WorldWideScience

Sample records for automatic anatomy segmentation

  1. Anatomy-based automatic detection and segmentation of major vessels in thoracic CTA images

    International Nuclear Information System (INIS)

    Zou Xiaotao; Liang Jianming; Wolf, M.; Salganicoff, M.; Krishnan, A.; Nadich, D.P.

    2007-01-01

    Existing approaches for automated computerized detection of pulmonary embolism (PE) using computed tomography angiography (CTA) usually focus on segmental and sub-segmental emboli. The goal of our current research is to extend our existing approach to automated detection of central PE. In order to detect central emboli, the major vessels must be first identified and segmented automatically. This submission presents an anatomy-based method for automatic computerized detection and segmentation of aortas and main pulmonary arteries in CTA images. (orig.)

  2. Automatic thoracic anatomy segmentation on CT images using hierarchical fuzzy models and registration.

    Science.gov (United States)

    Sun, Kaiqiong; Udupa, Jayaram K; Odhner, Dewey; Tong, Yubing; Zhao, Liming; Torigian, Drew A

    2016-03-01

    In an attempt to overcome several hurdles that exist in organ segmentation approaches, the authors previously described a general automatic anatomy recognition (AAR) methodology for segmenting all major organs in multiple body regions body-wide [J. K. Udupa et al., "Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images," Med. Image Anal. 18(5), 752-771 (2014)]. That approach utilized fuzzy modeling strategies, a hierarchical organization of organs, and divided the segmentation task into a recognition step to localize organs which was then followed by a delineation step to demarcate the boundary of organs. It achieved speed and accuracy without employing image/object registration which is commonly utilized in many reported methods, particularly atlas-based. In this paper, our aim is to study how registration may influence performance of the AAR approach. By tightly coupling the recognition and delineation steps, by performing registration in the hierarchical order of the organs, and through several object-specific refinements, the authors demonstrate that improved accuracy for recognition and delineation can be achieved by judicial use of image/object registration. The presented approach consists of three processes: model building, hierarchical recognition, and delineation. Labeled binary images for each organ are registered and aligned into a 3D fuzzy set representing the fuzzy shape model for the organ. The hierarchical relation and mean location relation between different organs are captured in the model. The gray intensity distributions of the corresponding regions of the organ in the original image are also recorded in the model. Following the hierarchical structure and location relation, the fuzzy shape model of different organs is registered to the given target image to achieve object recognition. A fuzzy connectedness delineation method is then employed to obtain the final segmentation result of organs with seed

  3. 3D automatic anatomy segmentation based on iterative graph-cut-ASM

    International Nuclear Information System (INIS)

    Chen, Xinjian; Bagci, Ulas

    2011-01-01

    Purpose: This paper studies the feasibility of developing an automatic anatomy segmentation (AAS) system in clinical radiology and demonstrates its operation on clinical 3D images. Methods: The AAS system, the authors are developing consists of two main parts: object recognition and object delineation. As for recognition, a hierarchical 3D scale-based multiobject method is used for the multiobject recognition task, which incorporates intensity weighted ball-scale (b-scale) information into the active shape model (ASM). For object delineation, an iterative graph-cut-ASM (IGCASM) algorithm is proposed, which effectively combines the rich statistical shape information embodied in ASM with the globally optimal delineation capability of the GC method. The presented IGCASM algorithm is a 3D generalization of the 2D GC-ASM method that they proposed previously in Chen et al.[Proc. SPIE, 7259, 72590C1-72590C-8 (2009)]. The proposed methods are tested on two datasets comprised of images obtained from 20 patients (10 male and 10 female) of clinical abdominal CT scans, and 11 foot magnetic resonance imaging (MRI) scans. The test is for four organs (liver, left and right kidneys, and spleen) segmentation, five foot bones (calcaneus, tibia, cuboid, talus, and navicular). The recognition and delineation accuracies were evaluated separately. The recognition accuracy was evaluated in terms of translation, rotation, and scale (size) error. The delineation accuracy was evaluated in terms of true and false positive volume fractions (TPVF, FPVF). The efficiency of the delineation method was also evaluated on an Intel Pentium IV PC with a 3.4 GHZ CPU machine. Results: The recognition accuracies in terms of translation, rotation, and scale error over all organs are about 8 mm, 10 deg. and 0.03, and over all foot bones are about 3.5709 mm, 0.35 deg. and 0.025, respectively. The accuracy of delineation over all organs for all subjects as expressed in TPVF and FPVF is 93.01% and 0.22%, and

  4. 3D automatic anatomy segmentation based on iterative graph-cut-ASM.

    Science.gov (United States)

    Chen, Xinjian; Bagci, Ulas

    2011-08-01

    This paper studies the feasibility of developing an automatic anatomy segmentation (AAS) system in clinical radiology and demonstrates its operation on clinical 3D images. The AAS system, the authors are developing consists of two main parts: object recognition and object delineation. As for recognition, a hierarchical 3D scale-based multiobject method is used for the multiobject recognition task, which incorporates intensity weighted ball-scale (b-scale) information into the active shape model (ASM). For object delineation, an iterative graph-cut-ASM (IGCASM) algorithm is proposed, which effectively combines the rich statistical shape information embodied in ASM with the globally optimal delineation capability of the GC method. The presented IGCASM algorithm is a 3D generalization of the 2D GC-ASM method that they proposed previously in Chen et al. [Proc. SPIE, 7259, 72590C1-72590C-8 (2009)]. The proposed methods are tested on two datasets comprised of images obtained from 20 patients (10 male and 10 female) of clinical abdominal CT scans, and 11 foot magnetic resonance imaging (MRI) scans. The test is for four organs (liver, left and right kidneys, and spleen) segmentation, five foot bones (calcaneus, tibia, cuboid, talus, and navicular). The recognition and delineation accuracies were evaluated separately. The recognition accuracy was evaluated in terms of translation, rotation, and scale (size) error. The delineation accuracy was evaluated in terms of true and false positive volume fractions (TPVF, FPVF). The efficiency of the delineation method was also evaluated on an Intel Pentium IV PC with a 3.4 GHZ CPU machine. The recognition accuracies in terms of translation, rotation, and scale error over all organs are about 8 mm, 10 degrees and 0.03, and over all foot bones are about 3.5709 mm, 0.35 degrees and 0.025, respectively. The accuracy of delineation over all organs for all subjects as expressed in TPVF and FPVF is 93.01% and 0.22%, and all foot bones for

  5. Fully automatic segmentation of left ventricular anatomy in 3-D LGE-MRI.

    Science.gov (United States)

    Kurzendorfer, Tanja; Forman, Christoph; Schmidt, Michaela; Tillmanns, Christoph; Maier, Andreas; Brost, Alexander

    2017-07-01

    The current challenge for electrophysiology procedures, targeting the left ventricle, is the localization and qualification of myocardial scar. Late gadolinium enhanced magnetic resonance imaging (LGE-MRI) is the current gold standard to visualize regions of myocardial infarction. Commonly, a stack of 2-D images is acquired of the left ventricle in short-axis orientation. Recently, 3-D LGE-MRI methods were proposed that continuously cover the whole heart with a high resolution within a single acquisition. The acquisition promises an accurate quantification of the myocardium to the extent of myocardial scarring. The major challenge arises in the analysis of the resulting images, as the accurate segmentation of the myocardium is a requirement for a precise scar tissue quantification. In this work, we propose a novel approach for fully automatic left ventricle segmentation in 3-D whole-heart LGE-MRI, to address this limitation. First, a two-step registration is performed to initialize the left ventricle. In the next step, the principal components are computed and a pseudo short axis view of the left ventricle is estimated. The refinement of the endocardium and epicardium is performed in polar space. Prior knowledge for shape and inter-slice smoothness is used during segmentation. The proposed method was evaluated on 30 clinical 3-D LGE-MRI datasets from individual patients obtained at two different clinical sites and were compared to gold standard segmentations of two clinical experts. This comparison resulted in a Dice coefficient of 0.83 for the endocardium and 0.80 for the epicardium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Automatic segmentation of male pelvic anatomy on computed tomography images: a comparison with multiple observers in the context of a multicentre clinical trial

    International Nuclear Information System (INIS)

    Geraghty, John P; Grogan, Garry; Ebert, Martin A

    2013-01-01

    algorithms based on image-registration as in iPlan, it is apparent that agreement between observer and automatic segmentation will be a function of patient-specific image characteristics, particularly for anatomy with poor contrast definition. For this reason, it is suggested that automatic registration based on transformation of a single reference dataset adds a significant systematic bias to the resulting volumes and their use in the context of a multicentre trial should be carefully considered

  7. Automatic Melody Segmentation

    NARCIS (Netherlands)

    Rodríguez López, Marcelo

    2016-01-01

    The work presented in this dissertation investigates music segmentation. In the field of Musicology, segmentation refers to a score analysis technique, whereby notated pieces or passages of these pieces are divided into “units” referred to as sections, periods, phrases, and so on. Segmentation

  8. Automatic segmentation of the colon

    Science.gov (United States)

    Wyatt, Christopher L.; Ge, Yaorong; Vining, David J.

    1999-05-01

    Virtual colonoscopy is a minimally invasive technique that enables detection of colorectal polyps and cancer. Normally, a patient's bowel is prepared with colonic lavage and gas insufflation prior to computed tomography (CT) scanning. An important step for 3D analysis of the image volume is segmentation of the colon. The high-contrast gas/tissue interface that exists in the colon lumen makes segmentation of the majority of the colon relatively easy; however, two factors inhibit automatic segmentation of the entire colon. First, the colon is not the only gas-filled organ in the data volume: lungs, small bowel, and stomach also meet this criteria. User-defined seed points placed in the colon lumen have previously been required to spatially isolate only the colon. Second, portions of the colon lumen may be obstructed by peristalsis, large masses, and/or residual feces. These complicating factors require increased user interaction during the segmentation process to isolate additional colon segments. To automate the segmentation of the colon, we have developed a method to locate seed points and segment the gas-filled lumen with no user supervision. We have also developed an automated approach to improve lumen segmentation by digitally removing residual contrast-enhanced fluid resulting from a new bowel preparation that liquefies and opacifies any residual feces.

  9. Automatic segmentation of psoriasis lesions

    Science.gov (United States)

    Ning, Yang; Shi, Chenbo; Wang, Li; Shu, Chang

    2014-10-01

    The automatic segmentation of psoriatic lesions is widely researched these years. It is an important step in Computer-aid methods of calculating PASI for estimation of lesions. Currently those algorithms can only handle single erythema or only deal with scaling segmentation. In practice, scaling and erythema are often mixed together. In order to get the segmentation of lesions area - this paper proposes an algorithm based on Random forests with color and texture features. The algorithm has three steps. The first step, the polarized light is applied based on the skin's Tyndall-effect in the imaging to eliminate the reflection and Lab color space are used for fitting the human perception. The second step, sliding window and its sub windows are used to get textural feature and color feature. In this step, a feature of image roughness has been defined, so that scaling can be easily separated from normal skin. In the end, Random forests will be used to ensure the generalization ability of the algorithm. This algorithm can give reliable segmentation results even the image has different lighting conditions, skin types. In the data set offered by Union Hospital, more than 90% images can be segmented accurately.

  10. Automatic segmentation of clinical texts.

    Science.gov (United States)

    Apostolova, Emilia; Channin, David S; Demner-Fushman, Dina; Furst, Jacob; Lytinen, Steven; Raicu, Daniela

    2009-01-01

    Clinical narratives, such as radiology and pathology reports, are commonly available in electronic form. However, they are also commonly entered and stored as free text. Knowledge of the structure of clinical narratives is necessary for enhancing the productivity of healthcare departments and facilitating research. This study attempts to automatically segment medical reports into semantic sections. Our goal is to develop a robust and scalable medical report segmentation system requiring minimum user input for efficient retrieval and extraction of information from free-text clinical narratives. Hand-crafted rules were used to automatically identify a high-confidence training set. This automatically created training dataset was later used to develop metrics and an algorithm that determines the semantic structure of the medical reports. A word-vector cosine similarity metric combined with several heuristics was used to classify each report sentence into one of several pre-defined semantic sections. This baseline algorithm achieved 79% accuracy. A Support Vector Machine (SVM) classifier trained on additional formatting and contextual features was able to achieve 90% accuracy. Plans for future work include developing a configurable system that could accommodate various medical report formatting and content standards.

  11. Automatic segmentation of diatom images for classification

    NARCIS (Netherlands)

    Jalba, Andrei C.; Wilkinson, Michael H.F.; Roerdink, Jos B.T.M.

    A general framework for automatic segmentation of diatom images is presented. This segmentation is a critical first step in contour-based methods for automatic identification of diatoms by computerized image analysis. We review existing results, adapt popular segmentation methods to this difficult

  12. Automatic segmentation of vertebrae from radiographs

    DEFF Research Database (Denmark)

    Mysling, Peter; Petersen, Peter Kersten; Nielsen, Mads

    2011-01-01

    Segmentation of vertebral contours is an essential task in the design of automatic tools for vertebral fracture assessment. In this paper, we propose a novel segmentation technique which does not require operator interaction. The proposed technique solves the segmentation problem in a hierarchical...... manner. In a first phase, a coarse estimate of the overall spine alignment and the vertebra locations is computed using a shape model sampling scheme. These samples are used to initialize a second phase of active shape model search, under a nonlinear model of vertebra appearance. The search...... is constrained by a conditional shape model, based on the variability of the coarse spine location estimates. The technique is evaluated on a data set of manually annotated lumbar radiographs. The results compare favorably to the previous work in automatic vertebra segmentation, in terms of both segmentation...

  13. Automatic anatomy recognition via multiobject oriented active shape models.

    Science.gov (United States)

    Chen, Xinjian; Udupa, Jayaram K; Alavi, Abass; Torigian, Drew A

    2010-12-01

    This paper studies the feasibility of developing an automatic anatomy recognition (AAR) system in clinical radiology and demonstrates its operation on clinical 2D images. The anatomy recognition method described here consists of two main components: (a) multiobject generalization of OASM and (b) object recognition strategies. The OASM algorithm is generalized to multiple objects by including a model for each object and assigning a cost structure specific to each object in the spirit of live wire. The delineation of multiobject boundaries is done in MOASM via a three level dynamic programming algorithm, wherein the first level is at pixel level which aims to find optimal oriented boundary segments between successive landmarks, the second level is at landmark level which aims to find optimal location for the landmarks, and the third level is at the object level which aims to find optimal arrangement of object boundaries over all objects. The object recognition strategy attempts to find that pose vector (consisting of translation, rotation, and scale component) for the multiobject model that yields the smallest total boundary cost for all objects. The delineation and recognition accuracies were evaluated separately utilizing routine clinical chest CT, abdominal CT, and foot MRI data sets. The delineation accuracy was evaluated in terms of true and false positive volume fractions (TPVF and FPVF). The recognition accuracy was assessed (1) in terms of the size of the space of the pose vectors for the model assembly that yielded high delineation accuracy, (2) as a function of the number of objects and objects' distribution and size in the model, (3) in terms of the interdependence between delineation and recognition, and (4) in terms of the closeness of the optimum recognition result to the global optimum. When multiple objects are included in the model, the delineation accuracy in terms of TPVF can be improved to 97%-98% with a low FPVF of 0.1%-0.2%. Typically, a

  14. An Automatic Indirect Immunofluorescence Cell Segmentation System

    Directory of Open Access Journals (Sweden)

    Yung-Kuan Chan

    2014-01-01

    Full Text Available Indirect immunofluorescence (IIF with HEp-2 cells has been used for the detection of antinuclear autoantibodies (ANA in systemic autoimmune diseases. The ANA testing allows us to scan a broad range of autoantibody entities and to describe them by distinct fluorescence patterns. Automatic inspection for fluorescence patterns in an IIF image can assist physicians, without relevant experience, in making correct diagnosis. How to segment the cells from an IIF image is essential in developing an automatic inspection system for ANA testing. This paper focuses on the cell detection and segmentation; an efficient method is proposed for automatically detecting the cells with fluorescence pattern in an IIF image. Cell culture is a process in which cells grow under control. Cell counting technology plays an important role in measuring the cell density in a culture tank. Moreover, assessing medium suitability, determining population doubling times, and monitoring cell growth in cultures all require a means of quantifying cell population. The proposed method also can be used to count the cells from an image taken under a fluorescence microscope.

  15. Exploitation of petiole, nodal segment, bulbil and tuber anatomy for ...

    African Journals Online (AJOL)

    All slides were examined under the light microscope at x100 and x400 magnifications and photos were taken using digital camera mounted on Zenith Ultra-500 A light microscope. Petiole and nodal segments anatomy showed six and nine vascular bundles, respectively in D. hirtiflora, whereas eight and eleven bundles ...

  16. Automatic Segmentation of Ultrasound Tomography Image

    Directory of Open Access Journals (Sweden)

    Shibin Wu

    2017-01-01

    Full Text Available Ultrasound tomography (UST image segmentation is fundamental in breast density estimation, medicine response analysis, and anatomical change quantification. Existing methods are time consuming and require massive manual interaction. To address these issues, an automatic algorithm based on GrabCut (AUGC is proposed in this paper. The presented method designs automated GrabCut initialization for incomplete labeling and is sped up with multicore parallel programming. To verify performance, AUGC is applied to segment thirty-two in vivo UST volumetric images. The performance of AUGC is validated with breast overlapping metrics (Dice coefficient (D, Jaccard (J, and False positive (FP and time cost (TC. Furthermore, AUGC is compared to other methods, including Confidence Connected Region Growing (CCRG, watershed, and Active Contour based Curve Delineation (ACCD. Experimental results indicate that AUGC achieves the highest accuracy (D=0.9275 and J=0.8660 and FP=0.0077 and takes on average about 4 seconds to process a volumetric image. It was said that AUGC benefits large-scale studies by using UST images for breast cancer screening and pathological quantification.

  17. Automatic segmentation and disease classification using cardiac cine MR images

    NARCIS (Netherlands)

    Wolterink, Jelmer M.; Leiner, Tim; Viergever, Max A.; Išgum, Ivana

    2018-01-01

    Segmentation of the heart in cardiac cine MR is clinically used to quantify cardiac function. We propose a fully automatic method for segmentation and disease classification using cardiac cine MR images. A convolutional neural network (CNN) was designed to simultaneously segment the left ventricle

  18. Automatic anatomical segmentation of the liver by separation planes

    OpenAIRE

    Boltcheva , Dobrina; Passat , Nicolas; Agnus , Vincent; Jacob-Da Col , Marie-Andrée; Ronse , Christian; Soler , Luc

    2006-01-01

    International audience; Surgical planning in oncological liver surgery is based on the location of the 8 anatomical segments according to Couinaud’s definition and tumors inside these structures. The detection of the boundaries between the segments is then the first step of the preoperative planning. The proposed method, devoted to binary images of livers segmented from CT-scans, has been designed to delineate these segments. It automatically detects a set of landmarks using a priori anatomic...

  19. AUTOMATIC MULTILEVEL IMAGE SEGMENTATION BASED ON FUZZY REASONING

    Directory of Open Access Journals (Sweden)

    Liang Tang

    2011-05-01

    Full Text Available An automatic multilevel image segmentation method based on sup-star fuzzy reasoning (SSFR is presented. Using the well-known sup-star fuzzy reasoning technique, the proposed algorithm combines the global statistical information implied in the histogram with the local information represented by the fuzzy sets of gray-levels, and aggregates all the gray-levels into several classes characterized by the local maximum values of the histogram. The presented method has the merits of determining the number of the segmentation classes automatically, and avoiding to calculating thresholds of segmentation. Emulating and real image segmentation experiments demonstrate that the SSFR is effective.

  20. Color image Segmentation using automatic thresholding techniques

    International Nuclear Information System (INIS)

    Harrabi, R.; Ben Braiek, E.

    2011-01-01

    In this paper, entropy and between-class variance based thresholding methods for color images segmentation are studied. The maximization of the between-class variance (MVI) and the entropy (ME) have been used as a criterion functions to determine an optimal threshold to segment images into nearly homogenous regions. Segmentation results from the two methods are validated and the segmentation sensitivity for the test data available is evaluated, and a comparative study between these methods in different color spaces is presented. The experimental results demonstrate the superiority of the MVI method for color image segmentation.

  1. Automatic lung segmentation in the presence of alveolar collapse

    Directory of Open Access Journals (Sweden)

    Noshadi Areg

    2017-09-01

    Full Text Available Lung ventilation and perfusion analyses using chest imaging methods require a correct segmentation of the lung to offer anatomical landmarks for the physiological data. An automatic segmentation approach simplifies and accelerates the analysis. However, the segmentation of the lungs has shown to be difficult if collapsed areas are present that tend to share similar gray values with surrounding non-pulmonary tissue. Our goal was to develop an automatic segmentation algorithm that is able to approximate dorsal lung boundaries even if alveolar collapse is present in the dependent lung areas adjacent to the pleura. Computed tomography data acquired in five supine pigs with injured lungs were used for this purpose. First, healthy lung tissue was segmented using a standard 3D region growing algorithm. Further, the bones in the chest wall surrounding the lungs were segmented to find the contact points of ribs and pleura. Artificial boundaries of the dorsal lung were set by spline interpolation through these contact points. Segmentation masks of the entire lung including the collapsed regions were created by combining the splines with the segmentation masks of the healthy lung tissue through multiple morphological operations. The automatically segmented images were then evaluated by comparing them to manual segmentations and determining the Dice similarity coefficients (DSC as a similarity measure. The developed method was able to accurately segment the lungs including the collapsed regions (DSCs over 0.96.

  2. Automatic Segmentation of Vessels in In-Vivo Ultrasound Scans

    DEFF Research Database (Denmark)

    Tamimi-Sarnikowski, Philip; Brink-Kjær, Andreas; Moshavegh, Ramin

    2017-01-01

    was evaluated empirically and applied to a dataset of in-vivo 1770 images recorded from 8 healthy subjects. The segmentation results were compared to manual delineation performed by two experienced users. The results showed a sensitivity and specificity of 90.41 ± 11.2 % and 97.93 ± 5.7 % (mean ± standard......Ultrasound has become highly popular to monitor atherosclerosis, by scanning the carotid artery. The screening involves measuring the thickness of the vessel wall and diameter of the lumen. An automatic segmentation of the vessel lumen, can enable the determination of lumen diameter. This paper...... presents a fully automatic segmentation algorithm, for robustly segmenting the vessel lumen in longitudinal B-mode ultrasound images. The automatic segmentation is performed using a combination of B-mode and power Doppler images. The proposed algorithm includes a series of preprocessing steps, and performs...

  3. Segmenting articular cartilage automatically using a voxel classification approach

    DEFF Research Database (Denmark)

    Folkesson, Jenny; Dam, Erik B; Olsen, Ole F

    2007-01-01

    We present a fully automatic method for articular cartilage segmentation from magnetic resonance imaging (MRI) which we use as the foundation of a quantitative cartilage assessment. We evaluate our method by comparisons to manual segmentations by a radiologist and by examining the interscan repro...

  4. A comparison of accurate automatic hippocampal segmentation methods.

    Science.gov (United States)

    Zandifar, Azar; Fonov, Vladimir; Coupé, Pierrick; Pruessner, Jens; Collins, D Louis

    2017-07-15

    The hippocampus is one of the first brain structures affected by Alzheimer's disease (AD). While many automatic methods for hippocampal segmentation exist, few studies have compared them on the same data. In this study, we compare four fully automated hippocampal segmentation methods in terms of their conformity with manual segmentation and their ability to be used as an AD biomarker in clinical settings. We also apply error correction to the four automatic segmentation methods, and complete a comprehensive validation to investigate differences between the methods. The effect size and classification performance is measured for AD versus normal control (NC) groups and for stable mild cognitive impairment (sMCI) versus progressive mild cognitive impairment (pMCI) groups. Our study shows that the nonlinear patch-based segmentation method with error correction is the most accurate automatic segmentation method and yields the most conformity with manual segmentation (κ=0.894). The largest effect size between AD versus NC and sMCI versus pMCI is produced by FreeSurfer with error correction. We further show that, using only hippocampal volume, age, and sex as features, the area under the receiver operating characteristic curve reaches up to 0.8813 for AD versus NC and 0.6451 for sMCI versus pMCI. However, the automatic segmentation methods are not significantly different in their performance. Copyright © 2017. Published by Elsevier Inc.

  5. Edge Segment-Based Automatic Video Surveillance

    Directory of Open Access Journals (Sweden)

    Oksam Chae

    2007-12-01

    Full Text Available This paper presents a moving-object segmentation algorithm using edge information as segment. The proposed method is developed to address challenges due to variations in ambient lighting and background contents. We investigated the suitability of the proposed algorithm in comparison with the traditional-intensity-based as well as edge-pixel-based detection methods. In our method, edges are extracted from video frames and are represented as segments using an efficiently designed edge class. This representation helps to obtain the geometric information of edge in the case of edge matching and moving-object segmentation; and facilitates incorporating knowledge into edge segment during background modeling and motion tracking. An efficient approach for background initialization and robust method of edge matching is presented, to effectively reduce the risk of false alarm due to illumination change and camera motion while maintaining the high sensitivity to the presence of moving object. Detected moving edges are utilized along with watershed algorithm for extracting video object plane (VOP with more accurate boundary. Experiment results with real image sequence reflect that the proposed method is suitable for automated video surveillance applications in various monitoring systems.

  6. Fully automatic cervical vertebrae segmentation framework for X-ray images.

    Science.gov (United States)

    Al Arif, S M Masudur Rahman; Knapp, Karen; Slabaugh, Greg

    2018-04-01

    The cervical spine is a highly flexible anatomy and therefore vulnerable to injuries. Unfortunately, a large number of injuries in lateral cervical X-ray images remain undiagnosed due to human errors. Computer-aided injury detection has the potential to reduce the risk of misdiagnosis. Towards building an automatic injury detection system, in this paper, we propose a deep learning-based fully automatic framework for segmentation of cervical vertebrae in X-ray images. The framework first localizes the spinal region in the image using a deep fully convolutional neural network. Then vertebra centers are localized using a novel deep probabilistic spatial regression network. Finally, a novel shape-aware deep segmentation network is used to segment the vertebrae in the image. The framework can take an X-ray image and produce a vertebrae segmentation result without any manual intervention. Each block of the fully automatic framework has been trained on a set of 124 X-ray images and tested on another 172 images, all collected from real-life hospital emergency rooms. A Dice similarity coefficient of 0.84 and a shape error of 1.69 mm have been achieved. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Automatic Segmentation of Dermoscopic Images by Iterative Classification

    Directory of Open Access Journals (Sweden)

    Maciel Zortea

    2011-01-01

    Full Text Available Accurate detection of the borders of skin lesions is a vital first step for computer aided diagnostic systems. This paper presents a novel automatic approach to segmentation of skin lesions that is particularly suitable for analysis of dermoscopic images. Assumptions about the image acquisition, in particular, the approximate location and color, are used to derive an automatic rule to select small seed regions, likely to correspond to samples of skin and the lesion of interest. The seed regions are used as initial training samples, and the lesion segmentation problem is treated as binary classification problem. An iterative hybrid classification strategy, based on a weighted combination of estimated posteriors of a linear and quadratic classifier, is used to update both the automatically selected training samples and the segmentation, increasing reliability and final accuracy, especially for those challenging images, where the contrast between the background skin and lesion is low.

  8. Automatic Prosodic Segmentation by F0 Clustering Using Superpositional Modeling.

    OpenAIRE

    Nakai, Mitsuru; Harald, Singer; Sagisaka, Yoshinori; Shimodaira, Hiroshi

    1995-01-01

    In this paper, we propose an automatic method for detecting accent phrase boundaries in Japanese continuous speech by using F0 information. In the training phase, hand labeled accent patterns are parameterized according to a superpositional model proposed by Fujisaki, and assigned to some clusters by a clustering method, in which accent templates are calculated as centroid of each cluster. In the segmentation phase, automatic N-best extraction of boundaries is performe...

  9. Validation of semi-automatic segmentation of the left atrium

    Science.gov (United States)

    Rettmann, M. E.; Holmes, D. R., III; Camp, J. J.; Packer, D. L.; Robb, R. A.

    2008-03-01

    Catheter ablation therapy has become increasingly popular for the treatment of left atrial fibrillation. The effect of this treatment on left atrial morphology, however, has not yet been completely quantified. Initial studies have indicated a decrease in left atrial size with a concomitant decrease in pulmonary vein diameter. In order to effectively study if catheter based therapies affect left atrial geometry, robust segmentations with minimal user interaction are required. In this work, we validate a method to semi-automatically segment the left atrium from computed-tomography scans. The first step of the technique utilizes seeded region growing to extract the entire blood pool including the four chambers of the heart, the pulmonary veins, aorta, superior vena cava, inferior vena cava, and other surrounding structures. Next, the left atrium and pulmonary veins are separated from the rest of the blood pool using an algorithm that searches for thin connections between user defined points in the volumetric data or on a surface rendering. Finally, pulmonary veins are separated from the left atrium using a three dimensional tracing tool. A single user segmented three datasets three times using both the semi-automatic technique as well as manual tracing. The user interaction time for the semi-automatic technique was approximately forty-five minutes per dataset and the manual tracing required between four and eight hours per dataset depending on the number of slices. A truth model was generated using a simple voting scheme on the repeated manual segmentations. A second user segmented each of the nine datasets using the semi-automatic technique only. Several metrics were computed to assess the agreement between the semi-automatic technique and the truth model including percent differences in left atrial volume, DICE overlap, and mean distance between the boundaries of the segmented left atria. Overall, the semi-automatic approach was demonstrated to be repeatable within

  10. Evaluation of manual and automatic segmentation of the mouse heart from CINE MR images

    NARCIS (Netherlands)

    Heijman, Edwin; Aben, Jean-Paul; Penners, Cindy; Niessen, Petra; Guillaume, René; van Eys, Guillaume; Nicolay, Klaas; Strijkers, Gustav J.

    2008-01-01

    To compare global functional parameters determined from a stack of cinematographic MR images of mouse heart by a manual segmentation and an automatic segmentation algorithm. The manual and automatic segmentation results of 22 mouse hearts were compared. The automatic segmentation was based on

  11. Automatic labeling and segmentation of vertebrae in CT images

    Science.gov (United States)

    Rasoulian, Abtin; Rohling, Robert N.; Abolmaesumi, Purang

    2014-03-01

    Labeling and segmentation of the spinal column from CT images is a pre-processing step for a range of image- guided interventions. State-of-the art techniques have focused either on image feature extraction or template matching for labeling of the vertebrae followed by segmentation of each vertebra. Recently, statistical multi- object models have been introduced to extract common statistical characteristics among several anatomies. In particular, we have created models for segmentation of the lumbar spine which are robust, accurate, and computationally tractable. In this paper, we reconstruct a statistical multi-vertebrae pose+shape model and utilize it in a novel framework for labeling and segmentation of the vertebra in a CT image. We validate our technique in terms of accuracy of the labeling and segmentation of CT images acquired from 56 subjects. The method correctly labels all vertebrae in 70% of patients and is only one level off for the remaining 30%. The mean distance error achieved for the segmentation is 2.1 +/- 0.7 mm.

  12. Deformable meshes for medical image segmentation accurate automatic segmentation of anatomical structures

    CERN Document Server

    Kainmueller, Dagmar

    2014-01-01

    ? Segmentation of anatomical structures in medical image data is an essential task in clinical practice. Dagmar Kainmueller introduces methods for accurate fully automatic segmentation of anatomical structures in 3D medical image data. The author's core methodological contribution is a novel deformation model that overcomes limitations of state-of-the-art Deformable Surface approaches, hence allowing for accurate segmentation of tip- and ridge-shaped features of anatomical structures. As for practical contributions, she proposes application-specific segmentation pipelines for a range of anatom

  13. Gap-free segmentation of vascular networks with automatic image processing pipeline.

    Science.gov (United States)

    Hsu, Chih-Yang; Ghaffari, Mahsa; Alaraj, Ali; Flannery, Michael; Zhou, Xiaohong Joe; Linninger, Andreas

    2017-03-01

    Current image processing techniques capture large vessels reliably but often fail to preserve connectivity in bifurcations and small vessels. Imaging artifacts and noise can create gaps and discontinuity of intensity that hinders segmentation of vascular trees. However, topological analysis of vascular trees require proper connectivity without gaps, loops or dangling segments. Proper tree connectivity is also important for high quality rendering of surface meshes for scientific visualization or 3D printing. We present a fully automated vessel enhancement pipeline with automated parameter settings for vessel enhancement of tree-like structures from customary imaging sources, including 3D rotational angiography, magnetic resonance angiography, magnetic resonance venography, and computed tomography angiography. The output of the filter pipeline is a vessel-enhanced image which is ideal for generating anatomical consistent network representations of the cerebral angioarchitecture for further topological or statistical analysis. The filter pipeline combined with computational modeling can potentially improve computer-aided diagnosis of cerebrovascular diseases by delivering biometrics and anatomy of the vasculature. It may serve as the first step in fully automatic epidemiological analysis of large clinical datasets. The automatic analysis would enable rigorous statistical comparison of biometrics in subject-specific vascular trees. The robust and accurate image segmentation using a validated filter pipeline would also eliminate operator dependency that has been observed in manual segmentation. Moreover, manual segmentation is time prohibitive given that vascular trees have more than thousands of segments and bifurcations so that interactive segmentation consumes excessive human resources. Subject-specific trees are a first step toward patient-specific hemodynamic simulations for assessing treatment outcomes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A Review on Automatic Mammographic Density and Parenchymal Segmentation

    Science.gov (United States)

    He, Wenda; Juette, Arne; Denton, Erika R. E.; Oliver, Arnau

    2015-01-01

    Breast cancer is the most frequently diagnosed cancer in women. However, the exact cause(s) of breast cancer still remains unknown. Early detection, precise identification of women at risk, and application of appropriate disease prevention measures are by far the most effective way to tackle breast cancer. There are more than 70 common genetic susceptibility factors included in the current non-image-based risk prediction models (e.g., the Gail and the Tyrer-Cuzick models). Image-based risk factors, such as mammographic densities and parenchymal patterns, have been established as biomarkers but have not been fully incorporated in the risk prediction models used for risk stratification in screening and/or measuring responsiveness to preventive approaches. Within computer aided mammography, automatic mammographic tissue segmentation methods have been developed for estimation of breast tissue composition to facilitate mammographic risk assessment. This paper presents a comprehensive review of automatic mammographic tissue segmentation methodologies developed over the past two decades and the evidence for risk assessment/density classification using segmentation. The aim of this review is to analyse how engineering advances have progressed and the impact automatic mammographic tissue segmentation has in a clinical environment, as well as to understand the current research gaps with respect to the incorporation of image-based risk factors in non-image-based risk prediction models. PMID:26171249

  15. Automatic ultrasound image enhancement for 2D semi-automatic breast-lesion segmentation

    Science.gov (United States)

    Lu, Kongkuo; Hall, Christopher S.

    2014-03-01

    Breast cancer is the fastest growing cancer, accounting for 29%, of new cases in 2012, and second leading cause of cancer death among women in the United States and worldwide. Ultrasound (US) has been used as an indispensable tool for breast cancer detection/diagnosis and treatment. In computer-aided assistance, lesion segmentation is a preliminary but vital step, but the task is quite challenging in US images, due to imaging artifacts that complicate detection and measurement of the suspect lesions. The lesions usually present with poor boundary features and vary significantly in size, shape, and intensity distribution between cases. Automatic methods are highly application dependent while manual tracing methods are extremely time consuming and have a great deal of intra- and inter- observer variability. Semi-automatic approaches are designed to counterbalance the advantage and drawbacks of the automatic and manual methods. However, considerable user interaction might be necessary to ensure reasonable segmentation for a wide range of lesions. This work proposes an automatic enhancement approach to improve the boundary searching ability of the live wire method to reduce necessary user interaction while keeping the segmentation performance. Based on the results of segmentation of 50 2D breast lesions in US images, less user interaction is required to achieve desired accuracy, i.e. live-wire segmentation.

  16. Automatic aortic root segmentation in CTA whole-body dataset

    Science.gov (United States)

    Gao, Xinpei; Kitslaar, Pieter H.; Scholte, Arthur J. H. A.; Lelieveldt, Boudewijn P. F.; Dijkstra, Jouke; Reiber, Johan H. C.

    2016-03-01

    Trans-catheter aortic valve replacement (TAVR) is an evolving technique for patients with serious aortic stenosis disease. Typically, in this application a CTA data set is obtained of the patient's arterial system from the subclavian artery to the femoral arteries, to evaluate the quality of the vascular access route and analyze the aortic root to determine if and which prosthesis should be used. In this paper, we concentrate on the automated segmentation of the aortic root. The purpose of this study was to automatically segment the aortic root in computed tomography angiography (CTA) datasets to support TAVR procedures. The method in this study includes 4 major steps. First, the patient's cardiac CTA image was resampled to reduce the computation time. Next, the cardiac CTA image was segmented using an atlas-based approach. The most similar atlas was selected from a total of 8 atlases based on its image similarity to the input CTA image. Third, the aortic root segmentation from the previous step was transferred to the patient's whole-body CTA image by affine registration and refined in the fourth step using a deformable subdivision surface model fitting procedure based on image intensity. The pipeline was applied to 20 patients. The ground truth was created by an analyst who semi-automatically corrected the contours of the automatic method, where necessary. The average Dice similarity index between the segmentations of the automatic method and the ground truth was found to be 0.965±0.024. In conclusion, the current results are very promising.

  17. Automatic segmentation of relevant structures in DCE MR mammograms

    Science.gov (United States)

    Koenig, Matthias; Laue, Hendrik; Boehler, Tobias; Peitgen, Heinz-Otto

    2007-03-01

    The automatic segmentation of relevant structures such as skin edge, chest wall, or nipple in dynamic contrast enhanced MR imaging (DCE MRI) of the breast provides additional information for computer aided diagnosis (CAD) systems. Automatic reporting using BI-RADS criteria benefits of information about location of those structures. Lesion positions can be automatically described relatively to such reference structures for reporting purposes. Furthermore, this information can assist data reduction for computation expensive preprocessing such as registration, or for visualization of only the segments of current interest. In this paper, a novel automatic method for determining the air-breast boundary resp. skin edge, for approximation of the chest wall, and locating of the nipples is presented. The method consists of several steps which are built on top of each other. Automatic threshold computation leads to the air-breast boundary which is then analyzed to determine the location of the nipple. Finally, results of both steps are starting point for approximation of the chest wall. The proposed process was evaluated on a large data set of DCE MRI recorded by T1 sequences and yielded reasonable results in all cases.

  18. Semi-automatic liver volume segmentation in computed tomography images

    International Nuclear Information System (INIS)

    Gerardo Tibamoso; Andrea Rueda; Eduardo Romero

    2010-01-01

    Liver volume is a significant parameter in surgery for tumor extraction, transplants, and regeneration treatments. Generally, the volume estimation is obtained from manual segmentation performed by specialists, resulting in a tedious process with low reproducibility. In this work a semi-automatic method for the liver volume segmentation in CT images is presented. The method consist in manually superimpose a triangular surface on the images, and use a movement equation associated to each vertex to deform the surface and delimit the liver boundaries. Surface dynamics depend on intensity and gradient information, and neighboring relationships between vertices, until a fixed number of iterations is reached. Comparison between the obtained results and reference segmentation in 20 CT scans, show the surface adaptability to the shape and the diffuse boundaries of the liver, two of the principal segmentation problems.

  19. FACTS: Fully Automatic CT Segmentation of a Hip Joint.

    Science.gov (United States)

    Chu, Chengwen; Chen, Cheng; Liu, Li; Zheng, Guoyan

    2015-05-01

    Extraction of surface models of a hip joint from CT data is a pre-requisite step for computer assisted diagnosis and planning (CADP) of periacetabular osteotomy (PAO). Most of existing CADP systems are based on manual segmentation, which is time-consuming and hard to achieve reproducible results. In this paper, we present a Fully Automatic CT Segmentation (FACTS) approach to simultaneously extract both pelvic and femoral models. Our approach works by combining fast random forest (RF) regression based landmark detection, multi-atlas based segmentation, with articulated statistical shape model (aSSM) based fitting. The two fundamental contributions of our approach are: (1) an improved fast Gaussian transform (IFGT) is used within the RF regression framework for a fast and accurate landmark detection, which then allows for a fully automatic initialization of the multi-atlas based segmentation; and (2) aSSM based fitting is used to preserve hip joint structure and to avoid penetration between the pelvic and femoral models. Taking manual segmentation as the ground truth, we evaluated the present approach on 30 hip CT images (60 hips) with a 6-fold cross validation. When the present approach was compared to manual segmentation, a mean segmentation accuracy of 0.40, 0.36, and 0.36 mm was found for the pelvis, the left proximal femur, and the right proximal femur, respectively. When the models derived from both segmentations were used to compute the PAO diagnosis parameters, a difference of 2.0 ± 1.5°, 2.1 ± 1.6°, and 3.5 ± 2.3% were found for anteversion, inclination, and acetabular coverage, respectively. The achieved accuracy is regarded as clinically accurate enough for our target applications.

  20. Automatic multi-organ segmentation using learning-based segmentation and level set optimization.

    Science.gov (United States)

    Kohlberger, Timo; Sofka, Michal; Zhang, Jingdan; Birkbeck, Neil; Wetzl, Jens; Kaftan, Jens; Declerck, Jérôme; Zhou, S Kevin

    2011-01-01

    We present a novel generic segmentation system for the fully automatic multi-organ segmentation from CT medical images. Thereby we combine the advantages of learning-based approaches on point cloud-based shape representation, such a speed, robustness, point correspondences, with those of PDE-optimization-based level set approaches, such as high accuracy and the straightforward prevention of segment overlaps. In a benchmark on 10-100 annotated datasets for the liver, the lungs, and the kidneys we show that the proposed system yields segmentation accuracies of 1.17-2.89 mm average surface errors. Thereby the level set segmentation (which is initialized by the learning-based segmentations) contributes with an 20%-40% increase in accuracy.

  1. Automatic Image Segmentation Using Active Contours with Univariate Marginal Distribution

    Directory of Open Access Journals (Sweden)

    I. Cruz-Aceves

    2013-01-01

    Full Text Available This paper presents a novel automatic image segmentation method based on the theory of active contour models and estimation of distribution algorithms. The proposed method uses the univariate marginal distribution model to infer statistical dependencies between the control points on different active contours. These contours have been generated through an alignment process of reference shape priors, in order to increase the exploration and exploitation capabilities regarding different interactive segmentation techniques. This proposed method is applied in the segmentation of the hollow core in microscopic images of photonic crystal fibers and it is also used to segment the human heart and ventricular areas from datasets of computed tomography and magnetic resonance images, respectively. Moreover, to evaluate the performance of the medical image segmentations compared to regions outlined by experts, a set of similarity measures has been adopted. The experimental results suggest that the proposed image segmentation method outperforms the traditional active contour model and the interactive Tseng method in terms of segmentation accuracy and stability.

  2. Robust, accurate and fast automatic segmentation of the spinal cord.

    Science.gov (United States)

    De Leener, Benjamin; Kadoury, Samuel; Cohen-Adad, Julien

    2014-09-01

    Spinal cord segmentation provides measures of atrophy and facilitates group analysis via inter-subject correspondence. Automatizing this procedure enables studies with large throughput and minimizes user bias. Although several automatic segmentation methods exist, they are often restricted in terms of image contrast and field-of-view. This paper presents a new automatic segmentation method (PropSeg) optimized for robustness, accuracy and speed. The algorithm is based on the propagation of a deformable model and is divided into three parts: firstly, an initialization step detects the spinal cord position and orientation using a circular Hough transform on multiple axial slices rostral and caudal to the starting plane and builds an initial elliptical tubular mesh. Secondly, a low-resolution deformable model is propagated along the spinal cord. To deal with highly variable contrast levels between the spinal cord and the cerebrospinal fluid, the deformation is coupled with a local contrast-to-noise adaptation at each iteration. Thirdly, a refinement process and a global deformation are applied on the propagated mesh to provide an accurate segmentation of the spinal cord. Validation was performed in 15 healthy subjects and two patients with spinal cord injury, using T1- and T2-weighted images of the entire spinal cord and on multiecho T2*-weighted images. Our method was compared against manual segmentation and against an active surface method. Results show high precision for all the MR sequences. Dice coefficients were 0.9 for the T1- and T2-weighted cohorts and 0.86 for the T2*-weighted images. The proposed method runs in less than 1min on a normal computer and can be used to quantify morphological features such as cross-sectional area along the whole spinal cord. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Morphometric Atlas Selection for Automatic Brachial Plexus Segmentation

    Energy Technology Data Exchange (ETDEWEB)

    Van de Velde, Joris, E-mail: joris.vandevelde@ugent.be [Department of Anatomy, Ghent University, Ghent (Belgium); Department of Radiotherapy, Ghent University, Ghent (Belgium); Wouters, Johan [Department of Anatomy, Ghent University, Ghent (Belgium); Vercauteren, Tom; De Gersem, Werner; Duprez, Fréderic; De Neve, Wilfried [Department of Radiotherapy, Ghent University, Ghent (Belgium); Van Hoof, Tom [Department of Anatomy, Ghent University, Ghent (Belgium)

    2015-07-01

    Purpose: The purpose of this study was to determine the effects of atlas selection based on different morphometric parameters, on the accuracy of automatic brachial plexus (BP) segmentation for radiation therapy planning. The segmentation accuracy was measured by comparing all of the generated automatic segmentations with anatomically validated gold standard atlases developed using cadavers. Methods and Materials: Twelve cadaver computed tomography (CT) atlases (3 males, 9 females; mean age: 73 years) were included in the study. One atlas was selected to serve as a patient, and the other 11 atlases were registered separately onto this “patient” using deformable image registration. This procedure was repeated for every atlas as a patient. Next, the Dice and Jaccard similarity indices and inclusion index were calculated for every registered BP with the original gold standard BP. In parallel, differences in several morphometric parameters that may influence the BP segmentation accuracy were measured for the different atlases. Specific brachial plexus-related CT-visible bony points were used to define the morphometric parameters. Subsequently, correlations between the similarity indices and morphometric parameters were calculated. Results: A clear negative correlation between difference in protraction-retraction distance and the similarity indices was observed (mean Pearson correlation coefficient = −0.546). All of the other investigated Pearson correlation coefficients were weak. Conclusions: Differences in the shoulder protraction-retraction position between the atlas and the patient during planning CT influence the BP autosegmentation accuracy. A greater difference in the protraction-retraction distance between the atlas and the patient reduces the accuracy of the BP automatic segmentation result.

  4. Automatic Story Segmentation for TV News Video Using Multiple Modalities

    Directory of Open Access Journals (Sweden)

    Émilie Dumont

    2012-01-01

    Full Text Available While video content is often stored in rather large files or broadcasted in continuous streams, users are often interested in retrieving only a particular passage on a topic of interest to them. It is, therefore, necessary to split video documents or streams into shorter segments corresponding to appropriate retrieval units. We propose here a method for the automatic segmentation of TV news videos into stories. A-multiple-descriptor based segmentation approach is proposed. The selected multimodal features are complementary and give good insights about story boundaries. Once extracted, these features are expanded with a local temporal context and combined by an early fusion process. The story boundaries are then predicted using machine learning techniques. We investigate the system by experiments conducted using TRECVID 2003 data and protocol of the story boundary detection task, and we show that the proposed approach outperforms the state-of-the-art methods while requiring a very small amount of manual annotation.

  5. Automatic speech signal segmentation based on the innovation adaptive filter

    Directory of Open Access Journals (Sweden)

    Makowski Ryszard

    2014-06-01

    Full Text Available Speech segmentation is an essential stage in designing automatic speech recognition systems and one can find several algorithms proposed in the literature. It is a difficult problem, as speech is immensely variable. The aim of the authors’ studies was to design an algorithm that could be employed at the stage of automatic speech recognition. This would make it possible to avoid some problems related to speech signal parametrization. Posing the problem in such a way requires the algorithm to be capable of working in real time. The only such algorithm was proposed by Tyagi et al., (2006, and it is a modified version of Brandt’s algorithm. The article presents a new algorithm for unsupervised automatic speech signal segmentation. It performs segmentation without access to information about the phonetic content of the utterances, relying exclusively on second-order statistics of a speech signal. The starting point for the proposed method is time-varying Schur coefficients of an innovation adaptive filter. The Schur algorithm is known to be fast, precise, stable and capable of rapidly tracking changes in second order signal statistics. A transfer from one phoneme to another in the speech signal always indicates a change in signal statistics caused by vocal track changes. In order to allow for the properties of human hearing, detection of inter-phoneme boundaries is performed based on statistics defined on the mel spectrum determined from the reflection coefficients. The paper presents the structure of the algorithm, defines its properties, lists parameter values, describes detection efficiency results, and compares them with those for another algorithm. The obtained segmentation results, are satisfactory.

  6. Image Segmentation Method Using Thresholds Automatically Determined from Picture Contents

    Directory of Open Access Journals (Sweden)

    Yuan Been Chen

    2009-01-01

    Full Text Available Image segmentation has become an indispensable task in many image and video applications. This work develops an image segmentation method based on the modified edge-following scheme where different thresholds are automatically determined according to areas with varied contents in a picture, thus yielding suitable segmentation results in different areas. First, the iterative threshold selection technique is modified to calculate the initial-point threshold of the whole image or a particular block. Second, the quad-tree decomposition that starts from the whole image employs gray-level gradient characteristics of the currently-processed block to decide further decomposition or not. After the quad-tree decomposition, the initial-point threshold in each decomposed block is adopted to determine initial points. Additionally, the contour threshold is determined based on the histogram of gradients in each decomposed block. Particularly, contour thresholds could eliminate inappropriate contours to increase the accuracy of the search and minimize the required searching time. Finally, the edge-following method is modified and then conducted based on initial points and contour thresholds to find contours precisely and rapidly. By using the Berkeley segmentation data set with realistic images, the proposed method is demonstrated to take the least computational time for achieving fairly good segmentation performance in various image types.

  7. CPMC: Automatic Object Segmentation Using Constrained Parametric Min-Cuts.

    Science.gov (United States)

    Carreira, João; Sminchisescu, Cristian

    2012-07-01

    We present a novel framework to generate and rank plausible hypotheses for the spatial extent of objects in images using bottom-up computational processes and mid-level selection cues. The object hypotheses are represented as figure-ground segmentations, and are extracted automatically, without prior knowledge of the properties of individual object classes, by solving a sequence of Constrained Parametric Min-Cut problems (CPMC) on a regular image grid. In a subsequent step, we learn to rank the corresponding segments by training a continuous model to predict how likely they are to exhibit real-world regularities (expressed as putative overlap with ground truth) based on their mid-level region properties, then diversify the estimated overlap score using maximum marginal relevance measures. We show that this algorithm significantly outperforms the state of the art for low-level segmentation in the VOC 2009 and 2010 data sets. In our companion papers [1], [2], we show that the algorithm can be used, successfully, in a segmentation-based visual object category recognition pipeline. This architecture ranked first in the VOC2009 and VOC2010 image segmentation and labeling challenges.

  8. Automatic 3D lesion segmentation on breast ultrasound images

    Science.gov (United States)

    Kuo, Hsien-Chi; Giger, Maryellen L.; Reiser, Ingrid; Drukker, Karen; Edwards, Alexandra; Sennett, Charlene A.

    2013-02-01

    Automatically acquired and reconstructed 3D breast ultrasound images allow radiologists to detect and evaluate breast lesions in 3D. However, assessing potential cancers in 3D ultrasound can be difficult and time consuming. In this study, we evaluate a 3D lesion segmentation method, which we had previously developed for breast CT, and investigate its robustness on lesions on 3D breast ultrasound images. Our dataset includes 98 3D breast ultrasound images obtained on an ABUS system from 55 patients containing 64 cancers. Cancers depicted on 54 US images had been clinically interpreted as negative on screening mammography and 44 had been clinically visible on mammography. All were from women with breast density BI-RADS 3 or 4. Tumor centers and margins were indicated and outlined by radiologists. Initial RGI-eroded contours were automatically calculated and served as input to the active contour segmentation algorithm yielding the final lesion contour. Tumor segmentation was evaluated by determining the overlap ratio (OR) between computer-determined and manually-drawn outlines. Resulting average overlap ratios on coronal, transverse, and sagittal views were 0.60 +/- 0.17, 0.57 +/- 0.18, and 0.58 +/- 0.17, respectively. All OR values were significantly higher the 0.4, which is deemed "acceptable". Within the groups of mammogram-negative and mammogram-positive cancers, the overlap ratios were 0.63 +/- 0.17 and 0.56 +/- 0.16, respectively, on the coronal views; with similar results on the other views. The segmentation performance was not found to be correlated to tumor size. Results indicate robustness of the 3D lesion segmentation technique in multi-modality 3D breast imaging.

  9. An Automatic Learning-Based Framework for Robust Nucleus Segmentation.

    Science.gov (United States)

    Xing, Fuyong; Xie, Yuanpu; Yang, Lin

    2016-02-01

    Computer-aided image analysis of histopathology specimens could potentially provide support for early detection and improved characterization of diseases such as brain tumor, pancreatic neuroendocrine tumor (NET), and breast cancer. Automated nucleus segmentation is a prerequisite for various quantitative analyses including automatic morphological feature computation. However, it remains to be a challenging problem due to the complex nature of histopathology images. In this paper, we propose a learning-based framework for robust and automatic nucleus segmentation with shape preservation. Given a nucleus image, it begins with a deep convolutional neural network (CNN) model to generate a probability map, on which an iterative region merging approach is performed for shape initializations. Next, a novel segmentation algorithm is exploited to separate individual nuclei combining a robust selection-based sparse shape model and a local repulsive deformable model. One of the significant benefits of the proposed framework is that it is applicable to different staining histopathology images. Due to the feature learning characteristic of the deep CNN and the high level shape prior modeling, the proposed method is general enough to perform well across multiple scenarios. We have tested the proposed algorithm on three large-scale pathology image datasets using a range of different tissue and stain preparations, and the comparative experiments with recent state of the arts demonstrate the superior performance of the proposed approach.

  10. Automatic anatomy recognition in post-tonsillectomy MR images of obese children with OSAS

    Science.gov (United States)

    Tong, Yubing; Udupa, Jayaram K.; Odhner, Dewey; Sin, Sanghun; Arens, Raanan

    2015-03-01

    Automatic Anatomy Recognition (AAR) is a recently developed approach for the automatic whole body wide organ segmentation. We previously tested that methodology on image cases with some pathology where the organs were not distorted significantly. In this paper, we present an advancement of AAR to handle organs which may have been modified or resected by surgical intervention. We focus on MRI of the neck in pediatric Obstructive Sleep Apnea Syndrome (OSAS). The proposed method consists of an AAR step followed by support vector machine techniques to detect the presence/absence of organs. The AAR step employs a hierarchical organization of the organs for model building. For each organ, a fuzzy model over a population is built. The model of the body region is then described in terms of the fuzzy models and a host of other descriptors which include parent to offspring relationship estimated over the population. Organs are recognized following the organ hierarchy by using an optimal threshold based search. The SVM step subsequently checks for evidence of the presence of organs. Experimental results show that AAR techniques can be combined with machine learning strategies within the AAR recognition framework for good performance in recognizing missing organs, in our case missing tonsils in post-tonsillectomy images as well as in simulating tonsillectomy images. The previous recognition performance is maintained achieving an organ localization accuracy of within 1 voxel when the organ is actually not removed. To our knowledge, no methods have been reported to date for handling significantly deformed or missing organs, especially in neck MRI.

  11. Automatic segmentation of equine larynx for diagnosis of laryngeal hemiplegia

    Science.gov (United States)

    Salehin, Md. Musfequs; Zheng, Lihong; Gao, Junbin

    2013-10-01

    This paper presents an automatic segmentation method for delineation of the clinically significant contours of the equine larynx from an endoscopic image. These contours are used to diagnose the most common disease of horse larynx laryngeal hemiplegia. In this study, hierarchal structured contour map is obtained by the state-of-the-art segmentation algorithm, gPb-OWT-UCM. The conic-shaped outer boundary of equine larynx is extracted based on Pascal's theorem. Lastly, Hough Transformation method is applied to detect lines related to the edges of vocal folds. The experimental results show that the proposed approach has better performance in extracting the targeted contours of equine larynx than the results of using only the gPb-OWT-UCM method.

  12. Automatic airline baggage counting using 3D image segmentation

    Science.gov (United States)

    Yin, Deyu; Gao, Qingji; Luo, Qijun

    2017-06-01

    The baggage number needs to be checked automatically during baggage self-check-in. A fast airline baggage counting method is proposed in this paper using image segmentation based on height map which is projected by scanned baggage 3D point cloud. There is height drop in actual edge of baggage so that it can be detected by the edge detection operator. And then closed edge chains are formed from edge lines that is linked by morphological processing. Finally, the number of connected regions segmented by closed chains is taken as the baggage number. Multi-bag experiment that is performed on the condition of different placement modes proves the validity of the method.

  13. Automatic segmentation of maxillofacial cysts in cone beam CT images.

    Science.gov (United States)

    Abdolali, Fatemeh; Zoroofi, Reza Aghaeizadeh; Otake, Yoshito; Sato, Yoshinobu

    2016-05-01

    Accurate segmentation of cysts and tumors is an essential step for diagnosis, monitoring and planning therapeutic intervention. This task is usually done manually, however manual identification and segmentation is tedious. In this paper, an automatic method based on asymmetry analysis is proposed which is general enough to segment various types of jaw cysts. The key observation underlying this approach is that normal head and face structure is roughly symmetric with respect to midsagittal plane: the left part and the right part can be divided equally by an axis of symmetry. Cysts and tumors typically disturb this symmetry. The proposed approach consists of three main steps as follows: At first, diffusion filtering is used for preprocessing and symmetric axis is detected. Then, each image is divided into two parts. In the second stage, free form deformation (FFD) is used to correct slight displacement of corresponding pixels of the left part and a reflected copy of the right part. In the final stage, intensity differences are analyzed and a number of constraints are enforced to remove false positive regions. The proposed method has been validated on 97 Cone Beam Computed Tomography (CBCT) sets containing various jaw cysts which were collected from various image acquisition centers. Validation is performed using three similarity indicators (Jaccard index, Dice's coefficient and Hausdorff distance). The mean Dice's coefficient of 0.83, 0.87 and 0.80 is achieved for Radicular, Dentigerous and KCOT classes, respectively. For most of the experiments done, we achieved high true positive (TP). This means that a large number of cyst pixels are correctly classified. Quantitative results of automatic segmentation show that the proposed method is more effective than one of the recent methods in the literature. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Automatic comic page image understanding based on edge segment analysis

    Science.gov (United States)

    Liu, Dong; Wang, Yongtao; Tang, Zhi; Li, Luyuan; Gao, Liangcai

    2013-12-01

    Comic page image understanding aims to analyse the layout of the comic page images by detecting the storyboards and identifying the reading order automatically. It is the key technique to produce the digital comic documents suitable for reading on mobile devices. In this paper, we propose a novel comic page image understanding method based on edge segment analysis. First, we propose an efficient edge point chaining method to extract Canny edge segments (i.e., contiguous chains of Canny edge points) from the input comic page image; second, we propose a top-down scheme to detect line segments within each obtained edge segment; third, we develop a novel method to detect the storyboards by selecting the border lines and further identify the reading order of these storyboards. The proposed method is performed on a data set consisting of 2000 comic page images from ten printed comic series. The experimental results demonstrate that the proposed method achieves satisfactory results on different comics and outperforms the existing methods.

  15. Automatic segmentation and classification of multiple sclerosis in multichannel MRI.

    Science.gov (United States)

    Akselrod-Ballin, Ayelet; Galun, Meirav; Gomori, John Moshe; Filippi, Massimo; Valsasina, Paola; Basri, Ronen; Brandt, Achi

    2009-10-01

    We introduce a multiscale approach that combines segmentation with classification to detect abnormal brain structures in medical imagery, and demonstrate its utility in automatically detecting multiple sclerosis (MS) lesions in 3-D multichannel magnetic resonance (MR) images. Our method uses segmentation to obtain a hierarchical decomposition of a multichannel, anisotropic MR scans. It then produces a rich set of features describing the segments in terms of intensity, shape, location, neighborhood relations, and anatomical context. These features are then fed into a decision forest classifier, trained with data labeled by experts, enabling the detection of lesions at all scales. Unlike common approaches that use voxel-by-voxel analysis, our system can utilize regional properties that are often important for characterizing abnormal brain structures. We provide experiments on two types of real MR images: a multichannel proton-density-, T2-, and T1-weighted dataset of 25 MS patients and a single-channel fluid attenuated inversion recovery (FLAIR) dataset of 16 MS patients. Comparing our results with lesion delineation by a human expert and with previously extensively validated results shows the promise of the approach.

  16. Deep residual networks for automatic segmentation of laparoscopic videos of the liver

    Science.gov (United States)

    Gibson, Eli; Robu, Maria R.; Thompson, Stephen; Edwards, P. Eddie; Schneider, Crispin; Gurusamy, Kurinchi; Davidson, Brian; Hawkes, David J.; Barratt, Dean C.; Clarkson, Matthew J.

    2017-03-01

    Motivation: For primary and metastatic liver cancer patients undergoing liver resection, a laparoscopic approach can reduce recovery times and morbidity while offering equivalent curative results; however, only about 10% of tumours reside in anatomical locations that are currently accessible for laparoscopic resection. Augmenting laparoscopic video with registered vascular anatomical models from pre-procedure imaging could support using laparoscopy in a wider population. Segmentation of liver tissue on laparoscopic video supports the robust registration of anatomical liver models by filtering out false anatomical correspondences between pre-procedure and intra-procedure images. In this paper, we present a convolutional neural network (CNN) approach to liver segmentation in laparoscopic liver procedure videos. Method: We defined a CNN architecture comprising fully-convolutional deep residual networks with multi-resolution loss functions. The CNN was trained in a leave-one-patient-out cross-validation on 2050 video frames from 6 liver resections and 7 laparoscopic staging procedures, and evaluated using the Dice score. Results: The CNN yielded segmentations with Dice scores >=0.95 for the majority of images; however, the inter-patient variability in median Dice score was substantial. Four failure modes were identified from low scoring segmentations: minimal visible liver tissue, inter-patient variability in liver appearance, automatic exposure correction, and pathological liver tissue that mimics non-liver tissue appearance. Conclusion: CNNs offer a feasible approach for accurately segmenting liver from other anatomy on laparoscopic video, but additional data or computational advances are necessary to address challenges due to the high inter-patient variability in liver appearance.

  17. Automatic metastatic brain tumor segmentation for stereotactic radiosurgery applications

    Science.gov (United States)

    Liu, Yan; Stojadinovic, Strahinja; Hrycushko, Brian; Wardak, Zabi; Lu, Weiguo; Yan, Yulong; Jiang, Steve B.; Timmerman, Robert; Abdulrahman, Ramzi; Nedzi, Lucien; Gu, Xuejun

    2016-12-01

    The objective of this study is to develop an automatic segmentation strategy for efficient and accurate metastatic brain tumor delineation on contrast-enhanced T1-weighted (T1c) magnetic resonance images (MRI) for stereotactic radiosurgery (SRS) applications. The proposed four-step automatic brain metastases segmentation strategy is comprised of pre-processing, initial contouring, contour evolution, and contour triage. First, T1c brain images are preprocessed to remove the skull. Second, an initial tumor contour is created using a multi-scaled adaptive threshold-based bounding box and a super-voxel clustering technique. Third, the initial contours are evolved to the tumor boundary using a regional active contour technique. Fourth, all detected false-positive contours are removed with geometric characterization. The segmentation process was validated on a realistic virtual phantom containing Gaussian or Rician noise. For each type of noise distribution, five different noise levels were tested. Twenty-one cases from the multimodal brain tumor image segmentation (BRATS) challenge dataset and fifteen clinical metastases cases were also included in validation. Segmentation performance was quantified by the Dice coefficient (DC), normalized mutual information (NMI), structural similarity (SSIM), Hausdorff distance (HD), mean value of surface-to-surface distance (MSSD) and standard deviation of surface-to-surface distance (SDSSD). In the numerical phantom study, the evaluation yielded a DC of 0.98  ±  0.01, an NMI of 0.97  ±  0.01, an SSIM of 0.999  ±  0.001, an HD of 2.2  ±  0.8 mm, an MSSD of 0.1  ±  0.1 mm, and an SDSSD of 0.3  ±  0.1 mm. The validation on the BRATS data resulted in a DC of 0.89  ±  0.08, which outperform the BRATS challenge algorithms. Evaluation on clinical datasets gave a DC of 0.86  ±  0.09, an NMI of 0.80  ±  0.11, an SSIM of 0.999  ±  0.001, an HD of 8

  18. A dorsolateral prefrontal cortex semi-automatic segmenter

    Science.gov (United States)

    Al-Hakim, Ramsey; Fallon, James; Nain, Delphine; Melonakos, John; Tannenbaum, Allen

    2006-03-01

    Structural, functional, and clinical studies in schizophrenia have, for several decades, consistently implicated dysfunction of the prefrontal cortex in the etiology of the disease. Functional and structural imaging studies, combined with clinical, psychometric, and genetic analyses in schizophrenia have confirmed the key roles played by the prefrontal cortex and closely linked "prefrontal system" structures such as the striatum, amygdala, mediodorsal thalamus, substantia nigra-ventral tegmental area, and anterior cingulate cortices. The nodal structure of the prefrontal system circuit is the dorsal lateral prefrontal cortex (DLPFC), or Brodmann area 46, which also appears to be the most commonly studied and cited brain area with respect to schizophrenia. 1, 2, 3, 4 In 1986, Weinberger et. al. tied cerebral blood flow in the DLPFC to schizophrenia.1 In 2001, Perlstein et. al. demonstrated that DLPFC activation is essential for working memory tasks commonly deficient in schizophrenia. 2 More recently, groups have linked morphological changes due to gene deletion and increased DLPFC glutamate concentration to schizophrenia. 3, 4 Despite the experimental and clinical focus on the DLPFC in structural and functional imaging, the variability of the location of this area, differences in opinion on exactly what constitutes DLPFC, and inherent difficulties in segmenting this highly convoluted cortical region have contributed to a lack of widely used standards for manual or semi-automated segmentation programs. Given these implications, we developed a semi-automatic tool to segment the DLPFC from brain MRI scans in a reproducible way to conduct further morphological and statistical studies. The segmenter is based on expert neuroanatomist rules (Fallon-Kindermann rules), inspired by cytoarchitectonic data and reconstructions presented by Rajkowska and Goldman-Rakic. 5 It is semi-automated to provide essential user interactivity. We present our results and provide details on

  19. Embryonic Heart Morphogenesis from Confocal Microscopy Imaging and Automatic Segmentation

    Directory of Open Access Journals (Sweden)

    Hongda Mao

    2013-01-01

    Full Text Available Embryonic heart morphogenesis (EHM is a complex and dynamic process where the heart transforms from a single tube into a four-chambered pump. This process is of great biological and clinical interest but is still poorly understood for two main reasons. On the one hand, the existing imaging modalities for investigating EHM suffered from either limited penetration depth or limited spatial resolution. On the other hand, current works typically adopted manual segmentation, which was tedious, subjective, and time consuming considering the complexity of developing heart geometry and the large size of images. In this paper, we propose to utilize confocal microscopy imaging with tissue optical immersion clearing technique to image the heart at different stages of development for EHM study. The imaging method is able to produce high spatial resolution images and achieve large penetration depth at the same time. Furthermore, we propose a novel convex active contour model for automatic image segmentation. The model has the ability to deal with intensity fall-off in depth which is characterized by confocal microscopy images. We acquired the images of embryonic quail hearts from day 6 to day 14 of incubation for EHM study. The experimental results were promising and provided us with an insight view of early heart growth pattern and also paved the road for data-driven heart growth modeling.

  20. Automatic optic disc segmentation based on image brightness and contrast

    Science.gov (United States)

    Lu, Shijian; Liu, Jiang; Lim, Joo Hwee; Zhang, Zhuo; Tan, Ngan Meng; Wong, Wing Kee; Li, Huiqi; Wong, Tien Yin

    2010-03-01

    Untreated glaucoma leads to permanent damage of the optic nerve and resultant visual field loss, which can progress to blindness. As glaucoma often produces additional pathological cupping of the optic disc (OD), cupdisc- ratio is one measure that is widely used for glaucoma diagnosis. This paper presents an OD localization method that automatically segments the OD and so can be applied for the cup-disc-ratio based glaucoma diagnosis. The proposed OD segmentation method is based on the observations that the OD is normally much brighter and at the same time have a smoother texture characteristics compared with other regions within retinal images. Given a retinal image we first capture the ODs smooth texture characteristic by a contrast image that is constructed based on the local maximum and minimum pixel lightness within a small neighborhood window. The centre of the OD can then be determined according to the density of the candidate OD pixels that are detected by retinal image pixels of the lowest contrast. After that, an OD region is approximately determined by a pair of morphological operations and the OD boundary is finally determined by an ellipse that is fitted by the convex hull of the detected OD region. Experiments over 71 retinal images of different qualities show that the OD region overlapping reaches up to 90.37% according to the OD boundary ellipses determined by our proposed method and the one manually plotted by an ophthalmologist.

  1. Automatic correction of rotating ultrasound bio microscopy acquisitions for the segmentation of the eye anterior segment.

    Science.gov (United States)

    Maindron, C; Le Loir, M; Cochener, B; Lamard, M

    2013-01-01

    We have developed a rotating 3D probe prototype in order to acquire the anterior segment of the eye in three dimensions. The acquisition accuracy has to be sufficient to allow for the use of automatic segmentation of the provided data, and thus generate a 3D structure of the eye, for which it could be easier to obtain measurements than in 2D images. We have created an image post processing scheme in order to compensate for vibrations and eye movements during acquisition that are associated with increased noise. These tools have been applied to 92 volume datasets acquired on 21 patients in pre-operative conditions. Acquisition noise was reduced by 97% in specific conditions with respect to data acquired without correction.

  2. JUST (Java User Segmentation Tool) for semi-automatic segmentation of tomographic maps.

    Science.gov (United States)

    Salvi, Eleonora; Cantele, Francesca; Zampighi, Lorenzo; Fain, Nick; Pigino, Gaia; Zampighi, Guido; Lanzavecchia, Salvatore

    2008-03-01

    We are presenting a program for interactive segmentation of tomographic maps, based on objective criteria so as to yield reproducible results. The strategy starts with the automatic segmentation of the entire volume with the watershed algorithm in 3D. The watershed regions are clustered successively by supervised classification, allowing the segmentation of known organelles, such as membranes, vesicles and microtubules. These organelles are processed with topological models and input parameters manually derived from the tomograms. After known organelles are extracted from the volume, all other watershed regions can be organized into homogeneous assemblies on the basis of their densities. To complete the process, all voxels in the volume are assigned either to the background or individual structures, which can then be extracted for visualization with any rendering technique. The user interface of the program is written in Java, and computational routines are written in C. For some operations, involving the visualization of the tomogram, we refer to existing software, either open or commercial. While the program runs, a history file is created, that allows all parameters and other data to be saved for the purposes of comparison or exchange. Initially, the program was developed for the segmentation of synapses, and organelles belonging to these structures have thus far been the principal targets modeled with JUST. Since each organelle is clustered independently from the rest of the volume, however, the program can accommodate new models of different organelles as well as tomograms of other types of preparations of tissue, such as cytoskeletal components in vitreous ice.

  3. Segmentation of liver and spleen based on computational anatomy models.

    Science.gov (United States)

    Dong, Chunhua; Chen, Yen-Wei; Foruzan, Amir Hossein; Lin, Lanfen; Han, Xian-Hua; Tateyama, Tomoko; Wu, Xing; Xu, Gang; Jiang, Huiyan

    2015-12-01

    Accurate segmentation of abdominal organs is a key step in developing a computer-aided diagnosis (CAD) system. Probabilistic atlas based on human anatomical structure, used as a priori information in a Bayes framework, has been widely used for organ segmentation. How to register the probabilistic atlas to the patient volume is the main challenge. Additionally, there is the disadvantage that the conventional probabilistic atlas may cause a bias toward the specific patient study because of the single reference. Taking these into consideration, a template matching framework based on an iterative probabilistic atlas for liver and spleen segmentation is presented in this paper. First, a bounding box based on human anatomical localization, which refers to the statistical geometric location of the organ, is detected for the candidate organ. Then, the probabilistic atlas is used as a template to find the organ in this bounding box by using template matching technology. We applied our method to 60 datasets including normal and pathological cases. For the liver, the Dice/Tanimoto volume overlaps were 0.930/0.870, the root-mean-squared error (RMSE) was 2.906mm. For the spleen, quantification led to 0.922 Dice/0.857 Tanimoto overlaps, 1.992mm RMSE. The algorithm is robust in segmenting normal and abnormal spleens and livers, such as the presence of tumors and large morphological changes. Comparing our method with conventional and recently developed atlas-based methods, our results show an improvement in the segmentation accuracy for multi-organs (p<0.00001). Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Automatic bladder segmentation on CBCT for multiple plan ART of bladder cancer using a patient-specific bladder model.

    Science.gov (United States)

    Chai, Xiangfei; van Herk, Marcel; Betgen, Anja; Hulshof, Maarten; Bel, Arjan

    2012-06-21

    In multiple plan adaptive radiotherapy (ART) strategies of bladder cancer, a library of plans corresponding to different bladder volumes is created based on images acquired in early treatment sessions. Subsequently, the plan for the smallest PTV safely covering the bladder on cone-beam CT (CBCT) is selected as the plan of the day. The aim of this study is to develop an automatic bladder segmentation approach suitable for CBCT scans and test its ability to select the appropriate plan from the library of plans for such an ART procedure. Twenty-three bladder cancer patients with a planning CT and on average 11.6 CBCT scans were included in our study. For each patient, all CBCT scans were matched to the planning CT on bony anatomy. Bladder contours were manually delineated for each planning CT (for model building) and CBCT (for model building and validation). The automatic segmentation method consisted of two steps. A patient-specific bladder deformation model was built from the training data set of each patient (the planning CT and the first five CBCT scans). Then, the model was applied to automatically segment bladders in the validation data of the same patient (the remaining CBCT scans). Principal component analysis (PCA) was applied to the training data to model patient-specific bladder deformation patterns. The number of PCA modes for each patient was chosen such that the bladder shapes in the training set could be represented by such number of PCA modes with less than 0.1 cm mean residual error. The automatic segmentation started from the bladder shape of a reference CBCT, which was adjusted by changing the weight of each PCA mode. As a result, the segmentation contour was deformed consistently with the training set to fit the bladder in the validation image. A cost function was defined by the absolute difference between the directional gradient field of reference CBCT sampled on the corresponding bladder contour and the directional gradient field of validation

  5. Automatic bladder segmentation on CBCT for multiple plan ART of bladder cancer using a patient-specific bladder model

    International Nuclear Information System (INIS)

    Chai Xiangfei; Hulshof, Maarten; Bel, Arjan; Van Herk, Marcel; Betgen, Anja

    2012-01-01

    In multiple plan adaptive radiotherapy (ART) strategies of bladder cancer, a library of plans corresponding to different bladder volumes is created based on images acquired in early treatment sessions. Subsequently, the plan for the smallest PTV safely covering the bladder on cone-beam CT (CBCT) is selected as the plan of the day. The aim of this study is to develop an automatic bladder segmentation approach suitable for CBCT scans and test its ability to select the appropriate plan from the library of plans for such an ART procedure. Twenty-three bladder cancer patients with a planning CT and on average 11.6 CBCT scans were included in our study. For each patient, all CBCT scans were matched to the planning CT on bony anatomy. Bladder contours were manually delineated for each planning CT (for model building) and CBCT (for model building and validation). The automatic segmentation method consisted of two steps. A patient-specific bladder deformation model was built from the training data set of each patient (the planning CT and the first five CBCT scans). Then, the model was applied to automatically segment bladders in the validation data of the same patient (the remaining CBCT scans). Principal component analysis (PCA) was applied to the training data to model patient-specific bladder deformation patterns. The number of PCA modes for each patient was chosen such that the bladder shapes in the training set could be represented by such number of PCA modes with less than 0.1 cm mean residual error. The automatic segmentation started from the bladder shape of a reference CBCT, which was adjusted by changing the weight of each PCA mode. As a result, the segmentation contour was deformed consistently with the training set to fit the bladder in the validation image. A cost function was defined by the absolute difference between the directional gradient field of reference CBCT sampled on the corresponding bladder contour and the directional gradient field of validation

  6. Color Image Segmentation Based on Different Color Space Models Using Automatic GrabCut

    OpenAIRE

    Khattab, Dina; Ebied, Hala Mousher; Hussein, Ashraf Saad; Tolba, Mohamed Fahmy

    2014-01-01

    This paper presents a comparative study using different color spaces to evaluate the performance of color image segmentation using the automatic GrabCut technique. GrabCut is considered as one of the semiautomatic image segmentation techniques, since it requires user interaction for the initialization of the segmentation process. The automation of the GrabCut technique is proposed as a modification of the original semiautomatic one in order to eliminate the user interaction. The automatic Gra...

  7. User Interaction in Semi-Automatic Segmentation of Organs at Risk: a Case Study in Radiotherapy

    NARCIS (Netherlands)

    A. Ramkumar (Anjana); J. Dolz (Jose); H.A. Kirisli (Hortense); S. Adebahr (Sonja); T. Schimek-Jasch (Tanja); U. Nestle (Ursula); L. Massoptier (Laurent); E. Varga (Edit); P.J. Stappers (P.); W.J. Niessen (Wiro); Y. Song (Yu)

    2016-01-01

    textabstractAccurate segmentation of organs at risk is an important step in radiotherapy planning. Manual segmentation being a tedious procedure and prone to inter- and intra-observer variability, there is a growing interest in automated segmentation methods. However, automatic methods frequently

  8. User Interaction in Semi-Automatic Segmentation of Organs at Risk : A Case Study in Radiotherapy

    NARCIS (Netherlands)

    Ramkumar, A.; Dolz, J.; Kirisli, H.A.; Adebahr, S.; Schimek-Jasch, T.; Nestle, U.; Massoptier, L.; Varga, E.; Stappers, P.J.; Niessen, W.J.; Song, Y.

    2015-01-01

    Accurate segmentation of organs at risk is an important step in radiotherapy planning. Manual segmentation being a tedious procedure and prone to inter- and intra-observer variability, there is a growing interest in automated segmentation methods. However, automatic methods frequently fail to

  9. Automatic segmentation of the puborectalis muscle in 3D transperineal ultrasound.

    Science.gov (United States)

    van den Noort, Frieda; Grob, Anique T M; Slump, Cornelis H; van der Vaart, Carl H; van Stralen, Marijn

    2017-10-11

    The introduction of 3D analysis of the puborectalis muscle, for diagnostic purposes, into daily practice is hindered by the need for appropriate training of the observers. Automatic 3D segmentation of the puborectalis muscle in 3D transperineal ultrasound may aid to its adaption in clinical practice. A manual 3D segmentation protocol was developed to segment the puborectalis muscle. The data of 20 women, in their first trimester of pregnancy, was used to validate the reproducibility of this protocol. For automatic segmentation, active appearance models of the puborectalis muscle were developed. Those models were trained using manual segmentation data of 50 women. The performance of both manual and automatic segmentation was analyzed by measuring the overlap and distance between the segmentations. Also, the interclass correlation coefficients and their 95% confidence intervals were determined for mean echogenicity and volume of the puborectalis muscle. The ICC values of mean echogenicity (0.968-0.991) and volume (0.626-0.910) are good to very good for both automatic and manual segmentation. The results of overlap and distance for manual segmentation are as expected, showing only few pixels (2-3) mismatch on average and a reasonable overlap. Based on overlap and distance 5 mismatches in automatic segmentation were detected, resulting in an automatic segmentation a success rate of 90%. In conclusion, this study presents a reliable manual and automatic 3D segmentation of the puborectalis muscle. This will facilitate future investigation of the puborectalis muscle. It also allows for reliable measurements of clinically potentially valuable parameters like mean echogenicity. This article is protected by copyright. All rights reserved.

  10. A contextual image segmentation system using a priori information for automatic data classification in nuclear physics

    International Nuclear Information System (INIS)

    Benkirane, A.; Auger, G.; Chbihi, A.; Bloyet, D.; Plagnol, E.

    1994-01-01

    This paper presents an original approach to solve an automatic data classification problem by means of image processing techniques. The classification is achieved using image segmentation techniques for extracting the meaningful classes. Two types of information are merged for this purpose: the information contained in experimental images and a priori information derived from underlying physics (and adapted to image segmentation problem). This data fusion is widely used at different stages of the segmentation process. This approach yields interesting results in terms of segmentation performances, even in very noisy cases. Satisfactory classification results are obtained in cases where more ''classical'' automatic data classification methods fail. (authors). 25 refs., 14 figs., 1 append

  11. Application of a semi-automatic cartilage segmentation method for biomechanical modeling of the knee joint.

    Science.gov (United States)

    Liukkonen, Mimmi K; Mononen, Mika E; Tanska, Petri; Saarakkala, Simo; Nieminen, Miika T; Korhonen, Rami K

    2017-10-01

    Manual segmentation of articular cartilage from knee joint 3D magnetic resonance images (MRI) is a time consuming and laborious task. Thus, automatic methods are needed for faster and reproducible segmentations. In the present study, we developed a semi-automatic segmentation method based on radial intensity profiles to generate 3D geometries of knee joint cartilage which were then used in computational biomechanical models of the knee joint. Six healthy volunteers were imaged with a 3T MRI device and their knee cartilages were segmented both manually and semi-automatically. The values of cartilage thicknesses and volumes produced by these two methods were compared. Furthermore, the influences of possible geometrical differences on cartilage stresses and strains in the knee were evaluated with finite element modeling. The semi-automatic segmentation and 3D geometry construction of one knee joint (menisci, femoral and tibial cartilages) was approximately two times faster than with manual segmentation. Differences in cartilage thicknesses, volumes, contact pressures, stresses, and strains between segmentation methods in femoral and tibial cartilage were mostly insignificant (p > 0.05) and random, i.e. there were no systematic differences between the methods. In conclusion, the devised semi-automatic segmentation method is a quick and accurate way to determine cartilage geometries; it may become a valuable tool for biomechanical modeling applications with large patient groups.

  12. Segmentation of kidney using C-V model and anatomy priors

    Science.gov (United States)

    Lu, Jinghua; Chen, Jie; Zhang, Juan; Yang, Wenjia

    2007-12-01

    This paper presents an approach for kidney segmentation on abdominal CT images as the first step of a virtual reality surgery system. Segmentation for medical images is often challenging because of the objects' complicated anatomical structures, various gray levels, and unclear edges. A coarse to fine approach has been applied in the kidney segmentation using Chan-Vese model (C-V model) and anatomy prior knowledge. In pre-processing stage, the candidate kidney regions are located. Then C-V model formulated by level set method is applied in these smaller ROI, which can reduce the calculation complexity to a certain extent. At last, after some mathematical morphology procedures, the specified kidney structures have been extracted interactively with prior knowledge. The satisfying results on abdominal CT series show that the proposed approach keeps all the advantages of C-V model and overcome its disadvantages.

  13. Automatic renal segmentation for MR urography using 3D-GrabCut and random forests.

    Science.gov (United States)

    Yoruk, Umit; Hargreaves, Brian A; Vasanawala, Shreyas S

    2018-03-01

    To introduce and evaluate a fully automated renal segmentation technique for glomerular filtration rate (GFR) assessment in children. An image segmentation method based on iterative graph cuts (GrabCut) was modified to work on time-resolved 3D dynamic contrast-enhanced MRI data sets. A random forest classifier was trained to further segment the renal tissue into cortex, medulla, and the collecting system. The algorithm was tested on 26 subjects and the segmentation results were compared to the manually drawn segmentation maps using the F1-score metric. A two-compartment model was used to estimate the GFR of each subject using both automatically and manually generated segmentation maps. Segmentation maps generated automatically showed high similarity to the manually drawn maps for the whole-kidney (F1 = 0.93) and renal cortex (F1 = 0.86). GFR estimations using whole-kidney segmentation maps from the automatic method were highly correlated (Spearman's ρ = 0.99) to the GFR values obtained from manual maps. The mean GFR estimation error of the automatic method was 2.98 ± 0.66% with an average segmentation time of 45 s per patient. The automatic segmentation method performs as well as the manual segmentation for GFR estimation and reduces the segmentation time from several hours to 45 s. Magn Reson Med 79:1696-1707, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. Automatic segmentation of phase-correlated CT scans through nonrigid image registration using geometrically regularized free-form deformation.

    Science.gov (United States)

    Shekhar, Raj; Lei, Peng; Castro-Pareja, Carlos R; Plishker, William L; D'Souza, Warren D

    2007-07-01

    Conventional radiotherapy is planned using free-breathing computed tomography (CT), ignoring the motion and deformation of the anatomy from respiration. New breath-hold-synchronized, gated, and four-dimensional (4D) CT acquisition strategies are enabling radiotherapy planning utilizing a set of CT scans belonging to different phases of the breathing cycle. Such 4D treatment planning relies on the availability of tumor and organ contours in all phases. The current practice of manual segmentation is impractical for 4D CT, because it is time consuming and tedious. A viable solution is registration-based segmentation, through which contours provided by an expert for a particular phase are propagated to all other phases while accounting for phase-to-phase motion and anatomical deformation. Deformable image registration is central to this task, and a free-form deformation-based nonrigid image registration algorithm will be presented. Compared with the original algorithm, this version uses novel, computationally simpler geometric constraints to preserve the topology of the dense control-point grid used to represent free-form deformation and prevent tissue fold-over. Using mean squared difference as an image similarity criterion, the inhale phase is registered to the exhale phase of lung CT scans of five patients and of characteristically low-contrast abdominal CT scans of four patients. In addition, using expert contours for the inhale phase, the corresponding contours were automatically generated for the exhale phase. The accuracy of the segmentation (and hence deformable image registration) was judged by comparing automatically segmented contours with expert contours traced directly in the exhale phase scan using three metrics: volume overlap index, root mean square distance, and Hausdorff distance. The accuracy of the segmentation (in terms of radial distance mismatch) was approximately 2 mm in the thorax and 3 mm in the abdomen, which compares favorably to the

  15. Interactive vs. automatic ultrasound image segmentation methods for staging hepatic lipidosis.

    NARCIS (Netherlands)

    Weijers, G.; Starke, A.; Haudum, A.; Thijssen, J.M.; Rehage, J.; Korte, C.L. de

    2010-01-01

    The aim of this study was to test the hypothesis that automatic segmentation of vessels in ultrasound (US) images can produce similar or better results in grading fatty livers than interactive segmentation. A study was performed in postpartum dairy cows (N=151), as an animal model of human fatty

  16. Automatic segmentation of the prostate on CT images using deep learning and multi-atlas fusion

    Science.gov (United States)

    Ma, Ling; Guo, Rongrong; Zhang, Guoyi; Tade, Funmilayo; Schuster, David M.; Nieh, Peter; Master, Viraj; Fei, Baowei

    2017-02-01

    Automatic segmentation of the prostate on CT images has many applications in prostate cancer diagnosis and therapy. However, prostate CT image segmentation is challenging because of the low contrast of soft tissue on CT images. In this paper, we propose an automatic segmentation method by combining a deep learning method and multi-atlas refinement. First, instead of segmenting the whole image, we extract the region of interesting (ROI) to delete irrelevant regions. Then, we use the convolutional neural networks (CNN) to learn the deep features for distinguishing the prostate pixels from the non-prostate pixels in order to obtain the preliminary segmentation results. CNN can automatically learn the deep features adapting to the data, which are different from some handcrafted features. Finally, we select some similar atlases to refine the initial segmentation results. The proposed method has been evaluated on a dataset of 92 prostate CT images. Experimental results show that our method achieved a Dice similarity coefficient of 86.80% as compared to the manual segmentation. The deep learning based method can provide a useful tool for automatic segmentation of the prostate on CT images and thus can have a variety of clinical applications.

  17. Knowledge-based segmentation for automatic Map interpretation

    NARCIS (Netherlands)

    Hartog, J. den; Kate, T. ten; Gerbrands, J.

    1996-01-01

    In this paper, a knowledge-based framework for the top-down interpretation and segmentation of maps is presented. The interpretation is based on a priori knowledge about map objects, their mutual spatial relationships and potential segmentation problems. To reduce computational costs, a global

  18. Semi-automatic watershed medical image segmentation methods for customized cancer radiation treatment planning simulation

    International Nuclear Information System (INIS)

    Kum Oyeon; Kim Hye Kyung; Max, N.

    2007-01-01

    A cancer radiation treatment planning simulation requires image segmentation to define the gross tumor volume, clinical target volume, and planning target volume. Manual segmentation, which is usual in clinical settings, depends on the operator's experience and may, in addition, change for every trial by the same operator. To overcome this difficulty, we developed semi-automatic watershed medical image segmentation tools using both the top-down watershed algorithm in the insight segmentation and registration toolkit (ITK) and Vincent-Soille's bottom-up watershed algorithm with region merging. We applied our algorithms to segment two- and three-dimensional head phantom CT data and to find pixel (or voxel) numbers for each segmented area, which are needed for radiation treatment optimization. A semi-automatic method is useful to avoid errors incurred by both human and machine sources, and provide clear and visible information for pedagogical purpose. (orig.)

  19. A framework for automatic segmentation in three dimensions of microstructural tomography data

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley; Hansen, Karin Vels; Larsen, Rasmus

    2010-01-01

    segmentation schemes. We present here a framework for performing automatic segmentation of complex microstructures using a level set method. The technique is based on numerical approximations to partial differential equations to evolve a 3D surface to capture the phase boundaries. Vector fields derived from...... the experimentally acquired data are used as the driving forces. The framework performs the segmentation in 3D rather than on a slice by slice basis. It naturally supplies sub-voxel precision of segmented surfaces and allows constraints on the surface curvature to enforce a smooth surface in the segmentation. Two...

  20. Automatic Multi-Atlas Segmentation of Myocardium with SVF-Net

    OpenAIRE

    Rohé, Marc-Michel; Sermesant, Maxime; Pennec, Xavier

    2017-01-01

    International audience; Segmentation of the myocardium is a key step for image guided diagnosis in many cardiac diseases. In this article, we propose an automatic multi-atlas segmentation framework which relies on a very fast registration algorithm trained with convolutional neural networks. The speed of this registration method allows us to use a high number of templates in the multi-atlas segmentation while remaining computation-ally tractable. The performance of the propose approach is eva...

  1. Automatic and hierarchical segmentation of the human skeleton in CT images

    Science.gov (United States)

    Fu, Yabo; Liu, Shi; Li, H. Harold; Yang, Deshan

    2017-04-01

    Accurate segmentation of each bone of the human skeleton is useful in many medical disciplines. The results of bone segmentation could facilitate bone disease diagnosis and post-treatment assessment, and support planning and image guidance for many treatment modalities including surgery and radiation therapy. As a medium level medical image processing task, accurate bone segmentation can facilitate automatic internal organ segmentation by providing stable structural reference for inter- or intra-patient registration and internal organ localization. Even though bones in CT images can be visually observed with minimal difficulty due to the high image contrast between the bony structures and surrounding soft tissues, automatic and precise segmentation of individual bones is still challenging due to the many limitations of the CT images. The common limitations include low signal-to-noise ratio, insufficient spatial resolution, and indistinguishable image intensity between spongy bones and soft tissues. In this study, a novel and automatic method is proposed to segment all the major individual bones of the human skeleton above the upper legs in CT images based on an articulated skeleton atlas. The reported method is capable of automatically segmenting 62 major bones, including 24 vertebrae and 24 ribs, by traversing a hierarchical anatomical tree and by using both rigid and deformable image registration. The degrees of freedom of femora and humeri are modeled to support patients in different body and limb postures. The segmentation results are evaluated using the Dice coefficient and point-to-surface error (PSE) against manual segmentation results as the ground-truth. The results suggest that the reported method can automatically segment and label the human skeleton into detailed individual bones with high accuracy. The overall average Dice coefficient is 0.90. The average PSEs are 0.41 mm for the mandible, 0.62 mm for cervical vertebrae, 0.92 mm for thoracic

  2. Doses to organs at cerebral risks: optimization by robotized stereotaxic radiotherapy and automatic segmentation atlas versus three dimensional conformal radiotherapy; Doses aux organes a risque cerebraux: optimisation par radiotherapie stereotaxique robotisee et atlas de segmentation automatique versus radiotherapie conformationnelle tridimensionnelle

    Energy Technology Data Exchange (ETDEWEB)

    Bondiau, P.Y.; Thariat, J.; Benezery, K.; Herault, J.; Dalmasso, C.; Marcie, S. [Centre Antoine-Lacassagne, 06 - Nice (France); Malandain, G. [Institut National de Recherche en Informatique et en Automatique (INRIA), Sophia-Antipolis, 06 - Nice (France)

    2007-11-15

    The stereotaxic radiotherapy robotized by 'Cyberknife fourth generation' allows a dosimetric optimization with a high conformity index on the tumor and radiation doses limited on organs at risk. A cerebral automatic anatomic segmentation atlas of organs at risk are used in routine in three dimensions. This study evaluated the superiority of the stereotaxic radiotherapy in comparison with the three dimensional conformal radiotherapy on the preservation of organs at risk in regard of the delivered dose to tumors justifying an accelerated hypo fractionation and a dose escalation. This automatic segmentation atlas should allow to establish correlations between anatomy and cerebral dosimetry; This atlas allows to underline the dosimetry optimization by stereotaxic radiotherapy robotized for organs at risk. (N.C.)

  3. Automatic Segmentation of the Eye in 3D Magnetic Resonance Imaging: A Novel Statistical Shape Model for Treatment Planning of Retinoblastoma.

    Science.gov (United States)

    Ciller, Carlos; De Zanet, Sandro I; Rüegsegger, Michael B; Pica, Alessia; Sznitman, Raphael; Thiran, Jean-Philippe; Maeder, Philippe; Munier, Francis L; Kowal, Jens H; Cuadra, Meritxell Bach

    2015-07-15

    Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Manual and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Automatic Segmentation of the Eye in 3D Magnetic Resonance Imaging: A Novel Statistical Shape Model for Treatment Planning of Retinoblastoma

    Energy Technology Data Exchange (ETDEWEB)

    Ciller, Carlos, E-mail: carlos.cillerruiz@unil.ch [Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne (Switzerland); Ophthalmic Technology Group, ARTORG Center of the University of Bern, Bern (Switzerland); Centre d’Imagerie BioMédicale, University of Lausanne, Lausanne (Switzerland); De Zanet, Sandro I.; Rüegsegger, Michael B. [Ophthalmic Technology Group, ARTORG Center of the University of Bern, Bern (Switzerland); Department of Ophthalmology, Inselspital, Bern University Hospital, Bern (Switzerland); Pica, Alessia [Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern (Switzerland); Sznitman, Raphael [Ophthalmic Technology Group, ARTORG Center of the University of Bern, Bern (Switzerland); Department of Ophthalmology, Inselspital, Bern University Hospital, Bern (Switzerland); Thiran, Jean-Philippe [Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne (Switzerland); Signal Processing Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne (Switzerland); Maeder, Philippe [Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne (Switzerland); Munier, Francis L. [Unit of Pediatric Ocular Oncology, Jules Gonin Eye Hospital, Lausanne (Switzerland); Kowal, Jens H. [Ophthalmic Technology Group, ARTORG Center of the University of Bern, Bern (Switzerland); Department of Ophthalmology, Inselspital, Bern University Hospital, Bern (Switzerland); and others

    2015-07-15

    Purpose: Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Methods and Materials: Manual and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. Results: We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor.

  5. Automatic Segmentation of the Eye in 3D Magnetic Resonance Imaging: A Novel Statistical Shape Model for Treatment Planning of Retinoblastoma

    International Nuclear Information System (INIS)

    Ciller, Carlos; De Zanet, Sandro I.; Rüegsegger, Michael B.; Pica, Alessia; Sznitman, Raphael; Thiran, Jean-Philippe; Maeder, Philippe; Munier, Francis L.; Kowal, Jens H.

    2015-01-01

    Purpose: Proper delineation of ocular anatomy in 3-dimensional (3D) imaging is a big challenge, particularly when developing treatment plans for ocular diseases. Magnetic resonance imaging (MRI) is presently used in clinical practice for diagnosis confirmation and treatment planning for treatment of retinoblastoma in infants, where it serves as a source of information, complementary to the fundus or ultrasonographic imaging. Here we present a framework to fully automatically segment the eye anatomy for MRI based on 3D active shape models (ASM), and we validate the results and present a proof of concept to automatically segment pathological eyes. Methods and Materials: Manual and automatic segmentation were performed in 24 images of healthy children's eyes (3.29 ± 2.15 years of age). Imaging was performed using a 3-T MRI scanner. The ASM consists of the lens, the vitreous humor, the sclera, and the cornea. The model was fitted by first automatically detecting the position of the eye center, the lens, and the optic nerve, and then aligning the model and fitting it to the patient. We validated our segmentation method by using a leave-one-out cross-validation. The segmentation results were evaluated by measuring the overlap, using the Dice similarity coefficient (DSC) and the mean distance error. Results: We obtained a DSC of 94.90 ± 2.12% for the sclera and the cornea, 94.72 ± 1.89% for the vitreous humor, and 85.16 ± 4.91% for the lens. The mean distance error was 0.26 ± 0.09 mm. The entire process took 14 seconds on average per eye. Conclusion: We provide a reliable and accurate tool that enables clinicians to automatically segment the sclera, the cornea, the vitreous humor, and the lens, using MRI. We additionally present a proof of concept for fully automatically segmenting eye pathology. This tool reduces the time needed for eye shape delineation and thus can help clinicians when planning eye treatment and confirming the extent of the tumor

  6. Validated automatic segmentation of AMD pathology including drusen and geographic atrophy in SD-OCT images.

    Science.gov (United States)

    Chiu, Stephanie J; Izatt, Joseph A; O'Connell, Rachelle V; Winter, Katrina P; Toth, Cynthia A; Farsiu, Sina

    2012-01-05

    To automatically segment retinal spectral domain optical coherence tomography (SD-OCT) images of eyes with age-related macular degeneration (AMD) and various levels of image quality to advance the study of retinal pigment epithelium (RPE)+drusen complex (RPEDC) volume changes indicative of AMD progression. A general segmentation framework based on graph theory and dynamic programming was used to segment three retinal boundaries in SD-OCT images of eyes with drusen and geographic atrophy (GA). A validation study for eyes with nonneovascular AMD was conducted, forming subgroups based on scan quality and presence of GA. To test for accuracy, the layer thickness results from two certified graders were compared against automatic segmentation results for 220 B-scans across 20 patients. For reproducibility, automatic layer volumes were compared that were generated from 0° versus 90° scans in five volumes with drusen. The mean differences in the measured thicknesses of the total retina and RPEDC layers were 4.2 ± 2.8 and 3.2 ± 2.6 μm for automatic versus manual segmentation. When the 0° and 90° datasets were compared, the mean differences in the calculated total retina and RPEDC volumes were 0.28% ± 0.28% and 1.60% ± 1.57%, respectively. The average segmentation time per image was 1.7 seconds automatically versus 3.5 minutes manually. The automatic algorithm accurately and reproducibly segmented three retinal boundaries in images containing drusen and GA. This automatic approach can reduce time and labor costs and yield objective measurements that potentially reveal quantitative RPE changes in longitudinal clinical AMD studies. (ClinicalTrials.gov number, NCT00734487.).

  7. Segmentation of Extrapulmonary Tuberculosis Infection Using Modified Automatic Seeded Region Growing

    Directory of Open Access Journals (Sweden)

    Nordin Abdul

    2009-01-01

    Full Text Available Abstract In the image segmentation process of positron emission tomography combined with computed tomography (PET/CT imaging, previous works used information in CT only for segmenting the image without utilizing the information that can be provided by PET. This paper proposes to utilize the hot spot values in PET to guide the segmentation in CT, in automatic image segmentation using seeded region growing (SRG technique. This automatic segmentation routine can be used as part of automatic diagnostic tools. In addition to the original initial seed selection using hot spot values in PET, this paper also introduces a new SRG growing criterion, the sliding windows. Fourteen images of patients having extrapulmonary tuberculosis have been examined using the above-mentioned method. To evaluate the performance of the modified SRG, three fidelity criteria are measured: percentage of under-segmentation area, percentage of over-segmentation area, and average time consumption. In terms of the under-segmentation percentage, SRG with average of the region growing criterion shows the least error percentage (51.85%. Meanwhile, SRG with local averaging and variance yielded the best results (2.67% for the over-segmentation percentage. In terms of the time complexity, the modified SRG with local averaging and variance growing criterion shows the best performance with 5.273 s average execution time. The results indicate that the proposed methods yield fairly good performance in terms of the over- and under-segmentation area. The results also demonstrated that the hot spot values in PET can be used to guide the automatic segmentation in CT image.

  8. Fully automatic segmentation of arbitrarily shaped fiducial markers in cone-beam CT projections.

    Science.gov (United States)

    Bertholet, J; Wan, H; Toftegaard, J; Schmidt, M L; Chotard, F; Parikh, P J; Poulsen, P R

    2017-02-21

    Radio-opaque fiducial markers of different shapes are often implanted in or near abdominal or thoracic tumors to act as surrogates for the tumor position during radiotherapy. They can be used for real-time treatment adaptation, but this requires a robust, automatic segmentation method able to handle arbitrarily shaped markers in a rotational imaging geometry such as cone-beam computed tomography (CBCT) projection images and intra-treatment images. In this study, we propose a fully automatic dynamic programming (DP) assisted template-based (TB) segmentation method. Based on an initial DP segmentation, the DPTB algorithm generates and uses a 3D marker model to create 2D templates at any projection angle. The 2D templates are used to segment the marker position as the position with highest normalized cross-correlation in a search area centered at the DP segmented position. The accuracy of the DP algorithm and the new DPTB algorithm was quantified as the 2D segmentation error (pixels) compared to a manual ground truth segmentation for 97 markers in the projection images of CBCT scans of 40 patients. Also the fraction of wrong segmentations, defined as 2D errors larger than 5 pixels, was calculated. The mean 2D segmentation error of DP was reduced from 4.1 pixels to 3.0 pixels by DPTB, while the fraction of wrong segmentations was reduced from 17.4% to 6.8%. DPTB allowed rejection of uncertain segmentations as deemed by a low normalized cross-correlation coefficient and contrast-to-noise ratio. For a rejection rate of 9.97%, the sensitivity in detecting wrong segmentations was 67% and the specificity was 94%. The accepted segmentations had a mean segmentation error of 1.8 pixels and 2.5% wrong segmentations.

  9. Fully automatic segmentation of arbitrarily shaped fiducial markers in cone-beam CT projections

    DEFF Research Database (Denmark)

    Bertholet, Jenny; Wan, Hanlin; Toftegaard, Jakob

    2017-01-01

    Radio-opaque fiducial markers of different shapes are often implanted in or near abdominal or thoracic tumors to act as surrogates for the tumor position during radiotherapy. They can be used for real-time treatment adaptation, but this requires a robust, automatic segmentation method able...... to handle arbitrarily shaped markers in a rotational imaging geometry such as cone-beam computed tomography (CBCT) projection images and intra-treatment images. In this study, we propose a fully automatic dynamic programming (DP) assisted template-based (TB) segmentation method. Based on an initial DP...... segmentation, the DPTB algorithm generates and uses a 3D marker model to create 2D templates at any projection angle. The 2D templates are used to segment the marker position as the position with highest normalized cross-correlation in a search area centered at the DP segmented position. The accuracy of the DP...

  10. A fast stochastic framework for automatic MR brain images segmentation.

    Directory of Open Access Journals (Sweden)

    Marwa Ismail

    Full Text Available This paper introduces a new framework for the segmentation of different brain structures (white matter, gray matter, and cerebrospinal fluid from 3D MR brain images at different life stages. The proposed segmentation framework is based on a shape prior built using a subset of co-aligned training images that is adapted during the segmentation process based on first- and second-order visual appearance characteristics of MR images. These characteristics are described using voxel-wise image intensities and their spatial interaction features. To more accurately model the empirical grey level distribution of the brain signals, we use a linear combination of discrete Gaussians (LCDG model having positive and negative components. To accurately account for the large inhomogeneity in infant MRIs, a higher-order Markov-Gibbs Random Field (MGRF spatial interaction model that integrates third- and fourth- order families with a traditional second-order model is proposed. The proposed approach was tested and evaluated on 102 3D MR brain scans using three metrics: the Dice coefficient, the 95-percentile modified Hausdorff distance, and the absolute brain volume difference. Experimental results show better segmentation of MR brain images compared to current open source segmentation tools.

  11. Automatic Segmentation and Deep Learning of Bird Sounds

    NARCIS (Netherlands)

    Koops, Hendrik Vincent; Van Balen, J.M.H.; Wiering, F.

    2015-01-01

    We present a study on automatic birdsong recognition with deep neural networks using the BIRDCLEF2014 dataset. Through deep learning, feature hierarchies are learned that represent the data on several levels of abstraction. Deep learning has been applied with success to problems in fields such as

  12. A study on the feasibility of active contours on automatic CT bone segmentation.

    Science.gov (United States)

    Truc, Phan T H; Kim, Tae-Seong; Lee, Sungyoung; Lee, Young-Koo

    2010-12-01

    Automatic bone segmentation of computed tomography (CT) images is an important step in image-guided surgery that requires both high accuracy and minimal user interaction. Previous attempts include global thresholding, region growing, region competition, watershed segmentation, and parametric active contour (AC) approaches, but none claim fully satisfactory performance. Recently, geometric or level-set-based AC models have been developed and appear to have characteristics suitable for automatic bone segmentation such as initialization insensitivity and topology adaptability. In this study, we have tested the feasibility of five level-set-based AC approaches for automatic CT bone segmentation with both synthetic and real CT images: namely, the geometric AC, geodesic AC, gradient vector flow fast geometric AC, Chan-Vese (CV) AC, and our proposed density distance augmented CV AC (Aug. CV AC). Qualitative and quantitative evaluations have been made in comparison with the segmentation results from standard commercial software and a medical expert. The first three models showed their robustness to various image contrasts, but their performances decreased much when noise level increased. On the contrary, the CV AC's performance was more robust to noise, yet dependent on image contrast. On the other hand, the Aug. CV AC demonstrated its robustness to both noise and contrast levels and yielded improved performances on a set of real CT data compared with the commercial software, proving its suitability for automatic bone segmentation from CT images.

  13. Automatic Segmentation for Reach/frequency Estimation of Newspaper Sections and Internet Papers

    DEFF Research Database (Denmark)

    Mortensen, Peter Stendahl; Arnaa, Kristian

    1999-01-01

    This paper will present a new way of estimating reach and frequency without asking the frequency question or conducting double interviewing. Instead, the sample is segmented automatically by a CHAID-analysis, maximising the differences in reading probabilities among the segments. Typically, many...... segments are created, individualising the reading probabilities more than when using frequency groups. Two examples are presented: First, an experiment in which heavy users of the Internet are sampled on the Internet itself. The readers of each "Internet paper" are segmented by variables on their use...

  14. Automatic segmentation of blood vessels from retinal fundus images ...

    Indian Academy of Sciences (India)

    through image processing and data mining techniques. Retinal image data, which is given as input for data mining process is considered as Big Data since every pixel forms a tuple. Blood vessel network is segmented through color space conversion and channel extraction, image pre-processing, Gabor filtering, application ...

  15. Fully automatic segmentation and objective assessment of atrial scars for long-standing persistent atrial fibrillation patients using late gadolinium-enhanced MRI.

    Science.gov (United States)

    Yang, Guang; Zhuang, Xiahai; Khan, Habib; Haldar, Shouvik; Nyktari, Eva; Li, Lei; Wage, Ricardo; Ye, Xujiong; Slabaugh, Greg; Mohiaddin, Raad; Wong, Tom; Keegan, Jennifer; Firmin, David

    2018-02-26

    Atrial fibrillation (AF) is the most common heart rhythm disorder and causes considerable morbidity and mortality, resulting in a large public health burden that is increasing as the population ages. It is associated with atrial fibrosis, the amount and distribution of which can be used to stratify patients and to guide subsequent electrophysiology ablation treatment. Atrial fibrosis may be assessed noninvasively using late gadolinium-enhanced (LGE) magnetic resonance imaging (MRI) where scar tissue is visualized as a region of signal enhancement. However, manual segmentation of the heart chambers and of the atrial scar tissue is time consuming and subject to interoperator variability, particularly as image quality in AF is often poor. In this study, we propose a novel fully automatic pipeline to achieve accurate and objective segmentation of the heart (from MRI Roadmap data) and of scar tissue within the heart (from LGE MRI data) acquired in patients with AF. Our fully automatic pipeline uniquely combines: (a) a multiatlas-based whole heart segmentation (MA-WHS) to determine the cardiac anatomy from an MRI Roadmap acquisition which is then mapped to LGE MRI, and (b) a super-pixel and supervised learning based approach to delineate the distribution and extent of atrial scarring in LGE MRI. We compared the accuracy of the automatic analysis to manual ground truth segmentations in 37 patients with persistent long-standing AF. Both our MA-WHS and atrial scarring segmentations showed accurate delineations of cardiac anatomy (mean Dice = 89%) and atrial scarring (mean Dice = 79%), respectively, compared to the established ground truth from manual segmentation. In addition, compared to the ground truth, we obtained 88% segmentation accuracy, with 90% sensitivity and 79% specificity. Receiver operating characteristic analysis achieved an average area under the curve of 0.91. Compared with previously studied methods with manual interventions, our innovative pipeline

  16. Deep Learning as a Tool for Automatic Segmentation of Corneal Endothelium Images

    Directory of Open Access Journals (Sweden)

    Karolina Nurzynska

    2018-03-01

    Full Text Available The automatic analysis of the state of the corneal endothelium is of much interest in ophthalmology. Up till now, several manual and semi-automatic methods have been introduced, but the need of fully-automatic segmentation of cells in the endothelium is still in search. This work addresses the problem of automatic delineation of cells in the corneal endothelium images and suggests to use the convolutional neural network (CNN to classify between cell center, cell body, and cell border in order to achieve precise segmentation. Additionally, a method to automatically select and split merged cells is given. In order to skeletonize the result, the best-fit method is used. The achieved outcomes are compared to manual annotations in order to define the mutual overlapping. The Dice index, Jaccard coefficient, modified Hausdorff distance, and several other metrics for mosaic overlapping are used. As a final check-up, the visual inspection is shown. The performed experiments revealed the best architecture for CNN. The correctness and precision of the segmentation were evaluated on Endothelial Cell “Alizarine” dataset. According to the Dice index and Jaccard coefficient, the automatically achieved cell delineation overlaps the original one with 93% precision. While modified Hausdorff distance shows 0.14 pixel distance, proving very high accuracy. These findings are confirmed by other metrics and also supported by presented visual inspection of achieved segmentations. To conclude, the methodology to achieve fully-automatic delineation of cell boundaries in the corneal endothelium images was presented. The segmentation obtained as a result of pixel classification with CNN proved very high precision.

  17. Automatic heart sound segmentation and murmur detection in pediatric phonocardiograms.

    Science.gov (United States)

    Pedrosa, Joao; Castro, Ana; Vinhoza, Tiago T V

    2014-01-01

    The digital analysis of heart sounds has revealed itself as an evolving field of study. In recent years, numerous approaches to create decision support systems were attempted. This paper proposes two novel algorithms: one for the segmentation of heart sounds into heart cycles and another for detecting heart murmurs. The segmentation algorithm, based on the autocorrelation function to find the periodic components of the PCG signal had a sensitivity and positive predictive value of 89.2% and 98.6%, respectively. The murmur detection algorithm is based on features collected from different domains and was evaluated in two ways: a random division between train and test set and a division according to patients. The first returned sensitivity and specificity of 98.42% and 97.21% respectively for a minimum error of 2.19%. The second division had a far worse performance with a minimum error of 33.65%. The operating point was chosen at sensitivity 69.67% and a specificity 46.91% for a total error of 38.90% by varying the percentage of segments classified as murmurs needed for a positive murmur classification.

  18. Automatic segmentation of histological structures in mammary gland tissue sections.

    Science.gov (United States)

    Fernandez-Gonzalez, R; Deschamps, T; Idica, A; Malladi, R; Ortiz de Solorzano, C

    2004-01-01

    Real-time three-dimensional (3-D) reconstruction of epithelial structures in human mammary gland tissue blocks mapped with selected markers would be an extremely helpful tool for diagnosing breast cancer and planning treatment. Besides its clear clinical application, this tool could also shed a great deal of light on the molecular basis of the initiation and progression of breast cancer. We present a framework for real-time segmentation of epithelial structures in two-dimensional (2-D) images of sections of normal and neoplastic mammary gland tissue blocks. Complete 3-D rendering of the tissue can then be done by surface rendering of the structures detected in consecutive sections of the blocks. Paraffin-embedded or frozen tissue blocks are first sliced and sections are stained with hematoxylin and eosin. The sections are then imaged using conventional bright-field microscopy and their background corrected using a phantom image. We then use the fast-marching algorithm to roughly extract the contours of the different morphological structures in the images. The result is then refined with the level-set method, which converges to an accurate (subpixel) solution for the segmentation problem. Finally, our system stacks together the 2-D results obtained in order to reconstruct a 3-D representation of the entire tissue block under study. Our method is illustrated with results from the segmentation of human and mouse mammary gland tissue samples. (c) 2004 Society of Photo-Optical Instrumentation Engineers.

  19. Automatic segmentation of histological structures in mammary gland tissue sections

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Gonzalez, Rodrigo; Deschamps, Thomas; Idica, Adam K.; Malladi, Ravikanth; Ortiz de Solorzano, Carlos

    2004-02-17

    Real-time three-dimensional (3D) reconstruction of epithelial structures in human mammary gland tissue blocks mapped with selected markers would be an extremely helpful tool for breast cancer diagnosis and treatment planning. Besides its clear clinical application, this tool could also shed a great deal of light on the molecular basis of breast cancer initiation and progression. In this paper we present a framework for real-time segmentation of epithelial structures in two-dimensional (2D) images of sections of normal and neoplastic mammary gland tissue blocks. Complete 3D rendering of the tissue can then be done by surface rendering of the structures detected in consecutive sections of the blocks. Paraffin embedded or frozen tissue blocks are first sliced, and sections are stained with Hematoxylin and Eosin. The sections are then imaged using conventional bright field microscopy and their background is corrected using a phantom image. We then use the Fast-Marching algorithm to roughly extract the contours of the different morphological structures in the images. The result is then refined with the Level-Set method which converges to an accurate (sub-pixel) solution for the segmentation problem. Finally, our system stacks together the 2D results obtained in order to reconstruct a 3D representation of the entire tissue block under study. Our method is illustrated with results from the segmentation of human and mouse mammary gland tissue samples.

  20. Assessment of automatic segmentation of teeth using a watershed-based method.

    Science.gov (United States)

    Galibourg, Antoine; Dumoncel, Jean; Telmon, Norbert; Calvet, Adèle; Michetti, Jérôme; Maret, Delphine

    2018-01-01

    Tooth 3D automatic segmentation (AS) is being actively developed in research and clinical fields. Here, we assess the effect of automatic segmentation using a watershed-based method on the accuracy and reproducibility of 3D reconstructions in volumetric measurements by comparing it with a semi-automatic segmentation(SAS) method that has already been validated. The study sample comprised 52 teeth, scanned with micro-CT (41 µm voxel size) and CBCT (76; 200 and 300 µm voxel size). Each tooth was segmented by AS based on a watershed method and by SAS. For all surface reconstructions, volumetric measurements were obtained and analysed statistically. Surfaces were then aligned using the SAS surfaces as the reference. The topography of the geometric discrepancies was displayed by using a colour map allowing the maximum differences to be located. AS reconstructions showed similar tooth volumes when compared with SAS for the 41 µm voxel size. A difference in volumes was observed, and increased with the voxel size for CBCT data. The maximum differences were mainly found at the cervical margins and incisal edges but the general form was preserved. Micro-CT, a modality used in dental research, provides data that can be segmented automatically, which is timesaving. AS with CBCT data enables the general form of the region of interest to be displayed. However, our AS method can still be used for metrically reliable measurements in the field of clinical dentistry if some manual refinements are applied.

  1. Dosimetric Evaluation of Automatic Segmentation for Adaptive IMRT for Head-and-Neck Cancer

    International Nuclear Information System (INIS)

    Tsuji, Stuart Y.; Hwang, Andrew; Weinberg, Vivian; Yom, Sue S.; Quivey, Jeanne M.; Xia Ping

    2010-01-01

    Purpose: Adaptive planning to accommodate anatomic changes during treatment requires repeat segmentation. This study uses dosimetric endpoints to assess automatically deformed contours. Methods and Materials: Sixteen patients with head-and-neck cancer had adaptive plans because of anatomic change during radiotherapy. Contours from the initial planning computed tomography (CT) were deformed to the mid-treatment CT using an intensity-based free-form registration algorithm then compared with the manually drawn contours for the same CT using the Dice similarity coefficient and an overlap index. The automatic contours were used to create new adaptive plans. The original and automatic adaptive plans were compared based on dosimetric outcomes of the manual contours and on plan conformality. Results: Volumes from the manual and automatic segmentation were similar; only the gross tumor volume (GTV) was significantly different. Automatic plans achieved lower mean coverage for the GTV: V95: 98.6 ± 1.9% vs. 89.9 ± 10.1% (p = 0.004) and clinical target volume: V95: 98.4 ± 0.8% vs. 89.8 ± 6.2% (p 3 of the spinal cord 39.9 ± 3.7 Gy vs. 42.8 ± 5.4 Gy (p = 0.034), but no difference for the remaining structures. Conclusions: Automatic segmentation is not robust enough to substitute for physician-drawn volumes, particularly for the GTV. However, it generates normal structure contours of sufficient accuracy when assessed by dosimetric end points.

  2. Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem.

    Science.gov (United States)

    Wang, Jun Yi; Ngo, Michael M; Hessl, David; Hagerman, Randi J; Rivera, Susan M

    2016-01-01

    Automated segmentation is a useful method for studying large brain structures such as the cerebellum and brainstem. However, automated segmentation may lead to inaccuracy and/or undesirable boundary. The goal of the present study was to investigate whether SegAdapter, a machine learning-based method, is useful for automatically correcting large segmentation errors and disagreement in anatomical definition. We further assessed the robustness of the method in handling size of training set, differences in head coil usage, and amount of brain atrophy. High resolution T1-weighted images were acquired from 30 healthy controls scanned with either an 8-channel or 32-channel head coil. Ten patients, who suffered from brain atrophy because of fragile X-associated tremor/ataxia syndrome, were scanned using the 32-channel head coil. The initial segmentations of the cerebellum and brainstem were generated automatically using Freesurfer. Subsequently, Freesurfer's segmentations were both manually corrected to serve as the gold standard and automatically corrected by SegAdapter. Using only 5 scans in the training set, spatial overlap with manual segmentation in Dice coefficient improved significantly from 0.956 (for Freesurfer segmentation) to 0.978 (for SegAdapter-corrected segmentation) for the cerebellum and from 0.821 to 0.954 for the brainstem. Reducing the training set size to 2 scans only decreased the Dice coefficient ≤0.002 for the cerebellum and ≤ 0.005 for the brainstem compared to the use of training set size of 5 scans in corrective learning. The method was also robust in handling differences between the training set and the test set in head coil usage and the amount of brain atrophy, which reduced spatial overlap only by learning provides a valuable method for accurate and efficient segmentation of the cerebellum and brainstem, particularly in large-scale neuroimaging studies, and potentially for segmenting other neural regions as well.

  3. Interactive vs. automatic ultrasound image segmentation methods for staging hepatic lipidosis.

    Science.gov (United States)

    Weijers, Gert; Starke, Alexander; Haudum, Alois; Thijssen, Johan M; Rehage, Jürgen; De Korte, Chris L

    2010-07-01

    The aim of this study was to test the hypothesis that automatic segmentation of vessels in ultrasound (US) images can produce similar or better results in grading fatty livers than interactive segmentation. A study was performed in postpartum dairy cows (N=151), as an animal model of human fatty liver disease, to test this hypothesis. Five transcutaneous and five intraoperative US liver images were acquired in each animal and a liverbiopsy was taken. In liver tissue samples, triacylglycerol (TAG) was measured by biochemical analysis and hepatic diseases other than hepatic lipidosis were excluded by histopathologic examination. Ultrasonic tissue characterization (UTC) parameters--Mean echo level, standard deviation (SD) of echo level, signal-to-noise ratio (SNR), residual attenuation coefficient (ResAtt) and axial and lateral speckle size--were derived using a computer-aided US (CAUS) protocol and software package. First, the liver tissue was interactively segmented by two observers. With increasing fat content, fewer hepatic vessels were visible in the ultrasound images and, therefore, a smaller proportion of the liver needed to be excluded from these images. Automatic-segmentation algorithms were implemented and it was investigated whether better results could be achieved than with the subjective and time-consuming interactive-segmentation procedure. The automatic-segmentation algorithms were based on both fixed and adaptive thresholding techniques in combination with a 'speckle'-shaped moving-window exclusion technique. All data were analyzed with and without postprocessing as contained in CAUS and with different automated-segmentation techniques. This enabled us to study the effect of the applied postprocessing steps on single and multiple linear regressions ofthe various UTC parameters with TAG. Improved correlations for all US parameters were found by using automatic-segmentation techniques. Stepwise multiple linear-regression formulas where derived and used

  4. Automatic anatomy recognition in whole-body PET/CT images

    International Nuclear Information System (INIS)

    Wang, Huiqian; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.; Zhao, Liming

    2016-01-01

    Purpose: Whole-body positron emission tomography/computed tomography (PET/CT) has become a standard method of imaging patients with various disease conditions, especially cancer. Body-wide accurate quantification of disease burden in PET/CT images is important for characterizing lesions, staging disease, prognosticating patient outcome, planning treatment, and evaluating disease response to therapeutic interventions. However, body-wide anatomy recognition in PET/CT is a critical first step for accurately and automatically quantifying disease body-wide, body-region-wise, and organwise. This latter process, however, has remained a challenge due to the lower quality of the anatomic information portrayed in the CT component of this imaging modality and the paucity of anatomic details in the PET component. In this paper, the authors demonstrate the adaptation of a recently developed automatic anatomy recognition (AAR) methodology [Udupa et al., “Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images,” Med. Image Anal. 18, 752–771 (2014)] to PET/CT images. Their goal was to test what level of object localization accuracy can be achieved on PET/CT compared to that achieved on diagnostic CT images. Methods: The authors advance the AAR approach in this work in three fronts: (i) from body-region-wise treatment in the work of Udupa et al. to whole body; (ii) from the use of image intensity in optimal object recognition in the work of Udupa et al. to intensity plus object-specific texture properties, and (iii) from the intramodality model-building-recognition strategy to the intermodality approach. The whole-body approach allows consideration of relationships among objects in different body regions, which was previously not possible. Consideration of object texture allows generalizing the previous optimal threshold-based fuzzy model recognition method from intensity images to any derived fuzzy membership image, and in the process

  5. Automatic anatomy recognition in whole-body PET/CT images

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huiqian [College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China and Medical Image Processing Group Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Udupa, Jayaram K., E-mail: jay@mail.med.upenn.edu; Odhner, Dewey; Tong, Yubing; Torigian, Drew A. [Medical Image Processing Group Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Zhao, Liming [Medical Image Processing Group Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104 and Research Center of Intelligent System and Robotics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China)

    2016-01-15

    Purpose: Whole-body positron emission tomography/computed tomography (PET/CT) has become a standard method of imaging patients with various disease conditions, especially cancer. Body-wide accurate quantification of disease burden in PET/CT images is important for characterizing lesions, staging disease, prognosticating patient outcome, planning treatment, and evaluating disease response to therapeutic interventions. However, body-wide anatomy recognition in PET/CT is a critical first step for accurately and automatically quantifying disease body-wide, body-region-wise, and organwise. This latter process, however, has remained a challenge due to the lower quality of the anatomic information portrayed in the CT component of this imaging modality and the paucity of anatomic details in the PET component. In this paper, the authors demonstrate the adaptation of a recently developed automatic anatomy recognition (AAR) methodology [Udupa et al., “Body-wide hierarchical fuzzy modeling, recognition, and delineation of anatomy in medical images,” Med. Image Anal. 18, 752–771 (2014)] to PET/CT images. Their goal was to test what level of object localization accuracy can be achieved on PET/CT compared to that achieved on diagnostic CT images. Methods: The authors advance the AAR approach in this work in three fronts: (i) from body-region-wise treatment in the work of Udupa et al. to whole body; (ii) from the use of image intensity in optimal object recognition in the work of Udupa et al. to intensity plus object-specific texture properties, and (iii) from the intramodality model-building-recognition strategy to the intermodality approach. The whole-body approach allows consideration of relationships among objects in different body regions, which was previously not possible. Consideration of object texture allows generalizing the previous optimal threshold-based fuzzy model recognition method from intensity images to any derived fuzzy membership image, and in the process

  6. Automatic segmentation of corpus callosum using Gaussian mixture modeling and Fuzzy C means methods.

    Science.gov (United States)

    İçer, Semra

    2013-10-01

    This paper presents a comparative study of the success and performance of the Gaussian mixture modeling and Fuzzy C means methods to determine the volume and cross-sectionals areas of the corpus callosum (CC) using simulated and real MR brain images. The Gaussian mixture model (GMM) utilizes weighted sum of Gaussian distributions by applying statistical decision procedures to define image classes. In the Fuzzy C means (FCM), the image classes are represented by certain membership function according to fuzziness information expressing the distance from the cluster centers. In this study, automatic segmentation for midsagittal section of the CC was achieved from simulated and real brain images. The volume of CC was obtained using sagittal sections areas. To compare the success of the methods, segmentation accuracy, Jaccard similarity and time consuming for segmentation were calculated. The results show that the GMM method resulted by a small margin in more accurate segmentation (midsagittal section segmentation accuracy 98.3% and 97.01% for GMM and FCM); however the FCM method resulted in faster segmentation than GMM. With this study, an accurate and automatic segmentation system that allows opportunity for quantitative comparison to doctors in the planning of treatment and the diagnosis of diseases affecting the size of the CC was developed. This study can be adapted to perform segmentation on other regions of the brain, thus, it can be operated as practical use in the clinic. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Semi-automatic segmentation for 3D motion analysis of the tongue with dynamic MRI

    Science.gov (United States)

    Lee, Junghoon; Woo, Jonghye; Xing, Fangxu; Murano, Emi Z.; Stone, Maureen; Prince, Jerry L.

    2014-01-01

    Dynamic MRI has been widely used to track the motion of the tongue and measure its internal deformation during speech and swallowing. Accurate segmentation of the tongue is a prerequisite step to define the target boundary and constrain the tracking to tissue points within the tongue. Segmentation of 2D slices or 3D volumes is challenging because of the large number of slices and time frames involved in the segmentation, as well as the incorporation of numerous local deformations that occur throughout the tongue during motion. In this paper, we propose a semi-automatic approach to segment 3D dynamic MRI of the tongue. The algorithm steps include seeding a few slices at one time frame, propagating seeds to the same slices at different time frames using deformable registration, and random walker segmentation based on these seed positions. This method was validated on the tongue of five normal subjects carrying out the same speech task with multi-slice 2D dynamic cine-MR images obtained at three orthogonal orientations and 26 time frames. The resulting semi-automatic segmentations of a total of 130 volumes showed an average dice similarity coefficient (DSC) score of 0.92 with less segmented volume variability between time frames than in manual segmentations. PMID:25155697

  8. Automatic FAÇADE Segmentation for Thermal Retrofit

    Science.gov (United States)

    Previtali, M.; Barazzetti, L.; Brumana, R.; Cuca, B.; Oreni, D.; Roncoroni, F.; Scaioni, M.

    2013-02-01

    In this paper we present an automated method to derive highly detailed 3D vector models of modern building façades from terrestrial laser scanning data. The developed procedure can be divided into two main steps: firstly the main elements constituting the façade are identified by means of a segmentation process, then the 3D vector model is generated including some priors on architectural scenes. The identification of main façade elements is based on random sampling and detection of planar elements including topology information in the process to reduce under- and over-segmentation problems. Finally, the prevalence of straight lines and orthogonal intersections in the vector model generation phase is exploited to set additional constraints to enforce automated modeling. Contemporary a further classification is performed, enriching the data with semantics by means of a classification tree. The main application field for these vector models is the design of external insulation thermal retrofit. In particular, in this paper we present a possible application for energy efficiency evaluation of buildings by mean of Infrared Thermography data overlaid to the façade model.

  9. AUTOMATIC SEGMENTATION AND CLASSIFICATION OF CELLS FROM BRONCHO ALVEOLAR LAVAGE

    Directory of Open Access Journals (Sweden)

    Olivier Lezoray

    2011-05-01

    Full Text Available Broncho alveolar lavage is the most commonly used diagnostic tool for confirming alveolar hemorrhage. Golde has introduced a ranking score, based on the hemosiderin content of macrophages which enables ranking cells from 0 to 4 based on the degree of Prussian blue stain. We propose a complete image analysis scheme to automatically perform both the extraction of the cellular objects and the ranking of each cell according to the Golde score. The image analysis techniques used mainly involve clustering and mathematical morphology. A 2D histogram is clustered to extract the main cellular components, a color watershed is used to determine and refine the regions. Finally, the cellular components of interest are firstly classified according to their hue and secondly according to their staining repartition. The proposed image analysis technique is very fast and produces reliable and accurate results.

  10. Automatic liver tumor segmentation on computed tomography for patient treatment planning and monitoring.

    Science.gov (United States)

    Moghbel, Mehrdad; Mashohor, Syamsiah; Mahmud, Rozi; Saripan, M Iqbal Bin

    2016-01-01

    Segmentation of liver tumors from Computed Tomography (CT) and tumor burden analysis play an important role in the choice of therapeutic strategies for liver diseases and treatment monitoring. In this paper, a new segmentation method for liver tumors from contrast-enhanced CT imaging is proposed. As manual segmentation of tumors for liver treatment planning is both labor intensive and time-consuming, a highly accurate automatic tumor segmentation is desired. The proposed framework is fully automatic requiring no user interaction. The proposed segmentation evaluated on real-world clinical data from patients is based on a hybrid method integrating cuckoo optimization and fuzzy c-means algorithm with random walkers algorithm. The accuracy of the proposed method was validated using a clinical liver dataset containing one of the highest numbers of tumors utilized for liver tumor segmentation containing 127 tumors in total with further validation of the results by a consultant radiologist. The proposed method was able to achieve one of the highest accuracies reported in the literature for liver tumor segmentation compared to other segmentation methods with a mean overlap error of 22.78 % and dice similarity coefficient of 0.75 in 3Dircadb dataset and a mean overlap error of 15.61 % and dice similarity coefficient of 0.81 in MIDAS dataset. The proposed method was able to outperform most other tumor segmentation methods reported in the literature while representing an overlap error improvement of 6 % compared to one of the best performing automatic methods in the literature. The proposed framework was able to provide consistently accurate results considering the number of tumors and the variations in tumor contrast enhancements and tumor appearances while the tumor burden was estimated with a mean error of 0.84 % in 3Dircadb dataset.

  11. Automatic liver tumor segmentation on computed tomography for patient treatment planning and monitoring

    Science.gov (United States)

    Moghbel, Mehrdad; Mashohor, Syamsiah; Mahmud, Rozi; Saripan, M. Iqbal Bin

    2016-01-01

    Segmentation of liver tumors from Computed Tomography (CT) and tumor burden analysis play an important role in the choice of therapeutic strategies for liver diseases and treatment monitoring. In this paper, a new segmentation method for liver tumors from contrast-enhanced CT imaging is proposed. As manual segmentation of tumors for liver treatment planning is both labor intensive and time-consuming, a highly accurate automatic tumor segmentation is desired. The proposed framework is fully automatic requiring no user interaction. The proposed segmentation evaluated on real-world clinical data from patients is based on a hybrid method integrating cuckoo optimization and fuzzy c-means algorithm with random walkers algorithm. The accuracy of the proposed method was validated using a clinical liver dataset containing one of the highest numbers of tumors utilized for liver tumor segmentation containing 127 tumors in total with further validation of the results by a consultant radiologist. The proposed method was able to achieve one of the highest accuracies reported in the literature for liver tumor segmentation compared to other segmentation methods with a mean overlap error of 22.78 % and dice similarity coefficient of 0.75 in 3Dircadb dataset and a mean overlap error of 15.61 % and dice similarity coefficient of 0.81 in MIDAS dataset. The proposed method was able to outperform most other tumor segmentation methods reported in the literature while representing an overlap error improvement of 6 % compared to one of the best performing automatic methods in the literature. The proposed framework was able to provide consistently accurate results considering the number of tumors and the variations in tumor contrast enhancements and tumor appearances while the tumor burden was estimated with a mean error of 0.84 % in 3Dircadb dataset. PMID:27540353

  12. User Interaction in Semi-Automatic Segmentation of Organs at Risk: a Case Study in Radiotherapy.

    Science.gov (United States)

    Ramkumar, Anjana; Dolz, Jose; Kirisli, Hortense A; Adebahr, Sonja; Schimek-Jasch, Tanja; Nestle, Ursula; Massoptier, Laurent; Varga, Edit; Stappers, Pieter Jan; Niessen, Wiro J; Song, Yu

    2016-04-01

    Accurate segmentation of organs at risk is an important step in radiotherapy planning. Manual segmentation being a tedious procedure and prone to inter- and intra-observer variability, there is a growing interest in automated segmentation methods. However, automatic methods frequently fail to provide satisfactory result, and post-processing corrections are often needed. Semi-automatic segmentation methods are designed to overcome these problems by combining physicians' expertise and computers' potential. This study evaluates two semi-automatic segmentation methods with different types of user interactions, named the "strokes" and the "contour", to provide insights into the role and impact of human-computer interaction. Two physicians participated in the experiment. In total, 42 case studies were carried out on five different types of organs at risk. For each case study, both the human-computer interaction process and quality of the segmentation results were measured subjectively and objectively. Furthermore, different measures of the process and the results were correlated. A total of 36 quantifiable and ten non-quantifiable correlations were identified for each type of interaction. Among those pairs of measures, 20 of the contour method and 22 of the strokes method were strongly or moderately correlated, either directly or inversely. Based on those correlated measures, it is concluded that: (1) in the design of semi-automatic segmentation methods, user interactions need to be less cognitively challenging; (2) based on the observed workflows and preferences of physicians, there is a need for flexibility in the interface design; (3) the correlated measures provide insights that can be used in improving user interaction design.

  13. AUTOMATIC RETINA EXUDATES SEGMENTATION WITHOUT A MANUALLY LABELLED TRAINING SET

    Energy Technology Data Exchange (ETDEWEB)

    Giancardo, Luca [ORNL; Meriaudeau, Fabrice [ORNL; Karnowski, Thomas Paul [ORNL; Li, Yaquin [University of Tennessee, Knoxville (UTK); Tobin Jr, Kenneth William [ORNL; Chaum, Edward [University of Tennessee, Knoxville (UTK)

    2011-01-01

    Diabetic macular edema (DME) is a common vision threatening complication of diabetic retinopathy which can be assessed by detecting exudates (a type of bright lesion) in fundus images. In this work, two new methods for the detection of exudates are presented which do not use a supervised learning step and therefore do not require ground-truthed lesion training sets which are time consuming to create, difficult to obtain, and prone to human error. We introduce a new dataset of fundus images from various ethnic groups and levels of DME which we have made publicly available. We evaluate our algorithm with this dataset and compare our results with two recent exudate segmentation algorithms. In all of our tests, our algorithms perform better or comparable with an order of magnitude reduction in computational time.

  14. Leveraging Automatic Speech Recognition Errors to Detect Challenging Speech Segments in TED Talks

    Science.gov (United States)

    Mirzaei, Maryam Sadat; Meshgi, Kourosh; Kawahara, Tatsuya

    2016-01-01

    This study investigates the use of Automatic Speech Recognition (ASR) systems to epitomize second language (L2) listeners' problems in perception of TED talks. ASR-generated transcripts of videos often involve recognition errors, which may indicate difficult segments for L2 listeners. This paper aims to discover the root-causes of the ASR errors…

  15. Automatic Segmentation of Granular Objects in Images: Combining Local Density Clustering and Gradient-Barrier Watershed

    Science.gov (United States)

    2014-01-01

    Cytometry Part A 56A (2003) 23–36. [10] F. Long, H. Peng, E. Myers , Automatic segmentation of nuclei in 3D microscopy images of C. elegans. In...Chen, H. Tagare, S. Thiruvenkadam, F. Huang, D. Wilson, K. Gopinath, R. Briggs , E. Geiser, Using prior shapes in geometric active contours in a

  16. Robust automatic high resolution segmentation of SOFC anode porosity in 3D

    DEFF Research Database (Denmark)

    Jørgensen, Peter Stanley; Bowen, Jacob R.

    2008-01-01

    Routine use of 3D characterization of SOFCs by focused ion beam (FIB) serial sectioning is generally restricted by the time consuming task of manually delineating structures within each image slice. We apply advanced image analysis algorithms to automatically segment the porosity phase of an SOFC...

  17. AUTOMATIC BRAIN TUMOUR SEGMENTATION OF MAGNETIC RESONANCE IMAGES (MRI BASED ON REGION OF INTEREST (ROI

    Directory of Open Access Journals (Sweden)

    ANGULAKSHMI M.

    2017-04-01

    Full Text Available Segmentation is one of techniques used for classifying brain tissues in Magnetic Resonance Image (MRI for identifying anatomical structures in the brain. The automated brain tumour segmentation remains challenging and computationally intensive because tumour appears in different size and intensity. In this paper, we have proposed a method for fast and automatic segmentation of tumour from Region of Interest (ROI identified in MRI. ROI is a smaller portion of the image containing tumour. In the first step, tumour slices are identified using bilateral asymmetry property of the brain. In the second step, the ROI is identified using quadtree decomposition and similarity detection based on coefficient computed with gray level intensity histograms. In the third step, only the ROI is segmented using spectral clustering method rather than considering the whole image. Experimental results on real-world datasets are carried and compared with the recent existing works which show better results in terms of accuracy and less processing time for segmentation

  18. An automatic system for segmentation, matching, anatomical labeling and measurement of airways from CT images

    DEFF Research Database (Denmark)

    Petersen, Jens; Feragen, Aasa; Owen, Megan

    Purpose: Assessing airway dimensions and attenuation from CT images is useful in the study of diseases affecting the airways such as Chronic Obstructive Pulmonary Disease (COPD). Measurements can be compared between patients and over time if specific airway segments can be identified. However......, manually finding these segments and performing such measurements is very time consuming. The purpose of the developed and validated system is to enable such measurements using automatic segmentations of the airway interior and exterior wall surfaces in three dimensions, anatomical branch labeling of all...... is used to match specific airway segments in multiple images of the same subject. The anatomical names of all segmental branches are assigned based on distances to a training set of expert labeled trees. Distances are measured in a geometric tree-space, incorporating both topology and centerline shape...

  19. Automatic segmentation of canine retinal OCT using adaptive gradient enhancement and region growing

    Science.gov (United States)

    He, Yufan; Sun, Yankui; Chen, Min; Zheng, Yuanjie; Liu, Hui; Leon, Cecilia; Beltran, William; Gee, James C.

    2016-03-01

    In recent years, several studies have shown that the canine retina model offers important insight for our understanding of human retinal diseases. Several therapies developed to treat blindness in such models have already moved onto human clinical trials, with more currently under development [1]. Optical coherence tomography (OCT) offers a high resolution imaging modality for performing in-vivo analysis of the retinal layers. However, existing algorithms for automatically segmenting and analyzing such data have been mostly focused on the human retina. As a result, canine retinal images are often still being analyzed using manual segmentations, which is a slow and laborious task. In this work, we propose a method for automatically segmenting 5 boundaries in canine retinal OCT. The algorithm employs the position relationships between different boundaries to adaptively enhance the gradient map. A region growing algorithm is then used on the enhanced gradient maps to find the five boundaries separately. The automatic segmentation was compared against manual segmentations showing an average absolute error of 5.82 +/- 4.02 microns.

  20. 3D automatic liver segmentation using feature-constrained Mahalanobis distance in CT images.

    Science.gov (United States)

    Salman Al-Shaikhli, Saif Dawood; Yang, Michael Ying; Rosenhahn, Bodo

    2016-08-01

    Automatic 3D liver segmentation is a fundamental step in the liver disease diagnosis and surgery planning. This paper presents a novel fully automatic algorithm for 3D liver segmentation in clinical 3D computed tomography (CT) images. Based on image features, we propose a new Mahalanobis distance cost function using an active shape model (ASM). We call our method MD-ASM. Unlike the standard active shape model (ST-ASM), the proposed method introduces a new feature-constrained Mahalanobis distance cost function to measure the distance between the generated shape during the iterative step and the mean shape model. The proposed Mahalanobis distance function is learned from a public database of liver segmentation challenge (MICCAI-SLiver07). As a refinement step, we propose the use of a 3D graph-cut segmentation. Foreground and background labels are automatically selected using texture features of the learned Mahalanobis distance. Quantitatively, the proposed method is evaluated using two clinical 3D CT scan databases (MICCAI-SLiver07 and MIDAS). The evaluation of the MICCAI-SLiver07 database is obtained by the challenge organizers using five different metric scores. The experimental results demonstrate the availability of the proposed method by achieving an accurate liver segmentation compared to the state-of-the-art methods.

  1. Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach.

    Science.gov (United States)

    Avendi, Michael R; Kheradvar, Arash; Jafarkhani, Hamid

    2017-12-01

    This study aims to accurately segment the right ventricle (RV) from cardiac MRI using a fully automatic learning-based method. The proposed method uses deep learning algorithms, i.e., convolutional neural networks and stacked autoencoders, for automatic detection and initial segmentation of the RV chamber. The initial segmentation is then combined with the deformable models to improve the accuracy and robustness of the process. We trained our algorithm using 16 cardiac MRI datasets of the MICCAI 2012 RV Segmentation Challenge database and validated our technique using the rest of the dataset (32 subjects). An average Dice metric of 82.5% along with an average Hausdorff distance of 7.85 mm were achieved for all the studied subjects. Furthermore, a high correlation and level of agreement with the ground truth contours for end-diastolic volume (0.98), end-systolic volume (0.99), and ejection fraction (0.93) were observed. Our results show that deep learning algorithms can be effectively used for automatic segmentation of the RV. Computed quantitative metrics of our method outperformed that of the existing techniques participated in the MICCAI 2012 challenge, as reported by the challenge organizers. Magn Reson Med 78:2439-2448, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  2. Efficient Semi-Automatic 3D Segmentation for Neuron Tracing in Electron Microscopy Images

    Science.gov (United States)

    Jones, Cory; Liu, Ting; Cohan, Nathaniel Wood; Ellisman, Mark; Tasdizen, Tolga

    2015-01-01

    0.1. Background In the area of connectomics, there is a significant gap between the time required for data acquisition and dense reconstruction of the neural processes contained in the same dataset. Automatic methods are able to eliminate this timing gap, but the state-of-the-art accuracy so far is insufficient for use without user corrections. If completed naively, this process of correction can be tedious and time consuming. 0.2. New Method We present a new semi-automatic method that can be used to perform 3D segmentation of neurites in EM image stacks. It utilizes an automatic method that creates a hierarchical structure for recommended merges of superpixels. The user is then guided through each predicted region to quickly identify errors and establish correct links. 0.3. Results We tested our method on three datasets with both novice and expert users. Accuracy and timing were compared with published automatic, semi-automatic, and manual results. 0.4. Comparison with Existing Methods Post-automatic correction methods have also been used in [1] and [2]. These methods do not provide navigation or suggestions in the manner we present. Other semi-automatic methods require user input prior to the automatic segmentation such as [3] and [4] and are inherently different than our method. 0.5. Conclusion Using this method on the three datasets, novice users achieved accuracy exceeding state-of-the-art automatic results, and expert users achieved accuracy on par with full manual labeling but with a 70% time improvement when compared with other examples in publication. PMID:25769273

  3. Automatic atlas-based three-label cartilage segmentation from MR knee images.

    Science.gov (United States)

    Shan, Liang; Zach, Christopher; Charles, Cecil; Niethammer, Marc

    2014-10-01

    Osteoarthritis (OA) is the most common form of joint disease and often characterized by cartilage changes. Accurate quantitative methods are needed to rapidly screen large image databases to assess changes in cartilage morphology. We therefore propose a new automatic atlas-based cartilage segmentation method for future automatic OA studies. Atlas-based segmentation methods have been demonstrated to be robust and accurate in brain imaging and therefore also hold high promise to allow for reliable and high-quality segmentations of cartilage. Nevertheless, atlas-based methods have not been well explored for cartilage segmentation. A particular challenge is the thinness of cartilage, its relatively small volume in comparison to surrounding tissue and the difficulty to locate cartilage interfaces - for example the interface between femoral and tibial cartilage. This paper focuses on the segmentation of femoral and tibial cartilage, proposing a multi-atlas segmentation strategy with non-local patch-based label fusion which can robustly identify candidate regions of cartilage. This method is combined with a novel three-label segmentation method which guarantees the spatial separation of femoral and tibial cartilage, and ensures spatial regularity while preserving the thin cartilage shape through anisotropic regularization. Our segmentation energy is convex and therefore guarantees globally optimal solutions. We perform an extensive validation of the proposed method on 706 images of the Pfizer Longitudinal Study. Our validation includes comparisons of different atlas segmentation strategies, different local classifiers, and different types of regularizers. To compare to other cartilage segmentation approaches we validate based on the 50 images of the SKI10 dataset. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Automatic atlas-based three-label cartilage segmentation from MR knee images

    Science.gov (United States)

    Shan, Liang; Zach, Christopher; Charles, Cecil; Niethammer, Marc

    2016-01-01

    Osteoarthritis (OA) is the most common form of joint disease and often characterized by cartilage changes. Accurate quantitative methods are needed to rapidly screen large image databases to assess changes in cartilage morphology. We therefore propose a new automatic atlas-based cartilage segmentation method for future automatic OA studies. Atlas-based segmentation methods have been demonstrated to be robust and accurate in brain imaging and therefore also hold high promise to allow for reliable and high-quality segmentations of cartilage. Nevertheless, atlas-based methods have not been well explored for cartilage segmentation. A particular challenge is the thinness of cartilage, its relatively small volume in comparison to surrounding tissue and the difficulty to locate cartilage interfaces – for example the interface between femoral and tibial cartilage. This paper focuses on the segmentation of femoral and tibial cartilage, proposing a multi-atlas segmentation strategy with non-local patch-based label fusion which can robustly identify candidate regions of cartilage. This method is combined with a novel three-label segmentation method which guarantees the spatial separation of femoral and tibial cartilage, and ensures spatial regularity while preserving the thin cartilage shape through anisotropic regularization. Our segmentation energy is convex and therefore guarantees globally optimal solutions. We perform an extensive validation of the proposed method on 706 images of the Pfizer Longitudinal Study. Our validation includes comparisons of different atlas segmentation strategies, different local classifiers, and different types of regularizers. To compare to other cartilage segmentation approaches we validate based on the 50 images of the SKI10 dataset. PMID:25128683

  5. Automatic segmentation of vertebral arteries in CT angiography using combined circular and cylindrical model fitting

    Science.gov (United States)

    Lee, Min Jin; Hong, Helen; Chung, Jin Wook

    2014-03-01

    We propose an automatic vessel segmentation method of vertebral arteries in CT angiography using combined circular and cylindrical model fitting. First, to generate multi-segmented volumes, whole volume is automatically divided into four segments by anatomical properties of bone structures along z-axis of head and neck. To define an optimal volume circumscribing vertebral arteries, anterior-posterior bounding and side boundaries are defined as initial extracted vessel region. Second, the initial vessel candidates are tracked using circular model fitting. Since boundaries of the vertebral arteries are ambiguous in case the arteries pass through the transverse foramen in the cervical vertebra, the circle model is extended along z-axis to cylinder model for considering additional vessel information of neighboring slices. Finally, the boundaries of the vertebral arteries are detected using graph-cut optimization. From the experiments, the proposed method provides accurate results without bone artifacts and eroded vessels in the cervical vertebra.

  6. A framework for automatic heart sound analysis without segmentation.

    Science.gov (United States)

    Yuenyong, Sumeth; Nishihara, Akinori; Kongprawechnon, Waree; Tungpimolrut, Kanokvate

    2011-02-09

    A new framework for heart sound analysis is proposed. One of the most difficult processes in heart sound analysis is segmentation, due to interference form murmurs. Equal number of cardiac cycles were extracted from heart sounds with different heart rates using information from envelopes of autocorrelation functions without the need to label individual fundamental heart sounds (FHS). The complete method consists of envelope detection, calculation of cardiac cycle lengths using auto-correlation of envelope signals, features extraction using discrete wavelet transform, principal component analysis, and classification using neural network bagging predictors. The proposed method was tested on a set of heart sounds obtained from several on-line databases and recorded with an electronic stethoscope. Geometric mean was used as performance index. Average classification performance using ten-fold cross-validation was 0.92 for noise free case, 0.90 under white noise with 10 dB signal-to-noise ratio (SNR), and 0.90 under impulse noise up to 0.3 s duration. The proposed method showed promising results and high noise robustness to a wide range of heart sounds. However, more tests are needed to address any bias that may have been introduced by different sources of heart sounds in the current training set, and to concretely validate the method. Further work include building a new training set recorded from actual patients, then further evaluate the method based on this new training set.

  7. A framework for automatic heart sound analysis without segmentation

    Directory of Open Access Journals (Sweden)

    Tungpimolrut Kanokvate

    2011-02-01

    Full Text Available Abstract Background A new framework for heart sound analysis is proposed. One of the most difficult processes in heart sound analysis is segmentation, due to interference form murmurs. Method Equal number of cardiac cycles were extracted from heart sounds with different heart rates using information from envelopes of autocorrelation functions without the need to label individual fundamental heart sounds (FHS. The complete method consists of envelope detection, calculation of cardiac cycle lengths using auto-correlation of envelope signals, features extraction using discrete wavelet transform, principal component analysis, and classification using neural network bagging predictors. Result The proposed method was tested on a set of heart sounds obtained from several on-line databases and recorded with an electronic stethoscope. Geometric mean was used as performance index. Average classification performance using ten-fold cross-validation was 0.92 for noise free case, 0.90 under white noise with 10 dB signal-to-noise ratio (SNR, and 0.90 under impulse noise up to 0.3 s duration. Conclusion The proposed method showed promising results and high noise robustness to a wide range of heart sounds. However, more tests are needed to address any bias that may have been introduced by different sources of heart sounds in the current training set, and to concretely validate the method. Further work include building a new training set recorded from actual patients, then further evaluate the method based on this new training set.

  8. Quality assurance using outlier detection on an automatic segmentation method for the cerebellar peduncles

    Science.gov (United States)

    Li, Ke; Ye, Chuyang; Yang, Zhen; Carass, Aaron; Ying, Sarah H.; Prince, Jerry L.

    2016-03-01

    Cerebellar peduncles (CPs) are white matter tracts connecting the cerebellum to other brain regions. Automatic segmentation methods of the CPs have been proposed for studying their structure and function. Usually the performance of these methods is evaluated by comparing segmentation results with manual delineations (ground truth). However, when a segmentation method is run on new data (for which no ground truth exists) it is highly desirable to efficiently detect and assess algorithm failures so that these cases can be excluded from scientific analysis. In this work, two outlier detection methods aimed to assess the performance of an automatic CP segmentation algorithm are presented. The first one is a univariate non-parametric method using a box-whisker plot. We first categorize automatic segmentation results of a dataset of diffusion tensor imaging (DTI) scans from 48 subjects as either a success or a failure. We then design three groups of features from the image data of nine categorized failures for failure detection. Results show that most of these features can efficiently detect the true failures. The second method—supervised classification—was employed on a larger DTI dataset of 249 manually categorized subjects. Four classifiers—linear discriminant analysis (LDA), logistic regression (LR), support vector machine (SVM), and random forest classification (RFC)—were trained using the designed features and evaluated using a leave-one-out cross validation. Results show that the LR performs worst among the four classifiers and the other three perform comparably, which demonstrates the feasibility of automatically detecting segmentation failures using classification methods.

  9. Automatic segmentation of brain MRIs and mapping neuroanatomy across the human lifespan

    Science.gov (United States)

    Keihaninejad, Shiva; Heckemann, Rolf A.; Gousias, Ioannis S.; Rueckert, Daniel; Aljabar, Paul; Hajnal, Joseph V.; Hammers, Alexander

    2009-02-01

    A robust model for the automatic segmentation of human brain images into anatomically defined regions across the human lifespan would be highly desirable, but such structural segmentations of brain MRI are challenging due to age-related changes. We have developed a new method, based on established algorithms for automatic segmentation of young adults' brains. We used prior information from 30 anatomical atlases, which had been manually segmented into 83 anatomical structures. Target MRIs came from 80 subjects (~12 individuals/decade) from 20 to 90 years, with equal numbers of men, women; data from two different scanners (1.5T, 3T), using the IXI database. Each of the adult atlases was registered to each target MR image. By using additional information from segmentation into tissue classes (GM, WM and CSF) to initialise the warping based on label consistency similarity before feeding this into the previous normalised mutual information non-rigid registration, the registration became robust enough to accommodate atrophy and ventricular enlargement with age. The final segmentation was obtained by combination of the 30 propagated atlases using decision fusion. Kernel smoothing was used for modelling the structural volume changes with aging. Example linear correlation coefficients with age were, for lateral ventricular volume, rmale=0.76, rfemale=0.58 and, for hippocampal volume, rmale=-0.6, rfemale=-0.4 (allρ<0.01).

  10. Fully Automatic Myocardial Segmentation of Contrast Echocardiography Sequence Using Random Forests Guided by Shape Model.

    Science.gov (United States)

    Li, Yuanwei; Ho, Chin Pang; Toulemonde, Matthieu; Chahal, Navtej; Senior, Roxy; Tang, Meng-Xing

    2017-09-26

    Myocardial contrast echocardiography (MCE) is an imaging technique that assesses left ventricle function and myocardial perfusion for the detection of coronary artery diseases. Automatic MCE perfusion quantification is challenging and requires accurate segmentation of the myocardium from noisy and time-varying images. Random forests (RF) have been successfully applied to many medical image segmentation tasks. However, the pixel-wise RF classifier ignores contextual relationships between label outputs of individual pixels. RF which only utilizes local appearance features is also susceptible to data suffering from large intensity variations. In this paper, we demonstrate how to overcome the above limitations of classic RF by presenting a fully automatic segmentation pipeline for myocardial segmentation in full-cycle 2D MCE data. Specifically, a statistical shape model is used to provide shape prior information that guide the RF segmentation in two ways. First, a novel shape model (SM) feature is incorporated into the RF framework to generate a more accurate RF probability map. Second, the shape model is fitted to the RF probability map to refine and constrain the final segmentation to plausible myocardial shapes. We further improve the performance by introducing a bounding box detection algorithm as a preprocessing step in the segmentation pipeline. Our approach on 2D image is further extended to 2D+t sequences which ensures temporal consistency in the final sequence segmentations. When evaluated on clinical MCE datasets, our proposed method achieves notable improvement in segmentation accuracy and outperforms other state-of-the-art methods including the classic RF and its variants, active shape model and image registration.

  11. Automatic segmentation of left ventricle cavity from short-axis cardiac magnetic resonance images.

    Science.gov (United States)

    Yang, Xulei; Song, Qing; Su, Yi

    2017-09-01

    In this paper, a computational framework is proposed to perform a fully automatic segmentation of the left ventricle (LV) cavity from short-axis cardiac magnetic resonance (CMR) images. In the initial phase, the region of interest (ROI) is automatically identified on the first image frame of the CMR slices. This is done by partitioning the image into different regions using a standard fuzzy c-means (FCM) clustering algorithm where the LV region is identified according to its intensity, size and circularity in the image. Next, LV segmentation is performed within the identified ROI by using a novel clustering method that utilizes an objective functional with a dissimilarity measure that incorporates a circular shape function. This circular shape-constrained FCM algorithm is able to differentiate pixels with similar intensity but are located in different regions (e.g. LV cavity and non-LV cavity), thus improving the accuracy of the segmentation even in the presence of papillary muscles. In the final step, the segmented LV cavity is propagated to the adjacent image frame to act as the ROI. The segmentation and ROI propagation are then iteratively executed until the segmentation has been performed for the whole cardiac sequence. Experiment results using the LV Segmentation Challenge validation datasets show that our proposed framework can achieve an average perpendicular distance (APD) shift of 2.23 ± 0.50 mm and the Dice metric (DM) index of 0.89 ± 0.03, which is comparable to the existing cutting edge methods. The added advantage over state of the art is that our approach is fully automatic, does not need manual initialization and does not require a prior trained model.

  12. Ultrasound image-based thyroid nodule automatic segmentation using convolutional neural networks.

    Science.gov (United States)

    Ma, Jinlian; Wu, Fa; Jiang, Tian'an; Zhao, Qiyu; Kong, Dexing

    2017-11-01

    Delineation of thyroid nodule boundaries from ultrasound images plays an important role in calculation of clinical indices and diagnosis of thyroid diseases. However, it is challenging for accurate and automatic segmentation of thyroid nodules because of their heterogeneous appearance and components similar to the background. In this study, we employ a deep convolutional neural network (CNN) to automatically segment thyroid nodules from ultrasound images. Our CNN-based method formulates a thyroid nodule segmentation problem as a patch classification task, where the relationship among patches is ignored. Specifically, the CNN used image patches from images of normal thyroids and thyroid nodules as inputs and then generated the segmentation probability maps as outputs. A multi-view strategy is used to improve the performance of the CNN-based model. Additionally, we compared the performance of our approach with that of the commonly used segmentation methods on the same dataset. The experimental results suggest that our proposed method outperforms prior methods on thyroid nodule segmentation. Moreover, the results show that the CNN-based model is able to delineate multiple nodules in thyroid ultrasound images accurately and effectively. In detail, our CNN-based model can achieve an average of the overlap metric, dice ratio, true positive rate, false positive rate, and modified Hausdorff distance as [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] on overall folds, respectively. Our proposed method is fully automatic without any user interaction. Quantitative results also indicate that our method is so efficient and accurate that it can be good enough to replace the time-consuming and tedious manual segmentation approach, demonstrating the potential clinical applications.

  13. Comparison of automatic and visual methods used for image segmentation in Endodontics: a microCT study.

    Science.gov (United States)

    Queiroz, Polyane Mazucatto; Rovaris, Karla; Santaella, Gustavo Machado; Haiter-Neto, Francisco; Freitas, Deborah Queiroz

    2017-01-01

    To calculate root canal volume and surface area in microCT images, an image segmentation by selecting threshold values is required, which can be determined by visual or automatic methods. Visual determination is influenced by the operator's visual acuity, while the automatic method is done entirely by computer algorithms. To compare between visual and automatic segmentation, and to determine the influence of the operator's visual acuity on the reproducibility of root canal volume and area measurements. Images from 31 extracted human anterior teeth were scanned with a μCT scanner. Three experienced examiners performed visual image segmentation, and threshold values were recorded. Automatic segmentation was done using the "Automatic Threshold Tool" available in the dedicated software provided by the scanner's manufacturer. Volume and area measurements were performed using the threshold values determined both visually and automatically. The paired Student's t-test showed no significant difference between visual and automatic segmentation methods regarding root canal volume measurements (p=0.93) and root canal surface (p=0.79). Although visual and automatic segmentation methods can be used to determine the threshold and calculate root canal volume and surface, the automatic method may be the most suitable for ensuring the reproducibility of threshold determination.

  14. A Learning-Based Wrapper Method to Correct Systematic Errors in Automatic Image Segmentation: Consistently Improved Performance in Hippocampus, Cortex and Brain Segmentation

    Science.gov (United States)

    Wang, Hongzhi; Das, Sandhitsu R.; Suh, Jung Wook; Altinay, Murat; Pluta, John; Craige, Caryne; Avants, Brian; Yushkevich, Paul A.

    2011-01-01

    We propose a simple but generally applicable approach to improving the accuracy of automatic image segmentation algorithms relative to manual segmentations. The approach is based on the hypothesis that a large fraction of the errors produced by automatic segmentation are systematic, i.e., occur consistently from subject to subject, and serves as a wrapper method around a given host segmentation method. The wrapper method attempts to learn the intensity, spatial and contextual patterns associated with systematic segmentation errors produced by the host method on training data for which manual segmentations are available. The method then attempts to correct such errors in segmentations produced by the host method on new images. One practical use of the proposed wrapper method is to adapt existing segmentation tools, without explicit modification, to imaging data and segmentation protocols that are different from those on which the tools were trained and tuned. An open-source implementation of the proposed wrapper method is provided, and can be applied to a wide range of image segmentation problems. The wrapper method is evaluated with four host brain MRI segmentation methods: hippocampus segmentation using FreeSurfer (Fischl et al., 2002); hippocampus segmentation using multi-atlas label fusion (Artaechevarria et al., 2009); brain extraction using BET (Smith, 2002); and brain tissue segmentation using FAST (Zhang et al., 2001). The wrapper method generates 72%, 14%, 29% and 21% fewer erroneously segmented voxels than the respective host segmentation methods. In the hippocampus segmentation experiment with multi-atlas label fusion as the host method, the average Dice overlap between reference segmentations and segmentations produced by the wrapper method is 0.908 for normal controls and 0.893 for patients with mild cognitive impairment. Average Dice overlaps of 0.964, 0.905 and 0.951 are obtained for brain extraction, white matter segmentation and gray matter

  15. Automatic kidney segmentation in CT images based on multi-atlas image registration.

    Science.gov (United States)

    Yang, Guanyu; Gu, Jinjin; Chen, Yang; Liu, Wangyan; Tang, Lijun; Shu, Huazhong; Toumoulin, Christine

    2014-01-01

    Kidney segmentation is an important step for computer-aided diagnosis or treatment in urology. In this paper, we present an automatic method based on multi-atlas image registration for kidney segmentation. The method mainly relies on a two-step framework to obtain coarse-to-fine segmentation results. In the first step, down-sampled patient image is registered with a set of low-resolution atlas images. A coarse kidney segmentation result is generated to locate the left and right kidneys. In the second step, the left and right kidneys are cropped from original images and aligned with another set of high-resolution atlas images to obtain the final results respectively. Segmentation results from 14 CT angiographic (CTA) images show that our proposed method can segment the kidneys with a high accuracy. The average Dice similarity coefficient and surface-to-surface distance between segmentation results and reference standard are 0.952 and 0.913mm. Furthermore, the kidney segmentation in CT urography (CTU) and CTA images of 12 patients were performed to show the feasibility of our method in CTU images.

  16. Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem.

    Directory of Open Access Journals (Sweden)

    Jun Yi Wang

    Full Text Available Automated segmentation is a useful method for studying large brain structures such as the cerebellum and brainstem. However, automated segmentation may lead to inaccuracy and/or undesirable boundary. The goal of the present study was to investigate whether SegAdapter, a machine learning-based method, is useful for automatically correcting large segmentation errors and disagreement in anatomical definition. We further assessed the robustness of the method in handling size of training set, differences in head coil usage, and amount of brain atrophy. High resolution T1-weighted images were acquired from 30 healthy controls scanned with either an 8-channel or 32-channel head coil. Ten patients, who suffered from brain atrophy because of fragile X-associated tremor/ataxia syndrome, were scanned using the 32-channel head coil. The initial segmentations of the cerebellum and brainstem were generated automatically using Freesurfer. Subsequently, Freesurfer's segmentations were both manually corrected to serve as the gold standard and automatically corrected by SegAdapter. Using only 5 scans in the training set, spatial overlap with manual segmentation in Dice coefficient improved significantly from 0.956 (for Freesurfer segmentation to 0.978 (for SegAdapter-corrected segmentation for the cerebellum and from 0.821 to 0.954 for the brainstem. Reducing the training set size to 2 scans only decreased the Dice coefficient ≤0.002 for the cerebellum and ≤ 0.005 for the brainstem compared to the use of training set size of 5 scans in corrective learning. The method was also robust in handling differences between the training set and the test set in head coil usage and the amount of brain atrophy, which reduced spatial overlap only by <0.01. These results suggest that the combination of automated segmentation and corrective learning provides a valuable method for accurate and efficient segmentation of the cerebellum and brainstem, particularly in large

  17. A comparative study of automatic image segmentation algorithms for target tracking in MR-IGRT.

    Science.gov (United States)

    Feng, Yuan; Kawrakow, Iwan; Olsen, Jeff; Parikh, Parag J; Noel, Camille; Wooten, Omar; Du, Dongsu; Mutic, Sasa; Hu, Yanle

    2016-03-01

    On-board magnetic resonance (MR) image guidance during radiation therapy offers the potential for more accurate treatment delivery. To utilize the real-time image information, a crucial prerequisite is the ability to successfully segment and track regions of interest (ROI). The purpose of this work is to evaluate the performance of different segmentation algorithms using motion images (4 frames per second) acquired using a MR image-guided radiotherapy (MR-IGRT) system. Manual contours of the kidney, bladder, duodenum, and a liver tumor by an experienced radiation oncologist were used as the ground truth for performance evaluation. Besides the manual segmentation, images were automatically segmented using thresholding, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE) algorithms, as well as the tissue tracking algorithm provided by the ViewRay treatment planning and delivery system (VR-TPDS). The performance of the five algorithms was evaluated quantitatively by comparing with the manual segmentation using the Dice coefficient and target registration error (TRE) measured as the distance between the centroid of the manual ROI and the centroid of the automatically segmented ROI. All methods were able to successfully segment the bladder and the kidney, but only FKM, KHM, and VR-TPDS were able to segment the liver tumor and the duodenum. The performance of the thresholding, FKM, KHM, and RD-LSE algorithms degraded as the local image contrast decreased, whereas the performance of the VP-TPDS method was nearly independent of local image contrast due to the reference registration algorithm. For segmenting high-contrast images (i.e., kidney), the thresholding method provided the best speed (image contrast was low, the VR-TPDS method had the best automatic contour. Results suggest an image quality determination procedure before segmentation and a combination of different methods for optimal segmentation with the on-board MR

  18. Comparison of human and automatic segmentations of kidneys from CT images

    International Nuclear Information System (INIS)

    Rao, Manjori; Stough, Joshua; Chi, Y.-Y.; Muller, Keith; Tracton, Gregg; Pizer, Stephen M.; Chaney, Edward L.

    2005-01-01

    Purpose: A controlled observer study was conducted to compare a method for automatic image segmentation with conventional user-guided segmentation of right and left kidneys from planning computerized tomographic (CT) images. Methods and materials: Deformable shape models called m-reps were used to automatically segment right and left kidneys from 12 target CT images, and the results were compared with careful manual segmentations performed by two human experts. M-rep models were trained based on manual segmentations from a collection of images that did not include the targets. Segmentation using m-reps began with interactive initialization to position the kidney model over the target kidney in the image data. Fully automatic segmentation proceeded through two stages at successively smaller spatial scales. At the first stage, a global similarity transformation of the kidney model was computed to position the model closer to the target kidney. The similarity transformation was followed by large-scale deformations based on principal geodesic analysis (PGA). During the second stage, the medial atoms comprising the m-rep model were deformed one by one. This procedure was iterated until no changes were observed. The transformations and deformations at both stages were driven by optimizing an objective function with two terms. One term penalized the currently deformed m-rep by an amount proportional to its deviation from the mean m-rep derived from PGA of the training segmentations. The second term computed a model-to-image match term based on the goodness of match of the trained intensity template for the currently deformed m-rep with the corresponding intensity data in the target image. Human and m-rep segmentations were compared using quantitative metrics provided in a toolset called Valmet. Metrics reported in this article include (1) percent volume overlap; (2) mean surface distance between two segmentations; and (3) maximum surface separation (Hausdorff distance

  19. Multi-atlas-based automatic 3D segmentation for prostate brachytherapy in transrectal ultrasound images

    Science.gov (United States)

    Nouranian, Saman; Mahdavi, S. Sara; Spadinger, Ingrid; Morris, William J.; Salcudean, S. E.; Abolmaesumi, P.

    2013-03-01

    One of the commonly used treatment methods for early-stage prostate cancer is brachytherapy. The standard of care for planning this procedure is segmentation of contours from transrectal ultrasound (TRUS) images, which closely follow the prostate boundary. This process is currently performed either manually or using semi-automatic techniques. This paper introduces a fully automatic segmentation algorithm which uses a priori knowledge of contours in a reference data set of TRUS volumes. A non-parametric deformable registration method is employed to transform the atlas prostate contours to a target image coordinates. All atlas images are sorted based on their registration results and the highest ranked registration results are selected for decision fusion. A Simultaneous Truth and Performance Level Estimation algorithm is utilized to fuse labels from registered atlases and produce a segmented target volume. In this experiment, 50 patient TRUS volumes are obtained and a leave-one-out study on TRUS volumes is reported. We also compare our results with a state-of-the-art semi-automatic prostate segmentation method that has been clinically used for planning prostate brachytherapy procedures and we show comparable accuracy and precision within clinically acceptable runtime.

  20. An automatic system for segmentation, matching, anatomical labeling and measurement of airways from CT images

    DEFF Research Database (Denmark)

    Petersen, Jens; Feragen, Aasa; Owen, Megan

    Purpose: Assessing airway dimensions and attenuation from CT images is useful in the study of diseases affecting the airways such as Chronic Obstructive Pulmonary Disease (COPD). Measurements can be compared between patients and over time if specific airway segments can be identified. However...... segmental branches, and longitudinal matching of airway branches in repeated scans of the same subject. Methods and Materials: The segmentation process begins from an automatically detected seed point in the trachea. The airway centerline tree is then constructed by iteratively adding locally optimal paths...... that most resemble the airway centerlines based on a statistical model derived from a training set. A full segmentation of the wall surfaces is then extracted around the centerline, using a graph based approach, which simultaneously detects both surfaces using image gradients. Deformable image registration...

  1. Automatic Glaucoma Detection Based on Optic Disc Segmentation and Texture Feature Extraction

    Directory of Open Access Journals (Sweden)

    Maíla de Lima Claro

    2016-08-01

    Full Text Available The use of digital image processing techniques is prominent in medical settings for the automatic diagnosis of diseases. Glaucoma is the second leading cause of blindness in the world and it has no cure. Currently, there are treatments to prevent vision loss, but the disease must be detected in the early stages. Thus, the objective of this work is to develop an automatic detection method of Glaucoma in retinal images. The methodology used in the study were: acquisition of image database, Optic Disc segmentation, texture feature extraction in different color models and classiffication of images in glaucomatous or not. We obtained results of 93% accuracy.

  2. Simple Methods for Scanner Drift Normalization Validated for Automatic Segmentation of Knee Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Dam, Erik Bjørnager

    2018-01-01

    Scanner drift is a well-known magnetic resonance imaging (MRI) artifact characterized by gradual signal degradation and scan intensity changes over time. In addition, hardware and software updates may imply abrupt changes in signal. The combined effects are particularly challenging for automatic...... for segmentation of knee MRI using the fully automatic KneeIQ framework. The validation included a total of 1975 scans from both high-field and low-field MRI. The results demonstrated that the pre-processing method denoted Atlas Affine Normalization significantly removed scanner drift effects and ensured...

  3. Curvelet based automatic segmentation of supraspinatus tendon from ultrasound image: a focused assistive diagnostic method.

    Science.gov (United States)

    Gupta, Rishu; Elamvazuthi, Irraivan; Dass, Sarat Chandra; Faye, Ibrahima; Vasant, Pandian; George, John; Izza, Faizatul

    2014-12-04

    Disorders of rotator cuff tendons results in acute pain limiting the normal range of motion for shoulder. Of all the tendons in rotator cuff, supraspinatus (SSP) tendon is affected first of any pathological changes. Diagnosis of SSP tendon using ultrasound is considered to be operator dependent with its accuracy being related to operator's level of experience. The automatic segmentation of SSP tendon ultrasound image was performed to provide focused and more accurate diagnosis. The image processing techniques were employed for automatic segmentation of SSP tendon. The image processing techniques combines curvelet transform and mathematical concepts of logical and morphological operators along with area filtering. The segmentation assessment was performed using true positives rate, false positives rate and also accuracy of segmentation. The specificity and sensitivity of the algorithm was tested for diagnosis of partial thickness tears (PTTs) and full thickness tears (FTTs). The ultrasound images of SSP tendon were taken from medical center with the help of experienced radiologists. The algorithm was tested on 116 images taken from 51 different patients. The accuracy of segmentation of SSP tendon was calculated to be 95.61% in accordance with the segmentation performed by radiologists, with true positives rate of 91.37% and false positives rate of 8.62%. The specificity and sensitivity was found to be 93.6%, 94% and 95%, 95.6% for partial thickness tears and full thickness tears respectively. The proposed methodology was successfully tested over a database of more than 116 US images, for which radiologist assessment and validation was performed. The segmentation of SSP tendon from ultrasound images helps in focused, accurate and more reliable diagnosis which has been verified with the help of two experienced radiologists. The specificity and sensitivity for accurate detection of partial and full thickness tears has been considerably increased after segmentation when

  4. Automatic Segmenting Structures in MRI's Based on Texture Analysis and Fuzzy Logic

    Science.gov (United States)

    Kaur, Mandeep; Rattan, Munish; Singh, Pushpinder

    2017-12-01

    The purpose of this paper is to present the variational method for geometric contours which helps the level set function remain close to the sign distance function, therefor it remove the need of expensive re-initialization procedure and thus, level set method is applied on magnetic resonance images (MRI) to track the irregularities in them as medical imaging plays a substantial part in the treatment, therapy and diagnosis of various organs, tumors and various abnormalities. It favors the patient with more speedy and decisive disease controlling with lesser side effects. The geometrical shape, the tumor's size and tissue's abnormal growth can be calculated by the segmentation of that particular image. It is still a great challenge for the researchers to tackle with an automatic segmentation in the medical imaging. Based on the texture analysis, different images are processed by optimization of level set segmentation. Traditionally, optimization was manual for every image where each parameter is selected one after another. By applying fuzzy logic, the segmentation of image is correlated based on texture features, to make it automatic and more effective. There is no initialization of parameters and it works like an intelligent system. It segments the different MRI images without tuning the level set parameters and give optimized results for all MRI's.

  5. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution

    Science.gov (United States)

    Hu, Peijun; Wu, Fa; Peng, Jialin; Liang, Ping; Kong, Dexing

    2016-12-01

    The detection and delineation of the liver from abdominal 3D computed tomography (CT) images are fundamental tasks in computer-assisted liver surgery planning. However, automatic and accurate segmentation, especially liver detection, remains challenging due to complex backgrounds, ambiguous boundaries, heterogeneous appearances and highly varied shapes of the liver. To address these difficulties, we propose an automatic segmentation framework based on 3D convolutional neural network (CNN) and globally optimized surface evolution. First, a deep 3D CNN is trained to learn a subject-specific probability map of the liver, which gives the initial surface and acts as a shape prior in the following segmentation step. Then, both global and local appearance information from the prior segmentation are adaptively incorporated into a segmentation model, which is globally optimized in a surface evolution way. The proposed method has been validated on 42 CT images from the public Sliver07 database and local hospitals. On the Sliver07 online testing set, the proposed method can achieve an overall score of 80.3+/- 4.5 , yielding a mean Dice similarity coefficient of 97.25+/- 0.65 % , and an average symmetric surface distance of 0.84+/- 0.25 mm. The quantitative validations and comparisons show that the proposed method is accurate and effective for clinical application.

  6. Automatic magnetic resonance prostate segmentation by deep learning with holistically nested networks.

    Science.gov (United States)

    Cheng, Ruida; Roth, Holger R; Lay, Nathan; Lu, Le; Turkbey, Baris; Gandler, William; McCreedy, Evan S; Pohida, Tom; Pinto, Peter A; Choyke, Peter; McAuliffe, Matthew J; Summers, Ronald M

    2017-10-01

    Accurate automatic segmentation of the prostate in magnetic resonance images (MRI) is a challenging task due to the high variability of prostate anatomic structure. Artifacts such as noise and similar signal intensity of tissues around the prostate boundary inhibit traditional segmentation methods from achieving high accuracy. We investigate both patch-based and holistic (image-to-image) deep-learning methods for segmentation of the prostate. First, we introduce a patch-based convolutional network that aims to refine the prostate contour which provides an initialization. Second, we propose a method for end-to-end prostate segmentation by integrating holistically nested edge detection with fully convolutional networks. Holistically nested networks (HNN) automatically learn a hierarchical representation that can improve prostate boundary detection. Quantitative evaluation is performed on the MRI scans of 250 patients in fivefold cross-validation. The proposed enhanced HNN model achieves a mean ± standard deviation. A Dice similarity coefficient (DSC) of [Formula: see text] and a mean Jaccard similarity coefficient (IoU) of [Formula: see text] are used to calculate without trimming any end slices. The proposed holistic model significantly ([Formula: see text]) outperforms a patch-based AlexNet model by 9% in DSC and 13% in IoU. Overall, the method achieves state-of-the-art performance as compared with other MRI prostate segmentation methods in the literature.

  7. Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution.

    Science.gov (United States)

    Hu, Peijun; Wu, Fa; Peng, Jialin; Liang, Ping; Kong, Dexing

    2016-12-21

    The detection and delineation of the liver from abdominal 3D computed tomography (CT) images are fundamental tasks in computer-assisted liver surgery planning. However, automatic and accurate segmentation, especially liver detection, remains challenging due to complex backgrounds, ambiguous boundaries, heterogeneous appearances and highly varied shapes of the liver. To address these difficulties, we propose an automatic segmentation framework based on 3D convolutional neural network (CNN) and globally optimized surface evolution. First, a deep 3D CNN is trained to learn a subject-specific probability map of the liver, which gives the initial surface and acts as a shape prior in the following segmentation step. Then, both global and local appearance information from the prior segmentation are adaptively incorporated into a segmentation model, which is globally optimized in a surface evolution way. The proposed method has been validated on 42 CT images from the public Sliver07 database and local hospitals. On the Sliver07 online testing set, the proposed method can achieve an overall score of [Formula: see text], yielding a mean Dice similarity coefficient of [Formula: see text], and an average symmetric surface distance of [Formula: see text] mm. The quantitative validations and comparisons show that the proposed method is accurate and effective for clinical application.

  8. Semi-supervised and active learning for automatic segmentation of Crohn's disease.

    Science.gov (United States)

    Mahapatra, Dwarikanath; Schüffler, Peter J; Tielbeek, Jeroen A W; Vos, Franciscus M; Buhmann, Joachim M

    2013-01-01

    Our proposed method combines semi supervised learning (SSL) and active learning (AL) for automatic detection and segmentation of Crohn's disease (CD) from abdominal magnetic resonance (MR) images. Random forest (RF) classifiers are used due to fast SSL classification and capacity to interpret learned knowledge. Query samples for AL are selected by a novel information density weighted approach using context information, semantic knowledge and labeling uncertainty. Experimental results show that our proposed method combines the advantages of SSL and AL, and with fewer samples achieves higher classification and segmentation accuracy over fully supervised methods.

  9. Automatic liver segmentation on Computed Tomography using random walkers for treatment planning.

    Science.gov (United States)

    Moghbel, Mehrdad; Mashohor, Syamsiah; Mahmud, Rozi; Saripan, M Iqbal Bin

    2016-01-01

    Segmentation of the liver from Computed Tomography (CT) volumes plays an important role during the choice of treatment strategies for liver diseases. Despite lots of attention, liver segmentation remains a challenging task due to the lack of visible edges on most boundaries of the liver coupled with high variability of both intensity patterns and anatomical appearances with all these difficulties becoming more prominent in pathological livers. To achieve a more accurate segmentation, a random walker based framework is proposed that can segment contrast-enhanced livers CT images with great accuracy and speed. Based on the location of the right lung lobe, the liver dome is automatically detected thus eliminating the need for manual initialization. The computational requirements are further minimized utilizing rib-caged area segmentation, the liver is then extracted by utilizing random walker method. The proposed method was able to achieve one of the highest accuracies reported in the literature against a mixed healthy and pathological liver dataset compared to other segmentation methods with an overlap error of 4.47 % and dice similarity coefficient of 0.94 while it showed exceptional accuracy on segmenting the pathological livers with an overlap error of 5.95 % and dice similarity coefficient of 0.91.

  10. An automatic segmentation method of a parameter-adaptive PCNN for medical images.

    Science.gov (United States)

    Lian, Jing; Shi, Bin; Li, Mingcong; Nan, Ziwei; Ma, Yide

    2017-09-01

    Since pre-processing and initial segmentation steps in medical images directly affect the final segmentation results of the regions of interesting, an automatic segmentation method of a parameter-adaptive pulse-coupled neural network is proposed to integrate the above-mentioned two segmentation steps into one. This method has a low computational complexity for different kinds of medical images and has a high segmentation precision. The method comprises four steps. Firstly, an optimal histogram threshold is used to determine the parameter [Formula: see text] for different kinds of images. Secondly, we acquire the parameter [Formula: see text] according to a simplified pulse-coupled neural network (SPCNN). Thirdly, we redefine the parameter V of the SPCNN model by sub-intensity distribution range of firing pixels. Fourthly, we add an offset [Formula: see text] to improve initial segmentation precision. Compared with the state-of-the-art algorithms, the new method achieves a comparable performance by the experimental results from ultrasound images of the gallbladder and gallstones, magnetic resonance images of the left ventricle, and mammogram images of the left and the right breast, presenting the overall metric UM of 0.9845, CM of 0.8142, TM of 0.0726. The algorithm has a great potential to achieve the pre-processing and initial segmentation steps in various medical images. This is a premise for assisting physicians to detect and diagnose clinical cases.

  11. Automatic liver segmentation on Computed Tomography using random walkers for treatment planning

    Science.gov (United States)

    Moghbel, Mehrdad; Mashohor, Syamsiah; Mahmud, Rozi; Saripan, M. Iqbal Bin

    2016-01-01

    Segmentation of the liver from Computed Tomography (CT) volumes plays an important role during the choice of treatment strategies for liver diseases. Despite lots of attention, liver segmentation remains a challenging task due to the lack of visible edges on most boundaries of the liver coupled with high variability of both intensity patterns and anatomical appearances with all these difficulties becoming more prominent in pathological livers. To achieve a more accurate segmentation, a random walker based framework is proposed that can segment contrast-enhanced livers CT images with great accuracy and speed. Based on the location of the right lung lobe, the liver dome is automatically detected thus eliminating the need for manual initialization. The computational requirements are further minimized utilizing rib-caged area segmentation, the liver is then extracted by utilizing random walker method. The proposed method was able to achieve one of the highest accuracies reported in the literature against a mixed healthy and pathological liver dataset compared to other segmentation methods with an overlap error of 4.47 % and dice similarity coefficient of 0.94 while it showed exceptional accuracy on segmenting the pathological livers with an overlap error of 5.95 % and dice similarity coefficient of 0.91. PMID:28096782

  12. Automatic initial and final segmentation in cleft palate speech of Mandarin speakers.

    Directory of Open Access Journals (Sweden)

    Ling He

    Full Text Available The speech unit segmentation is an important pre-processing step in the analysis of cleft palate speech. In Mandarin, one syllable is composed of two parts: initial and final. In cleft palate speech, the resonance disorders occur at the finals and the voiced initials, while the articulation disorders occur at the unvoiced initials. Thus, the initials and finals are the minimum speech units, which could reflect the characteristics of cleft palate speech disorders. In this work, an automatic initial/final segmentation method is proposed. It is an important preprocessing step in cleft palate speech signal processing. The tested cleft palate speech utterances are collected from the Cleft Palate Speech Treatment Center in the Hospital of Stomatology, Sichuan University, which has the largest cleft palate patients in China. The cleft palate speech data includes 824 speech segments, and the control samples contain 228 speech segments. The syllables are extracted from the speech utterances firstly. The proposed syllable extraction method avoids the training stage, and achieves a good performance for both voiced and unvoiced speech. Then, the syllables are classified into with "quasi-unvoiced" or with "quasi-voiced" initials. Respective initial/final segmentation methods are proposed to these two types of syllables. Moreover, a two-step segmentation method is proposed. The rough locations of syllable and initial/final boundaries are refined in the second segmentation step, in order to improve the robustness of segmentation accuracy. The experiments show that the initial/final segmentation accuracies for syllables with quasi-unvoiced initials are higher than quasi-voiced initials. For the cleft palate speech, the mean time error is 4.4ms for syllables with quasi-unvoiced initials, and 25.7ms for syllables with quasi-voiced initials, and the correct segmentation accuracy P30 for all the syllables is 91.69%. For the control samples, P30 for all the

  13. Automatic initial and final segmentation in cleft palate speech of Mandarin speakers.

    Science.gov (United States)

    He, Ling; Liu, Yin; Yin, Heng; Zhang, Junpeng; Zhang, Jing; Zhang, Jiang

    2017-01-01

    The speech unit segmentation is an important pre-processing step in the analysis of cleft palate speech. In Mandarin, one syllable is composed of two parts: initial and final. In cleft palate speech, the resonance disorders occur at the finals and the voiced initials, while the articulation disorders occur at the unvoiced initials. Thus, the initials and finals are the minimum speech units, which could reflect the characteristics of cleft palate speech disorders. In this work, an automatic initial/final segmentation method is proposed. It is an important preprocessing step in cleft palate speech signal processing. The tested cleft palate speech utterances are collected from the Cleft Palate Speech Treatment Center in the Hospital of Stomatology, Sichuan University, which has the largest cleft palate patients in China. The cleft palate speech data includes 824 speech segments, and the control samples contain 228 speech segments. The syllables are extracted from the speech utterances firstly. The proposed syllable extraction method avoids the training stage, and achieves a good performance for both voiced and unvoiced speech. Then, the syllables are classified into with "quasi-unvoiced" or with "quasi-voiced" initials. Respective initial/final segmentation methods are proposed to these two types of syllables. Moreover, a two-step segmentation method is proposed. The rough locations of syllable and initial/final boundaries are refined in the second segmentation step, in order to improve the robustness of segmentation accuracy. The experiments show that the initial/final segmentation accuracies for syllables with quasi-unvoiced initials are higher than quasi-voiced initials. For the cleft palate speech, the mean time error is 4.4ms for syllables with quasi-unvoiced initials, and 25.7ms for syllables with quasi-voiced initials, and the correct segmentation accuracy P30 for all the syllables is 91.69%. For the control samples, P30 for all the syllables is 91.24%.

  14. Template-based automatic breast segmentation on MRI by excluding the chest region

    OpenAIRE

    Lin, M; Chen, JH; Wang, X; Chan, S; Chen, S; Su, MY

    2013-01-01

    Purpose: Methods for quantification of breast density on MRI using semiautomatic approaches are commonly used. In this study, the authors report on a fully automatic chest template-based method. Methods: Nonfat-suppressed breast MR images from 31 healthy women were analyzed. Among them, one case was randomly selected and used as th e template, and the remaining 30 cases were used for testing. Unlike most model-based breast segmentation methods that use the breast region as the template, the c...

  15. Automatic 3D liver location and segmentation via convolutional neural network and graph cut.

    Science.gov (United States)

    Lu, Fang; Wu, Fa; Hu, Peijun; Peng, Zhiyi; Kong, Dexing

    2017-02-01

    Segmentation of the liver from abdominal computed tomography (CT) images is an essential step in some computer-assisted clinical interventions, such as surgery planning for living donor liver transplant, radiotherapy and volume measurement. In this work, we develop a deep learning algorithm with graph cut refinement to automatically segment the liver in CT scans. The proposed method consists of two main steps: (i) simultaneously liver detection and probabilistic segmentation using 3D convolutional neural network; (ii) accuracy refinement of the initial segmentation with graph cut and the previously learned probability map. The proposed approach was validated on forty CT volumes taken from two public databases MICCAI-Sliver07 and 3Dircadb1. For the MICCAI-Sliver07 test dataset, the calculated mean ratios of volumetric overlap error (VOE), relative volume difference (RVD), average symmetric surface distance (ASD), root-mean-square symmetric surface distance (RMSD) and maximum symmetric surface distance (MSD) are 5.9, 2.7 %, 0.91, 1.88 and 18.94 mm, respectively. For the 3Dircadb1 dataset, the calculated mean ratios of VOE, RVD, ASD, RMSD and MSD are 9.36, 0.97 %, 1.89, 4.15 and 33.14 mm, respectively. The proposed method is fully automatic without any user interaction. Quantitative results reveal that the proposed approach is efficient and accurate for hepatic volume estimation in a clinical setup. The high correlation between the automatic and manual references shows that the proposed method can be good enough to replace the time-consuming and nonreproducible manual segmentation method.

  16. Brain-inspired speech segmentation for automatic speech recognition using the speech envelope as a temporal reference

    OpenAIRE

    Byeongwook Lee; Kwang-Hyun Cho

    2016-01-01

    Speech segmentation is a crucial step in automatic speech recognition because additional speech analyses are performed for each framed speech segment. Conventional segmentation techniques primarily segment speech using a fixed frame size for computational simplicity. However, this approach is insufficient for capturing the quasi-regular structure of speech, which causes substantial recognition failure in noisy environments. How does the brain handle quasi-regular structured speech and maintai...

  17. Robust semi-automatic segmentation of single- and multichannel MRI volumes through adaptable class-specific representation

    Science.gov (United States)

    Nielsen, Casper F.; Passmore, Peter J.

    2002-05-01

    Segmentation of MRI volumes is complicated by noise, inhomogeneity and partial volume artefacts. Fully or semi-automatic methods often require time consuming or unintuitive initialization. Adaptable Class-Specific Representation (ACSR) is a semi-automatic segmentation framework implemented by the Path Growing Algorithm (PGA), which reduces artefacts near segment boundaries. The user visually defines the desired segment classes through the selection of class templates and the following segmentation process is fully automatic. Good results have previously been achieved with color cryo section segmentation and ACSR has been developed further for the MRI modality. In this paper we present two optimizations for robust ACSR segmentation of MRI volumes. Automatic template creation based on an initial segmentation step using Learning Vector Quantization is applied for higher robustness to noise. Inhomogeneity correction is added as a pre-processing step, comparing the EQ and N3 algorithms. Results based on simulated T1-weighed and multispectral (T1 and T2) MRI data from the BrainWeb database and real data from the Internet Brain Segmentation Repository are presented. We show that ACSR segmentation compares favorably to previously published results on the same volumes and discuss the pros and cons of using quantitative ground truth evaluation compared to qualitative visual assessment.

  18. Automatic Lung Tumor Segmentation on PET/CT Images Using Fuzzy Markov Random Field Model

    Directory of Open Access Journals (Sweden)

    Yu Guo

    2014-01-01

    Full Text Available The combination of positron emission tomography (PET and CT images provides complementary functional and anatomical information of human tissues and it has been used for better tumor volume definition of lung cancer. This paper proposed a robust method for automatic lung tumor segmentation on PET/CT images. The new method is based on fuzzy Markov random field (MRF model. The combination of PET and CT image information is achieved by using a proper joint posterior probability distribution of observed features in the fuzzy MRF model which performs better than the commonly used Gaussian joint distribution. In this study, the PET and CT simulation images of 7 non-small cell lung cancer (NSCLC patients were used to evaluate the proposed method. Tumor segmentations with the proposed method and manual method by an experienced radiation oncologist on the fused images were performed, respectively. Segmentation results obtained with the two methods were similar and Dice’s similarity coefficient (DSC was 0.85 ± 0.013. It has been shown that effective and automatic segmentations can be achieved with this method for lung tumors which locate near other organs with similar intensities in PET and CT images, such as when the tumors extend into chest wall or mediastinum.

  19. Automatic Nuclear Segmentation Using Multiscale Radial Line Scanning With Dynamic Programming.

    Science.gov (United States)

    Xu, Hongming; Lu, Cheng; Berendt, Richard; Jha, Naresh; Mandal, Mrinal

    2017-10-01

    In the diagnosis of various cancers by analyzing histological images, automatic nuclear segmentation is an important step. However, nuclear segmentation is a difficult problem because of overlapping nuclei, inhomogeneous staining, and presence of noisy pixels and other tissue components. In this paper, we present an automatic technique for nuclear segmentation in skin histological images. The proposed technique first applies a bank of generalized Laplacian of Gaussian kernels to detect nuclear seeds. Based on the detected nuclear seeds, a multiscale radial line scanning method combined with dynamic programming is applied to extract a set of candidate nuclear boundaries. The gradient, intensity, and shape information are then integrated to determine the optimal boundary for each nucleus in the image. Nuclear overlap limitation is finally imposed based on a Dice coefficient measure such that the obtained nuclear contours do not severely intersect with each other. Experiments have been thoroughly performed on two datasets with H&E and Ki-67 stained images, which show that the proposed technique is superior to conventional schemes of nuclear segmentation.

  20. Automatic Skin Lesion Segmentation Using Deep Fully Convolutional Networks With Jaccard Distance.

    Science.gov (United States)

    Yuan, Yading; Chao, Ming; Lo, Yeh-Chi

    2017-09-01

    Automatic skin lesion segmentation in dermoscopic images is a challenging task due to the low contrast between lesion and the surrounding skin, the irregular and fuzzy lesion borders, the existence of various artifacts, and various imaging acquisition conditions. In this paper, we present a fully automatic method for skin lesion segmentation by leveraging 19-layer deep convolutional neural networks that is trained end-to-end and does not rely on prior knowledge of the data. We propose a set of strategies to ensure effective and efficient learning with limited training data. Furthermore, we design a novel loss function based on Jaccard distance to eliminate the need of sample re-weighting, a typical procedure when using cross entropy as the loss function for image segmentation due to the strong imbalance between the number of foreground and background pixels. We evaluated the effectiveness, efficiency, as well as the generalization capability of the proposed framework on two publicly available databases. One is from ISBI 2016 skin lesion analysis towards melanoma detection challenge, and the other is the PH2 database. Experimental results showed that the proposed method outperformed other state-of-the-art algorithms on these two databases. Our method is general enough and only needs minimum pre- and post-processing, which allows its adoption in a variety of medical image segmentation tasks.

  1. A two-step procedure for automatic and accurate segmentation of volumetric CLSM biofilm images.

    Science.gov (United States)

    Yerly, Jerome; Hu, Yaoping; Jones, Steven M; Martinuzzi, Robert J

    2007-09-01

    This paper presents a robust two-step segmentation procedure for the study of biofilm structure. Without user intervention, the procedure segments volumetric biofilm images generated by a confocal laser scanning microscopy (CLSM). This automated procedure implements an anisotropic diffusion filter as a preprocessing step and a 3D extension of the Otsu method for thresholding. Applying the anisotropic diffusion filter to even low-contrast CLSM images significantly improves the segmentation obtained with the 3D Otsu method. A comparison of the results for several CLSM data sets demonstrated that the accuracy of this procedure, unlike that of the objective threshold selection algorithm (OTS), is not affected by biofilm coverage levels and thus fills an important gap in developing a robust and objective segmenting procedure. The effectiveness of the present segmentation procedure is shown for CLSM images containing different bacterial strains. The image saturation handling capability of this procedure relaxes the constraints on user-selected gain and intensity settings of a CLSM. Therefore, this two-step procedure provides an automatic and accurate segmentation of biofilms that is independent of biofilm coverage levels and, in turn, lays a solid foundation for achieving objective analysis of biofilm structural parameters.

  2. Segmentation of retinal blood vessels using normalized Gabor filters and automatic thresholding

    Directory of Open Access Journals (Sweden)

    Mandlenkosi Victor Gwetu

    2014-12-01

    Full Text Available Although computerized retinal image blood vessel segmentation has been extensively researched, there is still room for improvement in the quality of the segmented images. Since retinal image analysis is still widely used in the diagnosis of diabetic retinopathy, efficient and accurate image characterization techniques are required. Previous work has mainly focused on improving segmentation accuracy rates with little regard to the false positives that are produced by illumination variation. This research work presents a hybrid approach towards the segmentation of retinal blood vessels. New approaches towards the reduction of background illumination variation are proposed using normalized Gabor filtering. These are the base-offset encoding and a modified version of an existing zero-integral kernel technique. The valley emphasis automatic thresholding scheme is used to segment the Gabor response images. Experiments are conducted on the DRIVE and STARE retinal image data sets. Accuracy rates of up to 94% are achieved through the zero-integral and base offset methods. This is comparable with results from literature, where the same data sets are segmented using other classification techniques. The median-offset method is found to most effectively reduce background illumination variation.

  3. Automatic layer segmentation of H&E microscopic images of mice skin

    Science.gov (United States)

    Hussein, Saif; Selway, Joanne; Jassim, Sabah; Al-Assam, Hisham

    2016-05-01

    Mammalian skin is a complex organ composed of a variety of cells and tissue types. The automatic detection and quantification of changes in skin structures has a wide range of applications for biological research. To accurately segment and quantify nuclei, sebaceous gland, hair follicles, and other skin structures, there is a need for a reliable segmentation of different skin layers. This paper presents an efficient segmentation algorithm to segment the three main layers of mice skin, namely epidermis, dermis, and subcutaneous layers. It also segments the epidermis layer into two sub layers, basal and cornified layers. The proposed algorithm uses adaptive colour deconvolution technique on H&E stain images to separate different tissue structures, inter-modes and Otsu thresholding techniques were effectively combined to segment the layers. It then uses a set of morphological and logical operations on each layer to removing unwanted objects. A dataset of 7000 H&E microscopic images of mutant and wild type mice were used to evaluate the effectiveness of the algorithm. Experimental results examined by domain experts have confirmed the viability of the proposed algorithms.

  4. Body Composition Assessment in Axial CT Images Using FEM-Based Automatic Segmentation of Skeletal Muscle.

    Science.gov (United States)

    Popuri, Karteek; Cobzas, Dana; Esfandiari, Nina; Baracos, Vickie; Jägersand, Martin

    2016-02-01

    The proportions of muscle and fat tissues in the human body, referred to as body composition is a vital measurement for cancer patients. Body composition has been recently linked to patient survival and the onset/recurrence of several types of cancers in numerous cancer research studies. This paper introduces a fully automatic framework for the segmentation of muscle and fat tissues from CT images to estimate body composition. We developed a novel finite element method (FEM) deformable model that incorporates a priori shape information via a statistical deformation model (SDM) within the template-based segmentation framework. The proposed method was validated on 1000 abdominal and 530 thoracic CT images and we obtained very good segmentation results with Jaccard scores in excess of 90% for both the muscle and fat regions.

  5. Automatic temporal segment detection via bilateral long short-term memory recurrent neural networks

    Science.gov (United States)

    Sun, Bo; Cao, Siming; He, Jun; Yu, Lejun; Li, Liandong

    2017-03-01

    Constrained by the physiology, the temporal factors associated with human behavior, irrespective of facial movement or body gesture, are described by four phases: neutral, onset, apex, and offset. Although they may benefit related recognition tasks, it is not easy to accurately detect such temporal segments. An automatic temporal segment detection framework using bilateral long short-term memory recurrent neural networks (BLSTM-RNN) to learn high-level temporal-spatial features, which synthesizes the local and global temporal-spatial information more efficiently, is presented. The framework is evaluated in detail over the face and body database (FABO). The comparison shows that the proposed framework outperforms state-of-the-art methods for solving the problem of temporal segment detection.

  6. Automatic corpus callosum segmentation using a deformable active Fourier contour model.

    Science.gov (United States)

    Vachet, Clement; Yvernault, Benjamin; Bhatt, Kshamta; Smith, Rachel G; Gerig, Guido; Hazlett, Heather Cody; Styner, Martin

    2012-03-23

    The corpus callosum (CC) is a structure of interest in many neuroimaging studies of neuro-developmental pathology such as autism. It plays an integral role in relaying sensory, motor and cognitive information from homologous regions in both hemispheres. We have developed a framework that allows automatic segmentation of the corpus callosum and its lobar subdivisions. Our approach employs constrained elastic deformation of flexible Fourier contour model, and is an extension of Szekely's 2D Fourier descriptor based Active Shape Model. The shape and appearance model, derived from a large mixed population of 150+ subjects, is described with complex Fourier descriptors in a principal component shape space. Using MNI space aligned T1w MRI data, the CC segmentation is initialized on the mid-sagittal plane using the tissue segmentation. A multi-step optimization strategy, with two constrained steps and a final unconstrained step, is then applied. If needed, interactive segmentation can be performed via contour repulsion points. Lobar connectivity based parcellation of the corpus callosum can finally be computed via the use of a probabilistic CC subdivision model. Our analysis framework has been integrated in an open-source, end-to-end application called CCSeg both with a command line and Qt-based graphical user interface (available on NITRC). A study has been performed to quantify the reliability of the semi-automatic segmentation on a small pediatric dataset. Using 5 subjects randomly segmented 3 times by two experts, the intra-class correlation coefficient showed a superb reliability (0.99). CCSeg is currently applied to a large longitudinal pediatric study of brain development in autism.

  7. Automatic corpus callosum segmentation using a deformable active Fourier contour model

    Science.gov (United States)

    Vachet, Clement; Yvernault, Benjamin; Bhatt, Kshamta; Smith, Rachel G.; Gerig, Guido; Cody Hazlett, Heather; Styner, Martin

    2012-03-01

    The corpus callosum (CC) is a structure of interest in many neuroimaging studies of neuro-developmental pathology such as autism. It plays an integral role in relaying sensory, motor and cognitive information from homologous regions in both hemispheres. We have developed a framework that allows automatic segmentation of the corpus callosum and its lobar subdivisions. Our approach employs constrained elastic deformation of flexible Fourier contour model, and is an extension of Szekely's 2D Fourier descriptor based Active Shape Model. The shape and appearance model, derived from a large mixed population of 150+ subjects, is described with complex Fourier descriptors in a principal component shape space. Using MNI space aligned T1w MRI data, the CC segmentation is initialized on the mid-sagittal plane using the tissue segmentation. A multi-step optimization strategy, with two constrained steps and a final unconstrained step, is then applied. If needed, interactive segmentation can be performed via contour repulsion points. Lobar connectivity based parcellation of the corpus callosum can finally be computed via the use of a probabilistic CC subdivision model. Our analysis framework has been integrated in an open-source, end-to-end application called CCSeg both with a command line and Qt-based graphical user interface (available on NITRC). A study has been performed to quantify the reliability of the semi-automatic segmentation on a small pediatric dataset. Using 5 subjects randomly segmented 3 times by two experts, the intra-class correlation coefficient showed a superb reliability (0.99). CCSeg is currently applied to a large longitudinal pediatric study of brain development in autism.

  8. Automatic segmentation of dynamic neuroreceptor single-photon emission tomography images using fuzzy clustering

    International Nuclear Information System (INIS)

    Acton, P.D.; Pilowsky, L.S.; Kung, H.F.; Ell, P.J.

    1999-01-01

    The segmentation of medical images is one of the most important steps in the analysis and quantification of imaging data. However, partial volume artefacts make accurate tissue boundary definition difficult, particularly for images with lower resolution commonly used in nuclear medicine. In single-photon emission tomography (SPET) neuroreceptor studies, areas of specific binding are usually delineated by manually drawing regions of interest (ROIs), a time-consuming and subjective process. This paper applies the technique of fuzzy c-means clustering (FCM) to automatically segment dynamic neuroreceptor SPET images. Fuzzy clustering was tested using a realistic, computer-generated, dynamic SPET phantom derived from segmenting an MR image of an anthropomorphic brain phantom. Also, the utility of applying FCM to real clinical data was assessed by comparison against conventional ROI analysis of iodine-123 iodobenzamide (IBZM) binding to dopamine D 2 /D 3 receptors in the brains of humans. In addition, a further test of the methodology was assessed by applying FCM segmentation to [ 123 I]IDAM images (5-iodo-2-[[2-2-[(dimethylamino)methyl]phenyl]thio] benzyl alcohol) of serotonin transporters in non-human primates. In the simulated dynamic SPET phantom, over a wide range of counts and ratios of specific binding to background, FCM correlated very strongly with the true counts (correlation coefficient r 2 >0.99, P 123 I]IBZM data comparable with manual ROI analysis, with the binding ratios derived from both methods significantly correlated (r 2 =0.83, P<0.0001). Fuzzy clustering is a powerful tool for the automatic, unsupervised segmentation of dynamic neuroreceptor SPET images. Where other automated techniques fail completely, and manual ROI definition would be highly subjective, FCM is capable of segmenting noisy images in a robust and repeatable manner. (orig.)

  9. Efficient workflow for automatic segmentation of the right heart based on 2D echocardiography.

    Science.gov (United States)

    Danilov, Viacheslav V; Skirnevskiy, Igor P; Gerget, Olga M; Shelomentcev, Egor E; Kolpashchikov, Dmitrii Yu; Vasilyev, Nikolay V

    2018-02-10

    The present study aimed to present a workflow algorithm for automatic processing of 2D echocardiography images. The workflow was based on several sequential steps. For each step, we compared different approaches. Epicardial 2D echocardiography datasets were acquired during various open-chest beating-heart surgical procedures in three porcine hearts. We proposed a metric called the global index that is a weighted average of several accuracy coefficients, indices and the mean processing time. This metric allows the estimation of the speed and accuracy for processing each image. The global index ranges from 0 to 1, which facilitates comparison between different approaches. The second step involved comparison among filtering, sharpening and segmentation techniques. During the noise reduction step, we compared the median filter, total variation filter, bilateral filter, curvature flow filter, non-local means filter and mean shift filter. To clarify the endocardium borders of the right heart, we used the linear sharpen. Lastly, we applied watershed segmentation, clusterisation, region-growing, morphological segmentation, image foresting segmentation and isoline delineation. We assessed all the techniques and identified the most appropriate workflow for echocardiography image segmentation of the right heart. For successful processing and segmentation of echocardiography images with minimal error, we found that the workflow should include the total variation filter/bilateral filter, linear sharpen technique, isoline delineation/region-growing segmentation and morphological post-processing. We presented an efficient and accurate workflow for the precise diagnosis of cardiovascular diseases. We introduced the global index metric for image pre-processing and segmentation estimation.

  10. Anatomy-guided joint tissue segmentation and topological correction for 6-month infant brain MRI with risk of autism.

    Science.gov (United States)

    Wang, Li; Li, Gang; Adeli, Ehsan; Liu, Mingxia; Wu, Zhengwang; Meng, Yu; Lin, Weili; Shen, Dinggang

    2018-03-08

    Tissue segmentation of infant brain MRIs with risk of autism is critically important for characterizing early brain development and identifying biomarkers. However, it is challenging due to low tissue contrast caused by inherent ongoing myelination and maturation. In particular, at around 6 months of age, the voxel intensities in both gray matter and white matter are within similar ranges, thus leading to the lowest image contrast in the first postnatal year. Previous studies typically employed intensity images and tentatively estimated tissue probabilities to train a sequence of classifiers for tissue segmentation. However, the important prior knowledge of brain anatomy is largely ignored during the segmentation. Consequently, the segmentation accuracy is still limited and topological errors frequently exist, which will significantly degrade the performance of subsequent analyses. Although topological errors could be partially handled by retrospective topological correction methods, their results may still be anatomically incorrect. To address these challenges, in this article, we propose an anatomy-guided joint tissue segmentation and topological correction framework for isointense infant MRI. Particularly, we adopt a signed distance map with respect to the outer cortical surface as anatomical prior knowledge, and incorporate such prior information into the proposed framework to guide segmentation in ambiguous regions. Experimental results on the subjects acquired from National Database for Autism Research demonstrate the effectiveness to topological errors and also some levels of robustness to motion. Comparisons with the state-of-the-art methods further demonstrate the advantages of the proposed method in terms of both segmentation accuracy and topological correctness. © 2018 Wiley Periodicals, Inc.

  11. Template-based automatic breast segmentation on MRI by excluding the chest region

    International Nuclear Information System (INIS)

    Lin, Muqing; Chen, Jeon-Hor; Wang, Xiaoyong; Su, Min-Ying; Chan, Siwa; Chen, Siping

    2013-01-01

    Purpose: Methods for quantification of breast density on MRI using semiautomatic approaches are commonly used. In this study, the authors report on a fully automatic chest template-based method. Methods: Nonfat-suppressed breast MR images from 31 healthy women were analyzed. Among them, one case was randomly selected and used as the template, and the remaining 30 cases were used for testing. Unlike most model-based breast segmentation methods that use the breast region as the template, the chest body region on a middle slice was used as the template. Within the chest template, three body landmarks (thoracic spine and bilateral boundary of the pectoral muscle) were identified for performing the initial V-shape cut to determine the posterior lateral boundary of the breast. The chest template was mapped to each subject's image space to obtain a subject-specific chest model for exclusion. On the remaining image, the chest wall muscle was identified and excluded to obtain clean breast segmentation. The chest and muscle boundaries determined on the middle slice were used as the reference for the segmentation of adjacent slices, and the process continued superiorly and inferiorly until all 3D slices were segmented. The segmentation results were evaluated by an experienced radiologist to mark voxels that were wrongly included or excluded for error analysis. Results: The breast volumes measured by the proposed algorithm were very close to the radiologist's corrected volumes, showing a % difference ranging from 0.01% to 3.04% in 30 tested subjects with a mean of 0.86% ± 0.72%. The total error was calculated by adding the inclusion and the exclusion errors (so they did not cancel each other out), which ranged from 0.05% to 6.75% with a mean of 3.05% ± 1.93%. The fibroglandular tissue segmented within the breast region determined by the algorithm and the radiologist were also very close, showing a % difference ranging from 0.02% to 2.52% with a mean of 1.03% ± 1.03%. The

  12. A multimodality segmentation framework for automatic target delineation in head and neck radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jinzhong; Aristophanous, Michalis, E-mail: MAristophanous@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Beadle, Beth M.; Garden, Adam S. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States); Schwartz, David L. [Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390 (United States)

    2015-09-15

    Purpose: To develop an automatic segmentation algorithm integrating imaging information from computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI) to delineate target volume in head and neck cancer radiotherapy. Methods: Eleven patients with unresectable disease at the tonsil or base of tongue who underwent MRI, CT, and PET/CT within two months before the start of radiotherapy or chemoradiotherapy were recruited for the study. For each patient, PET/CT and T1-weighted contrast MRI scans were first registered to the planning CT using deformable and rigid registration, respectively, to resample the PET and magnetic resonance (MR) images to the planning CT space. A binary mask was manually defined to identify the tumor area. The resampled PET and MR images, the planning CT image, and the binary mask were fed into the automatic segmentation algorithm for target delineation. The algorithm was based on a multichannel Gaussian mixture model and solved using an expectation–maximization algorithm with Markov random fields. To evaluate the algorithm, we compared the multichannel autosegmentation with an autosegmentation method using only PET images. The physician-defined gross tumor volume (GTV) was used as the “ground truth” for quantitative evaluation. Results: The median multichannel segmented GTV of the primary tumor was 15.7 cm{sup 3} (range, 6.6–44.3 cm{sup 3}), while the PET segmented GTV was 10.2 cm{sup 3} (range, 2.8–45.1 cm{sup 3}). The median physician-defined GTV was 22.1 cm{sup 3} (range, 4.2–38.4 cm{sup 3}). The median difference between the multichannel segmented and physician-defined GTVs was −10.7%, not showing a statistically significant difference (p-value = 0.43). However, the median difference between the PET segmented and physician-defined GTVs was −19.2%, showing a statistically significant difference (p-value =0.0037). The median Dice similarity coefficient between the multichannel segmented

  13. Automatic tissue segmentation of neonate brain MR Images with subject-specific atlases

    Science.gov (United States)

    Cherel, Marie; Budin, Francois; Prastawa, Marcel; Gerig, Guido; Lee, Kevin; Buss, Claudia; Lyall, Amanda; Zaldarriaga Consing, Kirsten; Styner, Martin

    2015-03-01

    Automatic tissue segmentation of the neonate brain using Magnetic Resonance Images (MRI) is extremely important to study brain development and perform early diagnostics but is challenging due to high variability and inhomogeneity in contrast throughout the image due to incomplete myelination of the white matter tracts. For these reasons, current methods often totally fail or give unsatisfying results. Furthermore, most of the subcortical midbrain structures are misclassified due to a lack of contrast in these regions. We have developed a novel method that creates a probabilistic subject-specific atlas based on a population atlas currently containing a number of manually segmented cases. The generated subject-specific atlas is sharp and adapted to the subject that is being processed. We then segment brain tissue classes using the newly created atlas with a single-atlas expectation maximization based method. Our proposed method leads to a much lower failure rate in our experiments. The overall segmentation results are considerably improved when compared to using a non-subject-specific, population average atlas. Additionally, we have incorporated diffusion information obtained from Diffusion Tensor Images (DTI) to improve the detection of white matter that is not visible at this early age in structural MRI (sMRI) due to a lack of myelination. Although this necessitates the acquisition of an additional sequence, the diffusion information improves the white matter segmentation throughout the brain, especially for the mid-brain structures such as the corpus callosum and the internal capsule.

  14. Semi-automatic geographic atrophy segmentation for SD-OCT images.

    Science.gov (United States)

    Chen, Qiang; de Sisternes, Luis; Leng, Theodore; Zheng, Luoluo; Kutzscher, Lauren; Rubin, Daniel L

    2013-01-01

    Geographic atrophy (GA) is a condition that is associated with retinal thinning and loss of the retinal pigment epithelium (RPE) layer. It appears in advanced stages of non-exudative age-related macular degeneration (AMD) and can lead to vision loss. We present a semi-automated GA segmentation algorithm for spectral-domain optical coherence tomography (SD-OCT) images. The method first identifies and segments a surface between the RPE and the choroid to generate retinal projection images in which the projection region is restricted to a sub-volume of the retina where the presence of GA can be identified. Subsequently, a geometric active contour model is employed to automatically detect and segment the extent of GA in the projection images. Two image data sets, consisting on 55 SD-OCT scans from twelve eyes in eight patients with GA and 56 SD-OCT scans from 56 eyes in 56 patients with GA, respectively, were utilized to qualitatively and quantitatively evaluate the proposed GA segmentation method. Experimental results suggest that the proposed algorithm can achieve high segmentation accuracy. The mean GA overlap ratios between our proposed method and outlines drawn in the SD-OCT scans, our method and outlines drawn in the fundus auto-fluorescence (FAF) images, and the commercial software (Carl Zeiss Meditec proprietary software, Cirrus version 6.0) and outlines drawn in FAF images were 72.60%, 65.88% and 59.83%, respectively.

  15. Automatic prostate MR image segmentation with sparse label propagation and domain-specific manifold regularization.

    Science.gov (United States)

    Liao, Shu; Gao, Yaozong; Shi, Yinghuan; Yousuf, Ambereen; Karademir, Ibrahim; Oto, Aytekin; Shen, Dinggang

    2013-01-01

    Automatic prostate segmentation in MR images plays an important role in prostate cancer diagnosis. However, there are two main challenges: (1) Large inter-subject prostate shape variations; (2) Inhomogeneous prostate appearance. To address these challenges, we propose a new hierarchical prostate MR segmentation method, with the main contributions lying in the following aspects: First, the most salient features are learnt from atlases based on a subclass discriminant analysis (SDA) method, which aims to find a discriminant feature subspace by simultaneously maximizing the inter-class distance and minimizing the intra-class variations. The projected features, instead of only voxel-wise intensity, will be served as anatomical signature of each voxel. Second, based on the projected features, a new multi-atlases sparse label fusion framework is proposed to estimate the prostate likelihood of each voxel in the target image from the coarse level. Third, a domain-specific semi-supervised manifold regularization method is proposed to incorporate the most reliable patient-specific information identified by the prostate likelihood map to refine the segmentation result from the fine level. Our method is evaluated on a T2 weighted prostate MR image dataset consisting of 66 patients and compared with two state-of-the-art segmentation methods. Experimental results show that our method consistently achieves the highest segmentation accuracies than other methods under comparison.

  16. Image Based Hair Segmentation Algorithm for the Application of Automatic Facial Caricature Synthesis

    Directory of Open Access Journals (Sweden)

    Yehu Shen

    2014-01-01

    Full Text Available Hair is a salient feature in human face region and are one of the important cues for face analysis. Accurate detection and presentation of hair region is one of the key components for automatic synthesis of human facial caricature. In this paper, an automatic hair detection algorithm for the application of automatic synthesis of facial caricature based on a single image is proposed. Firstly, hair regions in training images are labeled manually and then the hair position prior distributions and hair color likelihood distribution function are estimated from these labels efficiently. Secondly, the energy function of the test image is constructed according to the estimated prior distributions of hair location and hair color likelihood. This energy function is further optimized according to graph cuts technique and initial hair region is obtained. Finally, K-means algorithm and image postprocessing techniques are applied to the initial hair region so that the final hair region can be segmented precisely. Experimental results show that the average processing time for each image is about 280 ms and the average hair region detection accuracy is above 90%. The proposed algorithm is applied to a facial caricature synthesis system. Experiments proved that with our proposed hair segmentation algorithm the facial caricatures are vivid and satisfying.

  17. Image Based Hair Segmentation Algorithm for the Application of Automatic Facial Caricature Synthesis

    Science.gov (United States)

    Peng, Zhenyun; Zhang, Yaohui

    2014-01-01

    Hair is a salient feature in human face region and are one of the important cues for face analysis. Accurate detection and presentation of hair region is one of the key components for automatic synthesis of human facial caricature. In this paper, an automatic hair detection algorithm for the application of automatic synthesis of facial caricature based on a single image is proposed. Firstly, hair regions in training images are labeled manually and then the hair position prior distributions and hair color likelihood distribution function are estimated from these labels efficiently. Secondly, the energy function of the test image is constructed according to the estimated prior distributions of hair location and hair color likelihood. This energy function is further optimized according to graph cuts technique and initial hair region is obtained. Finally, K-means algorithm and image postprocessing techniques are applied to the initial hair region so that the final hair region can be segmented precisely. Experimental results show that the average processing time for each image is about 280 ms and the average hair region detection accuracy is above 90%. The proposed algorithm is applied to a facial caricature synthesis system. Experiments proved that with our proposed hair segmentation algorithm the facial caricatures are vivid and satisfying. PMID:24592182

  18. Automatic segmentation of the lumen region in intravascular images of the coronary artery.

    Science.gov (United States)

    Jodas, Danilo Samuel; Pereira, Aledir Silveira; Tavares, João Manuel R S

    2017-08-01

    Image assessment of the arterial system plays an important role in the diagnosis of cardiovascular diseases. The segmentation of the lumen and media-adventitia in intravascular (IVUS) images of the coronary artery is the first step towards the evaluation of the morphology of the vessel under analysis and the identification of possible atherosclerotic lesions. In this study, a fully automatic method for the segmentation of the lumen in IVUS images of the coronary artery is presented. The proposed method relies on the K-means algorithm and the mean roundness to identify the region corresponding to the potential lumen. An approach to identify and eliminate side branches on bifurcations is also proposed to delimit the area with the potential lumen regions. Additionally, an active contour model is applied to refine the contour of the lumen region. In order to evaluate the segmentation accuracy, the results of the proposed method were compared against manual delineations made by two experts in 326 IVUS images of the coronary artery. The average values of the Jaccard measure, Hausdorff distance, percentage of area difference and Dice coefficient were 0.88 ± 0.06, 0.29 ± 0.17  mm, 0.09 ± 0.07 and 0.94 ± 0.04, respectively, in 324 IVUS images successfully segmented. Additionally, a comparison with the studies found in the literature showed that the proposed method is slight better than the majority of the related methods that have been proposed. Hence, the new automatic segmentation method is shown to be effective in detecting the lumen in IVUS images without using complex solutions and user interaction. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Contrast-based fully automatic segmentation of white matter hyperintensities: method and validation.

    Directory of Open Access Journals (Sweden)

    Thomas Samaille

    Full Text Available White matter hyperintensities (WMH on T2 or FLAIR sequences have been commonly observed on MR images of elderly people. They have been associated with various disorders and have been shown to be a strong risk factor for stroke and dementia. WMH studies usually required visual evaluation of WMH load or time-consuming manual delineation. This paper introduced WHASA (White matter Hyperintensities Automated Segmentation Algorithm, a new method for automatically segmenting WMH from FLAIR and T1 images in multicentre studies. Contrary to previous approaches that were based on intensities, this method relied on contrast: non linear diffusion filtering alternated with watershed segmentation to obtain piecewise constant images with increased contrast between WMH and surroundings tissues. WMH were then selected based on subject dependant automatically computed threshold and anatomical information. WHASA was evaluated on 67 patients from two studies, acquired on six different MRI scanners and displaying a wide range of lesion load. Accuracy of the segmentation was assessed through volume and spatial agreement measures with respect to manual segmentation; an intraclass correlation coefficient (ICC of 0.96 and a mean similarity index (SI of 0.72 were obtained. WHASA was compared to four other approaches: Freesurfer and a thresholding approach as unsupervised methods; k-nearest neighbours (kNN and support vector machines (SVM as supervised ones. For these latter, influence of the training set was also investigated. WHASA clearly outperformed both unsupervised methods, while performing at least as good as supervised approaches (ICC range: 0.87-0.91 for kNN; 0.89-0.94 for SVM. Mean SI: 0.63-0.71 for kNN, 0.67-0.72 for SVM, and did not need any training set.

  20. SU-E-J-129: Atlas Development for Cardiac Automatic Contouring Using Multi-Atlas Segmentation

    International Nuclear Information System (INIS)

    Zhou, R; Yang, J; Pan, T; Milgrom, S; Pinnix, C; Shi, A; Yang, J; Liu, Y; Nguyen, Q; Gomez, D; Dabaja, B; Balter, P; Court, L; Liao, Z

    2015-01-01

    Purpose: To develop a set of atlases for automatic contouring of cardiac structures to determine heart radiation dose and the associated toxicity. Methods: Six thoracic cancer patients with both contrast and non-contrast CT images were acquired for this study. Eight radiation oncologists manually and independently delineated cardiac contours on the non-contrast CT by referring to the fused contrast CT and following the RTOG 1106 atlas contouring guideline. Fifteen regions of interest (ROIs) were delineated, including heart, four chambers, four coronary arteries, pulmonary artery and vein, inferior and superior vena cava, and ascending and descending aorta. Individual expert contours were fused using the simultaneous truth and performance level estimation (STAPLE) algorithm for each ROI and each patient. The fused contours became atlases for an in-house multi-atlas segmentation. Using leave-one-out test, we generated auto-segmented contours for each ROI and each patient. The auto-segmented contours were compared with the fused contours using the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Results: Inter-observer variability was not obvious for heart, chambers, and aorta but was large for other structures that were not clearly distinguishable on CT image. The average DSC between individual expert contours and the fused contours were less than 50% for coronary arteries and pulmonary vein, and the average MSD were greater than 4.0 mm. The largest MSD of expert contours deviating from the fused contours was 2.5 cm. The mean DSC and MSD of auto-segmented contours were within one standard deviation of expert contouring variability except the right coronary artery. The coronary arteries, vena cava, and pulmonary vein had DSC<70% and MSD>3.0 mm. Conclusion: A set of cardiac atlases was created for cardiac automatic contouring, the accuracy of which was comparable to the variability in expert contouring. However, substantial modification may need

  1. Automatic segmentation of myocardium at risk from contrast enhanced SSFP CMR: validation against expert readers and SPECT

    International Nuclear Information System (INIS)

    Tufvesson, Jane; Carlsson, Marcus; Aletras, Anthony H.; Engblom, Henrik; Deux, Jean-François; Koul, Sasha; Sörensson, Peder; Pernow, John; Atar, Dan; Erlinge, David; Arheden, Håkan; Heiberg, Einar

    2016-01-01

    Efficacy of reperfusion therapy can be assessed as myocardial salvage index (MSI) by determining the size of myocardium at risk (MaR) and myocardial infarction (MI), (MSI = 1-MI/MaR). Cardiovascular magnetic resonance (CMR) can be used to assess MI by late gadolinium enhancement (LGE) and MaR by either T2-weighted imaging or contrast enhanced SSFP (CE-SSFP). Automatic segmentation algorithms have been developed and validated for MI by LGE as well as for MaR by T2-weighted imaging. There are, however, no algorithms available for CE-SSFP. Therefore, the aim of this study was to develop and validate automatic segmentation of MaR in CE-SSFP. The automatic algorithm applies surface coil intensity correction and classifies myocardial intensities by Expectation Maximization to define a MaR region based on a priori regional criteria, and infarct region from LGE. Automatic segmentation was validated against manual delineation by expert readers in 183 patients with reperfused acute MI from two multi-center randomized clinical trials (RCT) (CHILL-MI and MITOCARE) and against myocardial perfusion SPECT in an additional set (n = 16). Endocardial and epicardial borders were manually delineated at end-diastole and end-systole. Manual delineation of MaR was used as reference and inter-observer variability was assessed for both manual delineation and automatic segmentation of MaR in a subset of patients (n = 15). MaR was expressed as percent of left ventricular mass (%LVM) and analyzed by bias (mean ± standard deviation). Regional agreement was analyzed by Dice Similarity Coefficient (DSC) (mean ± standard deviation). MaR assessed by manual and automatic segmentation were 36 ± 10 % and 37 ± 11 %LVM respectively with bias 1 ± 6 %LVM and regional agreement DSC 0.85 ± 0.08 (n = 183). MaR assessed by SPECT and CE-SSFP automatic segmentation were 27 ± 10 %LVM and 29 ± 7 %LVM respectively with bias 2 ± 7 %LVM. Inter-observer variability was 0 ± 3 %LVM for manual delineation and

  2. Deep learning for automatic localization, identification, and segmentation of vertebral bodies in volumetric MR images

    Science.gov (United States)

    Suzani, Amin; Rasoulian, Abtin; Seitel, Alexander; Fels, Sidney; Rohling, Robert N.; Abolmaesumi, Purang

    2015-03-01

    This paper proposes an automatic method for vertebra localization, labeling, and segmentation in multi-slice Magnetic Resonance (MR) images. Prior work in this area on MR images mostly requires user interaction while our method is fully automatic. Cubic intensity-based features are extracted from image voxels. A deep learning approach is used for simultaneous localization and identification of vertebrae. The localized points are refined by local thresholding in the region of the detected vertebral column. Thereafter, a statistical multi-vertebrae model is initialized on the localized vertebrae. An iterative Expectation Maximization technique is used to register the vertebral body of the model to the image edges and obtain a segmentation of the lumbar vertebral bodies. The method is evaluated by applying to nine volumetric MR images of the spine. The results demonstrate 100% vertebra identification and a mean surface error of below 2.8 mm for 3D segmentation. Computation time is less than three minutes per high-resolution volumetric image.

  3. Automatic segmentation of left ventricle in cardiac cine MRI images based on deep learning

    Science.gov (United States)

    Zhou, Tian; Icke, Ilknur; Dogdas, Belma; Parimal, Sarayu; Sampath, Smita; Forbes, Joseph; Bagchi, Ansuman; Chin, Chih-Liang; Chen, Antong

    2017-02-01

    In developing treatment of cardiovascular diseases, short axis cine MRI has been used as a standard technique for understanding the global structural and functional characteristics of the heart, e.g. ventricle dimensions, stroke volume and ejection fraction. To conduct an accurate assessment, heart structures need to be segmented from the cine MRI images with high precision, which could be a laborious task when performed manually. Herein a fully automatic framework is proposed for the segmentation of the left ventricle from the slices of short axis cine MRI scans of porcine subjects using a deep learning approach. For training the deep learning models, which generally requires a large set of data, a public database of human cine MRI scans is used. Experiments on the 3150 cine slices of 7 porcine subjects have shown that when comparing the automatic and manual segmentations the mean slice-wise Dice coefficient is about 0.930, the point-to-curve error is 1.07 mm, and the mean slice-wise Hausdorff distance is around 3.70 mm, which demonstrates the accuracy and robustness of the proposed inter-species translational approach.

  4. Straight trajectory planning for keyhole neurosurgery in sheep with automatic brain structures segmentation

    Science.gov (United States)

    Favaro, Alberto; Lad, Akash; Formenti, Davide; Zani, Davide Danilo; De Momi, Elena

    2017-03-01

    In a translational neuroscience/neurosurgery perspective, sheep are considered good candidates to study because of the similarity between their brain and the human one. Automatic planning systems for safe keyhole neurosurgery maximize the probe/catheter distance from vessels and risky structures. This work consists in the development of a trajectories planner for straight catheters placement intended to be used for investigating the drug diffusivity mechanisms in sheep brain. Automatic brain segmentation of gray matter, white matter and cerebrospinal fluid is achieved using an online available sheep atlas. Ventricles, midbrain and cerebellum segmentation have been also carried out. The veterinary surgeon is asked to select a target point within the white matter to be reached by the probe and to define an entry area on the brain cortex. To mitigate the risk of hemorrhage during the insertion process, which can prevent the success of the insertion procedure, the trajectory planner performs a curvature analysis of the brain cortex and wipes out from the poll of possible entry points the sulci, as part of brain cortex where superficial blood vessels are naturally located. A limited set of trajectories is then computed and presented to the surgeon, satisfying an optimality criteria based on a cost function which considers the distance from critical brain areas and the whole trajectory length. The planner proved to be effective in defining rectilinear trajectories accounting for the safety constraints determined by the brain morphology. It also demonstrated a short computational time and good capability in segmenting gyri and sulci surfaces.

  5. Applications of deformable image registration: Automatic segmentation and adaptive radiation therapy

    Science.gov (United States)

    Morcos, Marc

    The contents of this thesis are best divided into two components: (i) evaluation of atlas-based segmentation and deformable contour propagation and (ii) adaptive radiation therapy using deformable electron density mapping. The first component of this thesis involves the evaluation of two commercial deformable registration systems with respect to automatic segmentation techniques. Overall, the techniques revealed that manual modifications would be required if the structures were to be used for treatment planning. The automatic segmentation methods utilized by both commercial products serve as an excellent starting point for contouring process and also reduce inter- and intra-physician variability when contouring. In the second component, we developed a framework for dose accumulation adaptive radiation therapy. By registering the planning computed tomography (CT) images to the weekly cone-beam computed tomography (CBCT) images, we were able to produce modified CBCT images which possessed CT Hounsfield units; this was achieved by using deformable image registration. Dose distributions were recalculated onto the modified CBCT images and then compared to the planned dose distributions. Results indicated that deformable electron density mapping is a feasible technique to allow dose distributions to be recalculated on pre-treatment CBCT scans.

  6. Automatic outer and inner breast tissue segmentation using multi-parametric MRI images of breast tumor patients.

    Science.gov (United States)

    Thakran, Snekha; Chatterjee, Subhajit; Singhal, Meenakshi; Gupta, Rakesh Kumar; Singh, Anup

    2018-01-01

    The objectives of the study were to develop a framework for automatic outer and inner breast tissue segmentation using multi-parametric MRI images of the breast tumor patients; and to perform breast density and tumor tissue analysis. MRI of the breast was performed on 30 patients at 3T-MRI. T1, T2 and PD-weighted(W) images, with and without fat saturation(WWFS), and dynamic-contrast-enhanced(DCE)-MRI data were acquired. The proposed automatic segmentation approach was performed in two steps. In step-1, outer segmentation of breast tissue from rest of body parts was performed on structural images (T2-W/T1-W/PD-W without fat saturation images) using automatic landmarks detection technique based on operations like profile screening, Otsu thresholding, morphological operations and empirical observation. In step-2, inner segmentation of breast tissue into fibro-glandular(FG), fatty and tumor tissue was performed. For validation of breast tissue segmentation, manual segmentation was carried out by two radiologists and similarity coefficients(Dice and Jaccard) were computed for outer as well as inner tissues. FG density and tumor volume were also computed and analyzed. The proposed outer and inner segmentation approach worked well for all the subjects and was validated by two radiologists. The average Dice and Jaccard coefficients value for outer segmentation using T2-W images, obtained by two radiologists, were 0.977 and 0.951 respectively. These coefficient values for FG tissue were 0.915 and 0.875 respectively whereas for tumor tissue, values were 0.968 and 0.95 respectively. The volume of segmented tumor ranged over 2.1 cm3-7.08 cm3. The proposed approach provided automatic outer and inner breast tissue segmentation, which enables automatic calculations of breast tissue density and tumor volume. This is a complete framework for outer and inner breast segmentation method for all structural images.

  7. Automatic outer and inner breast tissue segmentation using multi-parametric MRI images of breast tumor patients.

    Directory of Open Access Journals (Sweden)

    Snekha Thakran

    Full Text Available The objectives of the study were to develop a framework for automatic outer and inner breast tissue segmentation using multi-parametric MRI images of the breast tumor patients; and to perform breast density and tumor tissue analysis. MRI of the breast was performed on 30 patients at 3T-MRI. T1, T2 and PD-weighted(W images, with and without fat saturation(WWFS, and dynamic-contrast-enhanced(DCE-MRI data were acquired. The proposed automatic segmentation approach was performed in two steps. In step-1, outer segmentation of breast tissue from rest of body parts was performed on structural images (T2-W/T1-W/PD-W without fat saturation images using automatic landmarks detection technique based on operations like profile screening, Otsu thresholding, morphological operations and empirical observation. In step-2, inner segmentation of breast tissue into fibro-glandular(FG, fatty and tumor tissue was performed. For validation of breast tissue segmentation, manual segmentation was carried out by two radiologists and similarity coefficients(Dice and Jaccard were computed for outer as well as inner tissues. FG density and tumor volume were also computed and analyzed. The proposed outer and inner segmentation approach worked well for all the subjects and was validated by two radiologists. The average Dice and Jaccard coefficients value for outer segmentation using T2-W images, obtained by two radiologists, were 0.977 and 0.951 respectively. These coefficient values for FG tissue were 0.915 and 0.875 respectively whereas for tumor tissue, values were 0.968 and 0.95 respectively. The volume of segmented tumor ranged over 2.1 cm3-7.08 cm3. The proposed approach provided automatic outer and inner breast tissue segmentation, which enables automatic calculations of breast tissue density and tumor volume. This is a complete framework for outer and inner breast segmentation method for all structural images.

  8. Automatic outer and inner breast tissue segmentation using multi-parametric MRI images of breast tumor patients

    Science.gov (United States)

    Singhal, Meenakshi; Gupta, Rakesh Kumar

    2018-01-01

    The objectives of the study were to develop a framework for automatic outer and inner breast tissue segmentation using multi-parametric MRI images of the breast tumor patients; and to perform breast density and tumor tissue analysis. MRI of the breast was performed on 30 patients at 3T-MRI. T1, T2 and PD-weighted(W) images, with and without fat saturation(WWFS), and dynamic-contrast-enhanced(DCE)-MRI data were acquired. The proposed automatic segmentation approach was performed in two steps. In step-1, outer segmentation of breast tissue from rest of body parts was performed on structural images (T2-W/T1-W/PD-W without fat saturation images) using automatic landmarks detection technique based on operations like profile screening, Otsu thresholding, morphological operations and empirical observation. In step-2, inner segmentation of breast tissue into fibro-glandular(FG), fatty and tumor tissue was performed. For validation of breast tissue segmentation, manual segmentation was carried out by two radiologists and similarity coefficients(Dice and Jaccard) were computed for outer as well as inner tissues. FG density and tumor volume were also computed and analyzed. The proposed outer and inner segmentation approach worked well for all the subjects and was validated by two radiologists. The average Dice and Jaccard coefficients value for outer segmentation using T2-W images, obtained by two radiologists, were 0.977 and 0.951 respectively. These coefficient values for FG tissue were 0.915 and 0.875 respectively whereas for tumor tissue, values were 0.968 and 0.95 respectively. The volume of segmented tumor ranged over 2.1 cm3–7.08 cm3. The proposed approach provided automatic outer and inner breast tissue segmentation, which enables automatic calculations of breast tissue density and tumor volume. This is a complete framework for outer and inner breast segmentation method for all structural images. PMID:29320532

  9. Automatic lung segmentation method for MRI-based lung perfusion studies of patients with chronic obstructive pulmonary disease.

    Science.gov (United States)

    Kohlmann, Peter; Strehlow, Jan; Jobst, Betram; Krass, Stefan; Kuhnigk, Jan-Martin; Anjorin, Angela; Sedlaczek, Oliver; Ley, Sebastian; Kauczor, Hans-Ulrich; Wielpütz, Mark Oliver

    2015-04-01

    A novel fully automatic lung segmentation method for magnetic resonance (MR) images of patients with chronic obstructive pulmonary disease (COPD) is presented. The main goal of this work was to ease the tedious and time-consuming task of manual lung segmentation, which is required for region-based volumetric analysis of four-dimensional MR perfusion studies which goes beyond the analysis of small regions of interest. The first step in the automatic algorithm is the segmentation of the lungs in morphological MR images with higher spatial resolution than corresponding perfusion MR images. Subsequently, the segmentation mask of the lungs is transferred to the perfusion images via nonlinear registration. Finally, the masks for left and right lungs are subdivided into a user-defined number of partitions. Fourteen patients with two time points resulting in 28 perfusion data sets were available for the preliminary evaluation of the developed methods. Resulting lung segmentation masks are compared with reference segmentations from experienced chest radiologists, as well as with total lung capacity (TLC) acquired by full-body plethysmography. TLC results were available for thirteen patients. The relevance of the presented method is indicated by an evaluation, which shows high correlation between automatically generated lung masks with corresponding ground-truth estimates. The evaluation of the developed methods indicates good accuracy and shows that automatically generated lung masks differ from expert segmentations about as much as segmentations from different experts.

  10. Texture analysis of automatic graph cuts segmentations for detection of lung cancer recurrence after stereotactic radiotherapy

    Science.gov (United States)

    Mattonen, Sarah A.; Palma, David A.; Haasbeek, Cornelis J. A.; Senan, Suresh; Ward, Aaron D.

    2015-03-01

    Stereotactic ablative radiotherapy (SABR) is a treatment for early-stage lung cancer with local control rates comparable to surgery. After SABR, benign radiation induced lung injury (RILI) results in tumour-mimicking changes on computed tomography (CT) imaging. Distinguishing recurrence from RILI is a critical clinical decision determining the need for potentially life-saving salvage therapies whose high risks in this population dictate their use only for true recurrences. Current approaches do not reliably detect recurrence within a year post-SABR. We measured the detection accuracy of texture features within automatically determined regions of interest, with the only operator input being the single line segment measuring tumour diameter, normally taken during the clinical workflow. Our leave-one-out cross validation on images taken 2-5 months post-SABR showed robustness of the entropy measure, with classification error of 26% and area under the receiver operating characteristic curve (AUC) of 0.77 using automatic segmentation; the results using manual segmentation were 24% and 0.75, respectively. AUCs for this feature increased to 0.82 and 0.93 at 8-14 months and 14-20 months post SABR, respectively, suggesting even better performance nearer to the date of clinical diagnosis of recurrence; thus this system could also be used to support and reinforce the physician's decision at that time. Based on our ongoing validation of this automatic approach on a larger sample, we aim to develop a computer-aided diagnosis system which will support the physician's decision to apply timely salvage therapies and prevent patients with RILI from undergoing invasive and risky procedures.

  11. SU-C-BRA-06: Automatic Brain Tumor Segmentation for Stereotactic Radiosurgery Applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y; Stojadinovic, S; Jiang, S; Timmerman, R; Abdulrahman, R; Nedzi, L; Gu, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Stereotactic radiosurgery (SRS), which delivers a potent dose of highly conformal radiation to the target in a single fraction, requires accurate tumor delineation for treatment planning. We present an automatic segmentation strategy, that synergizes intensity histogram thresholding, super-voxel clustering, and level-set based contour evolving methods to efficiently and accurately delineate SRS brain tumors on contrast-enhance T1-weighted (T1c) Magnetic Resonance Images (MRI). Methods: The developed auto-segmentation strategy consists of three major steps. Firstly, tumor sites are localized through 2D slice intensity histogram scanning. Then, super voxels are obtained through clustering the corresponding voxels in 3D with reference to the similarity metrics composited from spatial distance and intensity difference. The combination of the above two could generate the initial contour surface. Finally, a localized region active contour model is utilized to evolve the surface to achieve the accurate delineation of the tumors. The developed method was evaluated on numerical phantom data, synthetic BRATS (Multimodal Brain Tumor Image Segmentation challenge) data, and clinical patients’ data. The auto-segmentation results were quantitatively evaluated by comparing to ground truths with both volume and surface similarity metrics. Results: DICE coefficient (DC) was performed as a quantitative metric to evaluate the auto-segmentation in the numerical phantom with 8 tumors. DCs are 0.999±0.001 without noise, 0.969±0.065 with Rician noise and 0.976±0.038 with Gaussian noise. DC, NMI (Normalized Mutual Information), SSIM (Structural Similarity) and Hausdorff distance (HD) were calculated as the metrics for the BRATS and patients’ data. Assessment of BRATS data across 25 tumor segmentation yield DC 0.886±0.078, NMI 0.817±0.108, SSIM 0.997±0.002, and HD 6.483±4.079mm. Evaluation on 8 patients with total 14 tumor sites yield DC 0.872±0.070, NMI 0.824±0

  12. SU-C-BRA-06: Automatic Brain Tumor Segmentation for Stereotactic Radiosurgery Applications

    International Nuclear Information System (INIS)

    Liu, Y; Stojadinovic, S; Jiang, S; Timmerman, R; Abdulrahman, R; Nedzi, L; Gu, X

    2016-01-01

    Purpose: Stereotactic radiosurgery (SRS), which delivers a potent dose of highly conformal radiation to the target in a single fraction, requires accurate tumor delineation for treatment planning. We present an automatic segmentation strategy, that synergizes intensity histogram thresholding, super-voxel clustering, and level-set based contour evolving methods to efficiently and accurately delineate SRS brain tumors on contrast-enhance T1-weighted (T1c) Magnetic Resonance Images (MRI). Methods: The developed auto-segmentation strategy consists of three major steps. Firstly, tumor sites are localized through 2D slice intensity histogram scanning. Then, super voxels are obtained through clustering the corresponding voxels in 3D with reference to the similarity metrics composited from spatial distance and intensity difference. The combination of the above two could generate the initial contour surface. Finally, a localized region active contour model is utilized to evolve the surface to achieve the accurate delineation of the tumors. The developed method was evaluated on numerical phantom data, synthetic BRATS (Multimodal Brain Tumor Image Segmentation challenge) data, and clinical patients’ data. The auto-segmentation results were quantitatively evaluated by comparing to ground truths with both volume and surface similarity metrics. Results: DICE coefficient (DC) was performed as a quantitative metric to evaluate the auto-segmentation in the numerical phantom with 8 tumors. DCs are 0.999±0.001 without noise, 0.969±0.065 with Rician noise and 0.976±0.038 with Gaussian noise. DC, NMI (Normalized Mutual Information), SSIM (Structural Similarity) and Hausdorff distance (HD) were calculated as the metrics for the BRATS and patients’ data. Assessment of BRATS data across 25 tumor segmentation yield DC 0.886±0.078, NMI 0.817±0.108, SSIM 0.997±0.002, and HD 6.483±4.079mm. Evaluation on 8 patients with total 14 tumor sites yield DC 0.872±0.070, NMI 0.824±0

  13. Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images

    OpenAIRE

    Khastavaneh, H.; Ebrahimpour-Komleh, H.

    2017-01-01

    Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation is a need. Materials and Methods: In order to segment MS lesions, a method based on learning kernels...

  14. An Automatic Optic Disk Detection and Segmentation System using Multi-level Thresholding

    Directory of Open Access Journals (Sweden)

    KARASULU, B.

    2014-05-01

    Full Text Available Optic disk (OD boundary localization is a substantial problem in ophthalmic image processing research area. In order to segment the region of OD, we developed an automatic system which involves a multi-level thresholding. The OD segmentation results of the system in terms of average precision, recall and accuracy for DRIVE database are 98.88%, 99.91%, 98.83%, for STARE database are 98.62%, 97.38%, 96.11%, and for DIARETDB1 database are 99.29%, 99.90%, 99.20%, respectively. The experimental results show that our system works properly on retinal image databases with diseased retinas, diabetic signs, and a large degree of quality variability.

  15. An efficient two-objective automatic SAR image segmentation framework using artificial immune system

    Science.gov (United States)

    Yang, Dongdong; Niu, Ruican; Fei, Rong; Jiang, Qiaoyong; Li, Hongye; Cao, Zijian

    2015-12-01

    Here, an efficient multi-objective automatic segmentation framework (MASF) is formulated and applied to synthetic aperture radar (SAR) image unsupervised classification. In the framework, three important issues are presented: 1) two reasonable image preprocessing techniques, including spatial filtering and watershed operator, are discussed at the initial stage of the framework; 2)then, an efficient immune multi-objective optimization algorithm with uniform clone, adaptive selection by online nondominated solutions, and dynamic deletion in diversity maintenance is proposed; 3 two very simple, but very efficient conflicting clustering validity indices are incorporated into the framework and simultaneously optimized. Two simulated SAR data and two complicated real images are used to quantitatively validate its effectiveness. In addition, four other state-of-the-art image segmentation methods are employed for comparison.

  16. Evaluation of an automatic brain segmentation method developed for neonates on adult MR brain images

    Science.gov (United States)

    Moeskops, Pim; Viergever, Max A.; Benders, Manon J. N. L.; Išgum, Ivana

    2015-03-01

    Automatic brain tissue segmentation is of clinical relevance in images acquired at all ages. The literature presents a clear distinction between methods developed for MR images of infants, and methods developed for images of adults. The aim of this work is to evaluate a method developed for neonatal images in the segmentation of adult images. The evaluated method employs supervised voxel classification in subsequent stages, exploiting spatial and intensity information. Evaluation was performed using images available within the MRBrainS13 challenge. The obtained average Dice coefficients were 85.77% for grey matter, 88.66% for white matter, 81.08% for cerebrospinal fluid, 95.65% for cerebrum, and 96.92% for intracranial cavity, currently resulting in the best overall ranking. The possibility of applying the same method to neonatal as well as adult images can be of great value in cross-sectional studies that include a wide age range.

  17. Automatic lung segmentation in functional SPECT images using active shape models trained on reference lung shapes from CT.

    Science.gov (United States)

    Cheimariotis, Grigorios-Aris; Al-Mashat, Mariam; Haris, Kostas; Aletras, Anthony H; Jögi, Jonas; Bajc, Marika; Maglaveras, Nicolaos; Heiberg, Einar

    2018-02-01

    Image segmentation is an essential step in quantifying the extent of reduced or absent lung function. The aim of this study is to develop and validate a new tool for automatic segmentation of lungs in ventilation and perfusion SPECT images and compare automatic and manual SPECT lung segmentations with reference computed tomography (CT) volumes. A total of 77 subjects (69 patients with obstructive lung disease, and 8 subjects without apparent perfusion of ventilation loss) performed low-dose CT followed by ventilation/perfusion (V/P) SPECT examination in a hybrid gamma camera system. In the training phase, lung shapes from the 57 anatomical low-dose CT images were used to construct two active shape models (right lung and left lung) which were then used for image segmentation. The algorithm was validated in 20 patients, comparing its results to reference delineation of corresponding CT images, and by comparing automatic segmentation to manual delineations in SPECT images. The Dice coefficient between automatic SPECT delineations and manual SPECT delineations were 0.83 ± 0.04% for the right and 0.82 ± 0.05% for the left lung. There was statistically significant difference between reference volumes from CT and automatic delineations for the right (R = 0.53, p = 0.02) and left lung (R = 0.69, p automatic quantification of wide range of measurements.

  18. A scale space approach for automatically segmenting words from historical handwritten documents.

    Science.gov (United States)

    Manmatha, R; Rothfeder, Jamie L

    2005-08-01

    Many libraries, museums, and other organizations contain large collections of handwritten historical documents, for example, the papers of early presidents like George Washington at the Library of Congress. The first step in providing recognition/ retrieval tools is to automatically segment handwritten pages into words. State of the art segmentation techniques like the gap metrics algorithm have been mostly developed and tested on highly constrained documents like bank checks and postal addresses. There has been little work on full handwritten pages and this work has usually involved testing on clean artificial documents created for the purpose of research. Historical manuscript images, on the other hand, contain a great deal of noise and are much more challenging. Here, a novel scale space algorithm for automatically segmenting handwritten (historical) documents into words is described. First, the page is cleaned to remove margins. This is followed by a gray-level projection profile algorithm for finding lines in images. Each line image is then filtered with an anisotropic Laplacian at several scales. This procedure produces blobs which correspond to portions of characters at small scales and to words at larger scales. Crucial to the algorithm is scale selection, that is, finding the optimum scale at which blobs correspond to words. This is done by finding the maximum over scale of the extent or area of the blobs. This scale maximum is estimated using three different approaches. The blobs recovered at the optimum scale are then bounded with a rectangular box to recover the words. A postprocessing filtering step is performed to eliminate boxes of unusual size which are unlikely to correspond to words. The approach is tested on a number of different data sets and it is shown that, on 100 sampled documents from the George Washington corpus of handwritten document images, a total error rate of 17 percent is observed. The technique outperforms a state-of-the-art gap

  19. Automatic MPST-cut for segmentation of carpal bones from MR volumes.

    Science.gov (United States)

    Gemme, Laura; Nardotto, Sonia; Dellepiane, Silvana G

    2017-08-01

    In the context of rheumatic diseases, several studies suggest that Magnetic Resonance Imaging (MRI) allows the detection of the three main signs of Rheumatoid Arthritis (RA) at higher sensitivities than available through conventional radiology. The rapid, accurate segmentation of bones is an essential preliminary step for quantitative diagnosis, erosion evaluation, and multi-temporal data fusion. In the present paper, a new, semi-automatic, 3D graph-based segmentation method to extract carpal bone data is proposed. The method is unsupervised, does not employ any a priori model or knowledge, and is adaptive to the individual variability of the acquired data. After selecting one source point inside the Region of Interest (ROI), a segmentation process is initiated, which consists of two automatic stages: a cost-labeling phase and a graph-cutting phase. The algorithm finds optimal paths based on a new cost function by creating a Minimum Path Spanning Tree (MPST). To extract the region, a cut of the obtained tree is necessary. A new criterion of the MPST-cut based on compactness shape factor was conceived and developed. The proposed approach is applied to a large database of 96 T1-weighted MR bone volumes. Performance quality is evaluated by comparing the results with gold-standard bone volumes manually defined by rheumatologists through the computation of metrics extracted from the confusion matrix. Furthermore, comparisons with the existing literature are carried out. The results show that this method is efficient and provides satisfactory performance for bone segmentation on low-field MR volumes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Semi-automatic breast ultrasound image segmentation based on mean shift and graph cuts.

    Science.gov (United States)

    Zhou, Zhuhuang; Wu, Weiwei; Wu, Shuicai; Tsui, Po-Hsiang; Lin, Chung-Chih; Zhang, Ling; Wang, Tianfu

    2014-10-01

    Computerized tumor segmentation on breast ultrasound (BUS) images remains a challenging task. In this paper, we proposed a new method for semi-automatic tumor segmentation on BUS images using Gaussian filtering, histogram equalization, mean shift, and graph cuts. The only interaction required was to select two diagonal points to determine a region of interest (ROI) on an input image. The ROI image was shrunken by a factor of 2 using bicubic interpolation to reduce computation time. The shrunken image was smoothed by a Gaussian filter and then contrast-enhanced by histogram equalization. Next, the enhanced image was filtered by pyramid mean shift to improve homogeneity. The object and background seeds for graph cuts were automatically generated on the filtered image. Using these seeds, the filtered image was then segmented by graph cuts into a binary image containing the object and background. Finally, the binary image was expanded by a factor of 2 using bicubic interpolation, and the expanded image was processed by morphological opening and closing to refine the tumor contour. The method was implemented with OpenCV 2.4.3 and Visual Studio 2010 and tested for 38 BUS images with benign tumors and 31 BUS images with malignant tumors from different ultrasound scanners. Experimental results showed that our method had a true positive rate (TP) of 91.7%, a false positive (FP) rate of 11.9%, and a similarity (SI) rate of 85.6%. The mean run time on Intel Core 2.66 GHz CPU and 4 GB RAM was 0.49 ± 0.36 s. The experimental results indicate that the proposed method may be useful in BUS image segmentation. © The Author(s) 2014.

  1. Automatic cerebrospinal fluid segmentation in non-contrast CT images using a 3D convolutional network

    Science.gov (United States)

    Patel, Ajay; van de Leemput, Sil C.; Prokop, Mathias; van Ginneken, Bram; Manniesing, Rashindra

    2017-03-01

    Segmentation of anatomical structures is fundamental in the development of computer aided diagnosis systems for cerebral pathologies. Manual annotations are laborious, time consuming and subject to human error and observer variability. Accurate quantification of cerebrospinal fluid (CSF) can be employed as a morphometric measure for diagnosis and patient outcome prediction. However, segmenting CSF in non-contrast CT images is complicated by low soft tissue contrast and image noise. In this paper we propose a state-of-the-art method using a multi-scale three-dimensional (3D) fully convolutional neural network (CNN) to automatically segment all CSF within the cranial cavity. The method is trained on a small dataset comprised of four manually annotated cerebral CT images. Quantitative evaluation of a separate test dataset of four images shows a mean Dice similarity coefficient of 0.87 +/- 0.01 and mean absolute volume difference of 4.77 +/- 2.70 %. The average prediction time was 68 seconds. Our method allows for fast and fully automated 3D segmentation of cerebral CSF in non-contrast CT, and shows promising results despite a limited amount of training data.

  2. Automatic Segmentation of Pelvic Structures From Magnetic Resonance Images for Prostate Cancer Radiotherapy

    International Nuclear Information System (INIS)

    Pasquier, David; Lacornerie, Thomas; Vermandel, Maximilien; Rousseau, Jean; Lartigau, Eric; Betrouni, Nacim

    2007-01-01

    Purpose: Target-volume and organ-at-risk delineation is a time-consuming task in radiotherapy planning. The development of automated segmentation tools remains problematic, because of pelvic organ shape variability. We evaluate a three-dimensional (3D), deformable-model approach and a seeded region-growing algorithm for automatic delineation of the prostate and organs-at-risk on magnetic resonance images. Methods and Materials: Manual and automatic delineation were compared in 24 patients using a sagittal T2-weighted (T2-w) turbo spin echo (TSE) sequence and an axial T1-weighted (T1-w) 3D fast-field echo (FFE) or TSE sequence. For automatic prostate delineation, an organ model-based method was used. Prostates without seminal vesicles were delineated as the clinical target volume (CTV). For automatic bladder and rectum delineation, a seeded region-growing method was used. Manual contouring was considered the reference method. The following parameters were measured: volume ratio (Vr) (automatic/manual), volume overlap (Vo) (ratio of the volume of intersection to the volume of union; optimal value = 1), and correctly delineated volume (Vc) (percent ratio of the volume of intersection to the manually defined volume; optimal value 100). Results: For the CTV, the Vr, Vo, and Vc were 1.13 (±0.1 SD), 0.78 (±0.05 SD), and 94.75 (±3.3 SD), respectively. For the rectum, the Vr, Vo, and Vc were 0.97 (±0.1 SD), 0.78 (±0.06 SD), and 86.52 (±5 SD), respectively. For the bladder, the Vr, Vo, and Vc were 0.95 (±0.03 SD), 0.88 (±0.03 SD), and 91.29 (±3.1 SD), respectively. Conclusions: Our results show that the organ-model method is robust, and results in reproducible prostate segmentation with minor interactive corrections. For automatic bladder and rectum delineation, magnetic resonance imaging soft-tissue contrast enables the use of region-growing methods

  3. Color Segmentation Approach of Infrared Thermography Camera Image for Automatic Fault Diagnosis

    International Nuclear Information System (INIS)

    Djoko Hari Nugroho; Ari Satmoko; Budhi Cynthia Dewi

    2007-01-01

    Predictive maintenance based on fault diagnosis becomes very important in current days to assure the availability and reliability of a system. The main purpose of this research is to configure a computer software for automatic fault diagnosis based on image model acquired from infrared thermography camera using color segmentation approach. This technique detects hot spots in equipment of the plants. Image acquired from camera is first converted to RGB (Red, Green, Blue) image model and then converted to CMYK (Cyan, Magenta, Yellow, Key for Black) image model. Assume that the yellow color in the image represented the hot spot in the equipment, the CMYK image model is then diagnosed using color segmentation model to estimate the fault. The software is configured utilizing Borland Delphi 7.0 computer programming language. The performance is then tested for 10 input infrared thermography images. The experimental result shows that the software capable to detect the faulty automatically with performance value of 80 % from 10 sheets of image input. (author)

  4. Automatic Human Movement Assessment With Switching Linear Dynamic System: Motion Segmentation and Motor Performance.

    Science.gov (United States)

    de Souza Baptista, Roberto; Bo, Antonio P L; Hayashibe, Mitsuhiro

    2017-06-01

    Performance assessment of human movement is critical in diagnosis and motor-control rehabilitation. Recent developments in portable sensor technology enable clinicians to measure spatiotemporal aspects to aid in the neurological assessment. However, the extraction of quantitative information from such measurements is usually done manually through visual inspection. This paper presents a novel framework for automatic human movement assessment that executes segmentation and motor performance parameter extraction in time-series of measurements from a sequence of human movements. We use the elements of a Switching Linear Dynamic System model as building blocks to translate formal definitions and procedures from human movement analysis. Our approach provides a method for users with no expertise in signal processing to create models for movements using labeled dataset and later use it for automatic assessment. We validated our framework on preliminary tests involving six healthy adult subjects that executed common movements in functional tests and rehabilitation exercise sessions, such as sit-to-stand and lateral elevation of the arms and five elderly subjects, two of which with limited mobility, that executed the sit-to-stand movement. The proposed method worked on random motion sequences for the dual purpose of movement segmentation (accuracy of 72%-100%) and motor performance assessment (mean error of 0%-12%).

  5. A fully automatic approach for multimodal PET and MR image segmentation in gamma knife treatment planning.

    Science.gov (United States)

    Rundo, Leonardo; Stefano, Alessandro; Militello, Carmelo; Russo, Giorgio; Sabini, Maria Gabriella; D'Arrigo, Corrado; Marletta, Francesco; Ippolito, Massimo; Mauri, Giancarlo; Vitabile, Salvatore; Gilardi, Maria Carla

    2017-06-01

    Nowadays, clinical practice in Gamma Knife treatments is generally based on MRI anatomical information alone. However, the joint use of MRI and PET images can be useful for considering both anatomical and metabolic information about the lesion to be treated. In this paper we present a co-segmentation method to integrate the segmented Biological Target Volume (BTV), using [ 11 C]-Methionine-PET (MET-PET) images, and the segmented Gross Target Volume (GTV), on the respective co-registered MR images. The resulting volume gives enhanced brain tumor information to be used in stereotactic neuro-radiosurgery treatment planning. GTV often does not match entirely with BTV, which provides metabolic information about brain lesions. For this reason, PET imaging is valuable and it could be used to provide complementary information useful for treatment planning. In this way, BTV can be used to modify GTV, enhancing Clinical Target Volume (CTV) delineation. A novel fully automatic multimodal PET/MRI segmentation method for Leksell Gamma Knife ® treatments is proposed. This approach improves and combines two computer-assisted and operator-independent single modality methods, previously developed and validated, to segment BTV and GTV from PET and MR images, respectively. In addition, the GTV is utilized to combine the superior contrast of PET images with the higher spatial resolution of MRI, obtaining a new BTV, called BTV MRI . A total of 19 brain metastatic tumors, undergone stereotactic neuro-radiosurgery, were retrospectively analyzed. A framework for the evaluation of multimodal PET/MRI segmentation is also presented. Overlap-based and spatial distance-based metrics were considered to quantify similarity concerning PET and MRI segmentation approaches. Statistics was also included to measure correlation among the different segmentation processes. Since it is not possible to define a gold-standard CTV according to both MRI and PET images without treatment response assessment

  6. Computer Aided Solution for Automatic Segmenting and Measurements of Blood Leucocytes Using Static Microscope Images.

    Science.gov (United States)

    Abdulhay, Enas; Mohammed, Mazin Abed; Ibrahim, Dheyaa Ahmed; Arunkumar, N; Venkatraman, V

    2018-02-17

    Blood leucocytes segmentation in medical images is viewed as difficult process due to the variability of blood cells concerning their shape and size and the difficulty towards determining location of Blood Leucocytes. Physical analysis of blood tests to recognize leukocytes is tedious, time-consuming and liable to error because of the various morphological components of the cells. Segmentation of medical imagery has been considered as a difficult task because of complexity of images, and also due to the non-availability of leucocytes models which entirely captures the probable shapes in each structures and also incorporate cell overlapping, the expansive variety of the blood cells concerning their shape and size, various elements influencing the outer appearance of the blood leucocytes, and low Static Microscope Image disparity from extra issues outcoming about because of noise. We suggest a strategy towards segmentation of blood leucocytes using static microscope images which is a resultant of three prevailing systems of computer vision fiction: enhancing the image, Support vector machine for segmenting the image, and filtering out non ROI (region of interest) on the basis of Local binary patterns and texture features. Every one of these strategies are modified for blood leucocytes division issue, in this manner the subsequent techniques are very vigorous when compared with its individual segments. Eventually, we assess framework based by compare the outcome and manual division. The findings outcome from this study have shown a new approach that automatically segments the blood leucocytes and identify it from a static microscope images. Initially, the method uses a trainable segmentation procedure and trained support vector machine classifier to accurately identify the position of the ROI. After that, filtering out non ROI have proposed based on histogram analysis to avoid the non ROI and chose the right object. Finally, identify the blood leucocytes type using

  7. Technical Note: PLASTIMATCH MABS, an open source tool for automatic image segmentation

    International Nuclear Information System (INIS)

    Zaffino, Paolo; Spadea, Maria Francesca; Raudaschl, Patrik; Fritscher, Karl; Sharp, Gregory C.

    2016-01-01

    Purpose: Multiatlas based segmentation is largely used in many clinical and research applications. Due to its good performances, it has recently been included in some commercial platforms for radiotherapy planning and surgery guidance. Anyway, to date, a software with no restrictions about the anatomical district and image modality is still missing. In this paper we introduce PLASTIMATCH MABS, an open source software that can be used with any image modality for automatic segmentation. Methods: PLASTIMATCH MABS workflow consists of two main parts: (1) an offline phase, where optimal registration and voting parameters are tuned and (2) an online phase, where a new patient is labeled from scratch by using the same parameters as identified in the former phase. Several registration strategies, as well as different voting criteria can be selected. A flexible atlas selection scheme is also available. To prove the effectiveness of the proposed software across anatomical districts and image modalities, it was tested on two very different scenarios: head and neck (H&N) CT segmentation for radiotherapy application, and magnetic resonance image brain labeling for neuroscience investigation. Results: For the neurological study, minimum dice was equal to 0.76 (investigated structures: left and right caudate, putamen, thalamus, and hippocampus). For head and neck case, minimum dice was 0.42 for the most challenging structures (optic nerves and submandibular glands) and 0.62 for the other ones (mandible, brainstem, and parotid glands). Time required to obtain the labels was compatible with a real clinical workflow (35 and 120 min). Conclusions: The proposed software fills a gap in the multiatlas based segmentation field, since all currently available tools (both for commercial and for research purposes) are restricted to a well specified application. Furthermore, it can be adopted as a platform for exploring MABS parameters and as a reference implementation for comparing against

  8. Automatic psoriasis lesion segmentation in two-dimensional skin images using multiscale superpixel clustering.

    Science.gov (United States)

    George, Yasmeen; Aldeen, Mohammad; Garnavi, Rahil

    2017-10-01

    Psoriasis is a chronic skin disease that is assessed visually by dermatologists. The Psoriasis Area and Severity Index (PASI) is the current gold standard used to measure lesion severity by evaluating four parameters, namely, area, erythema, scaliness, and thickness. In this context, psoriasis skin lesion segmentation is required as the basis for PASI scoring. An automatic lesion segmentation method by leveraging multiscale superpixels and [Formula: see text]-means clustering is outlined. Specifically, we apply a superpixel segmentation strategy on CIE-[Formula: see text] color space using different scales. Also, we suppress the superpixels that belong to nonskin areas. Once similar regions on different scales are obtained, the [Formula: see text]-means algorithm is used to cluster each superpixel scale separately into normal and lesion skin areas. Features from both [Formula: see text] and [Formula: see text] color bands are used in the clustering process. Furthermore, majority voting is performed to fuse the segmentation results from different scales to obtain the final output. The proposed method is extensively evaluated on a set of 457 psoriasis digital images, acquired from the Royal Melbourne Hospital, Melbourne, Australia. Experimental results have shown evidence that the method is very effective and efficient, even when applied to images containing hairy skin and diverse lesion size, shape, and severity. It has also been ascertained that CIE-[Formula: see text] outperforms other color spaces for psoriasis lesion analysis and segmentation. In addition, we use three evaluation metrics, namely, Dice coefficient, Jaccard index, and pixel accuracy where scores of 0.783%, 0.698%, and 86.99% have been achieved by the proposed method for the three metrics, respectively. Finally, compared with existing methods that employ either skin decomposition and support vector machine classifier or Euclidean distance in the hue-chrome plane, our multiscale superpixel

  9. Technical Note: plastimatch mabs, an open source tool for automatic image segmentation.

    Science.gov (United States)

    Zaffino, Paolo; Raudaschl, Patrik; Fritscher, Karl; Sharp, Gregory C; Spadea, Maria Francesca

    2016-09-01

    Multiatlas based segmentation is largely used in many clinical and research applications. Due to its good performances, it has recently been included in some commercial platforms for radiotherapy planning and surgery guidance. Anyway, to date, a software with no restrictions about the anatomical district and image modality is still missing. In this paper we introduce plastimatch mabs, an open source software that can be used with any image modality for automatic segmentation. plastimatch mabs workflow consists of two main parts: (1) an offline phase, where optimal registration and voting parameters are tuned and (2) an online phase, where a new patient is labeled from scratch by using the same parameters as identified in the former phase. Several registration strategies, as well as different voting criteria can be selected. A flexible atlas selection scheme is also available. To prove the effectiveness of the proposed software across anatomical districts and image modalities, it was tested on two very different scenarios: head and neck (H&N) CT segmentation for radiotherapy application, and magnetic resonance image brain labeling for neuroscience investigation. For the neurological study, minimum dice was equal to 0.76 (investigated structures: left and right caudate, putamen, thalamus, and hippocampus). For head and neck case, minimum dice was 0.42 for the most challenging structures (optic nerves and submandibular glands) and 0.62 for the other ones (mandible, brainstem, and parotid glands). Time required to obtain the labels was compatible with a real clinical workflow (35 and 120 min). The proposed software fills a gap in the multiatlas based segmentation field, since all currently available tools (both for commercial and for research purposes) are restricted to a well specified application. Furthermore, it can be adopted as a platform for exploring MABS parameters and as a reference implementation for comparing against other segmentation algorithms.

  10. Automatic detection, segmentation and assessment of snoring from ambient acoustic data.

    Science.gov (United States)

    Duckitt, W D; Tuomi, S K; Niesler, T R

    2006-10-01

    Snoring is a prevalent condition with a variety of negative social effects and associated health problems. Treatments, both surgical and therapeutic, have been developed, but the objective non-invasive monitoring of their success remains problematic. We present a method which allows the automatic monitoring of snoring characteristics, such as intensity and frequency, from audio data captured via a freestanding microphone. This represents a simple and portable diagnostic alternative to polysomnography. Our system is based on methods that have proved effective in the field of speech recognition. Hidden Markov models (HMMs) were employed as basic elements with which to model different types of sound by means of spectrally based features. This allows periods of snoring to be identified, while rejecting silence, breathing and other sounds. Training and test data were gathered from six subjects, and annotated appropriately. The system was tested by requiring it to automatically classify snoring sounds in new audio recordings and then comparing the result with manually obtained annotations. We found that our system was able to correctly identify snores with 82-89% accuracy, despite the small size of the training set. We could further demonstrate how this segmentation can be used to measure the snoring intensity, snoring frequency and snoring index. We conclude that a system based on hidden Markov models and spectrally based features is effective in the automatic detection and monitoring of snoring from audio data.

  11. CT-based patient modeling for head and neck hyperthermia treatment planning: Manual versus automatic normal-tissue-segmentation

    International Nuclear Information System (INIS)

    Verhaart, René F.; Fortunati, Valerio; Verduijn, Gerda M.; Walsum, Theo van; Veenland, Jifke F.; Paulides, Margarethus M.

    2014-01-01

    Background and purpose: Clinical trials have shown that hyperthermia, as adjuvant to radiotherapy and/or chemotherapy, improves treatment of patients with locally advanced or recurrent head and neck (H and N) carcinoma. Hyperthermia treatment planning (HTP) guided H and N hyperthermia is being investigated, which requires patient specific 3D patient models derived from Computed Tomography (CT)-images. To decide whether a recently developed automatic-segmentation algorithm can be introduced in the clinic, we compared the impact of manual- and automatic normal-tissue-segmentation variations on HTP quality. Material and methods: CT images of seven patients were segmented automatically and manually by four observers, to study inter-observer and intra-observer geometrical variation. To determine the impact of this variation on HTP quality, HTP was performed using the automatic and manual segmentation of each observer, for each patient. This impact was compared to other sources of patient model uncertainties, i.e. varying gridsizes and dielectric tissue properties. Results: Despite geometrical variations, manual and automatic generated 3D patient models resulted in an equal, i.e. 1%, variation in HTP quality. This variation was minor with respect to the total of other sources of patient model uncertainties, i.e. 11.7%. Conclusions: Automatically generated 3D patient models can be introduced in the clinic for H and N HTP

  12. Atlas ranking and selection for automatic segmentation of the esophagus from CT scans

    Science.gov (United States)

    Yang, Jinzhong; Haas, Benjamin; Fang, Raymond; Beadle, Beth M.; Garden, Adam S.; Liao, Zhongxing; Zhang, Lifei; Balter, Peter; Court, Laurence

    2017-12-01

    In radiation treatment planning, the esophagus is an important organ-at-risk that should be spared in patients with head and neck cancer or thoracic cancer who undergo intensity-modulated radiation therapy. However, automatic segmentation of the esophagus from CT scans is extremely challenging because of the structure’s inconsistent intensity, low contrast against the surrounding tissues, complex and variable shape and location, and random air bubbles. The goal of this study is to develop an online atlas selection approach to choose a subset of optimal atlases for multi-atlas segmentation to the delineate esophagus automatically. We performed atlas selection in two phases. In the first phase, we used the correlation coefficient of the image content in a cubic region between each atlas and the new image to evaluate their similarity and to rank the atlases in an atlas pool. A subset of atlases based on this ranking was selected, and deformable image registration was performed to generate deformed contours and deformed images in the new image space. In the second phase of atlas selection, we used Kullback-Leibler divergence to measure the similarity of local-intensity histograms between the new image and each of the deformed images, and the measurements were used to rank the previously selected atlases. Deformed contours were overlapped sequentially, from the most to the least similar, and the overlap ratio was examined. We further identified a subset of optimal atlases by analyzing the variation of the overlap ratio versus the number of atlases. The deformed contours from these optimal atlases were fused together using a modified simultaneous truth and performance level estimation algorithm to produce the final segmentation. The approach was validated with promising results using both internal data sets (21 head and neck cancer patients and 15 thoracic cancer patients) and external data sets (30 thoracic patients).

  13. A multiresolution prostate representation for automatic segmentation in magnetic resonance images.

    Science.gov (United States)

    Alvarez, Charlens; Martínez, Fabio; Romero, Eduardo

    2017-04-01

    Accurate prostate delineation is necessary in radiotherapy processes for concentrating the dose onto the prostate and reducing side effects in neighboring organs. Currently, manual delineation is performed over magnetic resonance imaging (MRI) taking advantage of its high soft tissue contrast property. Nevertheless, as human intervention is a consuming task with high intra- and interobserver variability rates, (semi)-automatic organ delineation tools have emerged to cope with these challenges, reducing the time spent for these tasks. This work presents a multiresolution representation that defines a novel metric and allows to segment a new prostate by combining a set of most similar prostates in a dataset. The proposed method starts by selecting the set of most similar prostates with respect to a new one using the proposed multiresolution representation. This representation characterizes the prostate through a set of salient points, extracted from a region of interest (ROI) that encloses the organ and refined using structural information, allowing to capture main relevant features of the organ boundary. Afterward, the new prostate is automatically segmented by combining the nonrigidly registered expert delineations associated to the previous selected similar prostates using a weighted patch-based strategy. Finally, the prostate contour is smoothed based on morphological operations. The proposed approach was evaluated with respect to the expert manual segmentation under a leave-one-out scheme using two public datasets, obtaining averaged Dice coefficients of 82% ± 0.07 and 83% ± 0.06, and demonstrating a competitive performance with respect to atlas-based state-of-the-art methods. The proposed multiresolution representation provides a feature space that follows a local salient point criteria and a global rule of the spatial configuration among these points to find out the most similar prostates. This strategy suggests an easy adaptation in the clinical

  14. Template-based automatic breast segmentation on MRI by excluding the chest region

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Muqing [Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California, Irvine, California 92697-5020 and National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, 518060 China (China); Chen, Jeon-Hor [Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California, Irvine, California 92697-5020 and Department of Radiology, E-Da Hospital and I-Shou University, Kaohsiung 82445, Taiwan (China); Wang, Xiaoyong; Su, Min-Ying, E-mail: msu@uci.edu [Tu and Yuen Center for Functional Onco-Imaging, Department of Radiological Sciences, University of California, Irvine, California 92697-5020 (United States); Chan, Siwa [Department of Radiology, Taichung Veterans General Hospital, Taichung 40407, Taiwan (China); Chen, Siping [National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine, Shenzhen University, 518060 China (China)

    2013-12-15

    Purpose: Methods for quantification of breast density on MRI using semiautomatic approaches are commonly used. In this study, the authors report on a fully automatic chest template-based method. Methods: Nonfat-suppressed breast MR images from 31 healthy women were analyzed. Among them, one case was randomly selected and used as the template, and the remaining 30 cases were used for testing. Unlike most model-based breast segmentation methods that use the breast region as the template, the chest body region on a middle slice was used as the template. Within the chest template, three body landmarks (thoracic spine and bilateral boundary of the pectoral muscle) were identified for performing the initial V-shape cut to determine the posterior lateral boundary of the breast. The chest template was mapped to each subject's image space to obtain a subject-specific chest model for exclusion. On the remaining image, the chest wall muscle was identified and excluded to obtain clean breast segmentation. The chest and muscle boundaries determined on the middle slice were used as the reference for the segmentation of adjacent slices, and the process continued superiorly and inferiorly until all 3D slices were segmented. The segmentation results were evaluated by an experienced radiologist to mark voxels that were wrongly included or excluded for error analysis. Results: The breast volumes measured by the proposed algorithm were very close to the radiologist's corrected volumes, showing a % difference ranging from 0.01% to 3.04% in 30 tested subjects with a mean of 0.86% ± 0.72%. The total error was calculated by adding the inclusion and the exclusion errors (so they did not cancel each other out), which ranged from 0.05% to 6.75% with a mean of 3.05% ± 1.93%. The fibroglandular tissue segmented within the breast region determined by the algorithm and the radiologist were also very close, showing a % difference ranging from 0.02% to 2.52% with a mean of 1.03% ± 1

  15. Evaluating the effect of multiple sclerosis lesions on automatic brain structure segmentation

    Directory of Open Access Journals (Sweden)

    Sandra González-Villà

    2017-01-01

    Full Text Available In recent years, many automatic brain structure segmentation methods have been proposed. However, these methods are commonly tested with non-lesioned brains and the effect of lesions on their performance has not been evaluated. Here, we analyze the effect of multiple sclerosis (MS lesions on three well-known automatic brain structure segmentation methods, namely, FreeSurfer, FIRST and multi-atlas fused by majority voting, which use learning-based, deformable and atlas-based strategies, respectively. To perform a quantitative analysis, 100 synthetic images of MS patients with a total of 2174 lesions are simulated on two public databases with available brain structure ground truth information (IBSR18 and MICCAI’12. The Dice similarity coefficient (DSC differences and the volume differences between the healthy and the simulated images are calculated for the subcortical structures and the brainstem. We observe that the three strategies are affected when lesions are present. However, the effects of the lesions do not follow the same pattern; the lesions either make the segmentation method underperform or surprisingly augment the segmentation accuracy. The obtained results show that FreeSurfer is the method most affected by the presence of lesions, with DSC differences (generated − healthy ranging from −0.11 ± 0.54 to 9.65 ± 9.87, whereas FIRST tends to be the most robust method when lesions are present (−2.40 ± 5.54 to 0.44 ± 0.94. Lesion location is not important for global strategies such as FreeSurfer or majority voting, where structure segmentation is affected wherever the lesions exist. On the other hand, FIRST is more affected when the lesions are overlaid or close to the structure of analysis. The most affected structure by the presence of lesions is the nucleus accumbens (from −1.12 ± 2.53 to 1.32 ± 4.00 for the left hemisphere and from −2.40 ± 5.54 to 9.65 ± 9.87 for the right hemisphere, whereas the

  16. SU-F-J-113: Multi-Atlas Based Automatic Organ Segmentation for Lung Radiotherapy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J; Han, J; Ailawadi, S; Baker, J; Hsia, A; Xu, Z; Ryu, S [Stony Brook University Hospital, Stony Brook, NY (United States)

    2016-06-15

    Purpose: Normal organ segmentation is one time-consuming and labor-intensive step for lung radiotherapy treatment planning. The aim of this study is to evaluate the performance of a multi-atlas based segmentation approach for automatic organs at risk (OAR) delineation. Methods: Fifteen Lung stereotactic body radiation therapy patients were randomly selected. Planning CT images and OAR contours of the heart - HT, aorta - AO, vena cava - VC, pulmonary trunk - PT, and esophagus – ES were exported and used as reference and atlas sets. For automatic organ delineation for a given target CT, 1) all atlas sets were deformably warped to the target CT, 2) the deformed sets were accumulated and normalized to produce organ probability density (OPD) maps, and 3) the OPD maps were converted to contours via image thresholding. Optimal threshold for each organ was empirically determined by comparing the auto-segmented contours against their respective reference contours. The delineated results were evaluated by measuring contour similarity metrics: DICE, mean distance (MD), and true detection rate (TD), where DICE=(intersection volume/sum of two volumes) and TD = {1.0 - (false positive + false negative)/2.0}. Diffeomorphic Demons algorithm was employed for CT-CT deformable image registrations. Results: Optimal thresholds were determined to be 0.53 for HT, 0.38 for AO, 0.28 for PT, 0.43 for VC, and 0.31 for ES. The mean similarity metrics (DICE[%], MD[mm], TD[%]) were (88, 3.2, 89) for HT, (79, 3.2, 82) for AO, (75, 2.7, 77) for PT, (68, 3.4, 73) for VC, and (51,2.7, 60) for ES. Conclusion: The investigated multi-atlas based approach produced reliable segmentations for the organs with large and relatively clear boundaries (HT and AO). However, the detection of small and narrow organs with diffused boundaries (ES) were challenging. Sophisticated atlas selection and multi-atlas fusion algorithms may further improve the quality of segmentations.

  17. An automatic and accurate method of full heart segmentation from CT image based on linear gradient model

    Science.gov (United States)

    Yang, Zili

    2017-07-01

    Heart segmentation is an important auxiliary method in the diagnosis of many heart diseases, such as coronary heart disease and atrial fibrillation, and in the planning of tumor radiotherapy. Most of the existing methods for full heart segmentation treat the heart as a whole part and cannot accurately extract the bottom of the heart. In this paper, we propose a new method based on linear gradient model to segment the whole heart from the CT images automatically and accurately. Twelve cases were tested in order to test this method and accurate segmentation results were achieved and identified by clinical experts. The results can provide reliable clinical support.

  18. Automatic data-driven real-time segmentation and recognition of surgical workflow.

    Science.gov (United States)

    Dergachyova, Olga; Bouget, David; Huaulmé, Arnaud; Morandi, Xavier; Jannin, Pierre

    2016-06-01

    With the intention of extending the perception and action of surgical staff inside the operating room, the medical community has expressed a growing interest towards context-aware systems. Requiring an accurate identification of the surgical workflow, such systems make use of data from a diverse set of available sensors. In this paper, we propose a fully data-driven and real-time method for segmentation and recognition of surgical phases using a combination of video data and instrument usage signals, exploiting no prior knowledge. We also introduce new validation metrics for assessment of workflow detection. The segmentation and recognition are based on a four-stage process. Firstly, during the learning time, a Surgical Process Model is automatically constructed from data annotations to guide the following process. Secondly, data samples are described using a combination of low-level visual cues and instrument information. Then, in the third stage, these descriptions are employed to train a set of AdaBoost classifiers capable of distinguishing one surgical phase from others. Finally, AdaBoost responses are used as input to a Hidden semi-Markov Model in order to obtain a final decision. On the MICCAI EndoVis challenge laparoscopic dataset we achieved a precision and a recall of 91 % in classification of 7 phases. Compared to the analysis based on one data type only, a combination of visual features and instrument signals allows better segmentation, reduction of the detection delay and discovery of the correct phase order.

  19. Automatic segmentation of MRI head images by 3-D region growing method which utilizes edge information

    International Nuclear Information System (INIS)

    Jiang, Hao; Suzuki, Hidetomo; Toriwaki, Jun-ichiro

    1991-01-01

    This paper presents a 3-D segmentation method that automatically extracts soft tissue from multi-sliced MRI head images. MRI produces a sequence of two-dimensional (2-D) images which contains three-dimensional (3-D) information of organs. To utilize such information we need effective algorithms to treat 3-D digital images and to extract organs and tissues of interest. We developed a method to extract the brain from MRI images which uses a region growing procedure and integrates information of uniformity of gray levels and information of the presence of edge segments in the local area around the pixel of interest. First we generate a kernel region which is a part of brain tissue by simple thresholding. Then we grow the region by means of a region growing algorithm under the control of 3-D edge existence to obtain the region of the brain. Our method is rather simple because it uses basic 3-D image processing techniques like spatial difference. It is robust for variation of gray levels inside a tissue since it also refers to the edge information in the process of region growing. Therefore, the method is flexible enough to be applicable to the segmentation of other images including soft tissues which have complicated shapes and fluctuation in gray levels. (author)

  20. Representation learning: a unified deep learning framework for automatic prostate MR segmentation.

    Science.gov (United States)

    Liao, Shu; Gao, Yaozong; Oto, Aytekin; Shen, Dinggang

    2013-01-01

    Image representation plays an important role in medical image analysis. The key to the success of different medical image analysis algorithms is heavily dependent on how we represent the input data, namely features used to characterize the input image. In the literature, feature engineering remains as an active research topic, and many novel hand-crafted features are designed such as Haar wavelet, histogram of oriented gradient, and local binary patterns. However, such features are not designed with the guidance of the underlying dataset at hand. To this end, we argue that the most effective features should be designed in a learning based manner, namely representation learning, which can be adapted to different patient datasets at hand. In this paper, we introduce a deep learning framework to achieve this goal. Specifically, a stacked independent subspace analysis (ISA) network is adopted to learn the most effective features in a hierarchical and unsupervised manner. The learnt features are adapted to the dataset at hand and encode high level semantic anatomical information. The proposed method is evaluated on the application of automatic prostate MR segmentation. Experimental results show that significant segmentation accuracy improvement can be achieved by the proposed deep learning method compared to other state-of-the-art segmentation approaches.

  1. Does semi-automatic bone-fragment segmentation improve the reproducibility of the Letournel acetabular fracture classification?

    Science.gov (United States)

    Boudissa, M; Orfeuvre, B; Chabanas, M; Tonetti, J

    2017-09-01

    The Letournel classification of acetabular fracture shows poor reproducibility in inexperienced observers, despite the introduction of 3D imaging. We therefore developed a method of semi-automatic segmentation based on CT data. The present prospective study aimed to assess: (1) whether semi-automatic bone-fragment segmentation increased the rate of correct classification; (2) if so, in which fracture types; and (3) feasibility using the open-source itksnap 3.0 software package without incurring extra cost for users. Semi-automatic segmentation of acetabular fractures significantly increases the rate of correct classification by orthopedic surgery residents. Twelve orthopedic surgery residents classified 23 acetabular fractures. Six used conventional 3D reconstructions provided by the center's radiology department (conventional group) and 6 others used reconstructions obtained by semi-automatic segmentation using the open-source itksnap 3.0 software package (segmentation group). Bone fragments were identified by specific colors. Correct classification rates were compared between groups on Chi 2 test. Assessment was repeated 2 weeks later, to determine intra-observer reproducibility. Correct classification rates were significantly higher in the "segmentation" group: 114/138 (83%) versus 71/138 (52%); Psegmentation time per fracture was 27±3min [range, 21-35min]. The segmentation group showed excellent intra-observer correlation coefficients, overall (ICC=0.88), and for simple (ICC=0.92) and complex fractures (ICC=0.84). Semi-automatic segmentation, identifying the various bone fragments, was effective in increasing the rate of correct acetabular fracture classification on the Letournel system by orthopedic surgery residents. It may be considered for routine use in education and training. III: prospective case-control study of a diagnostic procedure. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Understanding Spatially Complex Segmental and Branch Anatomy Using 3D Printing: Liver, Lung, Prostate, Coronary Arteries, and Circle of Willis.

    Science.gov (United States)

    Javan, Ramin; Herrin, Douglas; Tangestanipoor, Ardalan

    2016-09-01

    Three-dimensional (3D) manufacturing is shaping personalized medicine, in which radiologists can play a significant role, be it as consultants to surgeons for surgical planning or by creating powerful visual aids for communicating with patients, physicians, and trainees. This report illustrates the steps in development of custom 3D models that enhance the understanding of complex anatomy. We graphically designed 3D meshes or modified imported data from cross-sectional imaging to develop physical models targeted specifically for teaching complex segmental and branch anatomy. The 3D printing itself is easily accessible through online commercial services, and the models are made of polyamide or gypsum. Anatomic models of the liver, lungs, prostate, coronary arteries, and the Circle of Willis were created. These models have advantages that include customizable detail, relative low cost, full control of design focusing on subsegments, color-coding potential, and the utilization of cross-sectional imaging combined with graphic design. Radiologists have an opportunity to serve as leaders in medical education and clinical care with 3D printed models that provide beneficial interaction with patients, clinicians, and trainees across all specialties by proactively taking on the educator's role. Complex models can be developed to show normal anatomy or common pathology for medical educational purposes. There is a need for randomized trials, which radiologists can design, to demonstrate the utility and effectiveness of 3D printed models for teaching simple and complex anatomy, simulating interventions, measuring patient satisfaction, and improving clinical care. Copyright © 2016 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.

  3. Automatic iterative segmentation of multiple sclerosis lesions using Student's t mixture models and probabilistic anatomical atlases in FLAIR images.

    Science.gov (United States)

    Freire, Paulo G L; Ferrari, Ricardo J

    2016-06-01

    Multiple sclerosis (MS) is a demyelinating autoimmune disease that attacks the central nervous system (CNS) and affects more than 2 million people worldwide. The segmentation of MS lesions in magnetic resonance imaging (MRI) is a very important task to assess how a patient is responding to treatment and how the disease is progressing. Computational approaches have been proposed over the years to segment MS lesions and reduce the amount of time spent on manual delineation and inter- and intra-rater variability and bias. However, fully-automatic segmentation of MS lesions still remains an open problem. In this work, we propose an iterative approach using Student's t mixture models and probabilistic anatomical atlases to automatically segment MS lesions in Fluid Attenuated Inversion Recovery (FLAIR) images. Our technique resembles a refinement approach by iteratively segmenting brain tissues into smaller classes until MS lesions are grouped as the most hyperintense one. To validate our technique we used 21 clinical images from the 2015 Longitudinal Multiple Sclerosis Lesion Segmentation Challenge dataset. Evaluation using Dice Similarity Coefficient (DSC), True Positive Ratio (TPR), False Positive Ratio (FPR), Volume Difference (VD) and Pearson's r coefficient shows that our technique has a good spatial and volumetric agreement with raters' manual delineations. Also, a comparison between our proposal and the state-of-the-art shows that our technique is comparable and, in some cases, better than some approaches, thus being a viable alternative for automatic MS lesion segmentation in MRI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Myocardial segmentation based on coronary anatomy using coronary computed tomography angiography: Development and validation in a pig model

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Mi Sun [Chung-Ang University College of Medicine, Department of Radiology, Chung-Ang University Hospital, Seoul (Korea, Republic of); Yang, Dong Hyun; Seo, Joon Beom; Kang, Joon-Won; Lim, Tae-Hwan [Asan Medical Center, University of Ulsan College of Medicine, Department of Radiology and Research Institute of Radiology, Seoul (Korea, Republic of); Kim, Young-Hak; Kang, Soo-Jin; Jung, Joonho [Asan Medical Center, University of Ulsan College of Medicine, Heart Institute, Seoul (Korea, Republic of); Kim, Namkug [Asan Medical Center, University of Ulsan College of Medicine, Department of Convergence Medicine, Seoul (Korea, Republic of); Heo, Seung-Ho [Asan Medical Center, University of Ulsan College of Medicine, Asan institute for Life Science, Seoul (Korea, Republic of); Baek, Seunghee [Asan Medical Center, University of Ulsan College of Medicine, Department of Clinical Epidemiology and Biostatistics, Seoul (Korea, Republic of); Choi, Byoung Wook [Yonsei University, Department of Diagnostic Radiology, College of Medicine, Seoul (Korea, Republic of)

    2017-10-15

    To validate a method for performing myocardial segmentation based on coronary anatomy using coronary CT angiography (CCTA). Coronary artery-based myocardial segmentation (CAMS) was developed for use with CCTA. To validate and compare this method with the conventional American Heart Association (AHA) classification, a single coronary occlusion model was prepared and validated using six pigs. The unstained occluded coronary territories of the specimens and corresponding arterial territories from CAMS and AHA segmentations were compared using slice-by-slice matching and 100 virtual myocardial columns. CAMS more precisely predicted ischaemic area than the AHA method, as indicated by 95% versus 76% (p < 0.001) of the percentage of matched columns (defined as percentage of matched columns of segmentation method divided by number of unstained columns in the specimen). According to the subgroup analyses, CAMS demonstrated a higher percentage of matched columns than the AHA method in the left anterior descending artery (100% vs. 77%; p < 0.001) and mid- (99% vs. 83%; p = 0.046) and apical-level territories of the left ventricle (90% vs. 52%; p = 0.011). CAMS is a feasible method for identifying the corresponding myocardial territories of the coronary arteries using CCTA. (orig.)

  5. A workflow for the automatic segmentation of organelles in electron microscopy image stacks

    Directory of Open Access Journals (Sweden)

    Alex Joseph Perez

    2014-11-01

    Full Text Available Electron microscopy (EM facilitates analysis of the form, distribution, and functional status of key organelle systems in various pathological processes, including those associated with neurodegenerative disease. Such EM data often provide important new insights into the underlying disease mechanisms. The development of more accurate and efficient methods to quantify changes in subcellular microanatomy has already proven key to understanding the pathogenesis of Parkinson’s and Alzheimer’s diseases, as well as glaucoma. While our ability to acquire large volumes of 3D EM data is progressing rapidly, more advanced analysis tools are needed to assist in measuring precise three-dimensional morphologies of organelles within data sets that can include hundreds to thousands of whole cells. Although new imaging instrument throughputs can exceed teravoxels of data per day, image segmentation and analysis remain significant bottlenecks to achieving quantitative descriptions of whole cell structural organellomes. Here, we present a novel method for the automatic segmentation of organelles in 3D EM image stacks. Segmentations are generated using only 2D image information, making the method suitable for anisotropic imaging techniques such as serial block-face scanning electron microscopy (SBEM. Additionally, no assumptions about 3D organelle morphology are made, ensuring the method can be easily expanded to any number of structurally and functionally diverse organelles. Following the presentation of our algorithm, we validate its performance by assessing the segmentation accuracy of different organelle targets in an example SBEM dataset and demonstrate that it can be efficiently parallelized on supercomputing resources, resulting in a dramatic reduction in runtime.

  6. Generic method for automatic bladder segmentation on cone beam CT using a patient-specific bladder shape model

    International Nuclear Information System (INIS)

    Schoot, A. J. A. J. van de; Schooneveldt, G.; Wognum, S.; Stalpers, L. J. A.; Rasch, C. R. N.; Bel, A.; Hoogeman, M. S.; Chai, X.

    2014-01-01

    Purpose: The aim of this study is to develop and validate a generic method for automatic bladder segmentation on cone beam computed tomography (CBCT), independent of gender and treatment position (prone or supine), using only pretreatment imaging data. Methods: Data of 20 patients, treated for tumors in the pelvic region with the entire bladder visible on CT and CBCT, were divided into four equally sized groups based on gender and treatment position. The full and empty bladder contour, that can be acquired with pretreatment CT imaging, were used to generate a patient-specific bladder shape model. This model was used to guide the segmentation process on CBCT. To obtain the bladder segmentation, the reference bladder contour was deformed iteratively by maximizing the cross-correlation between directional grey value gradients over the reference and CBCT bladder edge. To overcome incorrect segmentations caused by CBCT image artifacts, automatic adaptations were implemented. Moreover, locally incorrect segmentations could be adapted manually. After each adapted segmentation, the bladder shape model was expanded and new shape patterns were calculated for following segmentations. All available CBCTs were used to validate the segmentation algorithm. The bladder segmentations were validated by comparison with the manual delineations and the segmentation performance was quantified using the Dice similarity coefficient (DSC), surface distance error (SDE) and SD of contour-to-contour distances. Also, bladder volumes obtained by manual delineations and segmentations were compared using a Bland-Altman error analysis. Results: The mean DSC, mean SDE, and mean SD of contour-to-contour distances between segmentations and manual delineations were 0.87, 0.27 cm and 0.22 cm (female, prone), 0.85, 0.28 cm and 0.22 cm (female, supine), 0.89, 0.21 cm and 0.17 cm (male, supine) and 0.88, 0.23 cm and 0.17 cm (male, prone), respectively. Manual local adaptations improved the segmentation

  7. Generic method for automatic bladder segmentation on cone beam CT using a patient-specific bladder shape model

    Energy Technology Data Exchange (ETDEWEB)

    Schoot, A. J. A. J. van de, E-mail: a.j.schootvande@amc.uva.nl; Schooneveldt, G.; Wognum, S.; Stalpers, L. J. A.; Rasch, C. R. N.; Bel, A. [Department of Radiation Oncology, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam (Netherlands); Hoogeman, M. S. [Department of Radiation Oncology, Daniel den Hoed Cancer Center, Erasmus Medical Center, Groene Hilledijk 301, 3075 EA Rotterdam (Netherlands); Chai, X. [Department of Radiation Oncology, Stanford University School of Medicine, 875 Blake Wilbur Drive, Palo Alto, California 94305 (United States)

    2014-03-15

    Purpose: The aim of this study is to develop and validate a generic method for automatic bladder segmentation on cone beam computed tomography (CBCT), independent of gender and treatment position (prone or supine), using only pretreatment imaging data. Methods: Data of 20 patients, treated for tumors in the pelvic region with the entire bladder visible on CT and CBCT, were divided into four equally sized groups based on gender and treatment position. The full and empty bladder contour, that can be acquired with pretreatment CT imaging, were used to generate a patient-specific bladder shape model. This model was used to guide the segmentation process on CBCT. To obtain the bladder segmentation, the reference bladder contour was deformed iteratively by maximizing the cross-correlation between directional grey value gradients over the reference and CBCT bladder edge. To overcome incorrect segmentations caused by CBCT image artifacts, automatic adaptations were implemented. Moreover, locally incorrect segmentations could be adapted manually. After each adapted segmentation, the bladder shape model was expanded and new shape patterns were calculated for following segmentations. All available CBCTs were used to validate the segmentation algorithm. The bladder segmentations were validated by comparison with the manual delineations and the segmentation performance was quantified using the Dice similarity coefficient (DSC), surface distance error (SDE) and SD of contour-to-contour distances. Also, bladder volumes obtained by manual delineations and segmentations were compared using a Bland-Altman error analysis. Results: The mean DSC, mean SDE, and mean SD of contour-to-contour distances between segmentations and manual delineations were 0.87, 0.27 cm and 0.22 cm (female, prone), 0.85, 0.28 cm and 0.22 cm (female, supine), 0.89, 0.21 cm and 0.17 cm (male, supine) and 0.88, 0.23 cm and 0.17 cm (male, prone), respectively. Manual local adaptations improved the segmentation

  8. A 3D global-to-local deformable mesh model based registration and anatomy-constrained segmentation method for image guided prostate radiotherapy

    International Nuclear Information System (INIS)

    Zhou Jinghao; Kim, Sung; Jabbour, Salma; Goyal, Sharad; Haffty, Bruce; Chen, Ting; Levinson, Lydia; Metaxas, Dimitris; Yue, Ning J.

    2010-01-01

    Purpose: In the external beam radiation treatment of prostate cancers, successful implementation of adaptive radiotherapy and conformal radiation dose delivery is highly dependent on precise and expeditious segmentation and registration of the prostate volume between the simulation and the treatment images. The purpose of this study is to develop a novel, fast, and accurate segmentation and registration method to increase the computational efficiency to meet the restricted clinical treatment time requirement in image guided radiotherapy. Methods: The method developed in this study used soft tissues to capture the transformation between the 3D planning CT (pCT) images and 3D cone-beam CT (CBCT) treatment images. The method incorporated a global-to-local deformable mesh model based registration framework as well as an automatic anatomy-constrained robust active shape model (ACRASM) based segmentation algorithm in the 3D CBCT images. The global registration was based on the mutual information method, and the local registration was to minimize the Euclidian distance of the corresponding nodal points from the global transformation of deformable mesh models, which implicitly used the information of the segmented target volume. The method was applied on six data sets of prostate cancer patients. Target volumes delineated by the same radiation oncologist on the pCT and CBCT were chosen as the benchmarks and were compared to the segmented and registered results. The distance-based and the volume-based estimators were used to quantitatively evaluate the results of segmentation and registration. Results: The ACRASM segmentation algorithm was compared to the original active shape model (ASM) algorithm by evaluating the values of the distance-based estimators. With respect to the corresponding benchmarks, the mean distance ranged from -0.85 to 0.84 mm for ACRASM and from -1.44 to 1.17 mm for ASM. The mean absolute distance ranged from 1.77 to 3.07 mm for ACRASM and from 2.45 to

  9. Automatic fuzzy inference system development for marker-based watershed segmentation

    International Nuclear Information System (INIS)

    Gonzalez, M A; Meschino, G J; Ballarin, V L

    2007-01-01

    Texture image segmentation is a constant challenge in digital image processing. The partition of an image into regions that allow the experienced observer to obtain the necessary information can be done using a Mathematical Morphology tool called the Watershed Transform. This transform is able to distinguish extremely complex objects and is easily adaptable to various kinds of images. The success of the Watershed Transform depends essentially on the existence of unequivocal markers for each of the objects of interest. The standard methods for marker detection are highly specific and complex when objects presenting great variability of shape, size and texture are processed. This paper proposes the automatic generation of a fuzzy inference system for marker detection using object selection done by the expert. This method allows applying the Watershed Transform to biomedical images with diferent kinds of texture. The results allow concluding that the method proposed is an effective tool for the application of the Watershed Transform

  10. Automatic Multi-Level Thresholding Segmentation Based on Multi-Objective Optimization

    Directory of Open Access Journals (Sweden)

    L. DJEROU,

    2012-01-01

    Full Text Available In this paper, we present a new multi-level image thresholding technique, called Automatic Threshold based on Multi-objective Optimization "ATMO" that combines the flexibility of multi-objective fitness functions with the power of a Binary Particle Swarm Optimization algorithm "BPSO", for searching the "optimum" number of the thresholds and simultaneously the optimal thresholds of three criteria: the between-class variances criterion, the minimum error criterion and the entropy criterion. Some examples of test images are presented to compare our segmentation method, based on the multi-objective optimization approach with Otsu’s, Kapur’s and Kittler’s methods. Our experimental results show that the thresholding method based on multi-objective optimization is more efficient than the classical Otsu’s, Kapur’s and Kittler’s methods.

  11. Automatic Segmentation of Abdominal Fat in MRI-Scans, Using Graph-Cuts and Image Derived Energies

    DEFF Research Database (Denmark)

    Christensen, Anders Nymark; Larsen, Christian Thode; Mandrup Jensen, Camilla Maria

    2017-01-01

    For many clinical studies changes in the abdominal distribution of fat is an important measure. However, the segmentation of abdominal fat in MRI scans is both difficult and time consuming using manual methods. We present here an automatic and flexible software package, that performs both bias fi...... by tuning the image-derived energies used for the segmentation, allowing the method to be applied to other body parts, such as the thighs....

  12. Semi-Automatic Segmentation of Optic Radiations and LGN, and Their Relationship to EEG Alpha Waves.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Renauld

    Full Text Available At rest, healthy human brain activity is characterized by large electroencephalography (EEG fluctuations in the 8-13 Hz range, commonly referred to as the alpha band. Although it is well known that EEG alpha activity varies across individuals, few studies have investigated how this may be related to underlying morphological variations in brain structure. Specifically, it is generally believed that the lateral geniculate nucleus (LGN and its efferent fibres (optic radiation, OR play a key role in alpha activity, yet it is unclear whether their shape or size variations contribute to its inter-subject variability. Given the widespread use of EEG alpha in basic and clinical research, addressing this is important, though difficult given the problems associated with reliably segmenting the LGN and OR. For this, we employed a multi-modal approach and combined diffusion magnetic resonance imaging (dMRI, functional magnetic resonance imaging (fMRI and EEG in 20 healthy subjects to measure structure and function, respectively. For the former, we developed a new, semi-automated approach for segmenting the OR and LGN, from which we extracted several structural metrics such as volume, position and diffusivity. Although these measures corresponded well with known morphology based on previous post-mortem studies, we nonetheless found that their inter-subject variability was not significantly correlated to alpha power or peak frequency (p >0.05. Our results therefore suggest that alpha variability may be mediated by an alternative structural source and our proposed methodology may in general help in better understanding the influence of anatomy on function such as measured by EEG or fMRI.

  13. Fully automatic, multiorgan segmentation in normal whole body magnetic resonance imaging (MRI), using classification forests (CFs), convolutional neural networks (CNNs), and a multi-atlas (MA) approach.

    Science.gov (United States)

    Lavdas, Ioannis; Glocker, Ben; Kamnitsas, Konstantinos; Rueckert, Daniel; Mair, Henrietta; Sandhu, Amandeep; Taylor, Stuart A; Aboagye, Eric O; Rockall, Andrea G

    2017-10-01

    As part of a program to implement automatic lesion detection methods for whole body magnetic resonance imaging (MRI) in oncology, we have developed, evaluated, and compared three algorithms for fully automatic, multiorgan segmentation in healthy volunteers. The first algorithm is based on classification forests (CFs), the second is based on 3D convolutional neural networks (CNNs) and the third algorithm is based on a multi-atlas (MA) approach. We examined data from 51 healthy volunteers, scanned prospectively with a standardized, multiparametric whole body MRI protocol at 1.5 T. The study was approved by the local ethics committee and written consent was obtained from the participants. MRI data were used as input data to the algorithms, while training was based on manual annotation of the anatomies of interest by clinical MRI experts. Fivefold cross-validation experiments were run on 34 artifact-free subjects. We report three overlap and three surface distance metrics to evaluate the agreement between the automatic and manual segmentations, namely the dice similarity coefficient (DSC), recall (RE), precision (PR), average surface distance (ASD), root-mean-square surface distance (RMSSD), and Hausdorff distance (HD). Analysis of variances was used to compare pooled label metrics between the three algorithms and the DSC on a 'per-organ' basis. A Mann-Whitney U test was used to compare the pooled metrics between CFs and CNNs and the DSC on a 'per-organ' basis, when using different imaging combinations as input for training. All three algorithms resulted in robust segmenters that were effectively trained using a relatively small number of datasets, an important consideration in the clinical setting. Mean overlap metrics for all the segmented structures were: CFs: DSC = 0.70 ± 0.18, RE = 0.73 ± 0.18, PR = 0.71 ± 0.14, CNNs: DSC = 0.81 ± 0.13, RE = 0.83 ± 0.14, PR = 0.82 ± 0.10, MA: DSC = 0.71 ± 0.22, RE = 0.70 ± 0.34, PR = 0.77 ± 0.15. Mean surface distance

  14. Automatic lung lobe segmentation of COPD patients using iterative B-spline fitting

    Science.gov (United States)

    Shamonin, D. P.; Staring, M.; Bakker, M. E.; Xiao, C.; Stolk, J.; Reiber, J. H. C.; Stoel, B. C.

    2012-02-01

    We present an automatic lung lobe segmentation algorithm for COPD patients. The method enhances fissures, removes unlikely fissure candidates, after which a B-spline is fitted iteratively through the remaining candidate objects. The iterative fitting approach circumvents the need to classify each object as being part of the fissure or being noise, and allows the fissure to be detected in multiple disconnected parts. This property is beneficial for good performance in patient data, containing incomplete and disease-affected fissures. The proposed algorithm is tested on 22 COPD patients, resulting in accurate lobe-based densitometry, and a median overlap of the fissure (defined 3 voxels wide) with an expert ground truth of 0.65, 0.54 and 0.44 for the three main fissures. This compares to complete lobe overlaps of 0.99, 0.98, 0.98, 0.97 and 0.87 for the five main lobes, showing promise for lobe segmentation on data of patients with moderate to severe COPD.

  15. Automatic segmentation of meningioma from non-contrasted brain MRI integrating fuzzy clustering and region growing

    Directory of Open Access Journals (Sweden)

    Liao Chun-Chih

    2011-08-01

    Full Text Available Abstract Background In recent years, magnetic resonance imaging (MRI has become important in brain tumor diagnosis. Using this modality, physicians can locate specific pathologies by analyzing differences in tissue character presented in different types of MR images. This paper uses an algorithm integrating fuzzy-c-mean (FCM and region growing techniques for automated tumor image segmentation from patients with menigioma. Only non-contrasted T1 and T2 -weighted MR images are included in the analysis. The study's aims are to correctly locate tumors in the images, and to detect those situated in the midline position of the brain. Methods The study used non-contrasted T1- and T2-weighted MR images from 29 patients with menigioma. After FCM clustering, 32 groups of images from each patient group were put through the region-growing procedure for pixels aggregation. Later, using knowledge-based information, the system selected tumor-containing images from these groups and merged them into one tumor image. An alternative semi-supervised method was added at this stage for comparison with the automatic method. Finally, the tumor image was optimized by a morphology operator. Results from automatic segmentation were compared to the "ground truth" (GT on a pixel level. Overall data were then evaluated using a quantified system. Results The quantified parameters, including the "percent match" (PM and "correlation ratio" (CR, suggested a high match between GT and the present study's system, as well as a fair level of correspondence. The results were compatible with those from other related studies. The system successfully detected all of the tumors situated at the midline of brain. Six cases failed in the automatic group. One also failed in the semi-supervised alternative. The remaining five cases presented noticeable edema inside the brain. In the 23 successful cases, the PM and CR values in the two groups were highly related. Conclusions Results indicated

  16. Automatic segmentation of thoracic and pelvic CT images for radiotherapy planning using implicit anatomic knowledge and organ-specific segmentation strategies.

    Science.gov (United States)

    Haas, B; Coradi, T; Scholz, M; Kunz, P; Huber, M; Oppitz, U; André, L; Lengkeek, V; Huyskens, D; van Esch, A; Reddick, R

    2008-03-21

    Automatic segmentation of anatomical structures in medical images is a valuable tool for efficient computer-aided radiotherapy and surgery planning and an enabling technology for dynamic adaptive radiotherapy. This paper presents the design, algorithms and validation of new software for the automatic segmentation of CT images used for radiotherapy treatment planning. A coarse to fine approach is followed that consists of presegmentation, anatomic orientation and structure segmentation. No user input or a priori information about the image content is required. In presegmentation, the body outline, the bones and lung equivalent tissue are detected. Anatomic orientation recognizes the patient's position, orientation and gender and creates an elastic mapping of the slice positions to a reference scale. Structure segmentation is divided into localization, outlining and refinement, performed by procedures with implicit anatomic knowledge using standard image processing operations. The presented version of algorithms automatically segments the body outline and bones in any gender and patient position, the prostate, bladder and femoral heads for male pelvis in supine position, and the spinal canal, lungs, heart and trachea in supine position. The software was developed and tested on a collection of over 600 clinical radiotherapy planning CT stacks. In a qualitative validation on this test collection, anatomic orientation correctly detected gender, patient position and body region in 98% of the cases, a correct mapping was produced for 89% of thorax and 94% of pelvis cases. The average processing time for the entire segmentation of a CT stack was less than 1 min on a standard personal computer. Two independent retrospective studies were carried out for clinical validation. Study I was performed on 66 cases (30 pelvis, 36 thorax) with dosimetrists, study II on 52 cases (39 pelvis, 13 thorax) with radio-oncologists as experts. The experts rated the automatically produced

  17. Automatic rib segmentation and labeling in computed tomography scans using a general framework for detection, recognition and segmentation of objects in volumetric data.

    Science.gov (United States)

    Staal, Joes; van Ginneken, Bram; Viergever, Max A

    2007-02-01

    A system for automatic segmentation and labeling of the complete rib cage in chest CT scans is presented. The method uses a general framework for automatic detection, recognition and segmentation of objects in three-dimensional medical images. The framework consists of five stages: (1) detection of relevant image structures, (2) construction of image primitives, (3) classification of the primitives, (4) grouping and recognition of classified primitives and (5) full segmentation based on the obtained groups. For this application, first 1D ridges are extracted in 3D data. Then, primitives in the form of line elements are constructed from the ridge voxels. Next a classifier is trained to classify the primitives in foreground (ribs) and background. In the grouping stage centerlines are formed from the foreground primitives and rib numbers are assigned to the centerlines. In the final segmentation stage, the centerlines act as initialization for a seeded region growing algorithm. The method is tested on 20 CT-scans. Of the primitives, 97.5% is classified correctly (sensitivity is 96.8%, specificity is 97.8%). After grouping, 98.4% of the ribs are recognized. The final segmentation is qualitatively evaluated and is very accurate for over 80% of all ribs, with slight errors otherwise.

  18. Automatic multiorgan segmentation in CT images of the male pelvis using region-specific hierarchical appearance cluster models.

    Science.gov (United States)

    Li, Dengwang; Zang, Pengxiao; Chai, Xiangfei; Cui, Yi; Li, Ruijiang; Xing, Lei

    2016-10-01

    Accurate segmentation of pelvic organs in CT images is of great importance in external beam radiotherapy for prostate cancer. The aim of this studying is to develop a novel method for automatic, multiorgan segmentation of the male pelvis. The authors' segmentation method consists of several stages. First, a pretreatment includes parameterization, principal component analysis (PCA), and an established process of region-specific hierarchical appearance cluster (RSHAC) model which was executed on the training dataset. After the preprocessing, online automatic segmentation of new CT images is achieved by combining the RSHAC model with the PCA-based point distribution model. Fifty pelvic CT from eight prostate cancer patients were used as the training dataset. From another 20 prostate cancer patients, 210 CT images were used for independent validation of the segmentation method. In the training dataset, 15 PCA modes were needed to represent 95% of shape variations of pelvic organs. When tested on the validation dataset, the authors' segmentation method had an average Dice similarity coefficient and mean absolute distance of 0.751 and 0.371 cm, 0.783 and 0.303 cm, 0.573 and 0.604 cm for prostate, bladder, and rectum, respectively. The automated segmentation process took on average 5 min on a personal computer equipped with Core 2 Duo CPU of 2.8 GHz and 8 GB RAM. The authors have developed an efficient and reliable method for automatic segmentation of multiple organs in the male pelvis. This method should be useful for treatment planning and adaptive replanning for prostate cancer radiotherapy. With this method, the physicist can improve the work efficiency and stability.

  19. Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.

    Science.gov (United States)

    Hu, Peijun; Wu, Fa; Peng, Jialin; Bao, Yuanyuan; Chen, Feng; Kong, Dexing

    2017-03-01

    Multi-organ segmentation from CT images is an essential step for computer-aided diagnosis and surgery planning. However, manual delineation of the organs by radiologists is tedious, time-consuming and poorly reproducible. Therefore, we propose a fully automatic method for the segmentation of multiple organs from three-dimensional abdominal CT images. The proposed method employs deep fully convolutional neural networks (CNNs) for organ detection and segmentation, which is further refined by a time-implicit multi-phase evolution method. Firstly, a 3D CNN is trained to automatically localize and delineate the organs of interest with a probability prediction map. The learned probability map provides both subject-specific spatial priors and initialization for subsequent fine segmentation. Then, for the refinement of the multi-organ segmentation, image intensity models, probability priors as well as a disjoint region constraint are incorporated into an unified energy functional. Finally, a novel time-implicit multi-phase level-set algorithm is utilized to efficiently optimize the proposed energy functional model. Our method has been evaluated on 140 abdominal CT scans for the segmentation of four organs (liver, spleen and both kidneys). With respect to the ground truth, average Dice overlap ratios for the liver, spleen and both kidneys are 96.0, 94.2 and 95.4%, respectively, and average symmetric surface distance is less than 1.3 mm for all the segmented organs. The computation time for a CT volume is 125 s in average. The achieved accuracy compares well to state-of-the-art methods with much higher efficiency. A fully automatic method for multi-organ segmentation from abdominal CT images was developed and evaluated. The results demonstrated its potential in clinical usage with high effectiveness, robustness and efficiency.

  20. Hepatic vessel segmentation for 3D planning of liver surgery experimental evaluation of a new fully automatic algorithm.

    Science.gov (United States)

    Conversano, Francesco; Franchini, Roberto; Demitri, Christian; Massoptier, Laurent; Montagna, Francesco; Maffezzoli, Alfonso; Malvasi, Antonio; Casciaro, Sergio

    2011-04-01

    The aim of this study was to identify the optimal parameter configuration of a new algorithm for fully automatic segmentation of hepatic vessels, evaluating its accuracy in view of its use in a computer system for three-dimensional (3D) planning of liver surgery. A phantom reproduction of a human liver with vessels up to the fourth subsegment order, corresponding to a minimum diameter of 0.2 mm, was realized through stereolithography, exploiting a 3D model derived from a real human computed tomographic data set. Algorithm parameter configuration was experimentally optimized, and the maximum achievable segmentation accuracy was quantified for both single two-dimensional slices and 3D reconstruction of the vessel network, through an analytic comparison of the automatic segmentation performed on contrast-enhanced computed tomographic phantom images with actual model features. The optimal algorithm configuration resulted in a vessel detection sensitivity of 100% for vessels > 1 mm in diameter, 50% in the range 0.5 to 1 mm, and 14% in the range 0.2 to 0.5 mm. An average area overlap of 94.9% was obtained between automatically and manually segmented vessel sections, with an average difference of 0.06 mm(2). The average values of corresponding false-positive and false-negative ratios were 7.7% and 2.3%, respectively. A robust and accurate algorithm for automatic extraction of the hepatic vessel tree from contrast-enhanced computed tomographic volume images was proposed and experimentally assessed on a liver model, showing unprecedented sensitivity in vessel delineation. This automatic segmentation algorithm is promising for supporting liver surgery planning and for guiding intraoperative resections. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.

  1. ATLAAS: an automatic decision tree-based learning algorithm for advanced image segmentation in positron emission tomography.

    Science.gov (United States)

    Berthon, Beatrice; Marshall, Christopher; Evans, Mererid; Spezi, Emiliano

    2016-07-07

    Accurate and reliable tumour delineation on positron emission tomography (PET) is crucial for radiotherapy treatment planning. PET automatic segmentation (PET-AS) eliminates intra- and interobserver variability, but there is currently no consensus on the optimal method to use, as different algorithms appear to perform better for different types of tumours. This work aimed to develop a predictive segmentation model, trained to automatically select and apply the best PET-AS method, according to the tumour characteristics. ATLAAS, the automatic decision tree-based learning algorithm for advanced segmentation is based on supervised machine learning using decision trees. The model includes nine PET-AS methods and was trained on a 100 PET scans with known true contour. A decision tree was built for each PET-AS algorithm to predict its accuracy, quantified using the Dice similarity coefficient (DSC), according to the tumour volume, tumour peak to background SUV ratio and a regional texture metric. The performance of ATLAAS was evaluated for 85 PET scans obtained from fillable and printed subresolution sandwich phantoms. ATLAAS showed excellent accuracy across a wide range of phantom data and predicted the best or near-best segmentation algorithm in 93% of cases. ATLAAS outperformed all single PET-AS methods on fillable phantom data with a DSC of 0.881, while the DSC for H&N phantom data was 0.819. DSCs higher than 0.650 were achieved in all cases. ATLAAS is an advanced automatic image segmentation algorithm based on decision tree predictive modelling, which can be trained on images with known true contour, to predict the best PET-AS method when the true contour is unknown. ATLAAS provides robust and accurate image segmentation with potential applications to radiation oncology.

  2. Automated segmentation of tumors on bone scans using anatomy-specific thresholding

    Science.gov (United States)

    Chu, Gregory H.; Lo, Pechin; Kim, Hyun J.; Lu, Peiyun; Ramakrishna, Bharath; Gjertson, David; Poon, Cheryce; Auerbach, Martin; Goldin, Jonathan; Brown, Matthew S.

    2012-03-01

    Quantification of overall tumor area on bone scans may be a potential biomarker for treatment response assessment and has, to date, not been investigated. Segmentation of bone metastases on bone scans is a fundamental step for this response marker. In this paper, we propose a fully automated computerized method for the segmentation of bone metastases on bone scans, taking into account characteristics of different anatomic regions. A scan is first segmented into anatomic regions via an atlas-based segmentation procedure, which involves non-rigidly registering a labeled atlas scan to the patient scan. Next, an intensity normalization method is applied to account for varying levels of radiotracer dosing levels and scan timing. Lastly, lesions are segmented via anatomic regionspecific intensity thresholding. Thresholds are chosen by receiver operating characteristic (ROC) curve analysis against manual contouring by board certified nuclear medicine physicians. A leave-one-out cross validation of our method on a set of 39 bone scans with metastases marked by 2 board-certified nuclear medicine physicians yielded a median sensitivity of 95.5%, and specificity of 93.9%. Our method was compared with a global intensity thresholding method. The results show a comparable sensitivity and significantly improved overall specificity, with a p-value of 0.0069.

  3. Automatic segmentation of subfigure image panels for multimodal biomedical document retrieval

    Science.gov (United States)

    Cheng, Beibei; Antani, Sameer; Stanley, R. Joe; Thoma, George R.

    2011-01-01

    Biomedical images are often referenced for clinical decision support (CDS), educational purposes, and research. The task of automatically finding the images in a scientific article that are most useful for the purpose of determining relevance to a clinical situation is traditionally done using text and is quite challenging. We propose to improve this by associating image features from the entire image and from relevant regions of interest with biomedical concepts described in the figure caption or discussion in the article. However, images used in scientific article figures are often composed of multiple panels where each sub-figure (panel) is referenced in the caption using alphanumeric labels, e.g. Figure 1(a), 2(c), etc. It is necessary to separate individual panels from a multi-panel figure as a first step toward automatic annotation of images. In this work we present methods that add make robust our previous efforts reported here. Specifically, we address the limitation in segmenting figures that do not exhibit explicit inter-panel boundaries, e.g. illustrations, graphs, and charts. We present a novel hybrid clustering algorithm based on particle swarm optimization (PSO) with fuzzy logic controller (FLC) to locate related figure components in such images. Results from our evaluation are very promising with 93.64% panel detection accuracy for regular (non-illustration) figure images and 92.1% accuracy for illustration images. A computational complexity analysis also shows that PSO is an optimal approach with relatively low computation time. The accuracy of separating these two type images is 98.11% and is achieved using decision tree.

  4. Automatic segmentation of lesions for the computer-assisted detection in fluorescence urology

    Science.gov (United States)

    Kage, Andreas; Legal, Wolfgang; Kelm, Peter; Simon, Jörg; Bergen, Tobias; Münzenmayer, Christian; Benz, Michaela

    2012-03-01

    Bladder cancer is one of the most common cancers in the western world. The diagnosis in Germany is based on the visual inspection of the bladder. This inspection performed with a cystoscope is a challenging task as some kinds of abnormal tissues do not differ much in their appearance from their surrounding healthy tissue. Fluorescence Cystoscopy has the potential to increase the detection rate. A liquid marker introduced into the bladder in advance of the inspection is concentrated in areas with high metabolism. Thus these areas appear as bright "glowing". Unfortunately, the fluorescence image contains besides the glowing of the suspicious lesions no more further visual information like for example the appearance of the blood vessels. A visual judgment of the lesion as well as a precise treatment has to be done using white light illumination. Thereby, the spatial information of the lesion provided by the fluorescence image has to be guessed by the clinical expert. This leads to a time consuming procedure due to many switches between the modalities and increases the risk of mistreatment. We introduce an automatic approach, which detects and segments any suspicious lesion in the fluorescence image automatically once the image was classified as a fluorescence image. The area of the contour of the detected lesion is transferred to the corresponding white light image and provide the clinical expert the spatial information of the lesion. The advantage of this approach is, that the clinical expert gets the spatial and the visual information of the lesion together in one image. This can save time and decrease the risk of an incomplete removal of a malign lesion.

  5. Automatic Segmentation and Online virtualCT in Head-and-Neck Adaptive Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Peroni, Marta, E-mail: marta.peroni@mail.polimi.it [Department of Bioengineering, Politecnico di Milano, Milano (Italy); Ciardo, Delia [Advanced Radiotherapy Center, European Institute of Oncology, Milano (Italy); Spadea, Maria Francesca [Department of Experimental and Clinical Medicine, Universita degli Studi Magna Graecia, Catanzaro (Italy); Riboldi, Marco [Department of Bioengineering, Politecnico di Milano, Milano (Italy); Bioengineering Unit, Centro Nazionale di Adroterapia Oncologica, Pavia (Italy); Comi, Stefania; Alterio, Daniela [Advanced Radiotherapy Center, European Institute of Oncology, Milano (Italy); Baroni, Guido [Department of Bioengineering, Politecnico di Milano, Milano (Italy); Bioengineering Unit, Centro Nazionale di Adroterapia Oncologica, Pavia (Italy); Orecchia, Roberto [Advanced Radiotherapy Center, European Institute of Oncology, Milano (Italy); Universita degli Studi di Milano, Milano (Italy); Medical Department, Centro Nazionale di Adroterapia Oncologica, Pavia (Italy)

    2012-11-01

    Purpose: The purpose of this work was to develop and validate an efficient and automatic strategy to generate online virtual computed tomography (CT) scans for adaptive radiation therapy (ART) in head-and-neck (HN) cancer treatment. Method: We retrospectively analyzed 20 patients, treated with intensity modulated radiation therapy (IMRT), for an HN malignancy. Different anatomical structures were considered: mandible, parotid glands, and nodal gross tumor volume (nGTV). We generated 28 virtualCT scans by means of nonrigid registration of simulation computed tomography (CTsim) and cone beam CT images (CBCTs), acquired for patient setup. We validated our approach by considering the real replanning CT (CTrepl) as ground truth. We computed the Dice coefficient (DSC), center of mass (COM) distance, and root mean square error (RMSE) between correspondent points located on the automatically segmented structures on CBCT and virtualCT. Results: Residual deformation between CTrepl and CBCT was below one voxel. Median DSC was around 0.8 for mandible and parotid glands, but only 0.55 for nGTV, because of the fairly homogeneous surrounding soft tissues and of its small volume. Median COM distance and RMSE were comparable with image resolution. No significant correlation between RMSE and initial or final deformation was found. Conclusion: The analysis provides evidence that deformable image registration may contribute significantly in reducing the need of full CT-based replanning in HN radiation therapy by supporting swift and objective decision-making in clinical practice. Further work is needed to strengthen algorithm potential in nGTV localization.

  6. Detection and segmentation of virus plaque using HOG and SVM: toward automatic plaque assay.

    Science.gov (United States)

    Mao, Yihao; Liu, Hong; Ye, Rong; Shi, Yonghong; Song, Zhijian

    2014-01-01

    Plaque assaying, measurement of the number, diameter, and area of plaques in a Petri dish image, is a standard procedure gauging the concentration of phage in biology. This paper presented a novel and effective method for implementing automatic plaque assaying. The method was mainly comprised of the following steps: In the training stage, after pre-processing the images for noise suppression, an initial training set was readied by sampling positive (with a plaque at the center) and negative (plaque-free) patches from the training images, and extracting the HOG features from each patch. The linear SVM classifier was trained in a self-learnt supervised learning strategy to avoid possible missing detection. Specifically, the training set which contained positive and negative patches sampled manually from training images was used to train the preliminary classifier which exhaustively searched the training images to predict the label for the unlabeled patches. The mislabeled patches were evaluated by experts and relabeled. And all the newly labeled patches and their corresponding HOG features were added to the initial training set to train the final classifier. In the testing stage, a sliding-window technique was first applied to the unseen image for obtaining HOG features, which were inputted into the classifier to predict whether the patch was positive. Second, a locally adaptive Otsu method was performed on the positive patches to segment the plaques. Finally, after removing the outliers, the parameters of the plaques were measured in the segmented plaques. The experimental results demonstrated that the accuracy of the proposed method was similar to the one measured manually by experts, but it took less than 30 seconds.

  7. Dosimetric evaluation of an automatic segmentation tool of pelvic structures from MRI images for prostate cancer radiotherapy

    International Nuclear Information System (INIS)

    Pasquier, D.; Lacornerie, T.; Lartigau, E.; Pasquier, D.; Pasquier, D.; Betrouni, N.; Vermandel, M.; Rousseau, J.

    2008-01-01

    Purpose: An automatic segmentation tool of pelvic structures from MRI images for prostate cancer radiotherapy was developed and dosimetric evaluation of differences of delineation (automatic versus human) is presented here. Materials and methods: C.T.V. (clinical target volume), rectum and bladder were defined automatically and by a physician in 20 patients. Treatment plans based on 'automatic' volumes were transferred on 'manual' volumes and reciprocally. Dosimetric characteristics of P.T.V. (V.95, minimal, maximal and mean doses), rectum (V.50, V.70, maximal and mean doses) and bladder (V.70, maximal and mean doses) were compared. Results: Automatic delineation of C.T.V. did not significantly influence dosimetric characteristics of 'manual' P.T.V. (projected target volume). Rectal V-50 and V.70 were not significantly different; mean rectal dose is slightly superior (43.2 versus 44.4 Gy, p = 0.02, Student test). Bladder V.70 was significantly superior too (19.3 versus 21.6, p = 0.004). Organ-at-risk (O.A.R.) automatic delineation had little influence on their dosimetric characteristics; rectal V.70 was slightly underestimated (20 versus 18.5 Gy, p = 0.001). Conclusion: C.T.V. and O.A.R. automatic delineation had little influence on dosimetric characteristics. Software developments are ongoing to enable routine use and interobserver evaluation is needed. (authors)

  8. Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks

    Directory of Open Access Journals (Sweden)

    Liang Chen

    2017-01-01

    Full Text Available Stroke is an acute cerebral vascular disease, which is likely to cause long-term disabilities and death. Acute ischemic lesions occur in most stroke patients. These lesions are treatable under accurate diagnosis and treatments. Although diffusion-weighted MR imaging (DWI is sensitive to these lesions, localizing and quantifying them manually is costly and challenging for clinicians. In this paper, we propose a novel framework to automatically segment stroke lesions in DWI. Our framework consists of two convolutional neural networks (CNNs: one is an ensemble of two DeconvNets (Noh et al., 2015, which is the EDD Net; the second CNN is the multi-scale convolutional label evaluation net (MUSCLE Net, which aims to evaluate the lesions detected by the EDD Net in order to remove potential false positives. To the best of our knowledge, it is the first attempt to solve this problem and using both CNNs achieves very good results. Furthermore, we study the network architectures and key configurations in detail to ensure the best performance. It is validated on a large dataset comprising clinical acquired DW images from 741 subjects. A mean accuracy of Dice coefficient obtained is 0.67 in total. The mean Dice scores based on subjects with only small and large lesions are 0.61 and 0.83, respectively. The lesion detection rate achieved is 0.94.

  9. Computer-assisted counting of retinal cells by automatic segmentation after TV denoising.

    Science.gov (United States)

    Bredies, Kristian; Wagner, Marcus; Schubert, Christian; Ahnelt, Peter

    2013-10-20

    Quantitative evaluation of mosaics of photoreceptors and neurons is essential in studies on development, aging and degeneration of the retina. Manual counting of samples is a time consuming procedure while attempts to automatization are subject to various restrictions from biological and preparation variability leading to both over- and underestimation of cell numbers. Here we present an adaptive algorithm to overcome many of these problems.Digital micrographs were obtained from cone photoreceptor mosaics visualized by anti-opsin immuno-cytochemistry in retinal wholemounts from a variety of mammalian species including primates. Segmentation of photoreceptors (from background, debris, blood vessels, other cell types) was performed by a procedure based on Rudin-Osher-Fatemi total variation (TV) denoising. Once 3 parameters are manually adjusted based on a sample, similarly structured images can be batch processed. The module is implemented in MATLAB and fully documented online. The object recognition procedure was tested on samples with a typical range of signal and background variations. We obtained results with error ratios of less than 10% in 16 of 18 samples and a mean error of less than 6% compared to manual counts. The presented method provides a traceable module for automated acquisition of retinal cell density data. Remaining errors, including addition of background items, splitting or merging of objects might be further reduced by introduction of additional parameters. The module may be integrated into extended environments with features such as 3D-acquisition and recognition.

  10. Approaches to automatic parameter fitting in a microscopy image segmentation pipeline: An exploratory parameter space analysis

    Directory of Open Access Journals (Sweden)

    Christian Held

    2013-01-01

    Full Text Available Introduction: Research and diagnosis in medicine and biology often require the assessment of a large amount of microscopy image data. Although on the one hand, digital pathology and new bioimaging technologies find their way into clinical practice and pharmaceutical research, some general methodological issues in automated image analysis are still open. Methods: In this study, we address the problem of fitting the parameters in a microscopy image segmentation pipeline. We propose to fit the parameters of the pipeline′s modules with optimization algorithms, such as, genetic algorithms or coordinate descents, and show how visual exploration of the parameter space can help to identify sub-optimal parameter settings that need to be avoided. Results: This is of significant help in the design of our automatic parameter fitting framework, which enables us to tune the pipeline for large sets of micrographs. Conclusion: The underlying parameter spaces pose a challenge for manual as well as automated parameter optimization, as the parameter spaces can show several local performance maxima. Hence, optimization strategies that are not able to jump out of local performance maxima, like the hill climbing algorithm, often result in a local maximum.

  11. Automatic tissue segmentation of head and neck MR images for hyperthermia treatment planning

    International Nuclear Information System (INIS)

    Fortunati, Valerio; Niessen, Wiro J; Veenland, Jifke F; Van Walsum, Theo; Verhaart, René F; Paulides, Margarethus M

    2015-01-01

    A hyperthermia treatment requires accurate, patient-specific treatment planning. This planning is based on 3D anatomical models which are generally derived from computed tomography. Because of its superior soft tissue contrast, magnetic resonance imaging (MRI) information can be introduced to improve the quality of these 3D patient models and therefore the treatment planning itself. Thus, we present here an automatic atlas-based segmentation algorithm for MR images of the head and neck.Our method combines multiatlas local weighting fusion with intensity modelling. The accuracy of the method was evaluated using a leave-one-out cross validation experiment over a set of 11 patients for which manual delineation were available.The accuracy of the proposed method was high both in terms of the Dice similarity coefficient (DSC) and the 95th percentile Hausdorff surface distance (HSD) with median DSC higher than 0.8 for all tissues except sclera. For all tissues, except the spine tissues, the accuracy was approaching the interobserver agreement/variability both in terms of DSC and HSD. The positive effect of adding the intensity modelling to the multiatlas fusion decreased when a more accurate atlas fusion method was used.Using the proposed approach we improved the performance of the approach previously presented for H and N hyperthermia treatment planning, making the method suitable for clinical application. (paper)

  12. Automatic tissue segmentation of head and neck MR images for hyperthermia treatment planning

    Science.gov (United States)

    Fortunati, Valerio; Verhaart, René F.; Niessen, Wiro J.; Veenland, Jifke F.; Paulides, Margarethus M.; van Walsum, Theo

    2015-08-01

    A hyperthermia treatment requires accurate, patient-specific treatment planning. This planning is based on 3D anatomical models which are generally derived from computed tomography. Because of its superior soft tissue contrast, magnetic resonance imaging (MRI) information can be introduced to improve the quality of these 3D patient models and therefore the treatment planning itself. Thus, we present here an automatic atlas-based segmentation algorithm for MR images of the head and neck. Our method combines multiatlas local weighting fusion with intensity modelling. The accuracy of the method was evaluated using a leave-one-out cross validation experiment over a set of 11 patients for which manual delineation were available. The accuracy of the proposed method was high both in terms of the Dice similarity coefficient (DSC) and the 95th percentile Hausdorff surface distance (HSD) with median DSC higher than 0.8 for all tissues except sclera. For all tissues, except the spine tissues, the accuracy was approaching the interobserver agreement/variability both in terms of DSC and HSD. The positive effect of adding the intensity modelling to the multiatlas fusion decreased when a more accurate atlas fusion method was used. Using the proposed approach we improved the performance of the approach previously presented for H&N hyperthermia treatment planning, making the method suitable for clinical application.

  13. Automatic segmentation of thermal images of diabetic-at-risk feet using the snakes algorithm

    Science.gov (United States)

    Etehadtavakol, Mahnaz; Ng, E. Y. K.; Kaabouch, Naima

    2017-11-01

    Diabetes is a disease with multi-systemic problems. It is a leading cause of death, medical costs, and loss of productivity. Foot ulcers are one generally known problem of uncontrolled diabetes that can lead to amputation signs of foot ulcers are not always obvious. Sometimes, symptoms won't even show up until ulcer is infected. Hence, identification of pre-ulceration of the plantar surface of the foot in diabetics is beneficial. Thermography has the potential to identify regions of the plantar with no evidence of ulcer but yet risk. Thermography is a technique that is safe, easy, non-invasive, with no contact, and repeatable. In this study, 59 thermographic images of the plantar foot of patients with diabetic neuropathy are implemented using the snakes algorithm to separate two feet from background automatically and separating the right foot from the left on each image. The snakes algorithm both separates the right and left foot into segmented different clusters according to their temperatures. The hottest regions will have the highest risk of ulceration for each foot. This algorithm also worked perfectly for all the current images.

  14. Evaluation of advanced automatic PET segmentation methods using nonspherical thin-wall inserts

    International Nuclear Information System (INIS)

    Berthon, B.; Marshall, C.; Evans, M.; Spezi, E.

    2014-01-01

    Purpose: The use of positron emission tomography (PET) within radiotherapy treatment planning requires the availability of reliable and accurate segmentation tools. PET automatic segmentation (PET-AS) methods have been recommended for the delineation of tumors, but there is still a lack of thorough validation and cross-comparison of such methods using clinically relevant data. In particular, studies validating PET segmentation tools mainly use phantoms with thick plastic walls inserts of simple spherical geometry and have not specifically investigated the effect of the target object geometry on the delineation accuracy. Our work therefore aimed at generating clinically realistic data using nonspherical thin-wall plastic inserts, for the evaluation and comparison of a set of eight promising PET-AS approaches. Methods: Sixteen nonspherical inserts were manufactured with a plastic wall of 0.18 mm and scanned within a custom plastic phantom. These included ellipsoids and toroids derived with different volumes, as well as tubes, pear- and drop-shaped inserts with different aspect ratios. A set of six spheres of volumes ranging from 0.5 to 102 ml was used for a baseline study. A selection of eight PET-AS methods, written in house, was applied to the images obtained. The methods represented promising segmentation approaches such as adaptive iterative thresholding, region-growing, clustering and gradient-based schemes. The delineation accuracy was measured in terms of overlap with the computed tomography reference contour, using the dice similarity coefficient (DSC), and error in dimensions. Results: The delineation accuracy was lower for nonspherical inserts than for spheres of the same volume in 88% cases. Slice-by-slice gradient-based methods, showed particularly lower DSC for tori (DSC 0.76 except for tori) but showed the largest errors in the recovery of pears and drops dimensions (higher than 10% and 30% of the true length, respectively). Large errors were visible

  15. Sensitivity field distributions for segmental bioelectrical impedance analysis based on real human anatomy

    Science.gov (United States)

    Danilov, A. A.; Kramarenko, V. K.; Nikolaev, D. V.; Rudnev, S. G.; Salamatova, V. Yu; Smirnov, A. V.; Vassilevski, Yu V.

    2013-04-01

    In this work, an adaptive unstructured tetrahedral mesh generation technology is applied for simulation of segmental bioimpedance measurements using high-resolution whole-body model of the Visible Human Project man. Sensitivity field distributions for a conventional tetrapolar, as well as eight- and ten-electrode measurement configurations are obtained. Based on the ten-electrode configuration, we suggest an algorithm for monitoring changes in the upper lung area.

  16. Lack of protein-tyrosine sulfation disrupts photoreceptor outer segment morphogenesis, retinal function and retinal anatomy.

    Science.gov (United States)

    Sherry, David M; Murray, Anne R; Kanan, Yogita; Arbogast, Kelsey L; Hamilton, Robert A; Fliesler, Steven J; Burns, Marie E; Moore, Kevin L; Al-Ubaidi, Muayyad R

    2010-11-01

    To investigate the role(s) of protein-tyrosine sulfation in the retina, we examined retinal function and structure in mice lacking tyrosylprotein sulfotransferases (TPST) 1 and 2. Tpst double knockout (DKO; Tpst1(-/-) /Tpst2 (-/-) ) retinas had drastically reduced electroretinographic responses, although their photoreceptors exhibited normal responses in single cell recordings. These retinas appeared normal histologically; however, the rod photoreceptors had ultrastructurally abnormal outer segments, with membrane evulsions into the extracellular space, irregular disc membrane spacing and expanded intradiscal space. Photoreceptor synaptic terminals were disorganized in Tpst DKO retinas, but established ultrastructurally normal synapses, as did bipolar and amacrine cells; however, the morphology and organization of neuronal processes in the inner retina were abnormal. These results indicate that protein-tyrosine sulfation is essential for proper outer segment morphogenesis and synaptic function, but is not critical for overall retinal structure or synapse formation, and may serve broader functions in neuronal development and maintenance. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  17. Automatic segmentation of the wire frame of stent grafts from CT data.

    Science.gov (United States)

    Klein, Almar; van der Vliet, J Adam; Oostveen, Luuk J; Hoogeveen, Yvonne; Kool, Leo J Schultze; Renema, W Klaas Jan; Slump, Cornelis H

    2012-01-01

    Endovascular aortic replacement (EVAR) is an established technique, which uses stent grafts to treat aortic aneurysms in patients at risk of aneurysm rupture. Late stent graft failure is a serious complication in endovascular repair of aortic aneurysms. Better understanding of the motion characteristics of stent grafts will be beneficial for designing future devices. In addition, analysis of stent graft movement in individual patients in vivo can be valuable for predicting stent graft failure in these patients. To be able to gather information on stent graft motion in a quick and robust fashion, we propose an automatic method to segment stent grafts from CT data, consisting of three steps: the detection of seed points, finding the connections between these points to produce a graph, and graph processing to obtain the final geometric model in the form of an undirected graph. Using annotated reference data, the method was optimized and its accuracy was evaluated. The experiments were performed using data containing the AneuRx and Zenith stent grafts. The algorithm is robust for noise and small variations in the used parameter values, does not require much memory according to modern standards, and is fast enough to be used in a clinical setting (65 and 30s for the two stent types, respectively). Further, it is shown that the resulting graphs have a 95% (AneuRx) and 92% (Zenith) correspondence with the annotated data. The geometric model produced by the algorithm allows incorporation of high level information and material properties. This enables us to study the in vivo motions and forces that act on the frame of the stent. We believe that such studies will provide new insights into the behavior of the stent graft in vivo, enables the detection and prediction of stent failure in individual patients, and can help in designing better stent grafts in the future. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Automatic selection of localized region-based active contour models using image content analysis applied to brain tumor segmentation.

    Science.gov (United States)

    Ilunga-Mbuyamba, Elisee; Avina-Cervantes, Juan Gabriel; Cepeda-Negrete, Jonathan; Ibarra-Manzano, Mario Alberto; Chalopin, Claire

    2017-12-01

    Brain tumor segmentation is a routine process in a clinical setting and provides useful information for diagnosis and treatment planning. Manual segmentation, performed by physicians or radiologists, is a time-consuming task due to the large quantity of medical data generated presently. Hence, automatic segmentation methods are needed, and several approaches have been introduced in recent years including the Localized Region-based Active Contour Model (LRACM). There are many popular LRACM, but each of them presents strong and weak points. In this paper, the automatic selection of LRACM based on image content and its application on brain tumor segmentation is presented. Thereby, a framework to select one of three LRACM, i.e., Local Gaussian Distribution Fitting (LGDF), localized Chan-Vese (C-V) and Localized Active Contour Model with Background Intensity Compensation (LACM-BIC), is proposed. Twelve visual features are extracted to properly select the method that may process a given input image. The system is based on a supervised approach. Applied specifically to Magnetic Resonance Imaging (MRI) images, the experiments showed that the proposed system is able to correctly select the suitable LRACM to handle a specific image. Consequently, the selection framework achieves better accuracy performance than the three LRACM separately. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Automatic Segmentation of Indonesian Speech into Syllables using Fuzzy Smoothed Energy Contour with Local Normalization, Splitting, and Assimilation

    Directory of Open Access Journals (Sweden)

    Suyanto Suyanto

    2015-01-01

    Full Text Available This paper discusses the usage of short term energy contour of a speech smoothed by a fuzzy-based method to automatically segment the speech into syllabic units. Two additional procedures, local normalization and postprocessing, are proposed to improve the method. Testing to Indonesian speech dataset shows that local normalization significantly improves the accuracy of fuzzy smoothing. In postprocessing step, the procedure of splitting missed short syllables reduces the deletion errors, but unfortunately it increases the insertion ones. On the other hand, an assimilation of a single consonant segment into its previous or next segment reduces the insertion errors, but increases the deletion ones. The sequential combination of splitting and then assimilation gives quite significant improvement of accuracy as well as reduction of deletion errors, but it slightly increases the insertion ones.

  20. An Automatic Segmentation and Classification Framework Based on PCNN Model for Single Tooth in MicroCT Images.

    Directory of Open Access Journals (Sweden)

    Liansheng Wang

    Full Text Available Accurate segmentation and classification of different anatomical structures of teeth from medical images plays an essential role in many clinical applications. Usually, the anatomical structures of teeth are manually labelled by experienced clinical doctors, which is time consuming. However, automatic segmentation and classification is a challenging task because the anatomical structures and surroundings of the tooth in medical images are rather complex. Therefore, in this paper, we propose an effective framework which is designed to segment the tooth with a Selective Binary and Gaussian Filtering Regularized Level Set (GFRLS method improved by fully utilizing three dimensional (3D information, and classify the tooth by employing unsupervised learning Pulse Coupled Neural Networks (PCNN model. In order to evaluate the proposed method, the experiments are conducted on the different datasets of mandibular molars and the experimental results show that our method can achieve better accuracy and robustness compared to other four state of the art clustering methods.

  1. Automatic cytoplasm and nuclei segmentation for color cervical smear image using an efficient gap-search MRF.

    Science.gov (United States)

    Zhao, Lili; Li, Kuan; Wang, Mao; Yin, Jianping; Zhu, En; Wu, Chengkun; Wang, Siqi; Zhu, Chengzhang

    2016-04-01

    Accurate and effective cervical smear image segmentation is required for automated cervical cell analysis systems. Thus, we proposed a novel superpixel-based Markov random field (MRF) segmentation framework to acquire the nucleus, cytoplasm and image background of cell images. We seek to classify color non-overlapping superpixel-patches on one image for image segmentation. This model describes the whole image as an undirected probabilistic graphical model and was developed using an automatic label-map mechanism for determining nuclear, cytoplasmic and background regions. A gap-search algorithm was designed to enhance the model efficiency. Data show that the algorithms of our framework provide better accuracy for both real-world and the public Herlev datasets. Furthermore, the proposed gap-search algorithm of this model is much more faster than pixel-based and superpixel-based algorithms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. An improved FSL-FIRST pipeline for subcortical gray matter segmentation to study abnormal brain anatomy using quantitative susceptibility mapping (QSM).

    Science.gov (United States)

    Feng, Xiang; Deistung, Andreas; Dwyer, Michael G; Hagemeier, Jesper; Polak, Paul; Lebenberg, Jessica; Frouin, Frédérique; Zivadinov, Robert; Reichenbach, Jürgen R; Schweser, Ferdinand

    2017-06-01

    Accurate and robust segmentation of subcortical gray matter (SGM) nuclei is required in many neuroimaging applications. FMRIB's Integrated Registration and Segmentation Tool (FIRST) is one of the most popular software tools for automated subcortical segmentation based on T 1 -weighted (T1w) images. In this work, we demonstrate that FIRST tends to produce inaccurate SGM segmentation results in the case of abnormal brain anatomy, such as present in atrophied brains, due to a poor spatial match of the subcortical structures with the training data in the MNI space as well as due to insufficient contrast of SGM structures on T1w images. Consequently, such deviations from the average brain anatomy may introduce analysis bias in clinical studies, which may not always be obvious and potentially remain unidentified. To improve the segmentation of subcortical nuclei, we propose to use FIRST in combination with a special Hybrid image Contrast (HC) and Non-Linear (nl) registration module (HC-nlFIRST), where the hybrid image contrast is derived from T1w images and magnetic susceptibility maps to create subcortical contrast that is similar to that in the Montreal Neurological Institute (MNI) template. In our approach, a nonlinear registration replaces FIRST's default linear registration, yielding a more accurate alignment of the input data to the MNI template. We evaluated our method on 82 subjects with particularly abnormal brain anatomy, selected from a database of >2000 clinical cases. Qualitative and quantitative analyses revealed that HC-nlFIRST provides improved segmentation compared to the default FIRST method. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. An Automatic Algorithm for Segmentation of the Boundaries of Corneal Layers in Optical Coherence Tomography Images using Gaussian Mixture Model.

    Science.gov (United States)

    Jahromi, Mahdi Kazemian; Kafieh, Raheleh; Rabbani, Hossein; Dehnavi, Alireza Mehri; Peyman, Alireza; Hajizadeh, Fedra; Ommani, Mohammadreza

    2014-07-01

    Diagnosis of corneal diseases is possible by measuring and evaluation of corneal thickness in different layers. Thus, the need for precise segmentation of corneal layer boundaries is inevitable. Obviously, manual segmentation is time-consuming and imprecise. In this paper, the Gaussian mixture model (GMM) is used for automatic segmentation of three clinically important corneal boundaries on optical coherence tomography (OCT) images. For this purpose, we apply the GMM method in two consequent steps. In the first step, the GMM is applied on the original image to localize the first and the last boundaries. In the next step, gradient response of a contrast enhanced version of the image is fed into another GMM algorithm to obtain a more clear result around the second boundary. Finally, the first boundary is traced toward down to localize the exact location of the second boundary. We tested the performance of the algorithm on images taken from a Heidelberg OCT imaging system. To evaluate our approach, the automatic boundary results are compared with the boundaries that have been segmented manually by two corneal specialists. The quantitative results show that the proposed method segments the desired boundaries with a great accuracy. Unsigned mean errors between the results of the proposed method and the manual segmentation are 0.332, 0.421, and 0.795 for detection of epithelium, Bowman, and endothelium boundaries, respectively. Unsigned mean errors of the inter-observer between two corneal specialists have also a comparable unsigned value of 0.330, 0.398, and 0.534, respectively.

  4. Automatic image segmentation for treatment planning in radiotherapy; Segmentation automatique des images pour la planifi cation dosimetrique en radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Pasquiera, D. [Centre Galilee, polyclinique de la Louviere, 59 - Lille (France); Peyrodie, L. [Ecole des hautes etudes d' ingenieur, 59 - Lille (France); Laboratoire d' automatique, genie informatique et signal (LAGIS), Cite scientifi que, 59 - Villeneuve d' Ascq (France); Denis, F. [Centre Jean-Bernard, 72 - Le Mans (France); Pointreau, Y.; Bera, G. [Clinique d' oncologie radiotherapie, Centre Henry-S.-Kaplan, CHU Bretonneau, 37 - Tours (France); Lartigau, E. [Departement universitaire de radiotherapie, Centre O. Lambret, Universite Lille 2, 59 - Lille (France)

    2010-07-01

    One drawback of the growth in conformal radiotherapy and image-guided radiotherapy is the increased time needed to define the volumes of interest. This also results in inter- and intra-observer variability. However, developments in computing and image processing have enabled these tasks to be partially or totally automated. This article will provide a detailed description of the main principles of image segmentation in radiotherapy, its applications and the most recent results in a clinical context. (authors)

  5. Semi-automatic segmentation of vertebral bodies in volumetric MR images using a statistical shape+pose model

    Science.gov (United States)

    Suzani, Amin; Rasoulian, Abtin; Fels, Sidney; Rohling, Robert N.; Abolmaesumi, Purang

    2014-03-01

    Segmentation of vertebral structures in magnetic resonance (MR) images is challenging because of poor con­trast between bone surfaces and surrounding soft tissue. This paper describes a semi-automatic method for segmenting vertebral bodies in multi-slice MR images. In order to achieve a fast and reliable segmentation, the method takes advantage of the correlation between shape and pose of different vertebrae in the same patient by using a statistical multi-vertebrae anatomical shape+pose model. Given a set of MR images of the spine, we initially reduce the intensity inhomogeneity in the images by using an intensity-correction algorithm. Then a 3D anisotropic diffusion filter smooths the images. Afterwards, we extract edges from a relatively small region of the pre-processed image with a simple user interaction. Subsequently, an iterative Expectation Maximization tech­nique is used to register the statistical multi-vertebrae anatomical model to the extracted edge points in order to achieve a fast and reliable segmentation for lumbar vertebral bodies. We evaluate our method in terms of speed and accuracy by applying it to volumetric MR images of the spine acquired from nine patients. Quantitative and visual results demonstrate that the method is promising for segmentation of vertebral bodies in volumetric MR images.

  6. Automatic Segmentation of Kidneys using Deep Learning for Total Kidney Volume Quantification in Autosomal Dominant Polycystic Kidney Disease.

    Science.gov (United States)

    Sharma, Kanishka; Rupprecht, Christian; Caroli, Anna; Aparicio, Maria Carolina; Remuzzi, Andrea; Baust, Maximilian; Navab, Nassir

    2017-05-17

    Autosomal Dominant Polycystic Kidney Disease (ADPKD) is the most common inherited disorder of the kidneys. It is characterized by enlargement of the kidneys caused by progressive development of renal cysts, and thus assessment of total kidney volume (TKV) is crucial for studying disease progression in ADPKD. However, automatic segmentation of polycystic kidneys is a challenging task due to severe alteration in the morphology caused by non-uniform cyst formation and presence of adjacent liver cysts. In this study, an automated segmentation method based on deep learning has been proposed for TKV computation on computed tomography (CT) dataset of ADPKD patients exhibiting mild to moderate or severe renal insufficiency. The proposed method has been trained (n = 165) and tested (n = 79) on a wide range of TKV (321.2-14,670.7 mL) achieving an overall mean Dice Similarity Coefficient of 0.86 ± 0.07 (mean ± SD) between automated and manual segmentations from clinical experts and a mean correlation coefficient (ρ) of 0.98 (p < 0.001) for segmented kidney volume measurements in the entire test set. Our method facilitates fast and reproducible measurements of kidney volumes in agreement with manual segmentations from clinical experts.

  7. Alzheimer's disease detection via automatic 3D caudate nucleus segmentation using coupled dictionary learning with level set formulation.

    Science.gov (United States)

    Al-Shaikhli, Saif Dawood Salman; Yang, Michael Ying; Rosenhahn, Bodo

    2016-12-01

    This paper presents a novel method for Alzheimer's disease classification via an automatic 3D caudate nucleus segmentation. The proposed method consists of segmentation and classification steps. In the segmentation step, we propose a novel level set cost function. The proposed cost function is constrained by a sparse representation of local image features using a dictionary learning method. We present coupled dictionaries: a feature dictionary of a grayscale brain image and a label dictionary of a caudate nucleus label image. Using online dictionary learning, the coupled dictionaries are learned from the training data. The learned coupled dictionaries are embedded into a level set function. In the classification step, a region-based feature dictionary is built. The region-based feature dictionary is learned from shape features of the caudate nucleus in the training data. The classification is based on the measure of the similarity between the sparse representation of region-based shape features of the segmented caudate in the test image and the region-based feature dictionary. The experimental results demonstrate the superiority of our method over the state-of-the-art methods by achieving a high segmentation (91.5%) and classification (92.5%) accuracy. In this paper, we find that the study of the caudate nucleus atrophy gives an advantage over the study of whole brain structure atrophy to detect Alzheimer's disease. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. A Combined Random Forests and Active Contour Model Approach for Fully Automatic Segmentation of the Left Atrium in Volumetric MRI

    Directory of Open Access Journals (Sweden)

    Chao Ma

    2017-01-01

    Full Text Available Segmentation of the left atrium (LA from cardiac magnetic resonance imaging (MRI datasets is of great importance for image guided atrial fibrillation ablation, LA fibrosis quantification, and cardiac biophysical modelling. However, automated LA segmentation from cardiac MRI is challenging due to limited image resolution, considerable variability in anatomical structures across subjects, and dynamic motion of the heart. In this work, we propose a combined random forests (RFs and active contour model (ACM approach for fully automatic segmentation of the LA from cardiac volumetric MRI. Specifically, we employ the RFs within an autocontext scheme to effectively integrate contextual and appearance information from multisource images together for LA shape inferring. The inferred shape is then incorporated into a volume-scalable ACM for further improving the segmentation accuracy. We validated the proposed method on the cardiac volumetric MRI datasets from the STACOM 2013 and HVSMR 2016 databases and showed that it outperforms other latest automated LA segmentation methods. Validation metrics, average Dice coefficient (DC and average surface-to-surface distance (S2S, were computed as 0.9227±0.0598 and 1.14±1.205 mm, versus those of 0.6222–0.878 and 1.34–8.72 mm, obtained by other methods, respectively.

  9. Automatic anatomy partitioning of the torso region on CT images by using multiple organ localizations with a group-wise calibration technique

    Science.gov (United States)

    Zhou, Xiangrong; Morita, Syoichi; Zhou, Xinxin; Chen, Huayue; Hara, Takeshi; Yokoyama, Ryujiro; Kanematsu, Masayuki; Hoshi, Hiroaki; Fujita, Hiroshi

    2015-03-01

    This paper describes an automatic approach for anatomy partitioning on three-dimensional (3D) computedtomography (CT) images that divide the human torso into several volume-of-interesting (VOI) images based on anatomical definition. The proposed approach combines several individual detections of organ-location with a groupwise organ-location calibration and correction to achieve an automatic and robust multiple-organ localization task. The essence of the proposed method is to jointly detect the 3D minimum bounding box for each type of organ shown on CT images based on intra-organ-image-textures and inter-organ-spatial-relationship in the anatomy. Machine-learning-based template matching and generalized Hough transform-based point-distribution estimation are used in the detection and calibration processes. We apply this approach to the automatic partitioning of a torso region on CT images, which are divided into 35 VOIs presenting major organ regions and tissues required by routine diagnosis in clinical medicine. A database containing 4,300 patient cases of high-resolution 3D torso CT images is used for training and performance evaluations. We confirmed that the proposed method was successful in target organ localization on more than 95% of CT cases. Only two organs (gallbladder and pancreas) showed a lower success rate: 71 and 78% respectively. In addition, we applied this approach to another database that included 287 patient cases of whole-body CT images scanned for positron emission tomography (PET) studies and used for additional performance evaluation. The experimental results showed that no significant difference between the anatomy partitioning results from those two databases except regarding the spleen. All experimental results showed that the proposed approach was efficient and useful in accomplishing localization tasks for major organs and tissues on CT images scanned using different protocols.

  10. AN AUTOMATIC FEATURE BASED MODEL FOR CELL SEGMENTATION FROM CONFOCAL MICROSCOPY VOLUMES

    OpenAIRE

    Delibaltov, Diana; Ghosh, Pratim; Veeman, Michael; Smith, William; Manjunath, B.S.

    2011-01-01

    We present a model for the automated segmentation of cells from confocal microscopy volumes of biological samples. The segmentation task for these images is exceptionally challenging due to weak boundaries and varying intensity during the imaging process. To tackle this, a two step pruning process based on the Fast Marching Method is first applied to obtain an over-segmented image. This is followed by a merging step based on an effective feature representation. The algorithm is applied on two...

  11. SUPERVISED AUTOMATIC HISTOGRAM CLUSTERING AND WATERSHED SEGMENTATION. APPLICATION TO MICROSCOPIC MEDICAL COLOR IMAGES

    Directory of Open Access Journals (Sweden)

    Olivier Lezoray

    2011-05-01

    Full Text Available In this paper, an approach to the segmentation of microscopic color images is addressed, and applied to medical images. The approach combines a clustering method and a region growing method. Each color plane is segmented independently relying on a watershed based clustering of the plane histogram. The marginal segmentation maps intersect in a label concordance map. The latter map is simplified based on the assumption that the color planes are correlated. This produces a simplified label concordance map containing labeled and unlabeled pixels. The formers are used as an image of seeds for a color watershed. This fast and robust segmentation scheme is applied to several types of medical images.

  12. Automatic media-adventitia IVUS image segmentation based on sparse representation framework and dynamic directional active contour model.

    Science.gov (United States)

    Zakeri, Fahimeh Sadat; Setarehdan, Seyed Kamaledin; Norouzi, Somayye

    2017-10-01

    Segmentation of the arterial wall boundaries from intravascular ultrasound images is an important image processing task in order to quantify arterial wall characteristics such as shape, area, thickness and eccentricity. Since manual segmentation of these boundaries is a laborious and time consuming procedure, many researchers attempted to develop (semi-) automatic segmentation techniques as a powerful tool for educational and clinical purposes in the past but as yet there is no any clinically approved method in the market. This paper presents a deterministic-statistical strategy for automatic media-adventitia border detection by a fourfold algorithm. First, a smoothed initial contour is extracted based on the classification in the sparse representation framework which is combined with the dynamic directional convolution vector field. Next, an active contour model is utilized for the propagation of the initial contour toward the interested borders. Finally, the extracted contour is refined in the leakage, side branch openings and calcification regions based on the image texture patterns. The performance of the proposed algorithm is evaluated by comparing the results to those manually traced borders by an expert on 312 different IVUS images obtained from four different patients. The statistical analysis of the results demonstrates the efficiency of the proposed method in the media-adventitia border detection with enough consistency in the leakage and calcification regions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, V. [Philips Research Europe, Department of Molecular Imaging Systems, Aachen (Germany); RWTH Aachen University, Department of Experimental Molecular Imaging, Aachen (Germany); Torres-Espallardo, I. [Philips Research Europe, Aachen (Germany); RWTH Aachen University, Department of Diagnostic Radiology, Aachen (Germany); RWTH Aachen University, Institute of Imaging and Computer Vision, Aachen (Germany); Renisch, S.; Boernert, P. [Philips Research Europe, Hamburg (Germany); Hu, Z.; Ojha, N. [Philips Healthcare, Cleveland, OH (United States); Perkuhn, M. [Philips Research Europe, Aachen (Germany); RWTH Aachen University, Department of Diagnostic Radiology, Aachen (Germany); Niendorf, T. [RWTH Aachen University, Department of Diagnostic Radiology, Aachen (Germany); Max-Delbrueck Center for Molecular Medicine, Berlin (Germany); Schaefer, W.M.; Brockmann, H.; Krohn, T.; Mottaghy, F.M. [RWTH Aachen University, Department of Nuclear Medicine, Aachen (Germany); Buhl, A.; Guenther, R.W.; Krombach, G.A. [RWTH Aachen University, Department of Diagnostic Radiology, Aachen (Germany)

    2011-01-15

    The combination of positron emission tomography (PET) and magnetic resonance (MR) tomography in a single device is anticipated to be the next step following PET/CT for future molecular imaging application. Compared to CT, the main advantages of MR are versatile soft tissue contrast and its capability to acquire functional information without ionizing radiation. However, MR is not capable of measuring a physical quantity that would allow a direct derivation of the attenuation values for high-energy photons. To overcome this problem, we propose a fully automated approach that uses a dedicated T1-weighted MR sequence in combination with a customized image processing technique to derive attenuation maps for whole-body PET. The algorithm automatically identifies the outer contour of the body and the lungs using region-growing techniques in combination with an intensity analysis for automatic threshold estimation. No user interaction is required to generate the attenuation map. The accuracy of the proposed MR-based attenuation correction (AC) approach was evaluated in a clinical study using whole-body PET/CT and MR images of the same patients (n = 15). The segmentation of the body and lung contour (L-R directions) was evaluated via a four-point scale in comparison to the original MR image (mean values >3.8). PET images were reconstructed using elastically registered MR-based and CT-based (segmented and non-segmented) attenuation maps. The MR-based AC showed similar behaviour as CT-based AC and similar accuracy as offered by segmented CT-based AC. Standardized uptake value (SUV) comparisons with reference to CT-based AC using predefined attenuation coefficients showed the largest difference for bone lesions (mean value {+-} standard variation of SUV{sub max}: -3.0% {+-} 3.9% for MR; -6.5% {+-} 4.1% for segmented CT). A blind comparison of PET images corrected with segmented MR-based, CT-based and segmented CT-based AC afforded identical lesion detectability, but slight

  14. Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images.

    Science.gov (United States)

    Khastavaneh, H; Ebrahimpour-Komleh, H

    2017-06-01

    Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation is a need. In order to segment MS lesions, a method based on learning kernels has been proposed. The proposed method has three main steps namely; pre-processing, sub-region extraction and segmentation. The segmentation is performed by a kernel. This kernel is trained using a modified version of a special type of Artificial Neural Networks (ANN) called Massive Training ANN (MTANN). The kernel incorporates surrounding pixel information as features for classification of middle pixel of kernel. The materials of this study include a part of MICCAI 2008 MS lesion segmentation grand challenge data-set. Both qualitative and quantitative results show promising results. Similarity index of 70 percent in some cases is considered convincing. These results are obtained from information of only one MRI channel rather than multi-channel MRIs. This study shows the potential of surrounding pixel information to be incorporated in segmentation by learning kernels. The performance of proposed method will be improved using a special pre-processing pipeline and also a post-processing step for reducing false positives/negatives. An important advantage of proposed model is that it uses just FLAIR MRI that reduces computational time and brings comfort to patients.

  15. Structure and development of the subesophageal zone of the Drosophila brain. I. Segmental architecture, compartmentalization, and lineage anatomy.

    Science.gov (United States)

    Hartenstein, Volker; Omoto, Jaison J; Ngo, Kathy T; Wong, Darren; Kuert, Philipp A; Reichert, Heinrich; Lovick, Jennifer K; Younossi-Hartenstein, Amelia

    2018-01-01

    The subesophageal zone (SEZ) of the Drosophila brain houses the circuitry underlying feeding behavior and is involved in many other aspects of sensory processing and locomotor control. Formed by the merging of four neuromeres, the internal architecture of the SEZ can be best understood by identifying segmentally reiterated landmarks emerging in the embryo and larva, and following the gradual changes by which these landmarks become integrated into the mature SEZ during metamorphosis. In previous works, the system of longitudinal fibers (connectives) and transverse axons (commissures) has been used as a scaffold that provides internal landmarks for the neuromeres of the larval ventral nerve cord. We have extended the analysis of this scaffold to the SEZ and, in addition, reconstructed the tracts formed by lineages and nerves in relationship to the connectives and commissures. As a result, we establish reliable criteria that define boundaries between the four neuromeres (tritocerebrum, mandibular neuromere, maxillary neuromere, labial neuromere) of the SEZ at all stages of development. Fascicles and lineage tracts also demarcate seven columnar neuropil domains (ventromedial, ventro-lateral, centromedial, central, centrolateral, dorsomedial, dorsolateral) identifiable throughout development. These anatomical subdivisions, presented in the form of an atlas including confocal sections and 3D digital models for the larval, pupal and adult stage, allowed us to describe the morphogenetic changes shaping the adult SEZ. Finally, we mapped MARCM-labeled clones of all secondary lineages of the SEZ to the newly established neuropil subdivisions. Our work will facilitate future studies of function and comparative anatomy of the SEZ. © 2017 Wiley Periodicals, Inc.

  16. An Automatic Cognitive Graph-Based Segmentation for Detection of Blood Vessels in Retinal Images

    Directory of Open Access Journals (Sweden)

    Rasha Al Shehhi

    2016-01-01

    Full Text Available This paper presents a hierarchical graph-based segmentation for blood vessel detection in digital retinal images. This segmentation employs some of perceptual Gestalt principles: similarity, closure, continuity, and proximity to merge segments into coherent connected vessel-like patterns. The integration of Gestalt principles is based on object-based features (e.g., color and black top-hat (BTH morphology and context and graph-analysis algorithms (e.g., Dijkstra path. The segmentation framework consists of two main steps: preprocessing and multiscale graph-based segmentation. Preprocessing is to enhance lighting condition, due to low illumination contrast, and to construct necessary features to enhance vessel structure due to sensitivity of vessel patterns to multiscale/multiorientation structure. Graph-based segmentation is to decrease computational processing required for region of interest into most semantic objects. The segmentation was evaluated on three publicly available datasets. Experimental results show that preprocessing stage achieves better results compared to state-of-the-art enhancement methods. The performance of the proposed graph-based segmentation is found to be consistent and comparable to other existing methods, with improved capability of detecting small/thin vessels.

  17. AUTOMATIC LIVER TUMOR SEGMENTATION ON COMPUTED TOMOGRAPHY FOR PATIENT TREATMENT PLANNING AND MONITORING

    OpenAIRE

    Moghbel, Mehrdad; Syamsiah, Mashohor; Rozi, Mahmud; Saripan, M. Iqbal Bin

    2016-01-01

    Segmentation of liver tumors from Computed Tomography (CT) and tumor burden analysis play an important role in the choice of therapeutic strategies for liver diseases and treatment monitoring. In this paper, a new segmentation method for liver tumors from contrast-enhanced CT imaging is proposed.

  18. A General System for Automatic Biomedical Image Segmentation Using Intensity Neighborhoods

    Directory of Open Access Journals (Sweden)

    Cheng Chen

    2011-01-01

    Full Text Available Image segmentation is important with applications to several problems in biology and medicine. While extensively researched, generally, current segmentation methods perform adequately in the applications for which they were designed, but often require extensive modifications or calibrations before being used in a different application. We describe an approach that, with few modifications, can be used in a variety of image segmentation problems. The approach is based on a supervised learning strategy that utilizes intensity neighborhoods to assign each pixel in a test image its correct class based on training data. We describe methods for modeling rotations and variations in scales as well as a subset selection for training the classifiers. We show that the performance of our approach in tissue segmentation tasks in magnetic resonance and histopathology microscopy images, as well as nuclei segmentation from fluorescence microscopy images, is similar to or better than several algorithms specifically designed for each of these applications.

  19. Automatic Cell Segmentation Using a Shape-Classification Model in Immunohistochemically Stained Cytological Images

    Science.gov (United States)

    Shah, Shishir

    This paper presents a segmentation method for detecting cells in immunohistochemically stained cytological images. A two-phase approach to segmentation is used where an unsupervised clustering approach coupled with cluster merging based on a fitness function is used as the first phase to obtain a first approximation of the cell locations. A joint segmentation-classification approach incorporating ellipse as a shape model is used as the second phase to detect the final cell contour. The segmentation model estimates a multivariate density function of low-level image features from training samples and uses it as a measure of how likely each image pixel is to be a cell. This estimate is constrained by the zero level set, which is obtained as a solution to an implicit representation of an ellipse. Results of segmentation are presented and compared to ground truth measurements.

  20. Automatic 4D segmentation of the left ventricle in cardiac-CT-data

    Science.gov (United States)

    Fritz, Dominik; Kroll, Julia; Dillmann, Rüdiger; Scheuering, Michael

    2007-03-01

    The manual segmentation and analysis of 4D high resolution multi slice cardiac CT datasets is both labor intensive and time consuming. Therefore, it is necessary to supply the cardiologist with powerful software tools, to segment the myocardium and the cardiac cavities in all cardiac phases and to compute the relevant diagnostic parameters. In recent years there have been several publications concerning the segmentation and analysis of the left ventricle (LV) and myocardium for a single phase or for the diagnostically most relevant phases, the enddiastole (ED) and the endsystole (ES). However, for a complete diagnosis and especially of wall motion abnormalities, it is necessary to analyze not only the motion endpoints ED and ES, but also all phases in-between. In this paper a novel approach for the 4D segmentation of the left ventricle in cardiac-CT-data is presented. The segmentation of the 4D data is divided into a first part, which segments the motion endpoints of the cardiac cycle ED and ES and a second part, which segments all phases in-between. The first part is based on a bi-temporal statistical shape model of the left ventricle. The second part uses a novel approach based on the individual volume curve for the interpolation between ED and ES and afterwards an active contour algorithm for the final segmentation. The volume curve based interpolation step allows the constraint of the subsequent segmentation of the phases between ED and ES to very small search-intervals, hence makes the segmentation process faster and more robust.

  1. A martian case study of segmenting images automatically for granulometry and sedimentology, Part 2: Assessment

    Science.gov (United States)

    Karunatillake, Suniti; McLennan, Scott M.; Herkenhoff, Kenneth E.; Husch, Jonathan M.; Hardgrove, Craig; Skok, J. R.

    2014-02-01

    In a companion work, we bridge the gap between mature segmentation software used in terrestrial sedimentology and emergent planetary segmentation with an original algorithm optimized to segment whole images from the Microscopic Imager (MI) of the Mars Exploration Rovers (MER). In this work, we compare its semi-automated outcome with manual photoanalyses using unconsolidated sediment at Gusev and Meridiani Planum sites for geologic context. On average, our code and manual segmentation converge to within ∼10% in the number and total area of identified grains in a pseudo-random, single blind comparison of 50 samples. Unlike manual segmentation, it also locates finer grains in an image with internal consistency, enabling robust comparisons across geologic contexts. When implemented in Mathematica-8, the algorithm segments an entire MI image within minutes, surpassing the extent and speed possible with manual segmentation by about a factor of ten. These results indicate that our algorithm enables not only new sedimentological insight from the MER MI data, but also detailed sedimentology with the Mars Science Laboratory’s Mars Hand Lens Instrument.

  2. Localized Segment Based Processing for Automatic Building Extraction from LiDAR Data

    Science.gov (United States)

    Parida, G.; Rajan, K. S.

    2017-05-01

    The current methods of object segmentation and extraction and classification of aerial LiDAR data is manual and tedious task. This work proposes a technique for object segmentation out of LiDAR data. A bottom-up geometric rule based approach was used initially to devise a way to segment buildings out of the LiDAR datasets. For curved wall surfaces, comparison of localized surface normals was done to segment buildings. The algorithm has been applied to both synthetic datasets as well as real world dataset of Vaihingen, Germany. Preliminary results show successful segmentation of the buildings objects from a given scene in case of synthetic datasets and promissory results in case of real world data. The advantages of the proposed work is non-dependence on any other form of data required except LiDAR. It is an unsupervised method of building segmentation, thus requires no model training as seen in supervised techniques. It focuses on extracting the walls of the buildings to construct the footprint, rather than focussing on roof. The focus on extracting the wall to reconstruct the buildings from a LiDAR scene is crux of the method proposed. The current segmentation approach can be used to get 2D footprints of the buildings, with further scope to generate 3D models. Thus, the proposed method can be used as a tool to get footprints of buildings in urban landscapes, helping in urban planning and the smart cities endeavour.

  3. Validation and Development of a New Automatic Algorithm for Time-Resolved Segmentation of the Left Ventricle in Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Jane Tufvesson

    2015-01-01

    Full Text Available Introduction. Manual delineation of the left ventricle is clinical standard for quantification of cardiovascular magnetic resonance images despite being time consuming and observer dependent. Previous automatic methods generally do not account for one major contributor to stroke volume, the long-axis motion. Therefore, the aim of this study was to develop and validate an automatic algorithm for time-resolved segmentation covering the whole left ventricle, including basal slices affected by long-axis motion. Methods. Ninety subjects imaged with a cine balanced steady state free precession sequence were included in the study (training set n=40, test set n=50. Manual delineation was reference standard and second observer analysis was performed in a subset (n=25. The automatic algorithm uses deformable model with expectation-maximization, followed by automatic removal of papillary muscles and detection of the outflow tract. Results. The mean differences between automatic segmentation and manual delineation were EDV −11 mL, ESV 1 mL, EF −3%, and LVM 4 g in the test set. Conclusions. The automatic LV segmentation algorithm reached accuracy comparable to interobserver for manual delineation, thereby bringing automatic segmentation one step closer to clinical routine. The algorithm and all images with manual delineations are available for benchmarking.

  4. Automatic bladder segmentation from CT images using deep CNN and 3D fully connected CRF-RNN.

    Science.gov (United States)

    Xu, Xuanang; Zhou, Fugen; Liu, Bo

    2018-03-19

    Automatic approach for bladder segmentation from computed tomography (CT) images is highly desirable in clinical practice. It is a challenging task since the bladder usually suffers large variations of appearance and low soft-tissue contrast in CT images. In this study, we present a deep learning-based approach which involves a convolutional neural network (CNN) and a 3D fully connected conditional random fields recurrent neural network (CRF-RNN) to perform accurate bladder segmentation. We also propose a novel preprocessing method, called dual-channel preprocessing, to further advance the segmentation performance of our approach. The presented approach works as following: first, we apply our proposed preprocessing method on the input CT image and obtain a dual-channel image which consists of the CT image and an enhanced bladder density map. Second, we exploit a CNN to predict a coarse voxel-wise bladder score map on this dual-channel image. Finally, a 3D fully connected CRF-RNN refines the coarse bladder score map and produce final fine-localized segmentation result. We compare our approach to the state-of-the-art V-net on a clinical dataset. Results show that our approach achieves superior segmentation accuracy, outperforming the V-net by a significant margin. The Dice Similarity Coefficient of our approach (92.24%) is 8.12% higher than that of the V-net. Moreover, the bladder probability maps performed by our approach present sharper boundaries and more accurate localizations compared with that of the V-net. Our approach achieves higher segmentation accuracy than the state-of-the-art method on clinical data. Both the dual-channel processing and the 3D fully connected CRF-RNN contribute to this improvement. The united deep network composed of the CNN and 3D CRF-RNN also outperforms a system where the CRF model acts as a post-processing method disconnected from the CNN.

  5. Automatic 3D segmentation of the kidney in MR images using wavelet feature extraction and probability shape model

    Science.gov (United States)

    Akbari, Hamed; Fei, Baowei

    2012-02-01

    Numerical estimation of the size of the kidney is useful in evaluating conditions of the kidney, especially, when serial MR imaging is performed to evaluate the kidney function. This paper presents a new method for automatic segmentation of the kidney in three-dimensional (3D) MR images, by extracting texture features and statistical matching of geometrical shape of the kidney. A set of Wavelet-based support vector machines (W-SVMs) is trained on the MR images. The W-SVMs capture texture priors of MRI for classification of the kidney and non-kidney tissues in different zones around the kidney boundary. In the segmentation procedure, these W-SVMs are trained to tentatively label each voxel around the kidney model as a kidney or non-kidney voxel by texture matching. A probability kidney model is created using 10 segmented MRI data. The model is initially localized based on the intensity profiles in three directions. The weight functions are defined for each labeled voxel for each Wavelet-based, intensity-based, and model-based label. Consequently, each voxel has three labels and three weights for the Wavelet feature, intensity, and probability model. Using a 3D edge detection method, the model is re-localized and the segmented kidney is modified based on a region growing method in the model region. The probability model is re-localized based on the results and this loop continues until the segmentation converges. Experimental results with mouse MRI data show the good performance of the proposed method in segmenting the kidney in MR images.

  6. Automatic Approach for Lung Segmentation with Juxta-Pleural Nodules from Thoracic CT Based on Contour Tracing and Correction

    Directory of Open Access Journals (Sweden)

    Jinke Wang

    2016-01-01

    Full Text Available This paper presents a fully automatic framework for lung segmentation, in which juxta-pleural nodule problem is brought into strong focus. The proposed scheme consists of three phases: skin boundary detection, rough segmentation of lung contour, and pulmonary parenchyma refinement. Firstly, chest skin boundary is extracted through image aligning, morphology operation, and connective region analysis. Secondly, diagonal-based border tracing is implemented for lung contour segmentation, with maximum cost path algorithm used for separating the left and right lungs. Finally, by arc-based border smoothing and concave-based border correction, the refined pulmonary parenchyma is obtained. The proposed scheme is evaluated on 45 volumes of chest scans, with volume difference (VD 11.15±69.63 cm3, volume overlap error (VOE 3.5057±1.3719%, average surface distance (ASD 0.7917±0.2741 mm, root mean square distance (RMSD 1.6957±0.6568 mm, maximum symmetric absolute surface distance (MSD 21.3430±8.1743 mm, and average time-cost 2 seconds per image. The preliminary results on accuracy and complexity prove that our scheme is a promising tool for lung segmentation with juxta-pleural nodules.

  7. Development of image-processing software for automatic segmentation of brain tumors in MR images

    Directory of Open Access Journals (Sweden)

    C Vijayakumar

    2011-01-01

    Full Text Available Most of the commercially available software for brain tumor segmentation have limited functionality and frequently lack the careful validation that is required for clinical studies. We have developed an image-analysis software package called ′Prometheus,′ which performs neural system-based segmentation operations on MR images using pre-trained information. The software also has the capability to improve its segmentation performance by using the training module of the neural system. The aim of this article is to present the design and modules of this software. The segmentation module of Prometheus can be used primarily for image analysis in MR images. Prometheus was validated against manual segmentation by a radiologist and its mean sensitivity and specificity was found to be 85.71±4.89% and 93.2±2.87%, respectively. Similarly, the mean segmentation accuracy and mean correspondence ratio was found to be 92.35±3.37% and 0.78±0.046, respectively.

  8. Rapid fully automatic segmentation of subcortical brain structures by shape-constrained surface adaptation.

    Science.gov (United States)

    Wenzel, Fabian; Meyer, Carsten; Stehle, Thomas; Peters, Jochen; Siemonsen, Susanne; Thaler, Christian; Zagorchev, Lyubomir

    2018-03-09

    This work presents a novel approach for the rapid segmentation of clinically relevant subcortical brain structures in T1-weighted MRI by utilizing a shape-constrained deformable surface model. In contrast to other approaches for segmenting brain structures, its design allows for parallel segmentation of individual brain structures within a flexible and robust hierarchical framework such that accurate adaptation and volume computation can be achieved within a minute of processing time. Furthermore, adaptation is driven by local and not global contrast, potentially relaxing requirements with respect to preprocessing steps such as bias-field correction. Detailed evaluation experiments on more than 1000 subjects, including comparisons to FSL FIRST and FreeSurfer as well as a clinical assessment, demonstrate high accuracy and test-retest consistency of the presented segmentation approach, leading, for example, to an average segmentation error of less than 0.5 mm. The presented approach might be useful in both, research as well as clinical routine, for automated segmentation and volume quantification of subcortical brain structures in order to increase confidence in the diagnosis of neuro-degenerative disorders, such as Alzheimer's disease, Parkinson's disease, Multiple Sclerosis, or clinical applications for other neurologic and psychiatric diseases. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Automatic moment segmentation and peak detection analysis of heart sound pattern via short-time modified Hilbert transform.

    Science.gov (United States)

    Sun, Shuping; Jiang, Zhongwei; Wang, Haibin; Fang, Yu

    2014-05-01

    This paper proposes a novel automatic method for the moment segmentation and peak detection analysis of heart sound (HS) pattern, with special attention to the characteristics of the envelopes of HS and considering the properties of the Hilbert transform (HT). The moment segmentation and peak location are accomplished in two steps. First, by applying the Viola integral waveform method in the time domain, the envelope (E(T)) of the HS signal is obtained with an emphasis on the first heart sound (S1) and the second heart sound (S2). Then, based on the characteristics of the E(T) and the properties of the HT of the convex and concave functions, a novel method, the short-time modified Hilbert transform (STMHT), is proposed to automatically locate the moment segmentation and peak points for the HS by the zero crossing points of the STMHT. A fast algorithm for calculating the STMHT of E(T) can be expressed by multiplying the E(T) by an equivalent window (W(E)). According to the range of heart beats and based on the numerical experiments and the important parameters of the STMHT, a moving window width of N=1s is validated for locating the moment segmentation and peak points for HS. The proposed moment segmentation and peak location procedure method is validated by sounds from Michigan HS database and sounds from clinical heart diseases, such as a ventricular septal defect (VSD), an aortic septal defect (ASD), Tetralogy of Fallot (TOF), rheumatic heart disease (RHD), and so on. As a result, for the sounds where S2 can be separated from S1, the average accuracies achieved for the peak of S1 (AP₁), the peak of S2 (AP₂), the moment segmentation points from S1 to S2 (AT₁₂) and the cardiac cycle (ACC) are 98.53%, 98.31% and 98.36% and 97.37%, respectively. For the sounds where S1 cannot be separated from S2, the average accuracies achieved for the peak of S1 and S2 (AP₁₂) and the cardiac cycle ACC are 100% and 96.69%. Copyright © 2014 Elsevier Ireland Ltd. All

  10. Automatic segmentation method of pelvic floor levator hiatus in ultrasound using a self-normalizing neural network.

    Science.gov (United States)

    Bonmati, Ester; Hu, Yipeng; Sindhwani, Nikhil; Dietz, Hans Peter; D'hooge, Jan; Barratt, Dean; Deprest, Jan; Vercauteren, Tom

    2018-04-01

    Segmentation of the levator hiatus in ultrasound allows the extraction of biometrics, which are of importance for pelvic floor disorder assessment. We present a fully automatic method using a convolutional neural network (CNN) to outline the levator hiatus in a two-dimensional image extracted from a three-dimensional ultrasound volume. In particular, our method uses a recently developed scaled exponential linear unit (SELU) as a nonlinear self-normalizing activation function, which for the first time has been applied in medical imaging with CNN. SELU has important advantages such as being parameter-free and mini-batch independent, which may help to overcome memory constraints during training. A dataset with 91 images from 35 patients during Valsalva, contraction, and rest, all labeled by three operators, is used for training and evaluation in a leave-one-patient-out cross validation. Results show a median Dice similarity coefficient of 0.90 with an interquartile range of 0.08, with equivalent performance to the three operators (with a Williams' index of 1.03), and outperforming a U-Net architecture without the need for batch normalization. We conclude that the proposed fully automatic method achieved equivalent accuracy in segmenting the pelvic floor levator hiatus compared to a previous semiautomatic approach.

  11. Lung Lesion Detection in CT Scan Images Using the Fuzzy Local Information Cluster Means (FLICM) Automatic Segmentation Algorithm and Back Propagation Network Classification

    Science.gov (United States)

    Lavanya, M; Kannan, P Muthu

    2017-12-29

    Lung cancer is a frequently lethal disease often causing death of human beings at an early age because of uncontrolled cell growth in the lung tissues. The diagnostic methods available are less than effective for detection of cancer. Therefore an automatic lesion segmentation method with computed tomography (CT) scans has been developed. However it is very difficult to perform automatic identification and segmentation of lung tumours with good accuracy because of the existence of variation in lesions. This paper describes the application of a robust lesion detection and segmentation technique to segment every individual cell from pathological images to extract the essential features. The proposed technique based on the FLICM (Fuzzy Local Information Cluster Means) algorithm used for segmentation, with reduced false positives in detecting lung cancers. The back propagation network used to classify cancer cells is based on computer aided diagnosis (CAD). Creative Commons Attribution License

  12. Automatic segmentation of lesion from breast DCE-MR image using artificial fish swarm optimization algorithm

    Science.gov (United States)

    Janaki, Sathya D.; Geetha, K.

    2017-06-01

    Interpreting Dynamic Contrast-Enhanced (DCE) MR images for signs of breast cancer is time consuming and complex, since the amount of data that needs to be examined by a radiologist in breast DCE-MRI to locate suspicious lesions is huge. Misclassifications can arise from either overlooking a suspicious region or from incorrectly interpreting a suspicious region. The segmentation of breast DCE-MRI for suspicious lesions in detection is thus attractive, because it drastically decreases the amount of data that needs to be examined. The new segmentation method for detection of suspicious lesions in DCE-MRI of the breast tissues is based on artificial fishes swarm clustering algorithm is presented in this paper. Artificial fish swarm optimization algorithm is a swarm intelligence algorithm, which performs a search based on population and neighborhood search combined with random search. The major criteria for segmentation are based on the image voxel values and the parameters of an empirical parametric model of segmentation algorithms. The experimental results show considerable impact on the performance of the segmentation algorithm, which can assist the physician with the task of locating suspicious regions at minimal time.

  13. Automatic segmentation of lymph vessel wall using optimal surface graph cut and hidden Markov Models.

    Science.gov (United States)

    Jones, Jonathan-Lee; Essa, Ehab; Xie, Xianghua

    2015-01-01

    We present a novel method to segment the lymph vessel wall in confocal microscopy images using Optimal Surface Segmentation (OSS) and hidden Markov Models (HMM). OSS is used to preform a pre-segmentation on the images, to act as the initial state for the HMM. We utilize a steerable filter to determine edge based filters for both of these segmentations, and use these features to build Gaussian probability distributions for both the vessel walls and the background. From this we infer the emission probability for the HMM, and the transmission probability is learned using a Baum-Welch algorithm. We transform the segmentation problem into one of cost minimization, with each node in the graph corresponding to one state, and the weight for each node being defined using its emission probability. We define the inter-relations between neighboring nodes using the transmission probability. Having constructed the problem, it is solved using the Viterbi algorithm, allowing the vessel to be reconstructed. The optimal solution can be found in polynomial time. We present qualitative and quantitative analysis to show the performance of the proposed method.

  14. A novel region-growing based semi-automatic segmentation protocol for three-dimensional condylar reconstruction using cone beam computed tomography (CBCT.

    Directory of Open Access Journals (Sweden)

    Tong Xi

    Full Text Available OBJECTIVE: To present and validate a semi-automatic segmentation protocol to enable an accurate 3D reconstruction of the mandibular condyles using cone beam computed tomography (CBCT. MATERIALS AND METHODS: Approval from the regional medical ethics review board was obtained for this study. Bilateral mandibular condyles in ten CBCT datasets of patients were segmented using the currently proposed semi-automatic segmentation protocol. This segmentation protocol combined 3D region-growing and local thresholding algorithms. The segmentation of a total of twenty condyles was performed by two observers. The Dice-coefficient and distance map calculations were used to evaluate the accuracy and reproducibility of the segmented and 3D rendered condyles. RESULTS: The mean inter-observer Dice-coefficient was 0.98 (range [0.95-0.99]. An average 90th percentile distance of 0.32 mm was found, indicating an excellent inter-observer similarity of the segmented and 3D rendered condyles. No systematic errors were observed in the currently proposed segmentation protocol. CONCLUSION: The novel semi-automated segmentation protocol is an accurate and reproducible tool to segment and render condyles in 3D. The implementation of this protocol in the clinical practice allows the CBCT to be used as an imaging modality for the quantitative analysis of condylar morphology.

  15. Modeling of Craniofacial Anatomy, Variation, and Growth

    DEFF Research Database (Denmark)

    Thorup, Signe Strann

    the two images. To elaborate further: a computational atlas of the average anatomy was constructed. Using non-rigid registration, image data from a subject is automatically transformed into the coordinate space of the atlas. In this process, all knowledge built into the atlas is transferred to the subject......-subject variation etc. Besides image registration, a volumetric segmentation method using graph cuts was developed and applied for intracranial volume estimation. Graph cut is a fast method for segmentation utilizing a suitable graph. Three different craniofacial anomalies were examined in this thesis: Cleft lip...

  16. Quantitative right and left ventricular functional analysis during gated whole-chest MDCT: A feasibility study comparing automatic segmentation to semi-manual contouring

    International Nuclear Information System (INIS)

    Coche, Emmanuel; Walker, Matthew J.; Zech, Francis; Crombrugghe, Rodolphe de; Vlassenbroek, Alain

    2010-01-01

    Purpose: To evaluate the feasibility of an automatic, whole-heart segmentation algorithm for measuring global heart function from gated, whole-chest MDCT images. Material and methods: 15 patients with suspicion of PE underwent whole-chest contrast-enhanced MDCT with retrospective ECG synchronization. Two observers computed right and left ventricular functional indices using a semi-manual and an automatic whole-heart segmentation algorithm. The two techniques were compared using Bland-Altman analysis and paired Student's t-test. Measurement reproducibility was calculated using intraclass correlation coefficient. Results: Ventricular analysis with automatic segmentation was successful in 13/15 (86%) and in 15/15 (100%) patients for the right ventricle and left ventricle, respectively. Reproducibility of measurements for both ventricles was perfect (ICC: 1.00) and very good for automatic and semi-manual measurements, respectively. Ventricular volumes and functional indices except right ventricular ejection fraction obtained from the automatic method were significantly higher for the RV compared to the semi-manual methods. Conclusions: The automatic, whole-heart segmentation algorithm enabled highly reproducible global heart function to be rapidly obtained in patients undergoing gated whole-chest MDCT for assessment of acute chest pain with suspicion of pulmonary embolism.

  17. Automatic renal lesion segmentation in ultrasound images based on saliency features, improved LBP, and an edge indicator under level set framework.

    Science.gov (United States)

    Gui, Luying; Yang, Xiaoping

    2018-01-01

    Segmentation of lesions in ultrasound images is widely used for preliminary diagnosis. In this paper, we develop an automatic segmentation algorithm for multiple types of lesions in ultrasound images. The proposed method is able to detect and segment lesions automatically as well as generate accurate segmentation results for lesion regions. In the detection step, two saliency detection frameworks which adopt global image information are designed to capture the differences between normal and abnormal organs as well as these between lesions and the normal tissues around them. In the segmentation step, three types of local information, i.e., image intensity, improved local binary patterns (LBP) features, and an edge indicator, are embedded into a modified level set framework to carry out the segmentation task. The cyst and carcinoma regions in the ultrasound images of the human kidneys can be automatically detected and segmented by using the proposed method. The efficiency and accuracy of the method are validated by quantitative evaluations and comparative measurements with three well-recognized segmentation methods. Specifically, the average precision and dice coefficient of the proposed method in segmenting renal cysts are 95.33% and 90.16%, respectively, while those in segmenting renal carcinomas are 94.22% and 91.13%, respectively. The average precision and dice coefficient of the proposed method are higher than those of three compared segmentation methods. The proposed method can efficiently detect and segment the renal lesions in ultrasound images. In addition, since the proposed method utilizes the differences between normal and abnormal organs as well as these between lesions and the normal tissues around them, it can be possibly extended to deal with lesions in other organs of ultrasound images as well as lesions in medical images of other modalities. © 2017 American Association of Physicists in Medicine.

  18. Automatic Traffic Sign Detection and Recognition Using Colour Segmentation and Shape Identification

    Directory of Open Access Journals (Sweden)

    Horak Karel

    2016-01-01

    Full Text Available The paper describes a colour-based segmentation method of European traffic signs for detection in an image and a feature-based recognition method for categorizing them into given classes. At first, we have performed analysis of several well-known colour spaces as the RGB, HSV and YCbCr often used for segmentation purposes. The HSV colour space has been chosen as the most convenient for segmentation step and colour-based models of traffic signs representatives were created. Next, the fast radial symmetry (FRS detection method and the Harris corner detector were used to recognize circles, triangles and squares as main geometrical shapes of the traffic signs. For these purposes a new gallery of real-life images containing traffic signs has been created and analysed. Overall efficiency of our recognition method is approx. 93 % on our gallery and is usable for real-time implementations.

  19. Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation.

    Science.gov (United States)

    Zilly, Julian; Buhmann, Joachim M; Mahapatra, Dwarikanath

    2017-01-01

    We present a novel method to segment retinal images using ensemble learning based convolutional neural network (CNN) architectures. An entropy sampling technique is used to select informative points thus reducing computational complexity while performing superior to uniform sampling. The sampled points are used to design a novel learning framework for convolutional filters based on boosting. Filters are learned in several layers with the output of previous layers serving as the input to the next layer. A softmax logistic classifier is subsequently trained on the output of all learned filters and applied on test images. The output of the classifier is subject to an unsupervised graph cut algorithm followed by a convex hull transformation to obtain the final segmentation. Our proposed algorithm for optic cup and disc segmentation outperforms existing methods on the public DRISHTI-GS data set on several metrics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Automatic segmentation of 4D cardiac MR images for extraction of ventricular chambers using a spatio-temporal approach

    Science.gov (United States)

    Atehortúa, Angélica; Zuluaga, Maria A.; Ourselin, Sébastien; Giraldo, Diana; Romero, Eduardo

    2016-03-01

    An accurate ventricular function quantification is important to support evaluation, diagnosis and prognosis of several cardiac pathologies. However, expert heart delineation, specifically for the right ventricle, is a time consuming task with high inter-and-intra observer variability. A fully automatic 3D+time heart segmentation framework is herein proposed for short-axis-cardiac MRI sequences. This approach estimates the heart using exclusively information from the sequence itself without tuning any parameters. The proposed framework uses a coarse-to-fine approach, which starts by localizing the heart via spatio-temporal analysis, followed by a segmentation of the basal heart that is then propagated to the apex by using a non-rigid-registration strategy. The obtained volume is then refined by estimating the ventricular muscle by locally searching a prior endocardium- pericardium intensity pattern. The proposed framework was applied to 48 patients datasets supplied by the organizers of the MICCAI 2012 Right Ventricle segmentation challenge. Results show the robustness, efficiency and competitiveness of the proposed method both in terms of accuracy and computational load.

  1. Automatic left-atrial segmentation from cardiac 3D ultrasound: a dual-chamber model-based approach

    Science.gov (United States)

    Almeida, Nuno; Sarvari, Sebastian I.; Orderud, Fredrik; Gérard, Olivier; D'hooge, Jan; Samset, Eigil

    2016-04-01

    In this paper, we present an automatic solution for segmentation and quantification of the left atrium (LA) from 3D cardiac ultrasound. A model-based framework is applied, making use of (deformable) active surfaces to model the endocardial surfaces of cardiac chambers, allowing incorporation of a priori anatomical information in a simple fashion. A dual-chamber model (LA and left ventricle) is used to detect and track the atrio-ventricular (AV) plane, without any user input. Both chambers are represented by parametric surfaces and a Kalman filter is used to fit the model to the position of the endocardial walls detected in the image, providing accurate detection and tracking during the whole cardiac cycle. This framework was tested in 20 transthoracic cardiac ultrasound volumetric recordings of healthy volunteers, and evaluated using manual traces of a clinical expert as a reference. The 3D meshes obtained with the automatic method were close to the reference contours at all cardiac phases (mean distance of 0.03+/-0.6 mm). The AV plane was detected with an accuracy of -0.6+/-1.0 mm. The LA volumes assessed automatically were also in agreement with the reference (mean +/-1.96 SD): 0.4+/-5.3 ml, 2.1+/-12.6 ml, and 1.5+/-7.8 ml at end-diastolic, end-systolic and pre-atrial-contraction frames, respectively. This study shows that the proposed method can be used for automatic volumetric assessment of the LA, considerably reducing the analysis time and effort when compared to manual analysis.

  2. Automatic segmentation and classification of gestational sac based on mean sac diameter using medical ultrasound image

    Science.gov (United States)

    Khazendar, Shan; Farren, Jessica; Al-Assam, Hisham; Sayasneh, Ahmed; Du, Hongbo; Bourne, Tom; Jassim, Sabah A.

    2014-05-01

    Ultrasound is an effective multipurpose imaging modality that has been widely used for monitoring and diagnosing early pregnancy events. Technology developments coupled with wide public acceptance has made ultrasound an ideal tool for better understanding and diagnosing of early pregnancy. The first measurable signs of an early pregnancy are the geometric characteristics of the Gestational Sac (GS). Currently, the size of the GS is manually estimated from ultrasound images. The manual measurement involves multiple subjective decisions, in which dimensions are taken in three planes to establish what is known as Mean Sac Diameter (MSD). The manual measurement results in inter- and intra-observer variations, which may lead to difficulties in diagnosis. This paper proposes a fully automated diagnosis solution to accurately identify miscarriage cases in the first trimester of pregnancy based on automatic quantification of the MSD. Our study shows a strong positive correlation between the manual and the automatic MSD estimations. Our experimental results based on a dataset of 68 ultrasound images illustrate the effectiveness of the proposed scheme in identifying early miscarriage cases with classification accuracies comparable with those of domain experts using K nearest neighbor classifier on automatically estimated MSDs.

  3. Colour transformations and K-means segmentation for automatic cloud detection

    Directory of Open Access Journals (Sweden)

    Martin Blazek

    2015-08-01

    Full Text Available The main aim of this work is to find simple criteria for automatic recognition of several meteorological phenomena using optical digital sensors (e.g., Wide-Field cameras, automatic DSLR cameras or robotic telescopes. The output of those sensors is commonly represented in RGB channels containing information about both colour and luminosity even when normalised. Transformation into other colour spaces (e.g., CIE 1931 xyz, CIE L*a*b*, YCbCr can separate colour from luminosity, which is especially useful in the image processing of automatic cloud boundary recognition. Different colour transformations provide different sectorization of cloudy images. Hence, the analysed meteorological phenomena (cloud types, clear sky project differently into the colour diagrams of each international colour systems. In such diagrams, statistical tools can be applied in search of criteria which could determine clear sky from a covered one and possibly even perform a meteorological classification of cloud types. For the purpose of this work, a database of sky images (both clear and cloudy, with emphasis on a variety of different observation conditions (e.g., time, altitude, solar angle, etc. was acquired. The effectiveness of several colour transformations for meteorological application is discussed and the representation of different clouds (or clear sky in those colour systems is analysed. Utilisation of this algorithm would be useful in all-sky surveys, supplementary meteorological observations, solar cell effectiveness predictions or daytime astronomical solar observations.

  4. Automatic 2D segmentation of airways in thorax computed tomography images; Segmentacao automatica 2D de vias aereas em imagens de tomografia computadorizada do torax

    Energy Technology Data Exchange (ETDEWEB)

    Cavalcante, Tarique da Silveira; Cortez, Paulo Cesar; Almeida, Thomaz Maia de, E-mail: tarique@lesc.ufc.br [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Engenharia de Teleinformatica; Felix, John Hebert da Silva [Universidade da Integracao Internacional da Lusofonia Afro-Brasileira (UNILAB), Redencao, CE (Brazil). Departamento de Energias; Holanda, Marcelo Alcantara [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Fac. de Medicina

    2013-07-01

    Introduction: much of the world population is affected by pulmonary diseases, such as the bronchial asthma, bronchitis and bronchiectasis. The bronchial diagnosis is based on the airways state. In this sense, the automatic segmentation of the airways in Computed Tomography (CT) scans is a critical step in the aid to diagnosis of these diseases. Methods: this paper evaluates algorithms for airway automatic segmentation, using Neural Network Multilayer Perceptron (MLP) and Lung Densities Analysis (LDA) for detecting airways, along with Region Growing (RG), Active Contour Method (ACM) Balloon and Topology Adaptive to segment them. Results: we obtained results in three stages: comparative analysis of the detection algorithms MLP and LDA, with a gold standard acquired by three physicians with expertise in CT imaging of the chest; comparative analysis of segmentation algorithms ACM Balloon, ACM Topology Adaptive, MLP and RG; and evaluation of possible combinations between segmentation and detection algorithms, resulting in the complete method for automatic segmentation of the airways in 2D. Conclusion: the low incidence of false negative and the significant reduction of false positive, results in similarity coefficient and sensitivity exceeding 91% and 87% respectively, for a combination of algorithms with satisfactory segmentation quality. (author)

  5. A fully automatic nerve segmentation and morphometric parameter quantification system for early diagnosis of diabetic neuropathy in corneal images.

    Science.gov (United States)

    Al-Fahdawi, Shumoos; Qahwaji, Rami; Al-Waisy, Alaa S; Ipson, Stanley; Malik, Rayaz A; Brahma, Arun; Chen, Xin

    2016-10-01

    Diabetic Peripheral Neuropathy (DPN) is one of the most common types of diabetes that can affect the cornea. An accurate analysis of the nerve structures can assist the early diagnosis of this disease. This paper proposes a robust, fast and fully automatic nerve segmentation and morphometric parameter quantification system for corneal confocal microscope images. The segmentation part consists of three main steps. First, a preprocessing step is applied to enhance the visibility of the nerves and remove noise using anisotropic diffusion filtering, specifically a Coherence filter followed by Gaussian filtering. Second, morphological operations are applied to remove unwanted objects in the input image such as epithelial cells and small nerve segments. Finally, an edge detection step is applied to detect all the nerves in the input image. In this step, an efficient algorithm for connecting discontinuous nerves is proposed. In the morphometric parameters quantification part, a number of features are extracted, including thickness, tortuosity and length of nerve, which may be used for the early diagnosis of diabetic polyneuropathy and when planning Laser-Assisted in situ Keratomileusis (LASIK) or Photorefractive keratectomy (PRK). The performance of the proposed segmentation system is evaluated against manually traced ground-truth images based on a database consisting of 498 corneal sub-basal nerve images (238 are normal and 260 are abnormal). In addition, the robustness and efficiency of the proposed system in extracting morphometric features with clinical utility was evaluated in 919 images taken from healthy subjects and diabetic patients with and without neuropathy. We demonstrate rapid (13 seconds/image), robust and effective automated corneal nerve quantification. The proposed system will be deployed as a useful clinical tool to support the expertise of ophthalmologists and save the clinician time in a busy clinical setting. Copyright © 2016 Elsevier Ireland Ltd

  6. Improved intelligent scissors and snake-based VOP interpolation for semi-automatic video object segmentation

    Science.gov (United States)

    Yang, Gaobo; Zhang, ZhaoYang; Chen, Jie

    2003-09-01

    Object-based segmentation of image sequences is one of the issues often arise in the world of video processing and communications. In this paper, a robust semiautomatic video object segmentation scheme is proposed. To facilitate users defining the initial object contour efficiently and accurately, an improved intelligent scissors is proposed by trading off the accuracy of original intelligent scissors and the simplicity of bounding box. To avoid the accumulated errors during object tracking, video sequence is firstly decomposed into video clips according to the rigidity of video object and the motion complexity. Then a snake-based bi-directional tracking is utilized to interpolate the video object planes (VOPs) of successive frames. Experimental results demonstrate that it can achieve better spatial accuracy and temporal coherency than COST211 AM, with about 10-22% improvement of spatial accuracy and almost the same temporal coherency.

  7. AUTOMATIC BUILDING EXTRACTION AND ROOF RECONSTRUCTION IN 3K IMAGERY BASED ON LINE SEGMENTS

    Directory of Open Access Journals (Sweden)

    A. Köhn

    2016-06-01

    Full Text Available We propose an image processing workflow to extract rectangular building footprints using georeferenced stereo-imagery and a derivative digital surface model (DSM product. The approach applies a line segment detection procedure to the imagery and subsequently verifies identified line segments individually to create a footprint on the basis of the DSM. The footprint is further optimized by morphological filtering. Towards the realization of 3D models, we decompose the produced footprint and generate a 3D point cloud from DSM height information. By utilizing the robust RANSAC plane fitting algorithm, the roof structure can be correctly reconstructed. In an experimental part, the proposed approach has been performed on 3K aerial imagery.

  8. Improved Automatic Segmentation of White Matter Hyperintensities in MRI Based on Multilevel Lesion Features.

    Science.gov (United States)

    Rincón, M; Díaz-López, E; Selnes, P; Vegge, K; Altmann, M; Fladby, T; Bjørnerud, A

    2017-07-01

    Brain white matter hyperintensities (WMHs) are linked to increased risk of cerebrovascular and neurodegenerative diseases among the elderly. Consequently, detection and characterization of WMHs are of significant clinical importance. We propose a novel approach for WMH segmentation from multi-contrast MRI where both voxel-based and lesion-based information are used to improve overall performance in both volume-oriented and object-oriented metrics. Our segmentation method (AMOS-2D) consists of four stages following a "generate-and-test" approach: pre-processing, Gaussian white matter (WM) modelling, hierarchical multi-threshold WMH segmentation and object-based WMH filtering using support vector machines. Data from 28 subjects was used in this study covering a wide range of lesion loads. Volumetric T1-weighted images and 2D fluid attenuated inversion recovery (FLAIR) images were used as basis for the WM model and lesion masks defined manually in each subject by experts were used for training and evaluating the proposed method. The method obtained an average agreement (in terms of the Dice similarity coefficient, DSC) with experts equivalent to inter-expert agreement both in terms of WMH number (DSC = 0.637 vs. 0.651) and volume (DSC = 0.743 vs. 0.781). It allowed higher accuracy in detecting WMH compared to alternative methods tested and was further found to be insensitive to WMH lesion burden. Good agreement with expert annotations combined with stable performance largely independent of lesion burden suggests that AMOS-2D will be a valuable tool for fully automated WMH segmentation in patients with cerebrovascular and neurodegenerative pathologies.

  9. Automatic training and reliability estimation for 3D ASM applied to cardiac MRI segmentation.

    Science.gov (United States)

    Tobon-Gomez, Catalina; Sukno, Federico M; Butakoff, Constantine; Huguet, Marina; Frangi, Alejandro F

    2012-07-07

    Training active shape models requires collecting manual ground-truth meshes in a large image database. While shape information can be reused across multiple imaging modalities, intensity information needs to be imaging modality and protocol specific. In this context, this study has two main purposes: (1) to test the potential of using intensity models learned from MRI simulated datasets and (2) to test the potential of including a measure of reliability during the matching process to increase robustness. We used a population of 400 virtual subjects (XCAT phantom), and two clinical populations of 40 and 45 subjects. Virtual subjects were used to generate simulated datasets (MRISIM simulator). Intensity models were trained both on simulated and real datasets. The trained models were used to segment the left ventricle (LV) and right ventricle (RV) from real datasets. Segmentations were also obtained with and without reliability information. Performance was evaluated with point-to-surface and volume errors. Simulated intensity models obtained average accuracy comparable to inter-observer variability for LV segmentation. The inclusion of reliability information reduced volume errors in hypertrophic patients (EF errors from 17 ± 57% to 10 ± 18%; LV MASS errors from -27 ± 22 g to -14 ± 25 g), and in heart failure patients (EF errors from -8 ± 42% to -5 ± 14%). The RV model of the simulated images needs further improvement to better resemble image intensities around the myocardial edges. Both for real and simulated models, reliability information increased segmentation robustness without penalizing accuracy.

  10. Anatomy Transfer

    OpenAIRE

    Dicko, Ali Hamadi; Liu, Tiantian; Gilles, Benjamin; Kavan, Ladislav; Faure, François; Palombi, Olivier; Cani, Marie-Paule

    2013-01-01

    International audience; Characters with precise internal anatomy are important in film and visual effects, as well as in medical applications. We propose the first semi-automatic method for creating anatomical structures, such as bones, muscles, viscera and fat tissues. This is done by transferring a reference anatomical model from an input template to an arbitrary target character, only defined by its boundary representation (skin). The fat distribution of the target character needs to be sp...

  11. A pre-clinical assessment of an atlas-based automatic segmentation tool for the head and neck.

    Science.gov (United States)

    Sims, Richard; Isambert, Aurelie; Grégoire, Vincent; Bidault, François; Fresco, Lydia; Sage, John; Mills, John; Bourhis, Jean; Lefkopoulos, Dimitri; Commowick, Olivier; Benkebil, Mehdi; Malandain, Grégoire

    2009-12-01

    Accurate conformal radiotherapy treatment requires manual delineation of target volumes and organs at risk (OAR) that is both time-consuming and subject to large inter-user variability. One solution is atlas-based automatic segmentation (ABAS) where a priori information is used to delineate various organs of interest. The aim of the present study is to establish the accuracy of one such tool for the head and neck (H&N) using two different evaluation methods. Two radiotherapy centres were provided with an ABAS tool that was used to outline the brainstem, parotids and mandible on several patients. The results were compared to manual delineations for the first centre (EM1) and reviewed/edited for the second centre (EM2), both of which were deemed as equally valid gold standards. The contours were compared in terms of their volume, sensitivity and specificity with the results being interpreted using the Dice similarity coefficient and a receiver operator characteristic (ROC) curve. Automatic segmentation took typically approximately 7min for each patient on a standard PC. The results indicated that the atlas contour volume was generally within +/-1SD of each gold standard apart from the parotids for EM1 and brainstem for EM2 that were over- and under-estimated, respectively (within +/-2SD). The similarity of the atlas contours with their respective gold standard was satisfactory with an average Dice coefficient for all OAR of 0.68+/-0.25 for EM1 and 0.82+/-0.13 for EM2. All data had satisfactory sensitivity and specificity resulting in a favourable position in ROC space. These tests have shown that the ABAS tool exhibits satisfactory sensitivity and specificity for the OAR investigated. There is, however, a systematic over-segmentation of the parotids (EM1) and under-segmentation of the brainstem (EM2) that require careful review and editing in the majority of cases. Such issues have been discussed with the software manufacturer and a revised version is due for release.

  12. A pre-clinical assessment of an atlas-based automatic segmentation tool for the head and neck

    International Nuclear Information System (INIS)

    Sims, Richard; Isambert, Aurelie; Gregoire, Vincent; Bidault, Francois; Fresco, Lydia; Sage, John; Mills, John; Bourhis, Jean; Lefkopoulos, Dimitri; Commowick, Olivier; Benkebil, Mehdi; Malandain, Gregoire

    2009-01-01

    Background and purpose: Accurate conformal radiotherapy treatment requires manual delineation of target volumes and organs at risk (OAR) that is both time-consuming and subject to large inter-user variability. One solution is atlas-based automatic segmentation (ABAS) where a priori information is used to delineate various organs of interest. The aim of the present study is to establish the accuracy of one such tool for the head and neck (H and N) using two different evaluation methods. Materials and methods: Two radiotherapy centres were provided with an ABAS tool that was used to outline the brainstem, parotids and mandible on several patients. The results were compared to manual delineations for the first centre (EM1) and reviewed/edited for the second centre (EM2), both of which were deemed as equally valid gold standards. The contours were compared in terms of their volume, sensitivity and specificity with the results being interpreted using the Dice similarity coefficient and a receiver operator characteristic (ROC) curve. Results: Automatic segmentation took typically ∼7 min for each patient on a standard PC. The results indicated that the atlas contour volume was generally within ±1SD of each gold standard apart from the parotids for EM1 and brainstem for EM2 that were over- and under-estimated, respectively (within ±2SD). The similarity of the atlas contours with their respective gold standard was satisfactory with an average Dice coefficient for all OAR of 0.68 ± 0.25 for EM1 and 0.82 ± 0.13 for EM2. All data had satisfactory sensitivity and specificity resulting in a favourable position in ROC space. Conclusions: These tests have shown that the ABAS tool exhibits satisfactory sensitivity and specificity for the OAR investigated. There is, however, a systematic over-segmentation of the parotids (EM1) and under-segmentation of the brainstem (EM2) that require careful review and editing in the majority of cases. Such issues have been discussed with the

  13. High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas.

    Science.gov (United States)

    Saygin, Z M; Kliemann, D; Iglesias, J E; van der Kouwe, A J W; Boyd, E; Reuter, M; Stevens, A; Van Leemput, K; McKee, A; Frosch, M P; Fischl, B; Augustinack, J C

    2017-07-15

    The amygdala is composed of multiple nuclei with unique functions and connections in the limbic system and to the rest of the brain. However, standard in vivo neuroimaging tools to automatically delineate the amygdala into its multiple nuclei are still rare. By scanning postmortem specimens at high resolution (100-150µm) at 7T field strength (n = 10), we were able to visualize and label nine amygdala nuclei (anterior amygdaloid, cortico-amygdaloid transition area; basal, lateral, accessory basal, central, cortical medial, paralaminar nuclei). We created an atlas from these labels using a recently developed atlas building algorithm based on Bayesian inference. This atlas, which will be released as part of FreeSurfer, can be used to automatically segment nine amygdala nuclei from a standard resolution structural MR image. We applied this atlas to two publicly available datasets (ADNI and ABIDE) with standard resolution T1 data, used individual volumetric data of the amygdala nuclei as the measure and found that our atlas i) discriminates between Alzheimer's disease participants and age-matched control participants with 84% accuracy (AUC=0.915), and ii) discriminates between individuals with autism and age-, sex- and IQ-matched neurotypically developed control participants with 59.5% accuracy (AUC=0.59). For both datasets, the new ex vivo atlas significantly outperformed (all p atlas and the segmentation tools that utilize it will provide neuroimaging researchers with the ability to explore the function and connectivity of the human amygdala nuclei with unprecedented detail in healthy adults as well as those with neurodevelopmental and neurodegenerative disorders. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Automatic quantitative computed tomography segmentation and analysis of aerated lung volumes in acute respiratory distress syndrome-A comparative diagnostic study.

    Science.gov (United States)

    Klapsing, Philipp; Herrmann, Peter; Quintel, Michael; Moerer, Onnen

    2017-12-01

    Quantitative lung computed tomographic (CT) analysis yields objective data regarding lung aeration but is currently not used in clinical routine primarily because of the labor-intensive process of manual CT segmentation. Automatic lung segmentation could help to shorten processing times significantly. In this study, we assessed bias and precision of lung CT analysis using automatic segmentation compared with manual segmentation. In this monocentric clinical study, 10 mechanically ventilated patients with mild to moderate acute respiratory distress syndrome were included who had received lung CT scans at 5- and 45-mbar airway pressure during a prior study. Lung segmentations were performed both automatically using a computerized algorithm and manually. Automatic segmentation yielded similar lung volumes compared with manual segmentation with clinically minor differences both at 5 and 45 mbar. At 5 mbar, results were as follows: overdistended lung 49.58mL (manual, SD 77.37mL) and 50.41mL (automatic, SD 77.3mL), P=.028; normally aerated lung 2142.17mL (manual, SD 1131.48mL) and 2156.68mL (automatic, SD 1134.53mL), P = .1038; and poorly aerated lung 631.68mL (manual, SD 196.76mL) and 646.32mL (automatic, SD 169.63mL), P = .3794. At 45 mbar, values were as follows: overdistended lung 612.85mL (manual, SD 449.55mL) and 615.49mL (automatic, SD 451.03mL), P=.078; normally aerated lung 3890.12mL (manual, SD 1134.14mL) and 3907.65mL (automatic, SD 1133.62mL), P = .027; and poorly aerated lung 413.35mL (manual, SD 57.66mL) and 469.58mL (automatic, SD 70.14mL), P=.007. Bland-Altman analyses revealed the following mean biases and limits of agreement at 5 mbar for automatic vs manual segmentation: overdistended lung +0.848mL (±2.062mL), normally aerated +14.51mL (±49.71mL), and poorly aerated +14.64mL (±98.16mL). At 45 mbar, results were as follows: overdistended +2.639mL (±8.231mL), normally aerated 17.53mL (±41.41mL), and poorly aerated 56.23mL (±100.67mL). Automatic

  15. A multiphase validation of atlas-based automatic and semiautomatic segmentation strategies for prostate MRI.

    Science.gov (United States)

    Martin, Spencer; Rodrigues, George; Patil, Nikhilesh; Bauman, Glenn; D'Souza, David; Sexton, Tracy; Palma, David; Louie, Alexander V; Khalvati, Farzad; Tizhoosh, Hamid R; Gaede, Stewart

    2013-01-01

    To perform a rigorous technological assessment and statistical validation of a software technology for anatomic delineations of the prostate on MRI datasets. A 3-phase validation strategy was used. Phase I consisted of anatomic atlas building using 100 prostate cancer MRI data sets to provide training data sets for the segmentation algorithms. In phase II, 2 experts contoured 15 new MRI prostate cancer cases using 3 approaches (manual, N points, and region of interest). In phase III, 5 new physicians with variable MRI prostate contouring experience segmented the same 15 phase II datasets using 3 approaches: manual, N points with no editing, and full autosegmentation with user editing allowed. Statistical analyses for time and accuracy (using Dice similarity coefficient) endpoints used traditional descriptive statistics, analysis of variance, analysis of covariance, and pooled Student t test. In phase I, average (SD) total and per slice contouring time for the 2 physicians was 228 (75), 17 (3.5), 209 (65), and 15 seconds (3.9), respectively. In phase II, statistically significant differences in physician contouring time were observed based on physician, type of contouring, and case sequence. The N points strategy resulted in superior segmentation accuracy when initial autosegmented contours were compared with final contours. In phase III, statistically significant differences in contouring time were observed based on physician, type of contouring, and case sequence again. The average relative timesaving for N points and autosegmentation were 49% and 27%, respectively, compared with manual contouring. The N points and autosegmentation strategies resulted in average Dice values of 0.89 and 0.88, respectively. Pre- and postedited autosegmented contours demonstrated a higher average Dice similarity coefficient of 0.94. The software provided robust contours with minimal editing required. Observed time savings were seen for all physicians irrespective of experience level

  16. A Multiphase Validation of Atlas-Based Automatic and Semiautomatic Segmentation Strategies for Prostate MRI

    International Nuclear Information System (INIS)

    Martin, Spencer; Rodrigues, George; Patil, Nikhilesh; Bauman, Glenn; D'Souza, David; Sexton, Tracy; Palma, David; Louie, Alexander V.; Khalvati, Farzad; Tizhoosh, Hamid R.; Gaede, Stewart

    2013-01-01

    Purpose: To perform a rigorous technological assessment and statistical validation of a software technology for anatomic delineations of the prostate on MRI datasets. Methods and Materials: A 3-phase validation strategy was used. Phase I consisted of anatomic atlas building using 100 prostate cancer MRI data sets to provide training data sets for the segmentation algorithms. In phase II, 2 experts contoured 15 new MRI prostate cancer cases using 3 approaches (manual, N points, and region of interest). In phase III, 5 new physicians with variable MRI prostate contouring experience segmented the same 15 phase II datasets using 3 approaches: manual, N points with no editing, and full autosegmentation with user editing allowed. Statistical analyses for time and accuracy (using Dice similarity coefficient) endpoints used traditional descriptive statistics, analysis of variance, analysis of covariance, and pooled Student t test. Results: In phase I, average (SD) total and per slice contouring time for the 2 physicians was 228 (75), 17 (3.5), 209 (65), and 15 seconds (3.9), respectively. In phase II, statistically significant differences in physician contouring time were observed based on physician, type of contouring, and case sequence. The N points strategy resulted in superior segmentation accuracy when initial autosegmented contours were compared with final contours. In phase III, statistically significant differences in contouring time were observed based on physician, type of contouring, and case sequence again. The average relative timesaving for N points and autosegmentation were 49% and 27%, respectively, compared with manual contouring. The N points and autosegmentation strategies resulted in average Dice values of 0.89 and 0.88, respectively. Pre- and postedited autosegmented contours demonstrated a higher average Dice similarity coefficient of 0.94. Conclusion: The software provided robust contours with minimal editing required. Observed time savings were seen

  17. An automated blood vessel segmentation algorithm using histogram equalization and automatic threshold selection.

    Science.gov (United States)

    Saleh, Marwan D; Eswaran, C; Mueen, Ahmed

    2011-08-01

    This paper focuses on the detection of retinal blood vessels which play a vital role in reducing the proliferative diabetic retinopathy and for preventing the loss of visual capability. The proposed algorithm which takes advantage of the powerful preprocessing techniques such as the contrast enhancement and thresholding offers an automated segmentation procedure for retinal blood vessels. To evaluate the performance of the new algorithm, experiments are conducted on 40 images collected from DRIVE database. The results show that the proposed algorithm performs better than the other known algorithms in terms of accuracy. Furthermore, the proposed algorithm being simple and easy to implement, is best suited for fast processing applications.

  18. Enhancing interpretability of automatically extracted machine learning features: application to a RBM-Random Forest system on brain lesion segmentation.

    Science.gov (United States)

    Pereira, Sérgio; Meier, Raphael; McKinley, Richard; Wiest, Roland; Alves, Victor; Silva, Carlos A; Reyes, Mauricio

    2018-02-01

    Machine learning systems are achieving better performances at the cost of becoming increasingly complex. However, because of that, they become less interpretable, which may cause some distrust by the end-user of the system. This is especially important as these systems are pervasively being introduced to critical domains, such as the medical field. Representation Learning techniques are general methods for automatic feature computation. Nevertheless, these techniques are regarded as uninterpretable "black boxes". In this paper, we propose a methodology to enhance the interpretability of automatically extracted machine learning features. The proposed system is composed of a Restricted Boltzmann Machine for unsupervised feature learning, and a Random Forest classifier, which are combined to jointly consider existing correlations between imaging data, features, and target variables. We define two levels of interpretation: global and local. The former is devoted to understanding if the system learned the relevant relations in the data correctly, while the later is focused on predictions performed on a voxel- and patient-level. In addition, we propose a novel feature importance strategy that considers both imaging data and target variables, and we demonstrate the ability of the approach to leverage the interpretability of the obtained representation for the task at hand. We evaluated the proposed methodology in brain tumor segmentation and penumbra estimation in ischemic stroke lesions. We show the ability of the proposed methodology to unveil information regarding relationships between imaging modalities and extracted features and their usefulness for the task at hand. In both clinical scenarios, we demonstrate that the proposed methodology enhances the interpretability of automatically learned features, highlighting specific learning patterns that resemble how an expert extracts relevant data from medical images. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Hepatic Arterial Configuration in Relation to the Segmental Anatomy of the Liver; Observations on MDCT and DSA Relevant to Radioembolization Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Hoven, Andor F. van den, E-mail: a.f.vandenhoven@umcutrecht.nl; Leeuwen, Maarten S. van, E-mail: m.s.vanleeuwen@umcutrecht.nl; Lam, Marnix G. E. H., E-mail: m.lam@umcutrecht.nl; Bosch, Maurice A. A. J. van den, E-mail: mbosch@umcutrecht.nl [University Medical Center Utrecht, Department of Radiology and Nuclear Medicine (Netherlands)

    2015-02-15

    PurposeCurrent anatomical classifications do not include all variants relevant for radioembolization (RE). The purpose of this study was to assess the individual hepatic arterial configuration and segmental vascularization pattern and to develop an individualized RE treatment strategy based on an extended classification.MethodsThe hepatic vascular anatomy was assessed on MDCT and DSA in patients who received a workup for RE between February 2009 and November 2012. Reconstructed MDCT studies were assessed to determine the hepatic arterial configuration (origin of every hepatic arterial branch, branching pattern and anatomical course) and the hepatic segmental vascularization territory of all branches. Aberrant hepatic arteries were defined as hepatic arterial branches that did not originate from the celiac axis/CHA/PHA. Early branching patterns were defined as hepatic arterial branches originating from the celiac axis/CHA.ResultsThe hepatic arterial configuration and segmental vascularization pattern could be assessed in 110 of 133 patients. In 59 patients (54 %), no aberrant hepatic arteries or early branching was observed. Fourteen patients without aberrant hepatic arteries (13 %) had an early branching pattern. In the 37 patients (34 %) with aberrant hepatic arteries, five also had an early branching pattern. Sixteen different hepatic arterial segmental vascularization patterns were identified and described, differing by the presence of aberrant hepatic arteries, their respective vascular territory, and origin of the artery vascularizing segment four.ConclusionsThe hepatic arterial configuration and segmental vascularization pattern show marked individual variability beyond well-known classifications of anatomical variants. We developed an individualized RE treatment strategy based on an extended anatomical classification.

  20. Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features.

    Science.gov (United States)

    Zheng, Yefeng; Barbu, Adrian; Georgescu, Bogdan; Scheuering, Michael; Comaniciu, Dorin

    2008-11-01

    We propose an automatic four-chamber heart segmentation system for the quantitative functional analysis of the heart from cardiac computed tomography (CT) volumes. Two topics are discussed: heart modeling and automatic model fitting to an unseen volume. Heart modeling is a nontrivial task since the heart is a complex nonrigid organ. The model must be anatomically accurate, allow manual editing, and provide sufficient information to guide automatic detection and segmentation. Unlike previous work, we explicitly represent important landmarks (such as the valves and the ventricular septum cusps) among the control points of the model. The control points can be detected reliably to guide the automatic model fitting process. Using this model, we develop an efficient and robust approach for automatic heart chamber segmentation in 3-D CT volumes. We formulate the segmentation as a two-step learning problem: anatomical structure localization and boundary delineation. In both steps, we exploit the recent advances in learning discriminative models. A novel algorithm, marginal space learning (MSL), is introduced to solve the 9-D similarity transformation search problem for localizing the heart chambers. After determining the pose of the heart chambers, we estimate the 3-D shape through learning-based boundary delineation. The proposed method has been extensively tested on the largest dataset (with 323 volumes from 137 patients) ever reported in the literature. To the best of our knowledge, our system is the fastest with a speed of 4.0 s per volume (on a dual-core 3.2-GHz processor) for the automatic segmentation of all four chambers.

  1. Clinical pilot study for the automatic segmentation and recognition of abdominal adipose tissue compartments from MRI data

    International Nuclear Information System (INIS)

    Noel, P.B.; Bauer, J.S.; Ganter, C.; Markus, C.; Rummeny, E.J.; Engels, H.P.; Hauner, H.

    2012-01-01

    Purpose: In the diagnosis and risk assessment of obesity, both the amount and distribution of adipose tissue compartments are critical factors. We present a hybrid method for the quantitative measurement of human body fat compartments. Materials and Methods: MRI imaging was performed on a 1.5 T scanner. In a pre-processing step, the images were corrected for bias field inhomogeneity. For segmentation and recognition a hybrid algorithm was developed to automatically differentiate between different adipose tissue compartments. The presented algorithm is designed with a combination of shape and intensity-based techniques. To incorporate the presented algorithm into the clinical routine, we developed a graphical user interface. Results from our methods were compared with the known volume of an adipose tissue phantom. To evaluate our method, we analyzed 40 clinical MRI scans of the abdominal region. Results: Relatively low segmentation errors were found for subcutaneous adipose tissue (3.56 %) and visceral adipose tissue (0.29 %) in phantom studies. The clinical results indicated high correlations between the distribution of adipose tissue compartments and obesity. Conclusion: We present an approach that rapidly identifies and quantifies adipose tissue depots of interest. With this method examination and analysis can be performed in a clinically feasible timeframe. (orig.)

  2. Automatic 3D Segmentation and Quantification of Lenticulostriate Arteries from High-Resolution 7 Tesla MRA Images.

    Science.gov (United States)

    Wei Liao; Rohr, Karl; Chang-Ki Kang; Zang-Hee Cho; Worz, Stefan

    2016-01-01

    We propose a novel hybrid approach for automatic 3D segmentation and quantification of high-resolution 7 Tesla magnetic resonance angiography (MRA) images of the human cerebral vasculature. Our approach consists of two main steps. First, a 3D model-based approach is used to segment and quantify thick vessels and most parts of thin vessels. Second, remaining vessel gaps of the first step in low-contrast and noisy regions are completed using a 3D minimal path approach, which exploits directional information. We present two novel minimal path approaches. The first is an explicit approach based on energy minimization using probabilistic sampling, and the second is an implicit approach based on fast marching with anisotropic directional prior. We conducted an extensive evaluation with over 2300 3D synthetic images and 40 real 3D 7 Tesla MRA images. Quantitative and qualitative evaluation shows that our approach achieves superior results compared with a previous minimal path approach. Furthermore, our approach was successfully used in two clinical studies on stroke and vascular dementia.

  3. Determining the number of clusters for kernelized fuzzy C-means algorithms for automatic medical image segmentation

    Directory of Open Access Journals (Sweden)

    E.A. Zanaty

    2012-03-01

    Full Text Available In this paper, we determine the suitable validity criterion of kernelized fuzzy C-means and kernelized fuzzy C-means with spatial constraints for automatic segmentation of magnetic resonance imaging (MRI. For that; the original Euclidean distance in the FCM is replaced by a Gaussian radial basis function classifier (GRBF and the corresponding algorithms of FCM methods are derived. The derived algorithms are called as the kernelized fuzzy C-means (KFCM and kernelized fuzzy C-means with spatial constraints (SKFCM. These methods are implemented on eighteen indexes as validation to determine whether indexes are capable to acquire the optimal clusters number. The performance of segmentation is estimated by applying these methods independently on several datasets to prove which method can give good results and with which indexes. Our test spans various indexes covering the classical and the rather more recent indexes that have enjoyed noticeable success in that field. These indexes are evaluated and compared by applying them on various test images, including synthetic images corrupted with noise of varying levels, and simulated volumetric MRI datasets. Comparative analysis is also presented to show whether the validity index indicates the optimal clustering for our datasets.

  4. Image processing based automatic diagnosis of glaucoma using wavelet features of segmented optic disc from fundus image.

    Science.gov (United States)

    Singh, Anushikha; Dutta, Malay Kishore; ParthaSarathi, M; Uher, Vaclav; Burget, Radim

    2016-02-01

    Glaucoma is a disease of the retina which is one of the most common causes of permanent blindness worldwide. This paper presents an automatic image processing based method for glaucoma diagnosis from the digital fundus image. In this paper wavelet feature extraction has been followed by optimized genetic feature selection combined with several learning algorithms and various parameter settings. Unlike the existing research works where the features are considered from the complete fundus or a sub image of the fundus, this work is based on feature extraction from the segmented and blood vessel removed optic disc to improve the accuracy of identification. The experimental results presented in this paper indicate that the wavelet features of the segmented optic disc image are clinically more significant in comparison to features of the whole or sub fundus image in the detection of glaucoma from fundus image. Accuracy of glaucoma identification achieved in this work is 94.7% and a comparison with existing methods of glaucoma detection from fundus image indicates that the proposed approach has improved accuracy of classification. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Automatic quantification of mammary glands on non-contrast x-ray CT by using a novel segmentation approach

    Science.gov (United States)

    Zhou, Xiangrong; Kano, Takuya; Cai, Yunliang; Li, Shuo; Zhou, Xinxin; Hara, Takeshi; Yokoyama, Ryujiro; Fujita, Hiroshi

    2016-03-01

    This paper describes a brand new automatic segmentation method for quantifying volume and density of mammary gland regions on non-contrast CT images. The proposed method uses two processing steps: (1) breast region localization, and (2) breast region decomposition to accomplish a robust mammary gland segmentation task on CT images. The first step detects two minimum bounding boxes of left and right breast regions, respectively, based on a machine-learning approach that adapts to a large variance of the breast appearances on different age levels. The second step divides the whole breast region in each side into mammary gland, fat tissue, and other regions by using spectral clustering technique that focuses on intra-region similarities of each patient and aims to overcome the image variance caused by different scan-parameters. The whole approach is designed as a simple structure with very minimum number of parameters to gain a superior robustness and computational efficiency for real clinical setting. We applied this approach to a dataset of 300 CT scans, which are sampled with the equal number from 30 to 50 years-old-women. Comparing to human annotations, the proposed approach can measure volume and quantify distributions of the CT numbers of mammary gland regions successfully. The experimental results demonstrated that the proposed approach achieves results consistent with manual annotations. Through our proposed framework, an efficient and effective low cost clinical screening scheme may be easily implemented to predict breast cancer risk, especially on those already acquired scans.

  6. Automatic 4D reconstruction of patient-specific cardiac mesh with 1-to-1 vertex correspondence from segmented contours lines.

    Directory of Open Access Journals (Sweden)

    Chi Wan Lim

    Full Text Available We propose an automatic algorithm for the reconstruction of patient-specific cardiac mesh models with 1-to-1 vertex correspondence. In this framework, a series of 3D meshes depicting the endocardial surface of the heart at each time step is constructed, based on a set of border delineated magnetic resonance imaging (MRI data of the whole cardiac cycle. The key contribution in this work involves a novel reconstruction technique to generate a 4D (i.e., spatial-temporal model of the heart with 1-to-1 vertex mapping throughout the time frames. The reconstructed 3D model from the first time step is used as a base template model and then deformed to fit the segmented contours from the subsequent time steps. A method to determine a tree-based connectivity relationship is proposed to ensure robust mapping during mesh deformation. The novel feature is the ability to handle intra- and inter-frame 2D topology changes of the contours, which manifests as a series of merging and splitting of contours when the images are viewed either in a spatial or temporal sequence. Our algorithm has been tested on five acquisitions of cardiac MRI and can successfully reconstruct the full 4D heart model in around 30 minutes per subject. The generated 4D heart model conforms very well with the input segmented contours and the mesh element shape is of reasonably good quality. The work is important in the support of downstream computational simulation activities.

  7. Automatic segmentation of histological structures in normal and neoplastic mammary gland tissue sections

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Gonzalez, Rodrigo; Deschamps, Thomas; Idica, Adam K.; Malladi, Ravi; Ortiz de Solorzano, Carlos

    2003-01-18

    In this paper we present a scheme for real time segmentation of histological structures in microscopic images of normal and neoplastic mammary gland sections. Paraffin embedded or frozen tissue blocks are sliced, and sections are stained with hematoxylin and eosin (H&E). The sections are then imaged using conventional bright field microscopy. The background of the images is corrected by arithmetic manipulation using a ''phantom.'' Then we use the fast marching method with a speed function that depends on the brightness gradient of the image to obtain a preliminary approximation to the boundaries of the structures of interest within a region of interest (ROI) of the entire section manually selected by the user. We use the result of the fast marching method as the initial condition for the level set motion equation. We run this last method for a few steps and obtain the final result of the segmentation. These results can be connected from section to section to build a three-dimensional reconstruction of the entire tissue block that we are studying.

  8. Automatic Detection and Segmentation of Columns in As-Built Buildings from Point Clouds

    Directory of Open Access Journals (Sweden)

    Lucía Díaz-Vilariño

    2015-11-01

    Full Text Available Over the past few years, there has been an increasing need for tools that automate the processing of as-built 3D laser scanner data. Given that a fast and active dimensional analysis of constructive components is essential for construction monitoring, this paper is particularly focused on the detection and segmentation of columns in building interiors from incomplete point clouds acquired with a Terrestrial Laser Scanner. The methodology addresses two types of columns: round cross-section and rectangular cross-section. Considering columns as vertical elements, the global strategy for segmentation involves the rasterization of a point cloud onto the XY plane and the implementation of a model-driven approach based on the Hough Transform. The methodology is tested in two real case studies, and experiments are carried out under different levels of data completeness. The results show the robustness of the methodology to the presence of clutter and partial occlusion, typical in building indoors, even though false positives can be obtained if other elements with the same shape and size as columns are present in the raster.

  9. Scale invariant SURF detector and automatic clustering segmentation for infrared small targets detection

    Science.gov (United States)

    Zhang, Haiying; Bai, Jiaojiao; Li, Zhengjie; Liu, Yan; Liu, Kunhong

    2017-06-01

    The detection and discrimination of infrared small dim targets is a challenge in automatic target recognition (ATR), because there is no salient information of size, shape and texture. Many researchers focus on mining more discriminative information of targets in temporal-spatial. However, such information may not be available with the change of imaging environments, and the targets size and intensity keep changing in different imaging distance. So in this paper, we propose a novel research scheme using density-based clustering and backtracking strategy. In this scheme, the speeded up robust feature (SURF) detector is applied to capture candidate targets in single frame at first. And then, these points are mapped into one frame, so that target traces form a local aggregation pattern. In order to isolate the targets from noises, a newly proposed density-based clustering algorithm, fast search and find of density peak (FSFDP for short), is employed to cluster targets by the spatial intensive distribution. Two important factors of the algorithm, percent and γ , are exploited fully to determine the clustering scale automatically, so as to extract the trace with highest clutter suppression ratio. And at the final step, a backtracking algorithm is designed to detect and discriminate target trace as well as to eliminate clutter. The consistence and continuity of the short-time target trajectory in temporal-spatial is incorporated into the bounding function to speed up the pruning. Compared with several state-of-arts methods, our algorithm is more effective for the dim targets with lower signal-to clutter ratio (SCR). Furthermore, it avoids constructing the candidate target trajectory searching space, so its time complexity is limited to a polynomial level. The extensive experimental results show that it has superior performance in probability of detection (Pd) and false alarm suppressing rate aiming at variety of complex backgrounds.

  10. A fully-automatic caudate nucleus segmentation of brain MRI: Application in volumetric analysis of pediatric attention-deficit/hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Igual Laura

    2011-12-01

    Full Text Available Abstract Background Accurate automatic segmentation of the caudate nucleus in magnetic resonance images (MRI of the brain is of great interest in the analysis of developmental disorders. Segmentation methods based on a single atlas or on multiple atlases have been shown to suitably localize caudate structure. However, the atlas prior information may not represent the structure of interest correctly. It may therefore be useful to introduce a more flexible technique for accurate segmentations. Method We present Cau-dateCut: a new fully-automatic method of segmenting the caudate nucleus in MRI. CaudateCut combines an atlas-based segmentation strategy with the Graph Cut energy-minimization framework. We adapt the Graph Cut model to make it suitable for segmenting small, low-contrast structures, such as the caudate nucleus, by defining new energy function data and boundary potentials. In particular, we exploit information concerning the intensity and geometry, and we add supervised energies based on contextual brain structures. Furthermore, we reinforce boundary detection using a new multi-scale edgeness measure. Results We apply the novel CaudateCut method to the segmentation of the caudate nucleus to a new set of 39 pediatric attention-deficit/hyperactivity disorder (ADHD patients and 40 control children, as well as to a public database of 18 subjects. We evaluate the quality of the segmentation using several volumetric and voxel by voxel measures. Our results show improved performance in terms of segmentation compared to state-of-the-art approaches, obtaining a mean overlap of 80.75%. Moreover, we present a quantitative volumetric analysis of caudate abnormalities in pediatric ADHD, the results of which show strong correlation with expert manual analysis. Conclusion CaudateCut generates segmentation results that are comparable to gold-standard segmentations and which are reliable in the analysis of differentiating neuroanatomical abnormalities

  11. ACM-based automatic liver segmentation from 3-D CT images by combining multiple atlases and improved mean-shift techniques.

    Science.gov (United States)

    Ji, Hongwei; He, Jiangping; Yang, Xin; Deklerck, Rudi; Cornelis, Jan

    2013-05-01

    In this paper, we present an autocontext model(ACM)-based automatic liver segmentation algorithm, which combines ACM, multiatlases, and mean-shift techniques to segment liver from 3-D CT images. Our algorithm is a learning-based method and can be divided into two stages. At the first stage, i.e., the training stage, ACM is performed to learn a sequence of classifiers in each atlas space (based on each atlas and other aligned atlases). With the use of multiple atlases, multiple sequences of ACM-based classifiers are obtained. At the second stage, i.e., the segmentation stage, the test image will be segmented in each atlas space by applying each sequence of ACM-based classifiers. The final segmentation result will be obtained by fusing segmentation results from all atlas spaces via a multiclassifier fusion technique. Specially, in order to speed up segmentation, given a test image, we first use an improved mean-shift algorithm to perform over-segmentation and then implement the region-based image labeling instead of the original inefficient pixel-based image labeling. The proposed method is evaluated on the datasets of MICCAI 2007 liver segmentation challenge. The experimental results show that the average volume overlap error and the average surface distance achieved by our method are 8.3% and 1.5 m, respectively, which are comparable to the results reported in the existing state-of-the-art work on liver segmentation.

  12. A Novel Region-Growing Based Semi-Automatic Segmentation Protocol for Three-Dimensional Condylar Reconstruction Using Cone Beam Computed Tomography (CBCT)

    NARCIS (Netherlands)

    Xi, Tong; Schreurs, Ruud; Heerink, Wout J.; Berge, Stefaan J.; Maal, Thomas J. J.

    2014-01-01

    Objective: To present and validate a semi-automatic segmentation protocol to enable an accurate 3D reconstruction of the mandibular condyles using cone beam computed tomography (CBCT). Materials and Methods: Approval from the regional medical ethics review board was obtained for this study.

  13. A Novel Region-Growing Based Semi-Automatic Segmentation Protocol for Three-Dimensional Condylar Reconstruction Using Cone Beam Computed Tomography (CBCT)

    NARCIS (Netherlands)

    Xi, T.; Schreurs, R.; Heerink, W.J.; Berge, S.J.; Maal, T.J.

    2014-01-01

    OBJECTIVE: To present and validate a semi-automatic segmentation protocol to enable an accurate 3D reconstruction of the mandibular condyles using cone beam computed tomography (CBCT). MATERIALS AND METHODS: Approval from the regional medical ethics review board was obtained for this study.

  14. Evaluation of an atlas-based automatic segmentation software for the delineation of brain organs at risk in a radiation therapy clinical context

    International Nuclear Information System (INIS)

    Isambert, Aurelie; Dhermain, Frederic; Bidault, Francois; Commowick, Olivier; Bondiau, Pierre-Yves; Malandain, Gregoire; Lefkopoulos, Dimitri

    2008-01-01

    Background and purpose: Conformal radiation therapy techniques require the delineation of volumes of interest, a time-consuming and operator-dependent task. In this work, we aimed to evaluate the potential interest of an atlas-based automatic segmentation software (ABAS) of brain organs at risk (OAR), when used under our clinical conditions. Materials and methods: Automatic and manual segmentations of the eyes, optic nerves, optic chiasm, pituitary gland, brain stem and cerebellum of 11 patients on T1-weighted magnetic resonance, 3-mm thick slice images were compared using the Dice similarity coefficient (DSC). The sensitivity and specificity of the ABAS were also computed and analysed from a radiotherapy point of view by splitting the ROC (Receiver Operating Characteristic) space into four sub-regions. Results: Automatic segmentation of OAR was achieved in 7-8 min. Excellent agreement was obtained between automatic and manual delineations for organs exceeding 7 cm 3 : the DSC was greater than 0.8. For smaller structures, the DSC was lower than 0.41. Conclusions: These tests demonstrated that this ABAS is a robust and reliable tool for automatic delineation of large structures under clinical conditions in our daily practice, even though the small structures must continue to be delineated manually by an expert

  15. SMASH - semi-automatic muscle analysis using segmentation of histology: a MATLAB application.

    Science.gov (United States)

    Smith, Lucas R; Barton, Elisabeth R

    2014-01-01

    Histological assessment of skeletal muscle tissue is commonly applied to many areas of skeletal muscle physiological research. Histological parameters including fiber distribution, fiber type, centrally nucleated fibers, and capillary density are all frequently quantified measures of skeletal muscle. These parameters reflect functional properties of muscle and undergo adaptation in many muscle diseases and injuries. While standard operating procedures have been developed to guide analysis of many of these parameters, the software to freely, efficiently, and consistently analyze them is not readily available. In order to provide this service to the muscle research community we developed an open source MATLAB script to analyze immunofluorescent muscle sections incorporating user controls for muscle histological analysis. The software consists of multiple functions designed to provide tools for the analysis selected. Initial segmentation and fiber filter functions segment the image and remove non-fiber elements based on user-defined parameters to create a fiber mask. Establishing parameters set by the user, the software outputs data on fiber size and type, centrally nucleated fibers, and other structures. These functions were evaluated on stained soleus muscle sections from 1-year-old wild-type and mdx mice, a model of Duchenne muscular dystrophy. In accordance with previously published data, fiber size was not different between groups, but mdx muscles had much higher fiber size variability. The mdx muscle had a significantly greater proportion of type I fibers, but type I fibers did not change in size relative to type II fibers. Centrally nucleated fibers were highly prevalent in mdx muscle and were significantly larger than peripherally nucleated fibers. The MATLAB code described and provided along with this manuscript is designed for image processing of skeletal muscle immunofluorescent histological sections. The program allows for semi-automated fiber detection

  16. Charisma: an integrated approach to automatic H&E-stained skeletal muscle cell segmentation using supervised learning and novel robust clump splitting.

    Science.gov (United States)

    Janssens, Thomas; Antanas, Laura; Derde, Sarah; Vanhorebeek, Ilse; Van den Berghe, Greet; Güiza Grandas, Fabian

    2013-12-01

    Histological image analysis plays a key role in understanding the effects of disease and treatment responses at the cellular level. However, evaluating histology images by hand is time-consuming and subjective. While semi-automatic and automatic approaches for image segmentation give acceptable results in some branches of histological image analysis, until now this has not been the case when applied to skeletal muscle histology images. We introduce Charisma, a new top-down cell segmentation framework for histology images which combines image processing techniques, a supervised trained classifier and a novel robust clump splitting algorithm. We evaluate our framework on real-world data from intensive care unit patients. Considering both segmentation and cell property distributions, the results obtained by our method correspond well to the ground truth, outperforming other examined methods. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. An Automatic Traffic Sign Detection and Recognition System Based on Colour Segmentation, Shape Matching, and SVM

    Directory of Open Access Journals (Sweden)

    Safat B. Wali

    2015-01-01

    Full Text Available The main objective of this study is to develop an efficient TSDR system which contains an enriched dataset of Malaysian traffic signs. The developed technique is invariant in variable lighting, rotation, translation, and viewing angle and has a low computational time with low false positive rate. The development of the system has three working stages: image preprocessing, detection, and recognition. The system demonstration using a RGB colour segmentation and shape matching followed by support vector machine (SVM classifier led to promising results with respect to the accuracy of 95.71%, false positive rate (0.9%, and processing time (0.43 s. The area under the receiver operating characteristic (ROC curves was introduced to statistically evaluate the recognition performance. The accuracy of the developed system is relatively high and the computational time is relatively low which will be helpful for classifying traffic signs especially on high ways around Malaysia. The low false positive rate will increase the system stability and reliability on real-time application.

  18. New Technique for Automatic Segmentation of Blood Vessels in CT Scan Images of Liver Based on Optimized Fuzzy C-Means Method.

    Science.gov (United States)

    Ahmadi, Katayoon; Karimi, Abbas; Fouladi Nia, Babak

    2016-01-01

    Automatic segmentation of medical CT scan images is one of the most challenging fields in digital image processing. The goal of this paper is to discuss the automatic segmentation of CT scan images to detect and separate vessels in the liver. The segmentation of liver vessels is very important in the liver surgery planning and identifying the structure of vessels and their relationship to tumors. Fuzzy C -means (FCM) method has already been proposed for segmentation of liver vessels. Due to classical optimization process, this method suffers lack of sensitivity to the initial values of class centers and segmentation of local minima. In this article, a method based on FCM in conjunction with genetic algorithms (GA) is applied for segmentation of liver's blood vessels. This method was simulated and validated using 20 CT scan images of the liver. The results showed that the accuracy, sensitivity, specificity, and CPU time of new method in comparison with FCM algorithm reaching up to 91%, 83.62, 94.11%, and 27.17 were achieved, respectively. Moreover, selection of optimal and robust parameters in the initial step led to rapid convergence of the proposed method. The outcome of this research assists medical teams in estimating disease progress and selecting proper treatments.

  19. Comparison of manual and automatic segmentation methods for brain structures in the presence of space-occupying lesions: a multi-expert study

    International Nuclear Information System (INIS)

    Deeley, M A; Cmelak, A J; Malcolm, A W; Moretti, L; Jaboin, J; Niermann, K; Yang, Eddy S; Yu, David S; Ding, G X; Chen, A; Datteri, R; Noble, J H; Dawant, B M; Donnelly, E F; Yei, F; Koyama, T

    2011-01-01

    The purpose of this work was to characterize expert variation in segmentation of intracranial structures pertinent to radiation therapy, and to assess a registration-driven atlas-based segmentation algorithm in that context. Eight experts were recruited to segment the brainstem, optic chiasm, optic nerves, and eyes, of 20 patients who underwent therapy for large space-occupying tumors. Performance variability was assessed through three geometric measures: volume, Dice similarity coefficient, and Euclidean distance. In addition, two simulated ground truth segmentations were calculated via the simultaneous truth and performance level estimation algorithm and a novel application of probability maps. The experts and automatic system were found to generate structures of similar volume, though the experts exhibited higher variation with respect to tubular structures. No difference was found between the mean Dice similarity coefficient (DSC) of the automatic and expert delineations as a group at a 5% significance level over all cases and organs. The larger structures of the brainstem and eyes exhibited mean DSC of approximately 0.8-0.9, whereas the tubular chiasm and nerves were lower, approximately 0.4-0.5. Similarly low DSCs have been reported previously without the context of several experts and patient volumes. This study, however, provides evidence that experts are similarly challenged. The average maximum distances (maximum inside, maximum outside) from a simulated ground truth ranged from (-4.3, +5.4) mm for the automatic system to (-3.9, +7.5) mm for the experts considered as a group. Over all the structures in a rank of true positive rates at a 2 mm threshold from the simulated ground truth, the automatic system ranked second of the nine raters. This work underscores the need for large scale studies utilizing statistically robust numbers of patients and experts in evaluating quality of automatic algorithms.

  20. Comparison of manual and automatic segmentation methods for brain structures in the presence of space-occupying lesions: a multi-expert study

    Science.gov (United States)

    Deeley, M. A.; Chen, A.; Datteri, R.; Noble, J. H.; Cmelak, A. J.; Donnelly, E. F.; Malcolm, A. W.; Moretti, L.; Jaboin, J.; Niermann, K.; Yang, Eddy S.; Yu, David S.; Yei, F.; Koyama, T.; Ding, G. X.; Dawant, B. M.

    2011-07-01

    The purpose of this work was to characterize expert variation in segmentation of intracranial structures pertinent to radiation therapy, and to assess a registration-driven atlas-based segmentation algorithm in that context. Eight experts were recruited to segment the brainstem, optic chiasm, optic nerves, and eyes, of 20 patients who underwent therapy for large space-occupying tumors. Performance variability was assessed through three geometric measures: volume, Dice similarity coefficient, and Euclidean distance. In addition, two simulated ground truth segmentations were calculated via the simultaneous truth and performance level estimation algorithm and a novel application of probability maps. The experts and automatic system were found to generate structures of similar volume, though the experts exhibited higher variation with respect to tubular structures. No difference was found between the mean Dice similarity coefficient (DSC) of the automatic and expert delineations as a group at a 5% significance level over all cases and organs. The larger structures of the brainstem and eyes exhibited mean DSC of approximately 0.8-0.9, whereas the tubular chiasm and nerves were lower, approximately 0.4-0.5. Similarly low DSCs have been reported previously without the context of several experts and patient volumes. This study, however, provides evidence that experts are similarly challenged. The average maximum distances (maximum inside, maximum outside) from a simulated ground truth ranged from (-4.3, +5.4) mm for the automatic system to (-3.9, +7.5) mm for the experts considered as a group. Over all the structures in a rank of true positive rates at a 2 mm threshold from the simulated ground truth, the automatic system ranked second of the nine raters. This work underscores the need for large scale studies utilizing statistically robust numbers of patients and experts in evaluating quality of automatic algorithms.

  1. Comparison of manual and automatic segmentation methods for brain structures in the presence of space-occupying lesions: a multi-expert study

    Energy Technology Data Exchange (ETDEWEB)

    Deeley, M A; Cmelak, A J; Malcolm, A W; Moretti, L; Jaboin, J; Niermann, K; Yang, Eddy S; Yu, David S; Ding, G X [Department of Radiation Oncology, Vanderbilt University, Nashville, TN (United States); Chen, A; Datteri, R; Noble, J H; Dawant, B M [Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN (United States); Donnelly, E F [Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN (United States); Yei, F; Koyama, T, E-mail: matthew.deeley@uvm.edu [Department of Biostatistics, Vanderbilt University, Nashville, TN (United States)

    2011-07-21

    The purpose of this work was to characterize expert variation in segmentation of intracranial structures pertinent to radiation therapy, and to assess a registration-driven atlas-based segmentation algorithm in that context. Eight experts were recruited to segment the brainstem, optic chiasm, optic nerves, and eyes, of 20 patients who underwent therapy for large space-occupying tumors. Performance variability was assessed through three geometric measures: volume, Dice similarity coefficient, and Euclidean distance. In addition, two simulated ground truth segmentations were calculated via the simultaneous truth and performance level estimation algorithm and a novel application of probability maps. The experts and automatic system were found to generate structures of similar volume, though the experts exhibited higher variation with respect to tubular structures. No difference was found between the mean Dice similarity coefficient (DSC) of the automatic and expert delineations as a group at a 5% significance level over all cases and organs. The larger structures of the brainstem and eyes exhibited mean DSC of approximately 0.8-0.9, whereas the tubular chiasm and nerves were lower, approximately 0.4-0.5. Similarly low DSCs have been reported previously without the context of several experts and patient volumes. This study, however, provides evidence that experts are similarly challenged. The average maximum distances (maximum inside, maximum outside) from a simulated ground truth ranged from (-4.3, +5.4) mm for the automatic system to (-3.9, +7.5) mm for the experts considered as a group. Over all the structures in a rank of true positive rates at a 2 mm threshold from the simulated ground truth, the automatic system ranked second of the nine raters. This work underscores the need for large scale studies utilizing statistically robust numbers of patients and experts in evaluating quality of automatic algorithms.

  2. Fully automatic segmentation of the mitral leaflets in 3D transesophageal echocardiographic images using multi-atlas joint label fusion and deformable medial modeling.

    Science.gov (United States)

    Pouch, A M; Wang, H; Takabe, M; Jackson, B M; Gorman, J H; Gorman, R C; Yushkevich, P A; Sehgal, C M

    2014-01-01

    Comprehensive visual and quantitative analysis of in vivo human mitral valve morphology is central to the diagnosis and surgical treatment of mitral valve disease. Real-time 3D transesophageal echocardiography (3D TEE) is a practical, highly informative imaging modality for examining the mitral valve in a clinical setting. To facilitate visual and quantitative 3D TEE image analysis, we describe a fully automated method for segmenting the mitral leaflets in 3D TEE image data. The algorithm integrates complementary probabilistic segmentation and shape modeling techniques (multi-atlas joint label fusion and deformable modeling with continuous medial representation) to automatically generate 3D geometric models of the mitral leaflets from 3D TEE image data. These models are unique in that they establish a shape-based coordinate system on the valves of different subjects and represent the leaflets volumetrically, as structures with locally varying thickness. In this work, expert image analysis is the gold standard for evaluating automatic segmentation. Without any user interaction, we demonstrate that the automatic segmentation method accurately captures patient-specific leaflet geometry at both systole and diastole in 3D TEE data acquired from a mixed population of subjects with normal valve morphology and mitral valve disease. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Segmentation of Multi-Isotope Imaging Mass Spectrometry Data for Semi-Automatic Detection of Regions of Interest

    Science.gov (United States)

    Poczatek, J. Collin; Turck, Christoph W.; Lechene, Claude

    2012-01-01

    Multi-isotope imaging mass spectrometry (MIMS) associates secondary ion mass spectrometry (SIMS) with detection of several atomic masses, the use of stable isotopes as labels, and affiliated quantitative image-analysis software. By associating image and measure, MIMS allows one to obtain quantitative information about biological processes in sub-cellular domains. MIMS can be applied to a wide range of biomedical problems, in particular metabolism and cell fate [1], [2], [3]. In order to obtain morphologically pertinent data from MIMS images, we have to define regions of interest (ROIs). ROIs are drawn by hand, a tedious and time-consuming process. We have developed and successfully applied a support vector machine (SVM) for segmentation of MIMS images that allows fast, semi-automatic boundary detection of regions of interests. Using the SVM, high-quality ROIs (as compared to an expert's manual delineation) were obtained for 2 types of images derived from unrelated data sets. This automation simplifies, accelerates and improves the post-processing analysis of MIMS images. This approach has been integrated into “Open MIMS,” an ImageJ-plugin for comprehensive analysis of MIMS images that is available online at http://www.nrims.hms.harvard.edu/NRIMS_ImageJ.php. PMID:22347386

  4. A method for automatic segmentation and splitting of hyperspectral images of raspberry plants collected in field conditions

    Directory of Open Access Journals (Sweden)

    Dominic Williams

    2017-11-01

    Full Text Available Abstract Hyperspectral imaging is a technology that can be used to monitor plant responses to stress. Hyperspectral images have a full spectrum for each pixel in the image, 400–2500 nm in this case, giving detailed information about the spectral reflectance of the plant. Although this technology has been used in laboratory-based controlled lighting conditions for early detection of plant disease, the transfer of such technology to imaging plants in field conditions presents a number of challenges. These include problems caused by varying light levels and difficulties of separating the target plant from its background. Here we present an automated method that has been developed to segment raspberry plants from the background using a selected spectral ratio combined with edge detection. Graph theory was used to minimise a cost function to detect the continuous boundary between uninteresting plants and the area of interest. The method includes automatic detection of a known reflectance tile which was kept constantly within the field of view for all image scans. A method to split images containing rows of multiple raspberry plants into individual plants was also developed. Validation was carried out by comparison of plant height and density measurements with manually scored values. A reasonable correlation was found between these manual scores and measurements taken from the images (r2 = 0.75 for plant height. These preliminary steps are an essential requirement before detailed spectral analysis of the plants can be achieved.

  5. Validation of automatic landmark identification for atlas-based segmentation for radiation treatment planning of the head-and-neck region

    Science.gov (United States)

    Leavens, Claudia; Vik, Torbjørn; Schulz, Heinrich; Allaire, Stéphane; Kim, John; Dawson, Laura; O'Sullivan, Brian; Breen, Stephen; Jaffray, David; Pekar, Vladimir

    2008-03-01

    Manual contouring of target volumes and organs at risk in radiation therapy is extremely time-consuming, in particular for treating the head-and-neck area, where a single patient treatment plan can take several hours to contour. As radiation treatment delivery moves towards adaptive treatment, the need for more efficient segmentation techniques will increase. We are developing a method for automatic model-based segmentation of the head and neck. This process can be broken down into three main steps: i) automatic landmark identification in the image dataset of interest, ii) automatic landmark-based initialization of deformable surface models to the patient image dataset, and iii) adaptation of the deformable models to the patient-specific anatomical boundaries of interest. In this paper, we focus on the validation of the first step of this method, quantifying the results of our automatic landmark identification method. We use an image atlas formed by applying thin-plate spline (TPS) interpolation to ten atlas datasets, using 27 manually identified landmarks in each atlas/training dataset. The principal variation modes returned by principal component analysis (PCA) of the landmark positions were used by an automatic registration algorithm, which sought the corresponding landmarks in the clinical dataset of interest using a controlled random search algorithm. Applying a run time of 60 seconds to the random search, a root mean square (rms) distance to the ground-truth landmark position of 9.5 +/- 0.6 mm was calculated for the identified landmarks. Automatic segmentation of the brain, mandible and brain stem, using the detected landmarks, is demonstrated.

  6. A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI.

    Science.gov (United States)

    Avendi, M R; Kheradvar, Arash; Jafarkhani, Hamid

    2016-05-01

    Segmentation of the left ventricle (LV) from cardiac magnetic resonance imaging (MRI) datasets is an essential step for calculation of clinical indices such as ventricular volume and ejection fraction. In this work, we employ deep learning algorithms combined with deformable models to develop and evaluate a fully automatic LV segmentation tool from short-axis cardiac MRI datasets. The method employs deep learning algorithms to learn the segmentation task from the ground true data. Convolutional networks are employed to automatically detect the LV chamber in MRI dataset. Stacked autoencoders are used to infer the LV shape. The inferred shape is incorporated into deformable models to improve the accuracy and robustness of the segmentation. We validated our method using 45 cardiac MR datasets from the MICCAI 2009 LV segmentation challenge and showed that it outperforms the state-of-the art methods. Excellent agreement with the ground truth was achieved. Validation metrics, percentage of good contours, Dice metric, average perpendicular distance and conformity, were computed as 96.69%, 0.94, 1.81 mm and 0.86, versus those of 79.2-95.62%, 0.87-0.9, 1.76-2.97 mm and 0.67-0.78, obtained by other methods, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. First performance evaluation of software for automatic segmentation, labeling and reformation of anatomical aligned axial images of the thoracolumbar spine at CT

    Energy Technology Data Exchange (ETDEWEB)

    Scholtz, Jan-Erik, E-mail: janerikscholtz@gmail.com; Wichmann, Julian L.; Kaup, Moritz; Fischer, Sebastian; Kerl, J. Matthias; Lehnert, Thomas; Vogl, Thomas J.; Bauer, Ralf W.

    2015-03-15

    Highlights: •Automatic segmentation and labeling of the thoracolumbar spine. •Automatically generated double-angulated and aligned axial images of spine segments. •High grade of accurateness for the symmetric depiction of anatomical structures. •Time-saving and may improve workflow in daily practice. -- Abstract: Objectives: To evaluate software for automatic segmentation, labeling and reformation of anatomical aligned axial images of the thoracolumbar spine on CT in terms of accuracy, potential for time savings and workflow improvement. Material and methods: 77 patients (28 women, 49 men, mean age 65.3 ± 14.4 years) with known or suspected spinal disorders (degenerative spine disease n = 32; disc herniation n = 36; traumatic vertebral fractures n = 9) underwent 64-slice MDCT with thin-slab reconstruction. Time for automatic labeling of the thoracolumbar spine and reconstruction of double-angulated axial images of the pathological vertebrae was compared with manually performed reconstruction of anatomical aligned axial images. Reformatted images of both reconstruction methods were assessed by two observers regarding accuracy of symmetric depiction of anatomical structures. Results: In 33 cases double-angulated axial images were created in 1 vertebra, in 28 cases in 2 vertebrae and in 16 cases in 3 vertebrae. Correct automatic labeling was achieved in 72 of 77 patients (93.5%). Errors could be manually corrected in 4 cases. Automatic labeling required 1 min in average. In cases where anatomical aligned axial images of 1 vertebra were created, reconstructions made by hand were significantly faster (p < 0.05). Automatic reconstruction was time-saving in cases of 2 and more vertebrae (p < 0.05). Both reconstruction methods revealed good image quality with excellent inter-observer agreement. Conclusion: The evaluated software for automatic labeling and anatomically aligned, double-angulated axial image reconstruction of the thoracolumbar spine on CT is time

  8. A two-step convolutional neural network based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT images.

    Science.gov (United States)

    Wang, Yunzhi; Qiu, Yuchen; Thai, Theresa; Moore, Kathleen; Liu, Hong; Zheng, Bin

    2017-06-01

    Accurately assessment of adipose tissue volume inside a human body plays an important role in predicting disease or cancer risk, diagnosis and prognosis. In order to overcome limitation of using only one subjectively selected CT image slice to estimate size of fat areas, this study aims to develop and test a computer-aided detection (CAD) scheme based on deep learning technique to automatically segment subcutaneous fat areas (SFA) and visceral fat areas (VFA) depicting on volumetric CT images. A retrospectively collected CT image dataset was divided into two independent training and testing groups. The proposed CAD framework consisted of two steps with two convolution neural networks (CNNs) namely, Selection-CNN and Segmentation-CNN. The first CNN was trained using 2,240 CT slices to select abdominal CT slices depicting SFA and VFA. The second CNN was trained with 84,000pixel patches and applied to the selected CT slices to identify fat-related pixels and assign them into SFA and VFA classes. Comparing to the manual CT slice selection and fat pixel segmentation results, the accuracy of CT slice selection using the Selection-CNN yielded 95.8%, while the accuracy of fat pixel segmentation using the Segmentation-CNN was 96.8%. This study demonstrated the feasibility of applying a new deep learning based CAD scheme to automatically recognize abdominal section of human body from CT scans and segment SFA and VFA from volumetric CT data with high accuracy or agreement with the manual segmentation results. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A hybrid semi-automatic method for liver segmentation based on level-set methods using multiple seed points.

    Science.gov (United States)

    Yang, Xiaopeng; Yu, Hee Chul; Choi, Younggeun; Lee, Wonsup; Wang, Baojian; Yang, Jaedo; Hwang, Hongpil; Kim, Ji Hyun; Song, Jisoo; Cho, Baik Hwan; You, Heecheon

    2014-01-01

    The present study developed a hybrid semi-automatic method to extract the liver from abdominal computerized tomography (CT) images. The proposed hybrid method consists of a customized fast-marching level-set method for detection of an optimal initial liver region from multiple seed points selected by the user and a threshold-based level-set method for extraction of the actual liver region based on the initial liver region. The performance of the hybrid method was compared with those of the 2D region growing method implemented in OsiriX using abdominal CT datasets of 15 patients. The hybrid method showed a significantly higher accuracy in liver extraction (similarity index, SI=97.6 ± 0.5%; false positive error, FPE = 2.2 ± 0.7%; false negative error, FNE=2.5 ± 0.8%; average symmetric surface distance, ASD=1.4 ± 0.5mm) than the 2D (SI=94.0 ± 1.9%; FPE = 5.3 ± 1.1%; FNE=6.5 ± 3.7%; ASD=6.7 ± 3.8mm) region growing method. The total liver extraction time per CT dataset of the hybrid method (77 ± 10 s) is significantly less than the 2D region growing method (575 ± 136 s). The interaction time per CT dataset between the user and a computer of the hybrid method (28 ± 4 s) is significantly shorter than the 2D region growing method (484 ± 126 s). The proposed hybrid method was found preferred for liver segmentation in preoperative virtual liver surgery planning. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Automatic gallbladder segmentation using combined 2D and 3D shape features to perform volumetric analysis in native and secretin-enhanced MRCP sequences.

    Science.gov (United States)

    Gloger, Oliver; Bülow, Robin; Tönnies, Klaus; Völzke, Henry

    2017-11-24

    We aimed to develop the first fully automated 3D gallbladder segmentation approach to perform volumetric analysis in volume data of magnetic resonance (MR) cholangiopancreatography (MRCP) sequences. Volumetric gallbladder analysis is performed for non-contrast-enhanced and secretin-enhanced MRCP sequences. Native and secretin-enhanced MRCP volume data were produced with a 1.5-T MR system. Images of coronal maximum intensity projections (MIP) are used to automatically compute 2D characteristic shape features of the gallbladder in the MIP images. A gallbladder shape space is generated to derive 3D gallbladder shape features, which are then combined with 2D gallbladder shape features in a support vector machine approach to detect gallbladder regions in MRCP volume data. A region-based level set approach is used for fine segmentation. Volumetric analysis is performed for both sequences to calculate gallbladder volume differences between both sequences. The approach presented achieves segmentation results with mean Dice coefficients of 0.917 in non-contrast-enhanced sequences and 0.904 in secretin-enhanced sequences. This is the first approach developed to detect and segment gallbladders in MR-based volume data automatically in both sequences. It can be used to perform gallbladder volume determination in epidemiological studies and to detect abnormal gallbladder volumes or shapes. The positive volume differences between both sequences may indicate the quantity of the pancreatobiliary reflux.

  11. Multi-parametric (ADC/PWI/T2-w) image fusion approach for accurate semi-automatic segmentation of tumorous regions in glioblastoma multiforme.

    Science.gov (United States)

    Fathi Kazerooni, Anahita; Mohseni, Meysam; Rezaei, Sahar; Bakhshandehpour, Gholamreza; Saligheh Rad, Hamidreza

    2015-02-01

    Glioblastoma multiforme (GBM) brain tumor is heterogeneous in nature, so its quantification depends on how to accurately segment different parts of the tumor, i.e. viable tumor, edema and necrosis. This procedure becomes more effective when metabolic and functional information, provided by physiological magnetic resonance (MR) imaging modalities, like diffusion-weighted-imaging (DWI) and perfusion-weighted-imaging (PWI), is incorporated with the anatomical magnetic resonance imaging (MRI). In this preliminary tumor quantification work, the idea is to characterize different regions of GBM tumors in an MRI-based semi-automatic multi-parametric approach to achieve more accurate characterization of pathogenic regions. For this purpose, three MR sequences, namely T2-weighted imaging (anatomical MR imaging), PWI and DWI of thirteen GBM patients, were acquired. To enhance the delineation of the boundaries of each pathogenic region (peri-tumoral edema, viable tumor and necrosis), the spatial fuzzy C-means algorithm is combined with the region growing method. The results show that exploiting the multi-parametric approach along with the proposed semi-automatic segmentation method can differentiate various tumorous regions with over 80 % sensitivity, specificity and dice score. The proposed MRI-based multi-parametric segmentation approach has the potential to accurately segment tumorous regions, leading to an efficient design of the pre-surgical treatment planning.

  12. Semi-automatic lung segmentation of DCE-MRI data sets of 2-year old children after congenital diaphragmatic hernia repair: Initial results.

    Science.gov (United States)

    Zöllner, Frank G; Daab, Markus; Weidner, Meike; Sommer, Verena; Zahn, Katrin; Schaible, Thomas; Weisser, Gerald; Schoenberg, Stefan O; Neff, K Wolfgang; Schad, Lothar R

    2015-12-01

    In congenital diaphragmatic hernia (CDH), lung hypoplasia and secondary pulmonary hypertension are the major causes of death and severe disability. Based on new therapeutic strategies survival rates could be improved to up to 80%. However, after surgical repair of CDH, long-term follow-up of these pediatric patients is necessary. In this, dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides insights into the pulmonary microcirculation and might become a tool within the routine follow-up program of CDH patients. However, whole lung segmentation from DCE-MRI scans is tedious and automated procedures are warranted. Therefore, in this study, an approach to semi-automated lung segmentation is presented. Segmentation of the lung is obtained by calculating the cross correlation and the area under curve between all voxels in the data set and a reference region-of-interest (ROI), here the arterial input function (AIF). By applying an upper and lower threshold to the obtained maps and intersecting these, a final segmentation is reached. This approach was tested on twelve DCE-MRI data sets of 2-year old children after CDH repair. Segmentation accuracy was evaluated by comparing obtained automatic segmentations to manual delineations using the Dice overlap measure. Optimal thresholds for the cross correlation were 0.5/0.95 and 0.1/0.5 for the area under curve, respectively. The ipsilateral (left) lung showed reduced segmentation accuracy compared to the contralateral (right) lung. Average processing time was about 1.4s per data set. Average Dice score was 0.7±0.1 for the whole lung. In conclusion, initial results are promising. By our approach, whole lung segmentation is possible and a rapid evaluation of whole lung perfusion becomes possible. This might allow for a more detailed analysis of lung hypoplasia of children after CDH. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. FISICO: Fast Image SegmentatIon COrrection.

    Directory of Open Access Journals (Sweden)

    Waldo Valenzuela

    Full Text Available In clinical diagnosis, medical image segmentation plays a key role in the analysis of pathological regions. Despite advances in automatic and semi-automatic segmentation techniques, time-effective correction tools are commonly needed to improve segmentation results. Therefore, these tools must provide faster corrections with a lower number of interactions, and a user-independent solution to reduce the time frame between image acquisition and diagnosis.We present a new interactive method for correcting image segmentations. Our method provides 3D shape corrections through 2D interactions. This approach enables an intuitive and natural corrections of 3D segmentation results. The developed method has been implemented into a software tool and has been evaluated for the task of lumbar muscle and knee joint segmentations from MR images.Experimental results show that full segmentation corrections could be performed within an average correction time of 5.5±3.3 minutes and an average of 56.5±33.1 user interactions, while maintaining the quality of the final segmentation result within an average Dice coefficient of 0.92±0.02 for both anatomies. In addition, for users with different levels of expertise, our method yields a correction time and number of interaction decrease from 38±19.2 minutes to 6.4±4.3 minutes, and 339±157.1 to 67.7±39.6 interactions, respectively.

  14. FISICO: Fast Image SegmentatIon COrrection.

    Science.gov (United States)

    Valenzuela, Waldo; Ferguson, Stephen J; Ignasiak, Dominika; Diserens, Gaëlle; Häni, Levin; Wiest, Roland; Vermathen, Peter; Boesch, Chris; Reyes, Mauricio

    2016-01-01

    In clinical diagnosis, medical image segmentation plays a key role in the analysis of pathological regions. Despite advances in automatic and semi-automatic segmentation techniques, time-effective correction tools are commonly needed to improve segmentation results. Therefore, these tools must provide faster corrections with a lower number of interactions, and a user-independent solution to reduce the time frame between image acquisition and diagnosis. We present a new interactive method for correcting image segmentations. Our method provides 3D shape corrections through 2D interactions. This approach enables an intuitive and natural corrections of 3D segmentation results. The developed method has been implemented into a software tool and has been evaluated for the task of lumbar muscle and knee joint segmentations from MR images. Experimental results show that full segmentation corrections could be performed within an average correction time of 5.5±3.3 minutes and an average of 56.5±33.1 user interactions, while maintaining the quality of the final segmentation result within an average Dice coefficient of 0.92±0.02 for both anatomies. In addition, for users with different levels of expertise, our method yields a correction time and number of interaction decrease from 38±19.2 minutes to 6.4±4.3 minutes, and 339±157.1 to 67.7±39.6 interactions, respectively.

  15. Automatic skull segmentation from MR images for realistic volume conductor models of the head: Assessment of the state-of-the-art.

    Science.gov (United States)

    Nielsen, Jesper D; Madsen, Kristoffer H; Puonti, Oula; Siebner, Hartwig R; Bauer, Christian; Madsen, Camilla Gøbel; Saturnino, Guilherme B; Thielscher, Axel

    2018-03-12

    Anatomically realistic volume conductor models of the human head are important for accurate forward modeling of the electric field during transcranial brain stimulation (TBS), electro- (EEG) and magnetoencephalography (MEG). In particular, the skull compartment exerts a strong influence on the field distribution due to its low conductivity, suggesting the need to represent its geometry accurately. However, automatic skull reconstruction from structural magnetic resonance (MR) images is difficult, as compact bone has a very low signal in magnetic resonance imaging (MRI). Here, we evaluate three methods for skull segmentation, namely FSL BET2, the unified segmentation routine of SPM12 with extended spatial tissue priors, and the skullfinder tool of BrainSuite. To our knowledge, this study is the first to rigorously assess the accuracy of these state-of-the-art tools by comparison with CT-based skull segmentations on a group of ten subjects. We demonstrate several key factors that improve the segmentation quality, including the use of multi-contrast MRI data, the optimization of the MR sequences and the adaptation of the parameters of the segmentation methods. We conclude that FSL and SPM12 achieve better skull segmentations than BrainSuite. The former methods obtain reasonable results for the upper part of the skull when a combination of T1- and T2-weighted images is used as input. The SPM12-based results can be improved slightly further by means of simple morphological operations to fix local defects. In contrast to FSL BET2, the SPM12-based segmentation with extended spatial tissue priors and the BrainSuite-based segmentation provide coarse reconstructions of the vertebrae, enabling the construction of volume conductor models that include the neck. We exemplarily demonstrate that the extended models enable a more accurate estimation of the electric field distribution during transcranial direct current stimulation (tDCS) for montages that involve extraencephalic

  16. Automatized spleen segmentation in non-contrast-enhanced MR volume data using subject-specific shape priors

    Science.gov (United States)

    Gloger, Oliver; Tönnies, Klaus; Bülow, Robin; Völzke, Henry

    2017-07-01

    To develop the first fully automated 3D spleen segmentation framework derived from T1-weighted magnetic resonance (MR) imaging data and to verify its performance for spleen delineation and volumetry. This approach considers the issue of low contrast between spleen and adjacent tissue in non-contrast-enhanced MR images. Native T1-weighted MR volume data was performed on a 1.5 T MR system in an epidemiological study. We analyzed random subsamples of MR examinations without pathologies to develop and verify the spleen segmentation framework. The framework is modularized to include different kinds of prior knowledge into the segmentation pipeline. Classification by support vector machines differentiates between five different shape types in computed foreground probability maps and recognizes characteristic spleen regions in axial slices of MR volume data. A spleen-shape space generated by training produces subject-specific prior shape knowledge that is then incorporated into a final 3D level set segmentation method. Individually adapted shape-driven forces as well as image-driven forces resulting from refined foreground probability maps steer the level set successfully to the segment the spleen. The framework achieves promising segmentation results with mean Dice coefficients of nearly 0.91 and low volumetric mean errors of 6.3%. The presented spleen segmentation approach can delineate spleen tissue in native MR volume data. Several kinds of prior shape knowledge including subject-specific 3D prior shape knowledge can be used to guide segmentation processes achieving promising results.

  17. SU-E-J-142: Performance Study of Automatic Image-Segmentation Algorithms in Motion Tracking Via MR-IGRT

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Y; Olsen, J.; Parikh, P.; Noel, C; Wooten, H; Du, D; Mutic, S; Hu, Y [Washington University, St. Louis, MO (United States); Kawrakow, I; Dempsey, J [Washington University, St. Louis, MO (United States); ViewRay Co., Oakwood Village, OH (United States)

    2014-06-01

    Purpose: Evaluate commonly used segmentation algorithms on a commercially available real-time MR image guided radiotherapy (MR-IGRT) system (ViewRay), compare the strengths and weaknesses of each method, with the purpose of improving motion tracking for more accurate radiotherapy. Methods: MR motion images of bladder, kidney, duodenum, and liver tumor were acquired for three patients using a commercial on-board MR imaging system and an imaging protocol used during MR-IGRT. A series of 40 frames were selected for each case to cover at least 3 respiratory cycles. Thresholding, Canny edge detection, fuzzy k-means (FKM), k-harmonic means (KHM), and reaction-diffusion level set evolution (RD-LSE), along with the ViewRay treatment planning and delivery system (TPDS) were included in the comparisons. To evaluate the segmentation results, an expert manual contouring of the organs or tumor from a physician was used as a ground-truth. Metrics value of sensitivity, specificity, Jaccard similarity, and Dice coefficient were computed for comparison. Results: In the segmentation of single image frame, all methods successfully segmented the bladder and kidney, but only FKM, KHM and TPDS were able to segment the liver tumor and the duodenum. For segmenting motion image series, the TPDS method had the highest sensitivity, Jarccard, and Dice coefficients in segmenting bladder and kidney, while FKM and KHM had a slightly higher specificity. A similar pattern was observed when segmenting the liver tumor and the duodenum. The Canny method is not suitable for consistently segmenting motion frames in an automated process, while thresholding and RD-LSE cannot consistently segment a liver tumor and the duodenum. Conclusion: The study compared six different segmentation methods and showed the effectiveness of the ViewRay TPDS algorithm in segmenting motion images during MR-IGRT. Future studies include a selection of conformal segmentation methods based on image/organ-specific information

  18. Segmentation and accuracy-based scores for the automatic assessment of oral proficiency for proficient L2 speakers

    CSIR Research Space (South Africa)

    De Wet, Febe

    2010-11-01

    Full Text Available This paper reports on the automatic assessment of oral proficiency for advanced second language speakers. A spoken dialogue system is used to guide students through an oral test and to record their answers. Indicators of oral proficiency...

  19. TU-AB-303-07: Evaluation of Automatic Segmentation of Critical Structures for Head-And-Neck and Thoracic Radiotherapy Planning

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J; Balter, P; Court, L [MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: To evaluate the performance of commercially available automatic segmentation tools built into treatment planning systems (TPS) in terms of their segmentation accuracy and flexibility in customization. Methods: Twelve head-and-neck cancer patients and twelve thoracic cancer patients were retrospectively selected to benchmark the model-based segmentation (MBS) and atlas-based segmentation (ABS) in RayStation TPS and the Smart Probabilistic Image Contouring Engine (SPICE) in Pinnacle TPS. Multi-atlas contouring service (MACS) that was developed in-house as a plug-in of Pinnacle TPS was evaluated as well. Manual contours used in clinic were reviewed and modified for consistency and served as ground truth for the evaluation. Head-and-neck evaluation included six regions of interest (ROIs): left and right parotid glands, brainstem, spinal cord, mandible, and submandibular glands. Thoracic evaluation includes seven ROIs: left and right lungs, spinal cord, heart, esophagus, and left and right brachial plexus. Auto-segmented contours were compared with the manual contours using the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Results: In head- and-neck evaluation, only mandible has a high accuracy in all segmentations (DSC>85%); SPICE achieved DSC>70% for parotid glands; MACS achieved this for both parotid glands and submandibular glands; and RayStation ABS achieved this for spinal cord. In thoracic evaluation, SPICE achieved the best in lung and heart segmentation, while MACS achieved the best for all other structures. The less distinguishable structures on CT images, such as brainstem, spinal cord, parotid glands, submandibular glands, esophagus, and brachial plexus, showed great variability in different segmentation tools (mostly DSC<70% and MSD>3mm). The template for RayStation ABS can be easily customized by users, while RayStation MBS and SPICE rely on the vendors to provide the templates/models. Conclusion: Great variability was

  20. TU-AB-303-07: Evaluation of Automatic Segmentation of Critical Structures for Head-And-Neck and Thoracic Radiotherapy Planning

    International Nuclear Information System (INIS)

    Yang, J; Balter, P; Court, L

    2015-01-01

    Purpose: To evaluate the performance of commercially available automatic segmentation tools built into treatment planning systems (TPS) in terms of their segmentation accuracy and flexibility in customization. Methods: Twelve head-and-neck cancer patients and twelve thoracic cancer patients were retrospectively selected to benchmark the model-based segmentation (MBS) and atlas-based segmentation (ABS) in RayStation TPS and the Smart Probabilistic Image Contouring Engine (SPICE) in Pinnacle TPS. Multi-atlas contouring service (MACS) that was developed in-house as a plug-in of Pinnacle TPS was evaluated as well. Manual contours used in clinic were reviewed and modified for consistency and served as ground truth for the evaluation. Head-and-neck evaluation included six regions of interest (ROIs): left and right parotid glands, brainstem, spinal cord, mandible, and submandibular glands. Thoracic evaluation includes seven ROIs: left and right lungs, spinal cord, heart, esophagus, and left and right brachial plexus. Auto-segmented contours were compared with the manual contours using the Dice similarity coefficient (DSC) and the mean surface distance (MSD). Results: In head- and-neck evaluation, only mandible has a high accuracy in all segmentations (DSC>85%); SPICE achieved DSC>70% for parotid glands; MACS achieved this for both parotid glands and submandibular glands; and RayStation ABS achieved this for spinal cord. In thoracic evaluation, SPICE achieved the best in lung and heart segmentation, while MACS achieved the best for all other structures. The less distinguishable structures on CT images, such as brainstem, spinal cord, parotid glands, submandibular glands, esophagus, and brachial plexus, showed great variability in different segmentation tools (mostly DSC<70% and MSD>3mm). The template for RayStation ABS can be easily customized by users, while RayStation MBS and SPICE rely on the vendors to provide the templates/models. Conclusion: Great variability was

  1. Pharynx Anatomy

    Science.gov (United States)

    ... e.g. -historical Searches are case-insensitive Pharynx Anatomy Add to My Pictures View /Download : Small: 720x576 ... View Download Large: 3000x2400 View Download Title: Pharynx Anatomy Description: Anatomy of the pharynx; drawing shows the ...

  2. Larynx Anatomy

    Science.gov (United States)

    ... e.g. -historical Searches are case-insensitive Larynx Anatomy Add to My Pictures View /Download : Small: 648x576 ... View Download Large: 2700x2400 View Download Title: Larynx Anatomy Description: Anatomy of the larynx; drawing shows the ...

  3. Vulva Anatomy

    Science.gov (United States)

    ... e.g. -historical Searches are case-insensitive Vulva Anatomy Add to My Pictures View /Download : Small: 720x634 ... View Download Large: 3000x2640 View Download Title: Vulva Anatomy Description: Anatomy of the vulva; drawing shows the ...

  4. Semi-automatic segmentation of gated blood pool emission tomographic images by watersheds: application to the determination of right and left ejection fractions

    International Nuclear Information System (INIS)

    Mariano-Goulart, D.; Collet, H.; Kotzki, P.-O.; Zanca, M.; Rossi, M.

    1998-01-01

    Tomographic multi-gated blood pool scintigraphy (TMUGA) is a widely available method which permits simultaneous assessment of right and left ventricular ejection fractions. However, the widespread clinical use of this technique is impeded by the lack of segmentation methods dedicated to an automatic analysis of ventricular activities. In this study we evaluated how a watershed algorithm succeeds in providing semi-automatic segmentation of ventricular activities in order to measure right and left ejection fractions by TMUGA. The left ejection fractions of 30 patients were evaluated both with TMUGA and with planar multi-gated blood pool scintigraphy (PMUGA). Likewise, the right ejection fractions of 25 patients were evaluated with first-pass scintigraphy (FP) and with TMUGA. The watershed algorithm was applied to the reconstructed slices in order to group together the voxels whose activity came from one specific cardiac cavity. First, the results of the watershed algorithm were compared with manual drawing around left and right ventricles. Left ejection fractions evaluated by TMUGA with the watershed procedure were not significantly different (p=0.30) from manual outlines whereas a small but significant difference was found for right ejection fractions (p=0.004). Then right and left ejection fractions evaluated by TMUGA (with the semi-automatic segmentation procedure) were compared with the results obtained by FP or PMUGA. Left ventricular ejection fractions evaluated by TMUGA showed an excellent correlation with those evaluated by PMUGA (r=0.93; SEE=5.93%; slope=0.99; intercept = 4.17%). The measurements of these ejection fractions were significantly higher with TMUGA than with PMUGA (P<0.01). The interoperator variability for the measurement of left ejection fractions by TMUGA was 4.6%. Right ventricular ejection fractions evaluated by TMUGA showed a good correlation with those evaluated by FP (r = 0.81; SEE = 6.68%; slope = 1.00; intercept = 0.85%) and were not

  5. Revisiting the dose-effect correlations in irradiated head and neck cancer using automatic segmentation tools of the dental structures, mandible and maxilla

    International Nuclear Information System (INIS)

    Thariat, J.; Ramus, L.; Odin, G.; Vincent, S.; Orlanducci, M.H.; Dassonville, O.; Darcourt, V.; Lacout, A.; Marcy, P.Y.; Cagnol, G.; Malandain, G.

    2011-01-01

    Purpose. - Manual delineation of dental structures is too time-consuming to be feasible in routine practice. Information on dose risk levels is crucial for dentists following irradiation of the head and neck to avoid post-extraction osteoradionecrosis based on empirical dose-effects data established on bidimensional radiation therapy plans. Material and methods. - We present an automatic atlas-based segmentation framework of the dental structures, called Dentalmaps, constructed from a patient image-segmentation database. Results. - This framework is accurate (within 2 Gy accuracy) and relevant for the routine use. It has the potential to guide dental care in the context of new irradiation techniques. Conclusion. - This tool provides a user-friendly interface for dentists and radiation oncologists in the context of irradiated head and neck cancer patients. It will likely improve the knowledge of dose-effect correlations for dental complications and osteoradionecrosis. (authors)

  6. The anatomy of anatomy

    OpenAIRE

    John Paul Judson

    2012-01-01

    The relationship between anatomy and surgeryhas been historic and epic, spanning many centuries,complementing each other in medical education andbeing independent as well as interdependent in manyways. However, curricular changes that have happenedglobally in recent years with the introduction of severalcontemporary styles of medical teaching have subtlydownplayed the importance of anatomy in medicine,allowing young doctors with poor knowledge of anatomyto become surgeons. With a whimsical in...

  7. A fully automatic, threshold-based segmentation method for the estimation of the Metabolic Tumor Volume from PET images: validation on 3D printed anthropomorphic oncological lesions

    International Nuclear Information System (INIS)

    Gallivanone, F.; Interlenghi, M.; Castiglioni, I.; Canervari, C.

    2016-01-01

    18F-Fluorodeoxyglucose (18F-FDG) Positron Emission Tomography (PET) is a standard functional diagnostic technique to in vivo image cancer. Different quantitative paramters can be extracted from PET images and used as in vivo cancer biomarkers. Between PET biomarkers Metabolic Tumor Volume (MTV) has gained an important role in particular considering the development of patient-personalized radiotherapy treatment for non-homogeneous dose delivery. Different imaging processing methods have been developed to define MTV. The different proposed PET segmentation strategies were validated in ideal condition (e.g. in spherical objects with uniform radioactivity concentration), while the majority of cancer lesions doesn't fulfill these requirements. In this context, this work has a twofold objective: 1) to implement and optimize a fully automatic, threshold-based segmentation method for the estimation of MTV, feasible in clinical practice 2) to develop a strategy to obtain anthropomorphic phantoms, including non-spherical and non-uniform objects, miming realistic oncological patient conditions. The developed PET segmentation algorithm combines an automatic threshold-based algorithm for the definition of MTV and a k-means clustering algorithm for the estimation of the background. The method is based on parameters always available in clinical studies and was calibrated using NEMA IQ Phantom. Validation of the method was performed both in ideal (e.g. in spherical objects with uniform radioactivity concentration) and non-ideal (e.g. in non-spherical objects with a non-uniform radioactivity concentration) conditions. The strategy to obtain a phantom with synthetic realistic lesions (e.g. with irregular shape and a non-homogeneous uptake) consisted into the combined use of standard anthropomorphic phantoms commercially and irregular molds generated using 3D printer technology and filled with a radioactive chromatic alginate. The proposed segmentation algorithm was feasible in

  8. Automatic Segmentation of Impaired Joint Space Area for Osteoarthritis Knee on X-ray Image using Gabor Filter Based Morphology Process

    Directory of Open Access Journals (Sweden)

    Lilik Anifah

    2011-08-01

    Full Text Available Segmentation is the first step in osteoarthritis classification. Manual selection is time-consuming, tedious, and expensive. The system is designed to help medical doctors to determine the region of interest of visual characteristics found in knee Osteoarthritis (OA. We propose a fully automatic method without human interaction to segment Junction Space Area (JSA for OA classification on impaired x-ray image. In this proposed system, right and left knee detection is performed using using Contrast-Limited Adaptive Histogram Equalization (CLAHE and template macthing. The row sum graph and moment methods are used to segment the junction space area of knee. Overall we evaluated 98 kneess of patients. Experimental results demonstrate an accuracy of the system of up to 100% for detection of both left and right knee and for junction space detection an accuracy 84.38% for the right knee and 85.42% for the left. The second experiment using gabor filter with parameter α=8, θ=0, Ψ=[0 Π/2], γ=0,8 and N=8 and row sum graph give an accuracy 92.63% for the right knee and 87.37% for the left. And the average time needs to process is 65.79 second. For obvious reasons we chose the results of the fourth to segment junction area in both right and the left knee.

  9. Segmentation and accuracy-based scores for the automatic assessment of oral proficiency for proficient L2 speakers

    CSIR Research Space (South Africa)

    De Wet, Febe

    2010-11-01

    Full Text Available . Results indicate that, both for segmentation as well as accuracy-based scores, the most simple scores correlate best with the humans’ opinion on the students’ proficiency. Combining different scores using multiple linear regression leads to marginally...

  10. Automatic segmentation of human cortical layer-complexes and architectural areas using diffusion MRI and its validation

    Directory of Open Access Journals (Sweden)

    Matteo Bastiani

    2016-11-01

    Full Text Available Recently, several magnetic resonance imaging contrast mechanisms have been shown to distinguish cortical substructure corresponding to selected cortical layers. Here, we investigate cortical layer and area differentiation by automatized unsupervised clustering of high resolution diffusion MRI data. Several groups of adjacent layers could be distinguished in human primary motor and premotor cortex. We then used the signature of diffusion MRI signals along cortical depth as a criterion to detect area boundaries and find borders at which the signature changes abruptly. We validate our clustering results by histological analysis of the same tissue. These results confirm earlier studies which show that diffusion MRI can probe layer-specific intracortical fiber organization and, moreover, suggests that it contains enough information to automatically classify architecturally distinct cortical areas. We discuss the strengths and weaknesses of the automatic clustering approach and its appeal for MR-based cortical histology.

  11. High-resolution magnetic resonance imaging reveals nuclei of the human amygdala: manual segmentation to automatic atlas

    DEFF Research Database (Denmark)

    Saygin, Z M; Kliemann, D; Iglesias, J. E.

    2017-01-01

    The amygdala is composed of multiple nuclei with unique functions and connections in the limbic system and to the rest of the brain. However, standard in vivo neuroimaging tools to automatically delineate the amygdala into its multiple nuclei are still rare. By scanning postmortem specimens at hi...

  12. Evaluation of the potential of automatic segmentation of the mandibular canal using cone-beam computed tomography

    NARCIS (Netherlands)

    Gerlach, Nicolaas Lucius; Meijer, Gerrit Jacobus; Kroon, Dirk-Jan; Bronkhorst, Ewald Maria; Bergé, Stefaan Jozef; Maal, Thomas Jan Jaap

    2014-01-01

    We aimed to investigate the effectiveness of software for automatically tracing the mandibular canal on data from cone-beam computed tomography (CT). After the data had been collected from one dentate and one edentate fresh cadaver head, both a trained Active Shape Model (ASM) and an Active

  13. Automatic segmentation of the optic nerves and chiasm in CT and MR using the atlas-navigated optimal medial axis and deformable-model algorithm

    Science.gov (United States)

    Noble, Jack H.; Dawant, Benoit M.

    2009-02-01

    In recent years, radiation therapy has become the preferred treatment for many types of head and neck tumors. To minimize side effects, radiation beams are planned pre-operatively to avoid over-radiation of vital structures, such as the optic nerves and chiasm, which are essential to the visual process. To plan the procedure, these structures must be identified using CT/MR imagery. Currently, a radiation oncologist must manually segment the structures, which is both inefficient and ineffective. Clearly an automated approach could be beneficial to the planning process. The problem is difficult due to the shape variability and low image contrast of the structures, and several attempts at automatic localization have been reported with marginal results. In this work we present a novel method for localizing the optic nerves and chiasm in CT/MR volumes using the atlas-navigated optimal medial axis and deformable-model algorithm (NOMAD). NOMAD uses a statistical model and image registration to provide a priori local intensity and shape information to both a medial axis extraction procedure and a deformable-model, which deforms the medial axis and completes the segmentation process. This approach achieves mean dice coefficients greater than 0.8 for both the optic nerves and the chiasm when compared to manual segmentations over ten test cases. By comparing quantitative results with existing techniques it can be seen that this method produces more accurate results.

  14. Automatic construction of subject-specific human airway geometry including trifurcations based on a CT-segmented airway skeleton and surface

    Science.gov (United States)

    Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Wenzel, Sally E.; Lin, Ching-Long

    2016-01-01

    We propose a method to construct three-dimensional airway geometric models based on airway skeletons, or centerlines (CLs). Given a CT-segmented airway skeleton and surface, the proposed CL-based method automatically constructs subject-specific models that contain anatomical information regarding branches, include bifurcations and trifurcations, and extend from the trachea to terminal bronchioles. The resulting model can be anatomically realistic with the assistance of an image-based surface; alternatively a model with an idealized skeleton and/or branch diameters is also possible. This method systematically identifies and classifies trifurcations to successfully construct the models, which also provides the number and type of trifurcations for the analysis of the airways from an anatomical point of view. We applied this method to 16 normal and 16 severe asthmatic subjects using their computed tomography images. The average distance between the surface of the model and the image-based surface was 11% of the average voxel size of the image. The four most frequent locations of trifurcations were the left upper division bronchus, left lower lobar bronchus, right upper lobar bronchus, and right intermediate bronchus. The proposed method automatically constructed accurate subject-specific three-dimensional airway geometric models that contain anatomical information regarding branches using airway skeleton, diameters, and image-based surface geometry. The proposed method can construct (i) geometry automatically for population-based studies, (ii) trifurcations to retain the original airway topology, (iii) geometry that can be used for automatic generation of computational fluid dynamics meshes, and (iv) geometry based only on a skeleton and diameters for idealized branches. PMID:27704229

  15. Automatic segmentation of airway tree based on local intensity filter and machine learning technique in 3D chest CT volume.

    Science.gov (United States)

    Meng, Qier; Kitasaka, Takayuki; Nimura, Yukitaka; Oda, Masahiro; Ueno, Junji; Mori, Kensaku

    2017-02-01

    Airway segmentation plays an important role in analyzing chest computed tomography (CT) volumes for computerized lung cancer detection, emphysema diagnosis and pre- and intra-operative bronchoscope navigation. However, obtaining a complete 3D airway tree structure from a CT volume is quite a challenging task. Several researchers have proposed automated airway segmentation algorithms basically based on region growing and machine learning techniques. However, these methods fail to detect the peripheral bronchial branches, which results in a large amount of leakage. This paper presents a novel approach for more accurate extraction of the complex airway tree. This proposed segmentation method is composed of three steps. First, Hessian analysis is utilized to enhance the tube-like structure in CT volumes; then, an adaptive multiscale cavity enhancement filter is employed to detect the cavity-like structure with different radii. In the second step, support vector machine learning will be utilized to remove the false positive (FP) regions from the result obtained in the previous step. Finally, the graph-cut algorithm is used to refine the candidate voxels to form an integrated airway tree. A test dataset including 50 standard-dose chest CT volumes was used for evaluating our proposed method. The average extraction rate was about 79.1 % with the significantly decreased FP rate. A new method of airway segmentation based on local intensity structure and machine learning technique was developed. The method was shown to be feasible for airway segmentation in a computer-aided diagnosis system for a lung and bronchoscope guidance system.

  16. MIAQuant, a novel system for automatic segmentation, measurement, and localization comparison of different biomarkers from serialized histological slices.

    Science.gov (United States)

    Casiraghi, Elena; Cossa, Mara; Huber, Veronica; Rivoltini, Licia; Tozzi, Matteo; Villa, Antonello; Vergani, Barbara

    2017-11-02

    In the clinical practice, automatic image analysis methods quickly quantizing histological results by objective and replicable methods are getting more and more necessary and widespread. Despite several commercial software products are available for this task, they are very little flexible, and provided as black boxes without modifiable source code. To overcome the aforementioned problems, we employed the commonly used MATLAB platform to develop an automatic method, MIAQuant, for the analysis of histochemical and immunohistochemical images, stained with various methods and acquired by different tools. It automatically extracts and quantifies markers characterized by various colors and shapes; furthermore, it aligns contiguous tissue slices stained by different markers and overlaps them with differing colors for visual comparison of their localization. Application of MIAQuant for clinical research fields, such as oncology and cardiovascular disease studies, has proven its efficacy, robustness and flexibility with respect to various problems; we highlight that, the flexibility of MIAQuant makes it an important tool to be exploited for basic researches where needs are constantly changing. MIAQuant software and its user manual are freely available for clinical studies, pathological research, and diagnosis.

  17. MIAQuant, a novel system for automatic segmentation, measurement, and localization comparison of different biomarkers from serialized histological slices

    Directory of Open Access Journals (Sweden)

    Elena Casiraghi

    2017-11-01

    Full Text Available In the clinical practice, automatic image analysis methods quickly quantizing histological results by objective and replicable methods are getting more and more necessary and widespread. Despite several commercial software products are available for this task, they are very little flexible, and provided as black boxes without modifiable source code. To overcome the aforementioned problems, we employed the commonly used MATLAB platform to develop an automatic method, MIAQuant, for the analysis of histochemical and immunohistochemical images, stained with various methods and acquired by different tools. It automatically extracts and quantifies markers characterized by various colors and shapes; furthermore, it aligns contiguous tissue slices stained by different markers and overlaps them with differing colors for visual comparison of their localization. Application of MIAQuant for clinical research fields, such as oncology and cardiovascular disease studies, has proven its efficacy, robustness and flexibility with respect to various problems; we highlight that, the flexibility of MIAQuant makes it an important tool to be exploited for basic researches where needs are constantly changing. MIAQuant software and its user manual are freely available for clinical studies, pathological research, and diagnosis.

  18. Automatic segmentation of the hippocampus for preterm neonates from early-in-life to term-equivalent age

    Directory of Open Access Journals (Sweden)

    Ting Guo

    2015-01-01

    Conclusions: MAGeT-Brain is capable of segmenting hippocampi accurately in preterm neonates, even at early-in-life. Hippocampal asymmetry with a larger right side is demonstrated on early-in-life images, suggesting that this phenomenon has its onset in the 3rd trimester of gestation. Hippocampal volume assessed at the time of early-in-life and term-equivalent age is linearly associated with GA at birth, whereby smaller volumes are associated with earlier birth.

  19. Fully Automatic Localization and Segmentation of 3D Vertebral Bodies from CT/MR Images via a Learning-Based Method.

    Directory of Open Access Journals (Sweden)

    Chengwen Chu

    Full Text Available In this paper, we address the problems of fully automatic localization and segmentation of 3D vertebral bodies from CT/MR images. We propose a learning-based, unified random forest regression and classification framework to tackle these two problems. More specifically, in the first stage, the localization of 3D vertebral bodies is solved with random forest regression where we aggregate the votes from a set of randomly sampled image patches to get a probability map of the center of a target vertebral body in a given image. The resultant probability map is then further regularized by Hidden Markov Model (HMM to eliminate potential ambiguity caused by the neighboring vertebral bodies. The output from the first stage allows us to define a region of interest (ROI for the segmentation step, where we use random forest classification to estimate the likelihood of a voxel in the ROI being foreground or background. The estimated likelihood is combined with the prior probability, which is learned from a set of training data, to get the posterior probability of the voxel. The segmentation of the target vertebral body is then done by a binary thresholding of the estimated probability. We evaluated the present approach on two openly available datasets: 1 3D T2-weighted spine MR images from 23 patients and 2 3D spine CT images from 10 patients. Taking manual segmentation as the ground truth (each MR image contains at least 7 vertebral bodies from T11 to L5 and each CT image contains 5 vertebral bodies from L1 to L5, we evaluated the present approach with leave-one-out experiments. Specifically, for the T2-weighted MR images, we achieved for localization a mean error of 1.6 mm, and for segmentation a mean Dice metric of 88.7% and a mean surface distance of 1.5 mm, respectively. For the CT images we achieved for localization a mean error of 1.9 mm, and for segmentation a mean Dice metric of 91.0% and a mean surface distance of 0.9 mm, respectively.

  20. Fully Automatic Localization and Segmentation of 3D Vertebral Bodies from CT/MR Images via a Learning-Based Method.

    Science.gov (United States)

    Chu, Chengwen; Belavý, Daniel L; Armbrecht, Gabriele; Bansmann, Martin; Felsenberg, Dieter; Zheng, Guoyan

    2015-01-01

    In this paper, we address the problems of fully automatic localization and segmentation of 3D vertebral bodies from CT/MR images. We propose a learning-based, unified random forest regression and classification framework to tackle these two problems. More specifically, in the first stage, the localization of 3D vertebral bodies is solved with random forest regression where we aggregate the votes from a set of randomly sampled image patches to get a probability map of the center of a target vertebral body in a given image. The resultant probability map is then further regularized by Hidden Markov Model (HMM) to eliminate potential ambiguity caused by the neighboring vertebral bodies. The output from the first stage allows us to define a region of interest (ROI) for the segmentation step, where we use random forest classification to estimate the likelihood of a voxel in the ROI being foreground or background. The estimated likelihood is combined with the prior probability, which is learned from a set of training data, to get the posterior probability of the voxel. The segmentation of the target vertebral body is then done by a binary thresholding of the estimated probability. We evaluated the present approach on two openly available datasets: 1) 3D T2-weighted spine MR images from 23 patients and 2) 3D spine CT images from 10 patients. Taking manual segmentation as the ground truth (each MR image contains at least 7 vertebral bodies from T11 to L5 and each CT image contains 5 vertebral bodies from L1 to L5), we evaluated the present approach with leave-one-out experiments. Specifically, for the T2-weighted MR images, we achieved for localization a mean error of 1.6 mm, and for segmentation a mean Dice metric of 88.7% and a mean surface distance of 1.5 mm, respectively. For the CT images we achieved for localization a mean error of 1.9 mm, and for segmentation a mean Dice metric of 91.0% and a mean surface distance of 0.9 mm, respectively.

  1. Magnetic Resonance–Based Automatic Air Segmentation for Generation of Synthetic Computed Tomography Scans in the Head Region

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Weili; Kim, Joshua P. [Department of Radiation Oncology, Henry Ford Health Systems, Detroit, Michigan (United States); Kadbi, Mo [Philips Healthcare, Cleveland, Ohio (United States); Movsas, Benjamin; Chetty, Indrin J. [Department of Radiation Oncology, Henry Ford Health Systems, Detroit, Michigan (United States); Glide-Hurst, Carri K., E-mail: churst2@hfhs.org [Department of Radiation Oncology, Henry Ford Health Systems, Detroit, Michigan (United States)

    2015-11-01

    Purpose: To incorporate a novel imaging sequence for robust air and tissue segmentation using ultrashort echo time (UTE) phase images and to implement an innovative synthetic CT (synCT) solution as a first step toward MR-only radiation therapy treatment planning for brain cancer. Methods and Materials: Ten brain cancer patients were scanned with a UTE/Dixon sequence and other clinical sequences on a 1.0 T open magnet with simulation capabilities. Bone-enhanced images were generated from a weighted combination of water/fat maps derived from Dixon images and inverted UTE images. Automated air segmentation was performed using unwrapped UTE phase maps. Segmentation accuracy was assessed by calculating segmentation errors (true-positive rate, false-positive rate, and Dice similarity indices using CT simulation (CT-SIM) as ground truth. The synCTs were generated using a voxel-based, weighted summation method incorporating T2, fluid attenuated inversion recovery (FLAIR), UTE1, and bone-enhanced images. Mean absolute error (MAE) characterized Hounsfield unit (HU) differences between synCT and CT-SIM. A dosimetry study was conducted, and differences were quantified using γ-analysis and dose-volume histogram analysis. Results: On average, true-positive rate and false-positive rate for the CT and MR-derived air masks were 80.8% ± 5.5% and 25.7% ± 6.9%, respectively. Dice similarity indices values were 0.78 ± 0.04 (range, 0.70-0.83). Full field of view MAE between synCT and CT-SIM was 147.5 ± 8.3 HU (range, 138.3-166.2 HU), with the largest errors occurring at bone–air interfaces (MAE 422.5 ± 33.4 HU for bone and 294.53 ± 90.56 HU for air). Gamma analysis revealed pass rates of 99.4% ± 0.04%, with acceptable treatment plan quality for the cohort. Conclusions: A hybrid MRI phase/magnitude UTE image processing technique was introduced that significantly improved bone and air contrast in MRI. Segmented air masks and bone-enhanced images were integrated

  2. A Dirichlet process mixture model for automatic (18)F-FDG PET image segmentation: Validation study on phantoms and on lung and esophageal lesions.

    Science.gov (United States)

    Giri, Maria Grazia; Cavedon, Carlo; Mazzarotto, Renzo; Ferdeghini, Marco

    2016-05-01

    The aim of this study was to implement a Dirichlet process mixture (DPM) model for automatic tumor edge identification on (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) images by optimizing the parameters on which the algorithm depends, to validate it experimentally, and to test its robustness. The DPM model belongs to the class of the Bayesian nonparametric models and uses the Dirichlet process prior for flexible nonparametric mixture modeling, without any preliminary choice of the number of mixture components. The DPM algorithm implemented in the statistical software package R was used in this work. The contouring accuracy was evaluated on several image data sets: on an IEC phantom (spherical inserts with diameter in the range 10-37 mm) acquired by a Philips Gemini Big Bore PET-CT scanner, using 9 different target-to-background ratios (TBRs) from 2.5 to 70; on a digital phantom simulating spherical/uniform lesions and tumors, irregular in shape and activity; and on 20 clinical cases (10 lung and 10 esophageal cancer patients). The influence of the DPM parameters on contour generation was studied in two steps. In the first one, only the IEC spheres having diameters of 22 and 37 mm and a sphere of the digital phantom (41.6 mm diameter) were studied by varying the main parameters until the diameter of the spheres was obtained within 0.2% of the true value. In the second step, the results obtained for this training set were applied to the entire data set to determine DPM based volumes of all available lesions. These volumes were compared to those obtained by applying already known algorithms (Gaussian mixture model and gradient-based) and to true values, when available. Only one parameter was found able to significantly influence segmentation accuracy (ANOVA test). This parameter was linearly connected to the uptake variance of the tested region of interest (ROI). In the first step of the study, a calibration curve was determined to

  3. A Dirichlet process mixture model for automatic 18F-FDG PET image segmentation: Validation study on phantoms and on lung and esophageal lesions

    International Nuclear Information System (INIS)

    Giri, Maria Grazia; Cavedon, Carlo; Mazzarotto, Renzo; Ferdeghini, Marco

    2016-01-01

    Purpose: The aim of this study was to implement a Dirichlet process mixture (DPM) model for automatic tumor edge identification on 18 F-fluorodeoxyglucose positron emission tomography ( 18 F-FDG PET) images by optimizing the parameters on which the algorithm depends, to validate it experimentally, and to test its robustness. Methods: The DPM model belongs to the class of the Bayesian nonparametric models and uses the Dirichlet process prior for flexible nonparametric mixture modeling, without any preliminary choice of the number of mixture components. The DPM algorithm implemented in the statistical software package R was used in this work. The contouring accuracy was evaluated on several image data sets: on an IEC phantom (spherical inserts with diameter in the range 10–37 mm) acquired by a Philips Gemini Big Bore PET-CT scanner, using 9 different target-to-background ratios (TBRs) from 2.5 to 70; on a digital phantom simulating spherical/uniform lesions and tumors, irregular in shape and activity; and on 20 clinical cases (10 lung and 10 esophageal cancer patients). The influence of the DPM parameters on contour generation was studied in two steps. In the first one, only the IEC spheres having diameters of 22 and 37 mm and a sphere of the digital phantom (41.6 mm diameter) were studied by varying the main parameters until the diameter of the spheres was obtained within 0.2% of the true value. In the second step, the results obtained for this training set were applied to the entire data set to determine DPM based volumes of all available lesions. These volumes were compared to those obtained by applying already known algorithms (Gaussian mixture model and gradient-based) and to true values, when available. Results: Only one parameter was found able to significantly influence segmentation accuracy (ANOVA test). This parameter was linearly connected to the uptake variance of the tested region of interest (ROI). In the first step of the study, a calibration curve

  4. A Dirichlet process mixture model for automatic {sup 18}F-FDG PET image segmentation: Validation study on phantoms and on lung and esophageal lesions

    Energy Technology Data Exchange (ETDEWEB)

    Giri, Maria Grazia, E-mail: mariagrazia.giri@ospedaleuniverona.it; Cavedon, Carlo [Medical Physics Unit, University Hospital of Verona, P.le Stefani 1, Verona 37126 (Italy); Mazzarotto, Renzo [Radiation Oncology Unit, University Hospital of Verona, P.le Stefani 1, Verona 37126 (Italy); Ferdeghini, Marco [Nuclear Medicine Unit, University Hospital of Verona, P.le Stefani 1, Verona 37126 (Italy)

    2016-05-15

    Purpose: The aim of this study was to implement a Dirichlet process mixture (DPM) model for automatic tumor edge identification on {sup 18}F-fluorodeoxyglucose positron emission tomography ({sup 18}F-FDG PET) images by optimizing the parameters on which the algorithm depends, to validate it experimentally, and to test its robustness. Methods: The DPM model belongs to the class of the Bayesian nonparametric models and uses the Dirichlet process prior for flexible nonparametric mixture modeling, without any preliminary choice of the number of mixture components. The DPM algorithm implemented in the statistical software package R was used in this work. The contouring accuracy was evaluated on several image data sets: on an IEC phantom (spherical inserts with diameter in the range 10–37 mm) acquired by a Philips Gemini Big Bore PET-CT scanner, using 9 different target-to-background ratios (TBRs) from 2.5 to 70; on a digital phantom simulating spherical/uniform lesions and tumors, irregular in shape and activity; and on 20 clinical cases (10 lung and 10 esophageal cancer patients). The influence of the DPM parameters on contour generation was studied in two steps. In the first one, only the IEC spheres having diameters of 22 and 37 mm and a sphere of the digital phantom (41.6 mm diameter) were studied by varying the main parameters until the diameter of the spheres was obtained within 0.2% of the true value. In the second step, the results obtained for this training set were applied to the entire data set to determine DPM based volumes of all available lesions. These volumes were compared to those obtained by applying already known algorithms (Gaussian mixture model and gradient-based) and to true values, when available. Results: Only one parameter was found able to significantly influence segmentation accuracy (ANOVA test). This parameter was linearly connected to the uptake variance of the tested region of interest (ROI). In the first step of the study, a

  5. Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search.

    Science.gov (United States)

    Fang, Leyuan; Cunefare, David; Wang, Chong; Guymer, Robyn H; Li, Shutao; Farsiu, Sina

    2017-05-01

    We present a novel framework combining convolutional neural networks (CNN) and graph search methods (termed as CNN-GS) for the automatic segmentation of nine layer boundaries on retinal optical coherence tomography (OCT) images. CNN-GS first utilizes a CNN to extract features of specific retinal layer boundaries and train a corresponding classifier to delineate a pilot estimate of the eight layers. Next, a graph search method uses the probability maps created from the CNN to find the final boundaries. We validated our proposed method on 60 volumes (2915 B-scans) from 20 human eyes with non-exudative age-related macular degeneration (AMD), which attested to effectiveness of our proposed technique.

  6. TU-AB-BRA-11: Evaluation of Fully Automatic Volumetric GBM Segmentation in the TCGA-GBM Dataset: Prognosis and Correlation with VASARI Features

    International Nuclear Information System (INIS)

    Rios Velazquez, E; Meier, R; Dunn, W; Gutman, D; Alexander, B; Wiest, R; Reyes, M; Bauer, S; Aerts, H

    2015-01-01

    Purpose: Reproducible definition and quantification of imaging biomarkers is essential. We evaluated a fully automatic MR-based segmentation method by comparing it to manually defined sub-volumes by experienced radiologists in the TCGA-GBM dataset, in terms of sub-volume prognosis and association with VASARI features. Methods: MRI sets of 67 GBM patients were downloaded from the Cancer Imaging archive. GBM sub-compartments were defined manually and automatically using the Brain Tumor Image Analysis (BraTumIA), including necrosis, edema, contrast enhancing and non-enhancing tumor. Spearman’s correlation was used to evaluate the agreement with VASARI features. Prognostic significance was assessed using the C-index. Results: Auto-segmented sub-volumes showed high agreement with manually delineated volumes (range (r): 0.65 – 0.91). Also showed higher correlation with VASARI features (auto r = 0.35, 0.60 and 0.59; manual r = 0.29, 0.50, 0.43, for contrast-enhancing, necrosis and edema, respectively). The contrast-enhancing volume and post-contrast abnormal volume showed the highest C-index (0.73 and 0.72), comparable to manually defined volumes (p = 0.22 and p = 0.07, respectively). The non-enhancing region defined by BraTumIA showed a significantly higher prognostic value (CI = 0.71) than the edema (CI = 0.60), both of which could not be distinguished by manual delineation. Conclusion: BraTumIA tumor sub-compartments showed higher correlation with VASARI data, and equivalent performance in terms of prognosis compared to manual sub-volumes. This method can enable more reproducible definition and quantification of imaging based biomarkers and has a large potential in high-throughput medical imaging research

  7. TU-AB-BRA-11: Evaluation of Fully Automatic Volumetric GBM Segmentation in the TCGA-GBM Dataset: Prognosis and Correlation with VASARI Features

    Energy Technology Data Exchange (ETDEWEB)

    Rios Velazquez, E [Dana-Farber Cancer Institute | Harvard Medical School, Boston, MA (United States); Meier, R [Institute for Surgical Technology and Biomechanics, Bern, NA (Switzerland); Dunn, W; Gutman, D [Emory University School of Medicine, Atlanta, GA (United States); Alexander, B [Dana- Farber Cancer Institute, Brigham and Womens Hospital, Harvard Medic, Boston, MA (United States); Wiest, R; Reyes, M [Institute for Surgical Technology and Biomechanics, University of Bern, Bern, NA (Switzerland); Bauer, S [Institute for Surgical Technology and Biomechanics, Support Center for Adva, Bern, NA (Switzerland); Aerts, H [Dana-Farber/Brigham Womens Cancer Center, Boston, MA (United States)

    2015-06-15

    Purpose: Reproducible definition and quantification of imaging biomarkers is essential. We evaluated a fully automatic MR-based segmentation method by comparing it to manually defined sub-volumes by experienced radiologists in the TCGA-GBM dataset, in terms of sub-volume prognosis and association with VASARI features. Methods: MRI sets of 67 GBM patients were downloaded from the Cancer Imaging archive. GBM sub-compartments were defined manually and automatically using the Brain Tumor Image Analysis (BraTumIA), including necrosis, edema, contrast enhancing and non-enhancing tumor. Spearman’s correlation was used to evaluate the agreement with VASARI features. Prognostic significance was assessed using the C-index. Results: Auto-segmented sub-volumes showed high agreement with manually delineated volumes (range (r): 0.65 – 0.91). Also showed higher correlation with VASARI features (auto r = 0.35, 0.60 and 0.59; manual r = 0.29, 0.50, 0.43, for contrast-enhancing, necrosis and edema, respectively). The contrast-enhancing volume and post-contrast abnormal volume showed the highest C-index (0.73 and 0.72), comparable to manually defined volumes (p = 0.22 and p = 0.07, respectively). The non-enhancing region defined by BraTumIA showed a significantly higher prognostic value (CI = 0.71) than the edema (CI = 0.60), both of which could not be distinguished by manual delineation. Conclusion: BraTumIA tumor sub-compartments showed higher correlation with VASARI data, and equivalent performance in terms of prognosis compared to manual sub-volumes. This method can enable more reproducible definition and quantification of imaging based biomarkers and has a large potential in high-throughput medical imaging research.

  8. Hand Anatomy

    Science.gov (United States)

    ... Home Anatomy Bones Joints Muscles Nerves Vessels Tendons Anatomy The upper extremity is a term used to define the upper limb. This includes the shoulder, arm, forearm, wrist and hand. The hand is a very ...

  9. Tooth anatomy

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/002214.htm Tooth anatomy To use the sharing features on this page, ... upper jawbone is called the maxilla. Images Tooth anatomy References Chan S, Alessandrini EA. Dental injuries. In: Selbst ...

  10. Paraganglioma Anatomy

    Science.gov (United States)

    ... e.g. -historical Searches are case-insensitive Paraganglioma Anatomy Add to My Pictures View /Download : Small: 648x576 ... View Download Large: 2700x2400 View Download Title: Paraganglioma Anatomy Description: Paraganglioma of the head and neck; drawing ...

  11. Automatic segmentation of short association bundles using a new multi-subject atlas of the left hemisphere fronto-parietal brain connections.

    Science.gov (United States)

    Guevara, M; Seguel, D; Roman, C; Duclap, D; Lebois, A; Le Bihan; Mangin, J-F; Poupon, C; Guevara, P

    2015-08-01

    Human brain connection map is far from being complete. In particular the study of the superficial white matter (SWM) is an unachieved task. Its description is essential for the understanding of human brain function and the study of the pathogenesis associated to it. In this work we developed a method for the automatic creation of a SWM bundle multi-subject atlas. The atlas generation method is based on a cortical parcellation for the extraction of fibers connecting two different gyri. Then, an intra-subject fiber clustering is applied, in order to divide each bundle into sub-bundles with similar shape. After that, a two-step inter-subject fiber clustering is used in order to find the correspondence between the sub-bundles across the subjects, fuse similar clusters and discard the outliers. The method was applied to 40 subjects of a high quality HARDI database, focused on the left hemisphere fronto-parietal and insula brain regions. We obtained an atlas composed of 44 bundles connecting 22 pair of ROIs. Then the atlas was used to automatically segment 39 new subjects from the database.

  12. Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer

    International Nuclear Information System (INIS)

    La Macchia, Mariangela; Fellin, Francesco; Amichetti, Maurizio; Cianchetti, Marco; Gianolini, Stefano; Paola, Vitali; Lomax, Antony J; Widesott, Lamberto

    2012-01-01

    To validate, in the context of adaptive radiotherapy, three commercial software solutions for atlas-based segmentation. Fifteen patients, five for each group, with cancer of the Head&Neck, pleura, and prostate were enrolled in the study. In addition to the treatment planning CT (pCT) images, one replanning CT (rCT) image set was acquired for each patient during the RT course. Three experienced physicians outlined on the pCT and rCT all the volumes of interest (VOIs). We used three software solutions (VelocityAI 2.6.2 (V), MIM 5.1.1 (M) by MIMVista and ABAS 2.0 (A) by CMS-Elekta) to generate the automatic contouring on the repeated CT. All the VOIs obtained with automatic contouring (AC) were successively corrected manually. We recorded the time needed for: 1) ex novo ROIs definition on rCT; 2) generation of AC by the three software solutions; 3) manual correction of AC. To compare the quality of the volumes obtained automatically by the software and manually corrected with those drawn from scratch on rCT, we used the following indexes: overlap coefficient (DICE), sensitivity, inclusiveness index, difference in volume, and displacement differences on three axes (x, y, z) from the isocenter. The time saved by the three software solutions for all the sites, compared to the manual contouring from scratch, is statistically significant and similar for all the three software solutions. The time saved for each site are as follows: about an hour for Head&Neck, about 40 minutes for prostate, and about 20 minutes for mesothelioma. The best DICE similarity coefficient index was obtained with the manual correction for: A (contours for prostate), A and M (contours for H&N), and M (contours for mesothelioma). From a clinical point of view, the automated contouring workflow was shown to be significantly shorter than the manual contouring process, even though manual correction of the VOIs is always needed

  13. WE-AB-BRA-05: Fully Automatic Segmentation of Male Pelvic Organs On CT Without Manual Intervention

    International Nuclear Information System (INIS)

    Gao, Y; Lian, J; Chen, R; Wang, A; Shen, D

    2015-01-01

    Purpose: We aim to develop a fully automatic tool for accurate contouring of major male pelvic organs in CT images for radiotherapy without any manual initialization, yet still achieving superior performance than the existing tools. Methods: A learning-based 3D deformable shape model was developed for automatic contouring. Specifically, we utilized a recent machine learning method, random forest, to jointly learn both image regressor and classifier for each organ. In particular, the image regressor is trained to predict the 3D displacement from each vertex of the 3D shape model towards the organ boundary based on the local image appearance around the location of this vertex. The predicted 3D displacements are then used to drive the 3D shape model towards the target organ. Once the shape model is deformed close to the target organ, it is further refined by an organ likelihood map estimated by the learned classifier. As the organ likelihood map provides good guideline for the organ boundary, the precise contouring Result could be achieved, by deforming the 3D shape model locally to fit boundaries in the organ likelihood map. Results: We applied our method to 29 previously-treated prostate cancer patients, each with one planning CT scan. Compared with manually delineated pelvic organs, our method obtains overlap ratios of 85.2%±3.74% for the prostate, 94.9%±1.62% for the bladder, and 84.7%±1.97% for the rectum, respectively. Conclusion: This work demonstrated feasibility of a novel machine-learning based approach for accurate and automatic contouring of major male pelvic organs. It shows the potential to replace the time-consuming and inconsistent manual contouring in the clinic. Also, compared with the existing works, our method is more accurate and also efficient since it does not require any manual intervention, such as manual landmark placement. Moreover, our method obtained very similar contouring results as the clinical experts. Project is partially support

  14. SURGICAL ANATOMY

    African Journals Online (AJOL)

    SURGICAL ANATOMY. Rare high origin of the radial artery: a bilateral, symmetrical ease. I. O. ()koro and B. C. J iburum. Department of Anatomy, College of Medicine, lrno State University, Owerri, Nigeria. Reprint requests to: Dr I. O. 0k0r0, Department of Anatomy, [mo State University, P. M. B. 2000. Owerri, Nigeria.

  15. A segmentation framework towards automatic generation of boost subvolumes for FDG-PET tumors: A digital phantom study

    International Nuclear Information System (INIS)

    Yang, Fei; Grigsby, Perry W.

    2012-01-01

    Potential benefits of administering nonuniform radiation dose to heterogeneous tumors imaged with FDG-PET have been widely demonstrated; whereas the number of discrete dose levels to be utilized and corresponding locations for prescription inside tumors vary significantly with current existing methods. In this paper, an automated and unsupervised segmentation framework constituted mainly by an image restoration mechanism based on variational decomposition and a voxel clustering scheme based on spectral clustering was presented towards partitioning FDG-PET imaged tumors into subvolumes characterized with the total intra-subvolume activity similarity and the total inter-subvolume activity dissimilarity being simultaneously maximized. Experiments to evaluate the proposed system were carried out with using FDG-PET data generated from a digital phantom that employed SimSET (Simulation System for Emission Tomography) to simulate PET acquisition of tumors. The obtained results show the feasibility of the proposed system in dividing FDG-PET imaged tumor volumes into subvolumes with intratumoral heterogeneity being properly characterized, irrespective of variation in tumor morphology as well as diversity in intratumoral heterogeneity pattern.

  16. Towards lung EIT image segmentation: automatic classification of lung tissue state from analysis of EIT monitored recruitment manoeuvres

    International Nuclear Information System (INIS)

    Grychtol, Bartłomiej; Wolf, Gerhard K; Arnold, John H; Adler, Andy

    2010-01-01

    There is emerging evidence that the ventilation strategy used in acute lung injury (ALI) makes a significant difference in outcome and that an inappropriate ventilation strategy may produce ventilator-associated lung injury. Most harmful during mechanical ventilation are lung overdistension and lung collapse or atelectasis. Electrical impedance tomography (EIT) as a non-invasive imaging technology may be helpful to identify lung areas at risk. Currently, no automated method is routinely available to identify lung areas that are overdistended, collapsed or ventilated appropriately. We propose a fuzzy logic-based algorithm to analyse EIT images obtained during stepwise changes of mean airway pressures during mechanical ventilation. The algorithm is tested on data from two published studies of stepwise inflation–deflation manoeuvres in an animal model of ALI using conventional and high-frequency oscillatory ventilation. The timing of lung opening and collapsing on segmented images obtained using the algorithm during an inflation–deflation manoeuvre is in agreement with well-known effects of surfactant administration and changes in shunt fraction. While the performance of the algorithm has not been verified against a gold standard, we feel that it presents an important first step in tackling this challenging and important problem

  17. Multi-feature machine learning model for automatic segmentation of green fractional vegetation cover for high-throughput field phenotyping.

    Science.gov (United States)

    Sadeghi-Tehran, Pouria; Virlet, Nicolas; Sabermanesh, Kasra; Hawkesford, Malcolm J

    2017-01-01

    Accurately segmenting vegetation from the background within digital images is both a fundamental and a challenging task in phenotyping. The performance of traditional methods is satisfactory in homogeneous environments, however, performance decreases when applied to images acquired in dynamic field environments. In this paper, a multi-feature learning method is proposed to quantify vegetation growth in outdoor field conditions. The introduced technique is compared with the state-of the-art and other learning methods on digital images. All methods are compared and evaluated with different environmental conditions and the following criteria: (1) comparison with ground-truth images, (2) variation along a day with changes in ambient illumination, (3) comparison with manual measurements and (4) an estimation of performance along the full life cycle of a wheat canopy. The method described is capable of coping with the environmental challenges faced in field conditions, with high levels of adaptiveness and without the need for adjusting a threshold for each digital image. The proposed method is also an ideal candidate to process a time series of phenotypic information throughout the crop growth acquired in the field. Moreover, the introduced method has an advantage that it is not limited to growth measurements only but can be applied on other applications such as identifying weeds, diseases, stress, etc.

  18. Development of automatic surveillance of animal behaviour and welfare using image analysis and machine learned segmentation technique.

    Science.gov (United States)

    Nilsson, M; Herlin, A H; Ardö, H; Guzhva, O; Åström, K; Bergsten, C

    2015-11-01

    In this paper the feasibility to extract the proportion of pigs located in different areas of a pig pen by advanced image analysis technique is explored and discussed for possible applications. For example, pigs generally locate themselves in the wet dunging area at high ambient temperatures in order to avoid heat stress, as wetting the body surface is the major path to dissipate the heat by evaporation. Thus, the portion of pigs in the dunging area and resting area, respectively, could be used as an indicator of failure of controlling the climate in the pig environment as pigs are not supposed to rest in the dunging area. The computer vision methodology utilizes a learning based segmentation approach using several features extracted from the image. The learning based approach applied is based on extended state-of-the-art features in combination with a structured prediction framework based on a logistic regression solver using elastic net regularization. In addition, the method is able to produce a probability per pixel rather than form a hard decision. This overcomes some of the limitations found in a setup using grey-scale information only. The pig pen is a difficult imaging environment because of challenging lighting conditions like shadows, poor lighting and poor contrast between pig and background. In order to test practical conditions, a pen containing nine young pigs was filmed from a top view perspective by an Axis M3006 camera with a resolution of 640 × 480 in three, 10-min sessions under different lighting conditions. The results indicate that a learning based method improves, in comparison with greyscale methods, the possibility to reliable identify proportions of pigs in different areas of the pen. Pigs with a changed behaviour (location) in the pen may indicate changed climate conditions. Changed individual behaviour may also indicate inferior health or acute illness.

  19. Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer

    Directory of Open Access Journals (Sweden)

    La Macchia Mariangela

    2012-09-01

    Full Text Available Abstract Purpose To validate, in the context of adaptive radiotherapy, three commercial software solutions for atlas-based segmentation. Methods and materials Fifteen patients, five for each group, with cancer of the Head&Neck, pleura, and prostate were enrolled in the study. In addition to the treatment planning CT (pCT images, one replanning CT (rCT image set was acquired for each patient during the RT course. Three experienced physicians outlined on the pCT and rCT all the volumes of interest (VOIs. We used three software solutions (VelocityAI 2.6.2 (V, MIM 5.1.1 (M by MIMVista and ABAS 2.0 (A by CMS-Elekta to generate the automatic contouring on the repeated CT. All the VOIs obtained with automatic contouring (AC were successively corrected manually. We recorded the time needed for: 1 ex novo ROIs definition on rCT; 2 generation of AC by the three software solutions; 3 manual correction of AC. To compare the quality of the volumes obtained automatically by the software and manually corrected with those drawn from scratch on rCT, we used the following indexes: overlap coefficient (DICE, sensitivity, inclusiveness index, difference in volume, and displacement differences on three axes (x, y, z from the isocenter. Results The time saved by the three software solutions for all the sites, compared to the manual contouring from scratch, is statistically significant and similar for all the three software solutions. The time saved for each site are as follows: about an hour for Head&Neck, about 40 minutes for prostate, and about 20 minutes for mesothelioma. The best DICE similarity coefficient index was obtained with the manual correction for: A (contours for prostate, A and M (contours for H&N, and M (contours for mesothelioma. Conclusions From a clinical point of view, the automated contouring workflow was shown to be significantly shorter than the manual contouring process, even though manual correction of the VOIs is always needed.

  20. Systematic evaluation of three different commercial software solutions for automatic segmentation for adaptive therapy in head-and-neck, prostate and pleural cancer.

    Science.gov (United States)

    La Macchia, Mariangela; Fellin, Francesco; Amichetti, Maurizio; Cianchetti, Marco; Gianolini, Stefano; Paola, Vitali; Lomax, Antony J; Widesott, Lamberto

    2012-09-18

    To validate, in the context of adaptive radiotherapy, three commercial software solutions for atlas-based segmentation. Fifteen patients, five for each group, with cancer of the Head&Neck, pleura, and prostate were enrolled in the study. In addition to the treatment planning CT (pCT) images, one replanning CT (rCT) image set was acquired for each patient during the RT course. Three experienced physicians outlined on the pCT and rCT all the volumes of interest (VOIs). We used three software solutions (VelocityAI 2.6.2 (V), MIM 5.1.1 (M) by MIMVista and ABAS 2.0 (A) by CMS-Elekta) to generate the automatic contouring on the repeated CT. All the VOIs obtained with automatic contouring (AC) were successively corrected manually. We recorded the time needed for: 1) ex novo ROIs definition on rCT; 2) generation of AC by the three software solutions; 3) manual correction of AC.To compare the quality of the volumes obtained automatically by the software and manually corrected with those drawn from scratch on rCT, we used the following indexes: overlap coefficient (DICE), sensitivity, inclusiveness index, difference in volume, and displacement differences on three axes (x, y, z) from the isocenter. The time saved by the three software solutions for all the sites, compared to the manual contouring from scratch, is statistically significant and similar for all the three software solutions. The time saved for each site are as follows: about an hour for Head&Neck, about 40 minutes for prostate, and about 20 minutes for mesothelioma. The best DICE similarity coefficient index was obtained with the manual correction for: A (contours for prostate), A and M (contours for H&N), and M (contours for mesothelioma). From a clinical point of view, the automated contouring workflow was shown to be significantly shorter than the manual contouring process, even though manual correction of the VOIs is always needed.

  1. Integer anatomy

    Energy Technology Data Exchange (ETDEWEB)

    Doolittle, R. [ONR, Arlington, VA (United States)

    1994-11-15

    The title integer anatomy is intended to convey the idea of a systematic method for displaying the prime decomposition of the integers. Just as the biological study of anatomy does not teach us all things about behavior of species neither would we expect to learn everything about the number theory from a study of its anatomy. But, some number-theoretic theorems are illustrated by inspection of integer anatomy, which tend to validate the underlying structure and the form as developed and displayed in this treatise. The first statement to be made in this development is: the way structure of the natural numbers is displayed depends upon the allowed operations.

  2. Automatic, accurate, and reproducible segmentation of the brain and cerebro-spinal fluid in T1-weighted volume MRI scans and its application to serial cerebral and intracranial volumetry

    Science.gov (United States)

    Lemieux, Louis

    2001-07-01

    A new fully automatic algorithm for the segmentation of the brain and cerebro-spinal fluid (CSF) from T1-weighted volume MRI scans of the head was specifically developed in the context of serial intra-cranial volumetry. The method is an extension of a previously published brain extraction algorithm. The brain mask is used as a basis for CSF segmentation based on morphological operations, automatic histogram analysis and thresholding. Brain segmentation is then obtained by iterative tracking of the brain-CSF interface. Grey matter (GM), white matter (WM) and CSF volumes are calculated based on a model of intensity probability distribution that includes partial volume effects. Accuracy was assessed using a digital phantom scan. Reproducibility was assessed by segmenting pairs of scans from 20 normal subjects scanned 8 months apart and 11 patients with epilepsy scanned 3.5 years apart. Segmentation accuracy as measured by overlap was 98% for the brain and 96% for the intra-cranial tissues. The volume errors were: total brain (TBV): -1.0%, intra-cranial (ICV):0.1%, CSF: +4.8%. For repeated scans, matching resulted in improved reproducibility. In the controls, the coefficient of reliability (CR) was 1.5% for the TVB and 1.0% for the ICV. In the patients, the Cr for the ICV was 1.2%.

  3. Semi-automatized segmentation method using image-based flow cytometry to study sperm physiology: the case of capacitation-induced tyrosine phosphorylation.

    Science.gov (United States)

    Matamoros-Volante, Arturo; Moreno-Irusta, Ayelen; Torres-Rodriguez, Paulina; Giojalas, Laura; Gervasi, María G; Visconti, Pablo E; Treviño, Claudia L

    2018-02-01

    Is image-based flow cytometry a useful tool to study intracellular events in human sperm such as protein tyrosine phosphorylation or signaling processes? Image-based flow cytometry is a powerful tool to study intracellular events in a relevant number of sperm cells, which enables a robust statistical analysis providing spatial resolution in terms of the specific subcellular localization of the labeling. Sperm capacitation is required for fertilization. During this process, spermatozoa undergo numerous physiological changes, via activation of different signaling pathways, which are not completely understood. Classical approaches for studying sperm physiology include conventional microscopy, flow cytometry and Western blotting. These techniques present disadvantages for obtaining detailed subcellular information of signaling pathways in a relevant number of cells. This work describes a new semi-automatized analysis using image-based flow cytometry which enables the study, at the subcellular and population levels, of different sperm parameters associated with signaling. The increase in protein tyrosine phosphorylation during capacitation is presented as an example. Sperm cells were isolated from seminal plasma by the swim-up technique. We evaluated the intensity and distribution of protein tyrosine phosphorylation in sperm incubated in non-capacitation and capacitation-supporting media for 1 and 18 h under different experimental conditions. We used an antibody against FER kinase and pharmacological inhibitors in an attempt to identify the kinases involved in protein tyrosine phosphorylation during human sperm capacitation. Semen samples from normospermic donors were obtained by masturbation after 2-3 days of sexual abstinence. We used the innovative technique image-based flow cytometry and image analysis tools to segment individual images of spermatozoa. We evaluated and quantified the regions of sperm where protein tyrosine phosphorylation takes place at the

  4. [Key technologies of functional fascicular groups three dimensional visualization of long segmented peripheral nerve based on two-time imaging technique and automatic registration].

    Science.gov (United States)

    Zhang, Yi; Liu, Xiaolin; Zhong, Yingchun; Tang, Ping; Zhou, Jiaming; Qi, Jian; He, Caifeng

    2010-03-01

    To explore and solve the key technologies of the three dimensional (3D) visualization reconstruction of functional fascicular groups inside long segmented peripheral nerve. A 20 cm ulnar nerve from upper arm of fresh adult dead body was embedded by OCT with four pieces of woman's hair which was used as locating material, then the samples were serially horizontally sliced into 400 slices with 15 microm thickness and 0.5 mm interval. All slices were stained with acetylcholinesterase (AchE) histochemical staining. After that, the 2D panorama images of the same slice were obtained with Olympus stereomicroscope and MSHOT MD90 micro figure image device before and after AchE staining. Using the layer processing technique of Photoshop image processing software, the decomposition images including complete 4 location pots were obtained, based on which the algorithm of optimized least square support vector machine (Optimized LS-SVM) and space transformation method was used to fulfill automatic registration. Finally, with artificial assistant outline obtaining, the 3D visualization reconstruction model of functional fascicular groups of 20 cm ulnar nerve was made using Amira 4.1, and the effects of reverse reduction and the suitability of 3D reconstruction software were evaluated. The two-time imaging technique based on the layer process of Photoshop image processing software had the advantages: the image outline had high goodness of fit; the locating pots of merging image was accurate; and the whole procedure was simple and fast. The algorithm of Optimized LS-SVM had high degree of accuracy, and the error rate was only 8.250%. The 3D reconstruction could display the changes of the chiastopic fusion of different nerve functional fascicular groups directly. It could extract alone, merge and combine arbitrarily, and revolve at any angles. Furthermore, the reverse reduction on arbitrarily level dissection of the 3D model was very accurately. Based on the two-time imaging

  5. Computer-assisted segmentation of CT images by statistical region merging for the production of voxel models of anatomy for CT dosimetry

    Czech Academy of Sciences Publication Activity Database

    Caon, M.; Sedlář, Jiří; Bajger, M.; Lee, G.

    2014-01-01

    Roč. 37, č. 2 (2014), s. 393-403 ISSN 0158-9938 Institutional support: RVO:67985556 Keywords : Voxel model * Image segmentation * Statistical region merging * CT dosimetry Subject RIV: JD - Computer Applications, Robotics Impact factor: 0.882, year: 2014 http://library.utia.cas.cz/separaty/2014/ZOI/sedlar-0428537.pdf

  6. Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours

    Science.gov (United States)

    Fritscher, Karl D.; Peroni, Marta; Zaffino, Paolo; Spadea, Maria Francesca; Schubert, Rainer; Sharp, Gregory

    2014-01-01

    Purpose: Accurate delineation of organs at risk (OARs) is a precondition for intensity modulated radiation therapy. However, manual delineation of OARs is time consuming and prone to high interobserver variability. Because of image artifacts and low image contrast between different structures, however, the number of available approaches for autosegmentation of structures in the head-neck area is still rather low. In this project, a new approach for automated segmentation of head-neck CT images that combine the robustness of multiatlas-based segmentation with the flexibility of geodesic active contours and the prior knowledge provided by statistical appearance models is presented. Methods: The presented approach is using an atlas-based segmentation approach in combination with label fusion in order to initialize a segmentation pipeline that is based on using statistical appearance models and geodesic active contours. An anatomically correct approximation of the segmentation result provided by atlas-based segmentation acts as a starting point for an iterative refinement of this approximation. The final segmentation result is based on using model to image registration and geodesic active contours, which are mutually influencing each other. Results: 18 CT images in combination with manually segmented labels of parotid glands and brainstem were used in a leave-one-out cross validation scheme in order to evaluate the presented approach. For this purpose, 50 different statistical appearance models have been created and used for segmentation. Dice coefficient (DC), mean absolute distance and max. Hausdorff distance between the autosegmentation results and expert segmentations were calculated. An average Dice coefficient of DC = 0.81 (right parotid gland), DC = 0.84 (left parotid gland), and DC = 0.86 (brainstem) could be achieved. Conclusions: The presented framework provides accurate segmentation results for three important structures in the head neck area. Compared to a

  7. Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours

    International Nuclear Information System (INIS)

    Fritscher, Karl D.; Sharp, Gregory; Peroni, Marta; Zaffino, Paolo; Spadea, Maria Francesca; Schubert, Rainer

    2014-01-01

    Purpose: Accurate delineation of organs at risk (OARs) is a precondition for intensity modulated radiation therapy. However, manual delineation of OARs is time consuming and prone to high interobserver variability. Because of image artifacts and low image contrast between different structures, however, the number of available approaches for autosegmentation of structures in the head-neck area is still rather low. In this project, a new approach for automated segmentation of head-neck CT images that combine the robustness of multiatlas-based segmentation with the flexibility of geodesic active contours and the prior knowledge provided by statistical appearance models is presented. Methods: The presented approach is using an atlas-based segmentation approach in combination with label fusion in order to initialize a segmentation pipeline that is based on using statistical appearance models and geodesic active contours. An anatomically correct approximation of the segmentation result provided by atlas-based segmentation acts as a starting point for an iterative refinement of this approximation. The final segmentation result is based on using model to image registration and geodesic active contours, which are mutually influencing each other. Results: 18 CT images in combination with manually segmented labels of parotid glands and brainstem were used in a leave-one-out cross validation scheme in order to evaluate the presented approach. For this purpose, 50 different statistical appearance models have been created and used for segmentation. Dice coefficient (DC), mean absolute distance and max. Hausdorff distance between the autosegmentation results and expert segmentations were calculated. An average Dice coefficient of DC = 0.81 (right parotid gland), DC = 0.84 (left parotid gland), and DC = 0.86 (brainstem) could be achieved. Conclusions: The presented framework provides accurate segmentation results for three important structures in the head neck area. Compared to a

  8. Regulatory Anatomy

    DEFF Research Database (Denmark)

    Hoeyer, Klaus

    2015-01-01

    , legal documents, technological devices, organizational structures, and work practices aimed at minimizing risk. I use this term to reorient the analytical attention with respect to safety regulation. Instead of evaluating whether safety is achieved, the point is to explore the types of “safety” produced...... they arise. In short, I expose the regulatory anatomy of the policy landscape....

  9. Segmentation of human skull in MRI using statistical shape information from CT data.

    Science.gov (United States)

    Wang, Defeng; Shi, Lin; Chu, Winnie C W; Cheng, Jack C Y; Heng, Pheng Ann

    2009-09-01

    To automatically segment the skull from the MRI data using a model-based three-dimensional segmentation scheme. This study exploited the statistical anatomy extracted from the CT data of a group of subjects by means of constructing an active shape model of the skull surfaces. To construct a reliable shape model, a novel approach was proposed to optimize the automatic landmarking on the coupled surfaces (i.e., the skull vault) by minimizing the description length that incorporated local thickness information. This model was then used to locate the skull shape in MRI of a different group of patients. Compared with performing landmarking separately on the coupled surfaces, the proposed landmarking method constructed models that had better generalization ability and specificity. The segmentation accuracies were measured by the Dice coefficient and the set difference, and compared with the method based on mathematical morphology operations. The proposed approach using the active shape model based on the statistical skull anatomy presented in the head CT data contributes to more reliable segmentation of the skull from MRI data.

  10. Automated fetal brain segmentation from 2D MRI slices for motion correction.

    Science.gov (United States)

    Keraudren, K; Kuklisova-Murgasova, M; Kyriakopoulou, V; Malamateniou, C; Rutherford, M A; Kainz, B; Hajnal, J V; Rueckert, D

    2014-11-01

    Motion correction is a key element for imaging the fetal brain in-utero using Magnetic Resonance Imaging (MRI). Maternal breathing can introduce motion, but a larger effect is frequently due to fetal movement within the womb. Consequently, imaging is frequently performed slice-by-slice using single shot techniques, which are then combined into volumetric images using slice-to-volume reconstruction methods (SVR). For successful SVR, a key preprocessing step is to isolate fetal brain tissues from maternal anatomy before correcting for the motion of the fetal head. This has hitherto been a manual or semi-automatic procedure. We propose an automatic method to localize and segment the brain of the fetus when the image data is acquired as stacks of 2D slices with anatomy misaligned due to fetal motion. We combine this segmentation process with a robust motion correction method, enabling the segmentation to be refined as the reconstruction proceeds. The fetal brain localization process uses Maximally Stable Extremal Regions (MSER), which are classified using a Bag-of-Words model with Scale-Invariant Feature Transform (SIFT) features. The segmentation process is a patch-based propagation of the MSER regions selected during detection, combined with a Conditional Random Field (CRF). The gestational age (GA) is used to incorporate prior knowledge about the size and volume of the fetal brain into the detection and segmentation process. The method was tested in a ten-fold cross-validation experiment on 66 datasets of healthy fetuses whose GA ranged from 22 to 39 weeks. In 85% of the tested cases, our proposed method produced a motion corrected volume of a relevant quality for clinical diagnosis, thus removing the need for manually delineating the contours of the brain before motion correction. Our method automatically generated as a side-product a segmentation of the reconstructed fetal brain with a mean Dice score of 93%, which can be used for further processing. Copyright

  11. The Anatomy of Learning Anatomy

    Science.gov (United States)

    Wilhelmsson, Niklas; Dahlgren, Lars Owe; Hult, Hakan; Scheja, Max; Lonka, Kirsti; Josephson, Anna

    2010-01-01

    The experience of clinical teachers as well as research results about senior medical students' understanding of basic science concepts has much been debated. To gain a better understanding about how this knowledge-transformation is managed by medical students, this work aims at investigating their ways of setting about learning anatomy.…

  12. Automatic skull segmentation from MR images for realistic volume conductor models of the head: Assessment of the state-of-the-art

    DEFF Research Database (Denmark)

    Nielsen, Jesper Duemose; Madsen, Kristoffer Hougaard; Puonti, Oula

    2018-01-01

    three methods for skull segmentation, namely FSL BET2, the unified segmentation routine of SPM12 with extended spatial tissue priors, and the skullfinder tool of BrainSuite. To our knowledge, this study is the first to rigorously assess the accuracy of these state-of-the-art tools by comparison with CT...... models based on tetrahedral meshes, which are distributed as part of the open-source software package SimNIBS for field calculations for transcranial brain stimulation....

  13. Interactive segmentation in MRI for orthopedic surgery planning: bone tissue.

    Science.gov (United States)

    Ozdemir, Firat; Karani, Neerav; Fürnstahl, Philipp; Goksel, Orcun

    2017-06-01

    Planning orthopedic surgeries is commonly performed in computed tomography (CT) images due to the higher contrast of bony structure. However, soft tissues such as muscles and ligaments that may determine the functional outcome of a procedure are not easy to identify in CT, for which fast and accurate segmentation in MRI would be desirable. To be usable in daily practice, such method should provide convenient means of interaction for modifications and corrections, e.g., during perusal by the surgeon or the planning physician for quality control. We propose an interactive segmentation framework for MR images and evaluate the outcome for segmentation of bones. We use a random forest classification and a random walker-based spatial regularization. The latter enables the incorporation of user input as well as enforcing a single connected anatomical structures, thanks to which a selective sampling strategy is proposed to substantially improve the supervised learning performance. We evaluated our segmentation framework on 10 patient humerus MRI as well as 4 high-resolution MRI from volunteers. Interactive humerus segmentations for patients took on average 150 s with over 3.5 times time-gain compared to manual segmentations, with accuracies comparable (converging) to that of much longer interactions. For high-resolution data, a novel multi-resolution random walker strategy further reduced the run time over 20 times of the manual segmentation, allowing for a feasible interactive segmentation framework. We present a segmentation framework that allows iterative corrections leading to substantial speed gains in bone annotation in MRI. This will allow us to pursue semi-automatic segmentations of other musculoskeletal anatomy first in a user-in-the-loop manner, where later less user interactions or perhaps only few for quality control will be necessary as our annotation suggestions improve.

  14. Image segmentation, evaluation, and applications

    OpenAIRE

    McGuinness, Kevin

    2010-01-01

    This thesis aims to advance research in image segmentation by developing robust techniques for evaluating image segmentation algorithms. The key contributions of this work are as follows. First, we investigate the characteristics of existing measures for supervised evaluation of automatic image segmentation algorithms. We show which of these measures is most effective at distinguishing perceptually accurate image segmentation from inaccurate segmentation. We then apply these measures to evalu...

  15. Algorithm for the automatic computation of the modified Anderson-Wilkins acuteness score of ischemia from the pre-hospital ECG in ST-segment elevation myocardial infarction

    DEFF Research Database (Denmark)

    Fakhri, Yama; Sejersten, Maria; Schoos, Mikkel Malby

    2017-01-01

    acute) to 4 (most acute)) identifies patients with substantial myocardial salvage potential regardless of patient reported symptom duration. However, due to the complexity of the score, it is not used in clinical practice. Therefore, we aimed to develop a reliable algorithm that automatically computes...

  16. Unraveling Pancreatic Segmentation.

    Science.gov (United States)

    Renard, Yohann; de Mestier, Louis; Perez, Manuela; Avisse, Claude; Lévy, Philippe; Kianmanesh, Reza

    2018-04-01

    Limited pancreatic resections are increasingly performed, but the rate of postoperative fistula is higher than after classical resections. Pancreatic segmentation, anatomically and radiologically identifiable, may theoretically help the surgeon removing selected anatomical portions with their own segmental pancreatic duct and thus might decrease the postoperative fistula rate. We aimed at systematically and comprehensively reviewing the previously proposed pancreatic segmentations and discuss their relevance and limitations. PubMed database was searched for articles investigating pancreatic segmentation, including human or animal anatomy, and cadaveric or surgical studies. Overall, 47/99 articles were selected and grouped into 4 main hypotheses of pancreatic segmentation methodology: anatomic, vascular, embryologic and lymphatic. The head, body and tail segments are gross description without distinct borders. The arterial territories defined vascular segments and isolate an isthmic paucivascular area. The embryological theory relied on the fusion plans of the embryological buds. The lymphatic drainage pathways defined the lymphatic segmentation. These theories had differences, but converged toward separating the head and body/tail parts, and the anterior from posterior and inferior parts of the pancreatic head. The rate of postoperative fistula was not decreased when surgical resection was performed following any of these segmentation theories; hence, none of them appeared relevant enough to guide pancreatic transections. Current pancreatic segmentation theories do not enable defining anatomical-surgical pancreatic segments. Other approaches should be explored, in particular focusing on pancreatic ducts, through pancreatic ducts reconstructions and embryologic 3D modelization.

  17. Segmentation and segment connection of obstructed colon

    Science.gov (United States)

    Medved, Mario; Truyen, Roel; Likar, Bostjan; Pernus, Franjo

    2004-05-01

    Segmentation of colon CT images is the main factor that inhibits automation of virtual colonoscopy. There are two main reasons that make efficient colon segmentation difficult. First, besides the colon, the small bowel, lungs, and stomach are also gas-filled organs in the abdomen. Second, peristalsis or residual feces often obstruct the colon, so that it consists of multiple gas-filled segments. In virtual colonoscopy, it is very useful to automatically connect the centerlines of these segments into a single colon centerline. Unfortunately, in some cases this is a difficult task. In this study a novel method for automated colon segmentation and connection of colon segments' centerlines is proposed. The method successfully combines features of segments, such as centerline and thickness, with information on main colon segments. The results on twenty colon cases show that the method performs well in cases of small obstructions of the colon. Larger obstructions are mostly also resolved properly, especially if they do not appear in the sigmoid part of the colon. Obstructions in the sigmoid part of the colon sometimes cause improper classification of the small bowel segments. If a segment is too small, it is classified as the small bowel segment. However, such misclassifications have little impact on colon analysis.

  18. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks.

    Science.gov (United States)

    Men, Kuo; Dai, Jianrong; Li, Yexiong

    2017-12-01

    Delineation of the clinical target volume (CTV) and organs at risk (OARs) is very important for radiotherapy but is time-consuming and prone to inter-observer variation. Here, we proposed a novel deep dilated convolutional neural network (DDCNN)-based method for fast and consistent auto-segmentation of these structures. Our DDCNN method was an end-to-end architecture enabling fast training and testing. Specifically, it employed a novel multiple-scale convolutional architecture to extract multiple-scale context features in the early layers, which contain the original information on fine texture and boundaries and which are very useful for accurate auto-segmentation. In addition, it enlarged the receptive fields of dilated convolutions at the end of networks to capture complementary context features. Then, it replaced the fully connected layers with fully convolutional layers to achieve pixel-wise segmentation. We used data from 278 patients with rectal cancer for evaluation. The CTV and OARs were delineated and validated by senior radiation oncologists in the planning computed tomography (CT) images. A total of 218 patients chosen randomly were used for training, and the remaining 60 for validation. The Dice similarity coefficient (DSC) was used to measure segmentation accuracy. Performance was evaluated on segmentation of the CTV and OARs. In addition, the performance of DDCNN was compared with that of U-Net. The proposed DDCNN method outperformed the U-Net for all segmentations, and the average DSC value of DDCNN was 3.8% higher than that of U-Net. Mean DSC values of DDCNN were 87.7% for the CTV, 93.4% for the bladder, 92.1% for the left femoral head, 92.3% for the right femoral head, 65.3% for the intestine, and 61.8% for the colon. The test time was 45 s per patient for segmentation of all the CTV, bladder, left and right femoral heads, colon, and intestine. We also assessed our approaches and results with those in the literature: our system showed superior

  19. Rapid automatic segmentation of abnormal tissue in late gadolinium enhancement cardiovascular magnetic resonance images for improved management of long-standing persistent atrial fibrillation.

    Science.gov (United States)

    Giannakidis, Archontis; Nyktari, Eva; Keegan, Jennifer; Pierce, Iain; Suman Horduna, Irina; Haldar, Shouvik; Pennell, Dudley J; Mohiaddin, Raad; Wong, Tom; Firmin, David N

    2015-10-07

    Atrial fibrillation (AF) is the most common heart rhythm disorder. In order for late Gd enhancement cardiovascular magnetic resonance (LGE CMR) to ameliorate the AF management, the ready availability of the accurate enhancement segmentation is required. However, the computer-aided segmentation of enhancement in LGE CMR of AF is still an open question. Additionally, the number of centres that have reported successful application of LGE CMR to guide clinical AF strategies remains low, while the debate on LGE CMR's diagnostic ability for AF still holds. The aim of this study is to propose a method that reliably distinguishes enhanced (abnormal) from non-enhanced (healthy) tissue within the left atrial wall of (pre-ablation and 3 months post-ablation) LGE CMR data-sets from long-standing persistent AF patients studied at our centre. Enhancement segmentation was achieved by employing thresholds benchmarked against the statistics of the whole left atrial blood-pool (LABP). The test-set cross-validation mechanism was applied to determine the input feature representation and algorithm that best predict enhancement threshold levels. Global normalized intensity threshold levels T PRE  = 1 1/4 and T POST  = 1 5/8 were found to segment enhancement in data-sets acquired pre-ablation and at 3 months post-ablation, respectively. The segmentation results were corroborated by using visual inspection of LGE CMR brightness levels and one endocardial bipolar voltage map. The measured extent of pre-ablation fibrosis fell within the normal range for the specific arrhythmia phenotype. 3D volume renderings of segmented post-ablation enhancement emulated the expected ablation lesion patterns. By comparing our technique with other related approaches that proposed different threshold levels (although they also relied on reference regions from within the LABP) for segmenting enhancement in LGE CMR data-sets of AF patients, we illustrated that the cut-off levels employed by other centres

  20. Thymus Gland Anatomy

    Science.gov (United States)

    ... hyphen, e.g. -historical Searches are case-insensitive Thymus Gland, Adult, Anatomy Add to My Pictures View / ... 1500x1200 View Download Large: 3000x2400 View Download Title: Thymus Gland, Adult, Anatomy Description: Anatomy of the thymus ...

  1. Normal Pancreas Anatomy

    Science.gov (United States)

    ... e.g. -historical Searches are case-insensitive Pancreas Anatomy Add to My Pictures View /Download : Small: 761x736 ... View Download Large: 3172x3068 View Download Title: Pancreas Anatomy Description: Anatomy of the pancreas; drawing shows the ...

  2. Quick Dissection of the Segmental Bronchi

    Science.gov (United States)

    Nakajima, Yuji

    2010-01-01

    Knowledge of the three-dimensional anatomy of the bronchopulmonary segments is essential for respiratory medicine. This report describes a quick guide for dissecting the segmental bronchi in formaldehyde-fixed human material. All segmental bronchi are easy to dissect, and thus, this exercise will help medical students to better understand the…

  3. AUTOMATIC LUNG NODULE SEGMENTATION USING AUTOSEED REGION GROWING WITH MORPHOLOGICAL MASKING (ARGMM AND FEATURE EX-TRACTION THROUGH COMPLETE LOCAL BINARY PATTERN AND MICROSCOPIC INFORMATION PATTERN

    Directory of Open Access Journals (Sweden)

    Senthil Kumar

    2015-04-01

    Full Text Available An efficient Autoseed Region Growing with Morphological Masking(ARGMM is imple-mented in this paper on the Lung CT Slice to segment the 'Lung Nodules',which may be the potential indicator for the Lung Cancer. The segmentation of lung nodules car-ried out in this paper through Multi-Thresholding, ARGMM and Level Set Evolution. ARGMM takes twice the time compared to Level Set, but still the number of suspected segmented nodules are doubled, which make sure that no potential cancerous nodules go unnoticed at the earlier stages of diagnosis. It is very important not to panic the patient by finding the presence of nodules from Lung CT scan. Only 40 percent of nod-ules can be cancerous. Hence, in this paper an efficient Shape and Texture analysis is computed to quantitatively describe the segmented lung nodules. The Frequency spectrum of the lung nodules is developed and its frequency domain features are com-puted. The Complete Local binary pattern of lung nodules is computed in this paper by constructing the combine histogram of Sign and Magnitude Local Binary Patterns. Lo-cal Configuration Pattern is also determined in this work for lung nodules to numeri-cally model the microscopic information of nodules pattern.

  4. Segmentation of radiographic images under topological constraints: application to the femur

    International Nuclear Information System (INIS)

    Gamage, Pavan; Xie, Sheng Quan; Delmas, Patrice; Xu, Wei Liang

    2010-01-01

    A framework for radiographic image segmentation under topological control based on two-dimensional (2D) image analysis was developed. The system is intended for use in common radiological tasks including fracture treatment analysis, osteoarthritis diagnostics and osteotomy management planning. The segmentation framework utilizes a generic three-dimensional (3D) model of the bone of interest to define the anatomical topology. Non-rigid registration is performed between the projected contours of the generic 3D model and extracted edges of the X-ray image to achieve the segmentation. For fractured bones, the segmentation requires an additional step where a region-based active contours curve evolution is performed with a level set Mumford-Shah method to obtain the fracture surface edge. The application of the segmentation framework to analysis of human femur radiographs was evaluated. The proposed system has two major innovations. First, definition of the topological constraints does not require a statistical learning process, so the method is generally applicable to a variety of bony anatomy segmentation problems. Second, the methodology is able to handle both intact and fractured bone segmentation. Testing on clinical X-ray images yielded an average root mean squared distance (between the automatically segmented femur contour and the manual segmented ground truth) of 1.10 mm with a standard deviation of 0.13 mm. The proposed point correspondence estimation algorithm was benchmarked against three state-of-the-art point matching algorithms, demonstrating successful non-rigid registration for the cases of interest. A topologically constrained automatic bone contour segmentation framework was developed and tested, providing robustness to noise, outliers, deformations and occlusions. (orig.)

  5. Segmentation of radiographic images under topological constraints: application to the femur

    Energy Technology Data Exchange (ETDEWEB)

    Gamage, Pavan; Xie, Sheng Quan [University of Auckland, Department of Mechanical Engineering (Mechatronics), Auckland (New Zealand); Delmas, Patrice [University of Auckland, Department of Computer Science, Auckland (New Zealand); Xu, Wei Liang [Massey University, School of Engineering and Advanced Technology, Auckland (New Zealand)

    2010-09-15

    A framework for radiographic image segmentation under topological control based on two-dimensional (2D) image analysis was developed. The system is intended for use in common radiological tasks including fracture treatment analysis, osteoarthritis diagnostics and osteotomy management planning. The segmentation framework utilizes a generic three-dimensional (3D) model of the bone of interest to define the anatomical topology. Non-rigid registration is performed between the projected contours of the generic 3D model and extracted edges of the X-ray image to achieve the segmentation. For fractured bones, the segmentation requires an additional step where a region-based active contours curve evolution is performed with a level set Mumford-Shah method to obtain the fracture surface edge. The application of the segmentation framework to analysis of human femur radiographs was evaluated. The proposed system has two major innovations. First, definition of the topological constraints does not require a statistical learning process, so the method is generally applicable to a variety of bony anatomy segmentation problems. Second, the methodology is able to handle both intact and fractured bone segmentation. Testing on clinical X-ray images yielded an average root mean squared distance (between the automatically segmented femur contour and the manual segmented ground truth) of 1.10 mm with a standard deviation of 0.13 mm. The proposed point correspondence estimation algorithm was benchmarked against three state-of-the-art point matching algorithms, demonstrating successful non-rigid registration for the cases of interest. A topologically constrained automatic bone contour segmentation framework was developed and tested, providing robustness to noise, outliers, deformations and occlusions. (orig.)

  6. Automatic analysis of multiparty meetings

    Indian Academy of Sciences (India)

    AMI) meeting corpus, the development of a meeting speech recognition system, and systems for the automatic segmentation, summarization and social processing of meetings, together with some example applications based on these systems.

  7. The ICSI+ Multilingual Sentence Segmentation System

    National Research Council Canada - National Science Library

    Zimmerman, M; Hakkani-Tuer, D; Fung, J; Mirghafori, N; Gottlieb, L; Shriberg, E; Liu, Y

    2006-01-01

    The ICSI+ multilingual sentence segmentation with results for English and Mandarin broadcast news automatic speech recognizer transcriptions represents a joint effort involving ICSI, SRI, and UT Dallas...

  8. Automatic Segmentation of the Corpus Callosum Using a Cell-Competition Algorithm: Diffusion Tensor Imaging-Based Evaluation of Callosal Atrophy and Tissue Alterations in Patients With Systemic Lupus Erythematosus.

    Science.gov (United States)

    Lee, Shiou-Ping; Wu, Chien-Sheng; Cheng, Jie-Zhi; Chen, Chung-Ming; Chen, Yu-Chiang; Chou, Ming-Chung

    2015-01-01

    Patients with neuropsychiatric systemic lupus erythematosus (NPSLE) may exhibit corpus callosal atrophy and tissue alterations. Measuring the callosal volume and tissue integrity using diffusion tensor imaging (DTI) could help to differentiate patients with NPSLE from patients without NPSLE. Hence, this study aimed to use an automatic cell-competition algorithm to segment the corpus callosum and to investigate the effects of central nervous system (CNS) involvement on the callosal volume and tissue integrity in patients with SLE. Twenty-two SLE patients with (N = 10, NPSLE) and without (N = 12, non-NPSLE) CNS involvement and 22 control subjects were enrolled in this study. For volumetric measurement, a cell-competition algorithm was used to automatically delineate corpus callosal boundaries based on a midsagittal fractional anisotropy (FA) map. After obtaining corpus callosal boundaries for all subjects, the volume, FA, and mean diffusivity (MD) of the corpus callosum were calculated. A post hoc Tamhane's T2 analysis was performed to statistically compare differences among NPSLE, non-NPSLE, and control subjects. A receiver operating characteristic curve analysis was also performed to compare the performance of the volume, FA, and MD of the corpus callosum in differentiating NPSLE from other subjects. Patients with NPSLE had significant decreases in volume and FA but an increase in MD in the corpus callosum compared with control subjects, whereas no significant difference was noted between patients without NPSLE and control subjects. The FA was found to have better performance in differentiating NPSLE from other subjects. A cell-competition algorithm could be used to automatically evaluate callosal atrophy and tissue alterations. Assessments of the corpus callosal volume and tissue integrity helped to demonstrate the effects of CNS involvement in patients with SLE.

  9. Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth

    Science.gov (United States)

    A., Javadpour; A., Mohammadi

    2016-01-01

    Background Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging. Objective This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regional growth. Methods Among medical imaging methods, brains MRI segmentation is important due to high contrast of non-intrusive soft tissue and high spatial resolution. Size variations of brain tissues are often accompanied by various diseases such as Alzheimer’s disease. As our knowledge about the relation between various brain diseases and deviation of brain anatomy increases, MRI segmentation is exploited as the first step in early diagnosis. In this paper, regional growth method and auto-mate selection of initial points by genetic algorithm is used to introduce a new method for MRI segmentation. Primary pixels and similarity criterion are automatically by genetic algorithms to maximize the accuracy and validity in image segmentation. Results By using genetic algorithms and defining the fixed function of image segmentation, the initial points for the algorithm were found. The proposed algorithms are applied to the images and results are manually selected by regional growth in which the initial points were compared. The results showed that the proposed algorithm could reduce segmentation error effectively. Conclusion The study concluded that the proposed algorithm could reduce segmentation error effectively and help us to diagnose brain diseases. PMID:27672629

  10. Head segmentation in vertebrates

    OpenAIRE

    Kuratani, Shigeru; Schilling, Thomas

    2008-01-01

    Classic theories of vertebrate head segmentation clearly exemplify the idealistic nature of comparative embryology prior to the 20th century. Comparative embryology aimed at recognizing the basic, primary structure that is shared by all vertebrates, either as an archetype or an ancestral developmental pattern. Modern evolutionary developmental (Evo-Devo) studies are also based on comparison, and therefore have a tendency to reduce complex embryonic anatomy into overly simplified patterns. Her...

  11. Segmentation models diversity for object proposals

    NARCIS (Netherlands)

    Manfredi, M.; Grana, C.; Cucchiara, R.; Smeulders, A.W.M.

    In this paper we present a segmentation proposal method which employs a box-hypotheses generation step followed by a lightweight segmentation strategy. Inspired by interactive segmentation, for each automatically placed bounding-box we compute a precise segmentation mask. We introduce diversity in

  12. Automatic lithofacies segmentation from well-logs data. A comparative study between the Self-Organizing Map (SOM) and Walsh transform

    Science.gov (United States)

    Aliouane, Leila; Ouadfeul, Sid-Ali; Rabhi, Abdessalem; Rouina, Fouzi; Benaissa, Zahia; Boudella, Amar

    2013-04-01

    The main goal of this work is to realize a comparison between two lithofacies segmentation techniques of reservoir interval. The first one is based on the Kohonen's Self-Organizing Map neural network machine. The second technique is based on the Walsh transform decomposition. Application to real well-logs data of two boreholes located in the Algerian Sahara shows that the Self-organizing map is able to provide more lithological details that the obtained lithofacies model given by the Walsh decomposition. Keywords: Comparison, Lithofacies, SOM, Walsh References: 1)Aliouane, L., Ouadfeul, S., Boudella, A., 2011, Fractal analysis based on the continuous wavelet transform and lithofacies classification from well-logs data using the self-organizing map neural network, Arabian Journal of geosciences, doi: 10.1007/s12517-011-0459-4 2) Aliouane, L., Ouadfeul, S., Djarfour, N., Boudella, A., 2012, Petrophysical Parameters Estimation from Well-Logs Data Using Multilayer Perceptron and Radial Basis Function Neural Networks, Lecture Notes in Computer Science Volume 7667, 2012, pp 730-736, doi : 10.1007/978-3-642-34500-5_86 3)Ouadfeul, S. and Aliouane., L., 2011, Multifractal analysis revisited by the continuous wavelet transform applied in lithofacies segmentation from well-logs data, International journal of applied physics and mathematics, Vol01 N01. 4) Ouadfeul, S., Aliouane, L., 2012, Lithofacies Classification Using the Multilayer Perceptron and the Self-organizing Neural Networks, Lecture Notes in Computer Science Volume 7667, 2012, pp 737-744, doi : 10.1007/978-3-642-34500-5_87 5) Weisstein, Eric W. "Fast Walsh Transform." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/FastWalshTransform.html

  13. Automatic generation of digital anthropomorphic phantoms from simulated MRI acquisitions

    Science.gov (United States)

    Lindsay, C.; Gennert, M. A.; KÓ§nik, A.; Dasari, P. K.; King, M. A.

    2013-03-01

    In SPECT imaging, motion from patient respiration and body motion can introduce image artifacts that may reduce the diagnostic quality of the images. Simulation studies using numerical phantoms with precisely known motion can help to develop and evaluate motion correction algorithms. Previous methods for evaluating motion correction algorithms used either manual or semi-automated segmentation of MRI studies to produce patient models in the form of XCAT Phantoms, from which one calculates the transformation and deformation between MRI study and patient model. Both manual and semi-automated methods of XCAT Phantom generation require expertise in human anatomy, with the semiautomated method requiring up to 30 minutes and the manual method requiring up to eight hours. Although faster than manual segmentation, the semi-automated method still requires a significant amount of time, is not replicable, and is subject to errors due to the difficulty of aligning and deforming anatomical shapes in 3D. We propose a new method for matching patient models to MRI that extends the previous semi-automated method by eliminating the manual non-rigid transformation. Our method requires no user supervision and therefore does not require expert knowledge of human anatomy to align the NURBs to anatomical structures in the MR image. Our contribution is employing the SIMRI MRI simulator to convert the XCAT NURBs to a voxel-based representation that is amenable to automatic non-rigid registration. Then registration is used to transform and deform the NURBs to match the anatomy in the MR image. We show that our automated method generates XCAT Phantoms more robustly and significantly faster than the previous semi-automated method.

  14. Validation tools for image segmentation

    Science.gov (United States)

    Padfield, Dirk; Ross, James

    2009-02-01

    A large variety of image analysis tasks require the segmentation of various regions in an image. For example, segmentation is required to generate accurate models of brain pathology that are important components of modern diagnosis and therapy. While the manual delineation of such structures gives accurate information, the automatic segmentation of regions such as the brain and tumors from such images greatly enhances the speed and repeatability of quantifying such structures. The ubiquitous need for such algorithms has lead to a wide range of image segmentation algorithms with various assumptions, parameters, and robustness. The evaluation of such algorithms is an important step in determining their effectiveness. Therefore, rather than developing new segmentation algorithms, we here describe validation methods for segmentation algorithms. Using similarity metrics comparing the automatic to manual segmentations, we demonstrate methods for optimizing the parameter settings for individual cases and across a collection of datasets using the Design of Experiment framework. We then employ statistical analysis methods to compare the effectiveness of various algorithms. We investigate several region-growing algorithms from the Insight Toolkit and compare their accuracy to that of a separate statistical segmentation algorithm. The segmentation algorithms are used with their optimized parameters to automatically segment the brain and tumor regions in MRI images of 10 patients. The validation tools indicate that none of the ITK algorithms studied are able to outperform with statistical significance the statistical segmentation algorithm although they perform reasonably well considering their simplicity.

  15. Robust optic nerve segmentation on clinically acquired CT

    Science.gov (United States)

    Panda, Swetasudha; Asman, Andrew J.; DeLisi, Michael P.; Mawn, Louise A.; Galloway, Robert L.; Landman, Bennett A.

    2014-03-01

    The optic nerve is a sensitive central nervous system structure, which plays a critical role in many devastating pathological conditions. Several methods have been proposed in recent years to segment the optic nerve automatically, but progress toward full automation has been limited. Multi-atlas methods have been successful for brain segmentation, but their application to smaller anatomies remains relatively unexplored. Herein we evaluate a framework for robust and fully automated segmentation of the optic nerves, eye globes and muscles. We employ a robust registration procedure for accurate registrations, variable voxel resolution and image fieldof- view. We demonstrate the efficacy of an optimal combination of SyN registration and a recently proposed label fusion algorithm (Non-local Spatial STAPLE) that accounts for small-scale errors in registration correspondence. On a dataset containing 30 highly varying computed tomography (CT) images of the human brain, the optimal registration and label fusion pipeline resulted in a median Dice similarity coefficient of 0.77, symmetric mean surface distance error of 0.55 mm, symmetric Hausdorff distance error of 3.33 mm for the optic nerves. Simultaneously, we demonstrate the robustness of the optimal algorithm by segmenting the optic nerve structure in 316 CT scans obtained from 182 subjects from a thyroid eye disease (TED) patient population.

  16. Segmentation of tongue muscles from super-resolution magnetic resonance images.

    Science.gov (United States)

    Ibragimov, Bulat; Prince, Jerry L; Murano, Emi Z; Woo, Jonghye; Stone, Maureen; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2015-02-01

    Imaging and quantification of tongue anatomy is helpful in surgical planning, post-operative rehabilitation of tongue cancer patients, and studying of how humans adapt and learn new strategies for breathing, swallowing and speaking to compensate for changes in function caused by disease, medical interventions or aging. In vivo acquisition of high-resolution three-dimensional (3D) magnetic resonance (MR) images with clearly visible tongue muscles is currently not feasible because of breathing and involuntary swallowing motions that occur over lengthy imaging times. However, recent advances in image reconstruction now allow the generation of super-resolution 3D MR images from sets of orthogonal images, acquired at a high in-plane resolution and combined using super-resolution techniques. This paper presents, to the best of our knowledge, the first attempt towards automatic tongue muscle segmentation from MR images. We devised a database of ten super-resolution 3D MR images, in which the genioglossus and inferior longitudinalis tongue muscles were manually segmented and annotated with landmarks. We demonstrate the feasibility of segmenting the muscles of interest automatically by applying the landmark-based game-theoretic framework (GTF), where a landmark detector based on Haar-like features and an optimal assignment-based shape representation were integrated. The obtained segmentation results were validated against an independent manual segmentation performed by a second observer, as well as against B-splines and demons atlasing approaches. The segmentation performance resulted in mean Dice coefficients of 85.3%, 81.8%, 78.8% and 75.8% for the second observer, GTF, B-splines atlasing and demons atlasing, respectively. The obtained level of segmentation accuracy indicates that computerized tongue muscle segmentation may be used in surgical planning and treatment outcome analysis of tongue cancer patients, and in studies of normal subjects and subjects with speech and

  17. Atlas-based segmentation of developing tissues in the human brain with quantitative validation in young fetuses.

    Science.gov (United States)

    Habas, Piotr A; Kim, Kio; Rousseau, Francois; Glenn, Orit A; Barkovich, A James; Studholme, Colin

    2010-09-01

    Imaging of the human fetus using magnetic resonance (MR) is an essential tool for quantitative studies of normal as well as abnormal brain development in utero. However, because of fundamental differences in tissue types, tissue properties and tissue distribution between the fetal and adult brain, automated tissue segmentation techniques developed for adult brain anatomy are unsuitable for this data. In this paper, we describe methodology for automatic atlas-based segmentation of individual tissue types in motion-corrected 3D volumes reconstructed from clinical MR scans of the fetal brain. To generate anatomically correct automatic segmentations, we create a set of accurate manual delineations and build an in utero 3D statistical atlas of tissue distribution incorporating developing gray and white matter as well as transient tissue types such as the germinal matrix. The probabilistic atlas is associated with an unbiased average shape and intensity template for registration of new subject images to the space of the atlas. Quantitative whole brain 3D validation of tissue labeling performed on a set of 14 fetal MR scans (20.57-22.86 weeks gestational age) demonstrates that this atlas-based EM segmentation approach achieves consistently high DSC performance for the main tissue types in the fetal brain. This work indicates that reliable measures of brain development can be automatically derived from clinical MR imaging and opens up possibility of further 3D volumetric and morphometric studies with multiple fetal subjects. Hum Brain Mapp, 2010. © 2010 Wiley-Liss, Inc.

  18. A new prostate segmentation approach using multispectral magnetic resonance imaging and a statistical pattern classifier

    NARCIS (Netherlands)

    Maan, Bianca; van der Heijden, Ferdinand; Fütterer, Jurgen J.; Haynor, David R.; Ourselin, Sébastien

    2012-01-01

    Prostate segmentation is essential for calculating prostate volume, creating patient-specific prostate anatomical models and image fusion. Automatic segmentation methods are preferable because manual segmentation is timeconsuming and highly subjective. Most of the currently available segmentation

  19. Normal Female Reproductive Anatomy

    Science.gov (United States)

    ... an inner lining called the endometrium. Normal female reproductive system anatomy. Topics/Categories: Anatomy -- Gynecologic Type: Color, Medical Illustration Source: National Cancer Institute Creator: Terese Winslow (Illustrator) AV Number: CDR609921 Date Created: November 17, 2014 Date Added: ...

  20. Automatic transcription of continuous speech into syllable-like units ...

    Indian Academy of Sciences (India)

    Abstract. The focus of this paper is to automatically segment and label continu- ous speech signal into syllable-like units for Indian languages. In this approach, the continuous speech signal is first automatically segmented into syllable-like units using group delay based algorithm. Similar syllable segments are then grouped.

  1. Dosimetric evaluation of an automatic segmentation tool of pelvic structures from MRI images for prostate cancer radiotherapy; Evaluation dosimetrique d'un outil de delineation automatique des organes pelviens a partir d'images IRM pour la radiotherapie du cancer prostatique

    Energy Technology Data Exchange (ETDEWEB)

    Pasquier, D.; Lacornerie, T.; Lartigau, E. [Centre Oscar-Lambret, Dept. Universitaire de Radiotherapie, 59 - Lille (France); Pasquier, D. [Centre Galilee, Polyclinique de la Louviere, 59 - Lille (France); Pasquier, D.; Betrouni, N.; Vermandel, M.; Rousseau, J. [Lille-2 Univ., U703 Thiais, Inserm, Lab. de Biophysique EA 1049, Institut de Technologie Medicale, CHU de Lille, 59 (France)

    2008-09-15

    Purpose: An automatic segmentation tool of pelvic structures from MRI images for prostate cancer radiotherapy was developed and dosimetric evaluation of differences of delineation (automatic versus human) is presented here. Materials and methods: C.T.V. (clinical target volume), rectum and bladder were defined automatically and by a physician in 20 patients. Treatment plans based on 'automatic' volumes were transferred on 'manual' volumes and reciprocally. Dosimetric characteristics of P.T.V. (V.95, minimal, maximal and mean doses), rectum (V.50, V.70, maximal and mean doses) and bladder (V.70, maximal and mean doses) were compared. Results: Automatic delineation of C.T.V. did not significantly influence dosimetric characteristics of 'manual' P.T.V. (projected target volume). Rectal V-50 and V.70 were not significantly different; mean rectal dose is slightly superior (43.2 versus 44.4 Gy, p = 0.02, Student test). Bladder V.70 was significantly superior too (19.3 versus 21.6, p = 0.004). Organ-at-risk (O.A.R.) automatic delineation had little influence on their dosimetric characteristics; rectal V.70 was slightly underestimated (20 versus 18.5 Gy, p = 0.001). Conclusion: C.T.V. and O.A.R. automatic delineation had little influence on dosimetric characteristics. Software developments are ongoing to enable routine use and interobserver evaluation is needed. (authors)

  2. Automatic sequences

    CERN Document Server

    Haeseler, Friedrich

    2003-01-01

    Automatic sequences are sequences which are produced by a finite automaton. Although they are not random they may look as being random. They are complicated, in the sense of not being not ultimately periodic, they may look rather complicated, in the sense that it may not be easy to name the rule by which the sequence is generated, however there exists a rule which generates the sequence. The concept automatic sequences has special applications in algebra, numbe