WorldWideScience

Sample records for automatic image processing

  1. Some results of automatic processing of images

    International Nuclear Information System (INIS)

    Golenishchev, I.A.; Gracheva, T.N.; Khardikov, S.V.

    1975-01-01

    The problems of automatic deciphering of the radiographic picture the purpose of which is making a conclusion concerning the quality of the inspected product on the basis of the product defect images in the picture are considered. The methods of defect image recognition are listed, and the algorithms and the class features of defects are described. The results of deciphering of a small radiographic picture by means of the ''Minsk-22'' computer are presented. It is established that the sensitivity of the method of the automatic deciphering is close to that obtained for visual deciphering

  2. Automatic image processing as a means of safeguarding nuclear material

    International Nuclear Information System (INIS)

    Kahnmeyer, W.; Willuhn, K.; Uebel, W.

    1985-01-01

    Problems involved in computerized analysis of pictures taken by automatic film or video cameras in the context of international safeguards implementation are described. They include technical ones as well as the need to establish objective criteria for assessing image information. In the near future automatic image processing systems will be useful in verifying the identity and integrity of IAEA seals. (author)

  3. Image processing. A system for the automatic sorting of chromosomes

    International Nuclear Information System (INIS)

    Najai, Amor

    1977-01-01

    The present paper deals with two aspects of the system: - an automata (specialized hardware) dedicated to image processing. Images are digitized, divided into sub-units and computations are carried out on their main parameters. - A software for the automatic recognition and sorting of chromosomes is implemented on a Multi-20 minicomputer, connected to the automata. (author) [fr

  4. Automation of chromosomes analysis. Automatic system for image processing

    International Nuclear Information System (INIS)

    Le Go, R.; Cosnac, B. de; Spiwack, A.

    1975-01-01

    The A.S.T.I. is an automatic system relating to the fast conversational processing of all kinds of images (cells, chromosomes) converted to a numerical data set (120000 points, 16 grey levels stored in a MOS memory) through a fast D.O. analyzer. The system performs automatically the isolation of any individual image, the area and weighted area of which are computed. These results are directly displayed on the command panel and can be transferred to a mini-computer for further computations. A bright spot allows parts of an image to be picked out and the results to be displayed. This study is particularly directed towards automatic karyo-typing [fr

  5. Automatic Road Pavement Assessment with Image Processing: Review and Comparison

    Directory of Open Access Journals (Sweden)

    Sylvie Chambon

    2011-01-01

    Full Text Available In the field of noninvasive sensing techniques for civil infrastructures monitoring, this paper addresses the problem of crack detection, in the surface of the French national roads, by automatic analysis of optical images. The first contribution is a state of the art of the image-processing tools applied to civil engineering. The second contribution is about fine-defect detection in pavement surface. The approach is based on a multi-scale extraction and a Markovian segmentation. Third, an evaluation and comparison protocol which has been designed for evaluating this difficult task—the road pavement crack detection—is introduced. Finally, the proposed method is validated, analysed, and compared to a detection approach based on morphological tools.

  6. Automatic tissue image segmentation based on image processing and deep learning

    Science.gov (United States)

    Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting

    2018-02-01

    Image segmentation plays an important role in multimodality imaging, especially in fusion structural images offered by CT, MRI with functional images collected by optical technologies or other novel imaging technologies. Plus, image segmentation also provides detailed structure description for quantitative visualization of treating light distribution in the human body when incorporated with 3D light transport simulation method. Here we used image enhancement, operators, and morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in a deep learning way. We also introduced parallel computing. Such approaches greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. Our results can be used as a criteria when diagnosing diseases such as cerebral atrophy, which is caused by pathological changes in gray matter or white matter. We demonstrated the great potential of such image processing and deep leaning combined automatic tissue image segmentation in personalized medicine, especially in monitoring, and treatments.

  7. Automatic detection of NIL defects using microscopy and image processing

    KAUST Repository

    Pietroy, David; Gereige, Issam; Gourgon, Cé cile

    2013-01-01

    patterns, sticking. In this paper, microscopic imaging combined to a specific processing algorithm is used to detect numerically defects in printed patterns. Results obtained for 1D and 2D imprinted gratings with different microscopic image magnifications

  8. Automatic identification of corrosion damage using image processing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Bento, Mariana P.; Ramalho, Geraldo L.B.; Medeiros, Fatima N.S. de; Ribeiro, Elvis S. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil); Medeiros, Luiz C.L. [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This paper proposes a Nondestructive Evaluation (NDE) method for atmospheric corrosion detection on metallic surfaces using digital images. In this study, the uniform corrosion is characterized by texture attributes extracted from co-occurrence matrix and the Self Organizing Mapping (SOM) clustering algorithm. We present a technique for automatic inspection of oil and gas storage tanks and pipelines of petrochemical industries without disturbing their properties and performance. Experimental results are promising and encourage the possibility of using this methodology in designing trustful and robust early failure detection systems. (author)

  9. Automatic DNA Diagnosis for 1D Gel Electrophoresis Images using Bio-image Processing Technique.

    Science.gov (United States)

    Intarapanich, Apichart; Kaewkamnerd, Saowaluck; Shaw, Philip J; Ukosakit, Kittipat; Tragoonrung, Somvong; Tongsima, Sissades

    2015-01-01

    DNA gel electrophoresis is a molecular biology technique for separating different sizes of DNA fragments. Applications of DNA gel electrophoresis include DNA fingerprinting (genetic diagnosis), size estimation of DNA, and DNA separation for Southern blotting. Accurate interpretation of DNA banding patterns from electrophoretic images can be laborious and error prone when a large number of bands are interrogated manually. Although many bio-imaging techniques have been proposed, none of them can fully automate the typing of DNA owing to the complexities of migration patterns typically obtained. We developed an image-processing tool that automatically calls genotypes from DNA gel electrophoresis images. The image processing workflow comprises three main steps: 1) lane segmentation, 2) extraction of DNA bands and 3) band genotyping classification. The tool was originally intended to facilitate large-scale genotyping analysis of sugarcane cultivars. We tested the proposed tool on 10 gel images (433 cultivars) obtained from polyacrylamide gel electrophoresis (PAGE) of PCR amplicons for detecting intron length polymorphisms (ILP) on one locus of the sugarcanes. These gel images demonstrated many challenges in automated lane/band segmentation in image processing including lane distortion, band deformity, high degree of noise in the background, and bands that are very close together (doublets). Using the proposed bio-imaging workflow, lanes and DNA bands contained within are properly segmented, even for adjacent bands with aberrant migration that cannot be separated by conventional techniques. The software, called GELect, automatically performs genotype calling on each lane by comparing with an all-banding reference, which was created by clustering the existing bands into the non-redundant set of reference bands. The automated genotype calling results were verified by independent manual typing by molecular biologists. This work presents an automated genotyping tool from DNA

  10. Automatic DNA Diagnosis for 1D Gel Electrophoresis Images using Bio-image Processing Technique

    Science.gov (United States)

    2015-01-01

    Background DNA gel electrophoresis is a molecular biology technique for separating different sizes of DNA fragments. Applications of DNA gel electrophoresis include DNA fingerprinting (genetic diagnosis), size estimation of DNA, and DNA separation for Southern blotting. Accurate interpretation of DNA banding patterns from electrophoretic images can be laborious and error prone when a large number of bands are interrogated manually. Although many bio-imaging techniques have been proposed, none of them can fully automate the typing of DNA owing to the complexities of migration patterns typically obtained. Results We developed an image-processing tool that automatically calls genotypes from DNA gel electrophoresis images. The image processing workflow comprises three main steps: 1) lane segmentation, 2) extraction of DNA bands and 3) band genotyping classification. The tool was originally intended to facilitate large-scale genotyping analysis of sugarcane cultivars. We tested the proposed tool on 10 gel images (433 cultivars) obtained from polyacrylamide gel electrophoresis (PAGE) of PCR amplicons for detecting intron length polymorphisms (ILP) on one locus of the sugarcanes. These gel images demonstrated many challenges in automated lane/band segmentation in image processing including lane distortion, band deformity, high degree of noise in the background, and bands that are very close together (doublets). Using the proposed bio-imaging workflow, lanes and DNA bands contained within are properly segmented, even for adjacent bands with aberrant migration that cannot be separated by conventional techniques. The software, called GELect, automatically performs genotype calling on each lane by comparing with an all-banding reference, which was created by clustering the existing bands into the non-redundant set of reference bands. The automated genotype calling results were verified by independent manual typing by molecular biologists. Conclusions This work presents an

  11. Automatic detection of NIL defects using microscopy and image processing

    KAUST Repository

    Pietroy, David

    2013-12-01

    Nanoimprint Lithography (NIL) is a promising technology for low cost and large scale nanostructure fabrication. This technique is based on a contact molding-demolding process, that can produce number of defects such as incomplete filling, negative patterns, sticking. In this paper, microscopic imaging combined to a specific processing algorithm is used to detect numerically defects in printed patterns. Results obtained for 1D and 2D imprinted gratings with different microscopic image magnifications are presented. Results are independent on the device which captures the image (optical, confocal or electron microscope). The use of numerical images allows the possibility to automate the detection and to compute a statistical analysis of defects. This method provides a fast analysis of printed gratings and could be used to monitor the production of such structures. © 2013 Elsevier B.V. All rights reserved.

  12. Automatic Optimization of Hardware Accelerators for Image Processing

    OpenAIRE

    Reiche, Oliver; Häublein, Konrad; Reichenbach, Marc; Hannig, Frank; Teich, Jürgen; Fey, Dietmar

    2015-01-01

    In the domain of image processing, often real-time constraints are required. In particular, in safety-critical applications, such as X-ray computed tomography in medical imaging or advanced driver assistance systems in the automotive domain, timing is of utmost importance. A common approach to maintain real-time capabilities of compute-intensive applications is to offload those computations to dedicated accelerator hardware, such as Field Programmable Gate Arrays (FPGAs). Programming such arc...

  13. ASAP (Automatic Software for ASL Processing): A toolbox for processing Arterial Spin Labeling images.

    Science.gov (United States)

    Mato Abad, Virginia; García-Polo, Pablo; O'Daly, Owen; Hernández-Tamames, Juan Antonio; Zelaya, Fernando

    2016-04-01

    The method of Arterial Spin Labeling (ASL) has experienced a significant rise in its application to functional imaging, since it is the only technique capable of measuring blood perfusion in a truly non-invasive manner. Currently, there are no commercial packages for processing ASL data and there is no recognized standard for normalizing ASL data to a common frame of reference. This work describes a new Automated Software for ASL Processing (ASAP) that can automatically process several ASL datasets. ASAP includes functions for all stages of image pre-processing: quantification, skull-stripping, co-registration, partial volume correction and normalization. To assess the applicability and validity of the toolbox, this work shows its application in the study of hypoperfusion in a sample of healthy subjects at risk of progressing to Alzheimer's disease. ASAP requires limited user intervention, minimizing the possibility of random and systematic errors, and produces cerebral blood flow maps that are ready for statistical group analysis. The software is easy to operate and results in excellent quality of spatial normalization. The results found in this evaluation study are consistent with previous studies that find decreased perfusion in Alzheimer's patients in similar regions and demonstrate the applicability of ASAP. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Automatic Methods in Image Processing and Their Relevance to Map-Making.

    Science.gov (United States)

    1981-02-11

    folding fre- quency = .5) and s is the "shaoing fac- tor" which controls the spatial frequency content of the signal; the signal band- width increases...ARIZONA UNIV TUCSON DIGITAL IAgE ANALYSIS LAB Iris 8/ 2AUTOMATIC METHOOS IN IMAGE PROCESSING AND THEIR RELEVANCE TO MA-.ETC~tl;FEB 1 S R HUNT DAA629

  15. Image processing applied to automatic detection of defects during ultrasonic examination

    International Nuclear Information System (INIS)

    Moysan, J.

    1992-10-01

    This work is a study about image processing applied to ultrasonic BSCAN images which are obtained in the field of non destructive testing of weld. The goal is to define what image processing techniques can bring to ameliorate the exploitation of the data collected and, more precisely, what image processing can do to extract the meaningful echoes which enable to characterize and to size the defects. The report presents non destructive testing by ultrasounds in the nuclear field and it indicates specificities of the propagation of ultrasonic waves in austenitic weld. It gives a state of the art of the data processing applied to ultrasonic images in nondestructive evaluation. A new image analysis is then developed. It is based on a powerful tool, the co-occurrence matrix. This matrix enables to represent, in a whole representation, relations between amplitudes of couples of pixels. From the matrix analysis, a new complete and automatic method has been set down in order to define a threshold which separates echoes from noise. An automatic interpretation of the ultrasonic echoes is then possible. Complete validation has been done with standard pieces

  16. Experience in automatic processing of 340.000 images from ITEF 3-m magnetic spectrometer

    International Nuclear Information System (INIS)

    Dzhelyadin, R.I.; Dukhovskoj, I.A.; Ivanov, L.V.; Kishkurno, V.V.; Krutenkova, A.P.; Kulikov, V.V.; Lyulevich, V.I.; Polikarpov, V.M.; Radkevich, I.A.; Fedorets, V.S.; Fedotov, O.P.

    1974-01-01

    A number of conclusions were made regarding automatic processing of 340.000 pictures (1.020.000 frames) developed on a three-meter magnetic spectrometer with spark chambers. Possibilities for time optimization of automatic processing programs are discussed. The results of processing of a series of photographs were analysed to compare the paramters of automatic ans semi-automatic processing. Some problems relating to organization and technology of picture processing are also autlined [ru

  17. Mirion--a software package for automatic processing of mass spectrometric images.

    Science.gov (United States)

    Paschke, C; Leisner, A; Hester, A; Maass, K; Guenther, S; Bouschen, W; Spengler, B

    2013-08-01

    Mass spectrometric imaging (MSI) techniques are of growing interest for the Life Sciences. In recent years, the development of new instruments employing ion sources that are tailored for spatial scanning allowed the acquisition of large data sets. A subsequent data processing, however, is still a bottleneck in the analytical process, as a manual data interpretation is impossible within a reasonable time frame. The transformation of mass spectrometric data into spatial distribution images of detected compounds turned out to be the most appropriate method to visualize the results of such scans, as humans are able to interpret images faster and easier than plain numbers. Image generation, thus, is a time-consuming and complex yet very efficient task. The free software package "Mirion," presented in this paper, allows the handling and analysis of data sets acquired by mass spectrometry imaging. Mirion can be used for image processing of MSI data obtained from many different sources, as it uses the HUPO-PSI-based standard data format imzML, which is implemented in the proprietary software of most of the mass spectrometer companies. Different graphical representations of the recorded data are available. Furthermore, automatic calculation and overlay of mass spectrometric images promotes direct comparison of different analytes for data evaluation. The program also includes tools for image processing and image analysis.

  18. Extended morphological processing: a practical method for automatic spot detection of biological markers from microscopic images.

    Science.gov (United States)

    Kimori, Yoshitaka; Baba, Norio; Morone, Nobuhiro

    2010-07-08

    A reliable extraction technique for resolving multiple spots in light or electron microscopic images is essential in investigations of the spatial distribution and dynamics of specific proteins inside cells and tissues. Currently, automatic spot extraction and characterization in complex microscopic images poses many challenges to conventional image processing methods. A new method to extract closely located, small target spots from biological images is proposed. This method starts with a simple but practical operation based on the extended morphological top-hat transformation to subtract an uneven background. The core of our novel approach is the following: first, the original image is rotated in an arbitrary direction and each rotated image is opened with a single straight line-segment structuring element. Second, the opened images are unified and then subtracted from the original image. To evaluate these procedures, model images of simulated spots with closely located targets were created and the efficacy of our method was compared to that of conventional morphological filtering methods. The results showed the better performance of our method. The spots of real microscope images can be quantified to confirm that the method is applicable in a given practice. Our method achieved effective spot extraction under various image conditions, including aggregated target spots, poor signal-to-noise ratio, and large variations in the background intensity. Furthermore, it has no restrictions with respect to the shape of the extracted spots. The features of our method allow its broad application in biological and biomedical image information analysis.

  19. Automatic screening and classification of diabetic retinopathy and maculopathy using fuzzy image processing.

    Science.gov (United States)

    Rahim, Sarni Suhaila; Palade, Vasile; Shuttleworth, James; Jayne, Chrisina

    2016-12-01

    Digital retinal imaging is a challenging screening method for which effective, robust and cost-effective approaches are still to be developed. Regular screening for diabetic retinopathy and diabetic maculopathy diseases is necessary in order to identify the group at risk of visual impairment. This paper presents a novel automatic detection of diabetic retinopathy and maculopathy in eye fundus images by employing fuzzy image processing techniques. The paper first introduces the existing systems for diabetic retinopathy screening, with an emphasis on the maculopathy detection methods. The proposed medical decision support system consists of four parts, namely: image acquisition, image preprocessing including four retinal structures localisation, feature extraction and the classification of diabetic retinopathy and maculopathy. A combination of fuzzy image processing techniques, the Circular Hough Transform and several feature extraction methods are implemented in the proposed system. The paper also presents a novel technique for the macula region localisation in order to detect the maculopathy. In addition to the proposed detection system, the paper highlights a novel online dataset and it presents the dataset collection, the expert diagnosis process and the advantages of our online database compared to other public eye fundus image databases for diabetic retinopathy purposes.

  20. Generating Impact Maps from Automatically Detected Bomb Craters in Aerial Wartime Images Using Marked Point Processes

    Science.gov (United States)

    Kruse, Christian; Rottensteiner, Franz; Hoberg, Thorsten; Ziems, Marcel; Rebke, Julia; Heipke, Christian

    2018-04-01

    The aftermath of wartime attacks is often felt long after the war ended, as numerous unexploded bombs may still exist in the ground. Typically, such areas are documented in so-called impact maps which are based on the detection of bomb craters. This paper proposes a method for the automatic detection of bomb craters in aerial wartime images that were taken during the Second World War. The object model for the bomb craters is represented by ellipses. A probabilistic approach based on marked point processes determines the most likely configuration of objects within the scene. Adding and removing new objects to and from the current configuration, respectively, changing their positions and modifying the ellipse parameters randomly creates new object configurations. Each configuration is evaluated using an energy function. High gradient magnitudes along the border of the ellipse are favored and overlapping ellipses are penalized. Reversible Jump Markov Chain Monte Carlo sampling in combination with simulated annealing provides the global energy optimum, which describes the conformance with a predefined model. For generating the impact map a probability map is defined which is created from the automatic detections via kernel density estimation. By setting a threshold, areas around the detections are classified as contaminated or uncontaminated sites, respectively. Our results show the general potential of the method for the automatic detection of bomb craters and its automated generation of an impact map in a heterogeneous image stock.

  1. Developing an Intelligent Automatic Appendix Extraction Method from Ultrasonography Based on Fuzzy ART and Image Processing

    Directory of Open Access Journals (Sweden)

    Kwang Baek Kim

    2015-01-01

    Full Text Available Ultrasound examination (US does a key role in the diagnosis and management of the patients with clinically suspected appendicitis which is the most common abdominal surgical emergency. Among the various sonographic findings of appendicitis, outer diameter of the appendix is most important. Therefore, clear delineation of the appendix on US images is essential. In this paper, we propose a new intelligent method to extract appendix automatically from abdominal sonographic images as a basic building block of developing such an intelligent tool for medical practitioners. Knowing that the appendix is located at the lower organ area below the bottom fascia line, we conduct a series of image processing techniques to find the fascia line correctly. And then we apply fuzzy ART learning algorithm to the organ area in order to extract appendix accurately. The experiment verifies that the proposed method is highly accurate (successful in 38 out of 40 cases in extracting appendix.

  2. Image processing. A system for the automatic sorting of chromosomes; Traitement d'images - Applications au classement des chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Najai, Amor

    1977-05-27

    The present paper deals with two aspects of the system: - an automata (specialized hardware) dedicated to image processing. Images are digitized, divided into sub-units and computations are carried out on their main parameters. - A software for the automatic recognition and sorting of chromosomes is implemented on a Multi-20 minicomputer, connected to the automata. (author) [French] Nous decrivons un systeme automatique de classification de chromosomes. Il se compose de: - l'A.S.T.I., Automate Specialise de Traitement d'Images permettant de numeriser celles-ci, d'isoler des sous-images, d'effectuer des calculs sur leurs parametres principaux. - Un programme de reconnaissance et de classification automatique des chromosomes implante sur un mini-ordinateur MULTI-20, couple a l'A.S.T.I. (auteur)

  3. Image processing and pattern recognition with CVIPtools MATLAB toolbox: automatic creation of masks for veterinary thermographic images

    Science.gov (United States)

    Mishra, Deependra K.; Umbaugh, Scott E.; Lama, Norsang; Dahal, Rohini; Marino, Dominic J.; Sackman, Joseph

    2016-09-01

    CVIPtools is a software package for the exploration of computer vision and image processing developed in the Computer Vision and Image Processing Laboratory at Southern Illinois University Edwardsville. CVIPtools is available in three variants - a) CVIPtools Graphical User Interface, b) CVIPtools C library and c) CVIPtools MATLAB toolbox, which makes it accessible to a variety of different users. It offers students, faculty, researchers and any user a free and easy way to explore computer vision and image processing techniques. Many functions have been implemented and are updated on a regular basis, the library has reached a level of sophistication that makes it suitable for both educational and research purposes. In this paper, the detail list of the functions available in the CVIPtools MATLAB toolbox are presented and how these functions can be used in image analysis and computer vision applications. The CVIPtools MATLAB toolbox allows the user to gain practical experience to better understand underlying theoretical problems in image processing and pattern recognition. As an example application, the algorithm for the automatic creation of masks for veterinary thermographic images is presented.

  4. A Review of Automatic Methods Based on Image Processing Techniques for Tuberculosis Detection from Microscopic Sputum Smear Images.

    Science.gov (United States)

    Panicker, Rani Oomman; Soman, Biju; Saini, Gagan; Rajan, Jeny

    2016-01-01

    Tuberculosis (TB) is an infectious disease caused by the bacteria Mycobacterium tuberculosis. It primarily affects the lungs, but it can also affect other parts of the body. TB remains one of the leading causes of death in developing countries, and its recent resurgences in both developed and developing countries warrant global attention. The number of deaths due to TB is very high (as per the WHO report, 1.5 million died in 2013), although most are preventable if diagnosed early and treated. There are many tools for TB detection, but the most widely used one is sputum smear microscopy. It is done manually and is often time consuming; a laboratory technician is expected to spend at least 15 min per slide, limiting the number of slides that can be screened. Many countries, including India, have a dearth of properly trained technicians, and they often fail to detect TB cases due to the stress of a heavy workload. Automatic methods are generally considered as a solution to this problem. Attempts have been made to develop automatic approaches to identify TB bacteria from microscopic sputum smear images. In this paper, we provide a review of automatic methods based on image processing techniques published between 1998 and 2014. The review shows that the accuracy of algorithms for the automatic detection of TB increased significantly over the years and gladly acknowledges that commercial products based on published works also started appearing in the market. This review could be useful to researchers and practitioners working in the field of TB automation, providing a comprehensive and accessible overview of methods of this field of research.

  5. In vitro motility evaluation of aggregated cancer cells by means of automatic image processing.

    Science.gov (United States)

    De Hauwer, C; Darro, F; Camby, I; Kiss, R; Van Ham, P; Decaesteker, C

    1999-05-01

    Set up of an automatic image processing based method that enables the motility of in vitro aggregated cells to be evaluated for a number of hours. Our biological model included the PC-3 human prostate cancer cell line growing as a monolayer on the bottom of Falcon plastic dishes containing conventional culture media. Our equipment consisted of an incubator, an inverted phase contrast microscope, a Charge Coupled Device (CCD) video camera, and a computer equipped with an image processing software developed in our laboratory. This computer-assisted microscope analysis of aggregated cells enables global cluster motility to be evaluated. This analysis also enables the trajectory of each cell to be isolated and parametrized within a given cluster or, indeed, the trajectories of individual cells outside a cluster. The results show that motility inside a PC-3 cluster is not restricted to slight motion due to cluster expansion, but rather consists of a marked cell movement within the cluster. The proposed equipment enables in vitro aggregated cell motility to be studied. This method can, therefore, be used in pharmacological studies in order to select anti-motility related compounds. The compounds selected by the equipment described could then be tested in vivo as potential anti-metastatic.

  6. Automatic macroscopic characterization of diesel sprays by means of a new image processing algorithm

    Science.gov (United States)

    Rubio-Gómez, Guillermo; Martínez-Martínez, S.; Rua-Mojica, Luis F.; Gómez-Gordo, Pablo; de la Garza, Oscar A.

    2018-05-01

    A novel algorithm is proposed for the automatic segmentation of diesel spray images and the calculation of their macroscopic parameters. The algorithm automatically detects each spray present in an image, and therefore it is able to work with diesel injectors with a different number of nozzle holes without any modification. The main characteristic of the algorithm is that it splits each spray into three different regions and then segments each one with an individually calculated binarization threshold. Each threshold level is calculated from the analysis of a representative luminosity profile of each region. This approach makes it robust to irregular light distribution along a single spray and between different sprays of an image. Once the sprays are segmented, the macroscopic parameters of each one are calculated. The algorithm is tested with two sets of diesel spray images taken under normal and irregular illumination setups.

  7. An Automatic Framework Using Space-Time Processing and TR-MUSIC for Subsurface and Through-Wall Multitarget Imaging

    Directory of Open Access Journals (Sweden)

    Si-hao Tan

    2012-01-01

    Full Text Available We present an automatic framework combined space-time signal processing with Time Reversal electromagnetic (EM inversion for subsurface and through-wall multitarget imaging using electromagnetic waves. This framework is composed of a frequency-wavenumber (FK filter to suppress direct wave and medium bounce, a FK migration algorithm to automatically estimate the number of targets and identify target regions, which can be used to reduce the computational complexity of the following imaging algorithm, and a EM inversion algorithm using Time Reversal Multiple Signal Classification (TR-MUSIC to reconstruct hidden objects. The feasibility of the framework is demonstrated with simulated data generated by GPRMAX.

  8. Automatical and accurate segmentation of cerebral tissues in fMRI dataset with combination of image processing and deep learning

    Science.gov (United States)

    Kong, Zhenglun; Luo, Junyi; Xu, Shengpu; Li, Ting

    2018-02-01

    Image segmentation plays an important role in medical science. One application is multimodality imaging, especially the fusion of structural imaging with functional imaging, which includes CT, MRI and new types of imaging technology such as optical imaging to obtain functional images. The fusion process require precisely extracted structural information, in order to register the image to it. Here we used image enhancement, morphometry methods to extract the accurate contours of different tissues such as skull, cerebrospinal fluid (CSF), grey matter (GM) and white matter (WM) on 5 fMRI head image datasets. Then we utilized convolutional neural network to realize automatic segmentation of images in deep learning way. Such approach greatly reduced the processing time compared to manual and semi-automatic segmentation and is of great importance in improving speed and accuracy as more and more samples being learned. The contours of the borders of different tissues on all images were accurately extracted and 3D visualized. This can be used in low-level light therapy and optical simulation software such as MCVM. We obtained a precise three-dimensional distribution of brain, which offered doctors and researchers quantitative volume data and detailed morphological characterization for personal precise medicine of Cerebral atrophy/expansion. We hope this technique can bring convenience to visualization medical and personalized medicine.

  9. ACIR: automatic cochlea image registration

    Science.gov (United States)

    Al-Dhamari, Ibraheem; Bauer, Sabine; Paulus, Dietrich; Lissek, Friedrich; Jacob, Roland

    2017-02-01

    Efficient Cochlear Implant (CI) surgery requires prior knowledge of the cochlea's size and its characteristics. This information helps to select suitable implants for different patients. To get these measurements, a segmentation method of cochlea medical images is needed. An important pre-processing step for good cochlea segmentation involves efficient image registration. The cochlea's small size and complex structure, in addition to the different resolutions and head positions during imaging, reveals a big challenge for the automated registration of the different image modalities. In this paper, an Automatic Cochlea Image Registration (ACIR) method for multi- modal human cochlea images is proposed. This method is based on using small areas that have clear structures from both input images instead of registering the complete image. It uses the Adaptive Stochastic Gradient Descent Optimizer (ASGD) and Mattes's Mutual Information metric (MMI) to estimate 3D rigid transform parameters. The use of state of the art medical image registration optimizers published over the last two years are studied and compared quantitatively using the standard Dice Similarity Coefficient (DSC). ACIR requires only 4.86 seconds on average to align cochlea images automatically and to put all the modalities in the same spatial locations without human interference. The source code is based on the tool elastix and is provided for free as a 3D Slicer plugin. Another contribution of this work is a proposed public cochlea standard dataset which can be downloaded for free from a public XNAT server.

  10. Methodology for automatic process of the fired ceramic tile's internal defect using IR images and artificial neural network

    OpenAIRE

    Andrade, Roberto Márcio de; Eduardo, Alexandre Carlos

    2011-01-01

    In the ceramic industry, rarely testing systems were employed to on-line detect the presence of defects in ceramic tiles. This paper is concerned with the problem of automatic inspection of ceramic tiles using Infrared Images and Artificial Neural Network (ANN). The performance of the technique has been evaluated theoretically and experimentally from laboratory and on line tile samples. It has been performed system for IR image processing and, utilizing an Artificial Neural Network (ANN), det...

  11. CLG for Automatic Image Segmentation

    OpenAIRE

    Christo Ananth; S.Santhana Priya; S.Manisha; T.Ezhil Jothi; M.S.Ramasubhaeswari

    2017-01-01

    This paper proposes an automatic segmentation method which effectively combines Active Contour Model, Live Wire method and Graph Cut approach (CLG). The aim of Live wire method is to provide control to the user on segmentation process during execution. Active Contour Model provides a statistical model of object shape and appearance to a new image which are built during a training phase. In the graph cut technique, each pixel is represented as a node and the distance between those nodes is rep...

  12. Software of the BESM-6 computer for automatic image processing from liquid-hydrogen bubble chambers

    International Nuclear Information System (INIS)

    Grebenikov, E.A.; Kiosa, M.N.; Kobzarev, K.K.; Kuznetsova, N.A.; Mironov, S.V.; Nasonova, L.P.

    1978-01-01

    A set of programs, which is used in ''road guidance'' mode on the BESM-6 computer to process picture information taken in liquid hydrogen bubble chambers is discussed. This mode allows the system to process data from an automatic scanner (AS) taking into account the results of manual scanning. The system hardware includes: an automatic scanner, an M-6000 mini-controller and a BESM-6 computer. Software is functionally divided into the following units: computation of event mask parameters and generation . of data files controlling the AS; front-end processing of data coming from the AS; filtering of track data; simulation of AS operation and gauging of the AS reference system. To speed up the overall performance, programs which receive and decode data, coming from the AS via the M-6000 controller and the data link to the BESM-6 computer, are written in machine language

  13. Development of automatic radiographic inspection system using digital image processing and artificial intelligence

    International Nuclear Information System (INIS)

    Itoga, Kouyu; Sugimoto, Koji; Michiba, Koji; Kato, Yuhei; Sugita, Yuji; Onda, Katsuhiro.

    1991-01-01

    The application of computers to welding inspection is expanding rapidly. The classification of the application is the collection, analysis and processing of data, the graphic display of results, the distinction of the kinds of defects and the evaluation of the harmufulness of defects and the judgement of acceptance or rejection. The application of computer techniques to the automation of data collection was realized at the relatively early stage. Data processing and the graphic display of results are the techniques in progress now, and the application of artificial intelligence to the distinction of the kinds of defects and the evaluation of harmfulness is expected to expand rapidly. In order to computerize radiographic inspection, the abilities of image processing technology and knowledge engineering must be given to computers. The object of this system is the butt joints by arc welding of the steel materials of up to 30 mm thickness. The digitizing transformation of radiographs, the distinction and evaluation of transmissivity and gradation by image processing, and only as for those, of which the picture quality satisfies the standard, the extraction of defect images, their display, the distinction of the kinds and the final judgement are carried out. The techniques of image processing, the knowledge for distinguishing the kinds of defects and the concept of the practical system are reported. (K.I.)

  14. Automatic Image Processing Workflow for the Keck/NIRC2 Vortex Coronagraph

    Science.gov (United States)

    Xuan, Wenhao; Cook, Therese; Ngo, Henry; Zawol, Zoe; Ruane, Garreth; Mawet, Dimitri

    2018-01-01

    The Keck/NIRC2 camera, equipped with the vortex coronagraph, is an instrument targeted at the high contrast imaging of extrasolar planets. To uncover a faint planet signal from the overwhelming starlight, we utilize the Vortex Image Processing (VIP) library, which carries out principal component analysis to model and remove the stellar point spread function. To bridge the gap between data acquisition and data reduction, we implement a workflow that 1) downloads, sorts, and processes data with VIP, 2) stores the analysis products into a database, and 3) displays the reduced images, contrast curves, and auxiliary information on a web interface. Both angular differential imaging and reference star differential imaging are implemented in the analysis module. A real-time version of the workflow runs during observations, allowing observers to make educated decisions about time distribution on different targets, hence optimizing science yield. The post-night version performs a standardized reduction after the observation, building up a valuable database that not only helps uncover new discoveries, but also enables a statistical study of the instrument itself. We present the workflow, and an examination of the contrast performance of the NIRC2 vortex with respect to factors including target star properties and observing conditions.

  15. Functional magnetic resonance imaging measure of automatic and controlled auditory processing

    OpenAIRE

    Mitchell, Teresa V.; Morey, Rajendra A.; Inan, Seniha; Belger, Aysenil

    2005-01-01

    Activity within fronto-striato-temporal regions during processing of unattended auditory deviant tones and an auditory target detection task was investigated using event-related functional magnetic resonance imaging. Activation within the middle frontal gyrus, inferior frontal gyrus, anterior cingulate gyrus, superior temporal gyrus, thalamus, and basal ganglia were analyzed for differences in activity patterns between the two stimulus conditions. Unattended deviant tones elicited robust acti...

  16. A Quality Sorting of Fruit Using a New Automatic Image Processing Method

    Science.gov (United States)

    Amenomori, Michihiro; Yokomizu, Nobuyuki

    This paper presents an innovative approach for quality sorting of objects such as apples sorting in an agricultural factory, using an image processing algorithm. The objective of our approach are; firstly to sort the objects by their colors precisely; secondly to detect any irregularity of the colors surrounding the apples efficiently. An experiment has been conducted and the results have been obtained and compared with that has been preformed by human sorting process and by color sensor sorting devices. The results demonstrate that our approach is capable to sort the objects rapidly and the percentage of classification valid rate was 100 %.

  17. Automatic alignment of radionuclide images

    International Nuclear Information System (INIS)

    Barber, D.C.

    1982-01-01

    The variability of the position, dimensions and orientation of a radionuclide image within the field of view of a gamma camera hampers attempts to analyse the image numerically. This paper describes a method of using a set of training images of a particular type, in this case right lateral brain images, to define the likely variations in the position, dimensions and orientation for that type of image and to provide alignment data for a program that automatically aligns new images of the specified type to a standard position, size and orientation. Examples are given of the use of this method on three types of radionuclide image. (author)

  18. Image processing for an automatic detection of defect signals from electromagnetic cartographies

    International Nuclear Information System (INIS)

    Benoist, B.; Marqueste, L.; Birac, C.

    1994-01-01

    As the population of nuclear power plants ages, new defects are appearing in steam generator tubes (stress corrosion, corrosion pitting and intergranular corrosion). For more sophisticated expert appraisal of these defects, tubes can be examined by multifrequency eddy-current testing with an absolute coil (diameter value of 1 mm). A device, consisting of a push-puller mechanism and a motor-driven probe carrying this absolute coil, gives a helical movement to scan the inner surface of the tube. The signals obtained can be represented in the form of cartographies (3D representation in which the coordinates are the circumference, the length and amplitude of the X or Y component at a given frequency). The detection of defect signals by visual examination of these eddy-current cartographies is not always reproducible. The article describes an image processing procedure for the detection of defect signals which leads to a better reproductibility for more safety

  19. Automatic measurement of images on astrometric plates

    Science.gov (United States)

    Ortiz Gil, A.; Lopez Garcia, A.; Martinez Gonzalez, J. M.; Yershov, V.

    1994-04-01

    We present some results on the process of automatic detection and measurement of objects in overlapped fields of astrometric plates. The main steps of our algorithm are the following: determination of the Scale and Tilt between charge coupled devices (CCD) and microscope coordinate systems and estimation of signal-to-noise ratio in each field;--image identification and improvement of its position and size;--image final centering;--image selection and storage. Several parameters allow the use of variable criteria for image identification, characterization and selection. Problems related with faint images and crowded fields will be approached by special techniques (morphological filters, histogram properties and fitting models).

  20. Using image processing technology and mathematical algorithm in the automatic selection of vocal cord opening and closing images from the larynx endoscopy video.

    Science.gov (United States)

    Kuo, Chung-Feng Jeffrey; Chu, Yueng-Hsiang; Wang, Po-Chun; Lai, Chun-Yu; Chu, Wen-Lin; Leu, Yi-Shing; Wang, Hsing-Won

    2013-12-01

    The human larynx is an important organ for voice production and respiratory mechanisms. The vocal cord is approximated for voice production and open for breathing. The videolaryngoscope is widely used for vocal cord examination. At present, physicians usually diagnose vocal cord diseases by manually selecting the image of the vocal cord opening to the largest extent (abduction), thus maximally exposing the vocal cord lesion. On the other hand, the severity of diseases such as vocal palsy, atrophic vocal cord is largely dependent on the vocal cord closing to the smallest extent (adduction). Therefore, diseases can be assessed by the image of the vocal cord opening to the largest extent, and the seriousness of breathy voice is closely correlated to the gap between vocal cords when closing to the smallest extent. The aim of the study was to design an automatic vocal cord image selection system to improve the conventional selection process by physicians and enhance diagnosis efficiency. Also, due to the unwanted fuzzy images resulting from examination process caused by human factors as well as the non-vocal cord images, texture analysis is added in this study to measure image entropy to establish a screening and elimination system to effectively enhance the accuracy of selecting the image of the vocal cord closing to the smallest extent. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Automatic Cobb Angle Determination From Radiographic Images

    NARCIS (Netherlands)

    Sardjono, Tri Arief; Wilkinson, Michael H. F.; Veldhuizen, Albert G.; van Ooijen, Peter M. A.; Purnama, Ketut E.; Verkerke, Gijsbertus J.

    2013-01-01

    Study Design. Automatic measurement of Cobb angle in patients with scoliosis. Objective. To test the accuracy of an automatic Cobb angle determination method from frontal radiographical images. Summary of Background Data. Thirty-six frontal radiographical images of patients with scoliosis. Methods.

  2. Image-based automatic recognition of larvae

    Science.gov (United States)

    Sang, Ru; Yu, Guiying; Fan, Weijun; Guo, Tiantai

    2010-08-01

    As the main objects, imagoes have been researched in quarantine pest recognition in these days. However, pests in their larval stage are latent, and the larvae spread abroad much easily with the circulation of agricultural and forest products. It is presented in this paper that, as the new research objects, larvae are recognized by means of machine vision, image processing and pattern recognition. More visional information is reserved and the recognition rate is improved as color image segmentation is applied to images of larvae. Along with the characteristics of affine invariance, perspective invariance and brightness invariance, scale invariant feature transform (SIFT) is adopted for the feature extraction. The neural network algorithm is utilized for pattern recognition, and the automatic identification of larvae images is successfully achieved with satisfactory results.

  3. Automatic Vessel Segmentation on Retinal Images

    Institute of Scientific and Technical Information of China (English)

    Chun-Yuan Yu; Chia-Jen Chang; Yen-Ju Yao; Shyr-Shen Yu

    2014-01-01

    Several features of retinal vessels can be used to monitor the progression of diseases. Changes in vascular structures, for example, vessel caliber, branching angle, and tortuosity, are portents of many diseases such as diabetic retinopathy and arterial hyper-tension. This paper proposes an automatic retinal vessel segmentation method based on morphological closing and multi-scale line detection. First, an illumination correction is performed on the green band retinal image. Next, the morphological closing and subtraction processing are applied to obtain the crude retinal vessel image. Then, the multi-scale line detection is used to fine the vessel image. Finally, the binary vasculature is extracted by the Otsu algorithm. In this paper, for improving the drawbacks of multi-scale line detection, only the line detectors at 4 scales are used. The experimental results show that the accuracy is 0.939 for DRIVE (digital retinal images for vessel extraction) retinal database, which is much better than other methods.

  4. Automatic calculations of electroweak processes

    International Nuclear Information System (INIS)

    Ishikawa, T.; Kawabata, S.; Kurihara, Y.; Shimizu, Y.; Kaneko, T.; Kato, K.; Tanaka, H.

    1996-01-01

    GRACE system is an excellent tool for calculating the cross section and for generating event of the elementary process automatically. However it is not always easy for beginners to use. An interactive version of GRACE is being developed so as to be a user friendly system. Since it works exactly in the same environment as PAW, all functions of PAW are available for handling any histogram information produced by GRACE. As its application the cross sections of all elementary processes with up to 5-body final states induced by e + e - interaction are going to be calculated and to be summarized as a catalogue. (author)

  5. Image simulation for automatic license plate recognition

    Science.gov (United States)

    Bala, Raja; Zhao, Yonghui; Burry, Aaron; Kozitsky, Vladimir; Fillion, Claude; Saunders, Craig; Rodríguez-Serrano, José

    2012-01-01

    Automatic license plate recognition (ALPR) is an important capability for traffic surveillance applications, including toll monitoring and detection of different types of traffic violations. ALPR is a multi-stage process comprising plate localization, character segmentation, optical character recognition (OCR), and identification of originating jurisdiction (i.e. state or province). Training of an ALPR system for a new jurisdiction typically involves gathering vast amounts of license plate images and associated ground truth data, followed by iterative tuning and optimization of the ALPR algorithms. The substantial time and effort required to train and optimize the ALPR system can result in excessive operational cost and overhead. In this paper we propose a framework to create an artificial set of license plate images for accelerated training and optimization of ALPR algorithms. The framework comprises two steps: the synthesis of license plate images according to the design and layout for a jurisdiction of interest; and the modeling of imaging transformations and distortions typically encountered in the image capture process. Distortion parameters are estimated by measurements of real plate images. The simulation methodology is successfully demonstrated for training of OCR.

  6. Attention biases in preoccupation with body image: An ERP study of the role of social comparison and automaticity when processing body size.

    Science.gov (United States)

    Uusberg, Helen; Peet, Krista; Uusberg, Andero; Akkermann, Kirsti

    2018-03-17

    Appearance-related attention biases are thought to contribute to body image disturbances. We investigated how preoccupation with body image is associated with attention biases to body size, focusing on the role of social comparison processes and automaticity. Thirty-six women varying on self-reported preoccupation compared their actual body size to size-modified images of either themselves or a figure-matched peer. Amplification of earlier (N170, P2) and later (P3, LPP) ERP components recorded under low vs. high concurrent working memory load were analyzed. Women with high preoccupation exhibited an earlier bias to larger bodies of both self and peer. During later processing stages, they exhibited a stronger bias to enlarged as well as reduced self-images and a lack of sensitivity to size-modifications of the peer-image. Working memory load did not affect these biases systematically. Current findings suggest that preoccupation with body image involves an earlier attention bias to weight increase cues and later over-engagement with own figure. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Natural language processing techniques for automatic test ...

    African Journals Online (AJOL)

    Natural language processing techniques for automatic test questions generation using discourse connectives. ... PROMOTING ACCESS TO AFRICAN RESEARCH. AFRICAN JOURNALS ... Journal of Computer Science and Its Application.

  8. Automatic detection of blurred images in UAV image sets

    Science.gov (United States)

    Sieberth, Till; Wackrow, Rene; Chandler, Jim H.

    2016-12-01

    Unmanned aerial vehicles (UAV) have become an interesting and active research topic for photogrammetry. Current research is based on images acquired by an UAV, which have a high ground resolution and good spectral and radiometrical resolution, due to the low flight altitudes combined with a high resolution camera. UAV image flights are also cost effective and have become attractive for many applications including, change detection in small scale areas. One of the main problems preventing full automation of data processing of UAV imagery is the degradation effect of blur caused by camera movement during image acquisition. This can be caused by the normal flight movement of the UAV as well as strong winds, turbulence or sudden operator inputs. This blur disturbs the visual analysis and interpretation of the data, causes errors and can degrade the accuracy in automatic photogrammetric processing algorithms. The detection and removal of these images is currently achieved manually, which is both time consuming and prone to error, particularly for large image-sets. To increase the quality of data processing an automated process is necessary, which must be both reliable and quick. This paper describes the development of an automatic filtering process, which is based upon the quantification of blur in an image. Images with known blur are processed digitally to determine a quantifiable measure of image blur. The algorithm is required to process UAV images fast and reliably to relieve the operator from detecting blurred images manually. The newly developed method makes it possible to detect blur caused by linear camera displacement and is based on human detection of blur. Humans detect blurred images best by comparing it to other images in order to establish whether an image is blurred or not. The developed algorithm simulates this procedure by creating an image for comparison using image processing. Creating internally a comparable image makes the method independent of

  9. Automatic Hierarchical Color Image Classification

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2003-02-01

    Full Text Available Organizing images into semantic categories can be extremely useful for content-based image retrieval and image annotation. Grouping images into semantic classes is a difficult problem, however. Image classification attempts to solve this hard problem by using low-level image features. In this paper, we propose a method for hierarchical classification of images via supervised learning. This scheme relies on using a good low-level feature and subsequently performing feature-space reconfiguration using singular value decomposition to reduce noise and dimensionality. We use the training data to obtain a hierarchical classification tree that can be used to categorize new images. Our experimental results suggest that this scheme not only performs better than standard nearest-neighbor techniques, but also has both storage and computational advantages.

  10. Proposal for future diagnosis and management of vascular tumors by using automatic software for image processing and statistic prediction.

    Science.gov (United States)

    Popescu, M D; Draghici, L; Secheli, I; Secheli, M; Codrescu, M; Draghici, I

    2015-01-01

    Infantile Hemangiomas (IH) are the most frequent tumors of vascular origin, and the differential diagnosis from vascular malformations is difficult to establish. Specific types of IH due to the location, dimensions and fast evolution, can determine important functional and esthetic sequels. To avoid these unfortunate consequences it is necessary to establish the exact appropriate moment to begin the treatment and decide which the most adequate therapeutic procedure is. Based on clinical data collected by a serial clinical observations correlated with imaging data, and processed by a computer-aided diagnosis system (CAD), the study intended to develop a treatment algorithm to accurately predict the best final results, from the esthetical and functional point of view, for a certain type of lesion. The preliminary database was composed of 75 patients divided into 4 groups according to the treatment management they received: medical therapy, sclerotherapy, surgical excision and no treatment. The serial clinical observation was performed each month and all the data was processed by using CAD. The project goal was to create a software that incorporated advanced methods to accurately measure the specific IH lesions, integrated medical information, statistical methods and computational methods to correlate this information with that obtained from the processing of images. Based on these correlations, a prediction mechanism of the evolution of hemangioma, which helped determine the best method of therapeutic intervention to minimize further complications, was established.

  11. An automatic method for detection and classification of Ionospheric Alfvén Resonances using signal and image processing techniques

    Science.gov (United States)

    Beggan, Ciaran

    2014-05-01

    which is then treated as an image. In combination with the spectrogram image of that day, the SRS are identified using image processing techniques. The peaks can now be mapped as continuous lines throughout the spectrogram. Finally, we can investigate the f and Δf statistics over the entire length of the dataset. We intend to run the coils as a long term experiment. The data and code are available on request.

  12. AUTOMATIC APPROACH TO VHR SATELLITE IMAGE CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    P. Kupidura

    2016-06-01

    Full Text Available In this paper, we present a proposition of a fully automatic classification of VHR satellite images. Unlike the most widespread approaches: supervised classification, which requires prior defining of class signatures, or unsupervised classification, which must be followed by an interpretation of its results, the proposed method requires no human intervention except for the setting of the initial parameters. The presented approach bases on both spectral and textural analysis of the image and consists of 3 steps. The first step, the analysis of spectral data, relies on NDVI values. Its purpose is to distinguish between basic classes, such as water, vegetation and non-vegetation, which all differ significantly spectrally, thus they can be easily extracted basing on spectral analysis. The second step relies on granulometric maps. These are the product of local granulometric analysis of an image and present information on the texture of each pixel neighbourhood, depending on the texture grain. The purpose of texture analysis is to distinguish between different classes, spectrally similar, but yet of different texture, e.g. bare soil from a built-up area, or low vegetation from a wooded area. Due to the use of granulometric analysis, based on mathematical morphology opening and closing, the results are resistant to the border effect (qualifying borders of objects in an image as spaces of high texture, which affect other methods of texture analysis like GLCM statistics or fractal analysis. Therefore, the effectiveness of the analysis is relatively high. Several indices based on values of different granulometric maps have been developed to simplify the extraction of classes of different texture. The third and final step of the process relies on a vegetation index, based on near infrared and blue bands. Its purpose is to correct partially misclassified pixels. All the indices used in the classification model developed relate to reflectance values, so the

  13. Method for automatic localization of MR-visible markers using morphological image processing and conventional pulse sequences: feasibility for image-guided procedures.

    Science.gov (United States)

    Busse, Harald; Trampel, Robert; Gründer, Wilfried; Moche, Michael; Kahn, Thomas

    2007-10-01

    To evaluate the feasibility and accuracy of an automated method to determine the 3D position of MR-visible markers. Inductively coupled RF coils were imaged in a whole-body 1.5T scanner using the body coil and two conventional gradient echo sequences (FLASH and TrueFISP) and large imaging volumes up to (300 mm(3)). To minimize background signals, a flip angle of approximately 1 degrees was used. Morphological 2D image processing in orthogonal scan planes was used to determine the 3D positions of a configuration of three fiducial markers (FMC). The accuracies of the marker positions and of the orientation of the plane defined by the FMC were evaluated at various distances r(M) from the isocenter. Fiducial marker detection with conventional equipment (pulse sequences, imaging coils) was very reliable and highly reproducible over a wide range of experimental conditions. For r(M) image processing is feasible, simple, and very accurate. In combination with safe wireless markers, the method is found to be useful for image-guided procedures. (c) 2007 Wiley-Liss, Inc.

  14. A Dirichlet process mixture model for automatic (18)F-FDG PET image segmentation: Validation study on phantoms and on lung and esophageal lesions.

    Science.gov (United States)

    Giri, Maria Grazia; Cavedon, Carlo; Mazzarotto, Renzo; Ferdeghini, Marco

    2016-05-01

    The aim of this study was to implement a Dirichlet process mixture (DPM) model for automatic tumor edge identification on (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) images by optimizing the parameters on which the algorithm depends, to validate it experimentally, and to test its robustness. The DPM model belongs to the class of the Bayesian nonparametric models and uses the Dirichlet process prior for flexible nonparametric mixture modeling, without any preliminary choice of the number of mixture components. The DPM algorithm implemented in the statistical software package R was used in this work. The contouring accuracy was evaluated on several image data sets: on an IEC phantom (spherical inserts with diameter in the range 10-37 mm) acquired by a Philips Gemini Big Bore PET-CT scanner, using 9 different target-to-background ratios (TBRs) from 2.5 to 70; on a digital phantom simulating spherical/uniform lesions and tumors, irregular in shape and activity; and on 20 clinical cases (10 lung and 10 esophageal cancer patients). The influence of the DPM parameters on contour generation was studied in two steps. In the first one, only the IEC spheres having diameters of 22 and 37 mm and a sphere of the digital phantom (41.6 mm diameter) were studied by varying the main parameters until the diameter of the spheres was obtained within 0.2% of the true value. In the second step, the results obtained for this training set were applied to the entire data set to determine DPM based volumes of all available lesions. These volumes were compared to those obtained by applying already known algorithms (Gaussian mixture model and gradient-based) and to true values, when available. Only one parameter was found able to significantly influence segmentation accuracy (ANOVA test). This parameter was linearly connected to the uptake variance of the tested region of interest (ROI). In the first step of the study, a calibration curve was determined to

  15. A Dirichlet process mixture model for automatic {sup 18}F-FDG PET image segmentation: Validation study on phantoms and on lung and esophageal lesions

    Energy Technology Data Exchange (ETDEWEB)

    Giri, Maria Grazia, E-mail: mariagrazia.giri@ospedaleuniverona.it; Cavedon, Carlo [Medical Physics Unit, University Hospital of Verona, P.le Stefani 1, Verona 37126 (Italy); Mazzarotto, Renzo [Radiation Oncology Unit, University Hospital of Verona, P.le Stefani 1, Verona 37126 (Italy); Ferdeghini, Marco [Nuclear Medicine Unit, University Hospital of Verona, P.le Stefani 1, Verona 37126 (Italy)

    2016-05-15

    Purpose: The aim of this study was to implement a Dirichlet process mixture (DPM) model for automatic tumor edge identification on {sup 18}F-fluorodeoxyglucose positron emission tomography ({sup 18}F-FDG PET) images by optimizing the parameters on which the algorithm depends, to validate it experimentally, and to test its robustness. Methods: The DPM model belongs to the class of the Bayesian nonparametric models and uses the Dirichlet process prior for flexible nonparametric mixture modeling, without any preliminary choice of the number of mixture components. The DPM algorithm implemented in the statistical software package R was used in this work. The contouring accuracy was evaluated on several image data sets: on an IEC phantom (spherical inserts with diameter in the range 10–37 mm) acquired by a Philips Gemini Big Bore PET-CT scanner, using 9 different target-to-background ratios (TBRs) from 2.5 to 70; on a digital phantom simulating spherical/uniform lesions and tumors, irregular in shape and activity; and on 20 clinical cases (10 lung and 10 esophageal cancer patients). The influence of the DPM parameters on contour generation was studied in two steps. In the first one, only the IEC spheres having diameters of 22 and 37 mm and a sphere of the digital phantom (41.6 mm diameter) were studied by varying the main parameters until the diameter of the spheres was obtained within 0.2% of the true value. In the second step, the results obtained for this training set were applied to the entire data set to determine DPM based volumes of all available lesions. These volumes were compared to those obtained by applying already known algorithms (Gaussian mixture model and gradient-based) and to true values, when available. Results: Only one parameter was found able to significantly influence segmentation accuracy (ANOVA test). This parameter was linearly connected to the uptake variance of the tested region of interest (ROI). In the first step of the study, a

  16. A Dirichlet process mixture model for automatic 18F-FDG PET image segmentation: Validation study on phantoms and on lung and esophageal lesions

    International Nuclear Information System (INIS)

    Giri, Maria Grazia; Cavedon, Carlo; Mazzarotto, Renzo; Ferdeghini, Marco

    2016-01-01

    Purpose: The aim of this study was to implement a Dirichlet process mixture (DPM) model for automatic tumor edge identification on 18 F-fluorodeoxyglucose positron emission tomography ( 18 F-FDG PET) images by optimizing the parameters on which the algorithm depends, to validate it experimentally, and to test its robustness. Methods: The DPM model belongs to the class of the Bayesian nonparametric models and uses the Dirichlet process prior for flexible nonparametric mixture modeling, without any preliminary choice of the number of mixture components. The DPM algorithm implemented in the statistical software package R was used in this work. The contouring accuracy was evaluated on several image data sets: on an IEC phantom (spherical inserts with diameter in the range 10–37 mm) acquired by a Philips Gemini Big Bore PET-CT scanner, using 9 different target-to-background ratios (TBRs) from 2.5 to 70; on a digital phantom simulating spherical/uniform lesions and tumors, irregular in shape and activity; and on 20 clinical cases (10 lung and 10 esophageal cancer patients). The influence of the DPM parameters on contour generation was studied in two steps. In the first one, only the IEC spheres having diameters of 22 and 37 mm and a sphere of the digital phantom (41.6 mm diameter) were studied by varying the main parameters until the diameter of the spheres was obtained within 0.2% of the true value. In the second step, the results obtained for this training set were applied to the entire data set to determine DPM based volumes of all available lesions. These volumes were compared to those obtained by applying already known algorithms (Gaussian mixture model and gradient-based) and to true values, when available. Results: Only one parameter was found able to significantly influence segmentation accuracy (ANOVA test). This parameter was linearly connected to the uptake variance of the tested region of interest (ROI). In the first step of the study, a calibration curve

  17. Automatic analysis of microscopic images of red blood cell aggregates

    Science.gov (United States)

    Menichini, Pablo A.; Larese, Mónica G.; Riquelme, Bibiana D.

    2015-06-01

    Red blood cell aggregation is one of the most important factors in blood viscosity at stasis or at very low rates of flow. The basic structure of aggregates is a linear array of cell commonly termed as rouleaux. Enhanced or abnormal aggregation is seen in clinical conditions, such as diabetes and hypertension, producing alterations in the microcirculation, some of which can be analyzed through the characterization of aggregated cells. Frequently, image processing and analysis for the characterization of RBC aggregation were done manually or semi-automatically using interactive tools. We propose a system that processes images of RBC aggregation and automatically obtains the characterization and quantification of the different types of RBC aggregates. Present technique could be interesting to perform the adaptation as a routine used in hemorheological and Clinical Biochemistry Laboratories because this automatic method is rapid, efficient and economical, and at the same time independent of the user performing the analysis (repeatability of the analysis).

  18. Semi-automatic film processing unit

    International Nuclear Information System (INIS)

    Mohamad Annuar Assadat Husain; Abdul Aziz Bin Ramli; Mohd Khalid Matori

    2005-01-01

    The design concept applied in the development of an semi-automatic film processing unit needs creativity and user support in channelling the required information to select materials and operation system that suit the design produced. Low cost and efficient operation are the challenges that need to be faced abreast with the fast technology advancement. In producing this processing unit, there are few elements which need to be considered in order to produce high quality image. Consistent movement and correct time coordination for developing and drying are a few elements which need to be controlled. Other elements which need serious attentions are temperature, liquid density and the amount of time for the chemical liquids to react. Subsequent chemical reaction that take place will cause the liquid chemical to age and this will adversely affect the quality of image produced. This unit is also equipped with liquid chemical drainage system and disposal chemical tank. This unit would be useful in GP clinics especially in rural area which practice manual system for developing and require low operational cost. (Author)

  19. Automatic Contour Extraction from 2D Image

    Directory of Open Access Journals (Sweden)

    Panagiotis GIOANNIS

    2011-03-01

    Full Text Available Aim: To develop a method for automatic contour extraction from a 2D image. Material and Method: The method is divided in two basic parts where the user initially chooses the starting point and the threshold. Finally the method is applied to computed tomography of bone images. Results: An interesting method is developed which can lead to a successful boundary extraction of 2D images. Specifically data extracted from a computed tomography images can be used for 2D bone reconstruction. Conclusions: We believe that such an algorithm or part of it can be applied on several other applications for shape feature extraction in medical image analysis and generally at computer graphics.

  20. Automatic Detection of Vehicles Using Intensity Laser and Anaglyph Image

    Directory of Open Access Journals (Sweden)

    Hideo Araki

    2006-12-01

    Full Text Available In this work is presented a methodology to automatic car detection motion presents in digital aerial image on urban area using intensity, anaglyph and subtracting images. The anaglyph image is used to identify the motion cars on the expose take, because the cars provide red color due the not homology between objects. An implicit model was developed to provide a digital pixel value that has the specific propriety presented early, using the ratio between the RGB color of car object in the anaglyph image. The intensity image is used to decrease the false positive and to do the processing to work into roads and streets. The subtracting image is applied to decrease the false positives obtained due the markings road. The goal of this paper is automatically detect motion cars presents in digital aerial image in urban areas. The algorithm implemented applies normalization on the left and right images and later form the anaglyph with using the translation. The results show the applicability of proposed method and it potentiality on the automatic car detection and presented the performance of proposed methodology.

  1. Automatic caption generation for news images.

    Science.gov (United States)

    Feng, Yansong; Lapata, Mirella

    2013-04-01

    This paper is concerned with the task of automatically generating captions for images, which is important for many image-related applications. Examples include video and image retrieval as well as the development of tools that aid visually impaired individuals to access pictorial information. Our approach leverages the vast resource of pictures available on the web and the fact that many of them are captioned and colocated with thematically related documents. Our model learns to create captions from a database of news articles, the pictures embedded in them, and their captions, and consists of two stages. Content selection identifies what the image and accompanying article are about, whereas surface realization determines how to verbalize the chosen content. We approximate content selection with a probabilistic image annotation model that suggests keywords for an image. The model postulates that images and their textual descriptions are generated by a shared set of latent variables (topics) and is trained on a weakly labeled dataset (which treats the captions and associated news articles as image labels). Inspired by recent work in summarization, we propose extractive and abstractive surface realization models. Experimental results show that it is viable to generate captions that are pertinent to the specific content of an image and its associated article, while permitting creativity in the description. Indeed, the output of our abstractive model compares favorably to handwritten captions and is often superior to extractive methods.

  2. Automatic cloud coverage assessment of Formosat-2 image

    Science.gov (United States)

    Hsu, Kuo-Hsien

    2011-11-01

    Formosat-2 satellite equips with the high-spatial-resolution (2m ground sampling distance) remote sensing instrument. It has been being operated on the daily-revisiting mission orbit by National Space organization (NSPO) of Taiwan since May 21 2004. NSPO has also serving as one of the ground receiving stations for daily processing the received Formosat- 2 images. The current cloud coverage assessment of Formosat-2 image for NSPO Image Processing System generally consists of two major steps. Firstly, an un-supervised K-means method is used for automatically estimating the cloud statistic of Formosat-2 image. Secondly, manual estimation of cloud coverage from Formosat-2 image is processed by manual examination. Apparently, a more accurate Automatic Cloud Coverage Assessment (ACCA) method certainly increases the efficiency of processing step 2 with a good prediction of cloud statistic. In this paper, mainly based on the research results from Chang et al, Irish, and Gotoh, we propose a modified Formosat-2 ACCA method which considered pre-processing and post-processing analysis. For pre-processing analysis, cloud statistic is determined by using un-supervised K-means classification, Sobel's method, Otsu's method, non-cloudy pixels reexamination, and cross-band filter method. Box-Counting fractal method is considered as a post-processing tool to double check the results of pre-processing analysis for increasing the efficiency of manual examination.

  3. Automatically processed alpha-track radon monitor

    International Nuclear Information System (INIS)

    Langner, G.H. Jr.

    1993-01-01

    An automatically processed alpha-track radon monitor is provided which includes a housing having an aperture allowing radon entry, and a filter that excludes the entry of radon daughters into the housing. A flexible track registration material is located within the housing that records alpha-particle emissions from the decay of radon and radon daughters inside the housing. The flexible track registration material is capable of being spliced such that the registration material from a plurality of monitors can be spliced into a single strip to facilitate automatic processing of the registration material from the plurality of monitors. A process for the automatic counting of radon registered by a radon monitor is also provided

  4. Automatic dirt trail analysis in dermoscopy images.

    Science.gov (United States)

    Cheng, Beibei; Joe Stanley, R; Stoecker, William V; Osterwise, Christopher T P; Stricklin, Sherea M; Hinton, Kristen A; Moss, Randy H; Oliviero, Margaret; Rabinovitz, Harold S

    2013-02-01

    Basal cell carcinoma (BCC) is the most common cancer in the US. Dermatoscopes are devices used by physicians to facilitate the early detection of these cancers based on the identification of skin lesion structures often specific to BCCs. One new lesion structure, referred to as dirt trails, has the appearance of dark gray, brown or black dots and clods of varying sizes distributed in elongated clusters with indistinct borders, often appearing as curvilinear trails. In this research, we explore a dirt trail detection and analysis algorithm for extracting, measuring, and characterizing dirt trails based on size, distribution, and color in dermoscopic skin lesion images. These dirt trails are then used to automatically discriminate BCC from benign skin lesions. For an experimental data set of 35 BCC images with dirt trails and 79 benign lesion images, a neural network-based classifier achieved a 0.902 are under a receiver operating characteristic curve using a leave-one-out approach. Results obtained from this study show that automatic detection of dirt trails in dermoscopic images of BCC is feasible. This is important because of the large number of these skin cancers seen every year and the challenge of discovering these earlier with instrumentation. © 2011 John Wiley & Sons A/S.

  5. Automatic and strategic processes in advertising effects

    DEFF Research Database (Denmark)

    Grunert, Klaus G.

    1996-01-01

    , the retrieval of information, and provide a heuristic for brand evaluation. Strategic processes govern learning and inference formation. T relative importance of both types of processes will depend on product involvement. The distinction of these two types of processes leads to some conclusions which...... are at variance with current notions about advertising effects. For example, the att span problem will be relevant only for strategic processes, not for automatic processes, a certain amount of learning can occur with very little conscious effort, and advertising's effect on brand evaluation may be more stable......Two kinds of cognitive processes can be distinguished: Automatic processes, which are mostly subconscious, are learned and changed very slowly, and are not subject to the capacity limitations of working memory, and strategic processes, which are conscious, are subject to capacity limitations...

  6. SU-E-J-16: Automatic Image Contrast Enhancement Based On Automatic Parameter Optimization for Radiation Therapy Setup Verification

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, J [Taishan Medical University, Taian, Shandong (China); Washington University in St Louis, St Louis, MO (United States); Li, H. Harlod; Zhang, T; Yang, D [Washington University in St Louis, St Louis, MO (United States); Ma, F [Taishan Medical University, Taian, Shandong (China)

    2015-06-15

    Purpose: In RT patient setup 2D images, tissues often cannot be seen well due to the lack of image contrast. Contrast enhancement features provided by image reviewing software, e.g. Mosaiq and ARIA, require manual selection of the image processing filters and parameters thus inefficient and cannot be automated. In this work, we developed a novel method to automatically enhance the 2D RT image contrast to allow automatic verification of patient daily setups as a prerequisite step of automatic patient safety assurance. Methods: The new method is based on contrast limited adaptive histogram equalization (CLAHE) and high-pass filtering algorithms. The most important innovation is to automatically select the optimal parameters by optimizing the image contrast. The image processing procedure includes the following steps: 1) background and noise removal, 2) hi-pass filtering by subtracting the Gaussian smoothed Result, and 3) histogram equalization using CLAHE algorithm. Three parameters were determined through an iterative optimization which was based on the interior-point constrained optimization algorithm: the Gaussian smoothing weighting factor, the CLAHE algorithm block size and clip limiting parameters. The goal of the optimization is to maximize the entropy of the processed Result. Results: A total 42 RT images were processed. The results were visually evaluated by RT physicians and physicists. About 48% of the images processed by the new method were ranked as excellent. In comparison, only 29% and 18% of the images processed by the basic CLAHE algorithm and by the basic window level adjustment process, were ranked as excellent. Conclusion: This new image contrast enhancement method is robust and automatic, and is able to significantly outperform the basic CLAHE algorithm and the manual window-level adjustment process that are currently used in clinical 2D image review software tools.

  7. SU-E-J-16: Automatic Image Contrast Enhancement Based On Automatic Parameter Optimization for Radiation Therapy Setup Verification

    International Nuclear Information System (INIS)

    Qiu, J; Li, H. Harlod; Zhang, T; Yang, D; Ma, F

    2015-01-01

    Purpose: In RT patient setup 2D images, tissues often cannot be seen well due to the lack of image contrast. Contrast enhancement features provided by image reviewing software, e.g. Mosaiq and ARIA, require manual selection of the image processing filters and parameters thus inefficient and cannot be automated. In this work, we developed a novel method to automatically enhance the 2D RT image contrast to allow automatic verification of patient daily setups as a prerequisite step of automatic patient safety assurance. Methods: The new method is based on contrast limited adaptive histogram equalization (CLAHE) and high-pass filtering algorithms. The most important innovation is to automatically select the optimal parameters by optimizing the image contrast. The image processing procedure includes the following steps: 1) background and noise removal, 2) hi-pass filtering by subtracting the Gaussian smoothed Result, and 3) histogram equalization using CLAHE algorithm. Three parameters were determined through an iterative optimization which was based on the interior-point constrained optimization algorithm: the Gaussian smoothing weighting factor, the CLAHE algorithm block size and clip limiting parameters. The goal of the optimization is to maximize the entropy of the processed Result. Results: A total 42 RT images were processed. The results were visually evaluated by RT physicians and physicists. About 48% of the images processed by the new method were ranked as excellent. In comparison, only 29% and 18% of the images processed by the basic CLAHE algorithm and by the basic window level adjustment process, were ranked as excellent. Conclusion: This new image contrast enhancement method is robust and automatic, and is able to significantly outperform the basic CLAHE algorithm and the manual window-level adjustment process that are currently used in clinical 2D image review software tools

  8. PC image processing

    International Nuclear Information System (INIS)

    Hwa, Mok Jin Il; Am, Ha Jeng Ung

    1995-04-01

    This book starts summary of digital image processing and personal computer, and classification of personal computer image processing system, digital image processing, development of personal computer and image processing, image processing system, basic method of image processing such as color image processing and video processing, software and interface, computer graphics, video image and video processing application cases on image processing like satellite image processing, color transformation of image processing in high speed and portrait work system.

  9. Automatic segmentation of liver structure in CT images

    International Nuclear Information System (INIS)

    Bae, K.T.; Giger, M.L.; Chen, C.; Kahn, C.E. Jr.

    1993-01-01

    The segmentation and three-dimensional representation of the liver from a computed tomography (CT) scan is an important step in many medical applications, such as in the surgical planning for a living-donor liver transplant and in the automatic detection and documentation of pathological states. A method is being developed to automatically extract liver structure from abdominal CT scans using a priori information about liver morphology and digital image-processing techniques. Segmentation is performed sequentially image-by-image (slice-by-slice), starting with a reference image in which the liver occupies almost the entire right half of the abdomen cross section. Image processing techniques include gray-level thresholding, Gaussian smoothing, and eight-point connectivity tracking. For each case, the shape, size, and pixel density distribution of the liver are recorded for each CT image and used in the processing of other CT images. Extracted boundaries of the liver are smoothed using mathematical morphology techniques and B-splines. Computer-determined boundaries were compared with those drawn by a radiologist. The boundary descriptions from the two methods were in agreement, and the calculated areas were within 10%

  10. Application of automatic image analysis in wood science

    Science.gov (United States)

    Charles W. McMillin

    1982-01-01

    In this paper I describe an image analysis system and illustrate with examples the application of automatic quantitative measurement to wood science. Automatic image analysis, a powerful and relatively new technology, uses optical, video, electronic, and computer components to rapidly derive information from images with minimal operator interaction. Such instruments...

  11. Towards automatic quantitative analysis of cardiac MR perfusion images

    NARCIS (Netherlands)

    Breeuwer, M.; Quist, M.; Spreeuwers, Lieuwe Jan; Paetsch, I.; Al-Saadi, N.; Nagel, E.

    2001-01-01

    Magnetic Resonance Imaging (MRI) is a powerful technique for imaging cardiovascular diseases. The introduction of cardiovascular MRI into clinical practice is however hampered by the lack of efficient and reliable automatic image analysis methods. This paper focuses on the automatic evaluation of

  12. Automatic specular reflections removal for endoscopic images

    Science.gov (United States)

    Tan, Ke; Wang, Bin; Gao, Yuan

    2017-07-01

    Endoscopy imaging is utilized to provide a realistic view about the surfaces of organs inside the human body. Owing to the damp internal environment, these surfaces usually have a glossy appearance showing specular reflections. For many computer vision algorithms, the highlights created by specular reflections may become a significant source of error. In this paper, we present a novel method for restoration of the specular reflection regions from a single image. Specular restoration process starts with generating a substitute specular-free image with RPCA method. Then the specular removed image was obtained by taking the binary weighting template of highlight regions as the weighting for merging the original specular image and the substitute image. The modified template was furthermore discussed for the concealment of artificial effects in the edge of specular regions. Experimental results on the removal of the endoscopic image with specular reflections demonstrate the efficiency of the proposed method comparing to the existing methods.

  13. Automatic system for detecting pornographic images

    Science.gov (United States)

    Ho, Kevin I. C.; Chen, Tung-Shou; Ho, Jun-Der

    2002-09-01

    Due to the dramatic growth of network and multimedia technology, people can more easily get variant information by using Internet. Unfortunately, it also makes the diffusion of illegal and harmful content much easier. So, it becomes an important topic for the Internet society to protect and safeguard Internet users from these content that may be encountered while surfing on the Net, especially children. Among these content, porno graphs cause more serious harm. Therefore, in this study, we propose an automatic system to detect still colour porno graphs. Starting from this result, we plan to develop an automatic system to search porno graphs or to filter porno graphs. Almost all the porno graphs possess one common characteristic that is the ratio of the size of skin region and non-skin region is high. Based on this characteristic, our system first converts the colour space from RGB colour space to HSV colour space so as to segment all the possible skin-colour regions from scene background. We also apply the texture analysis on the selected skin-colour regions to separate the skin regions from non-skin regions. Then, we try to group the adjacent pixels located in skin regions. If the ratio is over a given threshold, we can tell if the given image is a possible porno graph. Based on our experiment, less than 10% of non-porno graphs are classified as pornography, and over 80% of the most harmful porno graphs are classified correctly.

  14. Experimental Study for Automatic Colony Counting System Based Onimage Processing

    Science.gov (United States)

    Fang, Junlong; Li, Wenzhe; Wang, Guoxin

    Colony counting in many colony experiments is detected by manual method at present, therefore it is difficult for man to execute the method quickly and accurately .A new automatic colony counting system was developed. Making use of image-processing technology, a study was made on the feasibility of distinguishing objectively white bacterial colonies from clear plates according to the RGB color theory. An optimal chromatic value was obtained based upon a lot of experiments on the distribution of the chromatic value. It has been proved that the method greatly improves the accuracy and efficiency of the colony counting and the counting result is not affected by using inoculation, shape or size of the colony. It is revealed that automatic detection of colony quantity using image-processing technology could be an effective way.

  15. Automatic crop row detection from UAV images

    DEFF Research Database (Denmark)

    Midtiby, Henrik; Rasmussen, Jesper

    are considered weeds. We have used a Sugar beet field as a case for evaluating the proposed crop detection method. The suggested image processing consists of: 1) locating vegetation regions in the image by thresholding the excess green image derived from the orig- inal image, 2) calculate the Hough transform......Images from Unmanned Aerial Vehicles can provide information about the weed distribution in fields. A direct way is to quantify the amount of vegetation present in different areas of the field. The limitation of this approach is that it includes both crops and weeds in the reported num- bers. To get...... of the segmented image 3) determine the dominating crop row direction by analysing output from the Hough transform and 4) use the found crop row direction to locate crop rows....

  16. Learning algorithms and automatic processing of languages

    International Nuclear Information System (INIS)

    Fluhr, Christian Yves Andre

    1977-01-01

    This research thesis concerns the field of artificial intelligence. It addresses learning algorithms applied to automatic processing of languages. The author first briefly describes some mechanisms of human intelligence in order to describe how these mechanisms are simulated on a computer. He outlines the specific role of learning in various manifestations of intelligence. Then, based on the Markov's algorithm theory, the author discusses the notion of learning algorithm. Two main types of learning algorithms are then addressed: firstly, an 'algorithm-teacher dialogue' type sanction-based algorithm which aims at learning how to solve grammatical ambiguities in submitted texts; secondly, an algorithm related to a document system which structures semantic data automatically obtained from a set of texts in order to be able to understand by references to any question on the content of these texts

  17. Embryonic Heart Morphogenesis from Confocal Microscopy Imaging and Automatic Segmentation

    Directory of Open Access Journals (Sweden)

    Hongda Mao

    2013-01-01

    Full Text Available Embryonic heart morphogenesis (EHM is a complex and dynamic process where the heart transforms from a single tube into a four-chambered pump. This process is of great biological and clinical interest but is still poorly understood for two main reasons. On the one hand, the existing imaging modalities for investigating EHM suffered from either limited penetration depth or limited spatial resolution. On the other hand, current works typically adopted manual segmentation, which was tedious, subjective, and time consuming considering the complexity of developing heart geometry and the large size of images. In this paper, we propose to utilize confocal microscopy imaging with tissue optical immersion clearing technique to image the heart at different stages of development for EHM study. The imaging method is able to produce high spatial resolution images and achieve large penetration depth at the same time. Furthermore, we propose a novel convex active contour model for automatic image segmentation. The model has the ability to deal with intensity fall-off in depth which is characterized by confocal microscopy images. We acquired the images of embryonic quail hearts from day 6 to day 14 of incubation for EHM study. The experimental results were promising and provided us with an insight view of early heart growth pattern and also paved the road for data-driven heart growth modeling.

  18. BgCut: Automatic Ship Detection from UAV Images

    Directory of Open Access Journals (Sweden)

    Chao Xu

    2014-01-01

    foreground objects from sea automatically. First, a sea template library including images in different natural conditions is built to provide an initial template to the model. Then the background trimap is obtained by combing some templates matching with region growing algorithm. The output trimap initializes Grabcut background instead of manual intervention and the process of segmentation without iteration. The effectiveness of our proposed model is demonstrated by extensive experiments on a certain area of real UAV aerial images by an airborne Canon 5D Mark. The proposed algorithm is not only adaptive but also with good segmentation. Furthermore, the model in this paper can be well applied in the automated processing of industrial images for related researches.

  19. ARCOCT: Automatic detection of lumen border in intravascular OCT images.

    Science.gov (United States)

    Cheimariotis, Grigorios-Aris; Chatzizisis, Yiannis S; Koutkias, Vassilis G; Toutouzas, Konstantinos; Giannopoulos, Andreas; Riga, Maria; Chouvarda, Ioanna; Antoniadis, Antonios P; Doulaverakis, Charalambos; Tsamboulatidis, Ioannis; Kompatsiaris, Ioannis; Giannoglou, George D; Maglaveras, Nicos

    2017-11-01

    Intravascular optical coherence tomography (OCT) is an invaluable tool for the detection of pathological features on the arterial wall and the investigation of post-stenting complications. Computational lumen border detection in OCT images is highly advantageous, since it may support rapid morphometric analysis. However, automatic detection is very challenging, since OCT images typically include various artifacts that impact image clarity, including features such as side branches and intraluminal blood presence. This paper presents ARCOCT, a segmentation method for fully-automatic detection of lumen border in OCT images. ARCOCT relies on multiple, consecutive processing steps, accounting for image preparation, contour extraction and refinement. In particular, for contour extraction ARCOCT employs the transformation of OCT images based on physical characteristics such as reflectivity and absorption of the tissue and, for contour refinement, local regression using weighted linear least squares and a 2nd degree polynomial model is employed to achieve artifact and small-branch correction as well as smoothness of the artery mesh. Our major focus was to achieve accurate contour delineation in the various types of OCT images, i.e., even in challenging cases with branches and artifacts. ARCOCT has been assessed in a dataset of 1812 images (308 from stented and 1504 from native segments) obtained from 20 patients. ARCOCT was compared against ground-truth manual segmentation performed by experts on the basis of various geometric features (e.g. area, perimeter, radius, diameter, centroid, etc.) and closed contour matching indicators (the Dice index, the Hausdorff distance and the undirected average distance), using standard statistical analysis methods. The proposed method was proven very efficient and close to the ground-truth, exhibiting non statistically-significant differences for most of the examined metrics. ARCOCT allows accurate and fully-automated lumen border

  20. Automatic Thermal Infrared Panoramic Imaging Sensor

    National Research Council Canada - National Science Library

    Gutin, Mikhail; Tsui, Eddy K; Gutin, Olga; Wang, Xu-Ming; Gutin, Alexey

    2006-01-01

    .... Automatic detection, location, and tracking of targets outside protected area ensures maximum protection and at the same time reduces the workload on personnel, increases reliability and confidence...

  1. Automatic food detection in egocentric images using artificial intelligence technology.

    Science.gov (United States)

    Jia, Wenyan; Li, Yuecheng; Qu, Ruowei; Baranowski, Thomas; Burke, Lora E; Zhang, Hong; Bai, Yicheng; Mancino, Juliet M; Xu, Guizhi; Mao, Zhi-Hong; Sun, Mingui

    2018-03-26

    To develop an artificial intelligence (AI)-based algorithm which can automatically detect food items from images acquired by an egocentric wearable camera for dietary assessment. To study human diet and lifestyle, large sets of egocentric images were acquired using a wearable device, called eButton, from free-living individuals. Three thousand nine hundred images containing real-world activities, which formed eButton data set 1, were manually selected from thirty subjects. eButton data set 2 contained 29 515 images acquired from a research participant in a week-long unrestricted recording. They included both food- and non-food-related real-life activities, such as dining at both home and restaurants, cooking, shopping, gardening, housekeeping chores, taking classes, gym exercise, etc. All images in these data sets were classified as food/non-food images based on their tags generated by a convolutional neural network. A cross data-set test was conducted on eButton data set 1. The overall accuracy of food detection was 91·5 and 86·4 %, respectively, when one-half of data set 1 was used for training and the other half for testing. For eButton data set 2, 74·0 % sensitivity and 87·0 % specificity were obtained if both 'food' and 'drink' were considered as food images. Alternatively, if only 'food' items were considered, the sensitivity and specificity reached 85·0 and 85·8 %, respectively. The AI technology can automatically detect foods from low-quality, wearable camera-acquired real-world egocentric images with reasonable accuracy, reducing both the burden of data processing and privacy concerns.

  2. Accessories for Enhancement of the Semi-Automatic Welding Processes

    National Research Council Canada - National Science Library

    Wheeler, Douglas M; Sawhill, James M

    2000-01-01

    The project's objective is to identify specific areas of the semi-automatic welding operation that is performed with the major semi-automatic processes, which would be more productive if a suitable...

  3. Optoelectronic imaging of speckle using image processing method

    Science.gov (United States)

    Wang, Jinjiang; Wang, Pengfei

    2018-01-01

    A detailed image processing of laser speckle interferometry is proposed as an example for the course of postgraduate student. Several image processing methods were used together for dealing with optoelectronic imaging system, such as the partial differential equations (PDEs) are used to reduce the effect of noise, the thresholding segmentation also based on heat equation with PDEs, the central line is extracted based on image skeleton, and the branch is removed automatically, the phase level is calculated by spline interpolation method, and the fringe phase can be unwrapped. Finally, the imaging processing method was used to automatically measure the bubble in rubber with negative pressure which could be used in the tire detection.

  4. Word Processing in Dyslexics: An Automatic Decoding Deficit?

    Science.gov (United States)

    Yap, Regina; Van Der Leu, Aryan

    1993-01-01

    Compares dyslexic children with normal readers on measures of phonological decoding and automatic word processing. Finds that dyslexics have a deficit in automatic phonological decoding skills. Discusses results within the framework of the phonological deficit and the automatization deficit hypotheses. (RS)

  5. System for automatic x-ray-image analysis, measurement, and sorting of laser fusion targets

    International Nuclear Information System (INIS)

    Singleton, R.M.; Perkins, D.E.; Willenborg, D.L.

    1980-01-01

    This paper describes the Automatic X-Ray Image Analysis and Sorting (AXIAS) system which is designed to analyze and measure x-ray images of opaque hollow microspheres used as laser fusion targets. The x-ray images are first recorded on a high resolution film plate. The AXIAS system then digitizes and processes the images to accurately measure the target parameters and defects. The primary goals of the AXIAS system are: to provide extremely accurate and rapid measurements, to engineer a practical system for a routine production environment and to furnish the capability of automatically measuring an array of images for sorting and selection

  6. A contextual image segmentation system using a priori information for automatic data classification in nuclear physics

    International Nuclear Information System (INIS)

    Benkirane, A.; Auger, G.; Chbihi, A.; Bloyet, D.; Plagnol, E.

    1994-01-01

    This paper presents an original approach to solve an automatic data classification problem by means of image processing techniques. The classification is achieved using image segmentation techniques for extracting the meaningful classes. Two types of information are merged for this purpose: the information contained in experimental images and a priori information derived from underlying physics (and adapted to image segmentation problem). This data fusion is widely used at different stages of the segmentation process. This approach yields interesting results in terms of segmentation performances, even in very noisy cases. Satisfactory classification results are obtained in cases where more ''classical'' automatic data classification methods fail. (authors). 25 refs., 14 figs., 1 append

  7. A contextual image segmentation system using a priori information for automatic data classification in nuclear physics

    Energy Technology Data Exchange (ETDEWEB)

    Benkirane, A; Auger, G; Chbihi, A [Grand Accelerateur National d` Ions Lourds (GANIL), 14 - Caen (France); Bloyet, D [Caen Univ., 14 (France); Plagnol, E [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1994-12-31

    This paper presents an original approach to solve an automatic data classification problem by means of image processing techniques. The classification is achieved using image segmentation techniques for extracting the meaningful classes. Two types of information are merged for this purpose: the information contained in experimental images and a priori information derived from underlying physics (and adapted to image segmentation problem). This data fusion is widely used at different stages of the segmentation process. This approach yields interesting results in terms of segmentation performances, even in very noisy cases. Satisfactory classification results are obtained in cases where more ``classical`` automatic data classification methods fail. (authors). 25 refs., 14 figs., 1 append.

  8. Automatic discrimination of fine roots in minirhizotron images.

    Science.gov (United States)

    Zeng, Guang; Birchfield, Stanley T; Wells, Christina E

    2008-01-01

    Minirhizotrons provide detailed information on the production, life history and mortality of fine roots. However, manual processing of minirhizotron images is time-consuming, limiting the number and size of experiments that can reasonably be analysed. Previously, an algorithm was developed to automatically detect and measure individual roots in minirhizotron images. Here, species-specific root classifiers were developed to discriminate detected roots from bright background artifacts. Classifiers were developed from training images of peach (Prunus persica), freeman maple (Acer x freemanii) and sweetbay magnolia (Magnolia virginiana) using the Adaboost algorithm. True- and false-positive rates for classifiers were estimated using receiver operating characteristic curves. Classifiers gave true positive rates of 89-94% and false positive rates of 3-7% when applied to nontraining images of the species for which they were developed. The application of a classifier trained on one species to images from another species resulted in little or no reduction in accuracy. These results suggest that a single root classifier can be used to distinguish roots from background objects across multiple minirhizotron experiments. By incorporating root detection and discrimination algorithms into an open-source minirhizotron image analysis application, many analysis tasks that are currently performed by hand can be automated.

  9. AUTOMATION OF IMAGE DATA PROCESSING

    Directory of Open Access Journals (Sweden)

    Preuss Ryszard

    2014-12-01

    Full Text Available This article discusses the current capabilities of automate processing of the image data on the example of using PhotoScan software by Agisoft . At present, image data obtained by various registration systems (metric and non - metric cameras placed on airplanes , satellites , or more often on UAVs is used to create photogrammetric products. Multiple registrations of object or land area (large groups of photos are captured are usually performed in order to eliminate obscured area as well as to raise the final accuracy of the photogrammetric product. Because of such a situation t he geometry of the resulting image blocks is far from the typical configuration of images . For fast images georeferencing automatic image matching algorithms are currently applied . They can create a model of a block in the local coordinate system or using initial exterior orientation and measured control points can provide image georeference in an external reference frame. In the case of non - metric image application, it is also possible to carry out self - calibration process at this stage . Image matching algorithm is also used in generation of dense point clouds reconstructing spatial shape of the object ( area. In subsequent processing steps it is possible to obtain typical photogrammetric products such as orthomosaic , DSM or DTM and a photorealistic solid model of an object . All aforementioned processing steps are implemented in a single program in contrary to standard commercial software dividing all steps into dedicated modules . I mage processing leading to final geo referenced products can be fully automated including sequential implementation of the processing steps at predetermined control parameters . The paper presents the practical results of the application fully automatic generation of othomosaic for both images obtained by a metric Vexell camera and a block of images acquired by a non - metric UAV system.

  10. Automatic Shadow Detection and Removal from a Single Image.

    Science.gov (United States)

    Khan, Salman H; Bennamoun, Mohammed; Sohel, Ferdous; Togneri, Roberto

    2016-03-01

    We present a framework to automatically detect and remove shadows in real world scenes from a single image. Previous works on shadow detection put a lot of effort in designing shadow variant and invariant hand-crafted features. In contrast, our framework automatically learns the most relevant features in a supervised manner using multiple convolutional deep neural networks (ConvNets). The features are learned at the super-pixel level and along the dominant boundaries in the image. The predicted posteriors based on the learned features are fed to a conditional random field model to generate smooth shadow masks. Using the detected shadow masks, we propose a Bayesian formulation to accurately extract shadow matte and subsequently remove shadows. The Bayesian formulation is based on a novel model which accurately models the shadow generation process in the umbra and penumbra regions. The model parameters are efficiently estimated using an iterative optimization procedure. Our proposed framework consistently performed better than the state-of-the-art on all major shadow databases collected under a variety of conditions.

  11. Automatic Image Segmentation Using Active Contours with Univariate Marginal Distribution

    Directory of Open Access Journals (Sweden)

    I. Cruz-Aceves

    2013-01-01

    Full Text Available This paper presents a novel automatic image segmentation method based on the theory of active contour models and estimation of distribution algorithms. The proposed method uses the univariate marginal distribution model to infer statistical dependencies between the control points on different active contours. These contours have been generated through an alignment process of reference shape priors, in order to increase the exploration and exploitation capabilities regarding different interactive segmentation techniques. This proposed method is applied in the segmentation of the hollow core in microscopic images of photonic crystal fibers and it is also used to segment the human heart and ventricular areas from datasets of computed tomography and magnetic resonance images, respectively. Moreover, to evaluate the performance of the medical image segmentations compared to regions outlined by experts, a set of similarity measures has been adopted. The experimental results suggest that the proposed image segmentation method outperforms the traditional active contour model and the interactive Tseng method in terms of segmentation accuracy and stability.

  12. Automatic Hotspot and Sun Glint Detection in UAV Multispectral Images.

    Science.gov (United States)

    Ortega-Terol, Damian; Hernandez-Lopez, David; Ballesteros, Rocio; Gonzalez-Aguilera, Diego

    2017-10-15

    Last advances in sensors, photogrammetry and computer vision have led to high-automation levels of 3D reconstruction processes for generating dense models and multispectral orthoimages from Unmanned Aerial Vehicle (UAV) images. However, these cartographic products are sometimes blurred and degraded due to sun reflection effects which reduce the image contrast and colour fidelity in photogrammetry and the quality of radiometric values in remote sensing applications. This paper proposes an automatic approach for detecting sun reflections problems (hotspot and sun glint) in multispectral images acquired with an Unmanned Aerial Vehicle (UAV), based on a photogrammetric strategy included in a flight planning and control software developed by the authors. In particular, two main consequences are derived from the approach developed: (i) different areas of the images can be excluded since they contain sun reflection problems; (ii) the cartographic products obtained (e.g., digital terrain model, orthoimages) and the agronomical parameters computed (e.g., normalized vegetation index-NVDI) are improved since radiometric defects in pixels are not considered. Finally, an accuracy assessment was performed in order to analyse the error in the detection process, getting errors around 10 pixels for a ground sample distance (GSD) of 5 cm which is perfectly valid for agricultural applications. This error confirms that the precision in the detection of sun reflections can be guaranteed using this approach and the current low-cost UAV technology.

  13. Markov random field based automatic image alignment for electron tomography.

    Science.gov (United States)

    Amat, Fernando; Moussavi, Farshid; Comolli, Luis R; Elidan, Gal; Downing, Kenneth H; Horowitz, Mark

    2008-03-01

    We present a method for automatic full-precision alignment of the images in a tomographic tilt series. Full-precision automatic alignment of cryo electron microscopy images has remained a difficult challenge to date, due to the limited electron dose and low image contrast. These facts lead to poor signal to noise ratio (SNR) in the images, which causes automatic feature trackers to generate errors, even with high contrast gold particles as fiducial features. To enable fully automatic alignment for full-precision reconstructions, we frame the problem probabilistically as finding the most likely particle tracks given a set of noisy images, using contextual information to make the solution more robust to the noise in each image. To solve this maximum likelihood problem, we use Markov Random Fields (MRF) to establish the correspondence of features in alignment and robust optimization for projection model estimation. The resulting algorithm, called Robust Alignment and Projection Estimation for Tomographic Reconstruction, or RAPTOR, has not needed any manual intervention for the difficult datasets we have tried, and has provided sub-pixel alignment that is as good as the manual approach by an expert user. We are able to automatically map complete and partial marker trajectories and thus obtain highly accurate image alignment. Our method has been applied to challenging cryo electron tomographic datasets with low SNR from intact bacterial cells, as well as several plastic section and X-ray datasets.

  14. Automatic segmentation of the choroid in enhanced depth imaging optical coherence tomography images.

    Science.gov (United States)

    Tian, Jing; Marziliano, Pina; Baskaran, Mani; Tun, Tin Aung; Aung, Tin

    2013-03-01

    Enhanced Depth Imaging (EDI) optical coherence tomography (OCT) provides high-definition cross-sectional images of the choroid in vivo, and hence is used in many clinical studies. However, the quantification of the choroid depends on the manual labelings of two boundaries, Bruch's membrane and the choroidal-scleral interface. This labeling process is tedious and subjective of inter-observer differences, hence, automatic segmentation of the choroid layer is highly desirable. In this paper, we present a fast and accurate algorithm that could segment the choroid automatically. Bruch's membrane is detected by searching the pixel with the biggest gradient value above the retinal pigment epithelium (RPE) and the choroidal-scleral interface is delineated by finding the shortest path of the graph formed by valley pixels using Dijkstra's algorithm. The experiments comparing automatic segmentation results with the manual labelings are conducted on 45 EDI-OCT images and the average of Dice's Coefficient is 90.5%, which shows good consistency of the algorithm with the manual labelings. The processing time for each image is about 1.25 seconds.

  15. SU-E-J-15: Automatically Detect Patient Treatment Position and Orientation in KV Portal Images

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, J [Washington University in St Louis, Taian, Shandong (China); Yang, D [Washington University School of Medicine, St Louis, MO (United States)

    2015-06-15

    Purpose: In the course of radiation therapy, the complex information processing workflow will Result in potential errors, such as incorrect or inaccurate patient setups. With automatic image check and patient identification, such errors could be effectively reduced. For this purpose, we developed a simple and rapid image processing method, to automatically detect the patient position and orientation in 2D portal images, so to allow automatic check of positions and orientations for patient daily RT treatments. Methods: Based on the principle of portal image formation, a set of whole body DRR images were reconstructed from multiple whole body CT volume datasets, and fused together to be used as the matching template. To identify the patient setup position and orientation shown in a 2D portal image, the 2D portal image was preprocessed (contrast enhancement, down-sampling and couch table detection), then matched to the template image so to identify the laterality (left or right), position, orientation and treatment site. Results: Five day’s clinical qualified portal images were gathered randomly, then were processed by the automatic detection and matching method without any additional information. The detection results were visually checked by physicists. 182 images were correct detection in a total of 200kV portal images. The correct rate was 91%. Conclusion: The proposed method can detect patient setup and orientation quickly and automatically. It only requires the image intensity information in KV portal images. This method can be useful in the framework of Electronic Chart Check (ECCK) to reduce the potential errors in workflow of radiation therapy and so to improve patient safety. In addition, the auto-detection results, as the patient treatment site position and patient orientation, could be useful to guide the sequential image processing procedures, e.g. verification of patient daily setup accuracy. This work was partially supported by research grant from

  16. SU-E-J-15: Automatically Detect Patient Treatment Position and Orientation in KV Portal Images

    International Nuclear Information System (INIS)

    Qiu, J; Yang, D

    2015-01-01

    Purpose: In the course of radiation therapy, the complex information processing workflow will Result in potential errors, such as incorrect or inaccurate patient setups. With automatic image check and patient identification, such errors could be effectively reduced. For this purpose, we developed a simple and rapid image processing method, to automatically detect the patient position and orientation in 2D portal images, so to allow automatic check of positions and orientations for patient daily RT treatments. Methods: Based on the principle of portal image formation, a set of whole body DRR images were reconstructed from multiple whole body CT volume datasets, and fused together to be used as the matching template. To identify the patient setup position and orientation shown in a 2D portal image, the 2D portal image was preprocessed (contrast enhancement, down-sampling and couch table detection), then matched to the template image so to identify the laterality (left or right), position, orientation and treatment site. Results: Five day’s clinical qualified portal images were gathered randomly, then were processed by the automatic detection and matching method without any additional information. The detection results were visually checked by physicists. 182 images were correct detection in a total of 200kV portal images. The correct rate was 91%. Conclusion: The proposed method can detect patient setup and orientation quickly and automatically. It only requires the image intensity information in KV portal images. This method can be useful in the framework of Electronic Chart Check (ECCK) to reduce the potential errors in workflow of radiation therapy and so to improve patient safety. In addition, the auto-detection results, as the patient treatment site position and patient orientation, could be useful to guide the sequential image processing procedures, e.g. verification of patient daily setup accuracy. This work was partially supported by research grant from

  17. Automatic food detection in egocentric images using artificial intelligence technology

    Science.gov (United States)

    Our objective was to develop an artificial intelligence (AI)-based algorithm which can automatically detect food items from images acquired by an egocentric wearable camera for dietary assessment. To study human diet and lifestyle, large sets of egocentric images were acquired using a wearable devic...

  18. AUTOMATIC ORIENTATION OF LARGE BLOCKS OF OBLIQUE IMAGES

    Directory of Open Access Journals (Sweden)

    E. Rupnik

    2013-05-01

    Full Text Available Nowadays, multi-camera platforms combining nadir and oblique cameras are experiencing a revival. Due to their advantages such as ease of interpretation, completeness through mitigation of occluding areas, as well as system accessibility, they have found their place in numerous civil applications. However, automatic post-processing of such imagery still remains a topic of research. Configuration of cameras poses a challenge on the traditional photogrammetric pipeline used in commercial software and manual measurements are inevitable. For large image blocks it is certainly an impediment. Within theoretical part of the work we review three common least square adjustment methods and recap on possible ways for a multi-camera system orientation. In the practical part we present an approach that successfully oriented a block of 550 images acquired with an imaging system composed of 5 cameras (Canon Eos 1D Mark III with different focal lengths. Oblique cameras are rotated in the four looking directions (forward, backward, left and right by 45° with respect to the nadir camera. The workflow relies only upon open-source software: a developed tool to analyse image connectivity and Apero to orient the image block. The benefits of the connectivity tool are twofold: in terms of computational time and success of Bundle Block Adjustment. It exploits the georeferenced information provided by the Applanix system in constraining feature point extraction to relevant images only, and guides the concatenation of images during the relative orientation. Ultimately an absolute transformation is performed resulting in mean re-projection residuals equal to 0.6 pix.

  19. Automatic extraction of left ventricle in SPECT myocardial perfusion imaging

    International Nuclear Information System (INIS)

    Liu Li; Zhao Shujun; Yao Zhiming; Wang Daoyu

    1999-01-01

    An automatic method of extracting left ventricle from SPECT myocardial perfusion data was introduced. This method was based on the least square analysis of the positions of all short-axis slices pixels from the half sphere-cylinder myocardial model, and used a iterative reconstruction technique to automatically cut off the non-left ventricular tissue from the perfusion images. Thereby, this technique provided the bases for further quantitative analysis

  20. Distributed automatic control of technological processes in conditions of weightlessness

    Science.gov (United States)

    Kukhtenko, A. I.; Merkulov, V. I.; Samoylenko, Y. I.; Ladikov-Royev, Y. P.

    1986-01-01

    Some problems associated with the automatic control of liquid metal and plasma systems under conditions of weightlessness are examined, with particular reference to the problem of stability of liquid equilibrium configurations. The theoretical fundamentals of automatic control of processes in electrically conducting continuous media are outlined, and means of using electromagnetic fields for simulating technological processes in a space environment are discussed.

  1. Automatic airline baggage counting using 3D image segmentation

    Science.gov (United States)

    Yin, Deyu; Gao, Qingji; Luo, Qijun

    2017-06-01

    The baggage number needs to be checked automatically during baggage self-check-in. A fast airline baggage counting method is proposed in this paper using image segmentation based on height map which is projected by scanned baggage 3D point cloud. There is height drop in actual edge of baggage so that it can be detected by the edge detection operator. And then closed edge chains are formed from edge lines that is linked by morphological processing. Finally, the number of connected regions segmented by closed chains is taken as the baggage number. Multi-bag experiment that is performed on the condition of different placement modes proves the validity of the method.

  2. Automatic registration of fused lidar/digital imagery (texel images) for three-dimensional image creation

    Science.gov (United States)

    Budge, Scott E.; Badamikar, Neeraj S.; Xie, Xuan

    2015-03-01

    Several photogrammetry-based methods have been proposed that the derive three-dimensional (3-D) information from digital images from different perspectives, and lidar-based methods have been proposed that merge lidar point clouds and texture the merged point clouds with digital imagery. Image registration alone has difficulty with smooth regions with low contrast, whereas point cloud merging alone has difficulty with outliers and a lack of proper convergence in the merging process. This paper presents a method to create 3-D images that uses the unique properties of texel images (pixel-fused lidar and digital imagery) to improve the quality and robustness of fused 3-D images. The proposed method uses both image processing and point-cloud merging to combine texel images in an iterative technique. Since the digital image pixels and the lidar 3-D points are fused at the sensor level, more accurate 3-D images are generated because registration of image data automatically improves the merging of the point clouds, and vice versa. Examples illustrate the value of this method over other methods. The proposed method also includes modifications for the situation where an estimate of position and attitude of the sensor is known, when obtained from low-cost global positioning systems and inertial measurement units sensors.

  3. Automatic Segmentation of Dermoscopic Images by Iterative Classification

    Directory of Open Access Journals (Sweden)

    Maciel Zortea

    2011-01-01

    Full Text Available Accurate detection of the borders of skin lesions is a vital first step for computer aided diagnostic systems. This paper presents a novel automatic approach to segmentation of skin lesions that is particularly suitable for analysis of dermoscopic images. Assumptions about the image acquisition, in particular, the approximate location and color, are used to derive an automatic rule to select small seed regions, likely to correspond to samples of skin and the lesion of interest. The seed regions are used as initial training samples, and the lesion segmentation problem is treated as binary classification problem. An iterative hybrid classification strategy, based on a weighted combination of estimated posteriors of a linear and quadratic classifier, is used to update both the automatically selected training samples and the segmentation, increasing reliability and final accuracy, especially for those challenging images, where the contrast between the background skin and lesion is low.

  4. Automatic telangiectasia analysis in dermoscopy images using adaptive critic design.

    Science.gov (United States)

    Cheng, B; Stanley, R J; Stoecker, W V; Hinton, K

    2012-11-01

    Telangiectasia, tiny skin vessels, are important dermoscopy structures used to discriminate basal cell carcinoma (BCC) from benign skin lesions. This research builds off of previously developed image analysis techniques to identify vessels automatically to discriminate benign lesions from BCCs. A biologically inspired reinforcement learning approach is investigated in an adaptive critic design framework to apply action-dependent heuristic dynamic programming (ADHDP) for discrimination based on computed features using different skin lesion contrast variations to promote the discrimination process. Lesion discrimination results for ADHDP are compared with multilayer perception backpropagation artificial neural networks. This study uses a data set of 498 dermoscopy skin lesion images of 263 BCCs and 226 competitive benign images as the input sets. This data set is extended from previous research [Cheng et al., Skin Research and Technology, 2011, 17: 278]. Experimental results yielded a diagnostic accuracy as high as 84.6% using the ADHDP approach, providing an 8.03% improvement over a standard multilayer perception method. We have chosen BCC detection rather than vessel detection as the endpoint. Although vessel detection is inherently easier, BCC detection has potential direct clinical applications. Small BCCs are detectable early by dermoscopy and potentially detectable by the automated methods described in this research. © 2011 John Wiley & Sons A/S.

  5. AUTOMATIC MULTILEVEL IMAGE SEGMENTATION BASED ON FUZZY REASONING

    Directory of Open Access Journals (Sweden)

    Liang Tang

    2011-05-01

    Full Text Available An automatic multilevel image segmentation method based on sup-star fuzzy reasoning (SSFR is presented. Using the well-known sup-star fuzzy reasoning technique, the proposed algorithm combines the global statistical information implied in the histogram with the local information represented by the fuzzy sets of gray-levels, and aggregates all the gray-levels into several classes characterized by the local maximum values of the histogram. The presented method has the merits of determining the number of the segmentation classes automatically, and avoiding to calculating thresholds of segmentation. Emulating and real image segmentation experiments demonstrate that the SSFR is effective.

  6. Computational Intelligence in Image Processing

    CERN Document Server

    Siarry, Patrick

    2013-01-01

    Computational intelligence based techniques have firmly established themselves as viable, alternate, mathematical tools for more than a decade. They have been extensively employed in many systems and application domains, among these signal processing, automatic control, industrial and consumer electronics, robotics, finance, manufacturing systems, electric power systems, and power electronics. Image processing is also an extremely potent area which has attracted the atten­tion of many researchers who are interested in the development of new computational intelligence-based techniques and their suitable applications, in both research prob­lems and in real-world problems. Part I of the book discusses several image preprocessing algorithms; Part II broadly covers image compression algorithms; Part III demonstrates how computational intelligence-based techniques can be effectively utilized for image analysis purposes; and Part IV shows how pattern recognition, classification and clustering-based techniques can ...

  7. Color image Segmentation using automatic thresholding techniques

    International Nuclear Information System (INIS)

    Harrabi, R.; Ben Braiek, E.

    2011-01-01

    In this paper, entropy and between-class variance based thresholding methods for color images segmentation are studied. The maximization of the between-class variance (MVI) and the entropy (ME) have been used as a criterion functions to determine an optimal threshold to segment images into nearly homogenous regions. Segmentation results from the two methods are validated and the segmentation sensitivity for the test data available is evaluated, and a comparative study between these methods in different color spaces is presented. The experimental results demonstrate the superiority of the MVI method for color image segmentation.

  8. Markov Processes in Image Processing

    Science.gov (United States)

    Petrov, E. P.; Kharina, N. L.

    2018-05-01

    Digital images are used as an information carrier in different sciences and technologies. The aspiration to increase the number of bits in the image pixels for the purpose of obtaining more information is observed. In the paper, some methods of compression and contour detection on the basis of two-dimensional Markov chain are offered. Increasing the number of bits on the image pixels will allow one to allocate fine object details more precisely, but it significantly complicates image processing. The methods of image processing do not concede by the efficiency to well-known analogues, but surpass them in processing speed. An image is separated into binary images, and processing is carried out in parallel with each without an increase in speed, when increasing the number of bits on the image pixels. One more advantage of methods is the low consumption of energy resources. Only logical procedures are used and there are no computing operations. The methods can be useful in processing images of any class and assignment in processing systems with a limited time and energy resources.

  9. Automatic ultrasound image enhancement for 2D semi-automatic breast-lesion segmentation

    Science.gov (United States)

    Lu, Kongkuo; Hall, Christopher S.

    2014-03-01

    Breast cancer is the fastest growing cancer, accounting for 29%, of new cases in 2012, and second leading cause of cancer death among women in the United States and worldwide. Ultrasound (US) has been used as an indispensable tool for breast cancer detection/diagnosis and treatment. In computer-aided assistance, lesion segmentation is a preliminary but vital step, but the task is quite challenging in US images, due to imaging artifacts that complicate detection and measurement of the suspect lesions. The lesions usually present with poor boundary features and vary significantly in size, shape, and intensity distribution between cases. Automatic methods are highly application dependent while manual tracing methods are extremely time consuming and have a great deal of intra- and inter- observer variability. Semi-automatic approaches are designed to counterbalance the advantage and drawbacks of the automatic and manual methods. However, considerable user interaction might be necessary to ensure reasonable segmentation for a wide range of lesions. This work proposes an automatic enhancement approach to improve the boundary searching ability of the live wire method to reduce necessary user interaction while keeping the segmentation performance. Based on the results of segmentation of 50 2D breast lesions in US images, less user interaction is required to achieve desired accuracy, i.e. < 80%, when auto-enhancement is applied for live-wire segmentation.

  10. Image perception and image processing

    Energy Technology Data Exchange (ETDEWEB)

    Wackenheim, A.

    1987-01-01

    The author develops theoretical and practical models of image perception and image processing, based on phenomenology and structuralism and leading to original perception: fundamental for a positivistic approach of research work for the development of artificial intelligence that will be able in an automated system fo 'reading' X-ray pictures.

  11. Image perception and image processing

    International Nuclear Information System (INIS)

    Wackenheim, A.

    1987-01-01

    The author develops theoretical and practical models of image perception and image processing, based on phenomenology and structuralism and leading to original perception: fundamental for a positivistic approach of research work for the development of artificial intelligence that will be able in an automated system fo 'reading' X-ray pictures. (orig.) [de

  12. AUTOMATIC 3D MAPPING USING MULTIPLE UNCALIBRATED CLOSE RANGE IMAGES

    Directory of Open Access Journals (Sweden)

    M. Rafiei

    2013-09-01

    Full Text Available Automatic three-dimensions modeling of the real world is an important research topic in the geomatics and computer vision fields for many years. By development of commercial digital cameras and modern image processing techniques, close range photogrammetry is vastly utilized in many fields such as structure measurements, topographic surveying, architectural and archeological surveying, etc. A non-contact photogrammetry provides methods to determine 3D locations of objects from two-dimensional (2D images. Problem of estimating the locations of 3D points from multiple images, often involves simultaneously estimating both 3D geometry (structure and camera pose (motion, it is commonly known as structure from motion (SfM. In this research a step by step approach to generate the 3D point cloud of a scene is considered. After taking images with a camera, we should detect corresponding points in each two views. Here an efficient SIFT method is used for image matching for large baselines. After that, we must retrieve the camera motion and 3D position of the matched feature points up to a projective transformation (projective reconstruction. Lacking additional information on the camera or the scene makes the parallel lines to be unparalleled. The results of SfM computation are much more useful if a metric reconstruction is obtained. Therefor multiple views Euclidean reconstruction applied and discussed. To refine and achieve the precise 3D points we use more general and useful approach, namely bundle adjustment. At the end two real cases have been considered to reconstruct (an excavation and a tower.

  13. Automatic processing of multimodal tomography datasets.

    Science.gov (United States)

    Parsons, Aaron D; Price, Stephen W T; Wadeson, Nicola; Basham, Mark; Beale, Andrew M; Ashton, Alun W; Mosselmans, J Frederick W; Quinn, Paul D

    2017-01-01

    With the development of fourth-generation high-brightness synchrotrons on the horizon, the already large volume of data that will be collected on imaging and mapping beamlines is set to increase by orders of magnitude. As such, an easy and accessible way of dealing with such large datasets as quickly as possible is required in order to be able to address the core scientific problems during the experimental data collection. Savu is an accessible and flexible big data processing framework that is able to deal with both the variety and the volume of data of multimodal and multidimensional scientific datasets output such as those from chemical tomography experiments on the I18 microfocus scanning beamline at Diamond Light Source.

  14. Automatic localization of landmark sets in head CT images with regression forests for image registration initialization

    Science.gov (United States)

    Zhang, Dongqing; Liu, Yuan; Noble, Jack H.; Dawant, Benoit M.

    2016-03-01

    Cochlear Implants (CIs) are electrode arrays that are surgically inserted into the cochlea. Individual contacts stimulate frequency-mapped nerve endings thus replacing the natural electro-mechanical transduction mechanism. CIs are programmed post-operatively by audiologists but this is currently done using behavioral tests without imaging information that permits relating electrode position to inner ear anatomy. We have recently developed a series of image processing steps that permit the segmentation of the inner ear anatomy and the localization of individual contacts. We have proposed a new programming strategy that uses this information and we have shown in a study with 68 participants that 78% of long term recipients preferred the programming parameters determined with this new strategy. A limiting factor to the large scale evaluation and deployment of our technique is the amount of user interaction still required in some of the steps used in our sequence of image processing algorithms. One such step is the rough registration of an atlas to target volumes prior to the use of automated intensity-based algorithms when the target volumes have very different fields of view and orientations. In this paper we propose a solution to this problem. It relies on a random forest-based approach to automatically localize a series of landmarks. Our results obtained from 83 images with 132 registration tasks show that automatic initialization of an intensity-based algorithm proves to be a reliable technique to replace the manual step.

  15. Technical characterization by image analysis: an automatic method of mineralogical studies

    International Nuclear Information System (INIS)

    Oliveira, J.F. de

    1988-01-01

    The application of a modern method of image analysis fully automated for the study of grain size distribution modal assays, degree of liberation and mineralogical associations is discussed. The image analyser is interfaced with a scanning electron microscope and an energy dispersive X-rays analyser. The image generated by backscattered electrons is analysed automatically and the system has been used in accessment studies of applied mineralogy as well as in process control in the mining industry. (author) [pt

  16. A method of automatic data processing in radiometric control

    International Nuclear Information System (INIS)

    Adonin, V.M.; Gulyukina, N.A.; Nemirov, Yu.V.; Mogil'nitskij, M.I.

    1980-01-01

    Described is the algorithm for automatic data processing in gamma radiography of products. Rapidity due to application of recurrent evaluation is a specific feature of the processing. Experimental data of by-line control are presented. The results obtained have shown the applicability of automatic signal processing to the testing under industrial conditions, which would permit to increase the testing efficiency to eliminate the subjectivism in assessment of testing results and to improve working conditions

  17. Automatic segmentation and disease classification using cardiac cine MR images

    NARCIS (Netherlands)

    Wolterink, Jelmer M.; Leiner, Tim; Viergever, Max A.; Išgum, Ivana

    2018-01-01

    Segmentation of the heart in cardiac cine MR is clinically used to quantify cardiac function. We propose a fully automatic method for segmentation and disease classification using cardiac cine MR images. A convolutional neural network (CNN) was designed to simultaneously segment the left ventricle

  18. Image processing techniques for remote sensing data

    Digital Repository Service at National Institute of Oceanography (India)

    RameshKumar, M.R.

    interpretation and for processing of scene data for autonomous machine perception. The technique of digital image processing are used for' automatic character/pattern recognition, industrial robots for product assembly and inspection, military recognizance... and spatial co-ordinates into discrete components. The mathematical concepts involved are the sampling and transform theory. Two dimensional transforms are used for image enhancement, restoration, encoding and description too. The main objective of the image...

  19. AUTOMATIC AND GENERIC MOSAICING OF MULTISENSOR IMAGES: AN APPLICATION TO PLEIADES HR

    Directory of Open Access Journals (Sweden)

    F. Bignalet-Cazalet

    2012-07-01

    Full Text Available In the early phase of the Pleiades program, the CNES (the French Space Agency specified and developed a fully automatic mosaicing processing unit, in order to generate satellite image mosaics under operational conditions. This tool can automatically put each input image in a common geometry, homogenize the radiometry, and generate orthomosaics using stitching lines. As the image quality commissioning phase of Pleiades1A is on-going, this mosaicing process is being tested for the first time under operational conditions. The French newly launched high resolution satellite can acquire adjacent images for French Civil and Defense User Ground Segments. This paper presents the very firsts results of mosaicing Pleiades1A images. Beyond Pleiades’ use, our mosaicing tool can process a significant variety of images, including other satellites and airborne acquisitions, using automatically-taken or external ground control points, offering time-based image superposition, and more. This paper also presents the design of the mosaicing tool and describes the processing workflow and the additional capabilities and applications.

  20. Hyperspectral image processing methods

    Science.gov (United States)

    Hyperspectral image processing refers to the use of computer algorithms to extract, store and manipulate both spatial and spectral information contained in hyperspectral images across the visible and near-infrared portion of the electromagnetic spectrum. A typical hyperspectral image processing work...

  1. Automatically processing physical data from LHD experiments

    Energy Technology Data Exchange (ETDEWEB)

    Emoto, M., E-mail: emoto.masahiko@nifs.ac.jp; Ida, K.; Suzuki, C.; Yoshida, M.; Akiyama, T.; Nakamura, Y.; Sakamoto, R.; Yokoyama, M.; Yoshinuma, M.

    2014-05-15

    Physical data produced by large helical device (LHD) experiments is supplied by the Kaiseki server, and registers more than 200 types of diagnostic data. Dependencies exist amongst the data; i.e., in many cases, the calculation of one data requires other data. Therefore, to obtain unregistered data, one needs to calculate not only the diagnostic data itself but also the dependent data; however, because the data is registered by different scientists, each scientist must separately calculate and register their respective data. To simplify this complicated procedure, we have developed an automatic calculation system called AutoAna. The calculation programs of AutoAna are distributed on a network, and the number of such programs can be easily increased dynamically. Our system is therefore scalable and ready for substantial increases in the size of the target data.

  2. Beyond behaviorism: on the automaticity of higher mental processes.

    Science.gov (United States)

    Bargh, J A; Ferguson, M J

    2000-11-01

    The first 100 years of experimental psychology were dominated by 2 major schools of thought: behaviorism and cognitive science. Here the authors consider the common philosophical commitment to determinism by both schools, and how the radical behaviorists' thesis of the determined nature of higher mental processes is being pursued today in social cognition research on automaticity. In harmony with "dual process" models in contemporary cognitive science, which equate determined processes with those that are automatic and which require no intervening conscious choice or guidance, as opposed to "controlled" processes which do, the social cognition research on the automaticity of higher mental processes provides compelling evidence for the determinism of those processes. This research has revealed that social interaction, evaluation and judgment, and the operation of internal goal structures can all proceed without the intervention of conscious acts of will and guidance of the process.

  3. Automatic brightness control algorithms and their effect on fluoroscopic imaging

    International Nuclear Information System (INIS)

    Quinn, P.W.; Gagne, R.M.

    1989-01-01

    This paper reports a computer model used to investigate the effect on dose and image quality of three automatic brightness control (ABC) algorithms used in the imaging of barium during general-purpose fluoroscopy. A model incorporating all aspects of image formation - i.e., x- ray production, phantom attenuation, and energy absorption in the CSI phosphor - was driven according to each ABC algorithm as a function of patient thickness. The energy absorbed in the phosphor was kept constant, while the changes in exposure, integral dose, organ dose, and contrast were monitored

  4. Automatic Description Generation from Images : A Survey of Models, Datasets, and Evaluation Measures

    NARCIS (Netherlands)

    Bernardi, Raffaella; Cakici, Ruket; Elliott, Desmond; Erdem, Aykut; Erdem, Erkut; Ikizler-Cinbis, Nazli; Keller, Frank; Muscat, Adrian; Plank, Barbara

    2016-01-01

    Automatic description generation from natural images is a challenging problem that has recently received a large amount of interest from the computer vision and natural language processing communities. In this survey, we classify the existing approaches based on how they conceptualize this problem,

  5. Digital processing of radiographic images

    Science.gov (United States)

    Bond, A. D.; Ramapriyan, H. K.

    1973-01-01

    Some techniques are presented and the software documentation for the digital enhancement of radiographs. Both image handling and image processing operations are considered. The image handling operations dealt with are: (1) conversion of format of data from packed to unpacked and vice versa; (2) automatic extraction of image data arrays; (3) transposition and 90 deg rotations of large data arrays; (4) translation of data arrays for registration; and (5) reduction of the dimensions of data arrays by integral factors. Both the frequency and the spatial domain approaches are presented for the design and implementation of the image processing operation. It is shown that spatial domain recursive implementation of filters is much faster than nonrecursive implementations using fast fourier transforms (FFT) for the cases of interest in this work. The recursive implementation of a class of matched filters for enhancing image signal to noise ratio is described. Test patterns are used to illustrate the filtering operations. The application of the techniques to radiographic images of metallic structures is demonstrated through several examples.

  6. Neural Correlates of Automatic and Controlled Auditory Processing in Schizophrenia

    Science.gov (United States)

    Morey, Rajendra A.; Mitchell, Teresa V.; Inan, Seniha; Lieberman, Jeffrey A.; Belger, Aysenil

    2009-01-01

    Individuals with schizophrenia demonstrate impairments in selective attention and sensory processing. The authors assessed differences in brain function between 26 participants with schizophrenia and 17 comparison subjects engaged in automatic (unattended) and controlled (attended) auditory information processing using event-related functional MRI. Lower regional neural activation during automatic auditory processing in the schizophrenia group was not confined to just the temporal lobe, but also extended to prefrontal regions. Controlled auditory processing was associated with a distributed frontotemporal and subcortical dysfunction. Differences in activation between these two modes of auditory information processing were more pronounced in the comparison group than in the patient group. PMID:19196926

  7. Automatic Welding System of Aluminum Pipe by Monitoring Backside Image of Molten Pool Using Vision Sensor

    Science.gov (United States)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    An automatic welding system using Tungsten Inert Gas (TIG) welding with vision sensor for welding of aluminum pipe was constructed. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position and moving welding torch with the AC welding machine. The monitoring system consists of a vision sensor using a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Neural network model for welding speed control were constructed to perform the process automatically. From the experimental results it shows the effectiveness of the control system confirmed by good detection of molten pool and sound weld of experimental result.

  8. Automatic Blastomere Recognition from a Single Embryo Image

    Directory of Open Access Journals (Sweden)

    Yun Tian

    2014-01-01

    Full Text Available The number of blastomeres of human day 3 embryos is one of the most important criteria for evaluating embryo viability. However, due to the transparency and overlap of blastomeres, it is a challenge to recognize blastomeres automatically using a single embryo image. This study proposes an approach based on least square curve fitting (LSCF for automatic blastomere recognition from a single image. First, combining edge detection, deletion of multiple connected points, and dilation and erosion, an effective preprocessing method was designed to obtain part of blastomere edges that were singly connected. Next, an automatic recognition method for blastomeres was proposed using least square circle fitting. This algorithm was tested on 381 embryo microscopic images obtained from the eight-cell period, and the results were compared with those provided by experts. Embryos were recognized with a 0 error rate occupancy of 21.59%, and the ratio of embryos in which the false recognition number was less than or equal to 2 was 83.16%. This experiment demonstrated that our method could efficiently and rapidly recognize the number of blastomeres from a single embryo image without the need to reconstruct the three-dimensional model of the blastomeres first; this method is simple and efficient.

  9. Automatic measurement of axial length of human eye using three-dimensional magnetic resonance imaging

    International Nuclear Information System (INIS)

    Watanabe, Masaki; Kiryu, Tohru

    2011-01-01

    The measurement of axial length and the evaluation of three dimensional (3D) form of an eye are essential to evaluate the mechanism of myopia progression. We propose a method of automatic measurement of axial length including adjustment of the pulse sequence of short-term scan which could suppress influence of eyeblink, using a magnetic resonance imaging (MRI) which acquires 3D images noninvasively. Acquiring T 2 -weighted images with 3.0 tesla MRI device and eight-channel phased-array head coil, we extracted left and right eye ball images, and then reconstructed 3D volume. The surface coordinates were calculated from 3D volume, fitting the ellipsoid model coordinates with the surface coordinates, and measured the axial length automatically. Measuring twenty one subjects, we compared the automatically measured values of axial length with the manually measured ones, then confirmed significant elongation in the axial length of myopia compared with that of emmetropia. Furthermore, there were no significant differences (P<0.05) between the means of automatic measurements and the manual ones. Accordingly, the automatic measurement process of axial length could be a tool for the elucidation of the mechanism of myopia progression, which would be suitable for evaluating the axial length easily and noninvasively. (author)

  10. Automatic correspondence detection in mammogram and breast tomosynthesis images

    Science.gov (United States)

    Ehrhardt, Jan; Krüger, Julia; Bischof, Arpad; Barkhausen, Jörg; Handels, Heinz

    2012-02-01

    Two-dimensional mammography is the major imaging modality in breast cancer detection. A disadvantage of mammography is the projective nature of this imaging technique. Tomosynthesis is an attractive modality with the potential to combine the high contrast and high resolution of digital mammography with the advantages of 3D imaging. In order to facilitate diagnostics and treatment in the current clinical work-flow, correspondences between tomosynthesis images and previous mammographic exams of the same women have to be determined. In this paper, we propose a method to detect correspondences in 2D mammograms and 3D tomosynthesis images automatically. In general, this 2D/3D correspondence problem is ill-posed, because a point in the 2D mammogram corresponds to a line in the 3D tomosynthesis image. The goal of our method is to detect the "most probable" 3D position in the tomosynthesis images corresponding to a selected point in the 2D mammogram. We present two alternative approaches to solve this 2D/3D correspondence problem: a 2D/3D registration method and a 2D/2D mapping between mammogram and tomosynthesis projection images with a following back projection. The advantages and limitations of both approaches are discussed and the performance of the methods is evaluated qualitatively and quantitatively using a software phantom and clinical breast image data. Although the proposed 2D/3D registration method can compensate for moderate breast deformations caused by different breast compressions, this approach is not suitable for clinical tomosynthesis data due to the limited resolution and blurring effects perpendicular to the direction of projection. The quantitative results show that the proposed 2D/2D mapping method is capable of detecting corresponding positions in mammograms and tomosynthesis images automatically for 61 out of 65 landmarks. The proposed method can facilitate diagnosis, visual inspection and comparison of 2D mammograms and 3D tomosynthesis images for

  11. Automatic anatomically selective image enhancement in digital chest radiography

    International Nuclear Information System (INIS)

    Sezan, M.I.; Minerbo, G.N.; Schaetzing, R.

    1989-01-01

    The authors develop a technique for automatic anatomically selective enhancement of digital chest radiographs. Anatomically selective enhancement is motivated by the desire to simultaneously meet the different enhancement requirements of the lung field and the mediastinum. A recent peak detection algorithm and a set of rules are applied to the image histogram to determine automatically a gray-level threshold between the lung field and mediastinum. The gray-level threshold facilitates anatomically selective gray-scale modification and/or unsharp masking. Further, in an attempt to suppress possible white-band or black-band artifacts due to unsharp masking at sharp edges, local-contrast adaptivity is incorporated into anatomically selective unsharp masking by designing an anatomy-sensitive emphasis parameter which varies asymmetrically with positive and negative values of the local image contrast

  12. Towards an automatic tool for resolution evaluation of mammographic images

    Energy Technology Data Exchange (ETDEWEB)

    De Oliveira, J. E. E. [FUMEC, Av. Alfonso Pena 3880, CEP 30130-009 Belo Horizonte - MG (Brazil); Nogueira, M. S., E-mail: juliae@fumec.br [Centro de Desenvolvimento da Tecnologia Nuclear / CNEN, Pte. Antonio Carlos 6627, 31270-901, Belo Horizonte - MG (Brazil)

    2014-08-15

    Medical images are important for diagnosis purposes as they are related to patients medical history and pathology. Breast cancer represents a leading cause of death among women worldwide, and its early detection is the most effective method of reducing mortality. In a way to identify small structures with low density differences, a high image quality is required with the use of low doses of radiation. The analysis of the quality of the obtained image from a mammogram is performed from an image of a simulated breast and this is a fundamental key point for a program of quality control of mammography equipment s. In a control program of mammographic equipment s, besides the analysis of the quality of mammographic images, each element of the chain which composes the formation of the image is also analyzed: X-rays equipment s, radiographic films, and operating conditions. This control allows that an effective and efficient exam can be provided to the population and is within the standards of quality required for the early detection of breast cancer. However, according to the State Program of Quality Control in Mammography of Minas Gerais, Brazil, only 40% of the mammographies have provided a simulated image with a minimum level of quality, thus reinforcing the need for monitoring the images. The reduction of the morbidity and mortality indexes, with optimization and assurance of access to diagnosis and breast cancer treatment in the state of Minas Gerais, Brazil, may be the result of a mammographic exam which has a final image with good quality and which automatic evaluation is not subjective. The reason is that one has to consider the hypothesis that humans are subjective when performing the image analysis and that the evaluation of the image can be executed by a computer with objectivity. In 2007, in order to maintain the standard quality needed to mammography, the State Health Secretariat of Minas Gerais, Brazil, established a Program of Monthly Monitoring the

  13. Towards an automatic tool for resolution evaluation of mammographic images

    International Nuclear Information System (INIS)

    De Oliveira, J. E. E.; Nogueira, M. S.

    2014-08-01

    Medical images are important for diagnosis purposes as they are related to patients medical history and pathology. Breast cancer represents a leading cause of death among women worldwide, and its early detection is the most effective method of reducing mortality. In a way to identify small structures with low density differences, a high image quality is required with the use of low doses of radiation. The analysis of the quality of the obtained image from a mammogram is performed from an image of a simulated breast and this is a fundamental key point for a program of quality control of mammography equipment s. In a control program of mammographic equipment s, besides the analysis of the quality of mammographic images, each element of the chain which composes the formation of the image is also analyzed: X-rays equipment s, radiographic films, and operating conditions. This control allows that an effective and efficient exam can be provided to the population and is within the standards of quality required for the early detection of breast cancer. However, according to the State Program of Quality Control in Mammography of Minas Gerais, Brazil, only 40% of the mammographies have provided a simulated image with a minimum level of quality, thus reinforcing the need for monitoring the images. The reduction of the morbidity and mortality indexes, with optimization and assurance of access to diagnosis and breast cancer treatment in the state of Minas Gerais, Brazil, may be the result of a mammographic exam which has a final image with good quality and which automatic evaluation is not subjective. The reason is that one has to consider the hypothesis that humans are subjective when performing the image analysis and that the evaluation of the image can be executed by a computer with objectivity. In 2007, in order to maintain the standard quality needed to mammography, the State Health Secretariat of Minas Gerais, Brazil, established a Program of Monthly Monitoring the

  14. Automatic coronary calcium scoring using noncontrast and contrast CT images

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Guanyu, E-mail: yang.list@seu.edu.cn; Chen, Yang; Shu, Huazhong [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, No. 2, Si Pai Lou, Nanjing 210096 (China); Centre de Recherche en Information Biomédicale Sino-Français (LIA CRIBs), Nanjing 210096 (China); Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education, Nanjing 210096 (China); Ning, Xiufang; Sun, Qiaoyu [Laboratory of Image Science and Technology, School of Computer Science and Engineering, Southeast University, No. 2, Si Pai Lou, Nanjing 210096 (China); Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education, Nanjing 210096 (China); Coatrieux, Jean-Louis [INSERM-U1099, Rennes F-35000 (France); Labotatoire Traitement du Signal et de l’Image (LTSI), Université de Rennes 1, Campus de Beaulieu, Bat. 22, Rennes 35042 Cedex (France); Centre de Recherche en Information Biomédicale Sino-Français (LIA CRIBs), Nanjing 210096 (China)

    2016-05-15

    Purpose: Calcium scoring is widely used to assess the risk of coronary heart disease (CHD). Accurate coronary artery calcification detection in noncontrast CT image is a prerequisite step for coronary calcium scoring. Currently, calcified lesions in the coronary arteries are manually identified by radiologists in clinical practice. Thus, in this paper, a fully automatic calcium scoring method was developed to alleviate the work load of the radiologists or cardiologists. Methods: The challenge of automatic coronary calcification detection is to discriminate the calcification in the coronary arteries from the calcification in the other tissues. Since the anatomy of coronary arteries is difficult to be observed in the noncontrast CT images, the contrast CT image of the same patient is used to extract the regions of the aorta, heart, and coronary arteries. Then, a patient-specific region-of-interest (ROI) is generated in the noncontrast CT image according to the segmentation results in the contrast CT image. This patient-specific ROI focuses on the regions in the neighborhood of coronary arteries for calcification detection, which can eliminate the calcifications in the surrounding tissues. A support vector machine classifier is applied finally to refine the results by removing possible image noise. Furthermore, the calcified lesions in the noncontrast images belonging to the different main coronary arteries are identified automatically using the labeling results of the extracted coronary arteries. Results: Forty datasets from four different CT machine vendors were used to evaluate their algorithm, which were provided by the MICCAI 2014 Coronary Calcium Scoring (orCaScore) Challenge. The sensitivity and positive predictive value for the volume of detected calcifications are 0.989 and 0.948. Only one patient out of 40 patients had been assigned to the wrong risk category defined according to Agatston scores (0, 1–100, 101–300, >300) by comparing with the ground

  15. Efficient Semi-Automatic 3D Segmentation for Neuron Tracing in Electron Microscopy Images

    Science.gov (United States)

    Jones, Cory; Liu, Ting; Cohan, Nathaniel Wood; Ellisman, Mark; Tasdizen, Tolga

    2015-01-01

    0.1. Background In the area of connectomics, there is a significant gap between the time required for data acquisition and dense reconstruction of the neural processes contained in the same dataset. Automatic methods are able to eliminate this timing gap, but the state-of-the-art accuracy so far is insufficient for use without user corrections. If completed naively, this process of correction can be tedious and time consuming. 0.2. New Method We present a new semi-automatic method that can be used to perform 3D segmentation of neurites in EM image stacks. It utilizes an automatic method that creates a hierarchical structure for recommended merges of superpixels. The user is then guided through each predicted region to quickly identify errors and establish correct links. 0.3. Results We tested our method on three datasets with both novice and expert users. Accuracy and timing were compared with published automatic, semi-automatic, and manual results. 0.4. Comparison with Existing Methods Post-automatic correction methods have also been used in [1] and [2]. These methods do not provide navigation or suggestions in the manner we present. Other semi-automatic methods require user input prior to the automatic segmentation such as [3] and [4] and are inherently different than our method. 0.5. Conclusion Using this method on the three datasets, novice users achieved accuracy exceeding state-of-the-art automatic results, and expert users achieved accuracy on par with full manual labeling but with a 70% time improvement when compared with other examples in publication. PMID:25769273

  16. Examination of the semi-automatic calculation technique of vegetation cover rate by digital camera images.

    Science.gov (United States)

    Takemine, S.; Rikimaru, A.; Takahashi, K.

    The rice is one of the staple foods in the world High quality rice production requires periodically collecting rice growth data to control the growth of rice The height of plant the number of stem the color of leaf is well known parameters to indicate rice growth Rice growth diagnosis method based on these parameters is used operationally in Japan although collecting these parameters by field survey needs a lot of labor and time Recently a laborsaving method for rice growth diagnosis is proposed which is based on vegetation cover rate of rice Vegetation cover rate of rice is calculated based on discriminating rice plant areas in a digital camera image which is photographed in nadir direction Discrimination of rice plant areas in the image was done by the automatic binarization processing However in the case of vegetation cover rate calculation method depending on the automatic binarization process there is a possibility to decrease vegetation cover rate against growth of rice In this paper a calculation method of vegetation cover rate was proposed which based on the automatic binarization process and referred to the growth hysteresis information For several images obtained by field survey during rice growing season vegetation cover rate was calculated by the conventional automatic binarization processing and the proposed method respectively And vegetation cover rate of both methods was compared with reference value obtained by visual interpretation As a result of comparison the accuracy of discriminating rice plant areas was increased by the proposed

  17. Processing of medical images

    International Nuclear Information System (INIS)

    Restrepo, A.

    1998-01-01

    Thanks to the innovations in the technology for the processing of medical images, to the high development of better and cheaper computers, and, additionally, to the advances in the systems of communications of medical images, the acquisition, storage and handling of digital images has acquired great importance in all the branches of the medicine. It is sought in this article to introduce some fundamental ideas of prosecution of digital images that include such aspects as their representation, storage, improvement, visualization and understanding

  18. Automatic processing of unattended object features by functional connectivity

    Directory of Open Access Journals (Sweden)

    Katja Martina Mayer

    2013-05-01

    Full Text Available Observers can selectively attend to object features that are relevant for a task. However, unattended task-irrelevant features may still be processed and possibly integrated with the attended features. This study investigated the neural mechanisms for processing both task-relevant (attended and task-irrelevant (unattended object features. The Garner paradigm was adapted for functional magnetic resonance imaging (fMRI to test whether specific brain areas process the conjunction of features or whether multiple interacting areas are involved in this form of feature integration. Observers attended to shape, colour, or non-rigid motion of novel objects while unattended features changed from trial to trial (change blocks or remained constant (no-change blocks during a given block. This block manipulation allowed us to measure the extent to which unattended features affected neural responses which would reflect the extent to which multiple object features are automatically processed. We did not find Garner interference at the behavioural level. However, we designed the experiment to equate performance across block types so that any fMRI results could not be due solely to differences in task difficulty between change and no-change blocks. Attention to specific features localised several areas known to be involved in object processing. No area showed larger responses on change blocks compared to no-change blocks. However, psychophysiological interaction analyses revealed that several functionally-localised areas showed significant positive interactions with areas in occipito-temporal and frontal areas that depended on block type. Overall, these findings suggest that both regional responses and functional connectivity are crucial for processing multi-featured objects.

  19. Process and device for automatically surveying complex installations

    International Nuclear Information System (INIS)

    Pekrul, P.J.; Thiele, A.W.

    1976-01-01

    A description is given of a process for automatically analysing separate signal processing channels in real time, one channel per signal, in a facility with significant background noise in signals varying in time and coming from transducers at selected points for the continuous monitoring of the operating conditions of the various components of the installation. The signals are intended to determine potential breakdowns, determine conclusions as to the severity of these potential breakdowns and indicate to an operator the measures to be taken in consequence. The feature of this process is that it comprises the automatic and successive selection of each channel for the purpose of spectral analysis, the automatic processing of the signal of each selected channel to show energy spectrum density data at pre-determined frequencies, the automatic comparison of the energy spectrum density data of each channel with pre-determined sets of limits varying with the frequency, and the automatic indication to the operator of the condition of the various components of the installation associated to each channel and the measures to be taken depending on the set of limits [fr

  20. Automatic anterior chamber angle assessment for HD-OCT images.

    Science.gov (United States)

    Tian, Jing; Marziliano, Pina; Baskaran, Mani; Wong, Hong-Tym; Aung, Tin

    2011-11-01

    Angle-closure glaucoma is a major blinding eye disease and could be detected by measuring the anterior chamber angle in the human eyes. High-definition OCT (Cirrus HD-OCT) is an emerging noninvasive, high-speed, and high-resolution imaging modality for the anterior segment of the eye. Here, we propose a novel algorithm which automatically detects a new landmark, Schwalbe's line, and measures the anterior chamber angle in the HD-OCT images. The distortion caused by refraction is corrected by dewarping the HD-OCT images, and three biometric measurements are defined to quantitatively assess the anterior chamber angle. The proposed algorithm was tested on 40 HD-OCT images of the eye and provided accurate measurements in about 1 second.

  1. Automatic delineation of brain regions on MRI and PET images from the pig.

    Science.gov (United States)

    Villadsen, Jonas; Hansen, Hanne D; Jørgensen, Louise M; Keller, Sune H; Andersen, Flemming L; Petersen, Ida N; Knudsen, Gitte M; Svarer, Claus

    2018-01-15

    The increasing use of the pig as a research model in neuroimaging requires standardized processing tools. For example, extraction of regional dynamic time series from brain PET images requires parcellation procedures that benefit from being automated. Manual inter-modality spatial normalization to a MRI atlas is operator-dependent, time-consuming, and can be inaccurate with lack of cortical radiotracer binding or skull uptake. A parcellated PET template that allows for automatic spatial normalization to PET images of any radiotracer. MRI and [ 11 C]Cimbi-36 PET scans obtained in sixteen pigs made the basis for the atlas. The high resolution MRI scans allowed for creation of an accurately averaged MRI template. By aligning the within-subject PET scans to their MRI counterparts, an averaged PET template was created in the same space. We developed an automatic procedure for spatial normalization of the averaged PET template to new PET images and hereby facilitated transfer of the atlas regional parcellation. Evaluation of the automatic spatial normalization procedure found the median voxel displacement to be 0.22±0.08mm using the MRI template with individual MRI images and 0.92±0.26mm using the PET template with individual [ 11 C]Cimbi-36 PET images. We tested the automatic procedure by assessing eleven PET radiotracers with different kinetics and spatial distributions by using perfusion-weighted images of early PET time frames. We here present an automatic procedure for accurate and reproducible spatial normalization and parcellation of pig PET images of any radiotracer with reasonable blood-brain barrier penetration. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Automatic UAV Image Geo-Registration by Matching UAV Images to Georeferenced Image Data

    Directory of Open Access Journals (Sweden)

    Xiangyu Zhuo

    2017-04-01

    Full Text Available Recent years have witnessed the fast development of UAVs (unmanned aerial vehicles. As an alternative to traditional image acquisition methods, UAVs bridge the gap between terrestrial and airborne photogrammetry and enable flexible acquisition of high resolution images. However, the georeferencing accuracy of UAVs is still limited by the low-performance on-board GNSS and INS. This paper investigates automatic geo-registration of an individual UAV image or UAV image blocks by matching the UAV image(s with a previously taken georeferenced image, such as an individual aerial or satellite image with a height map attached or an aerial orthophoto with a DSM (digital surface model attached. As the biggest challenge for matching UAV and aerial images is in the large differences in scale and rotation, we propose a novel feature matching method for nadir or slightly tilted images. The method is comprised of a dense feature detection scheme, a one-to-many matching strategy and a global geometric verification scheme. The proposed method is able to find thousands of valid matches in cases where SIFT and ASIFT fail. Those matches can be used to geo-register the whole UAV image block towards the reference image data. When the reference images offer high georeferencing accuracy, the UAV images can also be geolocalized in a global coordinate system. A series of experiments involving different scenarios was conducted to validate the proposed method. The results demonstrate that our approach achieves not only decimeter-level registration accuracy, but also comparable global accuracy as the reference images.

  3. Resource depletion promotes automatic processing: implications for distribution of practice.

    Science.gov (United States)

    Scheel, Matthew H

    2010-12-01

    Recent models of cognition include two processing systems: an automatic system that relies on associative learning, intuition, and heuristics, and a controlled system that relies on deliberate consideration. Automatic processing requires fewer resources and is more likely when resources are depleted. This study showed that prolonged practice on a resource-depleting mental arithmetic task promoted automatic processing on a subsequent problem-solving task, as evidenced by faster responding and more errors. Distribution of practice effects (0, 60, 120, or 180 sec. between problems) on rigidity also disappeared when groups had equal time on resource-depleting tasks. These results suggest that distribution of practice effects is reducible to resource availability. The discussion includes implications for interpreting discrepancies in the traditional distribution of practice effect.

  4. CAnat: An algorithm for the automatic segmentation of anatomy of medical images

    International Nuclear Information System (INIS)

    Caon, M.; Gobert, L.; Mariusz, B.

    2011-01-01

    Full text: To develop a method to automatically categorise organs and tissues displayed in medical images. Dosimetry calculations using Monte Carlo methods require a mathematical representation of human anatomy e.g. a voxel phantom. For a whole body, their construction involves processing several hundred images to identify each organ and tissue-the process is very time-consuming. This project is developing a Computational Anatomy (CAnat) algorithm to automatically recognise and classify the different tissue in a tomographic image. Methods The algorithm utilizes the Statistical Region Merging technique (SRM). The SRM depends on one estimated parameter. The parameter is a measure of statistical complexity of the image and can be automatically adjusted to suit individual image features. This allows for automatic tuning of coarseness of the overall segmentation as well as object specific selection for further tasks. CAnat is tested on two CT images selected to represent different anatomical complexities. In the mid-thigh image, tissues/. regions of interest are air, fat, muscle, bone marrow and compact bone. In the pelvic image, fat, urinary bladder and anus/colon, muscle, cancellous bone, and compact bone. Segmentation results were evaluated using the Jaccard index which is a measure of set agreement. An index of one indicates perfect agreement between CAnat and manual segmentation. The Jaccard indices for the mid-thigh CT were 0.99, 0.89, 0.97, 0.63 and 0.88, respectively and for the pelvic CT were 0.99, 0.81, 0.77, 0.93, 0.53, 0.76, respectively. Conclusion The high accuracy preliminary segmentation results demonstrate the feasibility of the CAnat algorithm.

  5. Automatic processing of radioimmunological research data on a computer

    International Nuclear Information System (INIS)

    Korolyuk, I.P.; Gorodenko, A.N.; Gorodenko, S.I.

    1979-01-01

    A program ''CRITEST'' in the language PL/1 for the EC computer intended for automatic processing of the results of radioimmunological research has been elaborated. The program works in the operation system of the OC EC computer and is performed in the section OC 60 kb. When compiling the program Eitken's modified algorithm was used. The program was clinically approved when determining a number of hormones: CTH, T 4 , T 3 , TSH. The automatic processing of the radioimmunological research data on the computer makes it possible to simplify the labour-consuming analysis and to raise its accuracy

  6. Automatic Generation of Wide Dynamic Range Image without Pseudo-Edge Using Integration of Multi-Steps Exposure Images

    Science.gov (United States)

    Migiyama, Go; Sugimura, Atsuhiko; Osa, Atsushi; Miike, Hidetoshi

    Recently, digital cameras are offering technical advantages rapidly. However, the shot image is different from the sight image generated when that scenery is seen with the naked eye. There are blown-out highlights and crushed blacks in the image that photographed the scenery of wide dynamic range. The problems are hardly generated in the sight image. These are contributory cause of difference between the shot image and the sight image. Blown-out highlights and crushed blacks are caused by the difference of dynamic range between the image sensor installed in a digital camera such as CCD and CMOS and the human visual system. Dynamic range of the shot image is narrower than dynamic range of the sight image. In order to solve the problem, we propose an automatic method to decide an effective exposure range in superposition of edges. We integrate multi-step exposure images using the method. In addition, we try to erase pseudo-edges using the process to blend exposure values. Afterwards, we get a pseudo wide dynamic range image automatically.

  7. The One to Multiple Automatic High Accuracy Registration of Terrestrial LIDAR and Optical Images

    Science.gov (United States)

    Wang, Y.; Hu, C.; Xia, G.; Xue, H.

    2018-04-01

    The registration of ground laser point cloud and close-range image is the key content of high-precision 3D reconstruction of cultural relic object. In view of the requirement of high texture resolution in the field of cultural relic at present, The registration of point cloud and image data in object reconstruction will result in the problem of point cloud to multiple images. In the current commercial software, the two pairs of registration of the two kinds of data are realized by manually dividing point cloud data, manual matching point cloud and image data, manually selecting a two - dimensional point of the same name of the image and the point cloud, and the process not only greatly reduces the working efficiency, but also affects the precision of the registration of the two, and causes the problem of the color point cloud texture joint. In order to solve the above problems, this paper takes the whole object image as the intermediate data, and uses the matching technology to realize the automatic one-to-one correspondence between the point cloud and multiple images. The matching of point cloud center projection reflection intensity image and optical image is applied to realize the automatic matching of the same name feature points, and the Rodrigo matrix spatial similarity transformation model and weight selection iteration are used to realize the automatic registration of the two kinds of data with high accuracy. This method is expected to serve for the high precision and high efficiency automatic 3D reconstruction of cultural relic objects, which has certain scientific research value and practical significance.

  8. Automatic Solitary Lung Nodule Detection in Computed Tomography Images Slices

    Science.gov (United States)

    Sentana, I. W. B.; Jawas, N.; Asri, S. A.

    2018-01-01

    Lung nodule is an early indicator of some lung diseases, including lung cancer. In Computed Tomography (CT) based image, nodule is known as a shape that appears brighter than lung surrounding. This research aim to develop an application that automatically detect lung nodule in CT images. There are some steps in algorithm such as image acquisition and conversion, image binarization, lung segmentation, blob detection, and classification. Data acquisition is a step to taking image slice by slice from the original *.dicom format and then each image slices is converted into *.tif image format. Binarization that tailoring Otsu algorithm, than separated the background and foreground part of each image slices. After removing the background part, the next step is to segment part of the lung only so the nodule can localized easier. Once again Otsu algorithm is use to detect nodule blob in localized lung area. The final step is tailoring Support Vector Machine (SVM) to classify the nodule. The application has succeed detecting near round nodule with a certain threshold of size. Those detecting result shows drawback in part of thresholding size and shape of nodule that need to enhance in the next part of the research. The algorithm also cannot detect nodule that attached to wall and Lung Chanel, since it depend the searching only on colour differences.

  9. Automatic extraction of via in the CT image of PCB

    Science.gov (United States)

    Liu, Xifeng; Hu, Yuwei

    2018-04-01

    In modern industry, the nondestructive testing of printed circuit board (PCB) can prevent effectively the system failure and is becoming more and more important. In order to detect the via in the PCB base on the CT image automatically accurately and reliably, a novel algorithm for via extraction based on weighting stack combining the morphologic character of via is designed. Every slice data in the vertical direction of the PCB is superimposed to enhanced vias target. The OTSU algorithm is used to segment the slice image. OTSU algorithm of thresholding gray level images is efficient for separating an image into two classes where two types of fairly distinct classes exist in the image. Randomized Hough Transform was used to locate the region of via in the segmented binary image. Then the 3D reconstruction of via based on sequence slice images was done by volume rendering. The accuracy of via positioning and detecting from a CT images of PCB was demonstrated by proposed algorithm. It was found that the method is good in veracity and stability for detecting of via in three dimensional.

  10. Automatic anatomy recognition on CT images with pathology

    Science.gov (United States)

    Huang, Lidong; Udupa, Jayaram K.; Tong, Yubing; Odhner, Dewey; Torigian, Drew A.

    2016-03-01

    Body-wide anatomy recognition on CT images with pathology becomes crucial for quantifying body-wide disease burden. This, however, is a challenging problem because various diseases result in various abnormalities of objects such as shape and intensity patterns. We previously developed an automatic anatomy recognition (AAR) system [1] whose applicability was demonstrated on near normal diagnostic CT images in different body regions on 35 organs. The aim of this paper is to investigate strategies for adapting the previous AAR system to diagnostic CT images of patients with various pathologies as a first step toward automated body-wide disease quantification. The AAR approach consists of three main steps - model building, object recognition, and object delineation. In this paper, within the broader AAR framework, we describe a new strategy for object recognition to handle abnormal images. In the model building stage an optimal threshold interval is learned from near-normal training images for each object. This threshold is optimally tuned to the pathological manifestation of the object in the test image. Recognition is performed following a hierarchical representation of the objects. Experimental results for the abdominal body region based on 50 near-normal images used for model building and 20 abnormal images used for object recognition show that object localization accuracy within 2 voxels for liver and spleen and 3 voxels for kidney can be achieved with the new strategy.

  11. Crack detection using image processing

    International Nuclear Information System (INIS)

    Moustafa, M.A.A

    2010-01-01

    care using Wiener filter. An integrated methodology for the detection and removal of cracks on digitized images is presented in this thesis. The cracks are detected by steepest descent algorithm (SDA) the output of the piping image as cracks are removed using either a gradient Function (GRF) and processed data or a semi-automatic procedure based on region growing. Finally, crack filling using the steepest descent algorithm. The methodology has been shown to perform very well on digitized images suffering from cracks, using Matlab, and Visual Fortran programming. The thesis presents an application of the wavelet transform for damage detection or crack detection based on digital image processing measurements.

  12. Color Image Segmentation Based on Different Color Space Models Using Automatic GrabCut

    Directory of Open Access Journals (Sweden)

    Dina Khattab

    2014-01-01

    Full Text Available This paper presents a comparative study using different color spaces to evaluate the performance of color image segmentation using the automatic GrabCut technique. GrabCut is considered as one of the semiautomatic image segmentation techniques, since it requires user interaction for the initialization of the segmentation process. The automation of the GrabCut technique is proposed as a modification of the original semiautomatic one in order to eliminate the user interaction. The automatic GrabCut utilizes the unsupervised Orchard and Bouman clustering technique for the initialization phase. Comparisons with the original GrabCut show the efficiency of the proposed automatic technique in terms of segmentation, quality, and accuracy. As no explicit color space is recommended for every segmentation problem, automatic GrabCut is applied with RGB, HSV, CMY, XYZ, and YUV color spaces. The comparative study and experimental results using different color images show that RGB color space is the best color space representation for the set of the images used.

  13. Automatic Image Alignment and Stitching of Medical Images with Seam Blending

    OpenAIRE

    Abhinav Kumar; Raja Sekhar Bandaru; B Madhusudan Rao; Saket Kulkarni; Nilesh Ghatpande

    2010-01-01

    This paper proposes an algorithm which automatically aligns and stitches the component medical images (fluoroscopic) with varying degrees of overlap into a single composite image. The alignment method is based on similarity measure between the component images. As applied here the technique is intensity based rather than feature based. It works well in domains where feature based methods have difficulty, yet more robust than traditional correlation. Component images are stitched together usin...

  14. A Novel, Automatic Quality Control Scheme for Real Time Image Transmission

    Directory of Open Access Journals (Sweden)

    S. Ramachandran

    2002-01-01

    Full Text Available A novel scheme to compute energy on-the-fly and thereby control the quality of the image frames dynamically is presented along with its FPGA implementation. This scheme is suitable for incorporation in image compression systems such as video encoders. In this new scheme, processing is automatically stopped when the desired quality is achieved for the image being processed by using a concept called pruning. Pruning also increases the processing speed by a factor of more than two when compared to the conventional method of processing without pruning. An MPEG-2 encoder implemented using this scheme is capable of processing good quality monochrome and color images of sizes up to 1024 × 768 pixels at the rate of 42 and 28 frames per second, respectively, with a compression ratio of over 17:1. The encoder is also capable of working in the fixed pruning level mode with user programmable features.

  15. Automatic Microaneurysm Detection and Characterization Through Digital Color Fundus Images

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Charles; Veras, Rodrigo; Ramalho, Geraldo; Medeiros, Fatima; Ushizima, Daniela

    2008-08-29

    Ocular fundus images can provide information about retinal, ophthalmic, and even systemic diseases such as diabetes. Microaneurysms (MAs) are the earliest sign of Diabetic Retinopathy, a frequently observed complication in both type 1 and type 2 diabetes. Robust detection of MAs in digital color fundus images is critical in the development of automated screening systems for this kind of disease. Automatic grading of these images is being considered by health boards so that the human grading task is reduced. In this paper we describe segmentation and the feature extraction methods for candidate MAs detection.We show that the candidate MAs detected with the methodology have been successfully classified by a MLP neural network (correct classification of 84percent).

  16. Research of x-ray automatic image mosaic method

    Science.gov (United States)

    Liu, Bin; Chen, Shunan; Guo, Lianpeng; Xu, Wanpeng

    2013-10-01

    Image mosaic has widely applications value in the fields of medical image analysis, and it is a technology that carries on the spatial matching to a series of image which are overlapped with each other, and finally builds a seamless and high quality image which has high resolution and big eyeshot. In this paper, the method of grayscale cutting pseudo-color enhancement was firstly used to complete the mapping transformation from gray to the pseudo-color, and to extract SIFT features from the images. And then by making use of a similar measure of NCC (normalized cross correlation - Normalized cross-correlation), the method of RANSAC (Random Sample Consensus) was used to exclude the pseudofeature points right in order to complete the exact match of feature points. Finally, seamless mosaic and color fusion were completed by using wavelet multi-decomposition. The experiment shows that the method we used can effectively improve the precision and automation of the medical image mosaic, and provide an effective technical approach for automatic medical image mosaic.

  17. Digital image processing

    National Research Council Canada - National Science Library

    Gonzalez, Rafael C; Woods, Richard E

    2008-01-01

    Completely self-contained-and heavily illustrated-this introduction to basic concepts and methodologies for digital image processing is written at a level that truly is suitable for seniors and first...

  18. Digital image processing

    National Research Council Canada - National Science Library

    Gonzalez, Rafael C; Woods, Richard E

    2008-01-01

    ...-year graduate students in almost any technical discipline. The leading textbook in its field for more than twenty years, it continues its cutting-edge focus on contemporary developments in all mainstream areas of image processing-e.g...

  19. Automatic Detection and Resolution of Lexical Ambiguity in Process Models

    NARCIS (Netherlands)

    Pittke, F.; Leopold, H.; Mendling, J.

    2015-01-01

    System-related engineering tasks are often conducted using process models. In this context, it is essential that these models do not contain structural or terminological inconsistencies. To this end, several automatic analysis techniques have been proposed to support quality assurance. While formal

  20. Automatic process control in anaerobic digestion technology: A critical review.

    Science.gov (United States)

    Nguyen, Duc; Gadhamshetty, Venkataramana; Nitayavardhana, Saoharit; Khanal, Samir Kumar

    2015-10-01

    Anaerobic digestion (AD) is a mature technology that relies upon a synergistic effort of a diverse group of microbial communities for metabolizing diverse organic substrates. However, AD is highly sensitive to process disturbances, and thus it is advantageous to use online monitoring and process control techniques to efficiently operate AD process. A range of electrochemical, chromatographic and spectroscopic devices can be deployed for on-line monitoring and control of the AD process. While complexity of the control strategy ranges from a feedback control to advanced control systems, there are some debates on implementation of advanced instrumentations or advanced control strategies. Centralized AD plants could be the answer for the applications of progressive automatic control field. This article provides a critical overview of the available automatic control technologies that can be implemented in AD processes at different scales. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Automatic detection of solar features in HSOS full-disk solar images using guided filter

    Science.gov (United States)

    Yuan, Fei; Lin, Jiaben; Guo, Jingjing; Wang, Gang; Tong, Liyue; Zhang, Xinwei; Wang, Bingxiang

    2018-02-01

    A procedure is introduced for the automatic detection of solar features using full-disk solar images from Huairou Solar Observing Station (HSOS), National Astronomical Observatories of China. In image preprocessing, median filter is applied to remove the noises. Guided filter is adopted to enhance the edges of solar features and restrain the solar limb darkening, which is first introduced into the astronomical target detection. Then specific features are detected by Otsu algorithm and further threshold processing technique. Compared with other automatic detection procedures, our procedure has some advantages such as real time and reliability as well as no need of local threshold. Also, it reduces the amount of computation largely, which is benefited from the efficient guided filter algorithm. The procedure has been tested on one month sequences (December 2013) of HSOS full-disk solar images and the result shows that the number of features detected by our procedure is well consistent with the manual one.

  2. Medical image processing

    CERN Document Server

    Dougherty, Geoff

    2011-01-01

    This book is designed for end users in the field of digital imaging, who wish to update their skills and understanding with the latest techniques in image analysis. This book emphasizes the conceptual framework of image analysis and the effective use of image processing tools. It uses applications in a variety of fields to demonstrate and consolidate both specific and general concepts, and to build intuition, insight and understanding. Although the chapters are essentially self-contained they reference other chapters to form an integrated whole. Each chapter employs a pedagogical approach to e

  3. Algorithm for automatic image dodging of unmanned aerial vehicle images using two-dimensional radiometric spatial attributes

    Science.gov (United States)

    Li, Wenzhuo; Sun, Kaimin; Li, Deren; Bai, Ting

    2016-07-01

    Unmanned aerial vehicle (UAV) remote sensing technology has come into wide use in recent years. The poor stability of the UAV platform, however, produces more inconsistencies in hue and illumination among UAV images than other more stable platforms. Image dodging is a process used to reduce these inconsistencies caused by different imaging conditions. We propose an algorithm for automatic image dodging of UAV images using two-dimensional radiometric spatial attributes. We use object-level image smoothing to smooth foreground objects in images and acquire an overall reference background image by relative radiometric correction. We apply the Contourlet transform to separate high- and low-frequency sections for every single image, and replace the low-frequency section with the low-frequency section extracted from the corresponding region in the overall reference background image. We apply the inverse Contourlet transform to reconstruct the final dodged images. In this process, a single image must be split into reasonable block sizes with overlaps due to large pixel size. Experimental mosaic results show that our proposed method reduces the uneven distribution of hue and illumination. Moreover, it effectively eliminates dark-bright interstrip effects caused by shadows and vignetting in UAV images while maximally protecting image texture information.

  4. Reliable clarity automatic-evaluation method for optical remote sensing images

    Science.gov (United States)

    Qin, Bangyong; Shang, Ren; Li, Shengyang; Hei, Baoqin; Liu, Zhiwen

    2015-10-01

    Image clarity, which reflects the sharpness degree at the edge of objects in images, is an important quality evaluate index for optical remote sensing images. Scholars at home and abroad have done a lot of work on estimation of image clarity. At present, common clarity-estimation methods for digital images mainly include frequency-domain function methods, statistical parametric methods, gradient function methods and edge acutance methods. Frequency-domain function method is an accurate clarity-measure approach. However, its calculation process is complicate and cannot be carried out automatically. Statistical parametric methods and gradient function methods are both sensitive to clarity of images, while their results are easy to be affected by the complex degree of images. Edge acutance method is an effective approach for clarity estimate, while it needs picking out the edges manually. Due to the limits in accuracy, consistent or automation, these existing methods are not applicable to quality evaluation of optical remote sensing images. In this article, a new clarity-evaluation method, which is based on the principle of edge acutance algorithm, is proposed. In the new method, edge detection algorithm and gradient search algorithm are adopted to automatically search the object edges in images. Moreover, The calculation algorithm for edge sharpness has been improved. The new method has been tested with several groups of optical remote sensing images. Compared with the existing automatic evaluation methods, the new method perform better both in accuracy and consistency. Thus, the new method is an effective clarity evaluation method for optical remote sensing images.

  5. Biomedical Image Processing

    CERN Document Server

    Deserno, Thomas Martin

    2011-01-01

    In modern medicine, imaging is the most effective tool for diagnostics, treatment planning and therapy. Almost all modalities have went to directly digital acquisition techniques and processing of this image data have become an important option for health care in future. This book is written by a team of internationally recognized experts from all over the world. It provides a brief but complete overview on medical image processing and analysis highlighting recent advances that have been made in academics. Color figures are used extensively to illustrate the methods and help the reader to understand the complex topics.

  6. Bio-EdIP: An automatic approach for in vitro cell confluence images quantification.

    Science.gov (United States)

    Cardona, Andrés; Ariza-Jiménez, Leandro; Uribe, Diego; Arroyave, Johanna C; Galeano, July; Cortés-Mancera, Fabian M

    2017-07-01

    Cell imaging is a widely-employed technique to analyze multiple biological processes. Therefore, simple, accurate and quantitative tools are needed to understand cellular events. For this purpose, Bio-EdIP was developed as a user-friendly tool to quantify confluence levels using cell culture images. The proposed algorithm combines a pre-processing step with subsequent stages that involve local processing techniques and a morphological reconstruction-based segmentation algorithm. Segmentation performance was assessed in three constructed image sets, comparing F-measure scores and AUC values (ROC analysis) for Bio-EdIP, its previous version and TScratch. Furthermore, segmentation results were compared with published algorithms using eight public benchmarks. Bio-EdIP automatically segmented cell-free regions from images of in vitro cell culture. Based on mean F-measure scores and ROC analysis, Bio-EdIP conserved a high performance regardless of image characteristics of the constructed dataset, when compared with its previous version and TScratch. Although acquisition quality of the public dataset affected Bio-EdIP segmentation, performance was better in two out of eight public sets. Bio-EdIP is a user-friendly interface, which is useful for the automatic analysis of confluence levels and cell growth processes using in vitro cell culture images. Here, we also presented new manually annotated data for algorithms evaluation. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Radiation dosimetry by automatic image analysis of dicentric chromosomes

    International Nuclear Information System (INIS)

    Bayley, R.; Carothers, A.; Farrow, S.; Gordon, J.; Ji, L.; Piper, J.; Rutovitz, D.; Stark, M.; Chen, X.; Wald, N.; Pittsburgh Univ., PA

    1991-01-01

    A system for scoring dicentric chromosomes by image analysis comprised fully automatic location of mitotic cells, automatic retrieval, focus and digitisation at high resolution, automatic rejection of nuclei and debris and detection and segmentation of chromosome clusters, automatic centromere location, and subsequent rapid interactive visual review of potential dicentric chromosomes to confirm positives and reject false positives. A calibration set of about 15000 cells was used to establish the quadratic dose response for 60 Co γ-irradiation. The dose-response function parameters were established by a maximum likelihood technique, and confidence limits in the dose response and in the corresponding inverse curve, of estimated dose for observed dicentric frequency, were established by Monte Carlo techniques. The system was validated in a blind trial by analysing a test comprising a total of about 8000 cells irradiated to 1 of 10 dose levels, and estimating the doses from the observed dicentric frequency. There was a close correspondence between the estimated and true doses. The overall sensitivity of the system in terms of the proportion of the total population of dicentrics present in the cells analysed that were detected by the system was measured to be about 40%. This implies that about 2.5 times more cells must be analysed by machine than by visual analysis. Taking this factor into account, the measured review time and false positive rates imply that analysis by the system of sufficient cells to provide the equivalent of a visual analysis of 500 cells would require about 1 h for operator review. (author). 20 refs.; 4 figs.; 5 tabs

  8. Automatic analysis of the micronucleus test in primary human lymphocytes using image analysis.

    Science.gov (United States)

    Frieauff, W; Martus, H J; Suter, W; Elhajouji, A

    2013-01-01

    The in vitro micronucleus test (MNT) is a well-established test for early screening of new chemical entities in industrial toxicology. For assessing the clastogenic or aneugenic potential of a test compound, micronucleus induction in cells has been shown repeatedly to be a sensitive and a specific parameter. Various automated systems to replace the tedious and time-consuming visual slide analysis procedure as well as flow cytometric approaches have been discussed. The ROBIAS (Robotic Image Analysis System) for both automatic cytotoxicity assessment and micronucleus detection in human lymphocytes was developed at Novartis where the assay has been used to validate positive results obtained in the MNT in TK6 cells, which serves as the primary screening system for genotoxicity profiling in early drug development. In addition, the in vitro MNT has become an accepted alternative to support clinical studies and will be used for regulatory purposes as well. The comparison of visual with automatic analysis results showed a high degree of concordance for 25 independent experiments conducted for the profiling of 12 compounds. For concentration series of cyclophosphamide and carbendazim, a very good correlation between automatic and visual analysis by two examiners could be established, both for the relative division index used as cytotoxicity parameter, as well as for micronuclei scoring in mono- and binucleated cells. Generally, false-positive micronucleus decisions could be controlled by fast and simple relocation of the automatically detected patterns. The possibility to analyse 24 slides within 65h by automatic analysis over the weekend and the high reproducibility of the results make automatic image processing a powerful tool for the micronucleus analysis in primary human lymphocytes. The automated slide analysis for the MNT in human lymphocytes complements the portfolio of image analysis applications on ROBIAS which is supporting various assays at Novartis.

  9. Methods in Astronomical Image Processing

    Science.gov (United States)

    Jörsäter, S.

    A Brief Introductory Note History of Astronomical Imaging Astronomical Image Data Images in Various Formats Digitized Image Data Digital Image Data Philosophy of Astronomical Image Processing Properties of Digital Astronomical Images Human Image Processing Astronomical vs. Computer Science Image Processing Basic Tools of Astronomical Image Processing Display Applications Calibration of Intensity Scales Calibration of Length Scales Image Re-shaping Feature Enhancement Noise Suppression Noise and Error Analysis Image Processing Packages: Design of AIPS and MIDAS AIPS MIDAS Reduction of CCD Data Bias Subtraction Clipping Preflash Subtraction Dark Subtraction Flat Fielding Sky Subtraction Extinction Correction Deconvolution Methods Rebinning/Combining Summary and Prospects for the Future

  10. Automatic intra-modality brain image registration method

    International Nuclear Information System (INIS)

    Whitaker, J.M.; Ardekani, B.A.; Braun, M.

    1996-01-01

    Full text: Registration of 3D images of brain of the same or different subjects has potential importance in clinical diagnosis, treatment planning and neurological research. The broad aim of our work is to produce an automatic and robust intra-modality, brain image registration algorithm for intra-subject and inter-subject studies. Our algorithm is composed of two stages. Initial alignment is achieved by finding the values of nine transformation parameters (representing translation, rotation and scale) that minimise the nonoverlapping regions of the head. This is achieved by minimisation of the sum of the exclusive OR of two binary head images, produced using the head extraction procedure described by Ardekani et al. (J Comput Assist Tomogr, 19:613-623, 1995). The initial alignment successfully determines the scale parameters and gross translation and rotation parameters. Fine alignment uses an objective function described for inter-modality registration in Ardekani et al. (ibid.). The algorithm segments one of the images to be aligned into a set of connected components using K-means clustering. Registration is achieved by minimising the K-means variance of the segmentation induced in the other image. Similarity of images of the same modality makes the method attractive for intra-modality registration. A 3D MR image, with voxel dimensions, 2x2x6 mm, was misaligned. The registered image shows visually accurate registration. The average displacement of a pixel from its correct location was measured to be 3.3 mm. The algorithm was tested on intra-subject MR images and was found to produce good qualitative results. Using the data available, the algorithm produced promising qualitative results in intra-subject registration. Further work is necessary in its application to intersubject registration, due to large variability in brain structure between subjects. Clinical evaluation of the algorithm for selected applications is required

  11. STUDY OF AUTOMATIC IMAGE RECTIFICATION AND REGISTRATION OF SCANNED HISTORICAL AERIAL PHOTOGRAPHS

    Directory of Open Access Journals (Sweden)

    H. R. Chen

    2016-06-01

    Full Text Available Historical aerial photographs directly provide good evidences of past times. The Research Center for Humanities and Social Sciences (RCHSS of Taiwan Academia Sinica has collected and scanned numerous historical maps and aerial images of Taiwan and China. Some maps or images have been geo-referenced manually, but most of historical aerial images have not been registered since there are no GPS or IMU data for orientation assisting in the past. In our research, we developed an automatic process of matching historical aerial images by SIFT (Scale Invariant Feature Transform for handling the great quantity of images by computer vision. SIFT is one of the most popular method of image feature extracting and matching. This algorithm extracts extreme values in scale space into invariant image features, which are robust to changing in rotation scale, noise, and illumination. We also use RANSAC (Random sample consensus to remove outliers, and obtain good conjugated points between photographs. Finally, we manually add control points for registration through least square adjustment based on collinear equation. In the future, we can use image feature points of more photographs to build control image database. Every new image will be treated as query image. If feature points of query image match the features in database, it means that the query image probably is overlapped with control images.With the updating of database, more and more query image can be matched and aligned automatically. Other research about multi-time period environmental changes can be investigated with those geo-referenced temporal spatial data.

  12. Image Based Hair Segmentation Algorithm for the Application of Automatic Facial Caricature Synthesis

    Directory of Open Access Journals (Sweden)

    Yehu Shen

    2014-01-01

    Full Text Available Hair is a salient feature in human face region and are one of the important cues for face analysis. Accurate detection and presentation of hair region is one of the key components for automatic synthesis of human facial caricature. In this paper, an automatic hair detection algorithm for the application of automatic synthesis of facial caricature based on a single image is proposed. Firstly, hair regions in training images are labeled manually and then the hair position prior distributions and hair color likelihood distribution function are estimated from these labels efficiently. Secondly, the energy function of the test image is constructed according to the estimated prior distributions of hair location and hair color likelihood. This energy function is further optimized according to graph cuts technique and initial hair region is obtained. Finally, K-means algorithm and image postprocessing techniques are applied to the initial hair region so that the final hair region can be segmented precisely. Experimental results show that the average processing time for each image is about 280 ms and the average hair region detection accuracy is above 90%. The proposed algorithm is applied to a facial caricature synthesis system. Experiments proved that with our proposed hair segmentation algorithm the facial caricatures are vivid and satisfying.

  13. Automatized material and radioactivity flow control tool in decommissioning process

    International Nuclear Information System (INIS)

    Rehak, I.; Vasko, M.; Daniska, V.; Schultz, O.

    2009-01-01

    In this presentation the automatized material and radioactivity flow control tool in decommissioning process is discussed. It is concluded that: computer simulation of the decommissioning process is one of the important attributes of computer code Omega; one of the basic tools of computer optimisation of decommissioning waste processing are the tools of integral material and radioactivity flow; all the calculated parameters of materials are stored in each point of calculation process and they can be viewed; computer code Omega represents opened modular system, which can be improved; improvement of the module of optimisation of decommissioning waste processing will be performed in the frame of improvement of material procedures and scenarios.

  14. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images

    International Nuclear Information System (INIS)

    Neubert, A.; Yang, Z.; Engstrom, C.; Xia, Y.; Strudwick, M. W.; Chandra, S. S.; Crozier, S.; Fripp, J.

    2016-01-01

    Purpose: Magnetic resonance (MR) imaging plays a key role in investigating early degenerative disorders and traumatic injuries of the glenohumeral cartilages. Subtle morphometric and biochemical changes of potential relevance to clinical diagnosis, treatment planning, and evaluation can be assessed from measurements derived from in vivo MR segmentation of the cartilages. However, segmentation of the glenohumeral cartilages, using approaches spanning manual to automated methods, is technically challenging, due to their thin, curved structure and overlapping intensities of surrounding tissues. Automatic segmentation of the glenohumeral cartilages from MR imaging is not at the same level compared to the weight-bearing knee and hip joint cartilages despite the potential applications with respect to clinical investigation of shoulder disorders. In this work, the authors present a fully automated segmentation method for the glenohumeral cartilages using MR images of healthy shoulders. Methods: The method involves automated segmentation of the humerus and scapula bones using 3D active shape models, the extraction of the expected bone–cartilage interface, and cartilage segmentation using a graph-based method. The cartilage segmentation uses localization, patient specific tissue estimation, and a model of the cartilage thickness variation. The accuracy of this method was experimentally validated using a leave-one-out scheme on a database of MR images acquired from 44 asymptomatic subjects with a true fast imaging with steady state precession sequence on a 3 T scanner (Siemens Trio) using a dedicated shoulder coil. The automated results were compared to manual segmentations from two experts (an experienced radiographer and an experienced musculoskeletal anatomist) using the Dice similarity coefficient (DSC) and mean absolute surface distance (MASD) metrics. Results: Accurate and precise bone segmentations were achieved with mean DSC of 0.98 and 0.93 for the humeral head

  15. Automatic segmentation of the glenohumeral cartilages from magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Neubert, A., E-mail: ales.neubert@csiro.au [School of Information Technology and Electrical Engineering, University of Queensland, Brisbane 4072, Australia and The Australian E-Health Research Centre, CSIRO Health and Biosecurity, Brisbane 4029 (Australia); Yang, Z. [School of Information Technology and Electrical Engineering, University of Queensland, Brisbane 4072, Australia and Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing 100190 (China); Engstrom, C. [School of Human Movement Studies, University of Queensland, Brisbane 4072 (Australia); Xia, Y.; Strudwick, M. W.; Chandra, S. S.; Crozier, S. [School of Information Technology and Electrical Engineering, University of Queensland, Brisbane 4072 (Australia); Fripp, J. [The Australian E-Health Research Centre, CSIRO Health and Biosecurity, Brisbane, 4029 (Australia)

    2016-10-15

    Purpose: Magnetic resonance (MR) imaging plays a key role in investigating early degenerative disorders and traumatic injuries of the glenohumeral cartilages. Subtle morphometric and biochemical changes of potential relevance to clinical diagnosis, treatment planning, and evaluation can be assessed from measurements derived from in vivo MR segmentation of the cartilages. However, segmentation of the glenohumeral cartilages, using approaches spanning manual to automated methods, is technically challenging, due to their thin, curved structure and overlapping intensities of surrounding tissues. Automatic segmentation of the glenohumeral cartilages from MR imaging is not at the same level compared to the weight-bearing knee and hip joint cartilages despite the potential applications with respect to clinical investigation of shoulder disorders. In this work, the authors present a fully automated segmentation method for the glenohumeral cartilages using MR images of healthy shoulders. Methods: The method involves automated segmentation of the humerus and scapula bones using 3D active shape models, the extraction of the expected bone–cartilage interface, and cartilage segmentation using a graph-based method. The cartilage segmentation uses localization, patient specific tissue estimation, and a model of the cartilage thickness variation. The accuracy of this method was experimentally validated using a leave-one-out scheme on a database of MR images acquired from 44 asymptomatic subjects with a true fast imaging with steady state precession sequence on a 3 T scanner (Siemens Trio) using a dedicated shoulder coil. The automated results were compared to manual segmentations from two experts (an experienced radiographer and an experienced musculoskeletal anatomist) using the Dice similarity coefficient (DSC) and mean absolute surface distance (MASD) metrics. Results: Accurate and precise bone segmentations were achieved with mean DSC of 0.98 and 0.93 for the humeral head

  16. Automatic comic page image understanding based on edge segment analysis

    Science.gov (United States)

    Liu, Dong; Wang, Yongtao; Tang, Zhi; Li, Luyuan; Gao, Liangcai

    2013-12-01

    Comic page image understanding aims to analyse the layout of the comic page images by detecting the storyboards and identifying the reading order automatically. It is the key technique to produce the digital comic documents suitable for reading on mobile devices. In this paper, we propose a novel comic page image understanding method based on edge segment analysis. First, we propose an efficient edge point chaining method to extract Canny edge segments (i.e., contiguous chains of Canny edge points) from the input comic page image; second, we propose a top-down scheme to detect line segments within each obtained edge segment; third, we develop a novel method to detect the storyboards by selecting the border lines and further identify the reading order of these storyboards. The proposed method is performed on a data set consisting of 2000 comic page images from ten printed comic series. The experimental results demonstrate that the proposed method achieves satisfactory results on different comics and outperforms the existing methods.

  17. GANALYZER: A TOOL FOR AUTOMATIC GALAXY IMAGE ANALYSIS

    International Nuclear Information System (INIS)

    Shamir, Lior

    2011-01-01

    We describe Ganalyzer, a model-based tool that can automatically analyze and classify galaxy images. Ganalyzer works by separating the galaxy pixels from the background pixels, finding the center and radius of the galaxy, generating the radial intensity plot, and then computing the slopes of the peaks detected in the radial intensity plot to measure the spirality of the galaxy and determine its morphological class. Unlike algorithms that are based on machine learning, Ganalyzer is based on measuring the spirality of the galaxy, a task that is difficult to perform manually, and in many cases can provide a more accurate analysis compared to manual observation. Ganalyzer is simple to use, and can be easily embedded into other image analysis applications. Another advantage is its speed, which allows it to analyze ∼10,000,000 galaxy images in five days using a standard modern desktop computer. These capabilities can make Ganalyzer a useful tool in analyzing large data sets of galaxy images collected by autonomous sky surveys such as SDSS, LSST, or DES. The software is available for free download at http://vfacstaff.ltu.edu/lshamir/downloads/ganalyzer, and the data used in the experiment are available at http://vfacstaff.ltu.edu/lshamir/downloads/ganalyzer/GalaxyImages.zip.

  18. Ganalyzer: A Tool for Automatic Galaxy Image Analysis

    Science.gov (United States)

    Shamir, Lior

    2011-08-01

    We describe Ganalyzer, a model-based tool that can automatically analyze and classify galaxy images. Ganalyzer works by separating the galaxy pixels from the background pixels, finding the center and radius of the galaxy, generating the radial intensity plot, and then computing the slopes of the peaks detected in the radial intensity plot to measure the spirality of the galaxy and determine its morphological class. Unlike algorithms that are based on machine learning, Ganalyzer is based on measuring the spirality of the galaxy, a task that is difficult to perform manually, and in many cases can provide a more accurate analysis compared to manual observation. Ganalyzer is simple to use, and can be easily embedded into other image analysis applications. Another advantage is its speed, which allows it to analyze ~10,000,000 galaxy images in five days using a standard modern desktop computer. These capabilities can make Ganalyzer a useful tool in analyzing large data sets of galaxy images collected by autonomous sky surveys such as SDSS, LSST, or DES. The software is available for free download at http://vfacstaff.ltu.edu/lshamir/downloads/ganalyzer, and the data used in the experiment are available at http://vfacstaff.ltu.edu/lshamir/downloads/ganalyzer/GalaxyImages.zip.

  19. Fast and Automatic Ultrasound Simulation from CT Images

    Directory of Open Access Journals (Sweden)

    Weijian Cong

    2013-01-01

    Full Text Available Ultrasound is currently widely used in clinical diagnosis because of its fast and safe imaging principles. As the anatomical structures present in an ultrasound image are not as clear as CT or MRI. Physicians usually need advance clinical knowledge and experience to distinguish diseased tissues. Fast simulation of ultrasound provides a cost-effective way for the training and correlation of ultrasound and the anatomic structures. In this paper, a novel method is proposed for fast simulation of ultrasound from a CT image. A multiscale method is developed to enhance tubular structures so as to simulate the blood flow. The acoustic response of common tissues is generated by weighted integration of adjacent regions on the ultrasound propagation path in the CT image, from which parameters, including attenuation, reflection, scattering, and noise, are estimated simultaneously. The thin-plate spline interpolation method is employed to transform the simulation image between polar and rectangular coordinate systems. The Kaiser window function is utilized to produce integration and radial blurring effects of multiple transducer elements. Experimental results show that the developed method is very fast and effective, allowing realistic ultrasound to be fast generated. Given that the developed method is fully automatic, it can be utilized for ultrasound guided navigation in clinical practice and for training purpose.

  20. AUTOMATIC BUILDING OUTLINING FROM MULTI-VIEW OBLIQUE IMAGES

    Directory of Open Access Journals (Sweden)

    J. Xiao

    2012-07-01

    Full Text Available Automatic building detection plays an important role in many applications. Multiple overlapped airborne images as well as lidar point clouds are among the most popular data sources used for this purpose. Multi-view overlapped oblique images bear both height and colour information, and additionally we explicitly have access to the vertical extent of objects, therefore we explore the usability of this data source solely to detect and outline buildings in this paper. The outline can then be used for further 3D modelling. In the previous work, building hypotheses are generated using a box model based on detected façades from four directions. In each viewing direction, façade edges extracted from images and height information by stereo matching from an image pair is used for the façade detection. Given that many façades were missing due to occlusion or lack of texture whilst building roofs can be viewed in most images, this work mainly focuses on improve the building box outline by adding roof information. Stereo matched point cloud generated from oblique images are combined with the features from images. Initial roof patches are located in the point cloud. Then AdaBoost is used to integrate geometric and radiometric attributes extracted from oblique image on grid pixel level with the aim to refine the roof area. Generalized contours of the roof pixels are taken as building outlines. The preliminary test has been done by training with five buildings and testing around sixty building clusters. The proposed method performs well concerning covering the irregular roofs as well as improve the sides location of slope roof buildings. Outline result comparing with cadastral map shows almost all above 70% completeness and correctness in an area-based assessment, as well as 20% to 40% improvement in correctness with respect to our previous work.

  1. Semi-automatic breast ultrasound image segmentation based on mean shift and graph cuts.

    Science.gov (United States)

    Zhou, Zhuhuang; Wu, Weiwei; Wu, Shuicai; Tsui, Po-Hsiang; Lin, Chung-Chih; Zhang, Ling; Wang, Tianfu

    2014-10-01

    Computerized tumor segmentation on breast ultrasound (BUS) images remains a challenging task. In this paper, we proposed a new method for semi-automatic tumor segmentation on BUS images using Gaussian filtering, histogram equalization, mean shift, and graph cuts. The only interaction required was to select two diagonal points to determine a region of interest (ROI) on an input image. The ROI image was shrunken by a factor of 2 using bicubic interpolation to reduce computation time. The shrunken image was smoothed by a Gaussian filter and then contrast-enhanced by histogram equalization. Next, the enhanced image was filtered by pyramid mean shift to improve homogeneity. The object and background seeds for graph cuts were automatically generated on the filtered image. Using these seeds, the filtered image was then segmented by graph cuts into a binary image containing the object and background. Finally, the binary image was expanded by a factor of 2 using bicubic interpolation, and the expanded image was processed by morphological opening and closing to refine the tumor contour. The method was implemented with OpenCV 2.4.3 and Visual Studio 2010 and tested for 38 BUS images with benign tumors and 31 BUS images with malignant tumors from different ultrasound scanners. Experimental results showed that our method had a true positive rate (TP) of 91.7%, a false positive (FP) rate of 11.9%, and a similarity (SI) rate of 85.6%. The mean run time on Intel Core 2.66 GHz CPU and 4 GB RAM was 0.49 ± 0.36 s. The experimental results indicate that the proposed method may be useful in BUS image segmentation. © The Author(s) 2014.

  2. [Landmark-based automatic registration of serial cross-sectional images of Chinese digital human using Photoshop and Matlab software].

    Science.gov (United States)

    Su, Xiu-yun; Pei, Guo-xian; Yu, Bin; Hu, Yan-ling; Li, Jin; Huang, Qian; Li, Xu; Zhang, Yuan-zhi

    2007-12-01

    This paper describes automatic registration of the serial cross-sectional images of Chinese digital human by projective registration method based on the landmarks using the commercially available software Photoshop and Matlab. During cadaver embedment for acquisition of the Chinese digital human images, 4 rods were placed parallel to the vertical axis of the frozen cadaver to allow orientation. Projective distortion of the rod positions on the cross-sectional images was inevitable due to even slight changes of the relative position of the camera. The original cross-sectional images were first processed using Photoshop software firstly to obtain the images of the orientation rods, and the centroid coordinate of every rod image was acquired with Matlab software. With the average coordinate value of the rods as the fiducial point, two-dimensional projective transformation coefficient of each image was determined. Projective transformation was then carried out and projective distortion from each original serial image was eliminated. The rectified cross-sectional images were again processed using Photoshop to obtain the image of the first orientation rod, the coordinate value of first rod image was calculated using Matlab software, and the cross-sectional images were cut into images of the same size according to the first rod spatial coordinate, to achieve automatic registration of the serial cross-sectional images. sing Photoshop and Matlab softwares, projective transformation can accurately accomplish the image registration for the serial images with simpler calculation processes and easier computer processing.

  3. Automatic segmentation of MR brain images with a convolutional neural network

    NARCIS (Netherlands)

    Moeskops, P.; Viergever, M.A.; Mendrik, A.M.; de Vries, L.S.; Benders, M.J.N.L.; Išgum, I.

    2016-01-01

    Automatic segmentation in MR brain images is important for quantitative analysis in large-scale studies with images acquired at all ages. This paper presents a method for the automatic segmentation of MR brain images into a number of tissue classes using a convolutional neural network. To ensure

  4. Quadrant Dynamic with Automatic Plateau Limit Histogram Equalization for Image Enhancement

    Directory of Open Access Journals (Sweden)

    P. Jagatheeswari

    2014-01-01

    Full Text Available The fundamental and important preprocessing stage in image processing is the image contrast enhancement technique. Histogram equalization is an effective contrast enhancement technique. In this paper, a histogram equalization based technique called quadrant dynamic with automatic plateau limit histogram equalization (QDAPLHE is introduced. In this method, a hybrid of dynamic and clipped histogram equalization methods are used to increase the brightness preservation and to reduce the overenhancement. Initially, the proposed QDAPLHE algorithm passes the input image through a median filter to remove the noises present in the image. Then the histogram of the filtered image is divided into four subhistograms while maintaining second separated point as the mean brightness. Then the clipping process is implemented by calculating automatically the plateau limit as the clipped level. The clipped portion of the histogram is modified to reduce the loss of image intensity value. Finally the clipped portion is redistributed uniformly to the entire dynamic range and the conventional histogram equalization is executed in each subhistogram independently. Based on the qualitative and the quantitative analysis, the QDAPLHE method outperforms some existing methods in literature.

  5. Fluid Intelligence and Automatic Neural Processes in Facial Expression Perception

    DEFF Research Database (Denmark)

    Liu, Tongran; Xiao, Tong; Li, Xiaoyan

    2015-01-01

    The relationship between human fluid intelligence and social-emotional abilities has been a topic of considerable interest. The current study investigated whether adolescents with different intellectual levels had different automatic neural processing of facial expressions. Two groups of adolescent...... males were enrolled: a high IQ group and an average IQ group. Age and parental socioeconomic status were matched between the two groups. Participants counted the numbers of the central cross changes while paired facial expressions were presented bilaterally in an oddball paradigm. There were two.......2). Participants were required to concentrate on the primary task of counting the central cross changes and to ignore the expressions to ensure that facial expression processing was automatic. Event-related potentials (ERPs) were obtained during the tasks. The visual mismatch negativity (vMMN) components were...

  6. A prototype distributed object-oriented architecture for image-based automatic laser alignment

    International Nuclear Information System (INIS)

    Stout, E.A.; Kamm, V.J.M.; Spann, J.M.; Van Arsdall, P.J.

    1996-01-01

    Designing a computer control system for the National Ignition Facility (NIF) is a complex undertaking because of the system's large size and its distributed nature. The controls team is addressing that complexity by adopting the object-oriented programming paradigm, designing reusable software frameworks, and using the Common Object Request Broker Architecture (CORBA) for distribution. A prototype system for image-based automatic laser alignment has been developed to evaluate and gain experience with CORBA and OOP in a small distributed system. The prototype is also important in evaluating alignment concepts, image processing techniques, speed and accuracy of automatic alignment objectives for the NIF, and control hardware for aligment devices. The prototype system has met its inital objectives and provides a basis for continued development

  7. Simple Methods for Scanner Drift Normalization Validated for Automatic Segmentation of Knee Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Dam, Erik Bjørnager

    2018-01-01

    Scanner drift is a well-known magnetic resonance imaging (MRI) artifact characterized by gradual signal degradation and scan intensity changes over time. In addition, hardware and software updates may imply abrupt changes in signal. The combined effects are particularly challenging for automatic...... image analysis methods used in longitudinal studies. The implication is increased measurement variation and a risk of bias in the estimations (e.g. in the volume change for a structure). We proposed two quite different approaches for scanner drift normalization and demonstrated the performance...... for segmentation of knee MRI using the fully automatic KneeIQ framework. The validation included a total of 1975 scans from both high-field and low-field MRI. The results demonstrated that the pre-processing method denoted Atlas Affine Normalization significantly removed scanner drift effects and ensured...

  8. AUTOMATIC GLOBAL REGISTRATION BETWEEN AIRBORNE LIDAR DATA AND REMOTE SENSING IMAGE BASED ON STRAIGHT LINE FEATURES

    Directory of Open Access Journals (Sweden)

    Z. Q. Liu

    2018-04-01

    Full Text Available An automatic global registration approach for point clouds and remote sensing image based on straight line features is proposed which is insensitive to rotational and scale transformation. First, the building ridge lines and contour lines in point clouds are automatically detected as registration primitives by integrating region growth and topology identification. Second, the collinear condition equation is selected as registration transformation function which is based on rotation matrix described by unit quaternion. The similarity measure is established according to the distance between the corresponding straight line features from point clouds and the image in the same reference coordinate system. Finally, an iterative Hough transform is adopted to simultaneously estimate the parameters and obtain correspondence between registration primitives. Experimental results prove the proposed method is valid and the spectral information is useful for the following classification processing.

  9. Image processing in radiology

    International Nuclear Information System (INIS)

    Dammann, F.

    2002-01-01

    Medical imaging processing and analysis methods have significantly improved during recent years and are now being increasingly used in clinical applications. Preprocessing algorithms are used to influence image contrast and noise. Three-dimensional visualization techniques including volume rendering and virtual endoscopy are increasingly available to evaluate sectional imaging data sets. Registration techniques have been developed to merge different examination modalities. Structures of interest can be extracted from the image data sets by various segmentation methods. Segmented structures are used for automated quantification analysis as well as for three-dimensional therapy planning, simulation and intervention guidance, including medical modelling, virtual reality environments, surgical robots and navigation systems. These newly developed methods require specialized skills for the production and postprocessing of radiological imaging data as well as new definitions of the roles of the traditional specialities. The aim of this article is to give an overview of the state-of-the-art of medical imaging processing methods, practical implications for the ragiologist's daily work and future aspects. (orig.) [de

  10. Active Learning for Automatic Audio Processing of Unwritten Languages (ALAPUL)

    Science.gov (United States)

    2016-07-01

    AFRL-RH-WP-TR-2016-0074 ACTIVE LEARNING FOR AUTOMATIC AUDIO PROCESSING OF UNWRITTEN LANGUAGES (ALAPUL) Dimitra Vergyri Andreas Kathol Wen Wang...FA8650-15-C-9101 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) *Dimitra Vergyri; Andreas Kathol; Wen Wang; Chris Bartels; Julian VanHout...feature transform through deep auto-encoders for better phone recognition performance. We target iterative learning to improve the system through

  11. Image processing with personal computer

    International Nuclear Information System (INIS)

    Hara, Hiroshi; Handa, Madoka; Watanabe, Yoshihiko

    1990-01-01

    The method of automating the judgement works using photographs in radiation nondestructive inspection with a simple type image processor on the market was examined. The software for defect extraction and making binary and the software for automatic judgement were made for trial, and by using the various photographs on which the judgement was already done as the object, the accuracy and the problematic points were tested. According to the state of the objects to be photographed and the condition of inspection, the accuracy of judgement from 100% to 45% was obtained. The criteria for judgement were in conformity with the collection of reference photographs made by Japan Cast Steel Association. In the non-destructive inspection by radiography, the number and size of the defect images in photographs are visually judged, the results are collated with the standard, and the quality is decided. Recently, the technology of image processing with personal computers advanced, therefore by utilizing this technology, the automation of the judgement of photographs was attempted to improve the accuracy, to increase the inspection efficiency and to realize labor saving. (K.I.)

  12. AUTOMATIC COREGISTRATION FOR MULTIVIEW SAR IMAGES IN URBAN AREAS

    Directory of Open Access Journals (Sweden)

    Y. Xiang

    2017-09-01

    Full Text Available Due to the high resolution property and the side-looking mechanism of SAR sensors, complex buildings structures make the registration of SAR images in urban areas becomes very hard. In order to solve the problem, an automatic and robust coregistration approach for multiview high resolution SAR images is proposed in the paper, which consists of three main modules. First, both the reference image and the sensed image are segmented into two parts, urban areas and nonurban areas. Urban areas caused by double or multiple scattering in a SAR image have a tendency to show higher local mean and local variance values compared with general homogeneous regions due to the complex structural information. Based on this criterion, building areas are extracted. After obtaining the target regions, L-shape structures are detected using the SAR phase congruency model and Hough transform. The double bounce scatterings formed by wall and ground are shown as strong L- or T-shapes, which are usually taken as the most reliable indicator for building detection. According to the assumption that buildings are rectangular and flat models, planimetric buildings are delineated using the L-shapes, then the reconstructed target areas are obtained. For the orignal areas and the reconstructed target areas, the SAR-SIFT matching algorithm is implemented. Finally, correct corresponding points are extracted by the fast sample consensus (FSC and the transformation model is also derived. The experimental results on a pair of multiview TerraSAR images with 1-m resolution show that the proposed approach gives a robust and precise registration performance, compared with the orignal SAR-SIFT method.

  13. Automatic Coregistration for Multiview SAR Images in Urban Areas

    Science.gov (United States)

    Xiang, Y.; Kang, W.; Wang, F.; You, H.

    2017-09-01

    Due to the high resolution property and the side-looking mechanism of SAR sensors, complex buildings structures make the registration of SAR images in urban areas becomes very hard. In order to solve the problem, an automatic and robust coregistration approach for multiview high resolution SAR images is proposed in the paper, which consists of three main modules. First, both the reference image and the sensed image are segmented into two parts, urban areas and nonurban areas. Urban areas caused by double or multiple scattering in a SAR image have a tendency to show higher local mean and local variance values compared with general homogeneous regions due to the complex structural information. Based on this criterion, building areas are extracted. After obtaining the target regions, L-shape structures are detected using the SAR phase congruency model and Hough transform. The double bounce scatterings formed by wall and ground are shown as strong L- or T-shapes, which are usually taken as the most reliable indicator for building detection. According to the assumption that buildings are rectangular and flat models, planimetric buildings are delineated using the L-shapes, then the reconstructed target areas are obtained. For the orignal areas and the reconstructed target areas, the SAR-SIFT matching algorithm is implemented. Finally, correct corresponding points are extracted by the fast sample consensus (FSC) and the transformation model is also derived. The experimental results on a pair of multiview TerraSAR images with 1-m resolution show that the proposed approach gives a robust and precise registration performance, compared with the orignal SAR-SIFT method.

  14. Automatic segmentation of blood vessels from retinal fundus images ...

    Indian Academy of Sciences (India)

    The retinal blood vessels were segmented through color space conversion and color channel extraction, image pre-processing, Gabor filtering, image postprocessing, feature construction through application of principal component analysis, k-means clustering and first level classification using Naïve–Bayes classification ...

  15. An automatic system for segmentation, matching, anatomical labeling and measurement of airways from CT images

    DEFF Research Database (Denmark)

    Petersen, Jens; Feragen, Aasa; Owen, Megan

    segmental branches, and longitudinal matching of airway branches in repeated scans of the same subject. Methods and Materials: The segmentation process begins from an automatically detected seed point in the trachea. The airway centerline tree is then constructed by iteratively adding locally optimal paths...... differences. Results: The segmentation method has been used on 9711 low dose CT images from the Danish Lung Cancer Screening Trial (DLCST). Manual inspection of thumbnail images revealed gross errors in a total of 44 images. 29 were missing branches at the lobar level and only 15 had obvious false positives...... measurements to segments matched in multiple images of the same subject using image registration was observed to increase their reproducibility. The anatomical branch labeling tool was validated on a subset of 20 subjects, 5 of each category: asymptomatic, mild, moderate and severe COPD. The average inter...

  16. Automatic Centerline Extraction of Coverd Roads by Surrounding Objects from High Resolution Satellite Images

    Science.gov (United States)

    Kamangir, H.; Momeni, M.; Satari, M.

    2017-09-01

    This paper presents an automatic method to extract road centerline networks from high and very high resolution satellite images. The present paper addresses the automated extraction roads covered with multiple natural and artificial objects such as trees, vehicles and either shadows of buildings or trees. In order to have a precise road extraction, this method implements three stages including: classification of images based on maximum likelihood algorithm to categorize images into interested classes, modification process on classified images by connected component and morphological operators to extract pixels of desired objects by removing undesirable pixels of each class, and finally line extraction based on RANSAC algorithm. In order to evaluate performance of the proposed method, the generated results are compared with ground truth road map as a reference. The evaluation performance of the proposed method using representative test images show completeness values ranging between 77% and 93%.

  17. Processing Of Binary Images

    Science.gov (United States)

    Hou, H. S.

    1985-07-01

    An overview of the recent progress in the area of digital processing of binary images in the context of document processing is presented here. The topics covered include input scan, adaptive thresholding, halftoning, scaling and resolution conversion, data compression, character recognition, electronic mail, digital typography, and output scan. Emphasis has been placed on illustrating the basic principles rather than descriptions of a particular system. Recent technology advances and research in this field are also mentioned.

  18. Feeding People's Curiosity: Leveraging the Cloud for Automatic Dissemination of Mars Images

    Science.gov (United States)

    Knight, David; Powell, Mark

    2013-01-01

    Smartphones and tablets have made wireless computing ubiquitous, and users expect instant, on-demand access to information. The Mars Science Laboratory (MSL) operations software suite, MSL InterfaCE (MSLICE), employs a different back-end image processing architecture compared to that of the Mars Exploration Rovers (MER) in order to better satisfy modern consumer-driven usage patterns and to offer greater server-side flexibility. Cloud services are a centerpiece of the server-side architecture that allows new image data to be delivered automatically to both scientists using MSLICE and the general public through the MSL website (http://mars.jpl.nasa.gov/msl/).

  19. Automatic fog detection for public safety by using camera images

    Science.gov (United States)

    Pagani, Giuliano Andrea; Roth, Martin; Wauben, Wiel

    2017-04-01

    Fog and reduced visibility have considerable impact on the performance of road, maritime, and aeronautical transportation networks. The impact ranges from minor delays to more serious congestions or unavailability of the infrastructure and can even lead to damage or loss of lives. Visibility is traditionally measured manually by meteorological observers using landmarks at known distances in the vicinity of the observation site. Nowadays, distributed cameras facilitate inspection of more locations from one remote monitoring center. The main idea is, however, still deriving the visibility or presence of fog by an operator judging the scenery and the presence of landmarks. Visibility sensors are also used, but they are rather costly and require regular maintenance. Moreover, observers, and in particular sensors, give only visibility information that is representative for a limited area. Hence the current density of visibility observations is insufficient to give detailed information on the presence of fog. Cameras are more and more deployed for surveillance and security reasons in cities and for monitoring traffic along main transportation ways. In addition to this primary use of cameras, we consider cameras as potential sensors to automatically identify low visibility conditions. The approach that we follow is to use machine learning techniques to determine the presence of fog and/or to make an estimation of the visibility. For that purpose a set of features are extracted from the camera images such as the number of edges, brightness, transmission of the image dark channel, fractal dimension. In addition to these image features, we also consider meteorological variables such as wind speed, temperature, relative humidity, and dew point as additional features to feed the machine learning model. The results obtained with a training and evaluation set consisting of 10-minute sampled images for two KNMI locations over a period of 1.5 years by using decision trees methods

  20. MatchGUI: A Graphical MATLAB-Based Tool for Automatic Image Co-Registration

    Science.gov (United States)

    Ansar, Adnan I.

    2011-01-01

    MatchGUI software, based on MATLAB, automatically matches two images and displays the match result by superimposing one image on the other. A slider bar allows focus to shift between the two images. There are tools for zoom, auto-crop to overlap region, and basic image markup. Given a pair of ortho-rectified images (focused primarily on Mars orbital imagery for now), this software automatically co-registers the imagery so that corresponding image pixels are aligned. MatchGUI requires minimal user input, and performs a registration over scale and inplane rotation fully automatically

  1. Automatic tumour volume delineation in respiratory-gated PET images

    International Nuclear Information System (INIS)

    Gubbi, Jayavardhana; Palaniswami, Marimuthu; Kanakatte, Aparna; Mani, Nallasamy; Kron, Tomas; Binns, David; Srinivasan, Bala

    2011-01-01

    Positron emission tomography (PET) is a state-of-the-art functional imaging technique used in the accurate detection of cancer. The main problem with the tumours present in the lungs is that they are non-stationary during each respiratory cycle. Tumours in the lungs can get displaced up to 2.5 cm during respiration. Accurate detection of the tumour enables avoiding the addition of extra margin around the tumour that is usually used during radiotherapy treatment planning. This paper presents a novel method to detect and track tumour in respiratory-gated PET images. The approach followed to achieve this task is to automatically delineate the tumour from the first frame using support vector machines. The resulting volume and position information from the first frame is used in tracking its motion in the subsequent frames with the help of level set (LS) deformable model. An excellent accuracy of 97% is obtained using wavelets and support vector machines. The volume calculated as a result of the machine learning (ML) stage is used as a constraint for deformable models and the tumour is tracked in the remaining seven phases of the respiratory cycle. As a result, the complete information about tumour movement during each respiratory cycle is available in relatively short time. The combination of the LS and ML approach accurately delineated the tumour volume from all frames, thereby providing a scope of using PET images towards planning an accurate and effective radiotherapy treatment for lung cancer.

  2. Automatic selection of resting-state networks with functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Silvia Francesca eStorti

    2013-05-01

    Full Text Available Functional magnetic resonance imaging (fMRI during a resting-state condition can reveal the co-activation of specific brain regions in distributed networks, called resting-state networks, which are selected by independent component analysis (ICA of the fMRI data. One of the major difficulties with component analysis is the automatic selection of the ICA features related to brain activity. In this study we describe a method designed to automatically select networks of potential functional relevance, specifically, those regions known to be involved in motor function, visual processing, executive functioning, auditory processing, memory, and the default-mode network. To do this, image analysis was based on probabilistic ICA as implemented in FSL software. After decomposition, the optimal number of components was selected by applying a novel algorithm which takes into account, for each component, Pearson's median coefficient of skewness of the spatial maps generated by FSL, followed by clustering, segmentation, and spectral analysis. To evaluate the performance of the approach, we investigated the resting-state networks in 25 subjects. For each subject, three resting-state scans were obtained with a Siemens Allegra 3 T scanner (NYU data set. Comparison of the visually and the automatically identified neuronal networks showed that the algorithm had high accuracy (first scan: 95%, second scan: 95%, third scan: 93% and precision (90%, 90%, 84%. The reproducibility of the networks for visual and automatic selection was very close: it was highly consistent in each subject for the default-mode network (≥ 92% and the occipital network, which includes the medial visual cortical areas (≥ 94%, and consistent for the attention network (≥ 80%, the right and/or left lateralized frontoparietal attention networks, and the temporal-motor network (≥ 80%. The automatic selection method may be used to detect neural networks and reduce subjectivity in ICA

  3. Automatic and improved radiometric correction of Landsat imagery using reference values from MODIS surface reflectance images

    Science.gov (United States)

    Pons, X.; Pesquer, L.; Cristóbal, J.; González-Guerrero, O.

    2014-12-01

    Radiometric correction is a prerequisite for generating high-quality scientific data, making it possible to discriminate between product artefacts and real changes in Earth processes as well as accurately produce land cover maps and detect changes. This work contributes to the automatic generation of surface reflectance products for Landsat satellite series. Surface reflectances are generated by a new approach developed from a previous simplified radiometric (atmospheric + topographic) correction model. The proposed model keeps the core of the old model (incidence angles and cast-shadows through a digital elevation model [DEM], Earth-Sun distance, etc.) and adds new characteristics to enhance and automatize ground reflectance retrieval. The new model includes the following new features: (1) A fitting model based on reference values from pseudoinvariant areas that have been automatically extracted from existing reflectance products (Terra MODIS MOD09GA) that were selected also automatically by applying quality criteria that include a geostatistical pattern model. This guarantees the consistency of the internal and external series, making it unnecessary to provide extra atmospheric data for the acquisition date and time, dark objects or dense vegetation. (2) A spatial model for atmospheric optical depth that uses detailed DEM and MODTRAN simulations. (3) It is designed so that large time-series of images can be processed automatically to produce consistent Landsat surface reflectance time-series. (4) The approach can handle most images, acquired now or in the past, regardless of the processing system, with the exception of those with extremely high cloud coverage. The new methodology has been successfully applied to a series of near 300 images of the same area including MSS, TM and ETM+ imagery as well as to different formats and processing systems (LPGS and NLAPS from the USGS; CEOS from ESA) for different degrees of cloud coverage (up to 60%) and SLC

  4. Hyperspectral image processing

    CERN Document Server

    Wang, Liguo

    2016-01-01

    Based on the authors’ research, this book introduces the main processing techniques in hyperspectral imaging. In this context, SVM-based classification, distance comparison-based endmember extraction, SVM-based spectral unmixing, spatial attraction model-based sub-pixel mapping, and MAP/POCS-based super-resolution reconstruction are discussed in depth. Readers will gain a comprehensive understanding of these cutting-edge hyperspectral imaging techniques. Researchers and graduate students in fields such as remote sensing, surveying and mapping, geosciences and information systems will benefit from this valuable resource.

  5. Automatic extraction of process categories from process model collections

    NARCIS (Netherlands)

    Malinova, M.; Dijkman, R.M.; Mendling, J.; Lohmann, N.; Song, M.; Wohed, P.

    2014-01-01

    Many organizations build up their business process management activities in an incremental way. As a result, there is no overarching structure defined at the beginning. However, as business process modeling initiatives often yield hundreds to thousands of process models, there is a growing need for

  6. Computationally Efficient Automatic Coast Mode Target Tracking Based on Occlusion Awareness in Infrared Images.

    Science.gov (United States)

    Kim, Sohyun; Jang, Gwang-Il; Kim, Sungho; Kim, Junmo

    2018-03-27

    This paper proposes the automatic coast mode tracking of centroid trackers for infrared images to overcome the target occlusion status. The centroid tracking method, using only the brightness information of an image, is still widely used in infrared imaging tracking systems because it is difficult to extract meaningful features from infrared images. However, centroid trackers are likely to lose the track because they are highly vulnerable to screened status by the clutter or background. Coast mode, one of the tracking modes, maintains the servo slew rate with the tracking rate right before the loss of track. The proposed automatic coast mode tracking method makes decisions regarding entering coast mode by the prediction of target occlusion and tries to re-lock the target and resume the tracking after blind time. This algorithm comprises three steps. The first step is the prediction process of the occlusion by checking both matters which have target-likelihood brightness and which may screen the target despite different brightness. The second step is the process making inertial tracking commands to the servo. The last step is the process of re-locking a target based on the target modeling of histogram ratio. The effectiveness of the proposed algorithm is addressed by presenting experimental results based on computer simulation with various test imagery sequences compared to published tracking algorithms. The proposed algorithm is tested under a real environment with a naval electro-optical tracking system (EOTS) and airborne EO/IR system.

  7. Computationally Efficient Automatic Coast Mode Target Tracking Based on Occlusion Awareness in Infrared Images

    Directory of Open Access Journals (Sweden)

    Sohyun Kim

    2018-03-01

    Full Text Available This paper proposes the automatic coast mode tracking of centroid trackers for infrared images to overcome the target occlusion status. The centroid tracking method, using only the brightness information of an image, is still widely used in infrared imaging tracking systems because it is difficult to extract meaningful features from infrared images. However, centroid trackers are likely to lose the track because they are highly vulnerable to screened status by the clutter or background. Coast mode, one of the tracking modes, maintains the servo slew rate with the tracking rate right before the loss of track. The proposed automatic coast mode tracking method makes decisions regarding entering coast mode by the prediction of target occlusion and tries to re-lock the target and resume the tracking after blind time. This algorithm comprises three steps. The first step is the prediction process of the occlusion by checking both matters which have target-likelihood brightness and which may screen the target despite different brightness. The second step is the process making inertial tracking commands to the servo. The last step is the process of re-locking a target based on the target modeling of histogram ratio. The effectiveness of the proposed algorithm is addressed by presenting experimental results based on computer simulation with various test imagery sequences compared to published tracking algorithms. The proposed algorithm is tested under a real environment with a naval electro-optical tracking system (EOTS and airborne EO/IR system.

  8. Multi-atlas-based automatic 3D segmentation for prostate brachytherapy in transrectal ultrasound images

    Science.gov (United States)

    Nouranian, Saman; Mahdavi, S. Sara; Spadinger, Ingrid; Morris, William J.; Salcudean, S. E.; Abolmaesumi, P.

    2013-03-01

    One of the commonly used treatment methods for early-stage prostate cancer is brachytherapy. The standard of care for planning this procedure is segmentation of contours from transrectal ultrasound (TRUS) images, which closely follow the prostate boundary. This process is currently performed either manually or using semi-automatic techniques. This paper introduces a fully automatic segmentation algorithm which uses a priori knowledge of contours in a reference data set of TRUS volumes. A non-parametric deformable registration method is employed to transform the atlas prostate contours to a target image coordinates. All atlas images are sorted based on their registration results and the highest ranked registration results are selected for decision fusion. A Simultaneous Truth and Performance Level Estimation algorithm is utilized to fuse labels from registered atlases and produce a segmented target volume. In this experiment, 50 patient TRUS volumes are obtained and a leave-one-out study on TRUS volumes is reported. We also compare our results with a state-of-the-art semi-automatic prostate segmentation method that has been clinically used for planning prostate brachytherapy procedures and we show comparable accuracy and precision within clinically acceptable runtime.

  9. Automatic Gleason grading of prostate cancer using quantitative phase imaging and machine learning

    Science.gov (United States)

    Nguyen, Tan H.; Sridharan, Shamira; Macias, Virgilia; Kajdacsy-Balla, Andre; Melamed, Jonathan; Do, Minh N.; Popescu, Gabriel

    2017-03-01

    We present an approach for automatic diagnosis of tissue biopsies. Our methodology consists of a quantitative phase imaging tissue scanner and machine learning algorithms to process these data. We illustrate the performance by automatic Gleason grading of prostate specimens. The imaging system operates on the principle of interferometry and, as a result, reports on the nanoscale architecture of the unlabeled specimen. We use these data to train a random forest classifier to learn textural behaviors of prostate samples and classify each pixel in the image into different classes. Automatic diagnosis results were computed from the segmented regions. By combining morphological features with quantitative information from the glands and stroma, logistic regression was used to discriminate regions with Gleason grade 3 versus grade 4 cancer in prostatectomy tissue. The overall accuracy of this classification derived from a receiver operating curve was 82%, which is in the range of human error when interobserver variability is considered. We anticipate that our approach will provide a clinically objective and quantitative metric for Gleason grading, allowing us to corroborate results across instruments and laboratories and feed the computer algorithms for improved accuracy.

  10. Real-time automatic fiducial marker tracking in low contrast cine-MV images

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wei-Yang; Lin, Shu-Fang; Yang, Sheng-Chang; Liou, Shu-Cheng; Nath, Ravinder; Liu Wu [Department of Computer Science and Information Engineering, National Chung Cheng University, Taiwan, 62102 (China); Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut 06510-3220 (United States)

    2013-01-15

    Purpose: To develop a real-time automatic method for tracking implanted radiographic markers in low-contrast cine-MV patient images used in image-guided radiation therapy (IGRT). Methods: Intrafraction motion tracking using radiotherapy beam-line MV images have gained some attention recently in IGRT because no additional imaging dose is introduced. However, MV images have much lower contrast than kV images, therefore a robust and automatic algorithm for marker detection in MV images is a prerequisite. Previous marker detection methods are all based on template matching or its derivatives. Template matching needs to match object shape that changes significantly for different implantation and projection angle. While these methods require a large number of templates to cover various situations, they are often forced to use a smaller number of templates to reduce the computation load because their methods all require exhaustive search in the region of interest. The authors solve this problem by synergetic use of modern but well-tested computer vision and artificial intelligence techniques; specifically the authors detect implanted markers utilizing discriminant analysis for initialization and use mean-shift feature space analysis for sequential tracking. This novel approach avoids exhaustive search by exploiting the temporal correlation between consecutive frames and makes it possible to perform more sophisticated detection at the beginning to improve the accuracy, followed by ultrafast sequential tracking after the initialization. The method was evaluated and validated using 1149 cine-MV images from two prostate IGRT patients and compared with manual marker detection results from six researchers. The average of the manual detection results is considered as the ground truth for comparisons. Results: The average root-mean-square errors of our real-time automatic tracking method from the ground truth are 1.9 and 2.1 pixels for the two patients (0.26 mm/pixel). The

  11. Real-time automatic fiducial marker tracking in low contrast cine-MV images

    International Nuclear Information System (INIS)

    Lin, Wei-Yang; Lin, Shu-Fang; Yang, Sheng-Chang; Liou, Shu-Cheng; Nath, Ravinder; Liu Wu

    2013-01-01

    Purpose: To develop a real-time automatic method for tracking implanted radiographic markers in low-contrast cine-MV patient images used in image-guided radiation therapy (IGRT). Methods: Intrafraction motion tracking using radiotherapy beam-line MV images have gained some attention recently in IGRT because no additional imaging dose is introduced. However, MV images have much lower contrast than kV images, therefore a robust and automatic algorithm for marker detection in MV images is a prerequisite. Previous marker detection methods are all based on template matching or its derivatives. Template matching needs to match object shape that changes significantly for different implantation and projection angle. While these methods require a large number of templates to cover various situations, they are often forced to use a smaller number of templates to reduce the computation load because their methods all require exhaustive search in the region of interest. The authors solve this problem by synergetic use of modern but well-tested computer vision and artificial intelligence techniques; specifically the authors detect implanted markers utilizing discriminant analysis for initialization and use mean-shift feature space analysis for sequential tracking. This novel approach avoids exhaustive search by exploiting the temporal correlation between consecutive frames and makes it possible to perform more sophisticated detection at the beginning to improve the accuracy, followed by ultrafast sequential tracking after the initialization. The method was evaluated and validated using 1149 cine-MV images from two prostate IGRT patients and compared with manual marker detection results from six researchers. The average of the manual detection results is considered as the ground truth for comparisons. Results: The average root-mean-square errors of our real-time automatic tracking method from the ground truth are 1.9 and 2.1 pixels for the two patients (0.26 mm/pixel). The

  12. Automatic Semiconductor Wafer Image Segmentation for Defect Detection Using Multilevel Thresholding

    Directory of Open Access Journals (Sweden)

    Saad N.H.

    2016-01-01

    Full Text Available Quality control is one of important process in semiconductor manufacturing. A lot of issues trying to be solved in semiconductor manufacturing industry regarding the rate of production with respect to time. In most semiconductor assemblies, a lot of wafers from various processes in semiconductor wafer manufacturing need to be inspected manually using human experts and this process required full concentration of the operators. This human inspection procedure, however, is time consuming and highly subjective. In order to overcome this problem, implementation of machine vision will be the best solution. This paper presents automatic defect segmentation of semiconductor wafer image based on multilevel thresholding algorithm which can be further adopted in machine vision system. In this work, the defect image which is in RGB image at first is converted to the gray scale image. Median filtering then is implemented to enhance the gray scale image. Then the modified multilevel thresholding algorithm is performed to the enhanced image. The algorithm worked in three main stages which are determination of the peak location of the histogram, segmentation the histogram between the peak and determination of first global minimum of histogram that correspond to the threshold value of the image. The proposed approach is being evaluated using defected wafer images. The experimental results shown that it can be used to segment the defect correctly and outperformed other thresholding technique such as Otsu and iterative thresholding.

  13. Automatic Tracking Of Remote Sensing Precipitation Data Using Genetic Algorithm Image Registration Based Automatic Morphing: September 1999 Storm Floyd Case Study

    Science.gov (United States)

    Chiu, L.; Vongsaard, J.; El-Ghazawi, T.; Weinman, J.; Yang, R.; Kafatos, M.

    U Due to the poor temporal sampling by satellites, data gaps exist in satellite derived time series of precipitation. This poses a challenge for assimilating rain- fall data into forecast models. To yield a continuous time series, the classic image processing technique of digital image morphing has been used. However, the digital morphing technique was applied manually and that is time consuming. In order to avoid human intervention in the process, an automatic procedure for image morphing is needed for real-time operations. For this purpose, Genetic Algorithm Based Image Registration Automatic Morphing (GRAM) model was developed and tested in this paper. Specifically, automatic morphing technique was integrated with Genetic Algo- rithm and Feature Based Image Metamorphosis technique to fill in data gaps between satellite coverage. The technique was tested using NOWRAD data which are gener- ated from the network of NEXRAD radars. Time series of NOWRAD data from storm Floyd that occurred at the US eastern region on September 16, 1999 for 00:00, 01:00, 02:00,03:00, and 04:00am were used. The GRAM technique was applied to data col- lected at 00:00 and 04:00am. These images were also manually morphed. Images at 01:00, 02:00 and 03:00am were interpolated from the GRAM and manual morphing and compared with the original NOWRAD rainrates. The results show that the GRAM technique outperforms manual morphing. The correlation coefficients between the im- ages generated using manual morphing are 0.905, 0.900, and 0.905 for the images at 01:00, 02:00,and 03:00 am, while the corresponding correlation coefficients are 0.946, 0.911, and 0.913, respectively, based on the GRAM technique. Index terms ­ Remote Sensing, Image Registration, Hydrology, Genetic Algorithm, Morphing, NEXRAD

  14. Brain's tumor image processing using shearlet transform

    Science.gov (United States)

    Cadena, Luis; Espinosa, Nikolai; Cadena, Franklin; Korneeva, Anna; Kruglyakov, Alexey; Legalov, Alexander; Romanenko, Alexey; Zotin, Alexander

    2017-09-01

    Brain tumor detection is well known research area for medical and computer scientists. In last decades there has been much research done on tumor detection, segmentation, and classification. Medical imaging plays a central role in the diagnosis of brain tumors and nowadays uses methods non-invasive, high-resolution techniques, especially magnetic resonance imaging and computed tomography scans. Edge detection is a fundamental tool in image processing, particularly in the areas of feature detection and feature extraction, which aim at identifying points in a digital image at which the image has discontinuities. Shearlets is the most successful frameworks for the efficient representation of multidimensional data, capturing edges and other anisotropic features which frequently dominate multidimensional phenomena. The paper proposes an improved brain tumor detection method by automatically detecting tumor location in MR images, its features are extracted by new shearlet transform.

  15. Automatic analysis of image quality control for Image Guided Radiation Therapy (IGRT) devices in external radiotherapy

    International Nuclear Information System (INIS)

    Torfeh, Tarraf

    2009-01-01

    On-board imagers mounted on a radiotherapy treatment machine are very effective devices that improve the geometric accuracy of radiation delivery. However, a precise and regular quality control program is required in order to achieve this objective. Our purpose consisted of developing software tools dedicated to an automatic image quality control of IGRT devices used in external radiotherapy: 2D-MV mode for measuring patient position during the treatment using high energy images, 2D-kV mode (low energy images) and 3D Cone Beam Computed Tomography (CBCT) MV or kV mode, used for patient positioning before treatment. Automated analysis of the Winston and Lutz test was also proposed. This test is used for the evaluation of the mechanical aspects of treatment machines on which additional constraints are carried out due to the on-board imagers additional weights. Finally, a technique of generating digital phantoms in order to assess the performance of the proposed software tools is described. Software tools dedicated to an automatic quality control of IGRT devices allow reducing by a factor of 100 the time spent by the medical physics team to analyze the results of controls while improving their accuracy by using objective and reproducible analysis and offering traceability through generating automatic monitoring reports and statistical studies. (author) [fr

  16. Automated synthesis of image processing procedures using AI planning techniques

    Science.gov (United States)

    Chien, Steve; Mortensen, Helen

    1994-01-01

    This paper describes the Multimission VICAR (Video Image Communication and Retrieval) Planner (MVP) (Chien 1994) system, which uses artificial intelligence planning techniques (Iwasaki & Friedland, 1985, Pemberthy & Weld, 1992, Stefik, 1981) to automatically construct executable complex image processing procedures (using models of the smaller constituent image processing subprograms) in response to image processing requests made to the JPL Multimission Image Processing Laboratory (MIPL). The MVP system allows the user to specify the image processing requirements in terms of the various types of correction required. Given this information, MVP derives unspecified required processing steps and determines appropriate image processing programs and parameters to achieve the specified image processing goals. This information is output as an executable image processing program which can then be executed to fill the processing request.

  17. Digital image processing in NDT : Application to industrial radiography

    International Nuclear Information System (INIS)

    Aguirre, J.; Gonzales, C.; Pereira, D.

    1988-01-01

    Digital image processing techniques are applied to image enhancement discontinuity detection and characterization is radiographic test. Processing is performed mainly by image histogram modification, edge enhancement, texture and user interactive segmentation. Implementation was achieved in a microcomputer with video image capture system. Results are compared with those obtained through more specialized equipment main frame computers and high precision mechanical scanning digitisers. Procedures are intended as a precious stage for automatic defect detection

  18. Automatic multimodal real-time tracking for image plane alignment in interventional Magnetic Resonance Imaging

    International Nuclear Information System (INIS)

    Neumann, Markus

    2014-01-01

    Interventional magnetic resonance imaging (MRI) aims at performing minimally invasive percutaneous interventions, such as tumor ablations and biopsies, under MRI guidance. During such interventions, the acquired MR image planes are typically aligned to the surgical instrument (needle) axis and to surrounding anatomical structures of interest in order to efficiently monitor the advancement in real-time of the instrument inside the patient's body. Object tracking inside the MRI is expected to facilitate and accelerate MR-guided interventions by allowing to automatically align the image planes to the surgical instrument. In this PhD thesis, an image-based work-flow is proposed and refined for automatic image plane alignment. An automatic tracking work-flow was developed, performing detection and tracking of a passive marker directly in clinical real-time images. This tracking work-flow is designed for fully automated image plane alignment, with minimization of tracking-dedicated time. Its main drawback is its inherent dependence on the slow clinical MRI update rate. First, the addition of motion estimation and prediction with a Kalman filter was investigated and improved the work-flow tracking performance. Second, a complementary optical sensor was used for multi-sensor tracking in order to decouple the tracking update rate from the MR image acquisition rate. Performance of the work-flow was evaluated with both computer simulations and experiments using an MR compatible test bed. Results show a high robustness of the multi-sensor tracking approach for dynamic image plane alignment, due to the combination of the individual strengths of each sensor. (author)

  19. Automatic extraction of soft tissues from 3D MRI head images using model driven analysis

    International Nuclear Information System (INIS)

    Jiang, Hao; Yamamoto, Shinji; Imao, Masanao.

    1995-01-01

    This paper presents an automatic extraction system (called TOPS-3D : Top Down Parallel Pattern Recognition System for 3D Images) of soft tissues from 3D MRI head images by using model driven analysis algorithm. As the construction of system TOPS we developed, two concepts have been considered in the design of system TOPS-3D. One is the system having a hierarchical structure of reasoning using model information in higher level, and the other is a parallel image processing structure used to extract plural candidate regions for a destination entity. The new points of system TOPS-3D are as follows. (1) The TOPS-3D is a three-dimensional image analysis system including 3D model construction and 3D image processing techniques. (2) A technique is proposed to increase connectivity between knowledge processing in higher level and image processing in lower level. The technique is realized by applying opening operation of mathematical morphology, in which a structural model function defined in higher level by knowledge representation is immediately used to the filter function of opening operation as image processing in lower level. The system TOPS-3D applied to 3D MRI head images consists of three levels. First and second levels are reasoning part, and third level is image processing part. In experiments, we applied 5 samples of 3D MRI head images with size 128 x 128 x 128 pixels to the system TOPS-3D to extract the regions of soft tissues such as cerebrum, cerebellum and brain stem. From the experimental results, the system is robust for variation of input data by using model information, and the position and shape of soft tissues are extracted corresponding to anatomical structure. (author)

  20. Scheduling algorithms for automatic control systems for technological processes

    Science.gov (United States)

    Chernigovskiy, A. S.; Tsarev, R. Yu; Kapulin, D. V.

    2017-01-01

    Wide use of automatic process control systems and the usage of high-performance systems containing a number of computers (processors) give opportunities for creation of high-quality and fast production that increases competitiveness of an enterprise. Exact and fast calculations, control computation, and processing of the big data arrays - all of this requires the high level of productivity and, at the same time, minimum time of data handling and result receiving. In order to reach the best time, it is necessary not only to use computing resources optimally, but also to design and develop the software so that time gain will be maximal. For this purpose task (jobs or operations), scheduling techniques for the multi-machine/multiprocessor systems are applied. Some of basic task scheduling methods for the multi-machine process control systems are considered in this paper, their advantages and disadvantages come to light, and also some usage considerations, in case of the software for automatic process control systems developing, are made.

  1. Introduction to computer image processing

    Science.gov (United States)

    Moik, J. G.

    1973-01-01

    Theoretical backgrounds and digital techniques for a class of image processing problems are presented. Image formation in the context of linear system theory, image evaluation, noise characteristics, mathematical operations on image and their implementation are discussed. Various techniques for image restoration and image enhancement are presented. Methods for object extraction and the problem of pictorial pattern recognition and classification are discussed.

  2. Adaptive and automatic red blood cell counting method based on microscopic hyperspectral imaging technology

    Science.gov (United States)

    Liu, Xi; Zhou, Mei; Qiu, Song; Sun, Li; Liu, Hongying; Li, Qingli; Wang, Yiting

    2017-12-01

    Red blood cell counting, as a routine examination, plays an important role in medical diagnoses. Although automated hematology analyzers are widely used, manual microscopic examination by a hematologist or pathologist is still unavoidable, which is time-consuming and error-prone. This paper proposes a full-automatic red blood cell counting method which is based on microscopic hyperspectral imaging of blood smears and combines spatial and spectral information to achieve high precision. The acquired hyperspectral image data of the blood smear in the visible and near-infrared spectral range are firstly preprocessed, and then a quadratic blind linear unmixing algorithm is used to get endmember abundance images. Based on mathematical morphological operation and an adaptive Otsu’s method, a binaryzation process is performed on the abundance images. Finally, the connected component labeling algorithm with magnification-based parameter setting is applied to automatically select the binary images of red blood cell cytoplasm. Experimental results show that the proposed method can perform well and has potential for clinical applications.

  3. Characterization of a sequential pipeline approach to automatic tissue segmentation from brain MR Images

    International Nuclear Information System (INIS)

    Hou, Zujun; Huang, Su

    2008-01-01

    Quantitative analysis of gray matter and white matter in brain magnetic resonance imaging (MRI) is valuable for neuroradiology and clinical practice. Submission of large collections of MRI scans to pipeline processing is increasingly important. We characterized this process and suggest several improvements. To investigate tissue segmentation from brain MR images through a sequential approach, a pipeline that consecutively executes denoising, skull/scalp removal, intensity inhomogeneity correction and intensity-based classification was developed. The denoising phase employs a 3D-extension of the Bayes-Shrink method. The inhomogeneity is corrected by an improvement of the Dawant et al.'s method with automatic generation of reference points. The N3 method has also been evaluated. Subsequently the brain tissue is segmented into cerebrospinal fluid, gray matter and white matter by a generalized Otsu thresholding technique. Intensive comparisons with other sequential or iterative methods have been carried out using simulated and real images. The sequential approach with judicious selection on the algorithm selection in each stage is not only advantageous in speed, but also can attain at least as accurate segmentation as iterative methods under a variety of noise or inhomogeneity levels. A sequential approach to tissue segmentation, which consecutively executes the wavelet shrinkage denoising, scalp/skull removal, inhomogeneity correction and intensity-based classification was developed to automatically segment the brain tissue into CSF, GM and WM from brain MR images. This approach is advantageous in several common applications, compared with other pipeline methods. (orig.)

  4. Semi-Automatic Image Labelling Using Depth Information

    Directory of Open Access Journals (Sweden)

    Mostafa Pordel

    2015-05-01

    Full Text Available Image labeling tools help to extract objects within images to be used as ground truth for learning and testing in object detection processes. The inputs for such tools are usually RGB images. However with new widely available low-cost sensors like Microsoft Kinect it is possible to use depth images in addition to RGB images. Despite many existing powerful tools for image labeling, there is a need for RGB-depth adapted tools. We present a new interactive labeling tool that partially automates image labeling, with two major contributions. First, the method extends the concept of image segmentation from RGB to RGB-depth using Fuzzy C-Means clustering, connected component labeling and superpixels, and generates bounding pixels to extract the desired objects. Second, it minimizes the interaction time needed for object extraction by doing an efficient segmentation in RGB-depth space. Very few clicks are needed for the entire procedure compared to existing, tools. When the desired object is the closest object to the camera, which is often the case in robotics applications, no clicks at all are required to accurately extract the object.

  5. Introduction to digital image processing

    CERN Document Server

    Pratt, William K

    2013-01-01

    CONTINUOUS IMAGE CHARACTERIZATION Continuous Image Mathematical Characterization Image RepresentationTwo-Dimensional SystemsTwo-Dimensional Fourier TransformImage Stochastic CharacterizationPsychophysical Vision Properties Light PerceptionEye PhysiologyVisual PhenomenaMonochrome Vision ModelColor Vision ModelPhotometry and ColorimetryPhotometryColor MatchingColorimetry ConceptsColor SpacesDIGITAL IMAGE CHARACTERIZATION Image Sampling and Reconstruction Image Sampling and Reconstruction ConceptsMonochrome Image Sampling SystemsMonochrome Image Reconstruction SystemsColor Image Sampling SystemsImage QuantizationScalar QuantizationProcessing Quantized VariablesMonochrome and Color Image QuantizationDISCRETE TWO-DIMENSIONAL LINEAR PROCESSING Discrete Image Mathematical Characterization Vector-Space Image RepresentationGeneralized Two-Dimensional Linear OperatorImage Statistical CharacterizationImage Probability Density ModelsLinear Operator Statistical RepresentationSuperposition and ConvolutionFinite-Area Superp...

  6. Automatic Registration Method for Fusion of ZY-1-02C Satellite Images

    Directory of Open Access Journals (Sweden)

    Qi Chen

    2013-12-01

    Full Text Available Automatic image registration (AIR has been widely studied in the fields of medical imaging, computer vision, and remote sensing. In various cases, such as image fusion, high registration accuracy should be achieved to meet application requirements. For satellite images, the large image size and unstable positioning accuracy resulting from the limited manufacturing technology of charge-coupled device, focal plane distortion, and unrecorded spacecraft jitter lead to difficulty in obtaining agreeable corresponding points for registration using only area-based matching or feature-based matching. In this situation, a coarse-to-fine matching strategy integrating two types of algorithms is proven feasible and effective. In this paper, an AIR method for application to the fusion of ZY-1-02C satellite imagery is proposed. First, the images are geometrically corrected. Coarse matching, based on scale invariant feature transform, is performed for the subsampled corrected images, and a rough global estimation is made with the matching results. Harris feature points are then extracted, and the coordinates of the corresponding points are calculated according to the global estimation results. Precise matching is conducted, based on normalized cross correlation and least squares matching. As complex image distortion cannot be precisely estimated, a local estimation using the structure of triangulated irregular network is applied to eliminate the false matches. Finally, image resampling is conducted, based on local affine transformation, to achieve high-precision registration. Experiments with ZY-1-02C datasets demonstrate that the accuracy of the proposed method meets the requirements of fusion application, and its efficiency is also suitable for the commercial operation of the automatic satellite data process system.

  7. CIE L*a*b*: comparison of digital images obtained photographically by manual and automatic modes

    Directory of Open Access Journals (Sweden)

    Fabiana Takatsui

    2012-12-01

    Full Text Available The aim of this study was to analyze the color alterations performed by the CIE L*a*b* system in the digital imaging of shade guide tabs, which were obtained photographically according to the automatic and manual modes. This study also sought to examine the observers' agreement in quantifying the coordinates. Four Vita Lumin Vaccum shade guide tabs were used: A3.5, B1, B3 and C4. An EOS Canon digital camera was used to record the digital images of the shade tabs, and the images were processed using Adobe Photoshop software. A total of 80 observations (five replicates of each shade according to two observers in two modes, specifically, automatic and manual were obtained, leading to color values of L*, a* and b*. The color difference (ΔE between the modes was calculated and classified as either clinically acceptable or unacceptable. The results indicated that there was agreement between the two observers in obtaining the L*, a* and b* values related to all guides. However, the B1, B3, and C4 shade tabs had ΔE values classified as clinically acceptable (ΔE = 0.44, ΔE = 2.04 and ΔE = 2.69, respectively. The A3.5 shade tab had a ΔE value classified as clinically unacceptable (ΔE = 4.17, as it presented higher values for luminosity in the automatic mode (L* = 54.0 than in the manual mode (L* = 50.6. It was concluded that the B1, B3 and C4 shade tabs can be used at any of the modes in digital camera (manual or automatic, which was a different finding from that observed for the A3.5 shade tab.

  8. AUTOMATIC INTERPRETATION OF HIGH RESOLUTION SAR IMAGES: FIRST RESULTS OF SAR IMAGE SIMULATION FOR SINGLE BUILDINGS

    Directory of Open Access Journals (Sweden)

    J. Tao

    2012-09-01

    Full Text Available Due to the all-weather data acquisition capabilities, high resolution space borne Synthetic Aperture Radar (SAR plays an important role in remote sensing applications like change detection. However, because of the complex geometric mapping of buildings in urban areas, SAR images are often hard to interpret. SAR simulation techniques ease the visual interpretation of SAR images, while fully automatic interpretation is still a challenge. This paper presents a method for supporting the interpretation of high resolution SAR images with simulated radar images using a LiDAR digital surface model (DSM. Line features are extracted from the simulated and real SAR images and used for matching. A single building model is generated from the DSM and used for building recognition in the SAR image. An application for the concept is presented for the city centre of Munich where the comparison of the simulation to the TerraSAR-X data shows a good similarity. Based on the result of simulation and matching, special features (e.g. like double bounce lines, shadow areas etc. can be automatically indicated in SAR image.

  9. scikit-image: image processing in Python.

    Science.gov (United States)

    van der Walt, Stéfan; Schönberger, Johannes L; Nunez-Iglesias, Juan; Boulogne, François; Warner, Joshua D; Yager, Neil; Gouillart, Emmanuelle; Yu, Tony

    2014-01-01

    scikit-image is an image processing library that implements algorithms and utilities for use in research, education and industry applications. It is released under the liberal Modified BSD open source license, provides a well-documented API in the Python programming language, and is developed by an active, international team of collaborators. In this paper we highlight the advantages of open source to achieve the goals of the scikit-image library, and we showcase several real-world image processing applications that use scikit-image. More information can be found on the project homepage, http://scikit-image.org.

  10. scikit-image: image processing in Python

    Directory of Open Access Journals (Sweden)

    Stéfan van der Walt

    2014-06-01

    Full Text Available scikit-image is an image processing library that implements algorithms and utilities for use in research, education and industry applications. It is released under the liberal Modified BSD open source license, provides a well-documented API in the Python programming language, and is developed by an active, international team of collaborators. In this paper we highlight the advantages of open source to achieve the goals of the scikit-image library, and we showcase several real-world image processing applications that use scikit-image. More information can be found on the project homepage, http://scikit-image.org.

  11. Rotor assembly and method for automatically processing liquids

    Science.gov (United States)

    Burtis, C.A.; Johnson, W.F.; Walker, W.A.

    1992-12-22

    A rotor assembly is described for performing a relatively large number of processing steps upon a sample, such as a whole blood sample, and a diluent, such as water. It includes a rotor body for rotation about an axis and includes a network of chambers within which various processing steps are performed upon the sample and diluent and passageways through which the sample and diluent are transferred. A transfer mechanism is movable through the rotor body by the influence of a magnetic field generated adjacent the transfer mechanism and movable along the rotor body, and the assembly utilizes centrifugal force, a transfer of momentum and capillary action to perform any of a number of processing steps such as separation, aliquoting, transference, washing, reagent addition and mixing of the sample and diluent within the rotor body. The rotor body is particularly suitable for automatic immunoassay analyses. 34 figs.

  12. Automatic luminous reflections detector using global threshold with increased luminosity contrast in images

    Science.gov (United States)

    Silva, Ricardo Petri; Naozuka, Gustavo Taiji; Mastelini, Saulo Martiello; Felinto, Alan Salvany

    2018-01-01

    The incidence of luminous reflections (LR) in captured images can interfere with the color of the affected regions. These regions tend to oversaturate, becoming whitish and, consequently, losing the original color information of the scene. Decision processes that employ images acquired from digital cameras can be impaired by the LR incidence. Such applications include real-time video surgeries, facial, and ocular recognition. This work proposes an algorithm called contrast enhancement of potential LR regions, which is a preprocessing to increase the contrast of potential LR regions, in order to improve the performance of automatic LR detectors. In addition, three automatic detectors were compared with and without the employment of our preprocessing method. The first one is a technique already consolidated in the literature called the Chang-Tseng threshold. We propose two automatic detectors called adapted histogram peak and global threshold. We employed four performance metrics to evaluate the detectors, namely, accuracy, precision, exactitude, and root mean square error. The exactitude metric is developed by this work. Thus, a manually defined reference model was created. The global threshold detector combined with our preprocessing method presented the best results, with an average exactitude rate of 82.47%.

  13. Automatic Detection of Storm Damages Using High-Altitude Photogrammetric Imaging

    Science.gov (United States)

    Litkey, P.; Nurminen, K.; Honkavaara, E.

    2013-05-01

    The risks of storms that cause damage in forests are increasing due to climate change. Quickly detecting fallen trees, assessing the amount of fallen trees and efficiently collecting them are of great importance for economic and environmental reasons. Visually detecting and delineating storm damage is a laborious and error-prone process; thus, it is important to develop cost-efficient and highly automated methods. Objective of our research project is to investigate and develop a reliable and efficient method for automatic storm damage detection, which is based on airborne imagery that is collected after a storm. The requirements for the method are the before-storm and after-storm surface models. A difference surface is calculated using two DSMs and the locations where significant changes have appeared are automatically detected. In our previous research we used four-year old airborne laser scanning surface model as the before-storm surface. The after-storm DSM was provided from the photogrammetric images using the Next Generation Automatic Terrain Extraction (NGATE) algorithm of Socet Set software. We obtained 100% accuracy in detection of major storm damages. In this investigation we will further evaluate the sensitivity of the storm-damage detection process. We will investigate the potential of national airborne photography, that is collected at no-leaf season, to automatically produce a before-storm DSM using image matching. We will also compare impact of the terrain extraction algorithm to the results. Our results will also promote the potential of national open source data sets in the management of natural disasters.

  14. Automatic and controlled processing and the Broad Autism Phenotype.

    Science.gov (United States)

    Camodeca, Amy; Voelker, Sylvia

    2016-01-30

    Research related to verbal fluency in the Broad Autism Phenotype (BAP) is limited and dated, but generally suggests intact abilities in the context of weaknesses in other areas of executive function (Hughes et al., 1999; Wong et al., 2006; Delorme et al., 2007). Controlled processing, the generation of search strategies after initial, automated responses are exhausted (Spat, 2013), has yet to be investigated in the BAP, and may be evidenced in verbal fluency tasks. One hundred twenty-nine participants completed the Delis-Kaplan Executive Function System Verbal Fluency test (D-KEFS; Delis et al., 2001) and the Broad Autism Phenotype Questionnaire (BAPQ; Hurley et al., 2007). The BAP group (n=53) produced significantly fewer total words during the 2nd 15" interval compared to the Non-BAP (n=76) group. Partial correlations indicated similar relations between verbal fluency variables for each group. Regression analyses predicting 2nd 15" interval scores suggested differentiation between controlled and automatic processing skills in both groups. Results suggest adequate automatic processing, but slowed development of controlled processing strategies in the BAP, and provide evidence for similar underlying cognitive constructs for both groups. Controlled processing was predictive of Block Design score for Non-BAP participants, and was predictive of Pragmatic Language score on the BAPQ for BAP participants. These results are similar to past research related to strengths and weaknesses in the BAP, respectively, and suggest that controlled processing strategy use may be required in instances of weak lower-level skills. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. AROMA-AIRWICK: a CHLOE/CDC-3600 system for the automatic identification of spark images and their association into tracks

    International Nuclear Information System (INIS)

    Clark, R.K.

    The AROMA-AIRWICK System for CHLOE, an automatic film scanning equipment built at Argonne by Donald Hodges, and the CDC-3600 computer is a system for the automatic identification of spark images and their association into tracks. AROMA-AIRWICK has been an outgrowth of the generally recognized need for the automatic processing of high energy physics data and the fact that the Argonne National Laboratory has been a center of serious spark chamber development in recent years

  16. Sensitometric comparison of E and F dental radiographic films using manual and automatic processing systems

    Directory of Open Access Journals (Sweden)

    Dabaghi A.

    2008-04-01

    Full Text Available Background and Aim: Processing conditions affect sensitometric properties of X-ray films. In this study, we aimed to evaluate the sensitometric characteristics of InSight (IP, a new F-speed film, in fresh and used processing solutions in dental office condition and compare them with Ektaspeed Plus (EP.Materials and Methods: In this experimental in vitro study, an aluminium step wedge was used to construct characteristic curves for InSight and Ektaspeed Plus films (Kodak Eastman, Rochester, USA.All films were processed in Champion solution (X-ray Iran, Tehran, Iran both manually and automatically in a period of six days. Unexposed films of both types were processed manually and automatically to determine base plus fog density. Speed and film contrast were measured according to ISO definition. Data were analyzed using one-way ANOVA and T tests with P<0.05 as the level of significance.Results: IP was 20 to 22% faster than EP and showed to be an F-speed film when processed in automatic condition and E-F film when processed manually. Also it was F-speed in fresh solution and E-speed in old solution. IP and EP contrasts were similar in automatic processing but EP contrast was higher when processed manually. Both EP and IP films had standard values of base plus fog (<0.35 and B+F densities were decreased in old solution.Conclusion: Based on the results of this study, InSight is a F-speed film with a speed of at least 20% greater than Ektaspeed. In addition, it reduces patient exposure with no damage to image quality.

  17. Fast automatic segmentation of anatomical structures in x-ray computed tomography images to improve fluorescence molecular tomography reconstruction.

    Science.gov (United States)

    Freyer, Marcus; Ale, Angelique; Schulz, Ralf B; Zientkowska, Marta; Ntziachristos, Vasilis; Englmeier, Karl-Hans

    2010-01-01

    The recent development of hybrid imaging scanners that integrate fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) allows the utilization of x-ray information as image priors for improving optical tomography reconstruction. To fully capitalize on this capacity, we consider a framework for the automatic and fast detection of different anatomic structures in murine XCT images. To accurately differentiate between different structures such as bone, lung, and heart, a combination of image processing steps including thresholding, seed growing, and signal detection are found to offer optimal segmentation performance. The algorithm and its utilization in an inverse FMT scheme that uses priors is demonstrated on mouse images.

  18. Automatic registration of terrestrial point cloud using panoramic reflectance images

    NARCIS (Netherlands)

    Kang, Z.

    2008-01-01

    Much attention is paid to registration of terrestrial point clouds nowadays. Research is carried out towards improved efficiency and automation of the registration process. This paper reports a new approach for point clouds registration utilizing reflectance panoramic images. The approach follows a

  19. Automatic performance tuning of parallel and accelerated seismic imaging kernels

    KAUST Repository

    Haberdar, Hakan

    2014-01-01

    With the increased complexity and diversity of mainstream high performance computing systems, significant effort is required to tune parallel applications in order to achieve the best possible performance for each particular platform. This task becomes more and more challenging and requiring a larger set of skills. Automatic performance tuning is becoming a must for optimizing applications such as Reverse Time Migration (RTM) widely used in seismic imaging for oil and gas exploration. An empirical search based auto-tuning approach is applied to the MPI communication operations of the parallel isotropic and tilted transverse isotropic kernels. The application of auto-tuning using the Abstract Data and Communication Library improved the performance of the MPI communications as well as developer productivity by providing a higher level of abstraction. Keeping productivity in mind, we opted toward pragma based programming for accelerated computation on latest accelerated architectures such as GPUs using the fairly new OpenACC standard. The same auto-tuning approach is also applied to the OpenACC accelerated seismic code for optimizing the compute intensive kernel of the Reverse Time Migration application. The application of such technique resulted in an improved performance of the original code and its ability to adapt to different execution environments.

  20. Automatic segmentation of dynamic neuroreceptor single-photon emission tomography images using fuzzy clustering

    International Nuclear Information System (INIS)

    Acton, P.D.; Pilowsky, L.S.; Kung, H.F.; Ell, P.J.

    1999-01-01

    The segmentation of medical images is one of the most important steps in the analysis and quantification of imaging data. However, partial volume artefacts make accurate tissue boundary definition difficult, particularly for images with lower resolution commonly used in nuclear medicine. In single-photon emission tomography (SPET) neuroreceptor studies, areas of specific binding are usually delineated by manually drawing regions of interest (ROIs), a time-consuming and subjective process. This paper applies the technique of fuzzy c-means clustering (FCM) to automatically segment dynamic neuroreceptor SPET images. Fuzzy clustering was tested using a realistic, computer-generated, dynamic SPET phantom derived from segmenting an MR image of an anthropomorphic brain phantom. Also, the utility of applying FCM to real clinical data was assessed by comparison against conventional ROI analysis of iodine-123 iodobenzamide (IBZM) binding to dopamine D 2 /D 3 receptors in the brains of humans. In addition, a further test of the methodology was assessed by applying FCM segmentation to [ 123 I]IDAM images (5-iodo-2-[[2-2-[(dimethylamino)methyl]phenyl]thio] benzyl alcohol) of serotonin transporters in non-human primates. In the simulated dynamic SPET phantom, over a wide range of counts and ratios of specific binding to background, FCM correlated very strongly with the true counts (correlation coefficient r 2 >0.99, P 123 I]IBZM data comparable with manual ROI analysis, with the binding ratios derived from both methods significantly correlated (r 2 =0.83, P<0.0001). Fuzzy clustering is a powerful tool for the automatic, unsupervised segmentation of dynamic neuroreceptor SPET images. Where other automated techniques fail completely, and manual ROI definition would be highly subjective, FCM is capable of segmenting noisy images in a robust and repeatable manner. (orig.)

  1. Fully automatic algorithm for the analysis of vessels in the angiographic image of the eye fundus

    Directory of Open Access Journals (Sweden)

    Koprowski Robert

    2012-06-01

    Full Text Available Abstract Background The available scientific literature contains descriptions of manual, semi-automated and automated methods for analysing angiographic images. The presented algorithms segment vessels calculating their tortuosity or number in a given area. We describe a statistical analysis of the inclination of the vessels in the fundus as related to their distance from the center of the optic disc. Methods The paper presents an automated method for analysing vessels which are found in angiographic images of the eye using a Matlab implemented algorithm. It performs filtration and convolution operations with suggested masks. The result is an image containing information on the location of vessels and their inclination angle in relation to the center of the optic disc. This is a new approach to the analysis of vessels whose usefulness has been confirmed in the diagnosis of hypertension. Results The proposed algorithm analyzed and processed the images of the eye fundus using a classifier in the form of decision trees. It enabled the proper classification of healthy patients and those with hypertension. The result is a very good separation of healthy subjects from the hypertensive ones: sensitivity - 83%, specificity - 100%, accuracy - 96%. This confirms a practical usefulness of the proposed method. Conclusions This paper presents an algorithm for the automatic analysis of morphological parameters of the fundus vessels. Such an analysis is performed during fluorescein angiography of the eye. The presented algorithm automatically calculates the global statistical features connected with both tortuosity of vessels and their total area or their number.

  2. Development of automatic navigation measuring system using template-matching software in image guided neurosurgery

    International Nuclear Information System (INIS)

    Watanabe, Yohei; Hayashi, Yuichiro; Fujii, Masazumi; Wakabayashi, Toshihiko; Kimura, Miyuki; Tsuzaka, Masatoshi; Sugiura, Akihiro

    2010-01-01

    An image-guided neurosurgery and neuronavigation system based on magnetic resonance imaging has been used as an indispensable tool for resection of brain tumors. Therefore, accuracy of the neuronavigation system, provided by periodic quality assurance (QA), is essential for image-guided neurosurgery. Two types of accuracy index, fiducial registration error (FRE) and target registration error (TRE), have been used to evaluate navigation accuracy. FRE shows navigation accuracy on points that have been registered. On the other hand, TRE shows navigation accuracy on points such as tumor, skin, and fiducial markers. This study shows that TRE is more reliable than FRE. However, calculation of TRE is a time-consuming, subjective task. Software for QA was developed to compute TRE. This software calculates TRE automatically by an image processing technique, such as automatic template matching. TRE was calculated by the software and compared with the results obtained by manual calculation. Using the software made it possible to achieve a reliable QA system. (author)

  3. A rapid automatic analyzer and its methodology for effective bentonite content based on image recognition technology

    Directory of Open Access Journals (Sweden)

    Wei Long

    2016-09-01

    Full Text Available Fast and accurate determination of effective bentonite content in used clay bonded sand is very important for selecting the correct mixing ratio and mixing process to obtain high-performance molding sand. Currently, the effective bentonite content is determined by testing the ethylene blue absorbed in used clay bonded sand, which is usually a manual operation with some disadvantages including complicated process, long testing time and low accuracy. A rapid automatic analyzer of the effective bentonite content in used clay bonded sand was developed based on image recognition technology. The instrument consists of auto stirring, auto liquid removal, auto titration, step-rotation and image acquisition components, and processor. The principle of the image recognition method is first to decompose the color images into three-channel gray images based on the photosensitive degree difference of the light blue and dark blue in the three channels of red, green and blue, then to make the gray values subtraction calculation and gray level transformation of the gray images, and finally, to extract the outer circle light blue halo and the inner circle blue spot and calculate their area ratio. The titration process can be judged to reach the end-point while the area ratio is higher than the setting value.

  4. Automatic segmentation of lumbar vertebrae in CT images

    Science.gov (United States)

    Kulkarni, Amruta; Raina, Akshita; Sharifi Sarabi, Mona; Ahn, Christine S.; Babayan, Diana; Gaonkar, Bilwaj; Macyszyn, Luke; Raghavendra, Cauligi

    2017-03-01

    Lower back pain is one of the most prevalent disorders in the developed/developing world. However, its etiology is poorly understood and treatment is often determined subjectively. In order to quantitatively study the emergence and evolution of back pain, it is necessary to develop consistently measurable markers for pathology. Imaging based measures offer one solution to this problem. The development of imaging based on quantitative biomarkers for the lower back necessitates automated techniques to acquire this data. While the problem of segmenting lumbar vertebrae has been addressed repeatedly in literature, the associated problem of computing relevant biomarkers on the basis of the segmentation has not been addressed thoroughly. In this paper, we propose a Random-Forest based approach that learns to segment vertebral bodies in CT images followed by a biomarker evaluation framework that extracts vertebral heights and widths from the segmentations obtained. Our dataset consists of 15 CT sagittal scans obtained from General Electric Healthcare. Our main approach is divided into three parts: the first stage is image pre-processing which is used to correct for variations in illumination across all the images followed by preparing the foreground and background objects from images; the next stage is Machine Learning using Random-Forests, which distinguishes the interest-point vectors between foreground or background; and the last step is image post-processing, which is crucial to refine the results of classifier. The Dice coefficient was used as a statistical validation metric to evaluate the performance of our segmentations with an average value of 0.725 for our dataset.

  5. Automatic Detection of Inactive Solar Cell Cracks in Electroluminescence Images

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    2017-01-01

    We propose an algorithm for automatic determination of the electroluminescence (EL) signal threshold level corresponding to inactive solar cell cracks, resulting from their disconnection from the electrical circuit of the cell. The method enables automatic quantification of the cell crack size an...

  6. Automatic Detection of Inactive Solar Cell Cracks in Electroluminescence Images

    DEFF Research Database (Denmark)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    2017-01-01

    We propose an algorithm for automatic determination of the electroluminescence (EL) signal threshold level corresponding to inactive solar cell cracks, resulting from their disconnection from the electrical circuit of the cell. The method enables automatic quantification of the cell crack size...

  7. Image processing and recognition for biological images.

    Science.gov (United States)

    Uchida, Seiichi

    2013-05-01

    This paper reviews image processing and pattern recognition techniques, which will be useful to analyze bioimages. Although this paper does not provide their technical details, it will be possible to grasp their main tasks and typical tools to handle the tasks. Image processing is a large research area to improve the visibility of an input image and acquire some valuable information from it. As the main tasks of image processing, this paper introduces gray-level transformation, binarization, image filtering, image segmentation, visual object tracking, optical flow and image registration. Image pattern recognition is the technique to classify an input image into one of the predefined classes and also has a large research area. This paper overviews its two main modules, that is, feature extraction module and classification module. Throughout the paper, it will be emphasized that bioimage is a very difficult target for even state-of-the-art image processing and pattern recognition techniques due to noises, deformations, etc. This paper is expected to be one tutorial guide to bridge biology and image processing researchers for their further collaboration to tackle such a difficult target. © 2013 The Author Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  8. Automatic Cell Segmentation in Fluorescence Images of Confluent Cell Monolayers Using Multi-object Geometric Deformable Model.

    Science.gov (United States)

    Yang, Zhen; Bogovic, John A; Carass, Aaron; Ye, Mao; Searson, Peter C; Prince, Jerry L

    2013-03-13

    With the rapid development of microscopy for cell imaging, there is a strong and growing demand for image analysis software to quantitatively study cell morphology. Automatic cell segmentation is an important step in image analysis. Despite substantial progress, there is still a need to improve the accuracy, efficiency, and adaptability to different cell morphologies. In this paper, we propose a fully automatic method for segmenting cells in fluorescence images of confluent cell monolayers. This method addresses several challenges through a combination of ideas. 1) It realizes a fully automatic segmentation process by first detecting the cell nuclei as initial seeds and then using a multi-object geometric deformable model (MGDM) for final segmentation. 2) To deal with different defects in the fluorescence images, the cell junctions are enhanced by applying an order-statistic filter and principal curvature based image operator. 3) The final segmentation using MGDM promotes robust and accurate segmentation results, and guarantees no overlaps and gaps between neighboring cells. The automatic segmentation results are compared with manually delineated cells, and the average Dice coefficient over all distinguishable cells is 0.88.

  9. Automatic target classification of man-made objects in synthetic aperture radar images using Gabor wavelet and neural network

    Science.gov (United States)

    Vasuki, Perumal; Roomi, S. Mohamed Mansoor

    2013-01-01

    Processing of synthetic aperture radar (SAR) images has led to the development of automatic target classification approaches. These approaches help to classify individual and mass military ground vehicles. This work aims to develop an automatic target classification technique to classify military targets like truck/tank/armored car/cannon/bulldozer. The proposed method consists of three stages via preprocessing, feature extraction, and neural network (NN). The first stage removes speckle noise in a SAR image by the identified frost filter and enhances the image by histogram equalization. The second stage uses a Gabor wavelet to extract the image features. The third stage classifies the target by an NN classifier using image features. The proposed work performs better than its counterparts, like K-nearest neighbor (KNN). The proposed work performs better on databases like moving and stationary target acquisition and recognition against the earlier methods by KNN.

  10. Automatic anatomy recognition in whole-body PET/CT images

    International Nuclear Information System (INIS)

    Wang, Huiqian; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.; Zhao, Liming

    2016-01-01

    Purpose: Whole-body positron emission tomography/computed tomography (PET/CT) has become a standard method of imaging patients with various disease conditions, especially cancer. Body-wide accurate quantification of disease burden in PET/CT images is important for characterizing lesions, staging disease, prognosticating patient outcome, planning treatment, and evaluating disease response to therapeutic interventions. However, body-wide anatomy recognition in PET/CT is a critical first step for accurately and automatically quantifying disease body-wide, body-region-wise, and organwise. This latter process, however, has remained a challenge due to the lower quality of the anatomic information portrayed in the CT component of this imaging modality and the paucity of anatomic details in the PET component. In this paper, the authors demonstrate the adaptation of a recently developed automatic anatomy recognition (AAR) methodology [Udupa et al., “Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images,” Med. Image Anal. 18, 752–771 (2014)] to PET/CT images. Their goal was to test what level of object localization accuracy can be achieved on PET/CT compared to that achieved on diagnostic CT images. Methods: The authors advance the AAR approach in this work in three fronts: (i) from body-region-wise treatment in the work of Udupa et al. to whole body; (ii) from the use of image intensity in optimal object recognition in the work of Udupa et al. to intensity plus object-specific texture properties, and (iii) from the intramodality model-building-recognition strategy to the intermodality approach. The whole-body approach allows consideration of relationships among objects in different body regions, which was previously not possible. Consideration of object texture allows generalizing the previous optimal threshold-based fuzzy model recognition method from intensity images to any derived fuzzy membership image, and in the process

  11. Automatic anatomy recognition in whole-body PET/CT images

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huiqian [College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China and Medical Image Processing Group Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Udupa, Jayaram K., E-mail: jay@mail.med.upenn.edu; Odhner, Dewey; Tong, Yubing; Torigian, Drew A. [Medical Image Processing Group Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Zhao, Liming [Medical Image Processing Group Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and Research Center of Intelligent System and Robotics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China)

    2016-01-15

    Purpose: Whole-body positron emission tomography/computed tomography (PET/CT) has become a standard method of imaging patients with various disease conditions, especially cancer. Body-wide accurate quantification of disease burden in PET/CT images is important for characterizing lesions, staging disease, prognosticating patient outcome, planning treatment, and evaluating disease response to therapeutic interventions. However, body-wide anatomy recognition in PET/CT is a critical first step for accurately and automatically quantifying disease body-wide, body-region-wise, and organwise. This latter process, however, has remained a challenge due to the lower quality of the anatomic information portrayed in the CT component of this imaging modality and the paucity of anatomic details in the PET component. In this paper, the authors demonstrate the adaptation of a recently developed automatic anatomy recognition (AAR) methodology [Udupa et al., “Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images,” Med. Image Anal. 18, 752–771 (2014)] to PET/CT images. Their goal was to test what level of object localization accuracy can be achieved on PET/CT compared to that achieved on diagnostic CT images. Methods: The authors advance the AAR approach in this work in three fronts: (i) from body-region-wise treatment in the work of Udupa et al. to whole body; (ii) from the use of image intensity in optimal object recognition in the work of Udupa et al. to intensity plus object-specific texture properties, and (iii) from the intramodality model-building-recognition strategy to the intermodality approach. The whole-body approach allows consideration of relationships among objects in different body regions, which was previously not possible. Consideration of object texture allows generalizing the previous optimal threshold-based fuzzy model recognition method from intensity images to any derived fuzzy membership image, and in the process

  12. Image processing with ImageJ

    CERN Document Server

    Pascau, Javier

    2013-01-01

    The book will help readers discover the various facilities of ImageJ through a tutorial-based approach.This book is targeted at scientists, engineers, technicians, and managers, and anyone who wishes to master ImageJ for image viewing, processing, and analysis. If you are a developer, you will be able to code your own routines after you have finished reading this book. No prior knowledge of ImageJ is expected.

  13. A complete software application for automatic registration of x-ray mammography and magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Solves-Llorens, J. A.; Rupérez, M. J., E-mail: mjruperez@labhuman.i3bh.es; Monserrat, C. [LabHuman, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia (Spain); Feliu, E.; García, M. [Hospital Clínica Benidorm, Avda. Alfonso Puchades, 8, 03501 Benidorm (Alicante) (Spain); Lloret, M. [Hospital Universitari y Politècnic La Fe, Bulevar Sur, 46026 Valencia (Spain)

    2014-08-15

    Purpose: This work presents a complete and automatic software application to aid radiologists in breast cancer diagnosis. The application is a fully automated method that performs a complete registration of magnetic resonance (MR) images and x-ray (XR) images in both directions (from MR to XR and from XR to MR) and for both x-ray mammograms, craniocaudal (CC), and mediolateral oblique (MLO). This new approximation allows radiologists to mark points in the MR images and, without any manual intervention, it provides their corresponding points in both types of XR mammograms and vice versa. Methods: The application automatically segments magnetic resonance images and x-ray images using the C-Means method and the Otsu method, respectively. It compresses the magnetic resonance images in both directions, CC and MLO, using a biomechanical model of the breast that distinguishes the specific biomechanical behavior of each one of its three tissues (skin, fat, and glandular tissue) separately. It makes a projection of both compressions and registers them with the original XR images using affine transformations and nonrigid registration methods. Results: The application has been validated by two expert radiologists. This was carried out through a quantitative validation on 14 data sets in which the Euclidean distance between points marked by the radiologists and the corresponding points obtained by the application were measured. The results showed a mean error of 4.2 ± 1.9 mm for the MRI to CC registration, 4.8 ± 1.3 mm for the MRI to MLO registration, and 4.1 ± 1.3 mm for the CC and MLO to MRI registration. Conclusions: A complete software application that automatically registers XR and MR images of the breast has been implemented. The application permits radiologists to estimate the position of a lesion that is suspected of being a tumor in an imaging modality based on its position in another different modality with a clinically acceptable error. The results show that the

  14. A complete software application for automatic registration of x-ray mammography and magnetic resonance images

    International Nuclear Information System (INIS)

    Solves-Llorens, J. A.; Rupérez, M. J.; Monserrat, C.; Feliu, E.; García, M.; Lloret, M.

    2014-01-01

    Purpose: This work presents a complete and automatic software application to aid radiologists in breast cancer diagnosis. The application is a fully automated method that performs a complete registration of magnetic resonance (MR) images and x-ray (XR) images in both directions (from MR to XR and from XR to MR) and for both x-ray mammograms, craniocaudal (CC), and mediolateral oblique (MLO). This new approximation allows radiologists to mark points in the MR images and, without any manual intervention, it provides their corresponding points in both types of XR mammograms and vice versa. Methods: The application automatically segments magnetic resonance images and x-ray images using the C-Means method and the Otsu method, respectively. It compresses the magnetic resonance images in both directions, CC and MLO, using a biomechanical model of the breast that distinguishes the specific biomechanical behavior of each one of its three tissues (skin, fat, and glandular tissue) separately. It makes a projection of both compressions and registers them with the original XR images using affine transformations and nonrigid registration methods. Results: The application has been validated by two expert radiologists. This was carried out through a quantitative validation on 14 data sets in which the Euclidean distance between points marked by the radiologists and the corresponding points obtained by the application were measured. The results showed a mean error of 4.2 ± 1.9 mm for the MRI to CC registration, 4.8 ± 1.3 mm for the MRI to MLO registration, and 4.1 ± 1.3 mm for the CC and MLO to MRI registration. Conclusions: A complete software application that automatically registers XR and MR images of the breast has been implemented. The application permits radiologists to estimate the position of a lesion that is suspected of being a tumor in an imaging modality based on its position in another different modality with a clinically acceptable error. The results show that the

  15. Automatic labeling and segmentation of vertebrae in CT images

    Science.gov (United States)

    Rasoulian, Abtin; Rohling, Robert N.; Abolmaesumi, Purang

    2014-03-01

    Labeling and segmentation of the spinal column from CT images is a pre-processing step for a range of image- guided interventions. State-of-the art techniques have focused either on image feature extraction or template matching for labeling of the vertebrae followed by segmentation of each vertebra. Recently, statistical multi- object models have been introduced to extract common statistical characteristics among several anatomies. In particular, we have created models for segmentation of the lumbar spine which are robust, accurate, and computationally tractable. In this paper, we reconstruct a statistical multi-vertebrae pose+shape model and utilize it in a novel framework for labeling and segmentation of the vertebra in a CT image. We validate our technique in terms of accuracy of the labeling and segmentation of CT images acquired from 56 subjects. The method correctly labels all vertebrae in 70% of patients and is only one level off for the remaining 30%. The mean distance error achieved for the segmentation is 2.1 +/- 0.7 mm.

  16. Surface Distresses Detection of Pavement Based on Digital Image Processing

    OpenAIRE

    Ouyang , Aiguo; Luo , Chagen; Zhou , Chao

    2010-01-01

    International audience; Pavement crack is the main form of early diseases of pavement. The use of digital photography to record pavement images and subsequent crack detection and classification has undergone continuous improvements over the past decade. Digital image processing has been applied to detect the pavement crack for its advantages of large amount of information and automatic detection. The applications of digital image processing in pavement crack detection, distresses classificati...

  17. Automatic segmentation of MRI head images by 3-D region growing method which utilizes edge information

    International Nuclear Information System (INIS)

    Jiang, Hao; Suzuki, Hidetomo; Toriwaki, Jun-ichiro

    1991-01-01

    This paper presents a 3-D segmentation method that automatically extracts soft tissue from multi-sliced MRI head images. MRI produces a sequence of two-dimensional (2-D) images which contains three-dimensional (3-D) information of organs. To utilize such information we need effective algorithms to treat 3-D digital images and to extract organs and tissues of interest. We developed a method to extract the brain from MRI images which uses a region growing procedure and integrates information of uniformity of gray levels and information of the presence of edge segments in the local area around the pixel of interest. First we generate a kernel region which is a part of brain tissue by simple thresholding. Then we grow the region by means of a region growing algorithm under the control of 3-D edge existence to obtain the region of the brain. Our method is rather simple because it uses basic 3-D image processing techniques like spatial difference. It is robust for variation of gray levels inside a tissue since it also refers to the edge information in the process of region growing. Therefore, the method is flexible enough to be applicable to the segmentation of other images including soft tissues which have complicated shapes and fluctuation in gray levels. (author)

  18. Processing Visual Images

    International Nuclear Information System (INIS)

    Litke, Alan

    2006-01-01

    The back of the eye is lined by an extraordinary biological pixel detector, the retina. This neural network is able to extract vital information about the external visual world, and transmit this information in a timely manner to the brain. In this talk, Professor Litke will describe a system that has been implemented to study how the retina processes and encodes dynamic visual images. Based on techniques and expertise acquired in the development of silicon microstrip detectors for high energy physics experiments, this system can simultaneously record the extracellular electrical activity of hundreds of retinal output neurons. After presenting first results obtained with this system, Professor Litke will describe additional applications of this incredible technology.

  19. Combining Stereo SECCHI COR2 and HI1 Images for Automatic CME Front Edge Tracking

    Science.gov (United States)

    Kirnosov, Vladimir; Chang, Lin-Ching; Pulkkinen, Antti

    2016-01-01

    COR2 coronagraph images are the most commonly used data for coronal mass ejection (CME) analysis among the various types of data provided by the STEREO (Solar Terrestrial Relations Observatory) SECCHI (Sun-Earth Connection Coronal and Heliospheric Investigation) suite of instruments. The field of view (FOV) in COR2 images covers 215 solar radii (Rs) that allow for tracking the front edge of a CME in its initial stage to forecast the lead-time of a CME and its chances of reaching the Earth. However, estimating the lead-time of a CME using COR2 images gives a larger lead-time, which may be associated with greater uncertainty. To reduce this uncertainty, CME front edge tracking should be continued beyond the FOV of COR2 images. Therefore, heliospheric imager (HI1) data that covers 1590 Rs FOV must be included. In this paper, we propose a novel automatic method that takes both COR2 and HI1 images into account and combine the results to track the front edges of a CME continuously. The method consists of two modules: pre-processing and tracking. The pre-processing module produces a set of segmented images, which contain the signature of a CME, for both COR2 and HI1 separately. In addition, the HI1 images are resized and padded, so that the center of the Sun is the central coordinate of the resized HI1 images. The resulting COR2 andHI1 image set is then fed into the tracking module to estimate the position angle (PA) and track the front edge of a CME. The detected front edge is then used to produce a height-time profile that is used to estimate the speed of a CME. The method was validated using 15 CME events observed in the period from January 1, 2008 to August 31, 2009. The results demonstrate that the proposed method is effective for CME front edge tracking in both COR2 and HI1 images. Using this method, the CME front edge can now be tracked automatically and continuously in a much larger range, i.e., from 2 to 90 Rs, for the first time. These improvement scan greatly

  20. Automatic detection of the macula in retinal fundus images using seeded mode tracking approach.

    Science.gov (United States)

    Wong, Damon W K; Liu, Jiang; Tan, Ngan-Meng; Yin, Fengshou; Cheng, Xiangang; Cheng, Ching-Yu; Cheung, Gemmy C M; Wong, Tien Yin

    2012-01-01

    The macula is the part of the eye responsible for central high acuity vision. Detection of the macula is an important task in retinal image processing as a landmark for subsequent disease assessment, such as for age-related macula degeneration. In this paper, we have presented an approach to automatically determine the macula centre in retinal fundus images. First contextual information on the image is combined with a statistical model to obtain an approximate macula region of interest localization. Subsequently, we propose the use of a seeded mode tracking technique to locate the macula centre. The proposed approach is tested on a large dataset composed of 482 normal images and 162 glaucoma images from the ORIGA database and an additional 96 AMD images. The results show a ROI detection of 97.5%, and 90.5% correct detection of the macula within 1/3DD from a manual reference, which outperforms other current methods. The results are promising for the use of the proposed approach to locate the macula for the detection of macula diseases from retinal images.

  1. AUTOMATIC TEXTURE RECONSTRUCTION OF 3D CITY MODEL FROM OBLIQUE IMAGES

    Directory of Open Access Journals (Sweden)

    J. Kang

    2016-06-01

    Full Text Available In recent years, the photorealistic 3D city models are increasingly important in various geospatial applications related to virtual city tourism, 3D GIS, urban planning, real-estate management. Besides the acquisition of high-precision 3D geometric data, texture reconstruction is also a crucial step for generating high-quality and visually realistic 3D models. However, most of the texture reconstruction approaches are probably leading to texture fragmentation and memory inefficiency. In this paper, we introduce an automatic framework of texture reconstruction to generate textures from oblique images for photorealistic visualization. Our approach include three major steps as follows: mesh parameterization, texture atlas generation and texture blending. Firstly, mesh parameterization procedure referring to mesh segmentation and mesh unfolding is performed to reduce geometric distortion in the process of mapping 2D texture to 3D model. Secondly, in the texture atlas generation step, the texture of each segmented region in texture domain is reconstructed from all visible images with exterior orientation and interior orientation parameters. Thirdly, to avoid color discontinuities at boundaries between texture regions, the final texture map is generated by blending texture maps from several corresponding images. We evaluated our texture reconstruction framework on a dataset of a city. The resulting mesh model can get textured by created texture without resampling. Experiment results show that our method can effectively mitigate the occurrence of texture fragmentation. It is demonstrated that the proposed framework is effective and useful for automatic texture reconstruction of 3D city model.

  2. Image fusion between whole body FDG PET images and whole body MRI images using a full-automatic mutual information-based multimodality image registration software

    International Nuclear Information System (INIS)

    Uchida, Yoshitaka; Nakano, Yoshitada; Fujibuchi, Toshiou; Isobe, Tomoko; Kazama, Toshiki; Ito, Hisao

    2006-01-01

    We attempted image fusion between whole body PET and whole body MRI of thirty patients using a full-automatic mutual information (MI) -based multimodality image registration software and evaluated accuracy of this method and impact of the coregistrated imaging on diagnostic accuracy. For 25 of 30 fused images in body area, translating gaps were within 6 mm in all axes and rotating gaps were within 2 degrees around all axes. In head and neck area, considerably much gaps caused by difference of head inclination at imaging occurred in 16 patients, however these gaps were able to decrease by fused separately. In 6 patients, diagnostic accuracy using PET/MRI fused images was superior compared by PET image alone. This work shows that whole body FDG PET images and whole body MRI images can be automatically fused using MI-based multimodality image registration software accurately and this technique can add useful information when evaluating FDG PET images. (author)

  3. Sensitometric characteristics of D-, E- and F-speed dental radiographic films in manual and automatic processing

    Directory of Open Access Journals (Sweden)

    Jahangir Haghani

    2012-12-01

    Full Text Available BACKGROUND: The purpose of this study was to evaluate the sensitometric characteristics of Ultraspeed, Ektaspeed Plus and Insight dental radiographic films using manual and automatic processing systems. METHODS: In this experimental invitro study, an aluminum step-wedge was used to construct characteristic curves for D-, E- and F-speed radiographic films (Kodak Eastman, Rochester, USA. All films were processed in Iranian processing solution (chemical industries Co., Iran, Tehran both manually and automatically in a period of six days. Unexposed films of three types were processed manually and automatically to determine base plus fog density. Speed and film contrast were measured according to International Standard Organization definition. RESULTS: There was significant difference in density obtained with the D-, E- and F-speed films in both manually and automatically processing systems (P < 0.001. There was significant difference in density obtained with the Ultraspeed and insight films. There was no significant difference in contrast obtained with the D-, E- and F-speed films in both manually and automatically processing systems (P = 0.255 , P = 0.26. There was significant difference in speed obtained with the D-, E- and F-speed films in both manually and automatically processing systems (P = 0.034, P = 0.04. CONCLUSIONS: The choice of processing system can affect radiographic characteristics. The F-speed film processed in automatic system has greater speed in comparison with manual processing system, and it provides a further reduction in radiation exposure without detriment to image quality.

  4. Fundamentals of electronic image processing

    CERN Document Server

    Weeks, Arthur R

    1996-01-01

    This book is directed to practicing engineers and scientists who need to understand the fundamentals of image processing theory and algorithms to perform their technical tasks. It is intended to fill the gap between existing high-level texts dedicated to specialists in the field and the need for a more practical, fundamental text on image processing. A variety of example images are used to enhance reader understanding of how particular image processing algorithms work.

  5. Automatic Detection of Microaneurysms in Color Fundus Images using a Local Radon Transform Method

    Directory of Open Access Journals (Sweden)

    Hamid Reza Pourreza

    2009-03-01

    Full Text Available Introduction: Diabetic retinopathy (DR is one of the most serious and most frequent eye diseases in the world and the most common cause of blindness in adults between 20 and 60 years of age. Following 15 years of diabetes, about 2% of the diabetic patients are blind and 10% suffer from vision impairment due to DR complications. This paper addresses the automatic detection of microaneurysms (MA in color fundus images, which plays a key role in computer-assisted early diagnosis of diabetic retinopathy. Materials and Methods: The algorithm can be divided into three main steps. The purpose of the first step or pre-processing is background normalization and contrast enhancement of the images. The second step aims to detect candidates, i.e., all patterns possibly corresponding to MA, which is achieved using a local radon transform, Then, features are extracted, which are used in the last step to automatically classify the candidates into real MA or other objects using the SVM method. A database of 100 annotated images was used to test the algorithm. The algorithm was compared to manually obtained gradings of these images. Results: The sensitivity of diagnosis for DR was 100%, with specificity of 90% and the sensitivity of precise MA localization was 97%, at an average number of 5 false positives per image. Discussion and Conclusion: Sensitivity and specificity of this algorithm make it one of the best methods in this field. Using the local radon transform in this algorithm eliminates the noise sensitivity for MA detection in retinal image analysis.

  6. Wide-Field Imaging Telescope-0 (WIT0) with automatic observing system

    Science.gov (United States)

    Ji, Tae-Geun; Byeon, Seoyeon; Lee, Hye-In; Park, Woojin; Lee, Sang-Yun; Hwang, Sungyong; Choi, Changsu; Gibson, Coyne Andrew; Kuehne, John W.; Prochaska, Travis; Marshall, Jennifer L.; Im, Myungshin; Pak, Soojong

    2018-01-01

    We introduce Wide-Field Imaging Telescope-0 (WIT0), with an automatic observing system. It is developed for monitoring the variabilities of many sources at a time, e.g. young stellar objects and active galactic nuclei. It can also find the locations of transient sources such as a supernova or gamma-ray bursts. In 2017 February, we installed the wide-field 10-inch telescope (Takahashi CCA-250) as a piggyback system on the 30-inch telescope at the McDonald Observatory in Texas, US. The 10-inch telescope has a 2.35 × 2.35 deg field-of-view with a 4k × 4k CCD Camera (FLI ML16803). To improve the observational efficiency of the system, we developed a new automatic observing software, KAOS30 (KHU Automatic Observing Software for McDonald 30-inch telescope), which was developed by Visual C++ on the basis of a windows operating system. The software consists of four control packages: the Telescope Control Package (TCP), the Data Acquisition Package (DAP), the Auto Focus Package (AFP), and the Script Mode Package (SMP). Since it also supports the instruments that are using the ASCOM driver, the additional hardware installations become quite simplified. We commissioned KAOS30 in 2017 August and are in the process of testing. Based on the WIT0 experiences, we will extend KAOS30 to control multiple telescopes in future projects.

  7. Digital processing methodology applied to exploring of radiological images

    International Nuclear Information System (INIS)

    Oliveira, Cristiane de Queiroz

    2004-01-01

    In this work, digital image processing is applied as a automatic computational method, aimed for exploring of radiological images. It was developed an automatic routine, from the segmentation and post-processing techniques to the radiology images acquired from an arrangement, consisting of a X-ray tube, target and filter of molybdenum, of 0.4 mm and 0.03 mm, respectively, and CCD detector. The efficiency of the methodology developed is showed in this work, through a case study, where internal injuries in mangoes are automatically detected and monitored. This methodology is a possible tool to be introduced in the post-harvest process in packing houses. A dichotomic test was applied to evaluate a efficiency of the method. The results show a success of 87.7% to correct diagnosis and 12.3% to failures to correct diagnosis with a sensibility of 93% and specificity of 80%. (author)

  8. A technique for automatically extracting useful field of view and central field of view images.

    Science.gov (United States)

    Pandey, Anil Kumar; Sharma, Param Dev; Aheer, Deepak; Kumar, Jay Prakash; Sharma, Sanjay Kumar; Patel, Chetan; Kumar, Rakesh; Bal, Chandra Sekhar

    2016-01-01

    It is essential to ensure the uniform response of the single photon emission computed tomography gamma camera system before using it for the clinical studies by exposing it to uniform flood source. Vendor specific acquisition and processing protocol provide for studying flood source images along with the quantitative uniformity parameters such as integral and differential uniformity. However, a significant difficulty is that the time required to acquire a flood source image varies from 10 to 35 min depending both on the activity of Cobalt-57 flood source and the pre specified counts in the vendors protocol (usually 4000K-10,000K counts). In case the acquired total counts are less than the total prespecified counts, and then the vendor's uniformity processing protocol does not precede with the computation of the quantitative uniformity parameters. In this study, we have developed and verified a technique for reading the flood source image, remove unwanted information, and automatically extract and save the useful field of view and central field of view images for the calculation of the uniformity parameters. This was implemented using MATLAB R2013b running on Ubuntu Operating system and was verified by subjecting it to the simulated and real flood sources images. The accuracy of the technique was found to be encouraging, especially in view of practical difficulties with vendor-specific protocols. It may be used as a preprocessing step while calculating uniformity parameters of the gamma camera in lesser time with fewer constraints.

  9. A technique for automatically extracting useful field of view and central field of view images

    International Nuclear Information System (INIS)

    Pandey, Anil Kumar; Sharma, Param Dev; Aheer, Deepak; Kumar, Jay Prakash; Sharma, Sanjay Kumar; Patel, Chetan; Kumar, Rakesh; Bal, Chandra Sekhar

    2016-01-01

    It is essential to ensure the uniform response of the single photon emission computed tomography gamma camera system before using it for the clinical studies by exposing it to uniform flood source. Vendor specific acquisition and processing protocol provide for studying flood source images along with the quantitative uniformity parameters such as integral and differential uniformity. However, a significant difficulty is that the time required to acquire a flood source image varies from 10 to 35 min depending both on the activity of Cobalt-57 flood source and the pre specified counts in the vendors protocol (usually 4000K-10,000K counts). In case the acquired total counts are less than the total prespecified counts, and then the vendor's uniformity processing protocol does not precede with the computation of the quantitative uniformity parameters. In this study, we have developed and verified a technique for reading the flood source image, remove unwanted information, and automatically extract and save the useful field of view and central field of view images for the calculation of the uniformity parameters. This was implemented using MATLAB R2013b running on Ubuntu Operating system and was verified by subjecting it to the simulated and real flood sources images. The accuracy of the technique was found to be encouraging, especially in view of practical difficulties with vendor-specific protocols. It may be used as a preprocessing step while calculating uniformity parameters of the gamma camera in lesser time with fewer constraints

  10. Semi-automatic mapping for identifying complex geobodies in seismic images

    Science.gov (United States)

    Domínguez-C, Raymundo; Romero-Salcedo, Manuel; Velasquillo-Martínez, Luis G.; Shemeretov, Leonid

    2017-03-01

    Seismic images are composed of positive and negative seismic wave traces with different amplitudes (Robein 2010 Seismic Imaging: A Review of the Techniques, their Principles, Merits and Limitations (Houten: EAGE)). The association of these amplitudes together with a color palette forms complex visual patterns. The color intensity of such patterns is directly related to impedance contrasts: the higher the contrast, the higher the color intensity. Generally speaking, low impedance contrasts are depicted with low tone colors, creating zones with different patterns whose features are not evident for a 3D automated mapping option available on commercial software. In this work, a workflow for a semi-automatic mapping of seismic images focused on those areas with low-intensity colored zones that may be associated with geobodies of petroleum interest is proposed. The CIE L*A*B* color space was used to perform the seismic image processing, which helped find small but significant differences between pixel tones. This process generated binary masks that bound color regions to low-intensity colors. The three-dimensional-mask projection allowed the construction of 3D structures for such zones (geobodies). The proposed method was applied to a set of digital images from a seismic cube and tested on four representative study cases. The obtained results are encouraging because interesting geobodies are obtained with a minimum of information.

  11. Childhood trauma exposure disrupts the automatic regulation of emotional processing.

    Science.gov (United States)

    Marusak, Hilary A; Martin, Kayla R; Etkin, Amit; Thomason, Moriah E

    2015-03-13

    Early-life trauma is one of the strongest risk factors for later emotional psychopathology. Although research in adults highlights that childhood trauma predicts deficits in emotion regulation that persist decades later, it is unknown whether neural and behavioral changes that may precipitate illness are evident during formative, developmental years. This study examined whether automatic regulation of emotional conflict is perturbed in a high-risk urban sample of trauma-exposed children and adolescents. A total of 14 trauma-exposed and 16 age-, sex-, and IQ-matched comparison youth underwent functional MRI while performing an emotional conflict task that involved categorizing facial affect while ignoring an overlying emotion word. Engagement of the conflict regulation system was evaluated at neural and behavioral levels. Results showed that trauma-exposed youth failed to dampen dorsolateral prefrontal cortex activity and engage amygdala-pregenual cingulate inhibitory circuitry during the regulation of emotional conflict, and were less able to regulate emotional conflict. In addition, trauma-exposed youth showed greater conflict-related amygdala reactivity that was associated with diminished levels of trait reward sensitivity. These data point to a trauma-related deficit in automatic regulation of emotional processing, and increase in sensitivity to emotional conflict in neural systems implicated in threat detection. Aberrant amygdala response to emotional conflict was related to diminished reward sensitivity that is emerging as a critical stress-susceptibility trait that may contribute to the emergence of mental illness during adolescence. These results suggest that deficits in conflict regulation for emotional material may underlie heightened risk for psychopathology in individuals that endure early-life trauma.

  12. Prosody's Contribution to Fluency: An Examination of the Theory of Automatic Information Processing

    Science.gov (United States)

    Schrauben, Julie E.

    2010-01-01

    LaBerge and Samuels' (1974) theory of automatic information processing in reading offers a model that explains how and where the processing of information occurs and the degree to which processing of information occurs. These processes are dependent upon two criteria: accurate word decoding and automatic word recognition. However, LaBerge and…

  13. Automatic registration of imaging mass spectrometry data to the Allen Brain Atlas transcriptome

    Science.gov (United States)

    Abdelmoula, Walid M.; Carreira, Ricardo J.; Shyti, Reinald; Balluff, Benjamin; Tolner, Else; van den Maagdenberg, Arn M. J. M.; Lelieveldt, B. P. F.; McDonnell, Liam; Dijkstra, Jouke

    2014-03-01

    Imaging Mass Spectrometry (IMS) is an emerging molecular imaging technology that provides spatially resolved information on biomolecular structures; each image pixel effectively represents a molecular mass spectrum. By combining the histological images and IMS-images, neuroanatomical structures can be distinguished based on their biomolecular features as opposed to morphological features. The combination of IMS data with spatially resolved gene expression maps of the mouse brain, as provided by the Allen Mouse Brain atlas, would enable comparative studies of spatial metabolic and gene expression patterns in life-sciences research and biomarker discovery. As such, it would be highly desirable to spatially register IMS slices to the Allen Brain Atlas (ABA). In this paper, we propose a multi-step automatic registration pipeline to register ABA histology to IMS- images. Key novelty of the method is the selection of the best reference section from the ABA, based on pre-processed histology sections. First, we extracted a hippocampus-specific geometrical feature from the given experimental histological section to initially localize it among the ABA sections. Then, feature-based linear registration is applied to the initially localized section and its two neighbors in the ABA to select the most similar reference section. A non-rigid registration yields a one-to-one mapping of the experimental IMS slice to the ABA. The pipeline was applied on 6 coronal sections from two mouse brains, showing high anatomical correspondence, demonstrating the feasibility of complementing biomolecule distributions from individual mice with the genome-wide ABA transcriptome.

  14. Automatic registration of Iphone images to LASER point clouds of the urban structures using shape features

    Directory of Open Access Journals (Sweden)

    B. Sirmacek

    2013-10-01

    Full Text Available Fusion of 3D airborne laser (LIDAR data and terrestrial optical imagery can be applied in 3D urban modeling and model up-dating. The most challenging aspect of the fusion procedure is registering the terrestrial optical images on the LIDAR point clouds. In this article, we propose an approach for registering these two different data from different sensor sources. As we use iPhone camera images which are taken in front of the interested urban structure by the application user and the high resolution LIDAR point clouds of the acquired by an airborne laser sensor. After finding the photo capturing position and orientation from the iPhone photograph metafile, we automatically select the area of interest in the point cloud and transform it into a range image which has only grayscale intensity levels according to the distance from the image acquisition position. We benefit from local features for registering the iPhone image to the generated range image. In this article, we have applied the registration process based on local feature extraction and graph matching. Finally, the registration result is used for facade texture mapping on the 3D building surface mesh which is generated from the LIDAR point cloud. Our experimental results indicate possible usage of the proposed algorithm framework for 3D urban map updating and enhancing purposes.

  15. Automatic Detection of Clouds and Shadows Using High Resolution Satellite Image Time Series

    Science.gov (United States)

    Champion, Nicolas

    2016-06-01

    Detecting clouds and their shadows is one of the primaries steps to perform when processing satellite images because they may alter the quality of some products such as large-area orthomosaics. The main goal of this paper is to present the automatic method developed at IGN-France for detecting clouds and shadows in a sequence of satellite images. In our work, surface reflectance orthoimages are used. They were processed from initial satellite images using a dedicated software. The cloud detection step consists of a region-growing algorithm. Seeds are firstly extracted. For that purpose and for each input ortho-image to process, we select the other ortho-images of the sequence that intersect it. The pixels of the input ortho-image are secondly labelled seeds if the difference of reflectance (in the blue channel) with overlapping ortho-images is bigger than a given threshold. Clouds are eventually delineated using a region-growing method based on a radiometric and homogeneity criterion. Regarding the shadow detection, our method is based on the idea that a shadow pixel is darker when comparing to the other images of the time series. The detection is basically composed of three steps. Firstly, we compute a synthetic ortho-image covering the whole study area. Its pixels have a value corresponding to the median value of all input reflectance ortho-images intersecting at that pixel location. Secondly, for each input ortho-image, a pixel is labelled shadows if the difference of reflectance (in the NIR channel) with the synthetic ortho-image is below a given threshold. Eventually, an optional region-growing step may be used to refine the results. Note that pixels labelled clouds during the cloud detection are not used for computing the median value in the first step; additionally, the NIR input data channel is used to perform the shadow detection, because it appeared to better discriminate shadow pixels. The method was tested on times series of Landsat 8 and Pl

  16. AUTOMATIC DETECTION OF CLOUDS AND SHADOWS USING HIGH RESOLUTION SATELLITE IMAGE TIME SERIES

    Directory of Open Access Journals (Sweden)

    N. Champion

    2016-06-01

    Full Text Available Detecting clouds and their shadows is one of the primaries steps to perform when processing satellite images because they may alter the quality of some products such as large-area orthomosaics. The main goal of this paper is to present the automatic method developed at IGN-France for detecting clouds and shadows in a sequence of satellite images. In our work, surface reflectance orthoimages are used. They were processed from initial satellite images using a dedicated software. The cloud detection step consists of a region-growing algorithm. Seeds are firstly extracted. For that purpose and for each input ortho-image to process, we select the other ortho-images of the sequence that intersect it. The pixels of the input ortho-image are secondly labelled seeds if the difference of reflectance (in the blue channel with overlapping ortho-images is bigger than a given threshold. Clouds are eventually delineated using a region-growing method based on a radiometric and homogeneity criterion. Regarding the shadow detection, our method is based on the idea that a shadow pixel is darker when comparing to the other images of the time series. The detection is basically composed of three steps. Firstly, we compute a synthetic ortho-image covering the whole study area. Its pixels have a value corresponding to the median value of all input reflectance ortho-images intersecting at that pixel location. Secondly, for each input ortho-image, a pixel is labelled shadows if the difference of reflectance (in the NIR channel with the synthetic ortho-image is below a given threshold. Eventually, an optional region-growing step may be used to refine the results. Note that pixels labelled clouds during the cloud detection are not used for computing the median value in the first step; additionally, the NIR input data channel is used to perform the shadow detection, because it appeared to better discriminate shadow pixels. The method was tested on times series of Landsat 8

  17. Automatic detection and classification of damage zone(s) for incorporating in digital image correlation technique

    Science.gov (United States)

    Bhattacharjee, Sudipta; Deb, Debasis

    2016-07-01

    Digital image correlation (DIC) is a technique developed for monitoring surface deformation/displacement of an object under loading conditions. This method is further refined to make it capable of handling discontinuities on the surface of the sample. A damage zone is referred to a surface area fractured and opened in due course of loading. In this study, an algorithm is presented to automatically detect multiple damage zones in deformed image. The algorithm identifies the pixels located inside these zones and eliminate them from FEM-DIC processes. The proposed algorithm is successfully implemented on several damaged samples to estimate displacement fields of an object under loading conditions. This study shows that displacement fields represent the damage conditions reasonably well as compared to regular FEM-DIC technique without considering the damage zones.

  18. Automatic extraction of myocardial mass and volumes using parametric images from dynamic nongated PET

    DEFF Research Database (Denmark)

    Harms, Hendrik Johannes; Hansson, Nils Henrik Stubkjær; Tolbod, Lars Poulsen

    2016-01-01

    Dynamic cardiac positron emission tomography (PET) is used to quantify molecular processes in vivo. However, measurements of left-ventricular (LV) mass and volumes require electrocardiogram (ECG)-gated PET data. The aim of this study was to explore the feasibility of measuring LV geometry using non......-gated dynamic cardiac PET. METHODS: Thirty-five patients with aortic-valve stenosis and 10 healthy controls (HC) underwent a 27-min 11C-acetate PET/CT scan and cardiac magnetic resonance imaging (CMR). HC were scanned twice to assess repeatability. Parametric images of uptake rate K1 and the blood pool were......LV and WT only and an overestimation for LVEF at lower values. Intra- and inter-observer correlations were >0.95 for all PET measurements. PET repeatability accuracy in HC was comparable to CMR. CONCLUSION: LV mass and volumes are accurately and automatically generated from dynamic 11C-acetate PET without...

  19. Trends in medical image processing

    International Nuclear Information System (INIS)

    Robilotta, C.C.

    1987-01-01

    The function of medical image processing is analysed, mentioning the developments, the physical agents, and the main categories, as conection of distortion in image formation, detectability increase, parameters quantification, etc. (C.G.C.) [pt

  20. Methods of digital image processing

    International Nuclear Information System (INIS)

    Doeler, W.

    1985-01-01

    Increasing use of computerized methods for diagnostical imaging of radiological problems will open up a wide field of applications for digital image processing. The requirements set by routine diagnostics in medical radiology point to picture data storage and documentation and communication as the main points of interest for application of digital image processing. As to the purely radiological problems, the value of digital image processing is to be sought in the improved interpretability of the image information in those cases where the expert's experience and image interpretation by human visual capacities do not suffice. There are many other domains of imaging in medical physics where digital image processing and evaluation is very useful. The paper reviews the various methods available for a variety of problem solutions, and explains the hardware available for the tasks discussed. (orig.) [de

  1. Application of parallel processing for automatic inspection of printed circuits

    International Nuclear Information System (INIS)

    Lougheed, R.M.

    1986-01-01

    Automated visual inspection of printed electronic circuits is a challenging application for image processing systems. Detailed inspection requires high speed analysis of gray scale imagery along with high quality optics, lighting, and sensing equipment. A prototype system has been developed and demonstrated at the Environmental Research Institute of Michigan (ERIM) for inspection of multilayer thick-film circuits. The central problem of real-time image processing is solved by a special-purpose parallel processor which includes a new high-speed Cytocomputer. In this chapter the inspection process and the algorithms used are summarized, along with the functional requirements of the machine vision system. Next, the parallel processor is described in detail and then performance on this application is given

  2. Automatic cortical surface reconstruction of high-resolution T1 echo planar imaging data.

    Science.gov (United States)

    Renvall, Ville; Witzel, Thomas; Wald, Lawrence L; Polimeni, Jonathan R

    2016-07-01

    Echo planar imaging (EPI) is the method of choice for the majority of functional magnetic resonance imaging (fMRI), yet EPI is prone to geometric distortions and thus misaligns with conventional anatomical reference data. The poor geometric correspondence between functional and anatomical data can lead to severe misplacements and corruption of detected activation patterns. However, recent advances in imaging technology have provided EPI data with increasing quality and resolution. Here we present a framework for deriving cortical surface reconstructions directly from high-resolution EPI-based reference images that provide anatomical models exactly geometric distortion-matched to the functional data. Anatomical EPI data with 1mm isotropic voxel size were acquired using a fast multiple inversion recovery time EPI sequence (MI-EPI) at 7T, from which quantitative T1 maps were calculated. Using these T1 maps, volumetric data mimicking the tissue contrast of standard anatomical data were synthesized using the Bloch equations, and these T1-weighted data were automatically processed using FreeSurfer. The spatial alignment between T2(⁎)-weighted EPI data and the synthetic T1-weighted anatomical MI-EPI-based images was improved compared to the conventional anatomical reference. In particular, the alignment near the regions vulnerable to distortion due to magnetic susceptibility differences was improved, and sampling of the adjacent tissue classes outside of the cortex was reduced when using cortical surface reconstructions derived directly from the MI-EPI reference. The MI-EPI method therefore produces high-quality anatomical data that can be automatically segmented with standard software, providing cortical surface reconstructions that are geometrically matched to the BOLD fMRI data. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Automatic seed picking for brachytherapy postimplant validation with 3D CT images.

    Science.gov (United States)

    Zhang, Guobin; Sun, Qiyuan; Jiang, Shan; Yang, Zhiyong; Ma, Xiaodong; Jiang, Haisong

    2017-11-01

    Postimplant validation is an indispensable part in the brachytherapy technique. It provides the necessary feedback to ensure the quality of operation. The ability to pick implanted seed relates directly to the accuracy of validation. To address it, an automatic approach is proposed for picking implanted brachytherapy seeds in 3D CT images. In order to pick seed configuration (location and orientation) efficiently, the approach starts with the segmentation of seed from CT images using a thresholding filter which based on gray-level histogram. Through the process of filtering and denoising, the touching seed and single seed are classified. The true novelty of this approach is found in the application of the canny edge detection and improved concave points matching algorithm to separate touching seeds. Through the computation of image moments, the seed configuration can be determined efficiently. Finally, two different experiments are designed to verify the performance of the proposed approach: (1) physical phantom with 60 model seeds, and (2) patient data with 16 cases. Through assessment of validated results by a medical physicist, the proposed method exhibited promising results. Experiment on phantom demonstrates that the error of seed location and orientation is within ([Formula: see text]) mm and ([Formula: see text])[Formula: see text], respectively. In addition, the most seed location and orientation error is controlled within 0.8 mm and 3.5[Formula: see text] in all cases, respectively. The average process time of seed picking is 8.7 s per 100 seeds. In this paper, an automatic, efficient and robust approach, performed on CT images, is proposed to determine the implanted seed location as well as orientation in a 3D workspace. Through the experiments with phantom and patient data, this approach also successfully exhibits good performance.

  4. Brain MR Image Restoration Using an Automatic Trilateral Filter With GPU-Based Acceleration.

    Science.gov (United States)

    Chang, Herng-Hua; Li, Cheng-Yuan; Gallogly, Audrey Haihong

    2018-02-01

    Noise reduction in brain magnetic resonance (MR) images has been a challenging and demanding task. This study develops a new trilateral filter that aims to achieve robust and efficient image restoration. Extended from the bilateral filter, the proposed algorithm contains one additional intensity similarity funct-ion, which compensates for the unique characteristics of noise in brain MR images. An entropy function adaptive to intensity variations is introduced to regulate the contributions of the weighting components. To hasten the computation, parallel computing based on the graphics processing unit (GPU) strategy is explored with emphasis on memory allocations and thread distributions. To automate the filtration, image texture feature analysis associated with machine learning is investigated. Among the 98 candidate features, the sequential forward floating selection scheme is employed to acquire the optimal texture features for regularization. Subsequently, a two-stage classifier that consists of support vector machines and artificial neural networks is established to predict the filter parameters for automation. A speedup gain of 757 was reached to process an entire MR image volume of 256 × 256 × 256 pixels, which completed within 0.5 s. Automatic restoration results revealed high accuracy with an ensemble average relative error of 0.53 ± 0.85% in terms of the peak signal-to-noise ratio. This self-regulating trilateral filter outperformed many state-of-the-art noise reduction methods both qualitatively and quantitatively. We believe that this new image restoration algorithm is of potential in many brain MR image processing applications that require expedition and automation.

  5. Automatic Georeferencing of Aerial Images by Means of Topographic Database Information

    DEFF Research Database (Denmark)

    Høhle, Joachim

    The book includes a preface and four articles which deal with the automatic georeferencing of aerial images. The articles are the written contribution of an seminar, held at Aalborg University in October 2002. The georeferencing or orientation of aerial images is the first step in mapping tasks l...... like generation of orthoimages, updating of topographic map data bases and generation of digial terrain models.......The book includes a preface and four articles which deal with the automatic georeferencing of aerial images. The articles are the written contribution of an seminar, held at Aalborg University in October 2002. The georeferencing or orientation of aerial images is the first step in mapping tasks...

  6. Image processing in nondestructive testing

    International Nuclear Information System (INIS)

    Janney, D.H.

    1976-01-01

    In those applications where the principal desire is for higher throughput, the problem often becomes one of automatic feature extraction and mensuration. Classically these problems can be approached by means of either an optical image processor or an analysis in the digital computer. Optical methods have the advantages of low cost and very high speed, but are often inflexible and are sometimes very difficult to implement due to practical problems. Computerized methods can be very flexible, they can use very powerful mathematical techniques, but usually are difficult to implement for very high throughput. Recent technological developments in microprocessors and in electronic analog image analyzers may furnish the key to resolving the shortcomings of the two classical methods of image analysis

  7. Processing of hyperspectral medical images applications in dermatology using Matlab

    CERN Document Server

    Koprowski, Robert

    2017-01-01

    This book presents new methods of analyzing and processing hyperspectral medical images, which can be used in diagnostics, for example for dermatological images. The algorithms proposed are fully automatic and the results obtained are fully reproducible. Their operation was tested on a set of several thousands of hyperspectral images and they were implemented in Matlab. The presented source code can be used without licensing restrictions. This is a valuable resource for computer scientists, bioengineers, doctoral students, and dermatologists interested in contemporary analysis methods.

  8. An application of image processing techniques in computed tomography image analysis

    DEFF Research Database (Denmark)

    McEvoy, Fintan

    2007-01-01

    number of animals and image slices, automation of the process was desirable. The open-source and free image analysis program ImageJ was used. A macro procedure was created that provided the required functionality. The macro performs a number of basic image processing procedures. These include an initial...... process designed to remove the scanning table from the image and to center the animal in the image. This is followed by placement of a vertical line segment from the mid point of the upper border of the image to the image center. Measurements are made between automatically detected outer and inner...... boundaries of subcutaneous adipose tissue along this line segment. This process was repeated as the image was rotated (with the line position remaining unchanged) so that measurements around the complete circumference were obtained. Additionally, an image was created showing all detected boundary points so...

  9. Semi-Automatic Removal of Foreground Stars from Images of Galaxies

    Science.gov (United States)

    Frei, Zsolt

    1996-07-01

    A new procedure, designed to remove foreground stars from galaxy proviles is presented here. Although several programs exist for stellar and faint object photometry, none of them treat star removal from the images very carefully. I present my attempt to develop such a system, and briefly compare the performance of my software to one of the well-known stellar photometry packages, DAOPhot (Stetson 1987). Major steps in my procedure are: (1) automatic construction of an empirical 2D point spread function from well separated stars that are situated off the galaxy; (2) automatic identification of those peaks that are likely to be foreground stars, scaling the PSF and removing these stars, and patching residuals (in the automatically determined smallest possible area where residuals are truly significant); and (3) cosmetic fix of remaining degradations in the image. The algorithm and software presented here is significantly better for automatic removal of foreground stars from images of galaxies than DAOPhot or similar packages, since: (a) the most suitable stars are selected automatically from the image for the PSF fit; (b) after star-removal an intelligent and automatic procedure removes any possible residuals; (c) unlimited number of images can be cleaned in one run without any user interaction whatsoever. (SECTION: Computing and Data Analysis)

  10. Semi-supervised learning based probabilistic latent semantic analysis for automatic image annotation

    Institute of Scientific and Technical Information of China (English)

    Tian Dongping

    2017-01-01

    In recent years, multimedia annotation problem has been attracting significant research attention in multimedia and computer vision areas, especially for automatic image annotation, whose purpose is to provide an efficient and effective searching environment for users to query their images more easily.In this paper, a semi-supervised learning based probabilistic latent semantic analysis ( PL-SA) model for automatic image annotation is presenred.Since it' s often hard to obtain or create la-beled images in large quantities while unlabeled ones are easier to collect, a transductive support vector machine ( TSVM) is exploited to enhance the quality of the training image data.Then, differ-ent image features with different magnitudes will result in different performance for automatic image annotation.To this end, a Gaussian normalization method is utilized to normalize different features extracted from effective image regions segmented by the normalized cuts algorithm so as to reserve the intrinsic content of images as complete as possible.Finally, a PLSA model with asymmetric mo-dalities is constructed based on the expectation maximization( EM) algorithm to predict a candidate set of annotations with confidence scores.Extensive experiments on the general-purpose Corel5k dataset demonstrate that the proposed model can significantly improve performance of traditional PL-SA for the task of automatic image annotation.

  11. Image analysis for ophthalmological diagnosis image processing of Corvis ST images using Matlab

    CERN Document Server

    Koprowski, Robert

    2016-01-01

    This monograph focuses on the use of analysis and processing methods for images from the Corvis® ST tonometer. The presented analysis is associated with the quantitative, repeatable and fully automatic evaluation of the response of the eye, eyeball and cornea to an air-puff. All the described algorithms were practically implemented in MATLAB®. The monograph also describes and provides the full source code designed to perform the discussed calculations. As a result, this monograph is intended for scientists, graduate students and students of computer science and bioengineering as well as doctors wishing to expand their knowledge of modern diagnostic methods assisted by various image analysis and processing methods.

  12. Automatic registration of multi-modal microscopy images for integrative analysis of prostate tissue sections

    International Nuclear Information System (INIS)

    Lippolis, Giuseppe; Edsjö, Anders; Helczynski, Leszek; Bjartell, Anders; Overgaard, Niels Chr

    2013-01-01

    Prostate cancer is one of the leading causes of cancer related deaths. For diagnosis, predicting the outcome of the disease, and for assessing potential new biomarkers, pathologists and researchers routinely analyze histological samples. Morphological and molecular information may be integrated by aligning microscopic histological images in a multiplex fashion. This process is usually time-consuming and results in intra- and inter-user variability. The aim of this study is to investigate the feasibility of using modern image analysis methods for automated alignment of microscopic images from differently stained adjacent paraffin sections from prostatic tissue specimens. Tissue samples, obtained from biopsy or radical prostatectomy, were sectioned and stained with either hematoxylin & eosin (H&E), immunohistochemistry for p63 and AMACR or Time Resolved Fluorescence (TRF) for androgen receptor (AR). Image pairs were aligned allowing for translation, rotation and scaling. The registration was performed automatically by first detecting landmarks in both images, using the scale invariant image transform (SIFT), followed by the well-known RANSAC protocol for finding point correspondences and finally aligned by Procrustes fit. The Registration results were evaluated using both visual and quantitative criteria as defined in the text. Three experiments were carried out. First, images of consecutive tissue sections stained with H&E and p63/AMACR were successfully aligned in 85 of 88 cases (96.6%). The failures occurred in 3 out of 13 cores with highly aggressive cancer (Gleason score ≥ 8). Second, TRF and H&E image pairs were aligned correctly in 103 out of 106 cases (97%). The third experiment considered the alignment of image pairs with the same staining (H&E) coming from a stack of 4 sections. The success rate for alignment dropped from 93.8% in adjacent sections to 22% for sections furthest away. The proposed method is both reliable and fast and therefore well suited

  13. Automatic nuclei segmentation in H&E stained breast cancer histopathology images.

    Directory of Open Access Journals (Sweden)

    Mitko Veta

    Full Text Available The introduction of fast digital slide scanners that provide whole slide images has led to a revival of interest in image analysis applications in pathology. Segmentation of cells and nuclei is an important first step towards automatic analysis of digitized microscopy images. We therefore developed an automated nuclei segmentation method that works with hematoxylin and eosin (H&E stained breast cancer histopathology images, which represent regions of whole digital slides. The procedure can be divided into four main steps: 1 pre-processing with color unmixing and morphological operators, 2 marker-controlled watershed segmentation at multiple scales and with different markers, 3 post-processing for rejection of false regions and 4 merging of the results from multiple scales. The procedure was developed on a set of 21 breast cancer cases (subset A and tested on a separate validation set of 18 cases (subset B. The evaluation was done in terms of both detection accuracy (sensitivity and positive predictive value and segmentation accuracy (Dice coefficient. The mean estimated sensitivity for subset A was 0.875 (±0.092 and for subset B 0.853 (±0.077. The mean estimated positive predictive value was 0.904 (±0.075 and 0.886 (±0.069 for subsets A and B, respectively. For both subsets, the distribution of the Dice coefficients had a high peak around 0.9, with the vast majority of segmentations having values larger than 0.8.

  14. Automatic nuclei segmentation in H&E stained breast cancer histopathology images.

    Science.gov (United States)

    Veta, Mitko; van Diest, Paul J; Kornegoor, Robert; Huisman, André; Viergever, Max A; Pluim, Josien P W

    2013-01-01

    The introduction of fast digital slide scanners that provide whole slide images has led to a revival of interest in image analysis applications in pathology. Segmentation of cells and nuclei is an important first step towards automatic analysis of digitized microscopy images. We therefore developed an automated nuclei segmentation method that works with hematoxylin and eosin (H&E) stained breast cancer histopathology images, which represent regions of whole digital slides. The procedure can be divided into four main steps: 1) pre-processing with color unmixing and morphological operators, 2) marker-controlled watershed segmentation at multiple scales and with different markers, 3) post-processing for rejection of false regions and 4) merging of the results from multiple scales. The procedure was developed on a set of 21 breast cancer cases (subset A) and tested on a separate validation set of 18 cases (subset B). The evaluation was done in terms of both detection accuracy (sensitivity and positive predictive value) and segmentation accuracy (Dice coefficient). The mean estimated sensitivity for subset A was 0.875 (±0.092) and for subset B 0.853 (±0.077). The mean estimated positive predictive value was 0.904 (±0.075) and 0.886 (±0.069) for subsets A and B, respectively. For both subsets, the distribution of the Dice coefficients had a high peak around 0.9, with the vast majority of segmentations having values larger than 0.8.

  15. An analysis of line-drawings based upon automatically inferred grammar and its application to chest x-ray images

    International Nuclear Information System (INIS)

    Nakayama, Akira; Yoshida, Yuuji; Fukumura, Teruo

    1984-01-01

    There is a technique using inferring grammer as image- structure analyzing technique. This technique involves a few problems if it is applied to naturally obtained images, as the practical grammatical technique for two-dimensional image is not established. The authors developed a technique which solved the above problems for the main purpose of the automated structure analysis of naturally obtained image. The first half of this paper describes on the automatic inference of line drawing generation grammar and the line drawing analysis based on that automatic inference. The second half of the paper reports on the actual analysis. The proposed technique is that to extract object line drawings out of the line drawings containing noise. The technique was evaluated for its effectiveness with an example of extracting rib center lines out of thin line chest X-ray images having practical scale and complexity. In this example, the total number of characteristic points (ends, branch points and intersections) composing line drawings per one image was 377, and the total number of line segments composing line drawings was 566 on average per sheet. The extraction ratio was 86.6 % which seemed to be proper when the complexity of input line drawings was considered. Further, the result was compared with the identified rib center lines with the automatic screening system AISCR-V3 for comparison with the conventional processing technique, and it was satisfactory when the versatility of this method was considered. (Wakatsuki, Y.)

  16. Fully automatic and reference-marker-free image stitching method for full-spine and full-leg imaging with computed radiography

    Science.gov (United States)

    Wang, Xiaohui; Foos, David H.; Doran, James; Rogers, Michael K.

    2004-05-01

    Full-leg and full-spine imaging with standard computed radiography (CR) systems requires several cassettes/storage phosphor screens to be placed in a staggered arrangement and exposed simultaneously to achieve an increased imaging area. A method has been developed that can automatically and accurately stitch the acquired sub-images without relying on any external reference markers. It can detect and correct the order, orientation, and overlap arrangement of the subimages for stitching. The automatic determination of the order, orientation, and overlap arrangement of the sub-images consists of (1) constructing a hypothesis list that includes all cassette/screen arrangements, (2) refining hypotheses based on a set of rules derived from imaging physics, (3) correlating each consecutive sub-image pair in each hypothesis and establishing an overall figure-of-merit, (4) selecting the hypothesis of maximum figure-of-merit. The stitching process requires the CR reader to over scan each CR screen so that the screen edges are completely visible in the acquired sub-images. The rotational displacement and vertical displacement between two consecutive sub-images are calculated by matching the orientation and location of the screen edge in the front image and its corresponding shadow in the back image. The horizontal displacement is estimated by maximizing the correlation function between the two image sections in the overlap region. Accordingly, the two images are stitched together. This process is repeated for the newly stitched composite image and the next consecutive sub-image until a full-image composite is created. The method has been evaluated in both phantom experiments and clinical studies. The standard deviation of image misregistration is below one image pixel.

  17. Automatic Extraction of Myocardial Mass and Volume Using Parametric Images from Dynamic Nongated PET.

    Science.gov (United States)

    Harms, Hendrik Johannes; Stubkjær Hansson, Nils Henrik; Tolbod, Lars Poulsen; Kim, Won Yong; Jakobsen, Steen; Bouchelouche, Kirsten; Wiggers, Henrik; Frøkiaer, Jørgen; Sörensen, Jens

    2016-09-01

    Dynamic cardiac PET is used to quantify molecular processes in vivo. However, measurements of left ventricular (LV) mass and volume require electrocardiogram-gated PET data. The aim of this study was to explore the feasibility of measuring LV geometry using nongated dynamic cardiac PET. Thirty-five patients with aortic-valve stenosis and 10 healthy controls underwent a 27-min (11)C-acetate PET/CT scan and cardiac MRI (CMR). The controls were scanned twice to assess repeatability. Parametric images of uptake rate K1 and the blood pool were generated from nongated dynamic data. Using software-based structure recognition, the LV wall was automatically segmented from K1 images to derive functional assessments of LV mass (mLV) and wall thickness. End-systolic and end-diastolic volumes were calculated using blood pool images and applied to obtain stroke volume and LV ejection fraction (LVEF). PET measurements were compared with CMR. High, linear correlations were found for LV mass (r = 0.95), end-systolic volume (r = 0.93), and end-diastolic volume (r = 0.90), and slightly lower correlations were found for stroke volume (r = 0.74), LVEF (r = 0.81), and thickness (r = 0.78). Bland-Altman analyses showed significant differences for mLV and thickness only and an overestimation for LVEF at lower values. Intra- and interobserver correlations were greater than 0.95 for all PET measurements. PET repeatability accuracy in the controls was comparable to CMR. LV mass and volume are accurately and automatically generated from dynamic (11)C-acetate PET without electrocardiogram gating. This method can be incorporated in a standard routine without any additional workload and can, in theory, be extended to other PET tracers. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  18. Automatic Control of Arc Process for Making Carbon Nanotubes

    Science.gov (United States)

    Scott, Carl D.; Pulumbarit, Robert B.; Victor, Joe

    2004-01-01

    An automatic-control system has been devised for a process in which carbon nanotubes are produced in an arc between a catalyst-filled carbon anode and a graphite cathode. The control system includes a motor-driven screw that adjusts the distance between the electrodes. The system also includes a bridge circuit that puts out a voltage proportional to the difference between (1) the actual value of potential drop across the arc and (2) a reference value between 38 and 40 V (corresponding to a current of about 100 A) at which the yield of carbon nanotubes is maximized. Utilizing the fact that the potential drop across the arc increases with the interelectrode gap, the output of the bridge circuit is fed to a motor-control circuit that causes the motor to move the anode toward or away from the cathode if the actual potential drop is more or less, respectively, than the reference potential. Thus, the system regulates the interelectrode gap to maintain the optimum potential drop. The system also includes circuitry that records the potential drop across the arc and the relative position of the anode holder as function of time.

  19. Automatic processing of CERN video, audio and photo archives

    Energy Technology Data Exchange (ETDEWEB)

    Kwiatek, M [CERN, Geneva (Switzerland)], E-mail: Michal.Kwiatek@cem.ch

    2008-07-15

    The digitalization of CERN audio-visual archives, a major task currently in progress, will generate over 40 TB of video, audio and photo files. Storing these files is one issue, but a far more important challenge is to provide long-time coherence of the archive and to make these files available on-line with minimum manpower investment. An infrastructure, based on standard CERN services, has been implemented, whereby master files, stored in the CERN Distributed File System (DFS), are discovered and scheduled for encoding into lightweight web formats based on predefined profiles. Changes in master files, conversion profiles or in the metadata database (read from CDS, the CERN Document Server) are automatically detected and the media re-encoded whenever necessary. The encoding processes are run on virtual servers provided on-demand by the CERN Server Self Service Centre, so that new servers can be easily configured to adapt to higher load. Finally, the generated files are made available from the CERN standard web servers with streaming implemented using Windows Media Services.

  20. Automatic processing of CERN video, audio and photo archives

    International Nuclear Information System (INIS)

    Kwiatek, M

    2008-01-01

    The digitalization of CERN audio-visual archives, a major task currently in progress, will generate over 40 TB of video, audio and photo files. Storing these files is one issue, but a far more important challenge is to provide long-time coherence of the archive and to make these files available on-line with minimum manpower investment. An infrastructure, based on standard CERN services, has been implemented, whereby master files, stored in the CERN Distributed File System (DFS), are discovered and scheduled for encoding into lightweight web formats based on predefined profiles. Changes in master files, conversion profiles or in the metadata database (read from CDS, the CERN Document Server) are automatically detected and the media re-encoded whenever necessary. The encoding processes are run on virtual servers provided on-demand by the CERN Server Self Service Centre, so that new servers can be easily configured to adapt to higher load. Finally, the generated files are made available from the CERN standard web servers with streaming implemented using Windows Media Services

  1. A fast and automatic mosaic method for high-resolution satellite images

    Science.gov (United States)

    Chen, Hongshun; He, Hui; Xiao, Hongyu; Huang, Jing

    2015-12-01

    We proposed a fast and fully automatic mosaic method for high-resolution satellite images. First, the overlapped rectangle is computed according to geographical locations of the reference and mosaic images and feature points on both the reference and mosaic images are extracted by a scale-invariant feature transform (SIFT) algorithm only from the overlapped region. Then, the RANSAC method is used to match feature points of both images. Finally, the two images are fused into a seamlessly panoramic image by the simple linear weighted fusion method or other method. The proposed method is implemented in C++ language based on OpenCV and GDAL, and tested by Worldview-2 multispectral images with a spatial resolution of 2 meters. Results show that the proposed method can detect feature points efficiently and mosaic images automatically.

  2. Flame analysis using image processing techniques

    Science.gov (United States)

    Her Jie, Albert Chang; Zamli, Ahmad Faizal Ahmad; Zulazlan Shah Zulkifli, Ahmad; Yee, Joanne Lim Mun; Lim, Mooktzeng

    2018-04-01

    This paper presents image processing techniques with the use of fuzzy logic and neural network approach to perform flame analysis. Flame diagnostic is important in the industry to extract relevant information from flame images. Experiment test is carried out in a model industrial burner with different flow rates. Flame features such as luminous and spectral parameters are extracted using image processing and Fast Fourier Transform (FFT). Flame images are acquired using FLIR infrared camera. Non-linearities such as thermal acoustic oscillations and background noise affect the stability of flame. Flame velocity is one of the important characteristics that determines stability of flame. In this paper, an image processing method is proposed to determine flame velocity. Power spectral density (PSD) graph is a good tool for vibration analysis where flame stability can be approximated. However, a more intelligent diagnostic system is needed to automatically determine flame stability. In this paper, flame features of different flow rates are compared and analyzed. The selected flame features are used as inputs to the proposed fuzzy inference system to determine flame stability. Neural network is used to test the performance of the fuzzy inference system.

  3. MO-F-CAMPUS-J-02: Automatic Recognition of Patient Treatment Site in Portal Images Using Machine Learning

    International Nuclear Information System (INIS)

    Chang, X; Yang, D

    2015-01-01

    Purpose: To investigate the method to automatically recognize the treatment site in the X-Ray portal images. It could be useful to detect potential treatment errors, and to provide guidance to sequential tasks, e.g. automatically verify the patient daily setup. Methods: The portal images were exported from MOSAIQ as DICOM files, and were 1) processed with a threshold based intensity transformation algorithm to enhance contrast, and 2) where then down-sampled (from 1024×768 to 128×96) by using bi-cubic interpolation algorithm. An appearance-based vector space model (VSM) was used to rearrange the images into vectors. A principal component analysis (PCA) method was used to reduce the vector dimensions. A multi-class support vector machine (SVM), with radial basis function kernel, was used to build the treatment site recognition models. These models were then used to recognize the treatment sites in the portal image. Portal images of 120 patients were included in the study. The images were selected to cover six treatment sites: brain, head and neck, breast, lung, abdomen and pelvis. Each site had images of the twenty patients. Cross-validation experiments were performed to evaluate the performance. Results: MATLAB image processing Toolbox and scikit-learn (a machine learning library in python) were used to implement the proposed method. The average accuracies using the AP and RT images separately were 95% and 94% respectively. The average accuracy using AP and RT images together was 98%. Computation time was ∼0.16 seconds per patient with AP or RT image, ∼0.33 seconds per patient with both of AP and RT images. Conclusion: The proposed method of treatment site recognition is efficient and accurate. It is not sensitive to the differences of image intensity, size and positions of patients in the portal images. It could be useful for the patient safety assurance. The work was partially supported by a research grant from Varian Medical System

  4. MO-F-CAMPUS-J-02: Automatic Recognition of Patient Treatment Site in Portal Images Using Machine Learning

    Energy Technology Data Exchange (ETDEWEB)

    Chang, X; Yang, D [Washington University in St Louis, St Louis, MO (United States)

    2015-06-15

    Purpose: To investigate the method to automatically recognize the treatment site in the X-Ray portal images. It could be useful to detect potential treatment errors, and to provide guidance to sequential tasks, e.g. automatically verify the patient daily setup. Methods: The portal images were exported from MOSAIQ as DICOM files, and were 1) processed with a threshold based intensity transformation algorithm to enhance contrast, and 2) where then down-sampled (from 1024×768 to 128×96) by using bi-cubic interpolation algorithm. An appearance-based vector space model (VSM) was used to rearrange the images into vectors. A principal component analysis (PCA) method was used to reduce the vector dimensions. A multi-class support vector machine (SVM), with radial basis function kernel, was used to build the treatment site recognition models. These models were then used to recognize the treatment sites in the portal image. Portal images of 120 patients were included in the study. The images were selected to cover six treatment sites: brain, head and neck, breast, lung, abdomen and pelvis. Each site had images of the twenty patients. Cross-validation experiments were performed to evaluate the performance. Results: MATLAB image processing Toolbox and scikit-learn (a machine learning library in python) were used to implement the proposed method. The average accuracies using the AP and RT images separately were 95% and 94% respectively. The average accuracy using AP and RT images together was 98%. Computation time was ∼0.16 seconds per patient with AP or RT image, ∼0.33 seconds per patient with both of AP and RT images. Conclusion: The proposed method of treatment site recognition is efficient and accurate. It is not sensitive to the differences of image intensity, size and positions of patients in the portal images. It could be useful for the patient safety assurance. The work was partially supported by a research grant from Varian Medical System.

  5. Efficient and automatic image reduction framework for space debris detection based on GPU technology

    Science.gov (United States)

    Diprima, Francesco; Santoni, Fabio; Piergentili, Fabrizio; Fortunato, Vito; Abbattista, Cristoforo; Amoruso, Leonardo

    2018-04-01

    In the last years, the increasing number of space debris has triggered the need of a distributed monitoring system for the prevention of possible space collisions. Space surveillance based on ground telescope allows the monitoring of the traffic of the Resident Space Objects (RSOs) in the Earth orbit. This space debris surveillance has several applications such as orbit prediction and conjunction assessment. In this paper is proposed an optimized and performance-oriented pipeline for sources extraction intended to the automatic detection of space debris in optical data. The detection method is based on the morphological operations and Hough Transform for lines. Near real-time detection is obtained using General Purpose computing on Graphics Processing Units (GPGPU). The high degree of processing parallelism provided by GPGPU allows to split data analysis over thousands of threads in order to process big datasets with a limited computational time. The implementation has been tested on a large and heterogeneous images data set, containing both imaging satellites from different orbit ranges and multiple observation modes (i.e. sidereal and object tracking). These images were taken during an observation campaign performed from the EQUO (EQUatorial Observatory) observatory settled at the Broglio Space Center (BSC) in Kenya, which is part of the ASI-Sapienza Agreement.

  6. Algorithm of automatic generation of technology process and process relations of automotive wiring harnesses

    Institute of Scientific and Technical Information of China (English)

    XU Benzhu; ZHU Jiman; LIU Xiaoping

    2012-01-01

    Identifying each process and their constraint relations from the complex wiring harness drawings quickly and accurately is the basis for formulating process routes. According to the knowledge of automotive wiring harness and the characteristics of wiring harness components, we established the model of wiring harness graph. Then we research the algorithm of identifying technology processes automatically, finally we describe the relationships between processes by introducing the constraint matrix, which is in or- der to lay a good foundation for harness process planning and production scheduling.

  7. Application of digital image processing to industrial radiography

    International Nuclear Information System (INIS)

    Bodson; Varcin; Crescenzo; Theulot

    1985-01-01

    Radiography is widely used for quality control of fabrication of large reactor components. Image processing methods are applied to industrial radiographs in order to help to take a decision as well as to reduce costs and delays for examination. Films, performed in representative operating conditions, are used to test results obtained with algorithms for the restauration of images and for the detection, characterisation of indications in order to determine the possibility of an automatic radiographs processing [fr

  8. Industrial Applications of Image Processing

    Science.gov (United States)

    Ciora, Radu Adrian; Simion, Carmen Mihaela

    2014-11-01

    The recent advances in sensors quality and processing power provide us with excellent tools for designing more complex image processing and pattern recognition tasks. In this paper we review the existing applications of image processing and pattern recognition in industrial engineering. First we define the role of vision in an industrial. Then a dissemination of some image processing techniques, feature extraction, object recognition and industrial robotic guidance is presented. Moreover, examples of implementations of such techniques in industry are presented. Such implementations include automated visual inspection, process control, part identification, robots control. Finally, we present some conclusions regarding the investigated topics and directions for future investigation

  9. [Imaging center - optimization of the imaging process].

    Science.gov (United States)

    Busch, H-P

    2013-04-01

    Hospitals around the world are under increasing pressure to optimize the economic efficiency of treatment processes. Imaging is responsible for a great part of the success but also of the costs of treatment. In routine work an excessive supply of imaging methods leads to an "as well as" strategy up to the limit of the capacity without critical reflection. Exams that have no predictable influence on the clinical outcome are an unjustified burden for the patient. They are useless and threaten the financial situation and existence of the hospital. In recent years the focus of process optimization was exclusively on the quality and efficiency of performed single examinations. In the future critical discussion of the effectiveness of single exams in relation to the clinical outcome will be more important. Unnecessary exams can be avoided, only if in addition to the optimization of single exams (efficiency) there is an optimization strategy for the total imaging process (efficiency and effectiveness). This requires a new definition of processes (Imaging Pathway), new structures for organization (Imaging Center) and a new kind of thinking on the part of the medical staff. Motivation has to be changed from gratification of performed exams to gratification of process quality (medical quality, service quality, economics), including the avoidance of additional (unnecessary) exams. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Sensitometric characteristics of D-, E- and F-speed dental radiographic films in manual and automatic processing

    Directory of Open Access Journals (Sweden)

    Jahangir Haghani DDS, MSc

    2012-09-01

    Full Text Available BACKGROUND AND AIM:The purpose of this study was to evaluatethe sensitometric characteristics of Ultraspeed,Ektaspeed Plus and Insight dental radiographic films using manual and automatic processing systems.METHODS:In this experimental invitro study, an aluminum step-wedge was used to construct characteristic curves forD-, E- and F-speed radiographic films (Kodak Eastman, Rochester, USA. All films were processed in Iranianprocessing solution (chemical industries Co., Iran, Tehran both manually and automatically in a period of six days.Unexposed films of three types were processed manually andautomatically to determine base plus fog density. Speedand film contrast were measured according to International Standard Organization definition.RESULTS:There was significant difference in density obtained with the D-, E- and F-speed films in both manually andautomatically processing systems (P < 0.001. There was significant difference in density obtained with the Ultraspeed andinsight films. There was no significant difference in contrast obtained with the D-, E- and F-speed films in both manuallyand automatically processing systems (P = 0.255 , P = 0.260. There was significant difference in speed obtained with theD-, E- and F-speed films in both manually and automatically processing systems (P = 0.034, P = 0.040.CONCLUSIONS:The choice of processing system canaffect radiographic characteristics. The F-speed film processed inautomatic system has greater speed in comparison with manualprocessing system, and it provides a further reduction inradiation exposure without detriment to image quality.

  11. Building country image process

    Directory of Open Access Journals (Sweden)

    Zubović Jovan

    2005-01-01

    Full Text Available The same branding principles are used for countries as they are used for the products, only the methods are different. Countries are competing among themselves in tourism, foreign investments and exports. Country turnover is at the level that the country's reputation is. The countries that begin as unknown or with a bad image will have limits in operations or they will be marginalized. As a result they will be at the bottom of the international influence scale. On the other hand, countries with a good image, like Germany (despite two world wars will have their products covered with a special "aura".

  12. Digital Data Processing of Images

    African Journals Online (AJOL)

    Digital data processing was investigated to perform image processing. Image smoothing and restoration were explored and promising results obtained. The use of the computer, not only as a data management device, but as an important tool to render quantitative information, was illustrated by lung function determination.

  13. Automatic segmentation of time-lapse microscopy images depicting a live Dharma embryo.

    Science.gov (United States)

    Zacharia, Eleni; Bondesson, Maria; Riu, Anne; Ducharme, Nicole A; Gustafsson, Jan-Åke; Kakadiaris, Ioannis A

    2011-01-01

    Biological inferences about the toxicity of chemicals reached during experiments on the zebrafish Dharma embryo can be greatly affected by the analysis of the time-lapse microscopy images depicting the embryo. Among the stages of image analysis, automatic and accurate segmentation of the Dharma embryo is the most crucial and challenging. In this paper, an accurate and automatic segmentation approach for the segmentation of the Dharma embryo data obtained by fluorescent time-lapse microscopy is proposed. Experiments performed in four stacks of 3D images over time have shown promising results.

  14. Histogram-based automatic thresholding for bruise detection of apples by structured-illumination reflectance imaging

    Science.gov (United States)

    Thresholding is an important step in the segmentation of image features, and the existing methods are not all effective when the image histogram exhibits a unimodal pattern, which is common in defect detection of fruit. This study was aimed at developing a general automatic thresholding methodology ...

  15. Automatic slice identification in 3D medical images with a ConvNet regressor

    NARCIS (Netherlands)

    de Vos, Bob D.; Viergever, Max A.; de Jong, Pim A.; Išgum, Ivana

    2016-01-01

    Identification of anatomical regions of interest is a prerequisite in many medical image analysis tasks. We propose a method that automatically identifies a slice of interest (SOI) in 3D images with a convolutional neural network (ConvNet) regressor. In 150 chest CT scans two reference slices were

  16. Automatic computer aided analysis algorithms and system for adrenal tumors on CT images.

    Science.gov (United States)

    Chai, Hanchao; Guo, Yi; Wang, Yuanyuan; Zhou, Guohui

    2017-12-04

    The adrenal tumor will disturb the secreting function of adrenocortical cells, leading to many diseases. Different kinds of adrenal tumors require different therapeutic schedules. In the practical diagnosis, it highly relies on the doctor's experience to judge the tumor type by reading the hundreds of CT images. This paper proposed an automatic computer aided analysis method for adrenal tumors detection and classification. It consisted of the automatic segmentation algorithms, the feature extraction and the classification algorithms. These algorithms were then integrated into a system and conducted on the graphic interface by using MATLAB Graphic user interface (GUI). The accuracy of the automatic computer aided segmentation and classification reached 90% on 436 CT images. The experiments proved the stability and reliability of this automatic computer aided analytic system.

  17. CHARACTERIZATION AND AUTOMATIC COUNTING OF F.I.S.H. SIGNALS IN 3-D TISSUE IMAGES

    Directory of Open Access Journals (Sweden)

    Umesh PS Adiga

    2011-05-01

    Full Text Available The evaluation of malignancy-related features often helps to determine the prognoses for patients with carcinomas. One technique, which is becoming increasingly important for assessing such prognostic features is that of Fluorescence in situ Hybridization (FISH. By counting the number of FISH signals in a stack of 2- D images of a tumor (which together constitute the 3-D image volume, it is possible to determine whether there has been any loss or gain of the target DNA sequences and thereby evaluate the stage of the disease. However, visual counting of the FISH signals in this way is a tedious, fatiguing and time-consuming task. Therefore, we have developed an automated system for the quantitative evaluation of FISH signals. We present and discuss the implementation of an image processing module that segments, characterizes and counts the FISH signals in 3-D images of thick prostate tumor tissue specimens. Possible errors in the automatic counting of signals are listed and ways to circumvent these errors are described. We define a feature vector for a FISH signal and describe how we have used the weighted feature vector to segment specific signals from noise artifacts. In addition, we present a method, which allows overlapping FISH signals to be distinguished by fitting a local Gaussian model around the intensity profile and studying the feature vector of each model. Our complete image processing module overcomes the problems of manual counting of FISH signals in 3-D images of tumor specimens, thereby providing improved diagnostic and prognostic capability in qualitative diagnostic pathology.

  18. Automatic Delineation of On-Line Head-And-Neck Computed Tomography Images: Toward On-Line Adaptive Radiotherapy

    International Nuclear Information System (INIS)

    Zhang Tiezhi; Chi Yuwei; Meldolesi, Elisa; Yan Di

    2007-01-01

    Purpose: To develop and validate a fully automatic region-of-interest (ROI) delineation method for on-line adaptive radiotherapy. Methods and Materials: On-line adaptive radiotherapy requires a robust and automatic image segmentation method to delineate ROIs in on-line volumetric images. We have implemented an atlas-based image segmentation method to automatically delineate ROIs of head-and-neck helical computed tomography images. A total of 32 daily computed tomography images from 7 head-and-neck patients were delineated using this automatic image segmentation method. Manually drawn contours on the daily images were used as references in the evaluation of automatically delineated ROIs. Two methods were used in quantitative validation: (1) the dice similarity coefficient index, which indicates the overlapping ratio between the manually and automatically delineated ROIs; and (2) the distance transformation, which yields the distances between the manually and automatically delineated ROI surfaces. Results: Automatic segmentation showed agreement with manual contouring. For most ROIs, the dice similarity coefficient indexes were approximately 0.8. Similarly, the distance transformation evaluation results showed that the distances between the manually and automatically delineated ROI surfaces were mostly within 3 mm. The distances between two surfaces had a mean of 1 mm and standard deviation of <2 mm in most ROIs. Conclusion: With atlas-based image segmentation, it is feasible to automatically delineate ROIs on the head-and-neck helical computed tomography images in on-line adaptive treatments

  19. Automatic Matching of Large Scale Images and Terrestrial LIDAR Based on App Synergy of Mobile Phone

    Science.gov (United States)

    Xia, G.; Hu, C.

    2018-04-01

    The digitalization of Cultural Heritage based on ground laser scanning technology has been widely applied. High-precision scanning and high-resolution photography of cultural relics are the main methods of data acquisition. The reconstruction with the complete point cloud and high-resolution image requires the matching of image and point cloud, the acquisition of the homonym feature points, the data registration, etc. However, the one-to-one correspondence between image and corresponding point cloud depends on inefficient manual search. The effective classify and management of a large number of image and the matching of large image and corresponding point cloud will be the focus of the research. In this paper, we propose automatic matching of large scale images and terrestrial LiDAR based on APP synergy of mobile phone. Firstly, we develop an APP based on Android, take pictures and record related information of classification. Secondly, all the images are automatically grouped with the recorded information. Thirdly, the matching algorithm is used to match the global and local image. According to the one-to-one correspondence between the global image and the point cloud reflection intensity image, the automatic matching of the image and its corresponding laser radar point cloud is realized. Finally, the mapping relationship between global image, local image and intensity image is established according to homonym feature point. So we can establish the data structure of the global image, the local image in the global image, the local image corresponding point cloud, and carry on the visualization management and query of image.

  20. Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques

    Directory of Open Access Journals (Sweden)

    Kemal Akyol

    2016-01-01

    Full Text Available With the advances in the computer field, methods and techniques in automatic image processing and analysis provide the opportunity to detect automatically the change and degeneration in retinal images. Localization of the optic disc is extremely important for determining the hard exudate lesions or neovascularization, which is the later phase of diabetic retinopathy, in computer aided eye disease diagnosis systems. Whereas optic disc detection is fairly an easy process in normal retinal images, detecting this region in the retinal image which is diabetic retinopathy disease may be difficult. Sometimes information related to optic disc and hard exudate information may be the same in terms of machine learning. We presented a novel approach for efficient and accurate localization of optic disc in retinal images having noise and other lesions. This approach is comprised of five main steps which are image processing, keypoint extraction, texture analysis, visual dictionary, and classifier techniques. We tested our proposed technique on 3 public datasets and obtained quantitative results. Experimental results show that an average optic disc detection accuracy of 94.38%, 95.00%, and 90.00% is achieved, respectively, on the following public datasets: DIARETDB1, DRIVE, and ROC.

  1. Anatomy-based automatic detection and segmentation of major vessels in thoracic CTA images

    International Nuclear Information System (INIS)

    Zou Xiaotao; Liang Jianming; Wolf, M.; Salganicoff, M.; Krishnan, A.; Nadich, D.P.

    2007-01-01

    Existing approaches for automated computerized detection of pulmonary embolism (PE) using computed tomography angiography (CTA) usually focus on segmental and sub-segmental emboli. The goal of our current research is to extend our existing approach to automated detection of central PE. In order to detect central emboli, the major vessels must be first identified and segmented automatically. This submission presents an anatomy-based method for automatic computerized detection and segmentation of aortas and main pulmonary arteries in CTA images. (orig.)

  2. Automatic Detection and Evaluation of Solar Cell Micro-Cracks in Electroluminescence Images Using Matched Filters

    Energy Technology Data Exchange (ETDEWEB)

    Spataru, Sergiu; Hacke, Peter; Sera, Dezso

    2016-11-21

    A method for detecting micro-cracks in solar cells using two dimensional matched filters was developed, derived from the electroluminescence intensity profile of typical micro-cracks. We describe the image processing steps to obtain a binary map with the location of the micro-cracks. Finally, we show how to automatically estimate the total length of each micro-crack from these maps, and propose a method to identify severe types of micro-cracks, such as parallel, dendritic, and cracks with multiple orientations. With an optimized threshold parameter, the technique detects over 90 % of cracks larger than 3 cm in length. The method shows great potential for quantifying micro-crack damage after manufacturing or module transportation for the determination of a module quality criterion for cell cracking in photovoltaic modules.

  3. Microprocessor based image processing system

    International Nuclear Information System (INIS)

    Mirza, M.I.; Siddiqui, M.N.; Rangoonwala, A.

    1987-01-01

    Rapid developments in the production of integrated circuits and introduction of sophisticated 8,16 and now 32 bit microprocessor based computers, have set new trends in computer applications. Nowadays the users by investing much less money can make optimal use of smaller systems by getting them custom-tailored according to their requirements. During the past decade there have been great advancements in the field of computer Graphics and consequently, 'Image Processing' has emerged as a separate independent field. Image Processing is being used in a number of disciplines. In the Medical Sciences, it is used to construct pseudo color images from computer aided tomography (CAT) or positron emission tomography (PET) scanners. Art, advertising and publishing people use pseudo colours in pursuit of more effective graphics. Structural engineers use Image Processing to examine weld X-rays to search for imperfections. Photographers use Image Processing for various enhancements which are difficult to achieve in a conventional dark room. (author)

  4. Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images.

    Science.gov (United States)

    Chiu, Stephanie J; Izatt, Joseph A; O'Connell, Rachelle V; Winter, Katrina P; Toth, Cynthia A; Farsiu, Sina

    2012-01-05

    To automatically segment retinal spectral domain optical coherence tomography (SD-OCT) images of eyes with age-related macular degeneration (AMD) and various levels of image quality to advance the study of retinal pigment epithelium (RPE)+drusen complex (RPEDC) volume changes indicative of AMD progression. A general segmentation framework based on graph theory and dynamic programming was used to segment three retinal boundaries in SD-OCT images of eyes with drusen and geographic atrophy (GA). A validation study for eyes with nonneovascular AMD was conducted, forming subgroups based on scan quality and presence of GA. To test for accuracy, the layer thickness results from two certified graders were compared against automatic segmentation results for 220 B-scans across 20 patients. For reproducibility, automatic layer volumes were compared that were generated from 0° versus 90° scans in five volumes with drusen. The mean differences in the measured thicknesses of the total retina and RPEDC layers were 4.2 ± 2.8 and 3.2 ± 2.6 μm for automatic versus manual segmentation. When the 0° and 90° datasets were compared, the mean differences in the calculated total retina and RPEDC volumes were 0.28% ± 0.28% and 1.60% ± 1.57%, respectively. The average segmentation time per image was 1.7 seconds automatically versus 3.5 minutes manually. The automatic algorithm accurately and reproducibly segmented three retinal boundaries in images containing drusen and GA. This automatic approach can reduce time and labor costs and yield objective measurements that potentially reveal quantitative RPE changes in longitudinal clinical AMD studies. (ClinicalTrials.gov number, NCT00734487.).

  5. The Digital Image Processing And Quantitative Analysis In Microscopic Image Characterization

    International Nuclear Information System (INIS)

    Ardisasmita, M. Syamsa

    2000-01-01

    Many electron microscopes although have produced digital images, but not all of them are equipped with a supporting unit to process and analyse image data quantitatively. Generally the analysis of image has to be made visually and the measurement is realized manually. The development of mathematical method for geometric analysis and pattern recognition, allows automatic microscopic image analysis with computer. Image processing program can be used for image texture and structure periodic analysis by the application of Fourier transform. Because the development of composite materials. Fourier analysis in frequency domain become important for measure the crystallography orientation. The periodic structure analysis and crystal orientation are the key to understand many material properties like mechanical strength. stress, heat conductivity, resistance, capacitance and other material electric and magnetic properties. In this paper will be shown the application of digital image processing in microscopic image characterization and analysis in microscopic image

  6. Controlled versus automatic processes: which is dominant to safety? The moderating effect of inhibitory control.

    Directory of Open Access Journals (Sweden)

    Yaoshan Xu

    Full Text Available This study explores the precursors of employees' safety behaviors based on a dual-process model, which suggests that human behaviors are determined by both controlled and automatic cognitive processes. Employees' responses to a self-reported survey on safety attitudes capture their controlled cognitive process, while the automatic association concerning safety measured by an Implicit Association Test (IAT reflects employees' automatic cognitive processes about safety. In addition, this study investigates the moderating effects of inhibition on the relationship between self-reported safety attitude and safety behavior, and that between automatic associations towards safety and safety behavior. The results suggest significant main effects of self-reported safety attitude and automatic association on safety behaviors. Further, the interaction between self-reported safety attitude and inhibition and that between automatic association and inhibition each predict unique variances in safety behavior. Specifically, the safety behaviors of employees with lower level of inhibitory control are influenced more by automatic association, whereas those of employees with higher level of inhibitory control are guided more by self-reported safety attitudes. These results suggest that safety behavior is the joint outcome of both controlled and automatic cognitive processes, and the relative importance of these cognitive processes depends on employees' individual differences in inhibitory control. The implications of these findings for theoretical and practical issues are discussed at the end.

  7. Automatic relative RPC image model bias compensation through hierarchical image matching for improving DEM quality

    Science.gov (United States)

    Noh, Myoung-Jong; Howat, Ian M.

    2018-02-01

    The quality and efficiency of automated Digital Elevation Model (DEM) extraction from stereoscopic satellite imagery is critically dependent on the accuracy of the sensor model used for co-locating pixels between stereo-pair images. In the absence of ground control or manual tie point selection, errors in the sensor models must be compensated with increased matching search-spaces, increasing both the computation time and the likelihood of spurious matches. Here we present an algorithm for automatically determining and compensating the relative bias in Rational Polynomial Coefficients (RPCs) between stereo-pairs utilizing hierarchical, sub-pixel image matching in object space. We demonstrate the algorithm using a suite of image stereo-pairs from multiple satellites over a range stereo-photogrammetrically challenging polar terrains. Besides providing a validation of the effectiveness of the algorithm for improving DEM quality, experiments with prescribed sensor model errors yield insight into the dependence of DEM characteristics and quality on relative sensor model bias. This algorithm is included in the Surface Extraction through TIN-based Search-space Minimization (SETSM) DEM extraction software package, which is the primary software used for the U.S. National Science Foundation ArcticDEM and Reference Elevation Model of Antarctica (REMA) products.

  8. Segmentation of Multi-Isotope Imaging Mass Spectrometry Data for Semi-Automatic Detection of Regions of Interest

    Science.gov (United States)

    Poczatek, J. Collin; Turck, Christoph W.; Lechene, Claude

    2012-01-01

    Multi-isotope imaging mass spectrometry (MIMS) associates secondary ion mass spectrometry (SIMS) with detection of several atomic masses, the use of stable isotopes as labels, and affiliated quantitative image-analysis software. By associating image and measure, MIMS allows one to obtain quantitative information about biological processes in sub-cellular domains. MIMS can be applied to a wide range of biomedical problems, in particular metabolism and cell fate [1], [2], [3]. In order to obtain morphologically pertinent data from MIMS images, we have to define regions of interest (ROIs). ROIs are drawn by hand, a tedious and time-consuming process. We have developed and successfully applied a support vector machine (SVM) for segmentation of MIMS images that allows fast, semi-automatic boundary detection of regions of interests. Using the SVM, high-quality ROIs (as compared to an expert's manual delineation) were obtained for 2 types of images derived from unrelated data sets. This automation simplifies, accelerates and improves the post-processing analysis of MIMS images. This approach has been integrated into “Open MIMS,” an ImageJ-plugin for comprehensive analysis of MIMS images that is available online at http://www.nrims.hms.harvard.edu/NRIMS_ImageJ.php. PMID:22347386

  9. TECHNOLOGIES OF BRAIN IMAGES PROCESSING

    Directory of Open Access Journals (Sweden)

    O.M. Klyuchko

    2017-12-01

    Full Text Available The purpose of present research was to analyze modern methods of processing biological images implemented before storage in databases for biotechnological purposes. The databases further were incorporated into web-based digital systems. Examples of such information systems were described in the work for two levels of biological material organization; databases for storing data of histological analysis and of whole brain were described. Methods of neuroimaging processing for electronic brain atlas were considered. It was shown that certain pathological features can be revealed in histological image processing. Several medical diagnostic techniques (for certain brain pathologies, etc. as well as a few biotechnological methods are based on such effects. Algorithms of image processing were suggested. Electronic brain atlas was conveniently for professionals in different fields described in details. Approaches of brain atlas elaboration, “composite” scheme for large deformations as well as several methods of mathematic images processing were described as well.

  10. Image Processing: Some Challenging Problems

    Science.gov (United States)

    Huang, T. S.; Aizawa, K.

    1993-11-01

    Image processing can be broadly defined as the manipulation of signals which are inherently multidimensional. The most common such signals are photographs and video sequences. The goals of processing or manipulation can be (i) compression for storage or transmission; (ii) enhancement or restoration; (iii) analysis, recognition, and understanding; or (iv) visualization for human observers. The use of image processing techniques has become almost ubiquitous; they find applications in such diverse areas as astronomy, archaeology, medicine, video communication, and electronic games. Nonetheless, many important problems in image processing remain unsolved. It is the goal of this paper to discuss some of these challenging problems. In Section I, we mention a number of outstanding problems. Then, in the remainder of this paper, we concentrate on one of them: very-low-bit-rate video compression. This is chosen because it involves almost all aspects of image processing.

  11. A system for classifying wood-using industries and recording statistics for automatic data processing.

    Science.gov (United States)

    E.W. Fobes; R.W. Rowe

    1968-01-01

    A system for classifying wood-using industries and recording pertinent statistics for automatic data processing is described. Forms and coding instructions for recording data of primary processing plants are included.

  12. Seeing race: N170 responses to race and their relation to automatic racial attitudes and controlled processing.

    Science.gov (United States)

    Ofan, Renana H; Rubin, Nava; Amodio, David M

    2011-10-01

    We examined the relation between neural activity reflecting early face perception processes and automatic and controlled responses to race. Participants completed a sequential evaluative priming task, in which two-tone images of Black faces, White faces, and cars appeared as primes, followed by target words categorized as pleasant or unpleasant, while encephalography was recorded. Half of these participants were alerted that the task assessed racial prejudice and could reveal their personal bias ("alerted" condition). To assess face perception processes, the N170 component of the ERP was examined. For all participants, stronger automatic pro-White bias was associated with larger N170 amplitudes to Black than White faces. For participants in the alerted condition only, larger N170 amplitudes to Black versus White faces were also associated with less controlled processing on the word categorization task. These findings suggest that preexisting racial attitudes affect early face processing and that situational factors moderate the link between early face processing and behavior.

  13. Semi-Automatic Classification Of Histopathological Images: Dealing With Inter-Slide Variations

    Directory of Open Access Journals (Sweden)

    Michael Gadermayr

    2016-06-01

    In case of 50 available labelled sample patches of a certain whole slide image, the overall classification rate increased from 92 % to 98 % through including the interactive labelling step. Even with only 20 labelled patches, accuracy already increased to 97 %. Without a pre-trained model, if training is performed on target domain data only, 88 % (20 labelled samples and 95 % (50 labelled samples accuracy, respectively, were obtained. If enough target domain data was available (about 20 images, the amount of source domain data was of minor relevance. The difference in outcome between a source domain training data set containing 100 patches from one whole slide image and a set containing 700 patches from seven images was lower than 1 %. Contrarily, without target domain data, the difference in accuracy was 10 % (82 % compared to 92 % between these two settings. Execution runtime between two interaction steps is significantly below one second (0.23 s, which is an important usability criterion. It proved to be beneficial to select specific target domain data in an active learning sense based on the currently available trained model. While experimental evaluation provided strong empirical evidence for increased classification performance with the proposed method, the additional manual effort can be kept at a low level. The labelling of e.g. 20 images per slide is surely less time consuming than the validation of a complete whole slide image processed with a fully automatic, but less reliable, segmentation approach. Finally, it should be highlighted that the proposed interaction protocol could easily be adapted to other histopathological classification or segmentation tasks, also for implementation in a clinical system.  

  14. Biomedical signal and image processing

    CERN Document Server

    Najarian, Kayvan

    2012-01-01

    INTRODUCTION TO DIGITAL SIGNAL AND IMAGE PROCESSINGSignals and Biomedical Signal ProcessingIntroduction and OverviewWhat is a ""Signal""?Analog, Discrete, and Digital SignalsProcessing and Transformation of SignalsSignal Processing for Feature ExtractionSome Characteristics of Digital ImagesSummaryProblemsFourier TransformIntroduction and OverviewOne-Dimensional Continuous Fourier TransformSampling and NYQUIST RateOne-Dimensional Discrete Fourier TransformTwo-Dimensional Discrete Fourier TransformFilter DesignSummaryProblemsImage Filtering, Enhancement, and RestorationIntroduction and Overview

  15. Image restoration and processing methods

    International Nuclear Information System (INIS)

    Daniell, G.J.

    1984-01-01

    This review will stress the importance of using image restoration techniques that deal with incomplete, inconsistent, and noisy data and do not introduce spurious features into the processed image. No single image is equally suitable for both the resolution of detail and the accurate measurement of intensities. A good general purpose technique is the maximum entropy method and the basis and use of this will be explained. (orig.)

  16. Image processing in medical ultrasound

    DEFF Research Database (Denmark)

    Hemmsen, Martin Christian

    This Ph.D project addresses image processing in medical ultrasound and seeks to achieve two major scientific goals: First to develop an understanding of the most significant factors influencing image quality in medical ultrasound, and secondly to use this knowledge to develop image processing...... multiple imaging setups. This makes the system well suited for development of new processing methods and for clinical evaluations, where acquisition of the exact same scan location for multiple methods is important. The second project addressed implementation, development and evaluation of SASB using...... methods for enhancing the diagnostic value of medical ultrasound. The project is an industrial Ph.D project co-sponsored by BK Medical ApS., with the commercial goal to improve the image quality of BK Medicals scanners. Currently BK Medical employ a simple conventional delay-and-sum beamformer to generate...

  17. Application of image recognition-based automatic hyphae detection in fungal keratitis.

    Science.gov (United States)

    Wu, Xuelian; Tao, Yuan; Qiu, Qingchen; Wu, Xinyi

    2018-03-01

    The purpose of this study is to evaluate the accuracy of two methods in diagnosis of fungal keratitis, whereby one method is automatic hyphae detection based on images recognition and the other method is corneal smear. We evaluate the sensitivity and specificity of the method in diagnosis of fungal keratitis, which is automatic hyphae detection based on image recognition. We analyze the consistency of clinical symptoms and the density of hyphae, and perform quantification using the method of automatic hyphae detection based on image recognition. In our study, 56 cases with fungal keratitis (just single eye) and 23 cases with bacterial keratitis were included. All cases underwent the routine inspection of slit lamp biomicroscopy, corneal smear examination, microorganism culture and the assessment of in vivo confocal microscopy images before starting medical treatment. Then, we recognize the hyphae images of in vivo confocal microscopy by using automatic hyphae detection based on image recognition to evaluate its sensitivity and specificity and compare with the method of corneal smear. The next step is to use the index of density to assess the severity of infection, and then find the correlation with the patients' clinical symptoms and evaluate consistency between them. The accuracy of this technology was superior to corneal smear examination (p hyphae detection of image recognition was 89.29%, and the specificity was 95.65%. The area under the ROC curve was 0.946. The correlation coefficient between the grading of the severity in the fungal keratitis by the automatic hyphae detection based on image recognition and the clinical grading is 0.87. The technology of automatic hyphae detection based on image recognition was with high sensitivity and specificity, able to identify fungal keratitis, which is better than the method of corneal smear examination. This technology has the advantages when compared with the conventional artificial identification of confocal

  18. Development of automatic extraction method of left ventricular contours on long axis view MR cine images

    International Nuclear Information System (INIS)

    Utsunomiya, Shinichi; Iijima, Naoto; Yamasaki, Kazunari; Fujita, Akinori

    1995-01-01

    In the MRI cardiac function analysis, left ventricular volume curves and diagnosis parameters are obtained by extracting the left ventricular cavities as regions of interest (ROI) from long axis view MR cine images. The ROI extractions had to be done by manual operations, because automatization of the extraction is difficult. A long axis view left ventricular contour consists of a cardiac wall part and an aortic valve part. The above mentioned difficulty is due to the decline of contrast on the cardiac wall part, and the disappearance of edge on the aortic valve part. In this paper, we report a new automatic extraction method for long axis view MR cine images, which needs only 3 manually indicated points on the 1st image to extract all the contours from the total sequence of images. At first, candidate points of a contour are detected by edge detection. Then, selecting the best matched combination of candidate points by Dynamic Programming, the cardiac wall part is automatically extracted. The aortic valve part is manually extracted for the 1st image by indicating both the end points, and is automatically extracted for the rest of the images, by utilizing the aortic valve motion characteristics throughout a cardiac cycle. (author)

  19. Image-guided automatic triggering of a fractional CO2 laser in aesthetic procedures.

    Science.gov (United States)

    Wilczyński, Sławomir; Koprowski, Robert; Wiernek, Barbara K; Błońska-Fajfrowska, Barbara

    2016-09-01

    Laser procedures in dermatology and aesthetic medicine are associated with the need for manual laser triggering. This leads to pulse overlapping and side effects. Automatic laser triggering based on image analysis can provide a secure fit to each successive doses of radiation. A fractional CO2 laser was used in the study. 500 images of the human skin of healthy subjects were acquired. Automatic triggering was initiated by an application together with a camera which tracks and analyses the skin in visible light. The tracking algorithm uses the methods of image analysis to overlap images. After locating the characteristic points in analysed adjacent areas, the correspondence of graphs is found. The point coordinates derived from the images are the vertices of graphs with respect to which isomorphism is sought. When the correspondence of graphs is found, it is possible to overlap the neighbouring parts of the image. The proposed method of laser triggering owing to the automatic image fitting method allows for 100% repeatability. To meet this requirement, there must be at least 13 graph vertices obtained from the image. For this number of vertices, the time of analysis of a single image is less than 0.5s. The proposed method, applied in practice, may help reduce the number of side effects during dermatological laser procedures resulting from laser pulse overlapping. In addition, it reduces treatment time and enables to propose new techniques of treatment through controlled, precise laser pulse overlapping. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Invitation to medical image processing

    International Nuclear Information System (INIS)

    Kitasaka, Takayuki; Suenaga, Yasuhito; Mori, Kensaku

    2010-01-01

    This medical essay explains the present state of CT image processing technology about its recognition, acquisition and visualization for computer-assisted diagnosis (CAD) and surgery (CAS), and future view. Medical image processing has a series of history of its original start from the discovery of X-ray to its application to diagnostic radiography, its combination with the computer for CT, multi-detector raw CT, leading to 3D/4D images for CAD and CAS. CAD is performed based on the recognition of normal anatomical structure of human body, detection of possible abnormal lesion and visualization of its numerical figure into image. Actual instances of CAD images are presented here for chest (lung cancer), abdomen (colorectal cancer) and future body atlas (models of organs and diseases for imaging), a recent national project: computer anatomy. CAS involves the surgical planning technology based on 3D images, navigation of the actual procedure and of endoscopy. As guidance to beginning technological image processing, described are the national and international community like related academic societies, regularly conducting congresses, textbooks and workshops, and topics in the field like computed anatomy of an individual patient for CAD and CAS, its data security and standardization. In future, protective medicine is in authors' view based on the imaging technology, e.g., daily life CAD of individuals ultimately, as exemplified in the present body thermometer and home sphygmometer, to monitor one's routine physical conditions. (T.T.)

  1. Topics in medical image processing and computational vision

    CERN Document Server

    Jorge, Renato

    2013-01-01

      The sixteen chapters included in this book were written by invited experts of international recognition and address important issues in Medical Image Processing and Computational Vision, including: Object Recognition, Object Detection, Object Tracking, Pose Estimation, Facial Expression Recognition, Image Retrieval, Data Mining, Automatic Video Understanding and Management, Edges Detection, Image Segmentation, Modelling and Simulation, Medical thermography, Database Systems, Synthetic Aperture Radar and Satellite Imagery.   Different applications are addressed and described throughout the book, comprising: Object Recognition and Tracking, Facial Expression Recognition, Image Database, Plant Disease Classification, Video Understanding and Management, Image Processing, Image Segmentation, Bio-structure Modelling and Simulation, Medical Imaging, Image Classification, Medical Diagnosis, Urban Areas Classification, Land Map Generation.   The book brings together the current state-of-the-art in the various mul...

  2. A novel method based on learning automata for automatic lesion detection in breast magnetic resonance imaging.

    Science.gov (United States)

    Salehi, Leila; Azmi, Reza

    2014-07-01

    Breast cancer continues to be a significant public health problem in the world. Early detection is the key for improving breast cancer prognosis. In this way, magnetic resonance imaging (MRI) is emerging as a powerful tool for the detection of breast cancer. Breast MRI presently has two major challenges. First, its specificity is relatively poor, and it detects many false positives (FPs). Second, the method involves acquiring several high-resolution image volumes before, during, and after the injection of a contrast agent. The large volume of data makes the task of interpretation by the radiologist both complex and time-consuming. These challenges have led to the development of the computer-aided detection systems to improve the efficiency and accuracy of the interpretation process. Detection of suspicious regions of interests (ROIs) is a critical preprocessing step in dynamic contrast-enhanced (DCE)-MRI data evaluation. In this regard, this paper introduces a new automatic method to detect the suspicious ROIs for breast DCE-MRI based on region growing. The results indicate that the proposed method is thoroughly able to identify suspicious regions (accuracy of 75.39 ± 3.37 on PIDER breast MRI dataset). Furthermore, the FP per image in this method is averagely 7.92, which shows considerable improvement comparing to other methods like ROI hunter.

  3. Fast automatic quantitative cell replication with fluorescent live cell imaging

    Directory of Open Access Journals (Sweden)

    Wang Ching-Wei

    2012-01-01

    Full Text Available Abstract Background live cell imaging is a useful tool to monitor cellular activities in living systems. It is often necessary in cancer research or experimental research to quantify the dividing capabilities of cells or the cell proliferation level when investigating manipulations of the cells or their environment. Manual quantification of fluorescence microscopic image is difficult because human is neither sensitive to fine differences in color intensity nor effective to count and average fluorescence level among cells. However, auto-quantification is not a straightforward problem to solve. As the sampling location of the microscopy changes, the amount of cells in individual microscopic images varies, which makes simple measurement methods such as the sum of stain intensity values or the total number of positive stain within each image inapplicable. Thus, automated quantification with robust cell segmentation techniques is required. Results An automated quantification system with robust cell segmentation technique are presented. The experimental results in application to monitor cellular replication activities show that the quantitative score is promising to represent the cell replication level, and scores for images from different cell replication groups are demonstrated to be statistically significantly different using ANOVA, LSD and Tukey HSD tests (p-value Conclusion A robust automated quantification method of live cell imaging is built to measure the cell replication level, providing a robust quantitative analysis system in fluorescent live cell imaging. In addition, the presented unsupervised entropy based cell segmentation for live cell images is demonstrated to be also applicable for nuclear segmentation of IHC tissue images.

  4. Automatic system of production, transfer and processing of coin targets for the production of metallic radioisotopes

    Science.gov (United States)

    Pellicioli, M.; Ouadi, A.; Marchand, P.; Foehrenbacher, T.; Schuler, J.; Dick-Schuler, N.; Brasse, D.

    2017-05-01

    The work presented in this paper gathers three main technical developments aiming at 1) optimizing nuclide production by the mean of solid targets 2) automatically transferring coin targets from vault to hotcell without human intervention 3) processing target dilution and purification in hotcell automatically. This system has been installed on a ACSI TR24 cyclotron in Strasbourg France.

  5. Automatic solar image motion measurements. [electronic disk flux monitoring

    Science.gov (United States)

    Colgate, S. A.; Moore, E. P.

    1975-01-01

    The solar seeing image motion has been monitored electronically and absolutely with a 25 cm telescope at three sites along the ridge at the southern end of the Magdalena Mountains west of Socorro, New Mexico. The uncorrelated component of the variations of the optical flux from two points at opposite limbs of the solar disk was continually monitored in 3 frequencies centered at 0.3, 3 and 30 Hz. The frequency band of maximum signal centered at 3 Hz showed the average absolute value of image motion to be somewhat less than 2sec. The observer estimates of combined blurring and image motion were well correlated with electronically measured image motion, but the observer estimates gave a factor 2 larger value.

  6. Automatic Detection of Changes on Mars Surface from High-Resolution Orbital Images

    Science.gov (United States)

    Sidiropoulos, Panagiotis; Muller, Jan-Peter

    2017-04-01

    Over the last 40 years Mars has been extensively mapped by several NASA and ESA orbital missions, generating a large image dataset comprised of approximately 500,000 high-resolution images (of citizen science can be employed for training and verification it is unsuitable for planetwide systematic change detection. In this work, we introduce a novel approach in planetary image change detection, which involves a batch-mode automatic change detection pipeline that identifies regions that have changed. This is tested in anger, on tens of thousands of high-resolution images over the MC11 quadrangle [5], acquired by CTX, HRSC, THEMIS-VIS and MOC-NA instruments [1]. We will present results which indicate a substantial level of activity in this region of Mars, including instances of dynamic natural phenomena that haven't been cataloged in the planetary science literature before. We will demonstrate the potential and usefulness of such an automatic approach in planetary science change detection. Acknowledgments: The research leading to these results has received funding from the STFC "MSSL Consolidated Grant" ST/K000977/1 and partial support from the European Union's Seventh Framework Programme (FP7/2007-2013) under iMars grant agreement n° 607379. References: [1] P. Sidiropoulos and J. - P. Muller (2015) On the status of orbital high-resolution repeat imaging of Mars for the observation of dynamic surface processes. Planetary and Space Science, 117: 207-222. [2] O. Aharonson, et al. (2003) Slope streak formation and dust deposition rates on Mars. Journal of Geophysical Research: Planets, 108(E12):5138 [3] A. McEwen, et al. (2011) Seasonal flows on warm martian slopes. Science, 333 (6043): 740-743. [4] S. Byrne, et al. (2009) Distribution of mid-latitude ground ice on mars from new impact craters. Science, 325(5948):1674-1676. [5] K. Gwinner, et al (2016) The High Resolution Stereo Camera (HRSC) of Mars Express and its approach to science analysis and mapping for Mars and

  7. Current status on image processing in medical fields in Japan

    International Nuclear Information System (INIS)

    Atsumi, Kazuhiko

    1979-01-01

    Information on medical images are classified in the two patterns. 1) off-line images on films-x-ray films, cell image, chromosome image etc. 2) on-line images detected through sensors, RI image, ultrasonic image, thermogram etc. These images are divided into three characteristic, two dimensional three dimensional and dynamic images. The research on medical image processing have been reported in several meeting in Japan and many fields on images have been studied on RI, thermogram, x-ray film, x-ray-TV image, cancer cell, blood cell, bacteria, chromosome, ultrasonics, and vascular image. Processing on TI image useful and easy because of their digital displays. Software on smoothing, restoration (iterative approximation), fourier transformation, differentiation and subtration. Image on stomach and chest x-ray films have been processed automatically utilizing computer system. Computed Tomography apparatuses have been already developed in Japan and automated screening instruments on cancer cells and recently on blood cells classification have been also developed. Acoustical holography imaging and moire topography have been also studied in Japan. (author)

  8. Automatic detection of regions of interest in mammographic images

    Science.gov (United States)

    Cheng, Erkang; Ling, Haibin; Bakic, Predrag R.; Maidment, Andrew D. A.; Megalooikonomou, Vasileios

    2011-03-01

    This work is a part of our ongoing study aimed at comparing the topology of anatomical branching structures with the underlying image texture. Detection of regions of interest (ROIs) in clinical breast images serves as the first step in development of an automated system for image analysis and breast cancer diagnosis. In this paper, we have investigated machine learning approaches for the task of identifying ROIs with visible breast ductal trees in a given galactographic image. Specifically, we have developed boosting based framework using the AdaBoost algorithm in combination with Haar wavelet features for the ROI detection. Twenty-eight clinical galactograms with expert annotated ROIs were used for training. Positive samples were generated by resampling near the annotated ROIs, and negative samples were generated randomly by image decomposition. Each detected ROI candidate was given a confidences core. Candidate ROIs with spatial overlap were merged and their confidence scores combined. We have compared three strategies for elimination of false positives. The strategies differed in their approach to combining confidence scores by summation, averaging, or selecting the maximum score.. The strategies were compared based upon the spatial overlap with annotated ROIs. Using a 4-fold cross-validation with the annotated clinical galactographic images, the summation strategy showed the best performance with 75% detection rate. When combining the top two candidates, the selection of maximum score showed the best performance with 96% detection rate.

  9. Automatic terrain modeling using transfinite element analysis

    KAUST Repository

    Collier, Nathan; Calo, Victor M.

    2010-01-01

    An automatic procedure for modeling terrain is developed based on L2 projection-based interpolation of discrete terrain data onto transfinite function spaces. The function space is refined automatically by the use of image processing techniques

  10. Effective System for Automatic Bundle Block Adjustment and Ortho Image Generation from Multi Sensor Satellite Imagery

    Science.gov (United States)

    Akilan, A.; Nagasubramanian, V.; Chaudhry, A.; Reddy, D. Rajesh; Sudheer Reddy, D.; Usha Devi, R.; Tirupati, T.; Radhadevi, P. V.; Varadan, G.

    2014-11-01

    Block Adjustment is a technique for large area mapping for images obtained from different remote sensingsatellites.The challenge in this process is to handle huge number of satellite imageries from different sources with different resolution and accuracies at the system level. This paper explains a system with various tools and techniques to effectively handle the end-to-end chain in large area mapping and production with good level of automation and the provisions for intuitive analysis of final results in 3D and 2D environment. In addition, the interface for using open source ortho and DEM references viz., ETM, SRTM etc. and displaying ESRI shapes for the image foot-prints are explained. Rigorous theory, mathematical modelling, workflow automation and sophisticated software engineering tools are included to ensure high photogrammetric accuracy and productivity. Major building blocks like Georeferencing, Geo-capturing and Geo-Modelling tools included in the block adjustment solution are explained in this paper. To provide optimal bundle block adjustment solution with high precision results, the system has been optimized in many stages to exploit the full utilization of hardware resources. The robustness of the system is ensured by handling failure in automatic procedure and saving the process state in every stage for subsequent restoration from the point of interruption. The results obtained from various stages of the system are presented in the paper.

  11. A Method for Automatic Extracting Intracranial Region in MR Brain Image

    Science.gov (United States)

    Kurokawa, Keiji; Miura, Shin; Nishida, Makoto; Kageyama, Yoichi; Namura, Ikuro

    It is well known that temporal lobe in MR brain image is in use for estimating the grade of Alzheimer-type dementia. It is difficult to use only region of temporal lobe for estimating the grade of Alzheimer-type dementia. From the standpoint for supporting the medical specialists, this paper proposes a data processing approach on the automatic extraction of the intracranial region from the MR brain image. The method is able to eliminate the cranium region with the laplacian histogram method and the brainstem with the feature points which are related to the observations given by a medical specialist. In order to examine the usefulness of the proposed approach, the percentage of the temporal lobe in the intracranial region was calculated. As a result, the percentage of temporal lobe in the intracranial region on the process of the grade was in agreement with the visual sense standards of temporal lobe atrophy given by the medical specialist. It became clear that intracranial region extracted by the proposed method was good for estimating the grade of Alzheimer-type dementia.

  12. Fully automatic registration and segmentation of first-pass myocardial perfusion MR image sequences.

    Science.gov (United States)

    Gupta, Vikas; Hendriks, Emile A; Milles, Julien; van der Geest, Rob J; Jerosch-Herold, Michael; Reiber, Johan H C; Lelieveldt, Boudewijn P F

    2010-11-01

    Derivation of diagnostically relevant parameters from first-pass myocardial perfusion magnetic resonance images involves the tedious and time-consuming manual segmentation of the myocardium in a large number of images. To reduce the manual interaction and expedite the perfusion analysis, we propose an automatic registration and segmentation method for the derivation of perfusion linked parameters. A complete automation was accomplished by first registering misaligned images using a method based on independent component analysis, and then using the registered data to automatically segment the myocardium with active appearance models. We used 18 perfusion studies (100 images per study) for validation in which the automatically obtained (AO) contours were compared with expert drawn contours on the basis of point-to-curve error, Dice index, and relative perfusion upslope in the myocardium. Visual inspection revealed successful segmentation in 15 out of 18 studies. Comparison of the AO contours with expert drawn contours yielded 2.23 ± 0.53 mm and 0.91 ± 0.02 as point-to-curve error and Dice index, respectively. The average difference between manually and automatically obtained relative upslope parameters was found to be statistically insignificant (P = .37). Moreover, the analysis time per slice was reduced from 20 minutes (manual) to 1.5 minutes (automatic). We proposed an automatic method that significantly reduced the time required for analysis of first-pass cardiac magnetic resonance perfusion images. The robustness and accuracy of the proposed method were demonstrated by the high spatial correspondence and statistically insignificant difference in perfusion parameters, when AO contours were compared with expert drawn contours. Copyright © 2010 AUR. Published by Elsevier Inc. All rights reserved.

  13. Automatic measurement of cusps in 2.5D dental images

    Science.gov (United States)

    Wolf, Mattias; Paulus, Dietrich W.; Niemann, Heinrich

    1996-01-01

    Automatic reconstruction of occlusal surfaces of teeth is an application which might become more and more urgent due to the toxicity of amalgam. Modern dental chairside equipment is currently restricted to the production of inlays. The automatic reconstruction of the occlusal surface is presently not possible. For manufacturing an occlusal surface it is required to extract features from which it is possible to reconstruct destroyed teeth. In this paper, we demonstrate how intact upper molars can be automatically extracted in dental range and intensity images. After normalization of the 3D location, the sizes of the cusps are detected and the distances between them are calculated. In the presented approach, the detection of the upper molar is based on a knowledge-based segmentation which includes anatomic knowledge. After the segmentation of the interesting tooth the central fossa is calculated. The normalization of the spatial location is archieved by aligning the detected fossa with a reference axis. After searching the cusp tips in the range image the image is resized. The methods have been successfully tested on 60 images. The results have been compared with the results of a dentist's evaluation on a sample of 20 images. The results will be further used for automatic production of tooth inlays.

  14. A workflow for the automatic segmentation of organelles in electron microscopy image stacks

    Science.gov (United States)

    Perez, Alex J.; Seyedhosseini, Mojtaba; Deerinck, Thomas J.; Bushong, Eric A.; Panda, Satchidananda; Tasdizen, Tolga; Ellisman, Mark H.

    2014-01-01

    Electron microscopy (EM) facilitates analysis of the form, distribution, and functional status of key organelle systems in various pathological processes, including those associated with neurodegenerative disease. Such EM data often provide important new insights into the underlying disease mechanisms. The development of more accurate and efficient methods to quantify changes in subcellular microanatomy has already proven key to understanding the pathogenesis of Parkinson's and Alzheimer's diseases, as well as glaucoma. While our ability to acquire large volumes of 3D EM data is progressing rapidly, more advanced analysis tools are needed to assist in measuring precise three-dimensional morphologies of organelles within data sets that can include hundreds to thousands of whole cells. Although new imaging instrument throughputs can exceed teravoxels of data per day, image segmentation and analysis remain significant bottlenecks to achieving quantitative descriptions of whole cell structural organellomes. Here, we present a novel method for the automatic segmentation of organelles in 3D EM image stacks. Segmentations are generated using only 2D image information, making the method suitable for anisotropic imaging techniques such as serial block-face scanning electron microscopy (SBEM). Additionally, no assumptions about 3D organelle morphology are made, ensuring the method can be easily expanded to any number of structurally and functionally diverse organelles. Following the presentation of our algorithm, we validate its performance by assessing the segmentation accuracy of different organelle targets in an example SBEM dataset and demonstrate that it can be efficiently parallelized on supercomputing resources, resulting in a dramatic reduction in runtime. PMID:25426032

  15. Automatic crack detection method for loaded coal in vibration failure process.

    Directory of Open Access Journals (Sweden)

    Chengwu Li

    Full Text Available In the coal mining process, the destabilization of loaded coal mass is a prerequisite for coal and rock dynamic disaster, and surface cracks of the coal and rock mass are important indicators, reflecting the current state of the coal body. The detection of surface cracks in the coal body plays an important role in coal mine safety monitoring. In this paper, a method for detecting the surface cracks of loaded coal by a vibration failure process is proposed based on the characteristics of the surface cracks of coal and support vector machine (SVM. A large number of cracked images are obtained by establishing a vibration-induced failure test system and industrial camera. Histogram equalization and a hysteresis threshold algorithm were used to reduce the noise and emphasize the crack; then, 600 images and regions, including cracks and non-cracks, were manually labelled. In the crack feature extraction stage, eight features of the cracks are extracted to distinguish cracks from other objects. Finally, a crack identification model with an accuracy over 95% was trained by inputting the labelled sample images into the SVM classifier. The experimental results show that the proposed algorithm has a higher accuracy than the conventional algorithm and can effectively identify cracks on the surface of the coal and rock mass automatically.

  16. Upgrade of the automatic analysis system in the TJ-II Thomson Scattering diagnostic: New image recognition classifier and fault condition detection

    International Nuclear Information System (INIS)

    Makili, L.; Vega, J.; Dormido-Canto, S.; Pastor, I.; Pereira, A.; Farias, G.; Portas, A.; Perez-Risco, D.; Rodriguez-Fernandez, M.C.; Busch, P.

    2010-01-01

    An automatic image classification system based on support vector machines (SVM) has been in operation for years in the TJ-II Thomson Scattering diagnostic. It recognizes five different types of images: CCD camera background, measurement of stray light without plasma or in a collapsed discharge, image during ECH phase, image during NBI phase and image after reaching the cut off density during ECH heating. Each kind of image implies the execution of different application software. Due to the fact that the recognition system is based on a learning system and major modifications have been carried out in both the diagnostic (optics) and TJ-II plasmas (injected power), the classifier model is no longer valid. A new SVM model has been developed with the current conditions. Also, specific error conditions in the data acquisition process can automatically be detected and managed now. The recovering process has been automated, thereby avoiding the loss of data in ensuing discharges.

  17. Upgrade of the automatic analysis system in the TJ-II Thomson Scattering diagnostic: New image recognition classifier and fault condition detection

    Energy Technology Data Exchange (ETDEWEB)

    Makili, L. [Dpto. Informatica y Automatica - UNED, Madrid (Spain); Vega, J. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Dormido-Canto, S., E-mail: sebas@dia.uned.e [Dpto. Informatica y Automatica - UNED, Madrid (Spain); Pastor, I.; Pereira, A. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Farias, G. [Dpto. Informatica y Automatica - UNED, Madrid (Spain); Portas, A.; Perez-Risco, D.; Rodriguez-Fernandez, M.C. [Asociacion EURATOM/CIEMAT para Fusion, Madrid (Spain); Busch, P. [FOM Institut voor PlasmaFysica Rijnhuizen, Nieuwegein (Netherlands)

    2010-07-15

    An automatic image classification system based on support vector machines (SVM) has been in operation for years in the TJ-II Thomson Scattering diagnostic. It recognizes five different types of images: CCD camera background, measurement of stray light without plasma or in a collapsed discharge, image during ECH phase, image during NBI phase and image after reaching the cut off density during ECH heating. Each kind of image implies the execution of different application software. Due to the fact that the recognition system is based on a learning system and major modifications have been carried out in both the diagnostic (optics) and TJ-II plasmas (injected power), the classifier model is no longer valid. A new SVM model has been developed with the current conditions. Also, specific error conditions in the data acquisition process can automatically be detected and managed now. The recovering process has been automated, thereby avoiding the loss of data in ensuing discharges.

  18. SU-C-201-04: Quantification of Perfusion Heterogeneity Based On Texture Analysis for Fully Automatic Detection of Ischemic Deficits From Myocardial Perfusion Imaging

    International Nuclear Information System (INIS)

    Fang, Y; Huang, H; Su, T

    2015-01-01

    Purpose: Texture-based quantification of image heterogeneity has been a popular topic for imaging studies in recent years. As previous studies mainly focus on oncological applications, we report our recent efforts of applying such techniques on cardiac perfusion imaging. A fully automated procedure has been developed to perform texture analysis for measuring the image heterogeneity. Clinical data were used to evaluate the preliminary performance of such methods. Methods: Myocardial perfusion images of Thallium-201 scans were collected from 293 patients with suspected coronary artery disease. Each subject underwent a Tl-201 scan and a percutaneous coronary intervention (PCI) within three months. The PCI Result was used as the gold standard of coronary ischemia of more than 70% stenosis. Each Tl-201 scan was spatially normalized to an image template for fully automatic segmentation of the LV. The segmented voxel intensities were then carried into the texture analysis with our open-source software Chang Gung Image Texture Analysis toolbox (CGITA). To evaluate the clinical performance of the image heterogeneity for detecting the coronary stenosis, receiver operating characteristic (ROC) analysis was used to compute the overall accuracy, sensitivity and specificity as well as the area under curve (AUC). Those indices were compared to those obtained from the commercially available semi-automatic software QPS. Results: With the fully automatic procedure to quantify heterogeneity from Tl-201 scans, we were able to achieve a good discrimination with good accuracy (74%), sensitivity (73%), specificity (77%) and AUC of 0.82. Such performance is similar to those obtained from the semi-automatic QPS software that gives a sensitivity of 71% and specificity of 77%. Conclusion: Based on fully automatic procedures of data processing, our preliminary data indicate that the image heterogeneity of myocardial perfusion imaging can provide useful information for automatic determination

  19. Toward automatic phenotyping of retinal images from genetically determined mono- and dizygotic twins using amplitude modulation-frequency modulation methods

    Science.gov (United States)

    Soliz, P.; Davis, B.; Murray, V.; Pattichis, M.; Barriga, S.; Russell, S.

    2010-03-01

    This paper presents an image processing technique for automatically categorize age-related macular degeneration (AMD) phenotypes from retinal images. Ultimately, an automated approach will be much more precise and consistent in phenotyping of retinal diseases, such as AMD. We have applied the automated phenotyping to retina images from a cohort of mono- and dizygotic twins. The application of this technology will allow one to perform more quantitative studies that will lead to a better understanding of the genetic and environmental factors associated with diseases such as AMD. A method for classifying retinal images based on features derived from the application of amplitude-modulation frequency-modulation (AM-FM) methods is presented. Retinal images from identical and fraternal twins who presented with AMD were processed to determine whether AM-FM could be used to differentiate between the two types of twins. Results of the automatic classifier agreed with the findings of other researchers in explaining the variation of the disease between the related twins. AM-FM features classified 72% of the twins correctly. Visual grading found that genetics could explain between 46% and 71% of the variance.

  20. Building an Image-Based System to automatically Score psoriasis

    DEFF Research Database (Denmark)

    G{'o}mez, D. Delgado; Carstensen, Jens Michael; Ersbøll, Bjarne Kjær

    2003-01-01

    Nowadays the medical tracking of dermatological diseases is imprecise. The main reason is the lack of suitable objective methods to evaluate the lesion. The severity of the disease is scored by doctors just through their visual examination. In this work, a system to take accurate images of dermat......Nowadays the medical tracking of dermatological diseases is imprecise. The main reason is the lack of suitable objective methods to evaluate the lesion. The severity of the disease is scored by doctors just through their visual examination. In this work, a system to take accurate images...

  1. Automatic segmentation and 3-dimensional display based on the knowledge of head MRI images

    International Nuclear Information System (INIS)

    Suzuki, Hidetomo; Toriwaki, Jun-ichiro.

    1987-01-01

    In this paper we present a procedure which automatically extracts soft tissues, such as subcutaneous fat, brain, and cerebral ventricle, from the multislice MRI images of head region, and displays their 3-dimensional images. Segmentation of soft tissues is done by use of an iterative thresholding. In order to select the optimum threshold value automatically, we introduce a measure to evaluate the goodness of segmentation into this procedure. When the measure satisfies given conditions, iteration of thresholding terminates, and the final result of segmentation is extracted by using the current threshold value. Since this procedure can execute segmentation and calculation of the goodness measure in each slice automatically, it remarkably decreases efforts of users. Moreover, the 3-dimensional display of the segmented tissues shows that this procedure can extract the shape of each soft tissue with reasonable precision for clinical use. (author)

  2. Automatic detection of radioactive fixations in oncology PET images

    International Nuclear Information System (INIS)

    Tomei-Le-Digarcher, Sandrine

    2009-01-01

    Therapeutic follow-up of patients with cancer is nowadays of main interest in research. Positron Emission Tomography (PET) appears to become a reference exam for monitoring treatment of cancers, particular in lymphoma. This PhD thus deals on the development of a computer aided detection (CAD) tool focused on hardly visible tumors for whole-body 3D PET images. To achieve such a goal, we proposed an approach based on the combination of two classifiers, the Linear Discriminant Analysis (LDA) and the Support Vector Machines, associated with wavelet image features. Each classifier gives a 3D score map quantifying the probability of its voxels to correspond to a tumor. We proposed a 3D evaluation strategy based on the use of simulated images giving the targeted tumor characteristic gold standard. Such database was developed in this PhD from hundred Monte Carlo simulations of the Zuba phantom. It includes hundred images presenting 375 spherical tumors of calibrated contrasts. Results of the CAD obtained from the binary detection maps are promising. They open the perspective of enriching the binary information generally given to the clinician with parametric indices quantifying the pertinence of each detected tumor. (author)

  3. Automatic segmentation of blood vessels from retinal fundus images ...

    Indian Academy of Sciences (India)

    The retinal blood vessels were segmented through color space conversion and color channel .... Retinal blood vessel segmentation was also attempted through multi-scale operators. A few works in this ... fundus camera at 35 degrees field of view. The image ... vessel segmentation is available from two human observers.

  4. Diffeomorphic image registration with automatic time-step adjustment

    DEFF Research Database (Denmark)

    Pai, Akshay Sadananda Uppinakudru; Klein, S.; Sommer, Stefan Horst

    2015-01-01

    In this paper, we propose an automated Euler's time-step adjustment scheme for diffeomorphic image registration using stationary velocity fields (SVFs). The proposed variational problem aims at bounding the inverse consistency error by adaptively adjusting the number of Euler's step required to r...... accuracy as a fixed time-step scheme however at a much less computational cost....

  5. Effects of pose and image resolution on automatic face recognition

    NARCIS (Netherlands)

    Mahmood, Zahid; Ali, Tauseef; Khan, Samee U.

    The popularity of face recognition systems have increased due to their use in widespread applications. Driven by the enormous number of potential application domains, several algorithms have been proposed for face recognition. Face pose and image resolutions are among the two important factors that

  6. Construct Abstraction for Automatic Information Abstraction from Digital Images

    Science.gov (United States)

    2006-05-30

    objects and features and the names of objects of objects and features. For example, in Figure 15 the parts of the fish could be named the ‘mouth... fish -1 fish -2 fish -3 tennis shoe tennis racquet...of abstraction and generality. For example, an algorithm might usefully find a polygon ( blob ) in an image and calculate numbers such as the

  7. Automatic Classification of Station Quality by Image Based Pattern Recognition of Ppsd Plots

    Science.gov (United States)

    Weber, B.; Herrnkind, S.

    2017-12-01

    The number of seismic stations is growing and it became common practice to share station waveform data in real-time with the main data centers as IRIS, GEOFON, ORFEUS and RESIF. This made analyzing station performance of increasing importance for automatic real-time processing and station selection. The value of a station depends on different factors as quality and quantity of the data, location of the site and general station density in the surrounding area and finally the type of application it can be used for. The approach described by McNamara and Boaz (2006) became standard in the last decade. It incorporates a probability density function (PDF) to display the distribution of seismic power spectral density (PSD). The low noise model (LNM) and high noise model (HNM) introduced by Peterson (1993) are also displayed in the PPSD plots introduced by McNamara and Boaz allowing an estimation of the station quality. Here we describe how we established an automatic station quality classification module using image based pattern recognition on PPSD plots. The plots were split into 4 bands: short-period characteristics (0.1-0.8 s), body wave characteristics (0.8-5 s), microseismic characteristics (5-12 s) and long-period characteristics (12-100 s). The module sqeval connects to a SeedLink server, checks available stations, requests PPSD plots through the Mustang service from IRIS or PQLX/SQLX or from GIS (gempa Image Server), a module to generate different kind of images as trace plots, map plots, helicorder plots or PPSD plots. It compares the image based quality patterns for the different period bands with the retrieved PPSD plot. The quality of a station is divided into 5 classes for each of the 4 bands. Classes A, B, C, D define regular quality between LNM and HNM while the fifth class represents out of order stations with gain problems, missing data etc. Over all period bands about 100 different patterns are required to classify most of the stations available on the

  8. Automatic delineation of brain regions on MRI and PET images from the pig

    DEFF Research Database (Denmark)

    Villadsen, Jonas; Hansen, Hanne D; Jørgensen, Louise M

    2018-01-01

    : Manual inter-modality spatial normalization to a MRI atlas is operator-dependent, time-consuming, and can be inaccurate with lack of cortical radiotracer binding or skull uptake. NEW METHOD: A parcellated PET template that allows for automatic spatial normalization to PET images of any radiotracer....... RESULTS: MRI and [11C]Cimbi-36 PET scans obtained in sixteen pigs made the basis for the atlas. The high resolution MRI scans allowed for creation of an accurately averaged MRI template. By aligning the within-subject PET scans to their MRI counterparts, an averaged PET template was created in the same...... the MRI template with individual MRI images and 0.92±0.26mm using the PET template with individual [11C]Cimbi-36 PET images. We tested the automatic procedure by assessing eleven PET radiotracers with different kinetics and spatial distributions by using perfusion-weighted images of early PET time frames...

  9. Semi-automatic construction of reference standards for evaluation of image registration

    NARCIS (Netherlands)

    Murphy, K.; Ginneken, van B.; Klein, S.; Staring, M.; Hoop, de B.J.; Viergever, M.A.; Pluim, J.P.W.

    2011-01-01

    Quantitative evaluation of image registration algorithms is a difficult and under-addressed issue due to the lack of a reference standard in most registration problems. In this work a method is presented whereby detailed reference standard data may be constructed in an efficient semi-automatic

  10. Automatic morphometry of synaptic boutons of cultured cells using granulometric analysis of digital images

    NARCIS (Netherlands)

    Prodanov, D.P.; Heeroma, Joost; Marani, Enrico

    2006-01-01

    Numbers, linear density, and surface area of synaptic boutons can be important parameters in studies on synaptic plasticity in cultured neurons. We present a method for automatic identification and morphometry of boutons based on filtering of digital images using granulometric analysis. Cultures of

  11. Automatic prostate localization on cone-beam CT scans for high precision image-guided radiotherapy

    NARCIS (Netherlands)

    Smitsmans, Monique H. P.; de Bois, Josien; Sonke, Jan-Jakob; Betgen, Anja; Zijp, Lambert J.; Jaffray, David A.; Lebesque, Joos V.; van Herk, Marcel

    2005-01-01

    PURPOSE: Previously, we developed an automatic three-dimensional gray-value registration (GR) method for fast prostate localization that could be used during online or offline image-guided radiotherapy. The method was tested on conventional computed tomography (CT) scans. In this study, the

  12. Interactive vs. automatic ultrasound image segmentation methods for staging hepatic lipidosis.

    NARCIS (Netherlands)

    Weijers, G.; Starke, A.; Haudum, A.; Thijssen, J.M.; Rehage, J.; Korte, C.L. de

    2010-01-01

    The aim of this study was to test the hypothesis that automatic segmentation of vessels in ultrasound (US) images can produce similar or better results in grading fatty livers than interactive segmentation. A study was performed in postpartum dairy cows (N=151), as an animal model of human fatty

  13. Automatic discovery of data-centric and artifact-centric processes

    NARCIS (Netherlands)

    Nooijen, E.H.J.; Dongen, van B.F.; Fahland, D.; La Rosa, M.; Soffer, P.

    2013-01-01

    Process discovery is a technique that allows for automatically discovering a process model from recorded executions of a process as it happens in reality. This technique has successfully been applied for classical processes where one process execution is constituted by a single case with a unique

  14. Computer Aided Solution for Automatic Segmenting and Measurements of Blood Leucocytes Using Static Microscope Images.

    Science.gov (United States)

    Abdulhay, Enas; Mohammed, Mazin Abed; Ibrahim, Dheyaa Ahmed; Arunkumar, N; Venkatraman, V

    2018-02-17

    Blood leucocytes segmentation in medical images is viewed as difficult process due to the variability of blood cells concerning their shape and size and the difficulty towards determining location of Blood Leucocytes. Physical analysis of blood tests to recognize leukocytes is tedious, time-consuming and liable to error because of the various morphological components of the cells. Segmentation of medical imagery has been considered as a difficult task because of complexity of images, and also due to the non-availability of leucocytes models which entirely captures the probable shapes in each structures and also incorporate cell overlapping, the expansive variety of the blood cells concerning their shape and size, various elements influencing the outer appearance of the blood leucocytes, and low Static Microscope Image disparity from extra issues outcoming about because of noise. We suggest a strategy towards segmentation of blood leucocytes using static microscope images which is a resultant of three prevailing systems of computer vision fiction: enhancing the image, Support vector machine for segmenting the image, and filtering out non ROI (region of interest) on the basis of Local binary patterns and texture features. Every one of these strategies are modified for blood leucocytes division issue, in this manner the subsequent techniques are very vigorous when compared with its individual segments. Eventually, we assess framework based by compare the outcome and manual division. The findings outcome from this study have shown a new approach that automatically segments the blood leucocytes and identify it from a static microscope images. Initially, the method uses a trainable segmentation procedure and trained support vector machine classifier to accurately identify the position of the ROI. After that, filtering out non ROI have proposed based on histogram analysis to avoid the non ROI and chose the right object. Finally, identify the blood leucocytes type using

  15. Automatic segmentation of cerebral MR images using artificial neural networks

    International Nuclear Information System (INIS)

    Alirezaie, J.; Jernigan, M.E.; Nahmias, C.

    1996-01-01

    In this paper we present an unsupervised clustering technique for multispectral segmentation of magnetic resonance (MR) images of the human brain. Our scheme utilizes the Self Organizing Feature Map (SOFM) artificial neural network for feature mapping and generates a set of codebook vectors. By extending the network with an additional layer the map will be classified and each tissue class will be labelled. An algorithm has been developed for extracting the cerebrum from the head scan prior to the segmentation. Extracting the cerebrum is performed by stripping away the skull pixels from the T2 image. Three tissue types of the brain: white matter, gray matter and cerebral spinal fluid (CSF) are segmented accurately. To compare the results with other conventional approaches we applied the c-means algorithm to the problem

  16. Differential morphology and image processing.

    Science.gov (United States)

    Maragos, P

    1996-01-01

    Image processing via mathematical morphology has traditionally used geometry to intuitively understand morphological signal operators and set or lattice algebra to analyze them in the space domain. We provide a unified view and analytic tools for morphological image processing that is based on ideas from differential calculus and dynamical systems. This includes ideas on using partial differential or difference equations (PDEs) to model distance propagation or nonlinear multiscale processes in images. We briefly review some nonlinear difference equations that implement discrete distance transforms and relate them to numerical solutions of the eikonal equation of optics. We also review some nonlinear PDEs that model the evolution of multiscale morphological operators and use morphological derivatives. Among the new ideas presented, we develop some general 2-D max/min-sum difference equations that model the space dynamics of 2-D morphological systems (including the distance computations) and some nonlinear signal transforms, called slope transforms, that can analyze these systems in a transform domain in ways conceptually similar to the application of Fourier transforms to linear systems. Thus, distance transforms are shown to be bandpass slope filters. We view the analysis of the multiscale morphological PDEs and of the eikonal PDE solved via weighted distance transforms as a unified area in nonlinear image processing, which we call differential morphology, and briefly discuss its potential applications to image processing and computer vision.

  17. Image processing system for videotape review

    International Nuclear Information System (INIS)

    Bettendroffer, E.

    1988-01-01

    In a nuclear plant, the areas in which fissile materials are stored or handled, have to be monitored continuously. One method of surveillance is to record pictures of TV cameras with determined time intervals on special video recorders. The 'time lapse' recorded tape is played back at normal speed and an inspector checks visually the pictures. This method requires much manpower and an automated method would be useful. The present report describes an automatic reviewing method based on an image processing system; the system detects scene changes in the picture sequence and stores the reduced data set on a separate video tape. The resulting reduction of reviewing time by inspector is important for surveillance data with few movements

  18. A novel image toggle tool for comparison of serial mammograms: automatic density normalization and alignment-development of the tool and initial experience.

    Science.gov (United States)

    Honda, Satoshi; Tsunoda, Hiroko; Fukuda, Wataru; Saida, Yukihisa

    2014-12-01

    The purpose is to develop a new image toggle tool with automatic density normalization (ADN) and automatic alignment (AA) for comparing serial digital mammograms (DMGs). We developed an ADN and AA process to compare the images of serial DMGs. In image density normalization, a linear interpolation was applied by taking two points of high- and low-brightness areas. The alignment was calculated by determining the point of the greatest correlation while shifting the alignment between the current and prior images. These processes were performed on a PC with a 3.20-GHz Xeon processor and 8 GB of main memory. We selected 12 suspected breast cancer patients who had undergone screening DMGs in the past. Automatic processing was retrospectively performed on these images. Two radiologists subjectively evaluated them. The process of the developed algorithm took approximately 1 s per image. In our preliminary experience, two images could not be aligned approximately. When they were aligned, image toggling allowed detection of differences between examinations easily. We developed a new tool to facilitate comparative reading of DMGs on a mammography viewing system. Using this tool for toggling comparisons might improve the interpretation efficiency of serial DMGs.

  19. Automatic breast tissue density estimation scheme in digital mammography images

    Science.gov (United States)

    Menechelli, Renan C.; Pacheco, Ana Luisa V.; Schiabel, Homero

    2017-03-01

    Cases of breast cancer have increased substantially each year. However, radiologists are subject to subjectivity and failures of interpretation which may affect the final diagnosis in this examination. The high density features in breast tissue are important factors related to these failures. Thus, among many functions some CADx (Computer-Aided Diagnosis) schemes are classifying breasts according to the predominant density. In order to aid in such a procedure, this work attempts to describe automated software for classification and statistical information on the percentage change in breast tissue density, through analysis of sub regions (ROIs) from the whole mammography image. Once the breast is segmented, the image is divided into regions from which texture features are extracted. Then an artificial neural network MLP was used to categorize ROIs. Experienced radiologists have previously determined the ROIs density classification, which was the reference to the software evaluation. From tests results its average accuracy was 88.7% in ROIs classification, and 83.25% in the classification of the whole breast density in the 4 BI-RADS density classes - taking into account a set of 400 images. Furthermore, when considering only a simplified two classes division (high and low densities) the classifier accuracy reached 93.5%, with AUC = 0.95.

  20. Contribution to automatic image recognition applied to robot technology

    International Nuclear Information System (INIS)

    Juvin, Didier

    1983-01-01

    This paper describes a method for the analysis and interpretation of the images of objects located in a plain scene which is the environment of a robot. The first part covers the recovery of the contour of objects present in the image, and discusses a novel contour-following technique based on the line arborescence concept in combination with a 'cost function' giving a quantitative assessment of contour quality. We present heuristics for moderate-cost, minimum-time arborescence coverage, which is equivalent to following probable contour lines in the image. A contour segmentation technique, invariant in the translational and rotational modes, is presented next. The second part describes a recognition method based on the above invariant encoding: the algorithm performs a preliminary screening based on coarse data derived from segmentation, followed by a comparison of forms with probable identity through application of a distance specified in terms of the invariant encoding. The last part covers the outcome of the above investigations, which have found an industrial application in the vision system of a range of robots. The system is set up in a 16-bit microprocessor and operates in real time. (author) [fr

  1. A fully automatic approach for multimodal PET and MR image segmentation in gamma knife treatment planning.

    Science.gov (United States)

    Rundo, Leonardo; Stefano, Alessandro; Militello, Carmelo; Russo, Giorgio; Sabini, Maria Gabriella; D'Arrigo, Corrado; Marletta, Francesco; Ippolito, Massimo; Mauri, Giancarlo; Vitabile, Salvatore; Gilardi, Maria Carla

    2017-06-01

    Nowadays, clinical practice in Gamma Knife treatments is generally based on MRI anatomical information alone. However, the joint use of MRI and PET images can be useful for considering both anatomical and metabolic information about the lesion to be treated. In this paper we present a co-segmentation method to integrate the segmented Biological Target Volume (BTV), using [ 11 C]-Methionine-PET (MET-PET) images, and the segmented Gross Target Volume (GTV), on the respective co-registered MR images. The resulting volume gives enhanced brain tumor information to be used in stereotactic neuro-radiosurgery treatment planning. GTV often does not match entirely with BTV, which provides metabolic information about brain lesions. For this reason, PET imaging is valuable and it could be used to provide complementary information useful for treatment planning. In this way, BTV can be used to modify GTV, enhancing Clinical Target Volume (CTV) delineation. A novel fully automatic multimodal PET/MRI segmentation method for Leksell Gamma Knife ® treatments is proposed. This approach improves and combines two computer-assisted and operator-independent single modality methods, previously developed and validated, to segment BTV and GTV from PET and MR images, respectively. In addition, the GTV is utilized to combine the superior contrast of PET images with the higher spatial resolution of MRI, obtaining a new BTV, called BTV MRI . A total of 19 brain metastatic tumors, undergone stereotactic neuro-radiosurgery, were retrospectively analyzed. A framework for the evaluation of multimodal PET/MRI segmentation is also presented. Overlap-based and spatial distance-based metrics were considered to quantify similarity concerning PET and MRI segmentation approaches. Statistics was also included to measure correlation among the different segmentation processes. Since it is not possible to define a gold-standard CTV according to both MRI and PET images without treatment response assessment

  2. eCTG: an automatic procedure to extract digital cardiotocographic signals from digital images.

    Science.gov (United States)

    Sbrollini, Agnese; Agostinelli, Angela; Marcantoni, Ilaria; Morettini, Micaela; Burattini, Luca; Di Nardo, Francesco; Fioretti, Sandro; Burattini, Laura

    2018-03-01

    Cardiotocography (CTG), consisting in the simultaneous recording of fetal heart rate (FHR) and maternal uterine contractions (UC), is a popular clinical test to assess fetal health status. Typically, CTG machines provide paper reports that are visually interpreted by clinicians. Consequently, visual CTG interpretation depends on clinician's experience and has a poor reproducibility. The lack of databases containing digital CTG signals has limited number and importance of retrospective studies finalized to set up procedures for automatic CTG analysis that could contrast visual CTG interpretation subjectivity. In order to help overcoming this problem, this study proposes an electronic procedure, termed eCTG, to extract digital CTG signals from digital CTG images, possibly obtainable by scanning paper CTG reports. eCTG was specifically designed to extract digital CTG signals from digital CTG images. It includes four main steps: pre-processing, Otsu's global thresholding, signal extraction and signal calibration. Its validation was performed by means of the "CTU-UHB Intrapartum Cardiotocography Database" by Physionet, that contains digital signals of 552 CTG recordings. Using MATLAB, each signal was plotted and saved as a digital image that was then submitted to eCTG. Digital CTG signals extracted by eCTG were eventually compared to corresponding signals directly available in the database. Comparison occurred in terms of signal similarity (evaluated by the correlation coefficient ρ, and the mean signal error MSE) and clinical features (including FHR baseline and variability; number, amplitude and duration of tachycardia, bradycardia, acceleration and deceleration episodes; number of early, variable, late and prolonged decelerations; and UC number, amplitude, duration and period). The value of ρ between eCTG and reference signals was 0.85 (P digital FHR and UC signals from digital CTG images. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Automatic detection and classification of breast tumors in ultrasonic images using texture and morphological features.

    Science.gov (United States)

    Su, Yanni; Wang, Yuanyuan; Jiao, Jing; Guo, Yi

    2011-01-01

    Due to severe presence of speckle noise, poor image contrast and irregular lesion shape, it is challenging to build a fully automatic detection and classification system for breast ultrasonic images. In this paper, a novel and effective computer-aided method including generation of a region of interest (ROI), segmentation and classification of breast tumor is proposed without any manual intervention. By incorporating local features of texture and position, a ROI is firstly detected using a self-organizing map neural network. Then a modified Normalized Cut approach considering the weighted neighborhood gray values is proposed to partition the ROI into clusters and get the initial boundary. In addition, a regional-fitting active contour model is used to adjust the few inaccurate initial boundaries for the final segmentation. Finally, three textures and five morphologic features are extracted from each breast tumor; whereby a highly efficient Affinity Propagation clustering is used to fulfill the malignancy and benign classification for an existing database without any training process. The proposed system is validated by 132 cases (67 benignancies and 65 malignancies) with its performance compared to traditional methods such as level set segmentation, artificial neural network classifiers, and so forth. Experiment results show that the proposed system, which needs no training procedure or manual interference, performs best in detection and classification of ultrasonic breast tumors, while having the lowest computation complexity.

  4. Automatic detection and classification of EOL-concrete and resulting recovered products by hyperspectral imaging

    Science.gov (United States)

    Palmieri, Roberta; Bonifazi, Giuseppe; Serranti, Silvia

    2014-05-01

    The recovery of materials from Demolition Waste (DW) represents one of the main target of the recycling industry and the its characterization is important in order to set up efficient sorting and/or quality control systems. End-Of-Life (EOL) concrete materials identification is necessary to maximize DW conversion into useful secondary raw materials, so it is fundamental to develop strategies for the implementation of an automatic recognition system of the recovered products. In this paper, HyperSpectral Imaging (HSI) technique was applied in order to detect DW composition. Hyperspectral images were acquired by a laboratory device equipped with a HSI sensing device working in the near infrared range (1000-1700 nm): NIR Spectral Camera™, embedding an ImSpector™ N17E (SPECIM Ltd, Finland). Acquired spectral data were analyzed adopting the PLS_Toolbox (Version 7.5, Eigenvector Research, Inc.) under Matlab® environment (Version 7.11.1, The Mathworks, Inc.), applying different chemometric methods: Principal Component Analysis (PCA) for exploratory data approach and Partial Least Square- Discriminant Analysis (PLS-DA) to build classification models. Results showed that it is possible to recognize DW materials, distinguishing recycled aggregates from contaminants (e.g. bricks, gypsum, plastics, wood, foam, etc.). The developed procedure is cheap, fast and non-destructive: it could be used to make some steps of the recycling process more efficient and less expensive.

  5. Comparison of liver volumetry on contrast-enhanced CT images: one semiautomatic and two automatic approaches.

    Science.gov (United States)

    Cai, Wei; He, Baochun; Fan, Yingfang; Fang, Chihua; Jia, Fucang

    2016-11-08

    This study was to evaluate the accuracy, consistency, and efficiency of three liver volumetry methods- one interactive method, an in-house-developed 3D medical Image Analysis (3DMIA) system, one automatic active shape model (ASM)-based segmentation, and one automatic probabilistic atlas (PA)-guided segmentation method on clinical contrast-enhanced CT images. Forty-two datasets, including 27 normal liver and 15 space-occupying liver lesion patients, were retrospectively included in this study. The three methods - one semiautomatic 3DMIA, one automatic ASM-based, and one automatic PA-based liver volumetry - achieved an accuracy with VD (volume difference) of -1.69%, -2.75%, and 3.06% in the normal group, respectively, and with VD of -3.20%, -3.35%, and 4.14% in the space-occupying lesion group, respectively. However, the three methods achieved an efficiency of 27.63 mins, 1.26 mins, 1.18 mins on average, respectively, compared with the manual volumetry, which took 43.98 mins. The high intraclass correlation coefficient between the three methods and the manual method indicated an excel-lent agreement on liver volumetry. Significant differences in segmentation time were observed between the three methods (3DMIA, ASM, and PA) and the manual volumetry (p volumetries (ASM and PA) and the semiautomatic volumetry (3DMIA) (p < 0.001). The semiautomatic interactive 3DMIA, automatic ASM-based, and automatic PA-based liver volum-etry agreed well with manual gold standard in both the normal liver group and the space-occupying lesion group. The ASM- and PA-based automatic segmentation have better efficiency in clinical use. © 2016 The Authors.

  6. AUTOMATIC 3D BUILDING MODEL GENERATION FROM LIDAR AND IMAGE DATA USING SEQUENTIAL MINIMUM BOUNDING RECTANGLE

    Directory of Open Access Journals (Sweden)

    E. Kwak

    2012-07-01

    Full Text Available Digital Building Model is an important component in many applications such as city modelling, natural disaster planning, and aftermath evaluation. The importance of accurate and up-to-date building models has been discussed by many researchers, and many different approaches for efficient building model generation have been proposed. They can be categorised according to the data source used, the data processing strategy, and the amount of human interaction. In terms of data source, due to the limitations of using single source data, integration of multi-senor data is desired since it preserves the advantages of the involved datasets. Aerial imagery and LiDAR data are among the commonly combined sources to obtain 3D building models with good vertical accuracy from laser scanning and good planimetric accuracy from aerial images. The most used data processing strategies are data-driven and model-driven ones. Theoretically one can model any shape of buildings using data-driven approaches but practically it leaves the question of how to impose constraints and set the rules during the generation process. Due to the complexity of the implementation of the data-driven approaches, model-based approaches draw the attention of the researchers. However, the major drawback of model-based approaches is that the establishment of representative models involves a manual process that requires human intervention. Therefore, the objective of this research work is to automatically generate building models using the Minimum Bounding Rectangle algorithm and sequentially adjusting them to combine the advantages of image and LiDAR datasets.

  7. Application of image processing methods to industrial radiography

    International Nuclear Information System (INIS)

    Goutte, R.; Odet, C.; Tuncer, T.; Bodson, F.; Varcin, E.

    1985-01-01

    This study was carried out with the financial support of the Commission of the European Communities as part of the CECA research program comprising of IRSID, INSA de Lyon and the Framatome and Creusot Loire companies. Its purpose was to evaluate the possibility of using digital enhancement of radiographic images to improve defect visibility in industrial radiography, thereby providing assistance in defect detection and a method for automatic analysis of radiographs. This paper provides full results obtained from work on digital processing of radiographs showing real and artificial defects. Furthermore, work on simulated automatic defect detection is also presented. 2 refs

  8. A novel scheme for automatic nonrigid image registration using deformation invariant feature and geometric constraint

    Science.gov (United States)

    Deng, Zhipeng; Lei, Lin; Zhou, Shilin

    2015-10-01

    Automatic image registration is a vital yet challenging task, particularly for non-rigid deformation images which are more complicated and common in remote sensing images, such as distorted UAV (unmanned aerial vehicle) images or scanning imaging images caused by flutter. Traditional non-rigid image registration methods are based on the correctly matched corresponding landmarks, which usually needs artificial markers. It is a rather challenging task to locate the accurate position of the points and get accurate homonymy point sets. In this paper, we proposed an automatic non-rigid image registration algorithm which mainly consists of three steps: To begin with, we introduce an automatic feature point extraction method based on non-linear scale space and uniform distribution strategy to extract the points which are uniform distributed along the edge of the image. Next, we propose a hybrid point matching algorithm using DaLI (Deformation and Light Invariant) descriptor and local affine invariant geometric constraint based on triangulation which is constructed by K-nearest neighbor algorithm. Based on the accurate homonymy point sets, the two images are registrated by the model of TPS (Thin Plate Spline). Our method is demonstrated by three deliberately designed experiments. The first two experiments are designed to evaluate the distribution of point set and the correctly matching rate on synthetic data and real data respectively. The last experiment is designed on the non-rigid deformation remote sensing images and the three experimental results demonstrate the accuracy, robustness, and efficiency of the proposed algorithm compared with other traditional methods.

  9. Automatic Cell Segmentation in Fluorescence Images of Confluent Cell Monolayers Using Multi-object Geometric Deformable Model

    OpenAIRE

    Yang, Zhen; Bogovic, John A.; Carass, Aaron; Ye, Mao; Searson, Peter C.; Prince, Jerry L.

    2013-01-01

    With the rapid development of microscopy for cell imaging, there is a strong and growing demand for image analysis software to quantitatively study cell morphology. Automatic cell segmentation is an important step in image analysis. Despite substantial progress, there is still a need to improve the accuracy, efficiency, and adaptability to different cell morphologies. In this paper, we propose a fully automatic method for segmenting cells in fluorescence images of confluent cell monolayers. T...

  10. FITS Liberator: Image processing software

    Science.gov (United States)

    Lindberg Christensen, Lars; Nielsen, Lars Holm; Nielsen, Kaspar K.; Johansen, Teis; Hurt, Robert; de Martin, David

    2012-06-01

    The ESA/ESO/NASA FITS Liberator makes it possible to process and edit astronomical science data in the FITS format to produce stunning images of the universe. Formerly a plugin for Adobe Photoshop, the current version of FITS Liberator is a stand-alone application and no longer requires Photoshop. This image processing software makes it possible to create color images using raw observations from a range of telescopes; the FITS Liberator continues to support the FITS and PDS formats, preferred by astronomers and planetary scientists respectively, which enables data to be processed from a wide range of telescopes and planetary probes, including ESO's Very Large Telescope, the NASA/ESA Hubble Space Telescope, NASA's Spitzer Space Telescope, ESA's XMM-Newton Telescope and Cassini-Huygens or Mars Reconnaissance Orbiter.

  11. Study of automatic boat loading unit and horizontal sintering process of uranium dioxide pellet

    International Nuclear Information System (INIS)

    He Zhongjing; Chen Yu; Yao Dengfeng; Wang Youliang; Shu Binhua; Wu Genjiu

    2014-01-01

    Sintering process is a key process for the manufacture of nuclear fuel UO_2 pellet. In our factory, the continuous high temperature sintering furnace is used for sintering process. During the sintering of green pellets, the furnace, the boat and the accumulation way can influence the quality of the final product. In this text, on the basis of early process research, The automatic loading boat Unit and horizontal sintering process is studied successively. The results show that the physical and chemical properties of the products manufactured by automatic loading boat unit and horizontal sintering process can meet the technique requirements completely, and this system is reliable and continuous. (authors)

  12. Improvement in the performance of CAD for the Alzheimer-type dementia based on automatic extraction of temporal lobe from coronal MR images

    International Nuclear Information System (INIS)

    Kaeriyama, Tomoharu; Kodama, Naoki; Kaneko, Tomoyuki; Shimada, Tetsuo; Tanaka, Hiroyuki; Takeda, Ai; Fukumoto, Ichiro

    2004-01-01

    In this study, we extracted whole brain and temporal lobe images from MR images (26 healthy elderly controls and 34 Alzheimer-type dementia patients) by means of binarize, mask processing, template matching, Hough transformation, and boundary tracing etc. We assessed the extraction accuracy by comparing the extracted images to images extracts by a radiological technologist. The results of assessment by consistent rate; brain images 91.3±4.3%, right temporal lobe 83.3±6.9%, left temporal lobe 83.7±7.6%. Furthermore discriminant analysis using 6 textural features demonstrated sensitivity and specificity of 100% when the healthy elderly controls were compared to the Alzheimer-type dementia patients. Our research showed the possibility of automatic objective diagnosis of temporal lobe abnormalities by automatic extracted images of the temporal lobes. (author)

  13. Dissociation between controlled and automatic processes in the behavioral variant of fronto-temporal dementia.

    Science.gov (United States)

    Collette, Fabienne; Van der Linden, Martial; Salmon, Eric

    2010-01-01

    A decline of cognitive functioning affecting several cognitive domains was frequently reported in patients with frontotemporal dementia. We were interested in determining if these deficits can be interpreted as reflecting an impairment of controlled cognitive processes by using an assessment tool specifically developed to explore the distinction between automatic and controlled processes, namely the process dissociation procedure (PDP) developed by Jacoby. The PDP was applied to a word stem completion task to determine the contribution of automatic and controlled processes to episodic memory performance and was administered to a group of 12 patients with the behavioral variant of frontotemporal dementia (bv-FTD) and 20 control subjects (CS). Bv-FTD patients obtained a lower performance than CS for the estimates of controlled processes, but no group differences was observed for estimates of automatic processes. The between-groups comparison of the estimates of controlled and automatic processes showed a larger contribution of automatic processes to performance in bv-FTD, while a slightly more important contribution of controlled processes was observed in control subjects. These results are clearly indicative of an alteration of controlled memory processes in bv-FTD.

  14. Performance evaluation of 2D and 3D deep learning approaches for automatic segmentation of multiple organs on CT images

    Science.gov (United States)

    Zhou, Xiangrong; Yamada, Kazuma; Kojima, Takuya; Takayama, Ryosuke; Wang, Song; Zhou, Xinxin; Hara, Takeshi; Fujita, Hiroshi

    2018-02-01

    The purpose of this study is to evaluate and compare the performance of modern deep learning techniques for automatically recognizing and segmenting multiple organ regions on 3D CT images. CT image segmentation is one of the important task in medical image analysis and is still very challenging. Deep learning approaches have demonstrated the capability of scene recognition and semantic segmentation on nature images and have been used to address segmentation problems of medical images. Although several works showed promising results of CT image segmentation by using deep learning approaches, there is no comprehensive evaluation of segmentation performance of the deep learning on segmenting multiple organs on different portions of CT scans. In this paper, we evaluated and compared the segmentation performance of two different deep learning approaches that used 2D- and 3D deep convolutional neural networks (CNN) without- and with a pre-processing step. A conventional approach that presents the state-of-the-art performance of CT image segmentation without deep learning was also used for comparison. A dataset that includes 240 CT images scanned on different portions of human bodies was used for performance evaluation. The maximum number of 17 types of organ regions in each CT scan were segmented automatically and compared to the human annotations by using ratio of intersection over union (IU) as the criterion. The experimental results demonstrated the IUs of the segmentation results had a mean value of 79% and 67% by averaging 17 types of organs that segmented by a 3D- and 2D deep CNN, respectively. All the results of the deep learning approaches showed a better accuracy and robustness than the conventional segmentation method that used probabilistic atlas and graph-cut methods. The effectiveness and the usefulness of deep learning approaches were demonstrated for solving multiple organs segmentation problem on 3D CT images.

  15. Quality Control in Automated Manufacturing Processes – Combined Features for Image Processing

    Directory of Open Access Journals (Sweden)

    B. Kuhlenkötter

    2006-01-01

    Full Text Available In production processes the use of image processing systems is widespread. Hardware solutions and cameras respectively are available for nearly every application. One important challenge of image processing systems is the development and selection of appropriate algorithms and software solutions in order to realise ambitious quality control for production processes. This article characterises the development of innovative software by combining features for an automatic defect classification on product surfaces. The artificial intelligent method Support Vector Machine (SVM is used to execute the classification task according to the combined features. This software is one crucial element for the automation of a manually operated production process

  16. Grid infrastructure for automatic processing of SAR data for flood applications

    Science.gov (United States)

    Kussul, Natalia; Skakun, Serhiy; Shelestov, Andrii

    2010-05-01

    More and more geosciences applications are being put on to the Grids. Due to the complexity of geosciences applications that is caused by complex workflow, the use of computationally intensive environmental models, the need of management and integration of heterogeneous data sets, Grid offers solutions to tackle these problems. Many geosciences applications, especially those related to the disaster management and mitigations require the geospatial services to be delivered in proper time. For example, information on flooded areas should be provided to corresponding organizations (local authorities, civil protection agencies, UN agencies etc.) no more than in 24 h to be able to effectively allocate resources required to mitigate the disaster. Therefore, providing infrastructure and services that will enable automatic generation of products based on the integration of heterogeneous data represents the tasks of great importance. In this paper we present Grid infrastructure for automatic processing of synthetic-aperture radar (SAR) satellite images to derive flood products. In particular, we use SAR data acquired by ESA's ENVSAT satellite, and neural networks to derive flood extent. The data are provided in operational mode from ESA rolling archive (within ESA Category-1 grant). We developed a portal that is based on OpenLayers frameworks and provides access point to the developed services. Through the portal the user can define geographical region and search for the required data. Upon selection of data sets a workflow is automatically generated and executed on the resources of Grid infrastructure. For workflow execution and management we use Karajan language. The workflow of SAR data processing consists of the following steps: image calibration, image orthorectification, image processing with neural networks, topographic effects removal, geocoding and transformation to lat/long projection, and visualisation. These steps are executed by different software, and can be

  17. Evaluation of an automatic brain segmentation method developed for neonates on adult MR brain images

    Science.gov (United States)

    Moeskops, Pim; Viergever, Max A.; Benders, Manon J. N. L.; Išgum, Ivana

    2015-03-01

    Automatic brain tissue segmentation is of clinical relevance in images acquired at all ages. The literature presents a clear distinction between methods developed for MR images of infants, and methods developed for images of adults. The aim of this work is to evaluate a method developed for neonatal images in the segmentation of adult images. The evaluated method employs supervised voxel classification in subsequent stages, exploiting spatial and intensity information. Evaluation was performed using images available within the MRBrainS13 challenge. The obtained average Dice coefficients were 85.77% for grey matter, 88.66% for white matter, 81.08% for cerebrospinal fluid, 95.65% for cerebrum, and 96.92% for intracranial cavity, currently resulting in the best overall ranking. The possibility of applying the same method to neonatal as well as adult images can be of great value in cross-sectional studies that include a wide age range.

  18. Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks

    Science.gov (United States)

    Cruz-Roa, Angel; Basavanhally, Ajay; González, Fabio; Gilmore, Hannah; Feldman, Michael; Ganesan, Shridar; Shih, Natalie; Tomaszewski, John; Madabhushi, Anant

    2014-03-01

    This paper presents a deep learning approach for automatic detection and visual analysis of invasive ductal carcinoma (IDC) tissue regions in whole slide images (WSI) of breast cancer (BCa). Deep learning approaches are learn-from-data methods involving computational modeling of the learning process. This approach is similar to how human brain works using different interpretation levels or layers of most representative and useful features resulting into a hierarchical learned representation. These methods have been shown to outpace traditional approaches of most challenging problems in several areas such as speech recognition and object detection. Invasive breast cancer detection is a time consuming and challenging task primarily because it involves a pathologist scanning large swathes of benign regions to ultimately identify the areas of malignancy. Precise delineation of IDC in WSI is crucial to the subsequent estimation of grading tumor aggressiveness and predicting patient outcome. DL approaches are particularly adept at handling these types of problems, especially if a large number of samples are available for training, which would also ensure the generalizability of the learned features and classifier. The DL framework in this paper extends a number of convolutional neural networks (CNN) for visual semantic analysis of tumor regions for diagnosis support. The CNN is trained over a large amount of image patches (tissue regions) from WSI to learn a hierarchical part-based representation. The method was evaluated over a WSI dataset from 162 patients diagnosed with IDC. 113 slides were selected for training and 49 slides were held out for independent testing. Ground truth for quantitative evaluation was provided via expert delineation of the region of cancer by an expert pathologist on the digitized slides. The experimental evaluation was designed to measure classifier accuracy in detecting IDC tissue regions in WSI. Our method yielded the best quantitative

  19. Fast Automatic Airport Detection in Remote Sensing Images Using Convolutional Neural Networks

    Directory of Open Access Journals (Sweden)

    Fen Chen

    2018-03-01

    Full Text Available Fast and automatic detection of airports from remote sensing images is useful for many military and civilian applications. In this paper, a fast automatic detection method is proposed to detect airports from remote sensing images based on convolutional neural networks using the Faster R-CNN algorithm. This method first applies a convolutional neural network to generate candidate airport regions. Based on the features extracted from these proposals, it then uses another convolutional neural network to perform airport detection. By taking the typical elongated linear geometric shape of airports into consideration, some specific improvements to the method are proposed. These approaches successfully improve the quality of positive samples and achieve a better accuracy in the final detection results. Experimental results on an airport dataset, Landsat 8 images, and a Gaofen-1 satellite scene demonstrate the effectiveness and efficiency of the proposed method.

  20. AN AUTOMATIC OPTICAL AND SAR IMAGE REGISTRATION METHOD USING ITERATIVE MULTI-LEVEL AND REFINEMENT MODEL

    Directory of Open Access Journals (Sweden)

    C. Xu

    2016-06-01

    Full Text Available Automatic image registration is a vital yet challenging task, particularly for multi-sensor remote sensing images. Given the diversity of the data, it is unlikely that a single registration algorithm or a single image feature will work satisfactorily for all applications. Focusing on this issue, the mainly contribution of this paper is to propose an automatic optical-to-SAR image registration method using –level and refinement model: Firstly, a multi-level strategy of coarse-to-fine registration is presented, the visual saliency features is used to acquire coarse registration, and then specific area and line features are used to refine the registration result, after that, sub-pixel matching is applied using KNN Graph. Secondly, an iterative strategy that involves adaptive parameter adjustment for re-extracting and re-matching features is presented. Considering the fact that almost all feature-based registration methods rely on feature extraction results, the iterative strategy improve the robustness of feature matching. And all parameters can be automatically and adaptively adjusted in the iterative procedure. Thirdly, a uniform level set segmentation model for optical and SAR images is presented to segment conjugate features, and Voronoi diagram is introduced into Spectral Point Matching (VSPM to further enhance the matching accuracy between two sets of matching points. Experimental results show that the proposed method can effectively and robustly generate sufficient, reliable point pairs and provide accurate registration.

  1. Automatic Segmentation of Fluorescence Lifetime Microscopy Images of Cells Using Multi-Resolution Community Detection -A First Study

    Science.gov (United States)

    Hu, Dandan; Sarder, Pinaki; Ronhovde, Peter; Orthaus, Sandra; Achilefu, Samuel; Nussinov, Zohar

    2014-01-01

    Inspired by a multi-resolution community detection (MCD) based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Further, using the proposed method, the mean-square error (MSE) in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The MCD method appeared to perform better than a popular spectral clustering based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in MSE with increasing resolution. PMID:24251410

  2. Automatic segmentation of fluorescence lifetime microscopy images of cells using multiresolution community detection--a first study.

    Science.gov (United States)

    Hu, D; Sarder, P; Ronhovde, P; Orthaus, S; Achilefu, S; Nussinov, Z

    2014-01-01

    Inspired by a multiresolution community detection based network segmentation method, we suggest an automatic method for segmenting fluorescence lifetime (FLT) imaging microscopy (FLIM) images of cells in a first pilot investigation on two selected images. The image processing problem is framed as identifying segments with respective average FLTs against the background in FLIM images. The proposed method segments a FLIM image for a given resolution of the network defined using image pixels as the nodes and similarity between the FLTs of the pixels as the edges. In the resulting segmentation, low network resolution leads to larger segments, and high network resolution leads to smaller segments. Furthermore, using the proposed method, the mean-square error in estimating the FLT segments in a FLIM image was found to consistently decrease with increasing resolution of the corresponding network. The multiresolution community detection method appeared to perform better than a popular spectral clustering-based method in performing FLIM image segmentation. At high resolution, the spectral segmentation method introduced noisy segments in its output, and it was unable to achieve a consistent decrease in mean-square error with increasing resolution. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  3. Automatic Gap Detection in Friction Stir Welding Processes (Preprint)

    National Research Council Canada - National Science Library

    Yang, Yu; Kalya, Prabhanjana; Landers, Robert G; Krishnamurthy, K

    2006-01-01

    .... This paper develops a monitoring algorithm to detect gaps in Friction Stir Welding (FSW) processes. Experimental studies are conducted to determine how the process parameters and the gap width affect the welding process...

  4. Development of Open source-based automatic shooting and processing UAV imagery for Orthoimage Using Smart Camera UAV

    Science.gov (United States)

    Park, J. W.; Jeong, H. H.; Kim, J. S.; Choi, C. U.

    2016-06-01

    Recently, aerial photography with unmanned aerial vehicle (UAV) system uses UAV and remote controls through connections of ground control system using bandwidth of about 430 MHz radio Frequency (RF) modem. However, as mentioned earlier, existing method of using RF modem has limitations in long distance communication. The Smart Camera equipments's LTE (long-term evolution), Bluetooth, and Wi-Fi to implement UAV that uses developed UAV communication module system carried out the close aerial photogrammetry with the automatic shooting. Automatic shooting system is an image capturing device for the drones in the area's that needs image capturing and software for loading a smart camera and managing it. This system is composed of automatic shooting using the sensor of smart camera and shooting catalog management which manages filmed images and information. Processing UAV imagery module used Open Drone Map. This study examined the feasibility of using the Smart Camera as the payload for a photogrammetric UAV system. The open soure tools used for generating Android, OpenCV (Open Computer Vision), RTKLIB, Open Drone Map.

  5. Development of Open source-based automatic shooting and processing UAV imagery for Orthoimage Using Smart Camera UAV

    Directory of Open Access Journals (Sweden)

    J. W. Park

    2016-06-01

    Full Text Available Recently, aerial photography with unmanned aerial vehicle (UAV system uses UAV and remote controls through connections of ground control system using bandwidth of about 430 MHz radio Frequency (RF modem. However, as mentioned earlier, existing method of using RF modem has limitations in long distance communication. The Smart Camera equipments’s LTE (long-term evolution, Bluetooth, and Wi-Fi to implement UAV that uses developed UAV communication module system carried out the close aerial photogrammetry with the automatic shooting. Automatic shooting system is an image capturing device for the drones in the area’s that needs image capturing and software for loading a smart camera and managing it. This system is composed of automatic shooting using the sensor of smart camera and shooting catalog management which manages filmed images and information. Processing UAV imagery module used Open Drone Map. This study examined the feasibility of using the Smart Camera as the payload for a photogrammetric UAV system. The open soure tools used for generating Android, OpenCV (Open Computer Vision, RTKLIB, Open Drone Map.

  6. Color Segmentation Approach of Infrared Thermography Camera Image for Automatic Fault Diagnosis

    International Nuclear Information System (INIS)

    Djoko Hari Nugroho; Ari Satmoko; Budhi Cynthia Dewi

    2007-01-01

    Predictive maintenance based on fault diagnosis becomes very important in current days to assure the availability and reliability of a system. The main purpose of this research is to configure a computer software for automatic fault diagnosis based on image model acquired from infrared thermography camera using color segmentation approach. This technique detects hot spots in equipment of the plants. Image acquired from camera is first converted to RGB (Red, Green, Blue) image model and then converted to CMYK (Cyan, Magenta, Yellow, Key for Black) image model. Assume that the yellow color in the image represented the hot spot in the equipment, the CMYK image model is then diagnosed using color segmentation model to estimate the fault. The software is configured utilizing Borland Delphi 7.0 computer programming language. The performance is then tested for 10 input infrared thermography images. The experimental result shows that the software capable to detect the faulty automatically with performance value of 80 % from 10 sheets of image input. (author)

  7. Visual mismatch negativity indicates automatic, task-independent detection of artistic image composition in abstract artworks.

    Science.gov (United States)

    Menzel, Claudia; Kovács, Gyula; Amado, Catarina; Hayn-Leichsenring, Gregor U; Redies, Christoph

    2018-05-06

    In complex abstract art, image composition (i.e., the artist's deliberate arrangement of pictorial elements) is an important aesthetic feature. We investigated whether the human brain detects image composition in abstract artworks automatically (i.e., independently of the experimental task). To this aim, we studied whether a group of 20 original artworks elicited a visual mismatch negativity when contrasted with a group of 20 images that were composed of the same pictorial elements as the originals, but in shuffled arrangements, which destroy artistic composition. We used a passive oddball paradigm with parallel electroencephalogram recordings to investigate the detection of image type-specific properties. We observed significant deviant-standard differences for the shuffled and original images, respectively. Furthermore, for both types of images, differences in amplitudes correlated with the behavioral ratings of the images. In conclusion, we show that the human brain can detect composition-related image properties in visual artworks in an automatic fashion. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Multimedia image and video processing

    CERN Document Server

    Guan, Ling

    2012-01-01

    As multimedia applications have become part of contemporary daily life, numerous paradigm-shifting technologies in multimedia processing have emerged over the last decade. Substantially updated with 21 new chapters, Multimedia Image and Video Processing, Second Edition explores the most recent advances in multimedia research and applications. This edition presents a comprehensive treatment of multimedia information mining, security, systems, coding, search, hardware, and communications as well as multimodal information fusion and interaction. Clearly divided into seven parts, the book begins w

  9. ATMAD: robust image analysis for Automatic Tissue MicroArray De-arraying.

    Science.gov (United States)

    Nguyen, Hoai Nam; Paveau, Vincent; Cauchois, Cyril; Kervrann, Charles

    2018-04-19

    Over the last two decades, an innovative technology called Tissue Microarray (TMA), which combines multi-tissue and DNA microarray concepts, has been widely used in the field of histology. It consists of a collection of several (up to 1000 or more) tissue samples that are assembled onto a single support - typically a glass slide - according to a design grid (array) layout, in order to allow multiplex analysis by treating numerous samples under identical and standardized conditions. However, during the TMA manufacturing process, the sample positions can be highly distorted from the design grid due to the imprecision when assembling tissue samples and the deformation of the embedding waxes. Consequently, these distortions may lead to severe errors of (histological) assay results when the sample identities are mismatched between the design and its manufactured output. The development of a robust method for de-arraying TMA, which localizes and matches TMA samples with their design grid, is therefore crucial to overcome the bottleneck of this prominent technology. In this paper, we propose an Automatic, fast and robust TMA De-arraying (ATMAD) approach dedicated to images acquired with brightfield and fluorescence microscopes (or scanners). First, tissue samples are localized in the large image by applying a locally adaptive thresholding on the isotropic wavelet transform of the input TMA image. To reduce false detections, a parametric shape model is considered for segmenting ellipse-shaped objects at each detected position. Segmented objects that do not meet the size and the roundness criteria are discarded from the list of tissue samples before being matched with the design grid. Sample matching is performed by estimating the TMA grid deformation under the thin-plate model. Finally, thanks to the estimated deformation, the true tissue samples that were preliminary rejected in the early image processing step are recognized by running a second segmentation step. We

  10. Linear Algebra and Image Processing

    Science.gov (United States)

    Allali, Mohamed

    2010-01-01

    We use the computing technology digital image processing (DIP) to enhance the teaching of linear algebra so as to make the course more visual and interesting. Certainly, this visual approach by using technology to link linear algebra to DIP is interesting and unexpected to both students as well as many faculty. (Contains 2 tables and 11 figures.)

  11. Mathematical problems in image processing

    International Nuclear Information System (INIS)

    Chidume, C.E.

    2000-01-01

    This is the second volume of a new series of lecture notes of the Abdus Salam International Centre for Theoretical Physics. This volume contains the lecture notes given by A. Chambolle during the School on Mathematical Problems in Image Processing. The school consisted of two weeks of lecture courses and one week of conference

  12. Automatic welding processes for reactor coolant pipes used in PWR type nuclear power plant

    International Nuclear Information System (INIS)

    Hamada, T.; Nakamura, A.; Nagura, Y.; Sakamoto, N.

    1979-01-01

    The authors developed automatic welding processes (submerged arc welding process and TIG welding process) for application to the welding of reactor coolant pipes which constitute the most important part of the PWR type nuclear power plant. Submerged arc welding process is suitable for flat position welding in which pipes can be rotated, while TIG welding process is suitable for all position welding. This paper gives an outline of the two processes and the results of tests performed using these processes. (author)

  13. Automatic analyzis of droplet impact by high speed imaging

    OpenAIRE

    Decourselle, Thomas; Cointault, Frédéric; Journaux, Ludovic; Yang, Fan

    2012-01-01

    The impact of agricultural activities on the water quality is the consequence of the loss of fertilisers (chemical fertilisers, livestock effluent, also referred to as farm fertiliser, food-processing effluent and sludge) and crop treatment products (phytosanitary products). This pollution may prevent certain uses of water, notably its use for human and animal food (groundwater and surface water), and leads to a deterioration in aquatic environments. In the domain of vineyard precision sprayi...

  14. Strategies to Automatically Derive a Process Model from a Configurable Process Model Based on Event Data

    Directory of Open Access Journals (Sweden)

    Mauricio Arriagada-Benítez

    2017-10-01

    Full Text Available Configurable process models are frequently used to represent business workflows and other discrete event systems among different branches of large organizations: they unify commonalities shared by all branches and describe their differences, at the same time. The configuration of such models is usually done manually, which is challenging. On the one hand, when the number of configurable nodes in the configurable process model grows, the size of the search space increases exponentially. On the other hand, the person performing the configuration may lack the holistic perspective to make the right choice for all configurable nodes at the same time, since choices influence each other. Nowadays, information systems that support the execution of business processes create event data reflecting how processes are performed. In this article, we propose three strategies (based on exhaustive search, genetic algorithms and a greedy heuristic that use event data to automatically derive a process model from a configurable process model that better represents the characteristics of the process in a specific branch. These strategies have been implemented in our proposed framework and tested in both business-like event logs as recorded in a higher educational enterprise resource planning system and a real case scenario involving a set of Dutch municipalities.

  15. Fragmentation measurement using image processing

    Directory of Open Access Journals (Sweden)

    Farhang Sereshki

    2016-12-01

    Full Text Available In this research, first of all, the existing problems in fragmentation measurement are reviewed for the sake of its fast and reliable evaluation. Then, the available methods used for evaluation of blast results are mentioned. The produced errors especially in recognizing the rock fragments in computer-aided methods, and also, the importance of determination of their sizes in the image analysis methods are described. After reviewing the previous work done, an algorithm is proposed for the automated determination of rock particles’ boundary in the Matlab software. This method can determinate automatically the particles boundary in the minimum time. The results of proposed method are compared with those of Split Desktop and GoldSize software in two automated and manual states. Comparing the curves extracted from different methods reveals that the proposed approach is accurately applicable in measuring the size distribution of laboratory samples, while the manual determination of boundaries in the conventional software is very time-consuming, and the results of automated netting of fragments are very different with the real value due to the error in separation of the objects.

  16. Motion-compensated processing of image signals

    NARCIS (Netherlands)

    2010-01-01

    In a motion-compensated processing of images, input images are down-scaled (scl) to obtain down-scaled images, the down-scaled images are subjected to motion- compensated processing (ME UPC) to obtain motion-compensated images, the motion- compensated images are up-scaled (sc2) to obtain up-scaled

  17. Operation logic and functionality of automatic dose rate and image quality control of conventional fluoroscopy

    International Nuclear Information System (INIS)

    Lin, Pei-Jan Paul

    2009-01-01

    New generation of fluoroscopic imaging systems is equipped with spectral shaping filters complemented with sophisticated automatic dose rate and image quality control logic called ''fluoroscopy curve'' or ''trajectory''. Such fluoroscopy curves were implemented first on cardiovascular angiographic imaging systems and are now available on conventional fluoroscopy equipment. This study aims to investigate the control logic operations under the fluoroscopy mode and acquisition mode (equivalent to the legacy spot filming) of a conventional fluoroscopy system typically installed for upper-lower gastrointestinal examinations, interventional endoscopy laboratories, gastrointestinal laboratory, and pain clinics.

  18. Operation logic and functionality of automatic dose rate and image quality control of conventional fluoroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Pei-Jan Paul [Department of Radiology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02115 (United States)

    2009-05-15

    New generation of fluoroscopic imaging systems is equipped with spectral shaping filters complemented with sophisticated automatic dose rate and image quality control logic called ''fluoroscopy curve'' or ''trajectory''. Such fluoroscopy curves were implemented first on cardiovascular angiographic imaging systems and are now available on conventional fluoroscopy equipment. This study aims to investigate the control logic operations under the fluoroscopy mode and acquisition mode (equivalent to the legacy spot filming) of a conventional fluoroscopy system typically installed for upper-lower gastrointestinal examinations, interventional endoscopy laboratories, gastrointestinal laboratory, and pain clinics.

  19. Automatic generation of optimal business processes from business rules

    NARCIS (Netherlands)

    Steen, B.; Ferreira Pires, Luis; Iacob, Maria Eugenia

    2010-01-01

    In recent years, business process models are increasingly being used as a means for business process improvement. Business rules can be seen as requirements for business processes, in that they describe the constraints that must hold for business processes that implement these business rules.

  20. Statistical data processing with automatic system for environmental radiation monitoring

    International Nuclear Information System (INIS)

    Zarkh, V.G.; Ostroglyadov, S.V.

    1986-01-01

    Practice of statistical data processing for radiation monitoring is exemplified, and some results obtained are presented. Experience in practical application of mathematical statistics methods for radiation monitoring data processing allowed to develop a concrete algorithm of statistical processing realized in M-6000 minicomputer. The suggested algorithm by its content is divided into 3 parts: parametrical data processing and hypotheses test, pair and multiple correlation analysis. Statistical processing programms are in a dialogue operation. The above algorithm was used to process observed data over radioactive waste disposal control region. Results of surface waters monitoring processing are presented

  1. A comparison of conscious and automatic memory processes for picture and word stimuli: a process dissociation analysis.

    Science.gov (United States)

    McBride, Dawn M; Anne Dosher, Barbara

    2002-09-01

    Four experiments were conducted to evaluate explanations of picture superiority effects previously found for several tasks. In a process dissociation procedure (Jacoby, 1991) with word stem completion, picture fragment completion, and category production tasks, conscious and automatic memory processes were compared for studied pictures and words with an independent retrieval model and a generate-source model. The predictions of a transfer appropriate processing account of picture superiority were tested and validated in "process pure" latent measures of conscious and unconscious, or automatic and source, memory processes. Results from both model fits verified that pictures had a conceptual (conscious/source) processing advantage over words for all tasks. The effects of perceptual (automatic/word generation) compatibility depended on task type, with pictorial tasks favoring pictures and linguistic tasks favoring words. Results show support for an explanation of the picture superiority effect that involves an interaction of encoding and retrieval processes.

  2. Musashi dynamic image processing system

    International Nuclear Information System (INIS)

    Murata, Yutaka; Mochiki, Koh-ichi; Taguchi, Akira

    1992-01-01

    In order to produce transmitted neutron dynamic images using neutron radiography, a real time system called Musashi dynamic image processing system (MDIPS) was developed to collect, process, display and record image data. The block diagram of the MDIPS is shown. The system consists of a highly sensitive, high resolution TV camera driven by a custom-made scanner, a TV camera deflection controller for optimal scanning, which adjusts to the luminous intensity and the moving speed of an object, a real-time corrector to perform the real time correction of dark current, shading distortion and field intensity fluctuation, a real time filter for increasing the image signal to noise ratio, a video recording unit and a pseudocolor monitor to realize recording in commercially available products and monitoring by means of the CRTs in standard TV scanning, respectively. The TV camera and the TV camera deflection controller utilized for producing still images can be applied to this case. The block diagram of the real-time corrector is shown. Its performance is explained. Linear filters and ranked order filters were developed. (K.I.)

  3. Comparison of automatic and visual methods used for image segmentation in Endodontics: a microCT study.

    Science.gov (United States)

    Queiroz, Polyane Mazucatto; Rovaris, Karla; Santaella, Gustavo Machado; Haiter-Neto, Francisco; Freitas, Deborah Queiroz

    2017-01-01

    To calculate root canal volume and surface area in microCT images, an image segmentation by selecting threshold values is required, which can be determined by visual or automatic methods. Visual determination is influenced by the operator's visual acuity, while the automatic method is done entirely by computer algorithms. To compare between visual and automatic segmentation, and to determine the influence of the operator's visual acuity on the reproducibility of root canal volume and area measurements. Images from 31 extracted human anterior teeth were scanned with a μCT scanner. Three experienced examiners performed visual image segmentation, and threshold values were recorded. Automatic segmentation was done using the "Automatic Threshold Tool" available in the dedicated software provided by the scanner's manufacturer. Volume and area measurements were performed using the threshold values determined both visually and automatically. The paired Student's t-test showed no significant difference between visual and automatic segmentation methods regarding root canal volume measurements (p=0.93) and root canal surface (p=0.79). Although visual and automatic segmentation methods can be used to determine the threshold and calculate root canal volume and surface, the automatic method may be the most suitable for ensuring the reproducibility of threshold determination.

  4. Automatic media-adventitia IVUS image segmentation based on sparse representation framework and dynamic directional active contour model.

    Science.gov (United States)

    Zakeri, Fahimeh Sadat; Setarehdan, Seyed Kamaledin; Norouzi, Somayye

    2017-10-01

    Segmentation of the arterial wall boundaries from intravascular ultrasound images is an important image processing task in order to quantify arterial wall characteristics such as shape, area, thickness and eccentricity. Since manual segmentation of these boundaries is a laborious and time consuming procedure, many researchers attempted to develop (semi-) automatic segmentation techniques as a powerful tool for educational and clinical purposes in the past but as yet there is no any clinically approved method in the market. This paper presents a deterministic-statistical strategy for automatic media-adventitia border detection by a fourfold algorithm. First, a smoothed initial contour is extracted based on the classification in the sparse representation framework which is combined with the dynamic directional convolution vector field. Next, an active contour model is utilized for the propagation of the initial contour toward the interested borders. Finally, the extracted contour is refined in the leakage, side branch openings and calcification regions based on the image texture patterns. The performance of the proposed algorithm is evaluated by comparing the results to those manually traced borders by an expert on 312 different IVUS images obtained from four different patients. The statistical analysis of the results demonstrates the efficiency of the proposed method in the media-adventitia border detection with enough consistency in the leakage and calcification regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. TU-F-17A-01: BEST IN PHYSICS (JOINT IMAGING-THERAPY) - An Automatic Toolkit for Efficient and Robust Analysis of 4D Respiratory Motion

    International Nuclear Information System (INIS)

    Wei, J; Yuan, A; Li, G

    2014-01-01

    Purpose: To provide an automatic image analysis toolkit to process thoracic 4-dimensional computed tomography (4DCT) and extract patient-specific motion information to facilitate investigational or clinical use of 4DCT. Methods: We developed an automatic toolkit in MATLAB to overcome the extra workload from the time dimension in 4DCT. This toolkit employs image/signal processing, computer vision, and machine learning methods to visualize, segment, register, and characterize lung 4DCT automatically or interactively. A fully-automated 3D lung segmentation algorithm was designed and 4D lung segmentation was achieved in batch mode. Voxel counting was used to calculate volume variations of the torso, lung and its air component, and local volume changes at the diaphragm and chest wall to characterize breathing pattern. Segmented lung volumes in 12 patients are compared with those from a treatment planning system (TPS). Voxel conversion was introduced from CT# to other physical parameters, such as gravity-induced pressure, to create a secondary 4D image. A demon algorithm was applied in deformable image registration and motion trajectories were extracted automatically. Calculated motion parameters were plotted with various templates. Machine learning algorithms, such as Naive Bayes and random forests, were implemented to study respiratory motion. This toolkit is complementary to and will be integrated with the Computational Environment for Radiotherapy Research (CERR). Results: The automatic 4D image/data processing toolkit provides a platform for analysis of 4D images and datasets. It processes 4D data automatically in batch mode and provides interactive visual verification for manual adjustments. The discrepancy in lung volume calculation between this and the TPS is <±2% and the time saving is by 1–2 orders of magnitude. Conclusion: A framework of 4D toolkit has been developed to analyze thoracic 4DCT automatically or interactively, facilitating both investigational

  6. TU-F-17A-01: BEST IN PHYSICS (JOINT IMAGING-THERAPY) - An Automatic Toolkit for Efficient and Robust Analysis of 4D Respiratory Motion

    Energy Technology Data Exchange (ETDEWEB)

    Wei, J [City College of New York, New York, NY (United States); Yuan, A; Li, G [Memorial Sloan Kettering Cancer Center, New York, NY (United States)

    2014-06-15

    Purpose: To provide an automatic image analysis toolkit to process thoracic 4-dimensional computed tomography (4DCT) and extract patient-specific motion information to facilitate investigational or clinical use of 4DCT. Methods: We developed an automatic toolkit in MATLAB to overcome the extra workload from the time dimension in 4DCT. This toolkit employs image/signal processing, computer vision, and machine learning methods to visualize, segment, register, and characterize lung 4DCT automatically or interactively. A fully-automated 3D lung segmentation algorithm was designed and 4D lung segmentation was achieved in batch mode. Voxel counting was used to calculate volume variations of the torso, lung and its air component, and local volume changes at the diaphragm and chest wall to characterize breathing pattern. Segmented lung volumes in 12 patients are compared with those from a treatment planning system (TPS). Voxel conversion was introduced from CT# to other physical parameters, such as gravity-induced pressure, to create a secondary 4D image. A demon algorithm was applied in deformable image registration and motion trajectories were extracted automatically. Calculated motion parameters were plotted with various templates. Machine learning algorithms, such as Naive Bayes and random forests, were implemented to study respiratory motion. This toolkit is complementary to and will be integrated with the Computational Environment for Radiotherapy Research (CERR). Results: The automatic 4D image/data processing toolkit provides a platform for analysis of 4D images and datasets. It processes 4D data automatically in batch mode and provides interactive visual verification for manual adjustments. The discrepancy in lung volume calculation between this and the TPS is <±2% and the time saving is by 1–2 orders of magnitude. Conclusion: A framework of 4D toolkit has been developed to analyze thoracic 4DCT automatically or interactively, facilitating both investigational

  7. Automatic Generation of Algorithms for the Statistical Analysis of Planetary Nebulae Images

    Science.gov (United States)

    Fischer, Bernd

    2004-01-01

    which use numerical approximations even in cases where closed-form solutions exist. AutoBayes is implemented in Prolog and comprises approximately 75.000 lines of code. In this paper, we take one typical scientific data analysis problem-analyzing planetary nebulae images taken by the Hubble Space Telescope-and show how AutoBayes can be used to automate the implementation of the necessary anal- ysis programs. We initially follow the analysis described by Knuth and Hajian [KHO2] and use AutoBayes to derive code for the published models. We show the details of the code derivation process, including the symbolic computations and automatic integration of library procedures, and compare the results of the automatically generated and manually implemented code. We then go beyond the original analysis and use AutoBayes to derive code for a simple image segmentation procedure based on a mixture model which can be used to automate a manual preproceesing step. Finally, we combine the original approach with the simple segmentation which yields a more detailed analysis. This also demonstrates that AutoBayes makes it easy to combine different aspects of data analysis.

  8. Evaluation of automatic image quality assessment in chest CT - A human cadaver study.

    Science.gov (United States)

    Franck, Caro; De Crop, An; De Roo, Bieke; Smeets, Peter; Vergauwen, Merel; Dewaele, Tom; Van Borsel, Mathias; Achten, Eric; Van Hoof, Tom; Bacher, Klaus

    2017-04-01

    The evaluation of clinical image quality (IQ) is important to optimize CT protocols and to keep patient doses as low as reasonably achievable. Considering the significant amount of effort needed for human observer studies, automatic IQ tools are a promising alternative. The purpose of this study was to evaluate automatic IQ assessment in chest CT using Thiel embalmed cadavers. Chest CT's of Thiel embalmed cadavers were acquired at different exposures. Clinical IQ was determined by performing a visual grading analysis. Physical-technical IQ (noise, contrast-to-noise and contrast-detail) was assessed in a Catphan phantom. Soft and sharp reconstructions were made with filtered back projection and two strengths of iterative reconstruction. In addition to the classical IQ metrics, an automatic algorithm was used to calculate image quality scores (IQs). To be able to compare datasets reconstructed with different kernels, the IQs values were normalized. Good correlations were found between IQs and the measured physical-technical image quality: noise (ρ=-1.00), contrast-to-noise (ρ=1.00) and contrast-detail (ρ=0.96). The correlation coefficients between IQs and the observed clinical image quality of soft and sharp reconstructions were 0.88 and 0.93, respectively. The automatic scoring algorithm is a promising tool for the evaluation of thoracic CT scans in daily clinical practice. It allows monitoring of the image quality of a chest protocol over time, without human intervention. Different reconstruction kernels can be compared after normalization of the IQs. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Test of a potential link between analytic and nonanalytic category learning and automatic, effortful processing.

    Science.gov (United States)

    Tracy, J I; Pinsk, M; Helverson, J; Urban, G; Dietz, T; Smith, D J

    2001-08-01

    The link between automatic and effortful processing and nonanalytic and analytic category learning was evaluated in a sample of 29 college undergraduates using declarative memory, semantic category search, and pseudoword categorization tasks. Automatic and effortful processing measures were hypothesized to be associated with nonanalytic and analytic categorization, respectively. Results suggested that contrary to prediction strong criterion-attribute (analytic) responding on the pseudoword categorization task was associated with strong automatic, implicit memory encoding of frequency-of-occurrence information. Data are discussed in terms of the possibility that criterion-attribute category knowledge, once established, may be expressed with few attentional resources. The data indicate that attention resource requirements, even for the same stimuli and task, vary depending on the category rule system utilized. Also, the automaticity emerging from familiarity with analytic category exemplars is very different from the automaticity arising from extensive practice on a semantic category search task. The data do not support any simple mapping of analytic and nonanalytic forms of category learning onto the automatic and effortful processing dichotomy and challenge simple models of brain asymmetries for such procedures. Copyright 2001 Academic Press.

  10. The role of automaticity and attention in neural processes underlying empathy for happiness, sadness, and anxiety

    Directory of Open Access Journals (Sweden)

    Sylvia A. Morelli

    2013-05-01

    Full Text Available Although many studies have examined the neural basis of experiencing empathy, relatively little is known about how empathic processes are affected by different attentional conditions. Thus, we examined whether instructions to empathize might amplify responses in empathy-related regions and whether cognitive load would diminish the involvement of these regions. 32 participants completed a functional magnetic resonance imaging session assessing empathic responses to individuals experiencing happy, sad, and anxious events. Stimuli were presented under three conditions: watching naturally, while instructed to empathize, and under cognitive load. Across analyses, we found evidence for a core set of neural regions that support empathic processes (dorsomedial prefrontal cortex, DMPFC; medial prefrontal cortex, MPFC; temporoparietal junction, TPJ; amygdala; ventral anterior insula, AI; septal area, SA. Two key regions – the ventral AI and SA – were consistently active across all attentional conditions, suggesting that they are automatically engaged during empathy. In addition, watching versus empathizing with targets was not markedly different and instead led to similar subjective and neural responses to others’ emotional experiences. In contrast, cognitive load reduced the subjective experience of empathy and diminished neural responses in several regions related to empathy (DMPFC, MPFC, TPJ, amygdala and social cognition. The current results reveal how attention impacts empathic processes and provides insight into how empathy may unfold in everyday interactions.

  11. Automated measurement of pressure injury through image processing.

    Science.gov (United States)

    Li, Dan; Mathews, Carol

    2017-11-01

    To develop an image processing algorithm to automatically measure pressure injuries using electronic pressure injury images stored in nursing documentation. Photographing pressure injuries and storing the images in the electronic health record is standard practice in many hospitals. However, the manual measurement of pressure injury is time-consuming, challenging and subject to intra/inter-reader variability with complexities of the pressure injury and the clinical environment. A cross-sectional algorithm development study. A set of 32 pressure injury images were obtained from a western Pennsylvania hospital. First, we transformed the images from an RGB (i.e. red, green and blue) colour space to a YC b C r colour space to eliminate inferences from varying light conditions and skin colours. Second, a probability map, generated by a skin colour Gaussian model, guided the pressure injury segmentation process using the Support Vector Machine classifier. Third, after segmentation, the reference ruler - included in each of the images - enabled perspective transformation and determination of pressure injury size. Finally, two nurses independently measured those 32 pressure injury images, and intraclass correlation coefficient was calculated. An image processing algorithm was developed to automatically measure the size of pressure injuries. Both inter- and intra-rater analysis achieved good level reliability. Validation of the size measurement of the pressure injury (1) demonstrates that our image processing algorithm is a reliable approach to monitoring pressure injury progress through clinical pressure injury images and (2) offers new insight to pressure injury evaluation and documentation. Once our algorithm is further developed, clinicians can be provided with an objective, reliable and efficient computational tool for segmentation and measurement of pressure injuries. With this, clinicians will be able to more effectively monitor the healing process of pressure

  12. A new robust markerless method for automatic image-to-patient registration in image-guided neurosurgery system.

    Science.gov (United States)

    Liu, Yinlong; Song, Zhijian; Wang, Manning

    2017-12-01

    Compared with the traditional point-based registration in the image-guided neurosurgery system, surface-based registration is preferable because it does not use fiducial markers before image scanning and does not require image acquisition dedicated for navigation purposes. However, most existing surface-based registration methods must include a manual step for coarse registration, which increases the registration time and elicits some inconvenience and uncertainty. A new automatic surface-based registration method is proposed, which applies 3D surface feature description and matching algorithm to obtain point correspondences for coarse registration and uses the iterative closest point (ICP) algorithm in the last step to obtain an image-to-patient registration. Both phantom and clinical data were used to execute automatic registrations and target registration error (TRE) calculated to verify the practicality and robustness of the proposed method. In phantom experiments, the registration accuracy was stable across different downsampling resolutions (18-26 mm) and different support radii (2-6 mm). In clinical experiments, the mean TREs of two patients by registering full head surfaces were 1.30 mm and 1.85 mm. This study introduced a new robust automatic surface-based registration method based on 3D feature matching. The method achieved sufficient registration accuracy with different real-world surface regions in phantom and clinical experiments.

  13. Automatic segmentation and 3D reconstruction of intravascular ultrasound images for a fast preliminar evaluation of vessel pathologies.

    Science.gov (United States)

    Sanz-Requena, Roberto; Moratal, David; García-Sánchez, Diego Ramón; Bodí, Vicente; Rieta, José Joaquín; Sanchis, Juan Manuel

    2007-03-01

    Intravascular ultrasound (IVUS) imaging is used along with X-ray coronary angiography to detect vessel pathologies. Manual analysis of IVUS images is slow and time-consuming and it is not feasible for clinical purposes. A semi-automated method is proposed to generate 3D reconstructions from IVUS video sequences, so that a fast diagnose can be easily done, quantifying plaque length and severity as well as plaque volume of the vessels under study. The methodology described in this work has four steps: a pre-processing of IVUS images, a segmentation of media-adventitia contour, a detection of intima and plaque and a 3D reconstruction of the vessel. Preprocessing is intended to remove noise from the images without blurring the edges. Segmentation of media-adventitia contour is achieved using active contours (snakes). In particular, we use the gradient vector flow (GVF) as external force for the snakes. The detection of lumen border is obtained taking into account gray-level information of the inner part of the previously detected contours. A knowledge-based approach is used to determine which level of gray corresponds statistically to the different regions of interest: intima, plaque and lumen. The catheter region is automatically discarded. An estimate of plaque type is also given. Finally, 3D reconstruction of all detected regions is made. The suitability of this methodology has been verified for the analysis and visualization of plaque length, stenosis severity, automatic detection of the most problematic regions, calculus of plaque volumes and a preliminary estimation of plaque type obtaining for automatic measures of lumen and vessel area an average error smaller than 1mm(2) (equivalent aproximately to 10% of the average measure), for calculus of plaque and lumen volume errors smaller than 0.5mm(3) (equivalent approximately to 20% of the average measure) and for plaque type estimates a mismatch of less than 8% in the analysed frames.

  14. Role of Artificial Intelligence Techniques (Automatic Classifiers) in Molecular Imaging Modalities in Neurodegenerative Diseases.

    Science.gov (United States)

    Cascianelli, Silvia; Scialpi, Michele; Amici, Serena; Forini, Nevio; Minestrini, Matteo; Fravolini, Mario Luca; Sinzinger, Helmut; Schillaci, Orazio; Palumbo, Barbara

    2017-01-01

    Artificial Intelligence (AI) is a very active Computer Science research field aiming to develop systems that mimic human intelligence and is helpful in many human activities, including Medicine. In this review we presented some examples of the exploiting of AI techniques, in particular automatic classifiers such as Artificial Neural Network (ANN), Support Vector Machine (SVM), Classification Tree (ClT) and ensemble methods like Random Forest (RF), able to analyze findings obtained by positron emission tomography (PET) or single-photon emission tomography (SPECT) scans of patients with Neurodegenerative Diseases, in particular Alzheimer's Disease. We also focused our attention on techniques applied in order to preprocess data and reduce their dimensionality via feature selection or projection in a more representative domain (Principal Component Analysis - PCA - or Partial Least Squares - PLS - are examples of such methods); this is a crucial step while dealing with medical data, since it is necessary to compress patient information and retain only the most useful in order to discriminate subjects into normal and pathological classes. Main literature papers on the application of these techniques to classify patients with neurodegenerative disease extracting data from molecular imaging modalities are reported, showing that the increasing development of computer aided diagnosis systems is very promising to contribute to the diagnostic process.

  15. Applying deep learning technology to automatically identify metaphase chromosomes using scanning microscopic images: an initial investigation

    Science.gov (United States)

    Qiu, Yuchen; Lu, Xianglan; Yan, Shiju; Tan, Maxine; Cheng, Samuel; Li, Shibo; Liu, Hong; Zheng, Bin

    2016-03-01

    Automated high throughput scanning microscopy is a fast developing screening technology used in cytogenetic laboratories for the diagnosis of leukemia or other genetic diseases. However, one of the major challenges of using this new technology is how to efficiently detect the analyzable metaphase chromosomes during the scanning process. The purpose of this investigation is to develop a computer aided detection (CAD) scheme based on deep learning technology, which can identify the metaphase chromosomes with high accuracy. The CAD scheme includes an eight layer neural network. The first six layers compose of an automatic feature extraction module, which has an architecture of three convolution-max-pooling layer pairs. The 1st, 2nd and 3rd pair contains 30, 20, 20 feature maps, respectively. The seventh and eighth layers compose of a multiple layer perception (MLP) based classifier, which is used to identify the analyzable metaphase chromosomes. The performance of new CAD scheme was assessed by receiver operation characteristic (ROC) method. A number of 150 regions of interest (ROIs) were selected to test the performance of our new CAD scheme. Each ROI contains either interphase cell or metaphase chromosomes. The results indicate that new scheme is able to achieve an area under the ROC curve (AUC) of 0.886+/-0.043. This investigation demonstrates that applying a deep learning technique may enable to significantly improve the accuracy of the metaphase chromosome detection using a scanning microscopic imaging technology in the future.

  16. Study on Classification Accuracy Inspection of Land Cover Data Aided by Automatic Image Change Detection Technology

    Science.gov (United States)

    Xie, W.-J.; Zhang, L.; Chen, H.-P.; Zhou, J.; Mao, W.-J.

    2018-04-01

    The purpose of carrying out national geographic conditions monitoring is to obtain information of surface changes caused by human social and economic activities, so that the geographic information can be used to offer better services for the government, enterprise and public. Land cover data contains detailed geographic conditions information, thus has been listed as one of the important achievements in the national geographic conditions monitoring project. At present, the main issue of the production of the land cover data is about how to improve the classification accuracy. For the land cover data quality inspection and acceptance, classification accuracy is also an important check point. So far, the classification accuracy inspection is mainly based on human-computer interaction or manual inspection in the project, which are time consuming and laborious. By harnessing the automatic high-resolution remote sensing image change detection technology based on the ERDAS IMAGINE platform, this paper carried out the classification accuracy inspection test of land cover data in the project, and presented a corresponding technical route, which includes data pre-processing, change detection, result output and information extraction. The result of the quality inspection test shows the effectiveness of the technical route, which can meet the inspection needs for the two typical errors, that is, missing and incorrect update error, and effectively reduces the work intensity of human-computer interaction inspection for quality inspectors, and also provides a technical reference for the data production and quality control of the land cover data.

  17. A Method Based on Artificial Intelligence To Fully Automatize The Evaluation of Bovine Blastocyst Images.

    Science.gov (United States)

    Rocha, José Celso; Passalia, Felipe José; Matos, Felipe Delestro; Takahashi, Maria Beatriz; Ciniciato, Diego de Souza; Maserati, Marc Peter; Alves, Mayra Fernanda; de Almeida, Tamie Guibu; Cardoso, Bruna Lopes; Basso, Andrea Cristina; Nogueira, Marcelo Fábio Gouveia

    2017-08-09

    Morphological analysis is the standard method of assessing embryo quality; however, its inherent subjectivity tends to generate discrepancies among evaluators. Using genetic algorithms and artificial neural networks (ANNs), we developed a new method for embryo analysis that is more robust and reliable than standard methods. Bovine blastocysts produced in vitro were classified as grade 1 (excellent or good), 2 (fair), or 3 (poor) by three experienced embryologists according to the International Embryo Technology Society (IETS) standard. The images (n = 482) were subjected to automatic feature extraction, and the results were used as input for a supervised learning process. One part of the dataset (15%) was used for a blind test posterior to the fitting, for which the system had an accuracy of 76.4%. Interestingly, when the same embryologists evaluated a sub-sample (10%) of the dataset, there was only 54.0% agreement with the standard (mode for grades). However, when using the ANN to assess this sub-sample, there was 87.5% agreement with the modal values obtained by the evaluators. The presented methodology is covered by National Institute of Industrial Property (INPI) and World Intellectual Property Organization (WIPO) patents and is currently undergoing a commercial evaluation of its feasibility.

  18. Semi-automatic watershed medical image segmentation methods for customized cancer radiation treatment planning simulation

    International Nuclear Information System (INIS)

    Kum Oyeon; Kim Hye Kyung; Max, N.

    2007-01-01

    A cancer radiation treatment planning simulation requires image segmentation to define the gross tumor volume, clinical target volume, and planning target volume. Manual segmentation, which is usual in clinical settings, depends on the operator's experience and may, in addition, change for every trial by the same operator. To overcome this difficulty, we developed semi-automatic watershed medical image segmentation tools using both the top-down watershed algorithm in the insight segmentation and registration toolkit (ITK) and Vincent-Soille's bottom-up watershed algorithm with region merging. We applied our algorithms to segment two- and three-dimensional head phantom CT data and to find pixel (or voxel) numbers for each segmented area, which are needed for radiation treatment optimization. A semi-automatic method is useful to avoid errors incurred by both human and machine sources, and provide clear and visible information for pedagogical purpose. (orig.)

  19. A semi-automatic image-based close range 3D modeling pipeline using a multi-camera configuration.

    Science.gov (United States)

    Rau, Jiann-Yeou; Yeh, Po-Chia

    2012-01-01

    The generation of photo-realistic 3D models is an important task for digital recording of cultural heritage objects. This study proposes an image-based 3D modeling pipeline which takes advantage of a multi-camera configuration and multi-image matching technique that does not require any markers on or around the object. Multiple digital single lens reflex (DSLR) cameras are adopted and fixed with invariant relative orientations. Instead of photo-triangulation after image acquisition, calibration is performed to estimate the exterior orientation parameters of the multi-camera configuration which can be processed fully automatically using coded targets. The calibrated orientation parameters of all cameras are applied to images taken using the same camera configuration. This means that when performing multi-image matching for surface point cloud generation, the orientation parameters will remain the same as the calibrated results, even when the target has changed. Base on this invariant character, the whole 3D modeling pipeline can be performed completely automatically, once the whole system has been calibrated and the software was seamlessly integrated. Several experiments were conducted to prove the feasibility of the proposed system. Images observed include that of a human being, eight Buddhist statues, and a stone sculpture. The results for the stone sculpture, obtained with several multi-camera configurations were compared with a reference model acquired by an ATOS-I 2M active scanner. The best result has an absolute accuracy of 0.26 mm and a relative accuracy of 1:17,333. It demonstrates the feasibility of the proposed low-cost image-based 3D modeling pipeline and its applicability to a large quantity of antiques stored in a museum.

  20. Deep learning for automatic localization, identification, and segmentation of vertebral bodies in volumetric MR images

    Science.gov (United States)

    Suzani, Amin; Rasoulian, Abtin; Seitel, Alexander; Fels, Sidney; Rohling, Robert N.; Abolmaesumi, Purang

    2015-03-01

    This paper proposes an automatic method for vertebra localization, labeling, and segmentation in multi-slice Magnetic Resonance (MR) images. Prior work in this area on MR images mostly requires user interaction while our method is fully automatic. Cubic intensity-based features are extracted from image voxels. A deep learning approach is used for simultaneous localization and identification of vertebrae. The localized points are refined by local thresholding in the region of the detected vertebral column. Thereafter, a statistical multi-vertebrae model is initialized on the localized vertebrae. An iterative Expectation Maximization technique is used to register the vertebral body of the model to the image edges and obtain a segmentation of the lumbar vertebral bodies. The method is evaluated by applying to nine volumetric MR images of the spine. The results demonstrate 100% vertebra identification and a mean surface error of below 2.8 mm for 3D segmentation. Computation time is less than three minutes per high-resolution volumetric image.

  1. Automatic lung tumor segmentation on PET/CT images using fuzzy Markov random field model.

    Science.gov (United States)

    Guo, Yu; Feng, Yuanming; Sun, Jian; Zhang, Ning; Lin, Wang; Sa, Yu; Wang, Ping

    2014-01-01

    The combination of positron emission tomography (PET) and CT images provides complementary functional and anatomical information of human tissues and it has been used for better tumor volume definition of lung cancer. This paper proposed a robust method for automatic lung tumor segmentation on PET/CT images. The new method is based on fuzzy Markov random field (MRF) model. The combination of PET and CT image information is achieved by using a proper joint posterior probability distribution of observed features in the fuzzy MRF model which performs better than the commonly used Gaussian joint distribution. In this study, the PET and CT simulation images of 7 non-small cell lung cancer (NSCLC) patients were used to evaluate the proposed method. Tumor segmentations with the proposed method and manual method by an experienced radiation oncologist on the fused images were performed, respectively. Segmentation results obtained with the two methods were similar and Dice's similarity coefficient (DSC) was 0.85 ± 0.013. It has been shown that effective and automatic segmentations can be achieved with this method for lung tumors which locate near other organs with similar intensities in PET and CT images, such as when the tumors extend into chest wall or mediastinum.

  2. Automatic Lung Tumor Segmentation on PET/CT Images Using Fuzzy Markov Random Field Model

    Directory of Open Access Journals (Sweden)

    Yu Guo

    2014-01-01

    Full Text Available The combination of positron emission tomography (PET and CT images provides complementary functional and anatomical information of human tissues and it has been used for better tumor volume definition of lung cancer. This paper proposed a robust method for automatic lung tumor segmentation on PET/CT images. The new method is based on fuzzy Markov random field (MRF model. The combination of PET and CT image information is achieved by using a proper joint posterior probability distribution of observed features in the fuzzy MRF model which performs better than the commonly used Gaussian joint distribution. In this study, the PET and CT simulation images of 7 non-small cell lung cancer (NSCLC patients were used to evaluate the proposed method. Tumor segmentations with the proposed method and manual method by an experienced radiation oncologist on the fused images were performed, respectively. Segmentation results obtained with the two methods were similar and Dice’s similarity coefficient (DSC was 0.85 ± 0.013. It has been shown that effective and automatic segmentations can be achieved with this method for lung tumors which locate near other organs with similar intensities in PET and CT images, such as when the tumors extend into chest wall or mediastinum.

  3. Automatic system for quantification and visualization of lung aeration on chest computed tomography images: the Lung Image System Analysis - LISA

    Energy Technology Data Exchange (ETDEWEB)

    Felix, John Hebert da Silva; Cortez, Paulo Cesar, E-mail: jhsfelix@gmail.co [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia de Teleinformatica; Holanda, Marcelo Alcantara [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Hospital Universitario Walter Cantidio. Dept. de Medicina Clinica

    2010-12-15

    High Resolution Computed Tomography (HRCT) is the exam of choice for the diagnostic evaluation of lung parenchyma diseases. There is an increasing interest for computational systems able to automatically analyze the radiological densities of the lungs in CT images. The main objective of this study is to present a system for the automatic quantification and visualization of the lung aeration in HRCT images of different degrees of aeration, called Lung Image System Analysis (LISA). The secondary objective is to compare LISA to the Osiris system and also to specific algorithm lung segmentation (ALS), on the accuracy of the lungs segmentation. The LISA system automatically extracts the following image attributes: lungs perimeter, cross sectional area, volume, the radiological densities histograms, the mean lung density (MLD) in Hounsfield units (HU), the relative area of the lungs with voxels with density values lower than -950 HU (RA950) and the 15th percentile of the least density voxels (PERC15). Furthermore, LISA has a colored mask algorithm that applies pseudo-colors to the lung parenchyma according to the pre-defined radiological density chosen by the system user. The lungs segmentations of 102 images of 8 healthy volunteers and 141 images of 11 patients with Chronic Obstructive Pulmonary Disease (COPD) were compared on the accuracy and concordance among the three methods. The LISA was more effective on lungs segmentation than the other two methods. LISA's color mask tool improves the spatial visualization of the degrees of lung aeration and the various attributes of the image that can be extracted may help physicians and researchers to better assess lung aeration both quantitatively and qualitatively. LISA may have important clinical and research applications on the assessment of global and regional lung aeration and therefore deserves further developments and validation studies. (author)

  4. Automatic system for quantification and visualization of lung aeration on chest computed tomography images: the Lung Image System Analysis - LISA

    International Nuclear Information System (INIS)

    Felix, John Hebert da Silva; Cortez, Paulo Cesar; Holanda, Marcelo Alcantara

    2010-01-01

    High Resolution Computed Tomography (HRCT) is the exam of choice for the diagnostic evaluation of lung parenchyma diseases. There is an increasing interest for computational systems able to automatically analyze the radiological densities of the lungs in CT images. The main objective of this study is to present a system for the automatic quantification and visualization of the lung aeration in HRCT images of different degrees of aeration, called Lung Image System Analysis (LISA). The secondary objective is to compare LISA to the Osiris system and also to specific algorithm lung segmentation (ALS), on the accuracy of the lungs segmentation. The LISA system automatically extracts the following image attributes: lungs perimeter, cross sectional area, volume, the radiological densities histograms, the mean lung density (MLD) in Hounsfield units (HU), the relative area of the lungs with voxels with density values lower than -950 HU (RA950) and the 15th percentile of the least density voxels (PERC15). Furthermore, LISA has a colored mask algorithm that applies pseudo-colors to the lung parenchyma according to the pre-defined radiological density chosen by the system user. The lungs segmentations of 102 images of 8 healthy volunteers and 141 images of 11 patients with Chronic Obstructive Pulmonary Disease (COPD) were compared on the accuracy and concordance among the three methods. The LISA was more effective on lungs segmentation than the other two methods. LISA's color mask tool improves the spatial visualization of the degrees of lung aeration and the various attributes of the image that can be extracted may help physicians and researchers to better assess lung aeration both quantitatively and qualitatively. LISA may have important clinical and research applications on the assessment of global and regional lung aeration and therefore deserves further developments and validation studies. (author)

  5. Phantom Study Investigating the Accuracy of Manual and Automatic Image Fusion with the GE Logiq E9: Implications for use in Percutaneous Liver Interventions

    Energy Technology Data Exchange (ETDEWEB)

    Burgmans, Mark Christiaan, E-mail: m.c.burgmans@lumc.nl; Harder, J. Michiel den, E-mail: chiel.den.harder@gmail.com; Meershoek, Philippa, E-mail: P.Meershoek@lumc.nl [Leiden University Medical Centre, Department of Radiology (Netherlands); Berg, Nynke S. van den, E-mail: N.S.van-den-Berg@lumc.nl [Leiden University Medical Center, Interventional and Molecular Imaging Laboratory, Department of Radiology (Netherlands); Chan, Shaun Xavier Ju Min, E-mail: shaun.xavier.chan@singhealth.com.sg [Singapore General Hospital, Department of Interventional Radiology (Singapore); Leeuwen, Fijs W. B. van, E-mail: F.W.B.van-Leeuwen@lumc.nl [Leiden University Medical Center, Interventional and Molecular Imaging Laboratory, Department of Radiology (Netherlands); Erkel, Arian R. van, E-mail: a.r.van-erkel@lumc.nl [Leiden University Medical Centre, Department of Radiology (Netherlands)

    2017-06-15

    PurposeTo determine the accuracy of automatic and manual co-registration methods for image fusion of three-dimensional computed tomography (CT) with real-time ultrasonography (US) for image-guided liver interventions.Materials and MethodsCT images of a skills phantom with liver lesions were acquired and co-registered to US using GE Logiq E9 navigation software. Manual co-registration was compared to automatic and semiautomatic co-registration using an active tracker. Also, manual point registration was compared to plane registration with and without an additional translation point. Finally, comparison was made between manual and automatic selection of reference points. In each experiment, accuracy of the co-registration method was determined by measurement of the residual displacement in phantom lesions by two independent observers.ResultsMean displacements for a superficial and deep liver lesion were comparable after manual and semiautomatic co-registration: 2.4 and 2.0 mm versus 2.0 and 2.5 mm, respectively. Both methods were significantly better than automatic co-registration: 5.9 and 5.2 mm residual displacement (p < 0.001; p < 0.01). The accuracy of manual point registration was higher than that of plane registration, the latter being heavily dependent on accurate matching of axial CT and US images by the operator. Automatic reference point selection resulted in significantly lower registration accuracy compared to manual point selection despite lower root-mean-square deviation (RMSD) values.ConclusionThe accuracy of manual and semiautomatic co-registration is better than that of automatic co-registration. For manual co-registration using a plane, choosing the correct plane orientation is an essential first step in the registration process. Automatic reference point selection based on RMSD values is error-prone.

  6. Some considerations on automated image processing of pathline photographs

    International Nuclear Information System (INIS)

    Kobayashi, T.; Saga, T.; Segawa, S.

    1987-01-01

    It is presently shown that flow visualization velocity vectors can be automatically obtained from tracer particle photographs by means of an image processing system. The system involves automated gray level threshold selection during the digitization process and separation or erasure of the intersecting path lines, followed by use of the pathline picture in the identification process and an adjustment of the averaging area in the rearrangement process. Attention is given to the results obtained for two-dimensional flows past an airfoil cascade and around a circular cylinder. 7 references

  7. using fuzzy logic in image processing

    International Nuclear Information System (INIS)

    Ashabrawy, M.A.F.

    2002-01-01

    due to the unavoidable merge between computer and mathematics, the signal processing in general and the processing in particular have greatly improved and advanced. signal processing deals with the processing of any signal data for use by a computer, while image processing deals with all kinds of images (just images). image processing involves the manipulation of image data for better appearance and viewing by people; consequently, it is a rapidly growing and exciting field to be involved in today . this work takes an applications - oriented approach to image processing .the applications; the maps and documents of the first egyptian research reactor (ETRR-1), the x-ray medical images and the fingerprints image. since filters, generally, work continuous ranges rather than discrete values, fuzzy logic techniques are more convenient.thee techniques are powerful in image processing and can deal with one- dimensional, 1-D and two - dimensional images, 2-D images as well

  8. Towards Automatic Capturing of Manual Data Processing Provenance

    NARCIS (Netherlands)

    Wombacher, Andreas; Huq, M.R.

    2011-01-01

    Often data processing is not implemented by a work ow system or an integration application but is performed manually by humans along the lines of a more or less specified procedure. Collecting provenance information during manual data processing can not be automated. Further, manual collection of

  9. Automatic non-proliferative diabetic retinopathy screening system based on color fundus image.

    Science.gov (United States)

    Xiao, Zhitao; Zhang, Xinpeng; Geng, Lei; Zhang, Fang; Wu, Jun; Tong, Jun; Ogunbona, Philip O; Shan, Chunyan

    2017-10-26

    Non-proliferative diabetic retinopathy is the early stage of diabetic retinopathy. Automatic detection of non-proliferative diabetic retinopathy is significant for clinical diagnosis, early screening and course progression of patients. This paper introduces the design and implementation of an automatic system for screening non-proliferative diabetic retinopathy based on color fundus images. Firstly, the fundus structures, including blood vessels, optic disc and macula, are extracted and located, respectively. In particular, a new optic disc localization method using parabolic fitting is proposed based on the physiological structure characteristics of optic disc and blood vessels. Then, early lesions, such as microaneurysms, hemorrhages and hard exudates, are detected based on their respective characteristics. An equivalent optical model simulating human eyes is designed based on the anatomical structure of retina. Main structures and early lesions are reconstructed in the 3D space for better visualization. Finally, the severity of each image is evaluated based on the international criteria of diabetic retinopathy. The system has been tested on public databases and images from hospitals. Experimental results demonstrate that the proposed system achieves high accuracy for main structures and early lesions detection. The results of severity classification for non-proliferative diabetic retinopathy are also accurate and suitable. Our system can assist ophthalmologists for clinical diagnosis, automatic screening and course progression of patients.

  10. Image processing with ImageJ

    NARCIS (Netherlands)

    Abramoff, M.D.; Magalhães, Paulo J.; Ram, Sunanda J.

    2004-01-01

    Wayne Rasband of NIH has created ImageJ, an open source Java-written program that is now at version 1.31 and is used for many imaging applications, including those that that span the gamut from skin analysis to neuroscience. ImageJ is in the public domain and runs on any operating system (OS).

  11. Automatic adjustment of display window (gray-level condition) for MR images using neural networks

    International Nuclear Information System (INIS)

    Ohhashi, Akinami; Nambu, Kyojiro.

    1992-01-01

    We have developed a system to automatically adjust the display window width and level (WWL) for MR images using neural networks. There were three main points in the development of our system as follows: 1) We defined an index for the clarity of a displayed image, and called 'EW'. EW is a quantitative measure of the clarity of an image displayed in a certain WWL, and can be derived from the difference between gray-level with the WWL adjusted by a human expert and with a certain WWL. 2) We extracted a group of six features from a gray-level histogram of a displayed image. We designed two neural networks which are able to learn the relationship between these features and the desired output (teaching signal), 'EQ', which is normalized to 0 to 1.0 from EW. Two neural networks were used to share the patterns to be learned; one learns a variety of patterns with less accuracy, and the other learns similar patterns with accuracy. Learning was performed using a back-propagation method. As a result, the neural networks after learning are able to provide a quantitative measure, 'Q', of the clarity of images displayed in the designated WWL. 3) Using the 'Hill climbing' method, we have been able to determine the best possible WWL for a displaying image. We have tested this technique for MR brain images. The results show that this system can adjust WWL comparable to that adjusted by a human expert for the majority of test images. The neural network is effective for the automatic adjustment of the display window for MR images. We are now studying the application of this method to MR images of another regions. (author)

  12. Interactive vs. automatic ultrasound image segmentation methods for staging hepatic lipidosis.

    Science.gov (United States)

    Weijers, Gert; Starke, Alexander; Haudum, Alois; Thijssen, Johan M; Rehage, Jürgen; De Korte, Chris L

    2010-07-01

    The aim of this study was to test the hypothesis that automatic segmentation of vessels in ultrasound (US) images can produce similar or better results in grading fatty livers than interactive segmentation. A study was performed in postpartum dairy cows (N=151), as an animal model of human fatty liver disease, to test this hypothesis. Five transcutaneous and five intraoperative US liver images were acquired in each animal and a liverbiopsy was taken. In liver tissue samples, triacylglycerol (TAG) was measured by biochemical analysis and hepatic diseases other than hepatic lipidosis were excluded by histopathologic examination. Ultrasonic tissue characterization (UTC) parameters--Mean echo level, standard deviation (SD) of echo level, signal-to-noise ratio (SNR), residual attenuation coefficient (ResAtt) and axial and lateral speckle size--were derived using a computer-aided US (CAUS) protocol and software package. First, the liver tissue was interactively segmented by two observers. With increasing fat content, fewer hepatic vessels were visible in the ultrasound images and, therefore, a smaller proportion of the liver needed to be excluded from these images. Automatic-segmentation algorithms were implemented and it was investigated whether better results could be achieved than with the subjective and time-consuming interactive-segmentation procedure. The automatic-segmentation algorithms were based on both fixed and adaptive thresholding techniques in combination with a 'speckle'-shaped moving-window exclusion technique. All data were analyzed with and without postprocessing as contained in CAUS and with different automated-segmentation techniques. This enabled us to study the effect of the applied postprocessing steps on single and multiple linear regressions ofthe various UTC parameters with TAG. Improved correlations for all US parameters were found by using automatic-segmentation techniques. Stepwise multiple linear-regression formulas where derived and used

  13. Comparison of liver volumetry on contrast‐enhanced CT images: one semiautomatic and two automatic approaches

    Science.gov (United States)

    Cai, Wei; He, Baochun; Fang, Chihua

    2016-01-01

    This study was to evaluate the accuracy, consistency, and efficiency of three liver volumetry methods— one interactive method, an in‐house‐developed 3D medical Image Analysis (3DMIA) system, one automatic active shape model (ASM)‐based segmentation, and one automatic probabilistic atlas (PA)‐guided segmentation method on clinical contrast‐enhanced CT images. Forty‐two datasets, including 27 normal liver and 15 space‐occupying liver lesion patients, were retrospectively included in this study. The three methods — one semiautomatic 3DMIA, one automatic ASM‐based, and one automatic PA‐based liver volumetry — achieved an accuracy with VD (volume difference) of −1.69%,−2.75%, and 3.06% in the normal group, respectively, and with VD of −3.20%,−3.35%, and 4.14% in the space‐occupying lesion group, respectively. However, the three methods achieved an efficiency of 27.63 mins, 1.26 mins, 1.18 mins on average, respectively, compared with the manual volumetry, which took 43.98 mins. The high intraclass correlation coefficient between the three methods and the manual method indicated an excellent agreement on liver volumetry. Significant differences in segmentation time were observed between the three methods (3DMIA, ASM, and PA) and the manual volumetry (pvolumetries (ASM and PA) and the semiautomatic volumetry (3DMIA) (pvolumetry agreed well with manual gold standard in both the normal liver group and the space‐occupying lesion group. The ASM‐ and PA‐based automatic segmentation have better efficiency in clinical use. PACS number(s): 87.55.‐x PMID:27929487

  14. A method for the automatic separation of the images of galaxies and stars from measurements made with the COSMOS machine

    International Nuclear Information System (INIS)

    MacGillivray, H.T.; Martin, R.; Pratt, N.M.; Reddish, V.C.; Seddon, H.; Alexander, L.W.G.; Walker, G.S.; Williams, P.R.

    1976-01-01

    A method has been developed which allows the computer to distinguish automatically between the images of galaxies and those of stars from measurements made with the COSMOS automatic plate-measuring machine at the Royal Observatory, Edinburgh. Results have indicated that a 90 to 95 per cent separation between galaxies and stars is possible. (author)

  15. Towards automatic parameter tuning of stream processing systems

    KAUST Repository

    Bilal, Muhammad; Canini, Marco

    2017-01-01

    for automating parameter tuning for stream-processing systems. Our framework supports standard black-box optimization algorithms as well as a novel gray-box optimization algorithm. We demonstrate the multiple benefits of automated parameter tuning in optimizing

  16. Automatic physiological waveform processing for FMRI noise correction and analysis.

    Directory of Open Access Journals (Sweden)

    Daniel J Kelley

    2008-03-01

    Full Text Available Functional MRI resting state and connectivity studies of brain focus on neural fluctuations at low frequencies which share power with physiological fluctuations originating from lung and heart. Due to the lack of automated software to process physiological signals collected at high magnetic fields, a gap exists in the processing pathway between the acquisition of physiological data and its use in fMRI software for both physiological noise correction and functional analyses of brain activation and connectivity. To fill this gap, we developed an open source, physiological signal processing program, called PhysioNoise, in the python language. We tested its automated processing algorithms and dynamic signal visualization on resting monkey cardiac and respiratory waveforms. PhysioNoise consistently identifies physiological fluctuations for fMRI noise correction and also generates covariates for subsequent analyses of brain activation and connectivity.

  17. Measuring automatic retrieval: a comparison of implicit memory, process dissociation, and speeded response procedures.

    Science.gov (United States)

    Horton, Keith D; Wilson, Daryl E; Vonk, Jennifer; Kirby, Sarah L; Nielsen, Tina

    2005-07-01

    Using the stem completion task, we compared estimates of automatic retrieval from an implicit memory task, the process dissociation procedure, and the speeded response procedure. Two standard manipulations were employed. In Experiment 1, a depth of processing effect was found on automatic retrieval using the speeded response procedure although this effect was substantially reduced in Experiment 2 when lexical processing was required of all words. In Experiment 3, the speeded response procedure showed an advantage of full versus divided attention at study on automatic retrieval. An implicit condition showed parallel effects in each study, suggesting that implicit stem completion may normally provide a good estimate of automatic retrieval. Also, we replicated earlier findings from the process dissociation procedure, but estimates of automatic retrieval from this procedure were consistently lower than those from the speeded response procedure, except when conscious retrieval was relatively low. We discuss several factors that may contribute to the conflicting outcomes, including the evidence for theoretical assumptions and criterial task differences between implicit and explicit tests.

  18. Process Concepts for Semi-automatic Dismantling of LCD Televisions

    OpenAIRE

    Elo, Kristofer; Sundin, Erik

    2014-01-01

    There is a large variety of electrical and electronic equipment products, for example liquid crystal display television sets (LCD TVs), in the waste stream today. Many LCD TVs contain mercury, which is a challenge to treat at the recycling plants. Two current used processes to recycle LCD TVs are automated shredding and manual disassembly. This paper aims to present concepts for semi-automated dismantling processes for LCD TVs in order to achieve higher productivity and flexibility, and in tu...

  19. Automatic system for processing the plasma radiation spectra

    International Nuclear Information System (INIS)

    Isakaev, Eh.Kh.; Markin, A.V.; Khajmin, V.A.; Chinnov, V.F.

    2001-01-01

    One is tackling a problem to ensure computer for processing of experimental data when studying plasma obtained due to the present day systems to acquire information. One elaborated rather simple and reliable programs for processing. The system is used in case of plasma quantitative spectroscopy representing the classical and most widely used method to analyze the parameters and the properties of low-temperature and high-temperature plasma [ru

  20. Method for Processing Liver Spheroids Using an Automatic Tissue Processor

    Science.gov (United States)

    2016-05-01

    alcohol dehydration and hot liquid wax infiltration. After the water in the tissue is replaced with wax and cooled, it then becomes possible to cut...effective for processing and preparing microscopy slides of liver spheroids. The general process involved formalin fixation, dehydration in a...DPBS);  formalin (37% neutral buffer formaldehyde);  series of alcohol solutions: 70, 80, 95, and 100% ethanol in water; 2  xylene

  1. Automated vehicle counting using image processing and machine learning

    Science.gov (United States)

    Meany, Sean; Eskew, Edward; Martinez-Castro, Rosana; Jang, Shinae

    2017-04-01

    Vehicle counting is used by the government to improve roadways and the flow of traffic, and by private businesses for purposes such as determining the value of locating a new store in an area. A vehicle count can be performed manually or automatically. Manual counting requires an individual to be on-site and tally the traffic electronically or by hand. However, this can lead to miscounts due to factors such as human error A common form of automatic counting involves pneumatic tubes, but pneumatic tubes disrupt traffic during installation and removal, and can be damaged by passing vehicles. Vehicle counting can also be performed via the use of a camera at the count site recording video of the traffic, with counting being performed manually post-recording or using automatic algorithms. This paper presents a low-cost procedure to perform automatic vehicle counting using remote video cameras with an automatic counting algorithm. The procedure would utilize a Raspberry Pi micro-computer to detect when a car is in a lane, and generate an accurate count of vehicle movements. The method utilized in this paper would use background subtraction to process the images and a machine learning algorithm to provide the count. This method avoids fatigue issues that are encountered in manual video counting and prevents the disruption of roadways that occurs when installing pneumatic tubes

  2. Deformable meshes for medical image segmentation accurate automatic segmentation of anatomical structures

    CERN Document Server

    Kainmueller, Dagmar

    2014-01-01

    ? Segmentation of anatomical structures in medical image data is an essential task in clinical practice. Dagmar Kainmueller introduces methods for accurate fully automatic segmentation of anatomical structures in 3D medical image data. The author's core methodological contribution is a novel deformation model that overcomes limitations of state-of-the-art Deformable Surface approaches, hence allowing for accurate segmentation of tip- and ridge-shaped features of anatomical structures. As for practical contributions, she proposes application-specific segmentation pipelines for a range of anatom

  3. Automatic analysis of digitized TV-images by a computer-driven optical microscope

    International Nuclear Information System (INIS)

    Rosa, G.; Di Bartolomeo, A.; Grella, G.; Romano, G.

    1997-01-01

    New methods of image analysis and three-dimensional pattern recognition were developed in order to perform the automatic scan of nuclear emulsion pellicles. An optical microscope, with a motorized stage, was equipped with a CCD camera and an image digitizer, and interfaced to a personal computer. Selected software routines inspired the design of a dedicated hardware processor. Fast operation, high efficiency and accuracy were achieved. First applications to high-energy physics experiments are reported. Further improvements are in progress, based on a high-resolution fast CCD camera and on programmable digital signal processors. Applications to other research fields are envisaged. (orig.)

  4. Porosity determination on pyrocarbon by means of automatic quantitative image analysis

    Energy Technology Data Exchange (ETDEWEB)

    Koizlik, K.; Uhlenbruck, U.; Delle, W.; Hoven, H.; Nickel, H.

    1976-05-01

    For a long time, the quantitative image analysis is well known as a method for quantifying the results of material investigation basing on ceramography. The development of the automatic image analyzers has made it a fast and elegant procedure for evaluation. Since 1975, it is used in IRW to determine easily and routinely the macroporosity and by this the density of the pyrocarbon coatings of nuclear fuel particles. This report describes the definition of measuring parameters, the measuring procedure, the mathematical calculations, and first experimental and mathematical results.

  5. Using Automatic Code Generation in the Attitude Control Flight Software Engineering Process

    Science.gov (United States)

    McComas, David; O'Donnell, James R., Jr.; Andrews, Stephen F.

    1999-01-01

    This paper presents an overview of the attitude control subsystem flight software development process, identifies how the process has changed due to automatic code generation, analyzes each software development phase in detail, and concludes with a summary of our lessons learned.

  6. Dialog system for automatic data input/output and processing with two BESM-6 computers

    International Nuclear Information System (INIS)

    Belyaev, Y.N.; Gorlov, Y.P.; Makarychev, S.V.; Monakov, A.A.; Shcherbakov, S.A.

    1985-01-01

    This paper presents a system for conducting experiments with fully automatic processing of data from multichannel recorders in the dialog mode. The system acquires data at a rate of 2.5 . 10 3 readings/sec, processes in real time, and outputs digital and graphical material in a multitasking environment

  7. Image quality dependence on image processing software in ...

    African Journals Online (AJOL)

    Image quality dependence on image processing software in computed radiography. ... Agfa CR readers use MUSICA software, and an upgrade with significantly different image ... Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  8. Formal Specification and Automatic Analysis of Business Processes under Authorization Constraints: An Action-Based Approach

    Science.gov (United States)

    Armando, Alessandro; Giunchiglia, Enrico; Ponta, Serena Elisa

    We present an approach to the formal specification and automatic analysis of business processes under authorization constraints based on the action language \\cal{C}. The use of \\cal{C} allows for a natural and concise modeling of the business process and the associated security policy and for the automatic analysis of the resulting specification by using the Causal Calculator (CCALC). Our approach improves upon previous work by greatly simplifying the specification step while retaining the ability to perform a fully automatic analysis. To illustrate the effectiveness of the approach we describe its application to a version of a business process taken from the banking domain and use CCALC to determine resource allocation plans complying with the security policy.

  9. Microsoft excel's automatic data processing and diagram drawing of RIA internal quality control parameters

    International Nuclear Information System (INIS)

    Zeng Pingfan; Liu Guoqiang

    2006-01-01

    We did automatic data processing and diagram drawing of various parameters of RIA' s internal quality control (IQC)by the use of Microsoft Excel (ME). By use of AVERAGE and STDEV of ME, we got x-bar, s and CV%. With pearson, we got the serum quality control coefficients (r). Inputing the original data to diagram's self-definition item, the diagram was drawn automatically. By the use of logic judging, we got the quality control judging results with the status, timing and data of various quality control parameters. For the past four years, the ME data processing and diagram drawing as well as quality control judging have been showed to be accurate, convenient and correct. It was quick and easy to manage and the automatic computer processing of RIA's IQC was realized. Conclusion: the method is applicable to all types of RIA' s IQC. (authors)

  10. Automatic processing of isotopic dilution curves obtained by precordial detection

    International Nuclear Information System (INIS)

    Verite, J.C.

    1973-01-01

    Dilution curves pose two distinct problems: that of their acquisition and that of their processing. A study devoted to the latter aspect only was presented. It was necessary to satisfy two important conditions: the treatment procedure, although applied to a single category of curves (isotopic dilution curves obtained by precordial detection), had to be as general as possible; to allow dissemination of the method the equipment used had to be relatively modest and inexpensive. A simple method, considering the curve processing as a process identification, was developed and should enable the mean heart cavity volume and certain pulmonary circulation parameters to be determined. Considerable difficulties were encountered, limiting the value of the results obtained though not condemning the method itself. The curve processing question raised the problem of their acquisition, i.e. the number of these curves and their meaning. A list of the difficulties encountered is followed by a set of possible solutions, a solution being understood to mean a curve processing combination where the overlapping between the two aspects of the problem is accounted for [fr

  11. Automatic detection of diabetic retinopathy features in ultra-wide field retinal images

    Science.gov (United States)

    Levenkova, Anastasia; Sowmya, Arcot; Kalloniatis, Michael; Ly, Angelica; Ho, Arthur

    2017-03-01

    Diabetic retinopathy (DR) is a major cause of irreversible vision loss. DR screening relies on retinal clinical signs (features). Opportunities for computer-aided DR feature detection have emerged with the development of Ultra-WideField (UWF) digital scanning laser technology. UWF imaging covers 82% greater retinal area (200°), against 45° in conventional cameras3 , allowing more clinically relevant retinopathy to be detected4 . UWF images also provide a high resolution of 3078 x 2702 pixels. Currently DR screening uses 7 overlapping conventional fundus images, and the UWF images provide similar results1,4. However, in 40% of cases, more retinopathy was found outside the 7-field ETDRS) fields by UWF and in 10% of cases, retinopathy was reclassified as more severe4 . This is because UWF imaging allows examination of both the central retina and more peripheral regions, with the latter implicated in DR6 . We have developed an algorithm for automatic recognition of DR features, including bright (cotton wool spots and exudates) and dark lesions (microaneurysms and blot, dot and flame haemorrhages) in UWF images. The algorithm extracts features from grayscale (green "red-free" laser light) and colour-composite UWF images, including intensity, Histogram-of-Gradient and Local binary patterns. Pixel-based classification is performed with three different classifiers. The main contribution is the automatic detection of DR features in the peripheral retina. The method is evaluated by leave-one-out cross-validation on 25 UWF retinal images with 167 bright lesions, and 61 other images with 1089 dark lesions. The SVM classifier performs best with AUC of 94.4% / 95.31% for bright / dark lesions.

  12. Automatic multiresolution age-related macular degeneration detection from fundus images

    Science.gov (United States)

    Garnier, Mickaël.; Hurtut, Thomas; Ben Tahar, Houssem; Cheriet, Farida

    2014-03-01

    Age-related Macular Degeneration (AMD) is a leading cause of legal blindness. As the disease progress, visual loss occurs rapidly, therefore early diagnosis is required for timely treatment. Automatic, fast and robust screening of this widespread disease should allow an early detection. Most of the automatic diagnosis methods in the literature are based on a complex segmentation of the drusen, targeting a specific symptom of the disease. In this paper, we present a preliminary study for AMD detection from color fundus photographs using a multiresolution texture analysis. We analyze the texture at several scales by using a wavelet decomposition in order to identify all the relevant texture patterns. Textural information is captured using both the sign and magnitude components of the completed model of Local Binary Patterns. An image is finally described with the textural pattern distributions of the wavelet coefficient images obtained at each level of decomposition. We use a Linear Discriminant Analysis for feature dimension reduction, to avoid the curse of dimensionality problem, and image classification. Experiments were conducted on a dataset containing 45 images (23 healthy and 22 diseased) of variable quality and captured by different cameras. Our method achieved a recognition rate of 93:3%, with a specificity of 95:5% and a sensitivity of 91:3%. This approach shows promising results at low costs that in agreement with medical experts as well as robustness to both image quality and fundus camera model.

  13. [Complex automatic data processing in multi-profile hospitals].

    Science.gov (United States)

    Dovzhenko, Iu M; Panov, G D

    1990-01-01

    The computerization of data processing in multi-disciplinary hospitals is the key factor in raising the quality of medical care provided to the population, intensifying the work of the personnel, improving the curative and diagnostic process and the use of resources. Even a small experience in complex computerization at the Botkin Hospital indicates that due to the use of the automated system the quality of data processing in being improved, a high level of patients' examination is being provided, a speedy training of young specialists is being achieved, conditions are being created for continuing education of physicians through the analysis of their own activity. At big hospitals a complex solution of administrative and curative diagnostic tasks on the basis of general hospital network of display connection and general hospital data bank is the most prospective form of computerization.

  14. The Development from Effortful to Automatic Processing in Mathematical Cognition.

    Science.gov (United States)

    Kaye, Daniel B.; And Others

    This investigation capitalizes upon the information processing models that depend upon measurement of latency of response to a mathematical problem and the decomposition of reaction time (RT). Simple two term addition problems were presented with possible solutions for true-false verification, and accuracy and RT to response were recorded. Total…

  15. Indentification and structuring of data for automatic processing

    International Nuclear Information System (INIS)

    Wohland, H.; Rexer, G.; Ruehle, R.

    1976-01-01

    The data structure of a technical and scientific application system is described. The description of the structure is divided in different sections where the user can describe his own data. By fixing a section of this structure, a high degree of automation of the problem solving process can be achieved while preserving flexibility. (orig.) [de

  16. Process for automatic filling of nuclear fuel rod cans

    International Nuclear Information System (INIS)

    Bezold, H.

    1977-01-01

    A drying section is inserted in the production line for the automation of the filling process for fuel rods with nuclear fuel pellets. The pellets are taken in a drum magazine to a drying furnace and then pushed out one after the other into the can to be filled. (TK) [de

  17. Automatic Processing of Changes in Facial Emotions in Dysphoria: A Magnetoencephalography Study.

    Science.gov (United States)

    Xu, Qianru; Ruohonen, Elisa M; Ye, Chaoxiong; Li, Xueqiao; Kreegipuu, Kairi; Stefanics, Gabor; Luo, Wenbo; Astikainen, Piia

    2018-01-01

    It is not known to what extent the automatic encoding and change detection of peripherally presented facial emotion is altered in dysphoria. The negative bias in automatic face processing in particular has rarely been studied. We used magnetoencephalography (MEG) to record automatic brain responses to happy and sad faces in dysphoric (Beck's Depression Inventory ≥ 13) and control participants. Stimuli were presented in a passive oddball condition, which allowed potential negative bias in dysphoria at different stages of face processing (M100, M170, and M300) and alterations of change detection (visual mismatch negativity, vMMN) to be investigated. The magnetic counterpart of the vMMN was elicited at all stages of face processing, indexing automatic deviance detection in facial emotions. The M170 amplitude was modulated by emotion, response amplitudes being larger for sad faces than happy faces. Group differences were found for the M300, and they were indexed by two different interaction effects. At the left occipital region of interest, the dysphoric group had larger amplitudes for sad than happy deviant faces, reflecting negative bias in deviance detection, which was not found in the control group. On the other hand, the dysphoric group showed no vMMN to changes in facial emotions, while the vMMN was observed in the control group at the right occipital region of interest. Our results indicate that there is a negative bias in automatic visual deviance detection, but also a general change detection deficit in dysphoria.

  18. Automatic block-matching registration to improve lung tumor localization during image-guided radiotherapy

    Science.gov (United States)

    Robertson, Scott Patrick

    To improve relatively poor outcomes for locally-advanced lung cancer patients, many current efforts are dedicated to minimizing uncertainties in radiotherapy. This enables the isotoxic delivery of escalated tumor doses, leading to better local tumor control. The current dissertation specifically addresses inter-fractional uncertainties resulting from patient setup variability. An automatic block-matching registration (BMR) algorithm is implemented and evaluated for the purpose of directly localizing advanced-stage lung tumors during image-guided radiation therapy. In this algorithm, small image sub-volumes, termed "blocks", are automatically identified on the tumor surface in an initial planning computed tomography (CT) image. Each block is independently and automatically registered to daily images acquired immediately prior to each treatment fraction. To improve the accuracy and robustness of BMR, this algorithm incorporates multi-resolution pyramid registration, regularization with a median filter, and a new multiple-candidate-registrations technique. The result of block-matching is a sparse displacement vector field that models local tissue deformations near the tumor surface. The distribution of displacement vectors is aggregated to obtain the final tumor registration, corresponding to the treatment couch shift for patient setup correction. Compared to existing rigid and deformable registration algorithms, the final BMR algorithm significantly improves the overlap between target volumes from the planning CT and registered daily images. Furthermore, BMR results in the smallest treatment margins for the given study population. However, despite these improvements, large residual target localization errors were noted, indicating that purely rigid couch shifts cannot correct for all sources of inter-fractional variability. Further reductions in treatment uncertainties may require the combination of high-quality target localization and adaptive radiotherapy.

  19. Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks.

    Science.gov (United States)

    Ma, Jinlian; Wu, Fa; Jiang, Tian'an; Zhao, Qiyu; Kong, Dexing

    2017-11-01

    Delineation of thyroid nodule boundaries from ultrasound images plays an important role in calculation of clinical indices and diagnosis of thyroid diseases. However, it is challenging for accurate and automatic segmentation of thyroid nodules because of their heterogeneous appearance and components similar to the background. In this study, we employ a deep convolutional neural network (CNN) to automatically segment thyroid nodules from ultrasound images. Our CNN-based method formulates a thyroid nodule segmentation problem as a patch classification task, where the relationship among patches is ignored. Specifically, the CNN used image patches from images of normal thyroids and thyroid nodules as inputs and then generated the segmentation probability maps as outputs. A multi-view strategy is used to improve the performance of the CNN-based model. Additionally, we compared the performance of our approach with that of the commonly used segmentation methods on the same dataset. The experimental results suggest that our proposed method outperforms prior methods on thyroid nodule segmentation. Moreover, the results show that the CNN-based model is able to delineate multiple nodules in thyroid ultrasound images accurately and effectively. In detail, our CNN-based model can achieve an average of the overlap metric, dice ratio, true positive rate, false positive rate, and modified Hausdorff distance as [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] on overall folds, respectively. Our proposed method is fully automatic without any user interaction. Quantitative results also indicate that our method is so efficient and accurate that it can be good enough to replace the time-consuming and tedious manual segmentation approach, demonstrating the potential clinical applications.

  20. Fast processing of foreign fiber images by image blocking

    OpenAIRE

    Yutao Wu; Daoliang Li; Zhenbo Li; Wenzhu Yang

    2014-01-01

    In the textile industry, it is always the case that cotton products are constitutive of many types of foreign fibers which affect the overall quality of cotton products. As the foundation of the foreign fiber automated inspection, image process exerts a critical impact on the process of foreign fiber identification. This paper presents a new approach for the fast processing of foreign fiber images. This approach includes five main steps, image block, image pre-decision, image background extra...

  1. Automatic labeling of MR brain images through extensible learning and atlas forests.

    Science.gov (United States)

    Xu, Lijun; Liu, Hong; Song, Enmin; Yan, Meng; Jin, Renchao; Hung, Chih-Cheng

    2017-12-01

    Multiatlas-based method is extensively used in MR brain images segmentation because of its simplicity and robustness. This method provides excellent accuracy although it is time consuming and limited in terms of obtaining information about new atlases. In this study, an automatic labeling of MR brain images through extensible learning and atlas forest is presented to address these limitations. We propose an extensible learning model which allows the multiatlas-based framework capable of managing the datasets with numerous atlases or dynamic atlas datasets and simultaneously ensure the accuracy of automatic labeling. Two new strategies are used to reduce the time and space complexity and improve the efficiency of the automatic labeling of brain MR images. First, atlases are encoded to atlas forests through random forest technology to reduce the time consumed for cross-registration between atlases and target image, and a scatter spatial vector is designed to eliminate errors caused by inaccurate registration. Second, an atlas selection method based on the extensible learning model is used to select atlases for target image without traversing the entire dataset and then obtain the accurate labeling. The labeling results of the proposed method were evaluated in three public datasets, namely, IBSR, LONI LPBA40, and ADNI. With the proposed method, the dice coefficient metric values on the three datasets were 84.17 ± 4.61%, 83.25 ± 4.29%, and 81.88 ± 4.53% which were 5% higher than those of the conventional method, respectively. The efficiency of the extensible learning model was evaluated by state-of-the-art methods for labeling of MR brain images. Experimental results showed that the proposed method could achieve accurate labeling for MR brain images without traversing the entire datasets. In the proposed multiatlas-based method, extensible learning and atlas forests were applied to control the automatic labeling of brain anatomies on large atlas datasets or dynamic

  2. VISUAL PERCEPTION BASED AUTOMATIC RECOGNITION OF CELL MOSAICS IN HUMAN CORNEAL ENDOTHELIUMMICROSCOPY IMAGES

    Directory of Open Access Journals (Sweden)

    Yann Gavet

    2011-05-01

    Full Text Available The human corneal endothelium can be observed with two types of microscopes: classical optical microscope for ex-vivo imaging, and specular optical microscope for in-vivo imaging. The quality of the cornea is correlated to the endothelial cell density and morphometry. Automatic methods to analyze the human corneal endothelium images are still not totally efficient. Image analysis methods that focus only on cell contours do not give good results in presence of noise and of bad conditions of acquisition. More elaborated methods introduce regional informations in order to performthe cell contours completion, thus implementing the duality contour-region. Their good performance can be explained by their connections with several basic principles of human visual perception (Gestalt Theory and Marr's computational theory.

  3. A comparative study of automatic image segmentation algorithms for target tracking in MR-IGRT.

    Science.gov (United States)

    Feng, Yuan; Kawrakow, Iwan; Olsen, Jeff; Parikh, Parag J; Noel, Camille; Wooten, Omar; Du, Dongsu; Mutic, Sasa; Hu, Yanle

    2016-03-01

    On-board magnetic resonance (MR) image guidance during radiation therapy offers the potential for more accurate treatment delivery. To utilize the real-time image information, a crucial prerequisite is the ability to successfully segment and track regions of interest (ROI). The purpose of this work is to evaluate the performance of different segmentation algorithms using motion images (4 frames per second) acquired using a MR image-guided radiotherapy (MR-IGRT) system. Manual contours of the kidney, bladder, duodenum, and a liver tumor by an experienced radiation oncologist were used as the ground truth for performance evaluation. Besides the manual segmentation, images were automatically segmented using thresholding, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE) algorithms, as well as the tissue tracking algorithm provided by the ViewRay treatment planning and delivery system (VR-TPDS). The performance of the five algorithms was evaluated quantitatively by comparing with the manual segmentation using the Dice coefficient and target registration error (TRE) measured as the distance between the centroid of the manual ROI and the centroid of the automatically segmented ROI. All methods were able to successfully segment the bladder and the kidney, but only FKM, KHM, and VR-TPDS were able to segment the liver tumor and the duodenum. The performance of the thresholding, FKM, KHM, and RD-LSE algorithms degraded as the local image contrast decreased, whereas the performance of the VP-TPDS method was nearly independent of local image contrast due to the reference registration algorithm. For segmenting high-contrast images (i.e., kidney), the thresholding method provided the best speed (<1 ms) with a satisfying accuracy (Dice=0.95). When the image contrast was low, the VR-TPDS method had the best automatic contour. Results suggest an image quality determination procedure before segmentation and a combination of different

  4. Automatic Depth Extraction from 2D Images Using a Cluster-Based Learning Framework.

    Science.gov (United States)

    Herrera, Jose L; Del-Blanco, Carlos R; Garcia, Narciso

    2018-07-01

    There has been a significant increase in the availability of 3D players and displays in the last years. Nonetheless, the amount of 3D content has not experimented an increment of such magnitude. To alleviate this problem, many algorithms for converting images and videos from 2D to 3D have been proposed. Here, we present an automatic learning-based 2D-3D image conversion approach, based on the key hypothesis that color images with similar structure likely present a similar depth structure. The presented algorithm estimates the depth of a color query image using the prior knowledge provided by a repository of color + depth images. The algorithm clusters this database attending to their structural similarity, and then creates a representative of each color-depth image cluster that will be used as prior depth map. The selection of the appropriate prior depth map corresponding to one given color query image is accomplished by comparing the structural similarity in the color domain between the query image and the database. The comparison is based on a K-Nearest Neighbor framework that uses a learning procedure to build an adaptive combination of image feature descriptors. The best correspondences determine the cluster, and in turn the associated prior depth map. Finally, this prior estimation is enhanced through a segmentation-guided filtering that obtains the final depth map estimation. This approach has been tested using two publicly available databases, and compared with several state-of-the-art algorithms in order to prove its efficiency.

  5. The Structure of Processing Resource Demands in Monitoring Automatic Systems.

    Science.gov (United States)

    1981-01-01

    Attempts at modelling the human failure detection process have continually focused on normative predictions of optimal operator behavior ( Smallwood ...Broadbent’s filter model (Broadbent, 1957), to Treisman’s attenuation model (Treisman, 1964), to Norman’s late selection model ( Norman , 1968), tife concept...survey and a model. Acta Psychologica, 1967, 27, 84-92. Moray, N. Mental workload: Its theory and measurement. New York: Plenum Press, 1979. Li 42 Norman

  6. Fast processing of foreign fiber images by image blocking

    Directory of Open Access Journals (Sweden)

    Yutao Wu

    2014-08-01

    Full Text Available In the textile industry, it is always the case that cotton products are constitutive of many types of foreign fibers which affect the overall quality of cotton products. As the foundation of the foreign fiber automated inspection, image process exerts a critical impact on the process of foreign fiber identification. This paper presents a new approach for the fast processing of foreign fiber images. This approach includes five main steps, image block, image pre-decision, image background extraction, image enhancement and segmentation, and image connection. At first, the captured color images were transformed into gray-scale images