and manufacturers to become more efficient

  8. Antioxidant Effect on Oxidation Stability of Blend Fish Oil Biodiesel with Vegetable Oil Biodiesel and Petroleum Diesel Fuel

    Directory of Open Access Journals (Sweden)

    M. Hossain

    2013-06-01

    Full Text Available Two different phenolic synthetic antioxidants were used to improve the oxidation stability of fish oil biodiesel blends with vegetable oil biodiesel and petroleum diesel. Butylhydroxytoluene (BHT most effective for improvement of the oxidation stability of petro diesel, whereas  tert-butylhydroquinone (TBHQ showed good performance in fish oil biodiesel. Fish oil/Rapeseed oil biodiesel mixed showed some acceptable results in higher concentration ofantioxidants. TBHQ showed better oxidation stability than BHT in B100 composition. In fish oil biodiesel/diesel mixed fuel, BHT was more effective antioxidant than TBHQ to increase oxidationstability because BHT is more soluble than TBHQ. The stability behavior of biodiesel/diesel blends with the employment of the modified Rancimat method (EN 15751. The performance ofantioxidants was evaluated for treating fish oil biodiesel/Rapeseed oil biodiesel for B100, and blends with two type diesel fuel (deep sulfurization diesel and automotive ultra-low sulfur or zero sulfur diesels. The examined blends were in proportions of 5, 10, 15, and 20% by volume of fish oilbiodiesel.

  9. Canadian oil companies, engineering and geomatics professionals and CSR overseas

    Energy Technology Data Exchange (ETDEWEB)

    Calderbank, B.

    2002-07-01

    This research project focused on the human rights issues associated with oil and gas development in Alberta. Of particular interest was the topic of corporate social responsibility (CSR). The author examined efforts deployed in Alberta to address this issue in oil and gas companies that have operations abroad. A brief review of the interest devoted to CSR in Canada over the years was provided. The United Nations (UN) Universal Declaration of Human Rights was introduced, before discussing the International Labour Organization's (ILO) Declaration on Fundamental Principles on Rights at Work. The author also touched on the Caux Round Table, representing senior business leaders from industrialized and developing nations. The Canadian efforts in the field of CSR for overseas operations were reviewed in the next section. Canadian oil and gas trade associations and CSR was dealt with, followed by a section on verification of CSR. The next section was devoted to Canadian engineering and geomatic professional associations and CSR. The author concluded by indicating that having a set of principles to be applied in real situations also require individuals that possess a strong ethical and moral basis of their own. 88 refs., 4 tabs.

  10. Potential for using a tyre pyrolysis oil-biodiesel blend in a diesel engine at different compression ratios

    International Nuclear Information System (INIS)

    Sharma, Abhishek; Murugan, S.

    2015-01-01

    Highlights: • The possibility of operating a compression ignition engine with a non petroleum diesel fuel. • A possible solution to replace certain amount of biodiesel by tyre pyrolysis oil in a biodiesel fueled diesel engine. • The optimum compression ratio for engine fueled with biodiesel-tyre pyrolysis oil blend. - Abstract: This study is aimed at investigating effects of varying the compression ratio at optimum injection timing and nozzle opening pressure on the behaviour of a diesel engine, using a non-petroleum fuel, i.e. a blend of 80% biodiesel, and 20% oil obtained from pyrolysis of waste tyres. The engine was subjected to one lower (16.5) and one higher (18.5) compression ratio in addition to the standard compression ratio of 17.5. At the higher compression ratio of 18.5 and full load, shorter ignition delay, maximum cylinder pressure and higher heat release rate were found for the blend, compared to those of the original compression ratio. The increase in the compression ratio from 17.5 to 18.5 for the blend improved the brake thermal efficiency by about 8% compared to that of the original compression ratio at full load. The experimental results indicated that for the blend at a higher compression ratio of 18.5, the brake specific carbon monoxide (BSCO), brake specific hydrocarbon emission (BSHC) and smoke opacity were reduced by about 10.5%, 32%, and 17.4% respectively, than those of the original compression ratio at full load

  11. Comparative studies on the performance and emissions of a direct injection diesel engine fueled with neem oil and pumpkin seed oil biodiesel with and without fuel preheater.

    Science.gov (United States)

    Ramakrishnan, Muneeswaran; Rathinam, Thansekhar Maruthu; Viswanathan, Karthickeyan

    2018-02-01

    In the present experimental analysis, two non-edible oils namely neem oil and pumpkin seed oil were considered. They are converted into respective biodiesels namely neem oil methyl ester (B1) and pumpkin seed oil methyl ester (B2) through transesterification process and their physical and chemical properties were examined using ASTM standards. Diesel was used as a baseline fuel in Kirloskar TV1 model direct injection four stroke diesel engine. A fuel preheater was designed and fabricated to operate at various temperatures (60, 70, and 80 °C). Diesel showed higher brake thermal efficiency (BTE) than biodiesel samples. Lower brake specific fuel consumption (BSFC) was obtained with diesel than B1 sample. B1 exhibited lower BSFC than B2 sample without preheating process. High preheating temperature (80 °C) results in lower fuel consumption for B1 sample. The engine emission characteristics like carbon monoxide (CO), hydrocarbon (HC), and smoke were found lower with B1 sample than diesel and B2 except oxides of nitrogen (NOx) emission. In preheating of fuel, B1 sample with high preheating temperature showed lower CO, HC, and smoke emission (except NOx) than B2 sample.

  12. Performance Evaluation on Otto Engine Generator Using Gasoline and Biogas from Palm Oil Mill Effluent

    Science.gov (United States)

    Irvan; Trisakti, B.; Husaini, T.; Sitio, A.; Sitorus, TB

    2017-06-01

    Biogas is a flammable gas produced from the fermentation of organic materials by anaerobic bacteria originating from household waste manure and organic waste including palm oil mill effluent (POME). POME is mainly discharged from the sterilization unit of palm oil processing into crude palm oil. This study utilized biogas produced from liquid waste palm oil for use as fuel in the Otto engine generator 4 - stroke, type STARKE GFH1900LX with a peak power of 1.3 kW, 1.0 kW average power, bore 55 mm, stroke 40 mm, Vd 95 × 10-6 m3, Vc 10 × 10-6 m3, compression ratio of 10.5 : 1, and the number of cylinders = 1. The objective of this study is to evaluate the performance of Otto engine generator fueled with biogas that generated from POME, then comparing its performance fueled by gasoline. The performance included power, torque, specific fuel consumption, thermal efficiency, and the air-fuel ratio. Experiment was conducted by using a variation of the lamp load of 100, 200, 300, 400, and 500 W. The results revealed that the use of biogas as fuel decreased in power, torque, brake thermal efficiency, and air fuel ratio (AFR), while there is an increasing of value specific fuel consumption (SFC).

  13. Biodiesel From waste cooking oil for heating, lighting, or running diesel engines

    Science.gov (United States)

    Rico O. Cruz

    2009-01-01

    Biodiesel and its byproducts and blends can be used as alternative fuel in diesel engines and for heating, cooking, and lighting. A simple process of biodiesel production can utilize waste cooking oil as the main feedstock to the transesterification and cruzesterification processes. I currently make my own biodiesel for applications related to my nursery and greenhouse...

  14. Automotive Mechanics.

    Science.gov (United States)

    Linder, Ralph C.; And Others

    This curriculum guide, which was validated by vocational teachers and mechanics in the field, describes the competencies needed by entry-level automotive mechanics. This guide lists 15 competencies; for each competency, various tasks with their performance objective, student learning experiences, suggested instructional techniques, instructional…

  15. Comparative performance and emissions study of a direct injection Diesel engine using blends of Diesel fuel with vegetable oils or bio-diesels of various origins

    International Nuclear Information System (INIS)

    Rakopoulos, C.D.; Antonopoulos, K.A.; Rakopoulos, D.C.; Hountalas, D.T.; Giakoumis, E.G.

    2006-01-01

    An extended experimental study is conducted to evaluate and compare the use of various Diesel fuel supplements at blend ratios of 10/90 and 20/80, in a standard, fully instrumented, four stroke, direct injection (DI), Ricardo/Cussons 'Hydra' Diesel engine located at the authors' laboratory. More specifically, a high variety of vegetable oils or bio-diesels of various origins are tested as supplements, i.e. cottonseed oil, soybean oil, sunflower oil and their corresponding methyl esters, as well as rapeseed oil methyl ester, palm oil methyl ester, corn oil and olive kernel oil. The series of tests are conducted using each of the above fuel blends, with the engine working at a speed of 2000 rpm and at a medium and high load. In each test, volumetric fuel consumption, exhaust smokiness and exhaust regulated gas emissions such as nitrogen oxides (NO x ), carbon monoxide (CO) and total unburned hydrocarbons (HC) are measured. From the first measurement, specific fuel consumption and brake thermal efficiency are computed. The differences in the measured performance and exhaust emission parameters from the baseline operation of the engine, i.e. when working with neat Diesel fuel, are determined and compared. This comparison is extended between the use of the vegetable oil blends and the bio-diesel blends. Theoretical aspects of Diesel engine combustion, combined with the widely differing physical and chemical properties of these Diesel fuel supplements against the normal Diesel fuel, are used to aid the correct interpretation of the observed engine behavior

  16. Ceramic materials for chemosensors and their application in oil quality control

    International Nuclear Information System (INIS)

    Rohrer, A.

    2001-10-01

    In this work a sensor prototype is presented which allows permanent monitoring of the degradation process in automotive engine oils. To this end, sensitive layers were developed which guarantee the selective inclusion of compounds that are specific for used oil. By applying the sol-gel technique, oxide ceramics were obtained that combine high chemical selectivity and sensitivity with the thermal and mechanical stability necessary for use under engine conditions. The great advantage of ceramic layers is the complete absence of functional groups or even organic compounds. The polymerization parameters were characterized using FT-IR and Atomic Force Microscopy prior to optimizing the frequency response of the mass-sensitive transducer (QMB - quartz crystal microbalance). Selectivity was achieved by using the technique of molecular imprinting, with layers imprinted with capric acid showing the most effective reinclusion. Thermal removal of the imprint leads to no loss of homogeneity of the layer, as opposed to washing out the imprint with ethanol. Thus, a constant signal/noise ratio independent of the layer thickness is ensured. Apart from those in the oil itself, gas-phase measurements were also performed. Here, only the reversibility was not as good as that of liquid phase measurements. The sensors were used for quality control of vegetable oils with equal success. In order to investigate the influence of precursor materials on the structure, porosity, selectivity and sensitivity of the used TiO 2 -layers, the response to different solvents was tested in gas-phase measurements. The correlation of frequency changes to molecule topology indices such as the 'Wiener-Index' indicates that geometric limits exist for the inclusion of solvent molecules. An index permitting prediction of sensor effects would contain more parameters, such as molecule diameter, functional groups and polarity. Finally, the suitability of different high-frequency resonators for application in oil

  17. Emission reduction from a diesel engine fueled by pine oil biofuel using SCR and catalytic converter

    Science.gov (United States)

    Vallinayagam, R.; Vedharaj, S.; Yang, W. M.; Saravanan, C. G.; Lee, P. S.; Chua, K. J. E.; Chou, S. K.

    2013-12-01

    In this work, we propose pine oil biofuel, a renewable fuel obtained from the resins of pine tree, as a potential substitute fuel for a diesel engine. Pine oil is endowed with enhanced physical and thermal properties such as lower viscosity and boiling point, which enhances the atomization and fuel/air mixing process. However, the lower cetane number of the pine oil hinders its direct use in diesel engine and hence, it is blended in suitable proportions with diesel so that the ignition assistance could be provided by higher cetane diesel. Since lower cetane fuels are prone to more NOX formation, SCR (selective catalyst reduction), using urea as reducing agent, along with a CC (catalytic converter) has been implemented in the exhaust pipe. From the experimental study, the BTE (brake thermal efficiency) was observed to be increased as the composition of pine oil increases in the blend, with B50 (50% pine oil and 50% diesel) showing 7.5% increase over diesel at full load condition. The major emissions such as smoke, CO, HC and NOX were reduced by 70.1%, 67.5%, 58.6% and 15.2%, respectively, than diesel. Further, the average emissions of B50 with SCR and CC assembly were observed to be reduced, signifying the positive impact of pine oil biofuel on atmospheric environment. In the combustion characteristics front, peak heat release rate and maximum in-cylinder pressure were observed to be higher with longer ignition delay.

  18. 40 CFR 90.114 - Requirement of certification-engine information label.

    Science.gov (United States)

    2010-07-01

    ... nomenclature and abbreviations provided in the Society of Automotive Engineers procedure J1930, “Electrical... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Requirement of certification-engine...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19...

  19. Performance Evaluation of 14 Neural Network Architectures Used for Predicting Heat Transfer Characteristics of Engine Oils

    Science.gov (United States)

    Al-Ajmi, R. M.; Abou-Ziyan, H. Z.; Mahmoud, M. A.

    2012-01-01

    This paper reports the results of a comprehensive study that aimed at identifying best neural network architecture and parameters to predict subcooled boiling characteristics of engine oils. A total of 57 different neural networks (NNs) that were derived from 14 different NN architectures were evaluated for four different prediction cases. The NNs were trained on experimental datasets performed on five engine oils of different chemical compositions. The performance of each NN was evaluated using a rigorous statistical analysis as well as careful examination of smoothness of predicted boiling curves. One NN, out of the 57 evaluated, correctly predicted the boiling curves for all cases considered either for individual oils or for all oils taken together. It was found that the pattern selection and weight update techniques strongly affect the performance of the NNs. It was also revealed that the use of descriptive statistical analysis such as R2, mean error, standard deviation, and T and slope tests, is a necessary but not sufficient condition for evaluating NN performance. The performance criteria should also include inspection of the smoothness of the predicted curves either visually or by plotting the slopes of these curves.

  20. Energy Analysis of a Diesel Engine Using Diesel and Biodiesel from Waste Cooking Oil

    Directory of Open Access Journals (Sweden)

    S Abbasi

    2018-03-01

    Full Text Available Introduction The extensive use of diesel engines in agricultural activities and transportation, led to the emergence of serious challenges in providing and evaluating alternative fuels from different sources in addition to the chemical properties close to diesel fuel, including properties such as renewable, inexpensive and have fewer emissions. Biodiesel is one of the alternative fuels. Many studies have been carried out on the use of biodiesel in pure form or blended with diesel fuel about combustion, performance and emission parameters of engines. One of the parameters that have been less discussed is energy balance. In providing alternative fuels, biodiesel from waste cooking oil due to its low cost compared with biodiesel from plant oils, is the promising option. The properties of biodiesel and diesel fuels, in general, show many similarities, and therefore, biodiesel is rated as a realistic fuel as an alternative to diesel. The conversion of waste cooking oil into methyl esters through the transesterification process approximately reduces the molecular weight to one-third, reduces the viscosity by about one-seventh, reduces the flash point slightly and increases the volatility marginally, and reduces pour point considerably (Demirbas, 2009. In this study, effect of different percentages of biodiesel from waste cooking oil were investigated. Energy distribution study identify the energy losses ways in order to find the reduction solutions of them. Materials and Methods Renewable fuel used in this study consists of biodiesel produced from waste cooking oil by transesterification process (Table 1. Five diesel-biodiesel fuel blends with values of 0, 12, 22, 32 and 42 percent of biodiesel that are signs for B0, B12, B22, B32 and B42, respectively. The test engine was a diesel engine, single-cylinder, four-stroke, compression ignition and air¬cooled, series 3LD510 in the laboratory of renewable energies of agricultural faculty, Tarbiat Modarres

  1. Experimental investigation of hydrocarbon mixtures to replace HFC-134a in an automotive air conditioning system

    International Nuclear Information System (INIS)

    Wongwises, Somchai; Kamboon, Amnouy; Orachon, Banchob

    2006-01-01

    This paper presents an experimental study on the application of hydrocarbon mixtures to replace HFC-134a in automotive air conditioners. The hydrocarbons investigated are propane (R290), butane (R600) and isobutane (R600a). The measured data are obtained from an automotive air conditioning test facility utilizing HFC-134a as the refrigerant. The air conditioner, with a capacity of 3.5 kW driven by a Diesel engine, is charged and tested with four different ratios of hydrocarbon mixtures. The experiments are conducted at the same surrounding conditions. The temperature and pressure of the refrigerant at every major position in the refrigerant loop, the temperature, flow rate and humidity of air, torque and engine speed are recorded and analyzed. The parameters investigated are the refrigeration capacity, the compressor power and the coefficient of performance (COP). The results show that propane/butane/isobutane: 50%/40%/10% is the most appropriate alternative refrigerant to replace HFC-134a, having the best performance of all the hydrocarbon mixtures investigated

  2. Occupational Sequences: Auto Engines 1. AT 121.

    Science.gov (United States)

    Korb, A. W.; And Others

    In an attempt to individualize an automotive course, the Vocational-Technical Division of Northern Montana College has developed Occupational Sequences for an engine rebuilding course. Occupational Sequences, a learning or teaching aid, is an analysis of numbered operations involved in engine rebuilding. Job sheets, included in the book, provide a…

  3. A high efficiency 10 kWe microcogenerator based on an Atkinson cycle internal combustion engine

    International Nuclear Information System (INIS)

    Capaldi, Pietro

    2014-01-01

    The paper focuses on the design and the overall performance of a 10 kW electric power microcogeneration plant suitable for local energy production, based on an Atkinson-cycle internal combustion engine prototype and entirely set by Istituto Motori of the Italian National Research Council. The engine was originally a wide-spread Diesel automotive unit, then converted into a methane spark ignition system and finally modified to perform an Atkinson/Miller cycle with an extended expansion, capable of a higher global efficiency and low gaseous emissions. The paper starts by defining the ratio which leaded to this specific choice among many other automotive and industrial engines, in order to obtain a reliable, long endurance, cost effective, high efficiency base, suitable for microcogeneration in residential or commercial applications. The new engine has been coupled with a liquid cooled induction generator, a set of heat exchangers and finally placed in a sealed containing case, to reduce both noise emission and heat losses. Then the plant has been tested as an electricity and heat production system, ready for grid connection thanks to a new designed management/control system. During endurance test a complete description of its functioning behaviour has been given. - Highlights: • A new high efficiency microcogenerator based on an Atkinson/Miller cycle engine. • Atkinson cycle together with stoichiometric operation deliver better performance. • A cost-effective microcogenerator based on widespread elements (automotive engine). • The chosen automotive engine has heavy duty characteristics (Diesel derived). • A conversion criteria from a Diesel to an Atkinson cycle engine was individuated

  4. The European automotive LPG market

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    The European automotive LPG market could reach at least 4 % of the European fuel market in 2005 versus 1 % in 1990. This would represent a rise of about 35 % in automotive LPG sales (from 2,4 million tonnes in 1997 to 7 million tonnes estimated for 2005). This was underlined by Alain Deleuse, Primagaz group's Marketing Director, in the paper he delivered at the AEGPL Budapest Convention. We publish large excepts of this paper. (author)

  5. Future directions for the development of virtual reality within an automotive manufacturer.

    Science.gov (United States)

    Lawson, Glyn; Salanitri, Davide; Waterfield, Brian

    2016-03-01

    Virtual Reality (VR) can reduce time and costs, and lead to increases in quality, in the development of a product. Given the pressure on car companies to reduce time-to-market and to continually improve quality, the automotive industry has championed the use of VR across a number of applications, including design, manufacturing, and training. This paper describes interviews with 11 engineers and employees of allied disciplines from an automotive manufacturer about their current physical and virtual properties and processes. The results guided a review of research findings and scientific advances from the academic literature, which formed the basis of recommendations for future developments of VR technologies and applications. These include: develop a greater range of virtual contexts; use multi-sensory simulation; address perceived differences between virtual and real cars; improve motion capture capabilities; implement networked 3D technology; and use VR for market research. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  6. Ceramic applications in the advanced Stirling automotive engine

    Science.gov (United States)

    Tomazic, W. A.; Cairelli, J. E.

    1978-01-01

    The requirements of the ideal Stirling cycle, as well as basic types of practical engines are described. Advantages, disadvantages, and problem areas of these Stirling engines are discussed. The potential for ceramic components is also considered. Currently ceramics are used in only two areas, the air preheater and insulating tiles between the burner and the heater head. For the advanced Stirling engine to achieve high efficiency and low cost, the principal components are expected to be made from ceramic materials, including the heater head, air preheater, regenerator, the burner and the power piston. Supporting research and technology programs for ceramic component development are briefly described.

  7. 78 FR 6198 - Special Conditions: Airbus, Model A318-112 Airplane (S/N 3238); Certification of Cooktops

    Science.gov (United States)

    2013-01-30

    ... large, transport-category airplane powered by two CFM56-5B9/P engines, with a basic maximum takeoff..., electrical resistance, and fire extinguishing including cooking oil fires for light duty and heavy duty.... [Note: The applicant may find additional useful information in the Society of Automotive Engineers...

  8. Combustion, emission and engine performance characteristics of used cooking oil biodiesel - A review

    Energy Technology Data Exchange (ETDEWEB)

    Enweremadu, C.C. [Department of Mechanical Engineering, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900 (South Africa); Rutto, H.L. [Department of Chemical Engineering, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900 (South Africa)

    2010-12-15

    As the environment degrades at an alarming rate, there have been steady calls by most governments following international energy policies for the use of biofuels. One of the biofuels whose use is rapidly expanding is biodiesel. One of the economical sources for biodiesel production which doubles in the reduction of liquid waste and the subsequent burden of sewage treatment is used cooking oil (UCO). However, the products formed during frying, such as free fatty acid and some polymerized triglycerides, can affect the transesterification reaction and the biodiesel properties. This paper attempts to collect and analyze published works mainly in scientific journals about the engine performance, combustion and emissions characteristics of UCO biodiesel on diesel engine. Overall, the engine performance of the UCO biodiesel and its blends was only marginally poorer compared to diesel. From the standpoint of emissions, NOx emissions were slightly higher while un-burnt hydrocarbon (UBHC) emissions were lower for UCO biodiesel when compares to diesel fuel. There were no noticeable differences between UCO biodiesel and fresh oil biodiesel as their engine performances, combustion and emissions characteristics bear a close resemblance. This is probably more closely related to the oxygenated nature of biodiesel which is almost constant for every biodiesel (biodiesel has some level of oxygen bound to its chemical structure) and also to its higher viscosity and lower calorific value, which have a major bearing on spray formation and initial combustion. (author)

  9. Soils washing for removal of heavy oil: Naval Air Engineering Center, Lakehurst, NJ

    International Nuclear Information System (INIS)

    Nash, J.H.; Traver, R.P.

    1991-01-01

    With the recognition that large tracts of land are currently unusable as a result of either accidental spills or past industrial practices (such as oil field development), the USEPA Office of Research and Development evaluated soil washing as an alternative remedial technology for heavy oil contaminated soil at a site located on the Naval Air Engineering Center (NAEC), Lakehurst, New Jersey. The researchers used a self-contained, 100-pound-per-hour soil washer. Electrical, pneumatic, and fluid-pumping capabilities were provided by the trailer-mounted system at a remote No. 6 type oil spill site at the Navy base. Chloroform extracts of the contaminated sandy soil recovered a 0.91 gram/milliliter, 950 centistoke viscosity, dark brown, non-PCB oil. By using a surfactant/solvent solution at ambient temperatures, contaminant levels on the soil were reduced from 3.8% (38,000 milligram/kilogram-RCRA hazardous waste designation) to as low as 0.035% (350 milligram/kilogram) oil concentration. Supplemental laboratory evaluations extending the pilot field evaluations showed at elevated temperatures (120F) that residual oil contamination was less than 0.01% (100 milligram/kilogram). This final oil concentration in the treated soil would be defined as clean under the New Jersey Environmental Cleanup and Responsibilities Act (ECRA). A continuous belt press filter was used to recover the oil in a 47% solids cake that could be used as a secondary fuel feed to a waste boiler. The wash water solution was treated and recycled permitting economical operations

  10. Prospects for MEMS in the Automotive Industry

    Directory of Open Access Journals (Sweden)

    Richard DIXON

    2007-12-01

    Full Text Available An automotive sector as a growth market for MEMS sensors is analyzed in the article. The automotive sector accounted for $1.6 billion, making this the second biggest opportunity after IT peripherals and inkjet print heads. By 2011 the market will top $2.2 billion, a CAGR of around 7%. The main applications in revenues terms are, in order, pressure sensors, gyroscopes, accelerometers and flow sensors and this will remain so for the foreseeable future. Automotive companies are forced to innovate as a result of competition and price pressures.

  11. Best Practices in School-to-Careers: The Automotive Industry.

    Science.gov (United States)

    National Employer Leadership Council, Washington, DC.

    This document highlights the school-to-careers (STC) partnerships connecting workplace experiences to classroom learning to prepare students for successful employment in the automotive industry. First, the current state of the automotive industry is reviewed and the role of STC in addressing automotive service needs is explained. Next, the…

  12. Supplier–customer relationships: Weaknesses in south african automotive supply chains

    Directory of Open Access Journals (Sweden)

    M. J. Naude

    2012-11-01

    Full Text Available The South African automotive industry, which is an important sector in the South African economy, needs to function efficiently if it is to compete internationally. However, South African automotive components manufacturers (ACMs are not internationally competitive and automotive assemblers, also known as original equipment manufacturers (OEMs, often import cheaper components from abroad. All parties in the South African automotive supply chains need each other to ensure optimal efficiency and competitiveness. Furthermore, it is vital that good relationships exist between customers and suppliers in the automotive supply chains in South Africa. ACMs are central to automotive supply chains. A survey was conducted among ACMs to determine the nature of relationships that exist between buyers and suppliers in South Africa’s automotive supply chains. The results showed that collaborative relationships do indeed exist between members of the supply chain but that communication, understanding of the parties’ situations and cooperation can improve this relationship and so create total alliance between OEMs and ACMs.

  13. Advanced microsystems for automotive applications 2013 smart systems for safe and green vehicles

    CERN Document Server

    Meyer, Gereon

    2013-01-01

    The road vehicle of the future will embrace innovations from three major automotive technology fields: driver assistance systems, vehicle networking and alternative propulsion. Smart systems such as adaptive ICT components and MEMS devices, novel network architectures, integrated sensor systems, intelligent interfaces and functional materials form the basis of these features and permit their successful and synergetic integration. They increasingly appear to be the key enabling technologies for safe and green road mobility. For more than fifteen years the International Forum on Advanced Microsystems for Automotive Applications (AMAA) has been successful in detecting novel trends and in discussing the technological implications from early on. The topic of the AMAA 2013 will be “Smart Systems for Safe and Green Vehicles”. This book contains peer-reviewed papers written by leading engineers and researchers which all address the ongoing research and novel developments in the field. www.amaa.de.

  14. Experiments and simulations on heat exchangers in thermoelectric generator for automotive application

    International Nuclear Information System (INIS)

    Liu, X.; Deng, Y.D.; Zhang, K.; Xu, M.; Xu, Y.; Su, C.Q.

    2014-01-01

    In this work, an energy-harvesting system which extracts heat from an automotive exhaust pipe and turns the heat into electricity by using thermoelectric power generators (TEGs) was built. Experiments show that the temperature difference in automotive system is not constant, especially the heat exchanger, which cannot provide the thermoelectric modules (TMs) large amount of heat. The thermal performance of different heat exchangers in exhaust-based TEGs is studied in this work, and the thermal characteristics of heat exchangers with different internal structures and thickness are discussed, to obtain higher interface temperature and thermal uniformity. Following computational fluid dynamics simulations, infrared experiments and output power testing system are carried out on a high-performance production engine with a dynamometer. Results show that a plate-shaped heat exchanger with chaos-shaped internal structure and thickness of 5 mm achieves a relatively ideal thermal performance, which is practically useful to enhance the thermal performance of the TEG, and larger total output power can be thus obtained. - Graphical abstract: The thermal and electrical characteristics of different heat exchangers of automotive exhaust-based thermoelectric generator are discussed, to obtain higher interface temperature and thermal uniformity. - Highlights: • Different internal structures and thickness of heat exchangers were proposed. • Power output testing system of the two heat exchangers was characterized. • Chaos-shaped heat exchanger (5 mm thickness) shows better performance

  15. Optimized Characterization of Thermoelectric Generators for Automotive Application

    Science.gov (United States)

    Tatarinov, Dimitri; Wallig, Daniel; Bastian, Georg

    2012-06-01

    New developments in the field of thermoelectric materials bring the prospect of consumer devices for recovery of some of the waste heat from internal combustion engines closer to reality. Efficiency improvements are expected due to the development of high-temperature thermoelectric generators (TEG). In contrast to already established radioisotope thermoelectric generators, the temperature difference in automotive systems is not constant, and this imposes a set of specific requirements on the TEG system components. In particular, the behavior of the TEGs and interface materials used to link the heat flow from the heat source through the TEG to the heat sink must be examined. Due to the usage patterns of automobiles, the TEG will be subject to cyclic thermal loads, which leads to module degradation. Additionally, the automotive TEG will be exposed to an inhomogeneous temperature distribution, leading to inhomogeneous mechanical loads and reduced system efficiency. Therefore, a characterization rig is required to allow determination of the electrical, thermal, and mechanical properties of such high-temperature TEG systems. This paper describes a measurement setup using controlled adjustment of cold-side and warm-side temperatures as well as controlled feed-in of electrical power for evaluation of TEGs for application in vehicles with combustion engines. The temperature profile in the setup can be varied to simulate any vehicle usage pattern, such as the European standard driving cycle, allowing the power yield of the TEGs to be evaluated for the chosen cycle. The spatially resolved temperature distribution of a TEG system can be examined by thermal imaging. Hotspots or cracks on thermocouples of the TEGs and the thermal resistance of thermal interface materials can also be examined using this technology. The construction of the setup is briefly explained, followed by detailed discussion of the experimental results.

  16. Recovery of platinum-group metals (PGMS from spent automotive catalysts: Part II: Automotive catalysts: Structures and principle of operation

    Directory of Open Access Journals (Sweden)

    Dimitrijević Mile D.

    2015-01-01

    Full Text Available Catalytic converters are incorporated into motor vehicle emission systems (passenger cars, trucks and other motor vehicles, as well as civil and agricultural machines, as of lately to reduce air pollution as well as to meet the emission standards. Their purpose is to convert toxic emissions generated by combustion of liquid fossil fuels into less harmful products. In catalytic converters, rhodium is used for the reduction of gasses, whereas platinum and palladium are used for the oxidation of gasses. This paper presents the structure and operating principle of automotive catalysts in view of the fact that cars are the most prevalent motor vehicles worldwide and due to the fact that the production of cars with gasoline and diesel engines will dominate until at least 2020.

  17. The Performance Evaluation of Overall Heat Transfer and Pumping Power of γ-Al2O3/water Nanofluid as Coolant in Automotive Diesel Engine Radiator

    Directory of Open Access Journals (Sweden)

    Navid Bozorgan

    2013-05-01

    Full Text Available The efficiency of γ-Al2O3/water nanofluid as coolant is investigated in the present study. γ-Al2O3 nanoparticles with diameters of 20 nm dispersed in water with volume concentrations up 2% are selected and their performance in a radiator of Chevrolet Suburban diesel engine under turbulent flow conditions are numerically studied. The performance of an automobile radiator is a function of overall heat transfer coefficient and total heat transfer area. The heat transfer relations between nanofluid and airflow have been investigated to evaluate the overall heat transfer and the pumping power of γ-Al2O3/water nanofluid in the radiator with a given heat exchange capacity. In the present paper, the effects of the automotive speed and Reynolds number of the nanofluid in the different volume concentrations on the radiator performance are also investigated. As an example, the results show that for 2% γ-Al2O3 nanoparticles in water with Renf=6000 in the radiator while the automotive speed is 50 mph, the overall heat transfer coefficient and pumping power are approximately 11.11% and 29.17% more than that of water for given conditions, respectively. These results confirm that γ-Al2O3/water nanofluid offers higher overall heat transfer performance than water and can be reduced the total heat transfer area of the radiator.

  18. Production of Mahua Oil Ethyl Ester (MOEE) and its Performance test on four stroke single cylinder VCR engine

    Science.gov (United States)

    Soudagar, Manzoor Elahi M.; Kittur, Prasanna; Parmar, Fulchand; Batakatti, Sachin; Kulkarni, Prasad; Kallannavar, Vinayak

    2017-08-01

    Biodiesel is a substitute for gasoline that is produced from vegetable oils and animal fats. It has gained popularity due to depleting fossil fuel resources, its renewable character and comparable combustion properties to diesel fuel. Biodiesel is formed from non-edible oils, edible oils, tallow, animal fats and waste cooked oils. Biodiesels are monoalkyl esters of elongated chain fatty acids. Biodiesel can be a viable choice for satisfying long term energy requirements if they are managed proficiently. The method of the transesterification shows how the reaction occurs and advances. In this study, biodiesel is produced from Madhuca indica seeds commonly known as Mahua by using transesterification process using a low capacity pressure reactor and by-product of transesterification is glycerol, which is used in preparation of soaps. Mahua Oil Ethyl Ester (MOEE) was produced from the Mahua oil and is mixed with diesel to get different ratios of blends. MOEE was tested in a 4-stroke single cylinder VCR diesel engine. The study was extended to understand the effect of biodiesel blend magnitude on the performance of engine parameters like, brake thermal efficiency, brake power and fuel properties like flash point, cloud point, kinematic viscosity, calorific value, cetane number and density were studied.

  19. Innovative design, analysis and development practices in aerospace and automotive engineering

    CERN Document Server

    Chandrasekhar, U; Arankalle, Avinash

    2014-01-01

    The book presents the best articles presented by researchers, academicians and industrial experts in the International Conference on “Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering”. The book discusses new concept designs, analysis and manufacturing technologies, where more swing is for improved performance through specific and/or multifunctional linguistic design aspects to downsize the system, improve weight to strength ratio, fuel efficiency, better operational capability at room and elevated temperatures, reduced wear and tear, NVH aspects while balancing the challenges of beyond Euro IV/Barat Stage IV emission norms, Greenhouse effects and recyclable materials. The innovative methods discussed in the book will serve as a reference material for educational and research organizations, as well as industry, to take up challenging projects of mutual interest.

  20. Automotive component failures

    CSIR Research Space (South Africa)

    Heyes, AM

    1998-06-01

    Full Text Available in service for approximately 19\\999 km[ 1[1[ Visual examination Upon stripping the engine it was found that one of the combustion chambers showed heavy carbonaceous deposits indicative of the burning of oil "Fig[ 2# Circumferential black marks were found... whether failures in other vehicles could be expected[ 2[1[ Visual and stereo microscope examination The section of torsion bar submitted for examination was coated with a black paint coating which had ~aked o} at localised spots\\ where light rusting had...