WorldWideScience

Sample records for automatic vehicle classification

  1. New York State Thruway Authority automatic vehicle classification (AVC) : research report.

    Science.gov (United States)

    2008-03-31

    In December 2007, the N.Y.S. Thruway Authority (Thruway) concluded a Federal : funded research effort to study technology and develop a design for retrofitting : devices required in implementing a fully automated vehicle classification system i...

  2. Hybrid three-dimensional and support vector machine approach for automatic vehicle tracking and classification using a single camera

    Science.gov (United States)

    Kachach, Redouane; Cañas, José María

    2016-05-01

    Using video in traffic monitoring is one of the most active research domains in the computer vision community. TrafficMonitor, a system that employs a hybrid approach for automatic vehicle tracking and classification on highways using a simple stationary calibrated camera, is presented. The proposed system consists of three modules: vehicle detection, vehicle tracking, and vehicle classification. Moving vehicles are detected by an enhanced Gaussian mixture model background estimation algorithm. The design includes a technique to resolve the occlusion problem by using a combination of two-dimensional proximity tracking algorithm and the Kanade-Lucas-Tomasi feature tracking algorithm. The last module classifies the shapes identified into five vehicle categories: motorcycle, car, van, bus, and truck by using three-dimensional templates and an algorithm based on histogram of oriented gradients and the support vector machine classifier. Several experiments have been performed using both real and simulated traffic in order to validate the system. The experiments were conducted on GRAM-RTM dataset and a proper real video dataset which is made publicly available as part of this work.

  3. Recursive automatic classification algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, E V; Dorofeyuk, A A

    1982-03-01

    A variational statement of the automatic classification problem is given. The dependence of the form of the optimal partition surface on the form of the classification objective functional is investigated. A recursive algorithm is proposed for maximising a functional of reasonably general form. The convergence problem is analysed in connection with the proposed algorithm. 8 references.

  4. Automatic Modulation Classification Based on Deep Learning for Unmanned Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Duona Zhang

    2018-03-01

    Full Text Available Deep learning has recently attracted much attention due to its excellent performance in processing audio, image, and video data. However, few studies are devoted to the field of automatic modulation classification (AMC. It is one of the most well-known research topics in communication signal recognition and remains challenging for traditional methods due to complex disturbance from other sources. This paper proposes a heterogeneous deep model fusion (HDMF method to solve the problem in a unified framework. The contributions include the following: (1 a convolutional neural network (CNN and long short-term memory (LSTM are combined by two different ways without prior knowledge involved; (2 a large database, including eleven types of single-carrier modulation signals with various noises as well as a fading channel, is collected with various signal-to-noise ratios (SNRs based on a real geographical environment; and (3 experimental results demonstrate that HDMF is very capable of coping with the AMC problem, and achieves much better performance when compared with the independent network.

  5. Automatic Modulation Classification Based on Deep Learning for Unmanned Aerial Vehicles.

    Science.gov (United States)

    Zhang, Duona; Ding, Wenrui; Zhang, Baochang; Xie, Chunyu; Li, Hongguang; Liu, Chunhui; Han, Jungong

    2018-03-20

    Deep learning has recently attracted much attention due to its excellent performance in processing audio, image, and video data. However, few studies are devoted to the field of automatic modulation classification (AMC). It is one of the most well-known research topics in communication signal recognition and remains challenging for traditional methods due to complex disturbance from other sources. This paper proposes a heterogeneous deep model fusion (HDMF) method to solve the problem in a unified framework. The contributions include the following: (1) a convolutional neural network (CNN) and long short-term memory (LSTM) are combined by two different ways without prior knowledge involved; (2) a large database, including eleven types of single-carrier modulation signals with various noises as well as a fading channel, is collected with various signal-to-noise ratios (SNRs) based on a real geographical environment; and (3) experimental results demonstrate that HDMF is very capable of coping with the AMC problem, and achieves much better performance when compared with the independent network.

  6. Automatic indexing, compiling and classification

    International Nuclear Information System (INIS)

    Andreewsky, Alexandre; Fluhr, Christian.

    1975-06-01

    A review of the principles of automatic indexing, is followed by a comparison and summing-up of work by the authors and by a Soviet staff from the Moscou INFORM-ELECTRO Institute. The mathematical and linguistic problems of the automatic building of thesaurus and automatic classification are examined [fr

  7. Automatic diabetic retinopathy classification

    Science.gov (United States)

    Bravo, María. A.; Arbeláez, Pablo A.

    2017-11-01

    Diabetic retinopathy (DR) is a disease in which the retina is damaged due to augmentation in the blood pressure of small vessels. DR is the major cause of blindness for diabetics. It has been shown that early diagnosis can play a major role in prevention of visual loss and blindness. This work proposes a computer based approach for the detection of DR in back-of-the-eye images based on the use of convolutional neural networks (CNNs). Our CNN uses deep architectures to classify Back-of-the-eye Retinal Photographs (BRP) in 5 stages of DR. Our method combines several preprocessing images of BRP to obtain an ACA score of 50.5%. Furthermore, we explore subproblems by training a larger CNN of our main classification task.

  8. Vehicle classification using mobile sensors.

    Science.gov (United States)

    2013-04-01

    In this research, the feasibility of using mobile traffic sensors for binary vehicle classification on arterial roads is investigated. Features (e.g. : speed related, acceleration/deceleration related, etc.) are extracted from vehicle traces (passeng...

  9. Piezo-electric automatic vehicle classification system : Oregon Department of Transportation with Castle Rock Consultants for a SHRP Long Term Pavement Performance Site.

    Science.gov (United States)

    1990-05-01

    Oregon has twelve sites that are part of the Strategic Highway Research Program (SHRP), Long Term Pavement Performance (LTPP) studies. Part of the data gathering on these sites involves vehicle weight and classification. This pilot project was to hel...

  10. Piezo-electric automatic vehicle classification system : Oregon Department of Transportation with Castle Rock Consultants for a SHRP Long Term Pavement Performance Site : final report.

    Science.gov (United States)

    1991-07-01

    Oregon has twelve pavement test sites that are part of the Strategic Highway Research Program (SHRP), Long Term Pavement Performance (LTPP) studies. Part of the data gathering on these sites involves vehicle weight and classification. This pilot proj...

  11. Automatic Amharic text news classification: Aneural networks ...

    African Journals Online (AJOL)

    School of Computing and Electrical Engineering, Institute of Technology, Bahir Dar University, Bahir Dar ... The study is on classification of Amharic news automatically using neural networks approach. Learning Vector ... INTRODUCTION.

  12. A Novel Vehicle Classification Using Embedded Strain Gauge Sensors

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2008-11-01

    Full Text Available Abstract: This paper presents a new vehicle classification and develops a traffic monitoring detector to provide reliable vehicle classification to aid traffic management systems. The basic principle of this approach is based on measuring the dynamic strain caused by vehicles across pavement to obtain the corresponding vehicle parameters – wheelbase and number of axles – to then accurately classify the vehicle. A system prototype with five embedded strain sensors was developed to validate the accuracy and effectiveness of the classification method. According to the special arrangement of the sensors and the different time a vehicle arrived at the sensors one can estimate the vehicle’s speed accurately, corresponding to the estimated vehicle wheelbase and number of axles. Because of measurement errors and vehicle characteristics, there is a lot of overlap between vehicle wheelbase patterns. Therefore, directly setting up a fixed threshold for vehicle classification often leads to low-accuracy results. Using the machine learning pattern recognition method to deal with this problem is believed as one of the most effective tools. In this study, support vector machines (SVMs were used to integrate the classification features extracted from the strain sensors to automatically classify vehicles into five types, ranging from small vehicles to combination trucks, along the lines of the Federal Highway Administration vehicle classification guide. Test bench and field experiments will be introduced in this paper. Two support vector machines classification algorithms (one-against-all, one-against-one are used to classify single sensor data and multiple sensor combination data. Comparison of the two classification method results shows that the classification accuracy is very close using single data or multiple data. Our results indicate that using multiclass SVM-based fusion multiple sensor data significantly improves

  13. Automatic Hierarchical Color Image Classification

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2003-02-01

    Full Text Available Organizing images into semantic categories can be extremely useful for content-based image retrieval and image annotation. Grouping images into semantic classes is a difficult problem, however. Image classification attempts to solve this hard problem by using low-level image features. In this paper, we propose a method for hierarchical classification of images via supervised learning. This scheme relies on using a good low-level feature and subsequently performing feature-space reconfiguration using singular value decomposition to reduce noise and dimensionality. We use the training data to obtain a hierarchical classification tree that can be used to categorize new images. Our experimental results suggest that this scheme not only performs better than standard nearest-neighbor techniques, but also has both storage and computational advantages.

  14. Real time automatic scene classification

    NARCIS (Netherlands)

    Verbrugge, R.; Israël, Menno; Taatgen, N.; van den Broek, Egon; van der Putten, Peter; Schomaker, L.; den Uyl, Marten J.

    2004-01-01

    This work has been done as part of the EU VICAR (IST) project and the EU SCOFI project (IAP). The aim of the first project was to develop a real time video indexing classification annotation and retrieval system. For our systems, we have adapted the approach of Picard and Minka [3], who categorized

  15. Automatic classification of defects in weld pipe

    International Nuclear Information System (INIS)

    Anuar Mikdad Muad; Mohd Ashhar Hj Khalid; Abdul Aziz Mohamad; Abu Bakar Mhd Ghazali; Abdul Razak Hamzah

    2000-01-01

    With the advancement of computer imaging technology, the image on hard radiographic film can be digitized and stored in a computer and the manual process of defect recognition and classification may be replace by the computer. In this paper a computerized method for automatic detection and classification of common defects in film radiography of weld pipe is described. The detection and classification processes consist of automatic selection of interest area on the image and then classify common defects using image processing and special algorithms. Analysis of the attributes of each defect such as area, size, shape and orientation are carried out by the feature analysis process. These attributes reveal the type of each defect. These methods of defect classification result in high success rate. Our experience showed that sharp film images produced better results

  16. Automatic classification of defects in weld pipe

    International Nuclear Information System (INIS)

    Anuar Mikdad Muad; Mohd Ashhar Khalid; Abdul Aziz Mohamad; Abu Bakar Mhd Ghazali; Abdul Razak Hamzah

    2001-01-01

    With the advancement of computer imaging technology, the image on hard radiographic film can be digitized and stored in a computer and the manual process of defect recognition and classification may be replaced by the computer. In this paper, a computerized method for automatic detection and classification of common defects in film radiography of weld pipe is described. The detection and classification processes consist of automatic selection of interest area on the image and then classify common defects using image processing and special algorithms. Analysis of the attributes of each defect such area, size, shape and orientation are carried out by the feature analysis process. These attributes reveal the type of each defect. These methods of defect classification result in high success rate. Our experience showed that sharp film images produced better results. (Author)

  17. Automatic Classification of Attacks on IP Telephony

    Directory of Open Access Journals (Sweden)

    Jakub Safarik

    2013-01-01

    Full Text Available This article proposes an algorithm for automatic analysis of attack data in IP telephony network with a neural network. Data for the analysis is gathered from variable monitoring application running in the network. These monitoring systems are a typical part of nowadays network. Information from them is usually used after attack. It is possible to use an automatic classification of IP telephony attacks for nearly real-time classification and counter attack or mitigation of potential attacks. The classification use proposed neural network, and the article covers design of a neural network and its practical implementation. It contains also methods for neural network learning and data gathering functions from honeypot application.

  18. Automatic Control of Personal Rapid Transit Vehicles

    Science.gov (United States)

    Smith, P. D.

    1972-01-01

    The requirements for automatic longitudinal control of a string of closely packed personal vehicles are outlined. Optimal control theory is used to design feedback controllers for strings of vehicles. An important modification of the usual optimal control scheme is the inclusion of jerk in the cost functional. While the inclusion of the jerk term was considered, the effect of its inclusion was not sufficiently studied. Adding the jerk term will increase passenger comfort.

  19. Automatic modulation classification principles, algorithms and applications

    CERN Document Server

    Zhu, Zhechen

    2014-01-01

    Automatic Modulation Classification (AMC) has been a key technology in many military, security, and civilian telecommunication applications for decades. In military and security applications, modulation often serves as another level of encryption; in modern civilian applications, multiple modulation types can be employed by a signal transmitter to control the data rate and link reliability. This book offers comprehensive documentation of AMC models, algorithms and implementations for successful modulation recognition. It provides an invaluable theoretical and numerical comparison of AMC algo

  20. Automatic classification of blank substrate defects

    Science.gov (United States)

    Boettiger, Tom; Buck, Peter; Paninjath, Sankaranarayanan; Pereira, Mark; Ronald, Rob; Rost, Dan; Samir, Bhamidipati

    2014-10-01

    Mask preparation stages are crucial in mask manufacturing, since this mask is to later act as a template for considerable number of dies on wafer. Defects on the initial blank substrate, and subsequent cleaned and coated substrates, can have a profound impact on the usability of the finished mask. This emphasizes the need for early and accurate identification of blank substrate defects and the risk they pose to the patterned reticle. While Automatic Defect Classification (ADC) is a well-developed technology for inspection and analysis of defects on patterned wafers and masks in the semiconductors industry, ADC for mask blanks is still in the early stages of adoption and development. Calibre ADC is a powerful analysis tool for fast, accurate, consistent and automatic classification of defects on mask blanks. Accurate, automated classification of mask blanks leads to better usability of blanks by enabling defect avoidance technologies during mask writing. Detailed information on blank defects can help to select appropriate job-decks to be written on the mask by defect avoidance tools [1][4][5]. Smart algorithms separate critical defects from the potentially large number of non-critical defects or false defects detected at various stages during mask blank preparation. Mechanisms used by Calibre ADC to identify and characterize defects include defect location and size, signal polarity (dark, bright) in both transmitted and reflected review images, distinguishing defect signals from background noise in defect images. The Calibre ADC engine then uses a decision tree to translate this information into a defect classification code. Using this automated process improves classification accuracy, repeatability and speed, while avoiding the subjectivity of human judgment compared to the alternative of manual defect classification by trained personnel [2]. This paper focuses on the results from the evaluation of Automatic Defect Classification (ADC) product at MP Mask

  1. Automatic liver volume segmentation and fibrosis classification

    Science.gov (United States)

    Bal, Evgeny; Klang, Eyal; Amitai, Michal; Greenspan, Hayit

    2018-02-01

    In this work, we present an automatic method for liver segmentation and fibrosis classification in liver computed-tomography (CT) portal phase scans. The input is a full abdomen CT scan with an unknown number of slices, and the output is a liver volume segmentation mask and a fibrosis grade. A multi-stage analysis scheme is applied to each scan, including: volume segmentation, texture features extraction and SVM based classification. Data contains portal phase CT examinations from 80 patients, taken with different scanners. Each examination has a matching Fibroscan grade. The dataset was subdivided into two groups: first group contains healthy cases and mild fibrosis, second group contains moderate fibrosis, severe fibrosis and cirrhosis. Using our automated algorithm, we achieved an average dice index of 0.93 ± 0.05 for segmentation and a sensitivity of 0.92 and specificity of 0.81for classification. To the best of our knowledge, this is a first end to end automatic framework for liver fibrosis classification; an approach that, once validated, can have a great potential value in the clinic.

  2. Towards Automatic Classification of Wikipedia Content

    Science.gov (United States)

    Szymański, Julian

    Wikipedia - the Free Encyclopedia encounters the problem of proper classification of new articles everyday. The process of assignment of articles to categories is performed manually and it is a time consuming task. It requires knowledge about Wikipedia structure, which is beyond typical editor competence, which leads to human-caused mistakes - omitting or wrong assignments of articles to categories. The article presents application of SVM classifier for automatic classification of documents from The Free Encyclopedia. The classifier application has been tested while using two text representations: inter-documents connections (hyperlinks) and word content. The results of the performed experiments evaluated on hand crafted data show that the Wikipedia classification process can be partially automated. The proposed approach can be used for building a decision support system which suggests editors the best categories that fit new content entered to Wikipedia.

  3. PASTEC: an automatic transposable element classification tool.

    Directory of Open Access Journals (Sweden)

    Claire Hoede

    Full Text Available SUMMARY: The classification of transposable elements (TEs is key step towards deciphering their potential impact on the genome. However, this process is often based on manual sequence inspection by TE experts. With the wealth of genomic sequences now available, this task requires automation, making it accessible to most scientists. We propose a new tool, PASTEC, which classifies TEs by searching for structural features and similarities. This tool outperforms currently available software for TE classification. The main innovation of PASTEC is the search for HMM profiles, which is useful for inferring the classification of unknown TE on the basis of conserved functional domains of the proteins. In addition, PASTEC is the only tool providing an exhaustive spectrum of possible classifications to the order level of the Wicker hierarchical TE classification system. It can also automatically classify other repeated elements, such as SSR (Simple Sequence Repeats, rDNA or potential repeated host genes. Finally, the output of this new tool is designed to facilitate manual curation by providing to biologists with all the evidence accumulated for each TE consensus. AVAILABILITY: PASTEC is available as a REPET module or standalone software (http://urgi.versailles.inra.fr/download/repet/REPET_linux-x64-2.2.tar.gz. It requires a Unix-like system. There are two standalone versions: one of which is parallelized (requiring Sun grid Engine or Torque, and the other of which is not.

  4. Automatic Genre Classification of Musical Signals

    Science.gov (United States)

    Barbedo, Jayme Garcia sArnal; Lopes, Amauri

    2006-12-01

    We present a strategy to perform automatic genre classification of musical signals. The technique divides the signals into 21.3 milliseconds frames, from which 4 features are extracted. The values of each feature are treated over 1-second analysis segments. Some statistical results of the features along each analysis segment are used to determine a vector of summary features that characterizes the respective segment. Next, a classification procedure uses those vectors to differentiate between genres. The classification procedure has two main characteristics: (1) a very wide and deep taxonomy, which allows a very meticulous comparison between different genres, and (2) a wide pairwise comparison of genres, which allows emphasizing the differences between each pair of genres. The procedure points out the genre that best fits the characteristics of each segment. The final classification of the signal is given by the genre that appears more times along all signal segments. The approach has shown very good accuracy even for the lowest layers of the hierarchical structure.

  5. Automatic vehicle counting system for traffic monitoring

    Science.gov (United States)

    Crouzil, Alain; Khoudour, Louahdi; Valiere, Paul; Truong Cong, Dung Nghy

    2016-09-01

    The article is dedicated to the presentation of a vision-based system for road vehicle counting and classification. The system is able to achieve counting with a very good accuracy even in difficult scenarios linked to occlusions and/or presence of shadows. The principle of the system is to use already installed cameras in road networks without any additional calibration procedure. We propose a robust segmentation algorithm that detects foreground pixels corresponding to moving vehicles. First, the approach models each pixel of the background with an adaptive Gaussian distribution. This model is coupled with a motion detection procedure, which allows correctly location of moving vehicles in space and time. The nature of trials carried out, including peak periods and various vehicle types, leads to an increase of occlusions between cars and between cars and trucks. A specific method for severe occlusion detection, based on the notion of solidity, has been carried out and tested. Furthermore, the method developed in this work is capable of managing shadows with high resolution. The related algorithm has been tested and compared to a classical method. Experimental results based on four large datasets show that our method can count and classify vehicles in real time with a high level of performance (>98%) under different environmental situations, thus performing better than the conventional inductive loop detectors.

  6. AUTOMATIC APPROACH TO VHR SATELLITE IMAGE CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    P. Kupidura

    2016-06-01

    Full Text Available In this paper, we present a proposition of a fully automatic classification of VHR satellite images. Unlike the most widespread approaches: supervised classification, which requires prior defining of class signatures, or unsupervised classification, which must be followed by an interpretation of its results, the proposed method requires no human intervention except for the setting of the initial parameters. The presented approach bases on both spectral and textural analysis of the image and consists of 3 steps. The first step, the analysis of spectral data, relies on NDVI values. Its purpose is to distinguish between basic classes, such as water, vegetation and non-vegetation, which all differ significantly spectrally, thus they can be easily extracted basing on spectral analysis. The second step relies on granulometric maps. These are the product of local granulometric analysis of an image and present information on the texture of each pixel neighbourhood, depending on the texture grain. The purpose of texture analysis is to distinguish between different classes, spectrally similar, but yet of different texture, e.g. bare soil from a built-up area, or low vegetation from a wooded area. Due to the use of granulometric analysis, based on mathematical morphology opening and closing, the results are resistant to the border effect (qualifying borders of objects in an image as spaces of high texture, which affect other methods of texture analysis like GLCM statistics or fractal analysis. Therefore, the effectiveness of the analysis is relatively high. Several indices based on values of different granulometric maps have been developed to simplify the extraction of classes of different texture. The third and final step of the process relies on a vegetation index, based on near infrared and blue bands. Its purpose is to correct partially misclassified pixels. All the indices used in the classification model developed relate to reflectance values, so the

  7. Vehicle Classification Using an Imbalanced Dataset Based on a Single Magnetic Sensor

    Directory of Open Access Journals (Sweden)

    Chang Xu

    2018-05-01

    Full Text Available This paper aims to improve the accuracy of automatic vehicle classifiers for imbalanced datasets. Classification is made through utilizing a single anisotropic magnetoresistive sensor, with the models of vehicles involved being classified into hatchbacks, sedans, buses, and multi-purpose vehicles (MPVs. Using time domain and frequency domain features in combination with three common classification algorithms in pattern recognition, we develop a novel feature extraction method for vehicle classification. These three common classification algorithms are the k-nearest neighbor, the support vector machine, and the back-propagation neural network. Nevertheless, a problem remains with the original vehicle magnetic dataset collected being imbalanced, and may lead to inaccurate classification results. With this in mind, we propose an approach called SMOTE, which can further boost the performance of classifiers. Experimental results show that the k-nearest neighbor (KNN classifier with the SMOTE algorithm can reach a classification accuracy of 95.46%, thus minimizing the effect of the imbalance.

  8. Vehicle Classification Using an Imbalanced Dataset Based on a Single Magnetic Sensor.

    Science.gov (United States)

    Xu, Chang; Wang, Yingguan; Bao, Xinghe; Li, Fengrong

    2018-05-24

    This paper aims to improve the accuracy of automatic vehicle classifiers for imbalanced datasets. Classification is made through utilizing a single anisotropic magnetoresistive sensor, with the models of vehicles involved being classified into hatchbacks, sedans, buses, and multi-purpose vehicles (MPVs). Using time domain and frequency domain features in combination with three common classification algorithms in pattern recognition, we develop a novel feature extraction method for vehicle classification. These three common classification algorithms are the k-nearest neighbor, the support vector machine, and the back-propagation neural network. Nevertheless, a problem remains with the original vehicle magnetic dataset collected being imbalanced, and may lead to inaccurate classification results. With this in mind, we propose an approach called SMOTE, which can further boost the performance of classifiers. Experimental results show that the k-nearest neighbor (KNN) classifier with the SMOTE algorithm can reach a classification accuracy of 95.46%, thus minimizing the effect of the imbalance.

  9. Inter Genre Similarity Modelling For Automatic Music Genre Classification

    OpenAIRE

    Bagci, Ulas; Erzin, Engin

    2009-01-01

    Music genre classification is an essential tool for music information retrieval systems and it has been finding critical applications in various media platforms. Two important problems of the automatic music genre classification are feature extraction and classifier design. This paper investigates inter-genre similarity modelling (IGS) to improve the performance of automatic music genre classification. Inter-genre similarity information is extracted over the mis-classified feature population....

  10. Automatic classification of MR scans in Alzheimer's disease

    OpenAIRE

    García, Fernando Pérez; uk, fernando perezgarcia ucl ac

    2018-01-01

    Presentation of the paper "Automatic classification of MR scans in Alzheimer's disease" by Klöppel et al. for the journal club of the Centre for Doctoral Training in Medical Image Computing at University College London.

  11. Tracking of nuclear shipments with automatic vehicle location systems

    International Nuclear Information System (INIS)

    Colhoun, C.J.K.

    1989-01-01

    A complete Automatic Vehicle Location System (AVL) consists of three main elements: (1) the location sensor in the vehicle, this device constantly determines the coordinates of the vehicles position; (2) the radio link between vehicle and central base; (3) the data processing and display in the central base. For all three elements there are several solutions. The optimal combination of the different techniques depends on the requirements of the special application

  12. Estimating spatial travel times using automatic vehicle identification data

    Science.gov (United States)

    2001-01-01

    Prepared ca. 2001. The paper describes an algorithm that was developed for estimating reliable and accurate average roadway link travel times using Automatic Vehicle Identification (AVI) data. The algorithm presented is unique in two aspects. First, ...

  13. Terminal Sliding Mode Tracking Controller Design for Automatic Guided Vehicle

    Science.gov (United States)

    Chen, Hongbin

    2018-03-01

    Based on sliding mode variable structure control theory, the path tracking problem of automatic guided vehicle is studied, proposed a controller design method based on the terminal sliding mode. First of all, through analyzing the characteristics of the automatic guided vehicle movement, the kinematics model is presented. Then to improve the traditional expression of terminal sliding mode, design a nonlinear sliding mode which the convergence speed is faster than the former, verified by theoretical analysis, the design of sliding mode is steady and fast convergence in the limited time. Finally combining Lyapunov method to design the tracking control law of automatic guided vehicle, the controller can make the automatic guided vehicle track the desired trajectory in the global sense as well as in finite time. The simulation results verify the correctness and effectiveness of the control law.

  14. Vehicle classification in WAMI imagery using deep network

    Science.gov (United States)

    Yi, Meng; Yang, Fan; Blasch, Erik; Sheaff, Carolyn; Liu, Kui; Chen, Genshe; Ling, Haibin

    2016-05-01

    Humans have always had a keen interest in understanding activities and the surrounding environment for mobility, communication, and survival. Thanks to recent progress in photography and breakthroughs in aviation, we are now able to capture tens of megapixels of ground imagery, namely Wide Area Motion Imagery (WAMI), at multiple frames per second from unmanned aerial vehicles (UAVs). WAMI serves as a great source for many applications, including security, urban planning and route planning. These applications require fast and accurate image understanding which is time consuming for humans, due to the large data volume and city-scale area coverage. Therefore, automatic processing and understanding of WAMI imagery has been gaining attention in both industry and the research community. This paper focuses on an essential step in WAMI imagery analysis, namely vehicle classification. That is, deciding whether a certain image patch contains a vehicle or not. We collect a set of positive and negative sample image patches, for training and testing the detector. Positive samples are 64 × 64 image patches centered on annotated vehicles. We generate two sets of negative images. The first set is generated from positive images with some location shift. The second set of negative patches is generated from randomly sampled patches. We also discard those patches if a vehicle accidentally locates at the center. Both positive and negative samples are randomly divided into 9000 training images and 3000 testing images. We propose to train a deep convolution network for classifying these patches. The classifier is based on a pre-trained AlexNet Model in the Caffe library, with an adapted loss function for vehicle classification. The performance of our classifier is compared to several traditional image classifier methods using Support Vector Machine (SVM) and Histogram of Oriented Gradient (HOG) features. While the SVM+HOG method achieves an accuracy of 91.2%, the accuracy of our deep

  15. Sliding mode observer design for automatic steering of vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.R.; Rachid, A. [LSA, Amiens (France); Xu, S.J. [Harbin Inst. of Tech. (China)]|[IUT de Longwy, Cosnes et Romain (France); Darouach, M. [IUT de Longwy, Cosnes et Romain (France)

    2000-07-01

    This paper deals with the observer design problem for automatic steering of vehicles. The lateral motion of the vehicles is considered. A sliding mode observer is derived such that the observation errors converge to zero asymptotically in finite time. The simulation results have shown that the design is very effective. (orig.)

  16. Increasing accuracy of vehicle detection from conventional vehicle detectors - counts, speeds, classification, and travel time.

    Science.gov (United States)

    2014-09-01

    Vehicle classification is an important traffic parameter for transportation planning and infrastructure : management. Length-based vehicle classification from dual loop detectors is among the lowest cost : technologies commonly used for collecting th...

  17. Feature extraction and classification in automatic weld seam radioscopy

    International Nuclear Information System (INIS)

    Heindoerfer, F.; Pohle, R.

    1994-01-01

    The investigations conducted have shown that automatic feature extraction and classification procedures permit the identification of weld seam flaws. Within this context the favored learning fuzzy classificator represents a very good alternative to conventional classificators. The results have also made clear that improvements mainly in the field of image registration are still possible by increasing the resolution of the radioscopy system. Since, only if the flaw is segmented correctly, i.e. in its full size, and due to improved detail recognizability and sufficient contrast difference will an almost error-free classification be conceivable. (orig./MM) [de

  18. Exporting automatic vehicle SNM monitoring technology

    International Nuclear Information System (INIS)

    York, R.L.; Fehlau, P.E.; Close, D.A.

    1995-01-01

    Controlling the transportation of nuclear materials is still one of the most effective nuclear proliferation barriers. The recent increase of global nuclear material proliferation has expanded the application of vehicle monitor technology to prevent the diversion of special nuclear material across international borders. To satisfy this new application, a high-sensitivity vehicle monitor, which is easy to install and capable of operating in high-traffic areas, is required. A study of a new detector configuration for a drive-through vehicle monitor is discussed in this paper

  19. Personality in speech assessment and automatic classification

    CERN Document Server

    Polzehl, Tim

    2015-01-01

    This work combines interdisciplinary knowledge and experience from research fields of psychology, linguistics, audio-processing, machine learning, and computer science. The work systematically explores a novel research topic devoted to automated modeling of personality expression from speech. For this aim, it introduces a novel personality assessment questionnaire and presents the results of extensive labeling sessions to annotate the speech data with personality assessments. It provides estimates of the Big 5 personality traits, i.e. openness, conscientiousness, extroversion, agreeableness, and neuroticism. Based on a database built on the questionnaire, the book presents models to tell apart different personality types or classes from speech automatically.

  20. Automatic control of a robotic vehicle

    Science.gov (United States)

    Mcreynolds, S. R.

    1976-01-01

    Over the last several years Jet Propulsion Laboratory has been engaged in a project to develop some of the technology required to build a robotic vehicle for exploring planetary surfaces. An overview of hardware and software being developed for this project is given. Particular emphasis is placed on the description of the current design for the Vehicle System required for locomotion and the path planning algorithm.

  1. Automatic segmentation and disease classification using cardiac cine MR images

    NARCIS (Netherlands)

    Wolterink, Jelmer M.; Leiner, Tim; Viergever, Max A.; Išgum, Ivana

    2018-01-01

    Segmentation of the heart in cardiac cine MR is clinically used to quantify cardiac function. We propose a fully automatic method for segmentation and disease classification using cardiac cine MR images. A convolutional neural network (CNN) was designed to simultaneously segment the left ventricle

  2. Demonstrator for Automatic Target Classification in SAR Imagery

    NARCIS (Netherlands)

    Wit, J.J.M. de; Broek, A.C. van den; Dekker, R.J.

    2006-01-01

    Due to the increasing use of unmanned aerial vehicles (UAV) for reconnaissance, surveillance, and target acquisition applications, the interest in synthetic aperture radar (SAR) systems is growing. In order to facilitate the processing of the enormous amount of SAR data on the ground, automatic

  3. Automatic Segmentation of Dermoscopic Images by Iterative Classification

    Directory of Open Access Journals (Sweden)

    Maciel Zortea

    2011-01-01

    Full Text Available Accurate detection of the borders of skin lesions is a vital first step for computer aided diagnostic systems. This paper presents a novel automatic approach to segmentation of skin lesions that is particularly suitable for analysis of dermoscopic images. Assumptions about the image acquisition, in particular, the approximate location and color, are used to derive an automatic rule to select small seed regions, likely to correspond to samples of skin and the lesion of interest. The seed regions are used as initial training samples, and the lesion segmentation problem is treated as binary classification problem. An iterative hybrid classification strategy, based on a weighted combination of estimated posteriors of a linear and quadratic classifier, is used to update both the automatically selected training samples and the segmentation, increasing reliability and final accuracy, especially for those challenging images, where the contrast between the background skin and lesion is low.

  4. Classification of scintigrams on the base of an automatic analysis

    International Nuclear Information System (INIS)

    Vidyukov, V.I.; Kasatkin, Yu.N.; Kal'nitskaya, E.F.; Mironov, S.P.; Rotenberg, E.M.

    1980-01-01

    The stages of drawing a discriminative system based on self-education for an automatic analysis of scintigrams have been considered. The results of the classification of 240 scintigrams of the liver into ''normal'', ''diffuse lesions'', ''focal lesions'' have been evaluated by medical experts and computer. The accuracy of the computerized classification was 91.7%, that of the experts-85%. The automatic analysis methods of scintigrams of the liver have been realized using the specialized MDS system of data processing. The quality of the discriminative system has been assessed on 125 scintigrams. The accuracy of the classification is equal to 89.6%. The employment of the self-education; methods permitted one to single out two subclasses depending on the severity of diffuse lesions

  5. Automatic classification of time-variable X-ray sources

    International Nuclear Information System (INIS)

    Lo, Kitty K.; Farrell, Sean; Murphy, Tara; Gaensler, B. M.

    2014-01-01

    To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, and other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ∼97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7–500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.

  6. Automatic classification of time-variable X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Kitty K.; Farrell, Sean; Murphy, Tara; Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, Sydney, NSW 2006 (Australia)

    2014-05-01

    To maximize the discovery potential of future synoptic surveys, especially in the field of transient science, it will be necessary to use automatic classification to identify some of the astronomical sources. The data mining technique of supervised classification is suitable for this problem. Here, we present a supervised learning method to automatically classify variable X-ray sources in the Second XMM-Newton Serendipitous Source Catalog (2XMMi-DR2). Random Forest is our classifier of choice since it is one of the most accurate learning algorithms available. Our training set consists of 873 variable sources and their features are derived from time series, spectra, and other multi-wavelength contextual information. The 10 fold cross validation accuracy of the training data is ∼97% on a 7 class data set. We applied the trained classification model to 411 unknown variable 2XMM sources to produce a probabilistically classified catalog. Using the classification margin and the Random Forest derived outlier measure, we identified 12 anomalous sources, of which 2XMM J180658.7–500250 appears to be the most unusual source in the sample. Its X-ray spectra is suggestive of a ultraluminous X-ray source but its variability makes it highly unusual. Machine-learned classification and anomaly detection will facilitate scientific discoveries in the era of all-sky surveys.

  7. Automatic Task Classification via Support Vector Machine and Crowdsourcing

    Directory of Open Access Journals (Sweden)

    Hyungsik Shin

    2018-01-01

    Full Text Available Automatic task classification is a core part of personal assistant systems that are widely used in mobile devices such as smartphones and tablets. Even though many industry leaders are providing their own personal assistant services, their proprietary internals and implementations are not well known to the public. In this work, we show through real implementation and evaluation that automatic task classification can be implemented for mobile devices by using the support vector machine algorithm and crowdsourcing. To train our task classifier, we collected our training data set via crowdsourcing using the Amazon Mechanical Turk platform. Our classifier can classify a short English sentence into one of the thirty-two predefined tasks that are frequently requested while using personal mobile devices. Evaluation results show high prediction accuracy of our classifier ranging from 82% to 99%. By using large amount of crowdsourced data, we also illustrate the relationship between training data size and the prediction accuracy of our task classifier.

  8. Automatic classification of journalistic documents on the Internet1

    Directory of Open Access Journals (Sweden)

    Elias OLIVEIRA

    Full Text Available Abstract Online journalism is increasing every day. There are many news agencies, newspapers, and magazines using digital publication in the global network. Documents published online are available to users, who use search engines to find them. In order to deliver documents that are relevant to the search, they must be indexed and classified. Due to the vast number of documents published online every day, a lot of research has been carried out to find ways to facilitate automatic document classification. The objective of the present study is to describe an experimental approach for the automatic classification of journalistic documents published on the Internet using the Vector Space Model for document representation. The model was tested based on a real journalism database, using algorithms that have been widely reported in the literature. This article also describes the metrics used to assess the performance of these algorithms and their required configurations. The results obtained show the efficiency of the method used and justify further research to find ways to facilitate the automatic classification of documents.

  9. Automatic Parallelization Tool: Classification of Program Code for Parallel Computing

    Directory of Open Access Journals (Sweden)

    Mustafa Basthikodi

    2016-04-01

    Full Text Available Performance growth of single-core processors has come to a halt in the past decade, but was re-enabled by the introduction of parallelism in processors. Multicore frameworks along with Graphical Processing Units empowered to enhance parallelism broadly. Couples of compilers are updated to developing challenges forsynchronization and threading issues. Appropriate program and algorithm classifications will have advantage to a great extent to the group of software engineers to get opportunities for effective parallelization. In present work we investigated current species for classification of algorithms, in that related work on classification is discussed along with the comparison of issues that challenges the classification. The set of algorithms are chosen which matches the structure with different issues and perform given task. We have tested these algorithms utilizing existing automatic species extraction toolsalong with Bones compiler. We have added functionalities to existing tool, providing a more detailed characterization. The contributions of our work include support for pointer arithmetic, conditional and incremental statements, user defined types, constants and mathematical functions. With this, we can retain significant data which is not captured by original speciesof algorithms. We executed new theories into the device, empowering automatic characterization of program code.

  10. AUTOMATIC CLASSIFICATION OF VARIABLE STARS IN CATALOGS WITH MISSING DATA

    International Nuclear Information System (INIS)

    Pichara, Karim; Protopapas, Pavlos

    2013-01-01

    We present an automatic classification method for astronomical catalogs with missing data. We use Bayesian networks and a probabilistic graphical model that allows us to perform inference to predict missing values given observed data and dependency relationships between variables. To learn a Bayesian network from incomplete data, we use an iterative algorithm that utilizes sampling methods and expectation maximization to estimate the distributions and probabilistic dependencies of variables from data with missing values. To test our model, we use three catalogs with missing data (SAGE, Two Micron All Sky Survey, and UBVI) and one complete catalog (MACHO). We examine how classification accuracy changes when information from missing data catalogs is included, how our method compares to traditional missing data approaches, and at what computational cost. Integrating these catalogs with missing data, we find that classification of variable objects improves by a few percent and by 15% for quasar detection while keeping the computational cost the same

  11. AUTOMATIC CLASSIFICATION OF VARIABLE STARS IN CATALOGS WITH MISSING DATA

    Energy Technology Data Exchange (ETDEWEB)

    Pichara, Karim [Computer Science Department, Pontificia Universidad Católica de Chile, Santiago (Chile); Protopapas, Pavlos [Institute for Applied Computational Science, Harvard University, Cambridge, MA (United States)

    2013-11-10

    We present an automatic classification method for astronomical catalogs with missing data. We use Bayesian networks and a probabilistic graphical model that allows us to perform inference to predict missing values given observed data and dependency relationships between variables. To learn a Bayesian network from incomplete data, we use an iterative algorithm that utilizes sampling methods and expectation maximization to estimate the distributions and probabilistic dependencies of variables from data with missing values. To test our model, we use three catalogs with missing data (SAGE, Two Micron All Sky Survey, and UBVI) and one complete catalog (MACHO). We examine how classification accuracy changes when information from missing data catalogs is included, how our method compares to traditional missing data approaches, and at what computational cost. Integrating these catalogs with missing data, we find that classification of variable objects improves by a few percent and by 15% for quasar detection while keeping the computational cost the same.

  12. Automatic Classification of Aerial Imagery for Urban Hydrological Applications

    Science.gov (United States)

    Paul, A.; Yang, C.; Breitkopf, U.; Liu, Y.; Wang, Z.; Rottensteiner, F.; Wallner, M.; Verworn, A.; Heipke, C.

    2018-04-01

    In this paper we investigate the potential of automatic supervised classification for urban hydrological applications. In particular, we contribute to runoff simulations using hydrodynamic urban drainage models. In order to assess whether the capacity of the sewers is sufficient to avoid surcharge within certain return periods, precipitation is transformed into runoff. The transformation of precipitation into runoff requires knowledge about the proportion of drainage-effective areas and their spatial distribution in the catchment area. Common simulation methods use the coefficient of imperviousness as an important parameter to estimate the overland flow, which subsequently contributes to the pipe flow. The coefficient of imperviousness is the percentage of area covered by impervious surfaces such as roofs or road surfaces. It is still common practice to assign the coefficient of imperviousness for each particular land parcel manually by visual interpretation of aerial images. Based on classification results of these imagery we contribute to an objective automatic determination of the coefficient of imperviousness. In this context we compare two classification techniques: Random Forests (RF) and Conditional Random Fields (CRF). Experimental results performed on an urban test area show good results and confirm that the automated derivation of the coefficient of imperviousness, apart from being more objective and, thus, reproducible, delivers more accurate results than the interactive estimation. We achieve an overall accuracy of about 85 % for both classifiers. The root mean square error of the differences of the coefficient of imperviousness compared to the reference is 4.4 % for the CRF-based classification, and 3.8 % for the RF-based classification.

  13. Mining vehicle classifications from the Columbus Metropolitan Freeway Management System.

    Science.gov (United States)

    2015-01-01

    Vehicle classification data are used in many transportation applications, including: pavement design, : environmental impact studies, traffic control, and traffic safety. Ohio has over 200 permanent count stations, : supplemented by many more short-t...

  14. Automatic classification of hyperactive children: comparing multiple artificial intelligence approaches.

    Science.gov (United States)

    Delavarian, Mona; Towhidkhah, Farzad; Gharibzadeh, Shahriar; Dibajnia, Parvin

    2011-07-12

    Automatic classification of different behavioral disorders with many similarities (e.g. in symptoms) by using an automated approach will help psychiatrists to concentrate on correct disorder and its treatment as soon as possible, to avoid wasting time on diagnosis, and to increase the accuracy of diagnosis. In this study, we tried to differentiate and classify (diagnose) 306 children with many similar symptoms and different behavioral disorders such as ADHD, depression, anxiety, comorbid depression and anxiety and conduct disorder with high accuracy. Classification was based on the symptoms and their severity. With examining 16 different available classifiers, by using "Prtools", we have proposed nearest mean classifier as the most accurate classifier with 96.92% accuracy in this research. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  15. Can Automatic Classification Help to Increase Accuracy in Data Collection?

    Directory of Open Access Journals (Sweden)

    Frederique Lang

    2016-09-01

    Full Text Available Purpose: The authors aim at testing the performance of a set of machine learning algorithms that could improve the process of data cleaning when building datasets. Design/methodology/approach: The paper is centered on cleaning datasets gathered from publishers and online resources by the use of specific keywords. In this case, we analyzed data from the Web of Science. The accuracy of various forms of automatic classification was tested here in comparison with manual coding in order to determine their usefulness for data collection and cleaning. We assessed the performance of seven supervised classification algorithms (Support Vector Machine (SVM, Scaled Linear Discriminant Analysis, Lasso and elastic-net regularized generalized linear models, Maximum Entropy, Regression Tree, Boosting, and Random Forest and analyzed two properties: accuracy and recall. We assessed not only each algorithm individually, but also their combinations through a voting scheme. We also tested the performance of these algorithms with different sizes of training data. When assessing the performance of different combinations, we used an indicator of coverage to account for the agreement and disagreement on classification between algorithms. Findings: We found that the performance of the algorithms used vary with the size of the sample for training. However, for the classification exercise in this paper the best performing algorithms were SVM and Boosting. The combination of these two algorithms achieved a high agreement on coverage and was highly accurate. This combination performs well with a small training dataset (10%, which may reduce the manual work needed for classification tasks. Research limitations: The dataset gathered has significantly more records related to the topic of interest compared to unrelated topics. This may affect the performance of some algorithms, especially in their identification of unrelated papers. Practical implications: Although the

  16. Clinically-inspired automatic classification of ovarian carcinoma subtypes

    Directory of Open Access Journals (Sweden)

    Aicha BenTaieb

    2016-01-01

    Full Text Available Context: It has been shown that ovarian carcinoma subtypes are distinct pathologic entities with differing prognostic and therapeutic implications. Histotyping by pathologists has good reproducibility, but occasional cases are challenging and require immunohistochemistry and subspecialty consultation. Motivated by the need for more accurate and reproducible diagnoses and to facilitate pathologists′ workflow, we propose an automatic framework for ovarian carcinoma classification. Materials and Methods: Our method is inspired by pathologists′ workflow. We analyse imaged tissues at two magnification levels and extract clinically-inspired color, texture, and segmentation-based shape descriptors using image-processing methods. We propose a carefully designed machine learning technique composed of four modules: A dissimilarity matrix, dimensionality reduction, feature selection and a support vector machine classifier to separate the five ovarian carcinoma subtypes using the extracted features. Results: This paper presents the details of our implementation and its validation on a clinically derived dataset of eighty high-resolution histopathology images. The proposed system achieved a multiclass classification accuracy of 95.0% when classifying unseen tissues. Assessment of the classifier′s confusion (confusion matrix between the five different ovarian carcinoma subtypes agrees with clinician′s confusion and reflects the difficulty in diagnosing endometrioid and serous carcinomas. Conclusions: Our results from this first study highlight the difficulty of ovarian carcinoma diagnosis which originate from the intrinsic class-imbalance observed among subtypes and suggest that the automatic analysis of ovarian carcinoma subtypes could be valuable to clinician′s diagnostic procedure by providing a second opinion.

  17. Classification of Dynamic Vehicle Routing Systems

    DEFF Research Database (Denmark)

    Larsen, Allan; Madsen, Oli B.G.; Solomon, Marius M.

    2007-01-01

    This chapter discusses important characteristics seen within dynamic vehicle routing problems. We discuss the differences between the traditional static vehicle routing problems and its dynamic counterparts. We give an in-depth introduction to the degree of dynamism measure which can be used to c...

  18. Sensor Architecture and Task Classification for Agricultural Vehicles and Environments

    Directory of Open Access Journals (Sweden)

    Francisco Rovira-Más

    2010-12-01

    Full Text Available The long time wish of endowing agricultural vehicles with an increasing degree of autonomy is becoming a reality thanks to two crucial facts: the broad diffusion of global positioning satellite systems and the inexorable progress of computers and electronics. Agricultural vehicles are currently the only self-propelled ground machines commonly integrating commercial automatic navigation systems. Farm equipment manufacturers and satellite-based navigation system providers, in a joint effort, have pushed this technology to unprecedented heights; yet there are many unresolved issues and an unlimited potential still to uncover. The complexity inherent to intelligent vehicles is rooted in the selection and coordination of the optimum sensors, the computer reasoning techniques to process the acquired data, and the resulting control strategies for automatic actuators. The advantageous design of the network of onboard sensors is necessary for the future deployment of advanced agricultural vehicles. This article analyzes a variety of typical environments and situations encountered in agricultural fields, and proposes a sensor architecture especially adapted to cope with them. The strategy proposed groups sensors into four specific subsystems: global localization, feedback control and vehicle pose, non-visual monitoring, and local perception. The designed architecture responds to vital vehicle tasks classified within three layers devoted to safety, operative information, and automatic actuation. The success of this architecture, implemented and tested in various agricultural vehicles over the last decade, rests on its capacity to integrate redundancy and incorporate new technologies in a practical way.

  19. Automatic sleep stage classification using two facial electrodes.

    Science.gov (United States)

    Virkkala, Jussi; Velin, Riitta; Himanen, Sari-Leena; Värri, Alpo; Müller, Kiti; Hasan, Joel

    2008-01-01

    Standard sleep stage classification is based on visual analysis of central EEG, EOG and EMG signals. Automatic analysis with a reduced number of sensors has been studied as an easy alternative to the standard. In this study, a single-channel electro-oculography (EOG) algorithm was developed for separation of wakefulness, SREM, light sleep (S1, S2) and slow wave sleep (S3, S4). The algorithm was developed and tested with 296 subjects. Additional validation was performed on 16 subjects using a low weight single-channel Alive Monitor. In the validation study, subjects attached the disposable EOG electrodes themselves at home. In separating the four stages total agreement (and Cohen's Kappa) in the training data set was 74% (0.59), in the testing data set 73% (0.59) and in the validation data set 74% (0.59). Self-applicable electro-oculography with only two facial electrodes was found to provide reasonable sleep stage information.

  20. Automatic music genres classification as a pattern recognition problem

    Science.gov (United States)

    Ul Haq, Ihtisham; Khan, Fauzia; Sharif, Sana; Shaukat, Arsalan

    2013-12-01

    Music genres are the simplest and effect descriptors for searching music libraries stores or catalogues. The paper compares the results of two automatic music genres classification systems implemented by using two different yet simple classifiers (K-Nearest Neighbor and Naïve Bayes). First a 10-12 second sample is selected and features are extracted from it, and then based on those features results of both classifiers are represented in the form of accuracy table and confusion matrix. An experiment carried out on test 60 taken from middle of a song represents the true essence of its genre as compared to the samples taken from beginning and ending of a song. The novel techniques have achieved an accuracy of 91% and 78% by using Naïve Bayes and KNN classifiers respectively.

  1. Automatic classification of visual evoked potentials based on wavelet decomposition

    Science.gov (United States)

    Stasiakiewicz, Paweł; Dobrowolski, Andrzej P.; Tomczykiewicz, Kazimierz

    2017-04-01

    Diagnosis of part of the visual system, that is responsible for conducting compound action potential, is generally based on visual evoked potentials generated as a result of stimulation of the eye by external light source. The condition of patient's visual path is assessed by set of parameters that describe the time domain characteristic extremes called waves. The decision process is compound therefore diagnosis significantly depends on experience of a doctor. The authors developed a procedure - based on wavelet decomposition and linear discriminant analysis - that ensures automatic classification of visual evoked potentials. The algorithm enables to assign individual case to normal or pathological class. The proposed classifier has a 96,4% sensitivity at 10,4% probability of false alarm in a group of 220 cases and area under curve ROC equals to 0,96 which, from the medical point of view, is a very good result.

  2. Automatic Classification of Specific Melanocytic Lesions Using Artificial Intelligence

    Directory of Open Access Journals (Sweden)

    Joanna Jaworek-Korjakowska

    2016-01-01

    Full Text Available Background. Given its propensity to metastasize, and lack of effective therapies for most patients with advanced disease, early detection of melanoma is a clinical imperative. Different computer-aided diagnosis (CAD systems have been proposed to increase the specificity and sensitivity of melanoma detection. Although such computer programs are developed for different diagnostic algorithms, to the best of our knowledge, a system to classify different melanocytic lesions has not been proposed yet. Method. In this research we present a new approach to the classification of melanocytic lesions. This work is focused not only on categorization of skin lesions as benign or malignant but also on specifying the exact type of a skin lesion including melanoma, Clark nevus, Spitz/Reed nevus, and blue nevus. The proposed automatic algorithm contains the following steps: image enhancement, lesion segmentation, feature extraction, and selection as well as classification. Results. The algorithm has been tested on 300 dermoscopic images and achieved accuracy of 92% indicating that the proposed approach classified most of the melanocytic lesions correctly. Conclusions. A proposed system can not only help to precisely diagnose the type of the skin mole but also decrease the amount of biopsies and reduce the morbidity related to skin lesion excision.

  3. Automatic Classification of Specific Melanocytic Lesions Using Artificial Intelligence.

    Science.gov (United States)

    Jaworek-Korjakowska, Joanna; Kłeczek, Paweł

    2016-01-01

    Given its propensity to metastasize, and lack of effective therapies for most patients with advanced disease, early detection of melanoma is a clinical imperative. Different computer-aided diagnosis (CAD) systems have been proposed to increase the specificity and sensitivity of melanoma detection. Although such computer programs are developed for different diagnostic algorithms, to the best of our knowledge, a system to classify different melanocytic lesions has not been proposed yet. In this research we present a new approach to the classification of melanocytic lesions. This work is focused not only on categorization of skin lesions as benign or malignant but also on specifying the exact type of a skin lesion including melanoma, Clark nevus, Spitz/Reed nevus, and blue nevus. The proposed automatic algorithm contains the following steps: image enhancement, lesion segmentation, feature extraction, and selection as well as classification. The algorithm has been tested on 300 dermoscopic images and achieved accuracy of 92% indicating that the proposed approach classified most of the melanocytic lesions correctly. A proposed system can not only help to precisely diagnose the type of the skin mole but also decrease the amount of biopsies and reduce the morbidity related to skin lesion excision.

  4. Fault classification method for the driving safety of electrified vehicles

    Science.gov (United States)

    Wanner, Daniel; Drugge, Lars; Stensson Trigell, Annika

    2014-05-01

    A fault classification method is proposed which has been applied to an electric vehicle. Potential faults in the different subsystems that can affect the vehicle directional stability were collected in a failure mode and effect analysis. Similar driveline faults were grouped together if they resembled each other with respect to their influence on the vehicle dynamic behaviour. The faults were physically modelled in a simulation environment before they were induced in a detailed vehicle model under normal driving conditions. A special focus was placed on faults in the driveline of electric vehicles employing in-wheel motors of the permanent magnet type. Several failures caused by mechanical and other faults were analysed as well. The fault classification method consists of a controllability ranking developed according to the functional safety standard ISO 26262. The controllability of a fault was determined with three parameters covering the influence of the longitudinal, lateral and yaw motion of the vehicle. The simulation results were analysed and the faults were classified according to their controllability using the proposed method. It was shown that the controllability decreased specifically with increasing lateral acceleration and increasing speed. The results for the electric driveline faults show that this trend cannot be generalised for all the faults, as the controllability deteriorated for some faults during manoeuvres with low lateral acceleration and low speed. The proposed method is generic and can be applied to various other types of road vehicles and faults.

  5. Classification of busses and lorries in an automatic road toll system

    OpenAIRE

    Jarl, Adam

    2003-01-01

    An automatic road toll system enables the passing vehicles to change lanes and no stop is needed for payment. Because of different weight of personal cars, busses, lorries (trucks) and other vehicles, they affect the road in different ways. It is of interest to categorize the vehicles into different classes depending of their weight so that the right fee can be set. An automatic road toll system developed by Combitech Traffic Systems AB (now Kapsch TrafficCom AB), Joenkoping, Sweden, classifi...

  6. Deep transfer learning for automatic target classification: MWIR to LWIR

    Science.gov (United States)

    Ding, Zhengming; Nasrabadi, Nasser; Fu, Yun

    2016-05-01

    Publisher's Note: This paper, originally published on 5/12/2016, was replaced with a corrected/revised version on 5/18/2016. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. When dealing with sparse or no labeled data in the target domain, transfer learning shows its appealing performance by borrowing the supervised knowledge from external domains. Recently deep structure learning has been exploited in transfer learning due to its attractive power in extracting effective knowledge through multi-layer strategy, so that deep transfer learning is promising to address the cross-domain mismatch. In general, cross-domain disparity can be resulted from the difference between source and target distributions or different modalities, e.g., Midwave IR (MWIR) and Longwave IR (LWIR). In this paper, we propose a Weighted Deep Transfer Learning framework for automatic target classification through a task-driven fashion. Specifically, deep features and classifier parameters are obtained simultaneously for optimal classification performance. In this way, the proposed deep structures can extract more effective features with the guidance of the classifier performance; on the other hand, the classifier performance is further improved since it is optimized on more discriminative features. Furthermore, we build a weighted scheme to couple source and target output by assigning pseudo labels to target data, therefore we can transfer knowledge from source (i.e., MWIR) to target (i.e., LWIR). Experimental results on real databases demonstrate the superiority of the proposed algorithm by comparing with others.

  7. Automatic target classification of man-made objects in synthetic aperture radar images using Gabor wavelet and neural network

    Science.gov (United States)

    Vasuki, Perumal; Roomi, S. Mohamed Mansoor

    2013-01-01

    Processing of synthetic aperture radar (SAR) images has led to the development of automatic target classification approaches. These approaches help to classify individual and mass military ground vehicles. This work aims to develop an automatic target classification technique to classify military targets like truck/tank/armored car/cannon/bulldozer. The proposed method consists of three stages via preprocessing, feature extraction, and neural network (NN). The first stage removes speckle noise in a SAR image by the identified frost filter and enhances the image by histogram equalization. The second stage uses a Gabor wavelet to extract the image features. The third stage classifies the target by an NN classifier using image features. The proposed work performs better than its counterparts, like K-nearest neighbor (KNN). The proposed work performs better on databases like moving and stationary target acquisition and recognition against the earlier methods by KNN.

  8. Automatic detection and classification of human epicardial atrial unipolar electrograms

    International Nuclear Information System (INIS)

    Dubé, B; Vinet, A; Xiong, F; Yin, Y; LeBlanc, A-R; Pagé, P

    2009-01-01

    This paper describes an unsupervised signal processing method applied to three-channel unipolar electrograms recorded from human atria. These were obtained by epicardial wires sutured on the right and left atria after coronary artery bypass surgery. Atrial (A) and ventricular (V) activations had to be detected and identified on each channel, and gathered across the channels when belonging to the same global event. The algorithm was developed and optimized on a training set of 19 recordings of 5 min. It was assessed on twenty-seven 2 h recordings taken just before the onset of a prolonged atrial fibrillation for a total of 1593697 activations that were validated and classified as normal atrial or ventricular activations (A, V) and premature atrial or ventricular activations (PAA, PVA). 99.93% of the activations were detected, and amongst these, 99.89% of the A and 99.75% of the V activations were correctly labelled. In the subset of the 39705 PAA, 99.83% were detected and 99.3% were correctly classified as A. The false positive rate was 0.37%. In conclusion, a reliable fully automatic detection and classification algorithm was developed that can detect and discriminate A and V activations from atrial recordings. It can provide the time series needed to develop a monitoring system aiming to identify dynamic predictors of forthcoming cardiac events such as postoperative atrial fibrillation

  9. A contextual image segmentation system using a priori information for automatic data classification in nuclear physics

    International Nuclear Information System (INIS)

    Benkirane, A.; Auger, G.; Chbihi, A.; Bloyet, D.; Plagnol, E.

    1994-01-01

    This paper presents an original approach to solve an automatic data classification problem by means of image processing techniques. The classification is achieved using image segmentation techniques for extracting the meaningful classes. Two types of information are merged for this purpose: the information contained in experimental images and a priori information derived from underlying physics (and adapted to image segmentation problem). This data fusion is widely used at different stages of the segmentation process. This approach yields interesting results in terms of segmentation performances, even in very noisy cases. Satisfactory classification results are obtained in cases where more ''classical'' automatic data classification methods fail. (authors). 25 refs., 14 figs., 1 append

  10. A contextual image segmentation system using a priori information for automatic data classification in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Benkirane, A; Auger, G; Chbihi, A [Grand Accelerateur National d` Ions Lourds (GANIL), 14 - Caen (France); Bloyet, D [Caen Univ., 14 (France); Plagnol, E [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1994-12-31

    This paper presents an original approach to solve an automatic data classification problem by means of image processing techniques. The classification is achieved using image segmentation techniques for extracting the meaningful classes. Two types of information are merged for this purpose: the information contained in experimental images and a priori information derived from underlying physics (and adapted to image segmentation problem). This data fusion is widely used at different stages of the segmentation process. This approach yields interesting results in terms of segmentation performances, even in very noisy cases. Satisfactory classification results are obtained in cases where more ``classical`` automatic data classification methods fail. (authors). 25 refs., 14 figs., 1 append.

  11. Towards Automatic Trunk Classification on Young Conifers

    DEFF Research Database (Denmark)

    Petri, Stig; Immerkær, John

    2009-01-01

    In the garden nursery industry providing young Nordmann firs for Christmas tree plantations, there is a rising interest in automatic classification of their products to ensure consistently high quality and reduce the cost of manual labor. This paper describes a fully automatic single-view algorit...... performance of the algorithm by incorporating color information into the data considered by the dynamic programming algorithm....

  12. Roadway system assessment using bluetooth-based automatic vehicle identification travel time data.

    Science.gov (United States)

    2012-12-01

    This monograph is an exposition of several practice-ready methodologies for automatic vehicle identification (AVI) data collection : systems. This includes considerations in the physical setup of the collection system as well as the interpretation of...

  13. Vehicle Maneuver Detection with Accelerometer-Based Classification

    Directory of Open Access Journals (Sweden)

    Javier Cervantes-Villanueva

    2016-09-01

    Full Text Available In the mobile computing era, smartphones have become instrumental tools to develop innovative mobile context-aware systems. In that sense, their usage in the vehicular domain eases the development of novel and personal transportation solutions. In this frame, the present work introduces an innovative mechanism to perceive the current kinematic state of a vehicle on the basis of the accelerometer data from a smartphone mounted in the vehicle. Unlike previous proposals, the introduced architecture targets the computational limitations of such devices to carry out the detection process following an incremental approach. For its realization, we have evaluated different classification algorithms to act as agents within the architecture. Finally, our approach has been tested with a real-world dataset collected by means of the ad hoc mobile application developed.

  14. Automatic contact in DYNA3D for vehicle crashworthiness

    International Nuclear Information System (INIS)

    Whirley, R.G.; Engelmann, B.E.

    1994-01-01

    This paper presents a new formulation for the automatic definition and treatment of mechanical contact in explicit, nonlinear, finite element analysis. Automatic contact offers the benefits of significantly reduced model construction time and fewer opportunities for user error, but faces significant challenges in reliability and computational costs. The authors have used a new four-step automatic contact algorithm. Key aspects of the proposed method include (1) automatic identification of adjacent and opposite surfaces in the global search phase, and (2) the use of a smoothly varying surface normal that allows a consistent treatment of shell intersection and corner contact conditions without ad hoc rules. Three examples are given to illustrate the performance of the newly proposed algorithm in the public DYNA3D code

  15. Automatic structure classification of small proteins using random forest

    Directory of Open Access Journals (Sweden)

    Hirst Jonathan D

    2010-07-01

    Full Text Available Abstract Background Random forest, an ensemble based supervised machine learning algorithm, is used to predict the SCOP structural classification for a target structure, based on the similarity of its structural descriptors to those of a template structure with an equal number of secondary structure elements (SSEs. An initial assessment of random forest is carried out for domains consisting of three SSEs. The usability of random forest in classifying larger domains is demonstrated by applying it to domains consisting of four, five and six SSEs. Results Random forest, trained on SCOP version 1.69, achieves a predictive accuracy of up to 94% on an independent and non-overlapping test set derived from SCOP version 1.73. For classification to the SCOP Class, Fold, Super-family or Family levels, the predictive quality of the model in terms of Matthew's correlation coefficient (MCC ranged from 0.61 to 0.83. As the number of constituent SSEs increases the MCC for classification to different structural levels decreases. Conclusions The utility of random forest in classifying domains from the place-holder classes of SCOP to the true Class, Fold, Super-family or Family levels is demonstrated. Issues such as introduction of a new structural level in SCOP and the merger of singleton levels can also be addressed using random forest. A real-world scenario is mimicked by predicting the classification for those protein structures from the PDB, which are yet to be assigned to the SCOP classification hierarchy.

  16. Automatic classification of gammas-gamma coincidence matrices

    International Nuclear Information System (INIS)

    Los Arcos Merino, J. M.; Gonzalez, J. A.

    1978-01-01

    The information obtained during a coincidence experiment, recorded on magnetic tape by a MULTI-8 minicomputer, is transferred to a new tape in 36 bit words, using the program LEC0M8. The classification in two dimensional matrix form is carried out off-line, on a magnetic disk file, by the program CLAFI. On finishing classification one obtains a copy of the coincidence matrix on the second magnetic tape. Both programs are written to be processed in that order with the UNIVAC 1106 computer of J.E.N. (Author) 4 refs

  17. Automatic classification of gamma-gamma coincidence matrices

    International Nuclear Information System (INIS)

    Los Arcos Merino, J.M.; Gonzalez Gonzalez, J.A.

    1978-01-01

    The information obtained during a coincidence experiment, recorded on magnetic tape by a Multi-8 minicomputer, is transferred to a new tape in 36 bit words, using the program Lecom8. The classification in two dimensional matrix form is carried out off-line, on a magnetic disk file, by the program Clafi. On finishing classification one obtains a copy of the coincidence matrix on the second magnetic tape. Both programs are written to be processed in that order with the Univac 1106 computer of J.E.N. (author)

  18. Classification of robotic battery service systems for unmanned aerial vehicles

    Directory of Open Access Journals (Sweden)

    Ngo Tien

    2018-01-01

    Full Text Available Existing examples of prototypes of ground-based robotic platforms used as a landing site for unmanned aerial vehicles are considered. In some cases, they are equipped with a maintenance mechanism for the power supply module. The main requirements for robotic multi-copter battery maintenance systems depending on operating conditions, required processing speed, operator experience and other parameters are analyzed. The key issues remain questions of the autonomous landing of the unmanned aerial vehicles on the platform and approach to servicing battery. The existing prototypes of service robotic platforms are differed in the complexity of internal mechanisms, speed of service, algorithms of joint work of the platform and unmanned aerial vehicles during the landing and maintenance of the battery. The classification of robotic systems for servicing the power supply of multi-copter batteries criteria is presented using the following: the type of basing, the method of navigation during landing, the shape of the landing pad, the method of restoring the power supply module. The proposed algorithmic model of the operation of battery power maintenance system of the multi-copter on ground-based robotic platform during solving the target agrarian problem is described. Wireless methods of battery recovery are most promising, so further development and prototyping of a wireless charging station for multi-copter batteries will be developed.

  19. Segmenting articular cartilage automatically using a voxel classification approach

    DEFF Research Database (Denmark)

    Folkesson, Jenny; Dam, Erik B; Olsen, Ole F

    2007-01-01

    We present a fully automatic method for articular cartilage segmentation from magnetic resonance imaging (MRI) which we use as the foundation of a quantitative cartilage assessment. We evaluate our method by comparisons to manual segmentations by a radiologist and by examining the interscan...... reproducibility of the volume and area estimates. Training and evaluation of the method is performed on a data set consisting of 139 scans of knees with a status ranging from healthy to severely osteoarthritic. This is, to our knowledge, the only fully automatic cartilage segmentation method that has good...... agreement with manual segmentations, an interscan reproducibility as good as that of a human expert, and enables the separation between healthy and osteoarthritic populations. While high-field scanners offer high-quality imaging from which the articular cartilage have been evaluated extensively using manual...

  20. The systems of automatic weight control of vehicles in the road and rail transport in Poland

    Directory of Open Access Journals (Sweden)

    2011-09-01

    Full Text Available . Condition of roads in Poland, despite the on-going modernisation works is still unsatisfactory. One reason is the excessive wear caused by overloaded vehicles. This problem also applies to rail transport, although to a much lesser extent. One solution may be the system of automatic weight control of road and rail vehicles. The article describes the legal and organizational conditions of oversize vehicles inspection in Poland. Characterized current practices weighing road vehicles, based on measurements of static technology. The article includes the description of the existing applications of the automatic dynamic weighing technology, known as systems WIM (Weigh in Motion. Additionally, the weighing technology and construction of weighing stands in road and rail are characterized. The article ends with authors' conclusions indicating the direction and ways of improving the weighing control systems for vehicles.

  1. Automatic parquet block sorting using real-time spectral classification

    Science.gov (United States)

    Astrom, Anders; Astrand, Erik; Johansson, Magnus

    1999-03-01

    This paper presents a real-time spectral classification system based on the PGP spectrograph and a smart image sensor. The PGP is a spectrograph which extracts the spectral information from a scene and projects the information on an image sensor, which is a method often referred to as Imaging Spectroscopy. The classification is based on linear models and categorizes a number of pixels along a line. Previous systems adopting this method have used standard sensors, which often resulted in poor performance. The new system, however, is based on a patented near-sensor classification method, which exploits analogue features on the smart image sensor. The method reduces the enormous amount of data to be processed at an early stage, thus making true real-time spectral classification possible. The system has been evaluated on hardwood parquet boards showing very good results. The color defects considered in the experiments were blue stain, white sapwood, yellow decay and red decay. In addition to these four defect classes, a reference class was used to indicate correct surface color. The system calculates a statistical measure for each parquet block, giving the pixel defect percentage. The patented method makes it possible to run at very high speeds with a high spectral discrimination ability. Using a powerful illuminator, the system can run with a line frequency exceeding 2000 line/s. This opens up the possibility to maintain high production speed and still measure with good resolution.

  2. Low-cost real-time automatic wheel classification system

    Science.gov (United States)

    Shabestari, Behrouz N.; Miller, John W. V.; Wedding, Victoria

    1992-11-01

    This paper describes the design and implementation of a low-cost machine vision system for identifying various types of automotive wheels which are manufactured in several styles and sizes. In this application, a variety of wheels travel on a conveyor in random order through a number of processing steps. One of these processes requires the identification of the wheel type which was performed manually by an operator. A vision system was designed to provide the required identification. The system consisted of an annular illumination source, a CCD TV camera, frame grabber, and 386-compatible computer. Statistical pattern recognition techniques were used to provide robust classification as well as a simple means for adding new wheel designs to the system. Maintenance of the system can be performed by plant personnel with minimal training. The basic steps for identification include image acquisition, segmentation of the regions of interest, extraction of selected features, and classification. The vision system has been installed in a plant and has proven to be extremely effective. The system properly identifies the wheels correctly up to 30 wheels per minute regardless of rotational orientation in the camera's field of view. Correct classification can even be achieved if a portion of the wheel is blocked off from the camera. Significant cost savings have been achieved by a reduction in scrap associated with incorrect manual classification as well as a reduction of labor in a tedious task.

  3. Automatic workflow for the classification of local DNA conformations

    Czech Academy of Sciences Publication Activity Database

    Čech, P.; Kukal, J.; Černý, Jiří; Schneider, Bohdan; Svozil, D.

    2013-01-01

    Roč. 14, č. 205 (2013) ISSN 1471-2105 R&D Projects: GA ČR GAP305/12/1801 Institutional research plan: CEZ:AV0Z50520701 Keywords : DNA * Dinucleotide conformation * Classification * Machine learning * Neural network * k-NN * Cluster analysis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.672, year: 2013

  4. A simple semi-automatic approach for land cover classification from multispectral remote sensing imagery.

    Directory of Open Access Journals (Sweden)

    Dong Jiang

    Full Text Available Land cover data represent a fundamental data source for various types of scientific research. The classification of land cover based on satellite data is a challenging task, and an efficient classification method is needed. In this study, an automatic scheme is proposed for the classification of land use using multispectral remote sensing images based on change detection and a semi-supervised classifier. The satellite image can be automatically classified using only the prior land cover map and existing images; therefore human involvement is reduced to a minimum, ensuring the operability of the method. The method was tested in the Qingpu District of Shanghai, China. Using Environment Satellite 1(HJ-1 images of 2009 with 30 m spatial resolution, the areas were classified into five main types of land cover based on previous land cover data and spectral features. The results agreed on validation of land cover maps well with a Kappa value of 0.79 and statistical area biases in proportion less than 6%. This study proposed a simple semi-automatic approach for land cover classification by using prior maps with satisfied accuracy, which integrated the accuracy of visual interpretation and performance of automatic classification methods. The method can be used for land cover mapping in areas lacking ground reference information or identifying rapid variation of land cover regions (such as rapid urbanization with convenience.

  5. Poster Abstract: Automatic Calibration of Device Attitude in Inertial Measurement Unit Based Traffic Probe Vehicles

    KAUST Repository

    Mousa, Mustafa

    2016-04-28

    Probe vehicles consist in mobile traffic sensor networks that evolve with the flow of vehicles, transmitting velocity and position measurements along their path, generated using GPSs. To address the urban positioning issues of GPSs, we propose to replace them with inertial measurement units onboard vehicles, to estimate vehicle location and attitude using inertial data only. While promising, this technology requires one to carefully calibrate the orientation of the device inside the vehicle to be able to process the acceleration and rate gyro data. In this article, we propose a scheme that can perform this calibration automatically by leveraging the kinematic constraints of ground vehicles, and that can be implemented on low-end computational platforms. Preliminary testing shows that the proposed scheme enables one to accurately estimate the actual accelerations and rotation rates in the vehicle coordinates. © 2016 IEEE.

  6. Search and Classification Using Multiple Autonomous Vehicles Decision-Making and Sensor Management

    CERN Document Server

    Wang, Yue

    2012-01-01

    Search and Classification Using Multiple Autonomous Vehicles provides a comprehensive study of decision-making strategies for domain search and object classification using multiple autonomous vehicles (MAV) under both deterministic and probabilistic frameworks. It serves as a first discussion of the problem of effective resource allocation using MAV with sensing limitations, i.e., for search and classification missions over large-scale domains, or when there are far more objects to be found and classified than there are autonomous vehicles available. Under such scenarios, search and classification compete for limited sensing resources. This is because search requires vehicle mobility while classification restricts the vehicles to the vicinity of any objects found. The authors develop decision-making strategies to choose between these competing tasks and vehicle-motion-control laws to achieve the proposed management scheme. Deterministic Lyapunov-based, probabilistic Bayesian-based, and risk-based decision-mak...

  7. Automatic classification of DMSA scans using an artificial neural network

    Science.gov (United States)

    Wright, J. W.; Duguid, R.; Mckiddie, F.; Staff, R. T.

    2014-04-01

    DMSA imaging is carried out in nuclear medicine to assess the level of functional renal tissue in patients. This study investigated the use of an artificial neural network to perform diagnostic classification of these scans. Using the radiological report as the gold standard, the network was trained to classify DMSA scans as positive or negative for defects using a representative sample of 257 previously reported images. The trained network was then independently tested using a further 193 scans and achieved a binary classification accuracy of 95.9%. The performance of the network was compared with three qualified expert observers who were asked to grade each scan in the 193 image testing set on a six point defect scale, from ‘definitely normal’ to ‘definitely abnormal’. A receiver operating characteristic analysis comparison between a consensus operator, generated from the scores of the three expert observers, and the network revealed a statistically significant increase (α quality assurance assistant in clinical practice.

  8. Automatic Adviser on Mobile Objects Status Identification and Classification

    Science.gov (United States)

    Shabelnikov, A. N.; Liabakh, N. N.; Gibner, Ya M.; Saryan, A. S.

    2018-05-01

    A mobile object status identification task is defined within the image discrimination theory. It is proposed to classify objects into three classes: object operation status; its maintenance is required and object should be removed from the production process. Two methods were developed to construct the separating boundaries between the designated classes: a) using statistical information on the research objects executed movement, b) basing on regulatory documents and expert commentary. Automatic Adviser operation simulation and the operation results analysis complex were synthesized. Research results are commented using a specific example of cuts rolling from the hump yard. The work was supported by Russian Fundamental Research Fund, project No. 17-20-01040.

  9. Realizing parameterless automatic classification of remote sensing imagery using ontology engineering and cyberinfrastructure techniques

    Science.gov (United States)

    Sun, Ziheng; Fang, Hui; Di, Liping; Yue, Peng

    2016-09-01

    It was an untouchable dream for remote sensing experts to realize total automatic image classification without inputting any parameter values. Experts usually spend hours and hours on tuning the input parameters of classification algorithms in order to obtain the best results. With the rapid development of knowledge engineering and cyberinfrastructure, a lot of data processing and knowledge reasoning capabilities become online accessible, shareable and interoperable. Based on these recent improvements, this paper presents an idea of parameterless automatic classification which only requires an image and automatically outputs a labeled vector. No parameters and operations are needed from endpoint consumers. An approach is proposed to realize the idea. It adopts an ontology database to store the experiences of tuning values for classifiers. A sample database is used to record training samples of image segments. Geoprocessing Web services are used as functionality blocks to finish basic classification steps. Workflow technology is involved to turn the overall image classification into a total automatic process. A Web-based prototypical system named PACS (Parameterless Automatic Classification System) is implemented. A number of images are fed into the system for evaluation purposes. The results show that the approach could automatically classify remote sensing images and have a fairly good average accuracy. It is indicated that the classified results will be more accurate if the two databases have higher quality. Once the experiences and samples in the databases are accumulated as many as an expert has, the approach should be able to get the results with similar quality to that a human expert can get. Since the approach is total automatic and parameterless, it can not only relieve remote sensing workers from the heavy and time-consuming parameter tuning work, but also significantly shorten the waiting time for consumers and facilitate them to engage in image

  10. Region descriptors for automatic classification of small sea targets in infrared video

    NARCIS (Netherlands)

    Mouthaan, M.M.; Broek, S.P. van den; Hendriks, E.A.; Schwering, P.B.W.

    2011-01-01

    We evaluate the performance of different key-point detectors and region descriptors when used for automatic classification of small sea targets in infrared video. In our earlier research performed on this subject as well as in other literature, many different region descriptors have been proposed.

  11. Automatic classification of liver scintigram patterns by computer

    International Nuclear Information System (INIS)

    Csernay, L.; Csirik, J.

    1976-01-01

    The pattern recognition of projection is one of the problems in the automatic evaluation of scintigrams. An algorythm and a computerized programme with the ability to classify the shapes of liver scintigrams has been elaborated by the authors. The programme differentiates not only normal and pathologic basic forms, but performs the identification of nine normal forms described by the literature. To pattern recognition structural and local parameters of the picture were defined. A detailed mechanism of the programme is given in their reports. The programme can classify 55 out of 60 actual liver scintigrams, a result different from subjective definition obtained in 5 cases. These were normal pattern of liver scans. No wrong definition was obtained when classifying normal and pathologic patterns

  12. 'H-Bahn' - Dortmund demonstration system. Automatic vehicle protection system

    Energy Technology Data Exchange (ETDEWEB)

    Rosenkranz

    1984-01-01

    The automatic vehicle protection system of the H-Bahn at the Universtiy of Dortmund is responsible for fail-safe operating of the automatic vehicles. Its functions are protection of vehicle operation and protection of passengers boarding and leaving the vehicles. These functions are managed decentrally by two fail-safe operating controllers. Besides the well-known relay-techniques of railway-fail-safe systems, electronics are applied which are based on safe operating URTL-microcontrollers. These are controlled by software stored in EPROMs. A connection link using glass-fibres serves for safe data-exchange between the two fail-safe operating controllers. The experts' favourable reports on 'train protection and safety during passenger processing' were completed in March 84; thus, transportation of passengers could start in April 84.

  13. Automatic classification of DMSA scans using an artificial neural network

    International Nuclear Information System (INIS)

    Wright, J W; Duguid, R; Mckiddie, F; Staff, R T

    2014-01-01

    DMSA imaging is carried out in nuclear medicine to assess the level of functional renal tissue in patients. This study investigated the use of an artificial neural network to perform diagnostic classification of these scans. Using the radiological report as the gold standard, the network was trained to classify DMSA scans as positive or negative for defects using a representative sample of 257 previously reported images. The trained network was then independently tested using a further 193 scans and achieved a binary classification accuracy of 95.9%. The performance of the network was compared with three qualified expert observers who were asked to grade each scan in the 193 image testing set on a six point defect scale, from ‘definitely normal’ to ‘definitely abnormal’. A receiver operating characteristic analysis comparison between a consensus operator, generated from the scores of the three expert observers, and the network revealed a statistically significant increase (α < 0.05) in performance between the network and operators. A further result from this work was that when suitably optimized, a negative predictive value of 100% for renal defects was achieved by the network, while still managing to identify 93% of the negative cases in the dataset. These results are encouraging for application of such a network as a screening tool or quality assurance assistant in clinical practice. (paper)

  14. Automatic Fault Characterization via Abnormality-Enhanced Classification

    Energy Technology Data Exchange (ETDEWEB)

    Bronevetsky, G; Laguna, I; de Supinski, B R

    2010-12-20

    Enterprise and high-performance computing systems are growing extremely large and complex, employing hundreds to hundreds of thousands of processors and software/hardware stacks built by many people across many organizations. As the growing scale of these machines increases the frequency of faults, system complexity makes these faults difficult to detect and to diagnose. Current system management techniques, which focus primarily on efficient data access and query mechanisms, require system administrators to examine the behavior of various system services manually. Growing system complexity is making this manual process unmanageable: administrators require more effective management tools that can detect faults and help to identify their root causes. System administrators need timely notification when a fault is manifested that includes the type of fault, the time period in which it occurred and the processor on which it originated. Statistical modeling approaches can accurately characterize system behavior. However, the complex effects of system faults make these tools difficult to apply effectively. This paper investigates the application of classification and clustering algorithms to fault detection and characterization. We show experimentally that naively applying these methods achieves poor accuracy. Further, we design novel techniques that combine classification algorithms with information on the abnormality of application behavior to improve detection and characterization accuracy. Our experiments demonstrate that these techniques can detect and characterize faults with 65% accuracy, compared to just 5% accuracy for naive approaches.

  15. Automatic Detection of Vehicles Using Intensity Laser and Anaglyph Image

    Directory of Open Access Journals (Sweden)

    Hideo Araki

    2006-12-01

    Full Text Available In this work is presented a methodology to automatic car detection motion presents in digital aerial image on urban area using intensity, anaglyph and subtracting images. The anaglyph image is used to identify the motion cars on the expose take, because the cars provide red color due the not homology between objects. An implicit model was developed to provide a digital pixel value that has the specific propriety presented early, using the ratio between the RGB color of car object in the anaglyph image. The intensity image is used to decrease the false positive and to do the processing to work into roads and streets. The subtracting image is applied to decrease the false positives obtained due the markings road. The goal of this paper is automatically detect motion cars presents in digital aerial image in urban areas. The algorithm implemented applies normalization on the left and right images and later form the anaglyph with using the translation. The results show the applicability of proposed method and it potentiality on the automatic car detection and presented the performance of proposed methodology.

  16. Automatic Classification of Offshore Wind Regimes With Weather Radar Observations

    DEFF Research Database (Denmark)

    Trombe, Pierre-Julien; Pinson, Pierre; Madsen, Henrik

    2014-01-01

    Weather radar observations are called to play an important role in offshore wind energy. In particular, they can enable the monitoring of weather conditions in the vicinity of large-scale offshore wind farms and thereby notify the arrival of precipitation systems associated with severe wind...... and amplitude) using reflectivity observations from a single weather radar system. A categorical sequence of most likely wind regimes is estimated from a wind speed time series by combining a Markov-Switching model and a global decoding technique, the Viterbi algorithm. In parallel, attributes of precipitation...... systems are extracted from weather radar images. These attributes describe the global intensity, spatial continuity and motion of precipitation echoes on the images. Finally, a CART classification tree is used to find the broad relationships between precipitation attributes and wind regimes...

  17. Feature ranking and rank aggregation for automatic sleep stage classification: a comparative study.

    Science.gov (United States)

    Najdi, Shirin; Gharbali, Ali Abdollahi; Fonseca, José Manuel

    2017-08-18

    Nowadays, sleep quality is one of the most important measures of healthy life, especially considering the huge number of sleep-related disorders. Identifying sleep stages using polysomnographic (PSG) signals is the traditional way of assessing sleep quality. However, the manual process of sleep stage classification is time-consuming, subjective and costly. Therefore, in order to improve the accuracy and efficiency of the sleep stage classification, researchers have been trying to develop automatic classification algorithms. Automatic sleep stage classification mainly consists of three steps: pre-processing, feature extraction and classification. Since classification accuracy is deeply affected by the extracted features, a poor feature vector will adversely affect the classifier and eventually lead to low classification accuracy. Therefore, special attention should be given to the feature extraction and selection process. In this paper the performance of seven feature selection methods, as well as two feature rank aggregation methods, were compared. Pz-Oz EEG, horizontal EOG and submental chin EMG recordings of 22 healthy males and females were used. A comprehensive feature set including 49 features was extracted from these recordings. The extracted features are among the most common and effective features used in sleep stage classification from temporal, spectral, entropy-based and nonlinear categories. The feature selection methods were evaluated and compared using three criteria: classification accuracy, stability, and similarity. Simulation results show that MRMR-MID achieves the highest classification performance while Fisher method provides the most stable ranking. In our simulations, the performance of the aggregation methods was in the average level, although they are known to generate more stable results and better accuracy. The Borda and RRA rank aggregation methods could not outperform significantly the conventional feature ranking methods. Among

  18. AUTOMATIC DETECTION AND CLASSIFICATION OF RETINAL VASCULAR LANDMARKS

    Directory of Open Access Journals (Sweden)

    Hadi Hamad

    2014-06-01

    Full Text Available The main contribution of this paper is introducing a method to distinguish between different landmarks of the retina: bifurcations and crossings. The methodology may help in differentiating between arteries and veins and is useful in identifying diseases and other special pathologies, too. The method does not need any special skills, thus it can be assimilated to an automatic way for pinpointing landmarks; moreover it gives good responses for very small vessels. A skeletonized representation, taken out from the segmented binary image (obtained through a preprocessing step, is used to identify pixels with three or more neighbors. Then, the junction points are classified into bifurcations or crossovers depending on their geometrical and topological properties such as width, direction and connectivity of the surrounding segments. The proposed approach is applied to the public-domain DRIVE and STARE datasets and compared with the state-of-the-art methods using proper validation parameters. The method was successful in identifying the majority of the landmarks; the average correctly identified bifurcations in both DRIVE and STARE datasets for the recall and precision values are: 95.4% and 87.1% respectively; also for the crossovers, the recall and precision values are: 87.6% and 90.5% respectively; thus outperforming other studies.

  19. Automatic system for localization and recognition of vehicle plate numbers

    OpenAIRE

    Vázquez, N.; Nakano, M.; Pérez-Meana, H.

    2003-01-01

    This paper proposes a vehicle numbers plate identification system, which extracts the characters features of a plate from a captured image by a digital camera. Then identify the symbols of the number plate using a multilayer neural network. The proposed recognition system consists of two processes: The training process and the recognition process. During the training process, a database is created using 310 vehicular plate images. Then using this database a multilayer neural network is traine...

  20. Automatic topic identification of health-related messages in online health community using text classification.

    Science.gov (United States)

    Lu, Yingjie

    2013-01-01

    To facilitate patient involvement in online health community and obtain informative support and emotional support they need, a topic identification approach was proposed in this paper for identifying automatically topics of the health-related messages in online health community, thus assisting patients in reaching the most relevant messages for their queries efficiently. Feature-based classification framework was presented for automatic topic identification in our study. We first collected the messages related to some predefined topics in a online health community. Then we combined three different types of features, n-gram-based features, domain-specific features and sentiment features to build four feature sets for health-related text representation. Finally, three different text classification techniques, C4.5, Naïve Bayes and SVM were adopted to evaluate our topic classification model. By comparing different feature sets and different classification techniques, we found that n-gram-based features, domain-specific features and sentiment features were all considered to be effective in distinguishing different types of health-related topics. In addition, feature reduction technique based on information gain was also effective to improve the topic classification performance. In terms of classification techniques, SVM outperformed C4.5 and Naïve Bayes significantly. The experimental results demonstrated that the proposed approach could identify the topics of online health-related messages efficiently.

  1. Automatic Seismic-Event Classification with Convolutional Neural Networks.

    Science.gov (United States)

    Bueno Rodriguez, A.; Titos Luzón, M.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.

    2017-12-01

    Active volcanoes exhibit a wide range of seismic signals, providing vast amounts of unlabelled volcano-seismic data that can be analyzed through the lens of artificial intelligence. However, obtaining high-quality labelled data is time-consuming and expensive. Deep neural networks can process data in their raw form, compute high-level features and provide a better representation of the input data distribution. These systems can be deployed to classify seismic data at scale, enhance current early-warning systems and build extensive seismic catalogs. In this research, we aim to classify spectrograms from seven different seismic events registered at "Volcán de Fuego" (Colima, Mexico), during four eruptive periods. Our approach is based on convolutional neural networks (CNNs), a sub-type of deep neural networks that can exploit grid structure from the data. Volcano-seismic signals can be mapped into a grid-like structure using the spectrogram: a representation of the temporal evolution in terms of time and frequency. Spectrograms were computed from the data using Hamming windows with 4 seconds length, 2.5 seconds overlapping and 128 points FFT resolution. Results are compared to deep neural networks, random forest and SVMs. Experiments show that CNNs can exploit temporal and frequency information, attaining a classification accuracy of 93%, similar to deep networks 91% but outperforming SVM and random forest. These results empirically show that CNNs are powerful models to classify a wide range of volcano-seismic signals, and achieve good generalization. Furthermore, volcano-seismic spectrograms contains useful discriminative information for the CNN, as higher layers of the network combine high-level features computed for each frequency band, helping to detect simultaneous events in time. Being at the intersection of deep learning and geophysics, this research enables future studies of how CNNs can be used in volcano monitoring to accurately determine the detection and

  2. Automatic classification of tissue malignancy for breast carcinoma diagnosis.

    Science.gov (United States)

    Fondón, Irene; Sarmiento, Auxiliadora; García, Ana Isabel; Silvestre, María; Eloy, Catarina; Polónia, António; Aguiar, Paulo

    2018-05-01

    Breast cancer is the second leading cause of cancer death among women. Its early diagnosis is extremely important to prevent avoidable deaths. However, malignancy assessment of tissue biopsies is complex and dependent on observer subjectivity. Moreover, hematoxylin and eosin (H&E)-stained histological images exhibit a highly variable appearance, even within the same malignancy level. In this paper, we propose a computer-aided diagnosis (CAD) tool for automated malignancy assessment of breast tissue samples based on the processing of histological images. We provide four malignancy levels as the output of the system: normal, benign, in situ and invasive. The method is based on the calculation of three sets of features related to nuclei, colour regions and textures considering local characteristics and global image properties. By taking advantage of well-established image processing techniques, we build a feature vector for each image that serves as an input to an SVM (Support Vector Machine) classifier with a quadratic kernel. The method has been rigorously evaluated, first with a 5-fold cross-validation within an initial set of 120 images, second with an external set of 30 different images and third with images with artefacts included. Accuracy levels range from 75.8% when the 5-fold cross-validation was performed to 75% with the external set of new images and 61.11% when the extremely difficult images were added to the classification experiment. The experimental results indicate that the proposed method is capable of distinguishing between four malignancy levels with high accuracy. Our results are close to those obtained with recent deep learning-based methods. Moreover, it performs better than other state-of-the-art methods based on feature extraction, and it can help improve the CAD of breast cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. SYSTEM FOR AUTOMATIC SELECTION OF THE SPEED RATE OF ELECTRIC VEHICLES FOR REDUCING THE POWER CONSUMPTION

    Directory of Open Access Journals (Sweden)

    K. O. Soroka

    2017-06-01

    Full Text Available Purpose. The work is aimed to design a system for automatic selection of the optimal traffic modes and automatic monitoring of the electric energy consumption by electric transport. This automatic system should provide for the minimum energy expenses. Methodology. Current methodologies: 1 mathematical modeling of traffic modes of ground electric vehicles; 2 comparison of modelling results with the statistical monitoring; 3 system development for automatic choice of traffic modes of electric transport with minimal electrical energy consumptions taking into account the given route schedules and the limitations imposed by the general traffic rules. Findings. The authors obtained a mathematical dependency of the energy consumption by electric transport enterprises on the monthly averaged environment temperature was obtained. A system which allows for an automatic selection of the speed limit and provides automatic monitoring of the electrical energy consumption by electric vehicles was proposed in the form of local network, which works together with existing GPS system. Originality. A mathematical model for calculating the motion curves and energy consumption of electric vehicles has been developed. This model takes into account the characteristic values of the motor engine and the steering system, the change of the mass when loading or unloading passengers, the slopes and radii of the roads, the limitations given by the general traffic rules, and other factors. The dependency of the energy consumption on the averaged monthly environment temperature for public electric transport companies has been calculated. Practical value. The developed mathematical model simplifies the calculations of the traffic dynamics and energy consumption. It can be used for calculating the routing maps, for design and upgrade of the power networks, for development of the electricity saving measures. The system simplifies the work of the vehicle driver and allows reducing

  4. Automatic construction of a recurrent neural network based classifier for vehicle passage detection

    Science.gov (United States)

    Burnaev, Evgeny; Koptelov, Ivan; Novikov, German; Khanipov, Timur

    2017-03-01

    Recurrent Neural Networks (RNNs) are extensively used for time-series modeling and prediction. We propose an approach for automatic construction of a binary classifier based on Long Short-Term Memory RNNs (LSTM-RNNs) for detection of a vehicle passage through a checkpoint. As an input to the classifier we use multidimensional signals of various sensors that are installed on the checkpoint. Obtained results demonstrate that the previous approach to handcrafting a classifier, consisting of a set of deterministic rules, can be successfully replaced by an automatic RNN training on an appropriately labelled data.

  5. An automatic window opening system to prevent drowning in vehicles sinking in water

    KAUST Repository

    Giesbrecht, Gordon G.; Percher, Michael; Brunet, Pierre; Richard, Yanik; Alexander, Marion; Bellemare, Alixandra; Rawal, Yash; Amassian, Aram; Mcdonald, Gerren

    2017-01-01

    Objective: Every year about 400 people die in submersed vehicles in North America and this number increases to 2,000–5,000 in all industrialized nations. The best way to survive is to quickly exit through the windows. An Automatic Window Opening System (AWOS; patent protected) was designed to sense when a vehicle is in water and to open the electric windows, but only when the vehicle is upright. Methods: The AWOS consists of a Detection Module (DM), in the engine compartment, and a Power Window Control Module (PWCM) inside the driver’s door. The DM contains a Water Sensor, a Level Sensor and a Microcontroller Unit (MCU). The Level Sensor provides the angular orientation of the car using a 3-axis acceleration sensor and prevents automatic window opening if the car is outside the orientation range (±20° in the roll axis, ±30° in the pitch axis, with a 2 s delay). Systems were installed on two cars and one SUV. A crane lowered vehicles in water either straight down (static tests) or by swinging the vehicles to produce forward movement (dynamic tests). Results: In all tests, when the vehicles landed upright, windows opened immediately and effectively. When vehicles landed inverted, or at a very steep angle, the system did not engage until an upright and level position was attained. Conclusions: This system may help decrease drowning deaths in sinking vehicles. If occupants do not know, or forget, what to do, the open window could hopefully prompt them to exit safely through that window.

  6. An automatic window opening system to prevent drowning in vehicles sinking in water

    KAUST Repository

    Giesbrecht, Gordon G.

    2017-07-12

    Objective: Every year about 400 people die in submersed vehicles in North America and this number increases to 2,000–5,000 in all industrialized nations. The best way to survive is to quickly exit through the windows. An Automatic Window Opening System (AWOS; patent protected) was designed to sense when a vehicle is in water and to open the electric windows, but only when the vehicle is upright. Methods: The AWOS consists of a Detection Module (DM), in the engine compartment, and a Power Window Control Module (PWCM) inside the driver’s door. The DM contains a Water Sensor, a Level Sensor and a Microcontroller Unit (MCU). The Level Sensor provides the angular orientation of the car using a 3-axis acceleration sensor and prevents automatic window opening if the car is outside the orientation range (±20° in the roll axis, ±30° in the pitch axis, with a 2 s delay). Systems were installed on two cars and one SUV. A crane lowered vehicles in water either straight down (static tests) or by swinging the vehicles to produce forward movement (dynamic tests). Results: In all tests, when the vehicles landed upright, windows opened immediately and effectively. When vehicles landed inverted, or at a very steep angle, the system did not engage until an upright and level position was attained. Conclusions: This system may help decrease drowning deaths in sinking vehicles. If occupants do not know, or forget, what to do, the open window could hopefully prompt them to exit safely through that window.

  7. Poster abstract: A machine learning approach for vehicle classification using passive infrared and ultrasonic sensors

    KAUST Repository

    Warriach, Ehsan Ullah; Claudel, Christian G.

    2013-01-01

    This article describes the implementation of four different machine learning techniques for vehicle classification in a dual ultrasonic/passive infrared traffic flow sensors. Using k-NN, Naive Bayes, SVM and KNN-SVM algorithms, we show that KNN

  8. Mining vehicle classifications from the Columbus Metropolitan Freeway Management System : [summary].

    Science.gov (United States)

    2015-01-01

    Vehicle classification data are used in many transportation applications, including: pavement design, : environmental impact studies, traffic control, and traffic safety. Ohio has over 200 permanent count : stations, supplemented by many more short-t...

  9. Automatic plankton image classification combining multiple view features via multiple kernel learning.

    Science.gov (United States)

    Zheng, Haiyong; Wang, Ruchen; Yu, Zhibin; Wang, Nan; Gu, Zhaorui; Zheng, Bing

    2017-12-28

    Plankton, including phytoplankton and zooplankton, are the main source of food for organisms in the ocean and form the base of marine food chain. As the fundamental components of marine ecosystems, plankton is very sensitive to environment changes, and the study of plankton abundance and distribution is crucial, in order to understand environment changes and protect marine ecosystems. This study was carried out to develop an extensive applicable plankton classification system with high accuracy for the increasing number of various imaging devices. Literature shows that most plankton image classification systems were limited to only one specific imaging device and a relatively narrow taxonomic scope. The real practical system for automatic plankton classification is even non-existent and this study is partly to fill this gap. Inspired by the analysis of literature and development of technology, we focused on the requirements of practical application and proposed an automatic system for plankton image classification combining multiple view features via multiple kernel learning (MKL). For one thing, in order to describe the biomorphic characteristics of plankton more completely and comprehensively, we combined general features with robust features, especially by adding features like Inner-Distance Shape Context for morphological representation. For another, we divided all the features into different types from multiple views and feed them to multiple classifiers instead of only one by combining different kernel matrices computed from different types of features optimally via multiple kernel learning. Moreover, we also applied feature selection method to choose the optimal feature subsets from redundant features for satisfying different datasets from different imaging devices. We implemented our proposed classification system on three different datasets across more than 20 categories from phytoplankton to zooplankton. The experimental results validated that our system

  10. [Automatic Classification of Dry Cough and Wet Cough Based on Improved Reverse Mel Frequency Cepstrum Coefficients].

    Science.gov (United States)

    Zhu, Chunmei; Liu, Baojun; Li, Ping; Mo, Hongqiang; Zheng, Zeguang

    2016-04-01

    Automatic classification of different types of cough plays an important role in clinical.In the previous research of cough classification or cough recognition,traditional Mel frequency cepstrum coefficients(MFCC)which extracts feature mainly from low frequency band is usually used as feature expression.In this paper,by analyzing the distributions of spectral energy of dry/wet cough,it is found that spectral difference of two types of cough exits mainly in middle frequency band and high frequency band.To better reflect the spectral difference of dry cough and wet cough,an improved method of extracting reverse MFCC is proposed.In this method,reverse Mel filter-bank in which filters are allocated in reverse Mel scale is adopted and is improved by placing filters only in the frequency band with high spectral energy.As a result,features are mainly extracted from the frequency band where two types of cough show both high spectral energy and distinguished difference.Detailed process of accessing improved reverse MFCC was introduced and hidden Markov models trained by 60 dry cough and 60 wet cough were used as cough classification model.Classification experiment results for 120 dry cough and 85 wet cough showed that,compared to traditional MFCC,better classification performance was achieved by the proposed method and the total classification accuracy was raised from 89.76%to 93.66%.

  11. Roadway System Assessment Using Bluetooth-Based Automatic Vehicle Identification Travel Time Data

    OpenAIRE

    Day, Christopher M.; Brennan, Thomas M.; Hainen, Alexander M.; Remias, Stephen M.; Bullock, Darcy M.

    2012-01-01

    This monograph is an exposition of several practice-ready methodologies for automatic vehicle identification (AVI) data collection systems. This includes considerations in the physical setup of the collection system as well as the interpretation of the data. An extended discussion is provided, with examples, demonstrating data techniques for converting the raw data into more concise metrics and views. Examples of statistical before-after tests are also provided. A series of case studies were ...

  12. Towards Automatic Classification of Exoplanet-Transit-Like Signals: A Case Study on Kepler Mission Data

    Science.gov (United States)

    Valizadegan, Hamed; Martin, Rodney; McCauliff, Sean D.; Jenkins, Jon Michael; Catanzarite, Joseph; Oza, Nikunj C.

    2015-08-01

    Building new catalogues of planetary candidates, astrophysical false alarms, and non-transiting phenomena is a challenging task that currently requires a reviewing team of astrophysicists and astronomers. These scientists need to examine more than 100 diagnostic metrics and associated graphics for each candidate exoplanet-transit-like signal to classify it into one of the three classes. Considering that the NASA Explorer Program's TESS mission and ESA's PLATO mission survey even a larger area of space, the classification of their transit-like signals is more time-consuming for human agents and a bottleneck to successfully construct the new catalogues in a timely manner. This encourages building automatic classification tools that can quickly and reliably classify the new signal data from these missions. The standard tool for building automatic classification systems is the supervised machine learning that requires a large set of highly accurate labeled examples in order to build an effective classifier. This requirement cannot be easily met for classifying transit-like signals because not only are existing labeled signals very limited, but also the current labels may not be reliable (because the labeling process is a subjective task). Our experiments with using different supervised classifiers to categorize transit-like signals verifies that the labeled signals are not rich enough to provide the classifier with enough power to generalize well beyond the observed cases (e.g. to unseen or test signals). That motivated us to utilize a new category of learning techniques, so-called semi-supervised learning, that combines the label information from the costly labeled signals, and distribution information from the cheaply available unlabeled signals in order to construct more effective classifiers. Our study on the Kepler Mission data shows that semi-supervised learning can significantly improve the result of multiple base classifiers (e.g. Support Vector Machines, Ada

  13. Street-side vehicle detection, classification and change detection using mobile laser scanning data

    Science.gov (United States)

    Xiao, Wen; Vallet, Bruno; Schindler, Konrad; Paparoditis, Nicolas

    2016-04-01

    Statistics on street-side car parks, e.g. occupancy rates, parked vehicle types, parking durations, are of great importance for urban planning and policy making. Related studies, e.g. vehicle detection and classification, mostly focus on static images or video. Whereas mobile laser scanning (MLS) systems are increasingly utilized for urban street environment perception due to their direct 3D information acquisition, high accuracy and movability. In this paper, we design a complete system for car park monitoring, including vehicle recognition, localization, classification and change detection, from laser scanning point clouds. The experimental data are acquired by an MLS system using high frequency laser scanner which scans the streets vertically along the system's moving trajectory. The point clouds are firstly classified as ground, building façade, and street objects which are then segmented using state-of-the-art methods. Each segment is treated as an object hypothesis, and its geometric features are extracted. Moreover, a deformable vehicle model is fitted to each object. By fitting an explicit model to the vehicle points, detailed information, such as precise position and orientation, can be obtained. The model parameters are also treated as vehicle features. Together with the geometric features, they are applied to a supervised learning procedure for vehicle or non-vehicle recognition. The classes of detected vehicles are also investigated. Whether vehicles have changed across two datasets acquired at different times is detected to estimate the durations. Here, vehicles are trained pair-wisely. Two same or different vehicles are paired up as training samples. As a result, the vehicle recognition, classification and change detection accuracies are 95.9%, 86.0% and 98.7%, respectively. Vehicle modelling improves not only the recognition rate, but also the localization precision compared to bounding boxes.

  14. [Automatic Sleep Stage Classification Based on an Improved K-means Clustering Algorithm].

    Science.gov (United States)

    Xiao, Shuyuan; Wang, Bei; Zhang, Jian; Zhang, Qunfeng; Zou, Junzhong

    2016-10-01

    Sleep stage scoring is a hotspot in the field of medicine and neuroscience.Visual inspection of sleep is laborious and the results may be subjective to different clinicians.Automatic sleep stage classification algorithm can be used to reduce the manual workload.However,there are still limitations when it encounters complicated and changeable clinical cases.The purpose of this paper is to develop an automatic sleep staging algorithm based on the characteristics of actual sleep data.In the proposed improved K-means clustering algorithm,points were selected as the initial centers by using a concept of density to avoid the randomness of the original K-means algorithm.Meanwhile,the cluster centers were updated according to the‘Three-Sigma Rule’during the iteration to abate the influence of the outliers.The proposed method was tested and analyzed on the overnight sleep data of the healthy persons and patients with sleep disorders after continuous positive airway pressure(CPAP)treatment.The automatic sleep stage classification results were compared with the visual inspection by qualified clinicians and the averaged accuracy reached 76%.With the analysis of morphological diversity of sleep data,it was proved that the proposed improved K-means algorithm was feasible and valid for clinical practice.

  15. Statistical classification of road pavements using near field vehicle rolling noise measurements.

    Science.gov (United States)

    Paulo, Joel Preto; Coelho, J L Bento; Figueiredo, Mário A T

    2010-10-01

    Low noise surfaces have been increasingly considered as a viable and cost-effective alternative to acoustical barriers. However, road planners and administrators frequently lack information on the correlation between the type of road surface and the resulting noise emission profile. To address this problem, a method to identify and classify different types of road pavements was developed, whereby near field road noise is analyzed using statistical learning methods. The vehicle rolling sound signal near the tires and close to the road surface was acquired by two microphones in a special arrangement which implements the Close-Proximity method. A set of features, characterizing the properties of the road pavement, was extracted from the corresponding sound profiles. A feature selection method was used to automatically select those that are most relevant in predicting the type of pavement, while reducing the computational cost. A set of different types of road pavement segments were tested and the performance of the classifier was evaluated. Results of pavement classification performed during a road journey are presented on a map, together with geographical data. This procedure leads to a considerable improvement in the quality of road pavement noise data, thereby increasing the accuracy of road traffic noise prediction models.

  16. Automatic Crack Detection and Classification Method for Subway Tunnel Safety Monitoring

    Directory of Open Access Journals (Sweden)

    Wenyu Zhang

    2014-10-01

    Full Text Available Cracks are an important indicator reflecting the safety status of infrastructures. This paper presents an automatic crack detection and classification methodology for subway tunnel safety monitoring. With the application of high-speed complementary metal-oxide-semiconductor (CMOS industrial cameras, the tunnel surface can be captured and stored in digital images. In a next step, the local dark regions with potential crack defects are segmented from the original gray-scale images by utilizing morphological image processing techniques and thresholding operations. In the feature extraction process, we present a distance histogram based shape descriptor that effectively describes the spatial shape difference between cracks and other irrelevant objects. Along with other features, the classification results successfully remove over 90% misidentified objects. Also, compared with the original gray-scale images, over 90% of the crack length is preserved in the last output binary images. The proposed approach was tested on the safety monitoring for Beijing Subway Line 1. The experimental results revealed the rules of parameter settings and also proved that the proposed approach is effective and efficient for automatic crack detection and classification.

  17. Automatic crack detection and classification method for subway tunnel safety monitoring.

    Science.gov (United States)

    Zhang, Wenyu; Zhang, Zhenjiang; Qi, Dapeng; Liu, Yun

    2014-10-16

    Cracks are an important indicator reflecting the safety status of infrastructures. This paper presents an automatic crack detection and classification methodology for subway tunnel safety monitoring. With the application of high-speed complementary metal-oxide-semiconductor (CMOS) industrial cameras, the tunnel surface can be captured and stored in digital images. In a next step, the local dark regions with potential crack defects are segmented from the original gray-scale images by utilizing morphological image processing techniques and thresholding operations. In the feature extraction process, we present a distance histogram based shape descriptor that effectively describes the spatial shape difference between cracks and other irrelevant objects. Along with other features, the classification results successfully remove over 90% misidentified objects. Also, compared with the original gray-scale images, over 90% of the crack length is preserved in the last output binary images. The proposed approach was tested on the safety monitoring for Beijing Subway Line 1. The experimental results revealed the rules of parameter settings and also proved that the proposed approach is effective and efficient for automatic crack detection and classification.

  18. Vehicle Classification and Speed Estimation Using Combined Passive Infrared/Ultrasonic Sensors

    KAUST Repository

    Odat, Enas M.

    2017-09-18

    In this paper, a new sensing device that can simultaneously monitor traffic congestion and urban flash floods is presented. This sensing device is based on the combination of passive infrared sensors (PIRs) and ultrasonic rangefinder, and is used for real-time vehicle detection, classification, and speed estimation in the context of wireless sensor networks. This framework relies on dynamic Bayesian Networks to fuse heterogeneous data both spatially and temporally for vehicle detection. To estimate the speed of the incoming vehicles, we first use cross correlation and wavelet transform-based methods to estimate the time delay between the signals of different sensors. We then propose a calibration and self-correction model based on Bayesian Networks to make a joint inference by all sensors about the speed and the length of the detected vehicle. Furthermore, we use the measurements of the ultrasonic and the PIR sensors to perform vehicle classification. Validation data (using an experimental dual infrared and ultrasonic traffic sensor) show a 99% accuracy in vehicle detection, a mean error of 5 kph in vehicle speed estimation, a mean error of 0.7m in vehicle length estimation, and a high accuracy in vehicle classification. Finally, we discuss the computational performance of the algorithm, and show that this framework can be implemented on low-power computational devices within a wireless sensor network setting. Such decentralized processing greatly improves the energy consumption of the system and minimizes bandwidth usage.

  19. Automatic brain caudate nuclei segmentation and classification in diagnostic of Attention-Deficit/Hyperactivity Disorder.

    Science.gov (United States)

    Igual, Laura; Soliva, Joan Carles; Escalera, Sergio; Gimeno, Roger; Vilarroya, Oscar; Radeva, Petia

    2012-12-01

    We present a fully automatic diagnostic imaging test for Attention-Deficit/Hyperactivity Disorder diagnosis assistance based on previously found evidences of caudate nucleus volumetric abnormalities. The proposed method consists of different steps: a new automatic method for external and internal segmentation of caudate based on Machine Learning methodologies; the definition of a set of new volume relation features, 3D Dissociated Dipoles, used for caudate representation and classification. We separately validate the contributions using real data from a pediatric population and show precise internal caudate segmentation and discrimination power of the diagnostic test, showing significant performance improvements in comparison to other state-of-the-art methods. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. The development of an automatic classification system of nuclear power plant states

    International Nuclear Information System (INIS)

    Mitomo, Nobuo; Matsuoka, Takeshi

    2000-01-01

    For the future autonomous plant, automatic control and diagnostics are being incorporated and operators are mainly engaged in the high levels of diagnosis and decision-making in emergencies. Therefore these matters will be performed through the Man-Machine Interface(MMI). Ship Research Institute has been carrying out the research on the MMI system for autonomous power plants. The automatic classification system of plant states is one of the functions of this MMI and the system utilizes COBWEB, which is known as a way of clustering data to acquire concepts. In this paper, many plant states produced by a plant simulator we examined in order to confirm the effectiveness of this system. The system has well classified plant states produced by a plant simulator. (author)

  1. Computational text analysis and reading comprehension exam complexity towards automatic text classification

    CERN Document Server

    Liontou, Trisevgeni

    2014-01-01

    This book delineates a range of linguistic features that characterise the reading texts used at the B2 (Independent User) and C1 (Proficient User) levels of the Greek State Certificate of English Language Proficiency exams in order to help define text difficulty per level of competence. In addition, it examines whether specific reader variables influence test takers' perceptions of reading comprehension difficulty. The end product is a Text Classification Profile per level of competence and a formula for automatically estimating text difficulty and assigning levels to texts consistently and re

  2. Using fuzzy logic for automatic control: Case study of a problem of cereals samples classification

    Directory of Open Access Journals (Sweden)

    Lakhoua Najeh Mohamed

    2009-01-01

    Full Text Available The aim of this paper is to present the use of fuzzy logic for automatic control of industrial systems particularly the way to approach a problem of classification. We present a case study of a grading system of cereals that allows us to determine the price of transactions of cereals in Tunisia. Our contribution in this work consists in proposing not only an application of the fuzzy logic on the grading system of cereals but also a methodology enabling the proposing of a new grading system based on the concept of 'Grade' while using the fuzzy logic techniques. .

  3. Comparison of models of automatic classification of textural patterns of mineral presents in Colombian coals

    International Nuclear Information System (INIS)

    Lopez Carvajal, Jaime; Branch Bedoya, John Willian

    2005-01-01

    The automatic classification of objects is a very interesting approach under several problem domains. This paper outlines some results obtained under different classification models to categorize textural patterns of minerals using real digital images. The data set used was characterized by a small size and noise presence. The implemented models were the Bayesian classifier, Neural Network (2-5-1), support vector machine, decision tree and 3-nearest neighbors. The results after applying crossed validation show that the Bayesian model (84%) proved better predictive capacity than the others, mainly due to its noise robustness behavior. The neuronal network (68%) and the SVM (67%) gave promising results, because they could be improved increasing the data amount used, while the decision tree (55%) and K-NN (54%) did not seem to be adequate for this problem, because of their sensibility to noise

  4. Automatic detection and classification of obstacles with applications in autonomous mobile robots

    Science.gov (United States)

    Ponomaryov, Volodymyr I.; Rosas-Miranda, Dario I.

    2016-04-01

    Hardware implementation of an automatic detection and classification of objects that can represent an obstacle for an autonomous mobile robot using stereo vision algorithms is presented. We propose and evaluate a new method to detect and classify objects for a mobile robot in outdoor conditions. This method is divided in two parts, the first one is the object detection step based on the distance from the objects to the camera and a BLOB analysis. The second part is the classification step that is based on visuals primitives and a SVM classifier. The proposed method is performed in GPU in order to reduce the processing time values. This is performed with help of hardware based on multi-core processors and GPU platform, using a NVIDIA R GeForce R GT640 graphic card and Matlab over a PC with Windows 10.

  5. Automatic optical detection and classification of marine animals around MHK converters using machine vision

    Energy Technology Data Exchange (ETDEWEB)

    Brunton, Steven [Univ. of Washington, Seattle, WA (United States)

    2018-01-15

    Optical systems provide valuable information for evaluating interactions and associations between organisms and MHK energy converters and for capturing potentially rare encounters between marine organisms and MHK device. The deluge of optical data from cabled monitoring packages makes expert review time-consuming and expensive. We propose algorithms and a processing framework to automatically extract events of interest from underwater video. The open-source software framework consists of background subtraction, filtering, feature extraction and hierarchical classification algorithms. This principle classification pipeline was validated on real-world data collected with an experimental underwater monitoring package. An event detection rate of 100% was achieved using robust principal components analysis (RPCA), Fourier feature extraction and a support vector machine (SVM) binary classifier. The detected events were then further classified into more complex classes – algae | invertebrate | vertebrate, one species | multiple species of fish, and interest rank. Greater than 80% accuracy was achieved using a combination of machine learning techniques.

  6. Analysis of steranes and triterpanes in geolipid extracts by automatic classification of mass spectra

    Science.gov (United States)

    Wardroper, A. M. K.; Brooks, P. W.; Humberston, M. J.; Maxwell, J. R.

    1977-01-01

    A computer method is described for the automatic classification of triterpanes and steranes into gross structural type from their mass spectral characteristics. The method has been applied to the spectra obtained by gas-chromatographic/mass-spectroscopic analysis of two mixtures of standards and of hydrocarbon fractions isolated from Green River and Messel oil shales. Almost all of the steranes and triterpanes identified previously in both shales were classified, in addition to a number of new components. The results indicate that classification of such alkanes is possible with a laboratory computer system. The method has application to diagenesis and maturation studies as well as to oil/oil and oil/source rock correlations in which rapid screening of large numbers of samples is required.

  7. Vehicle-to-Grid Automatic Load Sharing with Driver Preference in Micro-Grids

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yubo; Nazaripouya, Hamidreza; Chu, Chi-Cheng; Gadh, Rajit; Pota, Hemanshu R.

    2014-10-15

    Integration of Electrical Vehicles (EVs) with power grid not only brings new challenges for load management, but also opportunities for distributed storage and generation. This paper comprehensively models and analyzes distributed Vehicle-to-Grid (V2G) for automatic load sharing with driver preference. In a micro-grid with limited communications, V2G EVs need to decide load sharing based on their own power and voltage profile. A droop based controller taking into account driver preference is proposed in this paper to address the distributed control of EVs. Simulations are designed for three fundamental V2G automatic load sharing scenarios that include all system dynamics of such applications. Simulation results demonstrate that active power sharing is achieved proportionally among V2G EVs with consideration of driver preference. In additional, the results also verify the system stability and reactive power sharing analysis in system modelling, which sheds light on large scale V2G automatic load sharing in more complicated cases.

  8. Automatic detection and classification of breast tumors in ultrasonic images using texture and morphological features.

    Science.gov (United States)

    Su, Yanni; Wang, Yuanyuan; Jiao, Jing; Guo, Yi

    2011-01-01

    Due to severe presence of speckle noise, poor image contrast and irregular lesion shape, it is challenging to build a fully automatic detection and classification system for breast ultrasonic images. In this paper, a novel and effective computer-aided method including generation of a region of interest (ROI), segmentation and classification of breast tumor is proposed without any manual intervention. By incorporating local features of texture and position, a ROI is firstly detected using a self-organizing map neural network. Then a modified Normalized Cut approach considering the weighted neighborhood gray values is proposed to partition the ROI into clusters and get the initial boundary. In addition, a regional-fitting active contour model is used to adjust the few inaccurate initial boundaries for the final segmentation. Finally, three textures and five morphologic features are extracted from each breast tumor; whereby a highly efficient Affinity Propagation clustering is used to fulfill the malignancy and benign classification for an existing database without any training process. The proposed system is validated by 132 cases (67 benignancies and 65 malignancies) with its performance compared to traditional methods such as level set segmentation, artificial neural network classifiers, and so forth. Experiment results show that the proposed system, which needs no training procedure or manual interference, performs best in detection and classification of ultrasonic breast tumors, while having the lowest computation complexity.

  9. Study on Classification Accuracy Inspection of Land Cover Data Aided by Automatic Image Change Detection Technology

    Science.gov (United States)

    Xie, W.-J.; Zhang, L.; Chen, H.-P.; Zhou, J.; Mao, W.-J.

    2018-04-01

    The purpose of carrying out national geographic conditions monitoring is to obtain information of surface changes caused by human social and economic activities, so that the geographic information can be used to offer better services for the government, enterprise and public. Land cover data contains detailed geographic conditions information, thus has been listed as one of the important achievements in the national geographic conditions monitoring project. At present, the main issue of the production of the land cover data is about how to improve the classification accuracy. For the land cover data quality inspection and acceptance, classification accuracy is also an important check point. So far, the classification accuracy inspection is mainly based on human-computer interaction or manual inspection in the project, which are time consuming and laborious. By harnessing the automatic high-resolution remote sensing image change detection technology based on the ERDAS IMAGINE platform, this paper carried out the classification accuracy inspection test of land cover data in the project, and presented a corresponding technical route, which includes data pre-processing, change detection, result output and information extraction. The result of the quality inspection test shows the effectiveness of the technical route, which can meet the inspection needs for the two typical errors, that is, missing and incorrect update error, and effectively reduces the work intensity of human-computer interaction inspection for quality inspectors, and also provides a technical reference for the data production and quality control of the land cover data.

  10. Length based vehicle classification on freeways from single loop detectors.

    Science.gov (United States)

    2009-10-15

    Roadway usage, particularly by large vehicles, is one of the fundamental factors determining the lifespan : of highway infrastructure, e.g., as evidenced by the federally mandated Highway Performance : Monitoring System (HPMS). But the complexity of ...

  11. Vehicle Detection and Classification Using Passive Infrared Sensing

    KAUST Repository

    Odat, Enas M.; Mousa, Mustafa; Claudel, Christian

    2015-01-01

    or multiple remote temperature sensors. We show an implementation of this device, and illustrate its performance in both traffic flow sensing. Field data shows that the sensor can detect vehicles with a 99% accuracy, in addition to estimating their speed

  12. Classification of underwater targets from autonomous underwater vehicle sampled bistatic acoustic scattered fields.

    Science.gov (United States)

    Fischell, Erin M; Schmidt, Henrik

    2015-12-01

    One of the long term goals of autonomous underwater vehicle (AUV) minehunting is to have multiple inexpensive AUVs in a harbor autonomously classify hazards. Existing acoustic methods for target classification using AUV-based sensing, such as sidescan and synthetic aperture sonar, require an expensive payload on each outfitted vehicle and post-processing and/or image interpretation. A vehicle payload and machine learning classification methodology using bistatic angle dependence of target scattering amplitudes between a fixed acoustic source and target has been developed for onboard, fully autonomous classification with lower cost-per-vehicle. To achieve the high-quality, densely sampled three-dimensional (3D) bistatic scattering data required by this research, vehicle sampling behaviors and an acoustic payload for precision timed data acquisition with a 16 element nose array were demonstrated. 3D bistatic scattered field data were collected by an AUV around spherical and cylindrical targets insonified by a 7-9 kHz fixed source. The collected data were compared to simulated scattering models. Classification and confidence estimation were shown for the sphere versus cylinder case on the resulting real and simulated bistatic amplitude data. The final models were used for classification of simulated targets in real time in the LAMSS MOOS-IvP simulation package [M. Benjamin, H. Schmidt, P. Newman, and J. Leonard, J. Field Rob. 27, 834-875 (2010)].

  13. A hybrid particle swarm optimization-SVM classification for automatic cardiac auscultation

    Directory of Open Access Journals (Sweden)

    Prasertsak Charoen

    2017-04-01

    Full Text Available Cardiac auscultation is a method for a doctor to listen to heart sounds, using a stethoscope, for examining the condition of the heart. Automatic cardiac auscultation with machine learning is a promising technique to classify heart conditions without need of doctors or expertise. In this paper, we develop a classification model based on support vector machine (SVM and particle swarm optimization (PSO for an automatic cardiac auscultation system. The model consists of two parts: heart sound signal processing part and a proposed PSO for weighted SVM (WSVM classifier part. In this method, the PSO takes into account the degree of importance for each feature extracted from wavelet packet (WP decomposition. Then, by using principle component analysis (PCA, the features can be selected. The PSO technique is used to assign diverse weights to different features for the WSVM classifier. Experimental results show that both continuous and binary PSO-WSVM models achieve better classification accuracy on the heart sound samples, by reducing system false negatives (FNs, compared to traditional SVM and genetic algorithm (GA based SVM.

  14. Automatic sleep stage classification based on EEG signals by using neural networks and wavelet packet coefficients.

    Science.gov (United States)

    Ebrahimi, Farideh; Mikaeili, Mohammad; Estrada, Edson; Nazeran, Homer

    2008-01-01

    Currently in the world there is an alarming number of people who suffer from sleep disorders. A number of biomedical signals, such as EEG, EMG, ECG and EOG are used in sleep labs among others for diagnosis and treatment of sleep related disorders. The usual method for sleep stage classification is visual inspection by a sleep specialist. This is a very time consuming and laborious exercise. Automatic sleep stage classification can facilitate this process. The definition of sleep stages and the sleep literature show that EEG signals are similar in Stage 1 of non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep. Therefore, in this work an attempt was made to classify four sleep stages consisting of Awake, Stage 1 + REM, Stage 2 and Slow Wave Stage based on the EEG signal alone. Wavelet packet coefficients and artificial neural networks were deployed for this purpose. Seven all night recordings from Physionet database were used in the study. The results demonstrated that these four sleep stages could be automatically discriminated from each other with a specificity of 94.4 +/- 4.5%, a of sensitivity 84.2+3.9% and an accuracy of 93.0 +/- 4.0%.

  15. The charging security study of electric vehicle charging spot based on automatic testing platform

    Science.gov (United States)

    Li, Yulan; Yang, Zhangli; Zhu, Bin; Ran, Shengyi

    2018-03-01

    With the increasing of charging spots, the testing of charging security and interoperability becomes more and more urgent and important. In this paper, an interface simulator for ac charging test is designed, the automatic testing platform for electric vehicle charging spots is set up and used to test and analyze the abnormal state during the charging process. On the platform, the charging security and interoperability of ac charging spots and IC-CPD can be checked efficiently, the test report can be generated automatically with No artificial reading error. From the test results, the main reason why the charging spot is not qualified is that the power supply cannot be cut off in the prescribed time when the charging anomaly occurs.

  16. Wireless Magnetic Sensor Network for Road Traffic Monitoring and Vehicle Classification

    Directory of Open Access Journals (Sweden)

    Velisavljevic Vladan

    2016-12-01

    Full Text Available Efficiency of transportation of people and goods is playing a vital role in economic growth. A key component for enabling effective planning of transportation networks is the deployment and operation of autonomous monitoring and traffic analysis tools. For that reason, such systems have been developed to register and classify road traffic usage. In this paper, we propose a novel system for road traffic monitoring and classification based on highly energy efficient wireless magnetic sensor networks. We develop novel algorithms for vehicle speed and length estimation and vehicle classification that use multiple magnetic sensors. We also demonstrate that, using such a low-cost system with simplified installation and maintenance compared to current solutions, it is possible to achieve highly accurate estimation and a high rate of positive vehicle classification.

  17. AUTOMATIC TRAINING SITE SELECTION FOR AGRICULTURAL CROP CLASSIFICATION: A CASE STUDY ON KARACABEY PLAIN, TURKEY

    Directory of Open Access Journals (Sweden)

    A. Ozdarici Ok

    2012-09-01

    Full Text Available This study implements a traditional supervised classification method to an optical image composed of agricultural crops by means of a unique way, selecting the training samples automatically. Panchromatic (1m and multispectral (4m Kompsat-2 images (July 2008 of Karacabey Plain (~100km2, located in Marmara region, are used to evaluate the proposed approach. Due to the characteristic of rich, loamy soils combined with reasonable weather conditions, the Karacabey Plain is one of the most valuable agricultural regions of Turkey. Analyses start with applying an image fusion algorithm on the panchromatic and multispectral image. As a result of this process, 1m spatial resolution colour image is produced. In the next step, the four-band fused (1m image and multispectral (4m image are orthorectified. Next, the fused image (1m is segmented using a popular segmentation method, Mean- Shift. The Mean-Shift is originally a method based on kernel density estimation and it shifts each pixel to the mode of clusters. In the segmentation procedure, three parameters must be defined: (i spatial domain (hs, (ii range domain (hr, and (iii minimum region (MR. In this study, in total, 176 parameter combinations (hs, hr, and MR are tested on a small part of the area (~10km2 to find an optimum segmentation result, and a final parameter combination (hs=18, hr=20, and MR=1000 is determined after evaluating multiple goodness measures. The final segmentation output is then utilized to the classification framework. The classification operation is applied on the four-band multispectral image (4m to minimize the mixed pixel effect. Before the image classification, each segment is overlaid with the bands of the image fused, and several descriptive statistics of each segment are computed for each band. To select the potential homogeneous regions that are eligible for the selection of training samples, a user-defined threshold is applied. After finding those potential regions, the

  18. Fidelity of Automatic Speech Processing for Adult and Child Talker Classifications.

    Directory of Open Access Journals (Sweden)

    Mark VanDam

    Full Text Available Automatic speech processing (ASP has recently been applied to very large datasets of naturalistically collected, daylong recordings of child speech via an audio recorder worn by young children. The system developed by the LENA Research Foundation analyzes children's speech for research and clinical purposes, with special focus on of identifying and tagging family speech dynamics and the at-home acoustic environment from the auditory perspective of the child. A primary issue for researchers, clinicians, and families using the Language ENvironment Analysis (LENA system is to what degree the segment labels are valid. This classification study evaluates the performance of the computer ASP output against 23 trained human judges who made about 53,000 judgements of classification of segments tagged by the LENA ASP. Results indicate performance consistent with modern ASP such as those using HMM methods, with acoustic characteristics of fundamental frequency and segment duration most important for both human and machine classifications. Results are likely to be important for interpreting and improving ASP output.

  19. Automatic classification of background EEG activity in healthy and sick neonates

    Science.gov (United States)

    Löfhede, Johan; Thordstein, Magnus; Löfgren, Nils; Flisberg, Anders; Rosa-Zurera, Manuel; Kjellmer, Ingemar; Lindecrantz, Kaj

    2010-02-01

    The overall aim of our research is to develop methods for a monitoring system to be used at neonatal intensive care units. When monitoring a baby, a range of different types of background activity needs to be considered. In this work, we have developed a scheme for automatic classification of background EEG activity in newborn babies. EEG from six full-term babies who were displaying a burst suppression pattern while suffering from the after-effects of asphyxia during birth was included along with EEG from 20 full-term healthy newborn babies. The signals from the healthy babies were divided into four behavioural states: active awake, quiet awake, active sleep and quiet sleep. By using a number of features extracted from the EEG together with Fisher's linear discriminant classifier we have managed to achieve 100% correct classification when separating burst suppression EEG from all four healthy EEG types and 93% true positive classification when separating quiet sleep from the other types. The other three sleep stages could not be classified. When the pathological burst suppression pattern was detected, the analysis was taken one step further and the signal was segmented into burst and suppression, allowing clinically relevant parameters such as suppression length and burst suppression ratio to be calculated. The segmentation of the burst suppression EEG works well, with a probability of error around 4%.

  20. Poster abstract: A machine learning approach for vehicle classification using passive infrared and ultrasonic sensors

    KAUST Repository

    Warriach, Ehsan Ullah

    2013-01-01

    This article describes the implementation of four different machine learning techniques for vehicle classification in a dual ultrasonic/passive infrared traffic flow sensors. Using k-NN, Naive Bayes, SVM and KNN-SVM algorithms, we show that KNN-SVM significantly outperforms other algorithms in terms of classification accuracy. We also show that some of these algorithms could run in real time on the prototype system. Copyright © 2013 ACM.

  1. Graph Theory-Based Brain Connectivity for Automatic Classification of Multiple Sclerosis Clinical Courses

    Directory of Open Access Journals (Sweden)

    Gabriel Kocevar

    2016-10-01

    Full Text Available Purpose: In this work, we introduce a method to classify Multiple Sclerosis (MS patients into four clinical profiles using structural connectivity information. For the first time, we try to solve this question in a fully automated way using a computer-based method. The main goal is to show how the combination of graph-derived metrics with machine learning techniques constitutes a powerful tool for a better characterization and classification of MS clinical profiles.Materials and methods: Sixty-four MS patients (12 Clinical Isolated Syndrome (CIS, 24 Relapsing Remitting (RR, 24 Secondary Progressive (SP, and 17 Primary Progressive (PP along with 26 healthy controls (HC underwent MR examination. T1 and diffusion tensor imaging (DTI were used to obtain structural connectivity matrices for each subject. Global graph metrics, such as density and modularity, were estimated and compared between subjects’ groups. These metrics were further used to classify patients using tuned Support Vector Machine (SVM combined with Radial Basic Function (RBF kernel.Results: When comparing MS patients to HC subjects, a greater assortativity, transitivity and characteristic path length as well as a lower global efficiency were found. Using all graph metrics, the best F-Measures (91.8%, 91.8%, 75.6% and 70.6% were obtained for binary (HC-CIS, CIS-RR, RR-PP and multi-class (CIS-RR-SP classification tasks, respectively. When using only one graph metric, the best F-Measures (83.6%, 88.9% and 70.7% were achieved for modularity with previous binary classification tasks.Conclusion: Based on a simple DTI acquisition associated with structural brain connectivity analysis, this automatic method allowed an accurate classification of different MS patients’ clinical profiles.

  2. Automatic classification and detection of clinically relevant images for diabetic retinopathy

    Science.gov (United States)

    Xu, Xinyu; Li, Baoxin

    2008-03-01

    We proposed a novel approach to automatic classification of Diabetic Retinopathy (DR) images and retrieval of clinically-relevant DR images from a database. Given a query image, our approach first classifies the image into one of the three categories: microaneurysm (MA), neovascularization (NV) and normal, and then it retrieves DR images that are clinically-relevant to the query image from an archival image database. In the classification stage, the query DR images are classified by the Multi-class Multiple-Instance Learning (McMIL) approach, where images are viewed as bags, each of which contains a number of instances corresponding to non-overlapping blocks, and each block is characterized by low-level features including color, texture, histogram of edge directions, and shape. McMIL first learns a collection of instance prototypes for each class that maximizes the Diverse Density function using Expectation- Maximization algorithm. A nonlinear mapping is then defined using the instance prototypes and maps every bag to a point in a new multi-class bag feature space. Finally a multi-class Support Vector Machine is trained in the multi-class bag feature space. In the retrieval stage, we retrieve images from the archival database who bear the same label with the query image, and who are the top K nearest neighbors of the query image in terms of similarity in the multi-class bag feature space. The classification approach achieves high classification accuracy, and the retrieval of clinically-relevant images not only facilitates utilization of the vast amount of hidden diagnostic knowledge in the database, but also improves the efficiency and accuracy of DR lesion diagnosis and assessment.

  3. Automatic earthquake detection and classification with continuous hidden Markov models: a possible tool for monitoring Las Canadas caldera in Tenerife

    Energy Technology Data Exchange (ETDEWEB)

    Beyreuther, Moritz; Wassermann, Joachim [Department of Earth and Environmental Sciences (Geophys. Observatory), Ludwig Maximilians Universitaet Muenchen, D-80333 (Germany); Carniel, Roberto [Dipartimento di Georisorse e Territorio Universitat Degli Studi di Udine, I-33100 (Italy)], E-mail: roberto.carniel@uniud.it

    2008-10-01

    A possible interaction of (volcano-) tectonic earthquakes with the continuous seismic noise recorded in the volcanic island of Tenerife was recently suggested, but existing catalogues seem to be far from being self consistent, calling for the development of automatic detection and classification algorithms. In this work we propose the adoption of a methodology based on Hidden Markov Models (HMMs), widely used already in other fields, such as speech classification.

  4. Automatic detection and classification of artifacts in single-channel EEG

    DEFF Research Database (Denmark)

    Olund, Thomas; Duun-Henriksen, Jonas; Kjaer, Troels W.

    2014-01-01

    Ambulatory EEG monitoring can provide medical doctors important diagnostic information, without hospitalizing the patient. These recordings are however more exposed to noise and artifacts compared to clinically recorded EEG. An automatic artifact detection and classification algorithm for single......-channel EEG is proposed to help identifying these artifacts. Features are extracted from the EEG signal and wavelet subbands. Subsequently a selection algorithm is applied in order to identify the best discriminating features. A non-linear support vector machine is used to discriminate among different...... artifact classes using the selected features. Single-channel (Fp1-F7) EEG recordings are obtained from experiments with 12 healthy subjects performing artifact inducing movements. The dataset was used to construct and validate the model. Both subject-specific and generic implementation, are investigated...

  5. Automatic sleep classification using a data-driven topic model reveals latent sleep states

    DEFF Research Database (Denmark)

    Koch, Henriette; Christensen, Julie Anja Engelhard; Frandsen, Rune

    2014-01-01

    Latent Dirichlet Allocation. Model application was tested on control subjects and patients with periodic leg movements (PLM) representing a non-neurodegenerative group, and patients with idiopathic REM sleep behavior disorder (iRBD) and Parkinson's Disease (PD) representing a neurodegenerative group......Background: The golden standard for sleep classification uses manual scoring of polysomnography despite points of criticism such as oversimplification, low inter-rater reliability and the standard being designed on young and healthy subjects. New method: To meet the criticism and reveal the latent...... sleep states, this study developed a general and automatic sleep classifier using a data-driven approach. Spectral EEG and EOG measures and eye correlation in 1 s windows were calculated and each sleep epoch was expressed as a mixture of probabilities of latent sleep states by using the topic model...

  6. Automatic detection of photoresist residual layer in lithography using a neural classification approach

    KAUST Repository

    Gereige, Issam

    2012-09-01

    Photolithography is a fundamental process in the semiconductor industry and it is considered as the key element towards extreme nanoscale integration. In this technique, a polymer photo sensitive mask with the desired patterns is created on the substrate to be etched. Roughly speaking, the areas to be etched are not covered with polymer. Thus, no residual layer should remain on these areas in order to insure an optimal transfer of the patterns on the substrate. In this paper, we propose a nondestructive method based on a classification approach achieved by artificial neural network for automatic residual layer detection from an ellipsometric signature. Only the case of regular defect, i.e. homogenous residual layer, will be considered. The limitation of the method will be discussed. Then, an experimental result on a 400 nm period grating manufactured with nanoimprint lithography is analyzed with our method. © 2012 Elsevier B.V. All rights reserved.

  7. Automatic sleep stage classification of single-channel EEG by using complex-valued convolutional neural network.

    Science.gov (United States)

    Zhang, Junming; Wu, Yan

    2018-03-28

    Many systems are developed for automatic sleep stage classification. However, nearly all models are based on handcrafted features. Because of the large feature space, there are so many features that feature selection should be used. Meanwhile, designing handcrafted features is a difficult and time-consuming task because the feature designing needs domain knowledge of experienced experts. Results vary when different sets of features are chosen to identify sleep stages. Additionally, many features that we may be unaware of exist. However, these features may be important for sleep stage classification. Therefore, a new sleep stage classification system, which is based on the complex-valued convolutional neural network (CCNN), is proposed in this study. Unlike the existing sleep stage methods, our method can automatically extract features from raw electroencephalography data and then classify sleep stage based on the learned features. Additionally, we also prove that the decision boundaries for the real and imaginary parts of a complex-valued convolutional neuron intersect orthogonally. The classification performances of handcrafted features are compared with those of learned features via CCNN. Experimental results show that the proposed method is comparable to the existing methods. CCNN obtains a better classification performance and considerably faster convergence speed than convolutional neural network. Experimental results also show that the proposed method is a useful decision-support tool for automatic sleep stage classification.

  8. Reconstruction of road defects and road roughness classification using vehicle responses with artificial neural networks simulation

    CSIR Research Space (South Africa)

    Ngwangwa, HM

    2010-04-01

    Full Text Available -1 Journal of Terramechanics Volume 47, Issue 2, April 2010, Pages 97-111 Reconstruction of road defects and road roughness classification using vehicle responses with artificial neural networks simulation H.M. Ngwangwaa, P.S. Heynsa, , , F...

  9. A Graphical User Interface (GUI) for Automated Classification of Bradley Fighting Vehicle Shock Absorbers

    National Research Council Canada - National Science Library

    Sincebaugh, Patrick

    1998-01-01

    .... We then explain the design and capabilities of the SSATS graphical user interface (GUI), which includes the integration of a neural network classification scheme. We finish by discussing recent results of utilizing the system to test and evaluate Bradley armored vehicle shock absorbers.

  10. Design and Assessment of a Machine Vision System for Automatic Vehicle Wheel Alignment

    Directory of Open Access Journals (Sweden)

    Rocco Furferi

    2013-05-01

    Full Text Available Abstract Wheel alignment, consisting of properly checking the wheel characteristic angles against vehicle manufacturers' specifications, is a crucial task in the automotive field since it prevents irregular tyre wear and affects vehicle handling and safety. In recent years, systems based on Machine Vision have been widely studied in order to automatically detect wheels' characteristic angles. In order to overcome the limitations of existing methodologies, due to measurement equipment being mounted onto the wheels, the present work deals with design and assessment of a 3D machine vision-based system for the contactless reconstruction of vehicle wheel geometry, with particular reference to characteristic planes. Such planes, properly referred to as a global coordinate system, are used for determining wheel angles. The effectiveness of the proposed method was tested against a set of measurements carried out using a commercial 3D scanner; the absolute average error in measuring toe and camber angles with the machine vision system resulted in full compatibility with the expected accuracy of wheel alignment systems.

  11. Vehicle Detection and Classification Using Passive Infrared Sensing

    KAUST Repository

    Odat, Enas M.

    2015-10-19

    We propose a new sensing device that can simultaneously monitor urban traffic congestion and another phenomenon of interest (flash floods on the present case). This sensing device is based on the combination of an ultrasonic rangefinder with one or multiple remote temperature sensors. We show an implementation of this device, and illustrate its performance in both traffic flow sensing. Field data shows that the sensor can detect vehicles with a 99% accuracy, in addition to estimating their speed and classifying them in function of their length. The same sensor can also monitor urban water levels with an accuracy of less than 2 cm.

  12. Robust Automatic Modulation Classification Technique for Fading Channels via Deep Neural Network

    Directory of Open Access Journals (Sweden)

    Jung Hwan Lee

    2017-08-01

    Full Text Available In this paper, we propose a deep neural network (DNN-based automatic modulation classification (AMC for digital communications. While conventional AMC techniques perform well for additive white Gaussian noise (AWGN channels, classification accuracy degrades for fading channels where the amplitude and phase of channel gain change in time. The key contributions of this paper are in two phases. First, we analyze the effectiveness of a variety of statistical features for AMC task in fading channels. We reveal that the features that are shown to be effective for fading channels are different from those known to be good for AWGN channels. Second, we introduce a new enhanced AMC technique based on DNN method. We use the extensive and diverse set of statistical features found in our study for the DNN-based classifier. The fully connected feedforward network with four hidden layers are trained to classify the modulation class for several fading scenarios. Numerical evaluation shows that the proposed technique offers significant performance gain over the existing AMC methods in fading channels.

  13. Crowd-sourced data collection to support automatic classification of building footprint data

    Science.gov (United States)

    Hecht, Robert; Kalla, Matthias; Krüger, Tobias

    2018-05-01

    Human settlements are mainly formed by buildings with their different characteristics and usage. Despite the importance of buildings for the economy and society, complete regional or even national figures of the entire building stock and its spatial distribution are still hardly available. Available digital topographic data sets created by National Mapping Agencies or mapped voluntarily through a crowd via Volunteered Geographic Information (VGI) platforms (e.g. OpenStreetMap) contain building footprint information but often lack additional information on building type, usage, age or number of floors. For this reason, predictive modeling is becoming increasingly important in this context. The capabilities of machine learning allow for the prediction of building types and other building characteristics and thus, the efficient classification and description of the entire building stock of cities and regions. However, such data-driven approaches always require a sufficient amount of ground truth (reference) information for training and validation. The collection of reference data is usually cost-intensive and time-consuming. Experiences from other disciplines have shown that crowdsourcing offers the possibility to support the process of obtaining ground truth data. Therefore, this paper presents the results of an experimental study aiming at assessing the accuracy of non-expert annotations on street view images collected from an internet crowd. The findings provide the basis for a future integration of a crowdsourcing component into the process of land use mapping, particularly the automatic building classification.

  14. Deep Learning Approach for Automatic Classification of Ocular and Cardiac Artifacts in MEG Data

    Directory of Open Access Journals (Sweden)

    Ahmad Hasasneh

    2018-01-01

    Full Text Available We propose an artifact classification scheme based on a combined deep and convolutional neural network (DCNN model, to automatically identify cardiac and ocular artifacts from neuromagnetic data, without the need for additional electrocardiogram (ECG and electrooculogram (EOG recordings. From independent components, the model uses both the spatial and temporal information of the decomposed magnetoencephalography (MEG data. In total, 7122 samples were used after data augmentation, in which task and nontask related MEG recordings from 48 subjects served as the database for this study. Artifact rejection was applied using the combined model, which achieved a sensitivity and specificity of 91.8% and 97.4%, respectively. The overall accuracy of the model was validated using a cross-validation test and revealed a median accuracy of 94.4%, indicating high reliability of the DCNN-based artifact removal in task and nontask related MEG experiments. The major advantages of the proposed method are as follows: (1 it is a fully automated and user independent workflow of artifact classification in MEG data; (2 once the model is trained there is no need for auxiliary signal recordings; (3 the flexibility in the model design and training allows for various modalities (MEG/EEG and various sensor types.

  15. Automatic classification of ovarian cancer types from cytological images using deep convolutional neural networks.

    Science.gov (United States)

    Wu, Miao; Yan, Chuanbo; Liu, Huiqiang; Liu, Qian

    2018-06-29

    Ovarian cancer is one of the most common gynecologic malignancies. Accurate classification of ovarian cancer types (serous carcinoma, mucous carcinoma, endometrioid carcinoma, transparent cell carcinoma) is an essential part in the different diagnosis. Computer-aided diagnosis (CADx) can provide useful advice for pathologists to determine the diagnosis correctly. In our study, we employed a Deep Convolutional Neural Networks (DCNN) based on AlexNet to automatically classify the different types of ovarian cancers from cytological images. The DCNN consists of five convolutional layers, three max pooling layers, and two full reconnect layers. Then we trained the model by two group input data separately, one was original image data and the other one was augmented image data including image enhancement and image rotation. The testing results are obtained by the method of 10-fold cross-validation, showing that the accuracy of classification models has been improved from 72.76 to 78.20% by using augmented images as training data. The developed scheme was useful for classifying ovarian cancers from cytological images. © 2018 The Author(s).

  16. Semi-Automatic Classification Of Histopathological Images: Dealing With Inter-Slide Variations

    Directory of Open Access Journals (Sweden)

    Michael Gadermayr

    2016-06-01

    In case of 50 available labelled sample patches of a certain whole slide image, the overall classification rate increased from 92 % to 98 % through including the interactive labelling step. Even with only 20 labelled patches, accuracy already increased to 97 %. Without a pre-trained model, if training is performed on target domain data only, 88 % (20 labelled samples and 95 % (50 labelled samples accuracy, respectively, were obtained. If enough target domain data was available (about 20 images, the amount of source domain data was of minor relevance. The difference in outcome between a source domain training data set containing 100 patches from one whole slide image and a set containing 700 patches from seven images was lower than 1 %. Contrarily, without target domain data, the difference in accuracy was 10 % (82 % compared to 92 % between these two settings. Execution runtime between two interaction steps is significantly below one second (0.23 s, which is an important usability criterion. It proved to be beneficial to select specific target domain data in an active learning sense based on the currently available trained model. While experimental evaluation provided strong empirical evidence for increased classification performance with the proposed method, the additional manual effort can be kept at a low level. The labelling of e.g. 20 images per slide is surely less time consuming than the validation of a complete whole slide image processed with a fully automatic, but less reliable, segmentation approach. Finally, it should be highlighted that the proposed interaction protocol could easily be adapted to other histopathological classification or segmentation tasks, also for implementation in a clinical system.  

  17. Sensor network based vehicle classification and license plate identification system

    Energy Technology Data Exchange (ETDEWEB)

    Frigo, Janette Rose [Los Alamos National Laboratory; Brennan, Sean M [Los Alamos National Laboratory; Rosten, Edward J [Los Alamos National Laboratory; Raby, Eric Y [Los Alamos National Laboratory; Kulathumani, Vinod K [WEST VIRGINIA UNIV.

    2009-01-01

    Typically, for energy efficiency and scalability purposes, sensor networks have been used in the context of environmental and traffic monitoring applications in which operations at the sensor level are not computationally intensive. But increasingly, sensor network applications require data and compute intensive sensors such video cameras and microphones. In this paper, we describe the design and implementation of two such systems: a vehicle classifier based on acoustic signals and a license plate identification system using a camera. The systems are implemented in an energy-efficient manner to the extent possible using commercially available hardware, the Mica motes and the Stargate platform. Our experience in designing these systems leads us to consider an alternate more flexible, modular, low-power mote architecture that uses a combination of FPGAs, specialized embedded processing units and sensor data acquisition systems.

  18. Comparison of hand-craft feature based SVM and CNN based deep learning framework for automatic polyp classification.

    Science.gov (United States)

    Younghak Shin; Balasingham, Ilangko

    2017-07-01

    Colonoscopy is a standard method for screening polyps by highly trained physicians. Miss-detected polyps in colonoscopy are potential risk factor for colorectal cancer. In this study, we investigate an automatic polyp classification framework. We aim to compare two different approaches named hand-craft feature method and convolutional neural network (CNN) based deep learning method. Combined shape and color features are used for hand craft feature extraction and support vector machine (SVM) method is adopted for classification. For CNN approach, three convolution and pooling based deep learning framework is used for classification purpose. The proposed framework is evaluated using three public polyp databases. From the experimental results, we have shown that the CNN based deep learning framework shows better classification performance than the hand-craft feature based methods. It achieves over 90% of classification accuracy, sensitivity, specificity and precision.

  19. Neural Network Control-Based Drive Design of Servomotor and Its Application to Automatic Guided Vehicle

    Directory of Open Access Journals (Sweden)

    Ming-Shyan Wang

    2015-01-01

    Full Text Available An automatic guided vehicle (AGV is extensively used for productions in a flexible manufacture system with high efficiency and high flexibility. A servomotor-based AGV is designed and implemented in this paper. In order to steer the AGV to go along a predefined path with corner or arc, the conventional proportional-integral-derivative (PID control is used in the system. However, it is difficult to tune PID gains at various conditions. As a result, the neural network (NN control is considered to assist the PID control for gain tuning. The experimental results are first provided to verify the correctness of the neural network plus PID control for 400 W-motor control system. Secondly, the AGV includes two sets of the designed motor systems and CAN BUS transmission so that it can move along the straight line and curve paths shown in the taped videos.

  20. A Method for Automatic Image Rectification and Stitching for Vehicle Yaw Marks Trajectory Estimation

    Directory of Open Access Journals (Sweden)

    Vidas Žuraulis

    2016-02-01

    Full Text Available The aim of this study has been to propose a new method for automatic rectification and stitching of the images taken on the accident site. The proposed method does not require any measurements to be performed on the accident site and thus it is frsjebalaee of measurement errors. The experimental investigation was performed in order to compare the vehicle trajectory estimation according to the yaw marks in the stitched image and the trajectory, reconstructed using the GPS data. The overall mean error of the trajectory reconstruction, produced by the method proposed in this paper was 0.086 m. It was only 0.18% comparing to the whole trajectory length.

  1. Automatic multi-modal MR tissue classification for the assessment of response to bevacizumab in patients with glioblastoma

    International Nuclear Information System (INIS)

    Liberman, Gilad; Louzoun, Yoram; Aizenstein, Orna; Blumenthal, Deborah T.; Bokstein, Felix; Palmon, Mika; Corn, Benjamin W.; Ben Bashat, Dafna

    2013-01-01

    Background: Current methods for evaluation of treatment response in glioblastoma are inaccurate, limited and time-consuming. This study aimed to develop a multi-modal MRI automatic classification method to improve accuracy and efficiency of treatment response assessment in patients with recurrent glioblastoma (GB). Materials and methods: A modification of the k-Nearest-Neighbors (kNN) classification method was developed and applied to 59 longitudinal MR data sets of 13 patients with recurrent GB undergoing bevacizumab (anti-angiogenic) therapy. Changes in the enhancing tumor volume were assessed using the proposed method and compared with Macdonald's criteria and with manual volumetric measurements. The edema-like area was further subclassified into peri- and non-peri-tumoral edema, using both the kNN method and an unsupervised method, to monitor longitudinal changes. Results: Automatic classification using the modified kNN method was applicable in all scans, even when the tumors were infiltrative with unclear borders. The enhancing tumor volume obtained using the automatic method was highly correlated with manual measurements (N = 33, r = 0.96, p < 0.0001), while standard radiographic assessment based on Macdonald's criteria matched manual delineation and automatic results in only 68% of cases. A graded pattern of tumor infiltration within the edema-like area was revealed by both automatic methods, showing high agreement. All classification results were confirmed by a senior neuro-radiologist and validated using MR spectroscopy. Conclusion: This study emphasizes the important role of automatic tools based on a multi-modal view of the tissue in monitoring therapy response in patients with high grade gliomas specifically under anti-angiogenic therapy

  2. Classification Of Road Accidents From The Perspective Of Vehicle Safety Systems

    Directory of Open Access Journals (Sweden)

    Jirovský Václav

    2015-11-01

    Full Text Available Modern road accident investigation and database structures are focused on accident analysis and classification from the point of view of the accident itself. The presented article offers a new approach, which will describe the accident from the point of view of integrated safety vehicle systems. Seven main categories have been defined to specify the level of importance of automated system intervention. One of the proposed categories is a new approach to defining the collision probability of an ego-vehicle with another object. This approach focuses on determining a 2-D reaction space, which describes all possible positions of the vehicle or other moving object in the specified amount of time in the future. This is to be used for defining the probability of the vehicles interacting - when the intersection of two reaction spaces exists, an action has to be taken on the side of ego-vehicle. The currently used 1-D quantity of TTC (time-to-collision can be superseded by the new reaction space variable. Such new quantity, whose basic idea is described in the article, enables the option of counting not only with necessary braking time, but mitigation by changing direction is then easily feasible. Finally, transparent classification measures of a probable accident are proposed. Their application is highly effective not only during basic accident comparison, but also for an on-board safety system.

  3. Vehicle Classification Using the Discrete Fourier Transform with Traffic Inductive Sensors

    Directory of Open Access Journals (Sweden)

    José J. Lamas-Seco

    2015-10-01

    Full Text Available Inductive Loop Detectors (ILDs are the most commonly used sensors in traffic management systems. This paper shows that some spectral features extracted from the Fourier Transform (FT of inductive signatures do not depend on the vehicle speed. Such a property is used to propose a novel method for vehicle classification based on only one signature acquired from a sensor single-loop, in contrast to standard methods using two sensor loops. Our proposal will be evaluated by means of real inductive signatures captured with our hardware prototype.

  4. Vehicle Classification Using the Discrete Fourier Transform with Traffic Inductive Sensors.

    Science.gov (United States)

    Lamas-Seco, José J; Castro, Paula M; Dapena, Adriana; Vazquez-Araujo, Francisco J

    2015-10-26

    Inductive Loop Detectors (ILDs) are the most commonly used sensors in traffic management systems. This paper shows that some spectral features extracted from the Fourier Transform (FT) of inductive signatures do not depend on the vehicle speed. Such a property is used to propose a novel method for vehicle classification based on only one signature acquired from a sensor single-loop, in contrast to standard methods using two sensor loops. Our proposal will be evaluated by means of real inductive signatures captured with our hardware prototype.

  5. Automatic classification of endogenous seismic sources within a landslide body using random forest algorithm

    Science.gov (United States)

    Provost, Floriane; Hibert, Clément; Malet, Jean-Philippe; Stumpf, André; Doubre, Cécile

    2016-04-01

    Different studies have shown the presence of microseismic activity in soft-rock landslides. The seismic signals exhibit significantly different features in the time and frequency domains which allow their classification and interpretation. Most of the classes could be associated with different mechanisms of deformation occurring within and at the surface (e.g. rockfall, slide-quake, fissure opening, fluid circulation). However, some signals remain not fully understood and some classes contain few examples that prevent any interpretation. To move toward a more complete interpretation of the links between the dynamics of soft-rock landslides and the physical processes controlling their behaviour, a complete catalog of the endogeneous seismicity is needed. We propose a multi-class detection method based on the random forests algorithm to automatically classify the source of seismic signals. Random forests is a supervised machine learning technique that is based on the computation of a large number of decision trees. The multiple decision trees are constructed from training sets including each of the target classes. In the case of seismic signals, these attributes may encompass spectral features but also waveform characteristics, multi-stations observations and other relevant information. The Random Forest classifier is used because it provides state-of-the-art performance when compared with other machine learning techniques (e.g. SVM, Neural Networks) and requires no fine tuning. Furthermore it is relatively fast, robust, easy to parallelize, and inherently suitable for multi-class problems. In this work, we present the first results of the classification method applied to the seismicity recorded at the Super-Sauze landslide between 2013 and 2015. We selected a dozen of seismic signal features that characterize precisely its spectral content (e.g. central frequency, spectrum width, energy in several frequency bands, spectrogram shape, spectrum local and global maxima

  6. Automatic Classification of Normal and Cancer Lung CT Images Using Multiscale AM-FM Features

    Directory of Open Access Journals (Sweden)

    Eman Magdy

    2015-01-01

    Full Text Available Computer-aided diagnostic (CAD systems provide fast and reliable diagnosis for medical images. In this paper, CAD system is proposed to analyze and automatically segment the lungs and classify each lung into normal or cancer. Using 70 different patients’ lung CT dataset, Wiener filtering on the original CT images is applied firstly as a preprocessing step. Secondly, we combine histogram analysis with thresholding and morphological operations to segment the lung regions and extract each lung separately. Amplitude-Modulation Frequency-Modulation (AM-FM method thirdly, has been used to extract features for ROIs. Then, the significant AM-FM features have been selected using Partial Least Squares Regression (PLSR for classification step. Finally, K-nearest neighbour (KNN, support vector machine (SVM, naïve Bayes, and linear classifiers have been used with the selected AM-FM features. The performance of each classifier in terms of accuracy, sensitivity, and specificity is evaluated. The results indicate that our proposed CAD system succeeded to differentiate between normal and cancer lungs and achieved 95% accuracy in case of the linear classifier.

  7. Automatic classification of minimally invasive instruments based on endoscopic image sequences

    Science.gov (United States)

    Speidel, Stefanie; Benzko, Julia; Krappe, Sebastian; Sudra, Gunther; Azad, Pedram; Müller-Stich, Beat Peter; Gutt, Carsten; Dillmann, Rüdiger

    2009-02-01

    Minimally invasive surgery is nowadays a frequently applied technique and can be regarded as a major breakthrough in surgery. The surgeon has to adopt special operation-techniques and deal with difficulties like the complex hand-eye coordination and restricted mobility. To alleviate these constraints we propose to enhance the surgeon's capabilities by providing a context-aware assistance using augmented reality techniques. To analyze the current situation for context-aware assistance, we need intraoperatively gained sensor data and a model of the intervention. A situation consists of information about the performed activity, the used instruments, the surgical objects, the anatomical structures and defines the state of an intervention for a given moment in time. The endoscopic images provide a rich source of information which can be used for an image-based analysis. Different visual cues are observed in order to perform an image-based analysis with the objective to gain as much information as possible about the current situation. An important visual cue is the automatic recognition of the instruments which appear in the scene. In this paper we present the classification of minimally invasive instruments using the endoscopic images. The instruments are not modified by markers. The system segments the instruments in the current image and recognizes the instrument type based on three-dimensional instrument models.

  8. Using Fractal And Morphological Criteria For Automatic Classification Of Lung Diseases

    Science.gov (United States)

    Vehel, Jacques Levy

    1989-11-01

    Medical Images are difficult to analyze by means of classical image processing tools because they are very complex and irregular. Such shapes are obtained for instance in Nuclear Medecine with the spatial distribution of activity for organs such as lungs, liver, and heart. We have tried to apply two different theories to these signals: - Fractal Geometry deals with the analysis of complex irregular shapes which cannot well be described by the classical Euclidean geometry. - Integral Geometry treats sets globally and allows to introduce robust measures. We have computed three parameters on three kinds of Lung's SPECT images: normal, pulmonary embolism and chronic desease: - The commonly used fractal dimension (FD), that gives a measurement of the irregularity of the 3D shape. - The generalized lacunarity dimension (GLD), defined as the variance of the ratio of the local activity by the mean activity, which is only sensitive to the distribution and the size of gaps in the surface. - The Favard length that gives an approximation of the surface of a 3-D shape. The results show that each slice of the lung, considered as a 3D surface, is fractal and that the fractal dimension is the same for each slice and for the three kind of lungs; as for the lacunarity and Favard length, they are clearly different for normal lungs, pulmonary embolisms and chronic diseases. These results indicate that automatic classification of Lung's SPECT can be achieved, and that a quantitative measurement of the evolution of the disease could be made.

  9. Automatic screening and classification of diabetic retinopathy and maculopathy using fuzzy image processing.

    Science.gov (United States)

    Rahim, Sarni Suhaila; Palade, Vasile; Shuttleworth, James; Jayne, Chrisina

    2016-12-01

    Digital retinal imaging is a challenging screening method for which effective, robust and cost-effective approaches are still to be developed. Regular screening for diabetic retinopathy and diabetic maculopathy diseases is necessary in order to identify the group at risk of visual impairment. This paper presents a novel automatic detection of diabetic retinopathy and maculopathy in eye fundus images by employing fuzzy image processing techniques. The paper first introduces the existing systems for diabetic retinopathy screening, with an emphasis on the maculopathy detection methods. The proposed medical decision support system consists of four parts, namely: image acquisition, image preprocessing including four retinal structures localisation, feature extraction and the classification of diabetic retinopathy and maculopathy. A combination of fuzzy image processing techniques, the Circular Hough Transform and several feature extraction methods are implemented in the proposed system. The paper also presents a novel technique for the macula region localisation in order to detect the maculopathy. In addition to the proposed detection system, the paper highlights a novel online dataset and it presents the dataset collection, the expert diagnosis process and the advantages of our online database compared to other public eye fundus image databases for diabetic retinopathy purposes.

  10. Automatic detection and classification of EOL-concrete and resulting recovered products by hyperspectral imaging

    Science.gov (United States)

    Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia

    2014-05-01

    The recovery of materials from Demolition Waste (DW) represents one of the main target of the recycling industry and the its characterization is important in order to set up efficient sorting and/or quality control systems. End-Of-Life (EOL) concrete materials identification is necessary to maximize DW conversion into useful secondary raw materials, so it is fundamental to develop strategies for the implementation of an automatic recognition system of the recovered products. In this paper, HyperSpectral Imaging (HSI) technique was applied in order to detect DW composition. Hyperspectral images were acquired by a laboratory device equipped with a HSI sensing device working in the near infrared range (1000-1700 nm): NIR Spectral Camera™, embedding an ImSpector™ N17E (SPECIM Ltd, Finland). Acquired spectral data were analyzed adopting the PLS_Toolbox (Version 7.5, Eigenvector Research, Inc.) under Matlab® environment (Version 7.11.1, The Mathworks, Inc.), applying different chemometric methods: Principal Component Analysis (PCA) for exploratory data approach and Partial Least Square- Discriminant Analysis (PLS-DA) to build classification models. Results showed that it is possible to recognize DW materials, distinguishing recycled aggregates from contaminants (e.g. bricks, gypsum, plastics, wood, foam, etc.). The developed procedure is cheap, fast and non-destructive: it could be used to make some steps of the recycling process more efficient and less expensive.

  11. Automatic segmentation of MR brain images of preterm infants using supervised classification.

    Science.gov (United States)

    Moeskops, Pim; Benders, Manon J N L; Chiţ, Sabina M; Kersbergen, Karina J; Groenendaal, Floris; de Vries, Linda S; Viergever, Max A; Išgum, Ivana

    2015-09-01

    Preterm birth is often associated with impaired brain development. The state and expected progression of preterm brain development can be evaluated using quantitative assessment of MR images. Such measurements require accurate segmentation of different tissue types in those images. This paper presents an algorithm for the automatic segmentation of unmyelinated white matter (WM), cortical grey matter (GM), and cerebrospinal fluid in the extracerebral space (CSF). The algorithm uses supervised voxel classification in three subsequent stages. In the first stage, voxels that can easily be assigned to one of the three tissue types are labelled. In the second stage, dedicated analysis of the remaining voxels is performed. The first and the second stages both use two-class classification for each tissue type separately. Possible inconsistencies that could result from these tissue-specific segmentation stages are resolved in the third stage, which performs multi-class classification. A set of T1- and T2-weighted images was analysed, but the optimised system performs automatic segmentation using a T2-weighted image only. We have investigated the performance of the algorithm when using training data randomly selected from completely annotated images as well as when using training data from only partially annotated images. The method was evaluated on images of preterm infants acquired at 30 and 40weeks postmenstrual age (PMA). When the method was trained using random selection from the completely annotated images, the average Dice coefficients were 0.95 for WM, 0.81 for GM, and 0.89 for CSF on an independent set of images acquired at 30weeks PMA. When the method was trained using only the partially annotated images, the average Dice coefficients were 0.95 for WM, 0.78 for GM and 0.87 for CSF for the images acquired at 30weeks PMA, and 0.92 for WM, 0.80 for GM and 0.85 for CSF for the images acquired at 40weeks PMA. Even though the segmentations obtained using training data

  12. Automatic classification for mammogram backgrounds based on bi-rads complexity definition and on a multi content analysis framework

    Science.gov (United States)

    Wu, Jie; Besnehard, Quentin; Marchessoux, Cédric

    2011-03-01

    Clinical studies for the validation of new medical imaging devices require hundreds of images. An important step in creating and tuning the study protocol is the classification of images into "difficult" and "easy" cases. This consists of classifying the image based on features like the complexity of the background, the visibility of the disease (lesions). Therefore, an automatic medical background classification tool for mammograms would help for such clinical studies. This classification tool is based on a multi-content analysis framework (MCA) which was firstly developed to recognize image content of computer screen shots. With the implementation of new texture features and a defined breast density scale, the MCA framework is able to automatically classify digital mammograms with a satisfying accuracy. BI-RADS (Breast Imaging Reporting Data System) density scale is used for grouping the mammograms, which standardizes the mammography reporting terminology and assessment and recommendation categories. Selected features are input into a decision tree classification scheme in MCA framework, which is the so called "weak classifier" (any classifier with a global error rate below 50%). With the AdaBoost iteration algorithm, these "weak classifiers" are combined into a "strong classifier" (a classifier with a low global error rate) for classifying one category. The results of classification for one "strong classifier" show the good accuracy with the high true positive rates. For the four categories the results are: TP=90.38%, TN=67.88%, FP=32.12% and FN =9.62%.

  13. Automatic classification of retinal three-dimensional optical coherence tomography images using principal component analysis network with composite kernels.

    Science.gov (United States)

    Fang, Leyuan; Wang, Chong; Li, Shutao; Yan, Jun; Chen, Xiangdong; Rabbani, Hossein

    2017-11-01

    We present an automatic method, termed as the principal component analysis network with composite kernel (PCANet-CK), for the classification of three-dimensional (3-D) retinal optical coherence tomography (OCT) images. Specifically, the proposed PCANet-CK method first utilizes the PCANet to automatically learn features from each B-scan of the 3-D retinal OCT images. Then, multiple kernels are separately applied to a set of very important features of the B-scans and these kernels are fused together, which can jointly exploit the correlations among features of the 3-D OCT images. Finally, the fused (composite) kernel is incorporated into an extreme learning machine for the OCT image classification. We tested our proposed algorithm on two real 3-D spectral domain OCT (SD-OCT) datasets (of normal subjects and subjects with the macular edema and age-related macular degeneration), which demonstrated its effectiveness. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  14. Automatic Classification of Station Quality by Image Based Pattern Recognition of Ppsd Plots

    Science.gov (United States)

    Weber, B.; Herrnkind, S.

    2017-12-01

    The number of seismic stations is growing and it became common practice to share station waveform data in real-time with the main data centers as IRIS, GEOFON, ORFEUS and RESIF. This made analyzing station performance of increasing importance for automatic real-time processing and station selection. The value of a station depends on different factors as quality and quantity of the data, location of the site and general station density in the surrounding area and finally the type of application it can be used for. The approach described by McNamara and Boaz (2006) became standard in the last decade. It incorporates a probability density function (PDF) to display the distribution of seismic power spectral density (PSD). The low noise model (LNM) and high noise model (HNM) introduced by Peterson (1993) are also displayed in the PPSD plots introduced by McNamara and Boaz allowing an estimation of the station quality. Here we describe how we established an automatic station quality classification module using image based pattern recognition on PPSD plots. The plots were split into 4 bands: short-period characteristics (0.1-0.8 s), body wave characteristics (0.8-5 s), microseismic characteristics (5-12 s) and long-period characteristics (12-100 s). The module sqeval connects to a SeedLink server, checks available stations, requests PPSD plots through the Mustang service from IRIS or PQLX/SQLX or from GIS (gempa Image Server), a module to generate different kind of images as trace plots, map plots, helicorder plots or PPSD plots. It compares the image based quality patterns for the different period bands with the retrieved PPSD plot. The quality of a station is divided into 5 classes for each of the 4 bands. Classes A, B, C, D define regular quality between LNM and HNM while the fifth class represents out of order stations with gain problems, missing data etc. Over all period bands about 100 different patterns are required to classify most of the stations available on the

  15. Poster Abstract: Automatic Calibration of Device Attitude in Inertial Measurement Unit Based Traffic Probe Vehicles

    KAUST Repository

    Mousa, Mustafa; Sharma, Kapil; Claudel, Christian

    2016-01-01

    to replace them with inertial measurement units onboard vehicles, to estimate vehicle location and attitude using inertial data only. While promising, this technology requires one to carefully calibrate the orientation of the device inside the vehicle

  16. Bus Travel Time Deviation Analysis Using Automatic Vehicle Location Data and Structural Equation Modeling

    Directory of Open Access Journals (Sweden)

    Xiaolin Gong

    2015-01-01

    Full Text Available To investigate the influences of causes of unreliability and bus schedule recovery phenomenon on microscopic segment-level travel time variance, this study adopts Structural Equation Modeling (SEM to specify, estimate, and measure the theoretical proposed models. The SEM model establishes and verifies hypotheses for interrelationships among travel time deviations, departure delays, segment lengths, dwell times, and number of traffic signals and access connections. The finally accepted model demonstrates excellent fitness. Most of the hypotheses are supported by the sample dataset from bus Automatic Vehicle Location system. The SEM model confirms the bus schedule recovery phenomenon. The departure delays at bus terminals and upstream travel time deviations indeed have negative impacts on travel time fluctuation of buses en route. Meanwhile, the segment length directly and negatively impacts travel time variability and inversely positively contributes to the schedule recovery process; this exogenous variable also indirectly and positively influences travel times through the existence of signalized intersections and access connections. This study offers a rational approach to analyzing travel time deviation feature. The SEM model structure and estimation results facilitate the understanding of bus service performance characteristics and provide several implications for bus service planning, management, and operation.

  17. Automatic Parameter Tuning for the Morpheus Vehicle Using Particle Swarm Optimization

    Science.gov (United States)

    Birge, B.

    2013-01-01

    A high fidelity simulation using a PC based Trick framework has been developed for Johnson Space Center's Morpheus test bed flight vehicle. There is an iterative development loop of refining and testing the hardware, refining the software, comparing the software simulation to hardware performance and adjusting either or both the hardware and the simulation to extract the best performance from the hardware as well as the most realistic representation of the hardware from the software. A Particle Swarm Optimization (PSO) based technique has been developed that increases speed and accuracy of the iterative development cycle. Parameters in software can be automatically tuned to make the simulation match real world subsystem data from test flights. Special considerations for scale, linearity, discontinuities, can be all but ignored with this technique, allowing fast turnaround both for simulation tune up to match hardware changes as well as during the test and validation phase to help identify hardware issues. Software models with insufficient control authority to match hardware test data can be immediately identified and using this technique requires very little to no specialized knowledge of optimization, freeing model developers to concentrate on spacecraft engineering. Integration of the PSO into the Morpheus development cycle will be discussed as well as a case study highlighting the tool's effectiveness.

  18. Automatic Approach to Morphological Classification of Galaxies With Analysis of Galaxy Populations in Clusters

    Science.gov (United States)

    Sultanova, Madina; Barkhouse, Wayne; Rude, Cody

    2018-01-01

    The classification of galaxies based on their morphology is a field in astrophysics that aims to understand galaxy formation and evolution based on their physical differences. Whether structural differences are due to internal factors or a result of local environment, the dominate mechanism that determines galaxy type needs to be robustly quantified in order to have a thorough grasp of the origin of the different types of galaxies. The main subject of my Ph.D. dissertation is to explore the use of computers to automatically classify and analyze large numbers of galaxies according to their morphology, and to analyze sub-samples of galaxies selected by type to understand galaxy formation in various environments. I have developed a computer code to classify galaxies by measuring five parameters from their images in FITS format. The code was trained and tested using visually classified SDSS galaxies from Galaxy Zoo and the EFIGI data set. I apply my morphology software to numerous galaxies from diverse data sets. Among the data analyzed are the 15 Abell galaxy clusters (0.03 Frontier Field galaxy clusters. The high resolution of HST allows me to compare distant clusters with those nearby to look for evolutionary changes in the galaxy cluster population. I use the results from the software to examine the properties (e.g. luminosity functions, radial dependencies, star formation rates) of selected galaxies. Due to the large amount of data that will be available from wide-area surveys in the future, the use of computer software to classify and analyze the morphology of galaxies will be extremely important in terms of efficiency. This research aims to contribute to the solution of this problem.

  19. Automatic classification of fluorescence and optical diffusion spectroscopy data in neuro-oncology

    Science.gov (United States)

    Savelieva, T. A.; Loshchenov, V. B.; Goryajnov, S. A.; Potapov, A. A.

    2018-04-01

    The complexity of the biological tissue spectroscopic analysis due to the overlap of biological molecules' absorption spectra, multiple scattering effect, as well as measurement geometry in vivo has caused the relevance of this work. In the neurooncology the problem of tumor boundaries delineation is especially acute and requires the development of new methods of intraoperative diagnosis. Methods of optical spectroscopy allow detecting various diagnostically significant parameters non-invasively. 5-ALA induced protoporphyrin IX is frequently used as fluorescent tumor marker in neurooncology. At the same time analysis of the concentration and the oxygenation level of haemoglobin and significant changes of light scattering in tumor tissues have a high diagnostic value. This paper presents an original method for the simultaneous registration of backward diffuse reflectance and fluorescence spectra, which allows defining all the parameters listed above simultaneously. The clinical studies involving 47 patients with intracranial glial tumors of II-IV Grades were carried out in N.N. Burdenko National Medical Research Center of Neurosurgery. To register the spectral dependences the spectroscopic system LESA- 01-BIOSPEC was used with specially developed w-shaped diagnostic fiber optic probe. The original algorithm of combined spectroscopic signal processing was developed. We have created a software and hardware, which allowed (as compared with the methods currently used in neurosurgical practice) to increase the sensitivity of intraoperative demarcation of intracranial tumors from 78% to 96%, specificity of 60% to 82%. The result of analysis of different techniques of automatic classification shows that in our case the most appropriate is the k Nearest Neighbors algorithm with cubic metrics.

  20. Development of a Simple Traffic Sensor and System with Vehicle Classification Based on PVDF Film Element

    Directory of Open Access Journals (Sweden)

    D. R. SANTOSO

    2011-03-01

    Full Text Available In this paper, piezoelectric sensor system for measuring traffic flow with vehicle classification is proposed and investigated. Sensing element is made of PVDF film, which on both sides plastered with sheets of metal electrodes for making electrical connections. This sensor will generate electric voltage when subjected to mechanical pressure by the wheels of the vehicle. The signal conditioning is required to make sensor output voltage in the range of 0-5 Volts. To classify the types of vehicles crossing the sensor, three-level comparator is used, with specifications of a low voltage reference for motorcycles, medium voltage reference for a family vehicle, and a high voltage reference for buses, trucks and the like. Output of the comparators are already a logic '0' or '1' is then processed by a microcontroller based data acquisition system that the output shows the number and type of vehicles that crossed the road in the form of digital code. These data then transmitted to a control centre that was built based on a PC. At the control centre, traffic data tabulated in the form of measurement database and stored for further analysis.

  1. Lane-Level Road Information Mining from Vehicle GPS Trajectories Based on Naïve Bayesian Classification

    Directory of Open Access Journals (Sweden)

    Luliang Tang

    2015-11-01

    Full Text Available In this paper, we propose a novel approach for mining lane-level road network information from low-precision vehicle GPS trajectories (MLIT, which includes the number and turn rules of traffic lanes based on naïve Bayesian classification. First, the proposed method (MLIT uses an adaptive density optimization method to remove outliers from the raw GPS trajectories based on their space-time distribution and density clustering. Second, MLIT acquires the number of lanes in two steps. The first step establishes a naïve Bayesian classifier according to the trace features of the road plane and road profiles and the real number of lanes, as found in the training samples. The second step confirms the number of lanes using test samples in reference to the naïve Bayesian classifier using the known trace features of test sample. Third, MLIT infers the turn rules of each lane through tracking GPS trajectories. Experiments were conducted using the GPS trajectories of taxis in Wuhan, China. Compared with human-interpreted results, the automatically generated lane-level road network information was demonstrated to be of higher quality in terms of displaying detailed road networks with the number of lanes and turn rules of each lane.

  2. Piloted Simulation Evaluation of a Model-Predictive Automatic Recovery System to Prevent Vehicle Loss of Control on Approach

    Science.gov (United States)

    Litt, Jonathan S.; Liu, Yuan; Sowers, Thomas S.; Owen, A. Karl; Guo, Ten-Huei

    2014-01-01

    This paper describes a model-predictive automatic recovery system for aircraft on the verge of a loss-of-control situation. The system determines when it must intervene to prevent an imminent accident, resulting from a poor approach. It estimates the altitude loss that would result from a go-around maneuver at the current flight condition. If the loss is projected to violate a minimum altitude threshold, the maneuver is automatically triggered. The system deactivates to allow landing once several criteria are met. Piloted flight simulator evaluation showed the system to provide effective envelope protection during extremely unsafe landing attempts. The results demonstrate how flight and propulsion control can be integrated to recover control of the vehicle automatically and prevent a potential catastrophe.

  3. Analysis of Chi-square Automatic Interaction Detection (CHAID) and Classification and Regression Tree (CRT) for Classification of Corn Production

    Science.gov (United States)

    Susanti, Yuliana; Zukhronah, Etik; Pratiwi, Hasih; Respatiwulan; Sri Sulistijowati, H.

    2017-11-01

    To achieve food resilience in Indonesia, food diversification by exploring potentials of local food is required. Corn is one of alternating staple food of Javanese society. For that reason, corn production needs to be improved by considering the influencing factors. CHAID and CRT are methods of data mining which can be used to classify the influencing variables. The present study seeks to dig up information on the potentials of local food availability of corn in regencies and cities in Java Island. CHAID analysis yields four classifications with accuracy of 78.8%, while CRT analysis yields seven classifications with accuracy of 79.6%.

  4. Object Detection and Classification by Decision-Level Fusion for Intelligent Vehicle Systems

    Directory of Open Access Journals (Sweden)

    Sang-Il Oh

    2017-01-01

    Full Text Available To understand driving environments effectively, it is important to achieve accurate detection and classification of objects detected by sensor-based intelligent vehicle systems, which are significantly important tasks. Object detection is performed for the localization of objects, whereas object classification recognizes object classes from detected object regions. For accurate object detection and classification, fusing multiple sensor information into a key component of the representation and perception processes is necessary. In this paper, we propose a new object-detection and classification method using decision-level fusion. We fuse the classification outputs from independent unary classifiers, such as 3D point clouds and image data using a convolutional neural network (CNN. The unary classifiers for the two sensors are the CNN with five layers, which use more than two pre-trained convolutional layers to consider local to global features as data representation. To represent data using convolutional layers, we apply region of interest (ROI pooling to the outputs of each layer on the object candidate regions generated using object proposal generation to realize color flattening and semantic grouping for charge-coupled device and Light Detection And Ranging (LiDAR sensors. We evaluate our proposed method on a KITTI benchmark dataset to detect and classify three object classes: cars, pedestrians and cyclists. The evaluation results show that the proposed method achieves better performance than the previous methods. Our proposed method extracted approximately 500 proposals on a 1226 × 370 image, whereas the original selective search method extracted approximately 10 6 × n proposals. We obtained classification performance with 77.72% mean average precision over the entirety of the classes in the moderate detection level of the KITTI benchmark dataset.

  5. Applying machine-learning techniques to Twitter data for automatic hazard-event classification.

    Science.gov (United States)

    Filgueira, R.; Bee, E. J.; Diaz-Doce, D.; Poole, J., Sr.; Singh, A.

    2017-12-01

    The constant flow of information offered by tweets provides valuable information about all sorts of events at a high temporal and spatial resolution. Over the past year we have been analyzing in real-time geological hazards/phenomenon, such as earthquakes, volcanic eruptions, landslides, floods or the aurora, as part of the GeoSocial project, by geo-locating tweets filtered by keywords in a web-map. However, not all the filtered tweets are related with hazard/phenomenon events. This work explores two classification techniques for automatic hazard-event categorization based on tweets about the "Aurora". First, tweets were filtered using aurora-related keywords, removing stop words and selecting the ones written in English. For classifying the remaining between "aurora-event" or "no-aurora-event" categories, we compared two state-of-art techniques: Support Vector Machine (SVM) and Deep Convolutional Neural Networks (CNN) algorithms. Both approaches belong to the family of supervised learning algorithms, which make predictions based on labelled training dataset. Therefore, we created a training dataset by tagging 1200 tweets between both categories. The general form of SVM is used to separate two classes by a function (kernel). We compared the performance of four different kernels (Linear Regression, Logistic Regression, Multinomial Naïve Bayesian and Stochastic Gradient Descent) provided by Scikit-Learn library using our training dataset to build the SVM classifier. The results shown that the Logistic Regression (LR) gets the best accuracy (87%). So, we selected the SVM-LR classifier to categorise a large collection of tweets using the "dispel4py" framework.Later, we developed a CNN classifier, where the first layer embeds words into low-dimensional vectors. The next layer performs convolutions over the embedded word vectors. Results from the convolutional layer are max-pooled into a long feature vector, which is classified using a softmax layer. The CNN's accuracy

  6. THE APPLICATION OF RTK-GPS AND STEER-BY-WIRE TECHNOLOGY TO THE AUTOMATIC DRIVING OF VEHICLES AND AN EVALUATION OF DRIVER BEHAVIOR

    Directory of Open Access Journals (Sweden)

    Manabu OMAE

    2006-01-01

    Full Text Available Automatic vehicle driving has long been the subject of research efforts designed to improve the safety and efficiency of automobile transportation. In recent years, increasingly sophisticated sensors and automobiles have brought automatic driving systems closer to reality. In this paper we describe an attempt to apply real-time kinematic GPS (RTK-GPS, a highly precise positioning system, and steer-by-wire body technology, which has advanced greatly in recent years, to automatic driving. In addition, we also describe the results of research into human factors related to automatic driving, which will become more and more important as automatic driving is put to practical use.

  7. Automatic Classification of High Resolution Satellite Imagery - a Case Study for Urban Areas in the Kingdom of Saudi Arabia

    Science.gov (United States)

    Maas, A.; Alrajhi, M.; Alobeid, A.; Heipke, C.

    2017-05-01

    Updating topographic geospatial databases is often performed based on current remotely sensed images. To automatically extract the object information (labels) from the images, supervised classifiers are being employed. Decisions to be taken in this process concern the definition of the classes which should be recognised, the features to describe each class and the training data necessary in the learning part of classification. With a view to large scale topographic databases for fast developing urban areas in the Kingdom of Saudi Arabia we conducted a case study, which investigated the following two questions: (a) which set of features is best suitable for the classification?; (b) what is the added value of height information, e.g. derived from stereo imagery? Using stereoscopic GeoEye and Ikonos satellite data we investigate these two questions based on our research on label tolerant classification using logistic regression and partly incorrect training data. We show that in between five and ten features can be recommended to obtain a stable solution, that height information consistently yields an improved overall classification accuracy of about 5%, and that label noise can be successfully modelled and thus only marginally influences the classification results.

  8. Automatic classification of pulmonary peri-fissural nodules in computed tomography using an ensemble of 2D views and a convolutional neural network out-of-the-box

    NARCIS (Netherlands)

    Ciompi, Francesco; de Hoop, Bartjan; van Riel, Sarah J.; Chung, Kaman; Scholten, Ernst Th.; Oudkerk, Matthijs; de Jong, Pim A.; Prokop, Mathias; van Ginneken, Bram

    2015-01-01

    In this paper, we tackle the problem of automatic classification of pulmonary peri-fissural nodules (PFNs). The classification problem is formulated as a machine learning approach, where detected nodule candidates are classified as PFNs or non-PFNs. Supervised learning is used, where a classifier is

  9. Automatic Residential/Commercial Classification of Parcels with Solar Panel Detections

    Energy Technology Data Exchange (ETDEWEB)

    2018-03-25

    A computational method to automatically detect solar panels on rooftops to aid policy and financial assessment of solar distributed generation. The code automatically classifies parcels containing solar panels in the U.S. as residential or commercial. The code allows the user to specify an input dataset containing parcels and detected solar panels, and then uses information about the parcels and solar panels to automatically classify the rooftops as residential or commercial using machine learning techniques. The zip file containing the code includes sample input and output datasets for the Boston and DC areas.

  10. Automatic Classification of the Sub-Techniques (Gears Used in Cross-Country Ski Skating Employing a Mobile Phone

    Directory of Open Access Journals (Sweden)

    Thomas Stöggl

    2014-10-01

    Full Text Available The purpose of the current study was to develop and validate an automatic algorithm for classification of cross-country (XC ski-skating gears (G using Smartphone accelerometer data. Eleven XC skiers (seven men, four women with regional-to-international levels of performance carried out roller skiing trials on a treadmill using fixed gears (G2left, G2right, G3, G4left, G4right and a 950-m trial using different speeds and inclines, applying gears and sides as they normally would. Gear classification by the Smartphone (on the chest and based on video recordings were compared. Formachine-learning, a collective database was compared to individual data. The Smartphone application identified the trials with fixed gears correctly in all cases. In the 950-m trial, participants executed 140 ± 22 cycles as assessed by video analysis, with the automatic Smartphone application giving a similar value. Based on collective data, gears were identified correctly 86.0% ± 8.9% of the time, a value that rose to 90.3% ± 4.1% (P < 0.01 with machine learning from individual data. Classification was most often incorrect during transition between gears, especially to or from G3. Identification was most often correct for skiers who made relatively few transitions between gears. The accuracy of the automatic procedure for identifying G2left, G2right, G3, G4left and G4right was 96%, 90%, 81%, 88% and 94%, respectively. The algorithm identified gears correctly 100% of the time when a single gear was used and 90% of the time when different gears were employed during a variable protocol. This algorithm could be improved with respect to identification of transitions between gears or the side employed within a given gear.

  11. Automatic Classification of the Sub-Techniques (Gears) Used in Cross-Country Ski Skating Employing a Mobile Phone

    Science.gov (United States)

    Stöggl, Thomas; Holst, Anders; Jonasson, Arndt; Andersson, Erik; Wunsch, Tobias; Norström, Christer; Holmberg, Hans-Christer

    2014-01-01

    The purpose of the current study was to develop and validate an automatic algorithm for classification of cross-country (XC) ski-skating gears (G) using Smartphone accelerometer data. Eleven XC skiers (seven men, four women) with regional-to-international levels of performance carried out roller skiing trials on a treadmill using fixed gears (G2left, G2right, G3, G4left, G4right) and a 950-m trial using different speeds and inclines, applying gears and sides as they normally would. Gear classification by the Smartphone (on the chest) and based on video recordings were compared. Formachine-learning, a collective database was compared to individual data. The Smartphone application identified the trials with fixed gears correctly in all cases. In the 950-m trial, participants executed 140 ± 22 cycles as assessed by video analysis, with the automatic Smartphone application giving a similar value. Based on collective data, gears were identified correctly 86.0% ± 8.9% of the time, a value that rose to 90.3% ± 4.1% (P < 0.01) with machine learning from individual data. Classification was most often incorrect during transition between gears, especially to or from G3. Identification was most often correct for skiers who made relatively few transitions between gears. The accuracy of the automatic procedure for identifying G2left, G2right, G3, G4left and G4right was 96%, 90%, 81%, 88% and 94%, respectively. The algorithm identified gears correctly 100% of the time when a single gear was used and 90% of the time when different gears were employed during a variable protocol. This algorithm could be improved with respect to identification of transitions between gears or the side employed within a given gear. PMID:25365459

  12. Back-and-Forth Methodology for Objective Voice Quality Assessment: From/to Expert Knowledge to/from Automatic Classification of Dysphonia

    Science.gov (United States)

    Fredouille, Corinne; Pouchoulin, Gilles; Ghio, Alain; Revis, Joana; Bonastre, Jean-François; Giovanni, Antoine

    2009-12-01

    This paper addresses voice disorder assessment. It proposes an original back-and-forth methodology involving an automatic classification system as well as knowledge of the human experts (machine learning experts, phoneticians, and pathologists). The goal of this methodology is to bring a better understanding of acoustic phenomena related to dysphonia. The automatic system was validated on a dysphonic corpus (80 female voices), rated according to the GRBAS perceptual scale by an expert jury. Firstly, focused on the frequency domain, the classification system showed the interest of 0-3000 Hz frequency band for the classification task based on the GRBAS scale. Later, an automatic phonemic analysis underlined the significance of consonants and more surprisingly of unvoiced consonants for the same classification task. Submitted to the human experts, these observations led to a manual analysis of unvoiced plosives, which highlighted a lengthening of VOT according to the dysphonia severity validated by a preliminary statistical analysis.

  13. Back-and-Forth Methodology for Objective Voice Quality Assessment: From/to Expert Knowledge to/from Automatic Classification of Dysphonia

    Directory of Open Access Journals (Sweden)

    Corinne Fredouille

    2009-01-01

    Full Text Available This paper addresses voice disorder assessment. It proposes an original back-and-forth methodology involving an automatic classification system as well as knowledge of the human experts (machine learning experts, phoneticians, and pathologists. The goal of this methodology is to bring a better understanding of acoustic phenomena related to dysphonia. The automatic system was validated on a dysphonic corpus (80 female voices, rated according to the GRBAS perceptual scale by an expert jury. Firstly, focused on the frequency domain, the classification system showed the interest of 0–3000 Hz frequency band for the classification task based on the GRBAS scale. Later, an automatic phonemic analysis underlined the significance of consonants and more surprisingly of unvoiced consonants for the same classification task. Submitted to the human experts, these observations led to a manual analysis of unvoiced plosives, which highlighted a lengthening of VOT according to the dysphonia severity validated by a preliminary statistical analysis.

  14. Cross-over between discrete and continuous protein structure space: insights into automatic classification and networks of protein structures.

    Directory of Open Access Journals (Sweden)

    Alberto Pascual-García

    2009-03-01

    Full Text Available Structural classifications of proteins assume the existence of the fold, which is an intrinsic equivalence class of protein domains. Here, we test in which conditions such an equivalence class is compatible with objective similarity measures. We base our analysis on the transitive property of the equivalence relationship, requiring that similarity of A with B and B with C implies that A and C are also similar. Divergent gene evolution leads us to expect that the transitive property should approximately hold. However, if protein domains are a combination of recurrent short polypeptide fragments, as proposed by several authors, then similarity of partial fragments may violate the transitive property, favouring the continuous view of the protein structure space. We propose a measure to quantify the violations of the transitive property when a clustering algorithm joins elements into clusters, and we find out that such violations present a well defined and detectable cross-over point, from an approximately transitive regime at high structure similarity to a regime with large transitivity violations and large differences in length at low similarity. We argue that protein structure space is discrete and hierarchic classification is justified up to this cross-over point, whereas at lower similarities the structure space is continuous and it should be represented as a network. We have tested the qualitative behaviour of this measure, varying all the choices involved in the automatic classification procedure, i.e., domain decomposition, alignment algorithm, similarity score, and clustering algorithm, and we have found out that this behaviour is quite robust. The final classification depends on the chosen algorithms. We used the values of the clustering coefficient and the transitivity violations to select the optimal choices among those that we tested. Interestingly, this criterion also favours the agreement between automatic and expert classifications

  15. Automatic Classification Using Supervised Learning in a Medical Document Filtering Application.

    Science.gov (United States)

    Mostafa, J.; Lam, W.

    2000-01-01

    Presents a multilevel model of the information filtering process that permits document classification. Evaluates a document classification approach based on a supervised learning algorithm, measures the accuracy of the algorithm in a neural network that was trained to classify medical documents on cell biology, and discusses filtering…

  16. Learning machines and sleeping brains: Automatic sleep stage classification using decision-tree multi-class support vector machines.

    Science.gov (United States)

    Lajnef, Tarek; Chaibi, Sahbi; Ruby, Perrine; Aguera, Pierre-Emmanuel; Eichenlaub, Jean-Baptiste; Samet, Mounir; Kachouri, Abdennaceur; Jerbi, Karim

    2015-07-30

    Sleep staging is a critical step in a range of electrophysiological signal processing pipelines used in clinical routine as well as in sleep research. Although the results currently achievable with automatic sleep staging methods are promising, there is need for improvement, especially given the time-consuming and tedious nature of visual sleep scoring. Here we propose a sleep staging framework that consists of a multi-class support vector machine (SVM) classification based on a decision tree approach. The performance of the method was evaluated using polysomnographic data from 15 subjects (electroencephalogram (EEG), electrooculogram (EOG) and electromyogram (EMG) recordings). The decision tree, or dendrogram, was obtained using a hierarchical clustering technique and a wide range of time and frequency-domain features were extracted. Feature selection was carried out using forward sequential selection and classification was evaluated using k-fold cross-validation. The dendrogram-based SVM (DSVM) achieved mean specificity, sensitivity and overall accuracy of 0.92, 0.74 and 0.88 respectively, compared to expert visual scoring. Restricting DSVM classification to data where both experts' scoring was consistent (76.73% of the data) led to a mean specificity, sensitivity and overall accuracy of 0.94, 0.82 and 0.92 respectively. The DSVM framework outperforms classification with more standard multi-class "one-against-all" SVM and linear-discriminant analysis. The promising results of the proposed methodology suggest that it may be a valuable alternative to existing automatic methods and that it could accelerate visual scoring by providing a robust starting hypnogram that can be further fine-tuned by expert inspection. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A unique concept for automatically controlling the braking action of wheeled vehicles during minimum distance stops

    Science.gov (United States)

    Barthlome, D. E.

    1975-01-01

    Test results of a unique automatic brake control system are outlined and a comparison is made of its mode of operation to that of an existing skid control system. The purpose of the test system is to provide automatic control of braking action such that hydraulic brake pressure is maintained at a near constant, optimum value during minimum distance stops.

  18. Fault prevention by early stage symptoms detection for automatic vehicle transmission using pattern recognition and curve fitting

    Science.gov (United States)

    Balbin, Jessie R.; Cruz, Febus Reidj G.; Abu, Jon Ervin A.; Siño, Carlo G.; Ubaldo, Paolo E.; Zulueta, Christelle Jianne T.

    2017-06-01

    Automobiles have become essential parts of our everyday lives. It can correlate many factors that may affect a vehicle primarily those which may inconvenient or in some cases harm lives or properties. Thus, focusing on detecting an automatic transmission vehicle engine, body and other parts that cause vibration and sound may help prevent car problems using MATLAB. By using sound, vibration, and temperature sensors to detect the defects of the car and with the help of the transmitter and receiver to gather data wirelessly, it is easy to install on to the vehicle. A technique utilized from Toyota Balintawak Philippines that every car is treated as panels(a, b, c, d, and e) 'a' being from the hood until the front wheel of the car and 'e' the rear shield to the back of the car, this was applied on how to properly place the sensors so that precise data could be gathered. Data gathered would be compared to the normal graph taken from the normal status or performance of a vehicle, data that would surpass 50% of the normal graph would be considered that a problem has occurred. The system is designed to prevent car accidents by determining the current status or performance of the vehicle, also keeping people away from harm.

  19. Recognition Number of The Vehicle Plate Using Otsu Method and K-Nearest Neighbour Classification

    Directory of Open Access Journals (Sweden)

    Maulidia Rahmah Hidayah

    2017-05-01

    Full Text Available The current topic that is interesting as a solution of the impact of public service improvement toward vehicle is License Plate Recognition (LPR, but it still needs to develop the research of LPR method. Some of the previous researchs showed that K-Nearest Neighbour (KNN succeed in car license plate recognition. The Objectives of this research was to determine the implementation and accuracy of Otsu Method toward license plate recognition. The method of this research was Otsu method to extract the characteristics and image of the plate into binary image and KNN as recognition classification method of each character. The development of the license plate recognition program by using Otsu method and classification of KNN is following the steps of pattern recognition, such as input and sensing, pre-processing, extraction feature Otsu method binary, segmentation, KNN classification method and post-processing by calculating the level of accuracy. The study showed that this program can recognize by 82% from 100 test plate with 93,75% of number recognition accuracy and 91,92% of letter recognition accuracy. 

  20. A SEMI-AUTOMATIC RULE SET BUILDING METHOD FOR URBAN LAND COVER CLASSIFICATION BASED ON MACHINE LEARNING AND HUMAN KNOWLEDGE

    Directory of Open Access Journals (Sweden)

    H. Y. Gu

    2017-09-01

    Full Text Available Classification rule set is important for Land Cover classification, which refers to features and decision rules. The selection of features and decision are based on an iterative trial-and-error approach that is often utilized in GEOBIA, however, it is time-consuming and has a poor versatility. This study has put forward a rule set building method for Land cover classification based on human knowledge and machine learning. The use of machine learning is to build rule sets effectively which will overcome the iterative trial-and-error approach. The use of human knowledge is to solve the shortcomings of existing machine learning method on insufficient usage of prior knowledge, and improve the versatility of rule sets. A two-step workflow has been introduced, firstly, an initial rule is built based on Random Forest and CART decision tree. Secondly, the initial rule is analyzed and validated based on human knowledge, where we use statistical confidence interval to determine its threshold. The test site is located in Potsdam City. We utilised the TOP, DSM and ground truth data. The results show that the method could determine rule set for Land Cover classification semi-automatically, and there are static features for different land cover classes.

  1. LTRsift: a graphical user interface for semi-automatic classification and postprocessing of de novo detected LTR retrotransposons

    Directory of Open Access Journals (Sweden)

    Steinbiss Sascha

    2012-11-01

    Full Text Available Abstract Background Long terminal repeat (LTR retrotransposons are a class of eukaryotic mobile elements characterized by a distinctive sequence similarity-based structure. Hence they are well suited for computational identification. Current software allows for a comprehensive genome-wide de novo detection of such elements. The obvious next step is the classification of newly detected candidates resulting in (super-families. Such a de novo classification approach based on sequence-based clustering of transposon features has been proposed before, resulting in a preliminary assignment of candidates to families as a basis for subsequent manual refinement. However, such a classification workflow is typically split across a heterogeneous set of glue scripts and generic software (for example, spreadsheets, making it tedious for a human expert to inspect, curate and export the putative families produced by the workflow. Results We have developed LTRsift, an interactive graphical software tool for semi-automatic postprocessing of de novo predicted LTR retrotransposon annotations. Its user-friendly interface offers customizable filtering and classification functionality, displaying the putative candidate groups, their members and their internal structure in a hierarchical fashion. To ease manual work, it also supports graphical user interface-driven reassignment, splitting and further annotation of candidates. Export of grouped candidate sets in standard formats is possible. In two case studies, we demonstrate how LTRsift can be employed in the context of a genome-wide LTR retrotransposon survey effort. Conclusions LTRsift is a useful and convenient tool for semi-automated classification of newly detected LTR retrotransposons based on their internal features. Its efficient implementation allows for convenient and seamless filtering and classification in an integrated environment. Developed for life scientists, it is helpful in postprocessing and refining

  2. LTRsift: a graphical user interface for semi-automatic classification and postprocessing of de novo detected LTR retrotransposons.

    Science.gov (United States)

    Steinbiss, Sascha; Kastens, Sascha; Kurtz, Stefan

    2012-11-07

    Long terminal repeat (LTR) retrotransposons are a class of eukaryotic mobile elements characterized by a distinctive sequence similarity-based structure. Hence they are well suited for computational identification. Current software allows for a comprehensive genome-wide de novo detection of such elements. The obvious next step is the classification of newly detected candidates resulting in (super-)families. Such a de novo classification approach based on sequence-based clustering of transposon features has been proposed before, resulting in a preliminary assignment of candidates to families as a basis for subsequent manual refinement. However, such a classification workflow is typically split across a heterogeneous set of glue scripts and generic software (for example, spreadsheets), making it tedious for a human expert to inspect, curate and export the putative families produced by the workflow. We have developed LTRsift, an interactive graphical software tool for semi-automatic postprocessing of de novo predicted LTR retrotransposon annotations. Its user-friendly interface offers customizable filtering and classification functionality, displaying the putative candidate groups, their members and their internal structure in a hierarchical fashion. To ease manual work, it also supports graphical user interface-driven reassignment, splitting and further annotation of candidates. Export of grouped candidate sets in standard formats is possible. In two case studies, we demonstrate how LTRsift can be employed in the context of a genome-wide LTR retrotransposon survey effort. LTRsift is a useful and convenient tool for semi-automated classification of newly detected LTR retrotransposons based on their internal features. Its efficient implementation allows for convenient and seamless filtering and classification in an integrated environment. Developed for life scientists, it is helpful in postprocessing and refining the output of software for predicting LTR

  3. A Clonal Selection Algorithm for Minimizing Distance Travel and Back Tracking of Automatic Guided Vehicles in Flexible Manufacturing System

    Science.gov (United States)

    Chawla, Viveak Kumar; Chanda, Arindam Kumar; Angra, Surjit

    2018-03-01

    The flexible manufacturing system (FMS) constitute of several programmable production work centers, material handling systems (MHSs), assembly stations and automatic storage and retrieval systems. In FMS, the automatic guided vehicles (AGVs) play a vital role in material handling operations and enhance the performance of the FMS in its overall operations. To achieve low makespan and high throughput yield in the FMS operations, it is highly imperative to integrate the production work centers schedules with the AGVs schedules. The Production schedule for work centers is generated by application of the Giffler and Thompson algorithm under four kind of priority hybrid dispatching rules. Then the clonal selection algorithm (CSA) is applied for the simultaneous scheduling to reduce backtracking as well as distance travel of AGVs within the FMS facility. The proposed procedure is computationally tested on the benchmark FMS configuration from the literature and findings from the investigations clearly indicates that the CSA yields best results in comparison of other applied methods from the literature.

  4. Investigation of Matlab® as Platform in Navigation and Control of an Automatic Guided Vehicle Utilising an Omnivision Sensor

    Directory of Open Access Journals (Sweden)

    Ben Kotze

    2014-08-01

    Full Text Available Automatic Guided Vehicles (AGVs are navigated utilising multiple types of sensors for detecting the environment. In this investigation such sensors are replaced and/or minimized by the use of a single omnidirectional camera picture stream. An area of interest is extracted, and by using image processing the vehicle is navigated on a set path. Reconfigurability is added to the route layout by signs incorporated in the navigation process. The result is the possible manipulation of a number of AGVs, each on its own designated colour-signed path. This route is reconfigurable by the operator with no programming alteration or intervention. A low resolution camera and a Matlab® software development platform are utilised. The use of Matlab® lends itself to speedy evaluation and implementation of image processing options on the AGV, but its functioning in such an environment needs to be assessed.

  5. Investigation of Matlab® as platform in navigation and control of an Automatic Guided Vehicle utilising an omnivision sensor.

    Science.gov (United States)

    Kotze, Ben; Jordaan, Gerrit

    2014-08-25

    Automatic Guided Vehicles (AGVs) are navigated utilising multiple types of sensors for detecting the environment. In this investigation such sensors are replaced and/or minimized by the use of a single omnidirectional camera picture stream. An area of interest is extracted, and by using image processing the vehicle is navigated on a set path. Reconfigurability is added to the route layout by signs incorporated in the navigation process. The result is the possible manipulation of a number of AGVs, each on its own designated colour-signed path. This route is reconfigurable by the operator with no programming alteration or intervention. A low resolution camera and a Matlab® software development platform are utilised. The use of Matlab® lends itself to speedy evaluation and implementation of image processing options on the AGV, but its functioning in such an environment needs to be assessed.

  6. Data-driven automatic parking constrained control for four-wheeled mobile vehicles

    OpenAIRE

    Wenxu Yan; Jing Deng; Dezhi Xu

    2016-01-01

    In this article, a novel data-driven constrained control scheme is proposed for automatic parking systems. The design of the proposed scheme only depends on the steering angle and the orientation angle of the car, and it does not involve any model information of the car. Therefore, the proposed scheme-based automatic parking system is applicable to different kinds of cars. In order to further reduce the desired trajectory coordinate tracking errors, a coordinates compensation algorithm is als...

  7. A semi-automatic traffic sign detection, classification and positioning system

    NARCIS (Netherlands)

    Creusen, I.M.; Hazelhoff, L.; With, de P.H.N.; Said, A.; Guleryuz, O.G.; Stevenson, R.L.

    2012-01-01

    The availability of large-scale databases containing street-level panoramic images offers the possibility to perform semi-automatic surveying of real-world objects such as traffic signs. These inventories can be performed significantly more efficiently than using conventional methods. Governmental

  8. Analysis of individual classification of lameness using automatic measurement of back posture in dairy cattle

    NARCIS (Netherlands)

    Viazzi, S.; Schlageter Tello, A.A.; Hertem, van T.; Romanini, C.E.B.; Pluk, A.; Halachmi, I.; Lokhorst, C.; Berckmans, D.

    2013-01-01

    Currently, diagnosis of lameness at an early stage in dairy cows relies on visual observation by the farmer, which is time consuming and often omitted. Many studies have tried to develop automatic cow lameness detection systems. However, those studies apply thresholds to the whole population to

  9. On Automatic Music Genre Recognition by Sparse Representation Classification using Auditory Temporal Modulations

    DEFF Research Database (Denmark)

    Sturm, Bob L.; Noorzad, Pardis

    2012-01-01

    A recent system combining sparse representation classification (SRC) and a perceptually-based acoustic feature (ATM) \\cite{Panagakis2009,Panagakis2009b,Panagakis2010c}, outperforms by a significant margin the state of the art in music genre recognition, e.g., \\cite{Bergstra2006}. With genre so...... to reproduce the results of \\cite{Panagakis2009}. First, we find that classification results are consistent for features extracted from different analyses. Second, we find that SRC accuracy improves when we pose the sparse representation problem with inequality constraints. Finally, we find that only when we...

  10. Automatic classification of thermal patterns in diabetic foot based on morphological pattern spectrum

    Science.gov (United States)

    Hernandez-Contreras, D.; Peregrina-Barreto, H.; Rangel-Magdaleno, J.; Ramirez-Cortes, J.; Renero-Carrillo, F.

    2015-11-01

    This paper presents a novel approach to characterize and identify patterns of temperature in thermographic images of the human foot plant in support of early diagnosis and follow-up of diabetic patients. Composed feature vectors based on 3D morphological pattern spectrum (pecstrum) and relative position, allow the system to quantitatively characterize and discriminate non-diabetic (control) and diabetic (DM) groups. Non-linear classification using neural networks is used for that purpose. A classification rate of 94.33% in average was obtained with the composed feature extraction process proposed in this paper. Performance evaluation and obtained results are presented.

  11. Towards automatic lithological classification from remote sensing data using support vector machines

    Science.gov (United States)

    Yu, Le; Porwal, Alok; Holden, Eun-Jung; Dentith, Michael

    2010-05-01

    Remote sensing data can be effectively used as a mean to build geological knowledge for poorly mapped terrains. Spectral remote sensing data from space- and air-borne sensors have been widely used to geological mapping, especially in areas of high outcrop density in arid regions. However, spectral remote sensing information by itself cannot be efficiently used for a comprehensive lithological classification of an area due to (1) diagnostic spectral response of a rock within an image pixel is conditioned by several factors including the atmospheric effects, spectral and spatial resolution of the image, sub-pixel level heterogeneity in chemical and mineralogical composition of the rock, presence of soil and vegetation cover; (2) only surface information and is therefore highly sensitive to the noise due to weathering, soil cover, and vegetation. Consequently, for efficient lithological classification, spectral remote sensing data needs to be supplemented with other remote sensing datasets that provide geomorphological and subsurface geological information, such as digital topographic model (DEM) and aeromagnetic data. Each of the datasets contain significant information about geology that, in conjunction, can potentially be used for automated lithological classification using supervised machine learning algorithms. In this study, support vector machine (SVM), which is a kernel-based supervised learning method, was applied to automated lithological classification of a study area in northwestern India using remote sensing data, namely, ASTER, DEM and aeromagnetic data. Several digital image processing techniques were used to produce derivative datasets that contained enhanced information relevant to lithological discrimination. A series of SVMs (trained using k-folder cross-validation with grid search) were tested using various combinations of input datasets selected from among 50 datasets including the original 14 ASTER bands and 36 derivative datasets (including 14

  12. Segmentation, classification, and pose estimation of military vehicles in low resolution laser radar images

    Science.gov (United States)

    Neulist, Joerg; Armbruster, Walter

    2005-05-01

    Model-based object recognition in range imagery typically involves matching the image data to the expected model data for each feasible model and pose hypothesis. Since the matching procedure is computationally expensive, the key to efficient object recognition is the reduction of the set of feasible hypotheses. This is particularly important for military vehicles, which may consist of several large moving parts such as the hull, turret, and gun of a tank, and hence require an eight or higher dimensional pose space to be searched. The presented paper outlines techniques for reducing the set of feasible hypotheses based on an estimation of target dimensions and orientation. Furthermore, the presence of a turret and a main gun and their orientations are determined. The vehicle parts dimensions as well as their error estimates restrict the number of model hypotheses whereas the position and orientation estimates and their error bounds reduce the number of pose hypotheses needing to be verified. The techniques are applied to several hundred laser radar images of eight different military vehicles with various part classifications and orientations. On-target resolution in azimuth, elevation and range is about 30 cm. The range images contain up to 20% dropouts due to atmospheric absorption. Additionally some target retro-reflectors produce outliers due to signal crosstalk. The presented algorithms are extremely robust with respect to these and other error sources. The hypothesis space for hull orientation is reduced to about 5 degrees as is the error for turret rotation and gun elevation, provided the main gun is visible.

  13. Automatic classification of patients with idiopathic Parkinson's disease and progressive supranuclear palsy using diffusion MRI datasets

    Science.gov (United States)

    Talai, Sahand; Boelmans, Kai; Sedlacik, Jan; Forkert, Nils D.

    2017-03-01

    Parkinsonian syndromes encompass a spectrum of neurodegenerative diseases, which can be classified into various subtypes. The differentiation of these subtypes is typically conducted based on clinical criteria. Due to the overlap of intra-syndrome symptoms, the accurate differential diagnosis based on clinical guidelines remains a challenge with failure rates up to 25%. The aim of this study is to present an image-based classification method of patients with Parkinson's disease (PD) and patients with progressive supranuclear palsy (PSP), an atypical variant of PD. Therefore, apparent diffusion coefficient (ADC) parameter maps were calculated based on diffusion-tensor magnetic resonance imaging (MRI) datasets. Mean ADC values were determined in 82 brain regions using an atlas-based approach. The extracted mean ADC values for each patient were then used as features for classification using a linear kernel support vector machine classifier. To increase the classification accuracy, a feature selection was performed, which resulted in the top 17 attributes to be used as the final input features. A leave-one-out cross validation based on 56 PD and 21 PSP subjects revealed that the proposed method is capable of differentiating PD and PSP patients with an accuracy of 94.8%. In conclusion, the classification of PD and PSP patients based on ADC features obtained from diffusion MRI datasets is a promising new approach for the differentiation of Parkinsonian syndromes in the broader context of decision support systems.

  14. Galaxy And Mass Assembly: automatic morphological classification of galaxies using statistical learning

    Science.gov (United States)

    Sreejith, Sreevarsha; Pereverzyev, Sergiy, Jr.; Kelvin, Lee S.; Marleau, Francine R.; Haltmeier, Markus; Ebner, Judith; Bland-Hawthorn, Joss; Driver, Simon P.; Graham, Alister W.; Holwerda, Benne W.; Hopkins, Andrew M.; Liske, Jochen; Loveday, Jon; Moffett, Amanda J.; Pimbblet, Kevin A.; Taylor, Edward N.; Wang, Lingyu; Wright, Angus H.

    2018-03-01

    We apply four statistical learning methods to a sample of 7941 galaxies (z test the feasibility of using automated algorithms to classify galaxies. Using 10 features measured for each galaxy (sizes, colours, shape parameters, and stellar mass), we apply the techniques of Support Vector Machines, Classification Trees, Classification Trees with Random Forest (CTRF) and Neural Networks, and returning True Prediction Ratios (TPRs) of 75.8 per cent, 69.0 per cent, 76.2 per cent, and 76.0 per cent, respectively. Those occasions whereby all four algorithms agree with each other yet disagree with the visual classification (`unanimous disagreement') serves as a potential indicator of human error in classification, occurring in ˜ 9 per cent of ellipticals, ˜ 9 per cent of little blue spheroids, ˜ 14 per cent of early-type spirals, ˜ 21 per cent of intermediate-type spirals, and ˜ 4 per cent of late-type spirals and irregulars. We observe that the choice of parameters rather than that of algorithms is more crucial in determining classification accuracy. Due to its simplicity in formulation and implementation, we recommend the CTRF algorithm for classifying future galaxy data sets. Adopting the CTRF algorithm, the TPRs of the five galaxy types are : E, 70.1 per cent; LBS, 75.6 per cent; S0-Sa, 63.6 per cent; Sab-Scd, 56.4 per cent, and Sd-Irr, 88.9 per cent. Further, we train a binary classifier using this CTRF algorithm that divides galaxies into spheroid-dominated (E, LBS, and S0-Sa) and disc-dominated (Sab-Scd and Sd-Irr), achieving an overall accuracy of 89.8 per cent. This translates into an accuracy of 84.9 per cent for spheroid-dominated systems and 92.5 per cent for disc-dominated systems.

  15. Food Safety by Using Machine Learning for Automatic Classification of Seeds of the South-American Incanut Plant

    International Nuclear Information System (INIS)

    Lemanzyk, Thomas; Anding, Katharina; Linss, Gerhard; Hernández, Jorge Rodriguez; Theska, René

    2015-01-01

    The following paper deals with the classification of seeds and seed components of the South-American Incanut plant and the modification of a machine to handle this task. Initially the state of the art is being illustrated. The research was executed in Germany and with a relevant part in Peru and Ecuador. Theoretical considerations for the solution of an automatically analysis of the Incanut seeds were specified. The optimization of the analyzing software and the separation unit of the mechanical hardware are carried out with recognition results. In a final step the practical application of the analysis of the Incanut seeds is held on a trial basis and rated on the bases of statistic values

  16. Algorithms for the Automatic Classification and Sorting of Conifers in the Garden Nursery Industry

    DEFF Research Database (Denmark)

    Petri, Stig

    with the classification and sorting of plants using machine vision have been discussed as an introduction to the work reported here. The use of Nordmann firs as a basis for evaluating the developed algorithms naturally introduces a bias towards this species in the algorithms, but steps have been taken throughout...... was used as the basis for evaluating the constructed feature extraction algorithms. Through an analysis of the construction of a machine vision system suitable for classifying and sorting plants, the needs with regard to physical frame, lighting system, camera and software algorithms have been uncovered......The ultimate purpose of this work is the development of general feature extraction algorithms useful for the classification and sorting of plants in the garden nursery industry. Narrowing the area of focus to bare-root plants, more specifically Nordmann firs, the scientific literature dealing...

  17. EOG and EMG: two important switches in automatic sleep stage classification.

    Science.gov (United States)

    Estrada, E; Nazeran, H; Barragan, J; Burk, J R; Lucas, E A; Behbehani, K

    2006-01-01

    Sleep is a natural periodic state of rest for the body, in which the eyes are usually closed and consciousness is completely or partially lost. In this investigation we used the EOG and EMG signals acquired from 10 patients undergoing overnight polysomnography with their sleep stages determined by expert sleep specialists based on RK rules. Differentiation between Stage 1, Awake and REM stages challenged a well trained neural network classifier to distinguish between classes when only EEG-derived signal features were used. To meet this challenge and improve the classification rate, extra features extracted from EOG and EMG signals were fed to the classifier. In this study, two simple feature extraction algorithms were applied to EOG and EMG signals. The statistics of the results were calculated and displayed in an easy to visualize fashion to observe tendencies for each sleep stage. Inclusion of these features show a great promise to improve the classification rate towards the target rate of 100%

  18. A software tool for automatic classification and segmentation of 2D/3D medical images

    International Nuclear Information System (INIS)

    Strzelecki, Michal; Szczypinski, Piotr; Materka, Andrzej; Klepaczko, Artur

    2013-01-01

    Modern medical diagnosis utilizes techniques of visualization of human internal organs (CT, MRI) or of its metabolism (PET). However, evaluation of acquired images made by human experts is usually subjective and qualitative only. Quantitative analysis of MR data, including tissue classification and segmentation, is necessary to perform e.g. attenuation compensation, motion detection, and correction of partial volume effect in PET images, acquired with PET/MR scanners. This article presents briefly a MaZda software package, which supports 2D and 3D medical image analysis aiming at quantification of image texture. MaZda implements procedures for evaluation, selection and extraction of highly discriminative texture attributes combined with various classification, visualization and segmentation tools. Examples of MaZda application in medical studies are also provided

  19. A software tool for automatic classification and segmentation of 2D/3D medical images

    Energy Technology Data Exchange (ETDEWEB)

    Strzelecki, Michal, E-mail: michal.strzelecki@p.lodz.pl [Institute of Electronics, Technical University of Lodz, Wolczanska 211/215, 90-924 Lodz (Poland); Szczypinski, Piotr; Materka, Andrzej; Klepaczko, Artur [Institute of Electronics, Technical University of Lodz, Wolczanska 211/215, 90-924 Lodz (Poland)

    2013-02-21

    Modern medical diagnosis utilizes techniques of visualization of human internal organs (CT, MRI) or of its metabolism (PET). However, evaluation of acquired images made by human experts is usually subjective and qualitative only. Quantitative analysis of MR data, including tissue classification and segmentation, is necessary to perform e.g. attenuation compensation, motion detection, and correction of partial volume effect in PET images, acquired with PET/MR scanners. This article presents briefly a MaZda software package, which supports 2D and 3D medical image analysis aiming at quantification of image texture. MaZda implements procedures for evaluation, selection and extraction of highly discriminative texture attributes combined with various classification, visualization and segmentation tools. Examples of MaZda application in medical studies are also provided.

  20. Parameter design and performance analysis of shift actuator for a two-speed automatic mechanical transmission for pure electric vehicles

    Directory of Open Access Journals (Sweden)

    Jianjun Hu

    2016-08-01

    Full Text Available Recent developments of pure electric vehicles have shown that pure electric vehicles equipped with two-speed or multi-speed gearbox possess higher energy efficiency by ensuring the drive motor operates at its peak performance range. This article presents the design, analysis, and control of a two-speed automatic mechanical transmission for pure electric vehicles. The shift actuator is based on a motor-controlled camshaft where a special geometric groove is machined, and the camshaft realizes the axial positions of the synchronizer sleeve for gear engaging, disengaging, and speed control of the drive motor. Based on the force analysis of shift process, the parameters of shift actuator and shift motor are designed. The drive motor’s torque control strategy before shifting, speed governing control strategy before engaging, shift actuator’s control strategy during gear engaging, and drive motor’s torque recovery strategy after shift process are proposed and implemented with a prototype. To validate the performance of the two-speed gearbox, a test bed was developed based on dSPACE that emulates various operation conditions. The experimental results indicate that the shift process with the proposed shift actuator and control strategy could be accomplished within 1 s under various operation conditions, with shift smoothness up to passenger car standard.

  1. HClass: Automatic classification tool for health pathologies using artificial intelligence techniques.

    Science.gov (United States)

    Garcia-Chimeno, Yolanda; Garcia-Zapirain, Begonya

    2015-01-01

    The classification of subjects' pathologies enables a rigorousness to be applied to the treatment of certain pathologies, as doctors on occasions play with so many variables that they can end up confusing some illnesses with others. Thanks to Machine Learning techniques applied to a health-record database, it is possible to make using our algorithm. hClass contains a non-linear classification of either a supervised, non-supervised or semi-supervised type. The machine is configured using other techniques such as validation of the set to be classified (cross-validation), reduction in features (PCA) and committees for assessing the various classifiers. The tool is easy to use, and the sample matrix and features that one wishes to classify, the number of iterations and the subjects who are going to be used to train the machine all need to be introduced as inputs. As a result, the success rate is shown either via a classifier or via a committee if one has been formed. A 90% success rate is obtained in the ADABoost classifier and 89.7% in the case of a committee (comprising three classifiers) when PCA is applied. This tool can be expanded to allow the user to totally characterise the classifiers by adjusting them to each classification use.

  2. Automatic classification of canine PRG neuronal discharge patterns using K-means clustering.

    Science.gov (United States)

    Zuperku, Edward J; Prkic, Ivana; Stucke, Astrid G; Miller, Justin R; Hopp, Francis A; Stuth, Eckehard A

    2015-02-01

    Respiratory-related neurons in the parabrachial-Kölliker-Fuse (PB-KF) region of the pons play a key role in the control of breathing. The neuronal activities of these pontine respiratory group (PRG) neurons exhibit a variety of inspiratory (I), expiratory (E), phase spanning and non-respiratory related (NRM) discharge patterns. Due to the variety of patterns, it can be difficult to classify them into distinct subgroups according to their discharge contours. This report presents a method that automatically classifies neurons according to their discharge patterns and derives an average subgroup contour of each class. It is based on the K-means clustering technique and it is implemented via SigmaPlot User-Defined transform scripts. The discharge patterns of 135 canine PRG neurons were classified into seven distinct subgroups. Additional methods for choosing the optimal number of clusters are described. Analysis of the results suggests that the K-means clustering method offers a robust objective means of both automatically categorizing neuron patterns and establishing the underlying archetypical contours of subtypes based on the discharge patterns of group of neurons. Published by Elsevier B.V.

  3. Using Probe Vehicle Data for Automatic Extraction of Road Traffic Parameters

    Directory of Open Access Journals (Sweden)

    Roman Popescu Maria Alexandra

    2016-12-01

    Full Text Available Through this paper the author aims to study and find solutions for automatic detection of traffic light position and for automatic calculation of the waiting time at traffic light. The first objective serves mainly the road transportation field, mainly because it removes the need for collaboration with local authorities to establish a national network of traffic lights. The second objective is important not only for companies which are providing navigation solutions, but especially for authorities, institutions, companies operating in road traffic management systems. Real-time dynamic determination of traffic queue length and of waiting time at traffic lights allow the creation of dynamic systems, intelligent and flexible, adapted to actual traffic conditions, and not to generic, theoretical models. Thus, cities can approach the Smart City concept by boosting, efficienting and greening the road transport, promoted in Europe through the Horizon 2020, Smart Cities, Urban Mobility initiative.

  4. Hyperspectral classification of grassland species: towards a UAS application for semi-automatic field surveys

    Science.gov (United States)

    Lopatin, Javier; Fassnacht, Fabian E.; Kattenborn, Teja; Schmidtlein, Sebastian

    2017-04-01

    Grasslands are one of the ecosystems that have been strongly intervened during the past decades due to anthropogenic impacts, affecting their structural and functional composition. To monitor the spatial and/or temporal changes of these environments, a reliable field survey is first needed. As quality relevés are usually expensive and time consuming, the amount of information available is usually poor or not well spatially distributed at the regional scale. In the present study, we investigate the possibility of a semi-automated method used for repeated surveys of monitoring sites. We analyze the applicability of very high spatial resolution hyperspectral data to classify grassland species at the level of individuals. The AISA+ imaging spectrometer mounted on a scaffold was applied to scan 1 m2 grassland plots and assess the impact of four sources of variation on the predicted species cover: (1) the spatial resolution of the scans, (2) the species number and structural diversity, (3) the species cover, and (4) the species functional types (bryophytes, forbs and graminoids). We found that the spatial resolution and the diversity level (mainly structural diversity) were the most important source of variation for the proposed approach. A spatial resolution below 1 cm produced relatively high model performances, while predictions with pixel sizes over that threshold produced non adequate results. Areas with low interspecies overlap reached classification median values of 0.8 (kappa). On the contrary, results were not satisfactory in plots with frequent interspecies overlap in multiple layers. By means of a bootstrapping procedure, we found that areas with shadows and mixed pixels introduce uncertainties into the classification. We conclude that the application of very high resolution hyperspectral remote sensing as a robust alternative or supplement to field surveys is possible for environments with low structural heterogeneity. This study presents the first try of a

  5. Data-driven automatic parking constrained control for four-wheeled mobile vehicles

    Directory of Open Access Journals (Sweden)

    Wenxu Yan

    2016-11-01

    Full Text Available In this article, a novel data-driven constrained control scheme is proposed for automatic parking systems. The design of the proposed scheme only depends on the steering angle and the orientation angle of the car, and it does not involve any model information of the car. Therefore, the proposed scheme-based automatic parking system is applicable to different kinds of cars. In order to further reduce the desired trajectory coordinate tracking errors, a coordinates compensation algorithm is also proposed. In the design procedure of the controller, a novel dynamic anti-windup compensator is used to deal with the change magnitude and rate saturations of automatic parking control input. It is theoretically proven that all the signals in the closed-loop system are uniformly ultimately bounded based on Lyapunov stability analysis method. Finally, a simulation comparison among the proposed scheme with coordinates compensation and Proportion Integration Differentiation (PID control algorithm is given. It is shown that the proposed scheme with coordinates compensation has smaller tracking errors and more rapid responses than PID scheme.

  6. Driver head displacement during (automatic) vehicle braking tests with varying levels of distraction

    NARCIS (Netherlands)

    Rooij, L. van; Pauwelussen, J.; Camp, O.M.G.C. op den; Janssen, J.M.

    2013-01-01

    Vehicle occupant behavior in emergency driving conditions has a large effect on traffic safety. Distraction is estimated to be the cause of 15-20% of all crashes. Additionally, the posture of the occupants prior to the possibly unavoidable crash is known to have a large effect on the injury reducing

  7. AUTOMATIC GENERATION OF ROAD INFRASTRUCTURE IN 3D FOR VEHICLE SIMULATORS

    Directory of Open Access Journals (Sweden)

    Adam Orlický

    2017-12-01

    Full Text Available One of the modern methods of testing new systems and interfaces in vehicles is testing in a vehicle simulator. Providing quality models of virtual scenes is one of tasks for driver-car interaction interface simulation. Nowadays, there exist many programs for creating 3D models of road infrastructures, but most of these programs are very expensive or canÂtt export models for the following use. Therefore, a plug-in has been developed at the Faculty of Transportation Sciences in Prague. It can generate road infrastructure by Czech standard for designing roads (CSN 73 6101. The uniqueness of this plug-in is that it is the first tool for generating road infrastructure in NURBS representation. This type of representation brings more exact models and allows to optimize transfer for creating quality models for vehicle simulators. The scenes created by this plug-in were tested on vehicle simulators. The results have shown that with newly created scenes drivers had a much better feeling in comparison to previous scenes.

  8. Automatic detection and classification of damage zone(s) for incorporating in digital image correlation technique

    Science.gov (United States)

    Bhattacharjee, Sudipta; Deb, Debasis

    2016-07-01

    Digital image correlation (DIC) is a technique developed for monitoring surface deformation/displacement of an object under loading conditions. This method is further refined to make it capable of handling discontinuities on the surface of the sample. A damage zone is referred to a surface area fractured and opened in due course of loading. In this study, an algorithm is presented to automatically detect multiple damage zones in deformed image. The algorithm identifies the pixels located inside these zones and eliminate them from FEM-DIC processes. The proposed algorithm is successfully implemented on several damaged samples to estimate displacement fields of an object under loading conditions. This study shows that displacement fields represent the damage conditions reasonably well as compared to regular FEM-DIC technique without considering the damage zones.

  9. Bargaining agents based system for automatic classification of potential allergens in recipes

    Directory of Open Access Journals (Sweden)

    José ALEMANY

    2016-11-01

    Full Text Available The automatic recipe recommendation which take into account the dietary restrictions of users (such as allergies or intolerances is a complex and open problem. Some of the limitations of the problem is the lack of food databases correctly labeled with its potential allergens and non-unification of this information by companies in the food sector. In the absence of an appropriate solution, people affected by food restrictions cannot use recommender systems, because this recommend them inappropriate recipes. In order to resolve this situation, in this article we propose a solution based on a collaborative multi-agent system, using negotiation and machine learning techniques, is able to detect and label potential allergens in recipes. The proposed system is being employed in receteame.com, a recipe recommendation system which includes persuasive technologies, which are interactive technologies aimed at changing users’ attitudes or behaviors through persuasion and social influence, and social information to improve the recommendations.

  10. Automatic detection and classification of malarial retinopathy- associated retinal whitening in digital retinal images

    International Nuclear Information System (INIS)

    Akram, M.U.; Alvi, A.B.N.; Khan, S.A.

    2017-01-01

    Malarial retinopathy addresses diseases that are characterized by abnormalities in retinal fundus imaging. Macular whitening is one of the distinct signs of cerebral malaria but has hardly been explored as a critical bio-marker. The paper proposes a computerized detection and classification method for malarial retinopathy using retinal whitening as a bio-marker. The paper combines various statistical and color based features to form a sound feature set for accurate detection of retinal whitening. All features are extracted at image level and feature selection is performed to detect most discriminate features. A new method for macula location is also presented. The detected macula location is further used for grading of whitening as macular or peripheral whitening. Support vector machine along with radial basis function is used for classification of normal and malarial retinopathy patients. The evaluation is performed using a locally gathered dataset from malarial patients and it achieves an accuracy of 95% for detection of retinal whitening and 100% accuracy for grading of retinal whitening as macular or non-macular. One of the major contributions of proposed method is grading of retinal whitening into macular or peripheral whitening. (author)

  11. Automatic classification of prostate stromal tissue in histological images using Haralick descriptors and Local Binary Patterns

    International Nuclear Information System (INIS)

    Oliveira, D L L; Batista, V R; Duarte, Y A S; Nascimento, M Z; Neves, L A; Godoy, M F; Jacomini, R S; Arruda, P F F; Neto, D S

    2014-01-01

    In this paper we presente a classification system that uses a combination of texture features from stromal regions: Haralick features and Local Binary Patterns (LBP) in wavelet domain. The system has five steps for classification of the tissues. First, the stromal regions were detected and extracted using segmentation techniques based on thresholding and RGB colour space. Second, the Wavelet decomposition was applied in the extracted regions to obtain the Wavelet coefficients. Third, the Haralick and LBP features were extracted from the coefficients. Fourth, relevant features were selected using the ANOVA statistical method. The classication (fifth step) was performed with Radial Basis Function (RBF) networks. The system was tested in 105 prostate images, which were divided into three groups of 35 images: normal, hyperplastic and cancerous. The system performance was evaluated using the area under the ROC curve and resulted in 0.98 for normal versus cancer, 0.95 for hyperplasia versus cancer and 0.96 for normal versus hyperplasia. Our results suggest that texture features can be used as discriminators for stromal tissues prostate images. Furthermore, the system was effective to classify prostate images, specially the hyperplastic class which is the most difficult type in diagnosis and prognosis

  12. Driver head displacement during (automatic) vehicle braking tests with varying levels of distraction

    OpenAIRE

    Rooij, L. van; Pauwelussen, J.; Camp, O.M.G.C. op den; Janssen, J.M.

    2013-01-01

    Vehicle occupant behavior in emergency driving conditions has a large effect on traffic safety. Distraction is estimated to be the cause of 15-20% of all crashes. Additionally, the posture of the occupants prior to the possibly unavoidable crash is known to have a large effect on the injury reducing performance of the restraint system. In this study it is investigated whether braking settings as well as driver distraction influence the kinematic response of an occupant during braking events, ...

  13. Kmeans-ICA based automatic method for ocular artifacts removal in a motorimagery classification.

    Science.gov (United States)

    Bou Assi, Elie; Rihana, Sandy; Sawan, Mohamad

    2014-01-01

    Electroencephalogram (EEG) recordings aroused as inputs of a motor imagery based BCI system. Eye blinks contaminate the spectral frequency of the EEG signals. Independent Component Analysis (ICA) has been already proved for removing these artifacts whose frequency band overlap with the EEG of interest. However, already ICA developed methods, use a reference lead such as the ElectroOculoGram (EOG) to identify the ocular artifact components. In this study, artifactual components were identified using an adaptive thresholding by means of Kmeans clustering. The denoised EEG signals have been fed into a feature extraction algorithm extracting the band power, the coherence and the phase locking value and inserted into a linear discriminant analysis classifier for a motor imagery classification.

  14. Automatic braking system modification for the Advanced Transport Operating Systems (ATOPS) Transportation Systems Research Vehicle (TSRV)

    Science.gov (United States)

    Coogan, J. J.

    1986-01-01

    Modifications were designed for the B-737-100 Research Aircraft autobrake system hardware of the Advanced Transport Operating Systems (ATOPS) Program at Langley Research Center. These modifications will allow the on-board flight control computer to control the aircraft deceleration after landing to a continuously variable level for the purpose of executing automatic high speed turn-offs from the runway. A bread board version of the proposed modifications was built and tested in simulated stopping conditions. Test results, for various aircraft weights, turnoff speed, winds, and runway conditions show that the turnoff speeds are achieved generally with errors less than 1 ft/sec.

  15. A Contribution for the Automatic Sleep Classification Based on the Itakura-Saito Spectral Distance

    Science.gov (United States)

    Cardoso, Eduardo; Batista, Arnaldo; Rodrigues, Rui; Ortigueira, Manuel; Bárbara, Cristina; Martinho, Cristina; Rato, Raul

    Sleep staging is a crucial step before the scoring the sleep apnoea, in subjects that are tested for this condition. These patients undergo a whole night polysomnography recording that includes EEG, EOG, ECG, EMG and respiratory signals. Sleep staging refers to the quantification of its depth. Despite the commercial sleep software being able to stage the sleep, there is a general lack of confidence amongst health practitioners of these machine results. Generally the sleep scoring is done over the visual inspection of the overnight patient EEG recording, which takes the attention of an expert medical practitioner over a couple of hours. This contributes to a waiting list of two years for patients of the Portuguese Health Service. In this work we have used a spectral comparison method called Itakura distance to be able to make a distinction between sleepy and awake epochs in a night EEG recording, therefore automatically doing the staging. We have used the data from 20 patients of Hospital Pulido Valente, which had been previously visually expert scored. Our technique results were promising, in a way that Itakura distance can, by itself, distinguish with a good degree of certainty the N2, N3 and awake states. Pre-processing stages for artefact reduction and baseline removal using Wavelets were applied.

  16. Automatic Detection and Classification of Audio Events for Road Surveillance Applications

    Directory of Open Access Journals (Sweden)

    Noor Almaadeed

    2018-06-01

    Full Text Available This work investigates the problem of detecting hazardous events on roads by designing an audio surveillance system that automatically detects perilous situations such as car crashes and tire skidding. In recent years, research has shown several visual surveillance systems that have been proposed for road monitoring to detect accidents with an aim to improve safety procedures in emergency cases. However, the visual information alone cannot detect certain events such as car crashes and tire skidding, especially under adverse and visually cluttered weather conditions such as snowfall, rain, and fog. Consequently, the incorporation of microphones and audio event detectors based on audio processing can significantly enhance the detection accuracy of such surveillance systems. This paper proposes to combine time-domain, frequency-domain, and joint time-frequency features extracted from a class of quadratic time-frequency distributions (QTFDs to detect events on roads through audio analysis and processing. Experiments were carried out using a publicly available dataset. The experimental results conform the effectiveness of the proposed approach for detecting hazardous events on roads as demonstrated by 7% improvement of accuracy rate when compared against methods that use individual temporal and spectral features.

  17. The Iqmulus Urban Showcase: Automatic Tree Classification and Identification in Huge Mobile Mapping Point Clouds

    Science.gov (United States)

    Böhm, J.; Bredif, M.; Gierlinger, T.; Krämer, M.; Lindenberg, R.; Liu, K.; Michel, F.; Sirmacek, B.

    2016-06-01

    Current 3D data capturing as implemented on for example airborne or mobile laser scanning systems is able to efficiently sample the surface of a city by billions of unselective points during one working day. What is still difficult is to extract and visualize meaningful information hidden in these point clouds with the same efficiency. This is where the FP7 IQmulus project enters the scene. IQmulus is an interactive facility for processing and visualizing big spatial data. In this study the potential of IQmulus is demonstrated on a laser mobile mapping point cloud of 1 billion points sampling ~ 10 km of street environment in Toulouse, France. After the data is uploaded to the IQmulus Hadoop Distributed File System, a workflow is defined by the user consisting of retiling the data followed by a PCA driven local dimensionality analysis, which runs efficiently on the IQmulus cloud facility using a Spark implementation. Points scattering in 3 directions are clustered in the tree class, and are separated next into individual trees. Five hours of processing at the 12 node computing cluster results in the automatic identification of 4000+ urban trees. Visualization of the results in the IQmulus fat client helps users to appreciate the results, and developers to identify remaining flaws in the processing workflow.

  18. THE IQMULUS URBAN SHOWCASE: AUTOMATIC TREE CLASSIFICATION AND IDENTIFICATION IN HUGE MOBILE MAPPING POINT CLOUDS

    Directory of Open Access Journals (Sweden)

    J. Böhm

    2016-06-01

    Full Text Available Current 3D data capturing as implemented on for example airborne or mobile laser scanning systems is able to efficiently sample the surface of a city by billions of unselective points during one working day. What is still difficult is to extract and visualize meaningful information hidden in these point clouds with the same efficiency. This is where the FP7 IQmulus project enters the scene. IQmulus is an interactive facility for processing and visualizing big spatial data. In this study the potential of IQmulus is demonstrated on a laser mobile mapping point cloud of 1 billion points sampling ~ 10 km of street environment in Toulouse, France. After the data is uploaded to the IQmulus Hadoop Distributed File System, a workflow is defined by the user consisting of retiling the data followed by a PCA driven local dimensionality analysis, which runs efficiently on the IQmulus cloud facility using a Spark implementation. Points scattering in 3 directions are clustered in the tree class, and are separated next into individual trees. Five hours of processing at the 12 node computing cluster results in the automatic identification of 4000+ urban trees. Visualization of the results in the IQmulus fat client helps users to appreciate the results, and developers to identify remaining flaws in the processing workflow.

  19. Automatic classification of unexploded ordnance applied to Spencer Range live site for 5x5 TEMTADS sensor

    Science.gov (United States)

    Sigman, John B.; Barrowes, Benjamin E.; O'Neill, Kevin; Shubitidze, Fridon

    2013-06-01

    This paper details methods for automatic classification of Unexploded Ordnance (UXO) as applied to sensor data from the Spencer Range live site. The Spencer Range is a former military weapons range in Spencer, Tennessee. Electromagnetic Induction (EMI) sensing is carried out using the 5x5 Time-domain Electromagnetic Multi-sensor Towed Array Detection System (5x5 TEMTADS), which has 25 receivers and 25 co-located transmitters. Every transmitter is activated sequentially, each followed by measuring the magnetic field in all 25 receivers, from 100 microseconds to 25 milliseconds. From these data target extrinsic and intrinsic parameters are extracted using the Differential Evolution (DE) algorithm and the Ortho-Normalized Volume Magnetic Source (ONVMS) algorithms, respectively. Namely, the inversion provides x, y, and z locations and a time series of the total ONVMS principal eigenvalues, which are intrinsic properties of the objects. The eigenvalues are fit to a power-decay empirical model, the Pasion-Oldenburg model, providing 3 coefficients (k, b, and g) for each object. The objects are grouped geometrically into variably-sized clusters, in the k-b-g space, using clustering algorithms. Clusters matching a priori characteristics are identified as Targets of Interest (TOI), and larger clusters are automatically subclustered. Ground Truths (GT) at the center of each class are requested, and probability density functions are created for clusters that have centroid TOI using a Gaussian Mixture Model (GMM). The probability functions are applied to all remaining anomalies. All objects of UXO probability higher than a chosen threshold are placed in a ranked dig list. This prioritized list is scored and the results are demonstrated and analyzed.

  20. Automatic classification of singular elements for the electrostatic analysis of microelectromechanical systems

    Science.gov (United States)

    Su, Y.; Ong, E. T.; Lee, K. H.

    2002-05-01

    The past decade has seen an accelerated growth of technology in the field of microelectromechanical systems (MEMS). The development of MEMS products has generated the need for efficient analytical and simulation methods for minimizing the requirement for actual prototyping. The boundary element method is widely used in the electrostatic analysis for MEMS devices. However, singular elements are needed to accurately capture the behavior at singular regions, such as sharp corners and edges, where standard elements fail to give an accurate result. The manual classification of boundary elements based on their singularity conditions is an immensely laborious task, especially when the boundary element model is large. This process can be automated by querying the geometric model of the MEMS device for convex edges based on geometric information of the model. The associated nodes of the boundary elements on these edges can then be retrieved. The whole process is implemented in the MSC/PATRAN platform using the Patran Command Language (the source code is available as supplementary data in the electronic version of this journal issue).

  1. Automatic classification techniques for type of sediment map from multibeam sonar data

    Science.gov (United States)

    Zakariya, R.; Abdullah, M. A.; Che Hasan, R.; Khalil, I.

    2018-02-01

    Sediment map can be important information for various applications such as oil drilling, environmental and pollution study. A study on sediment mapping was conducted at a natural reef (rock) in Pulau Payar using Sound Navigation and Ranging (SONAR) technology which is Multibeam Echosounder R2-Sonic. This study aims to determine sediment type by obtaining backscatter and bathymetry data from multibeam echosounder. Ground truth data were used to verify the classification produced. The method used to analyze ground truth samples consists of particle size analysis (PSA) and dry sieving methods. Different analysis being carried out due to different sizes of sediment sample obtained. The smaller size was analyzed using PSA with the brand CILAS while bigger size sediment was analyzed using sieve. For multibeam, data acquisition includes backscatter strength and bathymetry data were processed using QINSy, Qimera, and ArcGIS. This study shows the capability of multibeam data to differentiate the four types of sediments which are i) very coarse sand, ii) coarse sand, iii) very coarse silt and coarse silt. The accuracy was reported as 92.31% overall accuracy and 0.88 kappa coefficient.

  2. Wavelet-SVM classification and automatic recognition of unstained viable cells in phase-contrast microscopy

    International Nuclear Information System (INIS)

    Skoczylas, M.; Rakowski, W.; Cherubini, R.; Gerardi, S.

    2011-01-01

    Irradiation of individual cultured mammalian cells with a pre-selected number of ions down to one ion per single cell is a useful experimental approach to investigating the low-dose ionising radiation exposure effects and thus contributing to a more realistic human cancer risk assessment. One of the crucial tasks of all the microbeam apparatuses is the visualisation, recognition and positioning of every individual cell of the cell culture to be irradiated. Before irradiations, mammalian cells (specifically, Chinese hamster V79 cells) are seeded and grown as a monolayer on a mylar surface used as the bottom of a specially designed holder. Manual recognition of unstained cells in a bright-field microscope is a time-consuming procedure; therefore, a parallel algorithm has been conceived and developed in order to speed up this irradiation protocol step. Many technical problems have been faced to overcome the complexity of the images to be analysed: cell discrimination in an inhomogeneous background, among many disturbing bodies mainly due to the mylar surface roughness and culture medium bodies; cell shapes, depending on how they attach to the surface, which phase of the cell cycle they are in and on cell density. Preliminary results of the recognition and classification based on a method of wavelet kernels for the support vector machine classifier will be presented. (authors)

  3. Vehicle Detection with Occlusion Handling, Tracking, and OC-SVM Classification: A High Performance Vision-Based System

    Science.gov (United States)

    Velazquez-Pupo, Roxana; Sierra-Romero, Alberto; Torres-Roman, Deni; Shkvarko, Yuriy V.; Romero-Delgado, Misael

    2018-01-01

    This paper presents a high performance vision-based system with a single static camera for traffic surveillance, for moving vehicle detection with occlusion handling, tracking, counting, and One Class Support Vector Machine (OC-SVM) classification. In this approach, moving objects are first segmented from the background using the adaptive Gaussian Mixture Model (GMM). After that, several geometric features are extracted, such as vehicle area, height, width, centroid, and bounding box. As occlusion is present, an algorithm was implemented to reduce it. The tracking is performed with adaptive Kalman filter. Finally, the selected geometric features: estimated area, height, and width are used by different classifiers in order to sort vehicles into three classes: small, midsize, and large. Extensive experimental results in eight real traffic videos with more than 4000 ground truth vehicles have shown that the improved system can run in real time under an occlusion index of 0.312 and classify vehicles with a global detection rate or recall, precision, and F-measure of up to 98.190%, and an F-measure of up to 99.051% for midsize vehicles. PMID:29382078

  4. Planning of speed profiles for vehicles with automatic drive; Planung von Geschwindigkeitsprofilen fuer automatisch gefuehrte Fahrzeuge

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, O.

    2005-07-01

    Based upon the calculation of US authorities 97% of all accidents are caused by mistakes of the driver. Due to this fact one of the major focuses of research activities of the automobile industry was put on the development of new assistance systems for the driver. These technologies indicate potential risks to the driver and support him with decisions in terms of the actual driving behaviour in dangerous situations. This work presents a new system that provides prospective information in real time about the course of the road lying ahead of the vehicle. Based on this data the driver's assistance system will provide a prognosis on the force working on the vehicle and then propose a suitable speed strategy that guarantees a safe drive at any time (orig.) [German] Nach Berechnungen von US Behoerden sind 97% aller Unfaelle auf Fehlverhalten seitens des Fahrers zurueckzufuehren. Angesichts dieser Tatsache lag in den letzten Jahren einer der wesentlichen Schwerpunkte der Forschungsaktivitaeten der Automobilindustrie in der Entwicklung neuer Fahrerassistenzsysteme. Diese Technologien weisen den Fahrer auf potentielle Gefahren hin und unterstuetzen ihn bei der Entscheidung hinsichtlich des aktuellen Fahrverhaltens in gefaehrlichen Situationen. In der vorliegenden Arbeit wird ein neuartiges Verfahren vorgestellt, welches vorausschauend Informationen ueber den vor dem Fahrzeug zu erwartenden Fahrbahnverlauf in Echtzeit bereitstellt. Basierend auf diesen Daten wird vom Fahrerassistenzsystem eine Prognose ueber die auf das Fahrzeug wirkende Kraft erstellt und anschliessend eine geeignete Geschwindigkeitsstrategie vorgeschlagen, die ein sicheres Durchfahren der Kurve zu jedem Zeitpunkt gewaehrleistet. (orig.)

  5. Automatic feed phase identification in multivariate bioprocess profiles by sequential binary classification.

    Science.gov (United States)

    Nikzad-Langerodi, Ramin; Lughofer, Edwin; Saminger-Platz, Susanne; Zahel, Thomas; Sagmeister, Patrick; Herwig, Christoph

    2017-08-22

    In this paper, we propose a new strategy for retrospective identification of feed phases from online sensor-data enriched feed profiles of an Escherichia Coli (E. coli) fed-batch fermentation process. In contrast to conventional (static), data-driven multi-class machine learning (ML), we exploit process knowledge in order to constrain our classification system yielding more parsimonious models compared to static ML approaches. In particular, we enforce unidirectionality on a set of binary, multivariate classifiers trained to discriminate between adjacent feed phases by linking the classifiers through a one-way switch. The switch is activated when the actual classifier output changes. As a consequence, the next binary classifier in the classifier chain is used for the discrimination between the next feed phase pair etc. We allow activation of the switch only after a predefined number of consecutive predictions of a transition event in order to prevent premature activation of the switch and undertake a sensitivity analysis regarding the optimal choice of the (time) lag parameter. From a complexity/parsimony perspective the benefit of our approach is three-fold: i) The multi-class learning task is broken down into binary subproblems which usually have simpler decision surfaces and tend to be less susceptible to the class-imbalance problem. ii) We exploit the fact that the process follows a rigid feed cycle structure (i.e. batch-feed-batch-feed) which allows us to focus on the subproblems involving phase transitions as they occur during the process while discarding off-transition classifiers and iii) only one binary classifier is active at the time which keeps effective model complexity low. We further use a combination of logistic regression and Lasso (i.e. regularized logistic regression, RLR) as a wrapper to extract the most relevant features for individual subproblems from the whole set of high-dimensional sensor data. We train different soft computing classifiers

  6. Automatic classification of early Parkinson's disease with multi-modal MR imaging.

    Directory of Open Access Journals (Sweden)

    Dan Long

    Full Text Available BACKGROUND: In recent years, neuroimaging has been increasingly used as an objective method for the diagnosis of Parkinson's disease (PD. Most previous studies were based on invasive imaging modalities or on a single modality which was not an ideal diagnostic tool. In this study, we developed a non-invasive technology intended for use in the diagnosis of early PD by integrating the advantages of various modals. MATERIALS AND METHODS: Nineteen early PD patients and twenty-seven normal volunteers participated in this study. For each subject, we collected resting-state functional magnetic resonance imaging (rsfMRI and structural images. For the rsfMRI images, we extracted the characteristics at three different levels: ALFF (amplitude of low-frequency fluctuations, ReHo (regional homogeneity and RFCS (regional functional connectivity strength. For the structural images, we extracted the volume characteristics from the gray matter (GM, the white matter (WM and the cerebrospinal fluid (CSF. A two-sample t-test was used for the feature selection, and then the remaining features were fused for classification. Finally a classifier for early PD patients and normal control subjects was identified from support vector machine training. The performance of the classifier was evaluated using the leave-one-out cross-validation method. RESULTS: Using the proposed methods to classify the data set, good results (accuracy  = 86.96%, sensitivity  = 78.95%, specificity  = 92.59% were obtained. CONCLUSIONS: This method demonstrates a promising diagnosis performance by the integration of information from a variety of imaging modalities, and it shows potential for improving the clinical diagnosis and treatment of PD.

  7. Automatic Classification of volcano-seismic events based on Deep Neural Networks.

    Science.gov (United States)

    Titos Luzón, M.; Bueno Rodriguez, A.; Garcia Martinez, L.; Benitez, C.; Ibáñez, J. M.

    2017-12-01

    Seismic monitoring of active volcanoes is a popular remote sensing technique to detect seismic activity, often associated to energy exchanges between the volcano and the environment. As a result, seismographs register a wide range of volcano-seismic signals that reflect the nature and underlying physics of volcanic processes. Machine learning and signal processing techniques provide an appropriate framework to analyze such data. In this research, we propose a new classification framework for seismic events based on deep neural networks. Deep neural networks are composed by multiple processing layers, and can discover intrinsic patterns from the data itself. Internal parameters can be initialized using a greedy unsupervised pre-training stage, leading to an efficient training of fully connected architectures. We aim to determine the robustness of these architectures as classifiers of seven different types of seismic events recorded at "Volcán de Fuego" (Colima, Mexico). Two deep neural networks with different pre-training strategies are studied: stacked denoising autoencoder and deep belief networks. Results are compared to existing machine learning algorithms (SVM, Random Forest, Multilayer Perceptron). We used 5 LPC coefficients over three non-overlapping segments as training features in order to characterize temporal evolution, avoid redundancy and encode the signal, regardless of its duration. Experimental results show that deep architectures can classify seismic events with higher accuracy than classical algorithms, attaining up to 92% recognition accuracy. Pre-training initialization helps these models to detect events that occur simultaneously in time (such explosions and rockfalls), increase robustness against noisy inputs, and provide better generalization. These results demonstrate deep neural networks are robust classifiers, and can be deployed in real-environments to monitor the seismicity of restless volcanoes.

  8. Automatic classification of 6-month-old infants at familial risk for language-based learning disorder using a support vector machine.

    Science.gov (United States)

    Zare, Marzieh; Rezvani, Zahra; Benasich, April A

    2016-07-01

    This study assesses the ability of a novel, "automatic classification" approach to facilitate identification of infants at highest familial risk for language-learning disorders (LLD) and to provide converging assessments to enable earlier detection of developmental disorders that disrupt language acquisition. Network connectivity measures derived from 62-channel electroencephalogram (EEG) recording were used to identify selected features within two infant groups who differed on LLD risk: infants with a family history of LLD (FH+) and typically-developing infants without such a history (FH-). A support vector machine was deployed; global efficiency and global and local clustering coefficients were computed. A novel minimum spanning tree (MST) approach was also applied. Cross-validation was employed to assess the resultant classification. Infants were classified with about 80% accuracy into FH+ and FH- groups with 89% specificity and precision of 92%. Clustering patterns differed by risk group and MST network analysis suggests that FH+ infants' EEG complexity patterns were significantly different from FH- infants. The automatic classification techniques used here were shown to be both robust and reliable and should provide valuable information when applied to early identification of risk or clinical groups. The ability to identify infants at highest risk for LLD using "automatic classification" strategies is a novel convergent approach that may facilitate earlier diagnosis and remediation. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Energy optimized automatic public transportation system with a microprocessor in the vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Tchinda, A.

    1980-09-11

    The matter with energy optimizing running is, that the train reaches the final state (target station) from the initial state (original station) in time with consideration of the given safety demands and other limitations and the consumed energy has its minimal value. This principle was extended for a driverless train operation in a sense that the optimization problem was formulated new and solved with regards to extensive secondary conditions as: velocity-dependent train and braking power and motion resistance force, path-dependent maximum velocity of the route and hazardous points. The algorithms for optimal vehicle control were developed by means of E. Bellmann's dynamic programming with regards to the secondary conditions mentioned above.

  10. Autonomous docking control of visual-servo type underwater vehicle system aiming at underwater automatic charging

    International Nuclear Information System (INIS)

    Yanou, Akira; Ohnishi, Shota; Ishiyama, Shintaro; Minami, Mamoru

    2015-01-01

    A visual-servo type remotely operated vehicle (ROV) system with binocular wide-angle lens was developed to survey submarine resources, decontaminate radiation from mud in dam lake and so on. This paper explores the experiments on regulator performance and underwater docking of the robot system utilizing Genetic Algorithm (GA) for real-time recognition of the robot's relative position and posture through 3D marker. The visual servoing performances have been verified as follows; (1) The stability performances of the proposed regulator system have been evaluated by exerting abrupt distrubane force while the ROV is controlled by visual servoing. (2) The proposed system can track time-variant desired target position in x-axis (front-back direction of the robot). (3) The underwater docking can be completed by switching visual servoing and docking modes based on the error threshold, and by giving time-varying desired target position and orientation to the controller as a desired pose. (author)

  11. Inertial Measurement Units-Based Probe Vehicles: Automatic Calibration, Trajectory Estimation, and Context Detection

    KAUST Repository

    Mousa, Mustafa

    2017-12-06

    Most probe vehicle data is generated using satellite navigation systems, such as the Global Positioning System (GPS), Globalnaya navigatsionnaya sputnikovaya Sistema (GLONASS), or Galileo systems. However, because of their high cost, relatively high position uncertainty in cities, and low sampling rate, a large quantity of satellite positioning data is required to estimate traffic conditions accurately. To address this issue, we introduce a new type of traffic monitoring system based on inexpensive inertial measurement units (IMUs) as probe sensors. IMUs as traffic probes pose unique challenges in that they need to be precisely calibrated, do not generate absolute position measurements, and their position estimates are subject to accumulating errors. In this paper, we address each of these challenges and demonstrate that the IMUs can reliably be used as traffic probes. After discussing the sensing technique, we present an implementation of this system using a custom-designed hardware platform, and validate the system with experimental data.

  12. Inertial Measurement Units-Based Probe Vehicles: Automatic Calibration, Trajectory Estimation, and Context Detection

    KAUST Repository

    Mousa, Mustafa; Sharma, Kapil; Claudel, Christian G.

    2017-01-01

    Most probe vehicle data is generated using satellite navigation systems, such as the Global Positioning System (GPS), Globalnaya navigatsionnaya sputnikovaya Sistema (GLONASS), or Galileo systems. However, because of their high cost, relatively high position uncertainty in cities, and low sampling rate, a large quantity of satellite positioning data is required to estimate traffic conditions accurately. To address this issue, we introduce a new type of traffic monitoring system based on inexpensive inertial measurement units (IMUs) as probe sensors. IMUs as traffic probes pose unique challenges in that they need to be precisely calibrated, do not generate absolute position measurements, and their position estimates are subject to accumulating errors. In this paper, we address each of these challenges and demonstrate that the IMUs can reliably be used as traffic probes. After discussing the sensing technique, we present an implementation of this system using a custom-designed hardware platform, and validate the system with experimental data.

  13. TEXT CLASSIFICATION FOR AUTOMATIC DETECTION OF E-CIGARETTE USE AND USE FOR SMOKING CESSATION FROM TWITTER: A FEASIBILITY PILOT.

    Science.gov (United States)

    Aphinyanaphongs, Yin; Lulejian, Armine; Brown, Duncan Penfold; Bonneau, Richard; Krebs, Paul

    2016-01-01

    Rapid increases in e-cigarette use and potential exposure to harmful byproducts have shifted public health focus to e-cigarettes as a possible drug of abuse. Effective surveillance of use and prevalence would allow appropriate regulatory responses. An ideal surveillance system would collect usage data in real time, focus on populations of interest, include populations unable to take the survey, allow a breadth of questions to answer, and enable geo-location analysis. Social media streams may provide this ideal system. To realize this use case, a foundational question is whether we can detect e-cigarette use at all. This work reports two pilot tasks using text classification to identify automatically Tweets that indicate e-cigarette use and/or e-cigarette use for smoking cessation. We build and define both datasets and compare performance of 4 state of the art classifiers and a keyword search for each task. Our results demonstrate excellent classifier performance of up to 0.90 and 0.94 area under the curve in each category. These promising initial results form the foundation for further studies to realize the ideal surveillance solution.

  14. Classification

    Science.gov (United States)

    Clary, Renee; Wandersee, James

    2013-01-01

    In this article, Renee Clary and James Wandersee describe the beginnings of "Classification," which lies at the very heart of science and depends upon pattern recognition. Clary and Wandersee approach patterns by first telling the story of the "Linnaean classification system," introduced by Carl Linnacus (1707-1778), who is…

  15. Automatic Registration of Vehicle-borne Mobile Mapping Laser Point Cloud and Sequent Panoramas

    Directory of Open Access Journals (Sweden)

    CHEN Chi

    2018-02-01

    Full Text Available An automatic registration method of mobile mapping system laser point cloud and sequence panoramic image is proposed in this paper.Firstly,hierarchical object extraction method is applied on LiDAR data to extract the building façade and outline polygons are generated to construct the skyline vectors.A virtual imaging method is proposed to solve the distortion on panoramas and corners on skylines are further detected on the virtual images combining segmentation and corner detection results.Secondly,the detected skyline vectors are taken as the registration primitives.Registration graphs are built according to the extracted skyline vector and further matched under graph edit distance minimization criteria.The matched conjugate primitives are utilized to solve the 2D-3D rough registration model to obtain the initial transformation between the sequence panoramic image coordinate system and the LiDAR point cloud coordinate system.Finally,to reduce the impact of registration primitives extraction and matching error on the registration results,the optimal transformation between the multi view stereo matching dens point cloud generated from the virtual imaging of the sequent panoramas and the LiDAR point cloud are solved by a 3D-3D ICP registration algorithm variant,thus,refine the exterior orientation parameters of panoramas indirectly.Experiments are undertaken to validate the proposed method and the results show that 1.5 pixel level registration results are achieved on the experiment dataset.The registration results can be applied to point cloud and panoramas fusion applications such as true color point cloud generation.

  16. Classification

    DEFF Research Database (Denmark)

    Hjørland, Birger

    2017-01-01

    This article presents and discusses definitions of the term “classification” and the related concepts “Concept/conceptualization,”“categorization,” “ordering,” “taxonomy” and “typology.” It further presents and discusses theories of classification including the influences of Aristotle...... and Wittgenstein. It presents different views on forming classes, including logical division, numerical taxonomy, historical classification, hermeneutical and pragmatic/critical views. Finally, issues related to artificial versus natural classification and taxonomic monism versus taxonomic pluralism are briefly...

  17. Algorithm for automatic image dodging of unmanned aerial vehicle images using two-dimensional radiometric spatial attributes

    Science.gov (United States)

    Li, Wenzhuo; Sun, Kaimin; Li, Deren; Bai, Ting

    2016-07-01

    Unmanned aerial vehicle (UAV) remote sensing technology has come into wide use in recent years. The poor stability of the UAV platform, however, produces more inconsistencies in hue and illumination among UAV images than other more stable platforms. Image dodging is a process used to reduce these inconsistencies caused by different imaging conditions. We propose an algorithm for automatic image dodging of UAV images using two-dimensional radiometric spatial attributes. We use object-level image smoothing to smooth foreground objects in images and acquire an overall reference background image by relative radiometric correction. We apply the Contourlet transform to separate high- and low-frequency sections for every single image, and replace the low-frequency section with the low-frequency section extracted from the corresponding region in the overall reference background image. We apply the inverse Contourlet transform to reconstruct the final dodged images. In this process, a single image must be split into reasonable block sizes with overlaps due to large pixel size. Experimental mosaic results show that our proposed method reduces the uneven distribution of hue and illumination. Moreover, it effectively eliminates dark-bright interstrip effects caused by shadows and vignetting in UAV images while maximally protecting image texture information.

  18. Nonlinear automatic landing control of unmanned aerial vehicles on moving platforms via a 3D laser radar

    Energy Technology Data Exchange (ETDEWEB)

    Hervas, Jaime Rubio; Tang, Hui [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798 (Singapore); Reyhanoglu, Mahmut [Physical Sciences Department, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114 (United States)

    2014-12-10

    This paper presents a motion tracking and control system for automatically landing Unmanned Aerial Vehicles (UAVs) on an oscillating platform using Laser Radar (LADAR) observations. The system itself is assumed to be mounted on a ship deck. A full nonlinear mathematical model is first introduced for the UAV. The ship motion is characterized by a Fourier transform based method which includes a realistic characterization of the sea waves. LADAR observation models are introduced and an algorithm to process those observations for yielding the relative state between the vessel and the UAV is presented, from which the UAV's state relative to an inertial frame can be obtained and used for feedback purposes. A sliding mode control algorithm is derived for tracking a landing trajectory defined by a set of desired waypoints. An extended Kalman filter (EKF) is proposed to account for process and observation noises in the design of a state estimator. The effectiveness of the control algorithm is illustrated through a simulation example.

  19. Nonlinear automatic landing control of unmanned aerial vehicles on moving platforms via a 3D laser radar

    International Nuclear Information System (INIS)

    Hervas, Jaime Rubio; Tang, Hui; Reyhanoglu, Mahmut

    2014-01-01

    This paper presents a motion tracking and control system for automatically landing Unmanned Aerial Vehicles (UAVs) on an oscillating platform using Laser Radar (LADAR) observations. The system itself is assumed to be mounted on a ship deck. A full nonlinear mathematical model is first introduced for the UAV. The ship motion is characterized by a Fourier transform based method which includes a realistic characterization of the sea waves. LADAR observation models are introduced and an algorithm to process those observations for yielding the relative state between the vessel and the UAV is presented, from which the UAV's state relative to an inertial frame can be obtained and used for feedback purposes. A sliding mode control algorithm is derived for tracking a landing trajectory defined by a set of desired waypoints. An extended Kalman filter (EKF) is proposed to account for process and observation noises in the design of a state estimator. The effectiveness of the control algorithm is illustrated through a simulation example

  20. Semi-automatic classification of skeletal morphology in genetically altered mice using flat-panel volume computed tomography.

    Directory of Open Access Journals (Sweden)

    Christian Dullin

    2007-07-01

    Full Text Available Rapid progress in exploring the human and mouse genome has resulted in the generation of a multitude of mouse models to study gene functions in their biological context. However, effective screening methods that allow rapid noninvasive phenotyping of transgenic and knockout mice are still lacking. To identify murine models with bone alterations in vivo, we used flat-panel volume computed tomography (fpVCT for high-resolution 3-D imaging and developed an algorithm with a computational intelligence system. First, we tested the accuracy and reliability of this approach by imaging discoidin domain receptor 2- (DDR2- deficient mice, which display distinct skull abnormalities as shown by comparative landmark-based analysis. High-contrast fpVCT data of the skull with 200 microm isotropic resolution and 8-s scan time allowed segmentation and computation of significant shape features as well as visualization of morphological differences. The application of a trained artificial neuronal network to these datasets permitted a semi-automatic and highly accurate phenotype classification of DDR2-deficient compared to C57BL/6 wild-type mice. Even heterozygous DDR2 mice with only subtle phenotypic alterations were correctly determined by fpVCT imaging and identified as a new class. In addition, we successfully applied the algorithm to classify knockout mice lacking the DDR1 gene with no apparent skull deformities. Thus, this new method seems to be a potential tool to identify novel mouse phenotypes with skull changes from transgenic and knockout mice on the basis of random mutagenesis as well as from genetic models. However for this purpose, new neuronal networks have to be created and trained. In summary, the combination of fpVCT images with artificial neuronal networks provides a reliable, novel method for rapid, cost-effective, and noninvasive primary screening tool to detect skeletal phenotypes in mice.

  1. Automatic Detection and Classification of Pole-Like Objects for Urban Cartography Using Mobile Laser Scanning Data

    Directory of Open Access Journals (Sweden)

    Celestino Ordóñez

    2017-06-01

    Full Text Available Mobile laser scanning (MLS is a modern and powerful technology capable of obtaining massive point clouds of objects in a short period of time. Although this technology is nowadays being widely applied in urban cartography and 3D city modelling, it has some drawbacks that need to be avoided in order to strengthen it. One of the most important shortcomings of MLS data is concerned with the fact that it provides an unstructured dataset whose processing is very time-consuming. Consequently, there is a growing interest in developing algorithms for the automatic extraction of useful information from MLS point clouds. This work is focused on establishing a methodology and developing an algorithm to detect pole-like objects and classify them into several categories using MLS datasets. The developed procedure starts with the discretization of the point cloud by means of a voxelization, in order to simplify and reduce the processing time in the segmentation process. In turn, a heuristic segmentation algorithm was developed to detect pole-like objects in the MLS point cloud. Finally, two supervised classification algorithms, linear discriminant analysis and support vector machines, were used to distinguish between the different types of poles in the point cloud. The predictors are the principal component eigenvalues obtained from the Cartesian coordinates of the laser points, the range of the Z coordinate, and some shape-related indexes. The performance of the method was tested in an urban area with 123 poles of different categories. Very encouraging results were obtained, since the accuracy rate was over 90%.

  2. Automatic Classification of Sub-Techniques in Classical Cross-Country Skiing Using a Machine Learning Algorithm on Micro-Sensor Data

    Directory of Open Access Journals (Sweden)

    Ole Marius Hoel Rindal

    2017-12-01

    Full Text Available The automatic classification of sub-techniques in classical cross-country skiing provides unique possibilities for analyzing the biomechanical aspects of outdoor skiing. This is currently possible due to the miniaturization and flexibility of wearable inertial measurement units (IMUs that allow researchers to bring the laboratory to the field. In this study, we aimed to optimize the accuracy of the automatic classification of classical cross-country skiing sub-techniques by using two IMUs attached to the skier’s arm and chest together with a machine learning algorithm. The novelty of our approach is the reliable detection of individual cycles using a gyroscope on the skier’s arm, while a neural network machine learning algorithm robustly classifies each cycle to a sub-technique using sensor data from an accelerometer on the chest. In this study, 24 datasets from 10 different participants were separated into the categories training-, validation- and test-data. Overall, we achieved a classification accuracy of 93.9% on the test-data. Furthermore, we illustrate how an accurate classification of sub-techniques can be combined with data from standard sports equipment including position, altitude, speed and heart rate measuring systems. Combining this information has the potential to provide novel insight into physiological and biomechanical aspects valuable to coaches, athletes and researchers.

  3. Development of Regenerative Braking Co-operative Control System for Automatic Transmission-based Hybrid Electric Vehicle using Electronic Wedge Brake

    OpenAIRE

    Ko, Jiweon; Ko, Sungyeon; Bak, Yongsun; Jang, Mijeong; Yoo, Byoungsoo; Cheon, Jaeseung; Kim, Hyunsoo

    2013-01-01

    This research proposes a regenerative braking co-operative control system for the automatic transmission (AT)-based hybrid electric vehicle (HEV). The brake system of the subject HEV consists of the regenerative braking and the electronic wedge brake (EWB) friction braking for the front wheel, and the hydraulic friction braking for the rear wheel. A regenerative braking co-operative control algorithm is suggested for the regenerative braking and friction braking, which distributes the braking...

  4. Automatic Picking of Foraminifera: Design of the Foraminifera Image Recognition and Sorting Tool (FIRST) Prototype and Results of the Image Classification Scheme

    Science.gov (United States)

    de Garidel-Thoron, T.; Marchant, R.; Soto, E.; Gally, Y.; Beaufort, L.; Bolton, C. T.; Bouslama, M.; Licari, L.; Mazur, J. C.; Brutti, J. M.; Norsa, F.

    2017-12-01

    Foraminifera tests are the main proxy carriers for paleoceanographic reconstructions. Both geochemical and taxonomical studies require large numbers of tests to achieve statistical relevance. To date, the extraction of foraminifera from the sediment coarse fraction is still done by hand and thus time-consuming. Moreover, the recognition of morphotypes, ecologically relevant, requires some taxonomical skills not easily taught. The automatic recognition and extraction of foraminifera would largely help paleoceanographers to overcome these issues. Recent advances in automatic image classification using machine learning opens the way to automatic extraction of foraminifera. Here we detail progress on the design of an automatic picking machine as part of the FIRST project. The machine handles 30 pre-sieved samples (100-1000µm), separating them into individual particles (including foraminifera) and imaging each in pseudo-3D. The particles are classified and specimens of interest are sorted either for Individual Foraminifera Analyses (44 per slide) and/or for classical multiple analyses (8 morphological classes per slide, up to 1000 individuals per hole). The classification is based on machine learning using Convolutional Neural Networks (CNNs), similar to the approach used in the coccolithophorid imaging system SYRACO. To prove its feasibility, we built two training image datasets of modern planktonic foraminifera containing approximately 2000 and 5000 images each, corresponding to 15 & 25 morphological classes. Using a CNN with a residual topology (ResNet) we achieve over 95% correct classification for each dataset. We tested the network on 160,000 images from 45 depths of a sediment core from the Pacific ocean, for which we have human counts. The current algorithm is able to reproduce the downcore variability in both Globigerinoides ruber and the fragmentation index (r2 = 0.58 and 0.88 respectively). The FIRST prototype yields some promising results for high

  5. Robust vehicle detection in aerial images based on salient region selection and superpixel classification

    Science.gov (United States)

    Sahli, Samir; Duval, Pierre-Luc; Sheng, Yunlong; Lavigne, Daniel A.

    2011-05-01

    For detecting vehicles in large scale aerial images we first used a non-parametric method proposed recently by Rosin to define the regions of interest, where the vehicles appear with dense edges. The saliency map is a sum of distance transforms (DT) of a set of edges maps, which are obtained by a threshold decomposition of the gradient image with a set of thresholds. A binary mask for highlighting the regions of interest is then obtained by a moment-preserving thresholding of the normalized saliency map. Secondly, the regions of interest were over-segmented by the SLIC superpixels proposed recently by Achanta et al. to cluster pixels into the color constancy sub-regions. In the aerial images of 11.2 cm/pixel resolution, the vehicles in general do not exceed 20 x 40 pixels. We introduced a size constraint to guarantee no superpixels exceed the size of a vehicle. The superpixels were then classified to vehicle or non-vehicle by the Support Vector Machine (SVM), in which the Scale Invariant Feature Transform (SIFT) features and the Linear Binary Pattern (LBP) texture features were used. Both features were extracted at two scales with two size patches. The small patches capture local structures and the larger patches include the neighborhood information. Preliminary results show a significant gain in the detection. The vehicles were detected with a dense concentration of the vehicle-class superpixels. Even dark color cars were successfully detected. A validation process will follow to reduce the presence of isolated false alarms in the background.

  6. Real-time, resource-constrained object classification on a micro-air vehicle

    Science.gov (United States)

    Buck, Louis; Ray, Laura

    2013-12-01

    A real-time embedded object classification algorithm is developed through the novel combination of binary feature descriptors, a bag-of-visual-words object model and the cortico-striatal loop (CSL) learning algorithm. The BRIEF, ORB and FREAK binary descriptors are tested and compared to SIFT descriptors with regard to their respective classification accuracies, execution times, and memory requirements when used with CSL on a 12.6 g ARM Cortex embedded processor running at 800 MHz. Additionally, the effect of x2 feature mapping and opponent-color representations used with these descriptors is examined. These tests are performed on four data sets of varying sizes and difficulty, and the BRIEF descriptor is found to yield the best combination of speed and classification accuracy. Its use with CSL achieves accuracies between 67% and 95% of those achieved with SIFT descriptors and allows for the embedded classification of a 128x192 pixel image in 0.15 seconds, 60 times faster than classification with SIFT. X2 mapping is found to provide substantial improvements in classification accuracy for all of the descriptors at little cost, while opponent-color descriptors are offer accuracy improvements only on colorful datasets.

  7. Kardashev’s classification at 50+: A fine vehicle with room for improvement

    Directory of Open Access Journals (Sweden)

    Ćirković M.M.

    2015-01-01

    Full Text Available We review the history and status of the famous classification of extraterrestrial civilizations given by the great Russian astrophysicist Nikolai Semenovich Kardashev, roughly half a century after it has been proposed. While Kardashev’s classification (or Kardashev’s scale has often been seen as oversimplified, and multiple improvements, refinements, and alternatives to it have been suggested, it is still one of the major tools for serious theoretical investigation of SETI issues. During these 50+ years, several attempts at modifying or reforming the classification have been made; we review some of them here, together with presenting some of the scenarios which present difficulties to the standard version. Recent results in both theoretical and observational SETI studies, especially the ˆG infrared survey (2014-2015, have persuasively shown that the emphasis on detectability inherent in Kardashev’s classification obtains new significance and freshness. Several new movements and conceptual frameworks, such as the Dysonian SETI, tally extremely well with these developments. So, the apparent simplicity of the classification is highly deceptive: Kardashev’s work offers a wealth of still insufficiently studied methodological and epistemological ramifications and it remains, in both letter and spirit, perhaps the worthiest legacy of the SETI “founding fathers”. [Projekat Ministarstva nauke Republike Srbije, br. ON176021

  8. A Classification-oriented Method of Feature Image Generation for Vehicle-borne Laser Scanning Point Clouds

    Directory of Open Access Journals (Sweden)

    YANG Bisheng

    2016-02-01

    Full Text Available An efficient method of feature image generation of point clouds to automatically classify dense point clouds into different categories is proposed, such as terrain points, building points. The method first uses planar projection to sort points into different grids, then calculates the weights and feature values of grids according to the distribution of laser scanning points, and finally generates the feature image of point clouds. Thus, the proposed method adopts contour extraction and tracing means to extract the boundaries and point clouds of man-made objects (e.g. buildings and trees in 3D based on the image generated. Experiments show that the proposed method provides a promising solution for classifying and extracting man-made objects from vehicle-borne laser scanning point clouds.

  9. Woodland Mapping at Single-Tree Levels Using Object-Oriented Classification of Unmanned Aerial Vehicle (uav) Images

    Science.gov (United States)

    Chenari, A.; Erfanifard, Y.; Dehghani, M.; Pourghasemi, H. R.

    2017-09-01

    Remotely sensed datasets offer a reliable means to precisely estimate biophysical characteristics of individual species sparsely distributed in open woodlands. Moreover, object-oriented classification has exhibited significant advantages over different classification methods for delineation of tree crowns and recognition of species in various types of ecosystems. However, it still is unclear if this widely-used classification method can have its advantages on unmanned aerial vehicle (UAV) digital images for mapping vegetation cover at single-tree levels. In this study, UAV orthoimagery was classified using object-oriented classification method for mapping a part of wild pistachio nature reserve in Zagros open woodlands, Fars Province, Iran. This research focused on recognizing two main species of the study area (i.e., wild pistachio and wild almond) and estimating their mean crown area. The orthoimage of study area was consisted of 1,076 images with spatial resolution of 3.47 cm which was georeferenced using 12 ground control points (RMSE=8 cm) gathered by real-time kinematic (RTK) method. The results showed that the UAV orthoimagery classified by object-oriented method efficiently estimated mean crown area of wild pistachios (52.09±24.67 m2) and wild almonds (3.97±1.69 m2) with no significant difference with their observed values (α=0.05). In addition, the results showed that wild pistachios (accuracy of 0.90 and precision of 0.92) and wild almonds (accuracy of 0.90 and precision of 0.89) were well recognized by image segmentation. In general, we concluded that UAV orthoimagery can efficiently produce precise biophysical data of vegetation stands at single-tree levels, which therefore is suitable for assessment and monitoring open woodlands.

  10. WOODLAND MAPPING AT SINGLE-TREE LEVELS USING OBJECT-ORIENTED CLASSIFICATION OF UNMANNED AERIAL VEHICLE (UAV IMAGES

    Directory of Open Access Journals (Sweden)

    A. Chenari

    2017-09-01

    Full Text Available Remotely sensed datasets offer a reliable means to precisely estimate biophysical characteristics of individual species sparsely distributed in open woodlands. Moreover, object-oriented classification has exhibited significant advantages over different classification methods for delineation of tree crowns and recognition of species in various types of ecosystems. However, it still is unclear if this widely-used classification method can have its advantages on unmanned aerial vehicle (UAV digital images for mapping vegetation cover at single-tree levels. In this study, UAV orthoimagery was classified using object-oriented classification method for mapping a part of wild pistachio nature reserve in Zagros open woodlands, Fars Province, Iran. This research focused on recognizing two main species of the study area (i.e., wild pistachio and wild almond and estimating their mean crown area. The orthoimage of study area was consisted of 1,076 images with spatial resolution of 3.47 cm which was georeferenced using 12 ground control points (RMSE=8 cm gathered by real-time kinematic (RTK method. The results showed that the UAV orthoimagery classified by object-oriented method efficiently estimated mean crown area of wild pistachios (52.09±24.67 m2 and wild almonds (3.97±1.69 m2 with no significant difference with their observed values (α=0.05. In addition, the results showed that wild pistachios (accuracy of 0.90 and precision of 0.92 and wild almonds (accuracy of 0.90 and precision of 0.89 were well recognized by image segmentation. In general, we concluded that UAV orthoimagery can efficiently produce precise biophysical data of vegetation stands at single-tree levels, which therefore is suitable for assessment and monitoring open woodlands.

  11. A Noise-Assisted Data Analysis Method for Automatic EOG-Based Sleep Stage Classification Using Ensemble Learning.

    Science.gov (United States)

    Olesen, Alexander Neergaard; Christensen, Julie A E; Sorensen, Helge B D; Jennum, Poul J

    2016-08-01

    Reducing the number of recording modalities for sleep staging research can benefit both researchers and patients, under the condition that they provide as accurate results as conventional systems. This paper investigates the possibility of exploiting the multisource nature of the electrooculography (EOG) signals by presenting a method for automatic sleep staging using the complete ensemble empirical mode decomposition with adaptive noise algorithm, and a random forest classifier. It achieves a high overall accuracy of 82% and a Cohen's kappa of 0.74 indicating substantial agreement between automatic and manual scoring.

  12. Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology.

    Science.gov (United States)

    Sharma, Harshita; Zerbe, Norman; Klempert, Iris; Hellwich, Olaf; Hufnagl, Peter

    2017-11-01

    Deep learning using convolutional neural networks is an actively emerging field in histological image analysis. This study explores deep learning methods for computer-aided classification in H&E stained histopathological whole slide images of gastric carcinoma. An introductory convolutional neural network architecture is proposed for two computerized applications, namely, cancer classification based on immunohistochemical response and necrosis detection based on the existence of tumor necrosis in the tissue. Classification performance of the developed deep learning approach is quantitatively compared with traditional image analysis methods in digital histopathology requiring prior computation of handcrafted features, such as statistical measures using gray level co-occurrence matrix, Gabor filter-bank responses, LBP histograms, gray histograms, HSV histograms and RGB histograms, followed by random forest machine learning. Additionally, the widely known AlexNet deep convolutional framework is comparatively analyzed for the corresponding classification problems. The proposed convolutional neural network architecture reports favorable results, with an overall classification accuracy of 0.6990 for cancer classification and 0.8144 for necrosis detection. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Automatic classification of transient ischaemic and transient non-ischaemic heart-rate related ST segment deviation episodes in ambulatory ECG records

    International Nuclear Information System (INIS)

    Faganeli, J; Jager, F

    2010-01-01

    In ambulatory ECG records, besides transient ischaemic ST segment deviation episodes, there are also transient non-ischaemic heart-rate related ST segment deviation episodes present, which appear only due to a change in heart rate and thus complicate automatic detection of true ischaemic episodes. The goal of this work was to automatically classify these two types of episodes. The tested features to classify the ST segment deviation episodes were changes of heart rate, changes of the Mahalanobis distance of the first five Karhunen–Loève transform (KLT) coefficients of the QRS complex, changes of time-domain morphologic parameters of the ST segment and changes of the Legendre orthonormal polynomial coefficients of the ST segment. We chose Legendre basis functions because they best fit typical shapes of the ST segment morphology, thus allowing direct insight into the ST segment morphology changes through the feature space. The classification was performed with the help of decision trees. We tested the classification method using all records of the Long-Term ST Database on all ischaemic and all non-ischaemic heart-rate related deviation episodes according to annotation protocol B. In order to predict the real-world performance of the classification we used second-order aggregate statistics, gross and average statistics, and the bootstrap method. We obtained the best performance when we combined the heart-rate features, the Mahalanobis distance and the Legendre orthonormal polynomial coefficient features, with average sensitivity of 98.1% and average specificity of 85.2%

  14. Automatic classification of gammas-gamma coincidence matrices; Clasificacion automatizada de matrices de coincidencias Gamma-Gamma

    Energy Technology Data Exchange (ETDEWEB)

    Los Arcos Merino, J M; Gonzalez, J A

    1978-07-01

    The information obtained during a coincidence experiment, recorded on magnetic tape by a MULTI-8 minicomputer, is transferred to a new tape in 36 bit words, using the program LEC0M8. The classification in two dimensional matrix form is carried out off-line, on a magnetic disk file, by the program CLAFI. On finishing classification one obtains a copy of the coincidence matrix on the second magnetic tape. Both programs are written to be processed in that order with the UNIVAC 1106 computer of J.E.N. (Author) 4 refs.

  15. An Automatic Segmentation Method Combining an Active Contour Model and a Classification Technique for Detecting Polycomb-group Proteinsin High-Throughput Microscopy Images.

    Science.gov (United States)

    Gregoretti, Francesco; Cesarini, Elisa; Lanzuolo, Chiara; Oliva, Gennaro; Antonelli, Laura

    2016-01-01

    The large amount of data generated in biological experiments that rely on advanced microscopy can be handled only with automated image analysis. Most analyses require a reliable cell image segmentation eventually capable of detecting subcellular structures.We present an automatic segmentation method to detect Polycomb group (PcG) proteins areas isolated from nuclei regions in high-resolution fluorescent cell image stacks. It combines two segmentation algorithms that use an active contour model and a classification technique serving as a tool to better understand the subcellular three-dimensional distribution of PcG proteins in live cell image sequences. We obtained accurate results throughout several cell image datasets, coming from different cell types and corresponding to different fluorescent labels, without requiring elaborate adjustments to each dataset.

  16. Large Scale Automatic Analysis and Classification of Roof Surfaces for the Installation of Solar Panels Using a Multi-Sensor Aerial Platform

    Directory of Open Access Journals (Sweden)

    Luis López-Fernández

    2015-09-01

    Full Text Available A low-cost multi-sensor aerial platform, aerial trike, equipped with visible and thermographic sensors is used for the acquisition of all the data needed for the automatic analysis and classification of roof surfaces regarding their suitability to harbor solar panels. The geometry of a georeferenced 3D point cloud generated from visible images using photogrammetric and computer vision algorithms, and the temperatures measured on thermographic images are decisive to evaluate the areas, tilts, orientations and the existence of obstacles to locate the optimal zones inside each roof surface for the installation of solar panels. This information is complemented with the estimation of the solar irradiation received by each surface. This way, large areas may be efficiently analyzed obtaining as final result the optimal locations for the placement of solar panels as well as the information necessary (location, orientation, tilt, area and solar irradiation to estimate the productivity of a solar panel from its technical characteristics.

  17. Towards an Automatic Framework for Urban Settlement Mapping from Satellite Images: Applications of Geo-referenced Social Media and One Class Classification

    Science.gov (United States)

    Miao, Zelang

    2017-04-01

    Currently, urban dwellers comprise more than half of the world's population and this percentage is still dramatically increasing. The explosive urban growth over the next two decades poses long-term profound impact on people as well as the environment. Accurate and up-to-date delineation of urban settlements plays a fundamental role in defining planning strategies and in supporting sustainable development of urban settlements. In order to provide adequate data about urban extents and land covers, classifying satellite data has become a common practice, usually with accurate enough results. Indeed, a number of supervised learning methods have proven effective in urban area classification, but they usually depend on a large amount of training samples, whose collection is a time and labor expensive task. This issue becomes particularly serious when classifying large areas at the regional/global level. As an alternative to manual ground truth collection, in this work we use geo-referenced social media data. Cities and densely populated areas are an extremely fertile land for the production of individual geo-referenced data (such as GPS and social network data). Training samples derived from geo-referenced social media have several advantages: they are easy to collect, usually they are freely exploitable; and, finally, data from social media are spatially available in many locations, and with no doubt in most urban areas around the world. Despite these advantages, the selection of training samples from social media meets two challenges: 1) there are many duplicated points; 2) method is required to automatically label them as "urban/non-urban". The objective of this research is to validate automatic sample selection from geo-referenced social media and its applicability in one class classification for urban extent mapping from satellite images. The findings in this study shed new light on social media applications in the field of remote sensing.

  18. A Noise-Assisted Data Analysis Method for Automatic EOG-Based Sleep Stage Classification Using Ensemble Learning

    DEFF Research Database (Denmark)

    Olesen, Alexander Neergaard; Christensen, Julie Anja Engelhard; Sørensen, Helge Bjarup Dissing

    2016-01-01

    Reducing the number of recording modalities for sleep staging research can benefit both researchers and patients, under the condition that they provide as accurate results as conventional systems. This paper investigates the possibility of exploiting the multisource nature of the electrooculography...... (EOG) signals by presenting a method for automatic sleep staging using the complete ensemble empirical mode decomposition with adaptive noise algorithm, and a random forest classifier. It achieves a high overall accuracy of 82% and a Cohen’s kappa of 0.74 indicating substantial agreement between...

  19. Automatic classification of cardioembolic and arteriosclerotic ischemic strokes from apparent diffusion coefficient datasets using texture analysis and deep learning

    Science.gov (United States)

    Villafruela, Javier; Crites, Sebastian; Cheng, Bastian; Knaack, Christian; Thomalla, Götz; Menon, Bijoy K.; Forkert, Nils D.

    2017-03-01

    Stroke is a leading cause of death and disability in the western hemisphere. Acute ischemic strokes can be broadly classified based on the underlying cause into atherosclerotic strokes, cardioembolic strokes, small vessels disease, and stroke with other causes. The ability to determine the exact origin of an acute ischemic stroke is highly relevant for optimal treatment decision and preventing recurrent events. However, the differentiation of atherosclerotic and cardioembolic phenotypes can be especially challenging due to similar appearance and symptoms. The aim of this study was to develop and evaluate the feasibility of an image-based machine learning approach for discriminating between arteriosclerotic and cardioembolic acute ischemic strokes using 56 apparent diffusion coefficient (ADC) datasets from acute stroke patients. For this purpose, acute infarct lesions were semi-atomically segmented and 30,981 geometric and texture image features were extracted for each stroke volume. To improve the performance and accuracy, categorical Pearson's χ2 test was used to select the most informative features while removing redundant attributes. As a result, only 289 features were finally included for training of a deep multilayer feed-forward neural network without bootstrapping. The proposed method was evaluated using a leave-one-out cross validation scheme. The proposed classification method achieved an average area under receiver operator characteristic curve value of 0.93 and a classification accuracy of 94.64%. These first results suggest that the proposed image-based classification framework can support neurologists in clinical routine differentiating between atherosclerotic and cardioembolic phenotypes.

  20. Automatic classification of written descriptions by healthy adults: An overview of the application of natural language processing and machine learning techniques to clinical discourse analysis.

    Science.gov (United States)

    Toledo, Cíntia Matsuda; Cunha, Andre; Scarton, Carolina; Aluísio, Sandra

    2014-01-01

    Discourse production is an important aspect in the evaluation of brain-injured individuals. We believe that studies comparing the performance of brain-injured subjects with that of healthy controls must use groups with compatible education. A pioneering application of machine learning methods using Brazilian Portuguese for clinical purposes is described, highlighting education as an important variable in the Brazilian scenario. The aims were to describe how to:(i) develop machine learning classifiers using features generated by natural language processing tools to distinguish descriptions produced by healthy individuals into classes based on their years of education; and(ii) automatically identify the features that best distinguish the groups. The approach proposed here extracts linguistic features automatically from the written descriptions with the aid of two Natural Language Processing tools: Coh-Metrix-Port and AIC. It also includes nine task-specific features (three new ones, two extracted manually, besides description time; type of scene described - simple or complex; presentation order - which type of picture was described first; and age). In this study, the descriptions by 144 of the subjects studied in Toledo 18 were used,which included 200 healthy Brazilians of both genders. A Support Vector Machine (SVM) with a radial basis function (RBF) kernel is the most recommended approach for the binary classification of our data, classifying three of the four initial classes. CfsSubsetEval (CFS) is a strong candidate to replace manual feature selection methods.

  1. Automatic classification of written descriptions by healthy adults: An overview of the application of natural language processing and machine learning techniques to clinical discourse analysis

    Directory of Open Access Journals (Sweden)

    Cíntia Matsuda Toledo

    Full Text Available Discourse production is an important aspect in the evaluation of brain-injured individuals. We believe that studies comparing the performance of brain-injured subjects with that of healthy controls must use groups with compatible education. A pioneering application of machine learning methods using Brazilian Portuguese for clinical purposes is described, highlighting education as an important variable in the Brazilian scenario.OBJECTIVE: The aims were to describe how to: (i develop machine learning classifiers using features generated by natural language processing tools to distinguish descriptions produced by healthy individuals into classes based on their years of education; and (ii automatically identify the features that best distinguish the groups.METHODS: The approach proposed here extracts linguistic features automatically from the written descriptions with the aid of two Natural Language Processing tools: Coh-Metrix-Port and AIC. It also includes nine task-specific features (three new ones, two extracted manually, besides description time; type of scene described - simple or complex; presentation order - which type of picture was described first; and age. In this study, the descriptions by 144 of the subjects studied in Toledo18 were used, which included 200 healthy Brazilians of both genders.RESULTS AND CONCLUSION:A Support Vector Machine (SVM with a radial basis function (RBF kernel is the most recommended approach for the binary classification of our data, classifying three of the four initial classes. CfsSubsetEval (CFS is a strong candidate to replace manual feature selection methods.

  2. A novel, fast and efficient single-sensor automatic sleep-stage classification based on complementary cross-frequency coupling estimates.

    Science.gov (United States)

    Dimitriadis, Stavros I; Salis, Christos; Linden, David

    2018-04-01

    Limitations of the manual scoring of polysomnograms, which include data from electroencephalogram (EEG), electro-oculogram (EOG), electrocardiogram (ECG) and electromyogram (EMG) channels have long been recognized. Manual staging is resource intensive and time consuming, and thus considerable effort must be spent to ensure inter-rater reliability. As a result, there is a great interest in techniques based on signal processing and machine learning for a completely Automatic Sleep Stage Classification (ASSC). In this paper, we present a single-EEG-sensor ASSC technique based on the dynamic reconfiguration of different aspects of cross-frequency coupling (CFC) estimated between predefined frequency pairs over 5 s epoch lengths. The proposed analytic scheme is demonstrated using the PhysioNet Sleep European Data Format (EDF) Database with repeat recordings from 20 healthy young adults. We validate our methodology in a second sleep dataset. We achieved very high classification sensitivity, specificity and accuracy of 96.2 ± 2.2%, 94.2 ± 2.3%, and 94.4 ± 2.2% across 20 folds, respectively, and also a high mean F1 score (92%, range 90-94%) when a multi-class Naive Bayes classifier was applied. High classification performance has been achieved also in the second sleep dataset. Our method outperformed the accuracy of previous studies not only on different datasets but also on the same database. Single-sensor ASSC makes the entire methodology appropriate for longitudinal monitoring using wearable EEG in real-world and laboratory-oriented environments. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.

  3. Extricating Manual and Non-Manual Features for Subunit Level Medical Sign Modelling in Automatic Sign Language Classification and Recognition.

    Science.gov (United States)

    R, Elakkiya; K, Selvamani

    2017-09-22

    Subunit segmenting and modelling in medical sign language is one of the important studies in linguistic-oriented and vision-based Sign Language Recognition (SLR). Many efforts were made in the precedent to focus the functional subunits from the view of linguistic syllables but the problem is implementing such subunit extraction using syllables is not feasible in real-world computer vision techniques. And also, the present recognition systems are designed in such a way that it can detect the signer dependent actions under restricted and laboratory conditions. This research paper aims at solving these two important issues (1) Subunit extraction and (2) Signer independent action on visual sign language recognition. Subunit extraction involved in the sequential and parallel breakdown of sign gestures without any prior knowledge on syllables and number of subunits. A novel Bayesian Parallel Hidden Markov Model (BPaHMM) is introduced for subunit extraction to combine the features of manual and non-manual parameters to yield better results in classification and recognition of signs. Signer independent action aims in using a single web camera for different signer behaviour patterns and for cross-signer validation. Experimental results have proved that the proposed signer independent subunit level modelling for sign language classification and recognition has shown improvement and variations when compared with other existing works.

  4. Automatic white blood cell classification using pre-trained deep learning models: ResNet and Inception

    Science.gov (United States)

    Habibzadeh, Mehdi; Jannesari, Mahboobeh; Rezaei, Zahra; Baharvand, Hossein; Totonchi, Mehdi

    2018-04-01

    This works gives an account of evaluation of white blood cell differential counts via computer aided diagnosis (CAD) system and hematology rules. Leukocytes, also called white blood cells (WBCs) play main role of the immune system. Leukocyte is responsible for phagocytosis and immunity and therefore in defense against infection involving the fatal diseases incidence and mortality related issues. Admittedly, microscopic examination of blood samples is a time consuming, expensive and error-prone task. A manual diagnosis would search for specific Leukocytes and number abnormalities in the blood slides while complete blood count (CBC) examination is performed. Complications may arise from the large number of varying samples including different types of Leukocytes, related sub-types and concentration in blood, which makes the analysis prone to human error. This process can be automated by computerized techniques which are more reliable and economical. In essence, we seek to determine a fast, accurate mechanism for classification and gather information about distribution of white blood evidences which may help to diagnose the degree of any abnormalities during CBC test. In this work, we consider the problem of pre-processing and supervised classification of white blood cells into their four primary types including Neutrophils, Eosinophils, Lymphocytes, and Monocytes using a consecutive proposed deep learning framework. For first step, this research proposes three consecutive pre-processing calculations namely are color distortion; bounding box distortion (crop) and image flipping mirroring. In second phase, white blood cell recognition performed with hierarchy topological feature extraction using Inception and ResNet architectures. Finally, the results obtained from the preliminary analysis of cell classification with (11200) training samples and 1244 white blood cells evaluation data set are presented in confusion matrices and interpreted using accuracy rate, and false

  5. Owlready: Ontology-oriented programming in Python with automatic classification and high level constructs for biomedical ontologies.

    Science.gov (United States)

    Lamy, Jean-Baptiste

    2017-07-01

    Ontologies are widely used in the biomedical domain. While many tools exist for the edition, alignment or evaluation of ontologies, few solutions have been proposed for ontology programming interface, i.e. for accessing and modifying an ontology within a programming language. Existing query languages (such as SPARQL) and APIs (such as OWLAPI) are not as easy-to-use as object programming languages are. Moreover, they provide few solutions to difficulties encountered with biomedical ontologies. Our objective was to design a tool for accessing easily the entities of an OWL ontology, with high-level constructs helping with biomedical ontologies. From our experience on medical ontologies, we identified two difficulties: (1) many entities are represented by classes (rather than individuals), but the existing tools do not permit manipulating classes as easily as individuals, (2) ontologies rely on the open-world assumption, whereas the medical reasoning must consider only evidence-based medical knowledge as true. We designed a Python module for ontology-oriented programming. It allows access to the entities of an OWL ontology as if they were objects in the programming language. We propose a simple high-level syntax for managing classes and the associated "role-filler" constraints. We also propose an algorithm for performing local closed world reasoning in simple situations. We developed Owlready, a Python module for a high-level access to OWL ontologies. The paper describes the architecture and the syntax of the module version 2. It details how we integrated the OWL ontology model with the Python object model. The paper provides examples based on Gene Ontology (GO). We also demonstrate the interest of Owlready in a use case focused on the automatic comparison of the contraindications of several drugs. This use case illustrates the use of the specific syntax proposed for manipulating classes and for performing local closed world reasoning. Owlready has been successfully

  6. Resolving Carbonate Platform Geometries on the Island of Bonaire, Caribbean Netherlands through Semi-Automatic GPR Facies Classification

    Science.gov (United States)

    Bowling, R. D.; Laya, J. C.; Everett, M. E.

    2018-05-01

    The study of exposed carbonate platforms provides observational constraints on regional tectonics and sea-level history. In this work Miocene-aged carbonate platform units of the Seroe Domi Formation are investigated, on the island of Bonaire, located in the Southern Caribbean. Ground penetrating radar (GPR) was used to probe near-surface structural geometries associated with these lithologies. The single cross-island transect described herein allowed for continuous mapping of geologic structures on kilometer length scales. Numerical analysis was applied to the data in the form of k-means clustering of structure-parallel vectors derived from image structure tensors. This methodology enables radar facies along the survey transect to be semi-automatically mapped. The results provide subsurface evidence to support previous surficial and outcrop observations, and reveal complex stratigraphy within the platform. From the GPR data analysis, progradational clinoform geometries were observed on the northeast side of the island which supports the tectonics and depositional trends of the region. Furthermore, several leeward-side radar facies are identified which correlate to environments of deposition conducive to dolomitization via reflux mechanisms.

  7. Alzheimer Disease and Behavioral Variant Frontotemporal Dementia: Automatic Classification Based on Cortical Atrophy for Single-Subject Diagnosis.

    Science.gov (United States)

    Möller, Christiane; Pijnenburg, Yolande A L; van der Flier, Wiesje M; Versteeg, Adriaan; Tijms, Betty; de Munck, Jan C; Hafkemeijer, Anne; Rombouts, Serge A R B; van der Grond, Jeroen; van Swieten, John; Dopper, Elise; Scheltens, Philip; Barkhof, Frederik; Vrenken, Hugo; Wink, Alle Meije

    2016-06-01

    Purpose To investigate the diagnostic accuracy of an image-based classifier to distinguish between Alzheimer disease (AD) and behavioral variant frontotemporal dementia (bvFTD) in individual patients by using gray matter (GM) density maps computed from standard T1-weighted structural images obtained with multiple imagers and with independent training and prediction data. Materials and Methods The local institutional review board approved the study. Eighty-four patients with AD, 51 patients with bvFTD, and 94 control subjects were divided into independent training (n = 115) and prediction (n = 114) sets with identical diagnosis and imager type distributions. Training of a support vector machine (SVM) classifier used diagnostic status and GM density maps and produced voxelwise discrimination maps. Discriminant function analysis was used to estimate suitability of the extracted weights for single-subject classification in the prediction set. Receiver operating characteristic (ROC) curves and area under the ROC curve (AUC) were calculated for image-based classifiers and neuropsychological z scores. Results Training accuracy of the SVM was 85% for patients with AD versus control subjects, 72% for patients with bvFTD versus control subjects, and 79% for patients with AD versus patients with bvFTD (P ≤ .029). Single-subject diagnosis in the prediction set when using the discrimination maps yielded accuracies of 88% for patients with AD versus control subjects, 85% for patients with bvFTD versus control subjects, and 82% for patients with AD versus patients with bvFTD, with a good to excellent AUC (range, 0.81-0.95; P ≤ .001). Machine learning-based categorization of AD versus bvFTD based on GM density maps outperforms classification based on neuropsychological test results. Conclusion The SVM can be used in single-subject discrimination and can help the clinician arrive at a diagnosis. The SVM can be used to distinguish disease-specific GM patterns in patients with AD

  8. Combining automatic table classification and relationship extraction in extracting anticancer drug-side effect pairs from full-text articles.

    Science.gov (United States)

    Xu, Rong; Wang, QuanQiu

    2015-02-01

    Anticancer drug-associated side effect knowledge often exists in multiple heterogeneous and complementary data sources. A comprehensive anticancer drug-side effect (drug-SE) relationship knowledge base is important for computation-based drug target discovery, drug toxicity predication and drug repositioning. In this study, we present a two-step approach by combining table classification and relationship extraction to extract drug-SE pairs from a large number of high-profile oncological full-text articles. The data consists of 31,255 tables downloaded from the Journal of Oncology (JCO). We first trained a statistical classifier to classify tables into SE-related and -unrelated categories. We then extracted drug-SE pairs from SE-related tables. We compared drug side effect knowledge extracted from JCO tables to that derived from FDA drug labels. Finally, we systematically analyzed relationships between anti-cancer drug-associated side effects and drug-associated gene targets, metabolism genes, and disease indications. The statistical table classifier is effective in classifying tables into SE-related and -unrelated (precision: 0.711; recall: 0.941; F1: 0.810). We extracted a total of 26,918 drug-SE pairs from SE-related tables with a precision of 0.605, a recall of 0.460, and a F1 of 0.520. Drug-SE pairs extracted from JCO tables is largely complementary to those derived from FDA drug labels; as many as 84.7% of the pairs extracted from JCO tables have not been included a side effect database constructed from FDA drug labels. Side effects associated with anticancer drugs positively correlate with drug target genes, drug metabolism genes, and disease indications. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. An E-health solution for automatic sleep classification according to Rechtschaffen and Kales: validation study of the Somnolyzer 24 x 7 utilizing the Siesta database.

    Science.gov (United States)

    Anderer, Peter; Gruber, Georg; Parapatics, Silvia; Woertz, Michael; Miazhynskaia, Tatiana; Klosch, Gerhard; Saletu, Bernd; Zeitlhofer, Josef; Barbanoj, Manuel J; Danker-Hopfe, Heidi; Himanen, Sari-Leena; Kemp, Bob; Penzel, Thomas; Grozinger, Michael; Kunz, Dieter; Rappelsberger, Peter; Schlogl, Alois; Dorffner, Georg

    2005-01-01

    To date, the only standard for the classification of sleep-EEG recordings that has found worldwide acceptance are the rules published in 1968 by Rechtschaffen and Kales. Even though several attempts have been made to automate the classification process, so far no method has been published that has proven its validity in a study including a sufficiently large number of controls and patients of all adult age ranges. The present paper describes the development and optimization of an automatic classification system that is based on one central EEG channel, two EOG channels and one chin EMG channel. It adheres to the decision rules for visual scoring as closely as possible and includes a structured quality control procedure by a human expert. The final system (Somnolyzer 24 x 7) consists of a raw data quality check, a feature extraction algorithm (density and intensity of sleep/wake-related patterns such as sleep spindles, delta waves, SEMs and REMs), a feature matrix plausibility check, a classifier designed as an expert system, a rule-based smoothing procedure for the start and the end of stages REM, and finally a statistical comparison to age- and sex-matched normal healthy controls (Siesta Spot Report). The expert system considers different prior probabilities of stage changes depending on the preceding sleep stage, the occurrence of a movement arousal and the position of the epoch within the NREM/REM sleep cycles. Moreover, results obtained with and without using the chin EMG signal are combined. The Siesta polysomnographic database (590 recordings in both normal healthy subjects aged 20-95 years and patients suffering from organic or nonorganic sleep disorders) was split into two halves, which were randomly assigned to a training and a validation set, respectively. The final validation revealed an overall epoch-by-epoch agreement of 80% (Cohen's kappa: 0.72) between the Somnolyzer 24 x 7 and the human expert scoring, as compared with an inter-rater reliability of

  10. Fully automatic, multiorgan segmentation in normal whole body magnetic resonance imaging (MRI), using classification forests (CFs), convolutional neural networks (CNNs), and a multi-atlas (MA) approach.

    Science.gov (United States)

    Lavdas, Ioannis; Glocker, Ben; Kamnitsas, Konstantinos; Rueckert, Daniel; Mair, Henrietta; Sandhu, Amandeep; Taylor, Stuart A; Aboagye, Eric O; Rockall, Andrea G

    2017-10-01

    As part of a program to implement automatic lesion detection methods for whole body magnetic resonance imaging (MRI) in oncology, we have developed, evaluated, and compared three algorithms for fully automatic, multiorgan segmentation in healthy volunteers. The first algorithm is based on classification forests (CFs), the second is based on 3D convolutional neural networks (CNNs) and the third algorithm is based on a multi-atlas (MA) approach. We examined data from 51 healthy volunteers, scanned prospectively with a standardized, multiparametric whole body MRI protocol at 1.5 T. The study was approved by the local ethics committee and written consent was obtained from the participants. MRI data were used as input data to the algorithms, while training was based on manual annotation of the anatomies of interest by clinical MRI experts. Fivefold cross-validation experiments were run on 34 artifact-free subjects. We report three overlap and three surface distance metrics to evaluate the agreement between the automatic and manual segmentations, namely the dice similarity coefficient (DSC), recall (RE), precision (PR), average surface distance (ASD), root-mean-square surface distance (RMSSD), and Hausdorff distance (HD). Analysis of variances was used to compare pooled label metrics between the three algorithms and the DSC on a 'per-organ' basis. A Mann-Whitney U test was used to compare the pooled metrics between CFs and CNNs and the DSC on a 'per-organ' basis, when using different imaging combinations as input for training. All three algorithms resulted in robust segmenters that were effectively trained using a relatively small number of datasets, an important consideration in the clinical setting. Mean overlap metrics for all the segmented structures were: CFs: DSC = 0.70 ± 0.18, RE = 0.73 ± 0.18, PR = 0.71 ± 0.14, CNNs: DSC = 0.81 ± 0.13, RE = 0.83 ± 0.14, PR = 0.82 ± 0.10, MA: DSC = 0.71 ± 0.22, RE = 0.70 ± 0.34, PR = 0.77 ± 0.15. Mean surface distance

  11. Some Issues in the Automatic Classification of U.S. Patents Working Notes for the AAAI-98 Workshop on Learning for Text Categorization

    National Research Council Canada - National Science Library

    Larkey, Leah

    1998-01-01

    The classification of U.S. patents poses some special problems due to the enormous size of the corpus, the size and complex hierarchical structure of the classification system, and the size and structure of patent documents...

  12. Position automatic determination technology

    International Nuclear Information System (INIS)

    1985-10-01

    This book tells of method of position determination and characteristic, control method of position determination and point of design, point of sensor choice for position detector, position determination of digital control system, application of clutch break in high frequency position determination, automation technique of position determination, position determination by electromagnetic clutch and break, air cylinder, cam and solenoid, stop position control of automatic guide vehicle, stacker crane and automatic transfer control.

  13. Automatic intelligent cruise control

    OpenAIRE

    Stanton, NA; Young, MS

    2006-01-01

    This paper reports a study on the evaluation of automatic intelligent cruise control (AICC) from a psychological perspective. It was anticipated that AICC would have an effect upon the psychology of driving—namely, make the driver feel like they have less control, reduce the level of trust in the vehicle, make drivers less situationally aware, but might reduce the workload and make driving might less stressful. Drivers were asked to drive in a driving simulator under manual and automatic inte...

  14. Classification of Urban Feature from Unmanned Aerial Vehicle Images Using Gasvm Integration and Multi-Scale Segmentation

    Science.gov (United States)

    Modiri, M.; Salehabadi, A.; Mohebbi, M.; Hashemi, A. M.; Masumi, M.

    2015-12-01

    The use of UAV in the application of photogrammetry to obtain cover images and achieve the main objectives of the photogrammetric mapping has been a boom in the region. The images taken from REGGIOLO region in the province of, Italy Reggio -Emilia by UAV with non-metric camera Canon Ixus and with an average height of 139.42 meters were used to classify urban feature. Using the software provided SURE and cover images of the study area, to produce dense point cloud, DSM and Artvqvtv spatial resolution of 10 cm was prepared. DTM area using Adaptive TIN filtering algorithm was developed. NDSM area was prepared with using the difference between DSM and DTM and a separate features in the image stack. In order to extract features, using simultaneous occurrence matrix features mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation for each of the RGB band image was used Orthophoto area. Classes used to classify urban problems, including buildings, trees and tall vegetation, grass and vegetation short, paved road and is impervious surfaces. Class consists of impervious surfaces such as pavement conditions, the cement, the car, the roof is stored. In order to pixel-based classification and selection of optimal features of classification was GASVM pixel basis. In order to achieve the classification results with higher accuracy and spectral composition informations, texture, and shape conceptual image featureOrthophoto area was fencing. The segmentation of multi-scale segmentation method was used.it belonged class. Search results using the proposed classification of urban feature, suggests the suitability of this method of classification complications UAV is a city using images. The overall accuracy and kappa coefficient method proposed in this study, respectively, 47/93% and 84/91% was.

  15. Tissue Classification

    DEFF Research Database (Denmark)

    Van Leemput, Koen; Puonti, Oula

    2015-01-01

    Computational methods for automatically segmenting magnetic resonance images of the brain have seen tremendous advances in recent years. So-called tissue classification techniques, aimed at extracting the three main brain tissue classes (white matter, gray matter, and cerebrospinal fluid), are now...... well established. In their simplest form, these methods classify voxels independently based on their intensity alone, although much more sophisticated models are typically used in practice. This article aims to give an overview of often-used computational techniques for brain tissue classification...

  16. EPA and California Air Resources Board Approve Remedy to Reduce Excess NOx Emissions from Automatic Transmission “Generation 2” 2.0-Liter Diesel Vehicles

    Science.gov (United States)

    On May 17, 2017, EPA and the California Air Resources Board (CARB) approved an emissions modification proposed by Volkswagen that will reduce NOx emissions from automatic transmission diesel Passats for model years 2012-2014.

  17. Emergency Brake for Tracked Vehicles

    Science.gov (United States)

    Green, G. L.; Hooper, S. L.

    1986-01-01

    Caliper brake automatically stops tracked vehicle as vehicle nears end of travel. Bar on vehicle, traveling to right, dislodges block between brake pads. Pads then press against bar, slowing vehicle by friction. Emergencybraking system suitable for elevators, amusement rides and machine tools.

  18. Automatic wipers with mist control

    OpenAIRE

    Ashik K.P; A.N.Basavaraju

    2016-01-01

    - This paper illustrates Automatic wipers with mist control. In modern days, the accidents are most common in commercial vehicles. One of the reasons for these accidents is formation of the mist inside the vehicle due to heavy rain. In rainy seasons for commercial vehicles, the wiper on the windshield has to be controlled by the driver himself, which distracts his concentration on driving. Also when the rain lasts for more time (say for about 15 minutes) the formation of mist on t...

  19. Automatic Imitation

    Science.gov (United States)

    Heyes, Cecilia

    2011-01-01

    "Automatic imitation" is a type of stimulus-response compatibility effect in which the topographical features of task-irrelevant action stimuli facilitate similar, and interfere with dissimilar, responses. This article reviews behavioral, neurophysiological, and neuroimaging research on automatic imitation, asking in what sense it is "automatic"…

  20. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-01-01

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  1. Automatic Water Sensor Window Opening System

    KAUST Repository

    Percher, Michael

    2013-12-05

    A system can automatically open at least one window of a vehicle when the vehicle is being submerged in water. The system can include a water collector and a water sensor, and when the water sensor detects water in the water collector, at least one window of the vehicle opens.

  2. Development, modeling and research of the system of automatic control and equalization of the charge state of a battery pack of a hybrid engine of a vehicle

    Science.gov (United States)

    Bakhmutov, S.; Sizov, Y.; Kim, M.

    2018-02-01

    The article is devoted to the topical problem of developing effective means of monitoring and leveling the charge state of batteries in a power unit of hybrid and electric cars. A system for automatic control and equalization of the charge state of a battery pack of a combined power plant, the originality of which is protected by the Russian Federation patent, is developed and described. A distinctive feature of the device is the possibility of using it both in conditions of charging (power consumption) and in operating conditions (energy recovery). The device is characterized by high reliability, simplicity of the circuit-making solution, low self-consumption and low cost. To test the efficiency of the proposed device, its computer simulation and experimental research were carried out. As a result of multi factorial experiment, a regression equation has been obtained which makes it possible to judge the high efficiency of detecting the degree of inhomogeneity of controlled batteries with respect to the parameters of an equivalent replacement circuit: voltage, internal resistance and capacitance in the magnitude of the obtained coefficients of influence of each of these factors, and also take into account the effects of their pair interactions.

  3. International Conference on Heavy Vehicles HVParis 2008 : Heavy Vehicle Transport Technology (HVTT 10)

    OpenAIRE

    JACOB, Bernard; NORDENGEN, Paul; O'CONNOR, Alan; BOUTELDJA, Mohamed

    2008-01-01

    Sommaire : Heavy vehicles and WIM technology, testing and standards. Interactions between heavy vehicles or trains and the infrastructure, environment and other system users. Heavy vehicle and road management information: measurements, data quality, data management. Freight mobility and safety. Vehicle classification, size and weight evaluation, regulations and enforcement. Traffic and road safety. WIM of road vehicles, trains and aeroplanes.

  4. a Two-Step Classification Approach to Distinguishing Similar Objects in Mobile LIDAR Point Clouds

    Science.gov (United States)

    He, H.; Khoshelham, K.; Fraser, C.

    2017-09-01

    Nowadays, lidar is widely used in cultural heritage documentation, urban modeling, and driverless car technology for its fast and accurate 3D scanning ability. However, full exploitation of the potential of point cloud data for efficient and automatic object recognition remains elusive. Recently, feature-based methods have become very popular in object recognition on account of their good performance in capturing object details. Compared with global features describing the whole shape of the object, local features recording the fractional details are more discriminative and are applicable for object classes with considerable similarity. In this paper, we propose a two-step classification approach based on point feature histograms and the bag-of-features method for automatic recognition of similar objects in mobile lidar point clouds. Lamp post, street light and traffic sign are grouped as one category in the first-step classification for their inter similarity compared with tree and vehicle. A finer classification of the lamp post, street light and traffic sign based on the result of the first-step classification is implemented in the second step. The proposed two-step classification approach is shown to yield a considerable improvement over the conventional one-step classification approach.

  5. A TWO-STEP CLASSIFICATION APPROACH TO DISTINGUISHING SIMILAR OBJECTS IN MOBILE LIDAR POINT CLOUDS

    Directory of Open Access Journals (Sweden)

    H. He

    2017-09-01

    Full Text Available Nowadays, lidar is widely used in cultural heritage documentation, urban modeling, and driverless car technology for its fast and accurate 3D scanning ability. However, full exploitation of the potential of point cloud data for efficient and automatic object recognition remains elusive. Recently, feature-based methods have become very popular in object recognition on account of their good performance in capturing object details. Compared with global features describing the whole shape of the object, local features recording the fractional details are more discriminative and are applicable for object classes with considerable similarity. In this paper, we propose a two-step classification approach based on point feature histograms and the bag-of-features method for automatic recognition of similar objects in mobile lidar point clouds. Lamp post, street light and traffic sign are grouped as one category in the first-step classification for their inter similarity compared with tree and vehicle. A finer classification of the lamp post, street light and traffic sign based on the result of the first-step classification is implemented in the second step. The proposed two-step classification approach is shown to yield a considerable improvement over the conventional one-step classification approach.

  6. Improving Student Question Classification

    Science.gov (United States)

    Heiner, Cecily; Zachary, Joseph L.

    2009-01-01

    Students in introductory programming classes often articulate their questions and information needs incompletely. Consequently, the automatic classification of student questions to provide automated tutorial responses is a challenging problem. This paper analyzes 411 questions from an introductory Java programming course by reducing the natural…

  7. Music classification with MPEG-7

    Science.gov (United States)

    Crysandt, Holger; Wellhausen, Jens

    2003-01-01

    Driven by increasing amount of music available electronically the need and possibility of automatic classification systems for music becomes more and more important. Currently most search engines for music are based on textual descriptions like artist or/and title. This paper presents a system for automatic music description, classification and visualization for a set of songs. The system is designed to extract significant features of a piece of music in order to find songs of similar genre or a similar sound characteristics. The description is done with the help of MPEG-7 only. The classification and visualization is done with the self organizing map algorithm.

  8. Automatic Analysis of Dewey Decimal Classification Notations

    OpenAIRE

    Reiner, Ulrike

    2007-01-01

    Ulrike Reiner, Verbundzentrale des Gemeinsamen Bibliotheksverbundes (VZG) Göttingen, stellte ihr Projekt der automatischen Analyse von Notationen der Dewey-Dezimalklassifikation (DDC) vor. DDC-Notationen zeichnen sich dadurch aus, dass sie in aller Regel lang und komplex sind und in ihrer Herstellung zahlreiche Regeln zu durchlaufen haben. Ihr Computerprogramm analysiert DDC-Notationen und gibt alle in einer DDC-Notation enthaltenen DDC-Notationen samt DDC-Klassenbenennungen aus. Die gewonnen...

  9. Stellar Spectral Classification with Locality Preserving Projections ...

    Indian Academy of Sciences (India)

    With the help of computer tools and algorithms, automatic stellar spectral classification has become an area of current interest. The process of stellar spectral classification mainly includes two steps: dimension reduction and classification. As a popular dimensionality reduction technique, Principal Component Analysis (PCA) ...

  10. Use of unmanned aerial vehicles for efficient beach litter monitoring

    KAUST Repository

    Martin, Cecilia

    2018-05-05

    A global beach litter assessment is challenged by use of low-efficiency methodologies and incomparable protocols that impede data integration and acquisition at a national scale. The implementation of an objective, reproducible and efficient approach is therefore required. Here we show the application of a remote sensing based methodology using a test beach located on the Saudi Arabian Red Sea coastline. Litter was recorded via image acquisition from an Unmanned Aerial Vehicle, while an automatic processing of the high volume of imagery was developed through machine learning, employed for debris detection and classification in three categories. Application of the method resulted in an almost 40 times faster beach coverage when compared to a standard visual-census approach. While the machine learning tool faced some challenges in correctly detecting objects of interest, first classification results are promising and motivate efforts to further develop the technique and implement it at much larger scales.

  11. Use of unmanned aerial vehicles for efficient beach litter monitoring

    KAUST Repository

    Martin, Cecilia; Parkes, Stephen; Zhang, Qiannan; Zhang, Xiangliang; McCabe, Matthew; Duarte, Carlos M.

    2018-01-01

    A global beach litter assessment is challenged by use of low-efficiency methodologies and incomparable protocols that impede data integration and acquisition at a national scale. The implementation of an objective, reproducible and efficient approach is therefore required. Here we show the application of a remote sensing based methodology using a test beach located on the Saudi Arabian Red Sea coastline. Litter was recorded via image acquisition from an Unmanned Aerial Vehicle, while an automatic processing of the high volume of imagery was developed through machine learning, employed for debris detection and classification in three categories. Application of the method resulted in an almost 40 times faster beach coverage when compared to a standard visual-census approach. While the machine learning tool faced some challenges in correctly detecting objects of interest, first classification results are promising and motivate efforts to further develop the technique and implement it at much larger scales.

  12. Real-time people and vehicle detection from UAV imagery

    Science.gov (United States)

    Gaszczak, Anna; Breckon, Toby P.; Han, Jiwan

    2011-01-01

    A generic and robust approach for the real-time detection of people and vehicles from an Unmanned Aerial Vehicle (UAV) is an important goal within the framework of fully autonomous UAV deployment for aerial reconnaissance and surveillance. Here we present an approach for the automatic detection of vehicles based on using multiple trained cascaded Haar classifiers with secondary confirmation in thermal imagery. Additionally we present a related approach for people detection in thermal imagery based on a similar cascaded classification technique combining additional multivariate Gaussian shape matching. The results presented show the successful detection of vehicle and people under varying conditions in both isolated rural and cluttered urban environments with minimal false positive detection. Performance of the detector is optimized to reduce the overall false positive rate by aiming at the detection of each object of interest (vehicle/person) at least once in the environment (i.e. per search patter flight path) rather than every object in each image frame. Currently the detection rate for people is ~70% and cars ~80% although the overall episodic object detection rate for each flight pattern exceeds 90%.

  13. A Vehicle Active Safety Model: Vehicle Speed Control Based on Driver Vigilance Detection Using Wearable EEG and Sparse Representation.

    Science.gov (United States)

    Zhang, Zutao; Luo, Dianyuan; Rasim, Yagubov; Li, Yanjun; Meng, Guanjun; Xu, Jian; Wang, Chunbai

    2016-02-19

    In this paper, we present a vehicle active safety model for vehicle speed control based on driver vigilance detection using low-cost, comfortable, wearable electroencephalographic (EEG) sensors and sparse representation. The proposed system consists of three main steps, namely wireless wearable EEG collection, driver vigilance detection, and vehicle speed control strategy. First of all, a homemade low-cost comfortable wearable brain-computer interface (BCI) system with eight channels is designed for collecting the driver's EEG signal. Second, wavelet de-noising and down-sample algorithms are utilized to enhance the quality of EEG data, and Fast Fourier Transformation (FFT) is adopted to extract the EEG power spectrum density (PSD). In this step, sparse representation classification combined with k-singular value decomposition (KSVD) is firstly introduced in PSD to estimate the driver's vigilance level. Finally, a novel safety strategy of vehicle speed control, which controls the electronic throttle opening and automatic braking after driver fatigue detection using the above method, is presented to avoid serious collisions and traffic accidents. The simulation and practical testing results demonstrate the feasibility of the vehicle active safety model.

  14. A Vehicle Active Safety Model: Vehicle Speed Control Based on Driver Vigilance Detection Using Wearable EEG and Sparse Representation

    Directory of Open Access Journals (Sweden)

    Zutao Zhang

    2016-02-01

    Full Text Available In this paper, we present a vehicle active safety model for vehicle speed control based on driver vigilance detection using low-cost, comfortable, wearable electroencephalographic (EEG sensors and sparse representation. The proposed system consists of three main steps, namely wireless wearable EEG collection, driver vigilance detection, and vehicle speed control strategy. First of all, a homemade low-cost comfortable wearable brain-computer interface (BCI system with eight channels is designed for collecting the driver’s EEG signal. Second, wavelet de-noising and down-sample algorithms are utilized to enhance the quality of EEG data, and Fast Fourier Transformation (FFT is adopted to extract the EEG power spectrum density (PSD. In this step, sparse representation classification combined with k-singular value decomposition (KSVD is firstly introduced in PSD to estimate the driver’s vigilance level. Finally, a novel safety strategy of vehicle speed control, which controls the electronic throttle opening and automatic braking after driver fatigue detection using the above method, is presented to avoid serious collisions and traffic accidents. The simulation and practical testing results demonstrate the feasibility of the vehicle active safety model.

  15. Classifying Classifications

    DEFF Research Database (Denmark)

    Debus, Michael S.

    2017-01-01

    This paper critically analyzes seventeen game classifications. The classifications were chosen on the basis of diversity, ranging from pre-digital classification (e.g. Murray 1952), over game studies classifications (e.g. Elverdam & Aarseth 2007) to classifications of drinking games (e.g. LaBrie et...... al. 2013). The analysis aims at three goals: The classifications’ internal consistency, the abstraction of classification criteria and the identification of differences in classification across fields and/or time. Especially the abstraction of classification criteria can be used in future endeavors...... into the topic of game classifications....

  16. Classification of iconic images

    OpenAIRE

    Zrianina, Mariia; Kopf, Stephan

    2016-01-01

    Iconic images represent an abstract topic and use a presentation that is intuitively understood within a certain cultural context. For example, the abstract topic “global warming” may be represented by a polar bear standing alone on an ice floe. Such images are widely used in media and their automatic classification can help to identify high-level semantic concepts. This paper presents a system for the classification of iconic images. It uses a variation of the Bag of Visual Words approach wi...

  17. Stability Control of Vehicle Emergency Braking with Tire Blowout

    OpenAIRE

    Chen, Qingzhang; Liu, Youhua; Li, Xuezhi

    2014-01-01

    For the stability control and slowing down the vehicle to a safe speed after tire failure, an emergency automatic braking system with independent intellectual property is developed. After the system has received a signal of tire blowout, the automatic braking mode of the vehicle is determined according to the position of the failure tire and the motion state of vehicle, and a control strategy for resisting tire blowout additional yaw torque and deceleration is designed to slow down vehicle to...

  18. Electric vehicle demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Ouellet, M. [National Centre for Advanced Transportation, Saint-Jerome, PQ (Canada)

    2010-07-01

    The desirable characteristics of Canadian projects that demonstrate vehicle use in real-world operation and the appropriate mechanism to collect and disseminate the monitoring data were discussed in this presentation. The scope of the project was on passenger cars and light duty trucks operating in plug-in electric vehicle (PHEV) or battery electric vehicle modes. The presentation also discussed the funding, stakeholders involved, Canadian travel pattern analysis, regulatory framework, current and recent electric vehicle demonstration projects, and project guidelines. It was concluded that some demonstration project activities may have been duplicated as communication between the proponents was insufficient. It was recommended that data monitoring using automatic data logging with minimum reliance on logbooks and other user entry should be emphasized. figs.

  19. Multi-stage classification method oriented to aerial image based on low-rank recovery and multi-feature fusion sparse representation.

    Science.gov (United States)

    Ma, Xu; Cheng, Yongmei; Hao, Shuai

    2016-12-10

    Automatic classification of terrain surfaces from an aerial image is essential for an autonomous unmanned aerial vehicle (UAV) landing at an unprepared site by using vision. Diverse terrain surfaces may show similar spectral properties due to the illumination and noise that easily cause poor classification performance. To address this issue, a multi-stage classification algorithm based on low-rank recovery and multi-feature fusion sparse representation is proposed. First, color moments and Gabor texture feature are extracted from training data and stacked as column vectors of a dictionary. Then we perform low-rank matrix recovery for the dictionary by using augmented Lagrange multipliers and construct a multi-stage terrain classifier. Experimental results on an aerial map database that we prepared verify the classification accuracy and robustness of the proposed method.

  20. 1997 update for the applications guide to vehicle SNM monitors

    International Nuclear Information System (INIS)

    York, R.L.; Fehlau, P.E.

    1997-04-01

    Ten years have elapsed since the publication of the original applications guide to vehicle special nuclear material (SNM) monitors. During that interval, use of automatic vehicle monitors has become more commonplace, and formal procedures for monitor upkeep and evaluation have become available. New concepts for vehicle monitoring are being explored, as well. This update report reviews the basics of vehicle SNM monitoring, discusses what is new in vehicle SNM monitoring, and catalogs the vehicle SNM monitors that are commercial available

  1. Automatic-Control Challenges in Future Urban Vehicles: A Blend of Chassis, Energy and Networking Management Les défis de la commande automatique dans les futurs véhicules urbains : un mélange de gestion de châssis, d’énergie et du réseau

    Directory of Open Access Journals (Sweden)

    Savaresi S.M.

    2012-10-01

    Full Text Available The topic of this paper is the discussion of new challenges that the scientific field of automatic-control will face in the next decades, in the area of vehicles control. The focus is on urban vehicles for personal mobility, since this type of vehicles will be subject to the biggest changes in the next decades. The paper is articulated in three sections – in a top-down framework – briefly addressing and discussing the following items: the main drivers, which will force a change in urban personal mobility; the main types of vehicles, which are expected to address at best such drivers; the main automatic-control challenges on such type of vehicles. The scope of this paper is purposely non-technical. Its aim is mainly to discuss the emerging new challenges from the perspective of the automatic-control scientists and practitioners. The goal of the paper is to establish a discussion framework on the problems and opportunities, which will arise in this field, in the near future. Le sujet du présent article est une discussion sur les nouveaux défis auxquels le domaine scientifique de la commande automatique des véhicules va faire face dans les prochaines décennies. L’accent est mis sur les véhicules urbains destinés à une mobilité individuelle, puisque c’est ce type de véhicules qui va faire l’objet des plus grands changements dans les prochaines décennies. Le présent article s’articule, selon une démarche descendante, en trois sections abordant et discutant brièvement les éléments suivants : les principaux moteurs qui vont imposer un changement en matière de mobilité individuelle; les principaux types de véhicules qui sont attendus pour répondre au mieux à de tels moteurs et les principaux défis de la commande automatique sur un tel type de véhicules. À dessein, la portée du présent article est non technique. Son but est principalement de discuter les nouveaux défis émergeants, à partir de perspectives des

  2. Prototype Design and Application of a Semi-circular Automatic Parking System

    OpenAIRE

    Atacak, Ismail; Erdogdu, Ertugrul

    2017-01-01

    Nowadays, with the increasing population in urban areas, the number of vehicles used in traffic has also increased in these areas. This has brought with it major problems that are caused by insufficient parking areas, in terms of traffic congestion, drivers and environment. In this study, in order to overcome these problems, a multi-storey automatic parking system that automatically performs vehicle recognition, vehicle parking, vehicle delivery and pricing processes has been designed and the...

  3. Experiences in automatic keywording of particle physics literature

    CERN Document Server

    Montejo Ráez, Arturo

    2001-01-01

    Attributing keywords can assist in the classification and retrieval of documents in the particle physics literature. As information services face a future with less available manpower and more and more documents being written, the possibility of keyword attribution being assisted by automatic classification software is explored. A project being carried out at CERN (the European Laboratory for Particle Physics) for the development and integration of automatic keywording is described.

  4. Combat Vehicle Technology Report

    Science.gov (United States)

    1992-05-01

    reducing fuel storage under armor , and using manual instead of automatic transmissions, these decisions involve definite operational trade-offs...turn. 20 The application of ceramic materials has made possible the adiabatic -aiesel concept that reduces under - armor cooling system size requirements...systems will eliminate all conventional torsion bar suspension volume under armor space claim, and will have a very direct effect on reducing vehicle

  5. Intelligent behaviors through vehicle-to-vehicle and vehicle-to-infrastructure communication

    Science.gov (United States)

    Garcia, Richard D.; Sturgeon, Purser; Brown, Mike

    2012-06-01

    The last decade has seen a significant increase in intelligent safety devices on private automobiles. These devices have both increased and augmented the situational awareness of the driver and in some cases provided automated vehicle responses. To date almost all intelligent safety devices have relied on data directly perceived by the vehicle. This constraint has a direct impact on the types of solutions available to the vehicle. In an effort to improve the safety options available to a vehicle, numerous research laboratories and government agencies are investing time and resources into connecting vehicles to each other and to infrastructure-based devices. This work details several efforts in both the commercial vehicle and the private auto industries to increase vehicle safety and driver situational awareness through vehicle-to-vehicle and vehicle-to-infrastructure communication. It will specifically discuss intelligent behaviors being designed to automatically disable non-compliant vehicles, warn tractor trailer vehicles of unsafe lane maneuvers such as lane changes, passing, and merging, and alert drivers to non-line-of-sight emergencies.

  6. Document Classification Using Distributed Machine Learning

    OpenAIRE

    Aydin, Galip; Hallac, Ibrahim Riza

    2018-01-01

    In this paper, we investigate the performance and success rates of Na\\"ive Bayes Classification Algorithm for automatic classification of Turkish news into predetermined categories like economy, life, health etc. We use Apache Big Data technologies such as Hadoop, HDFS, Spark and Mahout, and apply these distributed technologies to Machine Learning.

  7. A model based method for automatic facial expression recognition

    NARCIS (Netherlands)

    Kuilenburg, H. van; Wiering, M.A.; Uyl, M. den

    2006-01-01

    Automatic facial expression recognition is a research topic with interesting applications in the field of human-computer interaction, psychology and product marketing. The classification accuracy for an automatic system which uses static images as input is however largely limited by the image

  8. Vehicle to Vehicle Services

    DEFF Research Database (Denmark)

    Brønsted, Jeppe Rørbæk

    2008-01-01

    location aware infotainment, increase safety, and lessen environmental strain. This dissertation is about service oriented architecture for pervasive computing with an emphasis on vehicle to vehicle applications. If devices are exposed as services, applications can be created by composing a set of services...... be evaluated. Service composition mechanisms for pervasive computing are categorized and we discuss how the characteristics of pervasive computing can be supported by service composition mechanisms. Finally, we investigate how to make pervasive computing systems capable of being noticed and understood...

  9. Physics of Automatic Target Recognition

    CERN Document Server

    Sadjadi, Firooz

    2007-01-01

    Physics of Automatic Target Recognition addresses the fundamental physical bases of sensing, and information extraction in the state-of-the art automatic target recognition field. It explores both passive and active multispectral sensing, polarimetric diversity, complex signature exploitation, sensor and processing adaptation, transformation of electromagnetic and acoustic waves in their interactions with targets, background clutter, transmission media, and sensing elements. The general inverse scattering, and advanced signal processing techniques and scientific evaluation methodologies being used in this multi disciplinary field will be part of this exposition. The issues of modeling of target signatures in various spectral modalities, LADAR, IR, SAR, high resolution radar, acoustic, seismic, visible, hyperspectral, in diverse geometric aspects will be addressed. The methods for signal processing and classification will cover concepts such as sensor adaptive and artificial neural networks, time reversal filt...

  10. Image-Based Airborne Sensors: A Combined Approach for Spectral Signatures Classification through Deterministic Simulated Annealing

    Science.gov (United States)

    Guijarro, María; Pajares, Gonzalo; Herrera, P. Javier

    2009-01-01

    The increasing technology of high-resolution image airborne sensors, including those on board Unmanned Aerial Vehicles, demands automatic solutions for processing, either on-line or off-line, the huge amountds of image data sensed during the flights. The classification of natural spectral signatures in images is one potential application. The actual tendency in classification is oriented towards the combination of simple classifiers. In this paper we propose a combined strategy based on the Deterministic Simulated Annealing (DSA) framework. The simple classifiers used are the well tested supervised parametric Bayesian estimator and the Fuzzy Clustering. The DSA is an optimization approach, which minimizes an energy function. The main contribution of DSA is its ability to avoid local minima during the optimization process thanks to the annealing scheme. It outperforms simple classifiers used for the combination and some combined strategies, including a scheme based on the fuzzy cognitive maps and an optimization approach based on the Hopfield neural network paradigm. PMID:22399989

  11. An enhanced model for automatically extracting topic phrase from ...

    African Journals Online (AJOL)

    The key benefit foreseen from this automatic document classification is not only related to search engines, but also to many other fields like, document organization, text filtering and semantic index managing. Key words: Keyphrase extraction, machine learning, search engine snippet, document classification, topic tracking ...

  12. Sparse Representation Based SAR Vehicle Recognition along with Aspect Angle

    Directory of Open Access Journals (Sweden)

    Xiangwei Xing

    2014-01-01

    Full Text Available As a method of representing the test sample with few training samples from an overcomplete dictionary, sparse representation classification (SRC has attracted much attention in synthetic aperture radar (SAR automatic target recognition (ATR recently. In this paper, we develop a novel SAR vehicle recognition method based on sparse representation classification along with aspect information (SRCA, in which the correlation between the vehicle’s aspect angle and the sparse representation vector is exploited. The detailed procedure presented in this paper can be summarized as follows. Initially, the sparse representation vector of a test sample is solved by sparse representation algorithm with a principle component analysis (PCA feature-based dictionary. Then, the coefficient vector is projected onto a sparser one within a certain range of the vehicle’s aspect angle. Finally, the vehicle is classified into a certain category that minimizes the reconstruction error with the novel sparse representation vector. Extensive experiments are conducted on the moving and stationary target acquisition and recognition (MSTAR dataset and the results demonstrate that the proposed method performs robustly under the variations of depression angle and target configurations, as well as incomplete observation.

  13. Overview of hybrid electric vehicle trend

    Science.gov (United States)

    Wang, Haomiao; Yang, Weidong; Chen, Yingshu; Wang, Yun

    2018-04-01

    With the increase of per capita energy consumption, environmental pollution is worsening. Using new alternative sources of energy, reducing the use of conventional fuel-powered engines is imperative. Due to the short period, pure electric vehicles cannot be mass-produced and there are many problems such as imperfect charging facilities. Therefore, the development of hybrid electric vehicles is particularly important in a certain period. In this paper, the classification of hybrid vehicle, research status of hybrid vehicle and future development trends of hybrid vehicles is introduced. It is conducive to the public understanding of hybrid electric vehicles, which has a certain theoretical significance.

  14. Automatic stabilization of underwater robots in the time manipulation operations

    International Nuclear Information System (INIS)

    Filaretov, V.F.; Koval, E.V.

    1994-01-01

    When carrying out underwater technical works by means of an underwater vehicles having a manipulator it is desirable to perform manipulation operations in the regime of the underwater vehicle hovering above the object without durable and complicated operations up its rigid fixation. Underwater vehicle stabilization is achieved by compensation all the effects on the vehicle caused by the operating manipulator in water medium. This automatic stabilization is formed due to input of the required control signals into corresponding vehicle propellers proportional to calculated components of the generalized forces and moments. The propellers should form stops reacting against effects

  15. Feasible Path Planning for Autonomous Vehicles

    Directory of Open Access Journals (Sweden)

    Vu Trieu Minh

    2014-01-01

    Full Text Available The objective of this paper is to find feasible path planning algorithms for nonholonomic vehicles including flatness, polynomial, and symmetric polynomial trajectories subject to the real vehicle dynamical constraints. Performances of these path planning methods are simulated and compared to evaluate the more realistic and smoother generated trajectories. Results show that the symmetric polynomial algorithm provides the smoothest trajectory. Therefore, this algorithm is recommended for the development of an automatic control for autonomous vehicles.

  16. Automatic Centerline Extraction of Coverd Roads by Surrounding Objects from High Resolution Satellite Images

    Science.gov (United States)

    Kamangir, H.; Momeni, M.; Satari, M.

    2017-09-01

    This paper presents an automatic method to extract road centerline networks from high and very high resolution satellite images. The present paper addresses the automated extraction roads covered with multiple natural and artificial objects such as trees, vehicles and either shadows of buildings or trees. In order to have a precise road extraction, this method implements three stages including: classification of images based on maximum likelihood algorithm to categorize images into interested classes, modification process on classified images by connected component and morphological operators to extract pixels of desired objects by removing undesirable pixels of each class, and finally line extraction based on RANSAC algorithm. In order to evaluate performance of the proposed method, the generated results are compared with ground truth road map as a reference. The evaluation performance of the proposed method using representative test images show completeness values ranging between 77% and 93%.

  17. Automatic emotional expression analysis from eye area

    Science.gov (United States)

    Akkoç, Betül; Arslan, Ahmet

    2015-02-01

    Eyes play an important role in expressing emotions in nonverbal communication. In the present study, emotional expression classification was performed based on the features that were automatically extracted from the eye area. Fırst, the face area and the eye area were automatically extracted from the captured image. Afterwards, the parameters to be used for the analysis through discrete wavelet transformation were obtained from the eye area. Using these parameters, emotional expression analysis was performed through artificial intelligence techniques. As the result of the experimental studies, 6 universal emotions consisting of expressions of happiness, sadness, surprise, disgust, anger and fear were classified at a success rate of 84% using artificial neural networks.

  18. Finding weak points automatically

    International Nuclear Information System (INIS)

    Archinger, P.; Wassenberg, M.

    1999-01-01

    Operators of nuclear power stations have to carry out material tests at selected components by regular intervalls. Therefore a full automaticated test, which achieves a clearly higher reproducibility, compared to part automaticated variations, would provide a solution. In addition the full automaticated test reduces the dose of radiation for the test person. (orig.) [de

  19. Towards the Automatic Detection of Pre-Existing Termite Mounds through UAS and Hyperspectral Imagery.

    Science.gov (United States)

    Sandino, Juan; Wooler, Adam; Gonzalez, Felipe

    2017-09-24

    The increased technological developments in Unmanned Aerial Vehicles (UAVs) combined with artificial intelligence and Machine Learning (ML) approaches have opened the possibility of remote sensing of extensive areas of arid lands. In this paper, a novel approach towards the detection of termite mounds with the use of a UAV, hyperspectral imagery, ML and digital image processing is intended. A new pipeline process is proposed to detect termite mounds automatically and to reduce, consequently, detection times. For the classification stage, several ML classification algorithms' outcomes were studied, selecting support vector machines as the best approach for their role in image classification of pre-existing termite mounds. Various test conditions were applied to the proposed algorithm, obtaining an overall accuracy of 68%. Images with satisfactory mound detection proved that the method is "resolution-dependent". These mounds were detected regardless of their rotation and position in the aerial image. However, image distortion reduced the number of detected mounds due to the inclusion of a shape analysis method in the object detection phase, and image resolution is still determinant to obtain accurate results. Hyperspectral imagery demonstrated better capabilities to classify a huge set of materials than implementing traditional segmentation methods on RGB images only.

  20. Usage of aids monitoring in automatic braking systems of modern cars

    OpenAIRE

    Dembitskyi V.; Mazylyuk P.; Sitovskyi O.

    2016-01-01

    Increased safety can be carried out at the expense the installation on vehicles of automatic braking systems, that monitor the traffic situation and the actions of the driver. In this paper considered the advantages and disadvantages of automatic braking systems, were analyzed modern tracking tools that are used in automatic braking systems. Based on the statistical data on accidents, are set the main dangers, that the automatic braking system will be reduced. In order to ensure the acc...

  1. Inspection vehicle

    International Nuclear Information System (INIS)

    Takahashi, Masaki; Omote, Tatsuyuki; Yoneya, Yutaka; Tanaka, Keiji; Waki, Tetsuro; Yoshida, Tomiji; Kido, Tsuyoshi.

    1993-01-01

    An inspection vehicle comprises a small-sized battery directly connected with a power motor or a direct power source from trolly lines and a switching circuit operated by external signals. The switch judges advance or retreat by two kinds of signals and the inspection vehicle is recovered by self-running. In order to recover the abnormally stopped inspection vehicle to the targeted place, the inspection vehicle is made in a free-running state by using a clutch mechanism and is pushed by an other vehicle. (T.M.)

  2. 3-D Vision Techniques for Autonomous Vehicles

    Science.gov (United States)

    1988-08-01

    TITLE (Include Security Classification) W 3-D Vision Techniques for Autonomous Vehicles 12 PERSONAL AUTHOR(S) Martial Hebert, Takeo Kanade, inso Kweoni... Autonomous Vehicles Martial Hebert, Takeo Kanade, Inso Kweon CMU-RI-TR-88-12 The Robotics Institute Carnegie Mellon University Acession For Pittsburgh

  3. PLC Based Automatic Multistoried Car Parking System

    OpenAIRE

    Swanand S .Vaze; Rohan S. Mithari

    2014-01-01

    This project work presents the study and design of PLC based Automatic Multistoried Car Parking System. Multistoried car parking is an arrangement which is used to park a large number of vehicles in least possible place. For making this arrangement in a real plan very high technological instruments are required. In this project a prototype of such a model is made. This prototype model is made for accommodating twelve cars at a time. Availability of the space for parking is detecte...

  4. Support vector machine for automatic pain recognition

    Science.gov (United States)

    Monwar, Md Maruf; Rezaei, Siamak

    2009-02-01

    Facial expressions are a key index of emotion and the interpretation of such expressions of emotion is critical to everyday social functioning. In this paper, we present an efficient video analysis technique for recognition of a specific expression, pain, from human faces. We employ an automatic face detector which detects face from the stored video frame using skin color modeling technique. For pain recognition, location and shape features of the detected faces are computed. These features are then used as inputs to a support vector machine (SVM) for classification. We compare the results with neural network based and eigenimage based automatic pain recognition systems. The experiment results indicate that using support vector machine as classifier can certainly improve the performance of automatic pain recognition system.

  5. A Continuously Updated, Global Land Classification Map, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to demonstrate a fully automatic capability for generating a global, high resolution (30 m) land classification map, with continuous updates from...

  6. Electric vehicles

    Science.gov (United States)

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. These concepts are discussed.

  7. Empirical Studies On Machine Learning Based Text Classification Algorithms

    OpenAIRE

    Shweta C. Dharmadhikari; Maya Ingle; Parag Kulkarni

    2011-01-01

    Automatic classification of text documents has become an important research issue now days. Properclassification of text documents requires information retrieval, machine learning and Natural languageprocessing (NLP) techniques. Our aim is to focus on important approaches to automatic textclassification based on machine learning techniques viz. supervised, unsupervised and semi supervised.In this paper we present a review of various text classification approaches under machine learningparadig...

  8. Automatic Photoelectric Telescope Service

    International Nuclear Information System (INIS)

    Genet, R.M.; Boyd, L.J.; Kissell, K.E.; Crawford, D.L.; Hall, D.S.; BDM Corp., McLean, VA; Kitt Peak National Observatory, Tucson, AZ; Dyer Observatory, Nashville, TN)

    1987-01-01

    Automatic observatories have the potential of gathering sizable amounts of high-quality astronomical data at low cost. The Automatic Photoelectric Telescope Service (APT Service) has realized this potential and is routinely making photometric observations of a large number of variable stars. However, without observers to provide on-site monitoring, it was necessary to incorporate special quality checks into the operation of the APT Service at its multiple automatic telescope installation on Mount Hopkins. 18 references

  9. Automatic Fiscal Stabilizers

    Directory of Open Access Journals (Sweden)

    Narcis Eduard Mitu

    2013-11-01

    Full Text Available Policies or institutions (built into an economic system that automatically tend to dampen economic cycle fluctuations in income, employment, etc., without direct government intervention. For example, in boom times, progressive income tax automatically reduces money supply as incomes and spendings rise. Similarly, in recessionary times, payment of unemployment benefits injects more money in the system and stimulates demand. Also called automatic stabilizers or built-in stabilizers.

  10. Automatic differentiation bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Corliss, G.F. [comp.

    1992-07-01

    This is a bibliography of work related to automatic differentiation. Automatic differentiation is a technique for the fast, accurate propagation of derivative values using the chain rule. It is neither symbolic nor numeric. Automatic differentiation is a fundamental tool for scientific computation, with applications in optimization, nonlinear equations, nonlinear least squares approximation, stiff ordinary differential equation, partial differential equations, continuation methods, and sensitivity analysis. This report is an updated version of the bibliography which originally appeared in Automatic Differentiation of Algorithms: Theory, Implementation, and Application.

  11. Predicting vehicle fuel consumption patterns using floating vehicle data.

    Science.gov (United States)

    Du, Yiman; Wu, Jianping; Yang, Senyan; Zhou, Liutong

    2017-09-01

    The status of energy consumption and air pollution in China is serious. It is important to analyze and predict the different fuel consumption of various types of vehicles under different influence factors. In order to fully describe the relationship between fuel consumption and the impact factors, massive amounts of floating vehicle data were used. The fuel consumption pattern and congestion pattern based on large samples of historical floating vehicle data were explored, drivers' information and vehicles' parameters from different group classification were probed, and the average velocity and average fuel consumption in the temporal dimension and spatial dimension were analyzed respectively. The fuel consumption forecasting model was established by using a Back Propagation Neural Network. Part of the sample set was used to train the forecasting model and the remaining part of the sample set was used as input to the forecasting model. Copyright © 2017. Published by Elsevier B.V.

  12. Controller synthesis for string stability of vehicle platoons

    NARCIS (Netherlands)

    Ploeg, J.; Shukla, D.P.; Wouw, N. van de; Nijmeijer, H.

    2014-01-01

    Cooperative adaptive cruise control (CACC) allows for short-distance automatic vehicle following using intervehicle wireless communication in addition to onboard sensors, thereby potentially improving road throughput. In order to fulfill performance, safety, and comfort requirements, a CACC-equipped

  13. Vehicle regulations.

    NARCIS (Netherlands)

    2006-01-01

    In the Netherlands, all vehicles using public roads must meet so-called permanent requirements. This is enforced by the police and, for some categories, also during the MOT. In the Netherlands, most types of motor vehicle1 can only be introduced to the market if they meet the entry requirements. For

  14. Neural Bases of Automaticity

    Science.gov (United States)

    Servant, Mathieu; Cassey, Peter; Woodman, Geoffrey F.; Logan, Gordon D.

    2018-01-01

    Automaticity allows us to perform tasks in a fast, efficient, and effortless manner after sufficient practice. Theories of automaticity propose that across practice processing transitions from being controlled by working memory to being controlled by long-term memory retrieval. Recent event-related potential (ERP) studies have sought to test this…

  15. Automatic control systems engineering

    International Nuclear Information System (INIS)

    Shin, Yun Gi

    2004-01-01

    This book gives descriptions of automatic control for electrical electronics, which indicates history of automatic control, Laplace transform, block diagram and signal flow diagram, electrometer, linearization of system, space of situation, state space analysis of electric system, sensor, hydro controlling system, stability, time response of linear dynamic system, conception of root locus, procedure to draw root locus, frequency response, and design of control system.

  16. Automatic Camera Control

    DEFF Research Database (Denmark)

    Burelli, Paolo; Preuss, Mike

    2014-01-01

    Automatically generating computer animations is a challenging and complex problem with applications in games and film production. In this paper, we investigate howto translate a shot list for a virtual scene into a series of virtual camera configurations — i.e automatically controlling the virtual...

  17. Automatic differentiation of functions

    International Nuclear Information System (INIS)

    Douglas, S.R.

    1990-06-01

    Automatic differentiation is a method of computing derivatives of functions to any order in any number of variables. The functions must be expressible as combinations of elementary functions. When evaluated at specific numerical points, the derivatives have no truncation error and are automatically found. The method is illustrated by simple examples. Source code in FORTRAN is provided

  18. Research on application of LADAR in ground vehicle recognition

    Science.gov (United States)

    Lan, Jinhui; Shen, Zhuoxun

    2009-11-01

    For the requirement of many practical applications in the field of military, the research of 3D target recognition is active. The representation that captures the salient attributes of a 3D target independent of the viewing angle will be especially useful to the automatic 3D target recognition system. This paper presents a new approach of image generation based on Laser Detection and Ranging (LADAR) data. Range image of target is obtained by transformation of point cloud. In order to extract features of different ground vehicle targets and to recognize targets, zernike moment properties of typical ground vehicle targets are researched in this paper. A technique of support vector machine is applied to the classification and recognition of target. The new method of image generation and feature representation has been applied to the outdoor experiments. Through outdoor experiments, it can be proven that the method of image generation is stability, the moments are effective to be used as features for recognition, and the LADAR can be applied to the field of 3D target recognition.

  19. The decision tree approach to classification

    Science.gov (United States)

    Wu, C.; Landgrebe, D. A.; Swain, P. H.

    1975-01-01

    A class of multistage decision tree classifiers is proposed and studied relative to the classification of multispectral remotely sensed data. The decision tree classifiers are shown to have the potential for improving both the classification accuracy and the computation efficiency. Dimensionality in pattern recognition is discussed and two theorems on the lower bound of logic computation for multiclass classification are derived. The automatic or optimization approach is emphasized. Experimental results on real data are reported, which clearly demonstrate the usefulness of decision tree classifiers.

  20. A computer method for spectral classification

    International Nuclear Information System (INIS)

    Appenzeller, I.; Zekl, H.

    1978-01-01

    The authors describe the start of an attempt to improve the accuracy of spectroscopic parallaxes by evaluating spectroscopic temperature and luminosity criteria such as those of the MK classification spectrograms which were analyzed automatically by means of a suitable computer program. (Auth.)

  1. Visual Alphabets: Video classification by end users

    NARCIS (Netherlands)

    Israël, Menno; van den Broek, Egon; van der Putten, Peter; den Uyl, Marten J.; Petrushin, Valery A.; Khan, Latifur

    2007-01-01

    The work presented here introduces a real-time automatic scene classifier within content-based video retrieval. In our envisioned approach end users like documentalists, not image processing experts, build classifiers interactively, by simply indicating positive examples of a scene. Classification

  2. Sports Type Classification using Signature Heatmaps

    DEFF Research Database (Denmark)

    Gade, Rikke; Moeslund, Thomas B.

    2013-01-01

    Automatic classification of activities in a sports arena is important in order to analyse and optimise the use of the arenas. In this work we classify five sports types based only on occupancy heatmaps produced from position data. Due to privacy issues we use thermal imaging for detecting people...

  3. Recommendations for Autonomous Industrial Vehicle Performance Standards

    OpenAIRE

    Bostelman , Roger

    2016-01-01

    International audience; A workshop was held at the IEEE International Conference on Robotics and Automation, called: “Autonomous Industrial Vehicles: From the Laboratory to the Factory Floor”. Nine research papers were presented followed by a discussion session summarized in this paper. The workshop findings are intended to be useful for developing standards within the ASTM F45 Committee for Driverless Automatic Industrial Vehicles. This paper provides feedback from the discussion listing the...

  4. Two-dimensional statistical linear discriminant analysis for real-time robust vehicle-type recognition

    Science.gov (United States)

    Zafar, I.; Edirisinghe, E. A.; Acar, S.; Bez, H. E.

    2007-02-01

    Automatic vehicle Make and Model Recognition (MMR) systems provide useful performance enhancements to vehicle recognitions systems that are solely based on Automatic License Plate Recognition (ALPR) systems. Several car MMR systems have been proposed in literature. However these approaches are based on feature detection algorithms that can perform sub-optimally under adverse lighting and/or occlusion conditions. In this paper we propose a real time, appearance based, car MMR approach using Two Dimensional Linear Discriminant Analysis that is capable of addressing this limitation. We provide experimental results to analyse the proposed algorithm's robustness under varying illumination and occlusions conditions. We have shown that the best performance with the proposed 2D-LDA based car MMR approach is obtained when the eigenvectors of lower significance are ignored. For the given database of 200 car images of 25 different make-model classifications, a best accuracy of 91% was obtained with the 2D-LDA approach. We use a direct Principle Component Analysis (PCA) based approach as a benchmark to compare and contrast the performance of the proposed 2D-LDA approach to car MMR. We conclude that in general the 2D-LDA based algorithm supersedes the performance of the PCA based approach.

  5. Path Tracking Control of Automatic Parking Cloud Model considering the Influence of Time Delay

    Directory of Open Access Journals (Sweden)

    Yiding Hua

    2017-01-01

    Full Text Available This paper establishes the kinematic model of the automatic parking system and analyzes the kinematic constraints of the vehicle. Furthermore, it solves the problem where the traditional automatic parking system model fails to take into account the time delay. Firstly, based on simulating calculation, the influence of time delay on the dynamic trajectory of a vehicle in the automatic parking system is analyzed under the transverse distance Dlateral between different target spaces. Secondly, on the basis of cloud model, this paper utilizes the tracking control of an intelligent path closer to human intelligent behavior to further study the Cloud Generator-based parking path tracking control method and construct a vehicle path tracking control model. Moreover, tracking and steering control effects of the model are verified through simulation analysis. Finally, the effectiveness and timeliness of automatic parking controller in the aspect of path tracking are tested through a real vehicle experiment.

  6. Transporter Classification Database (TCDB)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Transporter Classification Database details a comprehensive classification system for membrane transport proteins known as the Transporter Classification (TC)...

  7. Video genre classification using multimodal features

    Science.gov (United States)

    Jin, Sung Ho; Bae, Tae Meon; Choo, Jin Ho; Ro, Yong Man

    2003-12-01

    We propose a video genre classification method using multimodal features. The proposed method is applied for the preprocessing of automatic video summarization or the retrieval and classification of broadcasting video contents. Through a statistical analysis of low-level and middle-level audio-visual features in video, the proposed method can achieve good performance in classifying several broadcasting genres such as cartoon, drama, music video, news, and sports. In this paper, we adopt MPEG-7 audio-visual descriptors as multimodal features of video contents and evaluate the performance of the classification by feeding the features into a decision tree-based classifier which is trained by CART. The experimental results show that the proposed method can recognize several broadcasting video genres with a high accuracy and the classification performance with multimodal features is superior to the one with unimodal features in the genre classification.

  8. Abandoned vehicles

    CERN Multimedia

    Relations with the Host States Service

    2004-01-01

    The services in charge of managing the CERN site have recently noted an increase in the number of abandoned vehicles. This poses a risk from the point of view of safety and security and, on the eve of several important events in honour of CERN's fiftieth anniversary, is detrimental to the Organization's image. Owners of vehicles that have been left immobile for some time on the CERN site, including on the external car park by the flags, are therefore invited to contact the Reception and Access Control Service (service-parking-longterm@cern.ch) before 1st October 2004 and, where appropriate, move their vehicle to a designated long-term parking area. After this date, any vehicle whose owner has failed to respond to this request and which is without a number plate, has been stationary for several weeks or is out of service, may be impounded at the owner's risk and expense. Relations with the Host States Service Tel. 72848

  9. Thai Automatic Speech Recognition

    National Research Council Canada - National Science Library

    Suebvisai, Sinaporn; Charoenpornsawat, Paisarn; Black, Alan; Woszczyna, Monika; Schultz, Tanja

    2005-01-01

    .... We focus on the discussion of the rapid deployment of ASR for Thai under limited time and data resources, including rapid data collection issues, acoustic model bootstrap, and automatic generation of pronunciations...

  10. Automatic Payroll Deposit System.

    Science.gov (United States)

    Davidson, D. B.

    1979-01-01

    The Automatic Payroll Deposit System in Yakima, Washington's Public School District No. 7, directly transmits each employee's salary amount for each pay period to a bank or other financial institution. (Author/MLF)

  11. Automatic Test Systems Aquisition

    National Research Council Canada - National Science Library

    1994-01-01

    We are providing this final memorandum report for your information and use. This report discusses the efforts to achieve commonality in standards among the Military Departments as part of the DoD policy for automatic test systems (ATS...

  12. Control of Multiple Robotic Sentry Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, J.; Klarer, P.; Lewis, C.

    1999-04-01

    As part of a project for the Defense Advanced Research Projects Agency, Sandia National Laboratories is developing and testing the feasibility of using of a cooperative team of robotic sentry vehicles to guard a perimeter and to perform surround and diversion tasks. This paper describes on-going activities in the development of these robotic sentry vehicles. To date, we have developed a robotic perimeter detection system which consists of eight ''Roving All Terrain Lunar Explorer Rover'' (RATLER{trademark}) vehicles, a laptop-based base-station, and several Miniature Intrusion Detection Sensors (MIDS). A radio frequency receiver on each of the RATLER vehicles alerts the sentry vehicles of alarms from the hidden MIDS. When an alarm is received, each vehicle decides whether it should investigate the alarm based on the proximity of itself and the other vehicles to the alarm. As one vehicle attends an alarm, the other vehicles adjust their position around the perimeter to better prepare for another alarm. We have also demonstrated the ability to drive multiple vehicles in formation via tele-operation or by waypoint GPS navigation. This is currently being extended to include mission planning capabilities. At the base-station, the operator can draw on an aerial map the goal regions to be surrounded and the repulsive regions to be avoided. A potential field path planner automatically generates a path from the vehicles' current position to the goal regions while avoiding the repulsive regions and the other vehicles. This path is previewed to the operator before the regions are downloaded to the vehicles. The same potential field path planner resides on the vehicle, except additional repulsive forces from on-board proximity sensors guide the vehicle away from unplanned obstacles.

  13. Detection, recognition, identification, and tracking of military vehicles using biomimetic intelligence

    Science.gov (United States)

    Pace, Paul W.; Sutherland, John

    2001-10-01

    This project is aimed at analyzing EO/IR images to provide automatic target detection/recognition/identification (ATR/D/I) of militarily relevant land targets. An increase in performance was accomplished using a biomimetic intelligence system functioning on low-cost, commercially available processing chips. Biomimetic intelligence has demonstrated advanced capabilities in the areas of hand- printed character recognition, real-time detection/identification of multiple faces in full 3D perspectives in cluttered environments, advanced capabilities in classification of ground-based military vehicles from SAR, and real-time ATR/D/I of ground-based military vehicles from EO/IR/HRR data in cluttered environments. The investigation applied these tools to real data sets and examined the parameters such as the minimum resolution for target recognition, the effect of target size, rotation, line-of-sight changes, contrast, partial obscuring, background clutter etc. The results demonstrated a real-time ATR/D/I capability against a subset of militarily relevant land targets operating in a realistic scenario. Typical results on the initial EO/IR data indicate probabilities of correct classification of resolved targets to be greater than 95 percent.

  14. Brand and automaticity

    OpenAIRE

    Liu, J.

    2008-01-01

    A presumption of most consumer research is that consumers endeavor to maximize the utility of their choices and are in complete control of their purchasing and consumption behavior. However, everyday life experience suggests that many of our choices are not all that reasoned or conscious. Indeed, automaticity, one facet of behavior, is indispensable to complete the portrait of consumers. Despite its importance, little attention is paid to how the automatic side of behavior can be captured and...

  15. Connected vehicle applications : safety.

    Science.gov (United States)

    2016-01-01

    Connected vehicle safety applications are designed to increase situational awareness : and reduce or eliminate crashes through vehicle-to-infrastructure, vehicle-to-vehicle, : and vehicle-to-pedestrian data transmissions. Applications support advisor...

  16. Automatic thematic content analysis: finding frames in news

    NARCIS (Netherlands)

    Odijk, D.; Burscher, B.; Vliegenthart, R.; de Rijke, M.; Jatowt, A.; Lim, E.P.; Ding, Y.; Miura, A.; Tezuka, T.; Dias, G.; Tanaka, K.; Flanagin, A.; Dai, B.T.

    2013-01-01

    Framing in news is the way in which journalists depict an issue in terms of a ‘central organizing idea.’ Frames can be a perspective on an issue. We explore the automatic classification of four generic news frames: conflict, human interest, economic consequences, and morality. Complex

  17. Patent Keyword Extraction Algorithm Based on Distributed Representation for Patent Classification

    Directory of Open Access Journals (Sweden)

    Jie Hu

    2018-02-01

    Full Text Available Many text mining tasks such as text retrieval, text summarization, and text comparisons depend on the extraction of representative keywords from the main text. Most existing keyword extraction algorithms are based on discrete bag-of-words type of word representation of the text. In this paper, we propose a patent keyword extraction algorithm (PKEA based on the distributed Skip-gram model for patent classification. We also develop a set of quantitative performance measures for keyword extraction evaluation based on information gain and cross-validation, based on Support Vector Machine (SVM classification, which are valuable when human-annotated keywords are not available. We used a standard benchmark dataset and a homemade patent dataset to evaluate the performance of PKEA. Our patent dataset includes 2500 patents from five distinct technological fields related to autonomous cars (GPS systems, lidar systems, object recognition systems, radar systems, and vehicle control systems. We compared our method with Frequency, Term Frequency-Inverse Document Frequency (TF-IDF, TextRank and Rapid Automatic Keyword Extraction (RAKE. The experimental results show that our proposed algorithm provides a promising way to extract keywords from patent texts for patent classification.

  18. Small-Scale Helicopter Automatic Autorotation : Modeling, Guidance, and Control

    NARCIS (Netherlands)

    Taamallah, S.

    2015-01-01

    Our research objective consists in developing a, model-based, automatic safety recovery system, for a small-scale helicopter Unmanned Aerial Vehicle (UAV) in autorotation, i.e. an engine OFF flight condition, that safely flies and lands the helicopter to a pre-specified ground location. In pursuit

  19. Active pedestrian safety by automatic braking and evasive steering

    NARCIS (Netherlands)

    Keller, C.; Dang, T.; Fritz, H.; Joos, A.; Rabe, C.; Gavrila, D.M.

    2011-01-01

    Active safety systems hold great potential for reducing accident frequency and severity by warning the driver and/or exerting automatic vehicle control ahead of crashes. This paper presents a novel active pedestrian safety system that combines sensing, situation analysis, decision making, and

  20. Identity verification using computer vision for automatic garage door opening

    NARCIS (Netherlands)

    Wijnhoven, R.G.J.; With, de P.H.N.

    2011-01-01

    We present a novel system for automatic identification of vehicles as part of an intelligent access control system for a garage entrance. Using a camera in the door, cars are detected and matched to the database of authenticated cars. Once a car is detected, License Plate Recognition (LPR) is

  1. A joint network/control design for cooperative automatic driving

    NARCIS (Netherlands)

    Giordano, G.; Segata, Michele; Blanchini, Franco; Cigno, Renato Lo; Altintas, O.; Casetti, C.; Meireles, R.; Kirsch, N.; Lo Cigno, R.

    2017-01-01

    Cooperative automatic driving, or platooning, is a promising solution to improve traffic safety, while reducing congestion and pollution. The design of a control system for this application is a challenging, multi-disciplinary problem, as cooperation between vehicles is obtained through wireless

  2. Automatic Transmissions and Transaxles. Auto Mechanics Curriculum Guide. Module 8. Instructor's Guide.

    Science.gov (United States)

    Hevel, David; Tannehill, Dana, Ed.

    This module is the eighth of nine modules in the competency-based Missouri Auto Mechanics Curriculum Guide. Six units cover: introduction to automatic transmission/transaxle; hydraulic control systems; transmission/transaxle diagnosis; automatic transmission/transaxle maintenance and adjustment; in-vehicle transmission repair; and off-car…

  3. Performance of an Automated-Mixed-Traffic-Vehicle /AMTV/ System. [urban people mover

    Science.gov (United States)

    Peng, T. K. C.; Chon, K.

    1978-01-01

    This study analyzes the operation and evaluates the expected performance of a proposed automatic guideway transit system which uses low-speed Automated Mixed Traffic Vehicles (AMTV's). Vehicle scheduling and headway control policies are evaluated with a transit system simulation model. The effect of mixed-traffic interference on the average vehicle speed is examined with a vehicle-pedestrian interface model. Control parameters regulating vehicle speed are evaluated for safe stopping and passenger comfort.

  4. Vision-based Vehicle Detection Survey

    Directory of Open Access Journals (Sweden)

    Alex David S

    2016-03-01

    Full Text Available Nowadays thousands of drivers and passengers were losing their lives every year on road accident, due to deadly crashes between more than one vehicle. There are number of many research focuses were dedicated to the development of intellectual driver assistance systems and autonomous vehicles over the past decade, which reduces the danger by monitoring the on-road environment. In particular, researchers attracted towards the on-road detection of vehicles in recent years. Different parameters have been analyzed in this paper which includes camera placement and the various applications of monocular vehicle detection, common features and common classification methods, motion- based approaches and nighttime vehicle detection and monocular pose estimation. Previous works on the vehicle detection listed based on camera poisons, feature based detection and motion based detection works and night time detection.

  5. The Solutions to the Problem of Temporary Vehicle Parking in the City. The Analysis of Vehicle Parking Time and Costs

    Directory of Open Access Journals (Sweden)

    Ričardas Mockus

    2011-04-01

    Full Text Available Methods of solving the problems of temporary parking of vehicles in the city by using the automatic parking systems are considered. The investigation of vehicle parking is described and the comparison of the ramp-type and automated parking lots is presented.Article in Lithuanian

  6. Automated mixed traffic vehicle control and scheduling study

    Science.gov (United States)

    Peng, T. K. C.; Chon, K.

    1976-01-01

    The operation and the expected performance of a proposed automatic guideway transit system which uses low speed automated mixed traffic vehicles (AMTVs) were analyzed. Vehicle scheduling and headway control policies were evaluated with a transit system simulation model. The effect of mixed traffic interference on the average vehicle speed was examined with a vehicle pedestrian interface model. Control parameters regulating vehicle speed were evaluated for safe stopping and passenger comfort. Some preliminary data on the cost and operation of an experimental AMTV system are included. These data were the result of a separate task conducted at JPL, and were included as background information.

  7. Empirical evaluation of three machine learning method for automatic classification of neoplastic diagnoses Evaluación empírica de tres métodos de aprendizaje automático para clasificar automáticamente diagnósticos de neoplasias

    Directory of Open Access Journals (Sweden)

    José Luis Jara

    2011-12-01

    Full Text Available Diagnoses are a valuable source of information for evaluating a health system. However, they are not used extensively by information systems because diagnoses are normally written in natural language. This work empirically evaluates three machine learning methods to automatically assign codes from the International Classification of Diseases (10th Revision to 3,335 distinct diagnoses of neoplasms obtained from UMLS®. This evaluation is conducted on three different types of preprocessing. The results are encouraging: a well-known rule induction method and maximum entropy models achieve 90% accuracy in a balanced cross-validation experiment.Los diagnósticos médicos son una fuente valiosa de información para evaluar el funcionamiento de un sistema de salud. Sin embargo, su utilización en sistemas de información se ve dificultada porque éstos se encuentran normalmente escritos en lenguaje natural. Este trabajo evalúa empíricamente tres métodos de Aprendizaje Automático para asignar códigos de acuerdo a la Clasificación Internacional de Enfermedades (décima versión a 3.335 diferentes diagnósticos de neoplasias extraídos desde UMLS®. Esta evaluación se realiza con tres tipos distintos de preprocesamiento. Los resultados son alentadores: un conocido método de inducción de reglas de decisión y modelos de entropía máxima obtienen alrededor de 90% accuracy en una validación cruzada balanceada.

  8. electric vehicle

    Directory of Open Access Journals (Sweden)

    W. R. Lee

    1999-01-01

    Full Text Available A major problem facing battery-powered electric vehicles is in their batteries: weight and charge capacity. Thus, a battery-powered electric vehicle only has a short driving range. To travel for a longer distance, the batteries are required to be recharged frequently. In this paper, we construct a model for a battery-powered electric vehicle, in which driving strategy is to be obtained such that the total travelling time between two locations is minimized. The problem is formulated as an optimization problem with switching times and speed as decision variables. This is an unconventional optimization problem. However, by using the control parametrization enhancing technique (CPET, it is shown that this unconventional optimization is equivalent to a conventional optimal parameter selection problem. Numerical examples are solved using the proposed method.

  9. Two Systems for Automatic Music Genre Recognition

    DEFF Research Database (Denmark)

    Sturm, Bob L.

    2012-01-01

    We re-implement and test two state-of-the-art systems for automatic music genre classification; but unlike past works in this area, we look closer than ever before at their behavior. First, we look at specific instances where each system consistently applies the same wrong label across multiple...... trials of cross-validation. Second, we test the robustness of each system to spectral equalization. Finally, we test how well human subjects recognize the genres of music excerpts composed by each system to be highly genre representative. Our results suggest that neither high-performing system has...... a capacity to recognize music genre....

  10. A Context Dependent Automatic Target Recognition System

    Science.gov (United States)

    Kim, J. H.; Payton, D. W.; Olin, K. E.; Tseng, D. Y.

    1984-06-01

    This paper describes a new approach to automatic target recognizer (ATR) development utilizing artificial intelligent techniques. The ATR system exploits contextual information in its detection and classification processes to provide a high degree of robustness and adaptability. In the system, knowledge about domain objects and their contextual relationships is encoded in frames, separating it from low level image processing algorithms. This knowledge-based system demonstrates an improvement over the conventional statistical approach through the exploitation of diverse forms of knowledge in its decision-making process.

  11. Development of automatic inspection robot for nuclear power plants

    International Nuclear Information System (INIS)

    Yamada, K.; Suzuki, K.; Saitoh, K.; Sakaki, T.; Ohe, Y.; Mizutani, T.; Segawa, M.; Kubo, K.

    1987-01-01

    This robot system has been developed for automatic inspection of nuclear power plants. The system configuration is composed of vehicle that runs on monorail, the sensors on the vehicle, an image processer that processes the image information from the sensors, a computer that creates the inspection planning of the robot and an operation panel. This system has two main features, the first is the robot control system. The vehicle and the sensors are controlled by the output data calculated in the computer with the three dimensional plant data. The malfunction is recognized by the combination of the results of image processing, information from the microphone and infrared camera. Tests for a prototype automatic inspection robot system have been performed in the simulated main steam piping room of a nuclear power plant

  12. Automotive Control Systems: For Engine, Driveline, and Vehicle

    Science.gov (United States)

    Kiencke, Uwe; Nielsen, Lars

    Advances in automotive control systems continue to enhance safety and comfort and to reduce fuel consumption and emissions. Reflecting the trend to optimization through integrative approaches for engine, driveline, and vehicle control, this valuable book enables control engineers to understand engine and vehicle models necessary for controller design, and also introduces mechanical engineers to vehicle-specific signal processing and automatic control. The emphasis on measurement, comparisons between performance and modeling, and realistic examples derive from the authors' unique industrial experience

  13. A data driven approach for automating vehicle activated signs

    OpenAIRE

    Jomaa, Diala

    2016-01-01

    Vehicle activated signs (VAS) display a warning message when drivers exceed a particular threshold. VAS are often installed on local roads to display a warning message depending on the speed of the approaching vehicles. VAS are usually powered by electricity; however, battery and solar powered VAS are also commonplace. This thesis investigated devel-opment of an automatic trigger speed of vehicle activated signs in order to influence driver behaviour, the effect of which has been measured in ...

  14. Automated vehicle counting using image processing and machine learning

    Science.gov (United States)

    Meany, Sean; Eskew, Edward; Martinez-Castro, Rosana; Jang, Shinae

    2017-04-01

    Vehicle counting is used by the government to improve roadways and the flow of traffic, and by private businesses for purposes such as determining the value of locating a new store in an area. A vehicle count can be performed manually or automatically. Manual counting requires an individual to be on-site and tally the traffic electronically or by hand. However, this can lead to miscounts due to factors such as human error A common form of automatic counting involves pneumatic tubes, but pneumatic tubes disrupt traffic during installation and removal, and can be damaged by passing vehicles. Vehicle counting can also be performed via the use of a camera at the count site recording video of the traffic, with counting being performed manually post-recording or using automatic algorithms. This paper presents a low-cost procedure to perform automatic vehicle counting using remote video cameras with an automatic counting algorithm. The procedure would utilize a Raspberry Pi micro-computer to detect when a car is in a lane, and generate an accurate count of vehicle movements. The method utilized in this paper would use background subtraction to process the images and a machine learning algorithm to provide the count. This method avoids fatigue issues that are encountered in manual video counting and prevents the disruption of roadways that occurs when installing pneumatic tubes

  15. Odor Classification using Agent Technology

    Directory of Open Access Journals (Sweden)

    Sigeru OMATU

    2014-03-01

    Full Text Available In order to measure and classify odors, Quartz Crystal Microbalance (QCM can be used. In the present study, seven QCM sensors and three different odors are used. The system has been developed as a virtual organization of agents using an agent platform called PANGEA (Platform for Automatic coNstruction of orGanizations of intElligent Agents. This is a platform for developing open multi-agent systems, specifically those including organizational aspects. The main reason for the use of agents is the scalability of the platform, i.e. the way in which it models the services. The system models functionalities as services inside the agents, or as Service Oriented Approach (SOA architecture compliant services using Web Services. This way the adaptation of the odor classification systems with new algorithms, tools and classification techniques is allowed.

  16. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Septon, Kendall K [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-11

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  17. Electric-Drive Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    Electric-drive vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: Hybrid electric vehicles (HEVs), Plug-in hybrid electric vehicles (PHEVs), All-electric vehicles (EVs). Together, PHEVs and EVs can also be referred to as plug-in electric vehicles (PEVs).

  18. Feature Extraction in Radar Target Classification

    Directory of Open Access Journals (Sweden)

    Z. Kus

    1999-09-01

    Full Text Available This paper presents experimental results of extracting features in the Radar Target Classification process using the J frequency band pulse radar. The feature extraction is based on frequency analysis methods, the discrete-time Fourier Transform (DFT and Multiple Signal Characterisation (MUSIC, based on the detection of Doppler effect. The analysis has turned to the preference of DFT with implemented Hanning windowing function. We assumed to classify targets-vehicles into two classes, the wheeled vehicle and tracked vehicle. The results show that it is possible to classify them only while moving. The feature of the class results from a movement of moving parts of the vehicle. However, we have not found any feature to classify the wheeled and tracked vehicles while non-moving, although their engines are on.

  19. Application Of Kalman Filter In Navigation Process Of Automated Guided Vehicles

    Directory of Open Access Journals (Sweden)

    Śmieszek Mirosław

    2015-09-01

    Full Text Available In the paper an example of application of the Kalman filtering in the navigation process of automatically guided vehicles was presented. The basis for determining the position of automatically guided vehicles is odometry – the navigation calculation. This method of determining the position of a vehicle is affected by many errors. In order to eliminate these errors, in modern vehicles additional systems to increase accuracy in determining the position of a vehicle are used. In the latest navigation systems during route and position adjustments the probabilistic methods are used. The most frequently applied are Kalman filters.

  20. Automatic Program Development

    DEFF Research Database (Denmark)

    Automatic Program Development is a tribute to Robert Paige (1947-1999), our accomplished and respected colleague, and moreover our good friend, whose untimely passing was a loss to our academic and research community. We have collected the revised, updated versions of the papers published in his...... honor in the Higher-Order and Symbolic Computation Journal in the years 2003 and 2005. Among them there are two papers by Bob: (i) a retrospective view of his research lines, and (ii) a proposal for future studies in the area of the automatic program derivation. The book also includes some papers...... by members of the IFIP Working Group 2.1 of which Bob was an active member. All papers are related to some of the research interests of Bob and, in particular, to the transformational development of programs and their algorithmic derivation from formal specifications. Automatic Program Development offers...

  1. Vehicle Travel Information System (VTRIS) - Data Download Tool

    Data.gov (United States)

    Department of Transportation — The VTRIS W-Tables are designed to provide a standard format for presenting the outcome of the Vehicle Weighing and Classification efforts at truck weigh sites. The...

  2. AutoFACT: An Automatic Functional Annotation and Classification Tool

    Directory of Open Access Journals (Sweden)

    Lang B Franz

    2005-06-01

    Full Text Available Abstract Background Assignment of function to new molecular sequence data is an essential step in genomics projects. The usual process involves similarity searches of a given sequence against one or more databases, an arduous process for large datasets. Results We present AutoFACT, a fully automated and customizable annotation tool that assigns biologically informative functions to a sequence. Key features of this tool are that it (1 analyzes nucleotide and protein sequence data; (2 determines the most informative functional description by combining multiple BLAST reports from several user-selected databases; (3 assigns putative metabolic pathways, functional classes, enzyme classes, GeneOntology terms and locus names; and (4 generates output in HTML, text and GFF formats for the user's convenience. We have compared AutoFACT to four well-established annotation pipelines. The error rate of functional annotation is estimated to be only between 1–2%. Comparison of AutoFACT to the traditional top-BLAST-hit annotation method shows that our procedure increases the number of functionally informative annotations by approximately 50%. Conclusion AutoFACT will serve as a useful annotation tool for smaller sequencing groups lacking dedicated bioinformatics staff. It is implemented in PERL and runs on LINUX/UNIX platforms. AutoFACT is available at http://megasun.bch.umontreal.ca/Software/AutoFACT.htm.

  3. Automatic text summarization

    CERN Document Server

    Torres Moreno, Juan Manuel

    2014-01-01

    This new textbook examines the motivations and the different algorithms for automatic document summarization (ADS). We performed a recent state of the art. The book shows the main problems of ADS, difficulties and the solutions provided by the community. It presents recent advances in ADS, as well as current applications and trends. The approaches are statistical, linguistic and symbolic. Several exemples are included in order to clarify the theoretical concepts.  The books currently available in the area of Automatic Document Summarization are not recent. Powerful algorithms have been develop

  4. Automatic Ultrasound Scanning

    DEFF Research Database (Denmark)

    Moshavegh, Ramin

    on the user adjustments on the scanner interface to optimize the scan settings. This explains the huge interest in the subject of this PhD project entitled “AUTOMATIC ULTRASOUND SCANNING”. The key goals of the project have been to develop automated techniques to minimize the unnecessary settings...... on the scanners, and to improve the computer-aided diagnosis (CAD) in ultrasound by introducing new quantitative measures. Thus, four major issues concerning automation of the medical ultrasound are addressed in this PhD project. They touch upon gain adjustments in ultrasound, automatic synthetic aperture image...

  5. Automatic NAA. Saturation activities

    International Nuclear Information System (INIS)

    Westphal, G.P.; Grass, F.; Kuhnert, M.

    2008-01-01

    A system for Automatic NAA is based on a list of specific saturation activities determined for one irradiation position at a given neutron flux and a single detector geometry. Originally compiled from measurements of standard reference materials, the list may be extended also by the calculation of saturation activities from k 0 and Q 0 factors, and f and α values of the irradiation position. A systematic improvement of the SRM approach is currently being performed by pseudo-cyclic activation analysis, to reduce counting errors. From these measurements, the list of saturation activities is recalculated in an automatic procedure. (author)

  6. Unsupervised classification of variable stars

    Science.gov (United States)

    Valenzuela, Lucas; Pichara, Karim

    2018-03-01

    During the past 10 years, a considerable amount of effort has been made to develop algorithms for automatic classification of variable stars. That has been primarily achieved by applying machine learning methods to photometric data sets where objects are represented as light curves. Classifiers require training sets to learn the underlying patterns that allow the separation among classes. Unfortunately, building training sets is an expensive process that demands a lot of human efforts. Every time data come from new surveys; the only available training instances are the ones that have a cross-match with previously labelled objects, consequently generating insufficient training sets compared with the large amounts of unlabelled sources. In this work, we present an algorithm that performs unsupervised classification of variable stars, relying only on the similarity among light curves. We tackle the unsupervised classification problem by proposing an untraditional approach. Instead of trying to match classes of stars with clusters found by a clustering algorithm, we propose a query-based method where astronomers can find groups of variable stars ranked by similarity. We also develop a fast similarity function specific for light curves, based on a novel data structure that allows scaling the search over the entire data set of unlabelled objects. Experiments show that our unsupervised model achieves high accuracy in the classification of different types of variable stars and that the proposed algorithm scales up to massive amounts of light curves.

  7. Automatic computer aided analysis algorithms and system for adrenal tumors on CT images.

    Science.gov (United States)

    Chai, Hanchao; Guo, Yi; Wang, Yuanyuan; Zhou, Guohui

    2017-12-04

    The adrenal tumor will disturb the secreting function of adrenocortical cells, leading to many diseases. Different kinds of adrenal tumors require different therapeutic schedules. In the practical diagnosis, it highly relies on the doctor's experience to judge the tumor type by reading the hundreds of CT images. This paper proposed an automatic computer aided analysis method for adrenal tumors detection and classification. It consisted of the automatic segmentation algorithms, the feature extraction and the classification algorithms. These algorithms were then integrated into a system and conducted on the graphic interface by using MATLAB Graphic user interface (GUI). The accuracy of the automatic computer aided segmentation and classification reached 90% on 436 CT images. The experiments proved the stability and reliability of this automatic computer aided analytic system.

  8. Automated Snow Extent Mapping Based on Orthophoto Images from Unmanned Aerial Vehicles

    Science.gov (United States)

    Niedzielski, Tomasz; Spallek, Waldemar; Witek-Kasprzak, Matylda

    2018-04-01

    The paper presents the application of the k-means clustering in the process of automated snow extent mapping using orthophoto images generated using the Structure-from-Motion (SfM) algorithm from oblique aerial photographs taken by unmanned aerial vehicle (UAV). A simple classification approach has been implemented to discriminate between snow-free and snow-covered terrain. The procedure uses the k-means clustering and classifies orthophoto images based on the three-dimensional space of red-green-blue (RGB) or near-infrared-red-green (NIRRG) or near-infrared-green-blue (NIRGB) bands. To test the method, several field experiments have been carried out, both in situations when snow cover was continuous and when it was patchy. The experiments have been conducted using three fixed-wing UAVs (swinglet CAM by senseFly, eBee by senseFly, and Birdie by FlyTech UAV) on 10/04/2015, 23/03/2016, and 16/03/2017 within three test sites in the Izerskie Mountains in southwestern Poland. The resulting snow extent maps, produced automatically using the classification method, have been validated against real snow extents delineated through a visual analysis and interpretation offered by human analysts. For the simplest classification setup, which assumes two classes in the k-means clustering, the extent of snow patches was estimated accurately, with areal underestimation of 4.6% (RGB) and overestimation of 5.5% (NIRGB). For continuous snow cover with sparse discontinuities at places where trees or bushes protruded from snow, the agreement between automatically produced snow extent maps and observations was better, i.e. 1.5% (underestimation with RGB) and 0.7-0.9% (overestimation, either with RGB or with NIRRG). Shadows on snow were found to be mainly responsible for the misclassification.

  9. An automatic taxonomy of galaxy morphology using unsupervised machine learning

    Science.gov (United States)

    Hocking, Alex; Geach, James E.; Sun, Yi; Davey, Neil

    2018-01-01

    We present an unsupervised machine learning technique that automatically segments and labels galaxies in astronomical imaging surveys using only pixel data. Distinct from previous unsupervised machine learning approaches used in astronomy we use no pre-selection or pre-filtering of target galaxy type to identify galaxies that are similar. We demonstrate the technique on the Hubble Space Telescope (HST) Frontier Fields. By training the algorithm using galaxies from one field (Abell 2744) and applying the result to another (MACS 0416.1-2403), we show how the algorithm can cleanly separate early and late type galaxies without any form of pre-directed training for what an 'early' or 'late' type galaxy is. We then apply the technique to the HST Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) fields, creating a catalogue of approximately 60 000 classifications. We show how the automatic classification groups galaxies of similar morphological (and photometric) type and make the classifications public via a catalogue, a visual catalogue and galaxy similarity search. We compare the CANDELS machine-based classifications to human-classifications from the Galaxy Zoo: CANDELS project. Although there is not a direct mapping between Galaxy Zoo and our hierarchical labelling, we demonstrate a good level of concordance between human and machine classifications. Finally, we show how the technique can be used to identify rarer objects and present lensed galaxy candidates from the CANDELS imaging.

  10. EMG finger movement classification based on ANFIS

    Science.gov (United States)

    Caesarendra, W.; Tjahjowidodo, T.; Nico, Y.; Wahyudati, S.; Nurhasanah, L.

    2018-04-01

    An increase number of people suffering from stroke has impact to the rapid development of finger hand exoskeleton to enable an automatic physical therapy. Prior to the development of finger exoskeleton, a research topic yet important i.e. machine learning of finger gestures classification is conducted. This paper presents a study on EMG signal classification of 5 finger gestures as a preliminary study toward the finger exoskeleton design and development in Indonesia. The EMG signals of 5 finger gestures were acquired using Myo EMG sensor. The EMG signal features were extracted and reduced using PCA. The ANFIS based learning is used to classify reduced features of 5 finger gestures. The result shows that the classification of finger gestures is less than the classification of 7 hand gestures.

  11. KNN BASED CLASSIFICATION OF DIGITAL MODULATED SIGNALS

    Directory of Open Access Journals (Sweden)

    Sajjad Ahmed Ghauri

    2016-11-01

    Full Text Available Demodulation process without the knowledge of modulation scheme requires Automatic Modulation Classification (AMC. When receiver has limited information about received signal then AMC become essential process. AMC finds important place in the field many civil and military fields such as modern electronic warfare, interfering source recognition, frequency management, link adaptation etc. In this paper we explore the use of K-nearest neighbor (KNN for modulation classification with different distance measurement methods. Five modulation schemes are used for classification purpose which is Binary Phase Shift Keying (BPSK, Quadrature Phase Shift Keying (QPSK, Quadrature Amplitude Modulation (QAM, 16-QAM and 64-QAM. Higher order cummulants (HOC are used as an input feature set to the classifier. Simulation results shows that proposed classification method provides better results for the considered modulation formats.

  12. Music Genre Classification Systems - A Computational Approach

    DEFF Research Database (Denmark)

    Ahrendt, Peter

    2006-01-01

    Automatic music genre classification is the classification of a piece of music into its corresponding genre (such as jazz or rock) by a computer. It is considered to be a cornerstone of the research area Music Information Retrieval (MIR) and closely linked to the other areas in MIR. It is thought...... that MIR will be a key element in the processing, searching and retrieval of digital music in the near future. This dissertation is concerned with music genre classification systems and in particular systems which use the raw audio signal as input to estimate the corresponding genre. This is in contrast...... to systems which use e.g. a symbolic representation or textual information about the music. The approach to music genre classification systems has here been system-oriented. In other words, all the different aspects of the systems have been considered and it is emphasized that the systems should...

  13. Cliff : the automatized zipper

    NARCIS (Netherlands)

    Baharom, M.Z.; Toeters, M.J.; Delbressine, F.L.M.; Bangaru, C.; Feijs, L.M.G.

    2016-01-01

    It is our strong believe that fashion - more specifically apparel - can support us so much more in our daily life than it currently does. The Cliff project takes the opportunity to create a generic automatized zipper. It is a response to the struggle by elderly, people with physical disability, and

  14. Automatic Complexity Analysis

    DEFF Research Database (Denmark)

    Rosendahl, Mads

    1989-01-01

    One way to analyse programs is to to derive expressions for their computational behaviour. A time bound function (or worst-case complexity) gives an upper bound for the computation time as a function of the size of input. We describe a system to derive such time bounds automatically using abstract...

  15. Automatic Oscillating Turret.

    Science.gov (United States)

    1981-03-01

    Final Report: February 1978 ZAUTOMATIC OSCILLATING TURRET SYSTEM September 1980 * 6. PERFORMING 01G. REPORT NUMBER .J7. AUTHOR(S) S. CONTRACT OR GRANT...o....e.... *24 APPENDIX P-4 OSCILLATING BUMPER TURRET ...................... 25 A. DESCRIPTION 1. Turret Controls ...Other criteria requirements were: 1. Turret controls inside cab. 2. Automatic oscillation with fixed elevation to range from 20* below the horizontal to

  16. Reactor component automatic grapple

    International Nuclear Information System (INIS)

    Greenaway, P.R.

    1982-01-01

    A grapple for handling nuclear reactor components in a medium such as liquid sodium which, upon proper seating and alignment of the grapple with the component as sensed by a mechanical logic integral to the grapple, automatically seizes the component. The mechanical logic system also precludes seizure in the absence of proper seating and alignment. (author)

  17. Automatic sweep circuit

    International Nuclear Information System (INIS)

    Keefe, D.J.

    1980-01-01

    An automatically sweeping circuit for searching for an evoked response in an output signal in time with respect to a trigger input is described. Digital counters are used to activate a detector at precise intervals, and monitoring is repeated for statistical accuracy. If the response is not found then a different time window is examined until the signal is found

  18. Automatic sweep circuit

    Science.gov (United States)

    Keefe, Donald J.

    1980-01-01

    An automatically sweeping circuit for searching for an evoked response in an output signal in time with respect to a trigger input. Digital counters are used to activate a detector at precise intervals, and monitoring is repeated for statistical accuracy. If the response is not found then a different time window is examined until the signal is found.

  19. Automatic Commercial Permit Sets

    Energy Technology Data Exchange (ETDEWEB)

    Grana, Paul [Folsom Labs, Inc., San Francisco, CA (United States)

    2017-12-21

    Final report for Folsom Labs’ Solar Permit Generator project, which has successfully completed, resulting in the development and commercialization of a software toolkit within the cloud-based HelioScope software environment that enables solar engineers to automatically generate and manage draft documents for permit submission.

  20. Classification Accuracy Increase Using Multisensor Data Fusion

    Science.gov (United States)

    Makarau, A.; Palubinskas, G.; Reinartz, P.

    2011-09-01

    The practical use of very high resolution visible and near-infrared (VNIR) data is still growing (IKONOS, Quickbird, GeoEye-1, etc.) but for classification purposes the number of bands is limited in comparison to full spectral imaging. These limitations may lead to the confusion of materials such as different roofs, pavements, roads, etc. and therefore may provide wrong interpretation and use of classification products. Employment of hyperspectral data is another solution, but their low spatial resolution (comparing to multispectral data) restrict their usage for many applications. Another improvement can be achieved by fusion approaches of multisensory data since this may increase the quality of scene classification. Integration of Synthetic Aperture Radar (SAR) and optical data is widely performed for automatic classification, interpretation, and change detection. In this paper we present an approach for very high resolution SAR and multispectral data fusion for automatic classification in urban areas. Single polarization TerraSAR-X (SpotLight mode) and multispectral data are integrated using the INFOFUSE framework, consisting of feature extraction (information fission), unsupervised clustering (data representation on a finite domain and dimensionality reduction), and data aggregation (Bayesian or neural network). This framework allows a relevant way of multisource data combination following consensus theory. The classification is not influenced by the limitations of dimensionality, and the calculation complexity primarily depends on the step of dimensionality reduction. Fusion of single polarization TerraSAR-X, WorldView-2 (VNIR or full set), and Digital Surface Model (DSM) data allow for different types of urban objects to be classified into predefined classes of interest with increased accuracy. The comparison to classification results of WorldView-2 multispectral data (8 spectral bands) is provided and the numerical evaluation of the method in comparison to

  1. Automatic adventitious respiratory sound analysis: A systematic review.

    Science.gov (United States)

    Pramono, Renard Xaviero Adhi; Bowyer, Stuart; Rodriguez-Villegas, Esther

    2017-01-01

    Automatic detection or classification of adventitious sounds is useful to assist physicians in diagnosing or monitoring diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD), and pneumonia. While computerised respiratory sound analysis, specifically for the detection or classification of adventitious sounds, has recently been the focus of an increasing number of studies, a standardised approach and comparison has not been well established. To provide a review of existing algorithms for the detection or classification of adventitious respiratory sounds. This systematic review provides a complete summary of methods used in the literature to give a baseline for future works. A systematic review of English articles published between 1938 and 2016, searched using the Scopus (1938-2016) and IEEExplore (1984-2016) databases. Additional articles were further obtained by references listed in the articles found. Search terms included adventitious sound detection, adventitious sound classification, abnormal respiratory sound detection, abnormal respiratory sound classification, wheeze detection, wheeze classification, crackle detection, crackle classification, rhonchi detection, rhonchi classification, stridor detection, stridor classification, pleural rub detection, pleural rub classification, squawk detection, and squawk classification. Only articles were included that focused on adventitious sound detection or classification, based on respiratory sounds, with performance reported and sufficient information provided to be approximately repeated. Investigators extracted data about the adventitious sound type analysed, approach and level of analysis, instrumentation or data source, location of sensor, amount of data obtained, data management, features, methods, and performance achieved. A total of 77 reports from the literature were included in this review. 55 (71.43%) of the studies focused on wheeze, 40 (51.95%) on crackle, 9 (11.69%) on stridor, 9 (11

  2. Classification in context

    DEFF Research Database (Denmark)

    Mai, Jens Erik

    2004-01-01

    This paper surveys classification research literature, discusses various classification theories, and shows that the focus has traditionally been on establishing a scientific foundation for classification research. This paper argues that a shift has taken place, and suggests that contemporary...... classification research focus on contextual information as the guide for the design and construction of classification schemes....

  3. Classification of the web

    DEFF Research Database (Denmark)

    Mai, Jens Erik

    2004-01-01

    This paper discusses the challenges faced by investigations into the classification of the Web and outlines inquiries that are needed to use principles for bibliographic classification to construct classifications of the Web. This paper suggests that the classification of the Web meets challenges...... that call for inquiries into the theoretical foundation of bibliographic classification theory....

  4. Vehicle Controller

    Science.gov (United States)

    1985-01-01

    UNISTICK is an airplane-like joystick being developed by Johnson Engineering under NASA and VA sponsorship. It allows a driver to control a vehicle with one hand, and is based upon technology developed for the Apollo Lunar Landings of the 1970's. It allows severely handicapped drivers to operate an automobile or van easily. The system is expected to be in production by March 1986.

  5. Protein structure: geometry, topology and classification

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, William R.; May, Alex C.W.; Brown, Nigel P.; Aszodi, Andras [Division of Mathematical Biology, National Institute for Medical Research, London (United Kingdom)

    2001-04-01

    The structural principals of proteins are reviewed and analysed from a geometric perspective with a view to revealing the underlying regularities in their construction. Computer methods for the automatic comparison and classification of these structures are then reviewed with an analysis of the statistical significance of comparing different shapes. Following an analysis of the current state of the classification of proteins, more abstract geometric and topological representations are explored, including the occurrence of knotted topologies. The review concludes with a consideration of the origin of higher-level symmetries in protein structure. (author)

  6. Automatic approach to deriving fuzzy slope positions

    Science.gov (United States)

    Zhu, Liang-Jun; Zhu, A.-Xing; Qin, Cheng-Zhi; Liu, Jun-Zhi

    2018-03-01

    Fuzzy characterization of slope positions is important for geographic modeling. Most of the existing fuzzy classification-based methods for fuzzy characterization require extensive user intervention in data preparation and parameter setting, which is tedious and time-consuming. This paper presents an automatic approach to overcoming these limitations in the prototype-based inference method for deriving fuzzy membership value (or similarity) to slope positions. The key contribution is a procedure for finding the typical locations and setting the fuzzy inference parameters for each slope position type. Instead of being determined totally by users in the prototype-based inference method, in the proposed approach the typical locations and fuzzy inference parameters for each slope position type are automatically determined by a rule set based on prior domain knowledge and the frequency distributions of topographic attributes. Furthermore, the preparation of topographic attributes (e.g., slope gradient, curvature, and relative position index) is automated, so the proposed automatic approach has only one necessary input, i.e., the gridded digital elevation model of the study area. All compute-intensive algorithms in the proposed approach were speeded up by parallel computing. Two study cases were provided to demonstrate that this approach can properly, conveniently and quickly derive the fuzzy slope positions.

  7. Hazard classification methodology

    International Nuclear Information System (INIS)

    Brereton, S.J.

    1996-01-01

    This document outlines the hazard classification methodology used to determine the hazard classification of the NIF LTAB, OAB, and the support facilities on the basis of radionuclides and chemicals. The hazard classification determines the safety analysis requirements for a facility

  8. A SIMULATION ENVIRONMENT FOR AUTOMATIC NIGHT DRIVING AND VISUAL CONTROL

    OpenAIRE

    Arroyo Rubio, Fernando

    2012-01-01

    This project consists on developing an automatic night driving system in a simulation environment. The simulator I have used is TORCS. TORCS is an Open Source car racing simulator written in C++. It is used as an ordinary car racing game, as a IA racing game and as a research platform. The goal of this thesis is to implement an automatic driving system to control the car under night conditions using computer vision. A camera is implemented inside the vehicle and it will detect the reflective ...

  9. Classification of sports types from tracklets

    DEFF Research Database (Denmark)

    Gade, Rikke; Moeslund, Thomas B.

    Automatic analysis of video is important in order to process and exploit large amounts of data, e.g. for sports analysis. Classification of sports types is one of the first steps to- wards a fully automatic analysis of the activities performed at sports arenas. In this work we test the idea...... that sports types can be classified from features extracted from short trajectories of the players. From tracklets created by a Kalman filter tracker we extract four robust features; Total distance, lifespan, distance span and mean speed. For clas- sification we use a quadratic discriminant analysis. In our...... experiments we use 30 2-minutes thermal video sequences from each of five different sports types. By applying a 10- fold cross validation we obtain a correct classification rate of 94.5 %....

  10. Hybrid drive train technologies for vehicles

    NARCIS (Netherlands)

    Hofman, T.; Folkson, R.

    This chapter provides a classification of electric hybrid systems for cars and describes the conflicting design challenges involved in designing advanced vehicle propulsion systems. In addition, the chapter provides an analysis of the solution methods currently provided in literature on the coupled

  11. Pavement type and wear condition classification from tire cavity acoustic measurements with artificial neural networks.

    Science.gov (United States)

    Masino, Johannes; Foitzik, Michael-Jan; Frey, Michael; Gauterin, Frank

    2017-06-01

    Tire road noise is the major contributor to traffic noise, which leads to general annoyance, speech interference, and sleep disturbances. Standardized methods to measure tire road noise are expensive, sophisticated to use, and they cannot be applied comprehensively. This paper presents a method to automatically classify different types of pavement and the wear condition to identify noisy road surfaces. The methods are based on spectra of time series data of the tire cavity sound, acquired under normal vehicle operation. The classifier, an artificial neural network, correctly predicts three pavement types, whereas there are few bidirectional mis-classifications for two pavements, which have similar physical characteristics. The performance measures of the classifier to predict a new or worn out condition are over 94.6%. One could create a digital map with the output of the presented method. On the basis of these digital maps, road segments with a strong impact on tire road noise could be automatically identified. Furthermore, the method can estimate the road macro-texture, which has an impact on the tire road friction especially on wet conditions. Overall, this digital map would have a great benefit for civil engineering departments, road infrastructure operators, and for advanced driver assistance systems.

  12. Effects of Feature Extraction and Classification Methods on Cyberbully Detection

    OpenAIRE

    ÖZEL, Selma Ayşe; SARAÇ, Esra

    2016-01-01

    Cyberbullying is defined as an aggressive, intentional action against a defenseless person by using the Internet, or other electronic contents. Researchers have found that many of the bullying cases have tragically ended in suicides; hence automatic detection of cyberbullying has become important. In this study we show the effects of feature extraction, feature selection, and classification methods that are used, on the performance of automatic detection of cyberbullying. To perform the exper...

  13. School Shooting : Threat Detection and Classification in Textual Leakage

    OpenAIRE

    Khan, Ajmal

    2013-01-01

    The continual occurrence of school shooting incidents underscores the need of taking preventive measures. Inductive measures of threat assessment have proved to be a bad strategy to solve the problem and new research is focusing on deductive approaches. Deductive threat assessment approaches are gaining ground and efforts are underway to mine text for automatic detection of threats in written text. Automatic detection and classification of threats in the digital world can help the decision ma...

  14. Automatization of welding

    International Nuclear Information System (INIS)

    Iwabuchi, Masashi; Tomita, Jinji; Nishihara, Katsunori.

    1978-01-01

    Automatization of welding is one of the effective measures for securing high degree of quality of nuclear power equipment, as well as for correspondence to the environment at the site of plant. As the latest ones of the automatic welders practically used for welding of nuclear power apparatuses in factories of Toshiba and IHI, those for pipes and lining tanks are described here. The pipe welder performs the battering welding on the inside of pipe end as the so-called IGSCC countermeasure and the succeeding butt welding through the same controller. The lining tank welder is able to perform simultaneous welding of two parallel weld lines on a large thin plate lining tank. Both types of the welders are demonstrating excellent performance at the shops as well as at the plant site. (author)

  15. Automatic structural scene digitalization.

    Science.gov (United States)

    Tang, Rui; Wang, Yuhan; Cosker, Darren; Li, Wenbin

    2017-01-01

    In this paper, we present an automatic system for the analysis and labeling of structural scenes, floor plan drawings in Computer-aided Design (CAD) format. The proposed system applies a fusion strategy to detect and recognize various components of CAD floor plans, such as walls, doors, windows and other ambiguous assets. Technically, a general rule-based filter parsing method is fist adopted to extract effective information from the original floor plan. Then, an image-processing based recovery method is employed to correct information extracted in the first step. Our proposed method is fully automatic and real-time. Such analysis system provides high accuracy and is also evaluated on a public website that, on average, archives more than ten thousands effective uses per day and reaches a relatively high satisfaction rate.

  16. Automatic trend estimation

    CERN Document Server

    Vamos¸, C˘alin

    2013-01-01

    Our book introduces a method to evaluate the accuracy of trend estimation algorithms under conditions similar to those encountered in real time series processing. This method is based on Monte Carlo experiments with artificial time series numerically generated by an original algorithm. The second part of the book contains several automatic algorithms for trend estimation and time series partitioning. The source codes of the computer programs implementing these original automatic algorithms are given in the appendix and will be freely available on the web. The book contains clear statement of the conditions and the approximations under which the algorithms work, as well as the proper interpretation of their results. We illustrate the functioning of the analyzed algorithms by processing time series from astrophysics, finance, biophysics, and paleoclimatology. The numerical experiment method extensively used in our book is already in common use in computational and statistical physics.

  17. Mobile Healthcare for Automatic Driving Sleep-Onset Detection Using Wavelet-Based EEG and Respiration Signals

    Directory of Open Access Journals (Sweden)

    Boon-Giin Lee

    2014-09-01

    Full Text Available Driving drowsiness is a major cause of traffic accidents worldwide and has drawn the attention of researchers in recent decades. This paper presents an application for in-vehicle non-intrusive mobile-device-based automatic detection of driver sleep-onset in real time. The proposed application classifies the driving mental fatigue condition by analyzing the electroencephalogram (EEG and respiration signals of a driver in the time and frequency domains. Our concept is heavily reliant on mobile technology, particularly remote physiological monitoring using Bluetooth. Respiratory events are gathered, and eight-channel EEG readings are captured from the frontal, central, and parietal (Fpz-Cz, Pz-Oz regions. EEGs are preprocessed with a Butterworth bandpass filter, and features are subsequently extracted from the filtered EEG signals by employing the wavelet-packet-transform (WPT method to categorize the signals into four frequency bands: α, β, θ, and δ. A mutual information (MI technique selects the most descriptive features for further classification. The reduction in the number of prominent features improves the sleep-onset classification speed in the support vector machine (SVM and results in a high sleep-onset recognition rate. Test results reveal that the combined use of the EEG and respiration signals results in 98.6% recognition accuracy. Our proposed application explores the possibility of processing long-term multi-channel signals.

  18. Automatic food decisions

    DEFF Research Database (Denmark)

    Mueller Loose, Simone

    Consumers' food decisions are to a large extent shaped by automatic processes, which are either internally directed through learned habits and routines or externally influenced by context factors and visual information triggers. Innovative research methods such as eye tracking, choice experiments...... and food diaries allow us to better understand the impact of unconscious processes on consumers' food choices. Simone Mueller Loose will provide an overview of recent research insights into the effects of habit and context on consumers' food choices....

  19. Automatic LOD selection

    OpenAIRE

    Forsman, Isabelle

    2017-01-01

    In this paper a method to automatically generate transition distances for LOD, improving image stability and performance is presented. Three different methods were tested all measuring the change between two level of details using the spatial frequency. The methods were implemented as an optional pre-processing step in order to determine the transition distances from multiple view directions. During run-time both view direction based selection and the furthest distance for each direction was ...

  20. Automatic detection of laughter

    NARCIS (Netherlands)

    Truong, K.P.; Leeuwen, D.A. van

    2005-01-01

    In the context of detecting ‘paralinguistic events’ with the aim to make classification of the speaker’s emotional state possible, a detector was developed for one of the most obvious ‘paralinguistic events’, namely laughter. Gaussian Mixture Models were trained with Perceptual Linear Prediction

  1. On the relevance of spectral features for instrument classification

    DEFF Research Database (Denmark)

    Nielsen, Andreas Brinch; Sigurdsson, Sigurdur; Hansen, Lars Kai

    2007-01-01

    Automatic knowledge extraction from music signals is a key component for most music organization and music information retrieval systems. In this paper, we consider the problem of instrument modelling and instrument classification from the rough audio data. Existing systems for automatic instrument...... classification operate normally on a relatively large number of features, from which those related to the spectrum of the audio signal are particularly relevant. In this paper, we confront two different models about the spectral characterization of musical instruments. The first assumes a constant envelope...

  2. Single-labelled music genre classification using content-based features

    CSIR Research Space (South Africa)

    Ajoodha, R

    2015-11-01

    Full Text Available In this paper we use content-based features to perform automatic classification of music pieces into genres. We categorise these features into four groups: features extracted from the Fourier transform’s magnitude spectrum, features designed...

  3. Discriminative Chemical Patterns: Automatic and Interactive Design.

    Science.gov (United States)

    Bietz, Stefan; Schomburg, Karen T; Hilbig, Matthias; Rarey, Matthias

    2015-08-24

    The classification of molecules with respect to their inhibiting, activating, or toxicological potential constitutes a central aspect in the field of cheminformatics. Often, a discriminative feature is needed to distinguish two different molecule sets. Besides physicochemical properties, substructures and chemical patterns belong to the descriptors most frequently applied for this purpose. As a commonly used example of this descriptor class, SMARTS strings represent a powerful concept for the representation and processing of abstract chemical patterns. While their usage facilitates a convenient way to apply previously derived classification rules on new molecule sets, the manual generation of useful SMARTS patterns remains a complex and time-consuming process. Here, we introduce SMARTSminer, a new algorithm for the automatic derivation of discriminative SMARTS patterns from preclassified molecule sets. Based on a specially adapted subgraph mining algorithm, SMARTSminer identifies structural features that are frequent in only one of the given molecule classes. In comparison to elemental substructures, it also supports the consideration of general and specific SMARTS features. Furthermore, SMARTSminer is integrated into an interactive pattern editor named SMARTSeditor. This allows for an intuitive visualization on the basis of the SMARTSviewer concept as well as interactive adaption and further improvement of the generated patterns. Additionally, a new molecular matching feature provides an immediate feedback on a pattern's matching behavior across the molecule sets. We demonstrate the utility of the SMARTSminer functionality and its integration into the SMARTSeditor software in several different classification scenarios.

  4. Phenotype classification of zebrafish embryos by supervised learning.

    Directory of Open Access Journals (Sweden)

    Nathalie Jeanray

    Full Text Available Zebrafish is increasingly used to assess biological properties of chemical substances and thus is becoming a specific tool for toxicological and pharmacological studies. The effects of chemical substances on embryo survival and development are generally evaluated manually through microscopic observation by an expert and documented by several typical photographs. Here, we present a methodology to automatically classify brightfield images of wildtype zebrafish embryos according to their defects by using an image analysis approach based on supervised machine learning. We show that, compared to manual classification, automatic classification results in 90 to 100% agreement with consensus voting of biological experts in nine out of eleven considered defects in 3 days old zebrafish larvae. Automation of the analysis and classification of zebrafish embryo pictures reduces the workload and time required for the biological expert and increases the reproducibility and objectivity of this classification.

  5. Beoordeling van het Automatic Rear Fog Flashlight ARFF-systeem (knipperende mistachterlampen) : een notitie ten behoeve van het Verbond van Verzekeraars.

    NARCIS (Netherlands)

    Schoon, C.C.

    1996-01-01

    The Automatic Rear Fog Flashlight (ARFF) system is an electronic circuit for activating the rear fog flashlights when braking a vehicle with the rear foglights switched on. The system aims to warn drivers of following vehicles for braking vehicles that are in front of them, in circumstances of bad

  6. Shadow detection and removal in RGB VHR images for land use unsupervised classification

    Science.gov (United States)

    Movia, A.; Beinat, A.; Crosilla, F.

    2016-09-01

    Nowadays, high resolution aerial images are widely available thanks to the diffusion of advanced technologies such as UAVs (Unmanned Aerial Vehicles) and new satellite missions. Although these developments offer new opportunities for accurate land use analysis and change detection, cloud and terrain shadows actually limit benefits and possibilities of modern sensors. Focusing on the problem of shadow detection and removal in VHR color images, the paper proposes new solutions and analyses how they can enhance common unsupervised classification procedures for identifying land use classes related to the CO2 absorption. To this aim, an improved fully automatic procedure has been developed for detecting image shadows using exclusively RGB color information, and avoiding user interaction. Results show a significant accuracy enhancement with respect to similar methods using RGB based indexes. Furthermore, novel solutions derived from Procrustes analysis have been applied to remove shadows and restore brightness in the images. In particular, two methods implementing the so called "anisotropic Procrustes" and the "not-centered oblique Procrustes" algorithms have been developed and compared with the linear correlation correction method based on the Cholesky decomposition. To assess how shadow removal can enhance unsupervised classifications, results obtained with classical methods such as k-means, maximum likelihood, and self-organizing maps, have been compared to each other and with a supervised clustering procedure.

  7. Vision-Based Leader Vehicle Trajectory Tracking for Multiple Agricultural Vehicles.

    Science.gov (United States)

    Zhang, Linhuan; Ahamed, Tofael; Zhang, Yan; Gao, Pengbo; Takigawa, Tomohiro

    2016-04-22

    The aim of this study was to design a navigation system composed of a human-controlled leader vehicle and a follower vehicle. The follower vehicle automatically tracks the leader vehicle. With such a system, a human driver can control two vehicles efficiently in agricultural operations. The tracking system was developed for the leader and the follower vehicle, and control of the follower was performed using a camera vision system. A stable and accurate monocular vision-based sensing system was designed, consisting of a camera and rectangular markers. Noise in the data acquisition was reduced by using the least-squares method. A feedback control algorithm was used to allow the follower vehicle to track the trajectory of the leader vehicle. A proportional-integral-derivative (PID) controller was introduced to maintain the required distance between the leader and the follower vehicle. Field experiments were conducted to evaluate the sensing and tracking performances of the leader-follower system while the leader vehicle was driven at an average speed of 0.3 m/s. In the case of linear trajectory tracking, the RMS errors were 6.5 cm, 8.9 cm and 16.4 cm for straight, turning and zigzag paths, respectively. Again, for parallel trajectory tracking, the root mean square (RMS) errors were found to be 7.1 cm, 14.6 cm and 14.0 cm for straight, turning and zigzag paths, respectively. The navigation performances indicated that the autonomous follower vehicle was able to follow the leader vehicle, and the tracking accuracy was found to be satisfactory. Therefore, the developed leader-follower system can be implemented for the harvesting of grains, using a combine as the leader and an unloader as the autonomous follower vehicle.

  8. Automatic cough episode detection using a vibroacoustic sensor.

    Science.gov (United States)

    Mlynczak, Marcel; Pariaszewska, Katarzyna; Cybulski, Gerard

    2015-08-01

    Cough monitoring is an important element of the diagnostics of respiratory diseases. The European Respiratory Society recommends objective assessment of cough episodes and the search for methods of automatic analysis to make obtaining the quantitative parameters possible. The cough "events" could be classified by a microphone and a sensor that measures the vibrations of the chest. Analysis of the recorded signals consists of calculating the features vectors for selected episodes and of performing automatic classification using them. The aim of the study was to assess the accuracy of classification based on an artificial neural networks using vibroacoustic signals collected from chest. Six healthy, young men and eight healthy, young women carried out an imitated cough, hand clapping, speech and shouting. Three methods of parametrization were used to prepare the vectors of episode features - time domain, time-frequency domain and spectral modeling. We obtained the accuracy of 95% using artificial neural networks.

  9. Current challenges in autonomous vehicle development

    Science.gov (United States)

    Connelly, J.; Hong, W. S.; Mahoney, R. B., Jr.; Sparrow, D. A.

    2006-05-01

    The field of autonomous vehicles is a rapidly growing one, with significant interest from both government and industry sectors. Autonomous vehicles represent the intersection of artificial intelligence (AI) and robotics, combining decision-making with real-time control. Autonomous vehicles are desired for use in search and rescue, urban reconnaissance, mine detonation, supply convoys, and more. The general adage is to use robots for anything dull, dirty, dangerous or dumb. While a great deal of research has been done on autonomous systems, there are only a handful of fielded examples incorporating machine autonomy beyond the level of teleoperation, especially in outdoor/complex environments. In an attempt to assess and understand the current state of the art in autonomous vehicle development, a few areas where unsolved problems remain became clear. This paper outlines those areas and provides suggestions for the focus of science and technology research. The first step in evaluating the current state of autonomous vehicle development was to develop a definition of autonomy. A number of autonomy level classification systems were reviewed. The resulting working definitions and classification schemes used by the authors are summarized in the opening sections of the paper. The remainder of the report discusses current approaches and challenges in decision-making and real-time control for autonomous vehicles. Suggested research focus areas for near-, mid-, and long-term development are also presented.

  10. Slip control for LIM propelled transit vehicles

    Science.gov (United States)

    Wallace, A. K.; Parker, J. H.; Dawson, G. E.

    1980-09-01

    Short stator linear induction motors, with an iron-backed aluminum sheet reaction rail and powered by a controlled inverter, have been selected as the propulsion system for transit vehicles in an intermediate capacity system (12-20,000 pphpd). The linear induction motor is capable of adhesion independent braking and acceleration levels which permit safe, close headways. In addition, simple control is possible allowing moving block automatic train control. This paper presents a slip frequency control scheme for the LIM. Experimental results for motoring and braking obtained from a test vehicle are also presented. These values are compared with theoretical predictions.

  11. Vehicle fault diagnostics and management system

    Science.gov (United States)

    Gopal, Jagadeesh; Gowthamsachin

    2017-11-01

    This project is a kind of advanced automatic identification technology, and is more and more widely used in the fields of transportation and logistics. It looks over the main functions with like Vehicle management, Vehicle Speed limit and Control. This system starts with authentication process to keep itself secure. Here we connect sensors to the STM32 board which in turn is connected to the car through Ethernet cable, as Ethernet in capable of sending large amounts of data at high speeds. This technology involved clearly shows how a careful combination of software and hardware can produce an extremely cost-effective solution to a problem.

  12. Safety problems in vehicles with adaptive cruise control system

    Directory of Open Access Journals (Sweden)

    Yadav Arun K.

    2017-06-01

    Full Text Available In today’s world automotive industries are still putting efforts towards more autonomous vehicles (AVs. The main concern of introducing the autonomous technology is safety of driver. According to a survey 90% of accidents happen due to mistake of driver. The adaptive cruise control system (ACC is a system which combines cruise control with a collision avoidance system. The ACC system is based on laser and radar technologies. This system is capable of controlling the velocity of vehicle automatically to match the velocity of car, bus or truck in front of vehicle. If the lead vehicle gets slow down or accelerate, than ACC system automatically matches that velocity. The proposed paper is focusing on more accurate methods of detecting the preceding vehicle by using a radar and lidar sensors by considering the vehicle side slip and by controlling the distance between two vehicles. By using this approach i.e. logic for calculation of former vehicle distance and controlling the throttle valve of ACC equipped vehicle, an improvement in driving stability was achieved. The own contribution results with fuel efficient driving and with more safer and reliable driving system, but still some improvements are going on to make it more safe and reliable.

  13. Automatic Design of a Maglev Controller in State Space

    Science.gov (United States)

    1991-12-01

    Design of a Maglev Controller in State Space Feng Zhao Richard Thornton Abstract We describe the automatic synthesis of a global nonlinear controller for...the global switching points of the controller is presented. The synthesized control system can stabilize the maglev vehicle with large initial displace...NUMBERS Automation Desing of a Maglev Controller in State Space N00014-89-J-3202 MIP-9001651 6. AUTHOR(S) Feng Zhao and Richard Thornton 7. PERFORMING

  14. Connected vehicle application : safety.

    Science.gov (United States)

    2015-01-01

    Connected vehicle safety applications are designed to increase situational awareness : and reduce or eliminate crashes through vehicle-to-infrastructure (V2I), vehicle-to-vehicle (V2V), and vehicle-to-pedestrian (V2P) data transmissions. Applications...

  15. Automatic voltage imbalance detector

    Science.gov (United States)

    Bobbett, Ronald E.; McCormick, J. Byron; Kerwin, William J.

    1984-01-01

    A device for indicating and preventing damage to voltage cells such as galvanic cells and fuel cells connected in series by detecting sequential voltages and comparing these voltages to adjacent voltage cells. The device is implemented by using operational amplifiers and switching circuitry is provided by transistors. The device can be utilized in battery powered electric vehicles to prevent galvanic cell damage and also in series connected fuel cells to prevent fuel cell damage.

  16. Automatic quantitative renal scintigraphy

    International Nuclear Information System (INIS)

    Valeyre, J.; Deltour, G.; Delisle, M.J.; Bouchard, A.

    1976-01-01

    Renal scintigraphy data may be analyzed automatically by the use of a processing system coupled to an Anger camera (TRIDAC-MULTI 8 or CINE 200). The computing sequence is as follows: normalization of the images; background noise subtraction on both images; evaluation of mercury 197 uptake by the liver and spleen; calculation of the activity fractions on each kidney with respect to the injected dose, taking into account the kidney depth and the results referred to normal values; edition of the results. Automation minimizes the scattering parameters and by its simplification is a great asset in routine work [fr

  17. AUTOMATIC FREQUENCY CONTROL SYSTEM

    Science.gov (United States)

    Hansen, C.F.; Salisbury, J.D.

    1961-01-10

    A control is described for automatically matching the frequency of a resonant cavity to that of a driving oscillator. The driving oscillator is disconnected from the cavity and a secondary oscillator is actuated in which the cavity is the frequency determining element. A low frequency is mixed with the output of the driving oscillator and the resultant lower and upper sidebands are separately derived. The frequencies of the sidebands are compared with the secondary oscillator frequency. deriving a servo control signal to adjust a tuning element in the cavity and matching the cavity frequency to that of the driving oscillator. The driving oscillator may then be connected to the cavity.

  18. Automatic dipole subtraction

    International Nuclear Information System (INIS)

    Hasegawa, K.

    2008-01-01

    The Catani-Seymour dipole subtraction is a general procedure to treat infrared divergences in real emission processes at next-to-leading order in QCD. We automatized the procedure in a computer code. The code is useful especially for the processes with many parton legs. In this talk, we first explain the algorithm of the dipole subtraction and the whole structure of our code. After that we show the results for some processes where the infrared divergences of real emission processes are subtracted. (author)

  19. Automatic programmable air ozonizer

    International Nuclear Information System (INIS)

    Gubarev, S.P.; Klosovsky, A.V.; Opaleva, G.P.; Taran, V.S.; Zolototrubova, M.I.

    2015-01-01

    In this paper we describe a compact, economical, easy to manage auto air ozonator developed at the Institute of Plasma Physics of the NSC KIPT. It is designed for sanitation, disinfection of premises and cleaning the air from foreign odors. A distinctive feature of the developed device is the generation of a given concentration of ozone, approximately 0.7 maximum allowable concentration (MAC), and automatic maintenance of a specified level. This allows people to be inside the processed premises during operation. The microprocessor controller to control the operation of the ozonator was developed

  20. Research on the transfer learning of the vehicle logo recognition

    Science.gov (United States)

    Zhao, Wei

    2017-08-01

    The Convolutional Neural Network of Deep Learning has been a huge success in the field of image intelligent transportation system can effectively solve the traffic safety, congestion, vehicle management and other problems of traffic in the city. Vehicle identification is a vital part of intelligent transportation, and the effective information in vehicles is of great significance to vehicle identification. With the traffic system on the vehicle identification technology requirements are getting higher and higher, the vehicle as an important type of vehicle information, because it should not be removed, difficult to change and other features for vehicle identification provides an important method. The current vehicle identification recognition (VLR) is mostly used to extract the characteristics of the method of classification, which for complex classification of its generalization ability to be some constraints, if the use of depth learning technology, you need a lot of training samples. In this paper, the method of convolution neural network based on transfer learning can solve this problem effectively, and it has important practical application value in the task of vehicle mark recognition.

  1. Automatic personnel contamination monitor

    International Nuclear Information System (INIS)

    Lattin, Kenneth R.

    1978-01-01

    United Nuclear Industries, Inc. (UNI) has developed an automatic personnel contamination monitor (APCM), which uniquely combines the design features of both portal and hand and shoe monitors. In addition, this prototype system also has a number of new features, including: micro computer control and readout, nineteen large area gas flow detectors, real-time background compensation, self-checking for system failures, and card reader identification and control. UNI's experience in operating the Hanford N Reactor, located in Richland, Washington, has shown the necessity of automatically monitoring plant personnel for contamination after they have passed through the procedurally controlled radiation zones. This final check ensures that each radiation zone worker has been properly checked before leaving company controlled boundaries. Investigation of the commercially available portal and hand and shoe monitors indicated that they did not have the sensitivity or sophistication required for UNI's application, therefore, a development program was initiated, resulting in the subject monitor. Field testing shows good sensitivity to personnel contamination with the majority of alarms showing contaminants on clothing, face and head areas. In general, the APCM has sensitivity comparable to portal survey instrumentation. The inherit stand-in, walk-on feature of the APCM not only makes it easy to use, but makes it difficult to bypass. (author)

  2. SAW Classification Algorithm for Chinese Text Classification

    OpenAIRE

    Xiaoli Guo; Huiyu Sun; Tiehua Zhou; Ling Wang; Zhaoyang Qu; Jiannan Zang

    2015-01-01

    Considering the explosive growth of data, the increased amount of text data’s effect on the performance of text categorization forward the need for higher requirements, such that the existing classification method cannot be satisfied. Based on the study of existing text classification technology and semantics, this paper puts forward a kind of Chinese text classification oriented SAW (Structural Auxiliary Word) algorithm. The algorithm uses the special space effect of Chinese text where words...

  3. Connected vehicles and cybersecurity.

    Science.gov (United States)

    2016-01-01

    Connected vehicles are a next-generation technology in vehicles and in infrastructure that will make travel safer, cleaner, and more efficient. The advanced wireless technology enables vehicles to share and communicate information with each other and...

  4. Automatic sets and Delone sets

    International Nuclear Information System (INIS)

    Barbe, A; Haeseler, F von

    2004-01-01

    Automatic sets D part of Z m are characterized by having a finite number of decimations. They are equivalently generated by fixed points of certain substitution systems, or by certain finite automata. As examples, two-dimensional versions of the Thue-Morse, Baum-Sweet, Rudin-Shapiro and paperfolding sequences are presented. We give a necessary and sufficient condition for an automatic set D part of Z m to be a Delone set in R m . The result is then extended to automatic sets that are defined as fixed points of certain substitutions. The morphology of automatic sets is discussed by means of examples

  5. Automatic measurement of target crossing speed

    Science.gov (United States)

    Wardell, Mark; Lougheed, James H.

    1992-11-01

    The motion of ground vehicle targets after a ballistic round is launched can be a major source of inaccuracy for small (handheld) anti-armour weapon systems. A method of automatically measuring the crossing component to compensate the fire control solution has been devised and tested against various targets in a range of environments. A photodetector array aligned with the sight's horizontal reticle obtains scene features, which are digitized and processed to separate target from sight motion. Relative motion of the target against the background is briefly monitored to deduce angular crossing rate and a compensating lead angle is introduced into the aim point. Research to gather quantitative data and optimize algorithm performance is described, and some results from field testing are presented.

  6. Vehicle Development Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Supports the development of prototype deployment platform vehicles for offboard countermeasure systems.DESCRIPTION: The Vehicle Development Laboratory is...

  7. Evolving a rule system controller for automatic driving in a car racing competition

    OpenAIRE

    Pérez, Diego; Sáez Achaerandio, Yago; Recio Isasi, Gustavo; Isasi Viñuela, Pedro

    2008-01-01

    IEEE Symposium on Computational Intelligence and Games. Perth, Australia, 15-18 December 2008. The techniques and the technologies supporting Automatic Vehicle Guidance are important issues. Automobile manufacturers view automatic driving as a very interesting product with motivating key features which allow improvement of the car safety, reduction in emission or fuel consumption or optimization of driver comfort during long journeys. Car racing is an active research field where new ...

  8. Automatic Bridge Control System

    OpenAIRE

    M. Niraimathi; S.Sivakumar; R.Vigneshwaran; R.Vinothkumar; P.Babu

    2012-01-01

    Bridge vibration control is an important issue whose purpose is to extend the structural service life of bridges. Normally, the bridge is modeled as an elastic beam or plate subject to a moving vehicle. However, the moving truck on a bridge is a complicated problem that must still be researched. In this paper, wepropose a new method, to overcome the huge load in the bridge a load cell is used at the entry which will monitor the load continuously at both ends. To escape from the heavy water fl...

  9. Automatic identification in mining

    Energy Technology Data Exchange (ETDEWEB)

    Puckett, D; Patrick, C [Mine Computers and Electronics Inc., Morehead, KY (United States)

    1998-06-01

    The feasibility of monitoring the locations and vital statistics of equipment and personnel in surface and underground mining operations has increased with advancements in radio frequency identification (RFID) technology. This paper addresses the use of RFID technology, which is relatively new to the mining industry, to track surface equipment in mine pits, loading points and processing facilities. Specific applications are discussed, including both simplified and complex truck tracking systems and an automatic pit ticket system. This paper concludes with a discussion of the future possibilities of using RFID technology in mining including monitoring heart and respiration rates, body temperatures and exertion levels; monitoring repetitious movements for the study of work habits; and logging air quality via personnel sensors. 10 refs., 5 figs.

  10. Automatic quantitative metallography

    International Nuclear Information System (INIS)

    Barcelos, E.J.B.V.; Ambrozio Filho, F.; Cunha, R.C.

    1976-01-01

    The quantitative determination of metallographic parameters is analysed through the description of Micro-Videomat automatic image analysis system and volumetric percentage of perlite in nodular cast irons, porosity and average grain size in high-density sintered pellets of UO 2 , and grain size of ferritic steel. Techniques adopted are described and results obtained are compared with the corresponding ones by the direct counting process: counting of systematic points (grid) to measure volume and intersections method, by utilizing a circunference of known radius for the average grain size. The adopted technique for nodular cast iron resulted from the small difference of optical reflectivity of graphite and perlite. Porosity evaluation of sintered UO 2 pellets is also analyzed [pt

  11. Semi-automatic fluoroscope

    International Nuclear Information System (INIS)

    Tarpley, M.W.

    1976-10-01

    Extruded aluminum-clad uranium-aluminum alloy fuel tubes must pass many quality control tests before irradiation in Savannah River Plant nuclear reactors. Nondestructive test equipment has been built to automatically detect high and low density areas in the fuel tubes using x-ray absorption techniques with a video analysis system. The equipment detects areas as small as 0.060-in. dia with 2 percent penetrameter sensitivity. These areas are graded as to size and density by an operator using electronic gages. Video image enhancement techniques permit inspection of ribbed cylindrical tubes and make possible the testing of areas under the ribs. Operation of the testing machine, the special low light level television camera, and analysis and enhancement techniques are discussed

  12. Automatic surveying techniques

    International Nuclear Information System (INIS)

    Sah, R.

    1976-01-01

    In order to investigate the feasibility of automatic surveying methods in a more systematic manner, the PEP organization signed a contract in late 1975 for TRW Systems Group to undertake a feasibility study. The completion of this study resulted in TRW Report 6452.10-75-101, dated December 29, 1975, which was largely devoted to an analysis of a survey system based on an Inertial Navigation System. This PEP note is a review and, in some instances, an extension of that TRW report. A second survey system which employed an ''Image Processing System'' was also considered by TRW, and it will be reviewed in the last section of this note. 5 refs., 5 figs., 3 tabs

  13. AUTOMATIC ARCHITECTURAL STYLE RECOGNITION

    Directory of Open Access Journals (Sweden)

    M. Mathias

    2012-09-01

    Full Text Available Procedural modeling has proven to be a very valuable tool in the field of architecture. In the last few years, research has soared to automatically create procedural models from images. However, current algorithms for this process of inverse procedural modeling rely on the assumption that the building style is known. So far, the determination of the building style has remained a manual task. In this paper, we propose an algorithm which automates this process through classification of architectural styles from facade images. Our classifier first identifies the images containing buildings, then separates individual facades within an image and determines the building style. This information could then be used to initialize the building reconstruction process. We have trained our classifier to distinguish between several distinct architectural styles, namely Flemish Renaissance, Haussmannian and Neoclassical. Finally, we demonstrate our approach on various street-side images.

  14. Towards automatic music transcription: note extraction based on independent subspace analysis

    Science.gov (United States)

    Wellhausen, Jens; Hoynck, Michael

    2005-01-01

    Due to the increasing amount of music available electronically the need of automatic search, retrieval and classification systems for music becomes more and more important. In this paper an algorithm for automatic transcription of polyphonic piano music into MIDI data is presented, which is a very interesting basis for database applications, music analysis and music classification. The first part of the algorithm performs a note accurate temporal audio segmentation. In the second part, the resulting segments are examined using Independent Subspace Analysis to extract sounding notes. Finally, the results are used to build a MIDI file as a new representation of the piece of music which is examined.

  15. Fully automatic CNC machining production system

    Directory of Open Access Journals (Sweden)

    Lee Jeng-Dao

    2017-01-01

    Full Text Available Customized manufacturing is increasing years by years. The consumption habits change has been cause the shorter of product life cycle. Therefore, many countries view industry 4.0 as a target to achieve more efficient and more flexible automated production. To develop an automatic loading and unloading CNC machining system via vision inspection is the first step in industrial upgrading. CNC controller is adopted as the main controller to command to the robot, conveyor, and other equipment in this study. Moreover, machine vision systems are used to detect position of material on the conveyor and the edge of the machining material. In addition, Open CNC and SCADA software will be utilized to make real-time monitor, remote system of control, alarm email notification, and parameters collection. Furthermore, RFID has been added to employee classification and management. The machine handshaking has been successfully proposed to achieve automatic vision detect, edge tracing measurement, machining and system parameters collection for data analysis to accomplish industrial automation system integration with real-time monitor.

  16. Recognising safety critical events: can automatic video processing improve naturalistic data analyses?

    Science.gov (United States)

    Dozza, Marco; González, Nieves Pañeda

    2013-11-01

    New trends in research on traffic accidents include Naturalistic Driving Studies (NDS). NDS are based on large scale data collection of driver, vehicle, and environment information in real world. NDS data sets have proven to be extremely valuable for the analysis of safety critical events such as crashes and near crashes. However, finding safety critical events in NDS data is often difficult and time consuming. Safety critical events are currently identified using kinematic triggers, for instance searching for deceleration below a certain threshold signifying harsh braking. Due to the low sensitivity and specificity of this filtering procedure, manual review of video data is currently necessary to decide whether the events identified by the triggers are actually safety critical. Such reviewing procedure is based on subjective decisions, is expensive and time consuming, and often tedious for the analysts. Furthermore, since NDS data is exponentially growing over time, this reviewing procedure may not be viable anymore in the very near future. This study tested the hypothesis that automatic processing of driver video information could increase the correct classification of safety critical events from kinematic triggers in naturalistic driving data. Review of about 400 video sequences recorded from the events, collected by 100 Volvo cars in the euroFOT project, suggested that drivers' individual reaction may be the key to recognize safety critical events. In fact, whether an event is safety critical or not often depends on the individual driver. A few algorithms, able to automatically classify driver reaction from video data, have been compared. The results presented in this paper show that the state of the art subjective review procedures to identify safety critical events from NDS can benefit from automated objective video processing. In addition, this paper discusses the major challenges in making such video analysis viable for future NDS and new potential

  17. Transmissions in vehicles 2010

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Within the international VDI congress 'Gears in vehicles 2010' of the VDI Wissensforum GmbH (Duesseldorf, Federal Republic of Germany) between 22nd and 23rd June, 2010, in Friedrichshafen (Federal Republic of Germany), the following lectures were held: (1) 8HP70H - The moldhybrid transmission from ZF - Cjallenges and achievements (P. Gutmann); (2) GETRAG boosted range extender - A highly flexible electric powertrain for maximum CO{sub 2} reduction (S. Huepkes); (3) E-Transmission between full-hybrid and E-drive (P. Tenberge); (4) Reducing NO{sub x} and particulate emissions in electrified drivelines (R. Kuberczyk); (5) Simulation aided HEV and EV development: from the component to the whole powertrain (A. Gacometti); (6) Investigations on operating behaviour of the optimized CVT hybrid driveline (B.-R. Hoehn); (7) Customer-oriented dimensioning of electrified drivetrains (M. Eghtessad); (8) Decentralized optimal control strategy for parallel hybrid electric vehicles (A. Frenkel); (9) The new generation 6-speed automatic transmission AF40 (G. Bednarek); (10) Customized mechatronic solutions for integrated transmission control units (M. Wieczorek); (11) The optimal automatic transmission for front-transverse applications - Planetary transmissions or dual clutch transmissions? (G. Gumpoltsberger); (12) The new shift-by-wire gearshift lever for the Audi A8 - Requirements and concept (T. Guttenbergere); (13) The new shift-by-wire gearshift lever for the Audi A8 - Realization (A. Giefer); (14) Fuel-efficient transmissions of the future: Calculation of the efficiency factor for vehicle transmissions (B. Volpert); (15) HT-ACM: A new polymer generation for static and dynamic gearbox sealing solutions (E. Osen); (16) 'Energy efficiency equipped solutions by SKF' for power train applications - A contribution to CO{sub 2} - emission reduction and sustainability (T. Bobke); (17) 6-Ratio planetary shift transmission controlled by 4 external brakes, and design

  18. Asteroid taxonomic classifications

    International Nuclear Information System (INIS)

    Tholen, D.J.

    1989-01-01

    This paper reports on three taxonomic classification schemes developed and applied to the body of available color and albedo data. Asteroid taxonomic classifications according to two of these schemes are reproduced

  19. Transportation Modes Classification Using Sensors on Smartphones

    Directory of Open Access Journals (Sweden)

    Shih-Hau Fang

    2016-08-01

    Full Text Available This paper investigates the transportation and vehicular modes classification by using big data from smartphone sensors. The three types of sensors used in this paper include the accelerometer, magnetometer, and gyroscope. This study proposes improved features and uses three machine learning algorithms including decision trees, K-nearest neighbor, and support vector machine to classify the user’s transportation and vehicular modes. In the experiments, we discussed and compared the performance from different perspectives including the accuracy for both modes, the executive time, and the model size. Results show that the proposed features enhance the accuracy, in which the support vector machine provides the best performance in classification accuracy whereas it consumes the largest prediction time. This paper also investigates the vehicle classification mode and compares the results with that of the transportation modes.

  20. Convolutional Neural Network Achieves Human-level Accuracy in Music Genre Classification

    OpenAIRE

    Dong, Mingwen

    2018-01-01

    Music genre classification is one example of content-based analysis of music signals. Traditionally, human-engineered features were used to automatize this task and 61% accuracy has been achieved in the 10-genre classification. However, it's still below the 70% accuracy that humans could achieve in the same task. Here, we propose a new method that combines knowledge of human perception study in music genre classification and the neurophysiology of the auditory system. The method works by trai...

  1. Automatic keywording of High Energy Physics

    CERN Document Server

    Dallman, David Peter

    1999-01-01

    Bibliographic databases were developed from the traditional library card catalogue in order to enable users to access library documents via various types of bibliographic information, such as title, author, series or conference date. In addition these catalogues sometimes contained some form of indexation by subject, such as the Universal (or Dewey) Decimal Classification used for books. With the introduction of the eprint archives, set up by the High Energy Physics (HEP) Community in the early 90s, huge collections of documents in several fields have been made available on the World Wide Web. These developments however have not yet been followed up from a keywording point of view. We will see in this paper how important it is to attribute keywords to all documents in the area of HEP Grey Literature. As libraries are facing a future with less and less manpower available and more and more documents, we will explore the possibility of being helped by automatic classification software. We will specifically menti...

  2. Recycling of electrical motors by automatic disassembly

    Science.gov (United States)

    Karlsson, Björn; Järrhed, Jan-Ove

    2000-04-01

    This paper presents a robotized workstation for end-of-life treatment of electrical motors with an electrical effect of about 1 kW. These motors can, for example, be found in washing machines and in industry. There are two main steps in the work. The first step is an inspection whereby the functionality of the motor is checked and classification either for re-use or for disassembly is done. In the second step the motors classified for disassembly are disassembled in a robotized automatic station. In the initial step measurements are performed during a start-up sequence of about 1 s. By measuring the rotation speed and the current and voltage of the three phases of the motor classification for either reuse or disassembly can be done. During the disassembly work, vision data are fused in order to classify the motors according to their type. The vision system also feeds the control system of the robot with various object co-ordinates, to facilitate correct operation of the robot. Finally, tests with a vision system and eddy-current equipment are performed to decide whether all copper has been removed from the stator.

  3. Hand eczema classification

    DEFF Research Database (Denmark)

    Diepgen, T L; Andersen, Klaus Ejner; Brandao, F M

    2008-01-01

    of the disease is rarely evidence based, and a classification system for different subdiagnoses of hand eczema is not agreed upon. Randomized controlled trials investigating the treatment of hand eczema are called for. For this, as well as for clinical purposes, a generally accepted classification system...... A classification system for hand eczema is proposed. Conclusions It is suggested that this classification be used in clinical work and in clinical trials....

  4. Electric and hybrid vehicles

    Science.gov (United States)

    1979-01-01

    Report characterizes state-of-the-art electric and hybrid (combined electric and heat engine) vehicles. Performance data for representative number of these vehicles were obtained from track and dynamometer tests. User experience information was obtained from fleet operators and individual owners of electric vehicles. Data on performance and physical characteristics of large number of vehicles were obtained from manufacturers and available literature.

  5. Genome-Wide Comparative Gene Family Classification

    Science.gov (United States)

    Frech, Christian; Chen, Nansheng

    2010-01-01

    Correct classification of genes into gene families is important for understanding gene function and evolution. Although gene families of many species have been resolved both computationally and experimentally with high accuracy, gene family classification in most newly sequenced genomes has not been done with the same high standard. This project has been designed to develop a strategy to effectively and accurately classify gene families across genomes. We first examine and compare the performance of computer programs developed for automated gene family classification. We demonstrate that some programs, including the hierarchical average-linkage clustering algorithm MC-UPGMA and the popular Markov clustering algorithm TRIBE-MCL, can reconstruct manual curation of gene families accurately. However, their performance is highly sensitive to parameter setting, i.e. different gene families require different program parameters for correct resolution. To circumvent the problem of parameterization, we have developed a comparative strategy for gene family classification. This strategy takes advantage of existing curated gene families of reference species to find suitable parameters for classifying genes in related genomes. To demonstrate the effectiveness of this novel strategy, we use TRIBE-MCL to classify chemosensory and ABC transporter gene families in C. elegans and its four sister species. We conclude that fully automated programs can establish biologically accurate gene families if parameterized accordingly. Comparative gene family classification finds optimal parameters automatically, thus allowing rapid insights into gene families of newly sequenced species. PMID:20976221

  6. CLASSIFICATION BY USING MULTISPECTRAL POINT CLOUD DATA

    Directory of Open Access Journals (Sweden)

    C. T. Liao

    2012-07-01

    Full Text Available Remote sensing images are generally recorded in two-dimensional format containing multispectral information. Also, the semantic information is clearly visualized, which ground features can be better recognized and classified via supervised or unsupervised classification methods easily. Nevertheless, the shortcomings of multispectral images are highly depending on light conditions, and classification results lack of three-dimensional semantic information. On the other hand, LiDAR has become a main technology for acquiring high accuracy point cloud data. The advantages of LiDAR are high data acquisition rate, independent of light conditions and can directly produce three-dimensional coordinates. However, comparing with multispectral images, the disadvantage is multispectral information shortage, which remains a challenge in ground feature classification through massive point cloud data. Consequently, by combining the advantages of both LiDAR and multispectral images, point cloud data with three-dimensional coordinates and multispectral information can produce a integrate solution for point cloud classification. Therefore, this research acquires visible light and near infrared images, via close range photogrammetry, by matching images automatically through free online service for multispectral point cloud generation. Then, one can use three-dimensional affine coordinate transformation to compare the data increment. At last, the given threshold of height and color information is set as threshold in classification.

  7. Classification by Using Multispectral Point Cloud Data

    Science.gov (United States)

    Liao, C. T.; Huang, H. H.

    2012-07-01

    Remote sensing images are generally recorded in two-dimensional format containing multispectral information. Also, the semantic information is clearly visualized, which ground features can be better recognized and classified via supervised or unsupervised classification methods easily. Nevertheless, the shortcomings of multispectral images are highly depending on light conditions, and classification results lack of three-dimensional semantic information. On the other hand, LiDAR has become a main technology for acquiring high accuracy point cloud data. The advantages of LiDAR are high data acquisition rate, independent of light conditions and can directly produce three-dimensional coordinates. However, comparing with multispectral images, the disadvantage is multispectral information shortage, which remains a challenge in ground feature classification through massive point cloud data. Consequently, by combining the advantages of both LiDAR and multispectral images, point cloud data with three-dimensional coordinates and multispectral information can produce a integrate solution for point cloud classification. Therefore, this research acquires visible light and near infrared images, via close range photogrammetry, by matching images automatically through free online service for multispectral point cloud generation. Then, one can use three-dimensional affine coordinate transformation to compare the data increment. At last, the given threshold of height and color information is set as threshold in classification.

  8. Classification with support hyperplanes

    NARCIS (Netherlands)

    G.I. Nalbantov (Georgi); J.C. Bioch (Cor); P.J.F. Groenen (Patrick)

    2006-01-01

    textabstractA new classification method is proposed, called Support Hy- perplanes (SHs). To solve the binary classification task, SHs consider the set of all hyperplanes that do not make classification mistakes, referred to as semi-consistent hyperplanes. A test object is classified using

  9. Standard classification: Physics

    International Nuclear Information System (INIS)

    1977-01-01

    This is a draft standard classification of physics. The conception is based on the physics part of the systematic catalogue of the Bayerische Staatsbibliothek and on the classification given in standard textbooks. The ICSU-AB classification now used worldwide by physics information services was not taken into account. (BJ) [de

  10. Automatic visual inspection of metallic surfaces

    International Nuclear Information System (INIS)

    Pernkopf, F.

    2002-02-01

    This thesis is concerned with the objectives of automatic visual inspection of metallic surfaces and involves two major parts. The first part covers three different imaging techniques, gray-level intensity imaging, light sectioning, and photometric stereo. These imaging principles more or less strongly rely on the reflection property of the surface. Therefore, a reflection model for machine vision is introduced. The second part concentrates on the analysis of the gathered data in regard to the detection and classification of surface defects. Additionally, the evaluation of genetic algorithms with a novel encoding scheme and a large number of published sequential feature selection algorithms for selection of the subset of features achieving the best classification rate is included. The genetic algorithms and the adaptive sequential forward floating selection method achieve similar results in performance and computational efficiency. Finally, the results of feature selection and classification of 540 flaw images are presented, whereby different classification approaches such as parametric classifiers, the k-nearest-neighbor decision rule, the naive Bayes classifier, and the tree augmented naive Bayes classifier were compared. For learning the structure of the augmented naive Bayes network a new approach similar to the sequential floating algorithm is presented which achieves a higher classification accuracy than hill climbing search. Basically, the introduced techniques are applied to two fundamentally different applications, whereby the experimental results of both, inspection of high-precision surfaces such as bearing rolls and flaw detection on partially scale-covered steel blocks, are presented. For the inspection of bearing rolls, the surface reflectance properties are modeled and verified with optical experiments. The aim is to determine the optical arrangement for illumination and observation, where the contrast between errors and intact surface is maximized

  11. Dissimilarity Application in Digitized Mammographic Images Classification

    Directory of Open Access Journals (Sweden)

    Ubaldo Bottigli

    2006-06-01

    Full Text Available Purpose of this work is the development of an automatic classification system which could be useful for radiologists in the investigation of breast cancer. The software has been designed in the framework of the MAGIC-5 collaboration. In the traditional way of learning from examples of objects the classifiers are built in a feature space. However, an alternative ways can be found by constructing decision rules on dissimilarity (distance representations. In such a recognition process a new object is described by its distances to (a subset of the training samples. The use of the dissimilarities is especially of interest when features are difficult to obtain or when they have a little discriminative power. In the automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs. Each ROI is characterized by some features extracted from co-occurrence matrix containing spatial statistics information on ROI pixel grey tones. A dissimilarity representation of these features is made before the classification. A feed-forward neural network is employed to distinguish pathological records, from non-pathological ones by the new features. The results obtained in terms of sensitivity and specificity will be presented.

  12. Design, Modeling And Control Of Steering And Braking For An Urban Electric Vehicle

    OpenAIRE

    Maciua, Dragos

    1996-01-01

    This report describes research which involved the design modification, modeling and control of automatic steering and braking systems for an urban electric vehicle. The vehicle is equipped with four-wheel independent drive, four-wheel independent braking and four-wheel steering. Control algorithms were developed for steering and braking. Simulation results show the feasibility of the algorithms.

  13. Vehicle Based Vector Sensor

    Science.gov (United States)

    2015-09-28

    buoyant underwater vehicle with an interior space in which a length of said underwater vehicle is equal to one tenth of the acoustic wavelength...underwater vehicle with an interior space in which a length of said underwater vehicle is equal to one tenth of the acoustic wavelength; an...unmanned underwater vehicle that can function as an acoustic vector sensor. (2) Description of the Prior Art [0004] It is known that a propagating

  14. Classification of refrigerants; Classification des fluides frigorigenes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This document was made from the US standard ANSI/ASHRAE 34 published in 2001 and entitled 'designation and safety classification of refrigerants'. This classification allows to clearly organize in an international way the overall refrigerants used in the world thanks to a codification of the refrigerants in correspondence with their chemical composition. This note explains this codification: prefix, suffixes (hydrocarbons and derived fluids, azeotropic and non-azeotropic mixtures, various organic compounds, non-organic compounds), safety classification (toxicity, flammability, case of mixtures). (J.S.)

  15. Automatic EEG spike detection.

    Science.gov (United States)

    Harner, Richard

    2009-10-01

    Since the 1970s advances in science and technology during each succeeding decade have renewed the expectation of efficient, reliable automatic epileptiform spike detection (AESD). But even when reinforced with better, faster tools, clinically reliable unsupervised spike detection remains beyond our reach. Expert-selected spike parameters were the first and still most widely used for AESD. Thresholds for amplitude, duration, sharpness, rise-time, fall-time, after-coming slow waves, background frequency, and more have been used. It is still unclear which of these wave parameters are essential, beyond peak-peak amplitude and duration. Wavelet parameters are very appropriate to AESD but need to be combined with other parameters to achieve desired levels of spike detection efficiency. Artificial Neural Network (ANN) and expert-system methods may have reached peak efficiency. Support Vector Machine (SVM) technology focuses on outliers rather than centroids of spike and nonspike data clusters and should improve AESD efficiency. An exemplary spike/nonspike database is suggested as a tool for assessing parameters and methods for AESD and is available in CSV or Matlab formats from the author at brainvue@gmail.com. Exploratory Data Analysis (EDA) is presented as a graphic method for finding better spike parameters and for the step-wise evaluation of the spike detection process.

  16. Alternating-Current Motor Drive for Electric Vehicles

    Science.gov (United States)

    Krauthamer, S.; Rippel, W. E.

    1982-01-01

    New electric drive controls speed of a polyphase as motor by varying frequency of inverter output. Closed-loop current-sensing circuit automatically adjusts frequency of voltage-controlled oscillator that controls inverter frequency, to limit starting and accelerating surges. Efficient inverter and ac motor would give electric vehicles extra miles per battery charge.

  17. Classification, disease, and diagnosis.

    Science.gov (United States)

    Jutel, Annemarie

    2011-01-01

    Classification shapes medicine and guides its practice. Understanding classification must be part of the quest to better understand the social context and implications of diagnosis. Classifications are part of the human work that provides a foundation for the recognition and study of illness: deciding how the vast expanse of nature can be partitioned into meaningful chunks, stabilizing and structuring what is otherwise disordered. This article explores the aims of classification, their embodiment in medical diagnosis, and the historical traditions of medical classification. It provides a brief overview of the aims and principles of classification and their relevance to contemporary medicine. It also demonstrates how classifications operate as social framing devices that enable and disable communication, assert and refute authority, and are important items for sociological study.

  18. Statistical sampling method for releasing decontaminated vehicles

    International Nuclear Information System (INIS)

    Lively, J.W.; Ware, J.A.

    1996-01-01

    Earth moving vehicles (e.g., dump trucks, belly dumps) commonly haul radiologically contaminated materials from a site being remediated to a disposal site. Traditionally, each vehicle must be surveyed before being released. The logistical difficulties of implementing the traditional approach on a large scale demand that an alternative be devised. A statistical method (MIL-STD-105E, open-quotes Sampling Procedures and Tables for Inspection by Attributesclose quotes) for assessing product quality from a continuous process was adapted to the vehicle decontamination process. This method produced a sampling scheme that automatically compensates and accommodates fluctuating batch sizes and changing conditions without the need to modify or rectify the sampling scheme in the field. Vehicles are randomly selected (sampled) upon completion of the decontamination process to be surveyed for residual radioactive surface contamination. The frequency of sampling is based on the expected number of vehicles passing through the decontamination process in a given period and the confidence level desired. This process has been successfully used for 1 year at the former uranium mill site in Monticello, Utah (a CERCLA regulated clean-up site). The method forces improvement in the quality of the decontamination process and results in a lower likelihood that vehicles exceeding the surface contamination standards are offered for survey. Implementation of this statistical sampling method on Monticello Projects has resulted in more efficient processing of vehicles through decontamination and radiological release, saved hundreds of hours of processing time, provided a high level of confidence that release limits are met, and improved the radiological cleanliness of vehicles leaving the controlled site

  19. A Two-Level Sound Classification Platform for Environmental Monitoring

    Directory of Open Access Journals (Sweden)

    Stelios A. Mitilineos

    2018-01-01

    Full Text Available STORM is an ongoing European research project that aims at developing an integrated platform for monitoring, protecting, and managing cultural heritage sites through technical and organizational innovation. Part of the scheduled preventive actions for the protection of cultural heritage is the development of wireless acoustic sensor networks (WASNs that will be used for assessing the impact of human-generated activities as well as for monitoring potentially hazardous environmental phenomena. Collected sound samples will be forwarded to a central server where they will be automatically classified in a hierarchical manner; anthropogenic and environmental activity will be monitored, and stakeholders will be alarmed in the case of potential malevolent behavior or natural phenomena like excess rainfall, fire, gale, high tides, and waves. Herein, we present an integrated platform that includes sound sample denoising using wavelets, feature extraction from sound samples, Gaussian mixture modeling of these features, and a powerful two-layer neural network for automatic classification. We contribute to previous work by extending the proposed classification platform to perform low-level classification too, i.e., classify sounds to further subclasses that include airplane, car, and pistol sounds for the anthropogenic sound class; bird, dog, and snake sounds for the biophysical sound class; and fire, waterfall, and gale for the geophysical sound class. Classification results exhibit outstanding classification accuracy in both high-level and low-level classification thus demonstrating the feasibility of the proposed approach.

  20. Experiments in teleoperator and autonomous control of space robotic vehicles

    Science.gov (United States)

    Alexander, Harold L.

    1991-01-01

    A program of research embracing teleoperator and automatic navigational control of freely flying satellite robots is presented. Current research goals include: (1) developing visual operator interfaces for improved vehicle teleoperation; (2) determining the effects of different visual interface system designs on operator performance; and (3) achieving autonomous vision-based vehicle navigation and control. This research program combines virtual-environment teleoperation studies and neutral-buoyancy experiments using a space-robot simulator vehicle currently under development. Visual-interface design options under investigation include monoscopic versus stereoscopic displays and cameras, helmet-mounted versus panel-mounted display monitors, head-tracking versus fixed or manually steerable remote cameras, and the provision of vehicle-fixed visual cues, or markers, in the remote scene for improved sensing of vehicle position, orientation, and motion.