WorldWideScience

Sample records for automatic noninvasive measurement

  1. Automatic noninvasive measurement of systolic blood pressure using photoplethysmography

    Directory of Open Access Journals (Sweden)

    Glik Zehava

    2009-10-01

    Full Text Available Abstract Background Automatic measurement of arterial blood pressure is important, but the available commercial automatic blood pressure meters, mostly based on oscillometry, are of low accuracy. Methods In this study, we present a cuff-based technique for automatic measurement of systolic blood pressure, based on photoplethysmographic signals measured simultaneously in fingers of both hands. After inflating the pressure cuff to a level above systolic blood pressure in a relatively slow rate, it is slowly deflated. The cuff pressure for which the photoplethysmographic signal reappeared during the deflation of the pressure-cuff was taken as the systolic blood pressure. The algorithm for the detection of the photoplethysmographic signal involves: (1 determination of the time-segments in which the photoplethysmographic signal distal to the cuff is expected to appear, utilizing the photoplethysmographic signal in the free hand, and (2 discrimination between random fluctuations and photoplethysmographic pattern. The detected pulses in the time-segments were identified as photoplethysmographic pulses if they met two criteria, based on the pulse waveform and on the correlation between the signal in each segment and the signal in the two neighboring segments. Results Comparison of the photoplethysmographic-based automatic technique to sphygmomanometry, the reference standard, shows that the standard deviation of their differences was 3.7 mmHg. For subjects with systolic blood pressure above 130 mmHg the standard deviation was even lower, 2.9 mmHg. These values are much lower than the 8 mmHg value imposed by AAMI standard for automatic blood pressure meters. Conclusion The photoplethysmographic-based technique for automatic measurement of systolic blood pressure, and the algorithm which was presented in this study, seems to be accurate.

  2. [An automatic non-invasive method for the measurement of systolic, diastolic and mean blood pressure].

    Science.gov (United States)

    Morel, D; Suter, P

    1981-01-01

    A new automatic apparatus for the measurement of arterial pressure by a non-invasive technique was compared with direct intra-arterial measurement in 20 adult patients in a surgical intensive care unit. The apparatus works on the basis of the principle of oscillometry. Blood pressure is determined with a microprocessor by analysis of the amplitude of the oscillations produced by a cuff which is inflated then deflated automatically. Thus mean arterial pressure corresponds to the maximum amplitude. Systolic and diastolic pressures are deduced by extrapolation to zero of the amplitudes on either side of the maximum reading. Mean arterial pressure (AP) proved to be very reliable within the limits studied: 8.0 - 14.7 kPa (60 - 110 mmHg) with a difference in mean direct AP and indirect AP of 0,09 +/- 0.9 kPa SD (0.71 +/- 7 mmHg) and a coefficient of linear correlation between the two methods of r = 0.82. This non-invasive technique determined systolic arterial pressure (sAP) in a less reliable fashion than AP when compared with the invasive technique, with a tendency to flatten the extreme values. The correlation coefficient here was 0.68. Finally, diastolic arterial pressure (dAP) showed a better degree of agreement through with a difference in mean indirect AP and mean direct AP of 1.0 +/- 0.8 kPa (7.6 +/- 6.0 mmHg). These results indicate a good degree of agreement for measurements of mean arterial pressure, clinically the most important, between the two methods used. Measurements of diastolic pressure and above all of diastolic pressure seemed to be less in agreement. This difference could be due to an error in determination of the automatic apparatus tested or to the peripheral site (radial artery) of the intra-arterial catheter used, itself falsifying the humeral arterial pressure. PMID:6113805

  3. From Korotkoff and Marey to automatic non-invasive oscillometric blood pressure measurement: does easiness come with reliability?

    Science.gov (United States)

    Benmira, A; Perez-Martin, A; Schuster, I; Aichoun, I; Coudray, S; Bereksi-Reguig, F; Dauzat, M

    2016-01-01

    The auscultatory technique remains the point of reference for the validation of non-invasive blood pressure measurement devices, although the exact origin of the Korotkoff sounds is still debated and comparison with intra-arterial measurement shows limits and pitfalls. Automatic oscillometric devices are now widely used by nurses, physicians, and patients. However, many available devices have not been duly validated. Moreover, they calculate systolic and diastolic blood pressures using undisclosed algorithms. Therefore, these devices are not interchangeable, and their reliability may be questionable in some clinical situations. Nevertheless, oscillometry is increasingly used, beside NIBP, for the assessment of central blood pressure and systemic arterial wall stiffness. Awareness of its limits and causes of error is all the more necessary. PMID:26641026

  4. Non-invasive automatic blood pressure measurement with equivalent auscultation%等效听诊法无创自动测量血压计的提出

    Institute of Scientific and Technical Information of China (English)

    解良勤; 刘彦刚

    2012-01-01

    介绍两种无创自动测量血压计—听诊法(又称柯氏音法)血压计和示波法(又称振荡法)血压计的工作原理,指出导致测量准确度不理想的原因。通过仔细观察传统听诊器法水银血压计测量血压的过程,发现伴随着柯氏音响的同时,水银柱会抖动。可根据水银柱第一次抖动和最后一次抖动确定收缩压和舒张压的现象,认真分析提出了准确度能大幅提高的等效听诊法无创自动测量血压计。指出在现有示波法无创自动测量血压计的基础上,实现等效听诊法无创自动测量血压计,不仅完全可行,而且非常简易。%In this paper, the authors described the existing two non-invasive automatic methods for blood pressure measurements of auscultation blood pressure measurement and oscillography blood pressure measurement and explored the cause for its inaccurate measurement. Through the observation of measuring the blood pressure with tradition mercury blood pressure measurement process, we found that mercury wobbled with sound. According to the first jitter sure systolic blood pressure and the last time jitter sure diastolic blood pressure, we concluded that we can greatly improve the accuracy of non-invasive automatic measure blood pressure measurement with equivalent auscultation. Based on the existing methods, non-invasive automatic measure blood pressure measurement with equivalent auscultation is simple and feasible.

  5. Cell Processing Engineering for Regenerative Medicine : Noninvasive Cell Quality Estimation and Automatic Cell Processing.

    Science.gov (United States)

    Takagi, Mutsumi

    2016-01-01

    The cell processing engineering including automatic cell processing and noninvasive cell quality estimation of adherent mammalian cells for regenerative medicine was reviewed. Automatic cell processing necessary for the industrialization of regenerative medicine was introduced. The cell quality such as cell heterogeneity should be noninvasively estimated before transplantation to patient, because cultured cells are usually not homogeneous but heterogeneous and most protocols of regenerative medicine are autologous system. The differentiation level could be estimated by two-dimensional cell morphology analysis using a conventional phase-contrast microscope. The phase-shifting laser microscope (PLM) could determine laser phase shift at all pixel in a view, which is caused by the transmitted laser through cell, and might be more noninvasive and more useful than the atomic force microscope and digital holographic microscope. The noninvasive determination of the laser phase shift of a cell using a PLM was carried out to determine the three-dimensional cell morphology and estimate the cell cycle phase of each adhesive cell and the mean proliferation activity of a cell population. The noninvasive discrimination of cancer cells from normal cells by measuring the phase shift was performed based on the difference in cytoskeleton density. Chemical analysis of the culture supernatant was also useful to estimate the differentiation level of a cell population. A probe beam, an infrared beam, and Raman spectroscopy are useful for diagnosing the viability, apoptosis, and differentiation of each adhesive cell. PMID:25373455

  6. Non-invasive physiological measurements

    International Nuclear Information System (INIS)

    This book discusses the diagnostic techniques of nondestructive type for monitoring the physiology of various organ systems. The topics covered are: non-invasive assessment of gastric activity; uterine activity, intestinal activity; monitoring of fetal cardiovascular system and bilirubin physiology of infants. Respiratory system of infants is monitored and ultrasonography of heart is discussed

  7. Non-Invasive Optical Blood Glucose Measurement

    Directory of Open Access Journals (Sweden)

    Megha C.Pande

    2013-07-01

    Full Text Available The method for noninvasively blood glucose monitoring system is discussed in this paper. Lot of research work has been done in developing the device which is completely noninvasive to avoid the pros & cons because of frequent pricking. In this paper we are trying to analyze the noninvasive blood glucose measurement study in the near infrared region which is the most suitable region for blood glucose measurement. For this purpose we use a technique which is similar to pulseoximetry based on near infrared spectrometry .An infrared light of particular wavelength is passed through fingertip containing an arterial pulse component are derived,thus minimizing influences of basal components such as resting blood volume,skin, muscle and bone.

  8. Noninvasive measurement of eye retraction during blinking

    OpenAIRE

    Mas Candela, David; Doménech Amigot, Begoña; Espinosa Tomás, Julián; Pérez Rodríguez, Jorge; Hernández Poveda, Consuelo; Illueca Contri, Carlos

    2010-01-01

    We present a noninvasive technique for high-speed measuring of eye retraction and eyelid position during blinking. The anterior chamber of the eye is illuminated by the slit lamp of a biomicroscope and eye dynamics during a blinking sequence are captured with a high-speed camera working at 500 frames per second. Digital image processing allows quantitative analysis of cornea and eyelid positions during the closing and opening phases of the blinking process. Our method allows simultaneous meas...

  9. Noninvasive blood pressure measurement in large vessels

    International Nuclear Information System (INIS)

    Pulse pressure in the aorta was evaluated by the measurement of pulse wave velocity (PWV) and blood flow velocity (BFV). PWV reflects the elasticity of the vessel and was determined by a time-of-flight method. BFV was measured by analyzing the change of magnetization decay due to flow in multiecho experiments. If one neglects pulse wave reflections at vascular branch points and flow resistance due to blood viscosity, pulse pressure is proportional to PWV and BFV. Noninvasive MR imaging measurements were obtained in 12 patients, all of whom underwent correlative arterial catheterization. Values varied between 35 and 100 mm Hg. The results demonstrated a high correlation between the two methods

  10. The Automatic Measurement of Targets

    DEFF Research Database (Denmark)

    Höhle, Joachim

    1997-01-01

    The automatic measurement of targets is demonstrated by means of a theoretical example and by an interactive measuring program for real imagery from a réseau camera. The used strategy is a combination of two methods: the maximum correlation coefficient and the correlation in the subpixel range. F...... interactive software is also part of a computer-assisted learning program on digital photogrammetry....

  11. Noninvasive measurement of pulmonary blood volume

    International Nuclear Information System (INIS)

    In noninvasive estimation of pulmonary blood volume by radionuclide-angiocardiography, a formula was derived from experiments with heart-lung model, and in vivo experiments PBV = CO x PPT x 0.77. The pulmonary blood volume estimated clinically by this formula was in good agreement with the results obtained invasively before. The compliance (δV/δP) of the pulmonary ''venous'' system was calculated by simultaneous measurement of pressure changes in lung field on leg elevation and changes in pulmonary arterial wedge pressure with Swan-Ganz catheter. The compliances which were calculated in 35 cases of heart diseases by this method were in a considerably good agreement with those which were assessed by analysis of a pulmonary arterial wedge pressure tracing. (Ueda, J.)

  12. Noninvasive ambulatory measurement system of cardiac activity.

    Science.gov (United States)

    Pino, Esteban J; Chavez, Javier A P; Aqueveque, Pablo

    2015-08-01

    This work implements a noninvasive system that measures the movements caused by cardiac activity. It uses unobtrusive Electro-Mechanical Films (EMFi) on the seat and on the backrest of a regular chair. The system detects ballistocardiogram (BCG) and respiration movements. Real data was obtained from 54 volunteers. 19 of them were measured in the laboratory and 35 in a hospital waiting room. Using a BIOPAC acquisition system, the ECG was measured simultaneously to the BCG for comparison. Wavelet Transform (WT) is a better option than Empirical Mode Decomposition (EMD) for signal extraction and produces higher effective measurement time. In the laboratory, the best results are obtained on the seat. The correlation index was 0.9800 and the Bland-Altman limits of agreement were 0.7136 ± 4.3673 [BPM]. In the hospital waiting room, the best results are also from the seat sensor. The correlation index was 0.9840, and the limits of agreement were 0.4386 ± 3.5884 [BPM]. The system is able to measure BCG in an unobtrusive way and determine the cardiac frequency with high precision. It is simple to use, which means the system can easily be used in non-standard settings: resting in a chair or couch, at the gym, schools or in a hospital waiting room, as shown. PMID:26738057

  13. Automatic blood pressure measuring system (M092)

    Science.gov (United States)

    Nolte, R. W.

    1977-01-01

    The Blood Pressure Measuring System is described. It measures blood pressure by the noninvasive Korotkoff sound technique on a continual basis as physical stress is imposed during experiment M092, Lower Body Negative Pressure, and experiment M171, Metabolic Activity.

  14. Noninvasive measurement of human ascending colon volume

    International Nuclear Information System (INIS)

    The capacitance and motor functions of the colon are important determinants of its overall function. A simple, noninvasive method to quantify regional colonic volume is required for further physiologic and pharmacologic studies. Our aim was to determine whether measurements of human ascending colon (AC) volume using two-dimensional (2-D) images are as accurate as estimates using three-dimensional (3-D) images. Five healthy male volunteers each ingested a methacrylate-coated capsule containing 99Tcm-labelled Amberlite pellets. Two- and 3-D images were obtained using a gamma camera with single photon emission computed tomography (SPECT) capability. Ascending colon volume was estimated by a variable region of interest (VROI) program and by full-width half-maximum (FWHM) analysis, and results were compared to the volume estimates by SPECT. Full-width half-maximum analysis yielded volume estimates that were not significantly different from SPECT whereas VROI estimates were significantly different from volume measurements by SPECT and, hence, considered less accurate. Thus, the less expensive and more easily available planar imaging technique with analysis by FWHM estimates AC volume as accurately as SPECT. (Author)

  15. Numerical simulation of noninvasive blood pressure measurement.

    Science.gov (United States)

    Hayashi, Satoru; Hayase, Toshiyuki; Shirai, Atsushi; Maruyama, Masaru

    2006-10-01

    In this paper, a simulation model based on the partially pressurized collapsible tube model for reproducing noninvasive blood pressure measurement is presented. The model consists of a collapsible tube, which models the pressurized part of the artery, rigid pipes connected to the collapsible tube, which model proximal and distal region far from the pressurized part, and the Windkessel model, which represents the capacitance and the resistance of the distal part of the circulation. The blood flow is simplified to a one-dimensional system. Collapse and expansion of the tube is represented by the change in the cross-sectional area of the tube considering the force balance acting on the tube membrane in the direction normal to the tube axis. They are solved using the Runge-Kutta method. This simple model can easily reproduce the oscillation of inner fluid and corresponding tube collapse typical for the Korotkoff sounds generated by the cuff pressure. The numerical result is compared with the experiment and shows good agreement. PMID:16995754

  16. Extensometer automatically measures elongation in elastomers

    Science.gov (United States)

    Hooper, C. D.

    1966-01-01

    Extensometer, with a calibrated shaft, measures the elongation of elastomers and automatically records this distance on a chart. It is adaptable to almost any tensile testing machine and is fabricated at a relatively low cost.

  17. Arterial compliance measurement using a noninvasive laser Doppler measurement system

    Science.gov (United States)

    Hast, Jukka T.; Myllylae, Risto A.; Sorvoja, Hannu; Nissilae, Seppo M.

    2000-11-01

    The aim of this study was to study the elasticity of the arterial wall using a non-invasive laser Doppler measurement system. The elasticity of the arterial wall is described by its compliance factor, which can be determined when both blood pressure and the radial velocity of the arterial wall are known. To measure radical velocity we used a self- mixing interferometer. The compliance factors were measured from six healthy volunteers, whose ages were varied from 21 to 32. Although a single volunteer's compliance factor is presented as an example, this paper treated the volunteers as a group. First, the elastic modulus, which is inversely proportional to the compliance factor, was determined. Then, an exponential curve was fitted into the measured data and a characteristic equation for the elastic modulus of the arterial wall was determined. The elastic modulus was calculated at different pressures and the results were compared to the static incremental modulus of a dog's femoral artery. The results indicate that there is a correlation between human elastic and canine static incremental modulus for blood pressures varying from 60 to 110 mmHg.

  18. Automatic Measurement of Venous Pressure Using B-Mode Ultrasound.

    Science.gov (United States)

    Crimi, Alessandro; Makhinya, Maxim; Baumann, Ulrich; Thalhammer, Christoph; Szekely, Gabor; Goksel, Orcun

    2016-02-01

    Central venous pressure (CVP) information is crucial in clinical situations, such as cardiac failure, intravascular volume overload, and sepsis. The measurement of CVP, however, requires the catheterization of vena cava through the subclavian or internal jugular veins, which is an impractical and costly procedure with related risk of complications. Peripheral venous pressure (PVP), which correlates with CVP under certain patient positioning, can be measured noninvasively using ultrasound via controlled compressions of a superficial vein. This paper presents an automatic system for acquiring such noninvasive measurements. Robust signal and image processing techniques developed for this purpose are introduced in this paper. The proposed standalone mobile platform collects images in real time from the display output of any ultrasound machine, meanwhile measuring the pressure on the skin underneath the ultrasound transducer via a liquid-filled pouch. The image and pressure data are synchronized through an automated temporal calibration procedure. During forearm compressions, blood vessels are detected and tracked in the images using robust geometric (ellipse) models, the parameters of which are used further in the model-based estimation of PVP. The proposed system was tested in 56 image sequences on 14 healthy volunteers, and was shown to achieve measurements with errors comparable to or lower than the interoperator variability of expert manual assessments. PMID:26186764

  19. Noninvasive Temperature Measurement Based on Microwave Temperature Sensor

    OpenAIRE

    Shoucheng Ding

    2013-01-01

    In this study, we have a research of the noninvasive temperature measurement based on microwave temperature sensor. Moreover, in order to solve the surface temperature measurement for designing microwave temperature sensor, the microwave was issued by the transmitting antenna. Microwave encountered by the measured object to return back to the measured object and then convert it into electrical signals, the use of the quantitative relationship between this signal and input noise temperature to...

  20. Non-invasive fluid density and viscosity measurement

    Science.gov (United States)

    Sinha, Dipen N.

    2012-05-01

    The noninvasively measurement of the density and viscosity of static or flowing fluids in a section of pipe such that the pipe performs as the sensing apparatus, is described. Measurement of a suitable structural vibration resonance frequency of the pipe and the width of this resonance permits the density and viscosity to be determined, respectively. The viscosity may also be measured by monitoring the decay in time of a vibration resonance in the pipe.

  1. Measuring Intracranial Pressure And Volume Noninvasively

    Science.gov (United States)

    Cantrell, John H.; Yost, William T.

    1994-01-01

    Ultrasonic technique eliminates need to drill into brain cavity. Intracranial dynamics instrument probes cranium ultrasonically to obtain data for determination of intracranial pressure (ICP) and pressure-volume index (PVI). Instrument determines sensitivity of skull to changes in pressure and by use of mechanical device to exert external calibrated pressure on skull. By monitoring volume of blood flowing into jugular vein, one determines change of volume of blood in cranial system. By measuring response of skull to increasing pressure (where pressure increased by tilting patient known amount) and by using cranial blood pressure, one determines intial pressure in cerebrospinal fluid. Once PVI determined, ICP determined.

  2. The Lick-Gaertner automatic measuring system

    Science.gov (United States)

    Vasilevskis, S.; Popov, W. A.

    1971-01-01

    The Lick-Gaertner automatic equipment has been designed mainly for the measurement of stellar proper motions with reference to galaxies, and consists of two main components: the survey machine and the automatic measuring engine. The survey machine is used for initial inspection and selection of objects for subsequent measurement. Two plates, up to 17 x 17 inches each, are surveyed simultaneously by means of projection on a screen. The approximate positions of objects selected are measured by two optical screws: helical lines cut through an aluminum coating on glass cylinders. These approximate coordinates to a precision of the order of 0.03mm are transmitted to a card punch by encoders connected with the cylinders.

  3. Automatic measurement of axial length of human eye using three-dimensional magnetic resonance imaging

    International Nuclear Information System (INIS)

    The measurement of axial length and the evaluation of three dimensional (3D) form of an eye are essential to evaluate the mechanism of myopia progression. We propose a method of automatic measurement of axial length including adjustment of the pulse sequence of short-term scan which could suppress influence of eyeblink, using a magnetic resonance imaging (MRI) which acquires 3D images noninvasively. Acquiring T2-weighted images with 3.0 tesla MRI device and eight-channel phased-array head coil, we extracted left and right eye ball images, and then reconstructed 3D volume. The surface coordinates were calculated from 3D volume, fitting the ellipsoid model coordinates with the surface coordinates, and measured the axial length automatically. Measuring twenty one subjects, we compared the automatically measured values of axial length with the manually measured ones, then confirmed significant elongation in the axial length of myopia compared with that of emmetropia. Furthermore, there were no significant differences (P<0.05) between the means of automatic measurements and the manual ones. Accordingly, the automatic measurement process of axial length could be a tool for the elucidation of the mechanism of myopia progression, which would be suitable for evaluating the axial length easily and noninvasively. (author)

  4. Automatic Lumbar Spondylolisthesis Measurement in CT Images.

    Science.gov (United States)

    Liao, Shu; Zhan, Yiqiang; Dong, Zhongxing; Yan, Ruyi; Gong, Liyan; Zhou, Xiang Sean; Salganicoff, Marcos; Fei, Jun

    2016-07-01

    Lumbar spondylolisthesis is one of the most common spinal diseases. It is caused by the anterior shift of a lumbar vertebrae relative to subjacent vertebrae. In current clinical practices, staging of spondylolisthesis is often conducted in a qualitative way. Although meyerding grading opens the door to stage spondylolisthesis in a more quantitative way, it relies on the manual measurement, which is time consuming and irreproducible. Thus, an automatic measurement algorithm becomes desirable for spondylolisthesis diagnosis and staging. However, there are two challenges. 1) Accurate detection of the most anterior and posterior points on the superior and inferior surfaces of each lumbar vertebrae. Due to the small size of the vertebrae, slight errors of detection may lead to significant measurement errors, hence, wrong disease stages. 2) Automatic localize and label each lumbar vertebrae is required to provide the semantic meaning of the measurement. It is difficult since different lumbar vertebraes have high similarity of both shape and image appearance. To resolve these challenges, a new auto measurement framework is proposed with two major contributions: First, a learning based spine labeling method that integrates both the image appearance and spine geometry information is designed to detect lumbar vertebrae. Second, a hierarchical method using both the population information from atlases and domain-specific information in the target image is proposed for most anterior and posterior points positioning. Validated on 258 CT spondylolisthesis patients, our method shows very similar results to manual measurements by radiologists and significantly increases the measurement efficiency. PMID:26849859

  5. Automatic crack length measurement, inductive and videoelectronic

    International Nuclear Information System (INIS)

    Tracking of crack propagation with a small fault of less than 2% is permitted by two recently developed methods. Because of the direct manner of crack inspection, the video-electronic method has the advantage over the inductive measurement, although with a scanning frequency given by television control, only relatively small crack velocities as compared with the inductive method can be detected with sufficient accuracy. Because of strong material contraction at the crack top with both methods, minor measurement adulterations may arise. The equipment causes relatively low costs during operation. Both methods enable fully automatic evaluation and control of the experiment. (orig.)

  6. Invasive and non-invasive methods for cardiac output measurement

    Directory of Open Access Journals (Sweden)

    Lavdaniti M.

    2008-01-01

    Full Text Available The hemodynamic status monitoring of high-risk surgical patients and critically ill patients inIntensive Care Units is one of the main objectives of their therapeutic management. Cardiac output is one of the mostimportant parameters for cardiac function monitoring, providing an estimate of whole body perfusion oxygen deliveryand allowing for an understanding of the causes of high blood pressure. The purpose of the present review is thedescription of cardiac output measurement methods as presented in the international literature. The articles documentthat there are many methods of monitoring the hemodynamic status of patients, both invasive and non-invasive, themost popular of which is thermodilution. The invasive methods are the Fick method and thermodilution, whereasthe non-invasive methods are oeshophaegeal Doppler, transoesophageal echocardiography, lithium dilution, pulsecontour, partial CO2 rebreathing and thoracic electrical bioimpedance. All of them have their advantages and disadvantages,but thermodilution is the golden standard for critical patients, although it does entail many risks. The idealsystem for cardiac output monitoring would be non-invasive, easy to use, reliable and compatible in patients. A numberof research studies have been carried out in clinical care settings, by nurses as well as other health professionals, for thepurpose of finding a method of measurement that would have the least disadvantages. Nevertheless, the thermodilutiontechnique remains the most common approach in use today.

  7. Accuracy of noninvasive breath methane measurements using Fourier transform infrared methods on individual cows

    DEFF Research Database (Denmark)

    Lassen, Jan; Løvendahl, Peter; Madsen, Jørgen

    2012-01-01

    was used as a derived measure with the idea of using CO2 in breath as a tracer gas to quantify the production of methane. Methane production records were analyzed with a mixed model, containing cow as random effect. Fixed effects of milk yield and daily intake of the total mixed ration and......Individual methane (CH4) production was recorded repeatedly on 93 dairy cows during milking in an automatic milking system (AMS), with the aim of estimating individual cow differences in CH4 production. Methane and CO2 were measured with a portable air sampler and analyzer unit based on Fourier...... results from this study suggest that the CH4-to-CO2 ratio measured using the noninvasive method is an asset of the individual cow and may be useful in both management and genetic evaluations...

  8. An automatic measuring system of internal friction at low frequency

    International Nuclear Information System (INIS)

    An inverted torsion pendulum is automatized by means of Tectanel electronic system. Internal friction and the period of vibration are measured fully automatically as a function of temperature and the data obtained are analysed with a computer. (Author)

  9. Near-infrared spectral methods for noninvasively measuring blood glucose

    Science.gov (United States)

    Fei, Sun; Kong, Deyi; Mei, Tao; Tao, Yongchun

    2004-05-01

    Determination of blood glucose concentrations in diabetic patients is a frequently occurring procedure and an important tool for diabetes management. Use of noninvasive detection techniques can relieve patients from the pain of frequent finger pokes and avoid the infection of disease via blood. This thesis discusses current research and analyzes the advantages and shortages of different measurement methods, including: optical methods (Transmission, Polarimetry and scattering), then, we give emphasis to analyze the technology of near-infrared (NIR) spectra. NIR spectral range 700 nm ~2300 nm was used because of its good transparency for biological tissue and presence of glucose absorption band. In this work, we present an outline of noninvasive blood glucose measurement. A near-infrared light beam is passed through the finger, and the spectral components of the emergent beam are measured using spectroscopic techniques. The device includes light sources having the wavelengths of 600 nm - 1800 nm to illuminate the tissue. Receptors associated with the light sources for receiving light and generating a transmission signal representing the light transmitted are also provided. Once a transmission signal is received by receptors, and the high and low values from each of the signals are stored in the device. The averaged values are then analyzed to determine the glucose concentration, which is displayed on the device.

  10. Minimally invasive or noninvasive cardiac output measurement: an update.

    Science.gov (United States)

    Sangkum, Lisa; Liu, Geoffrey L; Yu, Ling; Yan, Hong; Kaye, Alan D; Liu, Henry

    2016-06-01

    Although cardiac output (CO) by pulmonary artery catheterization (PAC) has been an important guideline in clinical management for more than four decades, some studies have questioned the clinical efficacy of CO in certain patient populations. Further, the use of CO by PAC has been linked to numerous complications including dysrhythmia, infection, rupture of pulmonary artery, injury to adjacent arteries, embolization, pulmonary infarction, cardiac valvular damage, pericardial effusion, and intracardiac catheter knotting. The use of PAC has been steadily declining over the past two decades. Minimally invasive and noninvasive CO monitoring have been studied in the past two decades with some evidence of efficacy. Several different devices based on pulse contour analysis are available currently, including the uncalibrated FloTrac/Vigileo system and the calibrated PiCCO and LiDCO systems. The pressure-recording analytical method (PRAM) system requires only an arterial line and is commercially available as the MostCare system. Transesophageal echocardiography (TEE) can measure CO by non-Doppler- or Doppler-based methods. The partial CO2 rebreathing technique, another method to measure CO, is marketed by Novametrix Medical Systems as the NICO system. Thoracic electrical bioimpedance (TEB) and electric bioreactance (EB) are totally noninvasive CO monitoring. Nexfin HD and the newer ClearSight systems are examples of noninvasive CO monitoring devices currently being marketed by Edwards Lifesciences. The developing focus in CO monitoring devices appears to be shifting to tissue perfusion and microcirculatory flow and aimed more at markers that indicate the effectiveness of circulatory and microcirculatory resuscitations. PMID:26961819

  11. Noninvasive thickness measurements of metal films through microwave dielectric resonators

    Science.gov (United States)

    Jung, Ho Sang; Lee, Jae Hun; Han, Hyun Kyung; Lee, Sang Young

    2016-05-01

    Thicknesses of Pt films ranging from 60 to 950 nm are measured noninvasively using a TE 011-mode dielectric resonator with the resonant frequency of 8.5 - 9.8 GHz at temperatures of 77 K and 293 K. A cylindrical rutile rod is used as the dielectric, with a high- T C superconductive YBa2Cu3O7- δ film used as the bottom endplate of the resonator for measurements at 77 K. This method is based on two facts: i) Due to the electromagnetic interferences of incoming and reflected waves at the surface of the metal film surface, the effective surface resistance varies with the film thickness, and ii) the intrinsic surface resistance of normal metals is equal to the intrinsic surface reactance in the local limit. The measured thicknesses using the rutile resonator appear to be comparable with those obtained using a profilometer. [Figure not available: see fulltext.

  12. Noninvasive measurements of carotenoids in bovine udder by reflection spectroscopy

    Science.gov (United States)

    Klein, Julia; Darvin, Maxim E.; Müller, Kerstin E.; Lademann, Jürgen

    2012-10-01

    For a long time, the antioxidative status in cattle has been discussed as an indicator for stress conditions resulting from disease or exertion. Until now, invasive approaches have been necessary to obtain blood samples or biopsy materials and gain insights into the antioxidative status of cattle. Due to these efforts and the costs of the analyses, serial sampling is feasible in an experimental setting, but not for measurements on a routine basis. The present study focuses on the feasibility of an innovative, noninvasive spectroscopic technique that allows in vivo measurements of carotenoids in the skin by reflection spectroscopy. To this end, in a first trial, repeated measurements of the carotenoid concentration of the udder skin were performed on 25 healthy cattle from different breeds. Carotenoid concentrations showed highly significant differences between individual animals (Ptest) differed significantly (P<0.005), with higher concentrations observed in robust cows.

  13. EZ: A Tool For Automatic Redshift Measurement

    Science.gov (United States)

    Garilli, B.; Fumana, M.; Franzetti, P.; Paioro, L.; Scodeggio, M.; Le Fèvre, O.; Paltani, S.; Scaramella, R.

    2010-07-01

    We present EZ (Easy redshift), a tool we have developed within the VVDS project to help in redshift measurement from optical spectra. EZ has been designed with large spectroscopic surveys in mind, and in its development particular care has been given to the reliability of the results obtained in an automatic and unsupervised mode. Nevertheless, the possibility of running it interactively has been preserved, and a graphical user interface for results inspection has been designed. EZ has been successfully used within the VVDS project, as well as the zCosmos one. In this article we describe its architecture and the algorithms used, and evaluate its performances both on simulated and real data. EZ is an open-source program, freely downloadable from the Pandora Web Site.1

  14. Automatic scanning and measuring using POLLY

    International Nuclear Information System (INIS)

    The HPD and PEPR automatic measuring systems, which have been described by B. Powell and I. Pless at this conference, were developed in the 1960's to be used for what would now be called open-quotes batch processing.close quotes That is, an entire reel of bubble chamber film containing interesting events whose tracks had been rough-digitized would be processed in an extended run by a dedicated computer/precision digitizer hardware system, with no human intervention. Then, at a later time, events for which the precision measurement did not appear to be successful would be handled with some type of open-quotes fixupclose quotes station or process. By contrast, the POLLY system included from the start, not only a computer and a precision CRT measuring device, but also a human operator who could have convenient two-way interactions with the computer and could also view the picture directly. Inclusion of a human as a key part of the system had some important beneficial effects, as has been described in the original papers. In this note the author summarizes those effects, and also points out connections between the POLLY system philosophy and subsequent developments in both high energy physics data analysis and computing systems

  15. Noninvasive Temperature Measurement Based on Microwave Temperature Sensor

    Directory of Open Access Journals (Sweden)

    Shoucheng Ding

    2013-01-01

    Full Text Available In this study, we have a research of the noninvasive temperature measurement based on microwave temperature sensor. Moreover, in order to solve the surface temperature measurement for designing microwave temperature sensor, the microwave was issued by the transmitting antenna. Microwave encountered by the measured object to return back to the measured object and then convert it into electrical signals, the use of the quantitative relationship between this signal and input noise temperature to real-time calibration. In order to calculate the antenna brightness temperature and then after signal conditioning circuit, which can show the temperature value, in order to achieve the detection of microwave temperature. Microwave-temperature measurement system hardware based on 89C51 microcontroller consists of the microwave temperature sensor, signal conditioning circuitry and chip control circuit, AD converter circuit and display circuit. The system software is by the main program, the AD conversion routines, subroutines and delay subprogram. The microwave temperature measurement characterize has: without gain fluctuations, without the impact of changes in the noise of the machine, to provide continuous calibration, wide dynamic range.

  16. Noninvasive porosity measurement of biconvex tablets using terahertz pulses.

    Science.gov (United States)

    Bawuah, Prince; Ervasti, Tuomas; Tan, Nicholas; Zeitler, J Axel; Ketolainen, Jarkko; Peiponen, Kai-Erik

    2016-07-25

    Biconvex pharmaceutical microcrystalline cellulose (MCC) compacts were investigated by the detection of terahertz (THz) pulse delay in the transmission measurement mode. The dimensions of the tablets were kept as constants but the porosity was a priori known variable. It is shown that the porosity of the biconvex compact has a linear correlation with the THz pulse delay. By constructing a calibration line between these two parameters (i.e. porosity and THz pulse delay), it is possible to non-invasively detect porosity of biconvex tablets. We suggest that this preliminary study could be the starting point of in-depth future studies on the screening of porosity and related properties of real biconvex pharmaceutical tablets using terahertz sensing techniques. PMID:27289013

  17. Automatic measurement and representation of prosodic features

    Science.gov (United States)

    Ying, Goangshiuan Shawn

    Effective measurement and representation of prosodic features of the acoustic signal for use in automatic speech recognition and understanding systems is the goal of this work. Prosodic features-stress, duration, and intonation-are variations of the acoustic signal whose domains are beyond the boundaries of each individual phonetic segment. Listeners perceive prosodic features through a complex combination of acoustic correlates such as intensity, duration, and fundamental frequency (F0). We have developed new tools to measure F0 and intensity features. We apply a probabilistic global error correction routine to an Average Magnitude Difference Function (AMDF) pitch detector. A new short-term frequency-domain Teager energy algorithm is used to measure the energy of a speech signal. We have conducted a series of experiments performing lexical stress detection on words in continuous English speech from two speech corpora. We have experimented with two different approaches, a segment-based approach and a rhythm unit-based approach, in lexical stress detection. The first approach uses pattern recognition with energy- and duration-based measurements as features to build Bayesian classifiers to detect the stress level of a vowel segment. In the second approach we define rhythm unit and use only the F0-based measurement and a scoring system to determine the stressed segment in the rhythm unit. A duration-based segmentation routine was developed to break polysyllabic words into rhythm units. The long-term goal of this work is to develop a system that can effectively detect the stress pattern for each word in continuous speech utterances. Stress information will be integrated as a constraint for pruning the word hypotheses in a word recognition system based on hidden Markov models.

  18. Automaticity of walking: functional significance, mechanisms, measurement and rehabilitation strategies

    Directory of Open Access Journals (Sweden)

    David J Clark

    2015-05-01

    Full Text Available Automaticity is a hallmark feature of walking in adults who are healthy and well-functioning. In the context of walking, ‘automaticity’ refers to the ability of the nervous system to successfully control typical steady state walking with minimal use of attention-demanding executive control resources. Converging lines of evidence indicate that walking deficits and disorders are characterized in part by a shift in the locomotor control strategy from healthy automaticity to compensatory executive control. This is potentially detrimental to walking performance, as an executive control strategy is not optimized for locomotor control. Furthermore, it places excessive demands on a limited pool of executive reserves. The result is compromised ability to perform basic and complex walking tasks and heightened risk for adverse mobility outcomes including falls. Strategies for rehabilitation of automaticity are not well defined, which is due to both a lack of systematic research into the causes of impaired automaticity and to a lack of robust neurophysiological assessments by which to gauge automaticity. These gaps in knowledge are concerning given the serious functional implications of compromised automaticity. Therefore, the objective of this article is to advance the science of automaticity of walking by consolidating evidence and identifying gaps in knowledge regarding: a functional significance of automaticity; b neurophysiology of automaticity; c measurement of automaticity; d mechanistic factors that compromise automaticity; and e strategies for rehabilitation of automaticity.

  19. Study on optical measurement conditions for noninvasive blood glucose sensing

    Science.gov (United States)

    Xu, Kexin; Chen, Wenliang; Jiang, Jingying; Qiu, Qingjun

    2004-05-01

    Utilizing Near-infrared Spectroscopy for non-invasive glucose concentration sensing has been a focusing topic in biomedical optics applications. In this paper study on measuring conditions of spectroscopy on human body is carried out and a series of experiments on glucose concentration sensing are conducted. First, Monte Carlo method is applied to simulate and calculate photons" penetration depth within skin tissues at 1600 nm. The simulation results indicate that applying our designed optical probe, the detected photons can penetrate epidermis of the palm and meet the glucose sensing requirements within the dermis. Second, we analyze the influence of the measured position variations and the contact pressure between the optical fiber probe and the measured position on the measured spectrum during spectroscopic measurement of a human body. And, a measurement conditions reproduction system is introduced to enhance the measurement repeatability. Furthermore, through a series of transmittance experiments on glucose aqueous solutions sensing from simple to complex we found that though some absorption variation information of glucose can be obtained from measurements using NIR spectroscopy, while under the same measuring conditions and with the same modeling method, choices toward measured components reduce when complication degree of components increases, and this causes a decreased prediction accuracy. Finally, OGTT experiments were performed, and a PLS (Partial Least Square) mathematical model for a single experiment was built. We can easily get a prediction expressed as RMSEP (Root Mean Square Error of Prediction) with a value of 0.5-0.8mmol/dl. But the model"s extended application and reliability need more investigation.

  20. Noninvasive Sensor for Measuring Muscle Metabolism During Exercise

    Science.gov (United States)

    Soller, B. R.; Yang, Y.; Lee, S. M. C.; Soyemi, O. O.; Wilson, C.; Hagan, R. D.

    2007-01-01

    The measurement of oxygen uptake (VO2) and lactate threshold (LT) are utilized to assess changes in aerobic capacity and the efficacy of exercise countermeasures in astronauts. During extravehicular activity (EVA), real-time knowledge of VO2 and relative work intensity can be used to monitor crew activity levels and organize tasks to reduce the cumulative effects of fatigue. Currently VO2 and LT are determined with complicated measurement techniques that require sampling of expired ventilatory gases, which may not be accurate in enclosed, oxygen-rich environments such as the EVA suit. The UMMS team has developed a novel near infrared spectroscopic (NIRS) system which noninvasively, simultaneously and continuously measures muscle oxygen tension, oxygen saturation, pH (pHm), and hematocrit from a small sensor placed on the leg. This system is unique in that it allows accurate, absolute measurement of these parameters in the thigh muscle by correcting spectra for the interference from skin pigment and fat. These parameters can be used to estimate VO2 and LT. A preliminary evaluation of the system s capabilities was performed in the NASA JSC Exercise Physiology Lab.

  1. Non-invasive plant growth measurements for detection of blue-light dose response of stem elongation in Chrysanthemum morifolium

    DEFF Research Database (Denmark)

    Kjær, Katrine Heinsvig

    2012-01-01

    Quantitative and qualitative imaging of plant growth and development in response to environmental factors under greenhouse conditions visualises plant performance on-site and may increase our knowledge of how rapid plants change their growth pattern in relation to environmental stimuli. In the...... present study a non-invasive plant growth sensor (PlantEye, Phenospex B.V, Heerlen, NL) was tested in analysing changes in diurnal stem elongation patterns and plant height in response to the spectral quality of the light environment. Plants were grown in four different LED supplemental lighting...... treatments with 0%, 12.5%, 18.5% and 22.5% blue light under greenhouse conditions in winter (18 h day/4 h night). The non-invasive measurements were carried out automatically every four hour with three repetitions, and supported by manual measurements of plant height every third day. A strong linear relation...

  2. A new method of non-invasive blood pressure measurement

    Science.gov (United States)

    Gu, Liangling; Yang, Yongming; Yu, Chengbo; Guo, Qiaohui; Zhu, Gang

    2005-12-01

    Blood pressure reflects a person's health.It is proposed here that the method of detecting blood pressure may be the key to improving the precision of blood pressure measurements. The oscillometric blood pressure measurement technique is widely used in automatic blood pressure measurement instruments correctly. A method of blood pressure measurement by oscillometric method is first presented. In the oscillometric method, the basic principle of the "feature point" method and the "amplitude characteristic ratios" method is also explained and discussed here. A new method of blood pressure measurement, namely the coefficient difference comparative method, is proposed here,which is based on the feature point method and amplitude characteristic ratios method. The method is proved both effective and reliable through the analysis of many cases and clinical tests. Utilizing Visual C++, software for this new and novel method was developed and passed criterion simulation apparatus test. When applied in hospital situation, its error was +/-5%. It is concluded that the oscillometric blood pressure measurement method can provide better means of blood pressure measurements reference for doctors.

  3. Tunable laser diode system for noninvasive blood glucose measurements.

    Science.gov (United States)

    Olesberg, Jonathon T; Arnold, Mark A; Mermelstein, Carmen; Schmitz, Johannes; Wagner, Joachim

    2005-12-01

    Optical sensing of glucose would allow more frequent monitoring and tighter glucose control for people with diabetes. The key to a successful optical noninvasive measurement of glucose is the collection of an optical spectrum with a very high signal-to-noise ratio in a spectral region with significant glucose absorption. Unfortunately, the optical throughput of skin is low due to absorption and scattering. To overcome these difficulties, we have developed a high-brightness tunable laser system for measurements in the 2.0-2.5 microm wavelength range. The system is based on a 2.3 microm wavelength, strained quantum-well laser diode incorporating GaInAsSb wells and AlGaAsSb barrier and cladding layers. Wavelength control is provided by coupling the laser diode to an external cavity that includes an acousto-optic tunable filter. Tuning ranges of greater than 110 nm have been obtained. Because the tunable filter has no moving parts, scans can be completed very quickly, typically in less than 10 ms. We describe the performance of the present laser system and avenues for extending the tuning range beyond 400 nm. PMID:16390586

  4. Non-Invasive Ocular Rigidity Measurement: A Differential Tonometry Approach

    Directory of Open Access Journals (Sweden)

    Efstathios T. Detorakis

    2015-12-01

    Full Text Available Purpose: Taking into account the fact that Goldmann applanation tonometry (GAT geometrically deforms the corneal apex and displaces volume from the anterior segment whereas Dynamic Contour Tonometry (DCT does not, we aimed at developing an algorithm for the calculation of ocular rigidity (OR based on the differences in pressure and volume between deformed and non-deformed status according to the general Friedenwald principle of differential tonometry. Methods: To avoid deviations of GAT IOP from true IOP in eyes with corneas different from the “calibration cornea” we applied the previously described Orssengo-Pye algorithm to calculate an error coefficient “C/B”. To test the feasibility of the proposed model, we calculated the OR coefficient (r in 17 cataract surgery candidates (9 males and 8 females. Results: The calculated r according to our model (mean ± SD, range was 0.0174 ± 0.010 (0.0123–0.022 mmHg/μL. A negative statistically significant correlation between axial length and r was detected whereas correlations between r and other biometric parameters examined were statistically not significant. Conclusions: The proposed method may prove a valid non-invasive tool for the measurement method of OR, which could help in introducing OR in the decision-making of the routine clinical practice.

  5. Effectiveness of Inspiratory Termination Synchrony with Automatic Cycling During Noninvasive Pressure Support Ventilation.

    Science.gov (United States)

    Chen, Yuqing; Cheng, Kewen; Zhou, Xin

    2016-01-01

    BACKGROUND Pressure support ventilation (PSV) is a standard method for non-invasive home ventilation. A bench study was designed to compare the effectiveness of patient-ventilator inspiratory termination synchronization with automated and conventional triggering in various respiratory mechanics models. MATERIAL AND METHODS Two ventilators, the Respironics V60 and Curative Flexo ST 30, connected to a Hans Rudolph Series 1101 lung simulator, were evaluated using settings that simulate lung mechanics in patients with chronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), or normal lungs. Ventilators were operated with automated (Auto-Trak) or conventional high-, moderate-, and low-sensitivity flow-cycling software algorithms, 5 cmH2O or 15 cmH2O pressure support, 5 cmH2O positive end-expiratory pressure (PEEP), and an air leak of 25-28 L/min. RESULTS Both ventilators adapted to the system leak without requiring adjustment of triggering settings. In all simulated lung conditions, automated cycling resulted in shorter triggering delay times (<100 ms) and lower triggering pressure-time product (PTPt) values. Tidal volumes (VT) increased with lower conventional cycling sensitivity level. In the COPD model, automated cycling had higher leak volumes and shorter cycling delay times than in conventional cycling. Asynchronous events were rare. Inspiratory time (Tinsp), peak expiratory flow (PEF), and cycling off delay time (Cdelay) increased as a result of reduction in conventional cycling sensitivity level. In the ARDS and normal adult lung models, premature cycling was frequent at the high-sensitive cycling level. CONCLUSIONS Overall, the Auto-Trak protocol showed better patient-machine cycling synchronization than conventional triggering. This was evident by shorter triggering time delays and lower PTPt. PMID:27198165

  6. Reliability of ultrasound measurement of automatic activity of the abdominal muscle in participants with and without chronic low back pain

    OpenAIRE

    Arab, Amir Massoud; Rasouli, Omid; Amiri, Mohsen; Tahan, Nahid

    2013-01-01

    Background Ultrasound (US) imaging has been considered as a non-invasive technique to measure thickness and estimate relative abdominal muscle activity. Although some studies have assessed the reliability of US imaging, no study has assessed the reliability of US measurement of automatic activity of abdominal muscles in positions with different levels of stability in participants with chronic low back pain (cLBP). The purpose of this study was to investigate within-day and between-days reliab...

  7. Noninvasive Diagnostic Devices for Diabetes through Measuring Tear Glucose

    OpenAIRE

    Zhang, Jin; Hodge, William; Hutnick, Cindy; Wang, Xianbin

    2011-01-01

    This article reviews the development of a noninvasive diagnostic for diabetes by detecting ocular glucose. Early diagnosis and daily management are very important to diabetes patients to ensure a healthy life. Commercial blood glucose sensors have been used since the 1970s. Millions of diabetes patients have to prick their finger for a drop of blood 4–5 times a day to check blood glucose levels—almost 1800 times annually. There is a strong need to have a noninvasive device to help patients to...

  8. Non-invasive measurement of pressure gradients using ultrasound

    DEFF Research Database (Denmark)

    Olesen, Jacob Bjerring; Traberg, Marie Sand; Pihl, Michael Johannes; Jensen, Jørgen Arendt

    2013-01-01

    A non-invasive method for estimating 2-D pressure gradients from ultrasound vector velocity data is presented. The method relies on in-plane vector velocity fields acquired using the Transverse Oscillation method. The pressure gradients are estimated by applying the Navier-Stokes equations for...

  9. Non-invasive in vivo measurement of macular carotenoids

    Science.gov (United States)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2009-01-01

    A non-invasive in vivo method for assessing macular carotenoids includes performing Optical Coherence Tomography (OCT) on a retina of a subject. A spatial representation of carotenoid levels in the macula based on data from the OCT of the retina can be generated.

  10. Noninvasive diagnostic devices for diabetes through measuring tear glucose.

    Science.gov (United States)

    Zhang, Jin; Hodge, William; Hutnick, Cindy; Wang, Xianbin

    2011-01-01

    This article reviews the development of a noninvasive diagnostic for diabetes by detecting ocular glucose. Early diagnosis and daily management are very important to diabetes patients to ensure a healthy life. Commercial blood glucose sensors have been used since the 1970s. Millions of diabetes patients have to prick their finger for a drop of blood 4-5 times a day to check blood glucose levels--almost 1800 times annually. There is a strong need to have a noninvasive device to help patients to manage the disease easily and painlessly. Instead of detecting the glucose in blood, monitoring the glucose level in other body fluids may provide a feasible approach for noninvasive diagnosis and diabetes control. Tear glucose has been studied for several decades. This article reviews studies on ocular glucose and its monitoring methods. Attempts to continuously monitor the concentration of tear glucose by using contact lens-based sensors are discussed as well as our current development of a nanostructured lens-based sensor for diabetes. This disposable biosensor for the detection of tear glucose may provide an alternative method to help patients manage the disease conveniently. PMID:21303640

  11. Confidence Measures for Automatic and Interactive Speech Recognition

    OpenAIRE

    Sánchez Cortina, Isaías

    2016-01-01

    [EN] This thesis work contributes to the field of the {Automatic Speech Recognition} (ASR). And particularly to the {Interactive Speech Transcription} and {Confidence Measures} (CM) for ASR. The main goals of this thesis work can be summarised as follows: 1. To design IST methods and tools to tackle the problem of improving automatically generated transcripts. 2. To assess the designed IST methods and tools on real-life tasks of transcription in large educational repositories of vide...

  12. Noninvasive measurement of cardiac stroke volume using pulse wave velocity and aortic dimensions: a simulation study

    OpenAIRE

    Charles F. Babbs

    2014-01-01

    Background: Concerns about the cost-effectiveness of invasive hemodynamic monitoring in critically ill patients using pulmonary artery catheters motivate a renewed search for effective noninvasive methods to measure stroke volume. This paper explores a new approach based on noninvasively measured pulse wave velocity, pulse contour, and ultrasonically determined aortic cross sectional area. Methods: The Bramwell-Hill equation relating pulse wave velocity to aortic compliance is applied. At the...

  13. Automatic blood pressure measuring system (M091)

    Science.gov (United States)

    1977-01-01

    The Leg Volume Measuring System is used to measure leg calf girth changes that occur during exposure to lower body negative pressure as a result of pooling of blood and other fluids in the lower extremities.

  14. Noninvasive liquid level/density measurement in pressure vessels

    International Nuclear Information System (INIS)

    This research investigated and demonstrated the principles of noninvasive detection of liquid level/density variations in a nuclear reactor pressure vessel. The noninvasive signal detection technique is based on using ex-vessel fast neutron detectors to sense variations in the escape rate of fast neutrons with changes in level/density in the pressure vessel. A prototype instrumentation package, deploying four fission chambers in a string, was developed and tested at the Penn State Breazeale Nuclear Reactor, as well as in six loss-of-coolant experiments at the Loss of Fluid Test Facility of the Idaho National Engineering Laboratory, Idaho Falls, Idaho. The six loss of coolant experiments consisted of two large break and four small break simulations. The prototype instrumentation package was microcomputer based, and was designed to operate in both current and pulse models. It tracked, accurately and quickly, the hydraulic conditions in the pressure vessel during these experiments. Analysis of its response data showed clear identification of: (a) downcomer voiding and refilling, (b) core voiding and refilling, (c) combined core and downcomer voiding and refilling, (d) top-down voiding and refilling of the core, (e) bottom-up voiding and refilling of the core, and (f) boiling and frothing in the pressure vessel. A set of algorithms for online detection and tracking of departure from normal hydraulic conditions is presented

  15. Non-invasive means of measuring hepatic fat content

    Institute of Scientific and Technical Information of China (English)

    Sanjeev R Mehta; E Louise Thomas; Jimmy D Bell; Desmond G Johnston; Simon D Taylor-Robinson

    2008-01-01

    Hepatic steatosis affects 20% to 30% of the general adult population in the western world. Currently, the technique of choice for determining hepatic fat deposition and the stage of fibrosis is liver biopsy. However, it is an invasive procedure and its use is limited, particularly in children. It may also be subject to sampling error. Non-invasive techniques such as ultrasound, computerised tomography (CT), magnetic resonance imaging (MRI) and proton magnetic resonance spectroscopy (1H MRS) can detect hepatic steatosis, but currently cannot distinguish between simple steatosis and steatohepatitis, or stage the degree of fibrosis accurately. Ultrasound is widely used to detect hepatic steatosis, but its sensitivity is reduced in the morbidly obese and also in those with small amounts of fatty infiltration. It has been used to grade hepatic fat content, but this is subjective. CT can detect hepatic steatosis, but exposes subjects to ionising radiation, thus limiting its use in longitudinal studies and in children. Recently, magnetic resonance (MR) techniques using chemical shift imaging have provided a quantitative assessment of the degree of hepatic fatty infiltration, which correlates well with liver biopsy results in the same patients. Similarly, in vivo 1H MRS is a fast, safe, non-invasive method for the quantification of intrahepatocellular lipid (IHCL) levels. Both techniques will be useful tools in future longitudinal clinical studies, either in examining the natural history of conditions causing hepatic steatosis(e.g. non-alcoholic fatty liver disease), or in testing new treatments for these conditions.

  16. Automatic data acquisition of anthropological measurements

    DEFF Research Database (Denmark)

    Lynnerup, N; Lynnerup, O

    1993-01-01

    A computer program in BASIC is presented which enables the input of measurement data from a caliper directly into specific records in a dBASE IV or PARADOX database. The program circumvents the tedious procedure of first recording measurement data manually and then entering the data into a computer....... Thus much time can be saved and the risk of wrong data entry is lowered. The program was easy to use, and no significant problems were encountered. Necessary hardware is a standard IBM compatible desktop computer, Mitotoyu Digimatic (TM) calipers and a Mitotoyu Digimatic MUX-10 Multiplexer (TM)....

  17. Automatic actinometric system for diffuse radiation measurement

    Science.gov (United States)

    Litwiniuk, Agnieszka; Zajkowski, Maciej

    2015-09-01

    Actinometric station is using for measuring solar of radiation. The results are helpful in determining the optimal position of solar panels relative to the Sun, especially in today's world, when the energy coming from the Sun and other alternative sources of energy become more and more popular. Polish climate does not provide as much energy as in countries in southern Europe, but it is possible to increase the amount of energy produced by appropriate arrangement of photovoltaic panels. There is the possibility of forecasting the amount of produced energy, the cost-effectiveness and profitability of photovoltaic installations. This implies considerable development opportunities for domestic photovoltaic power plants. This article presents description of actinometric system for diffuse radiation measurement, which is equipped with pyranometer - thermopile temperature sensor, amplifier AD620, AD Converter ADS1110, microcontroller Atmega 16, SD card, GPS module and LCD screen.

  18. Uav-Based Automatic Tree Growth Measurement for Biomass Estimation

    Science.gov (United States)

    Karpina, M.; Jarząbek-Rychard, M.; Tymków, P.; Borkowski, A.

    2016-06-01

    Manual in-situ measurements of geometric tree parameters for the biomass volume estimation are time-consuming and economically non-effective. Photogrammetric techniques can be deployed in order to automate the measurement procedure. The purpose of the presented work is an automatic tree growth estimation based on Unmanned Aircraft Vehicle (UAV) imagery. The experiment was conducted in an agriculture test field with scots pine canopies. The data was collected using a Leica Aibotix X6V2 platform equipped with a Nikon D800 camera. Reference geometric parameters of selected sample plants were measured manually each week. In situ measurements were correlated with the UAV data acquisition. The correlation aimed at the investigation of optimal conditions for a flight and parameter settings for image acquisition. The collected images are processed in a state of the art tool resulting in a generation of dense 3D point clouds. The algorithm is developed in order to estimate geometric tree parameters from 3D points. Stem positions and tree tops are identified automatically in a cross section, followed by the calculation of tree heights. The automatically derived height values are compared to the reference measurements performed manually. The comparison allows for the evaluation of automatic growth estimation process. The accuracy achieved using UAV photogrammetry for tree heights estimation is about 5cm.

  19. Automatic radiation measuring system connected with GPS

    International Nuclear Information System (INIS)

    The most serious nuclear disaster in Japan has broken out at Fukushima Daiichi Nuclear Power Plant due to Great East Japan Earthquake. Prompt and exact mapping of the contamination is of great importance for radiation protection and for the environment restoration. We have developed radiation survey systems KURAMA and KURAMA-2 for rapid and exact measurement of radiation dose distribution. The system is composed of a mobile radiation monitor and the computer in office which is for the storage and visualization of the data. They are connected with internet and are operated for continuous radiation measurement while the monitor is moving. The mobile part consists of a survey meter, an interface to transform the output of the survey meter for the computer, a global positioning system, a computer to process the data for connecting to the network, and a mobile router. Thus they are effective for rapid mapping of the surface contamination. The operation and the performance of the equipment at the site are presented. (J.P.N.)

  20. Oxygen tension measurement using an automatic blood gas analyser.

    Science.gov (United States)

    Becket, J; Orchard, C; Chakrabarti, M K; Hall, G M; Gillies, I D; Bourdillon, P J

    1981-08-01

    Two different methods of assessing the reliability of the oxygen electrode of one model of an automatic blood gas analyser (BGA) have been studied. In the first, a single automatic BGA was assessed by using outdated bank blood which was pumped around a small extracorporeal circuit into which known gas mixtures were passed. Oxygen tension was varied between 2 and 16 kPa. In the second, fresh heparinized blood was tonometered with calibrated gases and submitted to the automatic BGA used in the first part of the study and also to three other identical machines. Each of the machines was between 3 and 4 years old.Eighteen different units of blood were used in the first part of the study. The correlation coefficient between the automatic BGA and the Po(2) in the extracorporeal circuit varied between 0.29 and 0.99. 31% of the total of 209 measurements made by the automatic BGA were more than 1.2 kPa from the reference value, 25% of them being between 1.2 and 4.0 kPa from the reference value. In the second part of the study, the correlation coefficient between this automatic BGA and the tonometered blood was 0.96. The correlation coefficients for the 3 other identical BGAs were 0.84, 0.97 and 0.88, indicating that the BGA used in the first part of the study was no worse than any of the others.It is suggested that although clinicians are likely to ignore readings of an automatic BGA that are more than 4.0 kPa from the true value and are likely to repeat the investigation, readings between 1.2 and 4.0 kPa from the true value may adversely affect patient management. PMID:7288796

  1. Non-invasive continuous core temperature measurement by zero heat flux

    NARCIS (Netherlands)

    Teunissen, L.P.J.; Klewer, J.; Haan, A. de; Koning, J.J. de; Daanen, H.A.M.

    2011-01-01

    Reliable continuous core temperature measurement is of major importance for monitoring patients. The zero heat flux method (ZHF) can potentially fulfil the requirements of non-invasiveness, reliability and short delay time that current measurement methods lack. The purpose of this study was to deter

  2. Automatic Facial Measurements for Quantitative Analysis of Rhinoplasty

    Directory of Open Access Journals (Sweden)

    Mousa Shamsi

    2007-08-01

    Full Text Available Proposing automated algorithms for quantitative analysis of facial images based on facial features may assist surgeons to validate the success of nose surgery in objective and reproducible manner. In this paper, we attempt to develop automatic procedures for quantitative analysis of rhinoplasty operation based on several standard linear and spatial features. The main processing steps include image enhancement, "ncorrection of varying illumination effect, automatic facial skin detection, automatic feature extraction, facial measurements and surgery analysis. For quantitative analysis of nose surgery, we randomly selected 100 patients from the database provided by the ENT division of Imam Hospital, Tehran, Iran. The frontal and profile images of these patients before and after rhinoplasty were available for experiments. For statistical analysis of nasal two clinical parameters, i.e., Nasolabial Angle and Nasal Projection ratio are computed. The mean and standard deviation of Nasolabial Angle by manual measurement of a specialist was 95.98˚(±9.58˚ and 111.02˚(±10.07˚ before and after nose surgery, respectively. The proposed algorithm has automatically computed this parameter as 94.12˚ (±8.86˚ and 109.65˚ (±8.86˚ before and after nose surgery. In addition, the proposed algorithm has automatically computed the Nasal Projection by Good's method as 0.584(±0.0491 and 0.537(±0.066 before and after nose surgery, respectively. Meanwhile, this parameter has manually been measured by a specialist as 0.576(±0.052 and 0.537(±0.077 before and after nose surgery, respectively. The result of the proposed facial skin segmentation, feature detection algorithms, and estimated values for the above two clinical parameters in the presence of the mentioned datasets declare that the techniques are applicable in the common clinical practice of the nose surgery.

  3. The construction of the CMS electromagnetic calorimeter: automatic measurements of the physics parameters of PWO crystals

    CERN Multimedia

    2005-01-01

    Crystal properties (dimensions, optical transmission, light yield) are automatically measured. The pictures show different measurement stations of the automatic machine. Crystals are measured on trays containing five crystals each.

  4. Introduction to Non-Invasive Glucose Measurement - A Physicist's Perspective

    Science.gov (United States)

    Blakley, Daniel; Simske, Steven; Vadgama, Pankaj

    2011-10-01

    The Quest, The Elusive Art and Science, Many Efforts and Investments, Physiology of Blood and Epidermal Regions, Some Methods including Eyes, Breath, Skin Coupling using Spectroscopy, Ring-down Spectroscopy, IR Measurement, Florescence - all as General Introductory Material.

  5. Temperature influence on non-invasive blood glucose measurement

    Science.gov (United States)

    Zhang, Xiqin; Yeo, Joon Hock

    2009-02-01

    Regular monitoring of blood sugar level is important for the management of diabetes. The Near-Infra-Red (NIR) spectroscopy method is a promising approach and this involves some form of contact with the body skin. It is noted that the skin temperature does fluctuate with the environment and physiological conditions and the temperature has an influence on the glucose measurement. In this paper, in-vitro and in-vivo investigations on the temperature influence on blood glucose measurement were studied. The in-vitro results from FTIR spectrometer show that sample temperature has significant influence on water absorption, which significantly affects the glucose absorption measurement. The in-vivo results show that when skin temperature around the measurement site is taken into consideration, the prediction of blood glucose level greatly improves.

  6. An automatic system for measuring road and tunnel lighting performance

    OpenAIRE

    Greffier, Florian; Charbonnier, Pierre; Tarel, Jean-Philippe; Boucher, Vincent; FOURNELA, Fabrice

    2015-01-01

    Various problems in different domains are related to the operation of the Human Visual System (HVS). This is notably the case when considering the driver's visual perception, and road safety in general. That is why several standards of road equipments are directly derived from human visual abilities and especially in road and tunnel lighting installations design. This paper introduces an automatic system for measuring road and tunnel lighting performance. The proposed device is based on an em...

  7. Validation of an Endoscopic Fibre-Optic Pressure Sensor for Noninvasive Measurement of Variceal Pressure

    Science.gov (United States)

    Sun, Bin; Kong, De-Run; Li, Su-Wen; Yu, Dong-Feng; Wang, Ging-Jing; Yu, Fang-Fang; Wu, Qiong; Xu, Jian-Ming

    2016-01-01

    In this study, the authors have developed endoscopic fibre-optic pressure sensor to detect variceal pressure and presented the validation of in vivo and in vitro studies, because the HVPG requires catheterization of hepatic veins, which is invasive and inconvenient. Compared with HVPG, it is better to measure directly the variceal pressure without puncturing the varices in a noninvasive way. PMID:27314010

  8. Pockels cell voltage probe for noninvasive electron-beam measurements

    International Nuclear Information System (INIS)

    Accurate measurements of beam position and current are critical for the operation of the high-energy electron accelerators used for radiographic applications. Traditional short-pulse (e.g., 70 ns) machines utilize B-dot loops to monitor these parameters with great success. For long-pulse (e.g, 2 μs) accelerators, beam position and current measurements become more challenging and may require new technology. A novel electro-optic voltage probe has been developed for this application and provides the advantages of complete galvanic isolation, excellent low-frequency performance, and no time integration requirement. The design of a prototype sensor is presented along with preliminary accelerator test data. (c) 2000 Optical Society of America

  9. Invasive and non-invasive methods for cardiac output measurement

    OpenAIRE

    Lavdaniti M.

    2008-01-01

    The hemodynamic status monitoring of high-risk surgical patients and critically ill patients inIntensive Care Units is one of the main objectives of their therapeutic management. Cardiac output is one of the mostimportant parameters for cardiac function monitoring, providing an estimate of whole body perfusion oxygen deliveryand allowing for an understanding of the causes of high blood pressure. The purpose of the present review is thedescription of cardiac output measurement methods as prese...

  10. Predictive value of noninvasive measures of atherosclerosis for incident myocardial infarction: the Rotterdam Study.

    OpenAIRE

    Bots, Michiel; Hofman, Albert; Sol, Antonio Iglesias; Kuip, Deirdre; Witteman, Jacqueline

    2004-01-01

    textabstractBACKGROUND: Several noninvasive methods are available to investigate the severity of extracoronary atherosclerotic disease. No population-based study has yet examined whether differences exist between these measures with regard to their predictive value for myocardial infarction (MI) or whether a given measure of atherosclerosis has predictive value independently of the other measures. METHODS AND RESULTS: At the baseline (1990-1993) examination of the Rotterdam Study, a populatio...

  11. Tomographic non-invasive measurements of regional cerebral blood flow

    International Nuclear Information System (INIS)

    The measurement of the regional cerebral bloodflow by means of the dynamic single-photon-emissioncomputed tomography is a method of examination which is completely free of risk for the patient, causes no inconvenience and can be repeated whenever it seems necessary. This method gives a quantitative explanation for the distribution of the effective cerebral perfusion and can only be substituted by the very complicated positron-emission-computed tomography. As well as the exact assessment of the hemodynamic relevance of cerebral vascular disease, this method enables us to prove whether or not in various types of psychiatric disorders an interference in the regional perfusion exists. This method can also contribute to the clarification of pathogenic mechanisms, as well as to the nosological classification of specific psychopathological conditions. (orig.)

  12. Non-invasive measurement of pulmonary arterial pressure

    International Nuclear Information System (INIS)

    Pulmonary artery pulse pressure (Psub(p)) and diastolic pressure (Psub(d)) may be obtained by applying a haemodynamic model of blood flow kinetics and wall mechanics to the pulmonary artery: Psub(P) = ρ(Wsub(s)/(Ssub(s)/Ssub(d) -1))2 log(Ssub(s)/Ssub(d)) - 1/2 ρw2sub(s) Psub(d) (Ssub(d)/Ssub(s))sup(1/2)Psub(p) where ρ is blood density, Wsub(s) is peak ejection velocity, and Ssub(s) and Ssub(d) are peak maximal and end diastolic cross-sectional areas of the main pulmonary artery. The different parameters of the equations were measured from radionuclide Tcsup(m) first pass and equilibrium studies. (author)

  13. Non-invasive cortisol measurements as indicators of physiological stress responses in guinea pigs.

    Science.gov (United States)

    Nemeth, Matthias; Pschernig, Elisabeth; Wallner, Bernard; Millesi, Eva

    2016-01-01

    Non-invasive measurements of glucocorticoid (GC) concentrations, including cortisol and corticosterone, serve as reliable indicators of adrenocortical activities and physiological stress loads in a variety of species. As an alternative to invasive analyses based on plasma, GC concentrations in saliva still represent single-point-of-time measurements, suitable for studying short-term or acute stress responses, whereas fecal GC metabolites (FGMs) reflect overall stress loads and stress responses after a species-specific time frame in the long-term. In our study species, the domestic guinea pig, GC measurements are commonly used to indicate stress responses to different environmental conditions, but the biological relevance of non-invasive measurements is widely unknown. We therefore established an experimental protocol based on the animals' natural stress responses to different environmental conditions and compared GC levels in plasma, saliva, and fecal samples during non-stressful social isolations and stressful two-hour social confrontations with unfamiliar individuals. Plasma and saliva cortisol concentrations were significantly increased directly after the social confrontations, and plasma and saliva cortisol levels were strongly correlated. This demonstrates a high biological relevance of GC measurements in saliva. FGM levels measured 20 h afterwards, representing the reported mean gut passage time based on physiological validations, revealed that the overall stress load was not affected by the confrontations, but also no relations to plasma cortisol levels were detected. We therefore measured FGMs in two-hour intervals for 24 h after another social confrontation and detected significantly increased levels after four to twelve hours, reaching peak concentrations already after six hours. Our findings confirm that non-invasive GC measurements in guinea pigs are highly biologically relevant in indicating physiological stress responses compared to circulating levels

  14. The roadmap for estimation of cell-type-specific neuronal activity from non-invasive measurements.

    Science.gov (United States)

    Uhlirova, Hana; Kılıç, Kıvılcım; Tian, Peifang; Sakadžić, Sava; Gagnon, Louis; Thunemann, Martin; Desjardins, Michèle; Saisan, Payam A; Nizar, Krystal; Yaseen, Mohammad A; Hagler, Donald J; Vandenberghe, Matthieu; Djurovic, Srdjan; Andreassen, Ole A; Silva, Gabriel A; Masliah, Eliezer; Kleinfeld, David; Vinogradov, Sergei; Buxton, Richard B; Einevoll, Gaute T; Boas, David A; Dale, Anders M; Devor, Anna

    2016-10-01

    The computational properties of the human brain arise from an intricate interplay between billions of neurons connected in complex networks. However, our ability to study these networks in healthy human brain is limited by the necessity to use non-invasive technologies. This is in contrast to animal models where a rich, detailed view of cellular-level brain function with cell-type-specific molecular identity has become available due to recent advances in microscopic optical imaging and genetics. Thus, a central challenge facing neuroscience today is leveraging these mechanistic insights from animal studies to accurately draw physiological inferences from non-invasive signals in humans. On the essential path towards this goal is the development of a detailed 'bottom-up' forward model bridging neuronal activity at the level of cell-type-specific populations to non-invasive imaging signals. The general idea is that specific neuronal cell types have identifiable signatures in the way they drive changes in cerebral blood flow, cerebral metabolic rate of O2 (measurable with quantitative functional Magnetic Resonance Imaging), and electrical currents/potentials (measurable with magneto/electroencephalography). This forward model would then provide the 'ground truth' for the development of new tools for tackling the inverse problem-estimation of neuronal activity from multimodal non-invasive imaging data.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574309

  15. Possibility of non-invasive blood pressure estimation by measurements of force and arteries diameter

    OpenAIRE

    Veye, Florent; Mestre, Sandrine; Perez-Martin, Antonia; Triboulet, Jean

    2014-01-01

    International audience Ultrasound examination is the first line procedure for the diagnosis and follow-up of cardiovascular diseases. Instrumenting an ultrasound probe with a force sensor may improve the non-invasive measurement of arterial biomechanical parameters (diameter, pulsatility, intima-media thickness and flow-dependent dilation) by measuring and controlling the force exerted by the sonographer. We present here the results obtained with this approach coupled with image processing...

  16. Non-invasive measurement of local pulse pressure by pulse wave-based ultrasound manometry (PWUM)

    OpenAIRE

    Vappou, J.; Luo, J; Okajima, K.; Di Tullio, M; Konofagou, E E

    2011-01-01

    The central Blood Pressure (CBP) has been established as a relevant indicator of cardiovascular disease. Despite its significance, CBP remains particularly challenging to measure in standard clinical practice. The objective of this study is to introduce Pulse Wave-based Ultrasound Manometry (PWUM) as a simple-touse, non-invasive ultrasound-based method for quantitative measurement of the central pulse pressure. Arterial wall displacements are estimated using radiofrequency (RF) ultrasound sig...

  17. Automatic magnetic flux measurement of micro plastic-magnetic rotors

    Science.gov (United States)

    Wang, Qingdong; Lin, Mingxing; Song, Aiwei

    2015-07-01

    Micro plastic-magnetic rotors of various sizes and shapes are widely used in industry, their magnetic flux measurement is one of the most important links in the production process, and therefore some technologies should be adopted to improve the measurement precision and efficiency. In this paper, the automatic measurement principle of micro plastic-magnetic rotors is proposed and the integration time constant and the integrator drift’s suppression and compensation in the measurement circuit are analyzed. Two other factors influencing the measurement precision are also analyzed, including the relative angles between the rotor magnetic poles and the measurement coil, and the starting point of the rotors in the coil where the measurement begins. An instrument is designed to measure the magnetic flux of the rotors. Measurement results show that the measurement error is within  ±1%, which meets the basic requirements in industry application, and the measurement efficiency is increased by 10 times, which can cut down labor cost and management cost when compared with manual measurement.

  18. Noninvasive measurement of local thermal diffusivity using backscattered ultrasound and focused ultrasound heating.

    Science.gov (United States)

    Anand, Ajay; Kaczkowski, Peter J

    2008-09-01

    Previously, noninvasive methods of estimating local tissue thermal and acoustic properties using backscattered ultrasound have been proposed in the literature. In this article, a noninvasive method of estimating local thermal diffusivity in situ during focused ultrasound heating using beamformed acoustic backscatter data and applying novel signal processing techniques is developed. A high intensity focused ultrasound (HIFU) transducer operating at subablative intensities is employed to create a brief local temperature rise of no more than 10 degrees C. Beamformed radio-frequency (RF) data are collected during heating and cooling using a clinical ultrasound scanner. Measurements of the time-varying "acoustic strain", that is, spatiotemporal variations in the RF echo shifts induced by the temperature related sound speed changes, are related to a solution of the heat transfer equation to estimate the thermal diffusivity in the heated zone. Numerical simulations and experiments performed in vitro in tissue mimicking phantoms and excised turkey breast muscle tissue demonstrate agreement between the ultrasound derived thermal diffusivity estimates and independent estimates made by a traditional hot-wire technique. The new noninvasive ultrasonic method has potential applications in thermal therapy planning and monitoring, physiological monitoring and as a means of noninvasive tissue characterization. PMID:18450361

  19. Invasive versus noninvasive measurement of allergic and cholinergic airway responsiveness in mice

    Directory of Open Access Journals (Sweden)

    Hohlfeld Jens M

    2005-11-01

    Full Text Available Abstract Background This study seeks to compare the ability of repeatable invasive and noninvasive lung function methods to assess allergen-specific and cholinergic airway responsiveness (AR in intact, spontaneously breathing BALB/c mice. Methods Using noninvasive head-out body plethysmography and the decrease in tidal midexpiratory flow (EF50, we determined early AR (EAR to inhaled Aspergillus fumigatus antigens in conscious mice. These measurements were paralleled by invasive determination of pulmonary conductance (GL, dynamic compliance (Cdyn and EF50 in another group of anesthetized, orotracheally intubated mice. Results With both methods, allergic mice, sensitized and boosted with A. fumigatus, elicited allergen-specific EAR to A. fumigatus (p Conclusion We conclude that invasive and noninvasive pulmonary function tests are capable of detecting both allergen-specific and cholinergic AR in intact, allergic mice. The invasive determination of GL and Cdyn is superior in sensitivity, whereas the noninvasive EF50 method is particularly appropriate for quick and repeatable screening of respiratory function in large numbers of conscious mice.

  20. Validation of crowdsourced automatic rain gauge measurements in Amsterdam

    Science.gov (United States)

    de Vos, Lotte; Leijnse, Hidde; Overeem, Aart; Uijlenhoet, Remko

    2016-04-01

    The increasing number of privately owned weather stations and the facilitating role the internet to make this data publicly available, has led to several online platforms that collect and visualize crowdsourced weather data. This has resulted in ever increasing freely available datasets of weather measurements generated by amateur weather enthusiasts. Because of the lack of quality control and the frequent absence of metadata, these measurements are often considered as unreliable. Given the often large variability of weather variables in space and time, and the generally low number of official weather stations, this growing quantity of crowdsourced data may become an important additional source of information. Amateur weather observations have become more frequent over the past decade due to weather stations becoming more user-friendly and affordable. The variables measured by these weather stations are temperature, pressure and dew point, and in some cases wind and rainfall. Meteorological data from crowdsourced automatic weather stations in cities have primarily been used to examine the urban heat island effect. Thus far, these studies have focused on the comparison of the crowdsourced station temperature measurements with a nearby WMO-standard weather station, which is often located in a rural area or the outskirts of a city, generally not being representative of the city center. Instead of temperature, the rainfall measurements by the stations are examined. This research focuses on the combined ability of a large number of privately owned weather stations in an urban setting to correctly monitor rainfall. A set of 64 automatic weather stations distributed over Amsterdam (The Netherlands) that have at least 3 months of precipitation measurement during one year are evaluated. Precipitation measurements from stations are compared to a merged radar-gauge precipitation product. Disregarding sudden jumps in station measured precipitation, the accumulative rainfall

  1. Photoplethysmography for non-invasive in vivo measurement of bone hemodynamics

    International Nuclear Information System (INIS)

    Developments in photoplethysmography (PPG) hardware make this device a promising tool for non-invasive deep-tissue hemodynamic measurements. The aim of this study was to validate the use of PPG as a tool for non-invasive bone hemodynamic measurements. A new PPG device capable of measuring bone hemodynamic responses was designed, tested and validated. Validation experiments included cold exposure, arterial occlusion, skin occlusion and nitroglycerin exposure. Cold exposure resulted in a decrease in skin perfusion (p = 0.011) and bone perfusion (p = 0.005); arterial occlusion also resulted in decreased skin perfusion (p < 0.001) and bone perfusion (p = 0.008), with arterial occlusion resulting in a greater decrease in perfusion than cold exposure. The independence of the skin and bone PPG signals was demonstrated by the ability to independently increase (p = 0.003) and decrease (p = 0.005) the skin signal without significantly affecting the bone signal. Our experiments build upon and expand previous PPG developments and validation studies. Our custom-made PPG hardware represents a state-of-the-art tool for non-invasive monitoring of deep tissues, and our data support the use of PPG as a valid tool for measuring bone hemodynamic responses in vivo. (paper)

  2. An Investigation of Pulse Transit Time as a Non-Invasive Blood Pressure Measurement Method

    Science.gov (United States)

    McCarthy, B. M.; O'Flynn, B.; Mathewson, A.

    2011-08-01

    The objective of this paper is to examine the Pulse Transit Method (PTT) as a non-invasive means to track Blood Pressure over a short period of time. PTT was measured as the time it takes for an ECG R-wave to propagate to the finger, where it is detected by a photoplethysmograph sensor. The PTT method is ideal for continuous 24-hour Blood Pressure Measurement (BPM) since it is both cuff-less and non-invasive and therefore comfortable and unobtrusive for the patient. Other techniques, such as the oscillometric method, have shown to be accurate and reliable but require a cuff for operation, making them unsuitable for long term monitoring. Although a relatively new technique, the PTT method has shown to be able to accurately track blood pressure changes over short periods of time, after which re-calibration is necessary. The purpose of this study is to determine the accuracy of the method.

  3. An Investigation of Pulse Transit Time as a Non-Invasive Blood Pressure Measurement Method

    International Nuclear Information System (INIS)

    The objective of this paper is to examine the Pulse Transit Method (PTT) as a non-invasive means to track Blood Pressure over a short period of time. PTT was measured as the time it takes for an ECG R-wave to propagate to the finger, where it is detected by a photoplethysmograph sensor. The PTT method is ideal for continuous 24-hour Blood Pressure Measurement (BPM) since it is both cuff-less and non-invasive and therefore comfortable and unobtrusive for the patient. Other techniques, such as the oscillometric method, have shown to be accurate and reliable but require a cuff for operation, making them unsuitable for long term monitoring. Although a relatively new technique, the PTT method has shown to be able to accurately track blood pressure changes over short periods of time, after which re-calibration is necessary. The purpose of this study is to determine the accuracy of the method.

  4. An Investigation of Pulse Transit Time as a Non-Invasive Blood Pressure Measurement Method

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, B M; O' Flynn, B; Mathewson, A, E-mail: brian.mccarthy@tyndall.ie [Tyndall National Institute, UCC, Lee Maltings, Prospect Row, Cork (Ireland)

    2011-08-17

    The objective of this paper is to examine the Pulse Transit Method (PTT) as a non-invasive means to track Blood Pressure over a short period of time. PTT was measured as the time it takes for an ECG R-wave to propagate to the finger, where it is detected by a photoplethysmograph sensor. The PTT method is ideal for continuous 24-hour Blood Pressure Measurement (BPM) since it is both cuff-less and non-invasive and therefore comfortable and unobtrusive for the patient. Other techniques, such as the oscillometric method, have shown to be accurate and reliable but require a cuff for operation, making them unsuitable for long term monitoring. Although a relatively new technique, the PTT method has shown to be able to accurately track blood pressure changes over short periods of time, after which re-calibration is necessary. The purpose of this study is to determine the accuracy of the method.

  5. Reactivity of Dogs' Brain Oscillations to Visual Stimuli Measured with Non-Invasive Electroencephalography

    OpenAIRE

    Kujala, Miiamaaria V.; Törnqvist, Heini; Somppi, Sanni; Hänninen, Laura; Christina M. Krause; Vainio, Outi; Kujala, Jan

    2013-01-01

    Studying cognition of domestic dogs has gone through a renaissance within the last decades. However, although the behavioral studies of dogs are beginning to be common in the field of animal cognition, the neural events underlying cognition remain unknown. Here, we employed a non-invasive electroencephalography, with adhesive electrodes attached to the top of the skin, to measure brain activity of from 8 domestic dogs (Canis familiaris) while they stayed still to observe photos of dog and hum...

  6. Noninvasive Measurement of Fecal Progesterone Concentration in Toy Poodles by Time Resolved Fluoroimmunoassay (TR-FIA)

    OpenAIRE

    Satoshi Sugimura; Kaori Narita; Hideaki Yamashiro; Atsushi Sugawara; Katsuhiko Nishimori; Tsutomu Konno; Muneyoshi Yoshida; Eimei Sato

    2008-01-01

    Progesterone is an important reproductive hormone and measurement of its level by repeated blood samplings is beneficial to monitoring of estrus cycle. However, since toy poodles have a small body size and thin-walled blood vessels, repeated blood samplings cause stress and affect their preparation for mating or artificial insemination (AI). Therefore, a noninvasive method for monitoring progesterone concentration should be developed. Here, we show that time-resolved fluoroimmunoassay (TF-RIA...

  7. Non-Invasive Body Temperature Measurement of Wild Chimpanzees Using Fecal Temperature Decline

    OpenAIRE

    Jensen, Siv Aina; Mundry, Roger; Nunn, Charles L.; Boesch, Christophe; Leendertz, Fabian

    2009-01-01

    New methods are required to increase our understanding of pathologic processes in wild mammals. We developed a noninvasive field method to estimate the body temperature of wild living chimpanzees habituated to humans, based on statistically fitting temperature decline of feces after defecation. The method was established with the use of control measures of human rectal temperature and subsequent changes in fecal temperature over time. The method was then applied to temperature data collected...

  8. Non-invasive measurement of aortic pressure in patients: Comparing pulse wave analysis and applanation tonometry

    OpenAIRE

    Naidu, M.U.R; C Prabhakar Reddy

    2012-01-01

    Objective: The aim of the present study was to validate and compare novel methods to determine aortic blood pressure non-invasively based on Oscillometric Pulse Wave Velocity (PWV) measurement using four limb-cuff pressure waveforms and two lead Electrocardiogram (ECG) with a validated tonometric pulse wave analysis system in patients. Materials and Methods: After receiving the consent, in 49 patients with hypertension, coronary artery disease, diabetes mellitus, PWV, and central blood p...

  9. Multiscattering-enhanced optical biosensor: multiplexed, non-invasive and continuous measurements of cellular processes

    OpenAIRE

    Koman, Volodymyr B.; Santschi, Christian; Martin, Olivier J. F.

    2015-01-01

    The continuous measurement of uptake or release of biomarkers provides invaluable information for understanding and monitoring the metabolism of cells. In this work, a multiscattering-enhanced optical biosensor for the multiplexed, non-invasive, and continuous detection of hydrogen peroxide (H2O2), lactate and glucose is presented. The sensing scheme is based on optical monitoring of the oxidation state of the metalloprotein cytochrome c (cyt c). The analyte of interest is enzymatically conve...

  10. Comparing the Validity of Non-Invasive Methods in Measuring Thoracic Kyphosis and Lumbar Lordosis

    Directory of Open Access Journals (Sweden)

    Mohammad Yousefi

    2012-04-01

    Full Text Available Background: the purpose of this article is to study the validity of each of the non-invasive methods (flexible ruler, spinal mouse, and processing the image versus the one through-Ray radiation (the basic method and comparing them with each other.Materials and Methods: for evaluating the validity of each of these non-invasive methods, the thoracic Kyphosis and lumber Lordosis angle of 20 students of Birjand University (age mean and standard deviation: 26±2, weight: 72±2.5 kg, height: 169±5.5 cm through fours methods of flexible ruler, spinal mouse, and image processing and X-ray.Results: the results indicated that the validity of the methods including flexible ruler, spinal mouse, and image processing in measuring the thoracic Kyphosis and lumber Lordosis angle respectively have an adherence of 0.81, 0.87, 0.73, 0.76, 0.83, 0.89 (p>0.05. As a result, regarding the gained validity against the golden method of X-ray, it could be stated that the three mentioned non-invasive methods have adequate validity. In addition, the one-way analysis of variance test indicated that there existed a meaningful relationship between the three methods of measuring the thoracic Kyphosis and lumber Lordosis, and with respect to the Tukey’s test result, the image processing method is the most precise one.Conclusion as a result, this method could be used along with other non-invasive methods as a valid measuring method.

  11. Non-invasive measurements of tissue hemodynamics with hybrid diffuse optical methods

    Science.gov (United States)

    Durduran, Turgut

    Diffuse optical techniques were used to measure hemodynamics of tissues non-invasively. Spectroscopy and tomography of the brain, muscle and implanted tumors were carried out in animal models and humans. Two qualitatively different methods, diffuse optical tomography and diffuse correlation tomography, were hybridized permitting simultaneous measurement of total hemoglobin concentration, blood oxygen saturation and blood flow. This combination of information was processed further to derive estimates of oxygen metabolism (e.g. CMRO 2) in tissue. The diffuse correlation measurements of blood flow were demonstrated in human tissues, for the first time, demonstrating continous, non-invasive imaging of oxygen metabolism in large tissue volumes several centimeters below the tissue surface. The bulk of these investigations focussed on cerebral hemodynamics. Extensive validation of this methodology was carried out in in vivo rat brain models. Three dimensional images of deep tissue hemodynamics in middle cerebral artery occlusion and cortical spreading depression (CSD) were obtained. CSD hemodynamics were found to depend strongly on partial pressure of carbon dioxide. The technique was then adapted for measurement of human brain. All optical spectroscopic measurements of CMRO2 during functional activation were obtained through intact human skull non-invasively. Finally, a high spatio-temporal resolution measurement of cerebral blood flow due to somatosensory cortex activation following electrical forepaw stimulation in rats was carried out with laser speckle flowmetry. New analysis methods were introduced for laser speckle flowmetry. In other organs, deep tissue hemodynamics were measured on human calf muscle during exercise and cuff-ischemia and were shown to have some clinical utility for peripheral vascular disease. In mice tumor models, the measured hemodynamics were shown to be predictive of photodynamic therapy efficacy, again suggesting promise of clinical utility

  12. Recent development in noninvasive brain activity measurement by functional magnetic resonance imaging (fMRI)

    International Nuclear Information System (INIS)

    fMRI (functional magnetic resonance imaging) is a non-invasive brain imaging technique with which the distribution of neural activity is estimated by measuring local blood flow changes. Blood-oxygenation-level-dependent (BOLD) method measures changes in the density of deoxidized hemoglobin in blood caused by blood flow changes, while other methods have been developed to measure the blood flow changes directly. Effort has been expended to realize a submillimeter spatial resolution by using higher static magnetic field. fMRI has been carried out with various mental tasks, and many important findings have been made on the localization of higher brain functions. (author)

  13. An Automatic Technique for MRI Based Murine Abdominal Fat Measurement

    Directory of Open Access Journals (Sweden)

    R. A. Moats

    2011-12-01

    Full Text Available Because of the well-known relationship between obesity and high incidence of diseases, fat related research using mice models is being widely investigated in preclinical experiments. In the present study, we developed a technique to automatically measure mice abdominal adipose volume and determine the depot locations using Magnetic Resonance Imaging (MRI. Our technique includes an innovative method to detect fat tissues from MR images which not only utilizes the T1 weighted intensity information, but also takes advantage of the transverse relaxation time(T2 calculated from the multiple echo data. The technique contains both a fat optimized MRI imaging acquisition protocol that works well at 7T and a newly designed post processing methodology that can automatically accomplish the fat extraction and depot recognition without user intervention in the segmentation procedure. The post processing methodology has been integrated into easy-to-use software that we have made available via free download. The method was validated by comparing automated results with two independent manual analyses in 26 mice exhibiting different fat ratios from the obesity research project. The comparison confirms a close agreement between the results in total adipose tissue size and voxel-by-voxel overlaps.

  14. Noninvasive Measurement of Fecal Progesterone Concentration in Toy Poodles by Time Resolved Fluoroimmunoassay (TR-FIA

    Directory of Open Access Journals (Sweden)

    Satoshi Sugimura

    2008-01-01

    Full Text Available Progesterone is an important reproductive hormone and measurement of its level by repeated blood samplings is beneficial to monitoring of estrus cycle. However, since toy poodles have a small body size and thin-walled blood vessels, repeated blood samplings cause stress and affect their preparation for mating or artificial insemination (AI. Therefore, a noninvasive method for monitoring progesterone concentration should be developed. Here, we show that time-resolved fluoroimmunoassay (TF-RIA is a useful noninvasive method for determining the progesterone concentration in serum and fecal samples obtained from toy poodles. Present results demonstrate that progesterone concentrations in the fecal correlated with the serum collected in same time and the sequential changes in progesterone concentrations in the feces are paralleled in the serum. Therefore, this technique may be suitable for monitoring the estrus cycle in toy poodles.

  15. Measuring Service Reliability Using Automatic Vehicle Location Data

    Directory of Open Access Journals (Sweden)

    Zhenliang Ma

    2014-01-01

    Full Text Available Bus service reliability has become a major concern for both operators and passengers. Buffer time measures are believed to be appropriate to approximate passengers' experienced reliability in the context of departure planning. Two issues with regard to buffer time estimation are addressed, namely, performance disaggregation and capturing passengers’ perspectives on reliability. A Gaussian mixture models based method is applied to disaggregate the performance data. Based on the mixture models distribution, a reliability buffer time (RBT measure is proposed from passengers’ perspective. A set of expected reliability buffer time measures is developed for operators by using different spatial-temporal levels combinations of RBTs. The average and the latest trip duration measures are proposed for passengers that can be used to choose a service mode and determine the departure time. Using empirical data from the automatic vehicle location system in Brisbane, Australia, the existence of mixture service states is verified and the advantage of mixture distribution model in fitting travel time profile is demonstrated. Numerical experiments validate that the proposed reliability measure is capable of quantifying service reliability consistently, while the conventional ones may provide inconsistent results. Potential applications for operators and passengers are also illustrated, including reliability improvement and trip planning.

  16. Automatic spectral transmittance measurement system for DWDM filters

    Science.gov (United States)

    Chang, Gao-Wei; Heish, Ming-Yu

    2003-08-01

    For many years, fiber-optics communication has become an essential part of the development of our modern society. For example, its significance comes from the increasing demands on real-time image transmission, multimedia communication, distance learning, video-conferencing, video telephone, and cable TV, etc. This paper is to develop an automatic transmittance measurement system for a DWDM (dense wavelength division multiplexing) filter. In this system, a grating-based monochromators is devised to generate a collection of monochromatic light with various wavelengths, instead of using an expensive tunable laser. From this approach, the cost of the proposed system will be much lower than that of those having the same functions, by one order. In addition, we simulate the spectral filtering to investigate the resolving power of the system. It appears that our simulations give quite satisfactory results.

  17. Measurement of tissue optical properties with optical coherence tomography: Implication for noninvasive blood glucose concentration monitoring

    Science.gov (United States)

    Larin, Kirill V.

    Approximately 14 million people in the USA and more than 140 million people worldwide suffer from diabetes mellitus. The current glucose sensing technique involves a finger puncture several times a day to obtain a droplet of blood for analysis. There have been enormous efforts by many scientific groups and companies to quantify glucose concentration noninvasively using different optical techniques. However, these techniques face limitations associated with low sensitivity, accuracy, and insufficient specificity of glucose concentrations over a physiological range. Optical coherence tomography (OCT), a new technology, is being applied for noninvasive imaging in tissues with high resolution. OCT utilizes sensitive detection of photons coherently scattered from tissue. The high resolution of this technique allows for exceptionally accurate measurement of tissue scattering from a specific layer of skin compared with other optical techniques and, therefore, may provide noninvasive and continuous monitoring of blood glucose concentration with high accuracy. In this dissertation work I experimentally and theoretically investigate feasibility of noninvasive, real-time, sensitive, and specific monitoring of blood glucose concentration using an OCT-based biosensor. The studies were performed in scattering media with stable optical properties (aqueous suspensions of polystyrene microspheres and milk), animals (New Zealand white rabbits and Yucatan micropigs), and normal subjects (during oral glucose tolerance tests). The results of these studies demonstrated: (1) capability of the OCT technique to detect changes in scattering coefficient with the accuracy of about 1.5%; (2) a sharp and linear decrease of the OCT signal slope in the dermis with the increase of blood glucose concentration; (3) the change in the OCT signal slope measured during bolus glucose injection experiments (characterized by a sharp increase of blood glucose concentration) is higher than that measured in

  18. Near-infrared spiroximetry: noninvasive measurements of venous saturation in piglets and human subjects

    OpenAIRE

    Franceschini, Maria Angela; Boas, David A.; ZOURABIAN, ANNA; Diamond, Solomon G.; NADGIR, SHALINI; Lin, David W.; Moore, John B.; Fantini, Sergio

    2002-01-01

    We present a noninvasive method to measure the venous oxygen saturation (SvO2) in tissues using near-infrared spectroscopy (NIRS). This method is based on the respiration-induced oscillations of the near-infrared absorption in tissues, and we call it spiroximetry (the prefix spiro means respiration). We have tested this method in three piglets (hind leg) and in eight human subjects (vastus medialis and vastus lateralis muscles). In the piglet study, we compared our NIRS measurements of the Sv...

  19. Repeatability and Reproducibility of Noninvasive Keratograph 5M Measurements in Patients with Dry Eye Disease

    Science.gov (United States)

    Tian, Lei; Qu, Jing-hao; zhang, Xiao-yu; Sun, Xu-guang

    2016-01-01

    Purpose. To determine the intraexaminer repeatability and interexaminer reproducibility of tear meniscus height (TMH) and noninvasive Keratograph tear breakup time (NIKBUT) measurements obtained with the Keratograph 5M (K5M) in a sample of healthy and dry eye populations. Methods. Forty-two patients with dry eye disease (DED group) and 42 healthy subjects (healthy group) were recruited in this prospective study. In all subjects, each eye received 3 consecutive measurements using the K5M for the TMH and NIKBUTs (NIKBUT-first and NIKBUT-average). And then a different examiner repeated the measurements. The repeatability and reproducibility of measurements were assessed by the coefficient of variation (CV) and intraclass correlation coefficient (ICC). Results. The repeatability and reproducibility of TMH and NIKBUTs were good in both DED and healthy groups (CV% ≤ 26.1% and ICC ≥ 0.75 for all measurements). Patients with DED showed better intraexaminer repeatability for NIKBUTs, but worse for TMH than healthy subjects. Average TMH, NIKBUT-first, and NIKBUT-average were significantly lower in DED group than in healthy group (all P values < 0.05). Conclusions. Measurements of TMH and NIKBUTs obtained with the K5M may provide a simple, noninvasive screening test for dry eye with acceptable repeatability and reproducibility. The NIKBUTs were more reliable, but TMH was less reliable in patients with DED. PMID:27190639

  20. Augmented blood pressure measurement through the noninvasive estimation of physiological arterial pressure variability

    International Nuclear Information System (INIS)

    Current noninvasive blood pressure (BP) measurement methods, such as the oscillometric method, estimate the systolic and diastolic blood pressure (SBP and DBP) at two random instants in time and do not take into account the natural variability in BP. The standard for automated BP devices sets a maximum allowable system error of ±5 mmHg, even though natural BP variability often exceeds these limits. This paper proposes a new approach using simultaneous recordings of the oscillometric and continuous arterial pulse waveforms to augment the conventional noninvasive measurement by providing (1) the mean SBP and DBP over the measurement interval and the associated confidence intervals of the mean, (2) the standard deviation of SBP and DBP over the measurement interval, which indicates the degree of fluctuation in BP and (3) an indicator as to whether or not the oscillometric reading is an outlier. Recordings with healthy subjects demonstrate the potential utility of this approach to characterize BP, to detect outlier measurements, and that it does not suffer from bias relative to the conventional oscillometric method. (paper)

  1. A noninvasive ultrasound elastography technique for measuring surface waves on the lung.

    Science.gov (United States)

    Zhang, Xiaoming; Osborn, Thomas; Kalra, Sanjay

    2016-09-01

    The purpose of this work was to demonstrate an ultrasound based surface wave elastography (SWE) technique for generating and detecting surface waves on the lung. The motivation was to develop a noninvasive technique for assessing superficial lung tissue disease including interstitial lung disease (ILD). ILD comprises a number of lung disorders in which the lung tissue is stiffened and damaged due to fibrosis of the lung tissue. Currently, chest radiographs and computed tomography (CT) are the most common clinical methods for evaluating lung disease, but they are associated with radiation and cannot measure lung mechanical properties. The novelty of SWE is to develop a noninvasive and nonionizing technique to measure the elastic properties of superficial lung tissue. We propose to generate waves on the lung surface through wave propagation from a local harmonic vibration excitation on the chest through an intercostal space. The resulting surface wave propagation on the lung is detected using an ultrasound probe through the intercostal space. To demonstrate that surface waves can be generated on the lung, an ex vivo muscle-lung model was developed to evaluate lung surface wave generation and detection. In this model, swine muscle was laid atop a swine lung. A vibration excitation of 0.1s 100Hz wave was generated on the muscle surface and the surface waves on the lung were detected using a linear array ultrasound probe at 5MHz. To test its feasibility for patient use, SWE was used to measure both lungs of an ILD patient through eight intercostal spaces. The mean wave speed was 1.71±0.20m/s (±SD) at the functional residual capacity, while the mean wave speed was 2.36±0.33m/s at the total lung capacity. These studies support the feasibility of SWE for noninvasive measurement of elastic properties of lung and demonstrate potential for assessment of ILD. PMID:27392204

  2. Two-wavelength Raman detector for noninvasive measurements of carotenes and lycopene in human skin

    Science.gov (United States)

    Ermakov, Igor V.; Ermakova, Maia R.; Gellermann, Werner

    2005-04-01

    Carotenoids are an important part of the antioxidant system in human skin. Carotenoid molecules, provided by fruits and vegetables, are potent free radical quenchers that accumulate in the body. If not balanced by carotenoids and other antioxidants, free radicals may cause premature skin aging, oxidative cell damage, and even skin cancers. As carotenoids depletion may predispose a person to cancer or other disease, rapid and noninvasive measurement of carotenoid level in skin may be of preventive or diagnostic help. At the very least, such measurement can be used to obtain a biomarker for healthy levels of fruit and vegetable consumption. Recently we have developed noninvasive optical technique based on Raman spectroscopy. In this paper we describe compact optical detector for clinical applications that utilizes two-wavelength excitation. It selectively measures the two most prominent skin carotenoids found in the human skin, lycopene and carotenes. According to the medical literature, these two compounds may play different roles in the human body and be part of different tissue defense mechanisms. Dual-wavelength Raman measurements reveal significant differences in the carotenoid composition of different subjects.

  3. Transcutaneous partial oxygen tension and skin blood flow monitoring: Continuous, noninvasive measures of cardiorespiratory change

    OpenAIRE

    Mark W. Greenlee; Akita, M.

    1985-01-01

    Transcutaneous partial oxygen tension (tc pO₂) and skin blood flow (via heat clearance) were measured noninvasively in 22 male subjects who performed stress-inducing tasks (i.e. hand-grip exercise, cold pressor test, breath holding, hyperventilation and mirror-tracing). An analysis of variance and covariance was conducted for tc pO₂ heat clearance, heart rate, respiration rate, finger pulse volume and systolic/diastolic blood pressure. Results indicate that tc pO₂ can depict phasic cardioresp...

  4. Automatic trajectory measurement of large numbers of crowded objects

    Science.gov (United States)

    Li, Hui; Liu, Ye; Chen, Yan Qiu

    2013-06-01

    Complex motion patterns of natural systems, such as fish schools, bird flocks, and cell groups, have attracted great attention from scientists for years. Trajectory measurement of individuals is vital for quantitative and high-throughput study of their collective behaviors. However, such data are rare mainly due to the challenges of detection and tracking of large numbers of objects with similar visual features and frequent occlusions. We present an automatic and effective framework to measure trajectories of large numbers of crowded oval-shaped objects, such as fish and cells. We first use a novel dual ellipse locator to detect the coarse position of each individual and then propose a variance minimization active contour method to obtain the optimal segmentation results. For tracking, cost matrix of assignment between consecutive frames is trainable via a random forest classifier with many spatial, texture, and shape features. The optimal trajectories are found for the whole image sequence by solving two linear assignment problems. We evaluate the proposed method on many challenging data sets.

  5. Invasive versus noninvasive hemoglobin measurement by pulse CO-Oximeter in neonates admitted to NICU

    Directory of Open Access Journals (Sweden)

    Hetal Vora

    2014-01-01

    Full Text Available Background Total haemoglobin measurement (tHb is one of the most commonly performed laboratory tests in patients admitted to the neonatal intensive care unit (NICU. Non invasive haemoglobin measurement is possible. In neonates this method can reduce iatrogenic blood loss. Studies performed in adults to compare haemoglobin (Hb obtained with the use of non-invasive Hb monitor and laboratory method has shown a clinically acceptable accuracy of non-invasive Hb measurements.(1 Masimo Rainbow SET, Pulse CO‐oximetry developed by Masimo Corporation leverages 7 wavelengths and advanced signal processing technique to measure total haemoglobin (SpHb values. The haemoglobin values measured through monitor is displayed continuously. This improves quality of care in babies by non invasive way. The monitor measures both pulse oximetry and SpHb with single probe which makes it advantageous (2 Objective. To compare transcutaneously spectroscopically measured hemoglobin values with venous hemoglobin values in neonates admitted to NICU. Study Design Prospective study in healthy preterm and term infants who were hemodynamically stable. Results Recordings were obtained from 76 stable infants (median gestational age at measurement: 36 weeks [range: 34–43 weeks]; median body weight: 1890 g [range: 1095–4360 g]. The spectroscopic haemoglobin values were corrected for inhomogeneous distribution of haemoglobin in the tissue. The venous and spectroscopic haemoglobin values were then compared by using the Bland- Altman method, which gave an error of <5%. Conclusions This is a good relation between the 2 methods for measuring haemoglobin. Larger studies are required to validate this non invasive method in those with conditions that affects the perfusion.

  6. Non-invasive continuous core temperature measurement by zero heat flux

    International Nuclear Information System (INIS)

    Reliable continuous core temperature measurement is of major importance for monitoring patients. The zero heat flux method (ZHF) can potentially fulfil the requirements of non-invasiveness, reliability and short delay time that current measurement methods lack. The purpose of this study was to determine the performance of a new ZHF device on the forehead regarding these issues. Seven healthy subjects performed a protocol of 10 min rest, 30 min submaximal exercise (average temperature increase about 1.5 °C) and 10 min passive recovery in ambient conditions of 35 °C and 50% relative humidity. ZHF temperature (Tzhf) was compared to oesophageal (Tes) and rectal (Tre) temperature. ΔTzhf–Tes had an average bias ± standard deviation of 0.17 ± 0.19 °C in rest, −0.05 ± 0.18 °C during exercise and −0.01 ± 0.20 °C during recovery, the latter two being not significant. The 95% limits of agreement ranged from −0.40 to 0.40 °C and Tzhf had hardly any delay compared to Tes. Tre showed a substantial delay and deviation from Tes when core temperature changed rapidly. Results indicate that the studied ZHF sensor tracks Tes very well in hot and stable ambient conditions and may be a promising alternative for reliable non-invasive continuous core temperature measurement in hospital

  7. Non-invasive measurement of gastric accommodation by means pertechnetate SPECT: limiting radiation dose and increasing image quality

    International Nuclear Information System (INIS)

    Aims: The gastric accommodation response to a meal allows the ingestion of large volumes of food without substantially increasing gastric intraluminal pressure. This reflex is vagally mediated and impaired in conditions such as functional dyspepsia. At present, a barostat study is the gold standard to assess fundic relaxation in response to a meal. However, this method is invasive and possibly inducing artefacts due to positive intraluminal balloon pressure. Recently, a non-invasive scintigraphic test was developed to measure gastric accommodation in humans1. The aim of this study was to refine this method limiting the radiation dose applied and increasing image quality such that repetitive measurement within one subject becomes possible without increasing radiation risk. Materials and Methods: 13 healthy volunteers (9 female, 4 male, age x, range y) were recruited from a student population devoid of gastrointestinal symptoms. All volunteers previously underwent a barostat study. After an overnight fast, volunteers were scanned twice on separate days after injection of 200 MBq 99mTc-pertechnetate iv. On one occasion, volunteers were pre-treated with pantoprazol 80 mg for 3 days. 30 minutes after injection SPECT scans were acquired before and up to 2 hours after meal ingestion (standardised test meal Nutridrink, 200ml, 300 kCal; acquisition 72 frames 10 sec 128x128 matrix on a GE Varicam, total acquisition time 6 min). After reconstruction fundus volume was calculated semi-automatically by means of a threshold voxel volume tool. Results: Limiting injection dose from 370-740 MBq to 200 MBq 99mTc-pertechnetate results in good quality images, with high target/background ratio up to 180 min after injection. This represents a significant dose reduction. There is no significant difference between fundic volumes or accommodation response with or without proton pump inhibitor pre-treatment. Pre-treatment however results in increased mucosal retention of tracer, resulting in

  8. Non-invasive measurements of exhaled NO and CO associated with methacholine responses in mice

    Directory of Open Access Journals (Sweden)

    Ameredes Bill T

    2008-05-01

    Full Text Available Abstract Background Nitric oxide (NO and carbon monoxide (CO in exhaled breath are considered obtainable biomarkers of physiologic mechanisms. Therefore, obtaining their measures simply, non-invasively, and repeatedly, is of interest, and was the purpose of the current study. Methods Expired NO (ENO and CO (ECO were measured non-invasively using a gas micro-analyzer on several strains of mice (C57Bl6, IL-10-/-, A/J, MKK3-/-, JNK1-/-, NOS-2-/- and NOS-3-/- with and without allergic airway inflammation (AI induced by ovalbumin systemic sensitization and aerosol challenge, compared using independent-sample t-tests between groups, and repeated measures analysis of variance (ANOVA within groups over time of inflammation induction. ENO and ECO were also measured in C57Bl6 and IL-10-/- mice, ages 8–58 weeks old, the relationship of which was determined by regression analysis. S-methionyl-L-thiocitrulline (SMTC, and tin protoporphyrin (SnPP were used to inhibit neuronal/constitutive NOS-1 and heme-oxygenase, respectively, and alter NO and CO production, respectively, as assessed by paired t-tests. Methacholine-associated airway responses (AR were measured by the enhanced pause method, with comparisons by repeated measures ANOVA and post-hoc testing. Results ENO was significantly elevated in naïve IL-10-/- (9–14 ppb and NOS-2-/- (16 ppb mice as compared to others (average: 5–8 ppb, whereas ECO was significantly higher in naïve A/J, NOS-3-/- (3–4 ppm, and MKK3-/- (4–5 ppm mice, as compared to others (average: 2.5 ppm. As compared to C57Bl6 mice, AR of IL-10-/-, JNK1-/-, NOS-2-/-, and NOS-3-/- mice were decreased, whereas they were greater for A/J and MKK3-/- mice. SMTC significantly decreased ENO by ~30%, but did not change AR in NOS-2-/- mice. SnPP reduced ECO in C57Bl6 and IL-10-/- mice, and increased AR in NOS-2-/- mice. ENO decreased as a function of age in IL-10-/- mice, remaining unchanged in C57Bl6 mice. Conclusion These results are

  9. Noninvasive measurement of postocclusive parameters in human forearm blood by near infrared spectroscopy

    Science.gov (United States)

    Rao, K. Prahlad; Radhakrishnan, S.; Reddy, M. Ramasubba

    2005-04-01

    Near infrared (NIR) light in the wavelength range from 700 to 900 nm can pass through skin, bone and other tissues relatively easily. As a result, NIR techniques allow a noninvasive assessment of hemoglobin saturation for a wide range of applications, such as in the study of muscle metabolism, the diagnosis of vascular disorders, brain imaging, and breast cancer detection. Near infrared Spectroscopy (NIRS) is an effective tool to measure the hemoglobin concentration in the tissues, which can discriminate optically the oxy- and deoxy- hemoglobin species because of their different near-infrared absorption spectra. We have developed an NIRS probe consisting of a laser diode of 830 nm wavelength and a PIN photodiode in reflectance mode. We have selected a set of healthy volunteers (mean age 30, range 26-40 years) for the study. The probe is placed on forearm of each subject and the backscattered light intensity is measured by occluding the blood flow at 210, 110 and 85 mmHg pressures. Recovery time, peak time and time after 50% release of the cuff pressure are determined from the optical densities during the post occlusive state of forearm. These parameters are useful for determining the transient increase in blood flow after the release of blood occlusion. Clinically, the functional aspects of blood flow in the limbs could be evaluated noninvasively by NIRS.

  10. Noninvasive Measurement of Acoustic Properties of Fluids Using Ultrasonic Interferometry Technique

    Energy Technology Data Exchange (ETDEWEB)

    Han, W.; Sinha, D.N.; Springer, K.N.; Lizon, D.C.

    1997-06-15

    A swept-frequency ultrasonic interferometry technique is used for noninvasively determining acoustic properties of fluids inside containers. Measurements over a frequency range 1-15 MHz on six liquid chemicals are presented. Measurements were made with the liquid inside standard rectangular optical glass cells and stainless steel cylindrical shells. A theoretical model based on one-dimensional planar acoustic wave propagation through multi-layered media is employed for the interpretation of the observed resonance (interference) spectrum. Two analytical methods, derived from the transmission model are used for determination of sound speed, sound attenuation coefficient, and density of liquids from the relative amplitude and half-power peak width of the observed resonance peaks. Effects of the container material and geometrical properties, path-length, wall thickness are also studied. This study shows that the interferometry technique and the experimental method developed are capable of accurate determination of sound speed, sound attenuation, and density in fluids completely noninvasively. It is a capable and versatile fluid characterization technique and has many potential NDE applications.

  11. Validation of Noninvasive MOEMS-Assisted Measurement System Based on CCD Sensor for Radial Pulse Analysis

    Directory of Open Access Journals (Sweden)

    Rolanas Dauksevicius

    2013-04-01

    Full Text Available Examination of wrist radial pulse is a noninvasive diagnostic method, which occupies a very important position in Traditional Chinese Medicine. It is based on manual palpation and therefore relies largely on the practitioner’s subjective technical skills and judgment. Consequently, it lacks reliability and consistency, which limits practical applications in clinical medicine. Thus, quantifiable characterization of the wrist pulse diagnosis method is a prerequisite for its further development and widespread use. This paper reports application of a noninvasive CCD sensor-based hybrid measurement system for radial pulse signal analysis. First, artery wall deformations caused by the blood flow are calibrated with a laser triangulation displacement sensor, following by the measurement of the deformations with projection moiré method. Different input pressures and fluids of various viscosities are used in the assembled artificial blood flow system in order to test the performance of laser triangulation technique with detection sensitivity enhancement through microfabricated retroreflective optical element placed on a synthetic vascular graft. Subsequently, the applicability of double-exposure whole-field projection moiré technique for registration of blood flow pulses is considered: a computational model and representative example are provided, followed by in vitro experiment performed on a vascular graft with artificial skin atop, which validates the suitability of the technique for characterization of skin surface deformations caused by the radial pulsation.

  12. Reactivity of dogs' brain oscillations to visual stimuli measured with non-invasive electroencephalography.

    Directory of Open Access Journals (Sweden)

    Miiamaaria V Kujala

    Full Text Available Studying cognition of domestic dogs has gone through a renaissance within the last decades. However, although the behavioral studies of dogs are beginning to be common in the field of animal cognition, the neural events underlying cognition remain unknown. Here, we employed a non-invasive electroencephalography, with adhesive electrodes attached to the top of the skin, to measure brain activity of from 8 domestic dogs (Canis familiaris while they stayed still to observe photos of dog and human faces. Spontaneous oscillatory activity of the dogs, peaking in the sensors over the parieto-occipital cortex, was suppressed statistically significantly during visual task compared with resting activity at the frequency of 15-30 Hz. Moreover, a stimulus-induced low-frequency (~2-6 Hz suppression locked to the stimulus onset was evident at the frontal sensors, possibly reflecting a motor rhythm guiding the exploratory eye movements. The results suggest task-related reactivity of the macroscopic oscillatory activity in the dog brain. To our knowledge, the study is the first to reveal non-invasively measured reactivity of brain electrophysiological oscillations in healthy dogs, and it has been based purely on positive operant conditional training, without the need for movement restriction or medication.

  13. KV waveform measurement using oscilloscope and various non-invasive kVp meter

    International Nuclear Information System (INIS)

    The measurement of kilovoltage (kV) waveform using oscilloscope and various non-invasive kVp meter is investigated in radiographic range. The kV waveform was produced during the x-ray exposure when the tube kilovoltage varies with time. A general x-ray machine, Bennett General X-Ray System model HFQ-6000SE is used to provide radiation in various kV range. The digital oscilloscope DL1540 and selected non-invasive kVp meter also used in this experiment to measured the waveform. The filtration dependence and linearity correction also taking into consideration when calculated the actual kV. In radiographic mode, the result shown that Keithley kVp divider model 35080B with 37617C wide range filter pack and Radcal model 9010 with Accu kV model 40X5-W gave a better result compared to PMX III multifunction meter for nominal dial setting kVp. A more detail results of this study are presented in this paper. (Author)

  14. Non-invasive Glucose Measurements Using Wavelength Modulated Differential Photothermal Radiometry (WM-DPTR)

    Science.gov (United States)

    Guo, X.; Mandelis, A.; Zinman, B.

    2012-11-01

    Wavelength-modulated differential laser photothermal radiometry (WM-DPTR) is introduced for potential development of clinically viable non-invasive glucose biosensors. WM-DPTR features unprecedented glucose-specificity and sensitivity by combining laser excitation by two out-of-phase modulated beams at wavelengths near the peak and the baseline of a prominent and isolated mid-IR glucose absorption band. Measurements on water-glucose phantoms (0 to 300 mg/dl glucose concentration) demonstrate high sensitivity to meet wide clinical detection requirements ranging from hypoglycemia to hyperglycemia. The measurement results have been validated by simulations based on fully developed WM-DPTR theory. For sensitive and accurate glucose measurements, the key is the selection and tight control of the intensity ratio and the phase shift of the two laser beams.

  15. Non-invasive measurement of bone: a review of clinical and research applications in the horse

    International Nuclear Information System (INIS)

    The current methods for non-invasive measurement of bone quality are reviewed. In the horse this has traditionally involved the use of radiography, but there are now two other modalities available for the critical evaluation of cortical bone quality and strength. These utilise single photon absorptiometry and ultrasound velocity. Photon absorptiometry gives a direct measurement of bone mineral content, by using a monoenergetic radionuclide source, and transverse ultrasound velocity in bone gives a measure of bone stiffness or elasticity. They can both be used conveniently on the metacarpus of the conscious horse. Both ultrasound velocity and bone mineral content can be used as accurate indicators of skeletal maturity. In addition, the effects of disuse on bone and certain types of lameness can be monitored accurately. Preliminary data show an association with exercise in young and mature horses. There also appears to be considerable scope for in vivo research of bone changes in horses produced by immobilisation, weightlessness, exercise and nutrition

  16. MRI-compatible noninvasive continuous blood pressure measurement using fiber optics

    Science.gov (United States)

    Harja, Juha; Myllylä, Teemu S.; Sorvoja, Hannu S. S.; Myllylä, Risto A.; Elseoud, Ahmed A.; Nikkinen, Juha; Kiviniemi, Vesa; Tervonen, Osmo

    2010-02-01

    This report focuses on designing and implementing a non-invasive blood pressure measuring device capable of being used during magnetic resonance imaging. This device is based on measuring pulse wave velocity in arterial blood and using the obtained result to estimate diastolic blood pressure. Pulse transit times are measured by two fibre optical accelerometers placed over chest and carotid artery. The fabricated accelerometer contains two static fibres and a cantilever beam. The free end of the beam is angled at 90 degrees to act as a reflecting surface. Optical fibres are used for both illuminating the surface and receiving the reflected light. Acceleration applied to the sensor causes deflection of the beam, whereupon the amount of reflected light changes. The sensor output voltage is proportional to the intensity of the reflected light. Tests conducted on the electronics and sensors inside an MRI room during scanning proved that the device is MR conditional. No artifacts or distortions were detected.

  17. Preliminary clinical evaluation of a noninvasive device for the measurement of coagulability in the elderly

    Directory of Open Access Journals (Sweden)

    Lerman Y

    2011-08-01

    = 0.304, corresponding to mean INR and PT values of 1.07 (SD = 0.3; control group, INR and PT ≥ 1 (N = 32, mean TMI = 1.24 (SD = 0.32. R2 of all control and warfarin patients (N = 67 was 0.55 (P < 0.00001. In summary, the newly introduced TMI index is significantly correlated with INR and PT values.Keywords: anticoagulant monitoring, elderly, noninvasive coagulability index, noninvasive measurement

  18. Anaphylaxis Imaging: Non-Invasive Measurement of Surface Body Temperature and Physical Activity in Small Animals.

    Directory of Open Access Journals (Sweden)

    Krisztina Manzano-Szalai

    Full Text Available In highly sensitized patients, the encounter with a specific allergen from food, insect stings or medications may rapidly induce systemic anaphylaxis with potentially lethal symptoms. Countless animal models of anaphylaxis, most often in BALB/c mice, were established to understand the pathophysiology and to prove the safety of different treatments. The most common symptoms during anaphylactic shock are drop of body temperature and reduced physical activity. To refine, improve and objectify the currently applied manual monitoring methods, we developed an imaging method for the automated, non-invasive measurement of the whole-body surface temperature and, at the same time, of the horizontal and vertical movement activity of small animals. We tested the anaphylaxis imaging in three in vivo allergy mouse models for i milk allergy, ii peanut allergy and iii egg allergy. These proof-of-principle experiments suggest that the imaging technology represents a reliable non-invasive method for the objective monitoring of small animals during anaphylaxis over time. We propose that the method will be useful for monitoring diseases associated with both, changes in body temperature and in physical behaviour.

  19. Noninvasive In-vivo Measurements of Microvessels by Reflection-Type Micro Multipoint Laser Doppler Velocimeter

    Science.gov (United States)

    Ishida, Hiroki; Andoh, Tsugunobu; Akiguchi, Shunsuke; Hachiga, Tadashi; Ishizuka, Masaru; Shimizu, Tadamichi; Shirakawa, Hiroki; Kuraishi, Yasushi

    2012-03-01

    We have developed a micro multipoint laser Doppler velocimeter (µ-MLDV) that enables selective collection of Doppler interference photons. In previous report [H. Ishida et al.: Rev. Sci. Instrum. 82 (2011) 076104], developed the reflection-type µ-MLDV, and showed the results of demonstrations performed on transparent artificial flow channels. In this study, we attempted to perform in-vivo experiments using animals. It can measure absolute velocity and generate tomographs of blood vessels courses. The present system can perform noninvasive in-vivo measurements with a detection limit of about 0.5 mm/s and a spatial resolution in the x-y plane of 125 µm. It is thus able to image venulae. It was used to image venulae in a mouse ear and a subcutaneous blood vessel in a mouse abdomen at a depth of about 1.0 mm below the skin.

  20. Fluid Vessel Quantity Using Non-invasive PZT Technology Flight Volume Measurements Under Zero G Analysis

    Science.gov (United States)

    Garofalo, Anthony A

    2013-01-01

    The purpose of the project is to perform analysis of data using the Systems Engineering Educational Discovery (SEED) program data from 2011 and 2012 Fluid Vessel Quantity using Non-Invasive PZT Technology flight volume measurements under Zero G conditions (parabolic Plane flight data). Also experimental planning and lab work for future sub-orbital experiments to use the NASA PZT technology for fluid volume measurement. Along with conducting data analysis of flight data, I also did a variety of other tasks. I provided the lab with detailed technical drawings, experimented with 3d printers, made changes to the liquid nitrogen skid schematics, and learned how to weld. I also programmed microcontrollers to interact with various sensors and helped with other things going on around the lab.

  1. Fluid Vessel Quantity using Non-Invasive PZT Technology Flight Volume Measurements Under Zero G Analysis

    Science.gov (United States)

    Garofalo, Anthony A.

    2013-01-01

    The purpose of the project is to perform analysis of data using the Systems Engineering Educational Discovery (SEED) program data from 2011 and 2012 Fluid Vessel Quantity using Non-Invasive PZT Technology flight volume measurements under Zero G conditions (parabolic Plane flight data). Also experimental planning and lab work for future sub-orbital experiments to use the NASA PZT technology for fluid volume measurement. Along with conducting data analysis of flight data, I also did a variety of other tasks. I provided the lab with detailed technical drawings, experimented with 3d printers, made changes to the liquid nitrogen skid schematics, and learned how to weld. I also programmed microcontrollers to interact with various sensors and helped with other things going on around the lab.

  2. Novel approach for non-invasive glucose sensing using vibrational contrast CD absorption measurements (Conference Presentation)

    Science.gov (United States)

    Yakovlev, Vladislav V.; Tovar, Carlos; Hokr, Brett; Petrov, Georgi I.

    2016-03-01

    Noninvasive glucose sensing is a Holy Grail of diabetes mellitus management. Unfortunately, despite a number of innovative concepts and a long history of continuous instrumental improvements, the problem remains largely unsolved. Here we propose and experimentally demonstrate the first successful implementation of a novel strategy based on vibrational overtone circular dichroism absorption measurements. Such an approach uses a short-wavelength infrared excitation (1000-2000 nm), which takes the advantage of lower light scattering and intrinsic chemical contrast provided by the chemical structure of D-glucose molecule. We model the propagation of circular polarized light in scattering medium using Monte Carlo simulations to show the feasibility of such approach in turbid medium and demonstrate the proof of principle using optical detection. We also investigate the possibility of using ultrasound detection through circular dichroism absorption measurements to achieve simple and sensitive glucose monitoring.

  3. The importance of optical methods for non-invasive measurements in the skin care industry

    Science.gov (United States)

    Stamatas, Georgios N.

    2010-02-01

    Pharmaceutical and cosmetic industries are concerned with treating skin disease, as well as maintaining and promoting skin health. They are dealing with a unique tissue that defines our body in space. As such, skin provides not only the natural boundary with the environment inhibiting body dehydration as well as penetration of exogenous aggressors to the body, it is also ideally situated for optical measurements. A plurality of spectroscopic and imaging methods is being used to understand skin physiology and pathology and document the effects of topically applied products on the skin. The obvious advantage of such methods over traditional biopsy techniques is the ability to measure the cutaneous tissue in vivo and non-invasively. In this work, we will review such applications of various spectroscopy and imaging methods in skin research that is of interest the cosmetic and pharmaceutical industry. Examples will be given on the importance of optical techniques in acquiring new insights about acne pathogenesis and infant skin development.

  4. Validation of a new spectrometer for noninvasive measurement of cardiac output

    International Nuclear Information System (INIS)

    Acetylene is a blood-soluble gas and for many years its uptake rate during rebreathing tests has been used to calculate the flow rate of blood through the lungs (normally equal to cardiac output) as well as the volume of lung tissue. A new, portable, noninvasive instrument for cardiac output determination using the acetylene uptake method is described. The analyzer relies on nondispersive IR absorption spectroscopy as its principle of operation and is configured for extractive (side-stream) sampling. The instrument affords exceptionally fast (30 ms, 10%-90%, 90%-10%, at 500 mL min-1 flow rates), interference-free, simultaneous measurement of acetylene, sulfur hexafluoride (an insoluble reference gas used in the cardiac output calculation), and carbon dioxide (to determine alveolar ventilation), with good (typically ±2% full-scale) signal-to-noise ratios. Comparison tests with a mass spectrometer using serially diluted calibration gas samples gave excellent (R2>0.99) correlation for all three gases, validating the IR system's linearity and accuracy. A similar level of agreement between the devices also was observed during human subject C2H2 uptake tests (at rest and under incremental levels of exercise), with the instruments sampling a common extracted gas stream. Cardiac output measurements by both instruments were statistically equivalent from rest to 90% of maximal oxygen consumption; the physiological validity of the measurements was confirmed by the expected linear relationship between cardiac output and oxygen consumption, with both the slope and intercept in the published range. These results indicate that the portable, low-cost, rugged prototype analyzer discussed here is suitable for measuring cardiac output noninvasively in a point-of-care setting

  5. Non-Invasive Measurement of Adrenocortical Activity in Blue-Fronted Parrots (Amazona aestiva, Linnaeus, 1758)

    Science.gov (United States)

    Ferreira, João C. P.; Fujihara, Caroline J.; Fruhvald, Erika; Trevisol, Eduardo; Destro, Flavia C.; Teixeira, Carlos R.; Pantoja, José C. F.; Schmidt, Elizabeth M. S.; Palme, Rupert

    2015-01-01

    Parrots kept in zoos and private households often develop psychological and behavioural disorders. Despite knowing that such disorders have a multifactorial aetiology and that chronic stress is involved, little is known about their development mainly due to a poor understanding of the parrots’ physiology and the lack of validated methods to measure stress in these species. In birds, blood corticosterone concentrations provide information about adrenocortical activity. However, blood sampling techniques are difficult, highly invasive and inappropriate to investigate stressful situations and welfare conditions. Thus, a non-invasive method to measure steroid hormones is critically needed. Aiming to perform a physiological validation of a cortisone enzyme immunoassay (EIA) to measure glucocorticoid metabolites (GCM) in droppings of 24 Blue-fronted parrots (Amazona aestiva), two experiments were designed. During the experiments all droppings were collected at 3-h intervals. Initially, birds were sampled for 24 h (experiment 1) and one week later assigned to four different treatments (experiment 2): Control (undisturbed), Saline (0.2 mL of 0.9% NaCl IM), Dexamethasone (1 mg/kg IM) and Adrenocorticotropic hormone (ACTH; 25 IU IM). Treatments (always one week apart) were applied to all animals in a cross-over study design. A daily rhythm pattern in GCM excretion was detected but there were no sex differences (first experiment). Saline and dexamethasone treatments had no effect on GCM (not different from control concentrations). Following ACTH injection, GCM concentration increased about 13.1-fold (median) at the peak (after 3–9 h), and then dropped to pre-treatment concentrations. By a successful physiological validation, we demonstrated the suitability of the cortisone EIA to non-invasively monitor increased adrenocortical activity, and thus, stress in the Blue-fronted parrot. This method opens up new perspectives for investigating the connection between behavioural

  6. Non-Invasive Measurement of Adrenocortical Activity in Blue-Fronted Parrots (Amazona aestiva, Linnaeus, 1758.

    Directory of Open Access Journals (Sweden)

    João C P Ferreira

    Full Text Available Parrots kept in zoos and private households often develop psychological and behavioural disorders. Despite knowing that such disorders have a multifactorial aetiology and that chronic stress is involved, little is known about their development mainly due to a poor understanding of the parrots' physiology and the lack of validated methods to measure stress in these species. In birds, blood corticosterone concentrations provide information about adrenocortical activity. However, blood sampling techniques are difficult, highly invasive and inappropriate to investigate stressful situations and welfare conditions. Thus, a non-invasive method to measure steroid hormones is critically needed. Aiming to perform a physiological validation of a cortisone enzyme immunoassay (EIA to measure glucocorticoid metabolites (GCM in droppings of 24 Blue-fronted parrots (Amazona aestiva, two experiments were designed. During the experiments all droppings were collected at 3-h intervals. Initially, birds were sampled for 24 h (experiment 1 and one week later assigned to four different treatments (experiment 2: Control (undisturbed, Saline (0.2 mL of 0.9% NaCl IM, Dexamethasone (1 mg/kg IM and Adrenocorticotropic hormone (ACTH; 25 IU IM. Treatments (always one week apart were applied to all animals in a cross-over study design. A daily rhythm pattern in GCM excretion was detected but there were no sex differences (first experiment. Saline and dexamethasone treatments had no effect on GCM (not different from control concentrations. Following ACTH injection, GCM concentration increased about 13.1-fold (median at the peak (after 3-9 h, and then dropped to pre-treatment concentrations. By a successful physiological validation, we demonstrated the suitability of the cortisone EIA to non-invasively monitor increased adrenocortical activity, and thus, stress in the Blue-fronted parrot. This method opens up new perspectives for investigating the connection between behavioural

  7. Calibration of three rainfall simulators with automatic measurement methods

    Science.gov (United States)

    Roldan, Margarita

    2010-05-01

    CALIBRATION OF THREE RAINFALL SIMULATORS WITH AUTOMATIC MEASUREMENT METHODS M. Roldán (1), I. Martín (2), F. Martín (2), S. de Alba(3), M. Alcázar(3), F.I. Cermeño(3) 1 Grupo de Investigación Ecología y Gestión Forestal Sostenible. ECOGESFOR-Universidad Politécnica de Madrid. E.U.I.T. Forestal. Avda. Ramiro de Maeztu s/n. Ciudad Universitaria. 28040 Madrid. margarita.roldan@upm.es 2 E.U.I.T. Forestal. Avda. Ramiro de Maeztu s/n. Ciudad Universitaria. 28040 Madrid. 3 Facultad de Ciencias Geológicas. Universidad Complutense de Madrid. Ciudad Universitaria s/n. 28040 Madrid The rainfall erosivity is the potential ability of rain to cause erosion. It is function of the physical characteristics of rainfall (Hudson, 1971). Most expressions describing erosivity are related to kinetic energy or momentum and so with drop mass or size and fall velocity. Therefore, research on factors determining erosivity leds to the necessity to study the relation between fall height and fall velocity for different drop sizes, generated in a rainfall simulator (Epema G.F.and Riezebos H.Th, 1983) Rainfall simulators are one of the most used tools for erosion studies and are used to determine fall velocity and drop size. Rainfall simulators allow repeated and multiple measurements The main reason for use of rainfall simulation as a research tool is to reproduce in a controlled way the behaviour expected in the natural environment. But in many occasions when simulated rain is used in order to compare it with natural rain, there is a lack of correspondence between natural and simulated rain and this can introduce some doubt about validity of data because the characteristics of natural rain are not adequately represented in rainfall simulation research (Dunkerley D., 2008). Many times the rainfall simulations have high rain rates and they do not resemble natural rain events and these measures are not comparables. And besides the intensity is related to the kinetic energy which

  8. A concept for non-invasive temperature measurement during injection moulding processes

    Science.gov (United States)

    Hopmann, Christian; Spekowius, Marcel; Wipperfürth, Jens; Schöngart, Maximilian

    2016-03-01

    Current models of the injection moulding process insufficiently consider the thermal interactions between melt, solidified material and the mould. A detailed description requires a deep understanding of the underlying processes and a precise observation of the temperature. Because todays measurement concepts do not allow a non-invasive analysis it is necessary to find new measurement techniques for temperature measurements during the manufacturing process. In this work we present the idea of a set up for a tomographic ultrasound measurement of the temperature field inside a plastics melt. The goal is to identify a concept that can be installed on a specialized mould for the injection moulding process. The challenges are discussed and the design of a prototype is shown. Special attention is given to the spatial arrangement of the sensors. Besides the design of a measurement set up a reconstruction strategy for the ultrasound signals is required. We present an approach in which an image processing algorithm can be used to calculate a temperature distribution from the ultrasound scans. We discuss a reconstruction strategy in which the ultrasound signals are converted into a spartial temperature distribution by using pvT curves that are obtained by dilatometer measurements.

  9. Non-invasive measurement of the blood pressure pulse using multiple PPGs

    Science.gov (United States)

    Seymour, John; Pennington, Gary

    Heart disease, the leading cause of death in the US, may be spotted early on by looking at photoplethysmogram (PPG) data. This experiment explores a new method of continuously monitoring the blood pressure pulse with PPG data. In contrast to the traditional sphygmomanometer (cuff) method, which yields only the systolic and diastolic pressure during measurement, this method tracks the blood pressure pulse wave in a non-invasive continuous manner. This procedure allows for fast, inexpensive, and detailed analysis of the patient's blood pressure implementable on a large scale. We also explore the second derivative of the PPG data. In combination with the above method, the patient's heart risk can be effectively detected. We acknowledge Fisher Endowment Grant support from the Jess and Mildred Fisher College of Science and Mathematics, Towson University.

  10. Non-invasive measurement of pressure and volume parameters of left ventricle performance

    International Nuclear Information System (INIS)

    The volume parameters of cardiac function, obtained by gated-blood-pool scintigraphy, were supplemented by the ventricle dimensions and by the medium arterial pressure, measured non-invasively after Riva-Rocci. From this, the systolic effect as a load-dependent parameter of contractility and the global effect of the left ventricle were derived. If the latter is related to the volume effect, information about the relative efficiency of the heart action is obtained. By studying three collectives of patients with different performance abilities of the left ventricle it was shown that, by including the ventricle geometry and the medium arterial pressure, the myocardial contractility can better assessed quantitatively as well as qualitatively and that useful data about the performance economy of the heart can be obtained. (orig.)

  11. Noninvasive in vivo percutaneous absorption measurements using x-ray fluorescence

    International Nuclear Information System (INIS)

    A new, noninvasive method for determining percutaneous absorption in vivo has been developed using radioisotope induced X-ray fluorescence (XRF). The absorption rate of 5-iodouracil in dimethyl sulfoxide (DMSO) was determined on four female Sprague-Dawley albino rats. The technique has also been used to investigate the penetration enhancing effects of ethyl acetate (EtoAc), N-methyl 2-pyrrolidinone (NMP), and DMSO with 2-iodobenzoic acid as the model compound. Several absorption kinetics were observed; zero order for EtoAc, first order for NMP, and a two compartment model for DMSO. The advantage of this disappearance measurement over the traditional radiolabeling method is that XRF is a simple, economical method in which the subject receives only a localized, low radiation dose (8 mR/5 min)

  12. Blow collection as a non-invasive method for measuring cortisol in the beluga (Delphinapterus leucas.

    Directory of Open Access Journals (Sweden)

    Laura A Thompson

    Full Text Available Non-invasive sampling techniques are increasingly being used to monitor glucocorticoids, such as cortisol, as indicators of stressor load and fitness in zoo and wildlife conservation, research and medicine. For cetaceans, exhaled breath condensate (blow provides a unique sampling matrix for such purposes. The purpose of this work was to develop an appropriate collection methodology and validate the use of a commercially available EIA for measuring cortisol in blow samples collected from belugas (Delphinapterus leucas. Nitex membrane stretched over a petri dish provided the optimal method for collecting blow. A commercially available cortisol EIA for measuring human cortisol (detection limit 35 pg ml-1 was adapted and validated for beluga cortisol using tests of parallelism, accuracy and recovery. Blow samples were collected from aquarium belugas during monthly health checks and during out of water examination, as well as from wild belugas. Two aquarium belugas showed increased blow cortisol between baseline samples and 30 minutes out of water (Baseline, 0.21 and 0.04 µg dl-1; 30 minutes, 0.95 and 0.14 µg dl-1. Six wild belugas also showed increases in blow cortisol between pre and post 1.5 hour examination (Pre 0.03, 0.23, 0.13, 0.19, 0.13, 0.04 µg dl-1, Post 0.60, 0.31, 0.36, 0.24, 0.14, 0.16 µg dl-1. Though this methodology needs further investigation, this study suggests that blow sampling is a good candidate for non-invasive monitoring of cortisol in belugas. It can be collected from both wild and aquarium animals efficiently for the purposes of health monitoring and research, and may ultimately be useful in obtaining data on wild populations, including endangered species, which are difficult to handle directly.

  13. Effect of non-invasive ventilation on the measurement of ventilatory and metabolic variables.

    Science.gov (United States)

    Dennis, C J; Menadue, C; Harmer, A R; Barnes, D J; Alison, J A

    2016-07-01

    The effect of non-invasive ventilation (NIV) on the accuracy of measurements of ventilation, oxygen consumption (V˙O2) and carbon dioxide production (V˙CO2) was examined using a simulator. Known gas volumes of oxygen and carbon dioxide were delivered to a metabolic system that measured tidal volume, respiratory rate, V˙O2 and V˙CO2, both with and without NIV. Bland-Altman analyses were used to compare between conditions. NIV at pressure support (PS) 20cm H2O compared to without NIV showed: VT, mean difference (MD) 0mL (limits of agreement (LOA) -21 to 21) mL; V˙O2 MD -413 (LOA -810 to 16) mL/min; and V˙CO2 MD 32 (LOA -32 to 97) mL/min. For V˙O2 measurements during NIV, a correction was applied to account for increased air density due to PS. After correction, V˙O2 measurement accuracy improved; MD -46 (LOA -108 to 17) mL/min. Tidal volume and metabolic variables can be measured with acceptable accuracy during NIV, providing V˙O2 is corrected for altered gas density. PMID:26932772

  14. Chance correlation in non-invasive glucose measurement using near-infrared spectroscopy

    International Nuclear Information System (INIS)

    Although the non-invasive glucose measurement technique based on near-infrared (NIR) spectroscopy has been an active research area for over twenty years, a reliable monitoring method has not been established yet. The key problem is that the spectral variations due to glucose concentration are extremely small compared to that from other biological components. In addition, there are also some ambiguous time-dependent physiological processes, which make the explanation of the model more difficult, especially in the universal calibration. Therefore, in order to produce a model that is related to the actual spectral variation of glucose, reproducible measurements and clinical validation experiments that improve the selectivity and signal to noise ratio of glucose measurement are needed. In this paper, chance correlation in spectroscopy analysis is investigated, which is one of the obstacles to achieving successful NIR spectroscopy analysis, especially in in vivo measurement. The reasons for chance correlation in the in vitro and in vivo experiments are analysed. Methods to avoid it are suggested accordingly and verified with the in vitro experiments. We also investigate the chance correlation for the in vivo NIR diffuse reflectance spectroscopy monitoring blood. Results show that there is significant signal variation after glucose is taken, and the potential chance correlation factors including the instrument-related and physiology-related variations during the in vivo experiments do not contribute to the multivariate model for glucose concentration

  15. Transient micro-elastography:A novel non-invasive approach to measure liver stiffness in mice

    Institute of Scientific and Technical Information of China (English)

    Cécile Bastard; Matteo R Bosisio; Michèle Chabert; Athina D Kalopissis; Meriem Mahrouf-Yorgov; Hélène Gilgenkrantz; Sebastian Mueller; Laurent Sandrin

    2011-01-01

    AIM:To develop and validate a transient micro-elastography device to measure liver stiffness (LS) in mice. METHODS:A novel transient micro-elastography (TME) device,dedicated to LS measurements in mice with a range of measurement from 1-170 kPa,was developed using an optimized vibration frequency of 300 Hz and a 2 mm piston.The novel probe was validated in a classical fibrosis model (CCl4) and in a transgenic murine model of systemic amyloidosis.RESULTS:TME could be successfully performed in control mice below the xiphoid cartilage,with a mean LS of 4.4 ± 1.3 kPa,a mean success rate of 88%,and an excellent intra-observer agreement (0.98).Treatment with CCl4 over seven weeks drastically increased LS as compared to controls (18.2 ± 3.7 kPa vs 3.6 ± 1.2 kPa).Moreover, fibrosis stage was highly correlated with LS (Spearman coefficient = 0.88,P 150 kPa.LS significantly correlated with the amyloidosis index (0.93,P < 0.0001) and the plasma concentration of mutant hapoA-Ⅱ (0.62,P < 0.005). CONCLUSION:Here,we have established the first non-invasive approach to measure LS in mice,and have successfully validated it in two murine models of high LS.

  16. Noninvasive pulse transit time measurement for arterial stiffness monitoring in microgravity.

    Science.gov (United States)

    McCall, Corey; Rostosky, Rea; Wiard, Richard M; Inan, Omer T; Giovangrandi, Laurent; Cuttino, Charles Marsh; Kovacs, Gregory T A

    2015-08-01

    The use of a noninvasive hemodynamic monitor to estimate arterial stiffness, by measurement of pulse transit time (PTT), was demonstrated in microgravity. The monitor's utility for space applications was shown by establishing the correlation between ground-based and microgravity-based measurements. The system consists of a scale-based ballistocardiogram (BCG) and a toe-mounted photoplethysmogram (PPG). PTT was measured from the BCG I-wave to the intersecting tangents of the first trough and maximum first derivative of the PPG waveforms of each subject. The system was tested on a recent series of parabolic flights in which the PTT of nine subjects was measured on the ground and in microgravity. An average of 60.2 ms PTT increase from ground to microgravity environments was shown, and was consistent across all test subjects (standard deviation = 32.9 ms). This increase in PTT could be explained by a number of factors associated with microgravity and reported in previous research, including elimination of hydrostatic pressure, reduction of intrathoracic pressure, and reduction of mean arterial pressure induced by vasodilation. PMID:26737764

  17. Noninvasive Measurement of the Pressure Distribution in a Deformable Micro-Channel

    CERN Document Server

    Ozsun, O; Ekinci, K L

    2013-01-01

    Direct and noninvasive measurement of the pressure distribution in test sections of a micro-channel is a challenging, if not an impossible, task. Here, we present an analytical method for extracting the pressure distribution in a deformable micro-channel under flow. Our method is based on a measurement of the channel deflection profile as a function of applied \\emph{hydrostatic} pressure; this initial measurement generates "constitutive curves" for the deformable channel. The deflection profile under flow is then matched to the constitutive curves, providing the \\emph{hydrodynamic} pressure distribution. The method is validated by measurements on planar micro-fluidic channels against analytic and numerical models. The accuracy here is independent of the nature of the wall deformations and is not degraded even in the limit of large deflections, $\\zeta_{\\rm{max}}/2h_{0}= {\\cal{O}}(1)$, with $\\zeta_{\\rm{max}}$ and $2h_0$ being the maximum deflection and the unperturbed height of the channel, respectively. We dis...

  18. Non-invasive measurement of skin autofluorescence to evaluate diabetic complications.

    Science.gov (United States)

    Yamanaka, Mikihiro; Matsumura, Takeshi; Ohno, Rei-Ichi; Fujiwara, Yukio; Shinagawa, Masatoshi; Sugawa, Hikari; Hatano, Kota; Shirakawa, Jun-Ichi; Kinoshita, Hiroyuki; Ito, Kenji; Sakata, Noriyuki; Araki, Eiichi; Nagai, Ryoji

    2016-03-01

    Although the accumulation of advanced glycation end-products (AGEs) of the Maillard reaction in our body is reported to increase with aging and is enhanced by the pathogenesis of lifestyle-related diseases such as diabetes, routine measurement of AGEs is not applied to regular clinical diagnoses due to the lack of conventional and reliable techniques for AGEs analyses. In the present study, a non-invasive AGEs measuring device was developed and the association between skin AGEs and diabetic complications was evaluated. To clarify the association between the duration of hyperglycemia and accumulation of skin fluorophores, diabetes was induced in mice by streptozotocin. As a result, the fluorophore in the auricle of live mice was increased by the induction of diabetes. Subsequent studies revealed that the fingertip of the middle finger in the non-dominant hand is suitable for the measurement of the fluorescence intensity by the standard deviation value. Furthermore, the fluorescence intensity was increased by the presence of diabetic microvascular complications. This study provides the first evidence that the accumulation of fluorophore in the fingertip increases with an increasing number of microvascular complications, demonstrating that the presence of diabetic microvascular complications may be predicted by measuring the fluorophore concentration in the fingertip. PMID:27013780

  19. Design and Development of Automatic Temperature Measurement Device Based on Can Bus Technology

    OpenAIRE

    Xin Lu; Yanhuang Zhou; Jincao Chen

    2013-01-01

    An automatic online temperature measurement device on the Modular Artillery Charge System (MACS) is designed and developed, based on Controller Area Network (CAN) bus technology in this study. For measuring automatically the temperature of the modular charge, a non-contact measurement method is proposed. The primary idea of this method is to obtain the real-time value of the modular charge temperature through solving the unsteady heat transfer equations describing the variation in the modular...

  20. Automatic resource identification for FPGA-based reconfigurable measurement and control systems with mezzanines in FMC standard

    Science.gov (United States)

    Wojenski, Andrzej; Kasprowicz, Grzegorz; Pozniak, Krzysztof T.; Romaniuk, Ryszard

    2013-10-01

    The paper describes a concept of automatic resources identification algorithm used in reconfigurable measurement systems. In the paper is also presented a concept of algorithm for automatic generation of HDL codes (firmware) and management of reconfigurable measurement and control systems. Following sections are described in details: definition of measurement system, FMC boards installation, automatic FPGA startup configuration, automatic FMC detection and automatic card identification. Reconfigurable measurement and control systems are using FPGA devices and mezzanines in FMC standard. This work is a part of a wider project for automatic firmware generation and management of reconfigurable systems.

  1. Non-invasive measurement of cardiac output by Finometer in patients with cirrhosis

    DEFF Research Database (Denmark)

    Kaltoft, Nicolai Stefan; Hobolth, L; Møller, S

    2010-01-01

    The Finometer measures haemodynamic parameters including cardiac output (CO) using non-invasive volume-clamp techniques. The aim of this study was to determine the accuracy of the Finometer in hyperdynamic cirrhotic patients using an invasive indicator dilution technique as control. CO was measured......(I) was 6.1 +/- 1.6 [3.9;9.7] l min(-1) (mean +/- SD [range]) compared to mean CO(F) of 7.2 +/- 2.3 [3.1;11.9] l min(-1). There was a mean difference between CO(F) and CO(I) of 1.0 +/- 1.8 [-2.1;4.0] l min(-1) and 95% confidence interval of [0.2;1.8], P<0.001. In patients with measurements before and...... after beta-blockade, mean DeltaCO(I) was 1.6 +/- 1.4 [-0.1;3.3] l min(-1) compared to mean DeltaCO(F) of 1.9 +/- 1.3 [0.4;3.8] l min(-1). Mean difference between DeltaCO(F) and DeltaCO(I) was 0.3 +/- 0.3 [-0.2;0.7] l min(-1) with a 95% confidence interval of [-0.1;0.6], P = 0.11. Compared with invasive...

  2. A simple non-invasive method for measuring gross brain size in small live fish with semi-transparent heads

    Directory of Open Access Journals (Sweden)

    Joacim Näslund

    2014-09-01

    Full Text Available This paper describes a non-invasive method for estimating gross brain size in small fish with semi-transparent heads, using system camera equipment. Macro-photographs were taken from above on backlit free-swimming fish undergoing light anaesthesia. From the photographs, the width of the optic tectum was measured. This measure (TeO-measure correlates well with the width of the optic tectum as measured from out-dissected brains in both brown trout fry and zebrafish (Pearson r > 0.90. The TeO-measure also correlates well with overall brain wet weight in brown trout fry (r = 0.90, but less well for zebrafish (r = 0.79. A non-invasive measure makes it possible to quickly assess brain size from a large number of individuals, as well as repeatedly measuring brain size of live individuals allowing calculation of brain growth.

  3. Noninvasive measurement of cerebrospinal fluid flow using an ultrasonic transit time flow sensor: a preliminary study.

    Science.gov (United States)

    Pennell, Thomas; Yi, Juneyoung L; Kaufman, Bruce A; Krishnamurthy, Satish

    2016-03-01

    OBJECT Mechanical failure-which is the primary cause of CSF shunt malfunction-is not readily diagnosed, and the specific reasons for mechanical failure are not easily discerned. Prior attempts to measure CSF flow noninvasively have lacked the ability to either quantitatively or qualitatively obtain data. To address these needs, this preliminary study evaluates an ultrasonic transit time flow sensor in pediatric and adult patients with external ventricular drains (EVDs). One goal was to confirm the stated accuracy of the sensor in a clinical setting. A second goal was to observe the sensor's capability to record real-time continuous CSF flow. The final goal was to observe recordings during instances of flow blockage or lack of flow in order to determine the sensor's ability to identify these changes. METHODS A total of 5 pediatric and 11 adult patients who had received EVDs for the treatment of hydrocephalus were studied in a hospital setting. The primary EVD was connected to a secondary study EVD that contained a fluid-filled pressure transducer and an in-line transit time flow sensor. Comparisons were made between the weight of the drainage bag and the flow measured via the sensor in order to confirm its accuracy. Data from the pressure transducer and the flow sensor were recorded continuously at 100 Hz for a period of 24 hours by a data acquisition system, while the hourly CSF flow into the drip chamber was recorded manually. Changes in the patient's neurological status and their time points were noted. RESULTS The flow sensor demonstrated a proven accuracy of ± 15% or ± 2 ml/hr. The flow sensor allowed real-time continuous flow waveform data recordings. Dynamic analysis of CSF flow waveforms allowed the calculation of the pressure-volume index. Lastly, the sensor was able to diagnose a blocked catheter and distinguish between the blockage and lack of flow. CONCLUSIONS The Transonic flow sensor accurately measures CSF output within ± 15% or ± 2 ml

  4. Resonant-cavity approach to noninvasive, pulse-to-pulse emittance measurement

    International Nuclear Information System (INIS)

    We present a resonant-cavity approach for noninvasive, pulse-to-pulse, beam emittance measurements of noncircular multibunch beams. In a resonant cavity, desired field components can be enhanced up to QLλ/π, where QLλ is the loaded quality factor of the resonant mode λ, when the cavity resonant mode matches the bunch frequency of a bunch-train beam pulse. In particular, a quad cavity, with its quadrupole mode (TM220 for rectangular cavities) at beam operating frequency, rotated 45 deg. with respect to the beamline, extracts the beam quadrupole moment exclusively, utilizing the symmetry of the cavity and some simple networks to suppress common modes. Six successive beam quadrupole-moment measurements, performed at different betatron phases in a linear transport system, determine the beam emittance, i.e., the beam size and shape in the beam's phase space, if the beam current and position at these points are known. In the presence of x-y beam coupling, ten measurements are required. One measurement alone provides the rms beam size of a large aspect ratio beam. The resolution for such a measurement of rms beam size with the rectangular quad-cavity monitor presented in this article is estimated to be on the order of 10 μm. A prototype quad cavity was fabricated and preliminary beam tests were performed at the Next Linear Collider Test Accelerator at the Stanford Linear Accelerator Center. The results were mainly limited by beam jitter and uncertainty in the beam position measurement at the cavity location. This motivated the development of a position-emittance integrated monitor [J. S. Kim et al., Rev. Sci. Instrum. 76, 073302 (2005)

  5. Resonant-cavity approach to noninvasive, pulse-to-pulse emittance measurement

    Science.gov (United States)

    Kim, J. S.; Nantista, C. D.; Miller, R. H.; Weidemann, A. W.

    2005-12-01

    We present a resonant-cavity approach for noninvasive, pulse-to-pulse, beam emittance measurements of noncircular multibunch beams. In a resonant cavity, desired field components can be enhanced up to QLλ/π, where QLλ is the loaded quality factor of the resonant mode λ, when the cavity resonant mode matches the bunch frequency of a bunch-train beam pulse. In particular, a quad cavity, with its quadrupole mode (TM220 for rectangular cavities) at beam operating frequency, rotated 45° with respect to the beamline, extracts the beam quadrupole moment exclusively, utilizing the symmetry of the cavity and some simple networks to suppress common modes. Six successive beam quadrupole-moment measurements, performed at different betatron phases in a linear transport system, determine the beam emittance, i.e., the beam size and shape in the beam's phase space, if the beam current and position at these points are known. In the presence of x-y beam coupling, ten measurements are required. One measurement alone provides the rms beam size of a large aspect ratio beam. The resolution for such a measurement of rms beam size with the rectangular quad-cavity monitor presented in this article is estimated to be on the order of 10μm. A prototype quad cavity was fabricated and preliminary beam tests were performed at the Next Linear Collider Test Accelerator at the Stanford Linear Accelerator Center. The results were mainly limited by beam jitter and uncertainty in the beam position measurement at the cavity location. This motivated the development of a position-emittance integrated monitor [J. S. Kim et al., Rev. Sci. Instrum. 76, 073302 (2005)].

  6. Non-invasive, Cosmic Ray Neutrons Approach for Area Wide Soil Moisture Measurement

    International Nuclear Information System (INIS)

    Measurement of area wide soil moisture content is needed for a variety of applications such as large scale irrigation scheduling, yield forecasting and climate change studies. In past decades, measurement of area wide soil moisture has been a challenge since most devices are for small plots within the range of 0.05 to 1 m in diameter. As a result, a large number of measurements, which can be costly and time consuming, are required. The recent development of a cosmic ray neutrons approach represents a breakthrough in addressing this challenge (Zreda et al. 2008, Shuttleworth et al. 2010). Cosmic-ray neutrons monitor the background radiation in the air above the soil, the intensity of which depends primarily on soil moisture that was found to correlate with soil hydrogen content. The cosmic ray soil moisture probe integrates soil moisture content over an area of approximately 700 m in diameter to a depth of 70 cm, covering the rooting zones of most crops. As a result it can enhance point measurement devices to yield a reliable measure of area average soil moisture. The probe is insensitive to temperature, salinity, soil mineral chemistry and is non-invasive (Desilets et al. 2010), thus allowing measurements to be carried out under undisturbed soil conditions. The cosmic ray neutron probe responds to all forms of moisture, including liquid and frozen soil water, snow, and water in or on vegetation, allowing for the assessment of the total surface moisture. The probe will enable us to provide soil moisture readings at a large number of sites with different physical characteristics, from simple and easy (flat grasslands) to complex and difficult terrain.

  7. Transmission (forward) mode, transcranial, noninvasive optoacoustic measurements for brain monitoring, imaging, and sensing

    Science.gov (United States)

    Petrov, Irene Y.; Petrov, Yuriy; Prough, Donald S.; Richardson, C. Joan; Fonseca, Rafael A.; Robertson, Claudia S.; Asokan, C. Vasantha; Agbor, Adaeze; Esenaliev, Rinat O.

    2016-03-01

    We proposed to use transmission (forward) mode for cerebral, noninvasive, transcranial optoacoustic monitoring, imaging, and sensing in humans. In the transmission mode, the irradiation of the tissue of interest and detection of optoacoustic signals are performed from opposite hemispheres, while in the reflection (backward) mode the irradiation of the tissue of interest and detection of optoacoustic signals are performed from the same hemisphere. Recently, we developed new, transmission-mode optoacoustic probes for patients with traumatic brain injury (TBI) and for neonatal patients. The transmission mode probes have two major parts: a fiber-optic delivery system and an acoustic transducer (sensor). To obtain optoacoustic signals in the transmission mode, in this study we placed the sensor on the forehead, while light was delivered to the opposite side of the head. Using a medical grade, multi-wavelength, OPObased optoacoustic system tunable in the near infrared spectral range (680-950 nm) and a novel, compact, fiber-coupled, multi-wavelength, pulsed laser diode-based system, we recorded optoacoustic signals generated in the posterior part of the head of adults with TBI and neonates. The optoacoustic signals had two distinct peaks: the first peak from the intracranial space and the second peak from the scalp. The first peak generated by cerebral blood was used to measure cerebral blood oxygenation. Moreover, the transmission mode measurements provided detection of intracranial hematomas in the TBI patients. The obtained results suggest that the transmission mode can be used for optoacoustic brain imaging, tomography, and mapping in humans.

  8. Non-invasive method for the aortic blood pressure waveform estimation using the measured radial EBI

    International Nuclear Information System (INIS)

    The paper presents a method for the Central Aortic Pressure (CAP) waveform estimation from the measured radial Electrical Bio-Impedance (EBI). The method proposed here is a non-invasive and health-safe approach to estimate the cardiovascular system parameters, such as the Augmentation Index (AI). Reconstruction of the CAP curve from the EBI data is provided by spectral domain transfer functions (TF), found on the bases of data analysis. Clinical experiments were carried out on 30 patients in the Center of Cardiology of East-Tallinn Central Hospital during coronary angiography on patients in age of 43 to 80 years. The quality and reliability of the method was tested by comparing the evaluated augmentation indices obtained from the invasively measured CAP data and from the reconstructed curve. The correlation coefficient r = 0.89 was calculated in the range of AICAP values from 5 to 28. Comparing to the traditional tonometry based method, the developed one is more convenient to use and it allows long-term monitoring of the AI, what is not possible with tonometry probes.

  9. Non-invasive tools for measuring metabolism and biophysical analyte transport: self-referencing physiological sensing.

    Science.gov (United States)

    McLamore, Eric S; Porterfield, D Marshall

    2011-11-01

    Biophysical phenomena related to cellular biochemistry and transport are spatially and temporally dynamic, and are directly involved in the regulation of physiology at the sub-cellular to tissue spatial scale. Real time monitoring of transmembrane transport provides information about the physiology and viability of cells, tissues, and organisms. Combining information learned from real time transport studies with genomics and proteomics allows us to better understand the functional and mechanistic aspects of cellular and sub-cellular systems. To accomplish this, ultrasensitive sensing technologies are required to probe this functional realm of biological systems with high temporal and spatial resolution. In addition to ongoing research aimed at developing new and enhanced sensors (e.g., increased sensitivity, enhanced analyte selectivity, reduced response time, and novel microfabrication approaches), work over the last few decades has advanced sensor utility through new sensing modalities that extend and enhance the data recorded by sensors. A microsensor technique based on phase sensitive detection of real time biophysical transport is reviewed here. The self-referencing technique converts non-invasive extracellular concentration sensors into dynamic flux sensors for measuring transport from the membrane to the tissue scale. In this tutorial review, we discuss the use of self-referencing micro/nanosensors for measuring physiological activity of living cells/tissues in agricultural, environmental, and biomedical applications comprehensible to any scientist/engineer. PMID:21761069

  10. Specificity and sensitivity of noninvasive measurement of pulmonary vascular protein leak

    International Nuclear Information System (INIS)

    Noninvasive techniques employing external counting of radiolabeled protein have the potential for measuring pulmonary vascular protein permeability, but their specificity and sensitivity remain unclear. The authors tested the specificity and sensitivity of a double-radioisotope method by injecting radiolabeled albumin (131I) and erythrocytes (/sup 99m/Tc) into anesthetized dogs and measuring the counts of each isotope for 150 min after injection with an external gamma probe fixed over the lung. They calculated the rate of increase of albumin counts measured by the probe (which reflects the rate at which protein leaks into the extravascular space). To assess permeability the authors normalized the rate of increase in albumin counts for changes in labeled erythrocyte signal to minimize influence of changes in vascular surface area and thus derived an albumin leak index. They measured the albumin leak index and gravimetric lung water during hydrostatic edema (acutely elevating left atrial pressure by left atrial balloon inflation: mean pulmonary arterial wedge pressure = 22.6 Torr) and in lung injury edema induced by high- (1.0 g/kg) and low-dose (0.25 g/kg) intravenous thiourea. To test specificity hydrostatic and high-dose thiourea edema were compared. The albumin leak index increased nearly fourfold from control after thiourea injury (27.2 +/- 2.3 x 10-4 vs. 7.6 +/- 0.9 x 10-4 min-1) but did not change from control levels after elevating left atrial pressure (8.9 +/- 1.2 x 10-4 min-1) despite comparable increases in gravimetric lung water. To test sensitivity the authors compared low-dose thiourea with controls. Following low-dose thiourea, the albumin leak index nearly doubled despite the absence of a measurable increase in lung water

  11. Noninvasive Intracranial Pressure and Tissue Oxygen Measurements for Space and Earth

    Science.gov (United States)

    Hargens, A. R.; Ballard, R. E.; Murthy, G.; Watenpaugh, D. E.

    1994-01-01

    The paper discusses the following: Increasing intracranial pressure in humans during simulated microgravity. and near-infrared monitoring of model chronic compartment syndrome in exercising skeletal muscle. Compared to upright-seated posture, 0 deg. supine, 6 deg. HDT, and 15 deg. HDT produced TMD changes of 317 +/- 112, 403 +/- 114, and 474 +/- 112 n1 (means +/- S.E.), respectively. Furthermore, postural transitions from 0 deg. supine to 6 deg. HDT and from 6 deg. to 15 deg. HDT generated significant TMD changes (p less than 0.05). There was no hysteresis when postural transitions to HDT were compared to reciprocal transitions toward upright seated posture. Currently, diagnosis of chronic compartment syndrome (CCS) depends on measurement of intramuscular pressure by invasive catheterization. We hypothesized that this syndrome can be detected noninvasively by near-infrared (NIR) spectroscopy, which tracks variations in muscle hemoglobin/myoglobin oxygen saturation. CCS was simulated in the tibialis anterior muscle of 7 male and 3 female subjects by gradual inflation of a cuff placed around the leg to 40 mmHg during 14 minutes of cyclic isokinetic dorsiflexion exercise. On a separate day, subjects underwent the identical exercise protocol with no external compression. In both cases, tissue oxygenation (T(sub O2) was measured in the tibialis anterior by NIR spectroscopy and normalized to a percentage scale between baseline and a T(sub O2) nadir reached during exercise to ischemic exhaustion. Over the course of exercise, T(sub O2) declined at a rate of 1.4 +/- 0.3% per minute with model CCS, yet did not decrease during control exercise. Post-exercise recovery of T(sub O2) was slower with model CCS (2.5 +/- 0.6 min) than in control (1.3 +/- 0.2 min). These results demonstrate that NIR spectroscopy can detect muscle deoxygenation caused by pathologically elevated intramuscular pressure in exercising skeletal muscle. Consequently, this technique shows promise as a

  12. Non-invasive measurement of aortic pressure in patients: Comparing pulse wave analysis and applanation tonometry

    Directory of Open Access Journals (Sweden)

    M.U.R. Naidu

    2012-01-01

    Full Text Available Objective: The aim of the present study was to validate and compare novel methods to determine aortic blood pressure non-invasively based on Oscillometric Pulse Wave Velocity (PWV measurement using four limb-cuff pressure waveforms and two lead Electrocardiogram (ECG with a validated tonometric pulse wave analysis system in patients. Materials and Methods: After receiving the consent, in 49 patients with hypertension, coronary artery disease, diabetes mellitus, PWV, and central blood pressures were recorded in a randomised manner using both the oscillometric and tonometric devices. All recordings were performed 10 minutes after the patient lying comfortably in a noise-free temperature-controlled room. The test was performed between 09 am and 10 am after overnight fast. A minimum of three measurements were performed by the same skilled and trained operator. From the raw data obtained with two devices, software calculated the final vascular parameters. Results: A total of 49 patients (8 women and 41 men, of mean age 40.5 years (range: 19-81 years participated in the present study. After transforming the brachial pressures into aortic pressures, the correlation coefficient between the Aortic Systolic Pressure (ASP values obtained with two methods was 0.9796 (P<0.0001. The mean difference between ASP with two methods was 0.3 mm Hg. Similarly, Aortic Diastolic Pressure (ADP values obtained with two methods also correlated significantly with correlation coefficient of 0.9769 (P<0.0001. The mean difference of ADP was 0.2 mm Hg. In case of Aortic Pulse Pressure (APP, the mean difference was 0.1 mm Hg. All parameters of central aortic pressures obtained with two methods correlated significantly. Conclusion: The new method of transforming the Carotid Femoral PWV (cfPWV and brachial blood pressure values into aortic blood pressure values seems to be reasonably good. The significant correlation between the values obtained by tonometric device and

  13. Development and application of an automatic system for measuring the laser camera

    International Nuclear Information System (INIS)

    Objective: To provide an automatic system for measuring imaging quality of laser camera, and to make an automatic measurement and analysis system. Methods: On the special imaging workstation (SGI 540), the procedure was written by using Matlab language. An automatic measurement and analysis system of imaging quality for laser camera was developed and made according to the imaging quality measurement standard of laser camera of International Engineer Commission (IEC). The measurement system used the theories of digital signal processing, and was based on the characteristics of digital images, as well as put the automatic measurement and analysis of laser camera into practice by the affiliated sample pictures of the laser camera. Results: All the parameters of imaging quality of laser camera, including H-D and MTF curve, low and middle and high resolution of optical density, all kinds of geometry distort, maximum and minimum density, as well as the dynamic range of gray scale, could be measured by this system. The system was applied for measuring the laser cameras in 20 hospitals in Beijing. The measuring results showed that the system could provide objective and quantitative data, and could accurately evaluate the imaging quality of laser camera, as well as correct the results made by manual measurement based on the affiliated sample pictures of the laser camera. Conclusion: The automatic measuring system of laser camera is an effective and objective tool for testing the quality of the laser camera, and the system makes a foundation for the future research

  14. Non-invasive measurement of chemotherapy drug concentrations in tissue: preliminary demonstrations of in vivo measurements

    International Nuclear Information System (INIS)

    Measurements of the tissue concentrations of two chemotherapy agents have been made in vivo on an animal tumour model. The method used is based on elastic-scattering spectroscopy (ESS) and utilizes a fibre-optic probe spectroscopic system. A broadband light source is used to acquire data over a broad range of wavelengths and, therefore, to facilitate the separation of absorptions from various chromophores. The results of the work include measurements of the time course of the drug concentrations as well as a comparison of the optical measurements with high-performance liquid chromatography (HPLC) analysis of the drug concentrations at the time of sacrifice. It is found that the optical measurements correlate linearly with HPLC measurements, but give lower absolute values. (author)

  15. Noninvasive measurement of acoustic field inside mother's uterus generated by ultrasound scanning

    Science.gov (United States)

    Antonets, V. A.; Kazakov, V. V.

    2015-07-01

    Sounds in the audible range arising in mother's uterus during conventional ultrasound scanning were recorded noninvasively for the first time. It was found that their level is comparable with the level of spoken language.

  16. Noninvasive measurement of nutrient portal blood shunting: an experimental study with [14C]ursodeoxycholic acid

    International Nuclear Information System (INIS)

    All of the methods proposed for measuring portal blood flow are either invasive, estimate total rather than nutrient flow, and none has proved reliable in cirrhotic patients. A method has been derived from pharmacokinetic principles used for the calculation of bioavailability of drugs according to the route of administration (i.v. or p.o.) and tested experimentally in 20 pigs. A tracer dose of [14C]ursodeoxycholic acid, a biliary acid with a high-liver first-pass effect, is administered in the duodenum, and serial peripheral blood samples are taken. Later, the same dose of the same drug is administered i.v. The shunt fraction of portal blood F is obtained by the ratio of the areas under the plasma level vs. time curves (AUC) after p.o. and i.v. administrations: (see formula in text). The pigs were divided into three experimental groups. (i) Group I: undisturbed portal flow; (ii) Group II: total diversion of portal blood with an end-to-side portacaval shunt, and (iii) Group III: partial diversion of portal blood through a side-to-side portacaval shunt. Portal flow was measured during surgery with an electromagnetic flowmeter above and below the shunt and the degree of shunting calculated. Results show that the shunt fraction measured with ursodeoxycholic acid is well-correlated with hemodynamic data. No overlap between Groups I and III is observed. It is concluded that the shunt fraction of nutrient portal blood can be measured with this noninvasive method. Minute amounts of ursodeoxycholic acid were used in order to be completely metabolized by the liver, even in spite of hepatocellular dysfunction. Therefore, this method should be valid in cirrhotic patients and be useful to decide the type of portasystemic shunt to propose for the decompression of gastroesophageal varices

  17. Multiscattering-enhanced optical biosensor: multiplexed, non-invasive and continuous measurements of cellular processes.

    Science.gov (United States)

    Koman, Volodymyr B; Santschi, Christian; Martin, Olivier J F

    2015-07-01

    The continuous measurement of uptake or release of biomarkers provides invaluable information for understanding and monitoring the metabolism of cells. In this work, a multiscattering-enhanced optical biosensor for the multiplexed, non-invasive, and continuous detection of hydrogen peroxide (H2O2), lactate and glucose is presented. The sensing scheme is based on optical monitoring of the oxidation state of the metalloprotein cytochrome c (cyt c). The analyte of interest is enzymatically converted into H2O2 leading to an oxidation of the cyt c. Contact microspotting is used to prepare nanoliter-sized sensing spots containing either pure cyt c, a mixture of cyt c with glucose oxidase (GOx) to detect glucose, or a mixture of cyt c with lactate oxidase (LOx) to detect lactate. The sensing spots are embedded in a multiscattering porous medium that enhances the optical signal. We achieve limits of detection down to 240 nM and 110 nM for lactate and glucose, respectively. A microfluidic embodiment enables multiplexed and crosstalk-free experiments on living organisms. As an example, we study the uptake of exogenously supplied glucose by the green algae Chlamydomonas reinhardtii and simultaneously monitor the stress-related generation of H2O2. This multifunctional detection scheme provides a powerful tool to study biochemical processes at cellular level. PMID:26203366

  18. Relating external compressing pressure to mean arterial pressure in non-invasive blood pressure measurements.

    Science.gov (United States)

    Chin, K Y; Panerai, R B

    2015-01-01

    Arterial volume clamping uses external compression of an artery to provide continuous non-invasive measurement of arterial blood pressure. It has been assumed that mean arterial pressure (MAP) corresponds to the point where unloading leads to the maximum oscillation of the arterial wall as reflected by photoplethysmogram (PPG), an assumption that has been challenged. Five subjects were recruited for the study (three males, mean age (SD) = 32 (15) years). The PPG waveform was analysed to identify the relationship between the external compressing pressure, PPG pulse amplitude and MAP. Two separate tests were carried out at compression step intervals of 10 mmHg and 2 mmHg, respectively. No significant differences were found between the two tests. The bias between the compressing pressure and the MAP was -4.7 ± 5.63 mmHg (p < 0.001) showing a normal distribution. Further research is needed to identify optimal algorithms for estimation of MAP using PPG associated with arterial compression. PMID:25429784

  19. Non-invasive method and apparatus for measuring pressure within a pliable vessel

    Science.gov (United States)

    Shimizu, M. (Inventor)

    1983-01-01

    A non-invasive method and apparatus is disclosed for measuring pressure within a pliable vessel such as a blood vessel. The blood vessel is clamped by means of a clamping structure having a first portion housing a pressure sensor and a second portion extending over the remote side of the blood vessel for pressing the blood vessel into engagement with the pressure sensing device. The pressure sensing device includes a flat deflectable diaphragm portion arranged to engage a portion of the blood vessel flattened against the diaphragm by means of the clamp structure. In one embodiment, the clamp structure includes first and second semicylindrical members held together by retaining rings. In a second embodiment the clamp structure is of one piece construction having a solid semicylindrical portion and a hollow semicylindrical portion with a longitudinal slot in the follow semicylindrical portion through which a slip the blood vessel. In a third embodiment, an elastic strap is employed for clamping the blood vessel against the pressure sensing device.

  20. Non-invasive measurement and validation of tissue oxygen saturation covered with overlying tissues

    Institute of Scientific and Technical Information of China (English)

    Yichao Teng; Haishu Ding; Lan Huang; Yue Li; Quanzhong Shan; Datian Ye; Haiyan Ding; Jenchung Chien; Betau Hwang

    2008-01-01

    In this paper,the biological tissue oxygen saturation(rS02)is obtained non-invasively and in real time based on near infrared spec-troscopy(NIRS)using two emitting wavelengths and two detectors,where the tissue is covered with overlying tissues.Our group devel-oped an NIRS oximeter based on the above principle independently,and validated it using liquid tissue model calibrations and animal experiments.The results indicate that(1)in the normal range of tissue oxygen saturation(40-70%),the rS02 measured by NIRS is accu-rate enough and little influenced by the background absorptions(such as the absorption of water)and overlying tissues(such as fat);(2)during cerebral hypoxia and recovery of three piglets,there is excellent correlation(p<0.001)between cerebral rS02 and jugular venous oxygen saturation(Sj02),meaning that the rS02 can be indicated by the Sj02 to a large extent;during the death of the three piglets induced by heart beat stopping,cerebral rS02 decreases continuously to significantly low levels(<25%)because cerebral blood supply does not exist any more.All the above results are of explicit physiological importance.

  1. Development of a non-invasive LED based device for adipose tissue thickness measurements in vivo

    Science.gov (United States)

    Volceka, K.; Jakovels, D.; Arina, Z.; Zaharans, J.; Kviesis, E.; Strode, A.; Svampe, E.; Ozolina-Moll, L.; Butnere, M. M.

    2012-06-01

    There are a number of techniques for body composition assessment in clinics and in field-surveys, but in all cases the applied methods have advantages and disadvantages. High precision imaging methods are available, though expensive and non-portable, however, the methods devised for the mass population, often suffer from the lack of precision. Therefore, the development of a safe, mobile, non-invasive, optical method that would be easy to perform, precise and low-cost, but also would offer an accurate assessment of subcutaneous adipose tissue (SAT) both in lean and in obese persons is required. Thereof, the diffuse optical spectroscopy is advantageous over the aforementioned techniques. A prototype device using an optical method for measurement of the SAT thickness in vivo has been developed. The probe contained multiple LEDs (660nm) distributed at various distances from the photo-detector which allow different light penetration depths into the subcutaneous tissue. The differences of the reflected light intensities were used to create a non-linear model, and the computed values were compared with the corresponding thicknesses of SAT, assessed by B-mode ultrasonography. The results show that with the optical system used in this study, accurate results of different SAT thicknesses can be obtained, and imply a further potential for development of multispectral optical system to observe changes of SAT thickness as well as to determine the percentage of total body fat.

  2. 10 CFR Appendix J1 to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Automatic and Semi-Automatic Clothes...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Energy Consumption... Energy Consumption of Automatic and Semi-Automatic Clothes Washers The provisions of this appendix J1... means for determining the energy consumption of a clothes washer with an adaptive control...

  3. Non-invasive measurement of local pulse pressure by pulse wave-based ultrasound manometry (PWUM)

    International Nuclear Information System (INIS)

    Central blood pressure (CBP) has been established as a relevant indicator of cardiovascular disease. Despite its significance, CBP remains particularly challenging to measure in standard clinical practice. The objective of this study is to introduce pulse wave-based ultrasound manometry (PWUM) as a simple-to-use, non-invasive ultrasound-based method for quantitative measurement of the central pulse pressure. Arterial wall displacements are estimated using radiofrequency ultrasound signals acquired at high frame rates and the pulse pressure waveform is estimated using both the distension waveform and the local pulse wave velocity. The method was tested on the abdominal aorta of 11 healthy subjects (age 35.7±16 y.o.). PWUM pulse pressure measurements were compared to those obtained by radial applanation tonometry using a commercial system. The average intra-subject variability of the pulse pressure amplitude was found to be equal to 4.2 mmHg, demonstrating good reproducibility of the method. Excellent correlation was found between the waveforms obtained by PWUM and those obtained by tonometry in all subjects (0.94 < r < 0.98). A significant bias of 4.7 mmHg was found between PWUM and tonometry. PWUM is a highly translational method that can be easily integrated in clinical ultrasound imaging systems. It provides an estimate of the pulse pressure waveform at the imaged location, and may offer therefore the possibility to estimate the pulse pressure at different arterial sites. Future developments include the validation of the method against invasive estimates on patients, as well as its application to other large arteries

  4. Knowing what the brain is seeing in three dimensions: A novel, noninvasive, sensitive, accurate, and low-noise technique for measuring ocular torsion.

    Science.gov (United States)

    Otero-Millan, Jorge; Roberts, Dale C; Lasker, Adrian; Zee, David S; Kheradmand, Amir

    2015-01-01

    Torsional eye movements are rotations of the eye around the line of sight. Measuring torsion is essential to understanding how the brain controls eye position and how it creates a veridical perception of object orientation in three dimensions. Torsion is also important for diagnosis of many vestibular, neurological, and ophthalmological disorders. Currently, there are multiple devices and methods that produce reliable measurements of horizontal and vertical eye movements. Measuring torsion, however, noninvasively and reliably has been a longstanding challenge, with previous methods lacking real-time capabilities or suffering from intrusive artifacts. We propose a novel method for measuring eye movements in three dimensions using modern computer vision software (OpenCV) and concepts of iris recognition. To measure torsion, we use template matching of the entire iris and automatically account for occlusion of the iris and pupil by the eyelids. The current setup operates binocularly at 100 Hz with noise <0.1° and is accurate within 20° of gaze to the left, to the right, and up and 10° of gaze down. This new method can be widely applicable and fill a gap in many scientific and clinical disciplines. PMID:26587699

  5. Design of automatic control and measurement software for radioactive aerosol continuity monitor

    International Nuclear Information System (INIS)

    The radioactive aerosol continuity measurement is very important for the development of nuclear industry, and it is the major method to measure and find out the leakage of radioactive material. Radioactive aerosol continuity monitor is the advanced method for the radioactive aerosol continuity measurement. With the development of nuclear industry and nuclear power station, it is necessary to design and automatic continuity measurement device. Because of this reason, the authors developed the first unit of radioactive aerosol continuity monitor and adopted the ministry appraisal. The design idea and method of automatic control and measurement for radioactive aerosol continuity monitor are discussed

  6. A test chip for automatic reliability measurements of interconnect vias

    OpenAIRE

    Lippe, K.; Hasper, A.; Elfrink, G.W.; Niehof, J.; Kerkhoff, H.G.

    1992-01-01

    A test circuit for electromigration reliability measurements was designed and tested. The device under test (DUT) is a via-hole chain. The test circuit permits simultaneous measurements of a number of DUTs, and a fatal error of one DUT does not influence the measurement results of the other DUTs. Measurements require only a few measurement instruments. Comparing the measurement results of a single DUT io the measurement results of the test circuit shows that the test circuit may be used for r...

  7. Non-invasive optical measurement of cerebral metabolism and hemodynamics in infants.

    Science.gov (United States)

    Lin, Pei-Yi; Roche-Labarbe, Nadege; Dehaes, Mathieu; Carp, Stefan; Fenoglio, Angela; Barbieri, Beniamino; Hagan, Katherine; Grant, P Ellen; Franceschini, Maria Angela

    2013-01-01

    Perinatal brain injury remains a significant cause of infant mortality and morbidity, but there is not yet an effective bedside tool that can accurately screen for brain injury, monitor injury evolution, or assess response to therapy. The energy used by neurons is derived largely from tissue oxidative metabolism, and neural hyperactivity and cell death are reflected by corresponding changes in cerebral oxygen metabolism (CMRO₂). Thus, measures of CMRO₂ are reflective of neuronal viability and provide critical diagnostic information, making CMRO₂ an ideal target for bedside measurement of brain health. Brain-imaging techniques such as positron emission tomography (PET) and single-photon emission computed tomography (SPECT) yield measures of cerebral glucose and oxygen metabolism, but these techniques require the administration of radionucleotides, so they are used in only the most acute cases. Continuous-wave near-infrared spectroscopy (CWNIRS) provides non-invasive and non-ionizing radiation measures of hemoglobin oxygen saturation (SO₂) as a surrogate for cerebral oxygen consumption. However, SO₂ is less than ideal as a surrogate for cerebral oxygen metabolism as it is influenced by both oxygen delivery and consumption. Furthermore, measurements of SO₂ are not sensitive enough to detect brain injury hours after the insult, because oxygen consumption and delivery reach equilibrium after acute transients. We investigated the possibility of using more sophisticated NIRS optical methods to quantify cerebral oxygen metabolism at the bedside in healthy and brain-injured newborns. More specifically, we combined the frequency-domain NIRS (FDNIRS) measure of SO2 with the diffuse correlation spectroscopy (DCS) measure of blood flow index (CBFi) to yield an index of CMRO₂ (CMRO₂i). With the combined FDNIRS/DCS system we are able to quantify cerebral metabolism and hemodynamics. This represents an improvement over CWNIRS for detecting brain health, brain

  8. Study of the automatic measuring technique and instrument for an automobile shock-absorber connecting rod

    Science.gov (United States)

    Chen, Chan-Yao; Dai, Shuguang; Zhang, R. J.; Mu, Ping-An

    1993-09-01

    The autinobile shock absorber connecting rod makes very strict tolerance requirements on the diameter size, roundness, straightness. Because it is a kind of thin and long workpiece, it is difficult to measure the errors of the roundness and axis straightness. Furthermore, it brings much difficulty to realize the highly efficient autinatic measurment as the connecting rod is mass produced. Therefore, there is not any kind of connecting rod automatic measuring instrument available in China. In this article, the authors put forword the methods and principles which can autiatically and efficiently measure the above-mentioned errors of the connecting rod and have designed a reliable and simple automatic measuring instrument, Furthermore, the designing requirements and methods of the software and the electrical system are also introduced. The problem of the automatic measurement of the automobile shock absorber connecting rod has been solved. and it not only guarantees the quality of the rod, but also provides the basis for technical analysis of the product.

  9. Automatic Measurement in Large-Scale Space with the Laser Theodolite and Vision Guiding Technology

    OpenAIRE

    Bin Wu; Bing Wang

    2013-01-01

    The multitheodolite intersection measurement is a traditional approach to the coordinate measurement in large-scale space. However, the procedure of manual labeling and aiming results in the low automation level and the low measuring efficiency, and the measurement accuracy is affected easily by the manual aiming error. Based on the traditional theodolite measuring methods, this paper introduces the mechanism of vision measurement principle and presents a novel automatic measurement method fo...

  10. Noninvasive measurement of liver regeneration with positron emission tomography and [2-11C]thymidine

    International Nuclear Information System (INIS)

    The feasibility of liver regeneration determination with [2-11C]thymidine and positron emission tomography was investigated in partially hepatectomized rats. Serial tomographic scans were performed over a 120-minute period after injection of [2-11C]thymidine together with tritium-labeled thymidine. Within 10 minutes after injection, positron emission tomography scans showed a twofold higher hepatic uptake in regenerating than in nonregenerating livers. Time-activity curves over the liver area indicated that the maximal uptake was followed by a faster decrease of 11C radioactivity in controls than in regenerating animals, so that total 11C activity remaining in the liver at 120 minutes accounted for 68% of maximum in regenerating and only 38% in controls. Tissue distribution studies performed at 120 minutes showed that total 11C radioactivity, expressed in percent injected dose per gram, was six times higher in regenerating livers than in controls (0.62% ± 0.07% in regenerating livers and 0.10% ± 0.03% in nonregenerating livers; P less than 0.001) and correlated with 3H radioactivity measured in the nuclear fraction (r = 0.92; P less than 0.001). When the hepatic uptake was expressed in percent of dose per organ, the difference between both groups increased (2.31% ± 0.23% in regenerating livers and 0.29% ± 0.02% in nonregenerating livers; P less than 0.001) because of higher weight of regenerating livers than of nonregenerating livers (3.83 ± 0.11 g in regenerating livers and 2.96 ± 0.16 g in nonregenerating livers; P less than 0.001). In other organs examined, no difference in 11C radioactivity was found between the two groups of rats. These results indicated the potential usefulness of [2-11C]thymidine and positron emission tomography for noninvasive measurement of liver regeneration

  11. Automatic measuring system of zirconium thickness for zirconium liner cladding tubes

    International Nuclear Information System (INIS)

    An automatic measuring system of pure zirconium liner thickness for Zirconium-Zircaloy cladding tubes has been successfully developed. The system consists of three parts. An ultrasonic thickness measuring method for mother tubes before cold rolling; an electromagnetic thickness measuring method for the manufactured tubes, and, an image processing method for the cross sectional view of the manufactured cut tube samples

  12. System for automatic x-ray-image analysis, measurement, and sorting of laser fusion targets

    International Nuclear Information System (INIS)

    This paper describes the Automatic X-Ray Image Analysis and Sorting (AXIAS) system which is designed to analyze and measure x-ray images of opaque hollow microspheres used as laser fusion targets. The x-ray images are first recorded on a high resolution film plate. The AXIAS system then digitizes and processes the images to accurately measure the target parameters and defects. The primary goals of the AXIAS system are: to provide extremely accurate and rapid measurements, to engineer a practical system for a routine production environment and to furnish the capability of automatically measuring an array of images for sorting and selection

  13. Numerical analysis of stress distribution in the upper arm tissues under an inflatable cuff: Implications for noninvasive blood pressure measurement

    Science.gov (United States)

    Deng, Zhipeng; Liang, Fuyou

    2016-07-01

    An inflatable cuff wrapped around the upper arm is widely used in noninvasive blood pressure measurement. However, the mechanical interaction between cuff and arm tissues, a factor that potentially affects the accuracy of noninvasive blood pressure measurement, remains rarely addressed. In the present study, finite element (FE) models were constructed to quantify intra-arm stresses generated by cuff compression, aiming to provide some theoretical evidence for identifying factors of importance for blood pressure measurement or explaining clinical observations. Obtained results showed that the simulated tissue stresses were highly sensitive to the distribution of cuff pressure on the arm surface and the contact condition between muscle and bone. In contrast, the magnitude of cuff pressure and small variations in elastic properties of arm soft tissues had little influence on the efficiency of pressure transmission in arm tissues. In particular, it was found that a thickened subcutaneous fat layer in obese subjects significantly reduced the effective pressure transmitted to the brachial artery, which may explain why blood pressure overestimation occurs more frequently in obese subjects in noninvasive blood pressure measurement.

  14. Non-invasive measurement of real-time oxygen flux in plant systems with a self-referencing optrode

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Yinglang Wan, Eric McLamore, Lusheng Fan, Huaiqing Hao, D. Marshall Porterfield, Zengkai Zhang, Wenjun Wang, Yue (Jeff) Xu & Jinxing Lin ### Abstract This protocol describes an integration of the Non-invasive Micro-test Technique and Oxygen Optrode (NMT-OO) to quantify rhizosphere oxygen fluxes in Arabidopsis. The optrode has high sensitivity and selectivity in the measurement of oxygen concentrations and fluxes at the cellular level. In particular, application of the NMT...

  15. Automated non-invasive measurement of cardiac output: comparison of electrical bioimpedance and carbon dioxide rebreathing techniques.

    OpenAIRE

    Smith, S A; Russell, A.E.; West, M. J.; Chalmers, J

    1988-01-01

    Two commercial automated, non-invasive systems for estimation of cardiac output were evaluated. Values of cardiac output obtained by electrical bioimpedance cardiography (BoMed NCCOM3 machine) were compared with values derived from an indirect Fick technique that uses carbon dioxide rebreathing (Gould 9000 IV system) during 103 simultaneous measurements made at rest in 19 randomly selected subjects and on exercise in 11 subjects. Cardiac output values obtained with impedance cardiography were...

  16. Non-invasive liver iron concentration measurement by MRI : Comparison of two validated protocols

    NARCIS (Netherlands)

    Olthof, Allard W.; Sijens, Paul E.; Kreeftenberg, Herman G.; Kappert, Peter; van der Jagt, Eric J.; Oudkerk, Matthijs

    2009-01-01

    In the non-invasive determination of the liver iron concentration several validated MRI methods are available, two of which are compared in this study. Twenty-eight patients were examined by MRI and evaluated by the methods of Kreeftenberg et al. [Kreeftenberg Jr HG, Mcoyaart EL, Huizenga JR, Sluite

  17. A semi-automatic device for measuring osmotic pressures (1962)

    International Nuclear Information System (INIS)

    A cryoscopic apparatus for measuring osmotic pressure in small samples (0.1 ml) is described. The sample is frozen by air cooled dry ice or liquid nitrogen; the temperature is measured by a thermistor resistance and a recording millivoltmeter. (author)

  18. Continuous estimates of dynamic cerebral autoregulation: influence of non-invasive arterial blood pressure measurements

    International Nuclear Information System (INIS)

    Temporal variability of parameters which describe dynamic cerebral autoregulation (CA), usually quantified by the short-term relationship between arterial blood pressure (BP) and cerebral blood flow velocity (CBFV), could result from continuous adjustments in physiological regulatory mechanisms or could be the result of artefacts in methods of measurement, such as the use of non-invasive measurements of BP in the finger. In 27 subjects (61 ± 11 years old) undergoing coronary artery angioplasty, BP was continuously recorded at rest with the Finapres device and in the ascending aorta (Millar catheter, BPAO), together with bilateral transcranial Doppler ultrasound in the middle cerebral artery, surface ECG and transcutaneous CO2. Dynamic CA was expressed by the autoregulation index (ARI), ranging from 0 (absence of CA) to 9 (best CA). Time-varying, continuous estimates of ARI (ARI(t)) were obtained with an autoregressive moving-average (ARMA) model applied to a 60 s sliding data window. No significant differences were observed in the accuracy and precision of ARI(t) between estimates derived from the Finapres and BPAO. Highly significant correlations were obtained between ARI(t) estimates from the right and left middle cerebral artery (MCA) (Finapres r = 0.60 ± 0.20; BPAO r = 0.56 ± 0.22) and also between the ARI(t) estimates from the Finapres and BPAO (right MCA r = 0.70 ± 0.22; left MCA r = 0.74 ± 0.22). Surrogate data showed that ARI(t) was highly sensitive to the presence of noise in the CBFV signal, with both the bias and dispersion of estimates increasing for lower values of ARI(t). This effect could explain the sudden drops of ARI(t) to zero as reported previously. Simulated sudden changes in ARI(t) can be detected by the Finapres, but the bias and variability of estimates also increase for lower values of ARI. In summary, the Finapres does not distort time-varying estimates of dynamic CA obtained with a sliding window combined with an ARMA model, but

  19. Disordered Speech Assessment Using Automatic Methods Based on Quantitative Measures

    Directory of Open Access Journals (Sweden)

    Shrivastav Rahul

    2005-01-01

    Full Text Available Speech quality assessment methods are necessary for evaluating and documenting treatment outcomes of patients suffering from degraded speech due to Parkinson's disease, stroke, or other disease processes. Subjective methods of speech quality assessment are more accurate and more robust than objective methods but are time-consuming and costly. We propose a novel objective measure of speech quality assessment that builds on traditional speech processing techniques such as dynamic time warping (DTW and the Itakura-Saito (IS distortion measure. Initial results show that our objective measure correlates well with the more expensive subjective methods.

  20. Infrared temperature measurement with automatic consideration of emissivity

    Science.gov (United States)

    Tank, Volker

    1989-07-01

    The theoretical and practical development of a system, for contactless infrared temperature measurement, is discussed. The components, the data reduction and the calibration procedures are investigated. A method, which measures spectral radiances of an object in ten narrow infrared bands is used. It is based on a balancing calculation of this data. The temperatures of the object and its environment as well as the object's emissivity are computed. The method is also suitable for strongly reflecting objects below the temperature of glow. Examples of measurements are included.

  1. Automatic method of measuring silicon-controlled-rectifier holding current

    Science.gov (United States)

    Maslowski, E. A.

    1972-01-01

    Development of automated silicon controlled rectifier circuit for measuring minimum anode current required to maintain rectifiers in conducting state is discussed. Components of circuit are described and principles of operation are explained. Illustration of circuit is provided.

  2. Study on Automatic Control of Measurement System Heterogeneous Uranous Drums

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Segmented gamma scanner (SGS) is a kind of important assay methodology of non-destructive assay (NDA). With the characteristic gamma ray, the mass or activity and nuclear species of measured material can be determined by the method.

  3. Automatic control system for measuring currents produced by ionization chambers

    International Nuclear Information System (INIS)

    Ionization Chambers in current mode operation are usually used in Nuclear Metrology. Activity measurements are quickly performed by Ionization Chambers, with very good precision. For this purpose measurements of very low ionization currents, carried out by high quality instrumentation, are required. Usually, electrometers perform the current integration method under command of signals from an automation system, in order to reduce the measurement uncertainties. Among the measurement systems at the Laboratorio de Metrologia Nuclear (LMN) of IPEN, there are two ionization chamber systems. In the present work, an automation system developed for current integration measurements is described. This automation system is composed by software (graphic interface and control) and an electronic module connected to a microcomputer, by means of a commercial data acquisition card. Several test measurements were performed in order to determine the intrinsic uncertainty, linearity and stability of the system. Using calibrated radioactive solutions, the IG12/A20 chamber calibration factors for 18F and 153Sm were obtained, making possible to determine activities of these radionuclides. (author)

  4. Non-invasive in Situ Simultaneous Measurement of Multi-parameter Mechanical Properties of Red Blood Cell Membrane

    Institute of Scientific and Technical Information of China (English)

    Jing LI; Yao-Xiong HUANG; Tao JI; Mei TU; Xuan MAO; Wen-Xin CHEN; Guang-Wei CHEN

    2005-01-01

    The purpose of this study was to develop a new dynamic image analyzing technique that will give us the ability to measure the viscoelastic parameters of individual living red blood cells non-invasively, in situ and in real time. With this technique, the bending modulus Kc, the shear elasticityμ and their ratio ε were measured under different temperatures, oxygen partial pressures and osmotic pressures. The results not only show the effects of external conditions on mechanical properties of cell membranes including deformability,flexibility, adhesive ability and plasticity, but also demonstrate that the technique can be used to measure cell membrane parameters continuously under several physiological and pathological conditions.

  5. Non-invasive assessment of the left ventricular pressure to volume relationships during ejection period using a single cardiac probe system and tonometric measurement of radial arterial pressure

    International Nuclear Information System (INIS)

    The left ventricular (LV) pressure to volume relationships are very sensitive parameters for the evaluation of the LV function. For measurement of LV pressure in an entire cardiac cycle, an invasive method is always needed. However, on the assumption that the LV pressure is similar to that of aorta and radial artery during ejection period, we have developed a new system for simple and non-invasive assessment of the LV pressure to volume relationships. The LV volume is estimated by ECG-gated radionuclide ventriculography using a single cardiac probe system and the data were collected every 10 msec. The radial arterial pressure was measured simultaneously every 10 msec by a tonometry system. These data were transferred to the personal computer through RS-232c cable. Then the pressure to volume curves during ejection phase was generated automatically. Emax was calculated from these curves. Moreover, the new parameter called the ejection rate of change of power (ERCP) can be calculated. These parameters are very useful for the evaluation of the effect of the drugs on the LV performance. (author)

  6. Automatic measurement system for long term LED parameters

    Science.gov (United States)

    Budzyński, Łukasz; Zajkowski, Maciej

    2015-09-01

    During the past years significantly increased the number of LED models available on the market. However, not all of them have parameters which allow for use in professional lighting systems. The article discusses the international standards which should be met by modern LEDs. Among them, one of the most important parameters is factor of luminous flux decline in value during the operation of the LEDs. Its value is influenced by many factors, among others, the junction temperature of the diode and average and maximum values of supply current. Other important, for lighting reasons, parameters are stability of correlated color temperature and stability of chromaticity coordinates of the emitted light. The paper presents a system to measure luminous flux and colorimetric parameters of LEDs. Measurement system also allows for measuring a change in these parameters during operation of the LED.

  7. Automatic measurement system for congenital hip dislocation using a computed radiography

    International Nuclear Information System (INIS)

    Acetabular angle which is a diagnostic parameter of congenital hip dislocation has been measured manually in conventional X-ray film system. Using digital image directly provided from a computed radiography, an automatic measurement system was developed for this parameter. The process of the measurement was completed within a reasonable time, and accurate enough. The system was combined with an image database, so that it would be a measurement tool of PACS

  8. Validation of a new non-invasive blood pressure measurement method on mice via pulse wave propagation time measurement on a cuff

    OpenAIRE

    Nguyen, Xuan P.; Kronemayer, Ralf; Herrmann, Peter; Mejía, Atila; Daw, Zamira; Nguyen, Xuan D.; Kränzlin, Bettina; Gretz, Norbert

    2011-01-01

    In the present article, we describe the validation of a new non-invasive method for measuring blood pressure (BP) which also enables to determine the three BP values: systolic, diastolic and mean value. Our method is based on the pulse transit time (PTT) measurement along an artery directly at the BP cuff. The accuracy of this method was evaluated by comparison with the direct simultaneous measurement of blood pressure from 40 anesthetized female mice. Close correlation ...

  9. Automatic segmentation and diameter measurement of coronary artery vessels

    Science.gov (United States)

    Zhao, Kun; Tang, Zhenyu; Pauli, Josef

    2011-03-01

    This work presents a hybrid method for 2D artery vessel segmentation and diameter measurement in X-Ray angiograms. The proposed method is novel in that tracking-based and model-based approaches are combined. A robust and efficient tracking template, the "annular template", is devised for vessel tracking. It can readily be applied on X-Ray angiograms without any preprocessing. Starting from an initial tracking point given by the user the tracking algorithm iteratively repositions the annular template and thereby detects the vessel boundaries and possible bifurcations. With a user selected end point the tracking process results in a set of points that describes the contour and topology of an artery vessel segment between the initial and end points. A "boundary correction and interpolation" operation refines the extracted points which initialize the Snakes algorithm. Boundary correction adjusts the points to ensure that they lie on the vessel segment of interest. Boundary interpolation adds more points, so that there are sufficiently many points for the Snakes algorithm to generate a smooth and accurate vessel segmentation. After the application of Snakes the resulting points are sequentially connected to represent the vessel contour. Then, the diameters are measured along the extracted vessel contour. The segmentation and measurement results are compared with manually extracted and measured vessel segments. The average Precision, Recall and Jaccard Index of 21 vessel samples are 91.5%, 92.1% and 84.9%, respectively. Compared with ground truth measurements of diameters the average relative error is 8.2%, and the average absolute error is 1.13 pixels.

  10. When can we measure stress noninvasively? Postdeposition effects on a fecal stress metric confound a multiregional assessment.

    Science.gov (United States)

    Wilkening, Jennifer L; Ray, Chris; Varner, Johanna

    2016-01-01

    Measurement of stress hormone metabolites in fecal samples has become a common method to assess physiological stress in wildlife populations. Glucocorticoid metabolite (GCM) measurements can be collected noninvasively, and studies relating this stress metric to anthropogenic disturbance are increasing. However, environmental characteristics (e.g., temperature) can alter measured GCM concentration when fecal samples cannot be collected immediately after defecation. This effect can confound efforts to separate environmental factors causing predeposition physiological stress in an individual from those acting on a fecal sample postdeposition. We used fecal samples from American pikas (Ochotona princeps) to examine the influence of environmental conditions on GCM concentration by (1) comparing GCM concentration measured in freshly collected control samples to those placed in natural habitats for timed exposure, and (2) relating GCM concentration in samples collected noninvasively throughout the western United States to local environmental characteristics measured before and after deposition. Our timed-exposure trials clarified the spatial scale at which exposure to environmental factors postdeposition influences GCM concentration in pika feces. Also, fecal samples collected from occupied pika habitats throughout the species' range revealed significant relationships between GCM and metrics of climate during the postdeposition period (maximum temperature, minimum temperature, and precipitation during the month of sample collection). Conversely, we found no such relationships between GCM and metrics of climate during the predeposition period (prior to the month of sample collection). Together, these results indicate that noninvasive measurement of physiological stress in pikas across the western US may be confounded by climatic conditions in the postdeposition environment when samples cannot be collected immediately after defecation. Our results reiterate the importance

  11. Measuring Service Reliability Using Automatic Vehicle Location Data

    OpenAIRE

    2014-01-01

    Bus service reliability has become a major concern for both operators and passengers. Buffer time measures are believed to be appropriate to approximate passengers' experienced reliability in the context of departure planning. Two issues with regard to buffer time estimation are addressed, namely, performance disaggregation and capturing passengers’ perspectives on reliability. A Gaussian mixture models based method is applied to disaggregate the performance data. Based on the mixture models ...

  12. Non-invasive detection of fasting blood glucose level via electrochemical measurement of saliva

    OpenAIRE

    Malik, Sarul; Khadgawat, Rajesh; Anand, Sneh; Gupta, Shalini

    2016-01-01

    Machine learning techniques such as logistic regression (LR), support vector machine (SVM) and artificial neural network (ANN) were used to detect fasting blood glucose levels (FBGL) in a mixed population of healthy and diseased individuals in an Indian population. The occurrence of elevated FBGL was estimated in a non-invasive manner from the status of an individual’s salivary electrochemical parameters such as pH, redox potential, conductivity and concentration of sodium, potassium and calc...

  13. Pulse transit time as a measure of respiratory effort under noninvasive ventilation

    OpenAIRE

    Contal, Olivier; Carnevale, Claudio; Borel, Jean-Christian; Sabil, AbdelKébir; Tamisier, Renaud; Lévy, Patrick; Janssens, Jean-Paul; Pépin, Jean-Louis

    2013-01-01

    Among the respiratory events that may occur during nocturnal noninvasive ventilation (NIV), differentiating between central and obstructive events requires appropriate indicators of respiratory effort. The aim of the present study was to assess pulse transit time (PTT) as an indicator of respiratory effort under NIV in comparison with oesophageal pressure (P(oes)). During wakefulness, PTT was compared to P(oes) during spontaneous breathing and under NIV with or without induced leaks in 11 hea...

  14. Automatic quadrature control and measuring system. [using optical coupling circuitry

    Science.gov (United States)

    Hamlet, J. F. (Inventor)

    1974-01-01

    A quadrature component cancellation and measuring system comprising a detection system for detecting the quadrature component from a primary signal, including reference circuitry to define the phase of the quadrature component for detection is described. A Raysistor optical coupling control device connects an output from the detection system to a circuit driven by a signal based upon the primary signal. Combining circuitry connects the primary signal and the circuit controlled by the Raysistor device to subtract quadrature components. A known current through the optically sensitive element produces a signal defining the magnitude of the quadrature component.

  15. Flow mediated endothelium function: advantages of an automatic measuring technique

    Science.gov (United States)

    Maio, Yamila; Casciaro, Mariano E.; José Urcola y, Maria; Craiem, Damian

    2007-11-01

    The objective of this work is to show the advantages of a non invasive automated method for measuring flow mediated dilation (FMD) in the forearm. This dilation takes place in answer to a shear tension generated by the increase of blood flow, sensed by the endothelium, after the liberation of an occlusion sustained in the time. The method consists of three stages: the continuous acquisition of images of the brachial artery using ultrasound techniques, the pulse to pulse measurement of the vessel's diameter by means of a border detection algorithm, and the later analysis of the results. By means of this technique one cannot only obtain the maximum dilation percentage (FMD%), but a continuous diameter curve that allows to evaluate other relevant aspects such as dilation speed, dilation sustain in time and general maneuver performance. The simplicity of this method, robustness of the technique and accessibility of the required elements makes it a viable alternative of great clinical value for diagnosis in the early detection of numerous cardiovascular pathologies.

  16. Flow mediated endothelium function: advantages of an automatic measuring technique

    Energy Technology Data Exchange (ETDEWEB)

    Maio, Yamila; Casciaro, Mariano E; Urcola y, Maria Jose; Craiem, Damian [Universidad Favaloro, Facultad de Ciencias Exactas y Naturelles (Argentina)

    2007-11-15

    The objective of this work is to show the advantages of a non invasive automated method for measuring flow mediated dilation (FMD) in the forearm. This dilation takes place in answer to a shear tension generated by the increase of blood flow, sensed by the endothelium, after the liberation of an occlusion sustained in the time. The method consists of three stages: the continuous acquisition of images of the brachial artery using ultrasound techniques, the pulse to pulse measurement of the vessel's diameter by means of a border detection algorithm, and the later analysis of the results. By means of this technique one cannot only obtain the maximum dilation percentage (FMD%), but a continuous diameter curve that allows to evaluate other relevant aspects such as dilation speed, dilation sustain in time and general maneuver performance. The simplicity of this method, robustness of the technique and accessibility of the required elements makes it a viable alternative of great clinical value for diagnosis in the early detection of numerous cardiovascular pathologies.

  17. Non-Invasive measurement of blood pressure - Why we should look at BP traces rather than listen to Korotkoff sounds.

    Science.gov (United States)

    Celler, Branko G; Basilakis, Jim; Goozee, Kathryn; Ambikairajah, Eliathamby

    2015-08-01

    Accurate non-invasive measurement of blood pressure in unsupervised environments continues to be a challenge, particularly in the presence of movement artefact, electrical noise and most importantly cardiac arrhythmia which are common in those aged over 65 suffering from a range of chronic conditions. Large intra personal variability in signal morphometry and amplitudes further complicates the development of reliable signal processing algorithms for NIBP measurement. In this paper we demonstrate the effect of this variability and propose that the traditional methods of human blood pressure determination by sphygmomanometry should no longer be considered a gold standard for the calibration of NIBP devices. PMID:26737650

  18. Manual versus automatic bladder wall thickness measurements: a method comparison study

    OpenAIRE

    Oelke, M.; Mamoulakis, C; Ubbink, D T; Rosette, de la, J.J.M.C.H.; Wijkstra, H.

    2009-01-01

    Purpose To compare repeatability and agreement of conventional ultrasound bladder wall thickness (BWT) measurements with automatically obtained BWT measurements by the BVM 6500 device. Methods Adult patients with lower urinary tract symptoms, urinary incontinence, or postvoid residual urine were urodynamically assessed. During two subsequent cystometry sessions the infusion pump was temporarily stopped at 150 and 250 ml bladder filling to measure BWT with conventional ultrasound and the BVM 6...

  19. A New Automatic System for Angular Measurement and Calibration in Radiometric Instruments

    Directory of Open Access Journals (Sweden)

    Jose Manuel Andujar Marquez

    2010-04-01

    Full Text Available This paper puts forward the design, construction and testing of a new automatic system for angular-response measurement and calibration in radiometric instruments. Its main characteristics include precision, speed, resolution, noise immunity, easy programming and operation. The developed system calculates the cosine error of the radiometer under test by means of a virtual instrument, from the measures it takes and through a mathematical procedure, thus allowing correcting the radiometer with the aim of preventing cosine error in its measurements.

  20. Heritability estimates for enteric methane emissions from Holstein cattle measured using noninvasive methods.

    Science.gov (United States)

    Lassen, Jan; Løvendahl, Peter

    2016-03-01

    The objective of this study was to estimate heritability of enteric methane emissions from dairy cattle. Methane (CH4) and CO2 were measured with a portable air-sampler and analyzer unit based on Fourier transform infrared detection. Data were collected on 3,121 Holstein dairy cows from 20 herds using automatic milking systems. Three CH4 phenotypes were acquired: the ratio between CH4 and CO2 in the breath of the cows (CH4_RATIO), the estimated quantified amount of CH4 (in g/d) measured over a week (CH4_GRAMSw), and CH4 intensity, defined as grams of CH4 per liter of milk produced (CH4_MILK). Fat- and protein-corrected milk (FPCM) and live weight data were also derived for the analysis. Data were analyzed using several univariate and bivariate linear animal models. The heritability of CH4_GRAMSw and CH4_MILK was 0.21 with a standard error of 0.06, and the heritability of CH4_RATIO was 0.16 with a standard error of 0.04. The 2 CH4 traits CH4_GRAMSw and CH4_RATIO were genetically highly correlated (rg=0.83) and they were strongly correlated with FPCM, meaning that, in this study, a high genetic potential for milk production will also mean a high genetic potential for CH4 production. The genetic correlation between CH4_MILK and FPCM and live weight showed similar patterns as the other CH4 phenotypes, although the correlations in general were closer to zero. The genetic correlations between the 3 CH4 phenotypes and live weight were low and only just significantly different from zero, meaning there is less indication of a genetic relationship between CH4 emission and live weight of the cow. None of the residual correlations between the ratio of CH4 and CO2, CH4 production in grams per day, FPCM, and live weight were significantly different from zero. The results from this study suggest that CH4 emission is partly under genetic control, that it is possible to decrease CH4 emission from dairy cattle through selection, and that selection for higher milk yield will lead to

  1. Automatic ultrasonic system for flaw detection and dimensional measurement of precision tubes

    International Nuclear Information System (INIS)

    This paper describes a system, which is installed at Nuclear Fuel Complex, Hyderabad. It is a tube rotation fixed probe type of system designed for fully automatic operation at high speed using immersion technique for ultrasonic flaw detection and dimensional measurement of precision of zirconium alloy seamless tubes used in fuel bundles for nuclear reactors

  2. Code making of automatic measurement for coal ash content using annihilation radiation

    International Nuclear Information System (INIS)

    In order to realize automatic measurement the Multichannel Computer Analyzer codes were made. This work directly supported the job of determination of ash content of coal using annihilation radiation. The code could not be copied by others and could kill virus by itself. It could be widely used in works of using Multichannel computer Analyzer

  3. Improved method for noninvasive measurement of regional cerebral blood flow by 133Xe inhalation. I. description of method and normal values obtained in healthy volunteers

    International Nuclear Information System (INIS)

    A clinical method for noninvasive measurement of regional cerebral blood flow (rCBF) and blood volume (rCBV) is described, based on Obrist's 10 minute, desaturation method after 1 minute inhalation of 133Xe. Sixteen collimated probes are placed over both hemispheres and brain stem-cerebellar regions. End-tidal 133Xe curves are used for correction of recirculation. KEV discriminators are set to record gamma and x-ray activity separately. Values are printed out automatically by a computer on a brain map. Extracerebral contamination is reduced by (1) computing curves from gamma activity, (2) applying pressure on the scalp beneath the probes, (3) 1 minute inhalation of 133Xe and recording desaturation curves for 10 minutes, thereby minimizing slow clearance from extracranial tissues. Normal values for both fast and slow compartments are reproducible and are in good agreement with the carotid injection method. The speech dominant hemisphere has higher flow than the right under conditions described. Posterior portions of the cranium over the cerebellum and brain stem appear to have higher flow gray values than the cerebral cortex. Gray matter flow decreases with advancing age

  4. Programs for the automatic gamma-ray measurement with CANBERRA 8100/QUANTA system

    International Nuclear Information System (INIS)

    Some programs have been prepared for the automatic operation of the CANBERRA 8100/QUANTA System for the gamma-ray spectrum measurement. The main parts of these programs are: (1) to collect and record on magnetic disks the data of gamma-ray spectra automatically, while the recorded data are analyzed to estimate the nuclides which generate photopeaks of spectra and to calculate those concentrations; (2) to draw plotted diagrams of pulse height distributions of gamma-ray spectra data and other data by the additional digital plotter; and etc. (author)

  5. Automatic classification and accurate size measurement of blank mask defects

    Science.gov (United States)

    Bhamidipati, Samir; Paninjath, Sankaranarayanan; Pereira, Mark; Buck, Peter

    2015-07-01

    complexity of defects encountered. The variety arises due to factors such as defect nature, size, shape and composition; and the optical phenomena occurring around the defect. This paper focuses on preliminary characterization results, in terms of classification and size estimation, obtained by Calibre MDPAutoClassify tool on a variety of mask blank defects. It primarily highlights the challenges faced in achieving the results with reference to the variety of defects observed on blank mask substrates and the underlying complexities which make accurate defect size measurement an important and challenging task.

  6. Research on large spatial coordinate automatic measuring system based on multilateral method

    Science.gov (United States)

    Miao, Dongjing; Li, Jianshuan; Li, Lianfu; Jiang, Yuanlin; Kang, Yao; He, Mingzhao; Deng, Xiangrui

    2015-10-01

    To measure the spatial coordinate accurately and efficiently in large size range, a manipulator automatic measurement system which based on multilateral method is developed. This system is divided into two parts: The coordinate measurement subsystem is consists of four laser tracers, and the trajectory generation subsystem is composed by a manipulator and a rail. To ensure that there is no laser beam break during the measurement process, an optimization function is constructed by using the vectors between the laser tracers measuring center and the cat's eye reflector measuring center, then an orientation automatically adjust algorithm for the reflector is proposed, with this algorithm, the laser tracers are always been able to track the reflector during the entire measurement process. Finally, the proposed algorithm is validated by taking the calibration of laser tracker for instance: the actual experiment is conducted in 5m × 3m × 3.2m range, the algorithm is used to plan the orientations of the reflector corresponding to the given 24 points automatically. After improving orientations of some minority points with adverse angles, the final results are used to control the manipulator's motion. During the actual movement, there are no beam break occurs. The result shows that the proposed algorithm help the developed system to measure the spatial coordinates over a large range with efficiency.

  7. Luminescent Tension-Indicating Orthopedic Strain Gauges for Non-Invasive Measurements Through Tissue

    Science.gov (United States)

    Anker, Jeffrey (Inventor); Rogalski, Melissa (Inventor); Anderson, Dakota (Inventor); Heath, Jonathon (Inventor)

    2015-01-01

    Strain gauges that can provide information with regard to the state of implantable devices are described. The strain gauges can exhibit luminescence that is detectable through living tissue, and the detectable luminescent emission can vary according to the strain applied to the gauge. A change in residual strain of the device can signify a loss of mechanical integrity and/or loosening of the implant, and this can be non-invasively detected either by simple visual detection of the luminescent emission or through examination of the emission with a detector such as a spectrometer or a camera.

  8. Non-invasive evaluation of arrhythmic risk in dilated cardiomyopathy:From imaging to electrocardiographic measures

    Institute of Scientific and Technical Information of China (English)

    Massimo; Iacoviello; Francesco; Monitillo

    2014-01-01

    Malignant ventricular arrhythmias are a major adverse event and worsen the prognosis of patients affected by ischemic and non-ischemic dilated cardiomyopathy.The main parameter currently used to stratify arrhythmic risk and guide decision making towards the implantation of a cardioverter defibrillator is the evaluation of the left ventricular ejection fraction.However,this strategy is characterized by several limitations and consequently additional parameters have been suggested in order to improve arrhythmic risk stratification.The aim of this review is to critically revise the prognostic significance of non-invasive diagnostic tools in order to better stratify the arrhythmic risk prognosis of dilated cardiomyopathy patients.

  9. Comparison of noninvasive MRT-procedures for the temperature measurement for the application during medical thermal therapies

    International Nuclear Information System (INIS)

    Novel methods for hyperthermia tumor therapy, such as high-intensity focused ultrasound (HIFU) or laser-induced thermotherapy (LITT), require accurate non-invasive temperature monitoring. Non-invasive temperature measurement using magnetic resonance imaging (MRI) is based on the analysis of changes in longitudinal relaxation time (T1), diffusion coefficient (D), or water proton resonance frequency (PRF). The purpose of this study was the development and comparative analysis of the three different approaches of MRI temperature monitoring (T1, D, and PRF). Measurements in phantoms (e.g., ultrasound gel) resulted in the following percent changes: T1-relaxation time: 1.98%/ C; diffusion coefficient: 2.22%/ C; and PRF: -0,0101 ppm/ C. All measurements were in good agreement with the literature. Temperature resolutions could also be measured from the inverse correlation of the data over the whole calibration range: T1: 2.1±0.6 C; D: 0.93±0.2 C; and PRF: 1.4±0.3 C. The diffusion and PRF methods were not applicable in fatty tissue. The use of the diffusion method was restricted due to prolonged echo time and anisotropic diffusion in tissue. Initial tests with rabbit muscle tissue in vivo indicated that MR thermometry via T1 and PRF procedures is feasible to monitor the local heating process induced by HIFU. The ultrasound applicators in the MR scanner did not substantially interfere with image quality. (orig.)

  10. Automatic system for measuring the zirconium liner and Zircaloy-2 thickness of zirconium liner tubes

    International Nuclear Information System (INIS)

    This paper reports on an automatic system to measure the zirconium liner thickness and Zircaloy-2 thickness of Zircaloy tubes with a zirconium liner for nuclear reactors. This system uses an electromagnetic probe connected to a data processing unit for measuring the liner thickness, an ultrasonic inspection system for measuring the wall-thickness, and a computer for calculating the Zircaloy-2 thickness from the liner thickness and wall-thickness. Fully automatic measurements on zirconium liner thickness and Zircaloy-2 thickness are performed with high accuracy to an order of 2 μm. This newly developed system is very useful in assuring the liner layer and Zircaloy-2 thickness in the production of high-quality cladding tubes

  11. A Non-Contact Pulse Automatic Positioning Measurement System for Traditional Chinese Medicine

    OpenAIRE

    Ying-Yun Chen; Rong-Seng Chang; Ko-Wen Jwo; Chung-Chi Hsu; Chu-Pang Tsao

    2015-01-01

    This study is to construct a non-contact pulse automatic positioning measurement system for Traditional Chinese Medicine (TCM) using optical triangulation measurements. The system consists of a linear laser, a CMOS image sensor and image analysis software. The linear laser is projected on the pulse beat location on the wrists; the CMOS image sensor records the process and the software analyzes the images. The program mainly uses the optical centroid and fast Fourier transform (FFT) principles...

  12. Automatic detection and elimination of periodic pulse shaped interferences in partial discharge measurements

    OpenAIRE

    Nagesh, V.; Gururaj, BI

    1994-01-01

    The interferences present in partial discharge (PD) measurement can be classified as narrow-band and broad-band, the latter being pulsed shaped. The pulse shaped interferences can be periodic or random with respect to power frequency, the former being very common and strong. The paper describes an algorithm for automatic detection and elimination of periodic pulse shaped interferences in PD measurements. The algorithm is developed on lines similar to that used in decomposing an electromyogram...

  13. Two-Dimensional Automatic Measurement for Nozzle Flow Distribution Using Improved Ultrasonic Sensor

    OpenAIRE

    Changyuan Zhai; Chunjiang Zhao; Xiu Wang; Ning Wang; Wei Zou; Wei Li

    2015-01-01

    Spray deposition and distribution are affected by many factors, one of which is nozzle flow distribution. A two-dimensional automatic measurement system, which consisted of a conveying unit, a system control unit, an ultrasonic sensor, and a deposition collecting dish, was designed and developed. The system could precisely move an ultrasonic sensor above a pesticide deposition collecting dish to measure the nozzle flow distribution. A sensor sleeve with a PVC tube was designed for the ultras...

  14. Non-invasive liver iron concentration measurement by MRI: Comparison of two validated protocols

    International Nuclear Information System (INIS)

    In the non-invasive determination of the liver iron concentration several validated MRI methods are available, two of which are compared in this study. Twenty-eight patients were examined by MRI and evaluated by the methods of Kreeftenberg et al. [Kreeftenberg Jr HG, Mooyaart EL, Huizenga JR, Sluiter WJ, Kreeftenberg Sr HG. Quantification of liver iron concentration with magnetic resonance imaging by combining T1-, T2-weighted spin echo sequences and a gradient echo sequence. Neth J Med 2000;56:133-7] and Gandon et al. [Gandon Y, Olivie D, Guyader D, et al. Non-invasive assessment of hepatic iron stores by MRI. Lancet 2004;363:357-62]. It is concluded that the latter shows a better inter- and intra-observer correlation and is more accurate because of the automated preselection of one of five sequences most sensitive in the estimated liver iron concentration range. In the Kreeftenberg method combining the results of three suboptimal sequences, leads to underestimation of the liver iron concentration.

  15. Non-invasive liver iron concentration measurement by MRI: Comparison of two validated protocols

    Energy Technology Data Exchange (ETDEWEB)

    Olthof, Allard W. [Department of Radiology, Bethesda Hospital, Dr.G.H. Amshoffweg 1, 7909 AA Hoogeveen (Netherlands)], E-mail: a.w.olthof@hotmail.com; Sijens, Paul E. [Department of Radiology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen (Netherlands); Kreeftenberg, Herman G. [Department of Internal Medicine, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen (Netherlands); Kappert, Peter; Jagt, Eric J. van der; Oudkerk, Matthijs [Department of Radiology, University Medical Center Groningen and University of Groningen, Hanzeplein 1, 9713 GZ Groningen (Netherlands)

    2009-07-15

    In the non-invasive determination of the liver iron concentration several validated MRI methods are available, two of which are compared in this study. Twenty-eight patients were examined by MRI and evaluated by the methods of Kreeftenberg et al. [Kreeftenberg Jr HG, Mooyaart EL, Huizenga JR, Sluiter WJ, Kreeftenberg Sr HG. Quantification of liver iron concentration with magnetic resonance imaging by combining T1-, T2-weighted spin echo sequences and a gradient echo sequence. Neth J Med 2000;56:133-7] and Gandon et al. [Gandon Y, Olivie D, Guyader D, et al. Non-invasive assessment of hepatic iron stores by MRI. Lancet 2004;363:357-62]. It is concluded that the latter shows a better inter- and intra-observer correlation and is more accurate because of the automated preselection of one of five sequences most sensitive in the estimated liver iron concentration range. In the Kreeftenberg method combining the results of three suboptimal sequences, leads to underestimation of the liver iron concentration.

  16. Noninvasive optical measurement of bone marrow lesions: a Monte Carlo study on visible human dataset

    Science.gov (United States)

    Su, Yu; Li, Ting

    2016-03-01

    Bone marrow is both the main hematopoietic and important immune organ. Bone marrow lesions (BMLs) may cause a series of severe complications and even myeloma. The traditional diagnosis of BMLs rely on mostly bone marrow biopsy/ puncture, and sometimes MRI, X-ray, and etc., which are either invasive and dangerous, or ionizing and costly. A diagnosis technology with advantages in noninvasive, safe, real-time continuous detection, and low cost is requested. Here we reported our preliminary exploration of feasibility verification of using near-infrared spectroscopy (NIRS) in clinical diagnosis of BMLs by Monte Carlo simulation study. We simulated and visualized the light propagation in the bone marrow quantitatively with a Monte Carlo simulation software for 3D voxelized media and Visible Chinese Human data set, which faithfully represents human anatomy. The results indicate that bone marrow actually has significant effects on light propagation. According to a sequence of simulation and data analysis, the optimal source-detector separation was suggested to be narrowed down to 2.8-3.2cm, at which separation the spatial sensitivity distribution of NIRS cover the most region of bone marrow with high signal-to-noise ratio. The display of the sources and detectors were optimized as well. This study investigated the light transport in spine addressing to the BMLs detection issue and reported the feasibility of NIRS detection of BMLs noninvasively in theory. The optimized probe design of the coming NIRS-based BMLs detector is also provided.

  17. Development of an automatic sampling device for the continuous measurement of atmospheric carbonyls compounds

    International Nuclear Information System (INIS)

    Two sampling strategies were studied to develop an automatic instrument for the continuous measurement of atmospheric carbonyl compounds. Because of its specificity towards carbonyls compounds, sampling by using a transfer of gaseous phase in a liquid phase associated with a simultaneous chemical derivatization of the trapped compounds was first studied. However, this method do not allow a quantitative sampling of all studied carbonyl compounds, nor a continuous measurement in the field. To overcome the difficulties, a second strategy was investigated: the cryogenic adsorption onto solid adsorbent followed by thermodesorption and a direct analysis by GC/MS. Collection efficiency using different solid adsorbents was found greater than 95% for carbonyl compounds consisting of 1 to 7 carbons. This work is a successful first step towards the realization of the automatic sampling device for a continuous measurement of atmospheric carbonyls compounds. (author)

  18. High Definition Oscillometry: Non-invasive Blood Pressure Measurement and Pulse Wave Analysis.

    Science.gov (United States)

    Egner, Beate

    2015-01-01

    Non-invasive monitoring of blood pressure has become increasingly important in research. High-Definition Oscillometry (HDO) delivers not only accurate, reproducible and thus reliable blood pressure but also visualises the pulse waves on screen. This allows for on-screen feedback in real time on data validity but even more on additional parameters like systemic vascular resistance (SVR), stroke volume (SV), stroke volume variances (SVV), rhythm and dysrhythmia. Since complex information on drug effects are delivered within a short period of time, almost stress-free and visible in real time, it makes HDO a valuable technology in safety pharmacology and toxicology within a variety of fields like but not limited to cardiovascular, renal or metabolic research. PMID:26091643

  19. Surveillance of radioactivity by the German Meteorological Service. Automatic nuclide specific measurements

    International Nuclear Information System (INIS)

    The DWD (Deutscher Wetterdienst, German Meteorological Service) is charged by law with the surveillance of radioactivity in the atmosphere. In the frame of the ''Integrated Measuring and Information System for the Surveillance of Radioactivity in the Environment'' (IMIS) the measuring tasks of DWD are well described. Since 2009 it was aimed for the automatic measurement of aerosol-bound radionuclides, gaseous Iodine-131 and deposited radionuclides at the 48 measuring sites of DWD. To guarantee the continuous operation of germanium detectors it was necessary to install electrically cooled systems instead of systems cooled by liquid nitrogen. The technical details and the experiences are described.

  20. The method of measurement system software automatic validation using business rules management system

    Science.gov (United States)

    Zawistowski, Piotr

    2015-09-01

    The method of measurement system software automatic validation using business rules management system (BRMS) is discussed in this paper. The article contains a description of the new approach to measurement systems execution validation, a description of the implementation of the system that supports mentioned validation and examples documenting the correctness of the approach. In the new approach BRMS are used for measurement systems execution validation. Such systems have not been used for software execution validation nor for measurement systems. The benefits of using them for the listed purposes are discussed as well.

  1. Automatic registration method for multisensor datasets adopted for dimensional measurements on cutting tools

    International Nuclear Information System (INIS)

    Multisensor systems with optical 3D sensors are frequently employed to capture complete surface information by measuring workpieces from different views. During coarse and fine registration the resulting datasets are afterward transformed into one common coordinate system. Automatic fine registration methods are well established in dimensional metrology, whereas there is a deficit in automatic coarse registration methods. The advantage of a fully automatic registration procedure is twofold: it enables a fast and contact-free alignment and further a flexible application to datasets of any kind of optical 3D sensor. In this paper, an algorithm adapted for a robust automatic coarse registration is presented. The method was originally developed for the field of object reconstruction or localization. It is based on a segmentation of planes in the datasets to calculate the transformation parameters. The rotation is defined by the normals of three corresponding segmented planes of two overlapping datasets, while the translation is calculated via the intersection point of the segmented planes. First results have shown that the translation is strongly shape dependent: 3D data of objects with non-orthogonal planar flanks cannot be registered with the current method. In the novel supplement for the algorithm, the translation is additionally calculated via the distance between centroids of corresponding segmented planes, which results in more than one option for the transformation. A newly introduced measure considering the distance between the datasets after coarse registration evaluates the best possible transformation. Results of the robust automatic registration method are presented on the example of datasets taken from a cutting tool with a fringe-projection system and a focus-variation system. The successful application in dimensional metrology is proven with evaluations of shape parameters based on the registered datasets of a calibrated workpiece. (paper)

  2. Non-invasive airway health measurement using synchrotron x-ray microscopy of high refractive index glass microbeads

    Science.gov (United States)

    Donnelley, Martin; Morgan, Kaye; Farrow, Nigel; Siu, Karen; Parsons, David

    2016-01-01

    Cystic fibrosis (CF) is caused by a gene defect that compromises the ability of the mucociliary transit (MCT) system to clear the airways of debris and pathogens. To directly characterise airway health and the effects of treatments we have developed a synchrotron X-ray microscopy method that non-invasively measures the local rate and patterns of MCT behaviour. Although the nasal airways of CF mice exhibit the CF pathophysiology, there is evidence that nasal MCT is not altered in CF mice1. The aim of this experiment was to determine if our non-invasive local airway health assessment method could identify differences in nasal MCT rate between normal and CF mice, information that is potentially lost in bulk MCT measurements. Experiments were performed on the BL20XU beamline at the SPring-8 Synchrotron in Japan. Mice were anaesthetized, a small quantity of micron-sized marker particles were delivered to the nose, and images of the nasal airways were acquired for 15 minutes. The nasal airways were treated with hypertonic saline or mannitol to increase surface hydration and MCT. Custom software was used to locate and track particles and calculate individual and bulk MCT rates. No statistically significant differences in MCT rate were found between normal and CF mouse nasal airways or between treatments. However, we hope that the improved sensitivity provided by this technique will accelerate the ability to identify useful CF lung disease-modifying interventions in small animal models, and enhance the development and efficacy of proposed new therapies.

  3. Interictal noninvasive measurements of regional cerebral blood flow using technetium-99m hexamethylprophylene amine oxime in temporal lobe epilepsy

    International Nuclear Information System (INIS)

    Interictal noninvasive measurements of regional cerebral blood flow (rCBF) using 99mTc-HMPAO SPECT were performed on 43 patients with temporal lobe epilepsy. Mean cerebral blood flow (mCBF) showed significant negative correlation with advancing age and duration of illness and mean cerebellar blood flow (mCblBF) showed weak negative correlation with duration of illness. Patients taking phenytoin had significantly lower mCBF and lower mCblBF than those not taking phenytoin. Patients with both visually detected temporal hypoperfusion on SPECT and hippocampal sclerosis on MRI showed quantitatively lower rCBF in the temporal region and more wide-spread hypoperfusion than patients without the both of image findings. Our results suggest that interictal noninvasive cerebral blood flow measurements using 99mTc-HMPAO may give useful information about not only cerebral blood flow in the epileptic focus and its adjacent area but also the effects of antiepileptic drugs on brain function in temporal lobe epilepsy. (author)

  4. Non-invasive airway health measurement using synchrotron x-ray microscopy of high refractive index glass microbeads

    Energy Technology Data Exchange (ETDEWEB)

    Donnelley, Martin, E-mail: martin.donnelley@adelaide.edu.au; Farrow, Nigel; Parsons, David [Respiratory & Sleep Medicine, Women’s and Children’s Hospital, North Adelaide, South Australia (Australia); Robinson Research Institute, University of Adelaide, South Australia (Australia); School of Paediatrics and Reproductive Health, University of Adelaide, South Australia (Australia); Morgan, Kaye; Siu, Karen [School of Physics, Monash University, Victoria (Australia)

    2016-01-28

    Cystic fibrosis (CF) is caused by a gene defect that compromises the ability of the mucociliary transit (MCT) system to clear the airways of debris and pathogens. To directly characterise airway health and the effects of treatments we have developed a synchrotron X-ray microscopy method that non-invasively measures the local rate and patterns of MCT behaviour. Although the nasal airways of CF mice exhibit the CF pathophysiology, there is evidence that nasal MCT is not altered in CF mice1. The aim of this experiment was to determine if our non-invasive local airway health assessment method could identify differences in nasal MCT rate between normal and CF mice, information that is potentially lost in bulk MCT measurements. Experiments were performed on the BL20XU beamline at the SPring-8 Synchrotron in Japan. Mice were anaesthetized, a small quantity of micron-sized marker particles were delivered to the nose, and images of the nasal airways were acquired for 15 minutes. The nasal airways were treated with hypertonic saline or mannitol to increase surface hydration and MCT. Custom software was used to locate and track particles and calculate individual and bulk MCT rates. No statistically significant differences in MCT rate were found between normal and CF mouse nasal airways or between treatments. However, we hope that the improved sensitivity provided by this technique will accelerate the ability to identify useful CF lung disease-modifying interventions in small animal models, and enhance the development and efficacy of proposed new therapies.

  5. Non-invasive airway health measurement using synchrotron x-ray microscopy of high refractive index glass microbeads

    International Nuclear Information System (INIS)

    Cystic fibrosis (CF) is caused by a gene defect that compromises the ability of the mucociliary transit (MCT) system to clear the airways of debris and pathogens. To directly characterise airway health and the effects of treatments we have developed a synchrotron X-ray microscopy method that non-invasively measures the local rate and patterns of MCT behaviour. Although the nasal airways of CF mice exhibit the CF pathophysiology, there is evidence that nasal MCT is not altered in CF mice1. The aim of this experiment was to determine if our non-invasive local airway health assessment method could identify differences in nasal MCT rate between normal and CF mice, information that is potentially lost in bulk MCT measurements. Experiments were performed on the BL20XU beamline at the SPring-8 Synchrotron in Japan. Mice were anaesthetized, a small quantity of micron-sized marker particles were delivered to the nose, and images of the nasal airways were acquired for 15 minutes. The nasal airways were treated with hypertonic saline or mannitol to increase surface hydration and MCT. Custom software was used to locate and track particles and calculate individual and bulk MCT rates. No statistically significant differences in MCT rate were found between normal and CF mouse nasal airways or between treatments. However, we hope that the improved sensitivity provided by this technique will accelerate the ability to identify useful CF lung disease-modifying interventions in small animal models, and enhance the development and efficacy of proposed new therapies

  6. Noninvasive measurements of regional cerebral perfusion in preterm and term neonates by magnetic resonance arterial spin labeling

    DEFF Research Database (Denmark)

    Miranda Gimenez-Ricco, Maria Jo; Olofsson, K; Sidaros, Karam

    2006-01-01

    Magnetic resonance arterial spin labeling (ASL) at 3 Tesla has been investigated as a quantitative technique for measuring regional cerebral perfusion (RCP) in newborn infants. RCP values were measured in 49 healthy neonates: 32 preterm infants born before 34 wk of gestation and 17 term...... higher (p < 0.0001) than in cortical gray matter (19 and 16 mL/100 g/min) and white matter (15 and 10 mL/100 g/min), both in preterm neonates at term-equivalent age and in term neonates. Perfusion was significantly higher (p = 0.01) in the preterm group than in the term infants, indicating that RCP may...... be influenced by developmental and postnatal ages. This study demonstrates, for the first time, that noninvasive ASL at 3T may be used to measure RCP in healthy unsedated preterm and term neonates. ASL is, therefore, a viable tool that will allow serial studies of RCP in high-risk neonates...

  7. Automatic Three-Dimensional Measurement of Large-Scale Structure Based on Vision Metrology

    Directory of Open Access Journals (Sweden)

    Zhaokun Zhu

    2014-01-01

    Full Text Available All relevant key techniques involved in photogrammetric vision metrology for fully automatic 3D measurement of large-scale structure are studied. A new kind of coded target consisting of circular retroreflective discs is designed, and corresponding detection and recognition algorithms based on blob detection and clustering are presented. Then a three-stage strategy starting with view clustering is proposed to achieve automatic network orientation. As for matching of noncoded targets, the concept of matching path is proposed, and matches for each noncoded target are found by determination of the optimal matching path, based on a novel voting strategy, among all possible ones. Experiments on a fixed keel of airship have been conducted to verify the effectiveness and measuring accuracy of the proposed methods.

  8. Development of a chain limber and its measuring automatics; Karsimakoneen ja sen mittausautomatiikan kehittaeminen

    Energy Technology Data Exchange (ETDEWEB)

    Poeytaesaari, E. [Eskon Paja, Kinnula (Finland)

    1997-12-01

    A new control system and measuring automatics are developed for a patented chain limber mountable to a farm tractor. The chain limber produces pulp wood and also limbed fuel logs. The project will be carried out in three stages: definition of the control system, development of the control system, and operational testing of the control system and the chain limber. The final stage of the project will be carried out in co-operation with the Work Efficiency Association. (orig.)

  9. Semi-automatic quantitative measurements of intracranial internal carotid artery stenosis and calcification using CT angiography

    OpenAIRE

    Bleeker, Leslie; Marquering, Henk A; van den Berg, René; Nederkoorn, Paul J; Majoie, Charles B

    2011-01-01

    Introduction Intracranial carotid artery atherosclerotic disease is an independent predictor for recurrent stroke. However, its quantitative assessment is not routinely performed in clinical practice. In this diagnostic study, we present and evaluate a novel semi-automatic application to quantitatively measure intracranial internal carotid artery (ICA) degree of stenosis and calcium volume in CT angiography (CTA) images. Methods In this retrospective study involving CTA images of 88 consecuti...

  10. Optimization of Doppler velocity echocardiographic measurements using an automatic contour detection method.

    Science.gov (United States)

    Gaillard, E; Kadem, L; Pibarot, P; Durand, L-G

    2009-01-01

    Intra- and inter-observer variability in Doppler velocity echocardiographic measurements (DVEM) is a significant issue. Indeed, imprecisions of DVEM can lead to diagnostic errors, particularly in the quantification of the severity of heart valve dysfunction. To minimize the variability and rapidity of DVEM, we have developed an automatic method of Doppler velocity wave contour detection, based on active contour models. To validate our new method, results obtained with this method were compared to those obtained manually by an experienced echocardiographer on Doppler echocardiographic images of left ventricular outflow tract and transvalvular flow velocity signals recorded in 30 patients, 15 with aortic stenosis and 15 with mitral stenosis. We focused on three essential variables that are measured routinely by Doppler echocardiography in the clinical setting: the maximum velocity, the mean velocity and the velocity-time integral. Comparison between the two methods has shown a very good agreement (linear correlation coefficient R(2) = 0.99 between the automatically and the manually extracted variables). Moreover, the computation time was really short, about 5s. This new method applied to DVEM could, therefore, provide a useful tool to eliminate the intra- and inter-observer variabilities associated with DVEM and thereby to improve the diagnosis of cardiovascular disease. This automatic method could also allow the echocardiographer to realize these measurements within a much shorter period of time compared to standard manual tracing method. From a practical point of view, the model developed can be easily implanted in a standard echocardiographic system. PMID:19965162

  11. Automatic isotope ratio measurements with a double collector magnetic mass spectrometer

    International Nuclear Information System (INIS)

    This paper describes a measuring procedure and the instrumentation of automatic measurements of isotope ratios with double collector magnetic mass spectrometers. This is essentially achieved by discriminating the desired peak plateau for ion current integration during the high voltage variation. The resolution is nearly uneffected by offset drifts of the electronic system. Prior to every isotope ratio measurement the offset values are determined, digitally stored, and finally compensated when the isotope ratio is calculated with an arithmetic unit. Several mass spectrometers have been compared on the basis of an uranium isotope analysis in a long time experiment. The developed system proved reliable and showed the same resolution as more sophisticated spectrometer systems. (orig.)

  12. High precision measurement of transistor noise with automatic calibration under computer control

    International Nuclear Information System (INIS)

    The preliminary selection of transistors for use in low noise pre-amplifiers requires the measurement of the equivalent noise voltage under various operating conditions including the temperature. Available equipment often lacks the necessary precision and is difficult to calibrate, especially when the device temperature is varied. Such equipment requires skill and patience from the operator. The authors describe a micro-computer controlled equipment which can measure transistor noise in the frequency range 10Hz to 100kHz to a greater accuracy than that previously obtainable. The transistor temperature and operating conditions may be scanned automatically over a wide range. Each measurement is internally calibrated

  13. Non-invasive measurement of stroke volume and left ventricular ejection fraction. Radionuclide cardiography compared with left ventricular cardioangiography

    Energy Technology Data Exchange (ETDEWEB)

    Kelbaek, H.; Svendsen, J.H.; Aldershvile, J.; Folke, K.; Nielsen, S.L.

    The stroke volume (SV) was determined by first passage radionuclide cardiography and the left ventricular ejection fraction (LVEF) by multigated radionuclide cardiography in 20 patients with ischemic heart disease. The results were evaluated against those obtained by the invasive dye dilution or thermodilution and left ventricular cardioangiographic techniques. In a paired comparison the mean difference between the invasive and radionuclide SV was -1 ml (SED 3.1) with a correlation coefficient of 0.83 (p < 0.01). Radionuclide LVEF values also correlated well with cardioangiographic measurements, r = 0.93 (p < 0.001). LVEF determined by multigated radionuclide cardiography was, however, significantly lower than when measured by cardioangiography, the mean difference being 6% (p < 0.001). These findings suggest that radionuclide determinations of SV and LVEF are reliable. The discrepancy between the non-invasive and invasive LVEF values raises the question, whether LVEF is overestimated by cardioangiography or underestimated by radionuclide cardiography.

  14. Non-invasive measurement of glucose uptake of skeletal muscle tissue models using a glucose nanobiosensor.

    Science.gov (United States)

    Obregón, Raquel; Ahadian, Samad; Ramón-Azcón, Javier; Chen, Luyang; Fujita, Takeshi; Shiku, Hitoshi; Chen, Mingwei; Matsue, Tomokazu

    2013-12-15

    Skeletal muscle tissues play a significant role to maintain the glucose level of whole body and any dysfunction of this tissue leads to the diabetes disease. A culture medium was created in which the muscle cells could survive for a long time and meanwhile it did not interfere with the glucose sensing. We fabricated a model of skeletal muscle tissues in vitro to monitor its glucose uptake. A nanoporous gold as a high sensitive nanobiosensor was then successfully developed and employed to detect the glucose uptake of the tissue models in this medium upon applying the electrical stimulation in a rapid, and non-invasive approach. The response of the glucose sensor was linear in a wide concentration range of 1-50 mM, with a detection limit of 3 μM at a signal-to-noise ratio of 3.0. The skeletal muscle tissue was electrically stimulated during 24 h and glucose uptake was monitored during this period. During the first 3 h of stimulation, electrically stimulated muscle tissue consumed almost twice the amount of glucose than counterpart non-stimulated sample. In total, the glucose consumption of muscle tissues was higher for the electrically stimulated tissues compared to those without applying the electrical field. PMID:23856563

  15. Non-invasive detection of fasting blood glucose level via electrochemical measurement of saliva.

    Science.gov (United States)

    Malik, Sarul; Khadgawat, Rajesh; Anand, Sneh; Gupta, Shalini

    2016-01-01

    Machine learning techniques such as logistic regression (LR), support vector machine (SVM) and artificial neural network (ANN) were used to detect fasting blood glucose levels (FBGL) in a mixed population of healthy and diseased individuals in an Indian population. The occurrence of elevated FBGL was estimated in a non-invasive manner from the status of an individual's salivary electrochemical parameters such as pH, redox potential, conductivity and concentration of sodium, potassium and calcium ions. The samples were obtained from 175 randomly selected volunteers comprising half healthy and half diabetic patients. The models were trained using 70 % of the total data, and tested upon the remaining set. For each algorithm, data points were cross-validated by randomly shuffling them three times prior to implementing the model. The performance of the machine learning technique was reported in terms of four statistically significant parameters-accuracy, precision, sensitivity and F1 score. SVM using RBF kernel showed the best performance for classifying high FBGLs with approximately 85 % accuracy, 84 % precision, 85 % sensitivity and 85 % F1 score. This study has been approved by the ethical committee of All India Institute of Medical Sciences, New Delhi, India with the reference number: IEC/NP-278/01-08-2014, RP-29/2014. PMID:27350930

  16. Effect of postprandial hyperglycaemia in non-invasive measurement of cerebral metabolic rate of glucose in non-diabetic subjects

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchida, Tatsuro; Itoh, Harumi [Department of Radiology, Fukui Medical University, Matsuoka (Japan); Sadato, Norihiro; Nishizawa, Sadahiko; Yonekura, Yoshiharu [Biomedical Imaging Research Center, Fukui Medical University (Japan)

    2002-02-01

    The aim of this study was to determine the effect of postprandial hyperglycaemia (HG) on the non-invasive measurement of cerebral metabolic rate of glucose (CMRGlc). Five patients who had a meal within an hour before a fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) examination were recruited in this study. They underwent intermittent arterial blood sampling (measured input function), and, based on this sampling, CMRGlc was calculated using an autoradiographic method (CMRGlc{sub real}). Simulated input functions were generated based on standardised input function, body surface area and net injected dose of FDG, and simulated CMRGlc (CMRGlc{sub sim}) was also calculated. Percent error of the area under the curve (AUC) between measured (AUC{sub real}) and simulated input function (AUC{sub IFsim}) and percent error between CMRGlc{sub real} and CMRGlc{sub sim} were calculated. These values were compared with those obtained from a previous study conducted under fasting conditions (F). The serum glucose level in the HG group was significantly higher than that in the F group (165{+-}69 vs 100{+-}9 mg/dl, P=0.0007). Percent errors of AUC and CMRGlc in grey matter and white matter in HG were significantly higher than those in F (12.9%{+-}1.3% vs 3.5%{+-}2.2% in AUC, P=0.0015; 18.2%{+-}2.2% vs 2.9%{+-}1.9% in CMRGlc in grey matter, P=0.0028; 24.0%{+-}4.6% vs 3.4%{+-}2.2% in CMRGlc in white matter, P=0.0028). It is concluded that a non-invasive method of measuring CMRGlc should be applied only in non-diabetic subjects under fasting conditions. (orig.)

  17. Effect of postprandial hyperglycaemia in non-invasive measurement of cerebral metabolic rate of glucose in non-diabetic subjects

    International Nuclear Information System (INIS)

    The aim of this study was to determine the effect of postprandial hyperglycaemia (HG) on the non-invasive measurement of cerebral metabolic rate of glucose (CMRGlc). Five patients who had a meal within an hour before a fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) examination were recruited in this study. They underwent intermittent arterial blood sampling (measured input function), and, based on this sampling, CMRGlc was calculated using an autoradiographic method (CMRGlcreal). Simulated input functions were generated based on standardised input function, body surface area and net injected dose of FDG, and simulated CMRGlc (CMRGlcsim) was also calculated. Percent error of the area under the curve (AUC) between measured (AUCreal) and simulated input function (AUCIFsim) and percent error between CMRGlcreal and CMRGlcsim were calculated. These values were compared with those obtained from a previous study conducted under fasting conditions (F). The serum glucose level in the HG group was significantly higher than that in the F group (165±69 vs 100±9 mg/dl, P=0.0007). Percent errors of AUC and CMRGlc in grey matter and white matter in HG were significantly higher than those in F (12.9%±1.3% vs 3.5%±2.2% in AUC, P=0.0015; 18.2%±2.2% vs 2.9%±1.9% in CMRGlc in grey matter, P=0.0028; 24.0%±4.6% vs 3.4%±2.2% in CMRGlc in white matter, P=0.0028). It is concluded that a non-invasive method of measuring CMRGlc should be applied only in non-diabetic subjects under fasting conditions. (orig.)

  18. Observational study comparing non-invasive blood pressure measurement at the arm and ankle during caesarean section.

    Science.gov (United States)

    Drake, M J P; Hill, J S

    2013-05-01

    Upper-arm non-invasive blood pressure measurement during caesarean section can be uncomfortable and unreliable because of movement artefact in the conscious parturient. We aimed to determine whether ankle blood pressure measurement could be used instead in this patient group by comparing concurrent arm and ankle blood pressure measured throughout elective caesarean section under regional anaesthesia in 64 term parturients. Bland-Altman analysis of mean difference (95% limits of agreement [range]) between the ankle and arm was 11.2 (-20.3 to +42.7 [-67 to +102]) mmHg for systolic arterial pressure, -0.5 (-21.0 to +19.9 [-44 to +91]) mmHg for mean arterial pressure and -3.8 (-25.3 to +17.8 [-41 to +94]) mmHg for diastolic arterial pressure. Although ankle blood pressure measurement is well tolerated and allows greater mobility of the arms than measurement from the arm, the degree of discrepancy between the two sites is unacceptable to allow routine use of ankle blood pressure measurement, especially for systolic arterial pressure. However, ankle blood pressure measurement may be a useful alternative in situations where arm blood pressure measurement is difficult or impossible. PMID:23480469

  19. Semi-automatic quantitative measurements of intracranial internal carotid artery stenosis and calcification using CT angiography

    Energy Technology Data Exchange (ETDEWEB)

    Bleeker, Leslie; Berg, Rene van den; Majoie, Charles B. [Academic Medical Center, Department of Radiology, Amsterdam (Netherlands); Marquering, Henk A. [Academic Medical Center, Department of Radiology, Amsterdam (Netherlands); Academic Medical Center, Department of Biomedical Engineering and Physics, Amsterdam (Netherlands); Nederkoorn, Paul J. [Academic Medical Center, Department of Neurology, Amsterdam (Netherlands)

    2012-09-15

    Intracranial carotid artery atherosclerotic disease is an independent predictor for recurrent stroke. However, its quantitative assessment is not routinely performed in clinical practice. In this diagnostic study, we present and evaluate a novel semi-automatic application to quantitatively measure intracranial internal carotid artery (ICA) degree of stenosis and calcium volume in CT angiography (CTA) images. In this retrospective study involving CTA images of 88 consecutive patients, intracranial ICA stenosis was quantitatively measured by two independent observers. Stenoses were categorized with cutoff values of 30% and 50%. The calcification in the intracranial ICA was qualitatively categorized as absent, mild, moderate, or severe and quantitatively measured using the semi-automatic application. Linear weighted kappa values were calculated to assess the interobserver agreement of the stenosis and calcium categorization. The average and the standard deviation of the quantitative calcium volume were calculated for the calcium categories. For the stenosis measurements, the CTA images of 162 arteries yielded an interobserver correlation of 0.78 (P < 0.001). Kappa values of the categorized stenosis measurements were moderate: 0.45 and 0.58 for cutoff values of 30% and 50%, respectively. The kappa value for the calcium categorization was 0.62, with a good agreement between the qualitative and quantitative calcium assessment. Quantitative degree of stenosis measurement of the intracranial ICA on CTA is feasible with a good interobserver agreement ICA. Qualitative calcium categorization agrees well with quantitative measurements. (orig.)

  20. Semi-automatic quantitative measurements of intracranial internal carotid artery stenosis and calcification using CT angiography

    International Nuclear Information System (INIS)

    Intracranial carotid artery atherosclerotic disease is an independent predictor for recurrent stroke. However, its quantitative assessment is not routinely performed in clinical practice. In this diagnostic study, we present and evaluate a novel semi-automatic application to quantitatively measure intracranial internal carotid artery (ICA) degree of stenosis and calcium volume in CT angiography (CTA) images. In this retrospective study involving CTA images of 88 consecutive patients, intracranial ICA stenosis was quantitatively measured by two independent observers. Stenoses were categorized with cutoff values of 30% and 50%. The calcification in the intracranial ICA was qualitatively categorized as absent, mild, moderate, or severe and quantitatively measured using the semi-automatic application. Linear weighted kappa values were calculated to assess the interobserver agreement of the stenosis and calcium categorization. The average and the standard deviation of the quantitative calcium volume were calculated for the calcium categories. For the stenosis measurements, the CTA images of 162 arteries yielded an interobserver correlation of 0.78 (P < 0.001). Kappa values of the categorized stenosis measurements were moderate: 0.45 and 0.58 for cutoff values of 30% and 50%, respectively. The kappa value for the calcium categorization was 0.62, with a good agreement between the qualitative and quantitative calcium assessment. Quantitative degree of stenosis measurement of the intracranial ICA on CTA is feasible with a good interobserver agreement ICA. Qualitative calcium categorization agrees well with quantitative measurements. (orig.)

  1. Automatic Recognition Method for Optical Measuring Instruments Based on Machine Vision

    Institute of Scientific and Technical Information of China (English)

    SONG Le; LIN Yuchi; HAO Liguo

    2008-01-01

    Based on a comprehensive study of various algorithms, the automatic recognition of traditional ocular optical measuring instruments is realized. Taking a universal tools microscope (UTM) lens view image as an example, a 2-layer automatic recognition model for data reading is established after adopting a series of pre-processing algorithms. This model is an optimal combination of the correlation-based template matching method and a concurrent back propagation (BP) neural network. Multiple complementary feature extraction is used in generating the eigenvectors of the concurrent network. In order to improve fault-tolerance capacity, rotation invariant features based on Zernike moments are extracted from digit characters and a 4-dimensional group of the outline features is also obtained. Moreover, the operating time and reading accuracy can be adjusted dynamically by setting the threshold value. The experimental result indicates that the newly developed algorithm has optimal recognition precision and working speed. The average reading ratio can achieve 97.23%. The recognition method can automatically obtain the results of optical measuring instruments rapidly and stably without modifying their original structure, which meets the application requirements.

  2. Computer Vision Based Automatic Extraction and Thickness Measurement of Deep Cervical Flexor from Ultrasonic Images.

    Science.gov (United States)

    Kim, Kwang Baek; Song, Doo Heon; Park, Hyun Jun

    2016-01-01

    Deep Cervical Flexor (DCF) muscles are important in monitoring and controlling neck pain. While ultrasonographic analysis is useful in this area, it has intrinsic subjectivity problem. In this paper, we propose automatic DCF extractor/analyzer software based on computer vision. One of the major difficulties in developing such an automatic analyzer is to detect important organs and their boundaries under very low brightness contrast environment. Our fuzzy sigma binarization process is one of the answers for that problem. Another difficulty is to compensate information loss that happened during such image processing procedures. Many morphologically motivated image processing algorithms are applied for that purpose. The proposed method is verified as successful in extracting DCFs and measuring thicknesses in experiment using two hundred 800 × 600 DICOM ultrasonography images with 98.5% extraction rate. Also, the thickness of DCFs automatically measured by this software has small difference (less than 0.3 cm) for 89.8% of extracted DCFs. PMID:26949411

  3. Variability in automatic activation as an unobtrusive measure of racial attitudes: a bona fide pipeline?

    Science.gov (United States)

    Fazio, R H; Jackson, J R; Dunton, B C; Williams, C J

    1995-12-01

    The research examines an unobtrusive measure of racial attitudes based on the evaluations that are automatically activated from memory on the presentation of Black versus White faces. Study 1, which concerned the technique's validity, obtained different attitude estimates for Black and White participants and also revealed that the variability among White participants was predictive of other race-related judgments and behavior. Study 2 concerned the lack of correspondence between the unobtrusive estimates and Modern Racism Scale (MRS) scores. The reactivity of the MRS was demonstrated in Study 3. Study 4 observed an interaction between the unobtrusive estimates and an individual difference in motivation to control prejudiced reactions when predicting MRS scores. The theoretical implications of the findings for consideration of automatic and controlled components of racial prejudice are discussed, as is the status of the MRS. PMID:8531054

  4. Noninvasive measurement of left ventricular pressure and max dP/dt using radionuclide multigated cardiac pool image

    International Nuclear Information System (INIS)

    Noninvasive measurements of left ventricular pressure and max dP/dt were performed using radionuclide multigated cardiac pool image (RMPI). The following differential equation was derived from the Bernoulli's theorum; dP/dt=ρ/S2.(dV/dt).(d2V/dt2) where dP/dt is the first derivative of the left ventricular pressure. ρ is the density of the blood, S is an area of the aortic valvular orifice, dV/dt and d2V/dt2 are the first and second derivatives of the cardiac volume measured by RMPI. The left ventricular pressure was calculated by the integrating of this equation in 6 patients. The max dP/dt was derived from Harada's equation; max dP/dt=ρ.C.max(du/dt) where ρ is the density of the blood, c is the pulse velocity of the aorta, and u is the velocity of the blood stream, therefore, du/dt is the acceleration of the blood stream. Value of du/dt was regarded as equivalent to d2V/dt2 obtained from the RMPI volume curves using the third Fourier's transform. Results were as follows; 1) The pressure curves determined from 6 subjects by the RMPI method were not exactly identical to those obtained directly by cardiac catheterization. The discrepancy is probably due to the interaction with reflexion waves. 2) Despite the above discrepancy, there was a significant correlation (r=0.57, Y=1.18X+146, p<0.05) between max dP/dt (X) measured from 16 subjects by cardiac catheterization and calculated max dP/dt (RI) (Y). It was concluded that the max dP/dt could be estimated noninvasively by RMPI method. (author)

  5. Validation of a spectroscopic sensor for the continuous, noninvasive measurement of muscle oxygen saturation and pH

    International Nuclear Information System (INIS)

    New patient monitoring technologies can noninvasively and directly provide an assessment of the adequacy of tissue perfusion through the simultaneous determination of muscle oxygen saturation (SmO2) and muscle pH (pHm). Non-pulsatile near infrared spectroscopy is used to determine these microvascular parameters. Two separate studies were conducted using an isolated perfused swine limb preparation to widely vary venous blood oxygen saturation (SviO2) and pH (pHvi) to assess the accuracy of a noninvasive sensor with the capability to simultaneously measure both parameters. The isolated limb model is necessary to establish equilibrium between the venous output of the perfusion circuit and the venule measurement of the spectroscopic sensor. The average absolute difference between SmO2 and SviO2 determined over 50 conditions of SviO2 between 13% and 83% on 3 pig limbs was 3.8% and the coefficient of determination (R2) was 0.95. The average absolute difference between pHm and pHvi determined over 69 conditions of pHvi between pHvi 6.9 and pHvi 7.5 on 3 pig limbs was 0.045 pH units with an R2 of 0.92. Measured accuracy was acceptable to support clinically relevant decision making for the assessment of impaired tissue perfusion and acidosis. Sensors were also evaluated on human subjects. There was no statistical difference in SmO2 by gender or location when multiple sensors were evaluated on the right and left calf, deltoid, and thigh of resting men and women (N = 33). SmO2 precision for subjects at rest was 5.6% over the six locations with four different sensors. (paper)

  6. Automatic Rice Crop Height Measurement Using a Field Server and Digital Image Processing

    OpenAIRE

    Tanakorn Sritarapipat; Preesan Rakwatin; Teerasit Kasetkasem

    2014-01-01

    Rice crop height is an important agronomic trait linked to plant type and yield potential. This research developed an automatic image processing technique to detect rice crop height based on images taken by a digital camera attached to a field server. The camera acquires rice paddy images daily at a consistent time of day. The images include the rice plants and a marker bar used to provide a height reference. The rice crop height can be indirectly measured from the images by measuring the hei...

  7. Method of Measuring Fixture Automatic Design and Assembly for Auto-Body Part

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A method of 3-D measuring fixture automatic assembly for auto-body part is presented. Locating constraint mapping technique and assembly rule-based reasoning are applied. Calculating algorithm of the position and pose for the part model, fixture configuration and fixture elements in virtual auto-body assembly space are given. Transforming fixture element from itself coordinate system space to assembly space with homogeneous transformation matrix is realized. Based on the second development technique of unigraphics(UG), the automated assembly is implemented with application program interface (API) function. Lastly the automated assembly of measuring fixture for rear longeron as a case is implemented.

  8. Non-contact and Automatic Measurement of 2D Size with CCD Matrix and Computer System

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ye; WANG Wen-sheng; GUO Yang-xue; SONG Hui-ying

    2003-01-01

    A measurement system with the CCD matrix and computer system is designed to test the 2D size of any shape workpieces automatically. In addition, the system adopts the method of the relative measurement which increases the precision and the velocity.More importantly,the precision can't be changed with the conditions of the temperature and air pressure.The experiments show that the relative precision of 0.002 9 and the absolute precision of 2.97 μm are obtained. The instrument may be used in the product line and make the testing on line possible.

  9. A Petri Net-Based Software Synchronizer for Automatic Measurement Systems

    CERN Document Server

    Arpaia, P; Romano, F; Fiscarelli, L

    2011-01-01

    A Petri net (PN)-based approach to software synchronization in automatic measurement systems is proposed. Tasks are synchronized by means of a PN modeling an execution graph, where nodes represent tasks and arrows among nodes point out time succession among the corresponding tasks. This allows software synchronization to be abstracted above the code level by leaving the test engineer to work at a more intuitive level. As an experimental case study, the design, the implementation, and the application to a measurement scenario of the PN-based synchronizer inside the software framework for testing magnets at the European Organization for Nuclear Research (CERN) are illustrated.

  10. Non-Invasive Objective Measurement of Intramuscular Fat in Beef Through Ultrasonic A-Mode and Frequency Analysis.

    Science.gov (United States)

    Park, Bo Soon

    A noninvasive, objective measurement method for predicting intramuscular fat concentration in beef through ultrasonic A-mode and frequency analysis was developed. Ultrasonic longitudinal and shear speed were evaluated for the estimation of intramuscular fat in the time domain. Ultrasonic attenuation in beef muscle also was measured through the amplitude ratio method in the time domain and frequency shift method in the frequency domain. Moisture content in beef could be predicted using ultrasonic parameters both in the time and in the frequency domain, noninvasively. Ultrasonic frequency analysis provided the most important parameters for intramuscular fat prediction. In fact, the number of local maxima, which is multiple peak of Fourier spectrum of ultrasonic signal, using the 2.25 MHz shear probe was the most significant parameter for predicting intramuscular fat concentration in the frequency domain. Empirical models were developed to predict intramuscular fat concentration from ultrasonic parameters both in the time and in the frequency domain. A nonlinear regression model was developed based on longitudinal speed in the time domain; whereas, a multivariate regression model, including lower frequency, bandwidth, and local maxima as input variables, was developed for intramuscular fat concentration prediction in the frequency domain. As a result of validating these regression models using the cross-validation method, the nonlinear model in the time domain was capable of predicting intramuscular fat concentration with 1.36 percentage fat error (P intramuscular fat through the multilinear model in the frequency domain. An algorithm for designing prototype an ultrasonic probe for predicting intramuscular fat concentration on beef carcasses or live beef animals was developed using C programming language based on the ultrasonic parameter values evaluated in this research. A strategy for scanning beef carcasses was presented based upon the regression models using both

  11. Recent Development of SANS BATAN Spectrometer (SMARTer in Serpong for Simultaneous and Automatic Measurements

    Directory of Open Access Journals (Sweden)

    E.G.R. Putra

    2013-12-01

    Full Text Available The 36 meter SANS BATAN spectrometer (SMARTer in Serpong Indonesia has been developed for simultaneous and automatic measurements. The existing motor controller of ISA (Industry Standard Architecture interface was replaced by the programmable motor controller of PCI (Peripheral Component Interconnect interface, since it has speed and interrupt-sharing advantages, to drive all stepper motors for collimator, pinhole, and detector movements of the spectrometer. The recent development makes all motors moved and controlled simultaneously in setting up the instrument configuration before performing the experiment. Along with that improvement, the data acquisition software has been also developed to drive the beam stopper movement in two directions as well as to read the absolute collimator and detector positions, to acquire neutron counts on the monitor and the main detector, and also to control automatically up to 12 sample positions of the sample changer. The collected neutron counts is displayed in real time on the main monitor window, and the counts is saved in a special format for further data reduction and analysis. The developed data acquisition software has been implemented and performed for experiment that use preset time or preset count mode, and the automatic sample changer

  12. Automatic measuring device based on the DRG 2-01 dosemeter

    International Nuclear Information System (INIS)

    A facility developed on the base of a commercial dosimetric device providing essential increase in charge determination accuracy for sensitive ranges and automation of the radiation field dosimetric characteristics measurement process is described. Improvement of the facility performances is attained by introducing an additional external trigger unit delay circuit unit which assure control pulse delay during 3-10 s. The whole facility control and exact time counting are made by a recounting device. A digital voltmeter the information from which is printed in a unit of automatic printing is included for increasing the accuracy of measurements. The given facility has been used for measuring charges induced by pulsed X radiation in ionization converters. According to the measurement results the facility gives an opportunity to reduce mean square error of X and #betta# radiation exposure dose measurement in 15 times

  13. The influence of volatile anesthetics on alveolar epithelial permeability measured by noninvasive radionuclide lung scan

    International Nuclear Information System (INIS)

    Many volatile anesthetics have long been thought to affect pulmonary functions including lung ventilation (LV) and alveolar epithelial permeability (AEP). The purpose of this study is to examine the influence of volatile anesthetics on LV and AEP by noninvasive radionuclide lung imaging of technetium-99m labeled diethylene triamine pentaacetic acid radioaerosol inhalation lung scan (DTPA lung scan). Twenty patients undergoing surgery and receiving volatile anesthesia with 1% halothane were enrolled as the study group 1. The other 20 patients undergoing surgery and receiving volatile anesthesia with 1.5% isoflurane were enrolled as the study group 2. At the same time, 20 patients undergoing surgery with intravenous anesthesia drugs were included as a control group. Before surgery, 1 hour after surgery, and 1 week after surgery, we investigated the 3 groups of patients with DTPA lung scan to evaluate LV and AEP by 99mTc DTPA clearance halftime (T1/2). No significant change or abnormality of LV before surgery, 1 hour after surgery, or 1 week after surgery was found among the 3 groups of patients. In the control group, the 99mTc DTPA clearance T1/2 was 63.5±16.4, 63.1±18.4, and 62.8±17.0 minutes, before surgery, 1 hour after surgery, and 1 week after surgery, respectively. In group 1, it was 65.9±9.3, 62.5±9.1, and 65.8±10.3 minutes, respectively. No significant change in AEP before surgery, 1 hour after surgery, or 1 week after surgery was found. However, in group 2, the99mTc DTPA clearance T1/2 was 65.5±13.2, 44.9±10.5, and 66.1±14.0 minutes, respectively. A significant transient change in AEP was found 1 hour after surgery, but it recovered 1 week after surgery. We conclude that volatile anesthesia is safe for LV and AEP, and only isoflurane can induce transient change of AEP. (author)

  14. Noninvasive transthoracic and transesophageal Doppler echocardiographic measurements of human coronary blood flow velocity: In vitro flow phantom validation.

    Science.gov (United States)

    Greene, E R

    2010-01-01

    Coronary angiography is limited in assessing the hemodynamic significance of a coronary lesion or the state of the coronary microcirculation. Noninvasive transthoracic (TTE) and transesophageal (TEE) Doppler echocardiography have been used to measure coronary blood flow velocity and coronary flow reserve and thus the physiology of the coronary vasculature (normal, stable or unstable lesions). A fundamental, in vitro validation of these methods with a tissue and blood mimicking flow phantom has not been reported. Accordingly, Bland-Altman 95% confidence levels for precision (repeated measures) and accuracy (comparison with time collection) were determined for both TTE and TEE measurements of simulated coronary diastolic blood velocities in 2 mm and 4 mm vessels at the normal in vivo depths of 40 mm and 60 mm. The Doppler angle was set at 45 degrees and flow velocities were varied within a normal in vivo range of 0- 150 cm/s. Confidence levels for precisions and accuracies were similar between TTE and TEE and ranged from ± 6 cm/s to ± 13 cm/s or approximately 10-15% over the range of the measured velocities. These in vitro results in a controlled flow phantom suggest that technically adequate TTE and TEE can be used to reliably measure epicardial coronary conduit artery blood flow velocities. PMID:21096876

  15. Automatic measuring system of zirconium thickness for zirconium liner cladding tubes

    International Nuclear Information System (INIS)

    An automatic system of pure zirconium liner thickness for zirconium-zircaloy cladding tubes has been successfully developed. The system consists of three parts. (1) An ultrasonic thickness measuring method for mother tubes before cold rolling. (2) An electromagnetic thickness measuring method for the manufactured tubes. (3) An image processing method for the cross sectional view of the manufactured cut tube samples. In Japanese nuclear industry, zirconium-zircaloy cladding tubes have been tested in order to realize load following operation in the atomic power plant. In order to provide for the practical use in the near future, Sumitomo Metal Industries, Ltd. has been studied and established the practical manufacturing process of the zirconium liner cladding tubes. The zirconium-liner cladding tube is a duplex tube comprising an inner layer of pure zirconium bonded to zircaloy metallurgically. The thickness of the pure zirconium is about 10 % of the total wall thickness. Several types of the automatic thickness measuring methods have been investigated instead of the usual microscopic viewing method in which the liner thickness is measured by the microscopic cross sectional view of the cut tube samples

  16. Non-invasive assessment of arterial stiffness using oscillometric blood pressure measurement

    OpenAIRE

    Komine Hidehiko; Asai Yoshiyuki; Yokoi Takashi; Yoshizawa Mutsuko

    2012-01-01

    Abstract Background Arterial stiffness is a major contributor to cardiovascular diseases. Because current methods of measuring arterial stiffness are technically demanding, the purpose of this study was to develop a simple method of evaluating arterial stiffness using oscillometric blood pressure measurement. Methods Blood pressure was conventionally measured in the left upper arm of 173 individuals using an inflatable cuff. Using the time series of occlusive cuff pressure and the amplitudes ...

  17. In vivo assessment of corneal barrier function through non-invasive impedance measurements using a flexible probe

    International Nuclear Information System (INIS)

    The cornea is a transparent structure composed of three layers: the epithelium, the stroma and the endothelium. To maintain its ransparency the stroma remains in a constant state of dehydration. Consequently, any ion flow disorder through the covering layers can compromise the barrier function and, therefore the corneal homeostasis. Since ionic permeability has a fundamental impact on the passive electrical properties of living tissues, in this work it is proposed and demonstrated a diagnosis method based on tetrapolar impedance measurements performed by electrodes placed on the corneal surface. The contribution of each cornea layer to the total measured impedance has been analysed over a frequency range. Following the obtained guidelines, a flexible probe with integrated electrodes has been developed and manufactured using SU-8 photoresin. The feasibility of the proposed method has been evaluated in vivo by monitoring corneal epithelium wound healing. Obtained impedance measurements have been compared with measurements of permeability to sodium fluorescein from different excised corneas. Successful results demonstrate the feasibility of this novel flexible sensor and its capability to quantify corneal permeability in vivo in a noninvasive way.

  18. In vivo multitracer analysis technique. Screening of radioactive probes for noninvasive measurement of physiological functions in experimental animals

    International Nuclear Information System (INIS)

    A novel screening experiment, to find radioactive probes for non-invasive measurements of physiological functions in experimental animals, was tested using the in vivo multitracer analysis technique. The details of the efficiency of the detector settings used in the in vivo multitracer analysis technique were examined by both computer simulations and practical measurements. Multiple radioactive isotopes, i.e. multitracer, were prepared by irradiating a silver foil target with a heavy ion beam at the RIKEN ring cyclotron. After chemical separation of the silver target, the multitracer was finally dissolved in isotonic citrate buffer. The multitracer solution was intravenously injected into rats. Using a γ-ray detector equipped with a well-defined slit, the collimated γ-rays from the upper abdomen of living rats were measured. After correction of detection efficiencies, it was possible to compare the distribution of radioactive elements between two groups of rats different in body weight. The in vivo measurement showed that the tissue substantial volume of the selenium-deficient (SeD) rat liver increased compared to normal rats. The possibility of a functional estimation of tissue/blood volume for living rats was proposed based on the characteristic in vivo distribution of 74As, 83Rb and 103Ru. (author)

  19. Transducer-actuator systems and methods for performing on-machine measurements and automatic part alignment

    Energy Technology Data Exchange (ETDEWEB)

    Barkman, William E.; Dow, Thomas A.; Garrard, Kenneth P.; Marston, Zachary

    2016-07-12

    Systems and methods for performing on-machine measurements and automatic part alignment, including: a measurement component operable for determining the position of a part on a machine; and an actuation component operable for adjusting the position of the part by contacting the part with a predetermined force responsive to the determined position of the part. The measurement component consists of a transducer. The actuation component consists of a linear actuator. Optionally, the measurement component and the actuation component consist of a single linear actuator operable for contacting the part with a first lighter force for determining the position of the part and with a second harder force for adjusting the position of the part. The actuation component is utilized in a substantially horizontal configuration and the effects of gravitational drop of the part are accounted for in the force applied and the timing of the contact.

  20. Automaticity and Primacy of Auditory Streaming: Concurrent Subjective and Objective Measures

    OpenAIRE

    Billig, Alexander J.; Robert P Carlyon

    2015-01-01

    Two experiments used subjective and objective measures to study the automaticity and primacy of auditory streaming. Listeners heard sequences of “ABA–” triplets, where “A” and “B” were tones of different frequencies and “–” was a silent gap. Segregation was more frequently reported, and rhythmically deviant triplets less well detected, for a greater between-tone frequency separation and later in the sequence. In Experiment 1, performing a competing auditory task for the first part of the sequ...

  1. Comparison of manual and semi-automatic measuring techniques in MSCT scans of patients with lymphoma: a multicentre study

    International Nuclear Information System (INIS)

    Multicentre evaluation of the precision of semi-automatic 2D/3D measurements in comparison to manual, linear measurements of lymph nodes regarding their inter-observer variability in multi-slice CT (MSCT) of patients with lymphoma. MSCT data of 63 patients were interpreted before and after chemotherapy by one/tworadiologists in five university hospitals. In 307 lymph nodes, short (SAD)/long (LAD) axis diameter and WHO area were determined manually and semi-automatically. Volume was solely calculated semi-automatically. To determine the precision of the individual parameters, a mean was calculated for every lymph node/parameter. Deviation of the measured parameters from this mean was evaluated separately. Statistical analysis entailed intraclass correlation coefficients (ICC) and Kruskal-Wallis tests. Median relative deviations of semi-automatic parameters were smaller than deviations of manually assessed parameters, e.g. semi-automatic SAD 5.3 vs. manual 6.5 %. Median variations among different study sites were smaller if the measurement was conducted semi-automatically, e. g. manual LAD 5.7/4.2 % vs. semi-automatic 3.4/3.4 %. Semi-automatic volumetry was superior to the other parameters (2.8 %). Semi-automatic determination of different lymph node parameters is (compared to manually assessed parameters) associated with a slightly greater precision and a marginally lower inter-observer variability. These results are with regard to the increasing mobility of patients among different medical centres and in relation to the quality management of multicentre trials of importance. (orig.)

  2. Comparison of manual and semi-automatic measuring techniques in MSCT scans of patients with lymphoma: a multicentre study

    Energy Technology Data Exchange (ETDEWEB)

    Hoeink, A.J.; Wessling, J.; Schuelke, C.; Kohlhase, N.; Wassenaar, L.; Heindel, W.; Buerke, B. [University Hospital Muenster, Department of Clinical Radiology, Muenster (Germany); Koch, R. [University of Muenster, Institute of Biostatistics and Clinical Research (IBKF), Muenster (Germany); Mesters, R.M. [University Hospital Muenster, Department of Haematology and Oncology, Muenster (Germany); D' Anastasi, M.; Graser, A.; Karpitschka, M. [University Hospital Muenchen (LMU), Institute of Clinical Radiology, Muenchen (Germany); Fabel, M.; Wulff, A. [University Hospital Kiel, Department of Clinical Radiology, Kiel (Germany); Pinto dos Santos, D. [University Hospital Mainz, Department of Diagnostic and Interventional Radiology, Mainz (Germany); Kiessling, A. [University Hospital Marburg, Department of Diagnostic and Interventional Radiology, Marburg (Germany); Dicken, V.; Bornemann, L. [Institute of Medical Imaging Computing, Fraunhofer MeVis, Bremen (Germany)

    2014-11-15

    Multicentre evaluation of the precision of semi-automatic 2D/3D measurements in comparison to manual, linear measurements of lymph nodes regarding their inter-observer variability in multi-slice CT (MSCT) of patients with lymphoma. MSCT data of 63 patients were interpreted before and after chemotherapy by one/tworadiologists in five university hospitals. In 307 lymph nodes, short (SAD)/long (LAD) axis diameter and WHO area were determined manually and semi-automatically. Volume was solely calculated semi-automatically. To determine the precision of the individual parameters, a mean was calculated for every lymph node/parameter. Deviation of the measured parameters from this mean was evaluated separately. Statistical analysis entailed intraclass correlation coefficients (ICC) and Kruskal-Wallis tests. Median relative deviations of semi-automatic parameters were smaller than deviations of manually assessed parameters, e.g. semi-automatic SAD 5.3 vs. manual 6.5 %. Median variations among different study sites were smaller if the measurement was conducted semi-automatically, e. g. manual LAD 5.7/4.2 % vs. semi-automatic 3.4/3.4 %. Semi-automatic volumetry was superior to the other parameters (2.8 %). Semi-automatic determination of different lymph node parameters is (compared to manually assessed parameters) associated with a slightly greater precision and a marginally lower inter-observer variability. These results are with regard to the increasing mobility of patients among different medical centres and in relation to the quality management of multicentre trials of importance. (orig.)

  3. A Non-Contact Pulse Automatic Positioning Measurement System for Traditional Chinese Medicine

    Directory of Open Access Journals (Sweden)

    Ying-Yun Chen

    2015-04-01

    Full Text Available This study is to construct a non-contact pulse automatic positioning measurement system for Traditional Chinese Medicine (TCM using optical triangulation measurements. The system consists of a linear laser, a CMOS image sensor and image analysis software. The linear laser is projected on the pulse beat location on the wrists; the CMOS image sensor records the process and the software analyzes the images. The program mainly uses the optical centroid and fast Fourier transform (FFT principles to calculate centroid changes (pulse amplitude changes from the images taken by the CMOS image sensor. It returns the positions of cun, guan and chi pulses automatically in terms of the amplitudes and the signals are then transformed from the time domain (time-amplitude into the frequency domain (frequency-amplitude via FFT to obtain the waveforms and frequencies of the cun, guan and chi pulses. It successfully extracts the data from the TCM pulse reading and can be a medical aid system for TCM. Combining the advantages of optical measurement and computer automation, this system provides a non-contact, easy to operate, fast in detection and low-cost equipment design.

  4. Automaticity and primacy of auditory streaming: Concurrent subjective and objective measures.

    Science.gov (United States)

    Billig, Alexander J; Carlyon, Robert P

    2016-03-01

    Two experiments used subjective and objective measures to study the automaticity and primacy of auditory streaming. Listeners heard sequences of "ABA-" triplets, where "A" and "B" were tones of different frequencies and "-" was a silent gap. Segregation was more frequently reported, and rhythmically deviant triplets less well detected, for a greater between-tone frequency separation and later in the sequence. In Experiment 1, performing a competing auditory task for the first part of the sequence led to a reduction in subsequent streaming compared to when the tones were attended throughout. This is consistent with focused attention promoting streaming, and/or with attention switches resetting it. However, the proportion of segregated reports increased more rapidly following a switch than at the start of a sequence, indicating that some streaming occurred automatically. Modeling ruled out a simple "covert attention" account of this finding. Experiment 2 required listeners to perform subjective and objective tasks concurrently. It revealed superior performance during integrated compared to segregated reports, beyond that explained by the codependence of the two measures on stimulus parameters. We argue that listeners have limited access to low-level stimulus representations once perceptual organization has occurred, and that subjective and objective streaming measures partly index the same processes. PMID:26414168

  5. Automatic Control System of Ion Electrostatic Accelerator and Anti-Interference Measures

    International Nuclear Information System (INIS)

    An automatic control system for the electrostatic accelerator has been developed by adopting the PLC (Programmable Logic Controller) control technique, infrared and optical-fibre transmission technique and network communication with the purpose to improve the intelligence level of the accelerator and to enhance the ability of monitoring, collecting and recording parameters. In view of the control system' structure, some anti-interference measures have been adopted after analyzing the interference sources. The measures in hardware include controlling the position of the corona needle, using surge arresters, shielding, ground connection and stabilizing the voltage. The measures in terms of software involve inter-blocking protection, soft-spacing, time delay, and diagnostic and protective programs. The electromagnetic compatible ability of the control system has thus been effectively improved

  6. Automatic Ferrite Content Measurement based on Image Analysis and Pattern Classification

    Directory of Open Access Journals (Sweden)

    Hafiz Muhammad Tanveer

    2015-05-01

    Full Text Available The existing manual point counting technique for ferrite content measurement is a difficult time consuming method which has limited accuracy due to limited human perception and error induced by points on boundaries of grid spacing. In this paper, we present a novel algorithm, based on image analysis and pattern classification, to evaluate the volume fraction of ferrite in microstructure containing ferrite and austenite. The prime focus of the proposed algorithm is to solve the problem of ferrite content measurement using automatic binary classification approach. Classification of image data into two distinct classes, using optimum threshold finding method, is the key idea behind the new algorithm. Automation of the process to measure the ferrite content and to speed up specimen’s testing procedure is the main feature of the newly developed algorithm. Improved performance index by reducing error sources is reflected from obtained results and validated through the comparison with a well-known method of Ohtsu.

  7. A non-invasive Hall current distribution measurement system for Hall Effect thrusters

    Science.gov (United States)

    Mullins, Carl Raymond

    A direct, accurate method to measure thrust produced by a Hall Effect thruster on orbit does not currently exist. The ability to calculate produced thrust will enable timely and precise maneuvering of spacecraft---a capability particularly important to satellite formation flying. The means to determine thrust directly is achievable by remotely measuring the magnetic field of the thruster and solving the inverse magnetostatic problem for the Hall current density distribution. For this thesis, the magnetic field was measured by employing an array of eight tunneling magnetoresistive (TMR) sensors capable of milligauss sensitivity when placed in a high background field. The array was positioned outside the channel of a 1.5 kW Colorado State University Hall thruster equipped with a center-mounted electride cathode. In this location, the static magnetic field is approximately 30 Gauss, which is within the linear operating range of the TMR sensors. Furthermore, the induced field at this distance is greater than tens of milligauss, which is within the sensitivity range of the TMR sensors. Due to the nature of the inverse problem, the induced-field measurements do not provide the Hall current density by a simple inversion; however, a Tikhonov regularization of the induced field along with a non-negativity constraint and a zero boundary condition provides current density distributions. Our system measures the sensor outputs at 2 MHz allowing the determination of the Hall current density distribution as a function of time. These data are shown in contour plots in sequential frames. The measured ratios between the average Hall current and the discharge current ranged from 0.1 to 10 over a range of operating conditions from 1.3 kW to 2.2 kW. The temporal inverse solution at 2.0 kW exhibited a breathing mode of 37 kHz, which was in agreement with temporal measurements of the discharge current.

  8. Non-invasive ultrasound based temperature measurements at reciprocating screw plastication units: Methodology and applications

    Science.gov (United States)

    Straka, Klaus; Praher, Bernhard; Steinbichler, Georg

    2015-05-01

    Previous attempts to accurately measure the real polymer melt temperature in the screw chamber as well as in the screw channels have failed on account of the challenging metrological boundary conditions (high pressure, high temperature, rotational and axial screw movement). We developed a novel ultrasound system - based on reflection measurements - for the online determination of these important process parameters. Using available pressure-volume-temperature (pvT) data from a polymer it is possible to estimate the density and adiabatic compressibility of the material and therefore the pressure and temperature depending longitudinal ultrasound velocity. From the measured ultrasonic reflection time from the screw root and barrel wall and the pressure it is possible to calculate the mean temperature in the screw channel or in the chamber in front of the screw (in opposition to flush mounted infrared or thermocouple probes). By means of the above described system we are able to measure axial profiles of the mean temperature in the screw chamber. The data gathered by the measurement system can be used to develop control strategies for the plastication process to reduce temperature gradients within the screw chamber or as input data for injection moulding simulation.

  9. Non-invasive assessment of arterial stiffness using oscillometric blood pressure measurement

    Directory of Open Access Journals (Sweden)

    Komine Hidehiko

    2012-02-01

    Full Text Available Abstract Background Arterial stiffness is a major contributor to cardiovascular diseases. Because current methods of measuring arterial stiffness are technically demanding, the purpose of this study was to develop a simple method of evaluating arterial stiffness using oscillometric blood pressure measurement. Methods Blood pressure was conventionally measured in the left upper arm of 173 individuals using an inflatable cuff. Using the time series of occlusive cuff pressure and the amplitudes of pulse oscillations, we calculated local slopes of the curve between the decreasing cuff pressure and corresponding arterial volume. Whole pressure-volume curve was derived from numerical integration of the local slopes. The curve was fitted using an equation and we identified a numerical coefficient of the equation as an index of arterial stiffness (Arterial Pressure-volume Index, API. We also measured brachial-ankle (baPWV PWV and carotid-femoral (cfPWV PWV using a vascular testing device and compared the values with API. Furthermore, we assessed carotid arterial compliance using ultrasound images to compare with API. Results The slope of the calculated pressure-volume curve was steeper for compliant (low baPWV or cfPWV than stiff (high baPWV or cfPWV arteries. API was related to baPWV (r = -0.53, P r = -0.49, P r = 0.32, P Conclusions These results suggest that our method can simply and simultaneously evaluate arterial stiffness and blood pressure based on oscillometric measurements of blood pressure.

  10. Non-invasive measurer of dentistry KVp for x-rays

    International Nuclear Information System (INIS)

    In this paper it is discussed the response of an instrument developed for non invasive measure of the kilovoltage (KVp) applied to the X-ray tube. The operation principle of the instrument is based on the differential attenuation of the X-ray beam that is produced by copper filters of different thickness. The ratio of the signals produced by photodiodes detectors is related with the KVp applied to the X-ray tube. The equipment response was compared with a calibrated digital equipment (RMI), that measures KVp. The results have shown an excellent correlation between the ratio of signs of both sensors and the KVp. The variation in KVp measured with the instrument and the obtained with RMI was less than 2%. (author)

  11. Non-Invasive Diagnostics for Measuring Physical Properties and Processes in High Level Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Robert Powell; David Pfund

    2005-07-17

    This research demonstrated the usefulness of tomographic techniques for determining the physical properties of slurry suspensions. Of particular interest was the measurement of the viscosity of suspensions in complex liquids and modeling these. We undertook a long rage program that used two techniques, magnetic resonance imaging and ultrasonic pulsed Doppler velocimetry. Our laboratory originally developed both of these for the measurement of viscosity of complex liquids and suspensions. We have shown that the relationship between shear viscosity and shear rate can be determined over a wide range of shear rates from a single measurement. We have also demonstrated these techniques for many non-Newtonian fluids which demonstrate highly shear thinning behavior. This technique was extended to determine the yield stress with systems of interacting particles. To model complex slurries that may be found in wastes applications, we have also used complex slurries that are found in industrial applications

  12. Non-invasive measurement of cardiac output by a single breath constant expiratory technique.

    OpenAIRE

    1984-01-01

    A new single breath test has been developed that measures pulmonary blood flow (Qc) and pulmonary tissue volume by using the fact that Qc is proportional to the relationship between the absorption rate of acetylene (C2H2) from the alveolar gas and the rate of change of lung volume during constant expiratory flow. To make these measurements a bag in bottle system with a rolling seal spirometer, a mass spectrometer, and a minicomputer with analogue to digital conversion have been used. Qc was c...

  13. [Design and analysis of automatic measurement instrument for diffraction efficiency of plane reflection grating].

    Science.gov (United States)

    Wang, Fang; Qi, Xiang-Dong; Yu, Hong-Zhu; Yu, Hai-Li

    2009-02-01

    A new-style system that automatically measures the diffraction efficiency of plane reflection grating was designed. The continuous illuminant was adopted for illumination, the duplex grating spectrograph structure was applied, and the linear array NMOS was the receiving component. Wielding relevant principle of the grating spectrograph, theoretical analysis principle was carried out for the testing system. Integrating the aberration theory of geometrical optics, the image quality of this optics system was analyzed. Analysis indicated that the systematic device structure is compact, and electronics system is simplified. The system does not have the problem about wavelength sweep synchronization of the two grating spectrographs, and its wavelength repeatability is very good. So the precision is easy to guarantee. Compared with the former automated scheme, the production cost is reduced, moreover it is easy to operate, and the working efficiency is enhanced. The study showed that this automatic measurement instrument system features a spectral range of 190-1 100 nm and resolution is less than 3 nm, which entirely satisfies the design request. It is an economical and feasible plan. PMID:19445251

  14. Automatic segmentation and classification of the reflected laser dots during analytic measurement of mirror surfaces

    Science.gov (United States)

    Wang, ZhenZhou

    2016-08-01

    In the past research, we have proposed a one-shot-projection method for analytic measurement of the shapes of the mirror surfaces, which utilizes the information of two captured laser dots patterns to reconstruct the mirror surfaces. Yet, the automatic image processing algorithms to extract the laser dots patterns have not been addressed. In this paper, a series of automatic image processing algorithms are proposed to segment and classify the projected laser dots robustly and efficiently during measuring the shapes of mirror surfaces and each algorithm is indispensible for the finally achieved accuracy. Firstly, the captured image is modeled and filtered by the designed frequency domain filter. Then, it is segmented by a robust threshold selection method. A novel iterative erosion method is proposed to separate connected dots. Novel methods to remove noise blob and retrieve missing dots are also proposed. An effective registration method is used to help to select the used SNF laser and the dot generation pattern by analyzing if the dot pattern obeys the principle of central projection well. Experimental results verified the effectiveness of all the proposed algorithms.

  15. Adverse effects of near current-electrode placement in non-invasive bio-impedance measurements

    International Nuclear Information System (INIS)

    A major problem confronting application of impedance techniques to studies of disease is the extraction of intrinsic properties of the tissue from the measured impedances, which unavoidably involve geometric factors as well. Amongst the foremost are the sizes and locations of the measuring electrode arrays, and this paper addresses one of these, the location of current injecting electrodes. Tetrapolar impedance measurements on a 17.5 cm segment of the thigh gave R and X values three to four times larger when the current injecting electrodes were placed 2.5 cm from the sensing electrodes than when very distant placement was used. The frequency dependences of R and X were affected as well, though the X versus R plots still showed virtually perfect depressed-center semicircles, as in the Cole model. R(f) and X(f) for the set of contiguous 2.5 cm wide sub-segments show that these behaviors can be explained by a combination of the transverse orientation of current flow lines near the injecting electrodes and the anisotropy of the resistivity associated with the bundled fiber structure of muscle tissue. The measured impedance was found to be a separable function of geometric and intrinsic tissue variables, but far more complicated than is implicit in the usual cylindrical models. The results also suggest that many full and segmental body composition studies in the literature may be prone to substantial errors due to too close placement of the current injecting electrodes. (paper)

  16. Tiny Integrated Network Analyzer for Noninvasive Measurements of Electrically Small Antennas

    DEFF Research Database (Denmark)

    Buskgaard, Emil Feldborg; Krøyer, Ben; Tatomirescu, Alexandru; Franek, Ondrej; Pedersen, Gert F.

    2016-01-01

    system. The tiny integrated network analyzer is a stand-alone Arduino-based measurement system that utilizes the transmit signal of the system under test as its reference. It features a power meter with triggering ability, on-board memory, universal serial bus, and easy extendibility with general...

  17. Laser flare photometry: a noninvasive, objective, and quantitative method to measure intraocular inflammation.

    Science.gov (United States)

    Tugal-Tutkun, Ilknur; Herbort, Carl P

    2010-10-01

    Aqueous flare and cells are the two inflammatory parameters of anterior chamber inflammation resulting from disruption of the blood-ocular barriers. When examined with the slit lamp, measurement of intraocular inflammation remains subjective with considerable intra- and interobserver variations. Laser flare cell photometry is an objective quantitative method that enables accurate measurement of these parameters with very high reproducibility. Laser flare photometry allows detection of subclinical alterations in the blood-ocular barriers, identifying subtle pathological changes that could not have been recorded otherwise. With the use of this method, it has been possible to compare the effect of different surgical techniques, surgical adjuncts, and anti-inflammatory medications on intraocular inflammation. Clinical studies of uveitis patients have shown that flare measurements by laser flare photometry allowed precise monitoring of well-defined uveitic entities and prediction of disease relapse. Relationships of laser flare photometry values with complications of uveitis and visual loss further indicate that flare measurement by laser flare photometry should be included in the routine follow-up of patients with uveitis. PMID:19430730

  18. Noninvasive surface measurement of corrosion impedance of reinforcing bar in concrete - part 1: experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jieying; Monteiro, Paulo J.M.; Morrison, H. Frank

    2000-11-01

    The corrosion state of a reinforcing steel bar in concrete can be characterized by the electrical impedance of the interface between the steel bar and the concrete. The experimental part of this study, has shown that changes in the interfacial impedance that are diagnostic of the rate and extent of the corrosion can be measured indirectly with an array of current and voltage electrodes on the concrete surface. The measured impedance, however depends on the electrical resistivity of the concrete, and the depth and diameter of the steel reinforcing bar as well as the interfacial properties. To relate the measured impedance directly to the interfacial properties, a closed-form solution to the governing Poisson's equation was developed and programmed for the potentials from arbitrary, current sources in the vicinity of the reinforcing bar. The solution uses an impedance boundary, condition for the complex impedance at the steel-concrete interface. The response of an arbitrary corrosion state can be simulated in this model by embedding the appropriate complex, frequency-dependent impedance at the interface and computing the voltage/current response that would be measured for an arbitrary placement of electrodes on the concrete surface. To simulate the experimental findings, this paper presents the modeling results by various interfacial impedances but constant concrete resistivity and constant geometry of the steel reinforcing bar This simulation confirms that important parameters of the interfacial impedance controlling corrosion kinetics such as polarization resistance and double layer capacitance are clearly, observed in the measured surface data. [References: 10

  19. Noninvasive surface measurement of corrosion impedance of reinforcing bar in concrete - part 2: forward modeling

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jieying; Monteiro, Paulo J. M.; Morrison, H. Frank

    2002-01-02

    The corrosion state of a reinforcing steel bar in concrete can be characterized by the electrical impedance of the interface between the steel bar and the concrete. The experimental part of this study, has shown that changes in the interfacial impedance that are diagnostic of the rate and extent of the corrosion can be measured indirectly with an array of current and voltage electrodes on the concrete surface. The measured impedance, however depends on the electrical resistivity of the concrete, and the depth and diameter of the steel reinforcing bar as well as the interfacial properties. To relate the measured impedance directly to the interfacial properties, a closed-form solution to the governing Poisson's equation was developed and programmed for the potentials from arbitrary, current sources in the vicinity of the reinforcing bar. The solution uses an impedance boundary, condition for the complex impedance at the steel-concrete interface. The response of an arbitrary corrosion state can be simulated in this model by embedding the appropriate complex, frequency-dependent impedance at the interface and computing the voltage/current response that would be measured for an arbitrary placement of electrodes on the concrete surface. To simulate the experimental findings, this paper presents the modeling results by various interfacial impedances but constant concrete resistivity and constant geometry of the steel reinforcing bar. This simulation confirms that important parameters of the interfacial impedance controlling corrosion kinetics such as polarization resistance and double layer capacitance are clearly, observed in the measured surface data. [References: 10

  20. Computer Vision Tools for Low-Cost and Noninvasive Measurement of Autism-Related Behaviors in Infants

    Directory of Open Access Journals (Sweden)

    Jordan Hashemi

    2014-01-01

    Full Text Available The early detection of developmental disorders is key to child outcome, allowing interventions to be initiated which promote development and improve prognosis. Research on autism spectrum disorder (ASD suggests that behavioral signs can be observed late in the first year of life. Many of these studies involve extensive frame-by-frame video observation and analysis of a child's natural behavior. Although nonintrusive, these methods are extremely time-intensive and require a high level of observer training; thus, they are burdensome for clinical and large population research purposes. This work is a first milestone in a long-term project on non-invasive early observation of children in order to aid in risk detection and research of neurodevelopmental disorders. We focus on providing low-cost computer vision tools to measure and identify ASD behavioral signs based on components of the Autism Observation Scale for Infants (AOSI. In particular, we develop algorithms to measure responses to general ASD risk assessment tasks and activities outlined by the AOSI which assess visual attention by tracking facial features. We show results, including comparisons with expert and nonexpert clinicians, which demonstrate that the proposed computer vision tools can capture critical behavioral observations and potentially augment the clinician's behavioral observations obtained from real in-clinic assessments.

  1. Total respiratory impedance measurement by forced oscillations: a noninvasive method to assess bronchial response in occupational medicine.

    Science.gov (United States)

    Wouters, E F

    1990-01-01

    The forced oscillation technique is a noninvasive and effort-independent test to characterize the mechanical impedance of the respiratory system. By applying a complex signal, the frequency-dependent behavior of the respiratory system can be measured over an extended spectrum. For clinical practice, the input impedance is used most frequently; pressure and flow are measured at the same place. The impedance can be partitioned into a real part or resistance and an imaginary part or reactance. At low frequencies, reactance is determined by the capacitance of the system and at high frequencies by the inertial properties of the system. Equipment and impedance data in normal subjects and patients with chronic obstructive pulmonary disease are discussed. The frequency-dependent behavior of the respiratory system is described with the use of an electrical model characterized by partitioning of airway resistance and the presence of shunt compliance represented by the compliance of the intrathoracic airway walls. Influences of peripheral resistance, airway compliance, lung volumes, chest wall and pulmonary resistance, and resistance of the cheeks and upper airways are analyzed. Input impedance can be applied to the detection of bronchoconstriction and bronchodilation, but this technique is suitable for detecting early airway abnormalities caused by smoking or occupational hazards. PMID:2307147

  2. Power Measurement and Automatic Reactor Control by Gamma- or Cerenkov-Radiation

    International Nuclear Information System (INIS)

    A power measuring system is described using the gamma and Cerenkov radiation from the reactor core. A measuring device based on the above principle was installed in the Institute's TRIGA-reactor and was tested for power measurements and automatic reactor control. This new method has some advantages over the conventional system using neutron detectors for power indication. For example, it is possible to mount the detector at some distance from the core with the result that the measurement is not so dependent on local flux variations due to irradiation samples in the core, changes of control rod positions and burn-up of fuel as if the neutron detector were mounted at the reflector. The detectors are free from neutron activation, radiation damage and sensitivity changes due to nuclear reactions in the detector material. Furthermore there are no insulation problems caused by irradiation of insulators. For the measurement of Cerenkov and gamma radiation conventional detectors were used. For fast power indication and automatic reactor control only the prompt fraction of Cerenkov and gamma radiation need be considered. For this purpose the delayed fraction was simulated by a simple electronic circuit and subtracted from the total detector current. To design the simulating circuit the transfer function of the Cerenkov and gamma radiation resulting from a step change of reactor power must be known. This function was obtained by an experimental method described in the paper. Current developments of the system and future applications for different types of reactors including high temperature types and also the design of detector probes are discussed. (author)

  3. Automatization of the vertical fast irradiation and measurement system of Vienna's TRIGA Mark II Reactor

    International Nuclear Information System (INIS)

    The great advantage of short time activation analysis is the possibility to have the results within a short time. However, the continuous presence of one person used to be necessary during the activation and measurement. We have therefore put the sample changer designed by Salahi et al. into function. This enables to irradiate and measure 16 samples automatically according to a preset irradiation and measurement scheme. Monitoring the reactor power stops the cycle automatically if the reactor scrams, and starts the cycle again when a reactor power of 200 kW is reached. Up to 6 measurements of one irradiation can be programed in this scheme. Decay curves are measured simultaneously with the γ-spectra allowing delayed neutron- or Cerenkov - counting, alternatively. Decay analysis with a large 5'' x 5'' Nal detector is also possible for fluorine - determinations by the F-19 (n,α) N-16 reaction. The application of a preloaded filter amplifier enables a throughput of up to 100 kc/s at a reasonable loss of resolution from 1.75 keV at 10 kc/s to 2.70 keV at 100 kc/s throughput of an n-type HP-Ge detector. The automated system allows cyclic- as well as pseudocyclic activation analyses using 16 samples of up to 0.6 g, which is especially useful for biological materials. The summing technique has a distinct advantage over the normal cyclic procedure because samples may be homogeneous in the main element content but poor in the trace element representation if the sample size is small. The use of a 6LiD-converter increases the number of elements that can be determined because longer irradiations allow the analysis of elements with larger resonance integrals and half lives in the hour range. (author)

  4. Automatic segmentation and co-registration of gated CT angiography datasets: measuring abdominal aortic pulsatility

    Science.gov (United States)

    Wentz, Robert; Manduca, Armando; Fletcher, J. G.; Siddiki, Hassan; Shields, Raymond C.; Vrtiska, Terri; Spencer, Garrett; Primak, Andrew N.; Zhang, Jie; Nielson, Theresa; McCollough, Cynthia; Yu, Lifeng

    2007-03-01

    Purpose: To develop robust, novel segmentation and co-registration software to analyze temporally overlapping CT angiography datasets, with an aim to permit automated measurement of regional aortic pulsatility in patients with abdominal aortic aneurysms. Methods: We perform retrospective gated CT angiography in patients with abdominal aortic aneurysms. Multiple, temporally overlapping, time-resolved CT angiography datasets are reconstructed over the cardiac cycle, with aortic segmentation performed using a priori anatomic assumptions for the aorta and heart. Visual quality assessment is performed following automatic segmentation with manual editing. Following subsequent centerline generation, centerlines are cross-registered across phases, with internal validation of co-registration performed by examining registration at the regions of greatest diameter change (i.e. when the second derivative is maximal). Results: We have performed gated CT angiography in 60 patients. Automatic seed placement is successful in 79% of datasets, requiring either no editing (70%) or minimal editing (less than 1 minute; 12%). Causes of error include segmentation into adjacent, high-attenuating, nonvascular tissues; small segmentation errors associated with calcified plaque; and segmentation of non-renal, small paralumbar arteries. Internal validation of cross-registration demonstrates appropriate registration in our patient population. In general, we observed that aortic pulsatility can vary along the course of the abdominal aorta. Pulsation can also vary within an aneurysm as well as between aneurysms, but the clinical significance of these findings remain unknown. Conclusions: Visualization of large vessel pulsatility is possible using ECG-gated CT angiography, partial scan reconstruction, automatic segmentation, centerline generation, and coregistration of temporally resolved datasets.

  5. A novel noninvasive method for measuring fatigability of the quadriceps muscle in noncooperating healthy subjects

    DEFF Research Database (Denmark)

    Poulsen, Jesper Brøndum; Rose, Martin Høyer; Møller, Kirsten;

    2015-01-01

    of peak torque values were primary outcome measures. For twitch contractions, maximum peak torque and rise time were calculated. Relative (intraclass correlation, ICC3.1) and absolute (standard error of measurement, SEM) reliability were assessed and minimum detectable change was calculated using a...... days, nonvoluntary isometric contractions (twitch and tetanic) of the quadriceps femoris muscle evoked by transcutaneous electrical muscle stimulation were recorded in twelve healthy adults. For tetanic contractions, the Fatigue Index (ratio of peak torque values) and the slope of the regression line...... 95% confidence interval (MDC95%). Results. The Fatigue Index (ICC3.1, 0.84; MDC95%, 0.12) and the slope of the regression line (ICC3.1, 0.99; MDC95%, 0.03) showed substantial relative and absolute reliability during the first 15 and 30 contractions, respectively. Conclusion. This method for assessing...

  6. Noninvasive measurement of regional myocardial glucose metabolism by positron emission computed tomography. [Dogs

    Energy Technology Data Exchange (ETDEWEB)

    Schelbert, H.R.; Phelps, M.E.

    1980-06-01

    While the results of regional myocardial glucose metabolism measurements using positron emission computed tomography (/sup 13/N-ammonia) are promising, their utility and value remains to be determined in man. If this technique can be applied to patients with acute myocardial ischemia or infarction it may permit delineation of regional myocardial segments with altered, yet still active metabolism. Further, it may become possible to evaluate the effects of interventions designed to salvage reversibly injured myocardium by this technique.

  7. Tiny Integrated Network Analyzer for Noninvasive Measurements of Electrically Small Antennas

    DEFF Research Database (Denmark)

    Buskgaard, Emil Feldborg; Krøyer, Ben; Tatomirescu, Alexandru;

    2016-01-01

    system. The tiny integrated network analyzer is a stand-alone Arduino-based measurement system that utilizes the transmit signal of the system under test as its reference. It features a power meter with triggering ability, on-board memory, universal serial bus, and easy extendibility with general...... network analysis. With the advances in software-defined radio, we can expect much more flexible and advanced integrated network analyzers in the coming years....

  8. Noninvasive measurement of regional myocardial glucose metabolism by positron emission computed tomography

    International Nuclear Information System (INIS)

    While the results of regional myocardial glucose metabolism measurements using positron emission computed tomography (13N-ammonia) are promising, their utility and value remains to be determined in man. If this technique can be applied to patients with acute myocardial ischemia or infarction it may permit delineation of regional myocardial segments with altered, yet still active metabolism. Further, it may become possible to evaluate the effects of interventions designed to salvage reversibly injured myocardium by this technique

  9. Non-Invasive Measurement of Adrenocortical Activity in Blue-Fronted Parrots (Amazona aestiva, Linnaeus, 1758)

    OpenAIRE

    Ferreira, João C. P.; Caroline J Fujihara; Erika Fruhvald; Eduardo Trevisol; Destro, Flavia C.; Teixeira, Carlos R.; José C.F. Pantoja; Elizabeth M.S. Schmidt; Rupert Palme

    2015-01-01

    Parrots kept in zoos and private households often develop psychological and behavioural disorders. Despite knowing that such disorders have a multifactorial aetiology and that chronic stress is involved, little is known about their development mainly due to a poor understanding of the parrots' physiology and the lack of validated methods to measure stress in these species. In birds, blood corticosterone concentrations provide information about adrenocortical activity. However, blood sampling ...

  10. Non-invasive blood pressure measurement: values, problems and applicability in the common marmoset (Callithrix jacchus).

    Science.gov (United States)

    Mietsch, M; Einspanier, A

    2015-07-01

    The common marmoset (Callithrix jacchus, C. j.) is an established primate model in biomedical research and for human-related diseases. Monitoring of cardiovascular parameters including blood pressure (BP) is important for the health surveillance of these experimental animals and the quantification of diseases or pharmaceutical substances influencing BP. Measurement guidelines for C. j. do not exist yet; therefore, the present study was carried out to establish a practicable protocol based on recommendations of the American College of Veterinary Internal Medicine (ACVIM). Furthermore, BP data of 49 marmosets (13.8-202.4 months of age) were obtained via high-definition oscillometry to further knowledge of physiological parameters and gender-related differences in this primate. The thighs proved to be the most suitable measurement localization, since systolic values were less variable (left 4.03 ± 2.90%, right 5.96 ± 2.77%) compared with the tail (12.7 ± 6.96%). BP values were similar in the morning and in the afternoon (P > 0.05). Data were highly reproducible within and between several sessions on three consecutive days (P > 0.05) as well as over the course of 20 months (P > 0.05). Furthermore, the measurement time for females was significantly shorter than for males (5:14 ± 1:59 min versus 6:50 ± 1:58 min, P = 0.007). Measurement recommendations for the common marmoset were successfully established. Standardized values enabled a reliable comparison of BP parameters, e.g. for cardiovascular, toxicological or metabolic research. PMID:25552521

  11. Automatic Lameness Detection in a Milking Robot : Instrumentation, measurement software, algorithms for data analysis and a neural network model

    OpenAIRE

    Pastell, Matti

    2007-01-01

    The aim of this thesis is to develop a fully automatic lameness detection system that operates in a milking robot. The instrumentation, measurement software, algorithms for data analysis and a neural network model for lameness detection were developed. Automatic milking has become a common practice in dairy husbandry, and in the year 2006 about 4000 farms worldwide used over 6000 milking robots. There is a worldwide movement with the objective of fully automating every process from feedi...

  12. Effect of recirculation and regional counting rate on reliability of noninvasive bicompartmental CBF measurements

    International Nuclear Information System (INIS)

    Based on data from routine intravenous Xe133-rCBF studies in 50 patients, using Obrist's algorithm the effect of counting rate statistics and amount of recirculating activity on reproducibility of results was investigated at five simulated counting rate levels. Dependence of the standard deviation of compartmental and noncompartmental flow parameters on recirculation and counting rate was determined by multiple linear regression analysis. Those regression equations permit determination of the optimum accuracy that may be expected from individual flow measurements. Mainly due to a delay of the start-of-fit time an exponential increase in standard deviation of flow measurements was observed as recirculation increased. At constant start-of-fit, however, a linear increase in standard deviation of compartmental flow parameters only was found, while noncompartmental results remained constant. Therefore, and in regard to other studies of potential sources of error, an upper limit of 2.5 min for the start-of-fit time and usage of noncompartmental flow parameters for measurements affected by high recirculation are suggested

  13. Automatic device for measuring β-emitting sources: P.A.P.A. β-meters

    International Nuclear Information System (INIS)

    The apparatus described is designed for measuring β-emitting elements by the absorption method; it is suitable for carrying out a large number of routine analyses. A mechanical device pushes an aluminium absorption set automatically between the source and the detector; the movement is programmed for cutting on and off by a transistorized electronic unit, with printing out and punching of the results on tape; then this can be mathematically processed by a computer (tracing of absorption spectra, extrapolation and calculation of the activity). The detector is either a β-probe or a proportional counter with a specially designed loop. For routine measurements, the accuracy obtained, with all corrections made, is from 5 to 8 per cent; the reproducibility is about 2 per cent. (authors)

  14. Automatic online buffer capacity (alkalinity) measurement of wastewater using an electrochemical cell.

    Science.gov (United States)

    Cheng, Liang; Charles, Wipa; Cord-Ruwisch, Ralf

    2016-10-01

    The use of an automatic online electrochemical cell (EC) for measuring the buffer capacity of wastewater is presented. pH titration curves of different solutions (NaHCO3, Na2HPO4, real municipal wastewater, and anaerobic digester liquid) were obtained by conventional chemical titration and compared to the online EC measurements. The results show that the pH titration curves from the EC were comparable to that of the conventional chemical titration. The results show a linear relationship between the response of the online EC detection system and the titrimetric partial alkalinity and total alkalinity of all tested samples. This suggests that an EC can be used as a simple online titration device for monitoring the buffer capacity of different industrial processes including wastewater treatment and anaerobic digestion processes. PMID:26935968

  15. A Quantum Gas Jet for Non-Invasive Beam Profile Measurement

    CERN Document Server

    Holzer, EB; Lefevre, T; Tzoganis, V; Welsch, C; Zhang, H

    2014-01-01

    A novel instrument for accelerator beam diagnostics is being developed by using De Broglie-wave focusing to create an ultra-thin neutral gas jet. Scanning the gas jet across a particle beam while measuring the interaction products, the beam profile can be measured. Such a jet scanner will provide an invaluable diagnostic tool in beams which are too intense for the use of wire scanners, such as the proposed CLIC Drive Beam. In order to create a sufficiently thin jet, a focusing element working on the de Broglie wavelength of the Helium atom has been designed. Following the principles of the Photon Sieve, we have constructed an Atomic Sieve consisting of 5230 nano-holes etched into a thin film of silicon nitride. When a quasi-monochromatic Helium jet is incident on the sieve, an interference pattern with a single central maximum is created. The stream of Helium atoms passing through this central maximum is much narrower than a conventional gas jet. The first experiences with this device are presented here, alon...

  16. Non-invasive techniques for measuring body composition: state of the art and future prospects

    International Nuclear Information System (INIS)

    In the past 20 years, in vivo analysis of body elements by neutron activation has become an important tool in medical research. In particular, it provides a much needed means to make quantitative assessments of body composition of human beings in vivo. The data are useful both for basic physiological understanding and for diagnosis and management of a variety of diseases and disorders. This paper traces the development of the in vivo neutron activation technique from basic systems to the present state of the art facilities. A scan of some of the numerous clinical applications that have been made with this technique, reveals the broad potentialities of in vivo neutron activation. The paper also considers alternative routes of future development and raises some of the questions now faced in making the techniques more widely available to both medical practitioners and medical investigators. In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into the modelling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, and reducing the dose required for the measurement. 18 refs., 7 figs

  17. Non-invasive techniques for measuring body composition: state of the art and future prospects

    Energy Technology Data Exchange (ETDEWEB)

    Cohn, S.H.

    1985-01-01

    In the past 20 years, in vivo analysis of body elements by neutron activation has become an important tool in medical research. In particular, it provides a much needed means to make quantitative assessments of body composition of human beings in vivo. The data are useful both for basic physiological understanding and for diagnosis and management of a variety of diseases and disorders. This paper traces the development of the in vivo neutron activation technique from basic systems to the present state of the art facilities. A scan of some of the numerous clinical applications that have been made with this technique, reveals the broad potentialities of in vivo neutron activation. The paper also considers alternative routes of future development and raises some of the questions now faced in making the techniques more widely available to both medical practitioners and medical investigators. In vivo neutron activation has opened a new era of both clinical diagnosis and therapy evaluation, and investigation into the modelling of body composition. The techniques are new, but it is already clear that considerable strides can be made in increasing accuracy and precision, increasing the number of elements susceptible to measurement, and reducing the dose required for the measurement. 18 refs., 7 figs.

  18. Semi-automatic handling of meteorological ground measurements using WeatherProg: prospects and practical implications

    Science.gov (United States)

    Langella, Giuliano; Basile, Angelo; Bonfante, Antonello; De Mascellis, Roberto; Manna, Piero; Terribile, Fabio

    2016-04-01

    WeatherProg is a computer program for the semi-automatic handling of data measured at ground stations within a climatic network. The program performs a set of tasks ranging from gathering raw point-based sensors measurements to the production of digital climatic maps. Originally the program was developed as the baseline asynchronous engine for the weather records management within the SOILCONSWEB Project (LIFE08 ENV/IT/000408), in which daily and hourly data where used to run water balance in the soil-plant-atmosphere continuum or pest simulation models. WeatherProg can be configured to automatically perform the following main operations: 1) data retrieval; 2) data decoding and ingestion into a database (e.g. SQL based); 3) data checking to recognize missing and anomalous values (using a set of differently combined checks including logical, climatological, spatial, temporal and persistence checks); 4) infilling of data flagged as missing or anomalous (deterministic or statistical methods); 5) spatial interpolation based on alternative/comparative methods such as inverse distance weighting, iterative regression kriging, and a weighted least squares regression (based on physiography), using an approach similar to PRISM. 6) data ingestion into a geodatabase (e.g. PostgreSQL+PostGIS or rasdaman). There is an increasing demand for digital climatic maps both for research and development (there is a gap between the major of scientific modelling approaches that requires digital climate maps and the gauged measurements) and for practical applications (e.g. the need to improve the management of weather records which in turn raises the support provided to farmers). The demand is particularly burdensome considering the requirement to handle climatic data at the daily (e.g. in the soil hydrological modelling) or even at the hourly time step (e.g. risk modelling in phytopathology). The key advantage of WeatherProg is the ability to perform all the required operations and

  19. Serial non-invasive measurements of dermal carotenoid concentrations in dairy cows following recovery from abomasal displacement.

    Directory of Open Access Journals (Sweden)

    Julian Klein

    Full Text Available Maintaining the health of farm animals forms the basis for a sustainable and profitable production of food from animal origin. Recently, the effects of carotenoids on the oxidative status as well as on reproductive and immune functions in cattle have been demonstrated. The present study aimed at investigating dermal carotenoid levels in cattle recovering from abomasal displacement. For this purpose, serial in vivo measurements were undertaken using a miniaturized scanner system that relies on reflection spectroscopy (Opsolution GmbH, Kassel, Germany. In a first trial, repeated measurements of dermal carotenoid concentrations were performed on the udder skin of healthy non-lactating cattle (n = 6 for one month in weekly intervals. In a second trial, in vivo dermal carotenoid concentrations were determined in intervals in 23 cows following surgical treatment of abomasal displacement. The results show that dermal carotenoid concentrations, determined on a weekly basis over a period of one month, showed variations of up to 18% in the healthy individuals kept under constant conditions with respect to housing and nutrition. Repeated measurements during the recovery period following surgical treatment of abomasal displacement resulted in an increase in dermal carotenoid concentrations in 18 of 20 animals with a favourable outcome when compared with results obtained within 12 hours following surgery. The mean increase in dermal carotenoid concentrations in subsequent measurements was 53 ± 44%, whereas levels decreased (mean 31 ± 27% in cattle with a fatal outcome.These results indicate potential applications for reflection spectroscopy for non-invasive early detection of changes in the dermal carotenoid concentrations as a reflection of the antioxidant status in an animal.

  20. Noninvasive image derived heart input function for CMRglc measurements in small animal slow infusion FDG PET studies.

    Science.gov (United States)

    Xiong, Guoming; Paul, Cumming; Todica, Andrei; Hacker, Marcus; Bartenstein, Peter; Böning, Guido

    2012-12-01

    Absolute quantitation of the cerebral metabolic rate for glucose (CMRglc) can be obtained in positron emission tomography (PET) studies when serial measurements of the arterial [(18)F]-fluoro-deoxyglucose (FDG) input are available. Since this is not always practical in PET studies of rodents, there has been considerable interest in defining an image-derived input function (IDIF) by placing a volume of interest (VOI) within the left ventricle of the heart. However, spill-in arising from trapping of FDG in the myocardium often leads to progressive contamination of the IDIF, which propagates to underestimation of the magnitude of CMRglc. We therefore developed a novel, non-invasive method for correcting the IDIF without scaling to a blood sample. To this end, we first obtained serial arterial samples and dynamic FDG-PET data of the head and heart in a group of eight anaesthetized rats. We fitted a bi-exponential function to the serial measurements of the IDIF, and then used the linear graphical Gjedde-Patlak method to describe the accumulation in myocardium. We next estimated the magnitude of myocardial spill-in reaching the left ventricle VOI by assuming a Gaussian point-spread function, and corrected the measured IDIF for this estimated spill-in. Finally, we calculated parametric maps of CMRglc using the corrected IDIF, and for the sake of comparison, relative to serial blood sampling from the femoral artery. The uncorrected IDIF resulted in 20% underestimation of the magnitude of CMRglc relative to the gold standard arterial input method. However, there was no bias with the corrected IDIF, which was robust to the variable extent of myocardial tracer uptake, such that there was a very high correlation between individual CMRglc measurements using the corrected IDIF with gold-standard arterial input results. Based on simulation, we furthermore find that electrocardiogram-gating, i.e. ECG-gating is not necessary for IDIF quantitation using our approach. PMID:23160517

  1. Method and Apparatus for Non-Invasive Measurement of Changes in Intracranial Pressure

    Science.gov (United States)

    Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor)

    2004-01-01

    A method and apparatus for measuring intracranial pressure. In one embodiment, the method comprises the steps of generating an information signal that comprises components (e.g., pulsatile changes and slow changes) that are related to intracranial pressure and blood pressure, generating a reference signal comprising pulsatile components that are solely related to blood pressure, processing the information and reference signals to determine the pulsatile components of the information signal that have generally the same phase as the pulsatile components of the reference signal, and removing from the information signal the pulsatile components determined to have generally the same phase as the pulsatile components of the reference signal so as to provide a data signal having components wherein substantially all of the components are related to intracranial pressure.

  2. Measuring head for the semi-automatic analysis of ore samples and industrial solutions

    International Nuclear Information System (INIS)

    At the request of the French National Centre for the Exploitation of the Seas, the Commissariat a l'energie atomique has devised a semi-automatic ship-borne instrument for non-dispersive X-ray fluorescence analysis of submarine nodule samples. The prototype was operational in 1972 on ships of the National Centre, and was later adapted for the more general requirements of industry. The measuring head can take 25 sample-holders at the start. These are fed through automatically and successive counts are carried out with a preselected number of filters - 18 at most. After the device has bee n set going the operator need intervene only to process the aggregate counting results. This ship-borne equipment has made it possible to determine nickel and copper in nodule powders with an absolute error better than 0.1%, cobalt to about 0.15%, and manganese and iron to about 0.4% absolute. Another application was on a semi-industrial pilot installation, for determining cobalt, nickel and copper in dilute ammoniac solutions. (author)

  3. Non-invasive microstructure and morphology investigation of the mouse lung: qualitative description and quantitative measurement.

    Directory of Open Access Journals (Sweden)

    Lu Zhang

    Full Text Available BACKGROUND: Early detection of lung cancer is known to improve the chances of successful treatment. However, lungs are soft tissues with complex three-dimensional configuration. Conventional X-ray imaging is based purely on absorption resulting in very low contrast when imaging soft tissues without contrast agents. It is difficult to obtain adequate information of lung lesions from conventional X-ray imaging. METHODS: In this study, a recently emerged imaging technique, in-line X-ray phase contrast imaging (IL-XPCI was used. This powerful technique enabled high-resolution investigations of soft tissues without contrast agents. We applied IL-XPCI to observe the lungs in an intact mouse for the purpose of defining quantitatively the micro-structures in lung. FINDINGS: The three-dimensional model of the lung was successfully established, which provided an excellent view of lung airways. We highlighted the use of IL-XPCI in the visualization and assessment of alveoli which had rarely been studied in three dimensions (3D. The precise view of individual alveolus was achieved. The morphological parameters, such as diameter and alveolar surface area were measured. These parameters were of great importance in the diagnosis of diseases related to alveolus and alveolar scar. CONCLUSION: Our results indicated that IL-XPCI had the ability to represent complex anatomical structures in lung. This offered a new perspective on the diagnosis of respiratory disease and may guide future work in the study of respiratory mechanism on the alveoli level.

  4. Correlation of noninvasive surface temperature measurement with rectal temperature in swine.

    Science.gov (United States)

    Zinn, K R; Zinn, G M; Jesse, G W; Mayes, H F; Ellersieck, M R

    1985-06-01

    Skin and rectal temperature measurements were taken on 15 crossbred sows and gilts (225 kg) during the last 5 days of prepartum period and compared with those recorded in the first 8 days after parturition. The correlation of skin and rectal temperature values was not good during either period, although an increased correlation was noted in the postparturient period. The rectal temperature significantly (P less than 0.05) increased in the postparturient period, but the mean surface temperature was unchanged. This would indicate a decreased blood flow to the surface, since an equivalent blood flow to the surface after a rectal temperature increase would result in a concomitant mean surface temperature increase. The decreased flow to the surface of the animal was selective, since a significant (P less than 0.05) decrease in surface temperature was noted at the tailhead, perineum, vulva, mammae-caudal, and eye, whereas the surface temperature of the mammae-cranial and mammae-middle was significantly (P less than 0.05) increased. PMID:4026016

  5. Noninvasive measurement of liver iron concentration at MRI in children with acute leukemia: initial results

    Energy Technology Data Exchange (ETDEWEB)

    Vag, Tibor; Krumbein, Ines; Reichenbach, Juergen R.; Lopatta, Eric; Stenzel, Martin; Kaiser, Werner A.; Mentzel, Hans-Joachim [Friedrich Schiller University Jena, Institute of Diagnostic and Interventional Radiology, Jena (Germany); Kentouche, Karim; Beck, James [Friedrich Schiller University Jena, Department of Pediatrics, Jena (Germany); Renz, Diane M. [Charite University Medicine Berlin, Department of Radiology, Campus Virchow Clinic, Berlin (Germany)

    2011-08-15

    Routine assessment of body iron load in patients with acute leukemia is usually done by serum ferritin (SF) assay; however, its sensitivity is impaired by different conditions including inflammation and malignancy. To estimate, using MRI, the extent of liver iron overload in children with acute leukemia and receiving blood transfusions, and to examine the association between the degree of hepatic iron overload and clinical parameters including SF and the transfusion iron load (TIL). A total of 25 MRI measurements of the liver were performed in 15 children with acute leukemia (mean age 9.75 years) using gradient-echo sequences. Signal intensity ratios between the liver and the vertebral muscle (L/M ratio) were calculated and compared with SF-levels. TIL was estimated from the cumulative blood volume received, assuming an amount of 200 mg iron per transfused red blood cell unit. Statistical analysis revealed good correlation between the L/M SI ratio and TIL (r = -0.67, P = 0.002, 95% confidence interval CI = -0.83 to -0.34) in patients with acute leukemia as well as between L/M SI ratio and SF (r = -0.76, P = 0.0003, 95% CI = -0.89 to -0.52). SF may reliably reflect liver iron stores as a routine marker in patients suffering from acute leukemia. (orig.)

  6. Two-Dimensional Automatic Measurement for Nozzle Flow Distribution Using Improved Ultrasonic Sensor

    Directory of Open Access Journals (Sweden)

    Changyuan Zhai

    2015-10-01

    Full Text Available Spray deposition and distribution are affected by many factors, one of which is nozzle flow distribution. A two-dimensional automatic measurement system, which consisted of a conveying unit, a system control unit, an ultrasonic sensor, and a deposition collecting dish, was designed and developed. The system could precisely move an ultrasonic sensor above a pesticide deposition collecting dish to measure the nozzle flow distribution. A sensor sleeve with a PVC tube was designed for the ultrasonic sensor to limit its beam angle in order to measure the liquid level in the small troughs. System performance tests were conducted to verify the designed functions and measurement accuracy. A commercial spray nozzle was also used to measure its flow distribution. The test results showed that the relative error on volume measurement was less than 7.27% when the liquid volume was 2 mL in trough, while the error was less than 4.52% when the liquid volume was 4 mL or more. The developed system was also used to evaluate the flow distribution of a commercial nozzle. It was able to provide the shape and the spraying width of the flow distribution accurately.

  7. Automatic gamma-ray equipment for multiple soil physical properties measurements

    International Nuclear Information System (INIS)

    Determination of soil physical parameters is sometimes very laborious and time consuming. For instance, the soil water retention curve takes several weeks. Particle density by picnometer and granulometry (texture) by pipette method are laborious methods. Other parameters, such as bulk density and total porosity, are determined by gravimetric methods and depends on oven drying the samples for 24 hours. In order to help in the soil physical parameters determination we have developed automatic equipment based on the attenuation of a gamma-ray beam by soil samples. Two types of samples are analyzed: solid (undisturbed) and dispersed soil particles in water, allowing the measurement and estimation of the following parameters: Particle size distribution (measured); Retention curve (estimated by Arya and Paris (1981) method); Particle density (estimated from measured mass attenuation coefficient of the soil sample); Bulk density (measured); Total porosity (estimated); Water content (measured). Here we focus on the explanation of gamma-ray attenuation method to measure and estimate the soil physical parameters mentioned above. Each method will be presented in detail together with calibrations and practical applications

  8. Development of portable health monitoring system for automatic self-blood glucose measurement

    Science.gov (United States)

    Kim, Huijun; Mizuno, Yoshihumi; Nakamachi, Eiji; Morita, Yusuke

    2010-02-01

    In this study, a new HMS (Health Monitoring System) device is developed for diabetic patient. This device mainly consists of I) 3D blood vessel searching unit and II) automatic blood glucose measurement (ABGM) unit. This device has features such as 1)3D blood vessel location search 2) laptop type, 3) puncturing a blood vessel by using a minimally invasive micro-needle, 4) very little blood sampling (10μl), and 5) automatic blood extraction and blood glucose measurement. In this study, ABGM unit is described in detail. It employs a syringe type's blood extraction mechanism because of its high accuracy. And it consists of the syringe component and the driving component. The syringe component consists of a syringe itself, a piston, a magnet, a ratchet and a micro-needle whose inner diameter is about 80μm. And the syringe component is disposable. The driving component consists of body parts, a linear stepping motor, a glucose enzyme sensor and a slider for accurate positioning control. The driving component has the all-in-one mechanism with a glucose enzyme sensor for compact size and stable blood transfer. On designing, required thrust force to drive the slider is designed to be greater than the value of the blood extraction force. Further, only one linear stepping motor is employed for blood extraction and transportation processes. The experimental result showed more than 80% of volume ratio under the piston speed 2.4mm/s. Further, the blood glucose was measured successfully by using the prototype unit. Finally, the availability of our ABGM unit was confirmed.

  9. Automatic detection of lameness in gestating group-housed sows using positioning and acceleration measurements.

    Science.gov (United States)

    Traulsen, I; Breitenberger, S; Auer, W; Stamer, E; Müller, K; Krieter, J

    2016-06-01

    Lameness is an important issue in group-housed sows. Automatic detection systems are a beneficial diagnostic tool to support management. The aim of the present study was to evaluate data of a positioning system including acceleration measurements to detect lameness in group-housed sows. Data were acquired at the Futterkamp research farm from May 2012 until April 2013. In the gestation unit, 212 group-housed sows were equipped with an ear sensor to sample position and acceleration per sow and second. Three activity indices were calculated per sow and day: path length walked by a sow during the day (Path), number of squares (25×25 cm) visited during the day (Square) and variance of the acceleration measurement during the day (Acc). In addition, data on lameness treatments of the sows and a weekly lameness score were used as reference systems. To determine the influence of a lameness event, all indices were analysed in a linear random regression model. Test day, parity class and day before treatment had a significant influence on all activity indices (P<0.05). In healthy sows, indices Path and Square increased with increasing parity, whereas variance slightly decreased. The indices Path and Square showed a decreasing trend in a 14-day period before a lameness treatment and to a smaller extent before a lameness score of 2 (severe lameness). For the index acceleration, there was no obvious difference between the lame and non-lame periods. In conclusion, positioning and acceleration measurements with ear sensors can be used to describe the activity pattern of sows. However, improvements in sampling rate and analysis techniques should be made for a practical application as an automatic lameness detection system. PMID:27074864

  10. Accurate and automatic extrinsic calibration method for blade measurement system integrated by different optical sensors

    Science.gov (United States)

    He, Wantao; Li, Zhongwei; Zhong, Kai; Shi, Yusheng; Zhao, Can; Cheng, Xu

    2014-11-01

    Fast and precise 3D inspection system is in great demand in modern manufacturing processes. At present, the available sensors have their own pros and cons, and hardly exist an omnipotent sensor to handle the complex inspection task in an accurate and effective way. The prevailing solution is integrating multiple sensors and taking advantages of their strengths. For obtaining a holistic 3D profile, the data from different sensors should be registrated into a coherent coordinate system. However, some complex shape objects own thin wall feather such as blades, the ICP registration method would become unstable. Therefore, it is very important to calibrate the extrinsic parameters of each sensor in the integrated measurement system. This paper proposed an accurate and automatic extrinsic parameter calibration method for blade measurement system integrated by different optical sensors. In this system, fringe projection sensor (FPS) and conoscopic holography sensor (CHS) is integrated into a multi-axis motion platform, and the sensors can be optimally move to any desired position at the object's surface. In order to simple the calibration process, a special calibration artifact is designed according to the characteristics of the two sensors. An automatic registration procedure based on correlation and segmentation is used to realize the artifact datasets obtaining by FPS and CHS rough alignment without any manual operation and data pro-processing, and then the Generalized Gauss-Markoff model is used to estimate the optimization transformation parameters. The experiments show the measurement result of a blade, where several sampled patches are merged into one point cloud, and it verifies the performance of the proposed method.

  11. A study on cardiac autonomic modulation during pregnancy by non-invasive heart rate variability measurement

    Directory of Open Access Journals (Sweden)

    Pritesh Hariprasad Gandhi

    2014-10-01

    Full Text Available Purpose: Remarkable and uncontrollable changes with modification during pregnancy are connected with the autonomic control and consequently with the heart rate variability (HRV. Heart rate variability is a sum of different mechanisms and if pregnancy is a state of change, these modifications could be extracted from HRV analysis. Objective: To assess the effect of pregnancy on heart rate variability among pregnant mothers during first trimester of pregnancy and third trimester of pregnancy. Materials and Methods: HRV was measured for 5 minutes of continuous recording of electrocardiogram (ECG lead II, using windows based HRV analysis system variowin-HR after obtaining permission from the Institutional Review Board of Government Medical College, Bhavnagar and written consent from 30 pregnant subjects and 30 non-pregnant control subjects at autonomic function lab, Dept of Physiology, Bhavnagar. Result: Frequency domain parameters, very low frequency (VLF, low frequency (LF, high frequency (HF and HF normalized unit (nu were significantly decreased and LF (nu and LF/HF significantly increased in pregnant subject in 3 rd trimester as compared to their 1 st trimester of pregnancy. Time Domain parameters like SDNN, RMSSD, SDSD, NN50 count, pNN50, SD1/SD2, triangular HRV index and average R-R interval were significantly decreased during 3 rd trimester of pregnancy. Conclusion: The inhibition of resting parasympathetic activity or vagal blockage and an increment of the sympathetic modulation during the 3 rd third trimester of gestation in pregnancy as compared to their 1 st trimester and healthy non-pregnant subjects. Sympathovagal imbalance and abnormally low HRV may more pronounce during later stage of normal pregnancy.

  12. Atmospheric Turbulence Measurements With the Automatic Mini UAV 'M2AV Carolo'

    Science.gov (United States)

    Bange, J.; van den Kroonenberg, A. C.; Spieß, T.; Buschmann, M.; Krüger, L.; Heindorf, A.; Vörsmann, P.

    2007-05-01

    The limitations of manned airborne meteorological measurements led to the development of an autonomously operating mini aircraft, the Meteorological Mini-UAV (M2AV), at the Institute of Aerospace Systems, Technical University of Braunschweig, Germany. The task was to develop, test and verify a meteorological sensor package as payload for an already available automatic carrier aircraft, the UAV 'Carolo T200', which operates autonomously i.e. without remote control. The M2AV is a self constructed model aircraft with two electrically powered engines and a wingspan of two meters. The maximum take-off weight is 4.5~kg (the M2AV is therefore classified as an model plane which simplifies authority issues), including 1.5~kg of payload. It is hand-launched which makes operation of the aircraft easy. With an endurance of approximately 50 minutes, the range accounts for 60 km at a cruising speed of 20~m/s. The M2AV is capable of performing turbulence measurements (wind vector, temperature and humidity) within the troposphere and offers an economic component during meteorological campaigns. The meteorological sensors are mounted on a noseboom to minimise the aircraft's influence on the measurements and to position the sensors closely to each other. Wind is measured via a small five-hole probe, an inertia measurement unit and GPS. The flight mission (waypoints, altitudes, airspeed) is planned and assigned to the aircraft before the semi- automatic launch. The flight is only controlled by the on-board autopilot system which only communicates with a ground station (laptop PC) for the exchange of measured data and command updates like new waypoints etc. The talk gives details on the technical items, calibration and first missions. Results from first field experiments like the LAUNCH-2005 campaign near Berlin are used for data quality assessment by comparison with simultaneous lidar and sodar measurements. An in situ comparison with the highly accurate helicopter-borne turbulence

  13. Towards the automatic identification of cloudiness condition by means of solar global irradiance measurements

    Science.gov (United States)

    Sanchez, G.; Serrano, A.; Cancillo, M. L.

    2010-09-01

    This study focuses on the design of an automatic algorithm for classification of the cloudiness condition based only on global irradiance measurements. Clouds are a major modulating factor for the Earth radiation budget. They attenuate the solar radiation and control the terrestrial radiation participating in the energy balance. Generally, cloudiness is a limiting factor for the solar radiation reaching the ground, highly contributing to the Earth albedo. Additionally it is the main responsible for the high variability shown by the downward irradiance measured at ground level. Being a major source for the attenuation and high-frequency variability of the solar radiation available for energy purposes in solar power plants, the characterization of the cloudiness condition is of great interest. This importance is even higher in Southern Europe, where very high irradiation values are reached during long periods within the year. Thus, several indexes have been proposed in the literature for the characterization of the cloudiness condition of the sky. Among these indexes, those exclusively involving global irradiance are of special interest since this variable is the most widely available measurement in most radiometric stations. Taking this into account, this study proposes an automatic algorithm for classifying the cloudiness condition of the sky into three categories: cloud-free, partially cloudy and overcast. For that aim, solar global irradiance was measured by Kipp&Zonen CMP11 pyranometer installed on the terrace of the Physics building in the Campus of Badajoz (Spain) of the University of Extremadura. Measurements were recorded at one-minute basis for a period of study extending from 23 November 2009 to 31 March 2010. The algorithm is based on the clearness index kt, which is calculated as the ratio between the solar global downward irradiance measured at ground and the solar downward irradiance at the top of the atmosphere. Since partially cloudy conditions

  14. Calcium Translocation and Whole Plant Transpiration Noninvasive Measurements using Radio-Strontium as Tracer

    International Nuclear Information System (INIS)

    . In an attempt to clarify and explore the above, we developed and utilized a novel imaging technique for calcium translocation using radio-Sr analog tracer and custom made sensing devices together with transpiration indicative measurements on a whole, living plant

  15. Application of clearance automatic laser inspection system to clearance measurement of concrete waste

    International Nuclear Information System (INIS)

    Recently, the Clearance Automatic Laser Inspection System (CLALIS) has been developed for the clearance measurement of metal scraps. It utilizes three-dimensional (3D) laser scanning, y-ray measurement and Monte Carlo calculation, and has outstanding detection ability. For the clearance measurement of concrete segments, the effect of background (BG) gamma rays from natural radionuclides in the measurement target, such as K-40 and the radioactive decay products of Th-232 and U-238, should be compensated for to ensure adequate waste management. Since NE102A plastic scintillation detectors are used for y-ray measurement in CLALIS, it is impossible to distinguish between count rates of natural radionuclides and contaminants on the basis of gamma-ray energy information. To apply CLALIS to the clearance measurement of concrete segments, the original activity evaluation method was improved by adding a new compensation procedure. In this procedure, BG count rate due to natural radionuclides is estimated by a Monte Carlo calculation with pre-analyzed data of a representative sample of the measurement target. The activity concentration of natural radionuclides in concrete differs markedly depending on the production location of its components, such as cement and aggregates. In this study, using six mock concrete waste samples, which were composed of cement and fine aggregate from various production locations, the accuracy of BG compensation was experimentally estimated. In addition, the accuracy of calibration for concrete waste was also estimated using a number of mock concrete segments of small and large triangular prisms. By considering the uncertainties of BG compensation and calibration, the detection limit of CLALIS for concrete waste was estimated. As a result, it was revealed that CLALIS could be applied to the clearance measurement of concrete segments when the mass of the measurement target is greater than approximately 1.1 kg and the key radionuclide is Co-60

  16. Gingival blood flow under total combs by functional pressure evaluated with laser-Doppler flowmetry, a non-invasive method of blood flow measurement

    International Nuclear Information System (INIS)

    Gingival blood flow under total-combs by functional pressure evaluated with Laser-Doppler Flowmetry, a non-invasive method of blood flow measurement. Microcirculation of gum's capillary system can be measured non-invasive by Laser-Doppler-Flowmetry (LDF). Circulation, defined by the number of floating erythrocytes per unit of time, is measured by a fibro-optical Laser-Doppler-Flowmetry. The task was to examine, if there is any change of gum's circulation during strain and relief. Circulation on defined measurepoints, divided on the four quadrants, was determined among maximal strain and subsequent relief, on one probationer (complete denture bearer). Before every measure session systemic pressure was taken. LDF-value was taken on top of jaw-comb, in doing so, to get reproducible result and a satisfying fixation of the probe, there was made an artificial limb of the upper and lower comb. In the upper comb a dynamometer-box, which determined minimal and maximal comb pressure, was integrated. The received results of the LDF-measurement, expressed as perfusion units (PU) were lower under applied pressure than by pressure points more distant. Hyperemia, resulting during relief, seemed the more intense, the less perfusion was before. This new, non-invasive kind of circulation measurement seems to be quite predestined to be used for gingival diagnostic under artificial limb in the future. (author)

  17. Non-invasive measurement of brain temperature with microwave radiometry: demonstration in a head phantom and clinical case.

    Science.gov (United States)

    Stauffer, Paul R; Snow, Brent W; Rodrigues, Dario B; Salahi, Sara; Oliveira, Tiago R; Reudink, Doug; Maccarini, Paolo F

    2014-02-01

    This study characterizes the sensitivity and accuracy of a non-invasive microwave radiometric thermometer intended for monitoring body core temperature directly in brain to assist rapid recovery from hypothermia such as occurs during surgical procedures. To study this approach, a human head model was constructed with separate brain and scalp regions consisting of tissue equivalent liquids circulating at independent temperatures on either side of intact skull. This test setup provided differential surface/deep tissue temperatures for quantifying sensitivity to change in brain temperature independent of scalp and surrounding environment. A single band radiometer was calibrated and tested in a multilayer model of the human head with differential scalp and brain temperature. Following calibration of a 500MHz bandwidth microwave radiometer in the head model, feasibility of clinical monitoring was assessed in a pediatric patient during a 2-hour surgery. The results of phantom testing showed that calculated radiometric equivalent brain temperature agreed within 0.4°C of measured temperature when the brain phantom was lowered 10°C and returned to original temperature (37°C), while scalp was maintained constant over a 4.6-hour experiment. The intended clinical use of this system was demonstrated by monitoring brain temperature during surgery of a pediatric patient. Over the 2-hour surgery, the radiometrically measured brain temperature tracked within 1-2°C of rectal and nasopharynx temperatures, except during rapid cooldown and heatup periods when brain temperature deviated 2-4°C from slower responding core temperature surrogates. In summary, the radiometer demonstrated long term stability, accuracy and sensitivity sufficient for clinical monitoring of deep brain temperature during surgery. PMID:24571829

  18. Automatic system for measurement of the magnetic field in an isochronous cyclotron

    International Nuclear Information System (INIS)

    The structure and operation of an automatic system for measuring the magnetic field of an isochronous cyclotron are considered. The system provides for not only measurement, but also data processing in a computer. The system includes a magnetometer with a Hall sensor, a coordinate device, a data acquisition, transmission and processing system and data processing software. The performance characteristics of the Hall sensor are described along with its operating conditions. A kinematic diagram of the coordinate device is presented. While designing the system great consideration has been given to a data acquisition and processing unit. The latter comprises a digital voltmeter, a buffer memory and a computer. The presence of the buffer memory permits reducing the frequency of computer addressing, as well as fast evaluation of data obtained. The procedure of computer data processing is described in brief. The proposed system ensures a measurement accuracy of 3x10-4, the time of measurement at a single point not exceeding 3.5 s

  19. Evaluation of impedance on biological Tissues using automatic control measurement system

    Energy Technology Data Exchange (ETDEWEB)

    Kil, Sang Hyeong; Shin, Dong Hoon; Lee, Seong Mo [Pusan National University, Yangsan (Korea, Republic of); Lee, Moo Seok; Kim, Sang Sik [Pusan National University, Busan (Korea, Republic of); Kim, Gun FDo; Lee, Jong Kyu [Pukyung National University, Busan (Korea, Republic of)

    2015-08-15

    Each biological tissue has endemic electrical characteristics owing to various differences such as those in cellular arrangement or organization form. The endemic electrical characteristics change when any biological change occurs. This work is a preliminary study surveying the changes in the electrical characteristics of biological tissue caused by radiation exposure. For protection against radiation hazards, therefore the electrical characteristics of living tissue were evaluated after development of the automatic control measurement system using LabVIEW. No alteration of biological tissues was observed before and after measurement of the electrical characteristics, and the biological tissues exhibited similar patterns. Through repeated measurements using the impedance/gain-phase analyzer, the coefficient of variation was determined as within 10%. The reproducibility impedance phase difference in electrical characteristics of the biological tissue did not change, and the tissue had resistance. The absolute value of impedance decreased constantly in proportion to the frequency. It has become possible to understand the electrical characteristics of biological tissues through the measurements made possible by the use of the developed.

  20. Note: A non-invasive electronic measurement technique to measure the embedded four resistive elements in a Wheatstone bridge sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ravelo Arias, S. I.; Ramírez Muñoz, D. [Department of Electronic Engineering, University of Valencia, Avda. de la Universitat, s/n, 46100-Burjassot (Spain); Cardoso, S. [INESC Microsystems and Nanotechnologies (INESC-MN) and Institute for Nanosciences and Nanotechnologies, R. Alves Redol 9, Lisbon 1000-029 (Portugal); Ferreira, R. [INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga 4715-31 (Portugal); Freitas, P. [INESC Microsystems and Nanotechnologies (INESC-MN) and Institute for Nanosciences and Nanotechnologies, R. Alves Redol 9, Lisbon 1000-029 (Portugal); INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, Braga 4715-31 (Portugal)

    2015-06-15

    The work shows a measurement technique to obtain the correct value of the four elements in a resistive Wheatstone bridge without the need to separate the physical connections existing between them. Two electronic solutions are presented, based on a source-and-measure unit and using discrete electronic components. The proposed technique brings the possibility to know the mismatching or the tolerance between the bridge resistive elements and then to pass or reject it in terms of its related common-mode rejection. Experimental results were taken in various Wheatstone resistive bridges (discrete and magnetoresistive integrated bridges) validating the proposed measurement technique specially when the bridge is micro-fabricated and there is no physical way to separate one resistive element from the others.

  1. Note: A non-invasive electronic measurement technique to measure the embedded four resistive elements in a Wheatstone bridge sensor

    Science.gov (United States)

    Ravelo Arias, S. I.; Ramírez Muñoz, D.; Cardoso, S.; Ferreira, R.; Freitas, P.

    2015-06-01

    The work shows a measurement technique to obtain the correct value of the four elements in a resistive Wheatstone bridge without the need to separate the physical connections existing between them. Two electronic solutions are presented, based on a source-and-measure unit and using discrete electronic components. The proposed technique brings the possibility to know the mismatching or the tolerance between the bridge resistive elements and then to pass or reject it in terms of its related common-mode rejection. Experimental results were taken in various Wheatstone resistive bridges (discrete and magnetoresistive integrated bridges) validating the proposed measurement technique specially when the bridge is micro-fabricated and there is no physical way to separate one resistive element from the others.

  2. Note: A non-invasive electronic measurement technique to measure the embedded four resistive elements in a Wheatstone bridge sensor

    International Nuclear Information System (INIS)

    The work shows a measurement technique to obtain the correct value of the four elements in a resistive Wheatstone bridge without the need to separate the physical connections existing between them. Two electronic solutions are presented, based on a source-and-measure unit and using discrete electronic components. The proposed technique brings the possibility to know the mismatching or the tolerance between the bridge resistive elements and then to pass or reject it in terms of its related common-mode rejection. Experimental results were taken in various Wheatstone resistive bridges (discrete and magnetoresistive integrated bridges) validating the proposed measurement technique specially when the bridge is micro-fabricated and there is no physical way to separate one resistive element from the others

  3. Central tendency measure and wavelet transform combined in the non-invasive analysis of atrial fibrillation recordings

    Directory of Open Access Journals (Sweden)

    Alcaraz Raúl

    2012-08-01

    Full Text Available Abstract Background Atrial fibrillation (AF is the most common supraventricular arrhythmia in the clinical practice, being the subject of intensive research. Methods The present work introduces two different Wavelet Transform (WT applications to electrocardiogram (ECG recordings of patients in AF. The first one predicts spontaneous termination of paroxysmal AF (PAF, whereas the second one deals with the prediction of electrical cardioversion (ECV outcome in persistent AF patients. In both cases, the central tendency measure (CTM from the first differences scatter plot was applied to the AF wavelet decomposition. In this way, the wavelet coefficients vector CTM associated to the AF frequency scale was used to assess how atrial fibrillatory (f waves variability can be related to AF events. Results Structural changes into the f waves can be assessed by combining WT and CTM to reflect atrial activity organization variation. This fact can be used to predict organization-related events in AF. To this respect, results in the prediction of PAF termination regarding sensitivity, specificity and accuracy were 100%, 91.67% and 96%, respectively. On the other hand, for ECV outcome prediction, 82.93% sensitivity, 90.91% specificity and 85.71% accuracy were obtained. Hence, CTM has reached the highest diagnostic ability as a single predictor published to date. Conclusions Results suggest that CTM can be considered as a promising tool to characterize non-invasive AF signals. In this sense, therapeutic interventions for the treatment of paroxysmal and persistent AF patients could be improved, thus, avoiding useless procedures and minimizing risks.

  4. Addressing Assumptions for the Use of Non-invasive Cardiac Output Measurement Techniques During Exercise in COPD.

    Science.gov (United States)

    Perrault, Hélène; Richard, Ruddy; Kapchinsky, Sophia; Baril, Jacinthe; Bourbeau, Jean; Taivassalo, Tanja

    2016-01-01

    The multifactorial functional limitation of COPD increasingly demonstrates the need for an integrated circulatory assessment. In this study cardiac output (Qc) derived from non-inert (CO2-RB), inert (N2O-RB) gas rebreathing approaches and bioimpedance were compared to examine the limitations of currently available non-invasive techniques for exercise Qc determination in patients with chronic lung disease. Thirteen COPD patients (GOLD II-III) completed three constant cycling bouts at 20, 35, and 50% of peak work on two occasions to assess Qc with bioimpedance as well as using CO2-RB and N2O-RB for all exercise tests. Results showed significantly lower Qc using the N2O-RB or end-tidal CO2-derived Qc compared to the PaCO2-derived CO2-RB or the bioimpedance at rest and for all exercise intensities. End-tidal CO2-derived values are however not statistically different from those obtained using inert-gas rebreathing. This study show that in COPD patients, CO2-rebreathing Qc values obtained using PaCO2 contents which account for any gas exchange impairment or inadequate gas mixing are similar to those obtained using thoracic bioimpedance. Alternately, the lower values for N2O rebreathing derived Qc indicates the inability of this technique to account for gas exchange impairment in the computation of Qc. These findings indicate that the choice of a gas rebreathing technique to measure Qc in patients must be dictated by the ability to include in the derived computations a correction for either gas exchange inadequacies and/or a vascular shunt. PMID:26408087

  5. Crack measurement: Development, testing and applications of an automatic image-based algorithm

    Science.gov (United States)

    Barazzetti, Luigi; Scaioni, Marco

    The paper presents an Image-based Method for Crack Analysis (IMCA) which is capable of processing a sequence of digital imagery to perform a twofold task: (i) the extraction of crack borders and the evaluation of its width across the longitudinal profile; (ii) the measurement of crack deformations (width, sliding and rotation). Here both problems are solved in 2-D, but an extension to 3-D is also addressed. The equipment needed to apply the method is made up of a digital camera (or a still video-camera in case a high frequency in data acquisition is necessary), an orientation frame which establishes the object reference system, a pair of signalized supports to be placed in a permanent way on both sides of the crack to compute deformations; however, permanent targets are mandatory only for case (ii). The measurement process is carried out in a fully automatic way, a fact also that makes this technique highly operational for unskilled people in engineering surveying or photogrammetry. The accuracy of the proposed method, evaluated in experimental tests adopting different consumer digital cameras, is about ± 5-20 μm, like the accuracy of most deformometers, but with the advantage of automation and of augmented achievable information; moreover, the image sequence can be archived and off-line measurements could be performed at any time.

  6. Automatic Measurement of Radioactive Deposition: a New On-Line System in Slovenian Radiation Monitoring Network

    International Nuclear Information System (INIS)

    Full text: The automatic radiation-monitoring network in Slovenia consists of four different on-line systems: external gamma radiation network, aerosol measuring stations, a continuous radon monitor, and a radioactive deposition measuring system (RDMS). The latest system became operational in October 1999. Since June 2000, the results have been continuously presented on the World Wide Web. The system is designed for on-line detection and evaluation of possible radioactive contamination with artificial radionuclides, such as fission products 131I , 137Cs and others. Once surface-specific activities of individual radionuclides are determined, it is possible to promptly make dose projections for the population due to ingestion of food and drinking water. The measuring system and data analysis method are the results of SNSA's own development. The RMDS is equipped with a 3'x3' NaI(Tl) scintillation detector, which is mounted in a thermostatic housing. The system collects data and performs a gamma-spectroscopic analysis every 6 hours. The measurement time interval can be easily changed. Special software enables an on-line evaluation, display and storage of the results of surface ground contamination. Natural short-lived radon decay products (gamma emitters 214Pb and 214Bi) washed-out from the atmosphere by precipitation are recorded occasionally. The decay of these gamma-emitting radionuclides considerably contributes to the natural background radiation levels. Surface-specific activities of the deposited radon daughters is in accordance with the increase in dose rate measured with gamma probes. The RMDS has proved to be a reliable and very sensitive system for measuring contamination with gamma emitters deposited on the ground. In case of a nuclear or radiological accident it gives valuable information for proper decision making. (author)

  7. Non-invasive monitoring of adrenocortical activity in captive African Penguin (Spheniscus demersus) by measuring faecal glucocorticoid metabolites.

    Science.gov (United States)

    Ozella, L; Anfossi, L; Di Nardo, F; Pessani, D

    2015-12-01

    Measurement of faecal glucocorticoid metabolites (FGMs) has become a useful and widely-accepted method for the non-invasive evaluation of stress in vertebrates. In this study we assessed the adrenocortical activity of five captive African Penguins (Spheniscus demersus) by means of FGM evaluation following a biological stressor, i.e. capture and immobilization. In addition, we detected individual differences in secretion of FGMs during a stage of the normal biological cycle of penguins, namely the breeding period, without any external or induced causes of stress. Our results showed that FGM concentrations peaked 5.5-8h after the induced stress in all birds, and significantly decreased within 30 h. As predictable, the highest peak of FGMs (6591 ng/g) was reached by the youngest penguin, which was at its first experience with the stressor. This peak was 1.8-2.7-fold higher compared to those of the other animals habituated to the stimulus. For the breeding period, our results revealed that the increase in FGMs compared to ordinary levels, and the peaks of FGMs, varied widely depending on the age and mainly on the reproductive state of the animal. The bird which showed the lowest peak (2518 ng/g) was an old male that was not in a reproductive state at the time of the study. Higher FGM increases and peaks were reached by the two birds which were brooding (male: 5552%, 96,631 ng/g; female: 1438%, 22,846 ng/g) and by the youngest bird (1582%, 39,700 ng/g). The impact of the reproductive state on FGM levels was unexpected compared to that produced by the induced stress. The EIA used in this study to measure FGM levels proved to be a reliable tool for assessing individual and biologically-relevant changes in FGM concentrations in African Penguin. Moreover, this method allowed detection of physiological stress during the breeding period, and identification of individual differences in relation to the reproductive status. The increase in FGM levels as a response to capture and

  8. Reproducibility of non-invasive measurement and of short-term variability of blood pressure and heart rate in healthy volunteers.

    OpenAIRE

    Dimier-David, L.; Billon, N; Costagliola, D.; Jaillon, P; Funck-Brentano, C

    1994-01-01

    1. Spectral analyses of blood pressure and heart rate oscillations are increasingly used to assess the influences of diseases and drugs on the autonomic nervous system. Such influences can only be interpreted in view of the spontaneous variability of these oscillations. We therefore studied the reproducibility of power spectral analyses of blood pressure and heart rate fluctuations measured by a non-invasive finger plethysmographic method in 24 healthy volunteers. 2. Intra-observer reproducib...

  9. An algorithm used for quality criterion automatic measurement of band-pass filters and its device implementation

    Science.gov (United States)

    Liu, Qianshun; Liu, Yan; Yu, Feihong

    2013-08-01

    As a kind of film device, band-pass filter is widely used in pattern recognition, infrared detection, optical fiber communication, etc. In this paper, an algorithm for automatic measurement of band-pass filter quality criterion is proposed based on the proven theory calculation of derivate spectral transmittance of filter formula. Firstly, wavelet transform to reduce spectrum data noises is used. Secondly, combining with the Gaussian curve fitting and least squares method, the algorithm fits spectrum curve and searches the peak. Finally, some parameters for judging band-pass filter quality are figure out. Based on the algorithm, a pipeline for band-pass filters automatic measurement system has been designed that can scan the filter array automatically and display spectral transmittance of each filter. At the same time, the system compares the measuring result with the user defined standards to determine if the filter is qualified or not. The qualified product will be market with green color, and the unqualified product will be marked with red color. With the experiments verification, the automatic measurement system basically realized comprehensive, accurate and rapid measurement of band-pass filter quality and achieved the expected results.

  10. The system for automatic dose rate measurements by mobile groups in field

    International Nuclear Information System (INIS)

    The comparison of characteristics between a pressurized ionization chamber, plastic scintillator and proportional counter is given. Based on requirements and comparison of properties of various probes, the system for automatic dose rate measurement and integration of geographic co-ordinates in field was designed and tested.The system consists of proportional counter. This is so-called intelligent probe can be easily connected to a personal computer. The probe measures in the energy range 30 keV - 1.3 MeV with reasonable energy and angular response, it can measure the dose rate in the range 50 nSv/h - 1 Sv/h with the typical efficiency 9.5 imp/s/μSv/h. The probe is fixed in the holder placed on the front mask of a car. For the simultaneous determination of geographical co-ordinates the personal GPS navigator Garmin 95 is used. Both devices are controlled by a notebook via two serial ports. The second serial port that is not quite common in notebook can be easily realised by a PCMCIA card. The notebook is used in the field by a mobile group can be transmitted to the assessment centre by the cellular GSM phone. The system Nokia 2110 connected to notebook by PCMCIA card is used. The whole system is powered up from the car battery. The system is controlled by specially developed software. The software was developed in the FoxPro 2.5 environment and works under MS-DOS 6.22. It has no problems to work in Windows 95 DOS window. The results of dose rate measurements obtained during route monitoring are stored in files. They can be displayed on a graphic screen, presenting the geographical distribution of the dose rate values colour coded on a map and the time sequence of the measured data. (authors)

  11. Automatic measuring of contact corrosion parameters and their interpretation by means of polarization diagrams

    International Nuclear Information System (INIS)

    To evaluate the danger of contact corrosion on coupled dissimilar metals, the corrosion potentials of the concerned metals, the mixed corrosion potential and the current between the galvanic couple are of interest. A test stand with 6 sets has been developed to determine these values simultaneously and automatically from 6 variations of metal couple electrolyte/electrolyte's condition/temperature. Every set is equipped with two electrolytic cells. One cell is for measuring the corrosion potentials of the two metal probes in an open circuit; in the other cell an identical metal couple is arranged in a short circuit, so that the mixed potential and the current of the contact couple can be monitored. The values are called in sequence in a pre-selected manner by a scanning unit and are then recorded. From couples obtained from combinations of mild steel, CrNiTi-steel, NiCrFe-alloy, and Molybdenum alloy (0.5 Ti and 0.1% Zr), the mild steel proved to be always the least noble whilst the Molybdenum alloy was the most noble; this was true in both alkaline and acid electrolytes. By plotting the measured values on a polarization diagram, a survey of the possible contact corrosion behaviour in several systems may be obtained together with information on the corrosion mechanisms occurring. (Auth.)

  12. Automatic and quantitative measurement of collagen gel contraction using model-guided segmentation

    Science.gov (United States)

    Chen, Hsin-Chen; Yang, Tai-Hua; Thoreson, Andrew R.; Zhao, Chunfeng; Amadio, Peter C.; Sun, Yung-Nien; Su, Fong-Chin; An, Kai-Nan

    2013-08-01

    Quantitative measurement of collagen gel contraction plays a critical role in the field of tissue engineering because it provides spatial-temporal assessment (e.g., changes of gel area and diameter during the contraction process) reflecting the cell behavior and tissue material properties. So far the assessment of collagen gels relies on manual segmentation, which is time-consuming and suffers from serious intra- and inter-observer variability. In this study, we propose an automatic method combining various image processing techniques to resolve these problems. The proposed method first detects the maximal feasible contraction range of circular references (e.g., culture dish) and avoids the interference of irrelevant objects in the given image. Then, a three-step color conversion strategy is applied to normalize and enhance the contrast between the gel and background. We subsequently introduce a deformable circular model which utilizes regional intensity contrast and circular shape constraint to locate the gel boundary. An adaptive weighting scheme was employed to coordinate the model behavior, so that the proposed system can overcome variations of gel boundary appearances at different contraction stages. Two measurements of collagen gels (i.e., area and diameter) can readily be obtained based on the segmentation results. Experimental results, including 120 gel images for accuracy validation, showed high agreement between the proposed method and manual segmentation with an average dice similarity coefficient larger than 0.95. The results also demonstrated obvious improvement in gel contours obtained by the proposed method over two popular, generic segmentation methods.

  13. A Device for Automatically Measuring and Supervising the Critical Care Patient’S Urine Output

    Directory of Open Access Journals (Sweden)

    Roemi Fernández

    2010-01-01

    Full Text Available Critical care units are equipped with commercial monitoring devices capable of sensing patients’ physiological parameters and supervising the achievement of the established therapeutic goals. This avoids human errors in this task and considerably decreases the workload of the healthcare staff. However, at present there still is a very relevant physiological parameter that is measured and supervised manually by the critical care units’ healthcare staff: urine output. This paper presents a patent-pending device capable of automatically recording and supervising the urine output of a critical care patient. A high precision scale is used to measure the weight of a commercial urine meter. On the scale’s pan there is a support frame made up of Bosch profiles that isolates the scale from force transmission from the patient’s bed, and guarantees that the urine flows properly through the urine meter input tube. The scale’s readings are sent to a PC via Bluetooth where an application supervises the achievement of the therapeutic goals. The device is currently undergoing tests at a research unit associated with the University Hospital of Getafe in Spain.

  14. Fluoroscopy Quality Assurance Measurements: Automatic Exposure Rate Control and Image Quality

    International Nuclear Information System (INIS)

    A fluoroscopy system is a relatively complicated piece of equipment made up of several sub-components. For the operator to achieve good image quality without the overhead of high patient and staff doses, it is essential that all of these components are set up correctly. The automatic exposure rate control (AEC) and image quality are important aspects of a fluoroscopy system. Two principal parameters are used to assess AEC function: air kerma rate at the input phosphor with 1.0 mm copper filtration added and entrance surface dose rate for a 20 cm Perspex phantom. Spatial resolution is measured using the Huettner type 18 spatial frequency grating. The Leeds TO10 contrast-detail test object is used to measure threshold contrast-detail performance. Median limiting spatial resolution was 1.41 lp.mm-1 for image intensifier fields lying between 18 and 24 cm in diameter. Mean low contrast resolution at 63 kV and 0.40 μGy.s-1 was 2.5%. (author)

  15. Non-invasive measurements of leaf epidermal transmittance of UV radiation using chlorophyll fluorescence: field and laboratory studies

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, P.W. [Southwest Texas State Univ.. Dept. of Biology, San Marcos, TX (United States); Searles, P.S.; Ryel, R.J.; Caldwell, M.M. [Utah State Univ., Dept. of Rangeland Resources and the Ecology Center, Logan, UT (United States); Ballare, C.L. [IFEVA, Univ. de Buenos Aires, Dept. de Ecologia, Facultad de Agronomia, Buenos Aires, (Argentina)

    2000-07-01

    Ratios of chlorophyll fluorescence induced by ultraviolet (UV) and bluegreen (BG) radiation [F(UV)/F(BG)] were determined with a Xe-PAM fluorometer to test the utility of this technique as a means of non-intrusively assessing changes in the pigmentation and optical properties of leaves exposed to varying UV exposures under laboratory and field conditions. For plants of Vicia faba and Brassica campestris, grown under controlled-environmental conditions, F(UV-B)/F(BG) was negatively correlated with whole-leaf UV-B-absorbing pigment concentrations. Fluorescence ratios of V.faba were similar to, and positively correlated with (r{sup 2} = 0.77 [UV-B]; 0.85 [UV-A]), direct measurements of epidermal transmittance made with an integrating sphere. Leaves of 2 of 4 cultivars of field-grown Glycine max exposed to near-ambient solar UV-B at a mid-latitude site (Buenos Aires, Argentina, 34 degrees S) showed significantly lower abaxial F(UV-B)/F(BG) values (i.e., lower UV-B epidermal transmittance) than those exposed to attenuated UV-B, but solar UV-B reduction had a minimal effect on F(UV-B)/F(BG) in plants growing at a high-latitude site (Tierra del Fuego, Argentina, 55 degrees S). Similarly, the exotic Taraxacum officinale did not show significant changes in F(UV-B)/F(BG) when exposed to very high supplemental UV-B (biologically effective UV-B = 14-15 kJ m{sup -2} day{sup -1}) in the field in Tierra del Fuego, whereas a native species, Gunnera magellanica, showed significant increases in F(UV-B)/F(BG) relative to those receiving ambient UV-B. These anomalous fluorescence changes were associated with increases in BG-absorbing pigments (anthocyanins), but not UV-B-absorbing pigments. These results indicate that non-invasive estimates of epidermal transmittance of UV radiation using chlorophyll fluorescence can detect changes in pigmentation and leaf optical properties induced by UV-B radiation under both field and laboratory conditions. However, this technique may be of limited

  16. A Study of Non-Invasive Blood Glucose Measurement using Sine Modulated Polarized Light%正弦调制偏振光无创血糖检测的研究

    Institute of Scientific and Technical Information of China (English)

    王洪; 吴宝明

    2012-01-01

    Because conventional invasive blood glucose detection methods have many limitations, optical non-invasive blood glucose self-testing blood sugar in diabetic patients is the best way to assess. A new polarized light non-invasive blood glucose measurement method is presented, which converts micro-angle rotated by optical active substance such as glucose to fundamental frequency and multiple-frequency signal of electro-optic modulator, amplifies the signals by high-sensitivity lock-in amplifier made of relevant principle, controls Faraday coil current to compensate changes in deflection angle caused by blood glucose, and calculates to obtain blood glucose concentration using the linear relationship between blood glucose concentration and Faraday coil current. In comparative experiment based on the data measured by LX-20 automatic biochemical analyzer as a standard, a 0.9952 correlation coefficient is obtained in glucose concentration experiment. Research shows that this method has higher detection sensitivity and accuracy and lays a foundation for the development of practical new type of non-invasive blood glucose tester for diabetic patients.%常规的有创血糖检测方法有较多的局限性,光学无创血糖检测是糖尿病患者自我血糖评估的最佳方法,提出了一种偏振光无创血糖检测方法,将正弦调制偏振光通过血糖引起的微小偏振角的变化转化为电光调制器基频和倍频两个分量的变化,由相关原理高灵敏锁相放大器检测基频信号,控制法拉第线圈电流补偿血糖引起的偏转角变化,利用血糖浓度与法拉第线圈电流的线性关系,计算获得血糖浓度.以LX-20全自动生化分析仪测得的数据作为标准进行对比实验,葡萄糖溶液实验的相关系数为0.9952.研究表明偏振光无创血糖检测方法具有较高的检测灵敏度和准确度,为研制实用的新型无创血糖检测仪打下了基础.

  17. Automatic DGD and GVD compensation at 640 Gb/s based on scalar radio-frequency spectrum measurement

    DEFF Research Database (Denmark)

    Paquot, Yvan; Schröder, Jochen; Palushani, Evarist; Neo, Richard; Oxenløwe, Leif Katsuo; Madden, Steve; Choi, Duk-Yong; Luther-Davies, Barry; Pelusi, Mark D.; Eggleton, Benjamin J.

    2013-01-01

    separate GVD and DGD compensators using an impairment monitor based on an integrated all-optical radio-frequency (RF) spectrum analyzer. We show that low-bandwidth measurement of only a single tone in the RF spectrum is sufficient for automatic compensation for multiple degrees of freedom using a...

  18. The Use of a Reflectorless Scanning Total Station for Non-Invasive Measurements of Snowpack and Glacial Ice Volumes.

    Science.gov (United States)

    Duane, W. J.; Pepin, N. C.; Chowanski, K.; Hardy, D. R.

    2005-12-01

    Snow and ice distribution is a critical factor when determining how alpine and montane zones function. Annual snowpack development in mid-latitudes is of fundamental importance for water supply and runoff during the spring melt period. Additionally, the presence of lying snow has significant implications for the ecology of the high mountains, especially in the alpine tundra and montane forest zones. Ice in the form of glaciers is also of critical interest, particularly concerning water storage in the hydrological cycle and any long-term change due to climate forcing. It is time consuming to obtain accurate three-dimensional models of a snow or ice surface, and manual surveys using poles or stakes are extremely costly in terms of human resources, and in the case of a fresh snow surface, are invasive. This last point is of particular importance if there is other instrumentation above or below the snow surface. This poster describes the employment of a reflectorless, motorized total station with a `face-scan' capability allowing for a systematic, non-invasive method of creating digital terrain models of snow or ice surfaces. Using this technique, an irregularly shaped area can be delineated and a suitable grid resolution selected, before collecting the data. Any changes in the snow or ice elevation whether through accumulation, ablation or redistribution can then be derived and mapped relatively simply. Check observations to fixed targets can give an assessment of accuracies between scans such that objective confidence levels can be given to the results. Sub-centimetre accuracies in plan and height are regularly achieved. Two examples of applications using this methodology examine, a) snow redistribution in the sub-alpine forest zone of Niwot Ridge, Colorado, U.S.A. and b) ice-cliff retreat at the glacial margins on Mt. Kilimanjaro, Tanzania. In Colorado repeated scans of a large snowdrift in a sub-alpine clearing were collected on a daily basis during two field

  19. AN AUTOMATIC MEASURING SYSTEM FOR PRINT QUALITY OF COATED INK-JET PAPER

    Institute of Scientific and Technical Information of China (English)

    JinsongTao; GangChen; MiaonanZhu; AiminTang; HongweiZhang

    2004-01-01

    An automatic visual measuring system designed for evaluating the print quality of coated ink-jet paper is presented. Based on the degree of wicking, feathering, strike-through and color-to-color bleeding, Ink-jet Print Quality Index (IPQI), which was calculated with Area Spread Ratio (ASR), Edge Raggedness (ER), and Roundness Deviation (RD) of the printed dots, was used to evaluate the print quality. An iterative repetition interpolation threshold segmentation algorithm was performed with the aid of magnifying glass, charge coupled device (CCD)camera, frame grabber, image software and computer. Seven kinds of coated glossy photo papers were tested with a constant ink and ink-jet printer, the optical print resolution of each kind was obtained and their performance was ranked. It was shown that the system can meet the requirements ofpapermakers and can provide an objective and quantitative method both for evaluating the print quality, determining the optical print resolution and optimizing the coating process for coated ink-jet paper.

  20. AN AUTOMATIC MEASURING SYSTEM FOR PRINT QUALITY OF COATED INK-JET PAPER

    Institute of Scientific and Technical Information of China (English)

    Jinsong Tao; Gang Chen; Miaonan Zhu; Aimin Tang; Hongwei Zhang

    2004-01-01

    An automatic visual measuring system designed for evaluating the print quality of coated ink-jet paper is presented. Based on the degree of wicking,feathering, strike-through and color-to-color bleeding, Ink-jet Print Quality Index (IPQI), which was calculated with Area Spread Ratio (ASR), Edge Raggedness (ER), and Roundness Deviation (RD) of the printed dots, was used to evaluate the print quality. An iterative repetition interpolation threshold segmentation algorithm was performed with the aid of magnifying glass, charge coupled device (CCD)camera, frame grabber, image software and computer. Seven kinds of coated glossy photo papers were tested with a constant ink and ink-jet printer,the optical print resolution of each kind was obtained and their performance was ranked. It was shown that the system can meet the requirements ofpapermakers and can provide an objective and quantitative method both for evaluating the print quality, determining the optical print resolution and optimizing the coating process for coated ink-jet paper.

  1. The evaluation of the automatic setting of ROI to SPECT measuring cerebral blood flow

    International Nuclear Information System (INIS)

    It has been pointed out that the manual settings of region of interest (ROI) to the single-photon-emission-computed-tomography (SPECT) slice lacked objectivity when the fixed quantity value of regional cerebral blood flow (rCBF) was measured previously. Therefore, we jointly developed software Brain ROI'' with Daiichi Radioisotope Laboratories, Ltd. (DRL) that normalized an individual brain to a standard brain template by using Statistical Parametric Mapping 2 (SPM 2) of easy Z-score Imaging System ver. 3.0 (eZIS Ver. 3.0), and, ROI template was set to a specific slice. In this paper, we evaluated the accuracy of this software with ROI template that we made the useful size of the shape, in some clinical samples. As a result, the method of the automatic setting of ROI was the objectively. However, we thought that we should use the shape of ROI template without an influence of Brain atrophy. Moreover, we should see Normalizing individual brain and confirm the accuracy of normalization. When failing in normalization, we should partially correct ROI or set all by the manual operation of the operator. However, it was thought that this software was useful if the tendency was understood because the failure example was few. (author)

  2. WormGender - Open-Source Software for Automatic Caenorhabditis elegans Sex Ratio Measurement.

    Directory of Open Access Journals (Sweden)

    Marta K Labocha

    Full Text Available Fast and quantitative analysis of animal phenotypes is one of the major challenges of current biology. Here we report the WormGender open-source software, which is designed for accurate quantification of sex ratio in Caenorhabditis elegans. The software functions include, i automatic recognition and counting of adult hermaphrodites and males, ii a manual inspection feature that enables manual correction of errors, and iii flexibility to use new training images to optimize the software for different imaging conditions. We evaluated the performance of our software by comparing manual and automated assessment of sex ratio. Our data showed that the WormGender software provided overall accurate sex ratio measurements. We further demonstrated the usage of WormGender by quantifying the high incidence of male (him phenotype in 27 mutant strains. Mutants of nine genes (brc-1, C30G12.6, cep-1, coh-3, him-3, him-5, him-8, skr-1, unc-86 showed significant him phenotype. The WormGender is written in Java and can be installed and run on both Windows and Mac platforms. The source code is freely available together with a user manual and sample data at http://www.QuantWorm.org/. The source code and sample data are also available at http://dx.doi.org/10.6084/m9.figshare.1541248.

  3. Development of AN Open-Source Automatic Deformation Monitoring System for Geodetical and Geotechnical Measurements

    Science.gov (United States)

    Engel, P.; Schweimler, B.

    2016-04-01

    The deformation monitoring of structures and buildings is an important task field of modern engineering surveying, ensuring the standing and reliability of supervised objects over a long period. Several commercial hardware and software solutions for the realization of such monitoring measurements are available on the market. In addition to them, a research team at the Neubrandenburg University of Applied Sciences (NUAS) is actively developing a software package for monitoring purposes in geodesy and geotechnics, which is distributed under an open source licence and free of charge. The task of managing an open source project is well-known in computer science, but it is fairly new in a geodetic context. This paper contributes to that issue by detailing applications, frameworks, and interfaces for the design and implementation of open hardware and software solutions for sensor control, sensor networks, and data management in automatic deformation monitoring. It will be discussed how the development effort of networked applications can be reduced by using free programming tools, cloud computing technologies, and rapid prototyping methods.

  4. Does Size Matter? Measuring Automatic Stabilizers and Inequality Across European Welfare Regimes

    OpenAIRE

    Funningsstovu, Janus; Kofoed-Didrichsen, Mads; Frid-Nielsen, Snorre

    2015-01-01

    This project has investigated to what extent the size and shape of automatic stabilizers, in different European welfare regimes, results in different inequality outcomes between and within countries. The theoretical understandings are based in economics and Esping-Andersen’s theory of Three Worlds of Welfare Capitalism. The economic framework is imperative in comprehending automatic stabilizers and their function. Esping-Andersen’s theory has provided the comparative tools to examine and unde...

  5. Computer Vision Based Automatic Extraction and Thickness Measurement of Deep Cervical Flexor from Ultrasonic Images

    OpenAIRE

    Kwang Baek Kim; Doo Heon Song; Hyun Jun Park

    2016-01-01

    Deep Cervical Flexor (DCF) muscles are important in monitoring and controlling neck pain. While ultrasonographic analysis is useful in this area, it has intrinsic subjectivity problem. In this paper, we propose automatic DCF extractor/analyzer software based on computer vision. One of the major difficulties in developing such an automatic analyzer is to detect important organs and their boundaries under very low brightness contrast environment. Our fuzzy sigma binarization process is one of t...

  6. The accuracy of blood pressure measured by arterial line and non-invasive cuff in critically ill children

    OpenAIRE

    Joffe, Rachel; Duff, Jonathan; Garcia Guerra, Gonzalo; Pugh, Jodie; Ari R. Joffe

    2016-01-01

    Background The accuracy of arterial lines (AL) using the flush test or stopcock test has not been described in children, nor has the difference between invasive arterial blood pressure (IABP) versus non-invasive cuff (NIBP) blood pressure. Methods After ethics approval and consent, we performed the flush test and stopcock test on AL (to determine over damping, under damping, and optimal damping), and determined the difference (NIBP–IABP) in systolic, diastolic, and mean blood pressure (ΔSBP, ...

  7. Modulus of elasticity of vessel determined by pulse wave velocity measurement- criterion for non-invasive assessment of pathology

    Czech Academy of Sciences Publication Activity Database

    Leitermann, D.; Pražák, Josef; Poušek, L.; Musil, Jan; Konvičková, S.

    Brno : VERM akademické nakladatelství, 2001 - (Kotek, V.; Kratochvíl, C.; Ehrenberger, Z.), s. 177-179 ISBN 80-7204-207-6. [International conference Mechatronics, robotronics and biomechanics 2001 /3./. Třešť (CZ), 10.09.2001-12.09.2001] Institutional research plan: CEZ:MSM 210000012 Keywords : Cardiovascular system * non-invasive method * biomechanics Subject RIV: BK - Fluid Dynamics

  8. Non-Invasive Measurement of Brain Temperature with Microwave Radiometry: Demonstration in a Head Phantom and Clinical Case

    OpenAIRE

    Stauffer, Paul R.; Brent W. Snow; Rodrigues, Dario B.; Salahi, Sara; Oliveira, Tiago R; Reudink, Doug; Maccarini, Paolo F.

    2014-01-01

    This study characterizes the sensitivity and accuracy of a non-invasive microwave radiometric thermometer intended for monitoring body core temperature directly in brain to assist rapid recovery from hypothermia such as occurs during surgical procedures. To study this approach, a human head model was constructed with separate brain and scalp regions consisting of tissue equivalent liquids circulating at independent temperatures on either side of intact skull. This test setup provided differen...

  9. The development of an automatic track measurement system for the magnetic passive isotope experiment

    International Nuclear Information System (INIS)

    The purpose of this project is to develop an automatic track measurement system for the MAGPIE (MAGnetic Passive Isotope Experiment). MAGPIE track measurement is currently being conducted at the University of Utah, using a computer image processing and pattern recognition system coupled to a laser-interferometer-controlled microscope stage. After etching, MAGPIE flight CR-39 plastic sheets are placed on the microscope stage. This stage is controlled by an intelligent stage controller. The stage controller receives the motion commands from a Sun workstation to bring an area of interest under the microscope. A CCD camera picks up the image of the plastic surface (which contains the tracks of the cosmic ray particles) through the microscope and sends the video signal to a special image processing hardware. In the image processing system, the input video signal is digitized, the resulting digital image is thresholded by its intensity, and the gradient image is generated. The gradient image is thresholded again and the resulting gradient pixels (referred to as features) are extracted and sent to the Sun workstation. A superposition of the features on the original image is displayed on a monitor for human inspection. In the Sun workstation, these features are grouped into clusters, which are then examined for possible track candidates. The suspected noise clusters are discarded and the candidate clusters are fitted with ellipses. All the open-quotes good close-quote ellipse fits are considered real particle tracks, their parameters are converted from the video coordinate to the stage coordinate and stored in a data file. This whole scanning process can be done without human intervention, except for the initial sheet placements and program execution. The working principles, implementation details, and operating procedures of each subsystem are discussed in great detail in this paper. Finally, some possible further improvements on this system are discussed

  10. Automatic thickness measuring system of zirconium and zircaloy-2 layers of zirconium liner cladding tubes for boiling water reactor

    International Nuclear Information System (INIS)

    An automatic measuring system using ultrasonic method and electromagnetic method has been developed to measure the thickness of zirconium and zircaloy-2 layers. The sophisticated mechanism and the unique signal processing for suppression of several types of error enable high accurate measurement. The standard deviation of the liner thickness measurement is 2.2 μm and that of mother layer measurement is 3.0 μm. This system is very useful to assure the thickness of each layer and to produce high quality zirconium liner cladding tubes. (author)

  11. Laser light scattering technique for non-invasive in situ simultaneous measurements on elastic constants and viscosity coefficients of nematic liquid crystals

    Institute of Scientific and Technical Information of China (English)

    TU; Mei; HUANG; Yaoxiong

    2004-01-01

    The laser light scattering technique for non-invasive in situ simultaneous measurements on elastic constants and viscosity coefficients of nematic liquid crystals is introduced. By measuring the autocorrelation function of the scattered light from nematic liquid crystals at different scattering angles, the splay and twist elastic constants K11 and K22 are obtained from the amplitudes of the autocorrelation function, and the viscosity coefficients of (Splay and (Twist are determined using the viscoelastic ratios K11/( Splay and K22/(Twist from the relaxation parameters of the two modes.

  12. Noninvasive tracking of systolic arterial blood pressure using pulse transit time measured with ECG and carotid doppler signals with intermittent calibration

    OpenAIRE

    Fujita, Yoshihisa

    2016-01-01

    We have developed a non-invasive blood pressure measurement system using pulse transit time (PTT) from the heart to the common carotid artery, measured by using an electrocardiogram (ECG) R-wave and carotid arterial Doppler signals at the anterior neck. In this study, we examined the validity of our system by comparing PTT derived systolic blood pressure (Dopp_SBP) with invasive radial systolic arterial pressure (Inv_SBP) with calibration every 15 min in the ICU setting.Methods: 17 patients u...

  13. Climatological and radiative properties of midlatitude cirrus clouds derived by automatic evaluation of lidar measurements

    Science.gov (United States)

    Kienast-Sjögren, Erika; Rolf, Christian; Seifert, Patric; Krieger, Ulrich K.; Luo, Bei P.; Krämer, Martina; Peter, Thomas

    2016-06-01

    Cirrus, i.e., high, thin clouds that are fully glaciated, play an important role in the Earth's radiation budget as they interact with both long- and shortwave radiation and affect the water vapor budget of the upper troposphere and stratosphere. Here, we present a climatology of midlatitude cirrus clouds measured with the same type of ground-based lidar at three midlatitude research stations: at the Swiss high alpine Jungfraujoch station (3580 m a.s.l.), in Zürich (Switzerland, 510 m a.s.l.), and in Jülich (Germany, 100 m a.s.l.). The analysis is based on 13 000 h of measurements from 2010 to 2014. To automatically evaluate this extensive data set, we have developed the Fast LIdar Cirrus Algorithm (FLICA), which combines a pixel-based cloud-detection scheme with the classic lidar evaluation techniques. We find mean cirrus optical depths of 0.12 on Jungfraujoch and of 0.14 and 0.17 in Zürich and Jülich, respectively. Above Jungfraujoch, subvisible cirrus clouds (τ clouds of that type were observed. Cirrus have been observed up to altitudes of 14.4 km a.s.l. above Jungfraujoch, whereas they have only been observed to about 1 km lower at the other stations. These features highlight the advantage of the high-altitude station Jungfraujoch, which is often in the free troposphere above the polluted boundary layer, thus enabling lidar measurements of thinner and higher clouds. In addition, the measurements suggest a change in cloud morphology at Jungfraujoch above ˜ 13 km, possibly because high particle number densities form in the observed cirrus clouds, when many ice crystals nucleate in the high supersaturations following rapid uplifts in lee waves above mountainous terrain. The retrieved optical properties are used as input for a radiative transfer model to estimate the net cloud radiative forcing, CRFNET, for the analyzed cirrus clouds. All cirrus detected here have a positive CRFNET. This confirms that these thin, high cirrus have a warming effect on the Earth

  14. Opportunistic screening of atrial fibrillation by automatic blood pressure measurement in the community

    Science.gov (United States)

    Omboni, Stefano; Verberk, Willem J

    2016-01-01

    Objective Timely detection of atrial fibrillation (AF) may effectively prevent cardiovascular consequences. However, traditional diagnostic tools are either poorly reliable (pulse palpation) or not readily accessible (ECG) in general practice. We tested whether an automatic oscillometric blood pressure (BP) monitor embedded with an algorithm for AF detection might be effective for opportunistic screening of asymptomatic AF in the community. Setting A community-based screening campaign in an unselected population to verify the feasibility of AF screening with a Microlife WatchBP Office BP monitor with a patented AFIB algorithm. When possible AF was detected (≥2 of 3 BP measurements reporting AF), a doctor immediately performed a single-lead ECG in order to confirm or exclude the presence of the arrhythmia. The main demographic and clinical data were also collected. Participants 220 consecutive participants from an unselected sample of individuals in a small Italian community. Primary and secondary outcome measures Number of patients detected with AF and diagnosed risk factors for AF. Results In 12 of 220 participants, the device detected possible AF during the BP measurement: in 4 of them (1.8%), the arrhythmia was confirmed by the ECG. Patients with AF were more likely to be older (77.0±1.2 vs 57.2±15.2 years, p=0.010), obese (50.0 vs 14.4%, p=0.048) and to suffer from a cardiovascular disease (50.0 vs 10.6%, p=0.014) than patients without AF. Participants with a positive BP AF reading and non-AF arrhythmias (n=8) did not differ in their general characteristics from participants with a negative BP AF reading and were younger than patients with AF (mean age 56.4±14.8, p=0.027; 5 of 8 participants aged <65 years). Conclusions Opportunistic screening of AF by BP measurement is feasible to diagnose this arrhythmia in unaware participants, particularly in those older than 65 years, who are the target patient group recommended by current AF screening

  15. Surveillance of radioactivity by the German Meteorological Service. Automatic nuclide specific measurements; Radioaktivitaetsueberwachung durch den deutschen Wetterdienst. Automatische Nuklidspezifische Messungen

    Energy Technology Data Exchange (ETDEWEB)

    Steinkopff, T.; Barth, J.; Dalheimer, A.; Mirsch, M. [Deutscher Wetterdienst, Offenbach (Germany)

    2014-01-20

    The DWD (Deutscher Wetterdienst, German Meteorological Service) is charged by law with the surveillance of radioactivity in the atmosphere. In the frame of the ''Integrated Measuring and Information System for the Surveillance of Radioactivity in the Environment'' (IMIS) the measuring tasks of DWD are well described. Since 2009 it was aimed for the automatic measurement of aerosol-bound radionuclides, gaseous Iodine-131 and deposited radionuclides at the 48 measuring sites of DWD. To guarantee the continuous operation of germanium detectors it was necessary to install electrically cooled systems instead of systems cooled by liquid nitrogen. The technical details and the experiences are described.

  16. Full-Automatic XAFS Measurement System of the Engineering Science Research II beamline BL14B2 at SPring-8

    International Nuclear Information System (INIS)

    The Engineering Science Research II beamline BL14B2 at SPring-8 is a hard X-ray bending magnet beamline covering the wide energy range from 3.8 to 72 keV, and has been open to XAFS users since September 2007. The gas distribution and exhaust gas treatment systems have been installed for the in-situ XAFS measurements. Recent improvements in the speed of XAFS measurements have increased the demand for automated measurements. We have developed such a system, in which the adjustment of X-ray optics and the XAFS measurement in transmission mode can be performed automatically.

  17. Procalcitonin measurements and non-invasive mechanical ventilation in acute exacerbation of COPD: an appropriate new tool?

    Directory of Open Access Journals (Sweden)

    Antonio M. Esquinas

    2014-02-01

    Full Text Available Hospitalization of acute exacerbations of chronic obstructive pulmonary disease (Ae-COPD is a common health care problem. In last decades, non-invasive mechanical ventilation (NIV is a key cornerstone therapeutic element that have shown influence positively short and long term outcomes in Ae-COPD. Recently, incorporation of new biomarkers as procalcitonin (PCT to predict requirement of NIV in Ae-COPD is an attractive tool to guide a proper making decision regarding indication of NIV is scarce. [Int J Res Med Sci 2014; 2(1.000: 373-374

  18. Automatic leveling procedure by use of the spring method in measurement of three-dimensional surface roughness

    Science.gov (United States)

    Kurokawa, Syuhei; Ariura, Yasutsune; Yamamoto, Tatsuyuki

    2008-12-01

    Leveling of specimen surfaces is very important in measurement of surface roughness. If the surface is not leveled, the measured roughness has large distortion and less vertical measurement range. It is convenient to utilize some automatic leveling procedures instead of manual leveling which needs longer adjustment time. In automatic leveling, a new algorithm is proposed, which is named the spring method superior to the least square method. The spring method has an advantage that a part of tentative data points is used to calculate the surface inclination, so the obtained results are less influenced by local pits for example. As examples, the spring method was applied to actual engineered surfaces, which were milled, shot-peened, and ground surfaces, and also an artificial ditched surface. The results went well for the calculation of the surface inclinations and consequently the specimen surfaces were leveled with less distortion and large vertical measurement range can be achieved. It is also found the least square method is a special case of the spring method with using all sampling data points. That means the spring method is a comprehensive procedure including the least square method. This must become a very strong and robust method in automatic leveling algorithm

  19. Research and implementation of report automatic generation measure based on perl CGI

    International Nuclear Information System (INIS)

    The running process is usually accompanied with a large number of data about operation states in the large scale real time data processing system, and the data should be managed through out some performance report by operation engineers. A solution for performance report automatic generation is presented. It is to build a performance report automatic generation system by extracting the massages of the database and UNIX file system and deploying it to an application system. The system has been applied at the CTBT NDC. (authors)

  20. Climatological and radiative properties of midlatitude cirrus clouds derived by automatic evaluation of lidar measurements

    Science.gov (United States)

    Kienast-Sjögren, Erika; Rolf, Christian; Seifert, Patric; Krieger, Ulrich K.; Luo, Bei P.; Krämer, Martina; Peter, Thomas

    2016-06-01

    Cirrus, i.e., high, thin clouds that are fully glaciated, play an important role in the Earth's radiation budget as they interact with both long- and shortwave radiation and affect the water vapor budget of the upper troposphere and stratosphere. Here, we present a climatology of midlatitude cirrus clouds measured with the same type of ground-based lidar at three midlatitude research stations: at the Swiss high alpine Jungfraujoch station (3580 m a.s.l.), in Zürich (Switzerland, 510 m a.s.l.), and in Jülich (Germany, 100 m a.s.l.). The analysis is based on 13 000 h of measurements from 2010 to 2014. To automatically evaluate this extensive data set, we have developed the Fast LIdar Cirrus Algorithm (FLICA), which combines a pixel-based cloud-detection scheme with the classic lidar evaluation techniques. We find mean cirrus optical depths of 0.12 on Jungfraujoch and of 0.14 and 0.17 in Zürich and Jülich, respectively. Above Jungfraujoch, subvisible cirrus clouds (τ change in cloud morphology at Jungfraujoch above ˜ 13 km, possibly because high particle number densities form in the observed cirrus clouds, when many ice crystals nucleate in the high supersaturations following rapid uplifts in lee waves above mountainous terrain. The retrieved optical properties are used as input for a radiative transfer model to estimate the net cloud radiative forcing, CRFNET, for the analyzed cirrus clouds. All cirrus detected here have a positive CRFNET. This confirms that these thin, high cirrus have a warming effect on the Earth's climate, whereas cooling clouds typically have cloud edges too low in altitude to satisfy the FLICA criterion of temperatures below -38 °C. We find CRFNET = 0.9 W m-2 for Jungfraujoch and 1.0 W m-2 (1.7 W m-2) for Zürich (Jülich). Further, we calculate that subvisible cirrus (τ < 0.03) contribute about 5 %, thin cirrus (0.03 < τ < 0.3) about 45 %, and opaque cirrus (0.3 < τ) about 50 % of the total cirrus radiative forcing.

  1. Rainfall simulators - innovations seeking rainfall uniformity and automatic flow rate measurements

    Science.gov (United States)

    Bauer, Miroslav; Kavka, Petr; Strouhal, Luděk; Dostál, Tomáš; Krása, Josef

    2016-04-01

    single pressure operating mode, which is ensured by the pressure probe controlled electromagnetic valve. Previous experiments implied the need of automatic continuous measurements of selected variables. To this end the control unit was equipped with a datalogger. In a several seconds time step it collects the values of water pressure, nozzle-valves operation, control point rainfall intensity from a tipping bucket rain gauge, topsoil moisture from several Theta ML2x probes and most recently the plot outlet runoff rate. For a continuous runoff rate measurement a 0,4-foot HS-flume was constructed and equipped with S18U ultrasonic sensor. Assemble setting was optimised both in flow rate laboratory flume and in laboratory rainfall simulator. Namely the rating curves for particular flume bottom slopes were derived. Employment of the flume in the terrain is scheduled for the experimental season 2016, but laboratory results already show sufficient measurement accuracy and are promising in terms of experimental campaigns simplification. The abovementioned activities have been supported by the research grants SGS14/180/OHK1/3T/11, QJ1530181, QJ1520265 and QJ1330118.

  2. Noninvasive Measurement of Carbon Dioxide during One-Lung Ventilation with Low Tidal Volume for Two Hours: End-Tidal versus Transcutaneous Techniques

    OpenAIRE

    Zhang, Hong; Wang, Dong-Xin

    2015-01-01

    Background There may be significant difference between measurement of end-tidal carbon dioxide partial pressure (PetCO2) and arterial carbon dioxide partial pressure (PaCO2) during one-lung ventilation with low tidal volume for thoracic surgeries. Transcutaneous carbon dioxide partial pressure (PtcCO2) monitoring can be used continuously to evaluate PaCO2 in a noninvasive fashion. In this study, we compared the accuracy between PetCO2 and PtcCO2 in predicting PaCO2 during prolonged one-lung v...

  3. Improvement and development of non-invasive blood pressure measurement techniques%无创血压测量技术的改进与进展

    Institute of Scientific and Technical Information of China (English)

    郑理华; 窦建洪; 何兴华; 屠伟峰; 马铭俊; 吴昊

    2013-01-01

    This paper reviews the improvement and development of some general non-invasive blood pressure measurement(NBPM)techniques, e.g. korotkoff sound method, oscillometric method and double cuff method. The new practical techniques and methods at home and abroad and perspective of non-invasive continuous blood pressure measurement(NCBPM)have also been presented systematically in this article, such as arterial tonometry method, arterial volumn clamp method, pulse-wave velocity method, ultrasonic method and the application of wavelet analysis and fuzzy recognition. Finally, it's pointed out that NBPM, especially NCBPM, has a huge market demand. Pulse-wave velocity method can achieve real non-invasive continuous blood pressure measurement and thus has abroad application. Research progress of methods and theories of continuous non-invasive measurement of blood pressure will be a desired direction.%介绍数种常规的无创血压测量方法-柯氏音法、示波法和双袖带法及其改进.重点对国际上连续无创血压测量的新型实用技术、方法及前景进行较为详细的介绍,如动脉张力测量法、动脉容积钳制法、脉搏波速度测量法、超声测压法以及小波分析和模糊识别技术在血压信号处理中的应用等.指出无创血压测量技术,尤其是无创连续血压测量方法有着巨大的市场需求;脉搏波速度测量法能实现真正意义上的连续无创血压测量,因此具有广泛的应用前景,而采用新理论进行连续的无创血压测量将是该领域的目标和发展方向.

  4. Using Fuzzy Modifier in Similarity Measure of Fuzzy Attribute Graph and Its Automatic Selection in Structural Pattern Recognition

    OpenAIRE

    Payman Moallem

    2007-01-01

    Fuzzy Attribute Graph (FAG) is a powerful tool for representation and recognition of structural patterns. The conventional framework for similarity measure of FAGs is based on equivalent fuzzy attributes but in fuzzy world, some attributes are more important. In this paper, a modified recognition framework, using linguistic modifier for matching of the fuzzy attribute graphs, is introduced. Then an algorithm for automatic selection of fuzzy modifier based on the learning patterns is posed. So...

  5. Automatic measurement of cusps in 2.5D dental images

    Science.gov (United States)

    Wolf, Mattias; Paulus, Dietrich W.; Niemann, Heinrich

    1996-01-01

    Automatic reconstruction of occlusal surfaces of teeth is an application which might become more and more urgent due to the toxicity of amalgam. Modern dental chairside equipment is currently restricted to the production of inlays. The automatic reconstruction of the occlusal surface is presently not possible. For manufacturing an occlusal surface it is required to extract features from which it is possible to reconstruct destroyed teeth. In this paper, we demonstrate how intact upper molars can be automatically extracted in dental range and intensity images. After normalization of the 3D location, the sizes of the cusps are detected and the distances between them are calculated. In the presented approach, the detection of the upper molar is based on a knowledge-based segmentation which includes anatomic knowledge. After the segmentation of the interesting tooth the central fossa is calculated. The normalization of the spatial location is archieved by aligning the detected fossa with a reference axis. After searching the cusp tips in the range image the image is resized. The methods have been successfully tested on 60 images. The results have been compared with the results of a dentist's evaluation on a sample of 20 images. The results will be further used for automatic production of tooth inlays.

  6. A comparison of non-invasive continuous finger blood pressure measurement (Finapres) with intra-arterial pressure during prolonged head-up tilt.

    Science.gov (United States)

    Petersen, M E; Williams, T R; Sutton, R

    1995-11-01

    Simultaneous intra-radial and non-invasive (Finapres, Ohmeda) blood pressures were compared during prolonged head-up tilt, in eight patients (mean age 49 years) with malignant vasovagal syncope. Twelve tilts were performed, of which eight resulted in vasovagal syncope. The mean bias (difference between Finapres and intra-arterial pressures) for systolic pressure was +0.7 mmHg (standard deviation 11.3 mmHg) and for diastolic pressure was +5.4 mmHg (standard deviation 7 mmHg). The within-tilt precision (standard deviation of the bias) of the non-invasive measurements varied between 2.9-12.4 mmHg (median 4.5 mmHg) for systolic comparisons, and 1.6-8.4 mmHg (median 4.4 mmHg) for diastolic comparisons. In all but one tilt highly significant positive increases in both systolic (median 7.1 mmHg) and diastolic bias (median 8.1 mmHg) occurred on tilt with respect to resting pre-tilt levels. Independent of the absolute level of agreement, the non-invasive measurements followed changes in intra-arterial pressure closely, with 89% of beat-to-beat changes in systolic pressure, and 95% of beat-to-beat changes in diastolic pressure followed to within +/- 2 mmHg. This study suggests that the Finapres is well suited for use during diagnostic tilt testing, demonstrating an acceptable within-tilt precision and closely following pressure changes during vasovagal syncope. PMID:8881861

  7. Non-invasive Measurement of Thermal Diffusivity Using High-Intensity Focused Ultrasound and Through-Transmission Ultrasonic Imaging.

    Science.gov (United States)

    Yeshurun, Lilach; Azhari, Haim

    2016-01-01

    Thermal diffusivity at the site ablated by high-intensity focused ultrasound (HIFU) plays an important role in the final therapeutic outcome, as it influences the temperature's spatial and temporal distribution. Moreover, as tissue thermal diffusivity is different in tumors as compared with normal tissue, it could also potentially be used as a new source of imaging contrast. The aim of this study was to examine the feasibility of combining through-transmission ultrasonic imaging and HIFU to estimate thermal diffusivity non-invasively. The concept was initially evaluated using a computer simulation. Then it was experimentally tested on phantoms made of agar and ex vivo porcine fat. A computerized imaging system combined with a HIFU system was used to heat the phantoms to temperatures below 42°C to avoid irreversible damage. Through-transmission scanning provided the time-of-flight values in a region of interest during its cooling process. The time-of-flight values were consequently converted into mean values of speed of sound. Using the speed-of-sound profiles along with the developed model, we estimated the changes in temperature profiles over time. These changes in temperature profiles were then used to calculate the corresponding thermal diffusivity of the studied specimen. Thermal diffusivity for porcine fat was found to be lower by one order of magnitude than that obtained for agar (0.313×10(-7)m(2)/s vs. 4.83×10(-7)m(2)/s, respectively, p < 0.041). The fact that there is a substantial difference between agar and fat implies that non-invasive all-ultrasound thermal diffusivity mapping is feasible. The suggested method may particularly be suitable for breast scanning. PMID:26489364

  8. Non-invasive and quantitative evaluation of peripheral vascular resistances in rats by combined NMR measurements of perfusion and blood pressure using ASL and dynamic angiography.

    Science.gov (United States)

    Ménard, Jacques C; Giacomini, Eric; Baligand, Céline; Fromes, Yves; Carlier, Pierre G

    2010-02-01

    The in vivo determination of peripheral vascular resistances (VR) is crucial for the assessment of arteriolar function. It requires simultaneous determination of organ perfusion (F) and arterial blood pressure (BP). A fully non-invasive method was developed to measure systolic and diastolic BP in the caudal artery of rats based on dynamic NMR angiography. A good agreement was found between the NMR approach and the gold standard techniques (linear regression slope = 0.98, R(2) = 0.96). This method and the ASL-MRI measurement of skeletal muscle perfusion were combined into one single NMR experiment to quantitatively evaluate the local vascular resistances in the calf muscle of anaesthetized rats, in vivo and non-invasively 1) at rest: VR = 7.0 +/- 1.0 mmHg x min 100 g x ml(-1), F = 13 +/- 3 ml min(-1) x 100 g(-1) and mean BP (MBP) = 88 +/- 10 mmHg; 2) under vasodilator challenge (milrinone): VR = 3.7 +/- 1.1 mmHg min x 100 g ml(-1), F = 21 +/- 4 ml min(-1) x 100 g(-1) and MBP = 75 +/- 14 mmHg; 3) under vasopressor challenge (norepinephrine): VR = 9.8 +/- 1.2 mmHg min 100 g ml(-1), F = 14 +/- 3 ml min(-1) x 100 g(-1) and MBP = 137 +/- 2 mmHg. PMID:19795372

  9. Non-invasive continuous arterial pressure and pulse pressure variation measured with Nexfin(®) in patients following major upper abdominal surgery: a comparative study.

    Science.gov (United States)

    de Wilde, R B P; de Wit, F; Geerts, B F; van Vliet, A L; Aarts, L P H J; Vuyk, J; Jansen, J R C

    2016-07-01

    We compared the accuracy and precision of the non-invasive Nexfin(®) device for determining systolic, diastolic, mean arterial pressure and pulse pressure variation, with arterial blood pressure values measured from a radial artery catheter in 19 patients following upper abdominal surgery. Measurements were taken at baseline and following fluid loading. Pooled data results of the arterial blood pressures showed no difference between the two measurement modalities. Bland-Altman analysis of pulse pressure variation showed significant differences between values obtained from the radial artery catheter and Nexfin finger cuff technology (mean (SD) 1.49 (2.09)%, p agreement -2.71% to 5.69%). The effect of volume expansion on pulse pressure variation was identical between methods (concordance correlation coefficient 0.848). We consider the Nexfin monitor system to be acceptable for use in patients after major upper abdominal surgery without major cardiovascular compromise or haemodynamic support. PMID:27291598

  10. Analysis of outdoor radon progeny concentration measured at the Spanish radioactive aerosol automatic monitoring network

    International Nuclear Information System (INIS)

    An analysis of 10-year radon progeny data, provided by the Spanish automatic radiological surveillance network, in relation to meteorology is presented. Results show great spatial variability depending mainly on the station location and thus, the surrounding radon exhalation rate. Hourly averages show the typical diurnal cycle with an early morning maximum and a minimum at noon, except for one mountain station, which shows an inverse behaviour. Monthly averaged values show lower concentrations during months with higher atmospheric instability.

  11. Interdependence between measures of extent and severity of myocardial perfusion defects provided by automatic quantification programs

    DEFF Research Database (Denmark)

    El-Ali, Henrik Hussein; Palmer, John; Carlsson, Marcus; Edenbrandt, Lars; Ljungberg, Michael; El Ali, Henrik H.

    2005-01-01

    To evaluate the accuracy of the values of lesion extent and severity provided by the two automatic quantification programs AutoQUANT and 4D-MSPECT using myocardial perfusion images generated by Monte Carlo simulation of a digital phantom. The combination between a realistic computer phantom and an...... accurate scintillation camera simulation tool allows the generation of realistic single-photon emission computed tomography (SPECT) images similar to those obtained in clinical patient studies....

  12. Using Fuzzy Modifier in Similarity Measure of Fuzzy Attribute Graph and Its Automatic Selection in Structural Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Payman Moallem

    2007-09-01

    Full Text Available Fuzzy Attribute Graph (FAG is a powerful tool for representation and recognition of structural patterns. The conventional framework for similarity measure of FAGs is based on equivalent fuzzy attributes but in fuzzy world, some attributes are more important. In this paper, a modified recognition framework, using linguistic modifier for matching of the fuzzy attribute graphs, is introduced. Then an algorithm for automatic selection of fuzzy modifier based on the learning patterns is posed. Some examples for the conventional and modified framework for FAG similarity measure are studied and the potential of the proposed framework for FAG matching is showed.

  13. An automatic measuring method and system using a light curtain for the thread profile of a ballscrew

    International Nuclear Information System (INIS)

    An automatic non-contact measuring system for the thread profile of a ballscrew was developed and integrated using a light curtain, a high-accuracy linear encoder and a motion platform for the measuring stand. Firstly, data points from the thread profile of a ballscrew were collected by the measuring system and data partitioning was performed. Then, the proposed method was used to calculate the most important geometric errors of the thread profile, such as effective diameter, thread pitch, ball track runout and ball track cross-section error. Finally, the proposed system and method was verified for its good performance with acceptable accuracy and reliability. Compared with original measuring methods, the non-contact optical measuring system was capable of measuring most common features of the ballscrew with required accuracy, and was not limited to size and length of the ballscrew

  14. Stereological Analysis of Liver Biopsy Histology Sections as a Reference Standard for Validating Non-Invasive Liver Fat Fraction Measurements by MRI

    Science.gov (United States)

    St. Pierre, Tim G.; House, Michael J.; Bangma, Sander J.; Pang, Wenjie; Bathgate, Andrew; Gan, Eng K.; Ayonrinde, Oyekoya T.; Bhathal, Prithi S.; Clouston, Andrew; Olynyk, John K.; Adams, Leon A.

    2016-01-01

    Background and Aims Validation of non-invasive methods of liver fat quantification requires a reference standard. However, using standard histopathology assessment of liver biopsies is problematical because of poor repeatability. We aimed to assess a stereological method of measuring volumetric liver fat fraction (VLFF) in liver biopsies and to use the method to validate a magnetic resonance imaging method for measurement of VLFF. Methods VLFFs were measured in 59 subjects (1) by three independent analysts using a stereological point counting technique combined with the Delesse principle on liver biopsy histological sections and (2) by three independent analysts using the HepaFat-Scan® technique on magnetic resonance images of the liver. Bland Altman statistics and intraclass correlation (IC) were used to assess the repeatability of each method and the bias between the methods of liver fat fraction measurement. Results Inter-analyst repeatability coefficients for the stereology and HepaFat-Scan® methods were 8.2 (95% CI 7.7–8.8)% and 2.4 (95% CI 2.2–2.5)% VLFF respectively. IC coefficients were 0.86 (95% CI 0.69–0.93) and 0.990 (95% CI 0.985–0.994) respectively. Small biases (≤3.4%) were observable between two pairs of analysts using stereology while no significant biases were observable between any of the three pairs of analysts using HepaFat-Scan®. A bias of 1.4±0.5% VLFF was observed between the HepaFat-Scan® method and the stereological method. Conclusions Repeatability of the stereological method is superior to the previously reported performance of assessment of hepatic steatosis by histopathologists and is a suitable reference standard for validating non-invasive methods of measurement of VLFF. PMID:27501242

  15. Multichannel automatic system for measuring the nonuniformity index of synchrotron magnetic field on-line with the ES-1010 computer

    International Nuclear Information System (INIS)

    A ten-channel automatic system for fast measurements of an nonuniformity index of a magnetic field in the JINR synchrophasotron is described. Flowsheets of the system under consideration operating on-line with ES-1010 electronic computer as well as data reception and representation programs are given. Peculiarities of a technique for measuring a magnetic synchrophasotron field gradient, main parameters of used selective induction converter, moving platform providing for the displacement of a converter unit inside the accelerator chamber as well as interface equipment of measuring and controlling electronics of the system with the electronic computer are considered. 16000 values of the nonuniformity index at 8 values of magnetic induction have been determined by means of the system described. Measuring time amounted to approximately 20 hours. It.is concluded on the base of results of the system tests that it is possible to use it for fast measurements in weak-focusing accelerators

  16. Non-invasive Ultrasonic Measurements of Small Mechanical Alterations in Sub-millimeter Walls of Arteries and Phantoms

    Science.gov (United States)

    Brum, J.; Ramos, A.; Bazan, I.; Negreira, C.; Ramirez, A.; Diez, L.

    The detection of changes in the properties of the walls in blood vessels (e.g. modifications in thickness or elasticity) is a promising way for the early diagnosis of cardiovascular diseases (e.g. atherosclerosis), and some attempts have been made using classic ultrasonic images. However, to obtain a reliable non-invasive estimation of these changes still presents many challenges that must be overcome, in particular, to achieve an accurate estimation of the vessel wall thickness, which usually is associated to strain and elasticity alterations happening before the cardiovascular disease presents clinical symptom; to solve efficiently these aspects is a very difficult task. In this work, the application to vessels of a recent ultrasonic method developed by the authors for estimating wall thicknesses is described. This method (based on high-resolution power spectral density - PSD) and its algorithmic responses were tested on an arterial phantom under physiological conditions of flow and pressure, and some results are compared to those obtained using a direct-time thickness estimation and with the resolutions related to our alternative cross-correlation option shown in previous papers. A higher spatial resolution is obtained, for experimental multi-pulse ultrasonic echoes, with this PSD method in comparison to those based on conventional echography, cross correlation operators or other spectral options.

  17. Semi-automatic dimension and density measuring system for UO2 pellets

    International Nuclear Information System (INIS)

    The parameters like diameter, length, L/D ratio and sintered density of cylindrical UO2 pellets are critical in both the PHWR and BWR fuels. A semi-automatic system is developed by interfacing a laser micrometer, a digital electronic balance with a PC-XT and incorporating menu-driven, user-friendly software developed in-house. The advantages are data storage, acquisition, statistical analysis with histograms and print out of acquired and computed values with respective set-up limits along with the production details like lot number, press number, furnace number etc. This paper describes the details of the above system and the software. 3 figs., 2 ills

  18. Non-invasive whole-body plethysmograph for assessment and prediction of radiation-induced lung injury using simultaneously acquired nitric oxide and lung volume measurements

    International Nuclear Information System (INIS)

    Radiation-induced lung injury (RILI) is a prevalent side effect in patients who undergo thoracic irradiation as part of their cancer treatment. Preclinical studies play a major role in understanding disease onset under controlled experimental conditions. The aim of this work is to develop a single-chambered optimized, non-invasive, whole-body plethysmograph prototype for unrestrained small animal lung volume measurements for preclinical RILI studies. The system is also designed to simultaneously obtain nitric oxide (NO) measurements of the expired breath. The device prototype was tested using computer simulations, phantom studies and in vivo measurements in experimental animal models of RILI. The system was found to improve resemblance to true breathing signal characteristics as measured by improved skewness (21.83%) and kurtosis (51.94%) in addition to increased overall signal sensitivity (3.61%) of the acquired breath signal, when compared to matching control data. NO concentration data was combined with breath measurements in order to predict early RILI onset. The system was evaluated using serial weekly measurements in hemi-thorax irradiated rats (n = 8) yielding a classification performance of 50.0%, 62.5%, 87.5% using lung volume only, NO only, and combined measurements of both, respectively. Our results indicate that improved performance could be achieved when measurements of lung volume are combined with those of NO. This would provide the overall plethysmography system with the ability to provide useful diagnostic and prognostic information for preclinical and, potentially, clinical thoracic dose escalation studies. (paper)

  19. Towards parsimony in habit measurement: Testing the convergent and predictive validity of an automaticity subscale of the Self-Report Habit Index

    Directory of Open Access Journals (Sweden)

    Gardner Benjamin

    2012-08-01

    Full Text Available Abstract Background The twelve-item Self-Report Habit Index (SRHI is the most popular measure of energy-balance related habits. This measure characterises habit by automatic activation, behavioural frequency, and relevance to self-identity. Previous empirical research suggests that the SRHI may be abbreviated with no losses in reliability or predictive utility. Drawing on recent theorising suggesting that automaticity is the ‘active ingredient’ of habit-behaviour relationships, we tested whether an automaticity-specific SRHI subscale could capture habit-based behaviour patterns in self-report data. Methods A content validity task was undertaken to identify a subset of automaticity indicators within the SRHI. The reliability, convergent validity and predictive validity of the automaticity item subset was subsequently tested in secondary analyses of all previous SRHI applications, identified via systematic review, and in primary analyses of four raw datasets relating to energy‐balance relevant behaviours (inactive travel, active travel, snacking, and alcohol consumption. Results A four-item automaticity subscale (the ‘Self-Report Behavioural Automaticity Index’; ‘SRBAI’ was found to be reliable and sensitive to two hypothesised effects of habit on behaviour: a habit-behaviour correlation, and a moderating effect of habit on the intention-behaviour relationship. Conclusion The SRBAI offers a parsimonious measure that adequately captures habitual behaviour patterns. The SRBAI may be of particular utility in predicting future behaviour and in studies tracking habit formation or disruption.

  20. Automatic LV volume measurement in low dose multi-phase CT by shape tracking

    Science.gov (United States)

    von Berg, Jens; Begemann, Philipp; Stahmer, Felix; Adam, Gerhard; Lorenz, Cristian

    2006-03-01

    Functional assessment of cardiac ventricular function requires time consuming manual interaction. Some automated methods have been presented that predominantly used cardiac magnet resonance images. Here, an automatic shape tracking approach is followed to estimate left ventricular blood volume from multi-slice computed tomography image series acquired with retrospective ECG-gating. A deformable surface model method was chosen that utilized both shape and local appearance priors to determine the endocardial surface and to follow its motion through the cardiac cycle. Functional parameters like the ejection fraction could be calculated from the estimated shape deformation. A clinical validation was performed in a porcine model with 60 examinations on eight subjects. The functional parameters showed a good correlation with those determined by clinical experts using a commercially available semi-automatic short axes delineation tool. The correlation coefficient for the ejection fraction (EF) was 0.89. One quarter of these acquisitions were done with a low dose protocol. All of these degraded images could be processed well. Their correlation slightly decreases when compared to the normal dose cases (EF: 0.87 versus 0.88).

  1. Development of automatic navigation measuring system using template-matching software in image guided neurosurgery

    International Nuclear Information System (INIS)

    An image-guided neurosurgery and neuronavigation system based on magnetic resonance imaging has been used as an indispensable tool for resection of brain tumors. Therefore, accuracy of the neuronavigation system, provided by periodic quality assurance (QA), is essential for image-guided neurosurgery. Two types of accuracy index, fiducial registration error (FRE) and target registration error (TRE), have been used to evaluate navigation accuracy. FRE shows navigation accuracy on points that have been registered. On the other hand, TRE shows navigation accuracy on points such as tumor, skin, and fiducial markers. This study shows that TRE is more reliable than FRE. However, calculation of TRE is a time-consuming, subjective task. Software for QA was developed to compute TRE. This software calculates TRE automatically by an image processing technique, such as automatic template matching. TRE was calculated by the software and compared with the results obtained by manual calculation. Using the software made it possible to achieve a reliable QA system. (author)

  2. Preliminary results of processing of Pulkovo series of photographic observations of double star 61 Cygni measured by automatic machine "Fantasy"

    Science.gov (United States)

    Gorshanov, D. L.; Shakht, N. A.; Kisselev, A. A.; Polyakov, E. V.; Bronnikova, A. A.; Kanaev, I. I.

    2003-11-01

    Two long-term series of photographic observations of one of the nearest double star 61 Cygni have been obtained at Pulkovo by means of normal astrograph in 1895-2000 (I) and by means of 26'' refractor in 1958-2000 (II). All these observations have been measured by means automatic machine "Fantasy" with mean error of yearly positions 0.016'' and 0.008'' for I and II series correspondly. The periodic deviations with period 6.4 +/- 0.5 yr in the residuals in relative distances between components are noticed for series II.

  3. Autotitrating versus standard noninvasive ventilation: a randomised crossover trial.

    Science.gov (United States)

    Jaye, J; Chatwin, M; Dayer, M; Morrell, M J; Simonds, A K

    2009-03-01

    The aim of the present study was to compare the efficacy of automatic titration of noninvasive ventilation (NIV) with conventional NIV in stable neuromuscular and chest wall disorder patients established on long-term ventilatory support. In total, 20 neuromuscular and chest wall disease patients with nocturnal hypoventilation treated with long-term NIV completed a randomised crossover trial comparing two noninvasive pressure support ventilators: a standard bilevel ventilator (VPAP III) and a novel autotitrating bilevel ventilator (AutoVPAP). Baseline physiological measurements, overnight polysomnography and Holter monitoring were repeated at the end of each 1-month treatment period. Nocturnal oxygenation was comparable between the autotitrating device and standard ventilator, as were sleep efficiency, arousals and heart rate variability. However, there was a small significant increase in mean overnight transcutaneous carbon dioxide tension (median (interquartile range) 7.2 (6.7-7.7) versus 6.7 (6.1-7.0) kPa) and a decrease in percentage stage 1 sleep (mean+/-sd 16+/-9 versus 19+/-10%) on autotitrating NIV compared with conventional NIV. Autotitrating noninvasive ventilation using AutoVPAP produced comparable control of nocturnal oxygenation to standard nonivasive ventilation, without compromising sleep quality in stable neuromuscular and chest wall disease patients requiring long-term ventilatory support for nocturnal hypoventilation. PMID:19251798

  4. Combining contour detection algorithms for the automatic extraction of the preparation line from a dental 3D measurement

    Science.gov (United States)

    Ahlers, Volker; Weigl, Paul; Schachtzabel, Hartmut

    2005-04-01

    Due to the increasing demand for high-quality ceramic crowns and bridges, the CAD/CAM-based production of dental restorations has been a subject of intensive research during the last fifteen years. A prerequisite for the efficient processing of the 3D measurement of prepared teeth with a minimal amount of user interaction is the automatic determination of the preparation line, which defines the sealing margin between the restoration and the prepared tooth. Current dental CAD/CAM systems mostly require the interactive definition of the preparation line by the user, at least by means of giving a number of start points. Previous approaches to the automatic extraction of the preparation line rely on single contour detection algorithms. In contrast, we use a combination of different contour detection algorithms to find several independent potential preparation lines from a height profile of the measured data. The different algorithms (gradient-based, contour-based, and region-based) show their strengths and weaknesses in different clinical situations. A classifier consisting of three stages (range check, decision tree, support vector machine), which is trained by human experts with real-world data, finally decides which is the correct preparation line. In a test with 101 clinical preparations, a success rate of 92.0% has been achieved. Thus the combination of different contour detection algorithms yields a reliable method for the automatic extraction of the preparation line, which enables the setup of a turn-key dental CAD/CAM process chain with a minimal amount of interactive screen work.

  5. 无创连续血压测量技术的研究进展%Research Progress in Non-Invasive Continuous Blood Pressure Measurement

    Institute of Scientific and Technical Information of China (English)

    魏安海; 尹军; 苌飞霸; 李姝颖; 周德强; 颜乐先

    2015-01-01

    This paper introduced the importance of non-invasive continuous blood pressure measurement. Moreover, the applanation tonometry method, vascular unloading technique, pulse wave velocity and characteristic parameter were analyzed emphatically. This paper also described the basic principles, the present research and the technical dififculties. Finally, the further development was prospected.%本文介绍了无创连续血压测量技术的重要性,重点分析了动脉张力法、容积补偿法、脉搏波速传导法和脉搏波特征参数测定法的原理、研究现状及难点,并根据研究现状对无创血压测量技术的发展提出了展望。

  6. Use of optical pharmacokinetics systems (OPS) for non-invasive measurement of Phthalocyanine 4 (Pc 4) concentrations in mice bearing MDA-MB-231 xenografts

    Science.gov (United States)

    Bai, Lihua; Joseph, Erin; Olenick, Nancy L.; Mulvihill, John M.; Feyes, Denise K.; Eiseman, Julie L.

    2007-06-01

    Objective: Pc 4, a phthalocyanine photosensitizer in Phase I photodynamic therapy (PDT) trials, requires laser activation near 672 nm. For effective PDT, photosensitizer must be present in the target tissues. OPS uses elastic scattering spectroscopy to measure Pc 4 optical absorption non-invasively, and that absorbance can be converted to concentration using Pc 4 standard curves in 1% Intralipid®. In this study, we used OPS to evaluate Pc 4 optical absorption with time in subcutaneous tumor (with or without laser activation) and in contralateral skin. Tumor response was also evaluated after Pc 4-PDT. Conclusions: Both Pc 4 and hemoglobin optical absorption could be monitored by OPS. The decrease of Pc 4 absorption after PDT and the appearance of d-hbg indicated that alterations occurred in the tumor following Pc 4-PDT. The increase in d-hbg suggests that oxygen was not replaced completely, possibly due to circulation damage in tumor.

  7. Quantum governor: Automatic quantum control and reduction of the influence of noise without measuring

    International Nuclear Information System (INIS)

    The problem of automatically protecting a quantum system against noise in a closed circuit is analyzed. A general scheme is developed built from two steps. First, a distillation step is induced in which undesired components are removed to another degree of freedom of the system. Later a recovering step is employed in which the system gains back its initial density. An optimal-control method is used to generate the distilling operator. The scheme is demonstrated by a simulation of a two-level bit influenced by white noise. Undesired deviations from the target were shown to be reduced by at least two orders of magnitude on average. The relations between the quantum version of the classical Watt's governor and the field of quantum information are also discussed

  8. The Quantum Governor: Automatic quantum control and reduction of the influence of noise without measuring

    CERN Document Server

    Kallush, S

    2005-01-01

    The problem of automatically protecting a quantum system against noise in a closed circuit is analyzed. A general scheme is developed built from two steps. At first, a distillation step is induced in which undesired components are removed to another degree of freedom of the system. Later a recovering step is employed which the system gains back its initial density. An Optimal-Control method is used to generate the distilling operator. The scheme is demonstrated by a simulation of a two level byte influenced by white noise. Undesired deviations from the target were shown to be reduced by at least two orders of magnitude on average. The relations between the quantum version of the classical Watt's Governor and the field of quantum information are also discussed.

  9. Belowground plant development measured with magnetic resonance imaging (MRI: exploiting the potential for non-invasive trait quantification using sugar beet as a proxy

    Directory of Open Access Journals (Sweden)

    Ralf eMetzner

    2014-09-01

    Full Text Available Both structural and functional properties of belowground plant organs are critical for the development and yield of plants but, compared to the shoot, much more difficult to observe due to soil opacity. Many processes concerning the belowground plant performance are not fully understood, in particular spatial and temporal dynamics and their interrelation with environmental factors. We used Magnetic Resonance Imaging (MRI as a noninvasive method to evaluate which traits can be measured when a complex plant organ is monitored in-vivo while growing in the soil. We chose sugar beet (Beta vulgaris ssp. vulgaris as a model system. The beet consists mainly of root tissues, is rather complex regarding tissue structure and responses to environmental factors, and thereby a good object to test the applicability of MRI for 3D phenotyping approaches. Over a time period of up to 3 months, traits such as beet morphology or anatomy were followed in the soil and the effect of differently sized pots on beet fresh weight calculated from MRI data was studied. There was a clear positive correlation between the pot size and the increase in fresh weight of a sugar beet over time. Since knowledge of the development of internal beet structures with several concentric cambia, vascular and parenchyma rings is still limited, we consecutively acquired 3D volumetric images on individual plants using the MRI contrast parameter T2 to map the development of rings at the tissue level. This demonstrates that MRI provides versatile protocols to non-invasively measure plant traits in the soil. It opens new avenues to investigate belowground plant performance under adverse environmental conditions such as drought, nutrient shortage or soil compaction to seek for traits of belowground organs making plants more resilient to stress.

  10. Automatic determination of moisture content in biofuels based on NIR-measurements; Automatisk fukthaltsbestaemning av biobraenslen med NIR-metoden

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Magnus; Wiklund, Sven Erik [AaF-Process AB, Stockholm (Sweden); Karlsson, Mikael; Tryzell, Robert [Bestwood AB, Sundbyberg (Sweden)

    2005-07-01

    The determination of moisture content of biofuel is of large importance for the energy sector. The used methods for moisture determination are based on fuels samples taken from the bulk followed by drying and weighing. To be able to instead determine the moisture content based on a method with good accuracy and with a short response time would be a large improvement. Both for the fuel sampling and the following analysis there are Swedish standards but concerning the fuel sampling the standards are often not followed. The main reason is the difficulties to sample fuel samples from different depth from a delivery. This is one of the reasons that some plants have installed mechanical samplers but the investment cost for these is relatively high. The aim of this project was to investigate the use of the NIR-method for automatic moisture determination in biofuels. Within the project the NIR-method was used to determine the moisture content on withdrawn fuel samples, in addition the possibility to integrate the NIR-method in an automatic sampling system is also described. A large number of samples, in total over 200 samples, have been evaluated with the NIR-method and compared with the reference method, oven drying and gravimetric determination of moisture content. That the NIR-method can be used to determine moisture content in a number of well defined materials have previously been shown. In this report it has moreover been shown that the method can be used under the conditions at the fuel delivery station and for a large spectrum of biofuels. The accuracy that can be achieved with the NIR-method is in the same magnitude as the standard method, i.e. the reference method used for the measurements. Altogether this shows that the NIR-method is an interesting alternative for integration in an automatic measurement system for determination of fuel moisture content in biofuels. To be able to use the NIR-method for automatic determination of fuel moisture content at the

  11. A new quantitative automatic method for the measurement of non-rapid eye movement sleep electroencephalographic amplitude variability.

    Science.gov (United States)

    Ferri, Raffaele; Rundo, Francesco; Novelli, Luana; Terzano, Mario G; Parrino, Liborio; Bruni, Oliviero

    2012-04-01

    The aim of this study was to arrange an automatic quantitative measure of the electroencephalographic (EEG) signal amplitude variability during non-rapid eye movement (NREM) sleep, correlated with the visually extracted cyclic alternating pattern (CAP) parameters. Ninety-eight polysomnographic EEG recordings of normal controls were used. A new algorithm based on the analysis of the EEG amplitude variability during NREM sleep was designed and applied to all recordings, which were also scored visually for CAP. All measurements obtained with the new algorithm correlated positively with corresponding CAP parameters. In particular, total CAP time correlated with total NREM variability time (r = 0.596; P CAP time with light sleep variability time (r = 0.597; P CAP time with slow wave sleep variability time (r = 0.809; P CAP A phases showed a low correlation with the duration of variability events. Finally, the age-related modifications of CAP time and of NREM variability time were found to be very similar. The new method for the automatic analysis of NREM sleep amplitude variability presented here correlates significantly with visual CAP parameters; its application requires a minimum work time, compared to CAP analysis, and might be used in large studies involving numerous recordings in which NREM sleep EEG amplitude variability needs to be assessed. PMID:22084833

  12. Calculations of automatic chamber flux measurements of methane and carbon dioxide using short time series of concentrations

    Science.gov (United States)

    Pirk, Norbert; Mastepanov, Mikhail; Parmentier, Frans-Jan W.; Lund, Magnus; Crill, Patrick; Christensen, Torben R.

    2016-02-01

    The closed chamber technique is widely used to measure the exchange of methane (CH4) and carbon dioxide (CO2) from terrestrial ecosystems. There is, however, large uncertainty about which model should be used to calculate the gas flux from the measured gas concentrations. Due to experimental uncertainties the simple linear regression model (first-order polynomial) is often applied, even though theoretical considerations of the technique suggest the application of other, curvilinear models. High-resolution automatic chamber systems which sample gas concentrations several hundred times per flux measurement make it possible to resolve the curvilinear behavior and study the information imposed by the natural variability of the temporal concentration changes. We used more than 50 000 such flux measurements of CH4 and CO2 from five field sites located in peat-forming wetlands ranging from 56 to 78° N to quantify the typical differences between flux estimates of different models. In addition, we aimed to assess the curvilinearity of the concentration time series and test the general applicability of curvilinear models. Despite significant episodic differences between the calculated flux estimates, the overall differences are generally found to be smaller than the local flux variability on the plot scale. The curvilinear behavior of the gas concentrations within the chamber is strongly influenced by wind-driven chamber leakage, and less so by changing gas concentration gradients in the soil during chamber closure. Such physical processes affect both gas species equally, which makes it possible to isolate biochemical processes affecting the gases differently, such as photosynthesis limitation by chamber headspace CO2 concentrations under high levels of incoming solar radiation. We assess the possibility to exploit this effect for a partitioning of the net CO2 flux into photosynthesis and ecosystem respiration as an example of how high-resolution automatic chamber

  13. Improvement in accuracy of defect size measurement by automatic defect classification

    Science.gov (United States)

    Samir, Bhamidipati; Pereira, Mark; Paninjath, Sankaranarayanan; Jeon, Chan-Uk; Chung, Dong-Hoon; Yoon, Gi-Sung; Jung, Hong-Yul

    2015-10-01

    The blank mask defect review process involves detailed analysis of defects observed across a substrate's multiple preparation stages, such as cleaning and resist-coating. The detailed knowledge of these defects plays an important role in the eventual yield obtained by using the blank. Defect knowledge predominantly comprises of details such as the number of defects observed, and their accurate sizes. Mask usability assessment at the start of the preparation process, is crudely based on number of defects. Similarly, defect size gives an idea of eventual wafer defect printability. Furthermore, monitoring defect characteristics, specifically size and shape, aids in obtaining process related information such as cleaning or coating process efficiencies. Blank mask defect review process is largely manual in nature. However, the large number of defects, observed for latest technology nodes with reducing half-pitch sizes; and the associated amount of information, together make the process increasingly inefficient in terms of review time, accuracy and consistency. The usage of additional tools such as CDSEM may be required to further aid the review process resulting in increasing costs. Calibre® MDPAutoClassify™ provides an automated software alternative, in the form of a powerful analysis tool for fast, accurate, consistent and automatic classification of blank defects. Elaborate post-processing algorithms are applied on defect images generated by inspection machines, to extract and report significant defect information such as defect size, affecting defect printability and mask usability. The algorithm's capabilities are challenged by the variety and complexity of defects encountered, in terms of defect nature, size, shape and composition; and the optical phenomena occurring around the defect [1]. This paper mainly focuses on the results from the evaluation of Calibre® MDPAutoClassify™ product. The main objective of this evaluation is to assess the capability of

  14. Fetal short time variation during labor: a non-invasive alternative to fetal scalp pH measurements?

    OpenAIRE

    Schiermeier, Sven; Reinhard, Joscha; Hatzmann, Hendrike; Zimmermann, Ralf C.; Westhof, Gregor

    2009-01-01

    Objective: To determine whether short time variation (STV) of fetal heart beat correlates with scalp pH measurements during labor. Patients and methods: From 1279 deliveries, 197 women had at least one fetal scalp pH measurement. Using the CTG-Player®, STVs were calculated from the electronically saved cardiotocography (CTG) traces and related to the fetal scalp pH measurements. Results: There was no correlation between STV and fetal scalp pH measurements (r=−0.0592). Conclusions: Fetal ST...

  15. An Automatic Validation System for Interferometry Density Measurements in the ENEA-FTU Tokamak Based on Soft- Computing

    CERN Document Server

    Buceti, G; Rizzo, A; Xibilia, M G; Buceti, Giuliano; Fortuna, Luigi; Rizzo, Alessandro; Xibilia, Maria Gabriella

    2001-01-01

    In this paper, an automatic sensor validation strategy for the measurements of plasma line density in the ENEA-FTU tokamak is presented. Density measurements are performed by a 5-channel DCN interferometer. The approach proposed is based on the design of a neural model of the observed system., i.e. a model able to emulate the behavior of a fault-free sensor and of a two-stage fuzzy system able to detect the occurence of a fault by using a set of suitable indicators. The fault diagnosis and classification is also accomplished. The validation strategy has been implemented and embedded in an interactive software tool installed at FTU. Statistics concerning the rate of fault detection agree with the rate of uncertainty usually achieved in the post-pulse manual validation.

  16. Interobserver variability in visual evaluation of thoracic CT scans and comparison with automatic computer measurements of CT lung density

    DEFF Research Database (Denmark)

    Wille, M.M.W.; Thomsen, Laura H.; Petersen, Jens;

    lung density measurements, i.e. densitometry. Methods – In a pilot study 60 CT scans were selected from a sample of 3980 CT scans from The Danish Lung Cancer Screening Trial (DLCST). The amount of emphysema in these scans was scored independently by two observers, who were blinded regarding clinical......Introduction – Emphysema is defined by pathology, but is most precisely evaluated in vivo by computed tomography (CT). Aims – were to determine the reproducibility of visual evaluation of emphysema, i.e. the observer variability, and furthermore to compare the visual evaluations to automatic CT...... correlation. Results – Spearman’s correlation coefficient between the two observers was r = 0.85, p < 0.001. However, the combined observations for both observers had a correlation with the CT lung density measurements of r = 0.25, p = 0.05. Conclusions – We found a high degree of interobserver consistency in...

  17. Interobserver variability in visual evaluation of thoracic CT scans and comparison with automatic computer measurements of CT lung density

    DEFF Research Database (Denmark)

    Winkler Wille, Mathilde Marie; Thomsen, Laura Hohwü; Dirksen, Asger;

    2012-01-01

    lung density measurements, i.e. densitometry. Methods – In a pilot study 60 CT scans were selected from a sample of 3980 CT scans from The Danish Lung Cancer Screening Trial (DLCST). The amount of emphysema in these scans was scored independently by two observers, who were blinded regarding clinical......Introduction – Emphysema is defined by pathology, but is most precisely evaluated in vivo by computed tomography (CT). Aims – were to determine the reproducibility of visual evaluation of emphysema, i.e. the observer variability, and furthermore to compare the visual evaluations to automatic CT...... correlation. Results – Spearman’s correlation coefficient between the two observers was r = 0.85, p < 0.001. However, the combined observations for both observers had a correlation with the CT lung density measurements of r = 0.25, p = 0.05. Conclusions – We found a high degree of interobserver consistency in...

  18. Risk evaluation on the basis of pressure rate measured by automatic pressure tracking adiabatic calorimeter.

    Science.gov (United States)

    Iwata, Yusaku; Koseki, Hiroshi

    2008-11-15

    An automatic pressure tracking adiabatic calorimeter (APTAC) had been employed to obtain the thermokinetic and the vapor pressure data during runaway reactions. The APTAC is an adiabatic calorimeter with a large-scale sample mass and low thermal inertia, and is an extremely useful tool for assessing thermal hazards of reactive chemicals. The data obtained by the APTAC are important information for the design of the safe industrial process. The thermodynamics parameters and the gas production were discussed on the basis of the experimental data of various concentrations and weights of di-tert-butyl peroxide (DTBP)/toluene solution for the purpose of investigating the properties of the APTAC data. The thermal decomposition of DTBP was studied on the basis of the temperature data and the pressure data obtained by the APTAC. The activation energy and the frequency factor of DTBP are nearly constant and the same as the literature values in the concentrations between 20 and 60 wt.%. The pressure rise due to gas production is important data for designing the relief vent of a reactor. The time history of the gas production was investigated with various weights and concentrations. The total gas production index, which had the vapor pressure correction, was 1.0 in the decomposition of DTBP. PMID:18313846

  19. Risk evaluation on the basis of pressure rate measured by automatic pressure tracking adiabatic calorimeter

    International Nuclear Information System (INIS)

    An automatic pressure tracking adiabatic calorimeter (APTAC) had been employed to obtain the thermokinetic and the vapor pressure data during runaway reactions. The APTAC is an adiabatic calorimeter with a large-scale sample mass and low thermal inertia, and is an extremely useful tool for assessing thermal hazards of reactive chemicals. The data obtained by the APTAC are important information for the design of the safe industrial process. The thermodynamics parameters and the gas production were discussed on the basis of the experimental data of various concentrations and weights of di-tert-butyl peroxide (DTBP)/toluene solution for the purpose of investigating the properties of the APTAC data. The thermal decomposition of DTBP was studied on the basis of the temperature data and the pressure data obtained by the APTAC. The activation energy and the frequency factor of DTBP are nearly constant and the same as the literature values in the concentrations between 20 and 60 wt.%. The pressure rise due to gas production is important data for designing the relief vent of a reactor. The time history of the gas production was investigated with various weights and concentrations. The total gas production index, which had the vapor pressure correction, was 1.0 in the decomposition of DTBP

  20. VALIDATION OF ULTRASOUND AS A NONINVASIVE TOOL TO MEASURE SUBCUTANEOUS FAT DEPTH IN LEATHERBACK SEA TURTLES (DERMOCHELYS CORIACEA).

    Science.gov (United States)

    Harris, Heather S; Benson, Scott R; James, Michael C; Martin, Kelly J; Stacy, Brian A; Daoust, Pierre-Yves; Rist, Paul M; Work, Thierry M; Balazs, George H; Seminoff, Jeffrey A

    2016-03-01

    Leatherback turtles (Dermochelys coriacea) undergo substantial cyclical changes in body condition between foraging and nesting. Ultrasonography has been used to measure subcutaneous fat as an indicator of body condition in many species but has not been applied in sea turtles. To validate this technique in leatherback turtles, ultrasound images were obtained from 36 live-captured and dead-stranded immature and adult turtles from foraging and nesting areas in the Pacific and Atlantic oceans. Ultrasound measurements were compared with direct measurements from surgical biopsy or necropsy. Tissue architecture was confirmed histologically in a subset of turtles. The dorsal shoulder region provided the best site for differentiation of tissues. Maximum fat depth values with the front flipper in a neutral (45-90°) position demonstrated good correlation with direct measurements. Ultrasound-derived fat measurements may be used in the future for quantitative assessment of body condition as an index of health in this critically endangered species. PMID:27010287

  1. Calibration of a non-invasive cosmic-ray probe for wide area snow water equivalent measurement

    Science.gov (United States)

    Sigouin, Mark J. P.; Si, Bing C.

    2016-06-01

    Measuring snow water equivalent (SWE) is important for many hydrological purposes such as modelling and flood forecasting. Measurements of SWE are also crucial for agricultural production in areas where snowmelt runoff dominates spring soil water recharge. Typical methods for measuring SWE include point measurements (snow tubes) and large-scale measurements (remote sensing). We explored the potential of using the cosmic-ray soil moisture probe (CRP) to measure average SWE at a spatial scale between those provided by snow tubes and remote sensing. The CRP measures above-ground moderated neutron intensity within a radius of approximately 300 m. Using snow tubes, surveys were performed over two winters (2013/2014 and 2014/2015) in an area surrounding a CRP in an agricultural field in Saskatoon, Saskatchewan, Canada. The raw moderated neutron intensity counts were corrected for atmospheric pressure, water vapour, and temporal variability of incoming cosmic-ray flux. The mean SWE from manually measured snow surveys was adjusted for differences in soil water storage before snowfall between both winters because the CRP reading appeared to be affected by soil water below the snowpack. The SWE from the snow surveys was negatively correlated with the CRP-measured moderated neutron intensity, giving Pearson correlation coefficients of -0.90 (2013/2014) and -0.87 (2014/2015). A linear regression performed on the manually measured SWE and moderated neutron intensity counts for 2013/2014 yielded an r2 of 0.81. Linear regression lines from the 2013/2014 and 2014/2015 manually measured SWE and moderated neutron counts were similar; thus differences in antecedent soil water storage did not appear to affect the slope of the SWE vs. neutron relationship. The regression equation obtained from 2013/2014 was used to model SWE using the moderated neutron intensity data for 2014/2015. The CRP-estimated SWE for 2014/2015 was similar to that of the snow survey, with an root

  2. Automatic Extraction of Optimal Endmembers from Airborne Hyperspectral Imagery Using Iterative Error Analysis (IEA and Spectral Discrimination Measurements

    Directory of Open Access Journals (Sweden)

    Ahram Song

    2015-01-01

    Full Text Available Pure surface materials denoted by endmembers play an important role in hyperspectral processing in various fields. Many endmember extraction algorithms (EEAs have been proposed to find appropriate endmember sets. Most studies involving the automatic extraction of appropriate endmembers without a priori information have focused on N-FINDR. Although there are many different versions of N-FINDR algorithms, computational complexity issues still remain and these algorithms cannot consider the case where spectrally mixed materials are extracted as final endmembers. A sequential endmember extraction-based algorithm may be more effective when the number of endmembers to be extracted is unknown. In this study, we propose a simple but accurate method to automatically determine the optimal endmembers using such a method. The proposed method consists of three steps for determining the proper number of endmembers and for removing endmembers that are repeated or contain mixed signatures using the Root Mean Square Error (RMSE images obtained from Iterative Error Analysis (IEA and spectral discrimination measurements. A synthetic hyperpsectral image and two different airborne images such as Airborne Imaging Spectrometer for Application (AISA and Compact Airborne Spectrographic Imager (CASI data were tested using the proposed method, and our experimental results indicate that the final endmember set contained all of the distinct signatures without redundant endmembers and errors from mixed materials.

  3. Calibration of a non-invasive cosmic-ray probe for wide area snow water equivalent measurement

    Science.gov (United States)

    Sigouin, Mark J. P.; Si, Bing C.

    2016-06-01

    Measuring snow water equivalent (SWE) is important for many hydrological purposes such as modelling and flood forecasting. Measurements of SWE are also crucial for agricultural production in areas where snowmelt runoff dominates spring soil water recharge. Typical methods for measuring SWE include point measurements (snow tubes) and large-scale measurements (remote sensing). We explored the potential of using the cosmic-ray soil moisture probe (CRP) to measure average SWE at a spatial scale between those provided by snow tubes and remote sensing. The CRP measures above-ground moderated neutron intensity within a radius of approximately 300 m. Using snow tubes, surveys were performed over two winters (2013/2014 and 2014/2015) in an area surrounding a CRP in an agricultural field in Saskatoon, Saskatchewan, Canada. The raw moderated neutron intensity counts were corrected for atmospheric pressure, water vapour, and temporal variability of incoming cosmic-ray flux. The mean SWE from manually measured snow surveys was adjusted for differences in soil water storage before snowfall between both winters because the CRP reading appeared to be affected by soil water below the snowpack. The SWE from the snow surveys was negatively correlated with the CRP-measured moderated neutron intensity, giving Pearson correlation coefficients of -0.90 (2013/2014) and -0.87 (2014/2015). A linear regression performed on the manually measured SWE and moderated neutron intensity counts for 2013/2014 yielded an r2 of 0.81. Linear regression lines from the 2013/2014 and 2014/2015 manually measured SWE and moderated neutron counts were similar; thus differences in antecedent soil water storage did not appear to affect the slope of the SWE vs. neutron relationship. The regression equation obtained from 2013/2014 was used to model SWE using the moderated neutron intensity data for 2014/2015. The CRP-estimated SWE for 2014/2015 was similar to that of the snow survey, with an root

  4. The Value of a BP Determination Method Using a Novel Non-Invasive BP Device against the Invasive Catheter Measurement

    OpenAIRE

    Jinsong Xu; Yanqing Wu; Hai Su; Weitong Hu; Juxiang Li; Wenying Wang; Xin Liu; Xiaoshu Cheng

    2014-01-01

    OBJECTIVE: The aim of this study was to evaluate the accuracy of a new blood pressure (BP) measurement method (Pulse method). METHODS: This study enrolled 45 patients for selective percutaneous coronary intervention (PCI) via right radial artery. A BP device using either oscillometric (Microlife 3AC1-1) or Pulse method(RG-BP11)was used. At the beginning of each PCI, intra-radial BP was measured before Microlife BP or Pulse BP measurement as its own reference, respectively. At the end of PCI, ...

  5. In vitro and in vivo studies of new photoluminescent oxygen sensors for non-invasive intravascular pO2 measurements

    Science.gov (United States)

    Nowak-Sliwinska, Patrycja; Forte, Eddy; van den Bergh, Hubert; Wagnières, Georges

    2009-06-01

    The concentration of oxygen and its rate of consumption are important factors playing a role in PDT and radiotherapy. One of the methods for measuring the tissular oxygen partial pressure (pO2) is based on the use of luminophores presenting an oxygen-dependent quenching of their phosphorescence. The time-resolved luminescence spectroscopy of palladium (PdTCPP) or ruthenium (RuDPP) porphyrin complexes is used for this purpose. Unfortunately, these porphyrin derivatives are phototoxic and leak rapidly out of the blood vessels, making them unsuitable for measuring tissular and or intravascular pO2. Therefore, this research aimed at developing and testing new biocompatible, non-phototoxic oxygen sensors based on palladium complexes incorporated into oxygen permeable, polysaccharide-based nanoparticles appropriate for noninvasive in situ and in vivo measurements of the pO2. In vitro studies, performed with an optical fiber-based time-resolved spectrophotometer, showed that the incorporation of such pO2 probes in nanovectors reduces their sensitivity to oxygen as well as their photobleaching by less than one order of magnitude. However, in vivo biocompatibility studies performed on the chick's embryo chorioallantoic membrane (CAM) model demonstrated that the luminescence of those oxygen probes tends to be heterogeneously distributed within the vasculature. In addition, these probes induce a 'clumping tendency', resulting in a more or less decreased viability of the embryos.

  6. [Diagnostic accuracy for alcoholic liver disease with controlled Attenuation Parameter (CAP) measured by transient elastography for the non-invasive assessment of liver steatosis].

    Science.gov (United States)

    Kikuchi, Masahiro; Umeda, Rumiko; Tsuruya, Kota; Shiozawa, Hirokazu; Matsushima, Masashi; Abe, Keiichiro; Kikuchi, Miho; Takahashi, Masahiko; Yamagishi, Yoshiyuki; Nishizaki, Hiroyasu; Horie, Yoshinori; Kanai, Takanori

    2015-10-01

    Along with the development of interferon and therapeutic medication, the incidence of viral hepatitis constituting the largest part of liver disease decreased, and the main target in the field of liver disease is now shifting from viral hepatitis to alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD) as metabolic liver disease. Although these diseases tend.to. be gathered as non-viral liver disease because the similar specific liver tissue, the natural history and etiology are considerably different between them. We need to distinguish both of them to do appropriate treatment intervention. Questioning of amount of drinking is needed, but we experience some difficult cases to understand drinking history because of a too little declaration of amount of drinking. A new ultrasonic image analyses using propagation speed in the organization of the pulse vibration wave was developed as Fibroscan by Echosens company in recent years. Fibroscan is a non-invasive test to quantify liver fibrosis as Liver Stiffness Measurement (LSM). It also detects and quantifies steatosis simultaneously using the Controlled Attenuation Parameter (CAP). CAP is a measurement of the ultrasound attenuation. We measured liver steatosis of patients using Fibroscan, and other blood tests. 63 cases of ALD, 177 cases of NAFLD, 57 cases of Virus and 271 cases of Normal were enrolled. CAP value were significantly lower in the ALD group compared with NAFLD group. (P Fibroscan for ALD patients, comparing the results of them to those of virus patients and NAFLD patients. PMID:26946784

  7. Automatic sorting installation based on two CCD cameras for measuring gauge diameter and ellipticity of pulp extractors

    Science.gov (United States)

    Ovchinnikov, Dmitry L.; Akhtiamov, Rishad A.; Dorogov, Nikolai V.; Morozov, Oleg G.; Nureev, Ilnur I.; Yusupov, Alfred Y.

    2000-12-01

    The concrete problem, which decision is presented in given paper, consists in measuring of pulp extractor diameter apart 1 mm from its operating end and their automatic sorting. The range of measuring sizes is 180-260 micrometers , necessary measurement accuracy is 1 micrometers . The sorting is carried out on 8 subranges in 10 micrometers . The ellipticity of a pulp extractor is analyzed additionally and used as a qualitative index. The comparative analysis of different tools on metrology performances and cost problems of their embodying has allowed to select television system, as the class on the basis of which is necessary to build a required system. Problems decided at built-up of a system are: use of short focus lenses with major augmentation for shaping pulse duration solved for measuring to within 1 micrometers error; the account of lenses aberrations influence on a measuring error; use of cameras with a size of pixels in 0.7-1 micrometers ; definition of the line number, which corresponds to a gauge diameter of a pulp extractor; holding of a statistical average and extrapolation of data of measuring; the analysis of system variants with the purpose of its simplification and cost decreasing.

  8. Semi-automatic laboratory goniospectrometer system for performing multi-angular reflectance and polarization measurements for natural surfaces

    Science.gov (United States)

    Sun, Z. Q.; Wu, Z. F.; Zhao, Y. S.

    2014-01-01

    In this paper, the design and operation of the Northeast Normal University Laboratory Goniospectrometer System for performing multi-angular reflected and polarized measurements under controlled illumination conditions is described. A semi-automatic arm, which is carried on a rotated circular ring, enables the acquisition of a large number of measurements of surface Bidirectional Reflectance Factor (BRF) over the full hemisphere. In addition, a set of polarizing optics enables the linear polarization over the spectrum from 350 nm to 2300 nm. Because of the stable measurement condition in the laboratory, the BRF and linear polarization has an average uncertainty of 1% and less than 5% depending on the sample property, respectively. The polarimetric accuracy of the instrument is below 0.01 in the form of the absolute value of degree of linear polarization, which is established by measuring a Spectralon plane. This paper also presents the reflectance and polarization of snow, soil, sand, and ice measured during 2010-2013 in order to illustrate its stability and accuracy. These measurement results are useful to understand the scattering property of natural surfaces on Earth.

  9. A non-invasive device to measure mechanical interaction between tongue, palate and teeth during speech production

    CERN Document Server

    Jeannin, C; Payan, Y; Dittmar, A; Grosgogeat, B; Jeannin, Christophe; Perrier, Pascal; Payan, Yohan; Dittmar, Andr\\'{e}; Grosgogeat, Brigitte

    2005-01-01

    This paper describes an original experimental procedure to measure the mechanical interaction between the tongue and teeth and palate during speech production. It consists in using edentulous people as subjects and to insert pressure sensors in the structure of their complete dental prosthesis. Hence, there is no perturbation of the vocal tract cavity due to the sensors themselves. Several duplicates are used with transducers situated at different locations of the complete denture according to palatography's results, in order to carefully analyze the production of specific sounds such as stop consonants.. It is also possible to measure the contact pressure at different locations on the palate for the same sound.

  10. Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons 1986

    Science.gov (United States)

    Soil moisture content on a horizontal scale of hectometers and at depths of decimeters can be inferred from measurements of low-energy cosmic-ray neutrons that are generated within soil, moderated mainly by hydrogen atoms, and diffused back to the atmosphere. These neutrons are sensitive to water co...

  11. Using Noninvasive Brain Measurement to Explore the Psychological Effects of Computer Malfunctions on Users during Human-Computer Interactions

    Directory of Open Access Journals (Sweden)

    Leanne M. Hirshfield

    2014-01-01

    Full Text Available In today’s technologically driven world, there is a need to better understand the ways that common computer malfunctions affect computer users. These malfunctions may have measurable influences on computer user’s cognitive, emotional, and behavioral responses. An experiment was conducted where participants conducted a series of web search tasks while wearing functional near-infrared spectroscopy (fNIRS and galvanic skin response sensors. Two computer malfunctions were introduced during the sessions which had the potential to influence correlates of user trust and suspicion. Surveys were given after each session to measure user’s perceived emotional state, cognitive load, and perceived trust. Results suggest that fNIRS can be used to measure the different cognitive and emotional responses associated with computer malfunctions. These cognitive and emotional changes were correlated with users’ self-report levels of suspicion and trust, and they in turn suggest future work that further explores the capability of fNIRS for the measurement of user experience during human-computer interactions.

  12. Ultrasound Estimated Bladder Weight and Measurement of Bladder Wall Thickness-Useful Noninvasive Methods for Assessing the Lower Urinary Tract?

    NARCIS (Netherlands)

    E. Bright; M. Oelke; A. Tubaro; P. Abrams

    2010-01-01

    Purpose: In the last decade interest has arisen in the use of ultrasound derived measurements of bladder wall thickness, detrusor wall thickness and ultrasound estimated bladder weight as potential diagnostic tools for conditions known to induce detrusor hypertrophy. However, to date such measuremen

  13. Noninvasive in-process thickness measurement of an organic layer on steel using x-ray scattering

    International Nuclear Information System (INIS)

    The motivation for this work was the need for a non-contacting composition-independent in-process technique for rapidly measuring the mass per unit area (open-quotes surface densityclose quotes) of a continuous slab of organic material prepared on a stainless steel base. It was essential that the technique be adaptable to eventual implementation for on-line process control

  14. Non-invasive measurement of stroke volume and left ventricular ejection fraction. Radionuclide cardiography compared with left ventricular cardioangiography

    DEFF Research Database (Denmark)

    Kelbaek, H; Svendsen, Jesper Hastrup; Aldershvile, J; Folke, K; Nielsen, S L

    2011-01-01

    thermodilution and left ventricular cardioangiographic techniques. In a paired comparison the mean difference between the invasive and radionuclide SV was -1 ml (SED 3.1) with a correlation coefficient of 0.83 (p less than 0.01). Radionuclide LVEF values also correlated well with cardioangiographic measurements...

  15. [Liver cirrhosis and portal hypertension: non-invasive measurement of blood flow in the portal vein with Doppler-duplex].

    Science.gov (United States)

    Fernández, M; Chesta, J; Jirón, M I; Mánquez, P; Brahm, J

    1991-05-01

    Doppler-duplex has been widely used to quantify blood flow. Nevertheless, its usefulness in assessing portal vein flow (PVF) has been questioned due to technical problems: vessel cross sectional area measurements, interobserver variability, and PVF changes related to physiological events. This study was aimed to measure PVF in patients with cirrhosis and portal hypertension, to estimate changes in PVF during the respiratory cycle, and to evaluate intraobserver variability of Doppler-duplex technique. Twenty-two patients with liver cirrhosis and portal hypertension and 22 healthy subjects were included. One operator made 6 measurements of portal vein diameter (D) and mean flow velocity in inspiration and aspiration. Area of the vessel (A) and PVF were calculated by a microprocessor. Interobserver variability was estimated for each subject and a mean was determined for each group. In the control group, PVF was 901 +/- 39 ml/min in inspiration and 633 +/- 38 ml/min in aspiration; p espiration in both groups. The Doppler-duplex method evaluation of PVF has an important intraobserver variability (18.3 +/- 1.6%). Then, changes in PVF less than 20% are not accurately measured by this technique. PMID:1844290

  16. The value of a BP determination method using a novel non-invasive BP device against the invasive catheter measurement.

    Directory of Open Access Journals (Sweden)

    Jinsong Xu

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the accuracy of a new blood pressure (BP measurement method (Pulse method. METHODS: This study enrolled 45 patients for selective percutaneous coronary intervention (PCI via right radial artery. A BP device using either oscillometric (Microlife 3AC1-1 or Pulse method(RG-BP11was used. At the beginning of each PCI, intra-radial BP was measured before Microlife BP or Pulse BP measurement as its own reference, respectively. At the end of PCI, BP was measured again with the measurement order of Microlife BP and Pulse BP reversed. The differences between intra-radial and Microlife (BPi-M or Pulse BP (BPi-P on SBP, DBP and mean artery pressure (MAP were calculated. Meanwhile, in 48 patients the intra-brachial BP and intra-radial artery BP were measured to calculate the brachial -radial BP difference (BPr-b. RESULTS: The intra-radial SBP references used prior to both the Microlife and Pulse SBP that were similar (145.1±27.7 vs 145.8±24.2 mmHg, but the Microlife SBP was significantly lower than the Pulse SBP (127.7±20.5 vs 130.3±22.7 mmHg, P<0.05, thus the SBPi-M was higher than SBPi-P (18.1±11.8 vs 14.8±12.8 mmHg, P<0.05. As the mean SBPr-b was 12.4 mmHg, the Pulse SBP was closer to expected intra-brachial SBP by about 3.3 mmHg than was Microlife SBP to expected intra-brachial SBP. Meanwhile, Bland-Altman plots showed that the 95% limits of agreement for intra-radial SBP by Pulse SBP were narrower than those by Microlife SBP (12.0∼17.5 vs 15.5∼20.6 mmHg. However, the 95% limits of agreement for Pulse DBP and MAP were similar to those for Microlife DBP and MAP. CONCLUSION: Against the invasive BP measurement, the pulse method may provide more accurate SBP and comparable DBP and MAP as compared with the oscillometric method.

  17. 'Becquerel screening' device to automatically measure activity level of contaminated soil in flexible containers

    International Nuclear Information System (INIS)

    Contaminated soil and incineration ash collected during offsite decontamination work following the accident at the Fukushima Daiichi Nuclear Power Station of Tokyo Electric Power Co., Inc. is being stored in flexible containers. These containers are managed taking their activity level into account in accordance with the Decontamination Guidelines issued by the Ministry of the Environment. Toshiba has developed the 'Becquerel Screening' device that can automatically measure the activity level of the contents of each flexible container simply by placing the container on a palette, without the need to take samples for analysis from the container. The Becquerel Screening device is expected to contribute not only to improved operational efficiency but also to reduced exposure of operators to radiation, because it eliminates the need for direct contact with contaminated soil and ash. (author)

  18. Design of the automatic motor Ke measurement system using the system on programming chip

    Science.gov (United States)

    Yen, Sheng-Chan; Chang, Kai-Hsiung; Liu, Yen-Chih; An, Nia-Chun; Tsai, Hsiu-An

    2013-01-01

    The induced electromotive force of traditional motor measurement usually uses another motor to connect the tested motor with the drive shaft to measure its speed and obtain Ke value of induced electromotive force of the tested motor. If the tested motor is not suitable for connection to the connect coupling because of the shape or volume of the rotor, it is difficult to measure the Ke values of the tested motor. So some scholars have proposed two-phase motor which drives the three-phase motor, and gain the measurement method of Ke from the third phase in a few years ago. The mainly way is using the digital logic circuits to redefine the truth table by entering the signals to the motor driver chip from the three Hall sensors. So it can still maintain a positive torque above 0 even if used the two-phase driver and the motor can be rotated by the two-phase driver. But the drawback is that it can only be measured the fixed Ke value at the same phase. And it has to redefine the truth table to measure the values of the other two phase. This paper provides a new measurement method that made the motor speed accelerate to the measured speed at the beginning and measuring the value of third phases while the rotation is maintained by the other two-phase. The advantage is that it can change the phase of measurement, so it can easily measure the Ke value. And the most of digital components which including processor, keyboard decoder and frequency counter etc can be achieved in FPGA by using SOPC method. It can significantly reduce the complexity of circuit and increase system reliability degree.

  19. Renal cortical volume measured using automatic contouring software for computed tomography and its relationship with BMI, age and renal function

    International Nuclear Information System (INIS)

    Purpose: To evaluate the relationship between renal cortical volume, measured by an automatic contouring software, with body mass index (BMI), age and renal function. Materials and methods: The study was performed in accordance to the institutional guidelines at our hospital. Sixty-four patients (34 men, 30 women), aged 19 to 79 years had their CT scans for diagnosis or follow-up of hepatocellular carcinoma retrospectively examined by a computer workstation using a software that automatically contours the renal cortex and the renal parenchyma. Body mass index and estimated glomerular filtration rate (eGFR) were calculated based on data collected. Statistical analysis was done using the Student t-test, multiple regression analysis, and intraclass correlation coefficient (ICC). Results: The ICC for total renal and renal cortical volumes were 0.98 and 0.99, respectively. Renal volume measurements yielded a mean cortical volume of 105.8 cm3 ± 28.4 SD, mean total volume of 153 cm3 ± 39 SD and mean medullary volume of 47.8 cm3 ± 19.5 SD. The correlation between body weight/height/BMI and both total renal and cortical volumes presented r = 0.6, 0.6 and 0.4, respectively, p < 0.05, while the correlation between renal cortex and age was r = -0.3, p < 0.05. eGFR showed correlation with renal cortical volume r = 0.6, p < 0.05. Conclusion: This study demonstrated that renal cortical volume had a moderate positive relationship with BMI, moderate negative relationship with age, and a strong positive relationship with the renal function, and provided a new method to routinely produce volumetric assessment of the kidney.

  20. A semi-automatic framework of measuring pulmonary arterial metrics at anatomic airway locations using CT imaging

    Science.gov (United States)

    Jin, Dakai; Guo, Junfeng; Dougherty, Timothy M.; Iyer, Krishna S.; Hoffman, Eric A.; Saha, Punam K.

    2016-03-01

    Pulmonary vascular dysfunction has been implicated in smoking-related susceptibility to emphysema. With the growing interest in characterizing arterial morphology for early evaluation of the vascular role in pulmonary diseases, there is an increasing need for the standardization of a framework for arterial morphological assessment at airway segmental levels. In this paper, we present an effective and robust semi-automatic framework to segment pulmonary arteries at different anatomic airway branches and measure their cross-sectional area (CSA). The method starts with user-specified endpoints of a target arterial segment through a custom-built graphical user interface. It then automatically detect the centerline joining the endpoints, determines the local structure orientation and computes the CSA along the centerline after filtering out the adjacent pulmonary structures, such as veins or airway walls. Several new techniques are presented, including collision-impact based cost function for centerline detection, radial sample-line based CSA computation, and outlier analysis of radial distance to subtract adjacent neighboring structures in the CSA measurement. The method was applied to repeat-scan pulmonary multirow detector CT (MDCT) images from ten healthy subjects (age: 21-48 Yrs, mean: 28.5 Yrs; 7 female) at functional residual capacity (FRC). The reproducibility of computed arterial CSA from four airway segmental regions in middle and lower lobes was analyzed. The overall repeat-scan intra-class correlation (ICC) of the computed CSA from all four airway regions in ten subjects was 96% with maximum ICC found at LB10 and RB4 regions.

  1. Renal cortical volume measured using automatic contouring software for computed tomography and its relationship with BMI, age and renal function

    Energy Technology Data Exchange (ETDEWEB)

    Muto, Natalia Sayuri, E-mail: nataliamuto@gmail.com [Department of Radiology, Hokkaido University Hospital, N15 W7, kita-ku, Sapporo City, 0608638 (Japan); Kamishima, Tamotsu, E-mail: ktamotamo2@yahoo.co.jp [Department of Radiology, Hokkaido University Hospital, N15 W7, kita-ku, Sapporo City, 0608638 (Japan); Harris, Ardene A., E-mail: ardene_b@yahoo.com [Department of Radiology, Hokkaido University Hospital, N15 W7, kita-ku, Sapporo City, 0608638 (Japan); Kato, Fumi, E-mail: fumikato@med.hokudai.ac.jp [Department of Radiology, Hokkaido University Hospital, N15 W7, kita-ku, Sapporo City, 0608638 (Japan); Onodera, Yuya, E-mail: yuyaonodera@med.hokudai.ac.jp [Department of Radiology, Hokkaido University Hospital, N15 W7, kita-ku, Sapporo City, 0608638 (Japan); Terae, Satoshi, E-mail: saterae@yahoo.co.jp [Department of Radiology, Hokkaido University Hospital, N15 W7, kita-ku, Sapporo City, 0608638 (Japan); Shirato, Hiroki, E-mail: shirato@med.hokudai.ac.jp [Department of Radiology, Hokkaido University Hospital, N15 W7, kita-ku, Sapporo City, 0608638 (Japan)

    2011-04-15

    Purpose: To evaluate the relationship between renal cortical volume, measured by an automatic contouring software, with body mass index (BMI), age and renal function. Materials and methods: The study was performed in accordance to the institutional guidelines at our hospital. Sixty-four patients (34 men, 30 women), aged 19 to 79 years had their CT scans for diagnosis or follow-up of hepatocellular carcinoma retrospectively examined by a computer workstation using a software that automatically contours the renal cortex and the renal parenchyma. Body mass index and estimated glomerular filtration rate (eGFR) were calculated based on data collected. Statistical analysis was done using the Student t-test, multiple regression analysis, and intraclass correlation coefficient (ICC). Results: The ICC for total renal and renal cortical volumes were 0.98 and 0.99, respectively. Renal volume measurements yielded a mean cortical volume of 105.8 cm{sup 3} {+-} 28.4 SD, mean total volume of 153 cm{sup 3} {+-} 39 SD and mean medullary volume of 47.8 cm{sup 3} {+-} 19.5 SD. The correlation between body weight/height/BMI and both total renal and cortical volumes presented r = 0.6, 0.6 and 0.4, respectively, p < 0.05, while the correlation between renal cortex and age was r = -0.3, p < 0.05. eGFR showed correlation with renal cortical volume r = 0.6, p < 0.05. Conclusion: This study demonstrated that renal cortical volume had a moderate positive relationship with BMI, moderate negative relationship with age, and a strong positive relationship with the renal function, and provided a new method to routinely produce volumetric assessment of the kidney.

  2. Applicability of near-infrared spectroscopy to measure cerebral autoregulation noninvasively in neonates: a validation study in piglets

    DEFF Research Database (Denmark)

    Holst Hahn, Gitte; Heiring, Christian; Pryds, Ole; Greisen, Gorm

    2011-01-01

    Impaired cerebral autoregulation (CA) is common and is associated with brain damage in sick neonates. Frequency analysis using spontaneous changes in arterial blood pressure (ABP) and cerebral near-infrared spectroscopy (NIRS) has been used to measure CA in several clinical studies. Coherence of...... the NIRS and ABP signals (i.e. correlation in the frequency domain) detects impairment of CA, whereas gain (i.e. magnitude of ABP variability passing from systemic to cerebral circulation) estimates the degree of this impairment. So far, however, this method has not been validated. In 12 newborn...... capacity in measurements with significant coherence (r = -0.55, n = 15, p = 0.03). In conclusion, our data validate frequency analysis for estimation of CA in clinical research. Low precision, however, hampers its clinical application....

  3. Development of a Phantom Tissue for Blood Perfusion Measurements and Noninvasive Blood Perfusion Estimation in Living Tissue

    OpenAIRE

    Mudaliar, Ashvinikumar

    2007-01-01

    A convenient method for testing and calibrating surface perfusion sensors has been developed. A phantom tissue model is used to mimic the non-directional blood flow of tissue perfusion. A computational fluid dynamics (CFD) model was constructed in Fluent to design the phantom tissue and validate the experimental results. The phantom perfusion system was used with a perfusion sensor based on the clearance of thermal energy. A heat flux gage measures the heat flux response of tissue whe...

  4. Portable oxidative stress sensor: dynamic and non-invasive measurements of extracellular H₂O₂ released by algae.

    Science.gov (United States)

    Koman, Volodymyr B; Santschi, Christian; von Moos, Nadia R; Slaveykova, Vera I; Martin, Olivier J F

    2015-06-15

    Reactive oxygen species (ROS) generated by aerobic organisms are essential for physiological processes such as cell signaling, apoptosis, immune defense and oxidative stress mechanisms. Unbalanced oxidant/antioxidant budgets are involved in many diseases and, therefore, the sensitive measurement of ROS is of great interest. Here, we present a new device for the real-time monitoring of oxidative stress by measuring one of the most stable ROS, namely hydrogen peroxide (H2O2). This portable oxidative stress sensor contains the heme protein cytochrome c (cyt c) as sensing element whose spectral response enables the detection of H2O2 down to a detection limit of 40 nM. This low detection limit is achieved by introducing cyt c in a random medium, enabling multiscattering that enhances the optical trajectory through the cyt c spot. A contact microspotting technique is used to produce reproducible and reusable cyt c spots which are stable for several days. Experiments in static and microfluidic regimes, as well as numerical simulations demonstrate the suitability of the cyt c/H2O2 reaction system for the real-time sensing of the kinetics of biological processes without H2O2 depletion in the measurement chamber. As an example, we detect the release of H2O2 from the green alga Chlamydomonas reinhardtii exposed to either 180 nM functionalized CdSe/ZnS core shell quantum dots, or to 10 mg/l TiO2 nanoparticles. The continuous measurement of extracellular H2O2 by this optical sensor with high sensitivity is a promising new means for real-time cytotoxicity tests, the investigation of oxidative stress and other physiological cell processes. PMID:25588702

  5. Ultra-low power sensor for autonomous non-invasive voltage measurement in IoT solutions for energy efficiency

    Science.gov (United States)

    Villani, Clemente; Balsamo, Domenico; Brunelli, Davide; Benini, Luca

    2015-05-01

    Monitoring current and voltage waveforms is fundamental to assess the power consumption of a system and to improve its energy efficiency. In this paper we present a smart meter for power consumption which does not need any electrical contact with the load or its conductors, and which can measure both current and voltage. Power metering becomes easier and safer and it is also self-sustainable because an energy harvesting module based on inductive coupling powers the entire device from the output of the current sensor. A low cost 32-bit wireless CPU architecture is used for data filtering and processing, while a wireless transceiver sends data via the IEEE 802.15.4 standard. We describe in detail the innovative contact-less voltage measurement system, which is based on capacitive coupling and on an algorithm that exploits two pre-processing channels. The system self-calibrates to perform precise measurements regardless the cable type. Experimental results demonstrate accuracy in comparison with commercial high-cost instruments, showing negligible deviations.

  6. Automatic sequences

    CERN Document Server

    Haeseler, Friedrich

    2003-01-01

    Automatic sequences are sequences which are produced by a finite automaton. Although they are not random they may look as being random. They are complicated, in the sense of not being not ultimately periodic, they may look rather complicated, in the sense that it may not be easy to name the rule by which the sequence is generated, however there exists a rule which generates the sequence. The concept automatic sequences has special applications in algebra, number theory, finite automata and formal languages, combinatorics on words. The text deals with different aspects of automatic sequences, in particular:· a general introduction to automatic sequences· the basic (combinatorial) properties of automatic sequences· the algebraic approach to automatic sequences· geometric objects related to automatic sequences.

  7. Method for automatic drift stabilization in radiation measurement with a detector

    International Nuclear Information System (INIS)

    For radiometric measurement of material properties, e.g. a density measurement according to the irradiation method, the reference source of radiation serves at the same time as radiation source for the measurement. The source consists e.g. of 137Cs. The pulse amplitude spectrum contains at least one discrete line. A control device keeps the pulse rate supplied by an integral discriminator constant. For stabilizing purposes the desired value of the control device is preset in such a manner that the pulse rate is smaller than the total pulse rate of the most energetic line (discrete line) in the pulse amplitude spectrum. (DG)

  8. Real-time monitoring and measurement of wax deposition in pipelines via non-invasive electrical capacitance tomography

    Science.gov (United States)

    Lock Sow Mei, Irene; Ismail, Idris; Shafquet, Areeba; Abdullah, Bawadi

    2016-02-01

    Tomographic analysis of the behavior of waxy crude oil in pipelines is important to permit appropriate corrective actions to be taken to remediate the wax deposit layer before pipelines are entirely plugged. In this study, a non-invasive/non-intrusive electrical capacitance tomography (ECT) system has been applied to provide real-time visualization of the formation of paraffin waxes and to measure the amount of wax fraction from the Malay Basin waxy crude oil sample under the static condition. Analogous expressions to estimate the wax fraction of the waxy crude oil across the temperatures range of 30-50 °C was obtained by using Otsu’s and Kuo’s threshold algorithms. Otsu’s method suggested that the wax fraction can be estimated by the correlation coefficient β =0.0459{{T}3}-5.3535{{T}2}+200.36T-2353.7 while Kuo’s method provides a similar correlation with β =0.0741{{T}3}-8.4915{{T}2}+314.96T-3721.2 . These correlations show good agreements with the results which are obtained from the conventional weighting method. This study suggested that Kuo’s threshold algorithm is more promising when integrated into the ECT system compared to Otsu’s algorithm because the former provides higher accuracy wax fraction measurement results below the wax appearance temperature for waxy crude oil. This study is significant because it serves as a preliminary investigation for the application of ECT in the oil and gas industry for online measurement and detection of wax fraction without causing disturbance to the process flow.

  9. ONLINE CHARGE MEASUREMENTS ENABLES PROCESS OPTIMIZATION AND AUTOMATIC CONTROL OF FIXATIVE DOSAGES

    Institute of Scientific and Technical Information of China (English)

    S.GRUBER; R.BERGER

    2004-01-01

    For two decades, electric charges have been a vital parameter for quality monitoring of pulp suspensions. Most mill laboratories conduct charge measurements as a daily routine that is considered basic to quality assurance.

  10. ONLINE CHARGE MEASUREMENTS ENABLES PROCESS OPTIMIZATION AND AUTOMATIC CONTROL OF FIXATIVE DOSAGES

    Institute of Scientific and Technical Information of China (English)

    S. GRUBER; R. BERGER

    2004-01-01

    @@ 1. INTRODUCTION For two decades, electric charges have been a vital parameter for quality monitoring of pulp suspensions.Most mill laboratories conduct charge measurements as a daily routine that is considered basic to quality assurance.

  11. Non-invasive near-field measurement setup based on modulated scatterer technique applied to microwave tomography

    Science.gov (United States)

    Memarzadeh-Tehran, Hamidreza

    The main focus of this thesis is to address the design and development of a near-field (NF) imaging setup based on the modulated scatterer technique (MST). MST is a well-known approach used in applications where accurate and perturbation-free measurement results are necessary. Of the possible implementations available for making an MST probe, including electrical, optical and mechanical, the optically modulated scatterer OMS was considered in order to provide nearly perturbation-free measurement due to the invisibility of optical fiber to the radio-frequency electromagnetic fields. The OMS probe consists of a commercial, off-the-shelf (COTS) photodiode chip (nonlinear device), a short-dipole antenna acting as a scatterer and a matching network (passive circuit). The latter improves the scattering properties and also increases the sensitivity of the OMS probe within the frequency range in which the matching network is optimized. The radiation characteristics of the probe, including cross-polarization response and omnidirectional sensitivity, were both theoretically and experimentally investigated. Finally, the performance and reliability of the probe was studied by comparing measured near-field distributions on a known field distribution with simulations. Increased imaging speed was obtained using an array of OMS probes, which reduces mechanical movements. Mutual-coupling, switching time and shadowing effect, which all may affect the performance of the array, were investigated. Then, the results obtained by the array were validated in a NF imager by measuring the E-field distribution of an antenna under test (AUT) and comparing it with a simulation. Calibration and data averaging were applied to raw data to compensate the probes for uncertainties in fabrication and interaction between array/AUT and array/receiving antenna. Dynamic range and linearity of the developed NF imager was improved by adding a carrier canceller circuit to the front-end of the receiver. The

  12. Automatic Test Bench for the Measurement of the Magnetic Interference on LVDTs

    CERN Document Server

    Spiezia, G; Masi, A; Pierno, A; Martino, M

    2010-01-01

    This paper proposes a rigorous and repeatable measurement procedure to analyze the effects of magnetic interferences on Linear Variable Differential Transformer sensors. This issue is neither addressed in the sensor datasheet, nor in the scientific literature. The potential of the method and the performance of an automated test bench, that implements the procedure, are proved by measuring the drift of the position reading due to external magnetic interferences on a commercial LVDT. Finally, the repeatability of the test bench is shown.

  13. SkyLine and SkyGas: Novel automated technologies for automatic GHG flux measurements

    Science.gov (United States)

    Ineson, Philip; Stockdale, James

    2014-05-01

    1. Concerns for the future of the Earth's climate centre around the anthropogenically-driven continuing increases in atmospheric concentrations of the major 'greenhouse gases' (GHGs) which include CO2, CH4 and N2O. A major component of the global budgets for all three of these gases is the flux between the atmosphere and terrestrial ecosystems. 2. Currently, these fluxes are poorly quantified, largely due to technical limitations associated with making these flux measurements. Whilst eddy covariance systems have greatly improved such measurements at the ecosystem scale, flux measurements at the plot scale are commonly made using labour intensive traditional 'cover box' approaches; technical limitations have frequently been a bottle-neck in producing adequate and appropriate GHG flux data necessary for making land management decisions. For example, there are almost no night time flux data for N2O fluxes, and frequently such data are only measured over bare soil patches. 3. We have been addressing the design of novel field equipment for the automation of GHG flux measurements at the chamber and plot scale and will present here some of the technical solutions we have developed. These solutions include the development of the SkyLine and SkyGas approaches which resolve many of the common problems associated with making high frequency, sufficiently replicated GHG flux measurements under field conditions. 4. Unlike most other automated systems, these technologies 'fly' a single chamber to the measurement site, rather than have multiple replicated chambers and analysers. We will present data showing how such systems can deliver high time and spatial resolution flux data, with a minimum of operator intervention and, potentially, at relatively low per plot cost. We will also show how such measurements can be extended to monitoring fluxes from freshwater features in the landscape.

  14. A simple model for automatically measuring radon exhalation rate from medium surface

    International Nuclear Information System (INIS)

    A simple model to measure radon exhalation rate from medium surface is developed in this paper. This model is based on a combination of the “accumulation chamber” technique and a radon monitor. The radon monitor is used to perform measurement of radon concentration evolution inside the accumulation chamber, and radon exhalation rate is evaluated via nonlinear least-square fitting of the measured data. If the flow rate of the pump is high enough, radon concentration in the detector's internal cell becomes to be equal to that in the accumulation chamber quickly, and the simple model for measuring the radon exhalation rate can be generated analytically. Generally, the pump flow rate of radon monitor is low, not satisfying the condition. We find other sufficient conditions of this simplified model. On these conditions, the radon exhalation rate can be calculated accurately through this model even the flow rate of the pump is not so high. This method can be applied to develop and improve the instruments for measuring the radon exhalation rate. - Highlights: • We present a novel simple model for measuring radon exhalation rate based on the complex model we published before. • The algorithm based on the simple model is developed. • The radon exhalation rate can be obtained by nonlinear least squares fitting. • The applicable condition of this simple model is obtained

  15. Noninvasive Online Measurement of Genome Lengths of Mammalian Tissues in Bulk by 14 MeV Neutron Atometry

    Science.gov (United States)

    Maglich, Bogdan; Radovic, Anna; Druey, Christian

    2012-10-01

    Genome length, L=, no. of DNA nucleotide base pairs in cell of bovine (b) and porcine (p) tissues, closest to human genome, were hitherto measured by genomic sequencing Lb=3, Lp=2.7 Giga base pairs [1,2] (Gbp) errors not given. - We report measurements of Lb/Lp and Lb, Lp without sequencing by atometry [3,4]. No. of O and C atoms, N, in nucleotide molecules, was obtained from prompt γ rate, G, emitted in inel. scatt. 14 MeV neutrons, with nuclei of C, O, in nucleotide molecule. Since G prop. N, Lb/Lp=Gb/Gp. p and b meat was irradiated for 30'. From msd G we obtained Lb /Lp=1.28±0.02 16% greater than [1,2]. We got absolute Lb=1.65/f, Lp=1.28/f Gbp, 0.3

  16. Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility

    International Nuclear Information System (INIS)

    To investigate the reproducibility of arterial spin labelling (ASL) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and quantitatively compare these techniques for the measurement of renal blood flow (RBF). Sixteen healthy volunteers were examined on two different occasions. ASL was performed using a multi-TI FAIR labelling scheme with a segmented 3D-GRASE imaging module. DCE MRI was performed using a 3D-FLASH pulse sequence. A Bland-Altman analysis was used to assess repeatability of each technique, and determine the degree of correspondence between the two methods. The overall mean cortical renal blood flow (RBF) of the ASL group was 263 ± 41 ml min-1 [100 ml tissue]-1, and using DCE MRI was 287 ± 70 ml min-1 [100 ml tissue]-1. The group coefficient of variation (CVg) was 18 % for ASL and 28 % for DCE-MRI. Repeatability studies showed that ASL was more reproducible than DCE with CVgs of 16 % and 25 % for ASL and DCE respectively. Bland-Altman analysis comparing the two techniques showed a good agreement. The repeated measures analysis shows that the ASL technique has better reproducibility than DCE-MRI. Difference analysis shows no significant difference between the RBF values of the two techniques. (orig.)

  17. Reliability of the Dinamap non-invasive monitor in the measurement of blood pressure of ill Asian newborns.

    Science.gov (United States)

    Chia, F; Ang, A T; Wong, T W; Tan, K W; Fung, K P; Lee, J; Khin, K

    1990-05-01

    Four hundred thirty-one paired sets of readings of systolic and diastolic blood pressure and 438 paired sets of readings of mean arterial BP from 49 ill newborns, including 21 very low birth weight infants, were analyzed for the extent and pattern of agreement and the linear relationship between the Dinamap oscillometric monitor and the direct intraarterial blood pressure readings. Agreement between the two methods was measured by the intraclass correlation, whereas the linear relationship was assessed by the product-moment correlation. The intraclass correlations for systolic, diastolic and mean blood pressures were 0.696, 0.766, and 0.781, respectively. The product-moment correlations for systolic, diastolic and mean blood pressures were 0.706, 0.768, and 0.786, respectively. BP measurements by the Dinamap monitor showed reasonably close agreement to those obtained by the intraarterial mean arterial pressure ranges above 40 mmHg. For mean arterial pressure of 40 mmHg and lower, BP readings by the Dinamap monitor tended to be higher than those obtained by the intraarterial method. These findings appeared to be consistent regardless of the birth weight of the newborn. PMID:2340688

  18. Comparison of ASL and DCE MRI for the non-invasive measurement of renal blood flow: quantification and reproducibility

    Energy Technology Data Exchange (ETDEWEB)

    Cutajar, Marica; Hales, Patrick W.; Clark, Christopher A.; Gordon, Isky [UCL Institute of Child Health, Imaging and Biophysics Unit, London (United Kingdom); Thomas, David L. [UCL Institute of Neurology, Department of Brain Repair and Rehabilitation, London (United Kingdom); Banks, T. [Great Ormond Street Hospital, Department of Radiology, London (United Kingdom)

    2014-06-15

    To investigate the reproducibility of arterial spin labelling (ASL) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) and quantitatively compare these techniques for the measurement of renal blood flow (RBF). Sixteen healthy volunteers were examined on two different occasions. ASL was performed using a multi-TI FAIR labelling scheme with a segmented 3D-GRASE imaging module. DCE MRI was performed using a 3D-FLASH pulse sequence. A Bland-Altman analysis was used to assess repeatability of each technique, and determine the degree of correspondence between the two methods. The overall mean cortical renal blood flow (RBF) of the ASL group was 263 ± 41 ml min{sup -1} [100 ml tissue]{sup -1}, and using DCE MRI was 287 ± 70 ml min{sup -1} [100 ml tissue]{sup -1}. The group coefficient of variation (CV{sub g}) was 18 % for ASL and 28 % for DCE-MRI. Repeatability studies showed that ASL was more reproducible than DCE with CV{sub g}s of 16 % and 25 % for ASL and DCE respectively. Bland-Altman analysis comparing the two techniques showed a good agreement. The repeated measures analysis shows that the ASL technique has better reproducibility than DCE-MRI. Difference analysis shows no significant difference between the RBF values of the two techniques. (orig.)

  19. Non-invasive laser Doppler perfusion measurements of large tissue volumes and human skeletal muscle blood RMS velocity

    International Nuclear Information System (INIS)

    This study proposes the implementation of an algorithm allowing one to derive absolute blood root-mean-square (RMS) velocity values from laser Doppler perfusion meter (LDP) data. The algorithm is based on the quasi-elastic light scattering theory and holds for multiple scattering. While standard LDP measurements are normally applicable to a small region of interest (∼1 mm2), the present method allows the analysis of both small and large tissue volumes with small and large interoptode spacings (e.g., 1.5 cm). The applicability and the limits of the method are demonstrated with measurements on human skeletal muscle using a custom-built near-infrared LDP meter. Human brachioradialis muscle RMS velocity values of 9.99 ± 0.01 and 5.58 ± 0.03 mm s-1 at 1.5 cm and of 5.18 ± 0.01 and 2.54 ± 0.09 mm s-1 at 2 cm were found when the arm was (a) at rest and (b) occluded, respectively. At very large optode spacings or very high moving particle densities, the theory developed here would need to be amended to take into account second-order effects

  20. Noninvasive peroneal sensory and motor nerve conduction recordings in the rabbit distal hindlimb: feasibility, variability and neuropathy measure.

    Science.gov (United States)

    Hotson, John R

    2014-01-01

    The peroneal nerve anatomy of the rabbit distal hindlimb is similar to humans, but reports of distal peroneal nerve conduction studies were not identified with a literature search. Distal sensorimotor recordings may be useful for studying rabbit models of length-dependent peripheral neuropathy. Surface electrodes were adhered to the dorsal rabbit foot overlying the extensor digitorum brevis muscle and the superficial peroneal nerve. The deep and superficial peroneal nerves were stimulated above the ankle and the common peroneal nerve was stimulated at the knee. The nerve conduction studies were repeated twice with a one-week intertest interval to determine measurement variability. Intravenous vincristine was used to produce a peripheral neuropathy. Repeat recordings measured the response to vincristine. A compound muscle action potential and a sensory nerve action potential were evoked in all rabbits. The compound muscle action potential mean amplitude was 0.29 mV (SD ± 0.12) and the fibula head to ankle mean motor conduction velocity was 46.5 m/s (SD ± 2.9). The sensory nerve action potential mean amplitude was 22.8 μV (SD ± 2.8) and the distal sensory conduction velocity was 38.8 m/s (SD ± 2.2). Sensorimotor latencies and velocities were least variable between two test sessions (coefficient of variation  =  2.6-5.9%), sensory potential amplitudes were intermediate (coefficient of variation  =  11.1%) and compound potential amplitudes were the most variable (coefficient of variation  = 19.3%). Vincristine abolished compound muscle action potentials and reduced sensory nerve action potential amplitudes by 42-57% while having little effect on velocity. Rabbit distal hindlimb nerve conduction studies are feasible with surface recordings and stimulation. The evoked distal sensory potentials have amplitudes, configurations and recording techniques that are similar to humans and may be valuable for measuring large sensory fiber function in chronic

  1. Noninvasive peroneal sensory and motor nerve conduction recordings in the rabbit distal hindlimb: feasibility, variability and neuropathy measure.

    Directory of Open Access Journals (Sweden)

    John R Hotson

    Full Text Available The peroneal nerve anatomy of the rabbit distal hindlimb is similar to humans, but reports of distal peroneal nerve conduction studies were not identified with a literature search. Distal sensorimotor recordings may be useful for studying rabbit models of length-dependent peripheral neuropathy. Surface electrodes were adhered to the dorsal rabbit foot overlying the extensor digitorum brevis muscle and the superficial peroneal nerve. The deep and superficial peroneal nerves were stimulated above the ankle and the common peroneal nerve was stimulated at the knee. The nerve conduction studies were repeated twice with a one-week intertest interval to determine measurement variability. Intravenous vincristine was used to produce a peripheral neuropathy. Repeat recordings measured the response to vincristine. A compound muscle action potential and a sensory nerve action potential were evoked in all rabbits. The compound muscle action potential mean amplitude was 0.29 mV (SD ± 0.12 and the fibula head to ankle mean motor conduction velocity was 46.5 m/s (SD ± 2.9. The sensory nerve action potential mean amplitude was 22.8 μV (SD ± 2.8 and the distal sensory conduction velocity was 38.8 m/s (SD ± 2.2. Sensorimotor latencies and velocities were least variable between two test sessions (coefficient of variation  =  2.6-5.9%, sensory potential amplitudes were intermediate (coefficient of variation  =  11.1% and compound potential amplitudes were the most variable (coefficient of variation  = 19.3%. Vincristine abolished compound muscle action potentials and reduced sensory nerve action potential amplitudes by 42-57% while having little effect on velocity. Rabbit distal hindlimb nerve conduction studies are feasible with surface recordings and stimulation. The evoked distal sensory potentials have amplitudes, configurations and recording techniques that are similar to humans and may be valuable for measuring large sensory fiber function in

  2. An automatic system to measure material's resistance to stable crack initiation

    International Nuclear Information System (INIS)

    The unloading compliance technique has become the preferred single specimen method for evaluating the fracture toughness of materials. It involves control of the testing machine as well as data acquisition and analysis using computers. This paper describes in detail the development of a simple experimental system and related software. The method has been applied in order to determine the temperature dependence of fracture toughness of a low-alloy Cr-Mo steel. Results are compared with both measurements at the VTT Espoo and measurements based on a multiple specimen method. (orig.)

  3. Accuracy of Automatic Density Profile Measurements with FM-CW Reflectometry on ASDEX Upgrade

    Science.gov (United States)

    Santos, Jorge; Emilia Manso, Maria; Nunes, Fernando; Varela, Paulo; ASDEX Upgrade Team

    2000-10-01

    Reflectometry is a radar technique that uses robust and compact equipment (requiring reduced access to the machine), to measure the density profile in fusion plasmas with both high spatial and temporal resolutions. In addition it can provide information about plasma turbulence, MHD activity, ELMs, Marfes, TAE modes, etc. Due to the above advantages, reflectometry is foreseen to play a major role on next fusion devices, namely it has been proposed for plasma position control on ITER-FEAT, based on a set of poloidal distributed edge density profile measurements. This is a new challenge for reflectometry that has to be proven on present fusion experiments.

  4. Splenic volume measurements on computed tomography utilizing automatically contouring software and its relationship with age, gender, and anthropometric parameters

    Energy Technology Data Exchange (ETDEWEB)

    Harris, Ardene, E-mail: ardene_b@yahoo.co [Department of Radiology, Hokkaido University Hospital, North 15, West 7, Kita-ku, Sapporo 060-0815 (Japan); Kamishima, Tamotsu, E-mail: ktamotamo2@yahoo.co.j [Department of Radiology, Hokkaido University Hospital, North 15, West 7, Kita-ku, Sapporo 060-0815 (Japan); Hao, Hong Yi, E-mail: haohongyi88@yahoo.co.j [Department of Radiology, Hokkaido University Hospital, North 15, West 7, Kita-ku, Sapporo 060-0815 (Japan); Kato, Fumi [Department of Radiology, Hokkaido University Hospital, North 15, West 7, Kita-ku, Sapporo 060-0815 (Japan); Omatsu, Tokuhiko, E-mail: omatoku@me.co [Department of Radiology, Hokkaido University Hospital, North 15, West 7, Kita-ku, Sapporo 060-0815 (Japan); Onodera, Yuya, E-mail: yuyaonodera@med.hokudai.ac.j [Department of Radiology, Hokkaido University Hospital, North 15, West 7, Kita-ku, Sapporo 060-0815 (Japan); Terae, Satoshi, E-mail: saterae@med.hokudai.ac.j [Department of Radiology, Hokkaido University Hospital, North 15, West 7, Kita-ku, Sapporo 060-0815 (Japan); Shirato, Hiroki, E-mail: shirato@med.hokudai.ac.j [Department of Radiology, Hokkaido University Hospital, North 15, West 7, Kita-ku, Sapporo 060-0815 (Japan)

    2010-07-15

    Objective: The present research was conducted to establish the normal splenic volume in adults using a novel and fast technique. The relationship between splenic volume and age, gender, and anthropometric parameters was also examined. Materials and methods: The splenic volume was measured in 230 consecutive patients who underwent computed tomography (CT) scans for various indications. Patients with conditions that have known effect on the spleen size were not included in this study. A new technique using volumetric software to automatically contour the spleen in each CT slice and quickly calculate splenic volume was employed. Inter- and intra-observer variability were also examined. Results: The average splenic volume of all the subjects was 127.4 {+-} 62.9 cm{sup 3}, ranging from 22 to 417 cm{sup 3}. The splenic volume (S) correlated with age (A) (r = -0.33, p < 0.0001), body weight (W) (r = 0.35, p < 0.0001), body mass index (r = 0.24, p < 0.0001) and body surface area (BSA) (r = 0.31, p < 0.0001). The age-adjusted splenic volume index correlated with gender (p = 0.0089). The formulae S = W[6.47A{sup (-0.31)}] and S = BSA[278A{sup (-0.36)}] were derived and can be used to estimate the splenic volume. Inter- and intra-observer variability were 6.4 {+-} 9.8% and 2.8 {+-} 3.5% respectively. Conclusion: Of the anthropometric parameters, the splenic volume was most closely linked to body weight. The automatically contouring software as well as formulae can be used to obtain the volume of the spleen in regular practice.

  5. A semi-automatic computerized method to measure baroreflex-mediated heart rate responses that reduces interobserver variability

    Directory of Open Access Journals (Sweden)

    Soares P.P.S.

    2005-01-01

    Full Text Available Arterial baroreflex sensitivity estimated by pharmacological impulse stimuli depends on intrinsic signal variability and usually a subjective choice of blood pressure (BP and heart rate (HR values. We propose a semi-automatic method to estimate cardiovascular reflex sensitivity to bolus infusions of phenylephrine and nitroprusside. Beat-to-beat BP and HR time series for male Wistar rats (N = 13 were obtained from the digitized signal (sample frequency = 2 kHz and analyzed by the proposed method (PRM developed in Matlab language. In the PRM, time series were low-pass filtered with zero-phase distortion (3rd order Butterworth used in the forward and reverse direction and presented graphically, and parameters were selected interactively. Differences between basal mean values and peak BP (deltaBP and HR (deltaHR values after drug infusions were used to calculate baroreflex sensitivity indexes, defined as the deltaHR/deltaBP ratio. The PRM was compared to the method traditionally (TDM employed by seven independent observers using files for reflex bradycardia (N = 43 and tachycardia (N = 61. Agreement was assessed by Bland and Altman plots. Dispersion among users, measured as the standard deviation, was higher for TDM for reflex bradycardia (0.60 ± 0.46 vs 0.21 ± 0.26 bpm/mmHg for PRM, P < 0.001 and tachycardia (0.83 ± 0.62 vs 0.28 ± 0.28 bpm/mmHg for PRM, P < 0.001. The advantage of the present method is related to its objectivity, since the routine automatically calculates the desired parameters according to previous software instructions. This is an objective, robust and easy-to-use tool for cardiovascular reflex studies.

  6. Method specificity of non-invasive blood pressure measurement: oscillometry and finger pulse pressure vs acoustic methods.

    Science.gov (United States)

    De Mey, C; Schroeter, V; Butzer, R; Roll, S; Belz, G G

    1995-10-01

    1. The agreement of blood pressure measurements by stethoscope auscultation (SBPa, DBPa-IV and DBPa-V), oscillometry (Dinamap; SBPo, and DBPo) and digital photoplethysmography (Finapres; SBPf, and DBPf) with the graphical analysis of the analogue microphone signals of vascular wall motion sound (SBPg and DBPg) was evaluated in eight healthy subjects in the presence of responses to the intravenous infusion of 1 microgram min-1 isoprenaline. 2. In general, there was good agreement between the SBP/DBP-measurements based on auscultatory Korotkoff-I- and IV-criteria and the reference method; the average method difference in estimating the isoprenaline responses for SBPa-SBPg was: -1.1, 95% CI: -5.4 to 3.1 mm Hg with a within-subject between-method repeatability coefficient (REP) of 11.6 mm Hg and for DBPa-IV-DBPg: 3.5, 95% CI: -0.5 to 6.5 mm Hg, REP: 11.5 mm Hg. The ausculatation of Korotkoff-V substantially overestimated the isoprenaline induced reduction of DBP: method difference DBPa-V-DBPg: -11.3, 95% CI: -17.8 to -4.7 mm Hg, REP: 31.8 mm Hg. 3. Oscillometry yielded good approximations for the SBP response to isoprenaline (average method difference SBPo-SBPg: -2.9, 95% CI: -9.0 to 3.3 mm Hg, REP: 17.6 mm Hg) but was poorly sensitive with regard to the DBP responses: method difference DBPo-DBPg: 6.5, 95% CI: -1.3 to 14.3 mm Hg, REP: 25.7 mm Hg. 4. Whilst the finger pulse pressure agreed well with regard to DBP (method difference for the DBP responses to isoprenaline: DBPf-DBPg: 1.8, 95% CI: -5.1 to 8.6 mm Hg, REP: 18.5 mm Hg) it was rather unsatisfactory with regard to SBP (method difference SBPf-SBPg: -14.1, 95% CI: -28.2 to -0.1 mm Hg, REP: 49.9 mm Hg).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8554929

  7. Non-invasive measurement of the haemodynamic effects of inhaled salbutamol, intravenous L-arginine and sublingual nitroglycerin

    Science.gov (United States)

    Tahvanainen, Anna; Leskinen, Miia; Koskela, Jenni; Ilveskoski, Erkki; Alanko, Juha; Kähönen, Mika; Kööbi, Tiit; Lehtimäki, Lauri; Moilanen, Eeva; Mustonen, Jukka; Pörsti, Ilkka

    2009-01-01

    AIMS To examine the effects of salbutamol and L-arginine, two compounds acting largely on the endothelium, and the endothelium-independent agent nitroglycerin on blood pressure, arterial compliance, cardiac function and vascular resistance. METHODS Continuous radial pulse wave analysis, whole-body impedance cardiography, and plethysmographic blood pressure from fingers in the supine position and during head-up tilt were recorded in nine healthy subjects. Data were captured before and after L-arginine (10 mg mg−1 min−1) or saline infusion, salbutamol (400 µg) or placebo inhalation, and sublingual nitroglycerin (0.25 mg) or placebo resoriblet. RESULTS The results of all measurements were comparable before drug administration. The effects of inhaled salbutamol were apparent in the supine position: systemic vascular resistance (−9.2 ± 2.6%) and augmentation index (−4.0 ± 1.5%) decreased, and heart rate (8.6 ± 2.5%) and cardiac output (8.8 ± 3.1%) increased. L-arginine had no clear effects on supine haemodynamics, but during head-up tilt blood pressure was moderately decreased and reduction in aortic reflection time prevented, indicating improved large arterial compliance. Nitroglycerin reduced supine vascular resistance (−6.7 ± 1.8%) and augmentation index (−7.4 ± 1.6%), and increased cardiac output (+9.2 ± 2.7%). During head-up tilt, nitroglycerin increased cardiac output (+10.6 ± 5.6%) and heart rate (+40 ± 7.5%), decreased vascular resistance (−7.8 ± 5.8%) and augmentation index (−18.7 ± 3.2%), and prevented the decrease in aortic reflection time. CONCLUSIONS Inhaled salbutamol predominantly changed supine haemodynamics, whereas the moderate effects of L-arginine were observed during the head-up tilt. In contrast, small doses of nitroglycerin induced major changes in haemodynamics both supine and during the head-up tilt. Altogether, these results emphasize the importance of haemodynamic measurements in both the supine and upright

  8. An automatic system for segmentation, matching, anatomical labeling and measurement of airways from CT images

    DEFF Research Database (Denmark)

    Petersen, Jens; Feragen, Aasa; Lo, P.; Owen, Megan; Wille, M.M.W.; Thomsen, Laura; Dirksen, Asger; de Bruijne, Marleen

    Purpose: Assessing airway dimensions and attenuation from CT images is useful in the study of diseases affecting the airways such as Chronic Obstructive Pulmonary Disease (COPD). Measurements can be compared between patients and over time if specific airway segments can be identified. However, ma...

  9. Measuring the Object Deformation by Real Time Holographic Interferometry with Automatically Calculating Hologram①

    Institute of Scientific and Technical Information of China (English)

    WANGWensheng; XUBin

    1997-01-01

    Used Ar+ laser as a light source,BSO(Bi12SiO20)crystal as a hologram recording material,CCD camera as a detector,and a holographic setup controlled by a computer,we have realized real time holographic interferometry in terms of 3-interferogram method.The deformation of a plate is measured under a pressure.

  10. Evaluation of Histological and non-Invasive Methods for the Detection of Liver Fibrosis: The Values of Histological and Digital Morphometric Analysis, Liver Stiffness Measurement and APRI Score.

    Science.gov (United States)

    Halász, Tünde; Horváth, Gábor; Kiss, András; Pár, Gabriella; Szombati, Andrea; Gelley, Fanni; Nemes, Balázs; Kenessey, István; Piurkó, Violetta; Schaff, Zsuzsa

    2016-01-01

    Prognosis and treatment of liver diseases mainly depend on the precise evaluation of the fibrosis. Comparisons were made between the results of Metavir fibrosis scores and digital morphometric analyses (DMA), liver stiffness (LS) values and aminotransferase-platelet ratio (APRI) scores, respectively. Liver biopsy specimens stained with Sirius red and analysed by morphometry, LS and APRI measurements were taken from 96 patients with chronic liver diseases (56 cases of viral hepatitis, 22 cases of autoimmune- and 18 of mixed origin). The strongest correlation was observed between Metavir score and DMA (r = 0.75 p < 0.05), followed in decreasing order by LS and Metavir (r = 0.61), LS and DMA (r = 0.47) LS and APRI (r = 0.35) and Metavir and APRI (r = 0.24), respectively. DMA is a helpful additional tool for the histopathological evaluation of fibrosis, even when the sample size is small and especially in case of advanced fibrosis. The non-invasive methods showed good correlation with the histopathological methods; LS proved to be more accurate than APRI. The stronger correlation between LS values and Metavir scores, as well as the results of DMA in case of appropriate sample size were remarkable. PMID:26189126

  11. Noninvasive measurements of cerebral blood flow using 99mTc-ECD SPECT in elderly depressed patients

    International Nuclear Information System (INIS)

    The purpose of this study was to see whether the SPECT can clearly detect the minor abnormality that MRI could barely detect. Subjects were elderly depressed patients (73.6 years old in average, 1 male and 10 females) with a mean 18.9 score of Hamilton ranging scale for depression and normal people (72.1 years old, 5 males and 5 females) having given the informed consent. Patients' MRI hardly gave findings for cerebral atrophy and latent cerebral infarction. Rapidly after intravenous administration of 99mTc-ECD (370 MBq), the flow of the tracer from the aortic arches to the brain was recorded every second with a gamma-camera to calculate the brain perfusion index (BPI) by Patlak plotting. Mean cerebral blood flow (mCBF) was calculated from BPI and cerebral blood flow measured by 133Xe inhalation SPECT. Regional cerebral blood flow (rCBF) was also computed. The apparatus was Siemens Mutti SPECT3 which had 3 detectors. mCBF of the patients (34.9 ml/100 g/min) was found significantly lower than the control (42.1 ml/100 g/min). rCBFs in the frontal lobe, temporal lobe, parietal lobe, thalamus, tegmentum, caudate nucleus and hippocampus were also lowered in the patients. Lowered blood flows in the left hemisphere were observed. These findings were considered to suggest the functional abnormality of the brain or the impaired blood flow possibly leading to infarction. (K.H.)

  12. Evaluation of an Automatic Registration-Based Algorithm for Direct Measurement of Volume Change in Tumors

    International Nuclear Information System (INIS)

    Purpose: Assuming that early tumor volume change is a biomarker for response to therapy, accurate quantification of early volume changes could aid in adapting an individual patient’s therapy and lead to shorter clinical trials. We investigated an image registration–based approach for tumor volume change quantification that may more reliably detect smaller changes that occur in shorter intervals than can be detected by existing algorithms. Methods and Materials: Variance and bias of the registration-based approach were evaluated using retrospective, in vivo, very-short-interval diffusion magnetic resonance imaging scans where true zero tumor volume change is unequivocally known and synthetic data, respectively. The interval scans were nonlinearly registered using two similarity measures: mutual information (MI) and normalized cross-correlation (NCC). Results: The 95% confidence interval of the percentage volume change error was (−8.93% to 10.49%) for MI-based and (−7.69%, 8.83%) for NCC-based registrations. Linear mixed-effects models demonstrated that error in measuring volume change increased with increase in tumor volume and decreased with the increase in the tumor’s normalized mutual information, even when NCC was the similarity measure being optimized during registration. The 95% confidence interval of the relative volume change error for the synthetic examinations with known changes over ±80% of reference tumor volume was (−3.02% to 3.86%). Statistically significant bias was not demonstrated. Conclusion: A low-noise, low-bias tumor volume change measurement algorithm using nonlinear registration is described. Errors in change measurement were a function of tumor volume and the normalized mutual information content of the tumor.

  13. A computer-aided control system for automatic performance measurements on the LHC series dipoles

    International Nuclear Information System (INIS)

    The control system software (Test Master) for the Large Hadron Collider (LHC) magnet series measurements is presented. This system was developed at CERN to automate as many tests on the LHC magnets as possible. The Test Master software is the middle layer of the main software architecture developed by the LHC/IAS group for central supervision of all types of LHC dipole tests in the SM18 hall. It serves as a manager and scheduler for applications, controlling all measurements that are performed in a cluster of two test benches. The software was implemented in the LabVIEW environment. The information about the interactive user interface, the software architecture, communication protocols, file-configuration different types of commands and status files of the Test Master are described

  14. A Device for Automatically Measuring and Supervising the Critical Care Patient’S Urine Output

    OpenAIRE

    Roemi Fernández; Francisco Palacios; Teodor Akinfiev; Abraham Otero

    2010-01-01

    Critical care units are equipped with commercial monitoring devices capable of sensing patients’ physiological parameters and supervising the achievement of the established therapeutic goals. This avoids human errors in this task and considerably decreases the workload of the healthcare staff. However, at present there still is a very relevant physiological parameter that is measured and supervised manually by the critical care units’ healthcare staff: urine output. This paper presents a pate...

  15. Investigating the Greenland firn aquifer near Helheim Glacier based on geophysical noninvasive methods and in situ measurements

    Science.gov (United States)

    Miège, C.; Koenig, L.; Forster, R. R.; Miller, O. L.; Solomon, D. K.; Legchenko, A.; Schmerr, N. C.; Montgomery, L. N.; Brucker, L.

    2015-12-01

    Prior to the onset of seasonal surface melt, widespread perennial aquifers are detected at an average depth of 22 m below the snow surface in the firn of the Greenland ice sheet from airborne radar data. With an elevation range of ~1200-2000 m, the aquifers are mainly located within the percolation zone of the southern and southeastern parts of the ice sheet, in high snow accumulation regions. The impact of the aquifer on Greenland ice sheet hydrology and the direct (or indirect) contribution to sea-level rise remain unconstrained and require further attention. Our study is located on the upper portion of Helheim Glacier in SE Greenland, ~50 km west of the glacier calving front. We first used repeated airborne radar data collected by CReSIS to infer the presence of the firn over the last two decades from missing bed echoes. For 1993-2008, the aquifer remained relatively stable, after 2008 it expanded to higher elevations, and after spring 2012, drainage of its lower-elevation portion is suspected. Based on these initial insights, recent fieldwork was carried out along the surveyed radar line, following an elevation gradient. Geophysical investigation includes seismic refraction and magnetic resonance soundings to complement the radar data and to provide constraints on the base of the aquifer, water volume, and the transition from water-saturated firn to ice. In addition, piezometers and data-logging stations were deployed at point locations to measure hydraulic conductivity, water table vertical fluctuations, and firn temperature. We report on the different techniques used, initial observations made, and present some preliminary interpretations. Water appears to flow laterally in a highly-permeable unconfined aquifer, topographically driven by ice-sheet surface undulations until water encounters local sinks like crevasses. The aquifer impacts on the ice sheet are numerous, including firn densification, alteration of the ice thermal state, and water from the aquifer

  16. Automatic conjunctival provocation test combining Hough circle transform and self-calibrated color measurements

    Science.gov (United States)

    Bista, Suman Raj; Sárándi, István.; Dogan, Serkan; Astvatsatourov, Anatoli; Mösges, Ralph; Deserno, Thomas M.

    2013-02-01

    Computer-aided diagnosis is developed for assessment of allergic rhinitis/rhinoconjunctivitis measuring the relative redness of sclera under application of allergen solution. Images of the patient's eye are taken using a commercial digital camera. The iris is robustly localized using a gradient-based Hough circle transform. From the center of the pupil, the region of interest within the sclera is extracted using geometric anatomy-based apriori information. The red color pixels are extracted thresholding in the hue, saturation and value color space. Then, redness is measured by taking mean of saturation projected into zero hue. Evaluation is performed with 98 images taken from 14 subjects, 8 responders and 6 non-responders, which were classified according to an experienced otorhinolaryngologist. Provocation is performed with 100, 1,000 and 10,000 AU/ml allergic solution and normalized to control images without provocation. The evaluation yields relative redness of 1.01, 1.05, 1.30 and 0.95, 1.00, 0.96 for responders and non-responders, respectively. Variations in redness measurements were analyzed according to alteration of parameters of the image processing chain proving stability and robustness of our approach. The results indicate that the method improves visual inspection and may be suitable as reliable surrogate endpoint in controlled clinical trials.

  17. Influence of the temperature in the measurement of the gamma automatic probe Gamma Tracer

    International Nuclear Information System (INIS)

    In the following work an analysis of the existent relationship among the measurement of the absorbed dose rate in air due to the environmental gamma radiation and the temperature, magnitudes measured to intervals of 10 minutes by the gamma probe Gamma Tracer located in the post of occident of the National Net of Environmental Radiological Surveillance (RNVRA), in the Center of Protection and Hygiene of the Radiations (CPHR) is made. For it its were analyzed near 100,000 measurements corresponding to the period 2004-2005. For a better processing and interpretation of the data, these were analyzed with one frequency time zone and monthly using the Gamma Red software to which was necessary to add it some options. Finally it was submitted the probe to a heating process inside a stove. The results of the carried out experiments confirmed that the absorbed dose rate in air due to the environmental gamma radiation depends potentially of the probe temperature in the range of environmental temperature to which is subjected daily the same one. (Author)

  18. 10 CFR 431.134 - Uniform test methods for the measurement of energy consumption and water consumption of automatic...

    Science.gov (United States)

    2010-01-01

    ... consumption and water consumption of automatic commercial ice makers. 431.134 Section 431.134 Energy... of energy consumption and water consumption of automatic commercial ice makers. (a) Scope. This... consumption, but instead calculate the energy use rate (kWh/100 lbs Ice) by dividing the energy...

  19. Impact of changes in systemic vascular resistance on a novel non-invasive continuous cardiac output measurement system based on pulse wave transit time: a report of two cases

    OpenAIRE

    Ishihara, Hironori; Tsutsui, Masato

    2013-01-01

    The inaccuracy of arterial waveform analysis for measuring continuos cardiac output (CCO) associated with changes in systemic vascular resistance (SVR) has been well documented. A new non-invasive continuous cardiac output monitoring system (esCCO) mainly utilizing pulse wave transit time (PWTT) in place of arterial waveform analysis has been developed. However, the trending ability of esCCO to measure cardiac output during changes in SVR remains unclear. After a previous multicenter study on...

  20. Automatic unit for measuring refractive index of air based on Ciddor equation and its verification using direct interferometric measurement method

    Czech Academy of Sciences Publication Activity Database

    Hucl, Václav; Čížek, Martin; Hrabina, Jan; Mikel, Břetislav; Řeřucha, Šimon; Buchta, Zdeněk; Jedlička, Petr; Lešundák, Adam; Oulehla, Jindřich; Mrňa, Libor; Šarbort, Martin; Šmíd, Radek; Lazar, Josef; Číp, Ondřej

    Bellingham: SPIE, 2013, 878837:1-9. ISBN 978-0-8194-9604-1. [Optical Measurement Systems for Industrial Inspection /8./. Munich (DE), 13.05.2013-16.05.2013] R&D Projects: GA ČR GAP102/10/1813; GA ČR GPP102/11/P819 Institutional support: RVO:68081731 Keywords : refractive index of air * precise measurement * laser interferometer Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  1. Development of an automatic system of measurement for use in sensors based on semiconductor devices

    International Nuclear Information System (INIS)

    This paper develops a new automated system for the characterization of microsensors based on field-effect transistors, in which the data acquisition is performed using a PSoC microcontroller (Programmable System on Chip) of the CY8C29466 type, developed by the Cypress MicroSystems. The microcontroller sends data to the PC via RS232 serial, which are then processed and displayed on the screen to starting from a virtual instrument developed in LabView. With this system, in addition to reducing the cost is achieved to get greater performance and reliability in the measurements.

  2. Automatic identification and placement of measurement stations for hydrological discharge simulations at basin scale

    Science.gov (United States)

    Grassi, P. R.; Ceppi, A.; Cancarè, F.; Ravazzani, G.; Mancini, M.; Sciuto, D.

    2012-04-01

    In the past 15 years hydroinformatics has substantially increased the use of computational intelligence techniques for water distribution network, modelling, and prediction purposes. An application of these technologies is proposed in this study as an advanced algorithm tool to analyze a hydro-meteorological dataset, establishing a skill for numerical modelling, data collection, processing and quality checking. Accurate forecasts of hydro-meteorological events are important to prevent and mitigate the effect of dangerous events such as floods or drought. To achieve these objectives, Politecnico di Milano developed a distributed physically based rainfall-runoff model (FEST-WB), which is daily used to generate runoff simulations and hydrological forecasts for nowcasting monitoring and as a civil-protection tool. It takes, as input, a set of observed meteorological data (solar radiation, precipitation, air temperature and relative humidity) collected by the ARPAP (Environment Protection Regional Agency of Piedmont) hydro-meteorological station network and MeteoSwiss, and it provides, as output, discharge forecasts in various hydrological basins. Although, the performance capability of the model dramatically depends on the model itself, it is a known fact that the choice of right measurement sites play a very crucial role in building quality models; on the other hand, reducing the amount of stations reduce their deployment and maintenance costs. The aim of this study is to apply a set of optimization algorithms in order to identify the minimum number and position of weather stations able to provide correct predictions. This analysis is focused on the Toce river basin, an Alpine watershed, located in North-West of Italy, but the methodology can be extended to other Piedmont areas. The whole set of measured data M are taken as input to provide a set of Pareto-optimal solutions. The configuration is described with a boolean vector where true indicates that the

  3. Automatic Quality Measurement and Parameter Selection for Example-based Texture Synthesis

    DEFF Research Database (Denmark)

    Laursen, Lasse Farnung; Clemmensen, Line Katrine Harder; Bærentzen, Jakob Andreas;

    synthesis compares to the original input. A good similarity measure will enable the search for the optimal texture synthesis parameters by maximizing the quality of the synthesis as a function of parameters. We apply presented methods to a state of the art texture synthesis algorithm, namely the one...... proposed by Kopf et al [14]. It is easy to find a set of exemplars for which there is no single optimal set of settings. The results show a promising foundation for further research in establishing an automated optimal synthesis for a multitude of textures....

  4. Development of a semi-automatic beta-backscatter thickness-measuring system

    International Nuclear Information System (INIS)

    The semi-automated beta-backscatter system was evaluated to determine the overall system capability. The capability studies performed on the system indicate that the system can measure aluminum nominally 11.33 μm (450 μin.) thick on a Kapton substrate to a precision of better than 0.72 percent (one standard deviation = +- 0.0816 μm) in a time interval of 10 seconds. The report also covers various fail safe devices installed in the positioning fixture, and changes made in the system's software to facilitate operation of the system and storage of data

  5. Automatic measurement for dimensional changes of woven fabrics based on texture

    Science.gov (United States)

    Liu, Jihong; Jiang, Hongxia; Liu, X.; Chai, Zhilei

    2014-01-01

    Dimensional change or shrinkage is an important functional attribute of woven fabrics that affects their basic function and price in the market. This paper presents a machine vision system that evaluates the shrinkage of woven fabrics by analyzing the change of fabric construction. The proposed measurement method has three features. (i) There will be no stain of shrinkage markers on the fabric specimen compared to the existing measurement method. (ii) The system can be used on fabric with reduced area. (iii) The system can be installed and used as a laboratory or industrial application system. The method processed can process the image of the fabric and is divided into four steps: acquiring a relative image from the sample of the woven fabric, obtaining a gray image and then the segmentation of the warp and weft from the fabric based on fast Fourier transform and inverse fast Fourier transform, calculation of the distance of the warp or weft sets by gray projection method and character shrinkage of the woven fabric by the average distance, coefficient of variation of distance and so on. Experimental results on virtual and physical woven fabrics indicated that the method provided could obtain the shrinkage information of woven fabric in detail. The method was programmed by Matlab software, and a graphical user interface was built by Delphi. The program has potential for practical use in the textile industry.

  6. Automatic system for measuring dose-area product (DAP) in ROI fluoroscopy

    International Nuclear Information System (INIS)

    A computerized system for monitoring dose-area product (DAP) has been developed for region of interest (ROI) fluoroscopy in which patient exposure is reduced using an x-ray attenuating filter with an aperture. The system includes an IBM compatible computer which is connected through an IEEE-488 interface to an electrometer which measures the charge from a DAP ionization chamber. A digital input/output board connects the computer to the filter placement device to determine whether the filter is in or out of the beam, and to the x-ray generator to determine when the exposure is due to spot filming. The computer logs the DAP from conventional fluoroscopy, ROI fluoroscopy and spot filming separately, applying the appropriate calibration factor for each. Measured DAPs, fluoroscopic DAP rates and exposure times are displayed in real-time. The system has been installed in a GI fluoroscopic room so that the dose-reduction potential of ROI imaging can be evaluated. (author)

  7. Development of automatic blood extraction device with a micro-needle for blood-sugar level measurement

    Science.gov (United States)

    Kawanaka, Kaichiro; Uetsuji, Yasutomo; Tsuchiya, Kazuyoshi; Nakamachi, Eiji

    2008-12-01

    In this study, a portable type HMS (Health Monitoring System) device is newly developed. It has features 1) puncturing a blood vessel by using a minimally invasive micro-needle, 2) extracting and transferring human blood and 3) measuring blood glucose level. This miniature SMBG (Self-Monitoring of Blood Glucose) device employs a syringe reciprocal blood extraction system equipped with an electro-mechanical control unit for accurate and steady operations. The device consists of a) a disposable syringe unit, b) a non-disposable body unit, and c) a glucose enzyme sensor. The syringe unit consists of a syringe itself, its cover, a piston and a titanium alloy micro-needle, whose inner diameter is about 100µm. The body unit consists of a linear driven-type stepping motor, a piston jig, which connects directly to the shaft of the stepping motor, and a syringe jig, which is driven by combining with the piston jig and slider, which fixes the syringe jig. The required thrust to drive the slider is designed to be greater than the value of the blood extraction force. Because of this driving mechanism, the automatic blood extraction and discharging processes are completed by only one linear driven-type stepping motor. The experimental results using our miniature SMBG device was confirmed to output more than 90% volumetric efficiency under the driving speed of the piston, 1.0mm/s. Further, the blood sugar level was measured successfully by using the glucose enzyme sensor.

  8. Automatic measurement of field-dependent elastic modulus and damping by laser Doppler vibrometry

    International Nuclear Information System (INIS)

    A method for characterizing the magnetoelastic dependence of both Young's modulus and damping on the magnetic field is presented. It is based on laser Doppler vibrometry and free longitudinal vibration in soft ferromagnetic rods and wires, and offers a broad range of improved features including accuracy, lack of interaction with the sample, speed of measurement, full automation, high resolution and the possibility of stress-dependence studies. All these allow samples to be perfectly characterized in the full magnetic field range, estimating the behaviour of the specimen as different magnetization curves are followed and discovering critical points that had been overlooked in previous works. As an example, the magnetoelastic characterization of nickel rods is described, and excellent results are obtained which are consistent with the hysteresis loop of nickel and the theory of magnetic domains in ferromagnetic materials

  9. Automatic segmentation of the optic nerve head for deformation measurements in video rate optical coherence tomography

    Science.gov (United States)

    Hidalgo-Aguirre, Maribel; Gitelman, Julian; Lesk, Mark Richard; Costantino, Santiago

    2015-11-01

    Optical coherence tomography (OCT) imaging has become a standard diagnostic tool in ophthalmology, providing essential information associated with various eye diseases. In order to investigate the dynamics of the ocular fundus, we present a simple and accurate automated algorithm to segment the inner limiting membrane in video-rate optic nerve head spectral domain (SD) OCT images. The method is based on morphological operations including a two-step contrast enhancement technique, proving to be very robust when dealing with low signal-to-noise ratio images and pathological eyes. An analysis algorithm was also developed to measure neuroretinal tissue deformation from the segmented retinal profiles. The performance of the algorithm is demonstrated, and deformation results are presented for healthy and glaucomatous eyes.

  10. Rapid Word Recognition as a Measure of Word-Level Automaticity and Its Relation to Other Measures of Reading

    Science.gov (United States)

    Frye, Elizabeth M.; Gosky, Ross

    2012-01-01

    The present study investigated the relationship between rapid recognition of individual words (Word Recognition Test) and two measures of contextual reading: (1) grade-level Passage Reading Test (IRI passage) and (2) performance on standardized STAR Reading Test. To establish if time of presentation on the word recognition test was a factor in…

  11. Automatic measurement of rotation center for laminography scanning system without dedicated phantoms

    Science.gov (United States)

    Yang, Min; Li, Zhongchuan; Liang, Lihong; Li, Xingdong; Liu, Wenli; Gui, Zhiguo

    2014-09-01

    With a particular function in plate-type structure tomography, computed laminography (CL) has received increasing attention in industrial nondestructive testing and become an important branch of computed tomography (CT). For the reconstruction algorithm of CL, center of rotation (COR) is the most important parameter determining the reconstruction accuracy and must be located precisely. Otherwise, even a tiny error of COR will cause obvious artifacts in reconstructed images. In order to realize measurement of COR with high accuracy and efficiency, a feasible calibration method was proposed to determine the position of COR without dedicated phantoms. According to this method, when a sample fixed on the rotational stage turns around the rotational axis, the locus of the sample's projection on the imaging plane will be an ellipse. Consistent with the symmetrical property of an elliptical image, a cross-correlation operation is adopted to determine the position of COR by locating the peak value of the cross-correlation function. The computer simulation and experimental results demonstrate that this method has high accuracy, and strong anti-noise and anti-wobble ability. In particular, this method does not need a dedicated phantom to perform the calibration, but rather uses projections of the inspected sample to calculate COR directly.

  12. Noninvasive ventilation in trauma

    OpenAIRE

    Karcz, Marcin K; Peter J. Papadakos

    2015-01-01

    Trauma patients are a diverse population with heterogeneous needs for ventilatory support. This requirement depends mainly on the severity of their ventilatory dysfunction, degree of deterioration in gaseous exchange, any associated injuries, and the individual feasibility of potentially using a noninvasive ventilation approach. Noninvasive ventilation may reduce the need to intubate patients with trauma-related hypoxemia. It is well-known that these patients are at increased risk to develop ...

  13. Noninvasive ventilation in trauma.

    Science.gov (United States)

    Karcz, Marcin K; Papadakos, Peter J

    2015-02-01

    Trauma patients are a diverse population with heterogeneous needs for ventilatory support. This requirement depends mainly on the severity of their ventilatory dysfunction, degree of deterioration in gaseous exchange, any associated injuries, and the individual feasibility of potentially using a noninvasive ventilation approach. Noninvasive ventilation may reduce the need to intubate patients with trauma-related hypoxemia. It is well-known that these patients are at increased risk to develop hypoxemic respiratory failure which may or may not be associated with hypercapnia. Hypoxemia in these patients is due to ventilation perfusion mismatching and right to left shunt because of lung contusion, atelectasis, an inability to clear secretions as well as pneumothorax and/or hemothorax, all of which are common in trauma patients. Noninvasive ventilation has been tried in these patients in order to avoid the complications related to endotracheal intubation, mainly ventilator-associated pneumonia. The potential usefulness of noninvasive ventilation in the ventilatory management of trauma patients, though reported in various studies, has not been sufficiently investigated on a large scale. According to the British Thoracic Society guidelines, the indications and efficacy of noninvasive ventilation treatment in respiratory distress induced by trauma have thus far been inconsistent and merely received a low grade recommendation. In this review paper, we analyse and compare the results of various studies in which noninvasive ventilation was applied and discuss the role and efficacy of this ventilator modality in trauma. PMID:25685722

  14. 无创式微型动态血压监护仪的设计%A new portable non-invasive sphygmomanometer for dynamic blood pressure measurement

    Institute of Scientific and Technical Information of China (English)

    杜晓兰; 吴宝明; 陈林; 何庆华

    2004-01-01

    目的:研制一种无创式微型动态血压监护仪.方法:以一片80c196单片机和一个高分辨率液晶显示器(LCD)为基础,采用振动法原理和数据处理技术实现血压参数的实时检测和显示.结果:系统可动态实时显示所采集的血压波形和检测参数,并可存储显示24 h内的血压数据信号,通过RS232接口可完成与计算机之间的数据通讯.结论:该仪器小型轻便,使用灵活,有较强的抗干扰能力,具有很大的应用价值.%AIM: To develop a non-invasive portable monitor for accurate dynamic blood pressure(BP) measurement.METHODS: With a piece of 80c196 singlechip and a high-differentiation LCD, a new portable monitor could carry out real-time examination and display of BP parameters on the basis of oscillometric method theory and data processing technique.RESULTS: System could dynamically show real-time BP wave shape and parameters, which then stored in computer for 24 hours for inter-computer communication through RS232 interface.CONCLUSION: This kind of sphygmomanometer was of great applicable value because of mini-type and portability, as well as agile usage and anti-interference capability.

  15. New pH sensitive sensor materials. Luminescent fiber-optic dual sensors for non-invasive and simultaneous measurement of pH and pO2 (dissolved oxygen) in biological systems

    OpenAIRE

    Kocincová, Anna S.

    2007-01-01

    This thesis describes the development and characterization of novel, pH-sensitive, optical sensor materials. Special attention is given to the development of dual optical chemical sensors for non-invasive determination of pH and dissolved oxygen (DO) in biological systems. A new measurement scheme is introduced to evaluate and calculate the data for these two parameters via dual luminophore referencing (DLR). An application example for simultaneous monitoring of pH and DO in bioprocessing is ...

  16. BiSpectral Index (BIS) monitoring may detect critical hypotension before automated non-invasive blood pressure (NIBP) measurement during general anaesthesia; a case report. [v1; ref status: indexed, http://f1000r.es/2oi

    OpenAIRE

    Smith, Matthew M. J.

    2014-01-01

    A patient undergoing general anaesthesia for neurosurgery exhibited an unexpected sudden decrease in the BiSpectral Index (BIS) value to near-zero. This prompted the detection of profound hypotension using non-invasive blood pressure (NIBP) measurement and expedited urgent assessment and treatment, with the patient making a full recovery. Widely regarded as a ‘depth of anaesthesia’ monitor, this case demonstrates the potential extra clinical benefit BIS may have in the detection of critical i...

  17. Technology for noninvasive mechanical ventilation: looking into the black box

    Directory of Open Access Journals (Sweden)

    Ramon Farré

    2016-03-01

    Full Text Available Current devices for providing noninvasive respiratory support contain sensors and built-in intelligence for automatically modifying ventilation according to the patient's needs. These devices, including automatic continuous positive airway pressure devices and noninvasive ventilators, are technologically complex and offer a considerable number of different modes of ventilation and setting options, the details of which are sometimes difficult to capture by the user. Therefore, better predicting and interpreting the actual performance of these ventilation devices in clinical application requires understanding their functioning principles and assessing their performance under well controlled bench test conditions with simulated patients. This concise review presents an updated perspective of the theoretical basis of intelligent continuous positive airway pressure and noninvasive ventilation devices, and of the tools available for assessing how these devices respond under specific ventilation phenotypes in patients requiring breathing support.

  18. The minimum measurable dose of CaF2:Dy measured via an improved heating profile with an automatic 6600 thermoluminescent detector

    International Nuclear Information System (INIS)

    One of the advantages of the thermoluminescent method is its ability to measure low doses, which is useful in environmental dosimetry, as well as in archaeology. The CaF2:Dy (Crown as TLD-200), has a sensitivity of 10-30 times greater than the sensitivity of TLD-100, when irradiated by Cs-137. In the present work we evaluated the TL-dose response of CaF2:Dy, by using an improved heating profile which is giving the main glow peak alone. The relative standard deviations were fitted to a semiempirical expression, from which the minimum measurable doses (MMD) were derived. The MMD were calculated by taking 3 times the standard deviation of the unirradiated chips. The results of the TL-dose response, as well as file fee calculated MMD by taxing 3 times the standard deviation of unirradiated chips, measured by file new 6600 automatic thermoluminescent detector, are presented in this work. We received a MMD of about 0.01 mGy (1 mrad), an improvement of a factor of 2.5 relatively to the integral light response evaluation using the standard heating profile (authors)

  19. 10 CFR Appendix J to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Automatic and Semi-Automatic Clothes...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Energy Consumption.... Note: Appendix J does not provide a means for determining the energy consumption of a clothes washer with an adaptive control system. Therefore, pursuant to 10 CFR 430.27, a waiver must be obtained...

  20. Modeling complexity in pathologist workload measurement: the Automatable Activity-Based Approach to Complexity Unit Scoring (AABACUS).

    Science.gov (United States)

    Cheung, Carol C; Torlakovic, Emina E; Chow, Hung; Snover, Dale C; Asa, Sylvia L

    2015-03-01

    Pathologists provide diagnoses relevant to the disease state of the patient and identify specific tissue characteristics relevant to response to therapy and prognosis. As personalized medicine evolves, there is a trend for increased demand of tissue-derived parameters. Pathologists perform increasingly complex analyses on the same 'cases'. Traditional methods of workload assessment and reimbursement, based on number of cases sometimes with a modifier (eg, the relative value unit (RVU) system used in the United States), often grossly underestimate the amount of work needed for complex cases and may overvalue simple, small biopsy cases. We describe a new approach to pathologist workload measurement that aligns with this new practice paradigm. Our multisite institution with geographically diverse partner institutions has developed the Automatable Activity-Based Approach to Complexity Unit Scoring (AABACUS) model that captures pathologists' clinical activities from parameters documented in departmental laboratory information systems (LISs). The model's algorithm includes: 'capture', 'export', 'identify', 'count', 'score', 'attribute', 'filter', and 'assess filtered results'. Captured data include specimen acquisition, handling, analysis, and reporting activities. Activities were counted and complexity units (CUs) generated using a complexity factor for each activity. CUs were compared between institutions, practice groups, and practice types and evaluated over a 5-year period (2008-2012). The annual load of a clinical service pathologist, irrespective of subspecialty, was ∼40,000 CUs using relative benchmarking. The model detected changing practice patterns and was appropriate for monitoring clinical workload for anatomical pathology, neuropathology, and hematopathology in academic and community settings, and encompassing subspecialty and generalist practices. AABACUS is objective, can be integrated with an LIS and automated, is reproducible, backwards compatible

  1. The possible use of combined electrical impedance and ultrasound velocity measurements for the non-invasive measurement of temperature during mild hyperthermia

    International Nuclear Information System (INIS)

    This paper explores the possibility of using combined measurements of electrical impedance and changes in ultrasound time of flight for determining deep body temperature during mild hyperthermia. Simultaneous electrical impedance spectra (1 kHz–1024 kHz) and ultrasound time-of-flight measurements were made on layered sheep liver and fat tissue samples as the temperature was increased from 30–50 °C. The change in propagation velocity for 100% fat and 100% liver samples was found to vary linearly with temperature and the temperature coefficient of the time-of-flight was shown to vary linearly with the % fat in the sample (0.009% °C−1%−1). Tetrapolar impedance measurements normalized to 8 kHz were shown to have a small sensitivity to temperature for both liver (0.001% °C−1 ≤ 45 °C) and fat (0.002% °C−1 ≤ 512 kHz) and the best linear correlation between the normalized impedance and the % fat in the sample was found at 256 kHz (gradient 0.026%−1, r2 = 0.65). A bootstrap analysis on 15 layered tissue samples evaluated using the normalized impedance at 256 kHz to determine the % fat in the sample and the temperature coefficient of the time of flight to determine the temperature. The results showed differences (including some large differences) between the predicted and measured temperatures and an error evaluation identified the possible origins of these. (paper)

  2. 基于光电容积脉搏波描记法的无创连续血压测量%The Research Progress of Non-Invasive and Continuous Blood Pressure Measurement Based on Photoplethysmography

    Institute of Scientific and Technical Information of China (English)

    李章俊; 王成; 朱浩; 金凡; 马俊领

    2012-01-01

    Noninvasive and continuous blood pressure monitoring have been intensively investigated and developed in attempt to getting rid of inflatable cuff and realizing the long term blood pressure monitoring. This article analyzed the principle of noninvasive and continuous blood pressure measurement based on photoplethysmography (PPG) . The researches of current noninvasive blood pressure monitoring based on the PPG ware claasi fied into three categories including combination of electrocardiograph ( ECG) and PPG, two channels PPG, and utilization of pulse characteristic parameter. The measurement accuracy, advantage and disadvantage of the three technologies were summarized. The development tendency of the noninvasive and continuous monitoring blood pressure based on the PPG was discussed.%为了摆脱传统血压计充气袖带的束缚、实现长期连续的血压监测,很多学者开展了基于PPG实现无创、连续血压监测的研究.阐述基于光电容积脉搏波描记法( PPG)实现无创、连续血压测量的基本原理.将当前基于PPG无创血压监测的研究分为3类,分别为心电(ECG)与PPG结合的血压测量技术、两路PPG结合的血压测量技术、脉搏波特征参数血压测量技术,分析这3类技术的基本测量原理、测量精度及其优缺点.在此基础上,论述基于PPG实现无创、连续监测血压的发展方向.

  3. Quantum dots-based double imaging combined with organic dye imaging to establish an automatic computerized method for cancer Ki67 measurement

    Science.gov (United States)

    Wang, Lin-Wei; Qu, Ai-Ping; Liu, Wen-Lou; Chen, Jia-Mei; Yuan, Jing-Ping; Wu, Han; Li, Yan; Liu, Juan

    2016-02-01

    As a widely used proliferative marker, Ki67 has important impacts on cancer prognosis, especially for breast cancer (BC). However, variations in analytical practice make it difficult for pathologists to manually measure Ki67 index. This study is to establish quantum dots (QDs)-based double imaging of nuclear Ki67 as red signal by QDs-655, cytoplasmic cytokeratin (CK) as yellow signal by QDs-585, and organic dye imaging of cell nucleus as blue signal by 4‧,6-diamidino-2-phenylindole (DAPI), and to develop a computer-aided automatic method for Ki67 index measurement. The newly developed automatic computerized Ki67 measurement could efficiently recognize and count Ki67-positive cancer cell nuclei with red signals and cancer cell nuclei with blue signals within cancer cell cytoplasmic with yellow signals. Comparisons of computerized Ki67 index, visual Ki67 index, and marked Ki67 index for 30 patients of 90 images with Ki67 ≤ 10% (low grade), 10% < Ki67 < 50% (moderate grade), and Ki67 ≥ 50% (high grade) showed computerized Ki67 counting is better than visual Ki67 counting, especially for Ki67 low and moderate grades. Based on QDs-based double imaging and organic dye imaging on BC tissues, this study successfully developed an automatic computerized Ki67 counting method to measure Ki67 index.

  4. Measurement of airway function using invasive and non-invasive methods in mild and severe models for allergic airway inflammation in mice

    OpenAIRE

    Verheijden, Kim A T; Henricks, Paul A.J.; Redegeld, Frank A.; Garssen, Johan; Folkerts, Gert

    2014-01-01

    In this study a direct comparison was made between non-invasive and non-ventilated unrestrained whole body plethysmography (Penh) (conscious animals) and the invasive ventilated lung resistance (RL) method (anesthetized animals) in both mild and severe allergic airway inflammation models. Mild inflammation was induced by intraperitoneal sensitization and aerosols of ovalbumin. Severe inflammation was induced by intraperitoneal sensitization using trinitrophenyl-ovalbumin, followed by intranas...

  5. Measurement of airway function using invasive and non-invasive methodsin mild and severe models for allergic airway inflammation in mice

    OpenAIRE

    Kim eVerheijden; Paul eHenricks; Redegeld, Frank A.; Johan eGarssen; Gert eFolkerts

    2014-01-01

    In this study a direct comparison was made between non-invasive and non-ventilated unrestrained whole body plethysmography (Penh) (conscious animals) and the invasive ventilated lung resistance (RL) method (anaesthetized animals) in both mild and severe allergic airway inflammation models. Mild inflammation was induced by intraperitoneal sensitization and aerosols of ovalbumin. Severe inflammation was induced by intraperitoneal sensitization using trinitrophenyl-ovalbumin, followed by intrana...

  6. Looking at the future of manufacturing metrology: roadmap document of the German VDI/VDE Society for Measurement and Automatic Control

    OpenAIRE

    J. Berthold; Imkamp, D.

    2013-01-01

    "Faster, safer, more accurately and more flexibly'' is the title of the "manufacturing metrology roadmap'' issued by the VDI/VDE Society for Measurement and Automatic Control (http://www.vdi.de/gma). The document presents a view of the development of metrology for industrial production over the next ten years and was drawn up by a German group of experts from research and industry. The following paper summarizes the content of the roadmap and explains the individual concepts of "Faster, safer...

  7. Comparison of high-definition oscillometry -- a non-invasive technology for arterial blood pressure measurement -- with a direct invasive method using radio-telemetry in awake healthy cats.

    Science.gov (United States)

    Martel, Eric; Egner, Beate; Brown, Scott A; King, Jonathan N; Laveissiere, Arnaud; Champeroux, Pascal; Richard, Serge

    2013-12-01

    This study compared indirect blood pressure measurements using a non-invasive method, high-definition oscillometry (HDO), with direct measurements using a radio-telemetry device in awake cats. Paired measurements partitioned to five sub-ranges were collected in six cats using both methods. The results were analysed for assessment of correlation and agreement between the two methods, taking into account all pressure ranges, and with data separated in three sub-groups, low, normal and high ranges of systolic (SBP) and diastolic (DBP) blood pressure. SBP data displayed a mean correlation coefficient of 0.92 ± 0.02 that was reduced for low SBP. The agreement level evaluated from the whole data set was high and slightly reduced for low SBP values. The mean correlation coefficient of DBP was lower than for SBP (ie, 0.81 ± 0.02). The bias for DBP between the two methods was 22.3 ± 1.6 mmHg, suggesting that HDO produced lower values than telemetry. These results suggest that HDO met the validation criteria defined by the American College of Veterinary Internal Medicine consensus panel and provided a faithful measurement of SBP in conscious cats. For DBP, results suggest that HDO tended to underestimate DBP. This finding is clearly inconsistent with the good agreement reported in dogs, but is similar to outcomes achieved in marmosets and cynomolgus monkeys, suggesting that this is not related to HDO but is species related. The data support that the HDO is the first and only validated non-invasive blood pressure device and, as such, it is the only non-invasive reference technique that should be used in future validation studies. PMID:23813147

  8. Noninvasive Test Detects Cardiovascular Disease

    Science.gov (United States)

    2007-01-01

    At NASA's Jet Propulsion Laboratory (JPL), NASA-developed Video Imaging Communication and Retrieval (VICAR) software laid the groundwork for analyzing images of all kinds. A project seeking to use imaging technology for health care diagnosis began when the imaging team considered using the VICAR software to analyze X-ray images of soft tissue. With marginal success using X-rays, the team applied the same methodology to ultrasound imagery, which was already digitally formatted. The new approach proved successful for assessing amounts of plaque build-up and arterial wall thickness, direct predictors of heart disease, and the result was a noninvasive diagnostic system with the ability to accurately predict heart health. Medical Technologies International Inc. (MTI) further developed and then submitted the technology to a vigorous review process at the FDA, which cleared the software for public use. The software, patented under the name Prowin, is being used in MTI's patented ArterioVision, a carotid intima-media thickness (CIMT) test that uses ultrasound image-capturing and analysis software to noninvasively identify the risk for the major cause of heart attack and strokes: atherosclerosis. ArterioVision provides a direct measurement of atherosclerosis by safely and painlessly measuring the thickness of the first two layers of the carotid artery wall using an ultrasound procedure and advanced image-analysis software. The technology is now in use in all 50 states and in many countries throughout the world.

  9. Design of a sun tracker for the automatic measurement of spectral irradiance and construction of an irradiance database in the 330-1100 nm range

    Energy Technology Data Exchange (ETDEWEB)

    Canada, J.; Maj, A. [Departamento de Termodinamica Aplicada, Universidad Politecnica de Valencia, Camino de Vera, s/n. 46022 Valencia (Spain); Utrillas, M.P.; Martinez-Lozano, J.A.; Pedros, R.; Gomez-Amo, J.L. [Departamento de Fisica de la Tierra y Termodinamica, Facultat de Fisica, Universitat de Valencia, 46100 Burjassot (Valencia) (Spain)

    2007-10-15

    An automatic global and direct solar spectral irradiance system has been designed based on two LICOR spectro radiometers equipped with fibre optics and remote cosine sensors. To measure direct irradiance a sun tracker based on step motors has been developed. The whole system is autonomous and works continuously. From the measurements provided by this system a spectral irradiance database in the 330-1100 nm range has been created. This database contains normal direct and global horizontal irradiances as well as diffuse irradiance on a horizontal plane, together with total atmospheric optical thickness and aerosol optical depth. (author)

  10. BiSpectral Index (BIS monitoring may detect critical hypotension before automated non-invasive blood pressure (NIBP measurement during general anaesthesia; a case report. [v1; ref status: indexed, http://f1000r.es/2oi

    Directory of Open Access Journals (Sweden)

    Matthew M. J. Smith

    2014-01-01

    Full Text Available A patient undergoing general anaesthesia for neurosurgery exhibited an unexpected sudden decrease in the BiSpectral Index (BIS value to near-zero. This prompted the detection of profound hypotension using non-invasive blood pressure (NIBP measurement and expedited urgent assessment and treatment, with the patient making a full recovery. Widely regarded as a ‘depth of anaesthesia’ monitor, this case demonstrates the potential extra clinical benefit BIS may have in the detection of critical incidents such as anaphylaxis during general anaesthesia.

  11. Non-invasive microelectrode cadmium flux measurements reveal the spatial characteristics and real-time kinetics of cadmium transport in hyperaccumulator and nonhyperaccumulator ecotypes of Sedum alfredii.

    Science.gov (United States)

    Sun, Jian; Wang, Ruigang; Liu, Zhongqi; Ding, Yongzhen; Li, Tingqiang

    2013-02-15

    This study aims to determine the spatial characteristics and real-time kinetics of cadmium transport in hyperaccumulator (HE) and non hyperaccumulator (NHE) ecotypes of Sedum alfredii using a non-invasive Cd-selective microelectrode. Compared with the NHE S. alfredii, the HE S. alfredii showed a higher Cd influx in the root apical region and root hair cells, as well as a significantly higher Cd efflux in the leaf petiole after root pre-treatment with cadmium chloride (CdCl(2)). Thus, HE S. alfredii has a higher capability for the translocation of absorbed Cd to the shoot. Moreover, the mesophyll tissues, isolated mesophyll protoplasts, and intact vacuoles from HE S. alfredii exhibited an instantaneous influx of Cd in response to CdCl(2) treatment with mean rates that are markedly higher than those from NHE S. alfredii. Therefore, the hyper-accumulating trait of HE S. alfredii is characterized by the rapid Cd uptake in specific root regions, including the apical region and root hair cells, as well as by the rapid root-to-shoot translocation and the highly efficient Cd-permeable transport system in the plasma membrane and mesophyll cell tonoplast. We suggest that the non-invasive Cd-selective microelectrode is an excellent method with a high degree of spatial resolution for the study of Cd transport at the tissue, cellular, and sub-cellular levels in plants. PMID:23261265

  12. Non-invasive imaging of microcirculation: a technology review

    Directory of Open Access Journals (Sweden)

    Eriksson S

    2014-12-01

    Full Text Available Sam Eriksson,1,2 Jan Nilsson,1,2 Christian Sturesson1,2 1Department of Surgery, Clinical Sciences Lund, Lund University, 2Skåne University Hospital, Lund, Sweden Abstract: Microcirculation plays a crucial role in physiological processes of tissue oxygenation and nutritional exchange. Measurement of microcirculation can be applied on many organs in various pathologies. In this paper we aim to review the technique of non-invasive methods for imaging of the microcirculation. Methods covered are: videomicroscopy techniques, laser Doppler perfusion imaging, and laser speckle contrast imaging. Videomicroscopy techniques, such as orthogonal polarization spectral imaging and sidestream dark-field imaging, provide a plentitude of information and offer direct visualization of the microcirculation but have the major drawback that they may give pressure artifacts. Both laser Doppler perfusion imaging and laser speckle contrast imaging allow non-contact measurements but have the disadvantage of their sensitivity to motion artifacts and that they are confined to relative measurement comparisons. Ideal would be a non-contact videomicroscopy method with fully automatic analysis software. Keywords: laser speckle contrast imaging, sidestream dark-field, orthogonal polarization spectral imaging, laser Dopplerimaging

  13. {gamma}H2AX foci as a measure of DNA damage: A computational approach to automatic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ivashkevich, Alesia N. [Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, St. Andrew' s Place, East Melbourne, Victoria 3002 (Australia); Martin, Olga A. [Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institute of Health, D.H.H.S., Bethesda, MD 20892 (United States); Smith, Andrea J. [Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, St. Andrew' s Place, East Melbourne, Victoria 3002 (Australia); Redon, Christophe E.; Bonner, William M. [Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institute of Health, D.H.H.S., Bethesda, MD 20892 (United States); Martin, Roger F. [Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, St. Andrew' s Place, East Melbourne, Victoria 3002 (Australia); Lobachevsky, Pavel N., E-mail: pavel.lobachevsky@petermac.org [Trescowthick Research Laboratories, Peter MacCallum Cancer Centre, St. Andrew' s Place, East Melbourne, Victoria 3002 (Australia)

    2011-06-03

    The {gamma}H2AX focus assay represents a fast and sensitive approach for the detection of one of the critical types of DNA damage - double-strand breaks (DSB) induced by various cytotoxic agents including ionising radiation. Apart from research applications, the assay has a potential in clinical medicine/pathology, such as assessment of individual radiosensitivity, response to cancer therapies, as well as in biodosimetry. Given that generally there is a direct relationship between numbers of microscopically visualised {gamma}H2AX foci and DNA DSB in a cell, the number of foci per nucleus represents the most efficient and informative parameter of the assay. Although computational approaches have been developed for automatic focus counting, the tedious and time consuming manual focus counting still remains the most reliable way due to limitations of computational approaches. We suggest a computational approach and associated software for automatic focus counting that minimises these limitations. Our approach, while using standard image processing algorithms, maximises the automation of identification of nuclei/cells in complex images, offers an efficient way to optimise parameters used in the image analysis and counting procedures, optionally invokes additional procedures to deal with variations in intensity of the signal and background in individual images, and provides automatic batch processing of a series of images. We report results of validation studies that demonstrated correlation of manual focus counting with results obtained using our computational algorithm for mouse jejunum touch prints, mouse tongue sections and human blood lymphocytes as well as radiation dose response of {gamma}H2AX focus induction for these biological specimens.

  14. Looking at the future of manufacturing metrology: roadmap document of the German VDI/VDE Society for Measurement and Automatic Control

    Directory of Open Access Journals (Sweden)

    J. Berthold

    2013-02-01

    Full Text Available "Faster, safer, more accurately and more flexibly'' is the title of the "manufacturing metrology roadmap'' issued by the VDI/VDE Society for Measurement and Automatic Control (http://www.vdi.de/gma. The document presents a view of the development of metrology for industrial production over the next ten years and was drawn up by a German group of experts from research and industry. The following paper summarizes the content of the roadmap and explains the individual concepts of "Faster, safer, more accurately and more flexibly'' with the aid of examples.

  15. Automatic Stellar Spectrum Parameter Measurement Based on Similarity Measure%痕量铜离子光化学传感器的设计与研制

    Institute of Scientific and Technical Information of China (English)

    张浩东; 郑守国; 李淼; 石怀文; 张健; 高会议

    2012-01-01

    In stellar spectral processing, template matching method can be used to obtain comparably ideal results of stellar spectrum parameters by using pattern recognition algorithms, without computing the spectral line-index The present paper proposed a similarity based method to measure stellar spectrum parameters automatically. First, the continuum normalization was made, and then the similarities between the stellar spectrum and the template spectrum were compared to get more accurate stellar spectrum parameters. Experiments on ELODIE spectrum showed that this method is ideal in efficiently obtaining stellar spectrum parameters.%针对量子点荧光猝灭法检测Cu2+大多通过实验室化学分析或大型仪器检测而难以满足现场检测需求的问题,设计了一种可用于现场检测的痕量Cu2+光化学传感器,主要包括光学感知模块与信号处理模块,光学感知模块完成激光光源的输出与荧光的激发,信号处理模块完成微弱荧光信号的光电转换、信号放大、数据处理与显示.利用自行研制的光电采集、转换与信号处理系统完成痕量Cu2+的快速检测,实现了检测仪器的小型化与低成本.实验结果表明,在Cu2+浓度30~1 000 nmol·L-1范围内传感器检测结果具有较好的线性关系,拟合后的直线方程为y=0.109 77x+11.872 32,线性度为0.994 82,标准方差3.994 24,检测下限达到30 nmol·L-1,传感器响应时间为40 s,实验测定了其他共存离子对Cu2+检测结果的干扰,实验结果表明该传感器可以满足痕量Cu2+现场检测的需求.

  16. 基于容积脉搏波的无创连续血压测量系统%A Non-invasive Continuous Blood Pressure Measurement System Based on Plethysmographic Pulse Wave

    Institute of Scientific and Technical Information of China (English)

    梁永波; 陈真诚; 朱健铭; 殷世民

    2013-01-01

    Objective To develop a non-invasive continuous blood pressure measurement system without the cuff based on plethysmographic pulse wave. Methods A blood pressure estimation equation was established by the stepwise regression analysis on blood pressure and pulse wave transit time which was extracted from a single circle of plethysmographic pulse wave, and then the non-invasive continuous blood pressure measurement was realized. Results Compared blood pressure value with detection by the system and Yu-Yue brand mercury sphygmomanometer from various populations, the results indicated that the two methods exhibit good coherence , and the measurement error is better than the Association for the Advancement of Medical Instrumentation (AAMI) recommendation standard. Conclusion Compared with traditional blood pressure measurement method , the non-invasive continuous blood pressure measurement method is more convenient. It can measure blood pressure continuously without cuff and invasion, and may have promising application in the future.%目的 设计一种基于容积脉搏波的无袖套连续血压测量系统.方法 从单一容积脉搏波中提取脉搏波传导时间,经逐步回归分析与血压建立血压估算方程,实现无创连续血压测量.结果 通过对不同人群血压检测,并与鱼跃牌水银血压计进行对比,结果表明该方法和传统方法具有较好的测试一致性,测量误差优于美国医疗仪器促进协会(AAMI)推荐标准.结论 该方法同传统血压测量方法相比,测量方便,可彻底摆脱缚带,并能实现无创连续测量,具有更广阔的应用前景.

  17. Non-invasive model-based estimation of aortic pulse pressure using suprasystolic brachial pressure waveforms.

    Science.gov (United States)

    Lowe, A; Harrison, W; El-Aklouk, E; Ruygrok, P; Al-Jumaily, A M

    2009-09-18

    Elevated central arterial (aortic) blood pressure is related to increased risk of cardiovascular disease. Methods of non-invasively estimating this pressure would therefore be helpful in clinical practice. To achieve this goal, a physics-based model is derived to correlate the arterial pressure under a suprasystolic upper-arm cuff to the aortic pressure. The model assumptions are particularly applicable to the measurement method and result in a time-domain relation with two parameters, namely, the wave propagation transit time and the reflection coefficient at the cuff. Central pressures estimated by the model were derived from completely automatic, non-invasive measurement of brachial blood pressure and suprasystolic waveform and were compared to simultaneous invasive catheter measurements in 16 subjects. Systolic blood pressure agreement, mean (standard deviation) of difference was -1 (7)mmHg. Diastolic blood pressure agreement was 4 (4)mmHg. Correlation between estimated and actual central waveforms was greater than 90%. Individualization of model parameters did not significantly improve systolic and diastolic pressure agreement, but increased waveform correlation. Further research is necessary to confirm that more accurate brachial pressure measurement improves central pressure estimation. PMID:19665136

  18. Noninvasive prenatal diagnosis.

    Science.gov (United States)

    Cheng, Wei-Lun; Hsiao, Ching-Hua; Tseng, Hua-Wei; Lee, Tai-Ping

    2015-08-01

    Prenatal examination plays an important role in present medical diagnosis. It provides information on fetal health status as well as the diagnosis of fetal treatment feasibility. The diagnosis can provide peace of mind for the perspective mother. Timely pregnancy termination diagnosis can also be determined if required. Amniocentesis and chorionic villus sampling are two widely used invasive prenatal diagnostic procedures. To obtain complete fetal genetic information and avoid endangering the fetus, noninvasive prenatal diagnosis has become the vital goal of prenatal diagnosis. However, the development of a high-efficiency separation technology is required to obtain the scarce fetal cells from maternal circulation. In recent years, the rapid development of microfluidic systems has provided an effective method for fetal cell separation. Advantages such as rapid analysis of small samples, low cost, and various designs, greatly enhance the efficiency and convenience of using microfluidic systems for cell separation. In addition, microfluidic disks can be fully automated for high throughput of rare cell selection from blood samples. Therefore, the development of microfluidic applications in noninvasive prenatal diagnosis is unlimited. PMID:26384048

  19. Design and construction of an automatic measurement electronic system and graphical neutron flux for the subcritical reactor

    International Nuclear Information System (INIS)

    The National Institute of Nuclear Research (ININ) has in its installations with a nuclear subcritical reactor which was designed and constructed with the main purpose to be used in the nuclear sciences education in the Physics areas and Reactors engineering. Within the nuclear experiments that can be realized in this reactor are very interesting those about determinations of neutron and gamma fluxes spectra, since starting from these some interesting nuclear parameters can be obtained. In order to carry out this type of experiments different radioactive sources are used which exceed the permissible doses by far to human beings. Therefore it is necessary the remote handling as of the source as of detectors used in different experiments. In this work it is presented the design of an electronic system which allows the different positions inside of the tank of subcritical reactor at ININ over the radial and axial axes in manual or automatic ways. (Author)

  20. 2D potential measurements by applying automatic beam adjustment system to heavy ion beam probe diagnostic on the Large Helical Device

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, A., E-mail: akihiro@nifs.ac.jp; Ido, T.; Kato, S.; Hamada, Y. [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kurachi, M.; Makino, R. [Graduate School of Engineering, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Nishiura, M. [Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561 (Japan); Nishizawa, A. [Pesco Corporation Limited, Toki, Gifu 509-5123 (Japan)

    2014-11-15

    Two-dimensional potential profiles in the Large Helical Device (LHD) were measured with heavy ion beam probe (HIBP). To measure the two-dimensional profile, the probe beam energy has to be changed. However, this task is not easy, because the beam transport line of LHD-HIBP system is very long (∼20 m), and the required beam adjustment consumes much time. To reduce the probe beam energy adjustment time, an automatic beam adjustment system has been developed. Using this system, required time to change the probe beam energy is dramatically reduced, such that two-dimensional potential profiles were able to be successfully measured with HIBP by changing the probe beam energy shot to shot.