WorldWideScience

Sample records for automated weld characterization

  1. Programmable Automated Welding System (PAWS)

    Science.gov (United States)

    Kline, Martin D.

    1994-01-01

    An ambitious project to develop an advanced, automated welding system is being funded as part of the Navy Joining Center with Babcock & Wilcox as the prime integrator. This program, the Programmable Automated Welding System (PAWS), involves the integration of both planning and real-time control activities. Planning functions include the development of a graphical decision support system within a standard, portable environment. Real-time control functions include the development of a modular, intelligent, real-time control system and the integration of a number of welding process sensors. This paper presents each of these components of the PAWS and discusses how they can be utilized to automate the welding operation.

  2. Welding process automation in power machine building

    International Nuclear Information System (INIS)

    Mel'bard, S.N.; Shakhnov, A.F.; Shergov, I.V.

    1977-01-01

    The level of welding automation operations in power engineering and ways of its enhancement are highlighted. Used as the examples of comlex automation are an apparatus for the horizontal welding of turbine rotors, remotely controlled automatic machine for welding ring joint of large-sized vessels, equipment for the electron-beam welding of steam turbine assemblies of alloyed steels. The prospects of industrial robots are noted. The importance of the complex automation of technological process, including stocking, assemblying, transportation and auxiliary operations, is emphasized

  3. Weld controller for automated nuclear service welding

    International Nuclear Information System (INIS)

    Barfield, K.L.; Strubhar, P.M.; Green, D.I.

    1995-01-01

    B and W Nuclear Technologies (BWNT) uses many different types of weld heads for automated welding in the commercial nuclear service industry. Some weld heads are purchased as standard items, while others are custom designed and fabricated by BWNT requiring synchronized multiaxis motion control. BWNT recently completed a development program to build a common weld controller that interfaces to all types of weld heads used by BWNT. Their goal was to construct a system that had the flexibility to add different modules to increase the capability of the controller as different application needs become necessary. The benefits from having a common controller are listed. This presentation explains the weld controller system and the types of applications to which it has been applied

  4. Residual stress characterization of welds using x-ray diffraction techniques

    International Nuclear Information System (INIS)

    Pineault, J.A.; Brauss, M.E.

    1996-01-01

    Neglect of residual stresses created during processes lead to stress corrosion cracking, distortion, fatigue cracking, premature failures in components, and instances of over design. Automated residual stress mapping and truly portable equipment have now made the characterization of residual stresses using x-ray diffraction (XRI) practical. The nondestructive nature of the x-ray diffraction technique has made the tile residual stress characterization of welds a useful tool for process optimization and failure analysis, particularly since components can be measured before and after welding and post welding processes. This paper illustrates the importance of residual stress characterization in welds and presents examples where x-ray diffraction techniques were applied in the characterization of various kinds of welds. arc welds, TIG welds, resistance welds, laser welds and electron beam welds. Numerous techniques are available to help manage potentially harmfull residual stresses created during the welding process thus, the effects of a few example post weld processes such as grinding, heat treating and shot peening are also addressed

  5. Analysis And Control System For Automated Welding

    Science.gov (United States)

    Powell, Bradley W.; Burroughs, Ivan A.; Kennedy, Larry Z.; Rodgers, Michael H.; Goode, K. Wayne

    1994-01-01

    Automated variable-polarity plasma arc (VPPA) welding apparatus operates under electronic supervision by welding analysis and control system. System performs all major monitoring and controlling functions. It acquires, analyzes, and displays weld-quality data in real time and adjusts process parameters accordingly. Also records pertinent data for use in post-weld analysis and documentation of quality. System includes optoelectronic sensors and data processors that provide feedback control of welding process.

  6. Recent progress in the field of automated welding applied to maintenance activities

    International Nuclear Information System (INIS)

    Cullafroz, M.

    2004-01-01

    Automated and robot welding has 5 advantages compared to manual welding: -) under some conditions the automated circular welding does not require requalification testing as manual welding does, -) welding heads in robots have a reduced size compared to manual gears so they can enter and treat complex piping, -) by using an adequate viewing system the operator can be more than 10 meters away from the welding site which means that the radiation doses he receives is cut by a factor 1.5 to 2, -) whatever the configuration is, the deposition rate in automated welding stays high, the quality standard is steady and the risk of repairing is low, -) a gain in productivity if adequate equipment is used. In general, automated welding requires a TIG welding process and is applied in maintenance activities to: -) the main primary system and other circuits in stainless austenitic steels, -) the main secondary system and other circuits in low-percentage carbon steels, and -) the closure of spent fuel canisters. An application to the repairing of BWR's pipes is shown. (A.C.)

  7. Automated Fuel Element Closure Welding System

    International Nuclear Information System (INIS)

    Wahlquist, D.R.

    1993-01-01

    The Automated Fuel Element Closure Welding System is a robotic device that will load and weld top end plugs onto nuclear fuel elements in a highly radioactive and inert gas environment. The system was developed at Argonne National Laboratory-West as part of the Fuel Cycle Demonstration. The welding system performs four main functions, it (1) injects a small amount of a xenon/krypton gas mixture into specific fuel elements, and (2) loads tiny end plugs into the tops of fuel element jackets, and (3) welds the end plugs to the element jackets, and (4) performs a dimensional inspection of the pre- and post-welded fuel elements. The system components are modular to facilitate remote replacement of failed parts. The entire system can be operated remotely in manual, semi-automatic, or fully automatic modes using a computer control system. The welding system is currently undergoing software testing and functional checkout

  8. Use of automation and mechanization elements in welding and surfacing nuclear reactor pressure vessels

    International Nuclear Information System (INIS)

    Bartak, J.; Elckner, J.

    1986-01-01

    The problems are discussed of automation and mechanization of individual operations in the production cycle of pressure vessels whose manufacture cannot for its great exactingness be automated as a whole. Examples are given of workplaces and single-purpose welding facilities with a high level of automation. The present state of the development and implementation of automation of arc welding is described and further development is indicated of the automation of welding processes in the manufacture of nuclear facilities. (J.C.)

  9. Automated ultrasonic pipe weld inspection. Part 1

    International Nuclear Information System (INIS)

    Karl Deutsch, W.A.; Schulte, P.; Joswig, M.; Kattwinkel, R.

    2006-01-01

    This article contains a brief overview on automated ultrasonic welded inspection for various pipe types. Some inspection steps might by carried out with portable test equipment (e.g. pipe and test), but the weld inspection in all internationally relevant specification must be automated. The pipe geometry, the production process, and the pipe usage determine the number of required probes. Recent updates for some test specifications enforce a large number of ultrasonic probes, e.g. the Shell standard. Since seamless pipes are sometimes replaced by ERW pipes and LSAW pipes (in both cases to save production cost), the inspection methods change gradually between the various pipe types. Each testing system is unique and shows its specialties which have to be discussed by supplier, testing system user and final customer of the pipe. (author)

  10. Comparison radiographic and automated ultrasonic inspection of pipeline tie-in welds

    International Nuclear Information System (INIS)

    Connelly, T.; Gross, B.

    2007-01-01

    In recent years the use of automated ultrasonic inspection (AUT) for pipeline girth welds has seen rapid growth and is now used almost exclusively for all gas metal arc welding (GMAW) girth weld inspection. The following paper reviews some of the major features of ultrasonic inspection by comparison to conventional Film Radiography (RT) and reviews the use of ultrasonic inspection for pipeline and tie-in welds. (author)

  11. Design, Construction, Demonstration and Delivery of an Automated Narrow Gap Welding System.

    Science.gov (United States)

    1982-06-29

    DESIGN, CONSTRUCTION, DEMONSTRATION AND DELIVERY OF WE DA4I &NARROW GAP CONTRACT NO. NOOGOO-81-C-E923 TO DAVID TAYLOR NAVAL RESEARCH AND DEVELOPMENT...the automated * Narrow Gap welding process, is the narrow (3/8 - inch), square-butt joint *design. This narrow joint greatly reduces the volume of weld...AD-i45 495 DESIGN CONSTRUCTION DEMONSTRATION AiND DELIVERY OF RN 1/j AUrOMATED NARROW GAP WELDING SYSTEMI() CRC AUTOMATIC WELDING CO HOUSTON TX 29

  12. Welding rework data acquisition and automation

    Science.gov (United States)

    Romine, Peter L.

    1996-01-01

    Aluminum-Lithium is a modern material that NASA MSFC is evaluating as an option for the aluminum alloys and other aerospace metals presently in use. The importance of aluminum-lithium is in it's superior weight to strength characteristics. However, aluminum-lithium has produced many challenges in regards to manufacturing and maintenance. The solution to these problems are vital to the future uses of the shuttle for delivering larger payloads into earth orbit and are equally important to future commercial applications of aluminum-lithium. The Metals Processes Branch at MSFC is conducting extensive tests on aluminum-lithium which includes the collection of large amounts of data. This report discusses the automation and data acquisition for two processes: the initial weld and the repair. The new approach reduces the time required to collect the data, increases the accuracy of the data, and eliminates several types of human errors during data collection and entry. The same material properties that enhance the weight to strength characteristics of aluminum-lithium contribute to the problems with cracks occurring during welding, especially during the repair/rework process. The repairs are required to remove flaws or defects discovered in the initial weld, either discovered by x-ray, visual inspection, or some other type of nondestructive evaluation. It has been observed that cracks typically appear as a result of or beyond the second repair. MSFC scientists have determined that residual mechanical stress introduced by the welding process is a primary cause of the cracking. Two obvious solutions are to either prevent or minimize the stress introduced during the welding process, or remove or reduce the stress after the welding process and MSFC is investigating both of these.

  13. Experimental investigation and characterization of micro resistance welding with an electro-thermal actuator

    International Nuclear Information System (INIS)

    Chang, Chun-Wei; Yeh, Cheng-Chi; Hsu Wensyang

    2009-01-01

    Resistance welding is a common scheme of assembly on the macro scale by pressing together two workpieces with current passing through them to generate joule heating at the contact region due to high contact resistance. However, micro assembly by resistance welding is seldom reported. Here, resistance welding with an electro-thermal microactuator to assemble micro Ni structures is experimentally investigated and characterized. The bent-beam electro-thermal microactuator is designed to provide the necessary displacements and pressing forces. The two-mask metal-based surface micromachining process is adopted to fabricate the micro Ni structures. The calibrated initial contact resistance is shown to decrease with increasing contact pressure. Furthermore, stronger welding strength is achieved at a smaller initial contact resistance, which indicates that a larger clamping force would enhance the welding strength as large as 3.09 MPa (74.4 µN) at a contact resistance of 2.7 Ω here. The input welding energy is also found to be a critical factor. In our tests, when welding energy is below the threshold limit of 0.05 J, the welding trials all fail. For the energy between 0.05 J and 1 J, there is a transition from a lower yield of 33.3% to a higher yield of 58.3%. At high welding energy, between 1 and 10 J, 100% yield is achieved. With the demonstration and characterization of micro resistance welding by the electro-thermal microactuator, the scheme proposed here would be helpful in the automation of micro assembly

  14. Spot Welding Characterizations With Time Variable

    International Nuclear Information System (INIS)

    Abdul Hafid; Pinitoyo, A.; History; Paidjo, Andryansyah; Sagino, Sudarmin; Tamzil, M.

    2001-01-01

    For obtain spot welding used effective data, this research is made, so that time operational of machine increasing. Welding parameters are material classification, electrical current, and weld time. All of the factors are determined welding quality. If the plate more thick, the time must be longer when the current constant. Another factor as determined welding quality are surface condition of electrode, surface condition of weld material, and material classifications. In this research, the weld machine type IP32A2 VI (110 V), Rivoira trademark is characterized

  15. Advances in welding science and technology

    International Nuclear Information System (INIS)

    David, S.A.; Babu, S.S.; Vitek, J.M.

    1995-01-01

    Over the years, welding has been more of an art than a science, but in the last few decades major advances have taken place in welding science and technology. With the development of new methodologies at the crossroads of basic and applied sciences, enormous opportunities and potential exist to develop a science-based design of composition, structure, and properties of welds with intelligent control and automation of the welding processes. In the last several decades, welding has evolved as an interdisciplinary activity requiring synthesis of knowledge from various disciplines and incorporating the most advanced tools of various basic applied sciences. A series of international conferences and other publications have covered the issues, current trends and directions in welding science and technology. In the last few decades, major progress has been made in (i) understanding physical processes in welding, (ii) characterization of microstructure and properties, and (iii) intelligent control and automation of welding. This paper describes some of these developments

  16. Development of automated welding process for field fabrication of thick walled pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, U A

    1981-01-01

    Research on automatic welding processes for the fabrication of thick-walled pressure vessels continued. A literature review on the subject was completed. A laboratory study of criteria for judging acceptable root parameters continued. Equipment for a demonstration facility to test the components and processes of the automated welding system has been specified and is being obtained. (LCL)

  17. Development of automated welding process for field fabrication of thick walled pressure vessels

    International Nuclear Information System (INIS)

    Schneider, U.A.

    Research on automatic welding processes for the fabrication of thick-walled pressure vessels continued. A literature review on the subject was completed. A laboratory study of criteria for judging acceptable root parameters continued. Equipment for a demonstration facility to test the components and processes of the automated welding system has been specified and is being obtained

  18. Apparatus for assembling and welding end plugs to nuclear fuel cladding tubes and inspecting the end plug welds on an automated basis

    International Nuclear Information System (INIS)

    Schoenig, F.C. Jr.; Walker, E.S.; Cueman, M.K.; Haughton, R.A.; Zuloaga, J.A. Jr.

    1989-01-01

    This patent describes an automated apparatus for welding a separate end plug to one open end of each of a succession of nuclear fuel cladding tubes and for inspecting each end plug weld. The apparatus comprising, in combination: a welding station; a cooldown station for cooling each end plug weld in an inert gas atmosphere; a serial number reader station for reading a serial number on each end plug; a first weld inspection station; a second weld inspection station for generating second weld inspection data; a computer system linked with the serial number reader and the first and second weld inspection stations; an input queue for holding a plurality of tubes; a tube transporter for periodically picking individual tubes from the input queque and conveying the tubes in a direction transverse to their tube axis in indexing steps to index positions respectively axially aligned with the welding, serial number reader, and first and second weld inspection stations; and a sorter positioned at an output end of the tube transporter

  19. Manufacture and characterization of austenitic steel welded joints

    International Nuclear Information System (INIS)

    Simoni, O.; Boerman, D.J.; Krischer, W.

    1990-01-01

    This paper describes the results of the first phase of the project, i.e. manufacturing and characterization of welded austenitic steel and the test matrix adopted to test the mechanical resistance of the welding. Five different welding methods have been tested and characterized in comparison to the parent material. The reference material was an AISI 316 L type steel close to the French Superphenix composition. The results of the mechanical testing and the relative comparison of the five welding methods are described in separate papers of the same session. As a general conclusion, the vacuum electron-beam welding proved to have better properties than the other weld methods and to attain in most cases the properties of the parent material. (author)

  20. A novel tool for automated evaluation of radiographic weld images

    International Nuclear Information System (INIS)

    Rajagopalan, C.; Venkatraman, B.; Jayakumar, T.; Kalyanasundaram, P.; Raj, B.

    2004-01-01

    Radiography is one of the oldest and the most widely used NDT method for the detection of volumetric defects in welds and castings. Once a radiograph of a weld or a casting or an assembly is taken, the radiographer examines the same. The task of the radiographer consists of identifying the defects and quantitatively evaluating the same based on codes and specifications. Radiographic interpretation primarily depends on the expertise of the individual radiographer. To overcome the subjectivity involved in human interpretation, it is thus desirable to develop a computer based automated system to aid in the interpretation of radiographs. Towards this goal, the authors have developed a flowchart chalking out the various stages involved. Typical weld images of tube to tubesheet weld joints were digitised using high resolution digitiser. The images were segmented and 52 invariant moments were computed to be used as features. The results of these are presented in this paper. Once the features (invariant moments) are extracted and ranked, a neural network classifier based on error back-propagation has to classify the (top ranking) features and evaluate the image for acceptance or rejection. (author)

  1. Automated TIG welding system with visual sensor for repairing nuclear plants

    International Nuclear Information System (INIS)

    Inoue, Katsunori; Watanabe, Hiroshi; Kondoh, Yoshihide.

    1986-01-01

    An automated TIG welding system has been developed. This system is to be used for repairing nuclear plants, whose work environment is highly radioactive, so should have the automatic self control function and the remote controllable function. For this purpose, the visual sensor, a TV camera and an image processor, is installed and the image processing technique is applied to the all-position TIG welding system. In this system, all controls are made with microprocessors and every necessary information is displayed on the screen of the remote control unit. The excellent performance was obtained as the application of this system to the practical field. (author)

  2. Effects of alloying element on weld characterization of laser-arc hybrid welding of pure copper

    Science.gov (United States)

    Hao, Kangda; Gong, Mengcheng; Xie, Yong; Gao, Ming; Zeng, Xiaoyan

    2018-06-01

    Effects of alloying elements of Si and Sn on weld characterizations of laser-arc hybrid welded pure copper (Cu) with thickness of 2 mm was studied in detail by using different wires. The weld microstructure was analyzed, and the mechanical properties (micro-hardness and tensile property), conductivity and corrosion resistance were tested. The results showed that the alloying elements benefit the growth of column grains within weld fusion zone (FZ), increase the ultimate tensile strength (UTS) of the FZ and weld corrosion resistance, and decrease weld conductivity. The mechanisms were discussed according to the results.

  3. A development of an automated ultrasonic TOFD inspection system using an welding line tracing robot

    International Nuclear Information System (INIS)

    Cho, Hyun; Song, Sung Jin; Lee, Kang Won; Kim, Young Jin; Woo, Jong Sik

    2006-01-01

    Large scaled ships, manufactured inside of the country, should be passed welding inspection and painting film inspection. Normally, these kind of inspections are conducted by human inspectors manually, although it cause industrial disasters such as falling accidents and diving accidents frequently. In addition, Ship makers are not to give a full trust to shipowners because manual inspections cannot be conducted all over the welding parts. So, in this study we developed an automated ultrasonic TOFD inspection system using an welding line tracing robot. This system, controlled by an inspector at a remote field, can inspect welding parts of ship outer panel both under water and in air. In this paper we present the developed robot and ultrasonic TOFD inspection system and the inspection result.

  4. A development of an automated ultrasonic TOFD inspection system using an welding line tracing robot

    International Nuclear Information System (INIS)

    Cho, Hyun; Song, Sung Jin; Lee, Kang Won; Kim, Young Jin; Woo, Jong Sik

    2006-01-01

    Large scaled ships, manufactured inside of the country, should be passed welding inspection and painting film inspection. Normally, these kind of inspections are conducted by human inspectors manually, although it cause industrial disasters such as falling accidents and diving accidents frequently. In addition, Ship makers are not to give a full trust to ship owners because manual inspections cannot be conducted all over the welding parts. So, in this study we developed an automated ultrasonic TOFD inspection system using an welding line tracing robot. This system, controlled by an inspector at a remote field, can inspect welding parts of ship outer panel both under water and in air. In this paper we present the developed robot and ultrasonic TOFD inspection system and the inspection result.

  5. Characterization of electromagnetic pulse welding joints for advanced steels (ODS) welding applications

    International Nuclear Information System (INIS)

    Buddu, Ramesh Kumar; Shaikh, Shamsuddin; Raole, P.M.; Sarkar, B.

    2015-01-01

    Advanced fusion reactors structural materials (like in case of TBM and, first wall components) have several operation challenges due to the demanding high temperature exposure conditions (∼800°C) and low neutron radiation effects. The present paper reports the preliminary case studies carried out on steel and copper EMP joints and their properties characterization towards establishing this technology for ODS alloys. The EMP joints in form of tubes are fabricated and tested (typical process parameters ∼ Voltage 25 kV, Current ∼600-800 kA, Max. energy ∼ 50 kJ, and 50 sec duty cycle as major process parameters). The weld joints are further characterized by X-ray radiography and found that there were no measureable defects/discontinuities across the weld interface. This indicates the good process of joining and acceptable. Characterization studies like microstructure, interface grain orientation features, deformation, hardness has been carried out. SEM studies also carried to check the interface status and some interesting features of discontinuities are observed which are not exclusively revealed by radiography tests. Hardness survey also revealed that there is no much variation in the both parent materials as well at weld zone indicating the no hardening affects like in arc/beam weld process. EMP joining has potential features for the joining requirements of ODS kind typical metallurgical requirements

  6. Probing weld quality monitoring in friction stir welding through characterization of signals by fractal theory

    Energy Technology Data Exchange (ETDEWEB)

    Das, Bipul; Bag, Swarup; Pal, Sukhomay [Indian Institute of Technology Guwahati, Assam (India)

    2017-05-15

    Providing solutions towards the improvisation of welding technologies is the recent trend in the Friction stir welding (FSW) process. We present a monitoring approach for ultimate tensile strength of the friction stir welded joints based on information extracted from process signals through implementing fractal theory. Higuchi and Katz algorithms were executed on current and tool rotational speed signals acquired during friction stir welding to estimate fractal dimensions. Estimated fractal dimensions when correlated with the ultimate tensile strength of the joints deliver an increasing trend with the increase in joint strength. It is observed that dynamicity of the system strengthens the weld joint, i.e., the greater the fractal dimension, the better will be the quality of the weld. Characterization of signals by fractal theory indicates that the single-valued indicator can be an alternative for effective monitoring of the friction stir welding process.

  7. Probing weld quality monitoring in friction stir welding through characterization of signals by fractal theory

    International Nuclear Information System (INIS)

    Das, Bipul; Bag, Swarup; Pal, Sukhomay

    2017-01-01

    Providing solutions towards the improvisation of welding technologies is the recent trend in the Friction stir welding (FSW) process. We present a monitoring approach for ultimate tensile strength of the friction stir welded joints based on information extracted from process signals through implementing fractal theory. Higuchi and Katz algorithms were executed on current and tool rotational speed signals acquired during friction stir welding to estimate fractal dimensions. Estimated fractal dimensions when correlated with the ultimate tensile strength of the joints deliver an increasing trend with the increase in joint strength. It is observed that dynamicity of the system strengthens the weld joint, i.e., the greater the fractal dimension, the better will be the quality of the weld. Characterization of signals by fractal theory indicates that the single-valued indicator can be an alternative for effective monitoring of the friction stir welding process.

  8. Welding technology transfer task/laser based weld joint tracking system for compressor girth welds

    Science.gov (United States)

    Looney, Alan

    1991-01-01

    Sensors to control and monitor welding operations are currently being developed at Marshall Space Flight Center. The laser based weld bead profiler/torch rotation sensor was modified to provide a weld joint tracking system for compressor girth welds. The tracking system features a precision laser based vision sensor, automated two-axis machine motion, and an industrial PC controller. The system benefits are elimination of weld repairs caused by joint tracking errors which reduces manufacturing costs and increases production output, simplification of tooling, and free costly manufacturing floor space.

  9. Microstructural Characterization of Friction Stir Welded Aluminum-Steel Joints

    Science.gov (United States)

    2013-08-01

    Sterling, R.J. Steel, C.-O. Pettersson. “Microstructure and mechanical properties of friction stir welded SAF 2507 super duplex stainless steel.” Mater...MICROSTRUCTURAL CHARACTERIZATION OF FRICTION STIR WELDED ALUMINUM-STEEL JOINTS By ERIN ELIZABETH PATTERSON A thesis submitted in...for his work producing the dissimilar weld samples used in this study. Without his work, this project would not have been possible. I would also

  10. Development of an automation system for Iodine-125 brachytherapy seed encapsulated by Nd:YAG laser welding

    International Nuclear Information System (INIS)

    Somessari, S.L.; Feher, A.; Sprenger, F.E.; Rostelato, M.E.C.M.; Costa, F.E. da; Calvo, W.A.P.

    2011-01-01

    The aim of this work is to develop an automation system for iodine-125 radioactive seed production by Nd:YAG laser welding, which has been used successfully in low dose rate (LDR) brachytherapy treatment. This small seed consists of a welded titanium capsule, with 0.8 mm in diameter and 4.5 mm in length, containing iodine-125 adsorbed onto a silver rod. The iodine-125 seeds are implanted into the human prostate to irradiate the tumor for cancer treatment. Nowadays, the Radiation Technology Center, at Institute for Nuclear and Energy Research, Sao Paulo, Brazil (IPEN-CNEN/SP) imports and distributes 36,000 iodine-125 seeds per year, for the clinics and hospitals in the country. However, the Brazilian market potential is now over 8,000 iodine-125 seeds per month. The local production of these iodine-125 radioactive sources became a priority for the Institute, in order to reduce the price and the problems of prostate cancer management. It will permit to spread their use to a larger number of patients in Brazil. On the other hand, the industrial automation plays an important role for iodine-125 seeds in order to increase the productivity, with high quality and assurance, avoiding human factors, implementing and operating with good manufacturing practices (GMP). The technology consists of appliance electronic and electro-mechanical parts and components to control machines and processes. The automation system technology for iodine-125 seed production developed in this work was mainly assembled employing a programmable logic controller (PLC), a stepper motor, an Nd:YAG laser welding machine and a supervisory. The statistical repeatability of correctly encapsulated sealed sources with this automation system is greater than 95%. (authors)

  11. Automated welding of appendages on empty clad tubes: an advanced technique

    International Nuclear Information System (INIS)

    Desai, P.B.

    1997-01-01

    Several developments have been carried out at Atomic Fuels Division related to fabrication of PHWR fuel assemblies. This paper describes the salient features of an automated welding equipment and its design. Special attention was given to ensure integration of equipment in the existing assembly lines with ease. Detailed drawings are made using Autocad-12 and isometric view of the assembly was prepared. The equipment design is a significant step in the advancement of PHWR fuel assembly fabrication

  12. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders

    Science.gov (United States)

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-01-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm−3, with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. PMID:26464505

  13. Characterization of Tungsten Inert Gas (TIG) Welding Fume Generated by Apprentice Welders.

    Science.gov (United States)

    Graczyk, Halshka; Lewinski, Nastassja; Zhao, Jiayuan; Concha-Lozano, Nicolas; Riediker, Michael

    2016-03-01

    Tungsten inert gas welding (TIG) represents one of the most widely used metal joining processes in industry. Its propensity to generate a greater portion of welding fume particles at the nanoscale poses a potential occupational health hazard for workers. However, current literature lacks comprehensive characterization of TIG welding fume particles. Even less is known about welding fumes generated by welding apprentices with little experience in welding. We characterized TIG welding fume generated by apprentice welders (N = 20) in a ventilated exposure cabin. Exposure assessment was conducted for each apprentice welder at the breathing zone (BZ) inside of the welding helmet and at a near-field (NF) location, 60cm away from the welding task. We characterized particulate matter (PM4), particle number concentration and particle size, particle morphology, chemical composition, reactive oxygen species (ROS) production potential, and gaseous components. The mean particle number concentration at the BZ was 1.69E+06 particles cm(-3), with a mean geometric mean diameter of 45nm. On average across all subjects, 92% of the particle counts at the BZ were below 100nm. We observed elevated concentrations of tungsten, which was most likely due to electrode consumption. Mean ROS production potential of TIG welding fumes at the BZ exceeded average concentrations previously found in traffic-polluted air. Furthermore, ROS production potential was significantly higher for apprentices that burned their metal during their welding task. We recommend that future exposure assessments take into consideration welding performance as a potential exposure modifier for apprentice welders or welders with minimal training. © The Author 2015. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  14. Automated data acquisition technology development:Automated modeling and control development

    Science.gov (United States)

    Romine, Peter L.

    1995-01-01

    This report documents the completion of, and improvements made to, the software developed for automated data acquisition and automated modeling and control development on the Texas Micro rackmounted PC's. This research was initiated because a need was identified by the Metal Processing Branch of NASA Marshall Space Flight Center for a mobile data acquisition and data analysis system, customized for welding measurement and calibration. Several hardware configurations were evaluated and a PC based system was chosen. The Welding Measurement System (WMS), is a dedicated instrument strickly for use of data acquisition and data analysis. In addition to the data acquisition functions described in this thesis, WMS also supports many functions associated with process control. The hardware and software requirements for an automated acquisition system for welding process parameters, welding equipment checkout, and welding process modeling were determined in 1992. From these recommendations, NASA purchased the necessary hardware and software. The new welding acquisition system is designed to collect welding parameter data and perform analysis to determine the voltage versus current arc-length relationship for VPPA welding. Once the results of this analysis are obtained, they can then be used to develop a RAIL function to control welding startup and shutdown without torch crashing.

  15. Material Characterization of Dissimilar Friction Stir Spot Welded Aluminium and Copper Alloy

    Science.gov (United States)

    Sanusi, K. O.; Akinlabi, E. T.

    2017-08-01

    In this research study, material characterization of dissimilar friction stir spot welded Aluminium and Copper was evaluated. Rotational speeds of 800 rpm and transverse speeds of 50 mm/min, 150 mm/min and 250 mm/min were used. The total numbers of samples evaluated were nine altogether. The spot welds were characterised by microstructure characterization using optical microscope (OEM) and scanning electron microscopy technique (SEM) by observing the evolution of the microstructure across the weld’s cross-section. lap-shear test of the of the spot weld specimens were also done. From the results, it shows that welding of metals and alloys using Friction stir spot welding is appropriate and can be use in industrial applications.

  16. Automatization of welding for nuclear power equipments and facilities

    International Nuclear Information System (INIS)

    Tamai, Yasumasa; Matsumoto, Teruo; Koyama, Takaichi

    1980-01-01

    For the requirement of high reliability in the construction of nuclear power plants and the reduction of radiation exposure in the modefying works of existing plants, the automation and remote operation of welding have increased their necessity. In this paper, the present state of the automation of welding for making machines, equipments and pipings for nuclear power plants in Hitachi Ltd. is described, and the aim of developing the automation, the features of the equipments and the state of application to actual plants are introduced, centering around the automation of welding for large structures such as reactor containment vessels and the remote type automatic welding system for pipings. By these automations, the large outcomes were obtained in the improvement of welding quality required for the machines and equipments for atomic energy. Moreover, the conspicuous results were also obtained in case of the peculiar works to nuclear power plants, in which the reduction of the radiation exposure related to human bodies and the welding of high quality are demanded. The present state of the automation of welding for nuclear installations in Hitachi Ltd., the development of automatic welding equipments and the present state of application to actual plants, and the development and application of the automatic pipe working machine for reducing radiation exposure are explained. (Kako, I.)

  17. Development of an automation system for iodine-125 brachytherapy seed production by ND:YAG laser welding

    International Nuclear Information System (INIS)

    Somessari, Samir L.; Feher, Anselmo; Sprenger, Francisco E.; Rostellato, Maria Elisa C.M.; Costa, Fabio E.; Calvo, Wilson A.P.

    2009-01-01

    The aim of this work is to develop an automation system for iodine-125 radioactive seed production by Nd:YAG laser welding, which has been used successfully in low dose rate brachytherapy treatment. This small seed consists of a welded titanium capsule, with 0.8 mm in diameter and 4.5 mm in length, containing iodine-125 adsorbed onto a silver rod. The iodine-125 seeds are implanted into the human prostate to irradiate the tumor for cancer treatment. Nowadays, the Radiation Technology Center, at IPEN-CNEN/SP imports and distributes 36,000 iodine-125 seeds per year, for the clinics and hospitals in the country. However, the Brazilian market potential is now over 8,000 iodine-125 seeds per month. The local production of these iodine-125 radioactive sources became a priority for the Institute, in order to reduce the price and the problems of prostate cancer management. It will permit to spread their use to a larger number of patients in Brazil. On the other hand, the industrial automation plays an important role for iodine-125 seeds in order to increase the productivity, with high quality and assurance, avoiding human factors, implementing and operating with good manufacturing practices. The technology consists of appliance electronic and electro-mechanical parts and components to control machines and processes. The automation system technology for iodine-125 seed production developed in this work was mainly assembled employing a Programmable Logic Controller, a stepper motor, an Nd:YAG laser welding machine and a supervisory. (author)

  18. Development of an automation system for iodine-125 brachytherapy seed production by (Nd:YAG) laser welding

    International Nuclear Information System (INIS)

    Somessari, Samir Luiz

    2010-01-01

    The aim of this work is to develop an automation system for iodine-125 radioactive seed production by (Nd:YAG) laser welding, which has been used successfully in Low Dose Rate (LDR) brachytherapy treatment. This small seed consists of a welded titanium capsule, with 0.8mm in diameter and 4.5mm in length, containing iodine-125 adsorbed onto a silver rod. The iodine-125 seeds are implanted into the human prostate to irradiate the tumor for cancer treatment. Nowadays, the Radiation Technology Center, at IPEN-CNEN/SP imports and distributes 36,000 iodine-125 seeds per year, for the clinics and hospitals in the country. However, the Brazilian market potential is now over 8,000 iodine-125 seeds per month. The local production of these iodine-125 radioactive sources becomes a priority for the Institute, in order to reduce the price and the problems of prostate cancer management. It will permit to spread their use to a largest number of patients in Brazil. On the other hand, the industrial automation plays an important role for iodine-125 seeds in order to increase the productivity, with high quality and assurance, avoiding human factors, implementing and operating with Good Manufacturing Practices (GMP). The technology consists of appliance electronic and electro-mechanical parts and components to control machines and processes. The automation system technology for iodine-125 seed production developed in this work was mainly assembled employing Programmable Logic Controller (PLC), stepper motors, drivers, (Nd:YAG) laser welding machine, photoelectric sensors and supervisory. (author)

  19. Manufacture and characterization of austenitic steel welded joints. Joint final report - Vol. 1

    International Nuclear Information System (INIS)

    Simoni, O.; Boerman, D.J.; Krischer, W.

    1990-07-01

    This report describes the results of the first phase of the project, i.e. manufacturing and characterization of welded austenitic steel and the test matrix adopted to test the mechanical resistance of the weldings. Five different welding methods have been produced and characterized in comparison to the parent material. The reference material was an AISI 316L type steel close to the French Superphenix composition. The results of the mechanical testing and the relative comparison of the five welding methods are described in a second volume. As a general conclusion, the vacuum electron-beam welding proved to have better properties than the other weld methods and to attain in most cases the properties of the parent material

  20. Double Fillet Welding of Carbon Steel T-Joint by Double Channel Shielding Gas Metal Arc Welding Method Using Metal Cored Wire

    Directory of Open Access Journals (Sweden)

    Mert T.

    2017-06-01

    Full Text Available Low carbon steel material and T-joints are frequently used in ship building and steel constructions. Advantages such as high deposition rates, high quality and smooth weld metals and easy automation make cored wires preferable in these industries. In this study, low carbon steel materials with web and flange thicknesses of 6 mm, 8 mm and 10 mm were welded with conventional GMAW and double channel shielding gas metal arc welding (DMAG method to form double fillet T-joints using metal cored wire. The difference between these two methods were characterized by measurements of mean welding parameters, Vickers hardness profiles, weld bead and HAZ geometry of the joints and thermal camera temperature measurements. When weld bead and HAZ geometries are focused, it was seen filler metal molten area increased and base metal molten area decreased in DMAG of low carbon steel. When compared with traditional GMAW, finer and acicular structures in weld metal and more homogenous and smaller grains in HAZ are obtained with double channel shielding gas metal arc welding.

  1. B218 Weld Filler Wire Characterization for Al-Li Alloy 2195

    Science.gov (United States)

    Bjorkman, Gerry; Russell, Carolyn

    2000-01-01

    NASA Marshall Space Flight Center, Lockheed Martin Space Systems- Michoud Operations, and McCook Metals have developed an aluminum-copper weld filler wire for fusion welding aluminum lithium alloy 2195. The aluminum-copper based weld filler wire has been identified as B218, a McCook Metals designation. B218 is the result of six years of weld filler wire development funded by NASA, Lockheed Martin, and McCook Metals. The filler wire chemistry was developed to produce enhanced 2195 weld and repair weld mechanical properties over the 4043 aluminum-silicon weld filler wire, which is currently used to weld 2195 on the Super Lightweight External Tank for the NASA Space Shuttle Program. An initial characterization was performed consisting of a repair weld evaluation using B218 and 4043 weld filler wires. The testing involved room temperature and cryogenic repair weld tensile testing along with fracture toughness testing. From the testing, B218 weld filler wire produce enhanced repair weld tensile strength, ductility, and fracture properties over 4043. B218 weld filler wire has proved to be a superior weld filler wire for welding aluminum lithium alloy 2195 over 4043.

  2. Robotic and automatic welding development at the Marshall Space Flight Center

    Science.gov (United States)

    Jones, C. S.; Jackson, M. E.; Flanigan, L. A.

    1988-01-01

    Welding automation is the key to two major development programs to improve quality and reduce the cost of manufacturing space hardware currently undertaken by the Materials and Processes Laboratory of the NASA Marshall Space Flight Center. Variable polarity plasma arc welding has demonstrated its effectiveness on class 1 aluminum welding in external tank production. More than three miles of welds were completed without an internal defect. Much of this success can be credited to automation developments which stabilize the process. Robotic manipulation technology is under development for automation of welds on the Space Shuttle's main engines utilizing pathfinder systems in development of tooling and sensors for the production applications. The overall approach to welding automation development undertaken is outlined. Advanced sensors and control systems methodologies are described that combine to make aerospace quality welds with a minimum of dependence on operator skill.

  3. Weld characterization of RAFM steel. EBP structural materials milestone 3

    Energy Technology Data Exchange (ETDEWEB)

    Alamo, A. [Service de Recherches Metallurgiques Appliquees, CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Fontes, A. [Service de Techniques Avancees, CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Schaefer, L. [Forschungszentrum Karlsruhe, Karlsruhe (Germany); Gauthier, A.; Tavassoli, A.A. [CEA Centre d' Etudes Nucleaires de Saclay, Saclay (France); Van Osch, E.V.; Van der Schaaf [ed.] [ECN Netherlands Energy Research Foundation, Petten (Netherlands)

    1999-07-01

    In the long term part of the European Fusion technology programme welding of reduced activation ferritic martensitic (RAFM)steels takes a prominent place. The blanket structures are complex and welding is an important element in manufacturing procedures. In the 95-98 program several Structural Materials tasks of the European Blanket Project are devoted to welding of RAFM steels. In the milestone 3 defined for the program a review of the weld characterization was foreseen in 1998. The present report gives the status of tasks and the major conclusions and recommendations of the welding milestone meeting. The major conclusion is that defect free GTAW (Gas Tungsten Arc Welding), EBW (Electron Beam Welding) and diffusion welds can be accomplished, but further work is needed to assure quantitatively the service boundary conditions. Also for irradiated steel additional work is recommended for the 99-02 period. Development of filler wire material for the European reference RAFM: EUROFER97 is necessary. Establishment of weldability tests must be settled in the next period also. 14 refs.

  4. Applying of dilatometric effect for resistance welding automation

    Directory of Open Access Journals (Sweden)

    Bondarenko O. F.

    2017-06-01

    Full Text Available The important issue of resistance spot welding control to obtain high quality welded joints, especially in living tissue welding, is considered. The actual state of the issue is described and analyzed. In order to improve the quality of welded joints, the applying of dilatometric effect to control the resistance spot welding process, namely of shifting the welding electrodes, is suggested. To register the shifting, the use of modern inertial microelectromechanical sensors (MEMS is proposed. The experimental measuring system, which processes the MEMS-sensor signal and makes it suitable for use as a feedback signal, is developed. The structure and operational algorithm of the system are described. The abilities of measuring with MEMS-sensors the values of electrode shifting caused by dilatometric effect under resistance welding are assessed. These method and equipment are recommended for welding the metals, as well as for welding the living tissues. The results of preliminary studies prove the advisability and relevance of the suggested solutions.

  5. Automated control of the laser welding process of heart valve scaffolds

    Directory of Open Access Journals (Sweden)

    Weber Moritz

    2016-09-01

    Full Text Available Using the electrospinning process the geometry of a heart valve is not replicable by just one manufacturing process. To produce heart valve scaffolds the heart valve leaflets and the vessel have to be produced in separated spinning processes. For the final product of a heart valve they have to be mated afterwards. In this work an already existing three-axes laser was enhanced to laser weld those scaffolds. The automation control software is based on the robot operating system (ROS. The mechatronically control is done by an Arduino Mega. A graphical user interface (GUI is written with Python and Kivy.

  6. Characterization of the mechanical properties and structural integrity of T-welded connections repaired by grinding and wet welding

    Energy Technology Data Exchange (ETDEWEB)

    Terán, G., E-mail: gteran@imp.mx [Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, México D.F. CP 07730, México (Mexico); Cuamatzi-Meléndez, R., E-mail: rcuamatzi@imp.mx [Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, México D.F. CP 07730, México (Mexico); Albiter, A., E-mail: aalbiter@imp.mx [Instituto Mexicano del Petróleo, Eje central Lázaro Cárdenas 152, Col. San Bartolo Atepehuacan, México D.F. CP 07730, México (Mexico); Maldonado, C., E-mail: cmzepeda@umich.mx [Instituto de Investigaciones Metalúrgicas, UMSNH, PO Box 52-B, 58000, México (Mexico); Bracarense, A.Q., E-mail: bracarense@ufmg.br [UFMG Departamento de Engeharia Mecánica Belo Horizonte, MG (Brazil)

    2014-04-01

    This paper presents an experimental methodology to characterize the structural integrity and mechanical properties of repaired T-welded connections using in fixed offshore structures. Grinding is employed to remove localized damage like cracking and corrosion and subsequent wet welding can be used to fill the grinded material. But it is important to define the grinding depth and profile in order to maintain structural integrity during the repair. Therefore, in this work different grinding depths were performed, for damage material removal, at the weld toe of the T-welded connections. The grinding was filled by wet welding in a hyperbaric chamber, simulating three different water depths: 50 m, 70 m and 100 m. The electrodes were coated with vinilic varnish, which is cheap and easy to apply. The characterization of the mechanical properties of the T-welded connections was done with standard tensile, hardness and Charpy tests; microstructure and porosity analysis were also performed. The samples were obtained from the welded connections in regions of the wet weld beads. The test results were compared with the mechanical properties of the T-welded connections welded in air conditions performed by other authors. The results showed that the wet welding technique performed in this work produced good mechanical properties of the repaired T-welded connection. The mechanical properties, measured in wet conditions, for 6 mm grinding depth, were similar for the 3 different water depths measured in air conditions. But for 10 mm grinding depth, the values of the mechanical properties measured in wet conditions were quite lower than that for air conditions for the 3 water depths. However a porosity analysis, performed with a Scanning Electronic Microscopy (SEM), showed that the level of porosity in the resulted wet weld beads is in the range of that published in the literature and some samples revealed lower level of porosity. The main resulting microstructure was polygonal

  7. Real-time ultrasonic weld evaluation system

    Science.gov (United States)

    Katragadda, Gopichand; Nair, Satish; Liu, Harry; Brown, Lawrence M.

    1996-11-01

    Ultrasonic testing techniques are currently used as an alternative to radiography for detecting, classifying,and sizing weld defects, and for evaluating weld quality. Typically, ultrasonic weld inspections are performed manually, which require significant operator expertise and time. Thus, in recent years, the emphasis is to develop automated methods to aid or replace operators in critical weld inspections where inspection time, reliability, and operator safety are major issues. During this period, significant advances wee made in the areas of weld defect classification and sizing. Very few of these methods, however have found their way into the market, largely due to the lack of an integrated approach enabling real-time implementation. Also, not much research effort was directed in improving weld acceptance criteria. This paper presents an integrated system utilizing state-of-the-art techniques for a complete automation of the weld inspection procedure. The modules discussed include transducer tracking, classification, sizing, and weld acceptance criteria. Transducer tracking was studied by experimentally evaluating sonic and optical position tracking techniques. Details for this evaluation are presented. Classification is obtained using a multi-layer perceptron. Results from different feature extraction schemes, including a new method based on a combination of time and frequency-domain signal representations are given. Algorithms developed to automate defect registration and sizing are discussed. A fuzzy-logic acceptance criteria for weld acceptance is presented describing how this scheme provides improved robustness compared to the traditional flow-diagram standards.

  8. Boosting Active Contours for Weld Pool Visual Tracking in Automatic Arc Welding

    DEFF Research Database (Denmark)

    Liu, Jinchao; Fan, Zhun; Olsen, Søren Ingvor

    2015-01-01

    Detecting the shape of the non-rigid molten metal during welding, so-called weld pool visual sensing, is one of the central tasks for automating arc welding processes. It is challenging due to the strong interference of the high-intensity arc light and spatters as well as the lack of robust...... approaches to detect and represent the shape of the nonrigid weld pool. We propose a solution using active contours including an prior for the weld pool boundary composition. Also, we apply Adaboost to select a small set of features that captures the relevant information. The proposed method is applied...... to weld pool tracking and the presented results verified its feasibility....

  9. Characterization of gas metal arc welded hot rolled DP600 steel

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, K.; Ramazani, A.; Yang, L.; Prahl, U.; Bleck, W. [RWTH Aachen University, Institute for Ferrous Metallurgy (IEHK) (Germany); Reisgen, U.; Schleser, M.; Abdurakhmanov, A. [RWTH Aachen University, Welding and Joining Institute (ISF) (Germany)

    2011-12-15

    Dual-phase (DP) steels are suitable candidates for automotive applications due to their high strength and ductility. These advanced mechanical properties result from the special microstructure of the DP steel with 5{proportional_to}20% martensite phase in a soft ferrite matrix. However, during welding, which is an important process in automotive industry, this special microstructure is destroyed. In this research the characterization of Gas Metal Arc (GMA) welded joining zones was performed by optical microscopy and hardness mapping. Tensile tests were also performed keeping the welded portion in the gauge length. Scanning Electron Microscopy (SEM) was used for the fracture investigation. From the characterization and tensile tests, the soften zones were found, which are caused by the tempered martensite and larger ferrite grain size than that in base metal. Furthermore, GMA welding make a large Heat Affected Zone (HAZ). (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Some studies on mechanical properties and microstructural characterization of automated TIG welding of thin commercially pure titanium sheets

    Energy Technology Data Exchange (ETDEWEB)

    Karpagaraj, A.; Siva shanmugam, N., E-mail: nsiva@nitt.edu; Sankaranarayanasamy, K.

    2015-07-29

    Gas Tungsten Arc Welding (GTAW) is a commonly used welding process for welding Titanium materials. Welding of titanium and its alloys poses several intricacies to the designer as they are prone to oxidation phenomenon. To overcome this contamination, a relatively new type of shielding arrangement is experimented. The proposed design and arrangement have been employed for joining commercially pure titanium sheets with variations in the GTAW process parameters namely the welding current and travel speed. Bead on plate (BoP) trials were conducted on thin sheets of 2 mm thickness by varying the process parameters. Subsequently, the macro structure images were captured. Based on these results, the process parameters are chosen for carrying out full penetration butt joints on 1.6 mm and 2 mm thick titanium sheets. The influences of these parameters of GTAW on the microstructure, mechanical properties and surface morphology at the fractured locations of the welded joints are examined. The microstructural properties of base metal, heat affected zone and fusion zone are analyzed through optical microscopy. The welded joints showed an ultimate tensile strength of about 383 MPa with 15.7% elongation. The hardness value at fusion zone and base metal are typically observed to be 191 and 153 HV-0.5, respectively. X-ray diffraction study is conducted to examine the chemical composition in the parent metal and fusion zone of the weld. Fractured surface is examined using Scanning Electron Microscopy which revealed dimple kind of rupture present at the fractured surfaces owing to insufficient or excessive heat with slight impurities that prevents the accomplishment of stronger micro-level weld integrity.

  11. Some studies on mechanical properties and microstructural characterization of automated TIG welding of thin commercially pure titanium sheets

    International Nuclear Information System (INIS)

    Karpagaraj, A.; Siva shanmugam, N.; Sankaranarayanasamy, K.

    2015-01-01

    Gas Tungsten Arc Welding (GTAW) is a commonly used welding process for welding Titanium materials. Welding of titanium and its alloys poses several intricacies to the designer as they are prone to oxidation phenomenon. To overcome this contamination, a relatively new type of shielding arrangement is experimented. The proposed design and arrangement have been employed for joining commercially pure titanium sheets with variations in the GTAW process parameters namely the welding current and travel speed. Bead on plate (BoP) trials were conducted on thin sheets of 2 mm thickness by varying the process parameters. Subsequently, the macro structure images were captured. Based on these results, the process parameters are chosen for carrying out full penetration butt joints on 1.6 mm and 2 mm thick titanium sheets. The influences of these parameters of GTAW on the microstructure, mechanical properties and surface morphology at the fractured locations of the welded joints are examined. The microstructural properties of base metal, heat affected zone and fusion zone are analyzed through optical microscopy. The welded joints showed an ultimate tensile strength of about 383 MPa with 15.7% elongation. The hardness value at fusion zone and base metal are typically observed to be 191 and 153 HV-0.5, respectively. X-ray diffraction study is conducted to examine the chemical composition in the parent metal and fusion zone of the weld. Fractured surface is examined using Scanning Electron Microscopy which revealed dimple kind of rupture present at the fractured surfaces owing to insufficient or excessive heat with slight impurities that prevents the accomplishment of stronger micro-level weld integrity

  12. Physical and chemical characterization of airborne particles from welding operations in automotive plants.

    Science.gov (United States)

    Dasch, Jean; D'Arcy, James

    2008-07-01

    Airborne particles were characterized from six welding operations in three automotive plants, including resistance spot welding, metal inert gas (MIG) welding and tungsten inert gas (TIG) welding of aluminum and resistance spot welding, MIG welding and weld-through sealer of galvanized steel. Particle levels were measured throughout the process area to select a sampling location, followed by intensive particle sampling over one working shift. Temporal trends were measured, and particles were collected on filters to characterize their size and chemistry. In all cases, the particles fell into a bimodal size distribution with very large particles >20 mum in diameter, possibly emitted as spatter or metal expulsions, and very small particles about 1 mum in diameter, possibly formed from condensation of vaporized metal. The mass median aerodynamic diameter was about 1 mum, with only about 7% of the particle mass present as ultrafine particles welding particles could be accounted for by chemical analysis, with the remainder possibly present as oxygen. Predominant species were organic carbon, elemental carbon, iron, and aluminum. More than 80% of the particle mass could be accounted for from steel welding, primarily present as iron, organic carbon, zinc, and copper. Particle concentrations and elemental concentrations were compared with allowable concentrations as recommended by the Occupational Safety and Health Administration and the American Conference of Governmental Industrial Hygienists. In all cases, workplace levels were at least 11 times lower than recommended levels.

  13. Fatigue crack growth of 316NG austenitic stainless steel welds at 325 °C

    Science.gov (United States)

    Li, Y. F.; Xiao, J.; Chen, Y.; Zhou, J.; Qiu, S. Y.; Xu, Q.

    2018-02-01

    316NG austenitic stainless steel is a commonly-used material for primary coolant pipes of pressurized water reactor systems. These pipes are usually joined together by automated narrow gap welding process. In this study, welds were prepared by narrow gap welding on 316NG austenitic stainless steel pipes, and its microstructure of the welds was characterized. Then, fatigue crack growth tests were conducted at 325 °C. Precipitates enriched with Mn and Si were found in the fusion zone. The fatigue crack path was out of plane and secondary cracks initiated from the precipitate/matrix interface. A moderate acceleration of crack growth was also observed at 325°Cair and water (DO = ∼10 ppb) with f = 2 Hz.

  14. Microstructural Characterization of the Heat-Affected Zones in Grade 92 Steel Welds: Double-Pass and Multipass Welds

    Science.gov (United States)

    Xu, X.; West, G. D.; Siefert, J. A.; Parker, J. D.; Thomson, R. C.

    2018-04-01

    The microstructure in the heat-affected zone (HAZ) of multipass welds typical of those used in power plants and made from 9 wt pct chromium martensitic Grade 92 steel is complex. Therefore, there is a need for systematic microstructural investigations to define the different regions of the microstructure across the HAZ of Grade 92 steel welds manufactured using the traditional arc welding processes in order to understand possible failure mechanisms after long-term service. In this study, the microstructure in the HAZ of an as-fabricated two-pass bead-on-plate weld on a parent metal of Grade 92 steel has been systematically investigated and compared to a complex, multipass thick section weldment using an extensive range of electron and ion-microscopy-based techniques. A dilatometer has been used to apply controlled thermal cycles to simulate the microstructures in distinctly different regions in a multipass HAZ using sequential thermal cycles. A wide range of microstructural properties in the simulated materials were characterized and compared with the experimental observations from the weld HAZ. It has been found that the microstructure in the HAZ can be categorized by a combination of sequential thermal cycles experienced by the different zones within the complex weld metal, using the terminology developed for these regions based on a simpler, single-pass bead-on-plate weld, categorized as complete transformation, partial transformation, and overtempered.

  15. Study of ultrasonic characterization and propagation in austenitic welds: The MOSAICS project

    Energy Technology Data Exchange (ETDEWEB)

    Chassignole, Bertrand, E-mail: bertrand.chassignole@edf.fr [EDF R and D, MMC department, Les Renardières, 77818 Moret sur Loing (France); Recolin, Patrick, E-mail: patrick.recolin@dcnsgroup.com [DCNS CESMAN, 44620 La montagne (France); Leymarie, Nicolas, E-mail: nicolas.leymarie@cea.fr [CEA LIST, 91191 Gif-sur-Yvette (France); Gueudré, Cécile, E-mail: cecile.gueudre@univ-amu.fr [LMA, Aix Marseille Université, CNRS, UPR 7051, F-13402 Marseille Cedex 20 (France); Guy, Philippe, E-mail: philippe.guy@insa-lyon.fr [INSA Lyon, LVA laboratory, 69621 Villeurbanne (France); Elbaz, Deborah, E-mail: deborah.elbaz@extende.com [Extende, 91400 Orsay (France)

    2015-03-31

    Regulatory requirements enforce a volumetric inspection of welded components of nuclear equipments. However, the multi-pass austenitic welds are characterized by anisotropic and heterogeneous structures which lead to numerous disturbances of the ultrasonic beam. The MOSAICS project supported by the ANR (French National Research Agency) aims at matching various approaches to improve the prediction of the ultrasonic testing in those welds. The first stage consists in characterizing the weld structure (determination of the columnar grain orientation and measurements of elastic constants and attenuation coefficients). The techniques of characterization provide input data for the modeling codes developed in another task of the project. For example, a 3D version of the finite elements code ATHENA is developed by EDF R and D to take into account anisotropic texture in any direction. Semi-analytical models included in CIVA software are also improved to better predict the ultrasonic propagation in highly anisotropic and heterogeneous structures. The last stage deals with modeling codes validation based on experimental inspections on representative mock-ups containing calibrated defects. The objective of this paper is to give an overview of the MOSAICS project and to present specific results illustrating the various tasks.

  16. Detailed characterization of welding fumes in personal exposure samples

    International Nuclear Information System (INIS)

    Quémerais, B; Mino, James; Amin, M R; Golshahi, H; Izadi, H

    2015-01-01

    The objective of the project was to develop a method allowing for detailed characterization of welding particles including particle number concentration, size distribution, surface chemistry and chemical composition of individual particles, as well as metal concentration of various welding fumes in personal exposure samples using regular sampling equipment. A sample strategy was developed to evaluate the variation of the collection methods on mass concentration. Samples were collected with various samplers and filters at two different locations using our collection system. The first location was using a robotic welding system while the second was manual welding. Collected samples were analysed for mass concentration using gravimetryand metal concentration using ICP/OES. More advanced analysis was performed on selected filters using X-Ray Photoelectron Spectroscopy to determine surface composition of the particles, and X-Ray Diffraction to determine chemical composition of the fumes. Results showed that the robotic system had a lot of variation in space when the collection system was located close to the weld. Collection efficiency was found to be quite variable depending upon the type of filter. As well, metal concentrations in blank filters were dependent upon the type of filter with MCE presenting with the highest blank values. Results obtained with the XRD and XPS systems showed that it was possible to analyse a small of powdered welding fume sample but results on filters were not conclusive. (paper)

  17. Development of automatic laser welding system

    International Nuclear Information System (INIS)

    Ohwaki, Katsura

    2002-01-01

    Laser are a new production tool for high speed and low distortion welding and applications to automatic welding lines are increasing. IHI has long experience of laser processing for the preservation of nuclear power plants, welding of airplane engines and so on. Moreover, YAG laser oscillators and various kinds of hardware have been developed for laser welding and automation. Combining these welding technologies and laser hardware technologies produce the automatic laser welding system. In this paper, the component technologies are described, including combined optics intended to improve welding stability, laser oscillators, monitoring system, seam tracking system and so on. (author)

  18. CCD characterization and measurements automation

    International Nuclear Information System (INIS)

    Kotov, I.V.; Frank, J.; Kotov, A.I.; Kubanek, P.; O'Connor, P.; Prouza, M.; Radeka, V.; Takacs, P.

    2012-01-01

    Modern mosaic cameras have grown both in size and in number of sensors. The required volume of sensor testing and characterization has grown accordingly. For camera projects as large as the LSST, test automation becomes a necessity. A CCD testing and characterization laboratory was built and is in operation for the LSST project. Characterization of LSST study contract sensors has been performed. The characterization process and its automation are discussed, and results are presented. Our system automatically acquires images, populates a database with metadata information, and runs express analysis. This approach is illustrated on 55 Fe data analysis. 55 Fe data are used to measure gain, charge transfer efficiency and charge diffusion. Examples of express analysis results are presented and discussed.

  19. Electron backscattering for process control in electron beam welding

    International Nuclear Information System (INIS)

    Ardenne, T. von; Panzer, S.

    1983-01-01

    A number of solutions to the automation of electron beam welding is presented. On the basis of electron backscattering a complex system of process control has been developed. It allows an enlarged imaging of the material's surface, improved adjustment of the beam focusing and definite focus positioning. Furthermore, both manual and automated positioning of the electron beam before and during the welding process has become possible. Monitoring of the welding process for meeting standard welding requirements can be achieved with the aid of a control quantity derived from the results of electronic evaluation of the high-frequency electron backscattering

  20. Advances in welding science - a perspective

    International Nuclear Information System (INIS)

    David, S.A.; Vitek, J.M.; Babu, S.S.; DebRoy, T.

    1995-01-01

    The ultimate goal of welding technology is to improve the joint integrity and increase productivity. Over the years, welding has been more of an art than a science, but in the last few decades major advances have taken place in welding science and technology. With the development of new methodologies at the crossroads of basic and applied sciences, enormous opportunities and potential exist to develop a science-based tailoring of composition, structure, and properties of welds with intelligent control and automation of the welding processes

  1. Characterization of Cassini GPHS fueled clad production girth welds

    International Nuclear Information System (INIS)

    Franco-Ferreira, E.A.; Moyer, M.W.; Reimus, M.A.H.; Placr, A.; Howard, B.D.

    2000-01-01

    Fueled clads for radioisotope power systems are produced by encapsulating 238 PuO 2 in iridium alloy cups, which are joined at their equators by gas tungsten arc welding. Cracking problems at the girth weld tie-in area during production of the Galileo/Ulysses GPHS capsules led to the development of a first-generation ultrasonic test for girth weld inspection at the Savannah River Plant. A second-generation test and equipment with significantly improved sensitivity and accuracy were jointly developed by the Oak Ridge Y-12 Plant and Westinghouse Savannah River Company for use during the production of Cassini GPHS capsules by the Los Alamos National Laboratory. The test consisted of Lamb wave ultrasonic scanning of the entire girth weld from each end of the capsule combined with a time-of-flight evaluation to aid in characterizing nonrelevant indications. Tangential radiography was also used as a supplementary test for further evaluation of reflector geometry. Each of the 317 fueled GP HS capsules, which were girth welded for the Cassini Program, was subjected to a series of nondestructive tests that included visual, dimensional, helium leak rate, and ultrasonic testing. Thirty-three capsules were rejected prior to ultrasonic testing. Of the 44 capsules rejected by the standard ultrasonic test, 22 were upgraded to flight quality through supplementary testing for an overall process acceptance rate of 82.6%. No confirmed instances of weld cracking were found

  2. Weld analysis and control system

    Science.gov (United States)

    Kennedy, Larry Z. (Inventor); Rodgers, Michael H. (Inventor); Powell, Bradley W. (Inventor); Burroughs, Ivan A. (Inventor); Goode, K. Wayne (Inventor)

    1994-01-01

    The invention is a Weld Analysis and Control System developed for active weld system control through real time weld data acquisition. Closed-loop control is based on analysis of weld system parameters and weld geometry. The system is adapted for use with automated welding apparatus having a weld controller which is capable of active electronic control of all aspects of a welding operation. Enhanced graphics and data displays are provided for post-weld analysis. The system provides parameter acquisition, including seam location which is acquired for active torch cross-seam positioning. Torch stand-off is also monitored for control. Weld bead and parent surface geometrical parameters are acquired as an indication of weld quality. These parameters include mismatch, peaking, undercut, underfill, crown height, weld width, puddle diameter, and other measurable information about the weld puddle regions, such as puddle symmetry, etc. These parameters provide a basis for active control as well as post-weld quality analysis and verification. Weld system parameters, such as voltage, current and wire feed rate, are also monitored and archived for correlation with quality parameters.

  3. Repair welding and online radiography

    International Nuclear Information System (INIS)

    Nuding, W.; Grimm, R.; Link, R.; Schroeder, P.; Schroeder, G.

    1990-01-01

    The status of a joint project is reported, which is to develop a computerized testing and welding system for repair work in turbine blades. An X-ray radiographic testing device consisting of microfocus tube, manipulator and image processing system, is modified for this purpose so as to offer a greater number of image points scanned for image processing, and to thus achieve a better resolution for reliable detection of even very small defects. The consistency of the X-ray tube performance, which is a pre-requisite for automation, is to be achieved by a wa tercooled, high-duty tube head. The recording of defect coordinates in the repair zone is done for input into a welding robot to be developed by other partners in the project, so as to allow automated welding work. (orig.) [de

  4. Characterization of Mechanical Properties and Residual Stress in API 5L X80 Steel Welded Joints

    Science.gov (United States)

    de Sousa Lins, Amilton; de Souza, Luís Felipe Guimarães; Fonseca, Maria Cindra

    2018-01-01

    The use of high-strength and low-alloy steels, high design factors and increasingly stringent safety requirements have increased the operating pressure levels and, consequently, the need for further studies to avoid and prevent premature pipe failure. To evaluate the possibility of improving productivity in manual arc welding of this type of steel, this work characterizes the mechanical properties and residual stresses in API 5L X80 steel welded joints using the SMAW and FCAW processes. The residual stresses were analyzed using x-ray diffraction with the sin2 ψ method at the top and root of the welded joints in the longitudinal and transverse directions of the weld bead. The mechanical properties of the welded joints by both processes were characterized in terms of tensile strength, impact toughness and Vickers microhardness in the welded and shot peening conditions. A predominantly compressive residual stress was found, and shot peening increased the tensile strength and impact toughness in both welded joints.

  5. Methodological development and characterization of welded joints in Poly (vinylidene fluoride) (PVDF)

    International Nuclear Information System (INIS)

    Cedrola, S.M.L.; Costa, M.F. da; Pasqualino, I.P.

    2010-01-01

    Pipelines are of great concern in the transport sector of oil and gas industries, mainly due to the natural internal aging process caused by contact with the different transported fluids. Installation of polymeric pipes called liners is a good option for rehabilitation of long segments of deteriorated pipelines. Among the potential materials for such application is Poly (vinylidene fluoride) (PVDF). Meanwhile the installation process cannot be carried out in one single step and the polymeric pipe must be cut in sections that are welded during the installation process. In this research welding methodology was studied aiming to optimize welding conditions and the mechanical properties of the joined materials. The first step was processing the PVDF via compression molding on different conditions. Then, the sample was cut and butt-welded. Welding parameters such as, time control, temperature and contact pressure were studied. Afterwards, the stress-strain properties of the welded material was evaluated and physical characterization was carried by x-ray diffraction (DRX). (author)

  6. Dictionary: Welding, cutting and allied processes. Pt. 2

    International Nuclear Information System (INIS)

    Kleiber, A.W.

    1987-01-01

    The dictionary contains approximately 40 000 entries covering all aspects of welding technology. It is based on the evaluation of numerous English, American and German sources. This comprehensive and up to date dictionary will be a reliable and helpful aid in evaluation and translating. The dictionary covers the following areas: Welding: gas welding, arc welding, gas shielded welding, resistance welding, welding of plastics, special welding processes; Cutting: flame cutting, arc cutting and special thermal cutting processes; Soldering: brazing and soldering; Other topics: thermal spraying, metal to metal adhesion, welding filler materials and other consumables, test methods, plant and equipment, accessories, automation, welding trade, general welding terminology. (orig./HP) [de

  7. Laser based spot weld characterization

    Science.gov (United States)

    Jonietz, Florian; Myrach, Philipp; Rethmeier, Michael; Suwala, Hubert; Ziegler, Mathias

    2016-02-01

    Spot welding is one of the most important joining technologies, especially in the automotive industry. Hitherto, the quality of spot welded joints is tested mainly by random destructive tests. A nondestructive testing technique offers the benefit of cost reduction of the testing procedure and optimization of the fabrication process, because every joint could be examined. This would lead to a reduced number of spot welded joints, as redundancies could be avoided. In the procedure described here, the spot welded joint between two zinc-coated steel sheets (HX340LAD+Z100MB or HC340LA+ZE 50/50) is heated optically on one side. Laser radiation and flash light are used as heat sources. The melted zone, the so called "weld nugget" provides the mechanical stability of the connection, but also constitutes a thermal bridge between the sheets. Due to the better thermal contact, the spot welded joint reveals a thermal behavior different from the surrounding material, where the heat transfer between the two sheets is much lower. The difference in the transient thermal behavior is measured with time resolved thermography. Hence, the size of the thermal contact between the two sheets is determined, which is directly correlated to the size of the weld nugget, indicating the quality of the spot weld. The method performs well in transmission with laser radiation and flash light. With laser radiation, it works even in reflection geometry, thus offering the possibility of testing with just one-sided accessibility. By using heating with collimated laser radiation, not only contact-free, but also remote testing is feasible. A further convenience compared to similar thermographic approaches is the applicability on bare steel sheets without any optical coating for emissivity correction. For this purpose, a proper way of emissivity correction was established.

  8. Welding wire pressure sensor assembly

    Science.gov (United States)

    Morris, Timothy B. (Inventor); Milly, Peter F., Sr. (Inventor); White, J. Kevin (Inventor)

    1994-01-01

    The present invention relates to a device which is used to monitor the position of a filler wire relative to a base material being welded as the filler wire is added to a welding pool. The device is applicable to automated welding systems wherein nonconsumable electrode arc welding processes are utilized in conjunction with a filler wire which is added to a weld pool created by the electrode arc. The invention senses pressure deviations from a predetermined pressure between the filler wire and the base material, and provides electrical signals responsive to the deviations for actuating control mechanisms in an automatic welding apparatus so as to minimize the pressure deviation and to prevent disengagement of the contact between the filler wire and the base material.

  9. Microstructure Characterization of Fiber Laser Welds of S690QL High-Strength Steels

    Science.gov (United States)

    Li, Baoming; Xu, Peiquan; Lu, Fenggui; Gong, Hongying; Cui, Haichao; Liu, Chuangen

    2018-02-01

    The use of fiber laser welding to join S690QL steels has attracted interest in the field of construction and assembly. Herein, 13-mm-thick S690QL welded joints were obtained without filler materials using the fiber laser. The as-welded microstructures and the impact energies of the joints were characterized and measured using electron microscopy in conjunction with high-resolution transmission electron images, X-ray diffraction, and impact tests. The results indicated that a single-sided welding technique could be used to join S690QL steels up to a thickness of 12 mm (fail to fuse the joint in the root) when the laser power is equal to 12 kW (scan speed 1 m/min). Double-side welding technique allows better weld penetration and better control of heat distribution. Observation of the samples showed that the fusion zone exhibited bainitic and martensitic microstructures with increased amounts of martensites (Ms) compared with the base materials. Also, the grains in the fusion zone increased in coarseness as the heat input was increased. The fusion zone exhibited increased hardness (397 HV0.2) while exhibiting a simultaneous decrease in the impact toughness. The maximum impact energy value of 26 J was obtained from the single-side-welded sample, which is greater than those obtained from the double-side-welded samples (maximum of 18 J). Many more dislocations and plastic deformations were found in the fusion zone than the heat-affected zone in the joint, which hardened the joints and lowered the impact toughness. The microstructures characterized by FTEM-energy-dispersive X-ray spectrometer also exhibited laths of M, as well as stacking faults and dislocations featuring high-density, interfacial structure ledges that occur between the high-angle grain boundaries and the M and bainite.

  10. Welding, Bonding and Fastening, 1984

    Science.gov (United States)

    Buckley, J. D. (Editor); Stein, B. A. (Editor)

    1985-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Soceity, and Society of Manufacturing Engineers conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  11. Mismatch effect on CT specimen mechanical effect and consequences on the weld toughness characterization

    International Nuclear Information System (INIS)

    Marie, S.; Nedelec, M.

    2012-01-01

    The welded joints are particularly sensitive areas in the structures in terms of harmfulness of defects. Given the complexity of the problem (geometry poorly controlled, multi-material aspect, the potential influence of residual stresses), the tests are conducted based on pessimistic assumptions that can wrap all the uncertainties of the problem. In the case of a defect assessment, the considered toughness is deduced from conventional characterization tests with a crack in the welding, considering the current standards, ISO 12135 or ASTM E-1820 which are valid only for an homogeneous specimen. In 2010, a new standard ISO 16563 was published to address the specificity of welded joints. If it covers some of the difficulties, it remains incomplete. In nuclear piping, welds have a mismatch M, i.e. the ratio between the yield strength of the weld metal and the base metal, usually greater than 1: this avoids any problem of strain localization at the junction and ensure that the stresses in the base metal are also easily supported by the welded joint. In this configuration, it turns out that for a given mechanical loading, a crack in the weld located generally has a solicitation, quantified by the parameter J, less (depending on the size of the junction) to those that would see the same crack located in the base metal. Unfortunately, this phenomenon exists also potentially for a characterization test, which would overestimate the true toughness of the welded joint. Plasticity that develops from the crack tip can quickly reach this interface and be affected. To evaluate this phenomenon, we considered two types of representative welded joint (PWR secondary loop ferritic weld and a 316 stainless steel weld) and performed a F.E. analysis of the multi-material CT specimen mechanical answer and on the η coefficient conventionally used to derive the plastic component of J from the area under the curve force-opening displacement. (authors)

  12. Evaluation and characterization of General Purpose Heat Source girth welds for the Cassini mission

    International Nuclear Information System (INIS)

    Lynch, C.M.; Moniz, P.F.; Reimus, M.A.H.

    1998-01-01

    General Purpose Heat Sources (GPHSs) are components of Radioisotopic thermoelectric Generators (RTGs) which provide electric power for deep space missions. Each GPHS consists of a 238 Pu oxide ceramic pellet encapsulated in a welded iridium alloy shell which forms a protective barrier against the release of plutonia in the unlikely event of a launch-pad failure or reentry incident. GPHS fueled clad girth weld flaw detection was paramount to ensuring this safety function, and was accomplished using both destructive and non-destructive evaluation techniques. The first girth weld produced from each welding campaign was metallographically examined for flaws such as incomplete weld penetration, cracks, or porosity which would render a GPHS unacceptable for flight applications. After an acceptable example weld was produced, the subsequently welded heat sources were evaluated non-destructively for flaws using ultrasonic immersion testing. Selected heat sources which failed ultrasonic testing would be radiographed, and/or, destructively evaluated to further characterize and document anomalous indications. Metallography was also performed on impacted heat sources to determine the condition of the welds

  13. Development of sensor augmented robotic weld systems for aerospace propulsion system fabrication

    Science.gov (United States)

    Jones, C. S.; Gangl, K. J.

    1986-01-01

    In order to meet stringent performance goals for power and reuseability, the Space Shuttle Main Engine was designed with many complex, difficult welded joints that provide maximum strength and minimum weight. To this end, the SSME requires 370 meters of welded joints. Automation of some welds has improved welding productivity significantly over manual welding. Application has previously been limited by accessibility constraints, requirements for complex process control, low production volumes, high part variability, and stringent quality requirements. Development of robots for welding in this application requires that a unique set of constraints be addressed. This paper shows how robotic welding can enhance production of aerospace components by addressing their specific requirements. A development program at the Marshall Space Flight Center combining industrial robots with state-of-the-art sensor systems and computer simulation is providing technology for the automation of welds in Space Shuttle Main Engine production.

  14. Welding challenges constructing the alliance pipeline

    International Nuclear Information System (INIS)

    Gilroy-Scott, A.; Huntly, B.; Gross, B.

    2001-01-01

    The best Non Destructive Testing technique for Gas Metal Arc welding (GMAW) is Automated Ultrasonic Inspection because of its inherent ability to detect the planar flaws traditionally produced by GMAW operating in the short-circuiting mode in a narrow gap pipeline application. There is a tendency for GMAW flaws to be somewhat longer than those created by SMAW by the mechanised nature of the process which completes anywhere from one sixth to one half of the pipe circumference in one event. Consequently the alternative acceptance criteria of API 1104 in the USA and CSA Z662 in Canada were implemented for the ∼120,000 mechanised welds required to complete the project. Automated Ultrasonic inspection provided the ability for both the length and height of weld flaws to be determined. This is a prerequisite if alternative acceptance criteria are to be considered

  15. Novel Process Revolutionizes Welding Industry

    Science.gov (United States)

    2008-01-01

    Glenn Research Center, Delphi Corporation, and the Michigan Research Institute entered into a research project to study the use of Deformation Resistance Welding (DRW) in the construction and repair of stationary structures with multiple geometries and dissimilar materials, such as those NASA might use on the Moon or Mars. Traditional welding technologies are burdened by significant business and engineering challenges, including high costs of equipment and labor, heat-affected zones, limited automation, and inconsistent quality. DRW addresses each of those issues, while drastically reducing welding, manufacturing, and maintenance costs.

  16. Versatile Friction Stir Welding/Friction Plug Welding System

    Science.gov (United States)

    Carter, Robert

    2006-01-01

    A proposed system of tooling, machinery, and control equipment would be capable of performing any of several friction stir welding (FSW) and friction plug welding (FPW) operations. These operations would include the following: Basic FSW; FSW with automated manipulation of the length of the pin tool in real time [the so-called auto-adjustable pin-tool (APT) capability]; Self-reacting FSW (SRFSW); SR-FSW with APT capability and/or real-time adjustment of the distance between the front and back shoulders; and Friction plug welding (FPW) [more specifically, friction push plug welding] or friction pull plug welding (FPPW) to close out the keyhole of, or to repair, an FSW or SR-FSW weld. Prior FSW and FPW systems have been capable of performing one or two of these operations, but none has thus far been capable of performing all of them. The proposed system would include a common tool that would have APT capability for both basic FSW and SR-FSW. Such a tool was described in Tool for Two Types of Friction Stir Welding (MFS- 31647-1), NASA Tech Briefs, Vol. 30, No. 10 (October 2006), page 70. Going beyond what was reported in the cited previous article, the common tool could be used in conjunction with a plug welding head to perform FPW or FPPW. Alternatively, the plug welding head could be integrated, along with the common tool, into a FSW head that would be capable of all of the aforementioned FSW and FPW operations. Any FSW or FPW operation could be performed under any combination of position and/or force control.

  17. Welding technologies for nuclear machinery and equipment

    International Nuclear Information System (INIS)

    Kobayashi, Masahiro; Yokono, Tomomi.

    1991-01-01

    The main welding methods applied to nuclear machinery and equipment are shielded metal arc welding, submerged arc welding, MAG welding and TIG welding. But in the last 10 years, in order to improve the reliability required for the welding of nuclear machinery and equipment, the welding technologies aiming at the reduction of heat input, the decrease of the number of welding pass and the automatic control of welding factors have been applied for the main purpose of bettering the quality and excluding human errors. The merits and the technology of narrow gap, pulsed MAG welding and melt-through welding are explained. As the automation of TIG welding, image processing type narrow gap, hot wire TIG welding and remote control type automatic TIG welding are described. For the longitudinal welding of active metal sheet products, plasma key-hole welding is applied. Since the concentration of its arc is good, high speed welding with low heat input can be done. For the stainless steel cladding by welding, electroslag welding has become to be employed in place of conventional submerged arc welding. Arc is not generated in the electroslag welding, and the penetration into base metal is small. (K.I.)

  18. Characterization and Strain-Hardening Behavior of Friction Stir-Welded Ferritic Stainless Steel

    Science.gov (United States)

    Sharma, Gaurav; Dwivedi, Dheerendra Kumar; Jain, Pramod Kumar

    2017-12-01

    In this study, friction stir-welded joint of 3-mm-thick plates of 409 ferritic stainless steel (FSS) was characterized in light of microstructure, x-ray diffraction analysis, hardness, tensile strength, ductility, corrosion and work hardening properties. The FSW joint made of ferritic stainless steel comprises of three distinct regions including the base metal. In stir zone highly refined ferrite grains with martensite and some carbide precipitates at the grain boundaries were observed. X-ray diffraction analysis also revealed precipitation of Cr23C6 and martensite formation in heat-affected zone and stir zone. In tensile testing of the transverse weld samples, the failure eventuated within the gauge length of the specimen from the base metal region having tensile properties overmatched to the as-received base metal. The tensile strength and elongation of the longitudinal (all weld) sample were found to be 1014 MPa and 9.47%, respectively. However, in potentiodynamic polarization test, the corrosion current density of the stir zone was highest among all the three zones. The strain-hardening exponent for base metal, transverse and longitudinal (all weld) weld samples was calculated using various equations. Both the transverse and longitudinal weld samples exhibited higher strain-hardening exponents as compared to the as-received base metal. In Kocks-Mecking plots for the base metal and weld samples at least two stages of strain hardening were observed.

  19. Automated flaw detection scheme for cast austenitic stainless steel weld specimens using Hilbert-Huang transform of ultrasonic phased array data

    International Nuclear Information System (INIS)

    Khan, Tariq; Majumdar, Shantanu; Udpa, Lalita; Ramuhalli, Pradeep; Crawford, Susan; Diaz, Aaron; Anderson, Michael T.

    2012-01-01

    The objective of this work is to develop processing algorithms to detect and localize flaws using ultrasonic phased-array data. Data was collected on cast austenitic stainless stell (CASS) weld specimens onloan from the U.S. nuclear power industry' Pressurized Walter Reactor Owners Group (PWROG) traveling specimen set. Each specimen consists of a centrifugally cast stainless stell (CCSS) pipe section welded to a statically cst(SCSS) or wrought (WRSS) section. The paper presents a novel automated flaw detection and localization scheme using low frequency ultrasonic phased array inspection singals from the weld and heat affected zone of the based materials. The major steps of the overall scheme are preprocessing and region of interest (ROI) detection followed by the Hilbert-Huang transform (HHT) of A-scans in the detected ROIs. HHT offers time-frequency-energy distribution for each ROI. The Accumulation of energy in a particular frequency band is used as a classification feature for the particular ROI

  20. Quantitative Acoustic Emission Fatigue Crack Characterization in Structural Steel and Weld

    Directory of Open Access Journals (Sweden)

    Adutwum Marfo

    2013-01-01

    Full Text Available The fatigue crack growth characteristics of structural steel and weld connections are analyzed using quantitative acoustic emission (AE technique. This was experimentally investigated by three-point bending testing of specimens under low cycle constant amplitude loading using the wavelet packet analysis. The crack growth sequence, that is, initiation, crack propagation, and fracture, is extracted from their corresponding frequency feature bands, respectively. The results obtained proved to be superior to qualitative AE analysis and the traditional linear elastic fracture mechanics for fatigue crack characterization in structural steel and welds.

  1. MATHEMATICAL SIMULATION AND AUTOMATION OF PROCESS ENGINEERING FOR WELDED STRUCTURE PRODUCTION

    Directory of Open Access Journals (Sweden)

    P. V. Zankovets

    2017-01-01

    Full Text Available Models and methods for presentation of database and knowledge base have been developed on the basis of composition and structure of data flow in technological process of welding. The information in data and knowledge base is presented in the form of multilevel hierarchical structure and it is organized according to its functionality in the form of separate files. Each file contains a great number of tables. While using mathematical simulation and information technologies an expert system has been developed with the purpose to take decisions in designing and process engineering for production of welded ructures. The system makes it possible to carry out technically substantiated selection of welded and welding materials, sttypes of welded connections, welding methods, parameters and modes of welding. The developed system allows to improve quality of the accepted design decisions due to reduction of manual labour costs for work with normative-reference documentation, analysis and evaluation of dozens of possible alternatives. The system also permits to reduce labour inputs for testing structures on technological effectiveness, to ensure reduction of materials consumption for welded structures, to guarantee faultless formation of welded connections at this stage.

  2. Characterization of airborne particles generated from metal active gas welding process.

    Science.gov (United States)

    Guerreiro, C; Gomes, J F; Carvalho, P; Santos, T J G; Miranda, R M; Albuquerque, P

    2014-05-01

    This study is focused on the characterization of particles emitted in the metal active gas welding of carbon steel using mixture of Ar + CO2, and intends to analyze which are the main process parameters that influence the emission itself. It was found that the amount of emitted particles (measured by particle number and alveolar deposited surface area) are clearly dependent on the distance to the welding front and also on the main welding parameters, namely the current intensity and heat input in the welding process. The emission of airborne fine particles seems to increase with the current intensity as fume-formation rate does. When comparing the tested gas mixtures, higher emissions are observed for more oxidant mixtures, that is, mixtures with higher CO2 content, which result in higher arc stability. These mixtures originate higher concentrations of fine particles (as measured by number of particles by cm(3) of air) and higher values of alveolar deposited surface area of particles, thus resulting in a more severe worker's exposure.

  3. Microhardness and Strain Field Characterization of Self-Reacting Friction Stir and Plug Welds of Dissimilar Aluminum Alloys

    Science.gov (United States)

    Horton, Karla Renee

    2011-01-01

    Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. Friction plug welding is used to seal the exit hole that remains in a circumferential SR-FSW. This work reports on material properties and strain patterns developed in a SR-FSW with a friction plug weld. Specifically, this study examines the behavior of a SR-FSW formed between an AA 2014-T6 plate on the advancing side and an AA 2219-T87 plate on the retreating side and a SR-FSW (AA 2014-T6 to AA 2219-T87) with a 2219-T87 plug weld. This study presents the results of a characterization of the micro-hardness, joint strength, and strain field characterization of SR-FSW and FPW joints tested at room temperature and cryogenic temperatures.

  4. Characterization on the Microstructure Evolution and Toughness of TIG Weld Metal of 25Cr2Ni2MoV Steel after Post Weld Heat Treatment

    Directory of Open Access Journals (Sweden)

    Xia Liu

    2018-03-01

    Full Text Available The microstructure and toughness of tungsten inert gas (TIG backing weld parts in low-pressure steam turbine welded rotors contribute significantly to the total toughness of the weld metal. In this study, the microstructure evolution and toughness of TIG weld metal of 25Cr2Ni2MoV steel low-pressure steam turbine welded rotor under different post-weld heat treatment (PWHT conditions are investigated. The fractography and microstructure of weld metal after PWHT are characterized by optical microscope, SEM, and TEM, respectively. The Charpy impact test is carried out to evaluate the toughness of the weld. The optical microscope and SEM results indicate that the as-welded sample is composed of granular bainite, acicular ferrite and blocky martensite/austenite (M-A constituent. After PWHT at 580 °C, the blocky M-A decomposes into ferrite and carbides. Both the number and size of precipitated carbides increase with holding time. The impact test results show that the toughness decreases dramatically after PWHT and further decreases with holding time at 580 °C. The precipitated carbides are identified as M23C6 carbides by TEM, which leads to the dramatic decrease in the toughness of TIG weld metal of 25Cr2Ni2MoV steel.

  5. Infrared sensing techniques for adaptive robotic welding

    International Nuclear Information System (INIS)

    Lin, T.T.; Groom, K.; Madsen, N.H.; Chin, B.A.

    1986-01-01

    The objective of this research is to investigate the feasibility of using infrared sensors to monitor the welding process. Data were gathered using an infrared camera which was trained on the molten metal pool during the welding operation. Several types of process perturbations which result in weld defects were then intentionally induced and the resulting thermal images monitored. Gas tungsten arc using ac and dc currents and gas metal arc welding processes were investigated using steel, aluminum and stainless steel plate materials. The thermal images obtained in the three materials and different welding processes revealed nearly identical patterns for the same induced process perturbation. Based upon these results, infrared thermography is a method which may be very applicable to automation of the welding process

  6. Laser welding of polymers, compatibility and mechanical properties

    DEFF Research Database (Denmark)

    Nielsen, Steen Erik; Strange, Marianne; Kristensen, Jens Klæstrup

    2013-01-01

    for research and development. This paper presents some research results related to laser welding of various polymer materials, including weld compatibility investigations related to the joining of different polymers. Theory for bonding mechanisms, strength development, mechanical properties testing and other......Laser welding of polymers is today a commonly used industrial technology. It has shown obvious advantages compared to e.g. adhesive bonding in terms of higher productivity, better quality and easiness for automation. The ongoing development of lasers tailored for polymer welding in coordination...

  7. Characterization of the ultrasonic welding process in the production of women's health devices

    International Nuclear Information System (INIS)

    Morales Elizondo, Jenniffer

    2014-01-01

    The characterization of the ultrasonic welding process in the area of women's health is performed to determine appropriate levels for the critical variables of the process to guarantee the quality specifications of the devices. The handle of the product A is detached. The assembly was made under pressure. Available technologies have been studied to comply with the regulations of medical industry to propose a change in process to a product B. The ultrasonic technology is used to weld the handle of the device to prevent the release of the two parts of the handle of the medical device. A variable characterization process was performed to determine which variables are critical to the process and define the operation parameters of ultrasonic welding. A number of designs of experiments is carried out, first the parameters behavior of the equipment is evaluated to analyze which have greater influence on the quality of the weld. A full factorial design was developed with all process input variables and input variables that are significant was performed another series of designs of experiments to determine the parameters of the process.The conclusion for the ultrasonic welding process in the product B has been that the critical variables or that have had a greater influence on the quality and appearance in experienced designs are: pressure and soldier collapse. The process of ultrasonic welded cycle has started to arrive at the value of driving force that tells the computer. The input variable is recommended to be the lowest possible to weld components using the ordering of particles product of ultrasonic welded avoiding compression component. (author) [es

  8. Characterization and modelling techniques for gas metal arc welding of DP 600 sheet steels

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, K.; Prahl, U.; Bleck, W. [RWTH Aachen University, Department of Ferrous Metallurgy (IEHK) (Germany); Reisgen, U.; Schleser, M.; Abdurakhmanov, A. [RWTH Aachen University, Welding and Joining Institute (ISF) (Germany)

    2010-11-15

    The objectives of the present work are to characterize the Gas Metal Arc Welding process of DP 600 sheet steel and to summarize the modelling techniques. The time-temperature evolution during the welding cycle was measured experimentally and modelled with the softwaretool SimWeld. To model the phase transformations during the welding cycle dilatometer tests were done to quantify the parameters for phase field modelling by MICRESS {sup registered}. The important input parameters are interface mobility, nucleation density, etc. A contribution was made to include austenite to bainite transformation in MICRESS {sup registered}. This is useful to predict the microstructure in the fast cooling segments. The phase transformation model is capable to predict the microstructure along the heating and cooling cycles of welding. Tensile tests have shown the evidence of failure at the heat affected zone, which has the ferrite-tempered martensite microstructure. (orig.)

  9. The Northern States Power Company welding manual advisor

    International Nuclear Information System (INIS)

    Lu, Yi; Wood, R.M.

    1993-01-01

    The Welding Manual Advisor (WMA) is an object oriented expert system designed to assist Northern States Power (NSP) personnel in implementing the company's Welding Manual. The expert system captures the knowledge of welding experts, addresses important issues in welding activities and automates the use of the Welding Manual. It is estimated that use of the WMA will save $81,000 over the next six years at NSP, because of the reduction of labor and errors in the use of the Welding Manual, and facilitation of training of NSP personnel. The important features of the WMA include the accuracy and consistency in determining welding procedure and requirements, update capability, user friendly interface, on-line help function, back-up capability, and well-documented manuals

  10. Toward practical 3D radiography of pipeline girth welds

    International Nuclear Information System (INIS)

    Wassink, Casper; Hol, Martijn; Flikweert, Arjan; Meer, Philip van

    2015-01-01

    Digital radiography has made its way into in-the-field girth weld testing. With recent generations of detectors and x-ray tubes it is possible to reach the image quality desired in standards as well as the speed of inspection desired to be competitive with film radiography and automated ultrasonic testing. This paper will show the application of these technologies in the RTD Rayscan system. The method for achieving an image quality that complies with or even exceeds prevailing industrial standards will be presented, as well as the application on pipeline girth welds with CRA layers. A next step in development will be to also achieve a measurement of weld flaw height to allow for performing an Engineering Critical Assessment on the weld. This will allow for similar acceptance limits as currently used with Automated Ultrasonic Testing of pipeline girth welds. Although a sufficient sizing accuracy was already demonstrated and qualified in the TomoCAR system, testing in some applications is restricted to time limits. The paper will present some experiments that were performed to achieve flaw height approximation within these time limits

  11. Toward practical 3D radiography of pipeline girth welds

    Energy Technology Data Exchange (ETDEWEB)

    Wassink, Casper, E-mail: casper.wassink@applusrtd.com [Applus RTD Chief Scientist, Rivium 1e straat 80, 2909 LE Capelle a/d IJssel (Netherlands); Hol, Martijn, E-mail: martijn.hol@applusrtd.com; Flikweert, Arjan, E-mail: martijn.hol@applusrtd.com; Meer, Philip van, E-mail: martijn.hol@applusrtd.com [Applus RTD Technological Center, Delftweg 144, 3046 NC Rotterdam (Netherlands)

    2015-03-31

    Digital radiography has made its way into in-the-field girth weld testing. With recent generations of detectors and x-ray tubes it is possible to reach the image quality desired in standards as well as the speed of inspection desired to be competitive with film radiography and automated ultrasonic testing. This paper will show the application of these technologies in the RTD Rayscan system. The method for achieving an image quality that complies with or even exceeds prevailing industrial standards will be presented, as well as the application on pipeline girth welds with CRA layers. A next step in development will be to also achieve a measurement of weld flaw height to allow for performing an Engineering Critical Assessment on the weld. This will allow for similar acceptance limits as currently used with Automated Ultrasonic Testing of pipeline girth welds. Although a sufficient sizing accuracy was already demonstrated and qualified in the TomoCAR system, testing in some applications is restricted to time limits. The paper will present some experiments that were performed to achieve flaw height approximation within these time limits.

  12. Prediction Analysis of Weld-Bead and Heat Affected Zone in TIG welding using Artificial Neural Networks

    Science.gov (United States)

    Saldanha, Shamith L.; Kalaichelvi, V.; Karthikeyan, R.

    2018-04-01

    TIG Welding is a high quality form of welding which is very popular in industries. It is one of the few types of welding that can be used to join dissimilar metals. Here a weld joint is formed between stainless steel and monel alloy. It is desired to have control over the weld geometry of such a joint through the adjustment of experimental parameters which are welding current, wire feed speed, arc length and the shielding gas flow rate. To facilitate the automation of the same, a model of the welding system is needed. However the underlying welding process is complex and non-linear, and analytical methods are impractical for industrial use. Therefore artificial neural networks (ANN) are explored for developing the model, as they are well-suited for modelling non-linear multi-variate data. Feed-forward neural networks with backpropagation training algorithm are used, and the data for training the ANN taken from experimental work. There are four outputs corresponding to the weld geometry. Different training and testing phases were carried out using MATLAB software and ANN approximates the given data with minimum amount of error.

  13. Cu-Fe welding techniques by electromagnetic and electron beam welding processes

    International Nuclear Information System (INIS)

    Kumar, Satendra; Saroj, P.C.; Kulkarni, M.R.; Sharma, A.; Rajawat, R.K.; Saha, T.K.

    2015-01-01

    Electromagnetic welding being a solid state welding process has been found suitable for welding Copper and Iron which are conventionally very tricky. Owing to good electrical conductivity of both copper and iron, they are best suited combination for EM welding. For the experimental conditions presented above, 1.0 mm wall thickness of Cu tube was lap welded to Fe disc. A heavy duty four disc stainless steel coil was used for electromagnetic welding of samples. MSLD of the welded samples indicated leak proof joints. Metallographic examination of the welds also revealed defect free interfaces. Electron beam welding is also a non-conventional welding process used for joining dissimilar materials. Autogenous welding of the above specimen was carried out by EBW method for the sake of comparison. A characterization analysis of the above mentioned joining processes will be discussed in the paper. (author)

  14. Problem of quality assurance during metal constructions welding via robotic technological complexes

    Science.gov (United States)

    Fominykh, D. S.; Rezchikov, A. F.; Kushnikov, V. A.; Ivashchenko, V. A.; Bogomolov, A. S.; Filimonyuk, L. Yu; Dolinina, O. N.; Kushnikov, O. V.; Shulga, T. E.; Tverdokhlebov, V. A.

    2018-05-01

    The problem of minimizing the probability for critical combinations of events that lead to a loss in welding quality via robotic process automation is examined. The problem is formulated, models and algorithms for its solution are developed. The problem is solved by minimizing the criterion characterizing the losses caused by defective products. Solving the problem may enhance the quality and accuracy of operations performed and reduce the losses caused by defective product

  15. Characterization of duplex stainless steel weld metals obtained by hybrid plasma-gas metal arc welding

    Directory of Open Access Journals (Sweden)

    Koray Yurtisik

    2013-09-01

    Full Text Available Despite its high efficiency, autogenous keyhole welding is not well-accepted for duplex stainless steels because it causes excessive ferrite in as-welded duplex microstructure, which leads to a degradation in toughness and corrosion properties of the material. Combining the deep penetration characteristics of plasma arc welding in keyhole mode and metal deposition capability of gas metal arc welding, hybrid plasma - gas metal arc welding process has considered for providing a proper duplex microstructure without compromising the welding efficiency. 11.1 mm-thick standard duplex stainless steel plates were joined in a single-pass using this novel technique. Same plates were also subjected to conventional gas metal arc and plasma arc welding processes, providing benchmarks for the investigation of the weldability of the material. In the first place, the hybrid welding process enabled us to achieve less heat input compared to gas metal arc welding. Consequently, the precipitation of secondary phases, which are known to be detrimental to the toughness and corrosion resistance of duplex stainless steels, was significantly suppressed in both fusion and heat affected zones. Secondly, contrary to other keyhole techniques, proper cooling time and weld metal chemistry were achieved during the process, facilitating sufficient reconstructive transformation of austenite in the ferrite phase.

  16. CCD characterization and measurements automation

    Czech Academy of Sciences Publication Activity Database

    Kotov, I.V.; Frank, J.; Kotov, A.I.; Kubánek, Petr; O´Connor, P.; Prouza, Michael; Radeka, V.; Takacs, P.

    2012-01-01

    Roč. 695, Dec (2012), 188-192 ISSN 0168-9002 R&D Projects: GA MŠk ME09052 Institutional research plan: CEZ:AV0Z10100502 Keywords : CCD * characterization * test automation Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.142, year: 2012

  17. Microstructural and mechanical property characterization of Er modified Al-Mg-Mn alloy Tungsten Inert Gas welds

    International Nuclear Information System (INIS)

    Yang, Dongxia; Li, Xiaoyan; He, Dingyong; Nie, Zuoren; Huang, Hui

    2012-01-01

    Highlights: → The microstructural characterization of TIG welded Al-Mg-Mn-Zr-Er alloy is studied. → A typical equaixed zone (EQZ) with finer grains is observed in the weld metal at the fusion boundary. → The dissolution of non-primary Al 3 Er particles in Al matrix is one reason of the weakness of TIG welded joint. →The relationship between mechanical properties and microstructure of welded joints is evaluated. →Reasons for joint softening are given from work-hardening, precipitation strengthening and solution strengthening. -- Abstract: Samples of Al-Mg-Mn-Zr-Er alloys have been welded using the method of TIG welding. Microstructures characterization was performed by optical microscopy (OM), energy dispersive X-ray (EDX) and transmission electron microscopy (TEM), respectively. In addition, tensile and hardness test was conducted. The relationship between mechanical properties and microstructure of welded joints is evaluated. Results indicate that the ultimate tensile strength of the joints is 72% of that of the base metal. The base metal consists of a typical rolled structure, and the fusion zone (FZ) is mainly made up of dendrite grains. A characteristic equiaxed zone (EQZ) is obtained at the fusion boundary between the base metal and fusion zone. Fine dispersion of coherent Al 3 Er precipitates was found in the base metal, however, the quantity of these particles dropped significantly in the fusion zone. The hardness test results indicate that the microhardness in the fusion zone is lower than that of the base metal, due to the as-cast structure in this region. Based on the present work, it is concluded that TIG welding is the suitable welding procedure for joining this new type Er-containing aluminum alloy.

  18. Characterization of duplex stainless steel weld metals obtained by hybrid plasma-gas metal arc welding

    OpenAIRE

    Yurtisik,Koray; Tirkes,Suha; Dykhno,Igor; Gur,C. Hakan; Gurbuz,Riza

    2013-01-01

    Despite its high efficiency, autogenous keyhole welding is not well-accepted for duplex stainless steels because it causes excessive ferrite in as-welded duplex microstructure, which leads to a degradation in toughness and corrosion properties of the material. Combining the deep penetration characteristics of plasma arc welding in keyhole mode and metal deposition capability of gas metal arc welding, hybrid plasma - gas metal arc welding process has considered for providing a proper duplex mi...

  19. Progress in welding studies for Canadian nuclear fuel waste disposal containers

    International Nuclear Information System (INIS)

    Maak, P.Y.Y.

    1985-11-01

    This report describes the progress in the development of closure-welding technology for Canadian nuclear fuel waste disposal containers. Titanium, copper and Inconel 625 are being investigated as candidate materials for fabrication of these containers. Gas-tungsten-arc welding, gas metal-arc-welding, resistance-heated diffusion bonding and electron beam welding have been evaluated as candidate closure welding processes. Characteristic weldment properties, relative merits of welding techniques, suitable weld joint configurations and fit-up tolerances, and welding parameter control ranges have been identified for various container designs. Furthermore, the automation requirements for candidate welding processes have been assessed. Progress in the development of a computer-controlled remote gas-shielded arc welding system is described

  20. Metallurgical and mechanical characterization of a submerged arc welded joint in a 316 type stainless steel

    International Nuclear Information System (INIS)

    Piatti, G.; Vedani, M.

    1990-01-01

    The tensile (deformation and fracture) behaviour of a multipass submerged arc welded joint Type 316 stainless steel is investigated by tests at room temperature and at 400 0 C on all-weld metal and transverse to weld (composite) specimens as well as by microstructural and compositional analyses (optical, scanning electron and transmission electron microscopy). The as-deposited metal is characterised by a systematic variation in the tensile properties across the thickness with the higher strength and the lower ductility in the weld centre. These variations are related to material variability (mainly in dislocation density) because of local dissimilarities in thermal and mechanical histories occurring during the welding process. However, the material variability in the fusion zone, although important is not so large in the present weld and it does not influence the tensile properties of the weld as a whole. Moreover, the tensile behaviour concerning the transverse to weld specimens is characterized by a supporting effect from the higher yield strength material zone (fusion zone) to the lower yield strength material zone (parent metal) justified by the different contribution of the parent metal and of the weld-deposit metal to the integral plastic strain of the specimens. (author)

  1. Nuclear welding, application for an LMFBR

    International Nuclear Information System (INIS)

    Patriarca, P.; Goodwin, G.M.

    1975-01-01

    Fabrication of an LMFBR system is discussed, with emphasis on areas where joint welding innovations have been introduced. Each major component of the system, including reactor vessel, intermediate heat exchanger, steam generator, and sodium-containment piping, is treated separately. Developmet of special filler metals to avoid the low elevated-temperature creep ductility obtained with conventional austenitic stainless steel weldments is reported. Bore-side welding of steam generator tube-to-tubesheet joints with and without filler metal is desirable to improve inspectability and eliminate the crevice inherent with face-side weld design, thus minimizing corrosion problems. Automated welding methods for sodium-containment piping are summarized which iminimize and control distortion and ensure welds of high integrity. Selection of materials for the various components is discussed for plants presently under construction, and materials predictions are made for future concepts. (U.S.)

  2. Welding robot package; Arc yosetsu robot package

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, S. [Yaskawa Electric Corp., Kitakyushu (Japan)

    1998-09-01

    For the conventional high-speed welding robot, the welding current was controlled mainly for reducing the spatters during short circuits and for stabilizing the beads by the periodic short circuits. However, an increase of deposition amount in response to the speed is required for the high-speed welding. Large-current low-spatter welding current region control was added. Units were integrated into a package by which the arc length is kept in short without dispersion of arc length for welding without defects such as undercut and unequal beads. In automobile industry, use of aluminum parts is extended for the light weight. The welding is very difficult, and automation is not so progressing in spite of the poor environment. Buckling of welding wire is easy to occur, and supply of wire is obstructed by the deposition of chipped powders on the torch cable, which stay within the contact chip resulting in the deposition. Dislocation of locus is easy to occur at the corner of rectangular pipe during the welding. By improving these troubles, an aluminum MIG welding robot package has been developed. 13 figs.

  3. Gas tungsten arc welding and friction stir welding of ultrafine grained AISI 304L stainless steel: Microstructural and mechanical behavior characterization

    Energy Technology Data Exchange (ETDEWEB)

    Sabooni, S., E-mail: s.sabooni@ma.iut.ac.ir [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Karimzadeh, F.; Enayati, M.H. [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of); Ngan, A.H.W. [Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Jabbari, H. [Department of Materials Engineering, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of)

    2015-11-15

    In the present study, an ultrafine grained (UFG) AISI 304L stainless steel with the average grain size of 650 nm was successfully welded by both gas tungsten arc welding (GTAW) and friction stir welding (FSW). GTAW was applied without any filler metal. FSW was also performed at a constant rotational speed of 630 rpm and different welding speeds from 20 to 80 mm/min. Microstructural characterization was carried out by High Resolution Scanning Electron Microscopy (HRSEM) with Electron Backscattered Diffraction (EBSD) and Transmission Electron Microscopy (TEM). Nanoindentation, microhardness measurements and tensile tests were also performed to study the mechanical properties of the base metal and weldments. The results showed that the solidification mode in the GTAW welded sample is FA (ferrite–austenite) type with the microstructure consisting of an austenite matrix embedded with lath type and skeletal type ferrite. The nugget zone microstructure in the FSW welded samples consisted of equiaxed dynamically recrystallized austenite grains with some amount of elongated delta ferrite. Sigma phase precipitates were formed in the region ahead the rotating tool during the heating cycle of FSW, which were finally fragmented into nanometric particles and distributed in the weld nugget. Also there is a high possibility that the existing delta ferrite in the microstructure rapidly transforms into sigma phase particles during the short thermal cycle of FSW. These suggest that high strain and deformation during FSW can promote sigma phase formation. The final austenite grain size in the nugget zone was found to decrease with increasing Zener–Hollomon parameter, which was obtained quantitatively by measuring the peak temperature, calculating the strain rate during FSW and exact examination of hot deformation activation energy by considering the actual grain size before the occurrence of dynamic recrystallization. Mechanical properties observations showed that the welding

  4. Design of welding parameters for laser welding of thin-walled stainless steel tubes using numerical simulation

    Science.gov (United States)

    Nagy, M.; Behúlová, M.

    2017-11-01

    Nowadays, the laser technology is used in a wide spectrum of applications, especially in engineering, electronics, medicine, automotive, aeronautic or military industries. In the field of mechanical engineering, the laser technology reaches the biggest increase in the automotive industry, mainly due to the introduction of automation utilizing 5-axial movements. Modelling and numerical simulation of laser welding processes has been exploited with many advantages for the investigation of physical principles and complex phenomena connected with this joining technology. The paper is focused on the application of numerical simulation to the design of welding parameters for the circumferential laser welding of thin-walled exhaust pipes from theAISI 304 steel for automotive industry. Using the developed and experimentally verified simulation model for laser welding of tubes, the influence of welding parameters including the laser velocity from 30 mm.s-1 to 60 mm.s-1 and the laser power from 500 W to 1200 W on the temperature fields and dimensions of fusion zone was investigated using the program code ANSYS. Based on obtained results, the welding schedule for the laser beam welding of thin-walled tubes from the AISI 304 steel was suggested.

  5. Characterization of bond line discontinuities in a high-Mn TWIP steel pipe welded by HF-ERW

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gitae; Kim, Bongyoon; Kang, Yongjoon [Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763 (Korea, Republic of); Kang, Heewoong [RD Team, Husteel, 131 Bugokgongdan-ro, Songak-eup, Dangjin-si, Chungnam 31721 (Korea, Republic of); Lee, Changhee, E-mail: chlee@hanyang.ac.kr [Division of Materials Science and Engineering, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul 04763 (Korea, Republic of)

    2016-08-15

    In this work, the microstructure and defects in a high-frequency electrical resistance welded (HF-ERW) pipe of high-Mn twinning-induced plasticity (TWIP) steel were characterized. The microstructure of the base metal and the bond line were examined using both optical microscopy and scanning electron microscopy. The features of the bond line were similar to those of conventional steel. Simultaneously, the circumferential ductility was evaluated via a flaring test. It was concluded that the deterioration of the circumferential ductility in a high-Mn TWIP steel pipe was caused by irregular shaped oxide defects and a penetrator that had been formed during welding. Specifically, the penetrator, which is composed of MnO and Mn{sub 2}SiO{sub 4}, was found to be the most influential on the circumferential ductility of the welded pipe. The penetrator was analyzed using both an electron probe micro analyzer and transmission electron microscopy, and the formation sequence of the penetrator was evaluated. - Highlights: •This study focused on applying the HF-ERW process to the seam welding of expandable pipe using TWIP steels. •For improvement of the circumferential ductility, deterioration factors were characterized. •Penetrator which would mainly deteriorate the circumferential ductility consisted of round MnO and Mn{sub 2}SiO{sub 4}. •Metallurgical evidence of existing theory regarding the mechanism of defect formation during the HF-ERW was characterized.

  6. Performance Improvement of Friction Stir Welds by Better Surface Finish

    Science.gov (United States)

    Russell, Sam; Nettles, Mindy

    2015-01-01

    The as-welded friction stir weld has a cross section that may act as a stress concentrator. The geometry associated with the stress concentration may reduce the weld strength and it makes the weld challenging to inspect with ultrasound. In some cases, the geometry leads to false positive nondestructive evaluation (NDE) indications and, in many cases, it requires manual blending to facilitate the inspection. This study will measure the stress concentration effect and develop an improved phased array ultrasound testing (PAUT) technique for friction stir welding. Post-welding, the friction stir weld (FSW) tool would be fitted with an end mill that would machine the weld smooth, trimmed shaved. This would eliminate the need for manual weld preparation for ultrasonic inspections. Manual surface preparation is a hand operation that varies widely depending on the person preparing the welds. Shaving is a process that can be automated and tightly controlled.

  7. Magnetic stirring welding method applied to nuclear power plant

    International Nuclear Information System (INIS)

    Hirano, Kenji; Watando, Masayuki; Morishige, Norio; Enoo, Kazuhide; Yasuda, Yuuji

    2002-01-01

    In construction of a new nuclear power plant, carbon steel and stainless steel are used as base materials for the bottom linear plate of Reinforced Concrete Containment Vessel (RCCV) to achieve maintenance-free requirement, securing sufficient strength of structure. However, welding such different metals is difficult by ordinary method. To overcome the difficulty, the automated Magnetic Stirring Welding (MSW) method that can demonstrate good welding performance was studied for practical use, and weldability tests showed the good results. Based on the study, a new welding device for the MSW method was developed to apply it weld joints of different materials, and it practically used in part of a nuclear power plant. (author)

  8. Characterization and Optimization of Ni-WC Composite Weld Matrix Deposited by Plasma-Transferred Arc Process

    Science.gov (United States)

    Tahaei, Ali; Horley, Paul; Merlin, Mattia; Torres-Torres, David; Garagnani, Gian Luca; Praga, Rolando; Vázquez, Felipe J. García; Arizmendi-Morquecho, Ana

    2017-03-01

    This work is dedicated to optimization of carbide particle system in a weld bead deposited by PTAW technique over D2 tool steel with high chromium content. The paper reports partial melting of the original carbide grains of the Ni-based filling powder, and growing of the secondary carbide phase (Cr, Ni)_3W_3C in the form of dendrites with wide branches that enhanced mechanical properties of the weld. The optimization of bead parameters was made with design of experiment methodology complemented by a complex sample characterization including SEM, EDXS, XRD, and nanoindentation measurements. It was shown that the preheat of the substrate to a moderate temperature 523 K (250° C) establishes linear pattern of metal flow in the weld pool, resulting in the most homogeneous distribution of the primary carbides in the microstructure of weld bead.

  9. Ultrasonic Welding of Thermoplastic Composite Coupons for Mechanical Characterization of Welded Joints through Single Lap Shear Testing.

    Science.gov (United States)

    Villegas, Irene F; Palardy, Genevieve

    2016-02-11

    This paper presents a novel straightforward method for ultrasonic welding of thermoplastic-composite coupons in optimum processing conditions. The ultrasonic welding process described in this paper is based on three main pillars. Firstly, flat energy directors are used for preferential heat generation at the joining interface during the welding process. A flat energy director is a neat thermoplastic resin film that is placed between the parts to be joined prior to the welding process and heats up preferentially owing to its lower compressive stiffness relative to the composite substrates. Consequently, flat energy directors provide a simple solution that does not require molding of resin protrusions on the surfaces of the composite substrates, as opposed to ultrasonic welding of unreinforced plastics. Secondly, the process data provided by the ultrasonic welder is used to rapidly define the optimum welding parameters for any thermoplastic composite material combination. Thirdly, displacement control is used in the welding process to ensure consistent quality of the welded joints. According to this method, thermoplastic-composite flat coupons are individually welded in a single lap configuration. Mechanical testing of the welded coupons allows determining the apparent lap shear strength of the joints, which is one of the properties most commonly used to quantify the strength of thermoplastic composite welded joints.

  10. Microstructural characterization of dissimilar welds between Incoloy 800H and 321 Austenitic Stainless Steel

    Energy Technology Data Exchange (ETDEWEB)

    Sayiram, G., E-mail: sayiram.g@vit.ac.in; Arivazhagan, N.

    2015-04-15

    In this work, the microstructural character of dissimilar welds between Incoloy 800H and 321 Stainless Steel has been discussed. The microscopic examination of the base metals, fusion zones and interfaces was characterized using an optical microscope and scanning electron microscopy. The results revealed precipitates of Ti (C, N) in the austenitic matrix along the grain boundaries of the base metals. Migration of grain boundaries in the Inconel 82 weld metal was very extensive when compared to Inconel 617 weldment. Epitaxial growth was observed in the 617 weldment which increases the strength and ductility of the weld metal. Unmixed zone near the fusion line between 321 Stainless Steel and Inconel 82 weld metal was identified. From the results, it has been concluded that Inconel 617 filler metal is a preferable choice for the joint between Incoloy 800H and 321 Stainless Steel. - Highlights: • Failure mechanisms produced by dissimilar welding of Incoloy 800H to AISI 321SS • Influence of filler wire on microstructure properties • Contemplative comparisons of metallurgical aspects of these weldments • Microstructure and chemical studies including metallography, SEM–EDS • EDS-line scan study at interface.

  11. Enabling high speed friction stir welding of aluminum tailor welded blanks

    Science.gov (United States)

    Hovanski, Yuri

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high-volumes. While friction stir welding (FSW) has traditionally been applied at linear velocities less than one meter per minute, high volume production applications demand the process be extended to higher velocities more amenable to cost sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low to moderate welding velocities do not directly translate to high speed linear friction stir welding. Therefore, in order to facilitate production of high volume aluminum FSW components, parameters were developed with a minimum welding velocity of three meters per minute. With an emphasis on weld quality, welded blanks were evaluated for post-weld formability using a combination of numerical and experimental methods. Evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum tailor-welded blanks, which provided validation of the numerical and experimental analysis of laboratory scale tests.

  12. Quantitative characterization of the microstructure of an electron-beam welded medium strength Al-Zn-Mg alloy

    Energy Technology Data Exchange (ETDEWEB)

    Deschamps, A., E-mail: alexis.deschamps@simap.grenoble-inp.fr [SIMAP, INPGrenoble-CNRS-UJF, BP 75, 38402 St Martin d' Heres Cedex (France); Ringeval, S.; Texier, G. [SIMAP, INPGrenoble-CNRS-UJF, BP 75, 38402 St Martin d' Heres Cedex (France) and CEA, centre de Valduc, SEMP, LECM, 21120 Is-Sur-Tille (France); Delfaut-Durut, L. [CEA, centre de Valduc, SEMP, LECM, 21120 Is-Sur-Tille (France)

    2009-08-20

    The microstructure of an electron beam weld of a medium strength Al-4.5%Zn-1%Mg (wt.%) alloy has been characterized in terms of solute element distribution, grain structure and fine-scale precipitates after a T6 post-welding heat treatment. It is found that the weld nugget consists of small grains, whose size (1-50 {mu}m) is heterogeneously distributed. The nugget composition is unaffected in Mg but depleted of 20% in Zn in the first run zone. This is shown to affect the fine-scale precipitate microstructure, which has been mapped in the weld cross-section using Small-Angle X-ray Scattering. It is shown that the nugget exhibits a precipitate size only slightly different from that of the base material after the post-welding heat treatment, and that the difference in volume fraction, much more significant, can be understood from the magnitude of the solute depletion. The relative precipitate sizes and volume fractions in the weld nugget and base material enable to understand effectively the corresponding microhardness levels.

  13. Residual stress characterization of a fabrication weld from the VICTORIA-Class submarine pressure hull: revealing the unseen

    International Nuclear Information System (INIS)

    McGregor, R.J.; Rogge, R.B.

    2010-01-01

    Explicit understanding of the residual-stress character of primary submarine pressure hull weldments will improve the fidelity of numerical analysis and experimentation supporting operational envelope and design life. A length of circumferential-seam closure weld was contained within a section of hull plate removed from the HMCS VICTORIA during the extended docking work period (EDWP) refit operations. This has provided a rare opportunity for detailed characterization of the as-received condition of this common weld-type from original vessel assembly. In collaboration with the Canadian Neutron Beam Centre of the National Research Council (NRC), a program was conducted to study this weld using neutron diffraction. Neutron diffraction is able to survey nondestructively through the section thickness, providing a three-dimensional characterization, while leaving the specimen intact for complementary study by other methods. Results indicate tensile stress peaks of up to 80% of the base-material yield stress. Understanding the three-dimensional behaviour of residual stress in this type of weld provides a valuable resource to the numerical modelling community. The results can also support fatigue and fracture experimental work and serve to confirm and improve the interpretation of the existing body of 'surface-only' work conducted on similar welds. (author)

  14. Advanced Gas Tungsten Arc Weld Surfacing Current Status and Application

    Directory of Open Access Journals (Sweden)

    Stephan Egerland

    2015-09-01

    Full Text Available Abstract Gas Shielded Tungsten Arc Welding (GTAW – a process well-known providing highest quality weld results joined though by lower performance. Gas Metal Arc Welding (GMAW is frequently chosen to increase productivity along with broadly accepted quality. Those industry segments, especially required to produce high quality corrosion resistant weld surfacing e.g. applying nickel base filler materials, are regularly in consistent demand to comply with "zero defect" criteria. In this conjunction weld performance limitations are overcome employing advanced 'hot-wire' GTAW systems. This paper, from a Welding Automation perspective, describes the technology of such devices and deals with the current status is this field – namely the application of dual-cathode hot-wire electrode GTAW cladding; considerably broadening achievable limits.

  15. High quality, high efficiency welding technology for nuclear power plants

    International Nuclear Information System (INIS)

    Aoki, Shigeyuki; Nagura, Yasumi

    1996-01-01

    For nuclear power plants, it is required to ensure the safety under the high reliability and to attain the high rate of operation. In the manufacture and installation of the machinery and equipment, the welding techniques which become the basis exert large influence to them. For the purpose of improving joint performance and excluding human errors, welding heat input and the number of passes have been reduced, the automation of welding has been advanced, and at present, narrow gap arc welding and high energy density welding such as electron beam welding and laser welding have been put to practical use. Also in the welding of pipings, automatic gas metal arc welding is employed. As for the welding of main machinery and equipment, there are the welding of the joints that constitute pressure boundaries, the build-up welding on the internal surfaces of pressure vessels for separating primary water from them, and the sealing welding of heating tubes and tube plates in steam generators. These weldings are explained. The welding of pipings and the state of development and application of new welding methods are reported. (K.I.)

  16. Metallurgical and Corrosion Characterization of POST Weld Heat Treated Duplex Stainless Steel (uns S31803) Joints by Friction Welding Process

    Science.gov (United States)

    Asif M., Mohammed; Shrikrishna, Kulkarni Anup; Sathiya, P.

    2016-02-01

    The present study focuses on the metallurgical and corrosion characterization of post weld heat treated duplex stainless steel joints. After friction welding, it was confirmed that there is an increase in ferrite content at weld interface due to dynamic recrystallization. This caused the weldments prone to pitting corrosion attack. Hence the post weld heat treatments were performed at three temperatures 1080∘C, 1150∘C and 1200∘C with 15min of aging time. This was followed by water and oil quenching. The volume fraction of ferrite to austenite ratio was balanced and highest pit nucleation resistance were achieved after PWHT at 1080∘C followed by water quench and at 1150∘C followed by oil quench. This had happened exactly at parameter set containing heating pressure (HP):40 heating time (HT):4 upsetting pressure (UP):80 upsetting time (UP):2 (experiment no. 5). Dual phase presence and absence of precipitates were conformed through TEM which follow Kurdjumov-Sachs relationship. PREN of ferrite was decreasing with increase in temperature and that of austenite increased. The equilibrium temperature for water quenching was around 1100∘C and that for oil quenching was around 1140∘C. The pit depths were found to be in the range of 100nm and width of 1.5-2μm.

  17. Joint program for the improvement of bimetallic weld inspection

    International Nuclear Information System (INIS)

    Serre, M.; Rattoni, B.; Coquillay; Samman; Billet; Bodson; Olivera

    1985-02-01

    The aim of this program is to improve the in-service monitoring of austenitic and bimetallic welds in PWR Main Coolant Systems. This paper presents the work performed on the bimetallic weld connecting the safe end to the reactor vessel nozzle: suitability of ultrasonic testing for determining the size and location of defects, automation and calibration, gamma-ray examination in three different planes

  18. Effect of Post-Weld Heat Treatment on Creep Rupture Properties of Grade 91 Steel Heavy Section Welds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Leijun

    2012-11-02

    This project will conduct a systematic metallurgical study on the effect of post-weld heat treatment (PWHT) on the creep rupture properties of P91 heavy section welds. The objective is to develop a technical guide for selecting PWHT parameters, and to predict expected creep-rupture life based on the selection of heat treatment parameters. The project consists of four interdependent tasks: Experimentally and numerically characterize the temperature fields of typical post-weld heat treatment procedures for various weld and joint configurations to be used in Gen IV systems. Characterize the microstructure of various regions, including the weld fusion zone, coarse-grain heat-affected zone, and fine-grain heat affected zone, in the welds that underwent the various welding and PWHT thermal histories. Conduct creep and creep-rupture testing of coupons extracted from actual and physically simulated welds. Establish the relationship among PWHT parameters, thermal histories, microstructure, creep, and creep-rupture properties.

  19. Metallurgical and Mechanical Characterization of High Temperature Titanium Alloys Joined by Friction Stir Welding

    Science.gov (United States)

    Gangwar, Kapil Dev

    In the world of joining, riveting and additive manufacturing, weight reduction, and omission of defects (at both macro and micro level) remain of paramount. Therefore, in the wake of ubiquitous fusion welding (FW) and widely accepted approach of riveting using Inconel bolts to resist corrosion at higher temperature, friction stir welding (FSW) has emerged as a novice jewel in friction based additive manufacturing industry. With advancements in automation of welding process and tool material, FSW of materials with higher work hardening such as steel and titanium has also become probable. Process and property relations associated with FSW are inevitable in case of dissimilar titanium alloys, due to presence of heterogeneity (whether atrocious or advantageous) in and around the weld nugget. These process property relationships are needed to be studied and addressed properly in order to optimize the processing window for improved mechanical and metallurgical properties. In this study FSWed similar and dissimilar butt joints of α+β, and near α titanium, alloys have been produced for varying processing conditions in order to study the effect of rotation speed (rpm) and traverse speed (TS; mm-min-1). The aim of this study is to assess the effect of tool geometry, tool rpm, TS on microstructure and mechanical properties of most widely used α+β titanium alloy, Ti-6Al-4V (Ti-64), standard grain and fine grain in addition to α+β,Ti-5Al-4V (T-54M), standard grain, and near α, Ti-6Al-2Mo-4Zr-2Sn (Ti-6242), standard grain (SG) and fine grain (FG). During FSW, a unique α+β fine-grained microstructure has been formed depending on whether or not the peak temperature in the weld nugget (WN) reached above or below β transus temperature. The resulting microstructure consists of acicular α+β, emanating from the prior β grain boundary as the weld cools off. The changes in the microstructure are observed by optical microscopy (OM). Later, a detailed analysis of material

  20. Molten pool characterization of laser lap welded copper and aluminum

    Science.gov (United States)

    Xue, Zhiqing; Hu, Shengsun; Zuo, Di; Cai, Wayne; Lee, Dongkyun; Elijah, Kannatey-Asibu, Jr.

    2013-12-01

    A 3D finite volume simulation model for laser welding of a Cu-Al lap joint was developed using ANSYS FLUENT to predict the weld pool temperature distribution, velocity field, geometry, alloying element distribution and transition layer thickness—all key attributes and performance characteristics for a laser-welded joint. Melting and solidification of the weld pool was simulated with an enthalpy-porosity formulation. Laser welding experiments and metallographic examination by SEM and EDX were performed to investigate the weld pool features and validate the simulated results. A bowl-shaped temperature field and molten pool, and a unique maximum fusion zone width were observed near the Cu-Al interface. Both the numerical simulation and experimental results indicate an arch-shaped intermediate layer of Cu and Al, and a gradual transition of Cu concentration from the aluminum plate to the copper plate with high composition gradient. For the conditions used, welding with Cu on top was found to result in a better weld joint.

  1. Molten pool characterization of laser lap welded copper and aluminum

    International Nuclear Information System (INIS)

    Xue, Zhiqing; Hu, Shengsun; Zuo, Di; Cai, Wayne; Lee, Dongkyun; Elijah, Kannatey-Asibu Jr

    2013-01-01

    A 3D finite volume simulation model for laser welding of a Cu–Al lap joint was developed using ANSYS FLUENT to predict the weld pool temperature distribution, velocity field, geometry, alloying element distribution and transition layer thickness—all key attributes and performance characteristics for a laser-welded joint. Melting and solidification of the weld pool was simulated with an enthalpy-porosity formulation. Laser welding experiments and metallographic examination by SEM and EDX were performed to investigate the weld pool features and validate the simulated results. A bowl-shaped temperature field and molten pool, and a unique maximum fusion zone width were observed near the Cu–Al interface. Both the numerical simulation and experimental results indicate an arch-shaped intermediate layer of Cu and Al, and a gradual transition of Cu concentration from the aluminum plate to the copper plate with high composition gradient. For the conditions used, welding with Cu on top was found to result in a better weld joint. (paper)

  2. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    International Nuclear Information System (INIS)

    Jafarzadegan, M.; Feng, A.H.; Abdollah-zadeh, A.; Saeid, T.; Shen, J.; Assadi, H.

    2012-01-01

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure with some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: ► FSW produced sound welds between st37 low carbon steel and 304 stainless steel. ► The SZ of the st37 steel contained some products of allotropic transformation. ► The material in the SZ of the 304 steel showed features of dynamic recrystallization. ► The finer microstructure in the SZ increased the hardness and tensile strength.

  3. High-Speed Friction-Stir Welding to Enable Aluminum Tailor-Welded Blanks

    Science.gov (United States)

    Hovanski, Yuri; Upadhyay, Piyush; Carsley, John; Luzanski, Tom; Carlson, Blair; Eisenmenger, Mark; Soulami, Ayoub; Marshall, Dustin; Landino, Brandon; Hartfield-Wunsch, Susan

    2015-05-01

    Current welding technologies for production of aluminum tailor-welded blanks (TWBs) are utilized in low-volume and niche applications, and they have yet to be scaled for the high-volume vehicle market. This study targeted further weight reduction, part reduction, and cost savings by enabling tailor-welded blank technology for aluminum alloys at high volumes. While friction-stir welding (FSW) has been traditionally applied at linear velocities less than 1 m/min, high-volume production applications demand the process be extended to higher velocities more amenable to cost-sensitive production environments. Unfortunately, weld parameters and performance developed and characterized at low-to-moderate welding velocities do not directly translate to high-speed linear FSW. Therefore, to facilitate production of high-volume aluminum FSW components, parameters were developed with a minimum welding velocity of 3 m/min. With an emphasis on weld quality, welded blanks were evaluated for postweld formability using a combination of numerical and experimental methods. An evaluation across scales was ultimately validated by stamping full-size production door inner panels made from dissimilar thickness aluminum TWBs, which provided validation of the numerical and experimental analysis of laboratory-scale tests.

  4. Design of cylindrical pipe automatic welding control system based on STM32

    Science.gov (United States)

    Chen, Shuaishuai; Shen, Weicong

    2018-04-01

    The development of modern economy makes the demand for pipeline construction and construction rapidly increasing, and the pipeline welding has become an important link in pipeline construction. At present, there are still a large number of using of manual welding methods at home and abroad, and field pipe welding especially lacks miniature and portable automatic welding equipment. An automated welding system consists of a control system, which consisting of a lower computer control panel and a host computer operating interface, as well as automatic welding machine mechanisms and welding power systems in coordination with the control system. In this paper, a new control system of automatic pipe welding based on the control panel of the lower computer and the interface of the host computer is proposed, which has many advantages over the traditional automatic welding machine.

  5. Automatic TIG-welding in fabrication and repair of power plant. Chapter 4

    International Nuclear Information System (INIS)

    Bromwich, R.A.C.

    1978-01-01

    In the power plant industry many of the tube-to-tubeplate (or tube-to-header) welds and many tube-to-tube welds require the TIG process. This welding process and the associated technology have been developed for a wide range of applications covering both production and repair of power plant and ancillary equipment. It is often necessary, and usually preferred, to automate the process. The application of pulsing extends the range to more difficult materials and marginal thicknesses. The development and application of the process over the past few years is described. The mechanised equipment may be divided into four main categories: bore welding, seal welding, orbital welding, and special equipment. (U.K.)

  6. Welding distortion analysis of multipass joint combination with different sequences using 3D FEM and experiment

    International Nuclear Information System (INIS)

    Manurung, Yupiter H.P.; Lidam, Robert Ngendang; Rahim, M. Ridzwan; Zakaria, M. Yusof; Redza, M. Ridhwan; Sulaiman, M. Shahar; Tham, Ghalib; Abas, Sunhaji K.

    2013-01-01

    This paper presents an investigation of the welding sequence effect on induced angular distortion using FEM and experiments. The specimen of a combined joint geometry was modeled and simulated using Multipass Welding Advisor (MWA) in SYSWELD 2010 based on the thermal-elastic-plastic approach with low manganese carbon steel S3355J2G3 as specimen material and Goldak's double ellipsoid as heat source model. To validate the simulation results, a series of experiments was conducted with two different welding sequences using automated welding process, low carbon steel as parent metal, digital GMAW power source with premixed shielding gas and both-sided clamping technique. Based on the results, it was established that the thermo-elastic-plastic 3D FEM analysis shows good agreement with experimental results and the welding sequence “from outside to inside” induced less angular distortion compared to “from inside to outside”. -- Highlights: • 3D FEM was used to analyze the welding distortion on two different sequences. • Simulation results were validated with experiments using automated welding system. • Simulation results and experiments showed acceptable accuracy. • Welding sequence “outside–inside” showed less distortion than “inside–outside”

  7. Finite element modelling and characterization of friction welding on UNS S31803 duplex stainless steel joints

    Directory of Open Access Journals (Sweden)

    Mohammed Asif. M

    2015-12-01

    Full Text Available Solid state joining techniques are increasingly employed in joining duplex stainless steel materials due to their high integrity. Continuous drive friction welding is a solid state welding technique which is used to join similar and dissimilar materials. This joining technique is characterized by short cycle time, low heat input and narrow heat affected zones. The simulation becomes an important tool in friction welding because of short welding cycle. In the present work, a three dimensional non-linear finite element model was developed. The thermal history and axial shortening profiles were predicted using ANSYS, a software tool. This numerical model was validated using experimental results. The results show that the frictional heating stage of the process has more influence on temperature and upsetting stage has more impact on axial shortening. The knowledge of these parameters would lead to optimization of input parameters and improvement of design and machine tools.

  8. A Study on Fatigue Design Automation of Plug- and Ring-type Gas-welded Joints of STS301L Taking Welded Residual Stress into Account

    International Nuclear Information System (INIS)

    Baek, Seung yeb; Yun, Ki Ho

    2010-01-01

    This paper presents a fatigue design method for plug- and ring-type gas-welded joints, which takes into account the effects of welding residual stress. To develop this method, we simulated the gas-welding process by performing nonlinear finite element analysis (FEA) To validate the FEA results, numerically calculated residual stresses in the gas welds were then compared with experimental results obtained by the hole-drilling method. To evaluate the fatigue strength of plug- and ring-type gas-welded joints influenced by welding residual stresses, the use of stress amplitude (σ a )R, which includes the welding residual stress in gas welds, is proposed (σ a )R on the basis of a modified Goodman equation that includes the residual stress effects. Using the stress amplitude (σ a )R at the hot spot point of gas weld, the relations obtained as the fatigue test results for plug and ring type gas welded joints having various dimensions and shapes were systematically rearranged to obtain the (σ a )R-N f relationship. It was found that more systematic and accurate evaluation of the fatigue strength of plug- and ring-type gas-welded joints can be achieved by using (σ a )R

  9. Performance of indigenous resistance welding equipment for PHWR fuel fabrication in NFC

    International Nuclear Information System (INIS)

    Hemantha Rao, G.V.S.; Jayaraj, R.N.; Prakash, M.S.; Gupta, U.C.; Ganguly, C.

    1999-01-01

    Indigenisation of critical equipment for manufacturing of PHWR fuel and automation in the production line have been the main thrust in NFC in recent years. As part of this endeavour, resistance welding equipment for end plug welding of Zircaloy-4 clad Uranium Oxide fuel pin and end plates of 19-element fuel bundles have been developed. The paper discusses the equipment design features, critical operating parameters and performance of these indigenous welding machines. (author)

  10. Machine for welding solar cell connections

    Energy Technology Data Exchange (ETDEWEB)

    Lorans, D.Y.

    1977-08-09

    A machine for welding a connection wire over a solar cell electrode is described which comprises a base, a welding mount for the solar cell which is supported on the base, means for holding the solar cell on the welding mount, welding electrodes, means to lower the welding electrodes over the solar cell and the connection wire superimposed thereon, means for applying electric current pulses to said welding electrodes. It is characterized by the fact that it further comprises means for imparting to said mount an alternating transverse movement in relation to said base before and during the welding operation.

  11. System for evaluating weld quality using eddy currents

    Science.gov (United States)

    Todorov, Evgueni I.; Hay, Jacob

    2017-12-12

    Electromagnetic and eddy current techniques for fast automated real-time and near real-time inspection and monitoring systems for high production rate joining processes. An eddy current system, array and method for the fast examination of welds to detect anomalies such as missed seam (MS) and lack of penetration (LOP) the system, array and methods capable of detecting and sizing surface and slightly subsurface flaws at various orientations in connection with at least the first and second weld pass.

  12. Fracture toughness master curve characterization of Linde 1092 weld metal for Beaver valley 1 reactor

    International Nuclear Information System (INIS)

    Lee, Bong Sang; Yang, Won Jon; Hong, Jun Hwa

    2000-12-01

    This report summarizes the test results obtained from the Korean contribution to the integrity assessment of low toughness Beaver Valley reactor vessel by characterizing the fracture toughness of Linde 1092 (No. 305414) weld metal. 10 PCVN specimens and 10 1T-CT specimens were tested in accordance with the ASTM E 1921-97 standard, 'Standard test method for determination of reference temperature, T o , for ferritic steels in the transition range'. This results can also be useful for assessment of Linde 80 low toughness welds of Kori-1

  13. Fracture toughness master curve characterization of Linde 1092 weld metal for Beaver valley 1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Bong Sang; Yang, Won Jon; Hong, Jun Hwa

    2000-12-01

    This report summarizes the test results obtained from the Korean contribution to the integrity assessment of low toughness Beaver Valley reactor vessel by characterizing the fracture toughness of Linde 1092 (No. 305414) weld metal. 10 PCVN specimens and 10 1T-CT specimens were tested in accordance with the ASTM E 1921-97 standard, 'Standard test method for determination of reference temperature, T{sub o}, for ferritic steels in the transition range'. This results can also be useful for assessment of Linde 80 low toughness welds of Kori-1.

  14. Effects of post weld heat treatment and weld overlay on the residual stress and mechanical properties in dissimilar metal weld

    International Nuclear Information System (INIS)

    Campos, Wagner R.C.; Ribeiro, Vladimir S.; Vilela, Alisson H.F.; Almeida, Camila R.O.; Rabello, Emerson G.

    2017-01-01

    The object of this work is a dissimilar metal weld (DMW) pipe joint between carbon steel (A-106 Gr B) and stainless steel (A-312 TP316L) pipes and filler metals of Nickel alloy (82/182), which find wide application in the field of chemical, oil, petroleum industries, fossil fuel and nuclear power plant. A lot of the failures that have occurred in dissimilar metal welded are affected greatly by residual stresses. Residual stress is often a cause of premature failure of critical components under normal operation of welded components. Several methods have been tested and developed for removing the tensile residual stresses. The aim of the methods is to reduce the tensile stress state or to create compressive stresses at a predefined area, such as the inner surface of a welded pipe joint. Post weld heat treatment (PWHT) and weld overlay (WOL) are two of the residual stress mitigation methods which reduce the tensile residual stress, create compressive stresses and arrest crack initiation and crack growth. The technique used to substantially minimized or eliminated this failure development in the root weld is the post weld heat treatments (stress relief heat treatment) or the weld overlay. In this work was studied the effectiveness in reducing internal residual stress in dissimilar metal welded pipe joints subjected to post weld heat treatment and weld overlay, measurement by hole-drilling strain-gage method of stress relaxation. Also held was mechanical characterization of the welded pipe joint itself. (author)

  15. Effects of post weld heat treatment and weld overlay on the residual stress and mechanical properties in dissimilar metal weld

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Wagner R.C.; Ribeiro, Vladimir S.; Vilela, Alisson H.F.; Almeida, Camila R.O.; Rabello, Emerson G., E-mail: wrcc@cdtn.br, E-mail: camilarezende.cr@gmail.com, E-mail: egr@cdtn.br, E-mail: vladimirsoler@hotmail.com, E-mail: ahfv02@outlook.com [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The object of this work is a dissimilar metal weld (DMW) pipe joint between carbon steel (A-106 Gr B) and stainless steel (A-312 TP316L) pipes and filler metals of Nickel alloy (82/182), which find wide application in the field of chemical, oil, petroleum industries, fossil fuel and nuclear power plant. A lot of the failures that have occurred in dissimilar metal welded are affected greatly by residual stresses. Residual stress is often a cause of premature failure of critical components under normal operation of welded components. Several methods have been tested and developed for removing the tensile residual stresses. The aim of the methods is to reduce the tensile stress state or to create compressive stresses at a predefined area, such as the inner surface of a welded pipe joint. Post weld heat treatment (PWHT) and weld overlay (WOL) are two of the residual stress mitigation methods which reduce the tensile residual stress, create compressive stresses and arrest crack initiation and crack growth. The technique used to substantially minimized or eliminated this failure development in the root weld is the post weld heat treatments (stress relief heat treatment) or the weld overlay. In this work was studied the effectiveness in reducing internal residual stress in dissimilar metal welded pipe joints subjected to post weld heat treatment and weld overlay, measurement by hole-drilling strain-gage method of stress relaxation. Also held was mechanical characterization of the welded pipe joint itself. (author)

  16. Estudo do comportamento do aço API 5L X80 quando submetido à soldagem por processo automatizado Study on the behavior of API 5L X80 steel when subjected to automated welding process

    Directory of Open Access Journals (Sweden)

    Siderley Fernandes Albuquerque

    2012-06-01

    Full Text Available No Brasil, a soldagem de tubulações tem sido praticamente de forma manual, entretanto, a utilização de processos de soldagem automatizados têm crescido muito nos últimos anos, contribuindo para o maior controle dos parâmetros de soldagem, e conseqüentemente, a possibilidade de obtenção de juntas soldadas com melhores propriedades mecânicas. A soldagem de tubulações com aço API 5L X80 ainda vem sendo avaliada no Brasil no que diz respeito aos melhores procedimentos, parâmetros e processos de soldagem; a aplicação de processos automatizados nas condições específicas de campo constitui em uma opção ainda incipiente no país por se discutir ainda a relação custo/benefício com a sua implantação. Logo, o objetivo deste trabalho é avaliar o comportamento na ZTA de juntas soldadas do aço API 5L X80 utilizados para transporte de petróleo e gás quando submetidos à soldagem com diferentes parâmetros, procedimentos e processos de soldagem, incluindo o processo automatizado; os resultados indicam além da redução da extensão e do tamanho de grão da ZTA a preservação da estrutura bainítica do metal de base nesta região nas soldagem executadas com processos automatizados.The welding of pipes has been largely manual in Brazil, however, the use of automated welding processes have greatly increased in recent years, contributing to greater control of welding parameters, and consequently, the possibility of obtaining welded joints with better mechanical properties. The welding of pipes of API 5L X80 steel has been evaluated in Brazil considering to best practices, parameters and welding processes; the implementation of automated processes in the specific field conditions is relevant project and innovative design in this area. Therefore, the objective is to evaluate the behavior in the HAZ of the API 5L X80 steel used for transporting oil and gas when subjected to automated welding processes; the results indicated besides the

  17. Two- and three-dimensional characterizations of hot tears in a Al-Mg-Si alloy laser weld

    Energy Technology Data Exchange (ETDEWEB)

    Fabregue, D. [Universite de Lyon, INSA-Lyon, MATEIS, CNRS UMR5510, 7 Avenue Jean Capelle, F-69621 Villeurbanne (France)], E-mail: damien.fabregue@insa-lyon.fr; Deschamps, A.; Suery, M. [SIMAP, Grenoble-INP, CNRS-UJF, BP 75, 38402 St Martin d' Heres Cedex (France); Proudhon, H. [Universite de Lyon, INSA-Lyon, MATEIS, CNRS UMR5510, 7 Avenue Jean Capelle, F-69621 Villeurbanne (France)

    2008-08-15

    Hot tears in 6xxx aluminium alloy laser welds are characterized. They are shown to be intergranular, originating from fracture of liquid films without plasticity of the surrounding grains. The hot tear initiates on both sides of the fusion zone, follows the liquid films between the columnar grains of the weld line and then propagates around the equiaxed grains of the fusion zone centre. By using three-dimensional X-ray tomography, the exact shape of the hot tears has been visualized.

  18. Two- and three-dimensional characterizations of hot tears in a Al-Mg-Si alloy laser weld

    International Nuclear Information System (INIS)

    Fabregue, D.; Deschamps, A.; Suery, M.; Proudhon, H.

    2008-01-01

    Hot tears in 6xxx aluminium alloy laser welds are characterized. They are shown to be intergranular, originating from fracture of liquid films without plasticity of the surrounding grains. The hot tear initiates on both sides of the fusion zone, follows the liquid films between the columnar grains of the weld line and then propagates around the equiaxed grains of the fusion zone centre. By using three-dimensional X-ray tomography, the exact shape of the hot tears has been visualized

  19. Laser beam welding of Waspaloy: Characterization and corrosion behavior evaluation

    Science.gov (United States)

    Shoja Razavi, Reza

    2016-08-01

    In this work, a study on Nd:YAG laser welding of Waspaloy sheets has been made. Microstructures, phase changes and hardness of the laser joint were investigated using optical microscopy, scanning electron microscopy (SEM), field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD) and vickers microhardness (HV0.3). Corrosion behavior of the weldment at low temperature in 3.5%wt NaCl solution at room temperature was also investigated using open circuit potential and cyclic potentiodynamic polarization tests. Hot corrosion studies were conducted on samples in the molten salt environment (Na2SO4-60%V2O5) at 900 °C for 50 h. Results indicated that the microstructure of weld zone was mainly dendritic grown epitaxially in the direction perpendicular to the weld boundary and heat transfer. Moreover, the Ti-Mo carbide particles were observed in the structure of the weld zone and base metal. The average size of carbides formed in the base metal (2.97±0.5 μm) was larger than that of the weld zone (0.95±0.2 μm). XRD patterns of the weld zone and base metal showed that the laser welding did not alter the phase structure of the weld zone, being in γ-Ni(Cr) single phase. Microhardness profile showed that the hardness values of the weld zone (210-261 HV) were lower than that of the base metal (323-330 HV). Electrochemical and hot corrosion tests indicated that the corrosion resistance of the weld metal was greater than the base metal in both room and high temperatures.

  20. Identification of Mechanical parameters for Resistance Welding Machines

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    2003-01-01

    Mechanical dynamic responses of resistance welding machine have a significant influence on weld quality and electrode service life, it must be considered when the real welding production is carried out or the welding process is simulated. The mathematical models for characterizing the mechanical...

  1. Temporal characterization of plasma cw high-power CO2 laser-matter interaction: contribution to the welding process control

    Science.gov (United States)

    Engel, Thierry; Kane, M.; Fontaine, Joel

    1997-08-01

    During high-power laser welding, gas ionization occurs above the sample. The resulting plasma ignition threshold is related to ionization potential of metallic vapors from the sample, and shielding gases used in the process. In this work, we have characterized the temporal behavior of the radiation emitted by the plasma during laser welding in order to relate the observed signals to the process parameters.

  2. Welding mechanization in shipyard CIM; Zosen ni okeru yosetsu no jidoka robot ka CIM ka

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, T. [Hitachi Zosen Corp., Osaka (Japan)

    1997-12-01

    This paper explains development and examples of application of automated welding devices from a viewpoint of an element technology constituting computer integrated manufacturing (CIM), based on the history of modernization of shipyards that has been achieved to date. In the first step of promoting the modernization, elevating cutting accuracy in the uppermost stream process was thought a starting point of rationalization. What have been achieved therefrom are adoption of the most advanced NC plasma cutting machine, and improvement in the computer aided system for the cutting machines. In addition, a twenty-electrode line welder has been developed, which does not create angle deformation in welding longerons, and can be operated even by unskilled workers. The welder has successfully realized a construction method in which robots can be applied more easily. Further developments have been made on a robot to weld cells, advanced CAD/CAM operation techniques which are linked with data from design, an automatic one-side welding device which can achieve a speed 2.5 times greater than by conventional devices, and an automation device for three-dimensionally bent blocks, whose automation has been regarded difficult. 11 figs., 1 tab.

  3. Development of data acquisition and analysis system for the nuclear vessel weld

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. P.; Park, C. H.; Lim, H. T.; Noh, H. C. [Research Institute of KAITEC, Taejeon (Korea)

    2000-03-01

    The objective of this project is to develop an automated ultrasonic data acquisition and data analysis system to examine heavy vessel welds. In order to examine nuclear vessel welds including reactor pressure vessel(RPV), huge amount of ultrasonic data from 6 channels should be able to be on-line processed. In addition, ultrasonic transducer scanning device should be remotely controlled, because working place is high radiation area. This kind of an automated ultrasonic testing equipment has not been developed domestically yet. In order to develop an automated ultrasonic testing system, RPV ultrasonic testing equipments developed in foreign countries were investigated and the capability of high speed ultrasonic signal processing hardwares was analyzed. In this study, ultrasonic signal processing system was designed. And also, ultrasonic data acquisition software was developed. 11 refs., 6 figs. (Author)

  4. Microstructural characterization of welded unions of cast refractory steels

    International Nuclear Information System (INIS)

    Garin, Jorge L; Mannheim, Rodolfo L; Cisternas, Victor M; Lazo, Hector M

    2006-01-01

    This work presents a microstructural study of welded unions of cast heat resistant (refractory) steels, type HC (29Cr-2Ni-0,4C) and HD (28Cr-5Ni-0,4C) using quantitative metallography and X-ray diffraction. Two series of alloys were prepared in an induction furnace and cast in sand molds with phenolic resin, in the classic 'Y' shape, with thicknesses of 12, 25 and 50 mm, following ASTM A395. These samples were chemically and micro structurally characterized, in order to verify their chemical composition and the presence and distribution of phases in the material. Test pieces were then cut from the test section of the 'Y' samples to produce the welded unions, which were done with a single and double bevel (X) butt, using a manual arc and one with electrodes AWS E 309 and AWS E 410. These unions were also submitted to thermal treatments of 780 o C, in order to study the forced precipitation of the sigma phase, simulating service conditions in a production environment. The presence and distribution of phases in the fusion zone (welding cord) and in the thermally affected zones (TAZ) next to both sides of the cord were studied. They displayed a relatively low dilution compared to the composition of the electrodes. The presence of austenite in a ferritic matrix, with relatively small amounts of Cr 23 C 6 and Cr 7 C 3 carbides was shown together with an incipient presence of sigma phase. The annealing of the test pieces at temperatures close to those for the use of these materials, resulted in a new sigma precipitation, in different relative amounts, depending on the time of exposure to these temperatures. Sigma phase precipitates in low relative amounts simply from welding, but this event deserves more attention when the material is submitted to post-welding thermal treatments, or more intensely, to prolonged exposures to higher working temperatures. Quantitative metallographic techniques with contrast and coloring of phases can be used to quantify the micro

  5. Microhardness, strength and strain field characterization of self-reacting friction stir and plug welds of dissimilar aluminum alloys

    Science.gov (United States)

    Horton, Karla Renee

    Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. Friction plug welding is used to seal the exit hole that remains in a circumferential SR-FSW. This work reports on material properties and strain patterns developed in a SR-FSW with a friction plug weld. Specifically, this study examines the behavior of a SR-FSW formed between an AA2014-T6 plate on the advancing side and an AA2219-T87 plate on the retreating side and a SR-FSW (AA2014-T6 to AA2219-T87) with a 2219-T87 plug weld. This study presents the results of a characterization of the micro-hardness, joint strength, and strain field characterization of SR-FSW and FPW joints tested at room temperature and cryogenic temperatures. The initial weld microstructure analysis showed a nugget region with fine grains and a displaced weld seam from the advancing side past the thermo-mechanical affected zone (TMAZ) into the nugget region. The displaced material shared the same hardness as the parent material. Dynamic recrystallization was observed in the SR-FSW zone and the displaced weld seam region. The welds revealed a fine grain structure in the SR-FSW zone with a sharp demarcation seen on the advancing side and fairly diffuse flow observed on the retreating side. The parent material hardness is 145 HV700g with a drop in hardness starting at the HAZ to 130 HV700g. The hardness further drops in the TMAZ to118 HV700g with an increase representing a dispersed interface of AA2014-T6 material to 135 HV700g. The hardness then drops significantly within the nugget region to 85 HV700g followed by an increase through the retreating side TMAZ into the HAZ to 135 HV 700g. There was a sharp increase in the hardness value within

  6. Microstructural examination of Zr-2.5%Nb alloy welds made by pulsed Nd:YAG laser and TIG welding technique

    International Nuclear Information System (INIS)

    Bhatt, R.B.; Varma, P.V.S.; Panakkal, J.P.; Srivastava, D.; Dey, G.K.

    2009-01-01

    The paper describes the weld microstructure of Zr-2.5%Nb alloy material. Bead on plate welds were made using pulsed Nd:YAG laser and TIG welding technique at different parameters. These welds were characterized at macro and microstructural level. Weld pools of Pulsed Laser and TIG welds were not resolved by optical microscopy. SEM too did not reveal much. Orientation imaging microscopy could reveal the presence of fine martensite. It was observed that microstructure is very sensitive to welding parameters. Microhardness studies suggested formation of martensite in the weld pool. It was also observed that laser welds had very sharp weld pool boundary as compared to TIG welds. Variation in microhardness of the weldment is seen and is influenced by overlapping of weld spots causing thermal treatment of previously deposited spots. (author)

  7. Characterization of the dissimilar welding - austenitic stainless steel with filler metal of the nickel alloy

    International Nuclear Information System (INIS)

    Soares, Bruno Amorim; Schvartzman, Monica Maria de Abreu Mendonca; Campos, Wagner Reis da Costa

    2007-01-01

    In elevated temperature environments, austenitic stainless steel and nickel alloy has a superior corrosion resistance due to its high Cr content. Consequently, this alloys is widely used in nuclear reactors components and others plants of energy generation that burn fossil fuel or gas, chemical and petrochemical industries. The object of the present work was to research the welding of AISI 304 austenitic stainless steel using the nickel alloy filler metals, Inconel 625. Gas tungsten arc welding, mechanical and metallographic tests, and compositional analysis of the joint were used. A fundamental investigation was undertaken to characterize fusion boundary microstructure and to better understand the nature and character of boundaries that are associated with cracking in dissimilar welds. The results indicate that the microstructure of the fusion zone has a dendritic structure, inclusions, and precipitated phases containing Ti and Nb are present in the inter-dendritic region. In some parts near to the fusion line it can be seen a band in the weld, probably a eutectic phase with lower melting point than the AISI 304, were the cracking may be beginning by stress corrosion. (author)

  8. Experimental Study of Tensile Test in Resistance Spot Welding Process

    Directory of Open Access Journals (Sweden)

    Lebbal Habib

    Full Text Available Abstract Resistance spot welding (RSW is a widely used joining process for fabricating sheet metal assemblies in automobile industry .In comparison with other welding processes the RSW is faster and easier for automation. This process involves electrical, thermal and mechanical interactions. Resistance spot welding primarily takes place by localized melting spot at the interface of the sheets followed by its quick solidification under sequential control of pressure water-cooled electrode and flow of required electric current for certain duration. In this work the tensile tests were studied, the results obtained show that the type material, the overlap length, the angle of the rolling direction and the thickness of the sheet have an influence in resistance spot welding process.

  9. Characterization of appendage weld quality by on line monitoring of electrical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Setty, D.S.; Somani, A.K.; Ram, A.M.; Rao, A.R.; Jayaraj, R.N.; Kalidas, R. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    2005-07-01

    Resistance projection welding of zirconium alloy appendages is one of the most critical processes in the PHWR fuel fabrication. Appendages like Spacers and Bearing pads having multi projections are joined to the fuel sheath using capacitor discharge power source. Variations in the projection sizes, weld parameters and cleanliness of the work pieces have significant effect on the weld quality, in addition to material properties like hardness, tensile strength and surface finish. Defects like metal expulsion and weak welds are occasionally observed in appendage welding process, which need to be identified and segregated. Though numerous off-line inspection methods are available for the weld quality evaluation, on-line monitoring of weld quality is essential for identifying defective welds. For this purpose, various monitoring techniques like acoustic emission, analyzing derived electrical parameters and weld upset/deformation measurements are employed. The derived electrical parameters like A{sup 2}-Sec and Ohm-Sec can also be monitored. The present paper highlights development of suitable acceptance criteria for the monitoring technique by employing derived electrical parameters covering a wide range of weld variables like watt-sec and squeeze force. Excellent correlation could be achieved in identifying the weak welds and weld expulsion defects in mass production. (author)

  10. Effect of weld morphology on mechanical response and failure of friction stir welds in a naturally aged aluminium alloy

    International Nuclear Information System (INIS)

    Imam, Murshid; Biswas, Kajal; Racherla, Vikranth

    2013-01-01

    Highlights: ► Friction stir welds of AA 6063-T4 are obtained using three tool pin profiles. ► Signature of weld defects in mechanical response of welds is investigated. ► Correlation between peak temperatures in HAZs and their hardness is studied. ► Reasons for strengthening of WNZ and softening of HAZs are found using TEM and XRD. ► A FEM model for the weld zone is developed and validated. -- Abstract: Friction stir butt welds in 6063-T4 aluminium alloy were obtained using square and two tapered tool pin profiles. Tensile tests at 0°, 45°, and 90° to the weld line, hardness contours in the weld cross-section, temperatures in the heat affected zones, cross-sectional macrographs, transmission electron micrographs, and X-ray diffraction studies were used to characterize the welds. In transverse weld specimen, tunnel defects appearing at higher weld speeds for tapered pin profiles, were found to result in mechanical instabilities, i.e. sharp drops in load–displacement curves, much before macroscopic necking occured. Further, in comparison to the base metal, a marked reduction in ductility was observed even in transverse specimen with defect free welds. Hardness contours in the weld cross-section suggest that loss in ductility is due to significant softening in heat affected zone on the retreating side. Transmission electron microscopy images demonstrate that while recovery and overaging are responsible for softening in the heat affected zone, grain size refinement from dynamic recrystallization is responsible for strengthening of the weld nugget zone. X-ray diffraction studies in the three weld zones: weld nugget zone, heat affected zone, and the base metal corroborate these findings. A weld zone model, for use in forming simulations on friction stir welded plates of naturally aged aluminium alloys, was proposed based on mechanical characterization tests. The model was validated using finite element analysis.

  11. Vision of the Arc for Quality Documentation and for Closed Loop Control of the Welding Process

    DEFF Research Database (Denmark)

    Kristiansen, Morten; Kristiansen, Ewa; Jensen, Casper Houmann

    2014-01-01

    For gas metal arc welding a vision system was developed, which was robust to monitor the position of the arc. The monitoring documents the welding quality indirectly and a closed loop fuzzy control was implemented to control an even excess penetration. For welding experiments on a butt......-joint with a V-groove with varying root gapthe system demonstrated increased welding quality compared to the system with no control. The system was implemented with a low cost vision system, which makes the system interesting to apply in industrial welding automation systems....

  12. The influence of the weld toe grinding and wig remelting weld toe rehabilitation techniques, on variable stresses, in case of cross fillet welds, reinforced with additional welding rows

    Directory of Open Access Journals (Sweden)

    Babis Claudiu

    2017-01-01

    Full Text Available Variable stresses where the load value varies between a maximum and a minimum value, or varies the position in time, cause after accumulating a large number of load cycles in those structures, the emergence of drug fatigue. Fatigue is characterized by failure on values of the applied stress from the load cycles, below the material flow, values which in case of static stress would not have caused problems. Knowing that the variable stressed structures are sensitive to stress concentrators, the paper aims to highlight the influence of two techniques to reduce stress concentrator weld toe grinding and WIG remelting weld toe, on the behavior of variable tensile test of cross corner welded specimens, reinforced with additional welding rows.

  13. The Effect of Weld Reinforcement and Post-Welding Cooling Cycles on Fatigue Strength of Butt-Welded Joints under Cyclic Tensile Loading.

    Science.gov (United States)

    Araque, Oscar; Arzola, Nelson; Hernández, Edgar

    2018-04-12

    This research deals with the fatigue behavior of butt-welded joints, by considering the geometry and post-welding cooling cycles, as a result of cooling in quiet air and immersed in water. ASTM A-36 HR structural steel was used as the base metal for the shielded metal arc welding (SMAW) process with welding electrode E6013. The welding reinforcement was 1 mm and 3 mm, respectively; axial fatigue tests were carried out to determine the life and behavior in cracks propagation of the tested welded joints, mechanical characterization tests of properties in welded joints such as microhardness, Charpy impact test and metallographic analysis were carried out. The latter were used as input for the analysis by finite elements which influence the initiation and propagation of cracks and the evaluation of stress intensity factors (SIF). The latter led to obtaining the crack propagation rate and the geometric factor. The tested specimens were analyzed, by taking photographs of the cracks at its beginning in order to make a count of the marks at the origin of the crack. From the results obtained and the marks count, the fatigue crack growth rate and the influence of the cooling media on the life of the welded joint are validated, according to the experimental results. It can be concluded that the welded joints with a higher weld reinforcement have a shorter fatigue life. This is due to the stress concentration that occurs in the vicinity of the weld toe.

  14. Experience and Applications Up-date: Automation of Arc-Welding Operations Using Robot-Technology

    International Nuclear Information System (INIS)

    Teubel, G.

    1996-01-01

    In a short introduction, the important criteria for the correct choice of a robot cell, taking into account the given application, are highlighted. Furthermore, important hints are listed in terms of management decisions. The second chapter shows the main features of a welding robot cell in line with the present state of the art and describes some new developments with the aim of extending the arc-welding system to new applications such as flame cutting and beveling. The third chapter as centre piece gives an overall view of a brand new network control with many outstanding features for the users of arc-welding robots. the fourth and last chapter shows a recent realisation of a highly sophisticated F.M.S. system for welding, in random sequence, different large and heavy components. (Author) 1 ref

  15. Microstructure Characterization and Stress Corrosion Evaluation of Autogenous and Hybrid Friction Stir Welded Al-Cu-Li 2195 Alloy

    Science.gov (United States)

    Li, Zhixian; Arbegast, William J.; Meletis, Efstathios I.

    1997-01-01

    Friction stir welding process is being evaluated for application on the Al-Cu-Li 2195 Super-Light Weight External Tank of the Space Transportation System. In the present investigation Al-Cu-Li 2195 plates were joined by autogenous friction stir welding (FSW) and hybrid FSW (friction stir welding over existing variable polarity plasma arc weld). Optical microscopy and transmission electron microscopy (TEM) were utilized to characterize microstructures of the weldments processed by both welding methods. TEM observations of autogenous FSW coupons in the center section of the dynamically-recrystallized zone showed an equiaxed recrystallized microstructure with an average grain size of approx. 3.8 microns. No T(sub 1), precipitates were present in the above-mentioned zone. Instead, T(sub B) and alpha precipitates were found in this zone with a lower population. Alternate immersion, anodic polarization, constant load, and slow strain tests were carried out to evaluate the general corrosion and stress-corrosion properties of autogenous and hybrid FSW prepared coupons. The experimental results will be discussed.

  16. Determination of welding parameters for execution of weld overlayer on PWR nuclear reactor nozzles

    International Nuclear Information System (INIS)

    Ribeiro, Gabriela M.; Lima, Luciana I.; Quinan, Marco A.; Schvartzman, Monica M.

    2009-01-01

    In the PWR reactors, nickel based dissimilar welds have been presented susceptibilities the stress corrosion (S C). For the mitigation the problem a deposition of weld layers on the external surface of the nozzle is an alternative, viewing to provoke the compression of the region subjected to S C. This paper presents a preliminary study on the determination of welding parameters to obtain these welding overlayers. Welding depositions were performed on a test piece welded with nickel 182 alloy, simulating the conditions of a nozzle used in a PWR nuclear power plant. The welding process was the GTAW (Gas Tungsten Arc Welding), and a nickel 52 alloy as addition material. The overlayers were performed on the base metals, carbon steel an stainless steel, changing the welding parameters and verifying the the time of each weld filet. After that, the samples were micro structurally characterized. The macro structures and the microstructures obtained through optical microscopy and Vickers microhardness are presented. The preliminary results make evident the good weld quality. However, a small weld parameters influence used in the base material microstructure (carbon steel and stainless steel). The obtained results in this study will be used as reference in the construction of a mock up which will simulate all the conditions of a pressurizer nozzle of PWR reactor

  17. Development of the electron beam welding of the aluminium alloy 6061-T6 for the Jules Horowitz reactor

    International Nuclear Information System (INIS)

    Leblanc, Y.

    2013-01-01

    The aluminium alloy 6061-T6 has been selected for the construction of the Jules Horowitz's reactor vessel. This reactor vessel is pressurized and will be made through butt welding of ∼ 2 cm thick aluminium slabs. The electron beam welding process has been tested and qualified. It appears that this welding process allows: -) welding without pre-heating, -) vacuum welding, -) welding of 100% of the thickness in one passage, -) very low deforming welding process, -) very low density and very low volume of blow holes, -) weak ZAT (Thermal Affected Zones), and -) high reproducibility that permits automation. (A.C.)

  18. Dictionary: Welding, cutting and allied processes. Pt. 2. German/English. Fachwoerterbuch: Schweissen, Schneiden und verwandte Verfahren. Bd. 2. Deutsch/Englisch

    Energy Technology Data Exchange (ETDEWEB)

    Kleiber, A W

    1987-01-01

    The dictionary contains approximately 40 000 entries covering all aspects of welding technology. It is based on the evaluation of numerous English, American and German sources. This comprehensive and up to date dictionary will be a reliable and helpful aid in evaluation and translating. The dictionary covers the following areas: Welding: gas welding, arc welding, gas shielded welding, resistance welding, welding of plastics, special welding processes; Cutting: flame cutting, arc cutting and special thermal cutting processes; Soldering: brazing and soldering; Other topics: thermal spraying, metal to metal adhesion, welding filler materials and other consumables, test methods, plant and equipment, accessories, automation, welding trade, general welding terminology.

  19. Automated Laser Ultrasonic Testing (ALUT) of Hybrid Arc Welds for Pipeline Construction, #272

    Science.gov (United States)

    2009-12-22

    One challenge in developing new gas reserves is the high cost of pipeline construction. Welding costs are a major component of overall construction costs. Industry continues to seek advanced pipeline welding technologies to improve productivity and s...

  20. Microstructural characterization of laser and electron beam (EB) welds of Nb-1Zr-0.1C alloy

    International Nuclear Information System (INIS)

    Badgujar, B.P.; Tewari, R.; Dey, G.K.; Samajdar, I.

    2015-01-01

    Nb-1wt%Zr-0.1wt%C alloy is being considered for the structural applications in proposed Compact High Temperature Reactor (CHTR) on account of its excellent combination of high temperature properties. The applications of this alloy calls for welding, which is a difficult task due to its reactive nature, higher thermal conductivity and melting point. The high energy density techniques like laser and electron beam were employed to produce the welds on sheets of Nb-alloy at various processing parameters in bead-on-plate and square butt joint configurations. The weld joints produced were characterized by studying their optical, Scanning Electron Microscopy (SEM) and Electron Back Scattering Diffraction (EBSD) micro-graphs. The SEM micrograph of EB fusion zone along with the heat affected zone (HAZ) and the base region were studied and abrupt changes in the grain morphology were found in each zone. The fusion zone shows larger grains indicating the rapid grain growth after solidification, whereas the HAZ shows relatively smaller size of the grains but still much larger than the base zone. The SEM micrograph of central part of the same butt weld shows clear grain boundaries with a large variation in the grain size (45-82 micrometer) in the weld region. The heat affected zone (HAZ) and base metal showed fine carbide precipitates along the grain boundaries, whereas carbides were found dissolved in the weld zone. The EBSD micrograph of electron beam fusion zone describing the grain orientation in the weld region are described. The micro-hardness profile across the width of welds was also studied. The detailed results of all these studies are described in this paper. (author)

  1. The use of extraction and electronic diffraction replicas for precipitates characterization in welded Cr-Mo Steels

    International Nuclear Information System (INIS)

    Gutierrez de Saiz-Solabarria, S.; San Juan Nunez, J.M.

    1997-01-01

    The precipitates and phases found in the structure of welded joints of Heat Interchanges Tubes were studied and identified. The base material satisfied the requirements of ASME Sec II, SA 213 Gr T22 (2 1/4 Cr 1 Mo). Compositions of Filler Metals were: 2 1/4 Cr 1 Mo and 2 1/4 Cr 1 Mo 1/4 Nb. The chemical composition of base and weld materials were analyzed by atomic emission spectroscopy in high vacuum electric discharge and by inductive plasma coupled. For the constituents characterization extraction and diffraction microscopy replicas were used. (Author) 65 refs

  2. Characterization of the inhomogeneous constitutive properties of laser welding beams by the micro-Vickers hardness test and the rule of mixture

    International Nuclear Information System (INIS)

    Song, Yanli; Hua, Lin; Chu, Dongning; Lan, Jian

    2012-01-01

    Highlights: ► Relationship between Vickers hardness and material parameters was quantitatively built. ► Inhomogeneous weld properties were determined by hardness test combined the rule of mixture. ► Instrumented indentation tests verified these calculated properties of welds. ► Deviations between the calculated and experimental results were limited to 8.0%. -- Abstract: A novel approach has been proposed to characterize the inhomogeneous mechanical properties of weld materials by using the micro-Vickers hardness test combined with the rule of mixture. This proposed method has introduced the influences of the inhomogeneous properties of weld materials by considering the variations in plastic behaviour across the weld cross-section. The inhomogeneous properties of laser welding beams for tailor welded blanks (TWBs), which were three different types of combinations of DX56D and DP600 automotive steel sheets, were extracted by using this proposed method. The instrumented indentation tests were conducted to verify the measured inhomogeneous properties of weld materials. The fact that the calculated true stress–strain curves agreed well with the experimental ones has confirmed the reliability and accuracy of the proposed method.

  3. Characterization of microstructure, chemical composition, corrosion resistance and toughness of a multipass weld joint of superduplex stainless steel UNS S32750

    International Nuclear Information System (INIS)

    Tavares, S.S.M.; Pardal, J.M.; Lima, L.D.; Bastos, I.N.; Nascimento, A.M.; Souza, J.A. de

    2007-01-01

    The superduplex stainless steels have an austeno-ferritic microstructure with an average fraction of each phase of approximately 50%. This duplex microstructure improves simultaneously the mechanical properties and corrosion resistance. Welding of these steels is often a critical operation. In this paper we focus on characterization and analysis of a multipass weld joint of UNS S32750 steel prepared using welding conditions equal to industrial standards. The toughness and corrosion resistance properties of the base metal, root pass welded with gas tungsten arc welding, as well as the filler passes, welded with shielded metal arc welding, were evaluated. The microstructure and chemical composition of the selected areas were also determined and correlated to the corrosion and mechanical properties. The root pass was welded with low nickel filler metal and, as a consequence, presented low austenite content and significant precipitation. This precipitation is reflected in the corrosion and mechanical properties. The filler passes presented an adequate ferrite:austenite proportion but, due to their high oxygen content, the toughness was lower than that of the root pass. Corrosion properties were evaluated by cyclic polarization tests in 3.5% NaCl and H 2 SO 4 media

  4. Methodological development and characterization of welded joints in Poly (vinylidene fluoride) (PVDF); Desenvolvimento metodologico e caracterizacao de juntas soldadas de PVDF

    Energy Technology Data Exchange (ETDEWEB)

    Cedrola, S.M.L.; Costa, M.F. da; Pasqualino, I.P., E-mail: samanta@metalmat.ufrj.b [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil)

    2010-07-01

    Pipelines are of great concern in the transport sector of oil and gas industries, mainly due to the natural internal aging process caused by contact with the different transported fluids. Installation of polymeric pipes called liners is a good option for rehabilitation of long segments of deteriorated pipelines. Among the potential materials for such application is Poly (vinylidene fluoride) (PVDF). Meanwhile the installation process cannot be carried out in one single step and the polymeric pipe must be cut in sections that are welded during the installation process. In this research welding methodology was studied aiming to optimize welding conditions and the mechanical properties of the joined materials. The first step was processing the PVDF via compression molding on different conditions. Then, the sample was cut and butt-welded. Welding parameters such as, time control, temperature and contact pressure were studied. Afterwards, the stress-strain properties of the welded material was evaluated and physical characterization was carried by x-ray diffraction (DRX). (author)

  5. Microstructural characterization of welded zone for Fe{sub 3}Al/Q235 fusion-bonded joint

    Energy Technology Data Exchange (ETDEWEB)

    Ma Haijun [Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061, Shandong Province, Jing Shi Road 73, Shandong (China)], E-mail: hjma123@mail.sdu.edu.cn; Li Yajiang [Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061, Shandong Province, Jing Shi Road 73, Shandong (China); Material Science Department, Bauman Moscow State Technical University, Moscow 105005 (Russian Federation); Puchkov, U.A. [Material Science Department, Bauman Moscow State Technical University, Moscow 105005 (Russian Federation); Wang Juan [Key Lab of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061, Shandong Province, Jing Shi Road 73, Shandong (China)

    2008-12-20

    The microstructural characterization of Fe{sub 3}Al/Q235 welded zone were analysed to investigate the welding behavior of Fe{sub 3}Al intermetallic. The results indicated that a crack-free Fe{sub 3}Al/Q235 joint was obtained when Cr25-Ni13 alloy was adopted as the filler metal. The microstructure of the welded zone presented different morphology due to the severe fluctuation of Al, Ni, Mn and Cr elements near the fusion zone. The fish-bone like structures in Q235 side fusion zone were composed of {alpha}-Fe(Cr, Al, Ni) solid solutions. Fe{sub 3}Al/Q235 joint fractured in the Fe{sub 3}Al HAZ, and shear strength of 533.33 MPa was achieved. The fracture mode of Fe{sub 3}Al side fracture surface was mainly transgranular cleavage, occured along [1 1 1] orientation on {l_brace}1 1 0{r_brace} planes. And the Q235 side fracture surface was in intergranular and quasi-cleavage mode. The phase relations of {gamma} and {alpha} in Fe{sub 3}Al side fusion zone, constituent of lower bainite in the weld and the Fe{sub 3}Al ordered transformation in HAZ were also determined.

  6. Evaluation of welding by MIG in martensitic stainless steel

    International Nuclear Information System (INIS)

    Fernandes, M.A.; Mariano, N.A.; Marinho, D.H.C. Marinho

    2010-01-01

    This work evaluated structure's characterization and mechanical properties after the welding process of the stainless steel CA6NM. The employed welding process was the metal active gas with tubular wire. The control of the thermal cycle in the welding process has fundamental importance regarding the properties of the welded joint, particularly in the thermally affected zone. The mechanical properties were appraised through impact resistance tests and the hardness and microstructure through metallographic characterization and Ray-X diffraction. The parameters and the process of welding used promoted the hardness and toughness appropriate to the applications of the steel. Welding energy's control becomes an essential factor that can affect the temperature of carbide precipitation and the nucleation of the retained austenite in the in the region of the in the thermally affected zone. (author)

  7. Microstructure and Mechanical Characterization of Friction-Stir-Welded Dual-Phase Brass

    Science.gov (United States)

    Ramesh, R.; Dinaharan, I.; Akinlabi, E. T.; Murugan, N.

    2018-03-01

    Friction stir welding (FSW) is an ideal process to join brass to avoid the evaporation of zinc. In the present investigation, 6-mm-thick dual-phase brass plates were joined efficiently using FSW at various tool rotational speeds. The microstructures were studied using optical microscopy, electron backscattered diffraction and transmission electron microscopy. The optical micrographs revealed the evolution of various zones across the joint line. The microstructure of the heat-affected zone was similar to that of base metal. The weld zone exhibited finer grains due to dynamic recrystallization. The recrystallization was inhomogeneous and the inhomogeneity reduced with increased tool rotational speed. The dual phase was preserved in the weld zone due to the retention of zinc. The severe plastic deformation created a lot of dislocations in the weld zone. The weld zone was strengthened after welding. The role of tool rotational speed on the joint strength is further reported.

  8. Microstructure characterization of Friction Stir Spot Welded TRIP steel

    DEFF Research Database (Denmark)

    Lomholt, Trine Colding; Adachi, Yoshitaka; Peterson, Jeremy

    2012-01-01

    Transformation Induced Plasticity (TRIP) steels have not yet been successfully joined by any welding technique. It is desirable to search for a suitable welding technique that opens up for full usability of TRIP steels. In this study, the potential of joining TRIP steel with Friction Stir Spot...

  9. Characterization of Residual Stress Effects on Fatigue Crack Growth of a Friction Stir Welded Aluminum Alloy

    Science.gov (United States)

    Newman, John A.; Smith, Stephen W.; Seshadri, Banavara R.; James, Mark A.; Brazill, Richard L.; Schultz, Robert W.; Donald, J. Keith; Blair, Amy

    2015-01-01

    An on-line compliance-based method to account for residual stress effects in stress-intensity factor and fatigue crack growth property determinations has been evaluated. Residual stress intensity factor results determined from specimens containing friction stir weld induced residual stresses are presented, and the on-line method results were found to be in excellent agreement with residual stress-intensity factor data obtained using the cut compliance method. Variable stress-intensity factor tests were designed to demonstrate that a simple superposition model, summing the applied stress-intensity factor with the residual stress-intensity factor, can be used to determine the total crack-tip stress-intensity factor. Finite element, VCCT (virtual crack closure technique), and J-integral analysis methods have been used to characterize weld-induced residual stress using thermal expansion/contraction in the form of an equivalent delta T (change in local temperature during welding) to simulate the welding process. This equivalent delta T was established and applied to analyze different specimen configurations to predict residual stress distributions and associated residual stress-intensity factor values. The predictions were found to agree well with experimental results obtained using the crack- and cut-compliance methods.

  10. Visual Servoing-Based Nanorobotic System for Automated Electrical Characterization of Nanotubes inside SEM.

    Science.gov (United States)

    Ding, Huiyang; Shi, Chaoyang; Ma, Li; Yang, Zhan; Wang, Mingyu; Wang, Yaqiong; Chen, Tao; Sun, Lining; Toshio, Fukuda

    2018-04-08

    The maneuvering and electrical characterization of nanotubes inside a scanning electron microscope (SEM) has historically been time-consuming and laborious for operators. Before the development of automated nanomanipulation-enabled techniques for the performance of pick-and-place and characterization of nanoobjects, these functions were still incomplete and largely operated manually. In this paper, a dual-probe nanomanipulation system vision-based feedback was demonstrated to automatically perform 3D nanomanipulation tasks, to investigate the electrical characterization of nanotubes. The XY-position of Atomic Force Microscope (AFM) cantilevers and individual carbon nanotubes (CNTs) were precisely recognized via a series of image processing operations. A coarse-to-fine positioning strategy in the Z-direction was applied through the combination of the sharpness-based depth estimation method and the contact-detection method. The use of nanorobotic magnification-regulated speed aided in improving working efficiency and reliability. Additionally, we proposed automated alignment of manipulator axes by visual tracking the movement trajectory of the end effector. The experimental results indicate the system's capability for automated measurement electrical characterization of CNTs. Furthermore, the automated nanomanipulation system has the potential to be extended to other nanomanipulation tasks.

  11. Numerical evaluation of multipass welding temperature field in API 5L X80 steel welded joints

    Directory of Open Access Journals (Sweden)

    J Nóbrega

    2016-10-01

    Full Text Available Many are the metallurgical changes suffered by materials when subjected to welding thermal cycle, promoting a considerable influence on the welded structures thermo mechanical properties. In project phase, one alternative for evaluating the welding cycle variable, would be the employment of computational methods through simulation. So, this paper presents an evaluation of the temperature field in a multipass welding of API 5L X80 steel used for oil and gas transportation, using the ABAQUS ® software, based on Finite Elements Method (FEM. During the simulation complex phenomena are considerable including: Variation in physical and mechanical properties of materials as a function of temperature, welding speed and the different mechanisms of heat exchange with the environment (convection and radiation were used. These considerations allow a more robust mathematical modeling for the welding process. An analytical heat source proposed by Goldak, to model the heat input in order to characterize the multipass welding through the GTAW (Gas Tungsten Arc Welding process on root and the SMAW (Shielded Metal Arc Welding process for the filling passes were used. So, it was possible to evaluate the effect of each welding pass on the welded joint temperature field, through the temperature peaks and cooling rates values during the welding process.

  12. Beijing international welding fair report. Kokusaika ni ugokidashita chugoku yosetsukai

    Energy Technology Data Exchange (ETDEWEB)

    1991-07-01

    This paper reports the affairs at the Beijing International Scientific Conference for Welding and the International Welding Fair held in May 1991, including visitors{prime} comments on their impression. The Scientific Conference was held for three days in eleven sessions, where 135 theses were presented, most of which were related to high-tech areas including robotization, automation, laser welding and cutting, and ceramic bonding. The total attendance numbered 231 members, including 30 from Germany, 20 from Japan, 17 from Soviet, 7 from Korea, and one each from Finland and Switzerland, plus 150 from China. It was the third meeting for the Scientific Conference, which had the number of attendance jumped from the previous one showing the increased interest by the international welding industry toward China. Exhibits from overseas countries were few, a possible effect from the Tiananmen incident, only three from Japan. Welding machines exhibited by China were those made in or licensed by Japan. Strong impression was felt on the spread in use of CO{sub 2} semi-automatic welding machines. 3 figs.

  13. Improved simulation method of automotive spot weld failure with an account of the mechanical properties of spot welds

    Science.gov (United States)

    Wu, H.; Meng, X. M.; Fang, R.; Huang, Y. F.; Zhan, S.

    2017-12-01

    In this paper, the microstructure and mechanical properties of spot weld were studied, the hardness of nugget and heat affected zone (HAZ) were also tested by metallographic microscope and microhardness tester. The strength of the spot weld with the different parts' area has been characterized. According to the experiments result, CAE model of spot weld with HAZ structure was established, and simulation results of different lap-shear CAE models were analyzed. The results show that the spot weld model which contained the HAZ has good performance and more suitable for engineering application in spot weld simulation.

  14. An investigation of the residual stress characterization and relaxation in peened friction stir welded aluminum-lithium alloy joints

    International Nuclear Information System (INIS)

    Hatamleh, Omar; Rivero, Iris V.; Swain, Shayla E.

    2009-01-01

    In this investigation the residual stresses generated from friction stir welded (FSW) 2195 aluminum-lithium alloy joints were characterized. The results derived from this research revealed significant levels of tensile residual stresses at the surface and throughout the thickness of the FSW samples. Furthermore, residual stress relaxation at the surface and throughout the thickness of the samples was assessed for laser peened friction stir welded aluminum-lithium joints. To do so the samples were cycled several times at a constant amplitude load. The results indicated that most of the relaxation for the surface residual stresses took place during the first cycle of loading. Also, residual stresses relaxation throughout the thickness of the welded region of unpeened samples significantly exceeded the relaxation exhibited by the laser peened samples.

  15. Novel welding image processing method based on fractal theory

    Institute of Scientific and Technical Information of China (English)

    陈强; 孙振国; 肖勇; 路井荣

    2002-01-01

    Computer vision has come into used in the fields of welding process control and automation. In order to improve precision and rapidity of welding image processing, a novel method based on fractal theory has been put forward in this paper. Compared with traditional methods, the image is preliminarily processed in the macroscopic regions then thoroughly analyzed in the microscopic regions in the new method. With which, an image is divided up to some regions according to the different fractal characters of image edge, and the fuzzy regions including image edges are detected out, then image edges are identified with Sobel operator and curved by LSM (Lease Square Method). Since the data to be processed have been decreased and the noise of image has been reduced, it has been testified through experiments that edges of weld seam or weld pool could be recognized correctly and quickly.

  16. Characterization of friction welding for IN713LC and AISI 4140 steel

    International Nuclear Information System (INIS)

    Yeom, J.T.; Park, N.K.; Park, J.H.; Lee, J.W.

    2004-01-01

    Friction welding of dissimilar materials, Ni-base superalloy IN713LC and oil-quench plus tempered AISI 4140 steel, was investigated. Friction welding was carried out with various process variables such as friction pressure and time. The quality of welded joints was tested by applying bending stresses in an appropriate jig. Microstructures of the heat-affected zone (HAZ) were investigated along with micro-hardness tests over the friction weld joints. DEFORM-2D FE code was used to simulate the effect of welding variables in friction welding process on the distributions of the state variables such as strain, strain rate and temperature. The formation of the metal burr during the friction welding process was successfully simulated, and the temperature distribution in the heat-affected zone indicated a good agreement with the variation of the microstructures in the HAZ. (orig.)

  17. Characterization of friction welding for IN713LC and AISI 4140 steel

    Energy Technology Data Exchange (ETDEWEB)

    Yeom, J.T.; Park, N.K. [Dept. of Materials Processing, Korea Inst. of Machinery and Materials, Kyungnam (Korea); Park, J.H.; Lee, J.W. [ENPACO Co., Changwon (Korea)

    2004-07-01

    Friction welding of dissimilar materials, Ni-base superalloy IN713LC and oil-quench plus tempered AISI 4140 steel, was investigated. Friction welding was carried out with various process variables such as friction pressure and time. The quality of welded joints was tested by applying bending stresses in an appropriate jig. Microstructures of the heat-affected zone (HAZ) were investigated along with micro-hardness tests over the friction weld joints. DEFORM-2D FE code was used to simulate the effect of welding variables in friction welding process on the distributions of the state variables such as strain, strain rate and temperature. The formation of the metal burr during the friction welding process was successfully simulated, and the temperature distribution in the heat-affected zone indicated a good agreement with the variation of the microstructures in the HAZ. (orig.)

  18. TRANSIENT FINITE ELEMENT SIMULATION AND MICROSTRUCTURE EVOLUTION OF AA2219 WELD JOINT USING GAS TUNGSTEN ARC WELDING PROCESS

    Directory of Open Access Journals (Sweden)

    Sivaraman Arunkumar

    2016-09-01

    Full Text Available In this study we focus on finite element simulation of gas tungsten arc welding (GTAW of AA2219 aluminum alloy and the behavioral of the microstructure before and after weld. The simulations were performed using commercial COMSOL Multiphysics software. The thermal history of the weld region was studied by initially developed mathematical model. A sweep type meshing was used and transient analysis was performed for one welding cycle. The highest temperature noted was 3568 °C during welding. The welding operation was performed on 200×100×25 mm plates. Through metallurgical characterization, it was observed that a fair copper rich cellular (CRC network existed in the weld region. A small amount of intermetallic compounds like Al2Cu is observed through the XRD pattern.

  19. Strengthening mechanisms in an inertia friction welded nickel-base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Tiley, J.S., E-mail: Jaimie.Tiley@us.af.mil [Air Force Research Laboratory, Wright Patterson Air Force Base, OH 45433 (United States); Mahaffey, D.W. [Air Force Research Laboratory, Wright Patterson Air Force Base, OH 45433 (United States); Alam, T.; Rojhirunsakool, T. [Department of Materials Engineering, University of North Texas, Denton, TX 76203 (United States); Senkov, O.; Parthasarthy, T. [Air Force Research Laboratory, Wright Patterson Air Force Base, OH 45433 (United States); UES, Inc., Dayton, OH 45433 (United States); Banerjee, R. [Department of Materials Engineering, University of North Texas, Denton, TX 76203 (United States)

    2016-04-26

    This research investigated the strengthening mechanisms associated with the as-welded microstructure developed during inertia friction welding of dissimilar superalloys LHSR and Mar-M247. The weld interface and heat affected regions of the sample were analyzed using hardness indentation techniques and subsequently characterized using SEM, TEM and advanced atom probe tomography. The yield strength of the welded joint was modeled to determine the impact of the gradients in the as-welded microstructure on strengthening mechanisms within the LSHR material. Characterization centered on formation of γ′, γ grain size and chemical segregation within the heat affected regions. Results indicate an increased hardness in the vicinity of the weld interface, resulting from the refined dispersion of γ′ and γ grains.

  20. Development of an automation system for iodine-125 brachytherapy seed production by (Nd:YAG) laser welding; Automacao do processo de soldagem a laser (Nd:YAG) para confeccao das sementes de iodo-125 utilizadas em braquiterapia

    Energy Technology Data Exchange (ETDEWEB)

    Somessari, Samir Luiz

    2010-07-01

    The aim of this work is to develop an automation system for iodine-125 radioactive seed production by (Nd:YAG) laser welding, which has been used successfully in Low Dose Rate (LDR) brachytherapy treatment. This small seed consists of a welded titanium capsule, with 0.8mm in diameter and 4.5mm in length, containing iodine-125 adsorbed onto a silver rod. The iodine-125 seeds are implanted into the human prostate to irradiate the tumor for cancer treatment. Nowadays, the Radiation Technology Center, at IPEN-CNEN/SP imports and distributes 36,000 iodine-125 seeds per year, for the clinics and hospitals in the country. However, the Brazilian market potential is now over 8,000 iodine-125 seeds per month. The local production of these iodine-125 radioactive sources becomes a priority for the Institute, in order to reduce the price and the problems of prostate cancer management. It will permit to spread their use to a largest number of patients in Brazil. On the other hand, the industrial automation plays an important role for iodine-125 seeds in order to increase the productivity, with high quality and assurance, avoiding human factors, implementing and operating with Good Manufacturing Practices (GMP). The technology consists of appliance electronic and electro-mechanical parts and components to control machines and processes. The automation system technology for iodine-125 seed production developed in this work was mainly assembled employing Programmable Logic Controller (PLC), stepper motors, drivers, (Nd:YAG) laser welding machine, photoelectric sensors and supervisory. (author)

  1. Joining technologies for the 1990s: Welding, brazing, soldering, mechanical, explosive, solid-state, adhesive

    Science.gov (United States)

    Buckley, John D. (Editor); Stein, Bland A. (Editor)

    1986-01-01

    A compilation of papers presented in a joint NASA, American Society for Metals, The George Washington University, American Welding Society, and Society of Manufacturing Engineers Conference on Welding, Bonding, and Fastening at Langley Research Center, Hampton, VA, on October 23 to 25, 1984 is given. Papers were presented on technology developed in current research programs relevant to welding, bonding, and fastening of structural materials required in fabricating structures and mechanical systems used in the aerospace, hydrospace, and automotive industries. Topics covered in the conference included equipment, hardware and materials used when welding, brazing, and soldering, mechanical fastening, explosive welding, use of unique selected joining techniques, adhesives bonding, and nondestructive evaluation. A concept of the factory of the future was presented, followed by advanced welding techniques, automated equipment for welding, welding in a cryogenic atmosphere, blind fastening, stress corrosion resistant fasteners, fastening equipment, explosive welding of different configurations and materials, solid-state bonding, electron beam welding, new adhesives, effects of cryogenics on adhesives, and new techniques and equipment for adhesive bonding.

  2. Research progress of laser welding process dynamic monitoring technology based on plasma characteristics signal

    Directory of Open Access Journals (Sweden)

    Teng WANG

    2017-02-01

    Full Text Available During the high-power laser welding process, plasmas are induced by the evaporation of metal under laser radiation, which can affect the coupling of laser energy and the workpiece, and ultimately impact on the reliability of laser welding quality and process directly. The research of laser-induced plasma is a focus in high-power deep penetration welding field, which provides a promising research area for realizing the automation of welding process quality inspection. In recent years, the research of laser welding process dynamic monitoring technology based on plasma characteristics is mainly in two aspects, namely the research of plasma signal detection and the research of laser welding process modeling. The laser-induced plasma in the laser welding is introduced, and the related research of laser welding process dynamic monitoring technology based on plasma characteristics at home and abroad is analyzed. The current problems in the field are summarized, and the future development trend is put forward.

  3. Characterization of an Additive Manufactured TiAl Alloy-Steel Joint Produced by Electron Beam Welding.

    Science.gov (United States)

    Basile, Gloria; Baudana, Giorgio; Marchese, Giulio; Lorusso, Massimo; Lombardi, Mariangela; Ugues, Daniele; Fino, Paolo; Biamino, Sara

    2018-01-17

    In this work, the characterization of the assembly of a steel shaft into a γ-TiAl part for turbocharger application, obtained using Electron Beam Welding (EBW) technology with a Ni-based filler, was carried out. The Ti-48Al-2Nb-0.7Cr-0.3Si (at %) alloy part was produced by Electron Beam Melting (EBM). This additive manufacturing technology allows the production of a lightweight part with complex shapes. The replacement of Nickel-based superalloys with TiAl alloys in turbocharger automotive applications will lead to an improvement of the engine performance and a substantial reduction in fuel consumption and emission. The welding process allows a promising joint to be obtained, not affecting the TiAl microstructure. Nevertheless, it causes the formation of diffusive layers between the Ni-based filler and both steel and TiAl, with the latter side being characterized by a very complex microstructure, which was fully characterized in this paper by means of Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, and nanoindentation. The diffusive interface has a thickness of about 6 µm, and it is composed of several layers. Specifically, from the TiAl alloy side, we find a layer of Ti₃Al followed by Al₃NiTi₂ and AlNi₂Ti. Subsequently Ni becomes more predominant, with a first layer characterized by abundant carbide/boride precipitation, and a second layer characterized by Si-enrichment. Then, the chemical composition of the Ni-based filler is gradually reached.

  4. Development of Hardware and Software for Automated Ultrasonic Testing

    International Nuclear Information System (INIS)

    Choi, Sung Nam; Lee, Hee Jong; Yang, Seung Ok

    2012-01-01

    Nondestructive testing (NDT) for the construction and operating of NPPs plays an important role in confirming the integrity of the NPPs. Especially, Automated ultrasonic testing (AUT) is one of the primary nondestructive examination methods for in-service inspection of the welding parts in major components in NPPs. AUT is a reliable nondestructive testing because the data of AUT are saved and reviewed with other examiners. Korea Hydro and Nuclear Power-Central Research Institute (KHNP-CRI) has developed an automated ultrasonic testing (AUT) system based on a high speed pulser-receiver. In combination with the designed software and hardware architecture, this new system permits user configurations for a wide range of user-specific applications through fully automated inspections using compact portable systems with up to eight channels. This paper gives an overview of hardware (H/W) and software (S/W) for the AUT system to inspect welds in NPPs

  5. Pearson's Functions to Describe FSW Weld Geometry

    International Nuclear Information System (INIS)

    Lacombe, D.; Coupard, D.; Tcherniaeff, S.; Girot, F.; Gutierrez-Orrantia, M. E.

    2011-01-01

    Friction stir welding (FSW) is a relatively new joining technique particularly for aluminium alloys that are difficult to fusion weld. In this study, the geometry of the weld has been investigated and modelled using Pearson's functions. It has been demonstrated that the Pearson's parameters (mean, standard deviation, skewness, kurtosis and geometric constant) can be used to characterize the weld geometry and the tensile strength of the weld assembly. Pearson's parameters and process parameters are strongly correlated allowing to define a control process procedure for FSW assemblies which make radiographic or ultrasonic controls unnecessary. Finally, an optimisation using a Generalized Gradient Method allows to determine the geometry of the weld which maximises the assembly tensile strength.

  6. Status report. Characterization of Weld Residual Stresses on a Full-Diameter SNF Interim Storage Canister Mockup.

    Energy Technology Data Exchange (ETDEWEB)

    Enos, David [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Bryan, Charles R. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    This report documents the mockup specifications and manufacturing processes; the initial cutting of the mockup into three cylindrical pieces for testing and the measured strain changes that occurred during the cutting process; and the planned weld residual stress characterization activities and the status of those activities.

  7. Production and testing of flexible welding flux rods, used for protecting briquetting press molds from wear

    Energy Technology Data Exchange (ETDEWEB)

    Loescher, B.; Czerwinski, M.; Dittrich, V.

    1985-11-01

    Production, properties and trial application are discussed for the Feroplast ZIS 218 welding powder rod, developed for automated surface armouring of brown coal briquetting press moulds by arc welding. The welding rod has a diameter of 8 mm and can be bent to a radius of less than 150 mm for reeling. The welding rod is produced by mixing 9% plasticizer (Miravithen and polyisobutylene according to GDR patent 203 269) to the steel welding powder. Weldability of the rod proved to be favourable; there was no emission of toxic fumes during welding. Microscopic studies of the welded surface coating showed that welding with 650A achieved the best coat pore structure. At the Schwarze Pumpe Gasworks the trial service life of various briquet press moulds, reinforced with Ferroplast ZIS 218, proved to be not shorter than that of moulds reinforced with the conventional ZIS powder welding method. 1 reference.

  8. Automated fuel pin loading system

    Science.gov (United States)

    Christiansen, D.W.; Brown, W.F.; Steffen, J.M.

    An automated loading system for nuclear reactor fuel elements utilizes a gravity feed conveyor which permits individual fuel pins to roll along a constrained path perpendicular to their respective lengths. The individual lengths of fuel cladding are directed onto movable transports, where they are aligned coaxially with the axes of associated handling equipment at appropriate production stations. Each fuel pin can be be reciprocated axially and/or rotated about its axis as required during handling steps. The fuel pins are inerted as a batch prior to welding of end caps by one of two disclosed welding systems.

  9. Tensile Properties of Friction Stir Welded Joints of AA 2024-T6 Alloy at Different Welding Speeds

    Science.gov (United States)

    Avula, Dhananjayulu; Devuri, Venkateswarlu; Cheepu, Muralimohan; Dwivedi, Dheerendra Kumar

    2018-03-01

    The influence of welding speed on the friction stir welded joint properties of hardness, tensile properties, defects and microstructure characterization are studied in the present study. The friction stir welding was conducted on AA2014-T6 heat treated alloy with 5 mm thickness plate in butt joint configuration. The welding speed was varied from 8 mm/min to 120 mm/min at the fixed travel speed and load conditions. It is observed that the welding speeds at higher rate with wide range can be possible to weld this alloy at higher rates of tool revolution suggesting that the inherent capability of friction stir welding technique for aluminum 2014 alloys. The strength of the joints gradually increases with enhancing of welding speed. The micro structural observations exhibited the formation of equiaxed grains in the stir zone and slightly in the thermo-mechanically affected zone. In addition, the size of the grains decreases with increase in welding speed owing to the presence of low heat input. Hence the hardness of the joints slightly increased in the stir zones over the other zones of the weld nugget. The joint strength initially increases with the welding speed and starts to decreases after reaching to the maximum value. The relationship between the welding conditions and friction stir welded joint properties has been discussed.

  10. Characterization of Gas Metal Arc Welding welds obtained with new high Cr–Mo ferritic stainless steel filler wires

    International Nuclear Information System (INIS)

    Villaret, V.; Deschaux-Beaume, F.; Bordreuil, C.; Fras, G.; Chovet, C.; Petit, B.; Faivre, L.

    2013-01-01

    Highlights: • New metal cored filler wires for welding 444 grade stainless steel are manufactured. • The effect of Nb and Ti minor elements on the fusion zone properties is investigated. • The relation between composition of fusion zone and grain structure is investigated. • Oxidation rates of fusion zones and base metal are compared. • High temperature behavior of the welded samples are studied. - Abstract: Several compositions of metal cored filler wire were manufactured to define the best welding conditions for homogeneous welding, by Gas Metal Arc Welding (GMAW) process, of a modified AISI 444 ferritic stainless steel dedicated to automotive exhaust manifold applications. The patented grade is know under APERAM trade name K44X and has been developed to present improved high temperature fatigue properties. All filler wires investigated contained 19% Cr and 1.8% Mo, equivalent to the base metal K44X chemistry, but various titanium and niobium contents. Chemical analyses and microstructural observations of fusion zones revealed the need of a minimum Ti content of 0.15% to obtain a completely equiaxed grain structure. This structure conferred on the fusion zone a good ductility even in the as-welded state at room temperature. Unfortunately, titanium additions decreased the oxidation resistance at 950 °C if no significant Nb complementary alloying was made. The combined high Ti and Nb additions made it possible to obtain for the welded structure, after optimized heat treatment, high temperature tensile strengths and ductility for the fusion zones and assemblies, rather close to those of the base metal. 950 °C aging heat treatment was necessary to restore significantly the ductility of the as welded structure. Both fusion zone and base metal presented rather homogenized properties. Finally, with the optimized composition of the cored filler wire – 0.3 Ti minimum (i.e. 0.15% in the fusion zone) and high Nb complementary additions, the properties

  11. Development of automatic reactor vessel inspection systems; development of data acquisition and analysis system for the nuclear vessel weld

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Po; Park, C. H.; Kim, H. T.; Noh, H. C.; Lee, J. M.; Kim, C. K.; Um, B. G. [Research Institute of KAITEC, Seoul (Korea)

    2002-03-01

    The objective of this project is to develop an automated ultrasonic data acquisition and data analysis system to examine heavy vessel welds. In order to examine nuclear vessel welds including reactor pressure vessel(RPV), huge amount of ultrasonic data from 6 channels should be able to be on-line processed. In addition, ultrasonic transducer scanning device should be remotely controlled, because working place is high radiation area. This kind of an automated ultrasonic testing equipment has not been developed domestically yet. In order to develop an automated ultrasonic testing system, RPV ultrasonic testing equipments developed in foreign countries were investigated and the capability of high speed ultrasonic signal processing hardwares was analyzed. In this study, ultrasonic signal processing system was designed. And also, ultrasonic data acquisition software was developed. The new systems were tested on the RPV welds of Ulchin Unit 6 to confirm their functions and capabilities. They worked very well as designed and the tests were successfully completed. 13 refs., 34 figs., 11 tabs. (Author)

  12. Vibration-based Energy Harvesting Systems Characterization Using Automated Electronic Equipment

    Directory of Open Access Journals (Sweden)

    Ioannis KOSMADAKIS

    2015-04-01

    Full Text Available A measurement bench has been developed to fully automate the procedure for the characterization of a vibration-based energy scavenging system. The measurement system is capable of monitoring all important characteristics of a vibration harvesting system (input and output voltage, current, and other parameters, frequency and acceleration values, etc.. It is composed of a PC, typical digital measuring instruments (oscilloscope, waveform generator, etc., certain sensors and actuators, along with a microcontroller based automation module. The automation of the procedure and the manipulation of the acquired data are performed by LabVIEW software. Typical measurements of a system consisting of a vibrating source, a vibration transducer and an active rectifier are presented.

  13. Effect of Scratches on Pinch Welds

    International Nuclear Information System (INIS)

    Korinko, P

    2005-01-01

    Fill stems for tritium reservoirs have stringent scratch requirements such that any indications that appear to have depth are cause for rework or rejection. A scoping study was undertaken to evaluate the effect of scratches approximately 0.0015 to 0.002 inch deep on the fitness for service and bond quality. The stems were characterized using borescope before and after welding. The four stems were welded with near optimal weld parameters, proof tested, and examined metallographically. The stems were radiographed, proof tested, and examined metallographically. The scratches did not adversely affect (1) the weld integrity based on radiography, (2) the ability to withstand the proof pressure, and (3) the weld quality based on metallographic cross-sections. Based on these limited results at a nominal weld current, the weld process is very robust. It may be able to recover from manufacturing defects and inspection anomalies worse than those expected for typical fill stem manufacturing processes; additional testing specific to each application over a range of weld heats is needed to verify applicability of these results

  14. Qualification of flat welding of nuclear fuel bars

    International Nuclear Information System (INIS)

    Romero C, J.; Rivera M, H.

    2001-01-01

    The qualification of flat welding consists in the process (procedures (11), instructions (5), specifications (4) and programs (3)) and equipment (systems (4), equipment (6)) with the Personal Qualification (operators and supervisors) that was done in simultaneous form and supported with test and training programs with its respective technical reports, liberated by the Quality Assurance Office of ININ. Moreover, specific procedures of process and personal qualification are realized with the respective supervision by Quality Assurance Office. For the process, 20 welding were realized as follow: 5 welding with maximum contributing of heat, 10 welding with nominal contributing of heat, 5 welding with minimum contributing of heat. The heat contributing for the qualification was done maximum, of increasing the welding current, diminishing the helium flux and the revolutions per minute of the bar, at the moment of welding, with respect to nominal values. In the minimum contributing of heat it is diminished the welding current, increasing the helium flux and the revolutions per minute of the bar with respect to nominal values. With the qualification it has been finished the development of flat welding with results which define an own method of ININ. It was implemented a pneumatic system, for the elimination of micron cracks. It was required a control of turn velocity of the bar of hundredth of revolution. Moreover the main welding parameters each 40 μs are acquired. Also it was automated completely the process to avoid possible human mistakes. The standard deviations of the values of the realized inspections in the quality, are lower. Process, equipment and personnel with their respective Quality reports and registries are qualified, as well as the Quality certificates of two operators and one supervisor. (Author)

  15. Evaluation of strength property variations across 9Cr-1Mo steel weld joints using automated ball indentation (ABI) technique

    International Nuclear Information System (INIS)

    Nagaraju, S.; GaneshKumar, J.; Vasantharaja, P.; Vasudevan, M.; Laha, K.

    2017-01-01

    The variations of strength properties across 9Cr-1Mo steel weld joints fabricated by different arc welding processes such as shielded metal arc welding (SMAW), tungsten inert gas (TIG) and activated tungsten inert gas (A-TIG) have been evaluated employing automatic ball indentation (ABI) technique. ABI tests were conducted at 298 K across various zones of the weld joints comprising of base metal, weld metal, heat affected zone (HAZ) and intercritical HAZ (ICHAZ) regions. The flow curves obtained from ABI tests were correlated with corresponding conventional tensile test results. In general, the tensile strength decreased systematically across the weld joint from weld metal to base metal. Inter critical HAZ exhibited the least strength implying that it is the weakest zone. The incomplete phase transformation in the ICHAZ during weld thermal cycle caused the softening. The A-TIG weld metal exhibited higher UTS and strain hardening values due to higher carbon in the martensite. The strain hardening exponent exhibited only slight variation across the various regions of the weld joints. A-TIG weld joint exhibited higher weld metal and HAZ strength, marginally higher UTS to YS ratio in the weld metal and HAZ compared to that of the other two processes. Hence, among the three welding processes chosen, A-TIG welding process is found to be superior in producing a 9Cr-1Mo steel weld joint with better strength properties.

  16. Evaluation of strength property variations across 9Cr-1Mo steel weld joints using automated ball indentation (ABI) technique

    Energy Technology Data Exchange (ETDEWEB)

    Nagaraju, S. [Nuclear Recycle Board, BARCF, Kalpakkam (India); GaneshKumar, J.; Vasantharaja, P. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Vasudevan, M., E-mail: dev@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Laha, K. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2017-05-17

    The variations of strength properties across 9Cr-1Mo steel weld joints fabricated by different arc welding processes such as shielded metal arc welding (SMAW), tungsten inert gas (TIG) and activated tungsten inert gas (A-TIG) have been evaluated employing automatic ball indentation (ABI) technique. ABI tests were conducted at 298 K across various zones of the weld joints comprising of base metal, weld metal, heat affected zone (HAZ) and intercritical HAZ (ICHAZ) regions. The flow curves obtained from ABI tests were correlated with corresponding conventional tensile test results. In general, the tensile strength decreased systematically across the weld joint from weld metal to base metal. Inter critical HAZ exhibited the least strength implying that it is the weakest zone. The incomplete phase transformation in the ICHAZ during weld thermal cycle caused the softening. The A-TIG weld metal exhibited higher UTS and strain hardening values due to higher carbon in the martensite. The strain hardening exponent exhibited only slight variation across the various regions of the weld joints. A-TIG weld joint exhibited higher weld metal and HAZ strength, marginally higher UTS to YS ratio in the weld metal and HAZ compared to that of the other two processes. Hence, among the three welding processes chosen, A-TIG welding process is found to be superior in producing a 9Cr-1Mo steel weld joint with better strength properties.

  17. Advanced cutting, welding and inspection methods for vacuum vessel assembly and maintenance

    Energy Technology Data Exchange (ETDEWEB)

    Jones, L. E-mail: jonesl@ipp.mgg.de; Alfile, J.-P.; Aubert, Ph.; Punshon, C.; Daenner, W.; Kujanpaeae, V.; Maisonnier, D.; Serre, M.; Schreck, G.; Wykes, M

    2000-11-01

    ITER requires a 316 l stainless steel, double-skinned vacuum vessel (VV), each shell being 60 mm thick. EFDA (European Fusion Development Agreement) is investigating methods to be used for performing welding and NDT during VV assembly and also cutting and re-welding for remote sector replacement, including the development of an Intersector Welding Robot (IWR) [Jones et al. This conference]. To reduce the welding time, distortions and residual stresses of conventional welding, previous work concentrated on CO{sub 2} laser welding and cutting processes [Jones et al. Proc. Symp. Fusion Technol., Marseilles, 1998]. NdYAG laser now provides the focus for welding of the rearside root and for completing the weld for overhead positions with multipass filling. Electron beam (E-beam) welding with local vacuum offers a single-pass for most of the weld depth except for overhead positions. Plasma cutting has shown the capability to contain the backside dross and preliminary work with NdYAG laser cutting has shown good results. Automated ultrasonic inspection of assembly welds will be improved by the use of a phased array probe system that can focus the beam for accurate flaw location and sizing. This paper describes the recent results of process investigations in this R and D programme, involving five European sites and forming part of the overall VV/blanket research effort [W. Daenner et al. This conference].

  18. Characterization and Modeling of Microstructure Development in Nickel-base Superalloy Welds

    Energy Technology Data Exchange (ETDEWEB)

    Babu, S.S.; David, S.A.; Miller, M.K.; Vitek, J.M.

    1999-11-01

    Welding is important for economical reuse and reclamation of used and failed nickel-base superalloy blades, respectively [1]. Solidification and solid state decomposition of {gamma} (Face Centered Cubic, FCC) phase into {gamma}{prime} (L1{sub 2}-ordered) phase control the properties of these welds. In previous publications, the microstructure development in electron beam welds of PWA-1480 alloy [2] and laser beam welds of CMSX-4 alloy [3] were presented. These results showed that the weld cracking in these alloys were associated with low melting point eutectic at the dendrite boundaries [1,2]. The eutectic-{gamma}{prime} precipitation was reduced at rapid weld cooling rates and the partitioning between {gamma}-{gamma}{prime} phase was found to be far from equilibrium conditions [3,4]. This observation was related to diffusional growth of {gamma}{prime} precipitate into {gamma} phase. Subsequent to the above work, the precipitation characteristics of {gamma}{prime} phase from {gamma} phase were evaluated during continuous cooling conditions [5]. The results show that the number density of {gamma} precipitates increased with an increase in cooling rate. However, the details of this decomposition and also the fine-scale elemental partitioning characteristics between {gamma}-{gamma}{prime} were not investigated. In this paper, the precipitation characteristics of {gamma}{prime} from {gamma} during continuous cooling conditions were investigated with transmission electron microscopy, and atom probe field ion microscopy. In addition, thermodynamic and kinetic models were used to describe microstructure development in Ni-base superalloy welds.

  19. Welding abilities of UFG metals

    Science.gov (United States)

    Morawiński, Łukasz; Chmielewski, Tomasz; Olejnik, Lech; Buffa, Gianluca; Campanella, Davide; Fratini, Livan

    2018-05-01

    Ultrafine Grained (UFG) metals are characterized by an average grain size of welded joints with similar properties to the base of UFG material are crucial for the production of finished engineering components. Conventional welding methods based on local melting of the joined edges cannot be used due to the UFG microstructure degradation caused by the heat occurrence in the heat affected zone. Therefore, the possibility of obtaining UFG materials joints with different shearing plane (SP) positions by means of friction welded processes, which do not exceed the melting temperature during the process, should be investigated. The article focuses on the Linear Friction Welding (LFW) method, which belongs to innovative welding processes based on mixing of the friction-heated material in the solid state. LFW is a welding process used to joint bulk components. In the process, the friction forces work due to the high frequency oscillation and the pressure between the specimens is converted in thermal energy. Character and range of recrystallization can be controlled by changing LFW parameters. Experimental study on the welded UFG 1070 aluminum alloy by means of FLW method, indicates the possibility of reducing the UFG structure degradation in the obtained joint. A laboratory designed LFW machine has been used to weld the specimens with different contact pressure and oscillation frequency.

  20. Characterization of an Additive Manufactured TiAl Alloy—Steel Joint Produced by Electron Beam Welding

    Directory of Open Access Journals (Sweden)

    Gloria Basile

    2018-01-01

    Full Text Available In this work, the characterization of the assembly of a steel shaft into a γ-TiAl part for turbocharger application, obtained using Electron Beam Welding (EBW technology with a Ni-based filler, was carried out. The Ti-48Al-2Nb-0.7Cr-0.3Si (at % alloy part was produced by Electron Beam Melting (EBM. This additive manufacturing technology allows the production of a lightweight part with complex shapes. The replacement of Nickel-based superalloys with TiAl alloys in turbocharger automotive applications will lead to an improvement of the engine performance and a substantial reduction in fuel consumption and emission. The welding process allows a promising joint to be obtained, not affecting the TiAl microstructure. Nevertheless, it causes the formation of diffusive layers between the Ni-based filler and both steel and TiAl, with the latter side being characterized by a very complex microstructure, which was fully characterized in this paper by means of Scanning Electron Microscopy, Energy Dispersive X-ray Spectroscopy, and nanoindentation. The diffusive interface has a thickness of about 6 µm, and it is composed of several layers. Specifically, from the TiAl alloy side, we find a layer of Ti3Al followed by Al3NiTi2 and AlNi2Ti. Subsequently Ni becomes more predominant, with a first layer characterized by abundant carbide/boride precipitation, and a second layer characterized by Si-enrichment. Then, the chemical composition of the Ni-based filler is gradually reached.

  1. Investigation on fracture toughness of laser beam welded steels

    International Nuclear Information System (INIS)

    Riekehr, S.; Cam, G.; Santos, J.F. dos; Kocak, M.; Klein, R.M.; Fischer, R.

    1999-01-01

    Laser beam welding is currently used in the welding of a variety of structural materials including hot and cold rolled steels, high strength low alloy and stainless steels, aluminium and titanium alloys, refractory and high temperature alloys and dissimilar materials. This high power density welding process has unique advantages of cost effectiveness, low distortion, high welding speed, easy automation, deep penetration, narrow bead width, and narrow HAZ compared to the conventional fusion welding processes. However, there is a need to understand the deformation and fracture properties of laser beam weld joints in order to use this cost effective process for fabrication of structural components fully. In the present study, an austenitic stainless steel, X5CrNi18 10 (1.4301) and a ferritic structural steel, RSt37-2 (1.0038), with a thickness of 4 mm were welded by 5 kW CO 2 laser process. Microhardness measurements were conducted to determine the hardness profiles of the joints. Flat micro-tensile specimens were extracted from the base metal, fusion zone, and heat affected zone of ferritic joint to determine the mechanical property variation across the joint and the strength mismatch ratio between the base metal and the fusion zone. Moreover, fracture mechanics specimens were extracted from the joints and tested at room temperature to determine fracture toughness, Crack Tip Opening Displacement (CTOD), of the laser beam welded specimens. The effect of the weld region strength mis-matching on the fracture toughness of the joints have been evaluated. Crack initiation, crack growth and crack deviation processes have also been examined. These results were used to explain the influence of mechanical heterogeneity of the weld region on fracture behaviour. This work is a part of the ongoing Brite-Euram project Assessment of Quality of Power Beam Weld Joints (ASPOW). (orig.)

  2. Soldadura (Welding). Spanish Translations for Welding.

    Science.gov (United States)

    Hohhertz, Durwin

    Thirty transparency masters with Spanish subtitles for key words are provided for a welding/general mechanical repair course. The transparency masters are on such topics as oxyacetylene welding; oxyacetylene welding equipment; welding safety; different types of welds; braze welding; cutting torches; cutting with a torch; protective equipment; arc…

  3. Simulation and experimental study on distortion of butt and T-joints using WELD PLANNER

    International Nuclear Information System (INIS)

    Sulaiman, Mohd Shahar; Manurung, Yupiter HP; Rahim, Mohammad Ridzwan Abdul Mohd; Redza, Ridhwan; Lidam, Robert Ngendang Ak.; Abas, Sunhaji Kiyai; Tham, Ghalib; Haruman, Esa; Chau, Chan Yin

    2011-01-01

    This paper investigates the capability of linear thermal elastic numerical analysis to predict the welding distortion that occurs due to GMAW process. Distortion is considered as the major stumbling block that can adversely affect the dimensional accuracy and thus lead to expensive corrective work. Hence, forecast of distortion is crucially needed and ought to be determined in advance in order to minimize the negative effects, improve the quality of welded parts and finally to reduce the production costs. In this study, the welding deformation was simulated by using relatively new FEM software WELD PLANNER developed by ESI Group. This novel Welding Simulation Solution was employed to predict welding distortion induced in butt and T-joints with thickness of 4 mm. Low carbon steel material was used for the simulation and experimental study. A series of experiments using fully automated welding process were conducted for verification purpose to measure the distortion. By comparing between the simulation and experimental results, it was found out that this program code offered fast solution analysis time in estimating weld induced distortion within acceptable accuracy

  4. Simulation and experimental study on distortion of butt and T-joints using WELD PLANNER

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, Mohd Shahar; Manurung, Yupiter HP; Rahim, Mohammad Ridzwan Abdul Mohd; Redza, Ridhwan; Lidam, Robert Ngendang Ak.; Abas, Sunhaji Kiyai; Tham, Ghalib [Universiti Teknologi MARA, Kuala Lumpur (Malaysia); Haruman, Esa [Bakrie University, Jakarta (Indonesia); Chau, Chan Yin [ESI Group, Kuala Lumpur (Malaysia)

    2011-10-15

    This paper investigates the capability of linear thermal elastic numerical analysis to predict the welding distortion that occurs due to GMAW process. Distortion is considered as the major stumbling block that can adversely affect the dimensional accuracy and thus lead to expensive corrective work. Hence, forecast of distortion is crucially needed and ought to be determined in advance in order to minimize the negative effects, improve the quality of welded parts and finally to reduce the production costs. In this study, the welding deformation was simulated by using relatively new FEM software WELD PLANNER developed by ESI Group. This novel Welding Simulation Solution was employed to predict welding distortion induced in butt and T-joints with thickness of 4 mm. Low carbon steel material was used for the simulation and experimental study. A series of experiments using fully automated welding process were conducted for verification purpose to measure the distortion. By comparing between the simulation and experimental results, it was found out that this program code offered fast solution analysis time in estimating weld induced distortion within acceptable accuracy.

  5. Beating the heat! automated characterization of piezoelectric tubes for Starbugs

    Science.gov (United States)

    Piersiak, Rafal; Goodwin, Michael; Gilbert, James; Muller, Rolf

    2014-08-01

    The Australian Astronomical Observatory has extensively prototyped a new robotic positioner to allow simultaneous positioning of optical fibers at the focal plane called `Starbugs'. The Starbug devices each consist of two concentric piezoelectric tubes that `walk' the optical fiber over the focal plane to accuracy of several microns. Ongoing research has led to the development of several Starbug prototypes, but lack of performance data has hampered further progress in the design of the Starbug positioners and the support equipment required to power and control them. Furthermore, Starbugs have been selected for the TAIPAN instrument, a prototype for MANIFEST on the GMT. A need now arises to measure and characterize 100's of piezoelectric tubes before full scale production of Starbugs for TAIPAN. The manual measurements of these piezoelectric tubes are a time consuming process taking several hours. Therefore, a versatile automated system is needed to measure and characterize these tubes in the laboratory before production of Starbugs. We have solved this problem with the design of an automated LabVIEW application that significantly reduces test times to several minutes. We present the various design aspects of the automation system and provide analyses of example piezoelectric tubes for Starbugs.

  6. Automated quantitative micro-mineralogical characterization for environmental applications

    Science.gov (United States)

    Smith, Kathleen S.; Hoal, K.O.; Walton-Day, Katherine; Stammer, J.G.; Pietersen, K.

    2013-01-01

    Characterization of ore and waste-rock material using automated quantitative micro-mineralogical techniques (e.g., QEMSCAN® and MLA) has the potential to complement traditional acid-base accounting and humidity cell techniques when predicting acid generation and metal release. These characterization techniques, which most commonly are used for metallurgical, mineral-processing, and geometallurgical applications, can be broadly applied throughout the mine-life cycle to include numerous environmental applications. Critical insights into mineral liberation, mineral associations, particle size, particle texture, and mineralogical residence phase(s) of environmentally important elements can be used to anticipate potential environmental challenges. Resources spent on initial characterization result in lower uncertainties of potential environmental impacts and possible cost savings associated with remediation and closure. Examples illustrate mineralogical and textural characterization of fluvial tailings material from the upper Arkansas River in Colorado.

  7. Effects of microstructure and residual stress on fatigue crack growth of stainless steel narrow gap welds

    International Nuclear Information System (INIS)

    Jang, Changheui; Cho, Pyung-Yeon; Kim, Minu; Oh, Seung-Jin; Yang, Jun-Seog

    2010-01-01

    The effects of weld microstructure and residual stress distribution on the fatigue crack growth rate of stainless steel narrow gap welds were investigated. Stainless steel pipes were joined by the automated narrow gap welding process typical to nuclear piping systems. The weld fusion zone showed cellular-dendritic structures with ferrite islands in an austenitic matrix. Residual stress analysis showed large tensile stress in the inner-weld region and compressive stress in the middle of the weld. Tensile properties and the fatigue crack growth rate were measured along and across the weld thickness direction. Tensile tests showed higher strength in the weld fusion zone and the heat affected zone compared to the base metal. Within the weld fusion zone, strength was greater in the inner weld than outer weld region. Fatigue crack growth rates were several times greater in the inner weld than the outer weld region. The spatial variation of the mechanical properties is discussed in view of weld microstructure, especially dendrite orientation, and in view of the residual stress variation within the weld fusion zone. It is thought that the higher crack growth rate in the inner-weld region could be related to the large tensile residual stress despite the tortuous fatigue crack growth path.

  8. Automated ultrasonic inspection system for nuclear power stations

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The automated system of ultrasonic inspection which was used to conduct weld inspections of the complex primary system of the Borselle PWR station is described. It relies upon mechanically traversing purpose designed multi-crystal ultrasonic probes along the welds. A number of probes are switched sequentially to provide a continuous scan. A typical scan rate of 120 scan/sec is achieved by a multiplexer capable of switching transmitter and receiver individually. The system has wide applications in other industries. (U.K.)

  9. A Method for Identifying the Mechanical Parameters in Resistance Spot Welding Machines

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    2003-01-01

    Mechanical dynamic responses of resistance welding machine have a significant influence on weld quality and electrode service life, it must be considered when the real welding production is carried out or the welding process is stimulated. The mathematical models for characterizing the mechanical...

  10. The effect of controlled shot peening on fusion welded joints

    International Nuclear Information System (INIS)

    Lah, Nur Azida Che; Ali, Aidy; Ismail, Napsiah; Chai, Lim Poon; Mohamed, Abdul Aziz

    2010-01-01

    This work examines the effect of controlled shot peening (CSP) treatment on the fatigue strength of an ASTM A516 grade 70 carbon steel welded joint. Metallurgical modifications, hardness, elemental compositions, and internal discontinuities, such as porosity, inclusions, lack of penetration, and undercut found in treated and untreated fusion welded joints, were characterized. The fatigue results of as-welded and peened skimmed joints were compared. It was observed that the effect of the CSP and skimming processes improved the fatigue life of the fusion weld by 50% on MMA-welded, 63% on MIG-welded, and 60% on TIG-welded samples.

  11. Characterization of welding of AISI 304l stainless steel similar to the core encircling of a BWR reactor

    International Nuclear Information System (INIS)

    Gachuz M, M.E.; Palacios P, F.; Robles P, E.F.

    2003-01-01

    Plates of austenitic stainless steel AISI 304l of 0.0381 m thickness were welded by means of the SMAW process according to that recommended in the Section 9 of the ASME Code, so that it was reproduced the welding process used to assemble the encircling of the core of a BWR/5 reactor similar to that of the Laguna Verde Nucleo electric plant, there being generated the necessary documentation for the qualification of the one welding procedure and of the welder. They were characterized so much the one base metal, as the welding cord by means of metallographic techniques, scanning electron microscopy, X-ray diffraction, mechanical essays and fracture mechanics. From the obtained results it highlights the presence of an area affected by the heat of up to 1.5 mm of wide and a value of fracture tenacity (J IC ) to ambient temperature for the base metal of 528 KJ/m 2 , which is diminished by the presence of the welding and by the increment in the temperature of the one essay. Also it was carried out an fractographic analysis of the fracture zone generated by the tenacity essays, what evidence a ductile fracture. The experimental values of resistance and tenacity are important for the study of the structural integrity of the encircling one of the core. (Author)

  12. Effect of Multipass TIG and Activated TIG Welding Process on the Thermo-Mechanical Behavior of 316LN Stainless Steel Weld Joints

    Science.gov (United States)

    Ganesh, K. C.; Balasubramanian, K. R.; Vasudevan, M.; Vasantharaja, P.; Chandrasekhar, N.

    2016-04-01

    The primary objective of this work was to develop a finite element model to predict the thermo-mechanical behavior of an activated tungsten inert gas (ATIG)-welded joint. The ATIG-welded joint was fabricated using 10 mm thickness of 316LN stainless steel plates in a single pass. To distinguish the merits of ATIG welding process, it was compared with manual multipass tungsten inert gas (MPTIG)-welded joint. The ATIG-welded joint was fabricated with square butt edge configuration using an activating flux developed in-house. The MPTIG-welded joint was fabricated in thirteen passes with V-groove edge configuration. The finite element model was developed to predict the transient temperature, residual stress, and distortion of the welded joints. Also, microhardness, impact toughness, tensile strength, ferrite measurement, and microstructure were characterized. Since most of the recent publications of ATIG-welded joint was focused on the molten weld pool dynamics, this research work gives an insight on the thermo-mechanical behavior of ATIG-welded joint over MPTIG-welded joint.

  13. Corrosion resistance of «tube – tubesheet» weld joint obtained by friction welding

    Directory of Open Access Journals (Sweden)

    RIZVANOV Rif Garifovich

    2017-08-01

    Full Text Available Shell-and-tube heat exchangers are widely applied for implementation of various processes at ventures of fuel and energy complex. Cost of production and reliability of heat exchangers of this type is to a wide extent determined by corresponding characteristics of tube bundle, «tube – tubesheet» is its typical joint in particular when welding operations are used in order to attach tubes to tubesheet in addition to expansion. When manufacturing such equipment of heat-resistant chrome-bearing or chromium-molybdenum steels including steel 15H5M, the process of fixed joint manufacturing gets significantly more complicated and costly due to the necessity to use thermal treatment before, during and after welding (this problem is particularly applicable for manufacturing of large-size equipment. One of the options to exclude thermal treatment from manufacturing process is to use «non-arc» welding methods – laser welding, explosion welding as well as friction welding. Use of each of the welding methods mentioned above during production of heat-exchange equipment has its process challenges and peculiarities. This article gives a comparative analysis of weld structure and distribution of electrode potentials of welded joints and parent metal of the joints simulating welding of tube to tubesheet of steel 15H5M using the following welding methods: shielded manual arc welding, tungsten-arc inert-gas welding and friction welding. Comparative analysis of macro- and microstructures of specific zones of the studied welded joints showed that the joints produced by arc welding methods do not exhibit evident inhomogeneity of the structure after application of thermal treatment which is explained by the correctness of thermal treatment. Joints obtained via friction welding are characterized by structural inhomogeneity of the welded joint zone metal microstructure. The ultra-fine-grained structure obtained as a result of friction welding makes it possible to

  14. Assisting Gas Optimization in CO2 Laser Welding

    DEFF Research Database (Denmark)

    Gong, Hui; Olsen, Flemming Ove

    1996-01-01

    High quality laser welding is achieved under the condition of optimizing all process parameters. Assisting gas plays an important role for sound welds. In the conventional welding process assisting gas is used as a shielding gas to prevent that the weld seam oxidates. In the laser welding process...... assisting gas is also needed to control the laser induced plasma.Assisting gas is one of the most important parameters in the laser welding process. It is responsible for obtaining a quality weld which is characterized by deep penetration, no interior imperfections, i.e. porosity, no crack, homogeneous seam...... surface, etc. In this work a specially designed flexible off-axis nozzle capable of adjusting the angle of the nozzle, the diameter of the nozzle, and the distance between the nozzle end and the welding zone is tested. In addition to the nozzle parameters three gases, Nitrogen, Argon, and Helium...

  15. Automated robotic workcell for waste characterization

    International Nuclear Information System (INIS)

    Dougan, A.D.; Gustaveson, D.K.; Alvarez, R.A.; Holliday, M.

    1993-01-01

    The authors have successfully demonstrated an automated multisensor-based robotic workcell for hazardous waste characterization. The robot within this workcell uses feedback from radiation sensors, a metal detector, object profile scanners, and a 2D vision system to automatically segregate objects based on their measured properties. The multisensor information is used to make segregation decisions of waste items and to facilitate the grasping of objects with a robotic arm. The authors used both sodium iodide and high purity germanium detectors as a two-step process to maximize throughput. For metal identification and discrimination, the authors are investigating the use of neutron interrogation techniques

  16. ASPECT (Automated System-level Performance Evaluation and Characterization Tool), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — SSCI has developed a suite of SAA tools and an analysis capability referred to as ASPECT (Automated System-level Performance Evaluation and Characterization Tool)....

  17. Characterization of complex carbide–silicide precipitates in a Ni–Cr–Mo–Fe–Si alloy modified by welding

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharyya, D., E-mail: dhb@ansto.gov.au; Davis, J.; Drew, M.; Harrison, R.P.; Edwards, L.

    2015-07-15

    Nickel based alloys of the type Hastelloy-N™ are ideal candidate materials for molten salt reactors, as well as for applications such as pressure vessels, due to their excellent resistance to creep, oxidation and corrosion. In this work, the authors have attempted to understand the effects of welding on the morphology, chemistry and crystal structure of the precipitates in the heat affected zone (HAZ) and the weld zone of a Ni–Cr–Mo–Fe–Si alloy similar to Hastelloy-N™ in composition, by using characterization techniques such as scanning and transmission electron microscopy. Two plates of a Ni–Cr–Mo–Fe–Si alloy GH-3535 were welded together using a TiG welding process without filler material to achieve a joint with a curved molten zone with dendritic structure. It is evident that the primary precipitates have melted in the HAZ and re-solidified in a eutectic-like morphology, with a chemistry and crystal structure only slightly different from the pre-existing precipitates, while the surrounding matrix grains remained unmelted, except for the zones immediately adjacent to the precipitates. In the molten zone, the primary precipitates were fully melted and dissolved in the matrix, and there was enrichment of Mo and Si in the dendrite boundaries after solidification, and re-precipitation of the complex carbides/silicides at some grain boundaries and triple points. The nature of the precipitates in the molten zone varied according to the local chemical composition. - Graphical abstract: Display Omitted - Highlights: • Ni-based alloy with Cr, Mo, Si, Fe and C was welded, examined with SEM, EBSD, and TEM. • Original Ni{sub 2}(Mo,Cr){sub 4}(Si,C) carbides changed from equiaxed to lamellar shape in HAZ. • Composition and crystal structure remained almost unchanged in HAZ. • Original carbides changed to lamellar Ni{sub 3}(Mo,Cr){sub 3}(Si,C) in some cases in weld metal. • Precipitates were mostly incoherent, but semi-coherent in some cases in weld

  18. Characterization of complex carbide–silicide precipitates in a Ni–Cr–Mo–Fe–Si alloy modified by welding

    International Nuclear Information System (INIS)

    Bhattacharyya, D.; Davis, J.; Drew, M.; Harrison, R.P.; Edwards, L.

    2015-01-01

    Nickel based alloys of the type Hastelloy-N™ are ideal candidate materials for molten salt reactors, as well as for applications such as pressure vessels, due to their excellent resistance to creep, oxidation and corrosion. In this work, the authors have attempted to understand the effects of welding on the morphology, chemistry and crystal structure of the precipitates in the heat affected zone (HAZ) and the weld zone of a Ni–Cr–Mo–Fe–Si alloy similar to Hastelloy-N™ in composition, by using characterization techniques such as scanning and transmission electron microscopy. Two plates of a Ni–Cr–Mo–Fe–Si alloy GH-3535 were welded together using a TiG welding process without filler material to achieve a joint with a curved molten zone with dendritic structure. It is evident that the primary precipitates have melted in the HAZ and re-solidified in a eutectic-like morphology, with a chemistry and crystal structure only slightly different from the pre-existing precipitates, while the surrounding matrix grains remained unmelted, except for the zones immediately adjacent to the precipitates. In the molten zone, the primary precipitates were fully melted and dissolved in the matrix, and there was enrichment of Mo and Si in the dendrite boundaries after solidification, and re-precipitation of the complex carbides/silicides at some grain boundaries and triple points. The nature of the precipitates in the molten zone varied according to the local chemical composition. - Graphical abstract: Display Omitted - Highlights: • Ni-based alloy with Cr, Mo, Si, Fe and C was welded, examined with SEM, EBSD, and TEM. • Original Ni 2 (Mo,Cr) 4 (Si,C) carbides changed from equiaxed to lamellar shape in HAZ. • Composition and crystal structure remained almost unchanged in HAZ. • Original carbides changed to lamellar Ni 3 (Mo,Cr) 3 (Si,C) in some cases in weld metal. • Precipitates were mostly incoherent, but semi-coherent in some cases in weld metal

  19. The numerical high cycle fatigue damage model of fillet weld joint under weld-induced residual stresses

    Science.gov (United States)

    Nguyen Van Do, Vuong

    2018-04-01

    In this study, a development of nonlinear continuum damage mechanics (CDM) model for multiaxial high cycle fatigue is proposed in which the cyclic plasticity constitutive model has been incorporated in the finite element (FE) framework. T-joint FE simulation of fillet welding is implemented to characterize sequentially coupled three-dimensional (3-D) of thermo-mechanical FE formulation and simulate the welding residual stresses. The high cycle fatigue damage model is then taken account into the fillet weld joints under the various cyclic fatigue load types to calculate the fatigue life considering the residual stresses. The fatigue crack initiation and the propagation in the present model estimated for the total fatigue is compared with the experimental results. The FE results illustrated that the proposed high cycle fatigue damage model in this study could become a powerful tool to effectively predict the fatigue life of the welds. Parametric studies in this work are also demonstrated that the welding residual stresses cannot be ignored in the computation of the fatigue life of welded structures.

  20. Influence of Welding Parameters on the Weld Pool Dimensions and Shape in a TIG Configuration

    Directory of Open Access Journals (Sweden)

    Marine Stadler

    2017-04-01

    Full Text Available The weld pool shape created by the plasma arc interaction on a workpiece depends on many geometrical and physical parameters and on the operating conditions. Theoretical models are developed in such a way as to predict and to characterize the material. However, these models first need to be validated. Experimental results are hence proposed with parametric studies. Nevertheless, the interaction time is often short and the weld pool shape evolution not presented. In this work, the experimental setup and the diagnostic methods characterizing the workpiece are presented. The weld pool shape was evaluated versus time according to several parameters such as the current intensity value, the distance between the two electrodes, the cathode tip angle or the plasma gas nature. The results show that the depth-to-width ratio alone is not enough to compare the impact of the parameters. The analysis points out the great influence of the current intensity on the increase of the width and depth compared to the influence of the value of the cathode tip angle. The rise of the arc length leads to an increase of the power through a higher arc voltage; nevertheless, for distances of three and five millimeters and a characteristic time of the welding process of one second, this parameter has a weak influence on the energy transferred. The use of helium leads to a bigger volume of the weld pool due to an increase of width and depth.

  1. Avaliação da microestrutura e propriedades mecânicas de metais de solda obtidos por processos de soldagem manual e automatizado utilizado na soldagem de aço API 5L X80 Evaluation of microstructure and mechanical properties of weld metals obtained by manual and automated welding process used in the welding of API 5L X80 steel

    Directory of Open Access Journals (Sweden)

    Siderley Fernandes Albuquerque

    2011-12-01

    Full Text Available O objetivo do trabalho foi avaliar as características da zona termicamente afetada (ZTA e a microestrutura e propriedades mecânicas de metais de solda de juntas soldadas do aço API 5L X80, obtidos para quatro diferentes procedimentos de soldagem utilizando processos manuais e automatizados. Para isto, chapas do referido aço foram soldadas por processo manual ao Arco Elétrico com Eletrodo Revestido (SMAW, utilizando 473 e 673 K como temperaturas de interpasses e o eletrodo celulósico AWS E8010-G como consumível; por processo ao Arco Elétrico com Arame Tubular (FCAW robotizado, utilizando o arame AWS E71T- 1C como metal de adição e argônio com 25%CO2 como gás de proteção; por processo a Arco Elétrico com Eletrodo de Tungstênio (GTAW mecanizado na raiz da solda, usando o arame ER70S-3 e argônio como gás de proteção. As análises microestruturais foram relacionadas com os resultados de ensaios de impacto Charpy nos metais de solda e com os perfis de microdureza Vickers ao longo da junta soldada. Os resultados indicaram maiores percentuais de Ferrita Acicular e maiores valores de resistência ao impacto nos metais de solda e uma menor extensão e granulometria da ZTA, associado ao procedimento de soldagem utilizando processo automatizado com maior velocidade de soldagem.The objective of this work was to evaluate the heat affected zone characteristics and weld metals microstructure and mechanical properties of API 5L X80 steel welded joints, obtained for four different welding procedures using manual and automated processes. For this, plates of this steel were welded by manual Shielded Metal Arc Welding (SMAW process with interpasses temperatures of 473 e 673 K, and using AWS E8010-G electrode as filler metals; robotized Flux Cored Arc Welding (FCAW process, using AWS E71T-1C wire and Ar25%CO2 as consumable and mechanized Gas Tungsten Arc Welding (GTAW process, for the root pass using AWS ER70S-3 and Ar as consumable .The

  2. Experimental characterization of the weld pool flow in a TIG configuration

    Science.gov (United States)

    Stadler, M.; Masquère, M.; Freton, P.; Franceries, X.; Gonzalez, J. J.

    2014-11-01

    Tungsten Inert Gas (TIG) welding process relies on heat transfer between plasma and work piece leading to a metallic weld pool. Combination of different forces produces movements on the molten pool surface. One of our aims is to determine the velocity on the weld pool surface. This provides a set of data that leads to a deeper comprehension of the flow behavior and allows us to validate numerical models used to study TIG parameters. In this paper, two diagnostic methods developed with high speed imaging for the determination of velocity of an AISI 304L stainless steel molten pool are presented. Application of the two methods to a metallic weld pool under helium with a current intensity of 100 A provides velocity values around 0.70 m/s which are in good agreement with literature works.

  3. Micromechanical and internal discontinuity aspects in fusion welded joints

    International Nuclear Information System (INIS)

    Nur Azida Che Lah; Aidy Ali

    2009-01-01

    Full text: This paper deals with characterization of macrostructure, microstructure, hardness, elemental compositions and internal discontinuities of ASTM A516 grade 70 fusion welded joints. The welded joints of ASTM A516 grade 70 carbon steel, which are widely used in pressure vessel fabrication were prepared using welding procedures of Manual Metal Arc (MMA), Metal Inert Gas (MIG) and Tungsten Inert Gas (TIG). Local microstructural condition and elemental composition of the welds were characterised using scanning electron microscopy (SEM) in association with energy dispersive X-ray (EDX). Radiography testing was applied to study the common internal weld defects. This comprehensive information provides a practical guide in order to determine the most adequate welding procedure and assisting in understanding the behaviour of the weld zones. (author)

  4. FSW of Aluminum Tailor Welded Blanks across Machine Platforms

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Upadhyay, Piyush; Carlson, Blair; Szymanski, Robert; Luzanski, Tom; Marshall, Dustin

    2015-02-16

    Development and characterization of friction stir welded aluminum tailor welded blanks was successfully carried out on three separate machine platforms. Each was a commercially available, gantry style, multi-axis machine designed specifically for friction stir welding. Weld parameters were developed to support high volume production of dissimilar thickness aluminum tailor welded blanks at speeds of 3 m/min and greater. Parameters originally developed on an ultra-high stiffness servo driven machine where first transferred to a high stiffness servo-hydraulic friction stir welding machine, and subsequently transferred to a purpose built machine designed to accommodate thin sheet aluminum welding. The inherent beam stiffness, bearing compliance, and control system for each machine were distinctly unique, which posed specific challenges in transferring welding parameters across machine platforms. This work documents the challenges imposed by successfully transferring weld parameters from machine to machine, produced from different manufacturers and with unique control systems and interfaces.

  5. Characterization of Friction Stir Welded Tubes by Means of Tube Bulge Test

    International Nuclear Information System (INIS)

    D'Urso, G.; Longo, M.; Giardini, C.

    2011-01-01

    Mechanical properties of friction stir welded joints are generally evaluated by means of conventional tensile test. This testing method might provide insufficient information because maximum strain obtained in tensile test before necking is small; moreover, the application of tensile test is limited when the joint path is not linear or even when the welds are executed on curved surfaces. Therefore, in some cases, it would be preferable to obtain the joints properties from other testing methods. Tube bulge test can be a valid solution for testing circumferential or longitudinal welds executed on tubular workpieces. The present work investigates the mechanical properties and the formability of friction stir welded tubes by means of tube bulge tests. The experimental campaign was performed on tubular specimens having a thickness of 3 mm and an external diameter of 40 mm, obtained starting from two semi-tubes longitudinally friction stir welded. The first step, regarding the fabrication of tubes, was performed combining a conventional forming process and friction stir welding. Sheets in Al-Mg-Si-Cu alloy AA6060 T6 were adopted for this purpose. Plates having a dimension of 225x60 mm were bent (with a bending axis parallel to the main dimension) in order to obtain semi-tubes. A particular care was devoted to the fabrication of forming devices (punch and die) in order to minimize the springback effects. Semi-tubes were then friction stir welded by means of a CNC machine tool. Some preliminary tests were carried out by varying the welding parameters, namely feed rate and rotational speed. A very simple tool having flat shoulder and cylindrical pin was used. The second step of the research was based on testing the welded tubes by means of tube bulge test. A specific equipment having axial actuators with a conical shape was adopted for this study. Some analyses were carried out on the tubes bulged up to a certain pressure level. In particular, the burst pressure and the

  6. Characterization of magnetically impelled arc butt welded T11 tubes for high pressure applications

    Directory of Open Access Journals (Sweden)

    R. Sivasankari

    2015-09-01

    Full Text Available Magnetically impelled arc butt (MIAB welding is a pressure welding process used for joining of pipes and tubes with an external magnetic field affecting arc rotation along the tube circumference. In this work, MIAB welding of low alloy steel (T11 tubes were carried out to study the microstructural changes occurring in thermo-mechanically affected zone (TMAZ. To qualify the process for the welding applications where pressure could be up to 300 bar, the MIAB welds are studied with variations of arc current and arc rotation time. It is found that TMAZ shows higher hardness than that in base metal and displays higher weld tensile strength and ductility due to bainitic transformation. The effect of arc current on the weld interface is also detailed and is found to be defect free at higher values of arc currents. The results reveal that MIAB welded samples exhibits good structural property correlation for high pressure applications with an added benefit of enhanced productivity at lower cost. The study will enable the use of MIAB welding for high pressure applications in power and defence sectors.

  7. Microstructure and mechanical characterization of friction stir welded high strength low alloy steels

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, R., E-mail: rameshsmit@gmail.com [Department of Mechanical Engineering, PSG College of Technology, Coimbatore 641004, Tamilnadu (India); Dinaharan, I., E-mail: dinaweld2009@gmail.com [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006, Gauteng (South Africa); Kumar, Ravi, E-mail: nvrk@iitm.ac.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu (India); Akinlabi, E.T., E-mail: etakinlabi@uj.ac.za [Department of Mechanical Engineering Science, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg 2006, Gauteng (South Africa)

    2017-02-27

    Friction stir welding (FSW) is a promising technique to join HSLA steels without the problems encountered during fusion based welding processes. In the present work, 3 mm thick HSLA plates were successfully welded using FSW. A tool made of tungsten-rhenium alloy was used in this work. The relationship between microstructure and tensile strength was studied under various welding conditions i.e. change in traverse speed (57–97 mm/min). The microstructure of the weld nugget revealed the presence of upper bainite and fine ferrite phases. The amount of upper bainite reduced with increase in traverse speed. EBSD images showed a reducing trend for grain size. The details of hardness, tensile strength and bending test were reported.

  8. Microstructure and mechanical characterization of friction stir welded high strength low alloy steels

    International Nuclear Information System (INIS)

    Ramesh, R.; Dinaharan, I.; Kumar, Ravi; Akinlabi, E.T.

    2017-01-01

    Friction stir welding (FSW) is a promising technique to join HSLA steels without the problems encountered during fusion based welding processes. In the present work, 3 mm thick HSLA plates were successfully welded using FSW. A tool made of tungsten-rhenium alloy was used in this work. The relationship between microstructure and tensile strength was studied under various welding conditions i.e. change in traverse speed (57–97 mm/min). The microstructure of the weld nugget revealed the presence of upper bainite and fine ferrite phases. The amount of upper bainite reduced with increase in traverse speed. EBSD images showed a reducing trend for grain size. The details of hardness, tensile strength and bending test were reported.

  9. Testing and Modeling of Machine Properties in Resistance Welding

    DEFF Research Database (Denmark)

    Wu, Pei

    The objective of this work has been to test and model the machine properties including the mechanical properties and the electrical properties in resistance welding. The results are used to simulate the welding process more accurately. The state of the art in testing and modeling machine properties...... as real projection welding tests, is easy to realize in industry, since tests may be performed in situ. In part II, an approach of characterizing the electrical properties of AC resistance welding machines is presented, involving testing and mathematical modelling of the weld current, the firing angle...... in resistance welding has been described based on a comprehensive literature study. The present thesis has been subdivided into two parts: Part I: Mechanical properties of resistance welding machines. Part II: Electrical properties of resistance welding machines. In part I, the electrode force in the squeeze...

  10. Neural network expert system for X-ray analysis of welded joints

    Science.gov (United States)

    Kozlov, V. V.; Lapik, N. V.; Popova, N. V.

    2018-03-01

    The use of intelligent technologies for the automated analysis of product quality is one of the main trends in modern machine building. At the same time, rapid development in various spheres of human activity is experienced by methods associated with the use of artificial neural networks, as the basis for building automated intelligent diagnostic systems. Technologies of machine vision allow one to effectively detect the presence of certain regularities in the analyzed designation, including defects of welded joints according to radiography data.

  11. Definition of Beam Diameter for Electron Beam Welding

    Energy Technology Data Exchange (ETDEWEB)

    Burgardt, Paul [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pierce, Stanley W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Dvornak, Matthew John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-11

    It is useful to characterize the dimensions of the electron beam during process development for electron beam welding applications. Analysis of the behavior of electron beam welds is simplest when a single number can be assigned to the beam properties that describes the size of the beam spot; this value we generically call the “beam diameter”. This approach has worked well for most applications and electron beam welding machines with the weld dimensions (width and depth) correlating well with the beam diameter. However, in recent weld development for a refractory alloy, Ta-10W, welded with a low voltage electron beam machine (LVEB), it was found that the weld dimensions (weld penetration and weld width) did not correlate well with the beam diameter and especially with the experimentally determined sharp focus point. These data suggest that the presently used definition of beam diameter may not be optimal for all applications. The possible reasons for this discrepancy and a suggested possible alternative diameter definition is the subject of this paper.

  12. Flaw detection of welded joints in NPP equipment assembly

    International Nuclear Information System (INIS)

    Kesler, N.A.; Polevik, V.A.; Orlov, N.S.

    1984-01-01

    State of the art and prospects of development of ultrasonic and radiography testing of welded joints for quality used in NPP equipment assembly are considered. Recommendations are given on reducing the labour content with the use of these methods. Specifications for the developed facilities intended for automation and mechanization of the described quality control methods are presented

  13. Ultrasonic Real-Time Quality Monitoring Of Aluminum Spot Weld Process

    Science.gov (United States)

    Perez Regalado, Waldo Josue

    The real-time ultrasonic spot weld monitoring system, introduced by our research group, has been designed for the unsupervised quality characterization of the spot welding process. It comprises the ultrasonic transducer (probe) built into one of the welding electrodes and an electronics hardware unit which gathers information from the transducer, performs real-time weld quality characterization and communicates with the robot programmable logic controller (PLC). The system has been fully developed for the inspection of spot welds manufactured in steel alloys, and has been mainly applied in the automotive industry. In recent years, a variety of materials have been introduced to the automotive industry. These include high strength steels, magnesium alloys, and aluminum alloys. Aluminum alloys have been of particular interest due to their high strength-to-weight ratio. Resistance spot welding requirements for aluminum vary greatly from those of steel. Additionally, the oxide film formed on the aluminum surface increases the heat generation between the copper electrodes and the aluminum plates leading to accelerated electrode deterioration. Preliminary studies showed that the real-time quality inspection system was not able to monitor spot welds manufactured with aluminum. The extensive experimental research, finite element modelling of the aluminum welding process and finite difference modeling of the acoustic wave propagation through the aluminum spot welds presented in this dissertation, revealed that the thermodynamics and hence the acoustic wave propagation through an aluminum and a steel spot weld differ significantly. For this reason, the hardware requirements and the algorithms developed to determine the welds quality from the ultrasonic data used on steel, no longer apply on aluminum spot welds. After updating the system and designing the required algorithms, parameters such as liquid nugget penetration and nugget diameter were available in the ultrasonic data

  14. Size-separated particle fractions of stainless steel welding fume particles - A multi-analytical characterization focusing on surface oxide speciation and release of hexavalent chromium.

    Science.gov (United States)

    Mei, N; Belleville, L; Cha, Y; Olofsson, U; Odnevall Wallinder, I; Persson, K-A; Hedberg, Y S

    2018-01-15

    Welding fume of stainless steels is potentially health hazardous. The aim of this study was to investigate the manganese (Mn) and chromium (Cr) speciation of welding fume particles and their extent of metal release relevant for an inhalation scenario, as a function of particle size, welding method (manual metal arc welding, metal arc welding using an active shielding gas), different electrodes (solid wires and flux-cored wires) and shielding gases, and base alloy (austenitic AISI 304L and duplex stainless steel LDX2101). Metal release investigations were performed in phosphate buffered saline (PBS), pH 7.3, 37°, 24h. The particles were characterized by means of microscopic, spectroscopic, and electroanalytical methods. Cr was predominantly released from particles of the welding fume when exposed in PBS [3-96% of the total amount of Cr, of which up to 70% as Cr(VI)], followed by Mn, nickel, and iron. Duplex stainless steel welded with a flux-cored wire generated a welding fume that released most Cr(VI). Nano-sized particles released a significantly higher amount of nickel compared with micron-sized particle fractions. The welding fume did not contain any solitary known chromate compounds, but multi-elemental highly oxidized oxide(s) (iron, Cr, and Mn, possibly bismuth and silicon). Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Structure/property relationships in multipass GMA welding of beryllium.

    Energy Technology Data Exchange (ETDEWEB)

    Hochanadel, P. W. (Patrick W.); Hults, W. L. (William L.); Thoma, D. J. (Dan J.); Dave, V. R. (Vivek R.); Kelly, A. M. (Anna Marie); Pappin, P. A. (Pallas A.); Cola, M. J. (Mark J.); Burgardt, P. (Paul)

    2001-01-01

    Beryllium is an interesting metal that has a strength to weight ratio six times that of steel. Because of its unique mechanical properties, beryllium is used in aerospace applications such as satellites. In addition, beryllium is also used in x-ray windows because it is nearly transparent to x-rays. Joining of beryllium has been studied for decades (Ref.l). Typically joining processes include braze-welding (either with gas tungsten arc or gas metal arc), soldering, brazing, and electron beam welding. Cracking which resulted from electron beam welding was recently studied to provide structure/property relationships in autogenous welds (Ref. 2). Braze-welding utilizes a welding arc to melt filler, and only a small amount of base metal is melted and incorporated into the weld pool. Very little has been done to characterize the braze-weld in terms of the structure/property relationships, especially with reference to multipass welding. Thus, this investigation was undertaken to evaluate the effects of multiple passes on microstructure, weld metal composition, and resulting material properties for beryllium welded with aluminum-silicon filler metal.

  16. Laser welding of tailored blanks

    Directory of Open Access Journals (Sweden)

    Peças, P.

    1998-04-01

    Full Text Available Laser welding has an incrising role in the automotive industry, namely on the sub-assemblies manufacturing. Several sheet-shape parts are laser welded, on a dissimilar combination of thicknesses and materials, and are afterwards formed (stamped being transformed in a vehicle body component. In this paper low carbon CO2 laser welding, on the thicknesses of 1,25 and 0,75 mm, formability investigation is described. There will be a description of how the laser welded blanks behave in different forming tests, and the influence of misalignment and undercut on the formibility. The quality is evaluated by measuring the limit strain and limit effective strain for the laser welded sheets and the base material, which will be presented in a forming limit diagram.

    A soldadura laser assume um papel cada vez mais importante na indústria automóvel, principalmente para a fabricação de sub-conjuntos constituídos por varias partes de chapa de diferentes espessuras (e diferentes materiais, que depois de estampados constituem um componente para integrar num veículo. Descreve-se neste artigo o trabalho de investigação de enformabilidade de chapa de ac.o de baixo carbono soldada por laser de CO2, nas espessuras de 1,25 e 0,75 mm. Apresenta-se uma descrição do comportamento das chapas soldadas por laser em diferentes testes de enformação, e a influência dos defeitos das soldaduras (desalinhamento e queda do banho-undercut no comportamento à enformação. A qualidade é avaliada pela medição da extensão limite e da extensão limite efectiva no material base e no material soldado, que serão representadas num diagrama de limite de enformabilidade.

  17. Automated characterization of glass microspheres used for laser fusion experiments

    International Nuclear Information System (INIS)

    Tajima, Tsuyoshi; Norimatsu, Takayoshi; Izawa, Yasukazu; Yamanaka, Chiyoe.

    1985-01-01

    In laser fusion experiments glass microspheres of 100 to 1000 μm in diameter and 1 to 20 μm in wall thickness are most commonly used as fuel containers. The glass microspheres should be characterized precisely to meet stringent experimental requirements. Much time is consumed to characterize and select good quality spheres among thousands of spheres. We have developed an automated system to characterize and select glass microspheres. The system consists of charger, quadrupole rail, image processing and X-Y stage control with micro-computer. Total processing time primarily depends on the time required for image analysis, which should be compromised with the accuracy of characterization. The time for simple characterization requires about 10 sec. at present. (author)

  18. EBSD characterization of the effect of welding parameters on HAZ of AISI409

    Directory of Open Access Journals (Sweden)

    Ranjbarnodeha E.

    2012-01-01

    Full Text Available One of the main problems during the welding of ferritic stainless steels is severe grain growth in the heat affected zone (HAZ. In the present study, microstructural characteristics of tungsten inert gas (TIG welded AISI409 ferritic stainless steel were investigated. The effect of the welding parameters on grain size٫ local misorientation and low angle grain boundaries was studied. It was found that the base metal was partly in recrystallization state. Complete recrystallization followed by severe grain growth occurs after joining process due to welding heating cycle. A decrease in the number of low angle grain boundaries in HAZ was observed. Nevertheless, the welding plastic strain increases the density of local misorientation and low angle grain boundaries. This investigation shows that the final state of strain is the result of the competition between welding plastic strains and stress relieving from recrystallization but the decisive factor in determining the grain size in HAZ is heat input.

  19. Characterization of weld strength and impact toughness in the multi-pass welding of super-duplex stainless steel UNS 32750

    International Nuclear Information System (INIS)

    Devendranath Ramkumar, K.; Thiruvengatam, G.; Sudharsan, S.P.; Mishra, Debidutta; Arivazhagan, N.; Sridhar, R.

    2014-01-01

    Highlights: • Effect of filler metals on the weldability of super-duplex stainless steel plates. • Contemplative explanations on the metallurgical and mechanical properties of the weldments. • Enhanced mechanical properties of the welds at ambient room temperature. - Abstract: This paper investigates the weldability, metallurgical and mechanical properties of the UNS 32750 super-duplex stainless steels joints by Gas Tungsten Arc Welding (GTAW) employing ER2553 and ERNiCrMo-4 filler metals. Impact and tensile studies envisaged that the weldments employing ER2553 exhibited superior mechanical properties compared to ERNiCrMo-4 weldments. Microstructure studies performed using optical and SEM analysis clearly exhibited the different forms of austenite including widmanstatten austenite on the weld zone employing ER2553 filler. Also the presented results clearly reported the effect of filler metals on strength and toughness during the multi-pass welding. This research article addressed the improvement of tensile and impact strength using appropriate filler wire without obtaining any deleterious phases

  20. Low temperature friction stir welding of P91 steel

    Directory of Open Access Journals (Sweden)

    Prasad Rao Kalvala

    2016-08-01

    Full Text Available Bead-on-plate friction stir welds were made on P91 alloy with low and high rotational speeds (100 and 1000 RPM to study their effects on weld microstructural changes and impression creep behavior. Temperatures experienced by the stir zone were recorded at the weld tool tip. Different zones of welds were characterized for their microstructural changes, hardness and creep behavior (by impression creep tests. The results were compared with submerged arc fusion weld. Studies revealed that the stir zone temperature with 100 RPM was well below Ac1 temperature of P91 steel while it was above Ac3 with 1000 RPM. The results suggest that the microstructural degradation in P91 welds can be controlled by low temperature friction stir welding technique.

  1. Investigation on edge joints of Inconel 625 sheets processed with laser welding

    Science.gov (United States)

    Caiazzo, F.; Alfieri, V.; Cardaropoli, F.; Sergi, V.

    2017-08-01

    Laser welding of Inconel 625 edge joint beads in square groove configuration was investigated. The use of different weld geometries in new aerospace solutions explains research on edge joints. A structured plan was carried out in order to characterize the process defining the influence of laser power and welding speed and to study possible interactions among the governing factors. As weld pool protection is crucial in order to obtain sound joints when processing superalloys, a special glove box for gas supply was designed to upgrade the welding head. Welded joints were characterized referring to bead profile, microstructure and X-rays. It was found that heat input plays an important role as it affects welding stability, porosity content and bead shape. Results suggest operating with low values of heat input to reduce porosity and guarantee stable bead conformation. Furthermore, a decrease in the grain size has been observed as a consequence of decreasing heat input.

  2. Automation, robotics and remote handling technology in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Rajagopalan, C.; Venugopal, S.

    2013-01-01

    Automation and Robotics technology are making significant contributions in almost all fields of engineering and technology and their presence is felt in all spheres of human life. The importance of automation and robotics has increased rapidly in the recent years to cater to the global competitive pressures by the manufacturing industry by utilizing the increased productivity and improved quality this technology offers. Improvement of productivity, quality, profitability and, indeed, survival are the major motivating factors in the implementation of automation and robotics technology in the manufacturing sector. Robots are used extensively in the automotive industry, primarily for welding, painting and material handling applications. The electronics, aerospace, metalworking and consumer goods industries are also major potential robot users. The common uses of robots in industries mostly include the four Ps - Picking, Placing, Packaging and Painting - apart from other industrial routines like assembly and welding. As is the case with industrial tools and machineries, a properly designed robot (for the appropriate task) has almost unlimited endurance with the added benefit of precisions unmatched by human workers. With robot technology as a key element, integrated factory automation systems touch on nearly all types of manufacturing. The productivity and competitiveness in these industries will depend in large part on flexible automation through robotics

  3. Mechanical Property Analysis in the Retracted Pin-Tool (RPT) Region of Friction Stir Welded (FSW) Aluminum Lithium 2195

    Science.gov (United States)

    Ding, R. Jeffrey; Oelgoetz, Peter A.

    1999-01-01

    The "Auto-Adjustable Pin Tool for Friction Stir Welding", was developed at The Marshall Space Flight Center to address process deficiencies unique to the FSW process. The auto-adjustable pin tool, also called the retractable pin-tool (R.PT) automatically withdraws the welding probe of the pin-tool into the pin-tool's shoulder. The primary function of the auto-adjustable pin-tool is to allow for keyhole closeout, necessary for circumferential welding and localized weld repair, and, automated pin-length adjustment for the welding of tapered material thickness. An overview of the RPT hardware is presented. The paper follows with studies conducted using the RPT. The RPT was used to simulate two capabilities; welding tapered material thickness and closing out the keyhole in a circumferential weld. The retracted pin-tool regions in aluminum- lithium 2195 friction stir weldments were studied through mechanical property testing and metallurgical sectioning. Correlation's can be =de between retractable pin-tool programmed parameters, process parameters, microstructure, and resulting weld quality.

  4. Investigations in thermal fields and stress fields induced by electron beam welding

    International Nuclear Information System (INIS)

    Basile, G.

    1979-12-01

    This document presents the thermal study of electron beam welding and identifies stresses and strains from welding: description of the operating principles of the electron gun and characterization of various welding parameters, examination of the temperature fields during electron beam welding development of various mathematic models and comparison with experimental results, measurement and calculation of stresses and strains in the medium plane of the welding assembly, residual stresses analysis [fr

  5. Microcontroller based automation system for end plug welding of test fuel pins in solgel facility

    International Nuclear Information System (INIS)

    Prabhakar Rao, J.; Srinivas, K.C.; Prabhu, T.V.; Ravi, N.

    2010-01-01

    A microcontroller based stepper motor control and driver Unit for 'XY' positioning system is designed and developed to perform the 'pick-place' of fuel tube to pre-determined coordinates. This Unit provides a fine movement of the fuel tube to get perfect position for welding. The Graphical User Interface software running on PC displays the absolute position of the XY system and provides all the required control buttons to achieve the accurate positioning. The welding of clad tube with end plug is carried out in a high precision welding fixture by operating it remotely. This paper discusses about the Hardware and Software features and implementation of the instrumentation. (author)

  6. Constitutive model of friction stir weld with consideration of its inhomogeneous mechanical properties

    Science.gov (United States)

    Zhang, Ling; Min, Junying; Wang, Bin; Lin, Jianping; Li, Fangfang; Liu, Jing

    2016-03-01

    In practical engineering, finite element(FE) modeling for weld seam is commonly simplified by neglecting its inhomogeneous mechanical properties. This will cause a significant loss in accuracy of FE forming analysis, in particular, for friction stir welded(FSW) blanks due to the large width and good formability of its weld seam. The inhomogeneous mechanical properties across weld seam need to be well characterized for an accurate FE analysis. Based on a similar AA5182 FSW blank, the metallographic observation and micro-Vickers hardness analysis upon the weld cross-section are performed to identify the interfaces of different sub-zones, i.e., heat affected zone(HAZ), thermal-mechanically affected zone(TMAZ) and weld nugget(WN). Based on the rule of mixture and hardness distribution, a constitutive model is established for each sub-zone to characterize the inhomogeneous mechanical properties across the weld seam. Uniaxial tensile tests of the AA5182 FSW blank are performed with the aid of digital image correlation(DIC) techniques. Experimental local stress-strain curves are obtained for different weld sub-zones. The experimental results show good agreement with those derived from the constitutive models, which demonstrates the feasibility and accuracy of these models. The proposed research gives an accurate characterization of inhomogeneous mechanical properties across the weld seam produced by FSW, which provides solutions for improving the FE simulation accuracy of FSW sheet forming.

  7. Initial Development in Joining of ODS Alloys Using Friction Stir Welding

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [ORNL; Feng, Zhili [ORNL

    2007-08-01

    Solid-state welding of oxide-dispersion-strengthened (ODS) alloy MA956 sheets using friction stir welding (FSW) was investigated. Butt weld was successfully produced. The weld and base metals were characterized using optical microscopy, scanning electronic microscopy, transmission electronic microscopy, and energy dispersion x-ray spectrum. Microhardness mapping was also conducted over the weld region. Analyses indicate that the distribution of the strengthening oxides was preserved in the weld. Decrease in microhardness of the weld was observed but was insignificant. The preliminary results seem to confirm the envisioned feasibility of FSW application to ODS alloy joining. For application to Gen IV nuclear reactor heat exchanger, further investigation is suggested.

  8. Susceptibility testing for welding of AlMg alloys intended for extrusion

    Directory of Open Access Journals (Sweden)

    J. Borowski

    2016-07-01

    Full Text Available The objective of research was to determine the weldability, using Tungsten Inert Gas (TIG of extruded sections made of hard-deformable 5xxx series aluminum alloys with differing magnesium content, i.e. AlMg3, AlMg4,5, AlMg5, AlMg7. Welded joints were obtained as a result of a welding process consisting of several steps. Only welds characterized by very good appearance and quality were selected for tests. As a result of conducted research, TIG welding parameters were determined for sections with a thickness of 8 mm. It was observed that alloys of differing Mg content are characterized by high weldability and do not exhibit a significant reduction of the yield point. Moreover, joints exhibit uniform hardness distribution in the welded joint and heat-affected zone. Tensile strength is reduced.

  9. Comparative evaluation of cyclic strength of welded joints of titanium alloys

    International Nuclear Information System (INIS)

    Grigor'yants, A.G.; Florinskij, Yu.B.; Moryakov, V.F.; Kvasha, Yu.N.

    1983-01-01

    Results of comparative study of cyclic strength of titanium alloy PT-3V, fused by three ways of welding, are presented. It is established that the use of laser welding promotes the formation of favourable structure of weld metal and HAZ (heat affected zone), characterized by the formation of dislocation barriers. The results obtained permit to recommend laser technique instead of traditional ways of welding during product manufacturing of titanium allo

  10. Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding; Inhibicion de la formacion de compuestos intermetalicos en juntas aluminio-acero soldadas por friccion-agitacion

    Energy Technology Data Exchange (ETDEWEB)

    Torres Lopez, E. A.; Ramirez, A. J.

    2015-07-01

    Formation of deleterious phases during welding of aluminum and steel is a challenge of the welding processes, for decades. Friction Stir Welding (FSW) has been used in an attempt to reduce formation of intermetallic compounds trough reducing the heat input. In this research, dissimilar joint of 6063-T5 aluminum alloy and AISI-SAE 1020 steel were welded using this technique. The temperature of welded joints was measured during the process. The interface of the welded joints was characterized using optical microscopy, scanning and transmission electron microscopy. Additionally, composition measurements were carried out by X-EDS and DRX. The experimental results revealed that the maximum temperature on the joint studied is less than 360 degree centigrade. The microstructural characterization in the aluminum-steel interface showed the absence of intermetallic compounds, which is a condition attributed to the use of welding with low thermal input parameters. (Author)

  11. Improving Stiffness-to-weight Ratio of Spot-welded Structures based upon Nonlinear Finite Element Modelling

    Science.gov (United States)

    Zhang, Shengyong

    2017-07-01

    Spot welding has been widely used for vehicle body construction due to its advantages of high speed and adaptability for automation. An effort to increase the stiffness-to-weight ratio of spot-welded structures is investigated based upon nonlinear finite element analysis. Topology optimization is conducted for reducing weight in the overlapping regions by choosing an appropriate topology. Three spot-welded models (lap, doubt-hat and T-shape) that approximate “typical” vehicle body components are studied for validating and illustrating the proposed method. It is concluded that removing underutilized material from overlapping regions can result in a significant increase in structural stiffness-to-weight ratio.

  12. Characterization of laser welds in Al-10 wt.%Si coated ferritic stainless steel

    International Nuclear Information System (INIS)

    Kong, Jong Pan; Park, Tae Jun; Kim, Jeong Kil; Uhm, Sang Ho; Woo, In Su; Lee, Jong Sub; Park, Bong Gyu; Kang, Chung Yun

    2011-01-01

    409L stainless steel hot-dipped with Al-10 wt.%Si was welded using CO 2 laser and the microstructure and hardness of the weld were investigated. When the specimen was welded with laser power of 5 kW and welding speed of 5 m/min, full-penetrated sound weld was obtained. With that specimen, the relationship between the microstructure and hardness of the weld was examined. The hardness of the weld was the highest in the fusion zone (FZ) and decreased to the base metal (BM) via heat affected zone (HAZ). The hardness of the HAZ near bond line was also higher than that near the base metal. The maximum hardness in the fusion zone could be explained by the existence of the precipitates, that is, TiN, Ti(C,N), Al 2 O 3 and Al 2 O 3 + TiN mixed compounds with the size of 500 nm, and solution strengthening due to the elements Al and Si dissolved from the coating layer to the fusion zone. There were subgrains within the HAZ and more in the area near the bond line. In addition, fine TiC particles with the size under 50 nm was precipitated in the sub-grain boundaries. The formation of sub-grain boundaries and the particles precipitated in the boundaries might contributed to the high hardness in the HAZ.

  13. Inhibition of the formation of intermetallic compounds in aluminum-steel welded joints by friction stir welding

    Directory of Open Access Journals (Sweden)

    Torres López, Edwar A.

    2015-12-01

    Full Text Available Formation of deleterious phases during welding of aluminum and steel is a challenge of the welding processes, for decades. Friction Stir Welding (FSW has been used in an attempt to reduce formation of intermetallic compounds trough reducing the heat input. In this research, dissimilar joint of 6063-T5 aluminum alloy and AISI-SAE 1020 steel were welded using this technique. The temperature of welded joints was measured during the process. The interface of the welded joints was characterized using optical microscopy, scanning and transmission electron microscopy. Additionally, composition measurements were carried out by X-EDS and DRX. The experimental results revealed that the maximum temperature on the joint studied is less than 360 °C. The microstructural characterization in the aluminum-steel interface showed the absence of intermetallic compounds, which is a condition attributed to the use of welding with low thermal input parameters.La unión de juntas aluminio-acero, sin la formación de fases deletéreas del tipo FexAly, ha sido, por décadas, un desafío para los procesos de soldadura. La soldadura por fricción-agitación ha sido empleada para intentar reducir el aporte térmico y evitar la formación de compuestos intermetálicos. Usando esta técnica fueron soldadas juntas disimilares de aluminio 6063-T5 y acero AISI-SAE 1020. La soldadura fue acompañada de medidas de temperatura durante su ejecución. La interfase de las juntas soldadas fue caracterizada utilizando microscopía óptica, electrónica de barrido y electrónica de transmisión. Adicionalmente fueron realizadas medidas puntuales X-EDS y DRX. Los resultados experimentales revelan que la temperatura máxima en la junta es inferior a 360 °C. La caracterización microestructural en la interfase aluminio-acero demostró la ausencia de compuestos intermetálicos, condición atribuida al uso de parámetros de soldadura con bajo aporte térmico.

  14. A Mobile Automated Characterization System (MACS) for indoor floor characterization

    International Nuclear Information System (INIS)

    Richardson, B.S.; Haley, D.C.; Dudar, A.M.; Ward, C.R.

    1995-01-01

    The Savannah River Technology Center (SRTC) and Oak Ridge National Laboratory are developing an advanced Mobile Automated Characterization System (MACS) to characterize indoor contaminated floors. MACS is based upon Semi-Intelligent Mobile Observing Navigator (SIMON), an earlier floor characterization system developed at SRTC. MACS will feature enhanced navigation systems, operator interface, and an interface to simplify integration of additional sensors. The enhanced navigation system will provide the capability to survey large open areas much more accurately than is now possible with SIMON, which is better suited for hallways and corridors that provide the means for recalibrating position and heading. MACS operator interface is designed to facilitate MACS's use as a tool for health physicists, thus eliminating the need for additional training in the robot's control language. Initial implementation of MACS will use radiation detectors. Additional sensors, such as PCB sensors currently being developed, will be integrated on MACS in the future. Initial use of MACS will be focused toward obtaining comparative results with manual methods. Surveys will be conducted both manually and with MACS to compare relative costs and data quality. While clear cost benefits anticipated, data quality benefits should be even more significant

  15. Physicochemical and toxicological characteristics of welding fume derived particles generated from real time welding processes.

    Science.gov (United States)

    Chang, Cali; Demokritou, Philip; Shafer, Martin; Christiani, David

    2013-01-01

    Welding fume particles have been well studied in the past; however, most studies have examined welding fumes generated from machine models rather than actual exposures. Furthermore, the link between physicochemical and toxicological properties of welding fume particles has not been well understood. This study aims to investigate the physicochemical properties of particles derived during real time welding processes generated during actual welding processes and to assess the particle size specific toxicological properties. A compact cascade impactor (Harvard CCI) was stationed within the welding booth to sample particles by size. Size fractionated particles were extracted and used for both off-line physicochemical analysis and in vitro cellular toxicological characterization. Each size fraction was analyzed for ions, elemental compositions, and mass concentration. Furthermore, real time optical particle monitors (DustTrak™, TSI Inc., Shoreview, Minn.) were used in the same welding booth to collect real time PM2.5 particle number concentration data. The sampled particles were extracted from the polyurethane foam (PUF) impaction substrates using a previously developed and validated protocol, and used in a cellular assay to assess oxidative stress. By mass, welding aerosols were found to be in coarse (PM 2.5–10), and fine (PM 0.1–2.5) size ranges. Most of the water soluble (WS) metals presented higher concentrations in the coarse size range with some exceptions such as sodium, which presented elevated concentration in the PM 0.1 size range. In vitro data showed size specific dependency, with the fine and ultrafine size ranges having the highest reactive oxygen species (ROS) activity. Additionally, this study suggests a possible correlation between welders' experience, the welding procedure and equipment used and particles generated from welding fumes. Mass concentrations and total metal and water soluble metal concentrations of welding fume particles may be

  16. Prediction of Weld Residual Stress of Narrow Gap Welds

    International Nuclear Information System (INIS)

    Yang, Jun Seog; Huh, Nam Su

    2010-01-01

    The conventional welding technique such as shield metal arc welding has been mostly applied to the piping system of the nuclear power plants. It is well known that this welding technique causes the overheating and welding defects due to the large groove angle of weld. On the other hand, the narrow gap welding(NGW) technique has many merits, for instance, the reduction of welding time, the shrinkage of weld and the small deformation of the weld due to the small groove angle and welding bead width comparing with the conventional welds. These characteristics of NGW affect the deformation behavior and the distribution of welding residual stress of NGW, thus it is believed that the residual stress results obtained from conventional welding procedure may not be applied to structural integrity evaluation of NGW. In this paper, the welding residual stress of NGW was predicted using the nonlinear finite element analysis to simulate the thermal and mechanical effects of the NGW. The present results can be used as the important information to perform the flaw evaluation and to improve the weld procedure of NGW

  17. Development of automatic reactor vessel inspection systems: development of data acquisition and analysis system for the nuclear vessel weld

    Energy Technology Data Exchange (ETDEWEB)

    Park, C. H.; Lim, H. T.; Um, B. G. [Korea Advanced Institute of Science and Technology, Taejeon (Korea)

    2001-03-01

    The objective of this project is to develop an automated ultrasonic data acquisition and data analysis system to examine the reactor vessel weldsIn order to examine nuclear vessel welds including reactor pressure vessel(RPV), huge amount of ultrasonic data from 6 channels should be able to be on-line processed. In addition, ultrasonic transducer scanning device should be remotely controlled, because working place is high radiation area. This kind of an automated ultrasonic testing equipment has not been developed domestically yet In order to develop an automated ultrasonic testing system, RPV ultrasonic testing equipments developed in foreign countries were investigated and the capability of high speed ultrasonic signal processing hardwares was analyzed in this study, ultrasonic signal processing system was designed. And also, ultrasonic data acquisition and analysis software was developed. 11 refs., 6 figs., 9 tabs. (Author)

  18. Friction Pull Plug Welding in Aluminum Alloys

    Science.gov (United States)

    Brooke, Shane A.; Bradford, Vann

    2012-01-01

    NASA's Marshall Space Flight Center (MSFC) has recently invested much time and effort into the process development of Friction Pull Plug Welding (FPPW). FPPW, is a welding process similar to Friction Push Plug Welding in that, there is a small rotating part (plug) being spun and simultaneously pulled (forged) into a larger part. These two processes differ, in that push plug welding requires an internal reaction support, while pull plug welding reacts to the load externally. FPPW was originally conceived as a post proof repair technique for the Space Shuttle fs External Tank. FPPW was easily selected as the primary weld process used to close out the termination hole on the Constellation Program's ARES I Upper Stage circumferential Self-Reacting Friction Stir Welds (SR-FSW). The versatility of FPPW allows it to also be used as a repair technique for both SR-FSW and Conventional Friction Stir Welds. To date, all MSFC led development has been concentrated on aluminum alloys (2195, 2219, and 2014). Much work has been done to fully understand and characterize the process's limitations. A heavy emphasis has been spent on plug design, to match the various weldland thicknesses and alloy combinations. This presentation will summarize these development efforts including weld parameter development, process control, parameter sensitivity studies, plug repair techniques, material properties including tensile, fracture and failure analysis.

  19. High Temperature Fatigue Crack Growth Rate Studies in Stainless Steel 316L(N Welds Processed by A-TIG and MP-TIG Welding.

    Directory of Open Access Journals (Sweden)

    Thomas Manuel

    2018-01-01

    Full Text Available Welded stainless steel components used in power plants and chemical industries are subjected to mechanical load cycles at elevated temperatures which result in early fatigue failures. The presence of weld makes the component to be liable to failure in view of residual stresses at the weld region or in the neighboring heat affected zone apart from weld defects. Austenitic stainless steels are often welded using Tungsten Inert Gas (TIG process. In case of single pass welding, there is a reduced weld penetration which results in a low depth-to-width ratio of weld bead. If the number of passes is increased (Multi-Pass TIG welding, it results in weld distortion and subsequent residual stress generation. The activated flux TIG welding, a variant of TIG welding developed by E.O. Paton Institute, is found to reduce the limitation of conventional TIG welding, resulting in a higher depth of penetration using a single pass, reduced weld distortion and higher welding speeds. This paper presents the fatigue crack growth rate characteristics at 823 K temperature in type 316LN stainless steel plates joined by conventional multi-pass TIG (MP-TIG and Activated TIG (A-TIG welding process. Fatigue tests were conducted to characterize the crack growth rates of base metal, HAZ and Weld Metal for A-TIG and MP-TIG configurations. Micro structural evaluation of 316LN base metal suggests a primary austenite phase, whereas, A-TIG weld joints show an equiaxed grain distribution along the weld center and complete penetration during welding (Fig. 1. MP-TIG microstructure shows a highly inhomogeneous microstructure, with grain orientation changing along the interface of each pass. This results in tortuous crack growth in case of MP-TIG welded specimens. Scanning electron microscopy studies have helped to better understand the fatigue crack propagation modes during high temperature testing.

  20. Tensile behavior of dissimilar friction stir welded joints of aluminium alloys

    International Nuclear Information System (INIS)

    Shanmuga Sundaram, N.; Murugan, N.

    2010-01-01

    The heat treatable aluminium alloy AA2024 is used extensively in the aircraft industry because of its high strength to weight ratio and good ductility. The non-heat treatable aluminium alloy AA5083 possesses medium strength and high ductility and used typically in structural applications, marine, and automotive industries. When compared to fusion welding processes, friction stir welding (FSW) process is an emerging solid state joining process which is best suitable for joining these alloys. The friction stir welding parameters such as tool pin profile, tool rotational speed, welding speed, and tool axial force influence the mechanical properties of the FS welded joints significantly. Dissimilar FS welded joints are fabricated using five different tool pin profiles. Central composite design with four parameters, five levels, and 31 runs is used to conduct the experiments and response surface method (RSM) is employed to develop the model. Mathematical regression models are developed to predict the ultimate tensile strength (UTS) and tensile elongation (TE) of the dissimilar friction stir welded joints of aluminium alloys 2024-T6 and 5083-H321, and they are validated. The effects of the above process parameters and tool pin profile on tensile strength and tensile elongation of dissimilar friction stir welded joints are analysed in detail. Joints fabricated using Tapered Hexagon tool pin profile have the highest tensile strength and tensile elongation, whereas the Straight Cylinder tool pin profile have the lowest tensile strength and tensile elongation. The results are useful to have a better understanding of the effects of process parameters, to fabricate the joints with desired tensile properties, and to automate the FS welding process.

  1. Microstructure and mechanical properties of friction stir welded and laser welded high entropy alloy CrMnFeCoNi

    Science.gov (United States)

    Jo, Min-Gu; Kim, Han-Jin; Kang, Minjung; Madakashira, Phaniraj P.; Park, Eun Soo; Suh, Jin-Yoo; Kim, Dong-Ik; Hong, Sung-Tae; Han, Heung Nam

    2018-01-01

    The high entropy alloy CrMnFeCoNi has been shown to have promising structural properties. For a new alloy to be used in a structural application it should be weldable. In the present study, friction stir welding (FSW) and laser welding (LW) techniques were used to butt weld thin plates of CrMnFeCoNi. The microstructure, chemical homogeneity and mechanical behavior of the welds were characterized and compared with the base metal. The tensile stress-strain behavior of the welded specimens were reasonable when compared with that of the base metal. FSW refined the grain size in the weld region by a factor of ˜14 when compared with the base metal. High-angle annular dark field transmission electron microscopy in combination with energy dispersive X-ray spectroscopy showed chemical inhomogeneity between dendritic and interdendritic regions in the fusion zone of LW. Large fluctuations in composition (up to 15 at%) did not change the crystal structure in the fusion zone. Hardness measurements were carried out in the weld cross section and discussed in view of the grain size, low angle grain boundaries and twin boundaries in FSW specimens and the dendritic microstructure in LW specimens.

  2. Mechanical strength of welding zones produced by material extrusion additive manufacturing.

    Science.gov (United States)

    Davis, Chelsea S; Hillgartner, Kaitlyn E; Han, Seung Hoon; Seppala, Jonathan E

    2017-08-01

    As more manufacturing processes and research institutions adopt customized manufacturing as a key element in their design strategies and finished products, the resulting mechanical properties of parts produced through additive manufacturing (AM) must be characterized and understood. In material extrusion (MatEx), the most recently extruded polymer filament must bond to the previously extruded filament via polymer diffusion to form a "weld". The strength of the weld limits the performance of the manufactured part and is controlled through processing conditions. Under-standing the role of processing conditions, specifically extruder velocity and extruder temperature, on the overall strength of the weld will allow optimization of MatEx-AM parts. Here, the fracture toughness of a single weld is determined through a facile "trouser tear" Mode III fracture experiment. The actual weld thickness is observed directly by optical microscopy characterization of cross sections of MatEx-AM samples. Representative data of weld strength as a function of printing parameters on a commercial 3D printer demonstrates the robustness of the method.

  3. Influence of process parameters on the weld lines of a micro injection molded component

    DEFF Research Database (Denmark)

    Tosello, Guido; Gava, Alberto; Hansen, Hans Nørgaard

    2007-01-01

    The insufficient entanglement of the molecular chains and the stress amplification at the v-notch of a weld line compromise the mechanical strength of a plastic product, also in the micro scale. To investigate the influence of process parameters on the weld lines formation, a special micro cavity...... was designed and manufactured by µEDM (Electro Discharge Machining). Weld lines were quantitatively characterized both in the two-dimensional (direction and position) and three-dimensional range (surface topography characterization). Results showed that shape and position of weld lines are mainly influenced...

  4. CO2 and diode laser welding of AZ31 magnesium alloy

    International Nuclear Information System (INIS)

    Zhu Jinhong; Li Lin; Liu Zhu

    2005-01-01

    Magnesium alloys are being increasingly used in automotive and aerospace structures. Laser welding is an important joining method in such applications. There are several kinds of industrial lasers available at present, including the conventional CO 2 and Nd:YAG lasers as well as recently available high power diode lasers. A 1.5 kW diode laser and a 2 kW CO 2 laser are used in the present study for the welding of AZ31 alloys. It is found that different welding modes exist, i.e., keyhole welding with the CO 2 laser and conduction welding with both the CO 2 and the diode lasers. This paper characterizes welds in both welding modes. The effect of beam spot size on the weld quality is analyzed. The laser processing parameters are optimized to obtain welds with minimum defects

  5. Thermal and molecular investigation of laser tissue welding

    Energy Technology Data Exchange (ETDEWEB)

    Small, W., IV

    1998-06-01

    Despite the growing number of successful animal and human trials, the exact mechanisms of laser tissue welding remain unknown. Furthermore, the effects of laser heating on tissue on the molecular scale are not fully understood. To address these issues, a multi-front attack oil both extrinsic (solder/patch mediated) and intrinsic (laser only) tissue welding was launched using two-color infrared thermometry, computer modeling, weld strength assessment, biochemical assays, and vibrational spectroscopy. The coupling of experimentally measured surface temperatures with the predictive numerical simulations provided insight into the sub-surface dynamics of the laser tissue welding process. Quantification of the acute strength of the welds following the welding procedure enabled comparison among trials during an experiment, with previous experiments, and with other studies in the literature. The acute weld integrity also provided an indication of tile probability of long-term success. Molecular effects induced In the tissue by laser irradiation were investigated by measuring tile concentrations of specific collagen covalent crosslinks and characterizing the Fourier-Transform infrared (FTIR) spectra before and after the laser exposure.

  6. Investigation on mechanical properties of welded material under different types of welding filler (shielded metal arc welding)

    Science.gov (United States)

    Tahir, Abdullah Mohd; Lair, Noor Ajian Mohd; Wei, Foo Jun

    2018-05-01

    The Shielded Metal Arc Welding (SMAW) is (or the Stick welding) defined as a welding process, which melts and joins metals with an arc between a welding filler (electrode rod) and the workpieces. The main objective was to study the mechanical properties of welded metal under different types of welding fillers and current for SMAW. This project utilized the Design of Experiment (DOE) by adopting the Full Factorial Design. The independent variables were the types of welding filler and welding current, whereas the other welding parameters were fixed at the optimum value. The levels for types of welding filler were by the models of welding filler (E6013, E7016 and E7018) used and the levels for welding current were 80A and 90A. The responses were the mechanical properties of welded material, which include tensile strength and hardness. The experiment was analyzed using the two way ANOVA. The results prove that there are significant effects of welding filler types and current levels on the tensile strength and hardness of the welded metal. At the same time, the ANOVA results and interaction plot indicate that there are significant interactions between the welding filler types and the welding current on both the hardness and tensile strength of the welded metals, which has never been reported before. This project found that when the amount of heat input with increase, the mechanical properties such as tensile strength and hardness decrease. The optimum tensile strength for welded metal is produced by the welding filler E7016 and the optimum of hardness of welded metal is produced by the welding filler E7018 at welding current of 80A.

  7. Procedure Development and Qualification of the Phased Array Ultrasonic Testing for the Nuclear Power Plant Piping Weld

    International Nuclear Information System (INIS)

    Yoon, Byung Sik; Yang, Seung Han; Kim, Yong Sik; Lee, Hee Jong

    2010-01-01

    The manual ultrasonic examination for the nuclear power plant piping welds has been demonstrated by using KPD(Korean Performance Demonstration) generic procedure. For automated ultrasonic examination, there is no generic procedure and it should be qualified by using applicable automated equipment. Until now, most of qualified procedures used pulse-echo technique and there is no qualified procedure using phased array technique. In this study, data acquisition and analysis software were developed and phased-array transducer and wedge were designed to implement phased array technique for nuclear power plant in-service inspection. The developed procedure are qualified for performance demonstration for the flaw detection, length sizing and depth sizing. The qualified procedure will be applied for the field examination in the nuclear power plant piping weld inspection

  8. Fusion welding studies using laser on Ti-SS dissimilar combination

    Science.gov (United States)

    Shanmugarajan, B.; Padmanabham, G.

    2012-11-01

    Laser welding investigations were carried out on dissimilar Ti-SS combination. The study is aimed to improve the weld strength and ductility by minimizing harmful intermetallics and taking advantage of high cooling rates in laser welding. Results of continuous wave 3.5 kW CO2 laser welding of totally dissimilar combination of Titanium and stainless steel (304) have been discussed. Bead on plate welding experiments were conducted to identify the laser welding parameters using depth of penetration as criteria. The welding of dissimilar combination has been attempted both autogenously and with interlayers such as Vanadium (V) and Tantalum (Ta) in the form of laser cladding as well as strip. Autogenous welds were carried out by varying the laser power, welding speed and position of the laser beam with respect to the joint centre. The resultant welds are characterized by macrostructure analysis, SEM/EDAX and XRD and as welded tensile test in UTM. The autogenous welds have exhibited extensive cracking even when welded at high speeds or by manipulating the beam position with respect to the joint. Similarly Vandaium as interlayer could not achieve crack free joint. A joint with 40 MPa strength could be made with Ta as interlayer. Results and analysis of these variants of laser welded joints are reported and discussed.

  9. PDC IC WELD FAILURE EVALUATION AND RESOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P.; Howard, S.; Maxwell, D.; Fiscus, J.

    2012-04-16

    During final preparations for start of the PDCF Inner Can (IC) qualification effort, welding was performed on an automated weld system known as the PICN. During the initial weld, using a pedigree canister and plug, a weld defect was observed. The defect resulted in a hole in the sidewall of the canister, and it was observed that the plug sidewall had not been consumed. This was a new type of failure not seen during development and production of legacy Bagless Transfer Cans (FB-Line/Hanford). Therefore, a team was assembled to determine the root cause and to determine if the process could be improved. After several brain storming sessions (MS and T, R and D Engineering, PDC Project), an evaluation matrix was established to direct this effort. The matrix identified numerous activities that could be taken and then prioritized those activities. This effort was limited by both time and resources (the number of canisters and plugs available for testing was limited). A discovery process was initiated to evaluate the Vendor's IC fabrication process relative to legacy processes. There were no significant findings, however, some information regarding forging/anneal processes could not be obtained. Evaluations were conducted to compare mechanical properties of the PDC canisters relative to the legacy canisters. Some differences were identified, but mechanical properties were determined to be consistent with legacy materials. A number of process changes were also evaluated. A heat treatment procedure was established that could reduce the magnetic characteristics to levels similar to the legacy materials. An in-situ arc annealing process was developed that resulted in improved weld characteristics for test articles. Also several tack welds configurations were addressed, it was found that increasing the number of tack welds (and changing the sequence) resulted in decreased can to plug gaps and a more stable weld for test articles. Incorporating all of the process

  10. Laser welding by dental Nd:YAG device

    Science.gov (United States)

    Fornaini, Carlo; Bertrand, Caroline; Merigo, Elisabetta; Bonanini, Mauro; Rocca, Jean-Paul; Nammour, Samir

    2009-06-01

    Welding laser was introduced in jewellery during years 70 and, just after, was successfully used also by dental technicians. Welding laser gives a great number of advantages, versus traditional welding and, for this reason, this procedure had a great diffusion in the technician laboratories and stimulated the companies to put in the market more and more evolutes appliances. Some aspects, such great dimensions, high costs and delivery system today still characterize these machines by fixed lenses, which have strictly limited its use only to technician laboratories. The aim of this study is to demonstrate the possibility, by using a fibber-delivered laser normally utilized in the dental office, to make, by dentist himself in his office, welding on different metals and to evaluate advantages and possibilities of this new technique.

  11. Microstructure Evolution during Friction Stir Spot Welding of TRIP steel

    DEFF Research Database (Denmark)

    Lomholt, Trine Colding

    , scanning electron microscopy and electron backscatter diffraction. Microhardness measurements and lab-shear tests completed the investigations of the welded samples and allow evaluation of the quality of the welds as seen from a practical point of view. Selected samples were also investigated by X...... Welding (FSSW) is investigated. The aim of the study is to assess whether high quality welds can be produced and, in particular, to obtain an understanding of the microstructural changes during welding. The microstructure of the welded samples was investigated by means of reflected light microscopy......-ray diffraction. The complementary use of the various characterization techniques allowed subdivision of the microstructure in the weld in different zones: two thermo-mechanically affected zones (TMAZs), and two heat-affected zones (HAZs). The dual behavior of the microstructure in the zones is related to the two...

  12. Pin Tool Geometry Effects in Friction Stir Welding

    Science.gov (United States)

    Querin, J. A.; Rubisoff, H. A.; Schneider, J. A.

    2009-01-01

    In friction stir welding (FSW) there is significant evidence that material can take one of two different flow paths when being displaced from its original position in front of the pin tool to its final position in the wake of the weld. The geometry of the pin tool, along with the process parameters, plays an important role in dictating the path that the material takes. Each flow path will impart a different thermomechanical history on the material, consequently altering the material microstructure and subsequent weld properties. The intention of this research is to isolate the effect that different pin tool attributes have on the flow paths imparted on the FSWed material. Based on published weld tool geometries, a variety of weld tools were fabricated and used to join AA2219. Results from the tensile properties and microstructural characterization will be presented.

  13. Evaluation of the AISI 904L Alloy Weld Overlays Obtained by GMAW and Electro-Slag Welding Processes

    Science.gov (United States)

    Jorge, Jorge C. F.; Meira, O. G.; Madalena, F. C. A.; de Souza, L. F. G.; Araujo, L. S.; Mendes, M. C.

    2017-05-01

    The use of superaustenitic stainless steels (SASS) as an overlay replacement for nickel-based alloys can be an interesting alternative for the oil and gas industries, due to its lower cost, when compared to superalloys. Usually, the deposition is made with several welding passes by using conventional arc welding processes, such as gas tungsten arc welding (GTAW) or gas metal arc welding (GMAW) processes. In this respect, electro-slag welding (ESW), which promotes high heat inputs and low dilution of the welds, can also be attractive for this application, as it provides a higher productivity, once only one layer is needed for the deposition of the minimum thickness required. The present work evaluates the behavior of an AISI 904L SASS weld overlay deposited on a carbon steel ASTM A516 Grade 70 by ESW and GMAW processes. Both as-welded and heat-treated conditions were evaluated and compared. A multipass welding by GMAW process with three layers and 48 passes was performed on 12.5 × 200 × 250 mm steel plates with average welding energy of 1.0 kJ/mm. For ESW process, only one layer was deposited on 50 × 400 × 400 mm steel plates with average welding energy of 11.7 kJ/mm. After welding, a post-weld heat treatment (PWHT) at 620 °C for 10 h was performed in half of the steel plate, in order to allow the comparison between this condition and the as-welded one. For both processes, the austenitic microstructure of the weld deposits was characterized by optical microscopy and scanning electron microscopy with electron backscatter diffraction. A low proportion of secondary phases were observed in all conditions, and the PWHT did not promote significant changes on the hardness profile. Martensite for GMAW process and bainite for ESW process were the microstructural constituents observed at the coarse grain heat-affected zone, due to the different cooling rates. For ESW process, no evidences of partially diluted zones were found. As a consequence of the microstructural

  14. Assessment of the Biological Effects of Welding Fumes Emitted From Metal Active Gas and Manual Metal Arc Welding in Humans.

    Science.gov (United States)

    Dewald, Eva; Gube, Monika; Baumann, Ralf; Bertram, Jens; Kossack, Veronika; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas; Brand, Peter

    2015-08-01

    Emissions from a particular welding process, metal inert gas brazing of zinc-coated steel, induce an increase in C-reactive protein. In this study, it was investigated whether inflammatory effects could also be observed for other welding procedures. Twelve male subjects were separately exposed to (1) manual metal arc welding fumes, (2) filtered air, and (3) metal active gas welding fumes for 6 hours. Inflammatory markers were measured in serum before, and directly, 1 and 7 days after exposure. Although C-reactive protein concentrations remained unchanged, neutrophil concentrations increased directly after exposure to manual metal arc welding fumes, and endothelin-1 concentrations increased directly and 24 hours after exposure. After exposure to metal active gas and filtered air, endothelin-1 concentrations decreased. The increase in the concentrations of neutrophils and endothelin-1 may characterize a subclinical inflammatory reaction, whereas the decrease of endothelin-1 may indicate stress reduction.

  15. Welding of the lid and the bottom of the disposal canister

    International Nuclear Information System (INIS)

    Meuronen, I.; Salonen, T.

    2010-10-01

    validation of preliminary (pWPS) and ordinary welding procedures. The quality of the welds has, so far, shown to be adequate in spite of the fact that the optimisation of the welding process is still uncompleted. During the reporting of this development work, the statistical data available has not been sufficient to make the capability analysis of the flawlessness of the welds. The FSW method has been considered as an alternative welding method. This method has been selected as the primary sealing method by the Swedish company for spent nuclear fuel management, SKB. In spite of the fact that this method is quite new, the SKB results in using this method have been good and the weld fulfils the long-term safety requirements. The development of the automation of the control system of the FSW method is still unfinished, but it is expected that the development work can be completed in a few years. (orig.)

  16. Evolution of a Benthic Imaging System From a Towed Camera to an Automated Habitat Characterization System

    Science.gov (United States)

    2008-09-01

    automated processing of images for color correction, segmentation of foreground targets from sediment and classification of targets to taxonomic category...element in the development of HabCam as a tool for habitat characterization is the automated processing of images for color correction, segmentation of

  17. Weld Nugget Temperature Control in Thermal Stir Welding

    Science.gov (United States)

    Ding, R. Jeffrey (Inventor)

    2014-01-01

    A control system for a thermal stir welding system is provided. The control system includes a sensor and a controller. The sensor is coupled to the welding system's containment plate assembly and generates signals indicative of temperature of a region adjacent and parallel to the welding system's stir rod. The controller is coupled to the sensor and generates at least one control signal using the sensor signals indicative of temperature. The controller is also coupled to the welding system such that at least one of rotational speed of the stir rod, heat supplied by the welding system's induction heater, and feed speed of the welding system's weld material feeder are controlled based on the control signal(s).

  18. Automated ultrasonic inspection using PULSDAT

    International Nuclear Information System (INIS)

    Naybour, P.J.

    1992-01-01

    PULSDAT (Portable Ultrasonic Data Acquisition Tool) is a system for recording the data from single probe automated ultrasonic inspections. It is one of a range of instruments and software developed by Nuclear Electric to carry out a wide variety of high quality ultrasonic inspections. These vary from simple semi-automated inspections through to multi-probe, highly automated ones. PULSDAT runs under the control of MIPS software, and collects data which is compatible with the GUIDE data display system. PULSDAT is therefore fully compatible with Nuclear Electric's multi-probe inspection systems and utilises all the reliability and quality assurance of the software. It is a rugged, portable system that can be used in areas of difficult access. The paper discusses the benefits of automated inspection and gives an outline of the main features of PULSDAT. Since April 1990 PULSDAT has been used in several applications within Nuclear Electric and this paper presents two examples: the first is a ferritic set-through nozzle and the second is an austenitic fillet weld. (Author)

  19. Transition welds in welding of two-ply steels

    International Nuclear Information System (INIS)

    Fartushnyj, V.G.; Evsyukov, Yu.G.

    1977-01-01

    Studied were physico-mechanical properties of welds made by various welding wires of chromium-nickel and nickel-chromium steels in submerged arc welding of double-layer steels with main layer of the VSt.3sp. carbon steel. It is shown that service-reliable structures welded of two-layer steels are obtained by providing the content from 11 to 20 % Ni in the automatically welded transition layer

  20. The rating of element closure welds and its influence on fuel reliability

    International Nuclear Information System (INIS)

    Sejnoha, R.; Ceccotti, G.; Magnoli, L.

    1986-10-01

    A high performance standard of CANDU fuel, and similarly of CIRENE fuel is possible only if the frequency of fuel element failures due to incomplete welds is kept very low. Weld rating, i.e. the relative length of sound weld line, is used to characterize the weld completeness. Metallography is used for quantative determination of the weld rating. The nature of the metallographic inspection method, together with the affordable sample size and the very low acceptable weld failure rate, make a statistical approach to the evaluation of the weld ratings necessary. The paper outlines a statistical method of weld rating assessment. The method links the probability of finding discontinuities in metallographic sections, with the distribution of discontinuities in a statistical sample of welds. It presents the results in the form of a weld rating distribution graph. Applications of the method are discussed. Its use is shown for three batches of CIRENE development welds

  1. Butt-welding technology for double walled Polyethylene pipe

    International Nuclear Information System (INIS)

    Lee, Bo-Young; Kim, Jae-Seong; Lee, Sang-Yul; Kim, Yeong K.

    2012-01-01

    Highlights: ► We developed a butt welding apparatus for doubled walled Polyethylene pipe. ► We design the welding process by analyzing thermal behaviors of the material. ► We performed the welding and tested the welded structural performances. ► We also applied the same technology to PVC pipes. ► We verified the butt welding was successful and effective for the pipes with irregular sections. -- Abstract: In this study, mechanical analyses of a butt welding technology for joining Polyethylene pipe are presented. The pipe had unique structure with double wall, and its section topology was not flat. For an effective repair of leakage and replacements of the pipe, the butt welding technology was developed and tested. For the material characterizations, thermodynamic analyses such as thermal gravimetric analysis and differential scanning calorimetry were performed. Based on the test results, the process temperature and time were determined to ensure safe joining of the pipes using a hot plate apparatus. The welding process was carefully monitored by measuring the temperature. Then, the joined pipes were tested by various methods to evaluate the quality. The analyses results showed the detail process mechanism during the joining process, and the test results demonstrated the successful application of the technology to the sewage pipe repairs.

  2. Use of servo controlled weld head for end closure welding

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, S.K.; Setty, D.S.; Rameswara Rao, A.; Hemantha Rao, G.V.S.; Jayaraj, R.N. [Nuclear Fuel Complex, Dept. of Atomic Energy, Hyderabad (India)

    2010-07-01

    In the PHWR fuel fabrication line resistance welding processes are used for joining various zirconium based alloy components to fuel tube of similar material. The quality requirement of these welding processes is very stringent and has to meet all the product requirements. At present these welding processes are being carried out by using standard resistance welding machines. In the resistance welding process in addition to current and time, force is one of the critical and important parameter, which influences the weld quality. At present advanced feed back type fast response medium frequency weld controllers are being used. This has upslope/down slope, constant and repetitive weld pattern selection features makes this critical welding process more reliable. Compared to weld controllers, squeeze force application devices are limited and normally standard high response pneumatic cylinders are used in the welding process. With this type of devices the force is constant during welding process and cannot be varied during welding process as per the material deformation characteristics. Similarly due to non-availability of feed back systems in the squeeze force application systems restricts the accuracy and quality of the welding process. In the present paper the influence of squeeze force pattern on the weld quality using advanced feed back type servo based force control system was studied. Different squeeze forces were used during pre and post weld heat periods along with constant force and compared with the weld quality. (author)

  3. Welding hazards

    International Nuclear Information System (INIS)

    Khan, M.A.

    1992-01-01

    Welding technology is advancing rapidly in the developed countries and has converted into a science. Welding involving the use of electricity include resistance welding. Welding shops are opened in residential area, which was causing safety hazards, particularly the teenagers and children who eagerly see the welding arc with their naked eyes. There are radiation hazards from ultra violet rays which irritate the skin, eye irritation. Welding arc light of such intensity could damage the eyes. (Orig./A.B.)

  4. Thin-sheet zinc-coated and carbon steels laser welding

    Directory of Open Access Journals (Sweden)

    Peças, P.

    1998-04-01

    Full Text Available This paper describes the results of a research on CO2 laser welding of thin-sheet carbon steels (zinccoated and uncoated, at several thicknesses combinations. Laser welding has an high potential to be applied on sub-assemblies welding before forming to the automotive industry-tailored blanks. The welding process is studied through the analysis of parameters optimization, metallurgical quality and induced distortions by the welding process. The clamping system and the gas protection system developed are fully described. These systems allow the minimization of common thin-sheet laser welding defects like misalignement, and zinc-coated laser welding defects like porous and zinc volatilization. The laser welding quality is accessed by DIN 8563 standard, and by tensile, microhardness and corrosion tests.

    Este artigo descreve os resultados da investigação da soldadura laser de CO2 de chapa fina de acó carbono (simples e galvanizado, em diferentes combinações de espessura. A soldadura laser é um processo de elevado potencial no fabrico de tailored-blanks (sub-conjuntos para posterior enformação, constituidos por varias partes de diferentes materiais e espessuras para a indústria automóvel. São analisados os aspectos de optimização paramétrica, de qualidade metalúrgica da junta soldada e das deformações resultantes da soldadura. São descritos os mecanismos desenvolvidos de fixação das chapas e protecção gasosa, por forma a minimizar os defeitos típicos na soldadura laser de chapa fina como o desalinhamento e da soldadura laser de chapa galvanizada como os poros e a volatilização do zinco. Por fim apresentam-se resultados da avaliação da qualidade da soldadura do ponto de vista qualitativo através da norma DIN 8563, e do pontos de vista quantitativo através de ensaios de tracção, dureza e corrosão.

  5. Optimization and studies of the welding processes, automation of the sealing welding system and fracture mechanics in the vessels surveillance in nuclear power plants

    International Nuclear Information System (INIS)

    Gama R, G.

    2011-01-01

    Inside this work the optimization of two welding systems is described, as well as the conclusion of a system for the qualification of containers sealing in the National Institute of Nuclear Research that have application in the surveillance programs of nuclear reactors vessels and the correspondent extension of the operation license. The test tubes Charpy are assay to evaluate the embrittlement grade, when obtaining the increment in the reference temperature and the decrease of the absorbed maximum energy, in the transition curve fragile-ductile of the material. After the test two test tube halves are obtained that should take advantage to follow the surveillance of the vessel and their possible operation extension, this is achieved by means of rebuilding (being obtained of a tested test tube two reconstituted test tubes). The welding system for the rebuilding of test tubes Charpy, was optimized when diminishing the union force at solder, achieving the elimination of the rejection for penetration lack for spill. For this work temperature measurements were carried out at different distances of the welding interface from 1 up to 12 mm, obtaining temperature profiles. With the maximum temperatures were obtained a graph and equation that represents the maximum temperature regarding the distance of the interface, giving as a result practical the elimination of other temperature measurements. The reconstituted test tubes were introduced inside pressurized containers with helium of ultra high purity to 1 pressure atmosphere. This process was carried out in the welding system for containers sealing, where an automatic process was implemented by means of an application developed in the program LabVIEW, reducing operation times and allowing the remote control of the process, the acquisition parameters as well as the generation of welding reports, avoiding with this the human error. (Author)

  6. A study of electron beam welding of Mo based TZM alloy

    International Nuclear Information System (INIS)

    Chakraborty, S.P.; Krishnamurthy, N.

    2013-12-01

    Mo based TZM alloy is one of the most promising refractory alloy having several unique high temperature properties suitable for structural applications in the new generation advanced nuclear reactors. However, this alloy easily picks up interstitial impurities such as N 2 , H 2 and C from air during welding due to its reactive nature. High melting point of TZM alloy also restricts use of conventional welding technique for welding. Hence, Electron beam welding (EBW) technique with its deep penetration power to produce narrow heat affected zones under high vacuum was employed to overcome the above welding constraints by conducting a systematic study using both processes of bead on plate and butt joint configuration. Uniform and defect free weld joints were produced. Weld joints were subjected to optical characterization, chemical homogeneity analysis and microhardness profile study across the width of welds. Improved grain structure with equiaxed grains was obtained in the weld zone as compared to fibrous base structure. Original chemical composition was retained in the weld zone. The detailed results are described in this report. (author)

  7. IR-based spot weld NDT in automotive applications

    Science.gov (United States)

    Chen, Jian; Feng, Zhili

    2015-05-01

    Today's auto industry primarily relies on destructive teardown evaluation to ensure the quality of the resistance spot welds (RSWs) due to their criticality in crash resistance and performance of vehicles. The destructive teardown evaluation is labor intensive and costly. The very nature of the destructive test means only a few selected welds will be sampled for quality. Most of the welds in a car are never checked. There are significant costs and risks associated with reworking and scrapping the defective welded parts made between the teardown tests. IR thermography as a non-destructive testing (NDT) tool has its distinct advantage — its non-intrusive and non-contact nature. This makes the IR based NDT especially attractive for the highly automated assembly lines. IR for weld quality inspection has been explored in the past, mostly limited to the offline post-processing manner in a laboratory environment. No online real-time RSW inspection using IR thermography has been reported. Typically for postprocessing inspection, a short-pulse heating via xenon flash lamp light (in a few milliseconds) is applied to the surface of a spot weld. However, applications in the auto industry have been unsuccessful, largely due to a critical drawback that cannot be implemented in the high-volume production line - the prerequisite of painting the weld surface to eliminate surface reflection and other environmental interference. This is due to the low signal-to-noise ratio resulting from the low/unknown surface emissivity and the very small temperature changes (typically on the order of 0.1°C) induced by the flash lamp method. An integrated approach consisting of innovations in both data analysis algorithms and hardware apparatus that effectively solved the key technical barriers for IR NDT. The system can be used for both real-time (during welding) and post-processing inspections (after welds have been made). First, we developed a special IR thermal image processing method that

  8. Testing and Modeling of Mechanical Characteristics of Resistance Welding Machines

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    2003-01-01

    for both upper and lower electrode systems. This has laid a foundation for modeling the welding process and selecting the welding parameters considering the machine factors. The method is straightforward and easy to be applied in industry since the whole procedure is based on tests with no requirements......The dynamic mechanical response of resistance welding machine is very important to the weld quality in resistance welding especially in projection welding when collapse or deformation of work piece occurs. It is mainly governed by the mechanical parameters of machine. In this paper, a mathematical...... model for characterizing the dynamic mechanical responses of machine and a special test set-up called breaking test set-up are developed. Based on the model and the test results, the mechanical parameters of machine are determined, including the equivalent mass, damping coefficient, and stiffness...

  9. Cluster formation in in-service thermally aged pressurizer welds

    Science.gov (United States)

    Lindgren, Kristina; Boåsen, Magnus; Stiller, Krystyna; Efsing, Pål; Thuvander, Mattias

    2018-06-01

    Thermal aging of reactor pressure vessel steel welds at elevated temperatures may affect the ductile-to-brittle transition temperature. In this study, unique weld material from a pressurizer, with a composition similar to that of the reactor pressure vessel, that has been in operation for 28 years at 345 °C is examined. Despite the relatively low temperature, the weld becomes hardened during operation. This is attributed to nanometre sized Cu-rich clusters, mainly located at Mo- and C-enriched dislocation lines and on boundaries. The welds have been characterized using atom probe tomography, and the characteristics of the precipitates/clusters is related to the hardness increase, giving the best agreement for the Russell-Brown model.

  10. Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel

    International Nuclear Information System (INIS)

    Vasantharaja, P.; Vasudevan, M.

    2012-01-01

    Low Activation Ferritic–Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.

  11. Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel

    Science.gov (United States)

    Vasantharaja, P.; Vasudevan, M.

    2012-02-01

    Low Activation Ferritic-Martensitic steels (LAFM) are chosen as the candidate material for structural components in fusion reactors. The structural components are generally fabricated by welding processes. Activated Tungsten Inert Gas (A-TIG) welding is an emerging process for welding of thicker components. In the present work, attempt was made to develop A-TIG welding technology for LAFM steel plates of 10 mm thick. Activated flux was developed for LAFM steel by carrying out various bead-on-plate TIG welds without flux and with flux. The optimum flux was identified as one which gave maximum depth of penetration at minimum heat input values. With the optimized flux composition, LAFM steel plate of 10 mm thickness was welded in square butt weld joint configuration using double side welding technique. Optical and Scanning Electron Microscopy was used for characterizing the microstructures. Microhardness measurements were made across the weld cross section for as welded and post weld heat treated samples. Tensile and impact toughness properties were determined. The mechanical properties values obtained in A-TIG weld joint were comparable to that obtained in weld joints of LAFM steel made by Electron beam welding process.

  12. Recommendations for joint fatigue coefficients for welded P91 junctions at 550 °C

    Energy Technology Data Exchange (ETDEWEB)

    Matheron, P., E-mail: philippe.matheron@cea.fr; Aiello, G.; Ancelet, O.; Forest, L.

    2016-04-15

    Modified 9Cr1Mo steels are potential candidates as structural materials of GEN-IV nuclear reactors. Since the design of structural components is influenced by the presence of the welds, their mechanical properties are also included in the design codes. In the European code RCC-MRx, a weld is considered as a homogeneous (base metal) component with a margin coefficient, called weld coefficient. Currently no values of joint fatigue coefficients for P91 junctions are given in RCC-MRx. After a recall of the weld design rules contained in the code, this work presents the experimental activities carried out to characterize the fatigue behaviour of TIG welded P91 junctions at high temperatures. Finite elements calculations were performed on the basis of the characterization of the base and weld metal. The results of the tests validate the numerical results. Values of the weld joint fatigue coefficients for P91 are proposed for possible inclusion in RCC-MRx.

  13. Advanced Welding Concepts

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Four advanced welding techniques and their use in NASA are briefly reviewed in this poster presentation. The welding techniques reviewed are: Solid State Welding, Friction Stir Welding (FSW), Thermal Stir Welding (TSW) and Ultrasonic Stir Welding.

  14. Resistance seam welding

    International Nuclear Information System (INIS)

    Schueler, A.W.

    1977-01-01

    The advantages and disadvantages of the resistance seam welding process are presented. Types of seam welds, types of seam welding machines, seam welding power supplies, resistance seam welding parameters and seam welding characteristics of various metals

  15. Validated automated ultrasonic inspections of the Sizewell 'B' reactor pressure vessel

    International Nuclear Information System (INIS)

    Dikstra, B.J.; Farley, J.M.

    1992-01-01

    Automated ultrasonic inspection was applied extensively during manufacture of the RPV for Sizewell 'B'. This was an important element of the safety case presented at the Sizewell 'B' public enquiry. This requirement reflected concern in the United Kingdom as to the effectiveness and reliability of ultrasonic inspections. By applying automated inspections in addition to the manual ultrasonic inspection carried out by the vessel manufacturer, the overall reliability of the inspection of the vessel would be considerably enhanced. The automated inspections carried out in the manufacturer's workshops were termed 'automated shop inspections' (ASIs). The ASIs were carried out in two contracts: the first to inspect the component forgings of the RPV, the second to inspect the pressure retaining welds. (author)

  16. Tensile properties of four types of austenitic stainless steel welded joints

    International Nuclear Information System (INIS)

    Balladon, P.

    1990-01-01

    In the field of an LMFBR research programme on austenitic stainless steel welds in a Shared Cost Action Safety, Research Area 8, coordinated by JRC-Ispra, four cooperating laboratories (ECN, IKE/MPA, the Welding Institute and UNIREC) have been involved in the fabrication and extensive characterization of welded joints made from one plate of ICL 167 stainless steel. The materials included parent metal, four vacuum electron beam welds, one non vacuum electron beam weld, one submerged arc weld, one gas metal arc weld and one manual metal arc weld. This report summarizes the 106 tensile tests performed at room temperature and 550 0 C, including the influence of strain rate, specimen orientation and welding procedure. Main results are that electron beam welds have tensile properties close to those of parent metal with higher values of yield strength in longitudinal orientation and lower values of total elongation in transverse orientation but with a similar reduction of area, that filler metal welds own the highest values of yield strength and lowest values of ductility. Most of the welds properties are higher than the minimum specified for parent metal, except for some values of total elongation, mainly in transverse orientation. In view of using electron beam welding for production of components used in LMFBR, results obtained show that tensile properties of electron beam welds compare well to those of classical welds. (author)

  17. Welding method, and welding device for use therein, and method of analysis for evaluating welds

    NARCIS (Netherlands)

    Aendenroomer, A.J.; Den Ouden, G.; Xiao, Y.H.; Brabander, W.A.J.

    1995-01-01

    Described is a method of automatically welding pipes, comprising welding with a pulsation welding current and monitoring, by means of a sensor, the variations occurring in the arc voltage caused by weld pool oscillations. The occurrence of voltage variations with only frequency components below 100

  18. Characterisation of Dynamic Mechanical Properties of Resistance Welding Machines

    DEFF Research Database (Denmark)

    Wu, Pei; Zhang, Wenqi; Bay, Niels

    2005-01-01

    characterizing the dynamic mechanical characteristics of resistance welding machines is suggested, and a test set-up is designed determining the basic, independent machine parameters required in the model. The model is verified by performing a series of mechanical tests as well as real projection welds.......The dynamic mechanical properties of a resistance welding machine have significant influence on weld quality, which must be considered when simulating the welding process numerically. However, due to the complexity of the machine structure and the mutual coupling of components of the machine system......, it is very difficult to measure or calculate the basic, independent machine parameters required in a mathematical model of the machine dynamics, and no test method has so far been presented in literature, which can be applied directly in an industrial environment. In this paper, a mathematical model...

  19. Comparison of Welding Residual Stresses of Hybrid Laser-Arc Welding and Submerged Arc Welding in Offshore Steel Structures

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Yu, Zhenzhen; Liu, Stephen

    2016-01-01

    In the offshore industry, welding-induced distortion and tensile residual stresses have become a major concern in relation to the structural integrity of a welded structure. Particularly, the continuous increase in size of welded plates and joints needs special attention concerning welding induced...... residual stresses. These stresses have a negative impact on the integrity of the welded joint as they promote distortion, reduce fatigue life, and contribute to corrosion cracking and premature failure in the weld components. This paper deals with the influence and impact of welding method on the welding...... induced residual stresses. It is also investigated whether the assumption of residual stresses up to yield strength magnitude are present in welded structures as stated in the design guidelines. The fatigue strength for welded joints is based on this assumption. The two welding methods investigated...

  20. The narrow-gap TIG welding concerns the electric power plants manufacturers

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    Polysoude, France, played host to an expert forum on narrow gap welding from 5-7 November 2008. The successful event welcomed around one hundred experts.The power plant construction sector is currently booming worldwide. For plant construction this means using more pressure-resistant, thick-walled pipes made from high temperature steels. The key quality features of this new steel grade are the values for high creep rupture strength that also apply without restriction as the benchmark for every weld seam on these pipes. In particular, the forum on narrow gap welding addressed this area of automated welding technology. During the forum, Mr Hans-Peter Mariner (Polysoude's CEO), has offered an in-depth insight into the latest developments in narrow gap welding. This presentation highlighted that with wall thicknesses of over 60 mm, welding time is shortened by a factor of five to ten in comparison to conventional TIG processes with a traditional V seam. The welding characteristics of the parent material are the decisive factor in the application of the narrow gap process. Technical advances in equipment technology such as automatic centring, HF-free ignition, seam preparation and optimised gas protection further increase the application limits. The geometry and gap width of the weld groove are based on the mechanical properties of the materials being joined, with the shrinkage characteristics of the seam being particularly important. Another key part of the programme was a presentation on the three different narrow gap-welding techniques. The first involves a single pass weld per layer and torch or work-piece revolution. The second is dual pass welding next to one another, when the seam preparation or positioning exceed the required narrow tolerances of a few tenths of a millimetre for one stringer bead per layer. TIG narrow gap welding with a shuttle-motion electrode is ideal with very large wall thicknesses of 150-200 mm. This is particularly the case if the

  1. Friction Stir Welding

    Science.gov (United States)

    Nunes, Arthur C., Jr.

    2008-01-01

    Friction stir welding (FSW) is a solid state welding process invented in 1991 at The Welding Institute in the United Kingdom. A weld is made in the FSW process by translating a rotating pin along a weld seam so as to stir the sides of the seam together. FSW avoids deleterious effects inherent in melting and promises to be an important welding process for any industries where welds of optimal quality are demanded. This article provides an introduction to the FSW process. The chief concern is the physical effect of the tool on the weld metal: how weld seam bonding takes place, what kind of weld structure is generated, potential problems, possible defects for example, and implications for process parameters and tool design. Weld properties are determined by structure, and the structure of friction stir welds is determined by the weld metal flow field in the vicinity of the weld tool. Metal flow in the vicinity of the weld tool is explained through a simple kinematic flow model that decomposes the flow field into three basic component flows: a uniform translation, a rotating solid cylinder, and a ring vortex encircling the tool. The flow components, superposed to construct the flow model, can be related to particular aspects of weld process parameters and tool design; they provide a bridge to an understanding of a complex-at-first-glance weld structure. Torques and forces are also discussed. Some simple mathematical models of structural aspects, torques, and forces are included.

  2. Mechanical properties of TIG and EB weld joints of F82H

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, Takanori, E-mail: hirose.takanori@jaea.go.jp; Sakasegawa, Hideo; Nakajima, Motoki; Tanigawa, Hiroyasu

    2015-10-15

    Highlights: • Narrow groove TIG minimized volume of F82H weld. • Mechanical properties of TIG and EB welds of F82H have been characterized. • Post weld heat treatment successfully moderate the toughness of weld metal without softening the base metal. - Abstract: This work investigates mechanical properties of weld joints of a reduced activation ferritic/martensitic steel, F82H and effects of post weld heat treatment on the welds. Vickers hardness, tensile and Charpy impact tests were conducted on F82H weld joints prepared using tungsten-inert-gas and electron beam after various heat treatments. Although narrow groove tungsten-inert-gas welding reduced volume of weld bead, significant embrittlement was observed in a heat affected zone transformed due to heat input. Post weld heat treatment above 993 K successfully moderated the brittle transformed region. The hardness of the brittle region strongly depends on the heat treatment temperature. Meanwhile, strength of base metal was slightly reduced by the treatment at temperature ranging from 993 to 1053 K. Moreover, softening due to double welding was observed only in the weld metal, but negligible in base metal.

  3. Flexible automation and manufacturing technology

    International Nuclear Information System (INIS)

    Ramakumar, M.S.

    1994-01-01

    Sponsored projects on mobile tele robots, machine vision systems, sensors, pick and place robots for micro electronics, prosthetic devices, surgeons aids, robots for welding and other industrial applications etc. are under development in India. The very significant capabilities in these areas available in our R and D agencies have been inducted into development work in robotics and automation. This is bound to provide an environment and thrust that will result in rapid significant progress. (author). 2 figs

  4. Automated quality characterization of 3D printed bone scaffolds

    Directory of Open Access Journals (Sweden)

    Tzu-Liang Bill Tseng

    2014-07-01

    Full Text Available Optimization of design is an important step in obtaining tissue engineering scaffolds with appropriate shapes and inner microstructures. Different shapes and sizes of scaffolds are modeled using UGS NX 6.0 software with variable pore sizes. The quality issue we are concerned is the scaffold porosity, which is mainly caused by the fabrication inaccuracies. Bone scaffolds are usually characterized using a scanning electron microscope, but this study presents a new automated inspection and classification technique. Due to many numbers and size variations for the pores, the manual inspection of the fabricated scaffolds tends to be error-prone and costly. Manual inspection also raises the chance of contamination. Thus, non-contact, precise inspection is preferred. In this study, the critical dimensions are automatically measured by the vision camera. The measured data are analyzed to classify the quality characteristics. The automated inspection and classification techniques developed in this study are expected to improve the quality of the fabricated scaffolds and reduce the overall cost of manufacturing.

  5. Numerical analysis of weld pool oscillation in laser welding

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jung Ho [Chungbuk National University, Cheongju (Korea, Republic of); Farson, Dave F [The Ohio State University, Columbus (United States); Hollis, Kendall; Milewski, John O. [Los Alamos National Laboratory, Los Alamos (United States)

    2015-04-15

    Volume of fluid (VOF) numerical simulation was used to investigate melt flow and volumetric oscillation of conduction-mode pulsed laser weld pools. The result is compared to high speed video stream of titanium laser spot welding experiment. The total simulation time is 10ms with the first 5 ms being heating and melting under constant laser irradiation and the remaining 5 ms corresponding to resolidification of the weld pool. During the melting process, the liquid pool did not exhibit periodic oscillation but was continually depressed by the evaporation recoil pressure. After the laser pulse, the weld pool was excited into volumetric oscillation by the release of pressure on its surface and oscillation of the weld pool surface was analyzed. The simulation model suggested adjusting thermal diffusivity to match cooling rate and puddle diameter during solidification which is distinguishable from previous weld pool simulation. The frequency continuously increased from several thousand cycles per second to tens of thousands of cycles per second as the weld pool solidified and its diameter decreased. The result is the first trial of investigation of small weld pool oscillation in laser welding although there have been several reports about arc welding.

  6. Alternate Welding Processes for In-Service Welding

    Science.gov (United States)

    2009-04-24

    Conducting weld repairs and attaching hot tap tees onto pressurized pipes has the advantage of avoiding loss of service and revenue. However, the risks involved with in-service welding need to be managed by ensuring that welding is performed in a rep...

  7. An assessment of creep strength reduction factors for 316L(N) SS welds

    International Nuclear Information System (INIS)

    Mathew, M.D.; Latha, S.; Rao, K. Bhanu Sankara

    2007-01-01

    Nitrogen-alloyed type 316L stainless steel is the major structural material for the high temperature structural components of prototype fast breeder reactor. For the welding electrode, carbon in the normal range of 0.045-0.055 wt% and nitrogen in the range of 0.06-0.1 wt% are used to provide weld joints with adequate long term creep strength. Characterization of the creep properties of the base metal, weld metal and weld joint has been carried out at 873 and 923 K at stress levels of 100-325 MPa with rupture lives in the range of 100-33,000 h. Weld strength reduction factors (WSRFs) based on the weld metal, and weld joint have been evaluated, and compared with the codes. WSRFs for the weld joint were higher than the RCC-MR values. Base metal showed the highest rupture life at all the test conditions whereas the weld metal generally showed the lowest rupture life. All the weld joint specimens failed in the weld metal

  8. Hybrid laser-TIG welding, laser beam welding and gas tungsten arc welding of AZ31B magnesium alloy

    International Nuclear Information System (INIS)

    Liu Liming; Wang Jifeng; Song Gang

    2004-01-01

    Welding of AZ31B magnesium alloy was carried out using hybrid laser-TIG (LATIG) welding, laser beam welding (LBW) and gas tungsten arc (TIG) welding. The weldability and microstructure of magnesium AZ31B alloy welded using LATIG, LBW and TIG were investigated by OM and EMPA. The experimental results showed that the welding speed of LATIG was higher than that of TIG, which was caught up with LBW. Besides, the penetration of LATIG doubles that of TIG, and was four times that of LBW. In addition, arc stability was improved in hybrid of laser-TIG welding compared with using the TIG welding alone, especially at high welding speed and under low TIG current. It was found that the heat affect zone of joint was only observed in TIG welding, and the size of grains in it was evidently coarse. In fusion zone, the equiaxed grains exist, whose size was the smallest welded by LBW, and was the largest by TIG welding. It was also found that Mg concentration of the fusion zone was lower than that of the base one by EPMA in three welding processes

  9. Microstructure Characterization and Hardness Evaluation of Alloy 52 Welded Stainless Steel 316 Subjected to Ultrasonic Nanocyrtal Surface Modification Technique

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H. D.; Amanov, A.; Pyun, Y. S. [Sun Moon Univ., Asan (Korea, Republic of); Kim, Y. S.; Choi, Y. S. [Andong National Univ., Andong (Korea, Republic of)

    2015-10-15

    In this study, an ultrasonic nanocrystal surface modification (UNSM) technique was applied to dissimilar weld point between STS316L and Alloy 52. This UNSM technique is a patented technology, which can be described as a type of ultrasonic cold-forging technology. It has been demonstrated that the UNSM technique is a simple method to produce a nanocrystalline surface layer at the top surface of metallic materials. Microstructure and hardness of STS316L and Alloy 52 are investigated before and after UNSM treatment. It is expected according to the previous study that the UNSM technique is able to release the residual stress which delays PWSCC. In this study, microstructural characterization and hardness evaluation of STS316L and welded Alloy 52 subjected to UNSM technique were investigated.

  10. Closing the weld gap with laser/mig hybrid welding process

    DEFF Research Database (Denmark)

    Bagger, Claus; Olsen, Flemming Ove; Wiwe, Bjarne David

    2003-01-01

    In this article, laboratory tests are demonstrated that systematically accesses the critical gap distance when welding CMn 2.13 mm steel with a 2.6 kW CO2 laser, combined with a MIG energy source. In the work, the welding speed is varied at gap distances from 0 to 0.8 mm such that the limits...... for obtaining sound welds are identified. The welds are quality assessed according to ISO 13.919-1 and EN25817, transversal hardness measurements are made and the heat input to the workpiece is calculated. The results show that the critical gap is 0.1 mm for a laser weld alone. With hybrid welding, this can...... be increased to 0.6 mm, even at a welding speed of 3.5 m/min. The maximum welding speed with the hybrid process is comparable to laser welding alone, 4.5 m/min. The measured hardness is comparable to MIG welding, and this corresponds to a 33 percent reduction compared to laser welding alone. The heat input...

  11. Thermal Stir Welding Development at Marshall Space Flight Center

    Science.gov (United States)

    Ding, Robert J.

    2008-01-01

    Solid state welding processes have become the focus of welding process development at NASA's Marshall Space Flight Center. Unlike fusion weld processes such as tungsten inert gas (TIG), variable polarity plasma arc (VPPA), electron beam (EB), etc., solid state welding processes do not melt the material during welding. The resultant microstructure can be characterized as a dynamically recrystallized morphology much different than the casted, dentritic structure typical of fusion weld processes. The primary benefits of solid state processes over fusion weld processes include superior mechanic properties and the elimination of thermal distortion and residual stresses. These solid state processes attributes have profoundly influenced the direction of advanced welding research and development within the NASA agency. Thermal Stir Welding (TSW) is a new solid state welding process being developed at the Marshall Space Flight Center. Unlike friction stir welding, the heating, stirring and forging elements of the weld process can be decoupled for independent control. An induction coil induces energy into a workpiece to attain a desired plastic temperature. An independently controlled stir rod, captured within non-rotating containment plates, then stirs the plasticized material followed by forging plates/rollers that work the stirred weld joint. The independent control (decoupling) of heating, stirring and forging allows, theoretically, for the precision control of microstructure morphology. The TSW process is being used to evaluate the solid state joining of Haynes 230 for ARES J-2X applications. It is also being developed for 500-in (12.5 mm) thick commercially pure grade 2 titanium for navy applications. Other interests include Inconel 718 and stainless steel. This presentation will provide metallurgical and mechanical property data for these high melting temperature alloys.

  12. Influence of weld-induced residual stresses on the hysteretic behavior of a girth-welded circular stainless steel tube

    Science.gov (United States)

    Lee, Chin-Hyung; Nguyen Van Do, Vuong; Chang, Kyong-Ho; Jeon, Jun-Tai; Um, Tae-Hwan

    2018-04-01

    The present study attempts to characterize the relevance of welding residual stresses to the hysteretic behaviour of a girth-welded circular stainless steel tube under cyclic mechanical loadings. Finite element (FE) thermal simulation of the girth butt welding process is first performed to identify the weld-induced residual stresses by using the one-way coupled three-dimensional (3-D) thermo-mechanical FE analysis method. 3-D elastic-plastic FE analysis equipped with the cyclic plasticity constitutive model capable of describing the cyclic response is next carried out to scrutinize the effects that the residual stresses have on the hysteretic performance of the girth-welded steel tube exposed to cyclic axial loading, which takes the residual stresses and plastic strains calculated from the preceding thermo-mechanical analysis as the initial condition. The analytical results demonstrate that the residual stresses bring about premature yielding and deterioration of the load carrying capacity in the elastic and the transition load ranges, whilst the residual stress effect is wiped out quickly in the plastic load domain since the residual stresses are nearly wholly relaxed after application of the cyclic plastic loading.

  13. Microscopic characterization of collagen modifications induced by low-temperature diode-laser welding of corneal tissue.

    Science.gov (United States)

    Matteini, Paolo; Rossi, Francesca; Menabuoni, Luca; Pini, Roberto

    2007-08-01

    Laser welding of corneal tissue that employs diode lasers (810 nm) at low power densities (12-20 W/cm(2)) in association with Indocyanine Green staining of the wound is a technique proposed as an alternative to conventional suturing procedures. The aim of this study is to evaluate, by means of light (LM) and transmission electron microscopy (TEM) analyses, the structural modifications induced in laser-welded corneal stroma. Experiments were carried out in 20 freshly enucleated pig eyes. A 3.5 mm in length full-thickness cut was produced in the cornea, and was then closed by laser welding. Birefringence modifications in samples stained with picrosirius red dye were analyzed by polarized LM to assess heat damage. TEM analysis was performed on ultra-thin slices, contrasted with uranyl acetate and lead citrate, in order to assess organization and size of type I collagen fibrils after laser welding. LM evidenced bridges of collagen bundles between the wound edges, with a loss of regular lamellar organization at the welded site. Polarized LM indicated that birefringence properties were mostly preserved after laser treatment. TEM examinations revealed the presence of quasi-ordered groups of fibrils across the wound edges preserving their interfibrillar spacing. These fibrils appeared morphologically comparable to those in the control tissue, indicating that type I collagen was not denatured during the diode laser corneal welding. The preservation of substantially intact, undenatured collagen fibrils in laser-welded corneal wounds supported the thermodynamic studies that we carried out recently, which indicated temperatures below 66 degrees C at the weld site under laser irradiation. This observation enabled us to hypothesize that the mechanism, proposed in the literature, of unwinding of collagen triple helixes followed by fibrils "interdigitation" is not likely to occur in the welding process that we set up for the corneal suturing.

  14. Mechanical characterization of densely welded Apache Leap tuff

    International Nuclear Information System (INIS)

    Fuenkajorn, K.; Daemen, J.J.K.

    1991-06-01

    An empirical criterion is formulated to describe the compressive strength of the densely welded Apache Leap tuff. The criterion incorporates the effects of size, L/D ratio, loading rate and density variations. The criterion improves the correlation between the test results and the failure envelope. Uniaxial and triaxial compressive strengths, Brazilian tensile strength and elastic properties of the densely welded brown unit of the Apache Leap tuff have been determined using the ASTM standard test methods. All tuff samples are tested dry at room temperature (22 ± 2 degrees C), and have the core axis normal to the flow layers. The uniaxial compressive strength is 73.2 ± 16.5 MPa. The Brazilian tensile strength is 5.12 ± 1.2 MPa. The Young's modulus and Poisson's ratio are 22.6 ± 5.7 GPa and 0.20 ± 0.03. Smoothness and perpendicularity do not fully meet the ASTM requirements for all samples, due to the presence of voids and inclusions on the sample surfaces and the sample preparation methods. The investigations of loading rate, L/D radio and cyclic loading effects on the compressive strength and of the size effect on the tensile strength are not conclusive. The Coulomb strength criterion adequately represents the failure envelope of the tuff under confining pressures from 0 to 62 MPa. Cohesion and internal friction angle are 16 MPa and 43 degrees. The brown unit of the Apache Leap tuff is highly heterogeneous as suggested by large variations of the test results. The high intrinsic variability of the tuff is probably caused by the presence of flow layers and by nonuniform distributions of inclusions, voids and degree of welding. Similar variability of the properties has been found in publications on the Topopah Spring tuff at Yucca Mountain. 57 refs., 32 figs., 29 tabs

  15. Comparative Studies on Microstructure, Mechanical and Pitting Corrosion of Post Weld Heat Treated IN718 Superalloy GTA and EB Welds

    Science.gov (United States)

    Dilkush; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    In the present study, an attempt has been made to weld Inconel 718 nickel-base superalloy (IN718 alloy) using gas tungsten arc welding (GTAW) and electron beam welding (EBW) processes. Both the weldments were subjected to post-weld heat treatment condition as follows -980°C / 20 min followed by direct aging condition (DA) as 720°C/8 h/FC followed by 620°C/8 h/AC. The GTA and EB welds of IN718 alloy were compared in two conditions as-received and 980STA conditions. Welds were characterized to observe mechanical properties, pitting corrosion resistance by correlating with observed microstructures. The rate of higher cooling ranges, the fusion zone of EBW exhibited discrete and relative finer lave phases whereas the higher niobium existed laves with coarser structure were observed in GTAW. The significant dissolution of laves were observed at 980STA of EBW. Due to these effects, the EBW of IN718 alloy showed the higher mechanical properties than GTAW. The electrochemical potentiostatic etch test was carried out in 3.5wt% sodium chloride (NaCl) solution to study the pitting corrosion behaviour of the welds. Results of the present investigation established that mechanical properties and pitting corrosion behaviour are significantly better in post weld heat treated condition. The comparative studies showed that the better combination of mechanical properties and pitting corrosion resistance were obtained in 980STA condition of EBW than GTAW.

  16. LASER WELDING WITH MICRO-JET COOLING FOR TRUCK FRAME WELDING

    Directory of Open Access Journals (Sweden)

    Jan PIWNIK

    2017-12-01

    Full Text Available The aim of this paper is to analyse the mechanical properties of the weld steel structure of car body truck frames after laser welding. The best welding conditions involve the use of proper materials and alloy elements in steel and filer materials, in addition to welding technology, state of stress and temperature of exploitation. We present for the first time the properties of steel track structures after laser welding with micro-jet cooling. Therefore, good selection of both welding parameters and micro-jet cooling parameters is very important to achieve a proper steel structure. In this study, the metallographic structure, tensile results and impact toughness of welded joints have been analysed in terms of welding parameters.

  17. Forming Completely Penetrated Welded T-joints when Pulsed Arc Welding

    Science.gov (United States)

    Krampit, N. Yu; Krampit, M. A.; Sapozhkov, A. S.

    2016-04-01

    The paper is focused on revealing the influence of welding parameters on weld formation when pulsed arc welding. As an experimental sample a T-joint over 10 mm was selected. Welding was carried out in flat position, which required no edge preparation but provided mono-directional guaranteed root penetration. The following parameters of welding were subjected to investigation: gap in the joint, wire feed rate and incline angles of the torch along and across the weld axis. Technological recommendations have been made with respect to pulsed arc welding; the cost price of product manufacturing can be reduced on their basis due to reduction of labor input required by machining, lowering consumption of welding materials and electric power.

  18. Resistance welding

    DEFF Research Database (Denmark)

    Bay, Niels; Zhang, Wenqi; Rasmussen, Mogens H.

    2003-01-01

    Resistance welding comprises not only the well known spot welding process but also more complex projection welding operations, where excessive plastic deformation of the weld point may occur. This enables the production of complex geometries and material combinations, which are often not possible...... to weld by traditional spot welding operations. Such joining processes are, however, not simple to develop due to the large number of parameters involved. Development has traditionally been carried out by large experimental investigations, but the development of a numerical programme system has changed...... this enabling prediction of the welding performance in details. The paper describes the programme in short and gives examples on industrial applications. Finally investigations of causes for failure in a complex industrial joint of two dissimilar metals are carried out combining numerical modelling...

  19. Fracture behaviour of weld joints made of pearlitic and bainitic steel

    Directory of Open Access Journals (Sweden)

    Libor Válka

    2016-06-01

    Full Text Available The paper is concerned with microstructure evaluations and the hardness and fracture behaviour of welded joints made from cast bainitic Lo8CrNiMo steel and pearlitic rail steel of the type UIC 900A. The materials mentioned are predetermined for frogs of switches. The study is based mainly on microstructural observations and hardness measurements of the base materials, weld, and heat affected zone (HAZ. Dynamic fracture toughness was evaluated based on data from pre-cracked Charpy type specimens. The pearlitic UIC 900A steel and its HAZ had the lowest dynamic fracture toughness values and therefore the highest risk of brittle fracture. At application temperature range, this steel is on the lower shelf of the ductile-to-brittle transition, and the tempering in the HAZ did not affect the toughness substantially. The cast bainitic steel in the weld joint is characterized by higher toughness values compared to the pearlitic one, and a further increase in toughness may be expected in the HAZ. The weld zone itself is characterized by high scatter of toughness data; nevertheless, all the values are above the scatter band characterizing the pearlitic steel.

  20. Grain refinement and hardness distribution in cryogenically cooled ferritic stainless steel welds

    International Nuclear Information System (INIS)

    Amuda, M.O.H.; Mridha, S.

    2013-01-01

    Highlights: ► Grain refinement was undertaken in AISI 430 FSS welds using cryogenic cooling. ► Flow rates of the cryogenic liquid influenced weld grain structure. ► Cryogenic cooling of welds generates about 45% grain refinement in welds. ► Phase structure of welds is not affected by flow rates of cryogenic liquid. ► Hardness profile in cryogenically cooled and conventional welds is similar. - Abstract: The energy input and heat dissipation dynamics during fusion welding generates coarse grain in the welds resulting in poor mechanical properties. While grain refinement in welds via the control of the energy input is quite common, the influence of heat dissipation on grain morphology and properties is not fully established. This paper characterized cryogenically cooled ferritic stainless steel (FSS) welds in terms of grain structure and hardness distribution along transverse and thickness directions. Cryogenic cooling reduces the weld dimension by more than 30% and provides grain refinement of almost 45% compared to conventional weld. The hardness distribution in the thickness direction gives slightly higher profile because of decreased grain growth caused by faster cooling effects of cryogenic liquid

  1. Hot cracking of welded joints of the 7CrMoVTiB 10-10 (T/P24) steel

    Energy Technology Data Exchange (ETDEWEB)

    Adamiec, J, E-mail: janusz.adamiec@polsl.pl [Department of Materials Science, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice (Poland)

    2011-05-15

    Bainitic steel 7CrMoVTiB10-10 is one the newest steels for waterwalls of modern industrial boilers. In Europe, attempts have been made to make butt welded joints of pipes made of this steel of the diameter up to 51 mm and thickness up to 8 mm. Many cracks have been observed in the welded joint, both during welding and transport and storage. The reasons of cracking and the prevention methods have not been investigated. No comprehensive research is carried out in Europe in order to automate the welding process of the industrial boiler elements made of modern bainitic steel, such as 7CrMoVTiB10-10. There is no information about its overall, operative and local weldability, influence of heat treatment, as well as about resistance of the joints to cracking during welding and use. The paper presents experience of Energoinstal SA from development of technology and production of waterwalls of boilers made of the 7CrMoVTiB 10-10 steel on a multi-head automatic welder for submerged arc welding.

  2. Deconvoluting the Friction Stir Weld Process for Optimizing Welds

    Science.gov (United States)

    Schneider, Judy; Nunes, Arthur C.

    2008-01-01

    In the friction stir welding process, the rotating surfaces of the pin and shoulder contact the weld metal and force a rotational flow within the weld metal. Heat, generated by the metal deformation as well as frictional slippage with the contact surface, softens the metal and makes it easier to deform. As in any thermo-mechanical processing of metal, the flow conditions are critical to the quality of the weld. For example, extrusion of metal from under the shoulder of an excessively hot weld may relax local pressure and result in wormhole defects. The trace of the weld joint in the wake of the weld may vary geometrically depending upon the flow streamlines around the tool with some geometry more vulnerable to loss of strength from joint contamination than others. The material flow path around the tool cannot be seen in real time during the weld. By using analytical "tools" based upon the principles of mathematics and physics, a weld model can be created to compute features that can be observed. By comparing the computed observations with actual data, the weld model can be validated or adjusted to get better agreement. Inputs to the model to predict weld structures and properties include: hot working properties ofthe metal, pin tool geometry, travel rate, rotation and plunge force. Since metals record their prior hot working history, the hot working conditions imparted during FSW can be quantified by interpreting the final microstructure. Variations in texture and grain size result from variations in the strain accommodated at a given strain rate and temperature. Microstructural data from a variety of FSWs has been correlated with prior marker studies to contribute to our understanding of the FSW process. Once this stage is reached, the weld modeling process can save significant development costs by reducing costly trial-and-error approaches to obtaining quality welds.

  3. Characterization of coarse bainite transformation in low carbon steel during simulated welding thermal cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lan, Liangyun, E-mail: lanly@me.neu.edu.cn [School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819 (China); State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China); Kong, Xiangwei [School of Mechanical Engineering and Automation, Northeastern University, Shenyang 110819 (China); Qiu, Chunlin [State Key Laboratory of Rolling Technology and Automation, Northeastern University, Shenyang 110819 (China)

    2015-07-15

    Coarse austenite to bainite transformation in low carbon steel under simulated welding thermal cycles was morphologically and crystallographically characterized by means of optical microscope, transmission electron microscope and electron backscattered diffraction technology. The results showed that the main microstructure changes from a mixture of lath martensite and bainitic ferrite to granular bainite with the increase in cooling time. The width of bainitic laths also increases gradually with the cooling time. For a welding thermal cycle with relatively short cooling time (e.g. t{sub 8/5} is 30 s), the main mode of variant grouping at the scale of individual prior austenite grains changes from Bain grouping to close-packed plane grouping with the progress of phase transformation, which results in inhomogeneous distribution of high angle boundaries. As the cooling time is increased, the Bain grouping of variants becomes predominant mode, which enlarges the effective grain size of product phase. - Highlights: • Main microstructure changes and the width of lath structure increases with cooling time. • Variant grouping changes from Bain zone to close-packed plane grouping with the transformation. • The change of variant grouping results in uneven distribution of high angle grain boundary. • Bain grouping is main mode for large heat input, which lowers the density of high angle boundary.

  4. Characterization of coarse bainite transformation in low carbon steel during simulated welding thermal cycles

    International Nuclear Information System (INIS)

    Lan, Liangyun; Kong, Xiangwei; Qiu, Chunlin

    2015-01-01

    Coarse austenite to bainite transformation in low carbon steel under simulated welding thermal cycles was morphologically and crystallographically characterized by means of optical microscope, transmission electron microscope and electron backscattered diffraction technology. The results showed that the main microstructure changes from a mixture of lath martensite and bainitic ferrite to granular bainite with the increase in cooling time. The width of bainitic laths also increases gradually with the cooling time. For a welding thermal cycle with relatively short cooling time (e.g. t 8/5 is 30 s), the main mode of variant grouping at the scale of individual prior austenite grains changes from Bain grouping to close-packed plane grouping with the progress of phase transformation, which results in inhomogeneous distribution of high angle boundaries. As the cooling time is increased, the Bain grouping of variants becomes predominant mode, which enlarges the effective grain size of product phase. - Highlights: • Main microstructure changes and the width of lath structure increases with cooling time. • Variant grouping changes from Bain zone to close-packed plane grouping with the transformation. • The change of variant grouping results in uneven distribution of high angle grain boundary. • Bain grouping is main mode for large heat input, which lowers the density of high angle boundary

  5. Effects of Fusion Tack Welds on Self-Reacting Friction Stir Welds

    Science.gov (United States)

    Nunes, A. C., Jr.; Pendleton, M. L.; Brooke, S. A.; Russell, C. K.

    2012-01-01

    In order to know whether fusion tack welds would affect the strength of self-reacting friction stir seam welds in 2195-T87 aluminum alloy, the fracture stresses of 144 tensile test coupons cut from 24 welded panels containing segments of friction stir welds were measured. Each of the panels was welded under unique processing conditions. A measure of the effect of the tack welds for each panel was devised. An analysis of the measures of the tack weld effect supported the hypothesis that fusion tack welds do not affect the strength of self-reacting friction stir welds to a 5% level of confidence.

  6. Residual stress reduction in the penetration nozzle weld joint by overlay welding

    International Nuclear Information System (INIS)

    Jiang, Wenchun; Luo, Yun; Wang, B.Y.; Tu, S.T.; Gong, J.M.

    2014-01-01

    Highlights: • Residual stress reduction in penetration weld nozzle by overlay welding was studied. • The overlay weld can decrease the residual stress in the weld root. • Long overlay welding is proposed in the actual welding. • Overlay weld to decrease residual stress is more suitable for thin nozzle. - Abstract: Stress corrosion cracking (SCC) in the penetration nozzle weld joint endangers the structural reliability of pressure vessels in nuclear and chemical industries. How to decrease the residual stress is very critical to ensure the structure integrity. In this paper, a new method, which uses overlay welding on the inner surface of nozzle, is proposed to decrease the residual stresses in the penetration joint. Finite element simulation is used to study the change of weld residual stresses before and after overlay welding. It reveals that this method can mainly decrease the residual stress in the weld root. Before overlay welding, large tensile residual stresses are generated in the weld root. After overlay weld, the tensile hoop stress in weld root has been decreased about 45%, and the radial stress has been decreased to compressive stress, which is helpful to decrease the susceptibility to SCC. With the increase of overlay welding length, the residual stress in weld root has been greatly decreased, and thus the long overlay welding is proposed in the actual welding. It also finds that this method is more suitable for thin nozzle rather than thick nozzle

  7. An analytical model for the heat generation in friction stir welding

    DEFF Research Database (Denmark)

    Schmidt, Henrik Nikolaj Blich; Hattel, Jesper; Wert, John

    2004-01-01

    The objective of this work is to establish an analytical model for heat generation by friction stir welding (FSW), based on different assumptions of the contact condition between the rotating tool surface and the weld piece. The material flow and heat generation are characterized by the contact...

  8. Investigations on penetration control for automated pipe welding system

    International Nuclear Information System (INIS)

    Fujiki, Daisuke; Sato, Akihiro; Funamoto, Takao; Matsumoto, Toshimi; Kobayashi, Masahiro

    1995-01-01

    We have been investigating process conditions forming sound root bead by orbital welding technique for nuclear power stations. Specimens used were stainless steel (SUS304) pipes (318.5 mm outside diameter and 15.4 mm thickness), and pulsed gas tungsten-arc (GTA) welder was adopted. We have found process conditions to form sound root bead by changing both heat input conditions and joint designs. It is found that reducing volume of molten metal is necessary to form sound root bead. And it is also found that changing joint designs is effective to reduce volume of molten metal. By selecting proper joint designs, we could form sound root bead in constant heat input conditions in every position of pipe. (author)

  9. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2011-01-01

    Offers an introduction to the range of available welding technologies. This title includes chapters on individual techniques that cover principles, equipment, consumables and key quality issues. It includes material on such topics as the basics of electricity in welding, arc physics, and distortion, and the weldability of particular metals.$bThe first edition of Welding processes handbook established itself as a standard introduction and guide to the main welding technologies and their applications. This new edition has been substantially revised and extended to reflect the latest developments. After an initial introduction, the book first reviews gas welding before discussing the fundamentals of arc welding, including arc physics and power sources. It then discusses the range of arc welding techniques including TIG, plasma, MIG/MAG, MMA and submerged arc welding. Further chapters cover a range of other important welding technologies such as resistance and laser welding, as well as the use of welding techniqu...

  10. Evaluation of weld joints properties of 60mm thick AISI 316L for fusion reactor vacuum vessel by TIG and EB welding processes

    International Nuclear Information System (INIS)

    Buddu, Ramesh Kutner

    2016-01-01

    The present paper is focussed on the NDT examination procedures, evaluated mechanical properties; microstructure details investigated on the different welding process of Multipass TIG process (64 passes) and electron beam welding (two pass) of the AISI SS316LN plates. The characterization of mechanical properties (Tensile, Bend, Hardness and Impact) and detailed microstructure analysis have been discussed in this paper. Mechanical properties in both conditions shown higher joint efficiencies. Bend tests shown the good quality of weld and ductility behavior of the joining process. Hardening is observed in both the samples for welded zone and HAZ compared to base metal. Impact fracture results revealed the poor toughness properties for the WZ compared to HAZ and BM samples in both the cases

  11. Study on Microstructure and Mechanical Properties of 304 Stainless Steel Joints by Tig-Mig Hybrid Welding

    Science.gov (United States)

    Ogundimu, Emmanuel O.; Akinlabi, Esther T.; Erinosho, Mutiu F.

    Stainless steel is a family of Fe-based alloys having excellent resistance to corrosion and as such has been used imperatively for kitchen utensils, transportation, building constructions and much more. This paper presents the work conducted on the material characterizations of a tungsten inert gas (TIG)-metal inert gas (MIG) hybrid welded joint of type 304 austenitic stainless steel. The welding processes were conducted in three phases. The phases of welding employed are MIG welding using a current of 170A, TIG welding using a current of 190A, and a hybrid TIG-MIG welding with currents of 190/170A, respectively. The MIG, TIG, and hybrid TIG-MIG weldments were characterized with incomplete penetration, full penetration and excess penetration of weld. Intergranular austenite was created toward transition and heat affected zones. The thickness of the delta ferrite (δ-Fe) formed in the microstructures of the TIG weld is more than the thickness emerged in the microstructures of MIG and hybrid TIG-MIG welds. A TIG-MIG hybrid weld of specimen welded at the currents of 190/170A has the highest ultimate tensile strength value and percentage elongation of 397.72MPa and 35.7%. The TIG-MIG hybrid welding can be recommended for high-tech industrial applications such as nuclear, aircraft, food processing, and automobile industry.

  12. Welding Curriculum.

    Science.gov (United States)

    Alaska State Dept. of Education, Juneau. Div. of Adult and Vocational Education.

    This competency-based curriculum guide is a handbook for the development of welding trade programs. Based on a survey of Alaskan welding employers, it includes all competencies a student should acquire in such a welding program. The handbook stresses the importance of understanding the principles associated with the various elements of welding.…

  13. The use of field indentation microprobe in measuring mechanical properties of welds

    International Nuclear Information System (INIS)

    Haggag, F.M.; Wong, H.; Alexander, D.J.; Nanstad, R.K.

    1989-01-01

    A field indentation microprobe (FIM) was conceived for evaluating the structural integrity of metallic components (including base metal, welds, and heat-affected zones) in situ in a nondestructive manner. The FIM consists of an automated ball indentation (ABI) unit for determining the mechanical properties (yield strength, flow properties, estimates of fracture toughness, etc.) and a nondestructive evaluation (NDE) unit (consisting of ultrasonic transducers and a video camera) for determining the physical properties such as crack size, material pileup around indentation, and residual stress presence and orientation. The laboratory version used in this work performs only ABI testing. ABI tests were performed on stainless steel base metal (type 316L), heat-affected zone, and welds (type 308). Excellent agreement was obtained between yield strength and flow properties (true-stress/true-plastic-strain curve) measured by the ABI tests and those from uniaxial tensile tests conducted on 308 stainless steel welds, thermally aged at 343/degree/C for different times, and on the base material. 4 refs., 17 figs

  14. Implementation and testing of WELD and automatic spectral rule-based classifications for Landsat ETM+ in South Africa

    CSIR Research Space (South Africa)

    Wessels, Konrad J

    2013-04-01

    Full Text Available The Web-enabled Landsat Data (WELD) system was successfully installed in South Africa (SA) and used for pre-processing large amounts of Landsat ETM+ data to composited seasonal mosaics. In pursuit of automated land cover mapping, the overall...

  15. Tailored Welding Technique for High Strength Al-Cu Alloy for Higher Mechanical Properties

    Science.gov (United States)

    Biradar, N. S.; Raman, R.

    AA2014 aluminum alloy, with 4.5% Cu as major alloying element, offers highest strength and hardness values in T6 temper and finds extensive use in aircraft primary structures. However, this alloy is difficult to weld by fusion welding because the dendritic structure formed can affect weld properties seriously. Among the welding processes, AC-TIG technique is largely used for welding. As welded yield strength was in the range of 190-195 MPa, using conventional TIG technique. Welding metallurgy of AA2014 was critically reviewed and factors responsible for lower properties were identified. Square-wave AC TIG with Transverse mechanical arc oscillation (TMAO) was postulated to improve the weld strength. A systematic experimentation using 4 mm thick plates produced YS in the range of 230-240 MPa, has been achieved. Through characterization including optical and SEM/EDX was conducted to validate the metallurgical phenomena attributable to improvement in weld properties.

  16. Investigation on fibrous collagen modifications during corneal laser welding by second harmonic generation microscopy

    Science.gov (United States)

    Matteini, Paolo; Ratto, Fulvio; Rossi, Francesca; Cicchi, Riccardo; Stringari, Chiara; Kapsokalyvas, Dimitrios; Pavone, Francesco S.; Pini, Roberto

    2009-02-01

    The structural modifications in the collagen lattice of corneal stroma induced by near-infrared laser welding were investigated with second-harmonic generation (SHG) imaging. The corneal laser welding procedure is performed by staining the wound edges with a saturated water solution of Indocyanine Green (ICG) followed by irradiation with a 810 nm diode laser operated in continuous (CWLW: continuous wave laser welding) or pulsed (PLW: pulsed laser welding) mode. Both these procedures can provide closure of corneal wounds by inducing different structural modifications in the extracellular matrix. SHG imaging of native corneal stroma revealed collagen bundles composed of many regularly aligned collagen fibrils. After CWLW the regular lamellar arrangement was lost; collagen bundles appeared densely packed with an increasing disordered arrangement toward the welded cut. The weld was characterized by a loss of details; nevertheless, the observation of the second harmonic signal at this site indicated the lack of collagen denaturation. By contrast, PLW mode produced welding spots at the interface between donor and recipient corneal layers, which were characterized by a severe loss of the SHG signal, suggesting the occurrence of a complete collagen denaturation. SHG imaging appeared to be a powerful tool for visualizing the supramolecular morphological modifications in the collagen matrix after laser welding.

  17. Assessment of exposure to manganese in welding operations during the assembly of heavy excavation machinery accessories.

    Science.gov (United States)

    Smargiassi, A; Baldwin, M; Savard, S; Kennedy, G; Mergler, D; Zayed, J

    2000-10-01

    Welder exposure to metals in various industrial sectors is poorly characterized. We had the opportunity to carry out an exploratory study to characterize manganese exposure in welding operations in a recently established Quebec factory that assembled accessories for heavy excavation machinery. Ten workers were sampled for total manganese for at least two consecutive days out of three followed by two consecutive days for respirable manganese (with a size selective sampler with a median cut-off of 4 microns), during a typical week in the summer of 1998. Parts being welded were characterized as large or small. Small parts were those being welded on tables during subassembly. Workers were divided into two groups according to the parts they were welding. Seventy-eight percent of the total manganese exposure levels of welding operations during the assembly of large accessories of heavy excavation machinery exceeded the manganese American Conference of Governmental Industrial Hygienists (ACGIH) threshold limit value (TLV) of 0.20 mg/m3 (GM 0.24 mg/m3, n = 14) while none exceeded the TLV during the assembly of small pieces (GM 0.06 mg/m3, n = 8). Welding operations during the assembly of large heavy excavation machinery accessories may pose a significant health hazard. Considering the importance of task-related variables affecting exposure among workers, further studies are needed to better characterize exposure determinants of welding operations during the assembly of heavy excavation machinery accessories.

  18. Automatic inspection of oil and gas pipe welded joints by radiographic images analyses; Analise automatica de imagens radiologicas aplicada a inspecao de juntas soldadas em tubulacoes de oleo e gas

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Guilherme A.; Felisberto, Marcelo K.; Pilkel, Lucas V.; Centeno, Tania M.; Arruda, Lucia V.R. [Centro Federal de Educacao Tecnologica do Parana (CEFET-PR), Curitiba, PR (Brazil). Curso de Pos-graduacao em Engenharia Eletrica e Informatica (CPGEI). Lab. de Automacao e Sistemas de Controle Avancado

    2004-07-01

    The reliability and integrity evaluation of structures and equipment on the petroleum and gas industry is an absolute necessary care due to economic reasons and safety. As a consequence, new supporting technologies for well known nondestructive test and evaluation methods have been developed in order to automate these inspection processes, improving their robustness, accuracy and quickness. On this way, the present work introduces solutions to overcome some obstacles to the automation of the radiographic image analysis task for the pipeline weld joint inspection, on radiographic non-destructive tests and evaluations. The main contributions are related to the improvements to techniques for the automatic weld bean segmentation and the development of an effective algorithm for the weld bean defect detection and extraction of relevant defect descriptors. (author)

  19. LASER WELDING WITH MICRO-JET COOLING FOR TRUCK FRAME WELDING

    OpenAIRE

    Jan PIWNIK; Bożena SZCZUCKA-LASOTA; Tomasz WĘGRZYN; Wojciech MAJEWSKI

    2017-01-01

    The aim of this paper is to analyse the mechanical properties of the weld steel structure of car body truck frames after laser welding. The best welding conditions involve the use of proper materials and alloy elements in steel and filer materials, in addition to welding technology, state of stress and temperature of exploitation. We present for the first time the properties of steel track structures after laser welding with micro-jet cooling. Therefore, good selection of both welding paramet...

  20. Investigation of Laser Welding of Ti Alloys for Cognitive Process Parameters Selection

    Directory of Open Access Journals (Sweden)

    Fabrizia Caiazzo

    2018-04-01

    Full Text Available Laser welding of titanium alloys is attracting increasing interest as an alternative to traditional joining techniques for industrial applications, with particular reference to the aerospace sector, where welded assemblies allow for the reduction of the buy-to-fly ratio, compared to other traditional mechanical joining techniques. In this research work, an investigation on laser welding of Ti–6Al–4V alloy plates is carried out through an experimental testing campaign, under different process conditions, in order to perform a characterization of the produced weld bead geometry, with the final aim of developing a cognitive methodology able to support decision-making about the selection of the suitable laser welding process parameters. The methodology is based on the employment of artificial neural networks able to identify correlations between the laser welding process parameters, with particular reference to the laser power, welding speed and defocusing distance, and the weld bead geometric features, on the basis of the collected experimental data.

  1. Investigation of Laser Welding of Ti Alloys for Cognitive Process Parameters Selection.

    Science.gov (United States)

    Caiazzo, Fabrizia; Caggiano, Alessandra

    2018-04-20

    Laser welding of titanium alloys is attracting increasing interest as an alternative to traditional joining techniques for industrial applications, with particular reference to the aerospace sector, where welded assemblies allow for the reduction of the buy-to-fly ratio, compared to other traditional mechanical joining techniques. In this research work, an investigation on laser welding of Ti⁻6Al⁻4V alloy plates is carried out through an experimental testing campaign, under different process conditions, in order to perform a characterization of the produced weld bead geometry, with the final aim of developing a cognitive methodology able to support decision-making about the selection of the suitable laser welding process parameters. The methodology is based on the employment of artificial neural networks able to identify correlations between the laser welding process parameters, with particular reference to the laser power, welding speed and defocusing distance, and the weld bead geometric features, on the basis of the collected experimental data.

  2. Characterization of the corrosion resistance of biologically active solutions: The effects of anodizing and welding

    Science.gov (United States)

    Walsh, Daniel W.

    1991-01-01

    An understanding of fabrication processes, metallurgy, electrochemistry, and microbiology is crucial to the resolution of microbiologically influenced corrosion (MIC) problems. The object of this effort was to use AC impedance spectroscopy to characterize the corrosion resistance of Type II anodized aluminum alloy 2219-T87 in sterile and biologically active media and to examine the corrosion resistance of 316L, alloy 2219-T87, and titanium alloy 6-4 in the welded and unwelded conditions. The latter materials were immersed in sterile and biologically active media and corrosion currents were measured using the polarization resistance (DC) technique.

  3. Thermal Stir Welding: A New Solid State Welding Process

    Science.gov (United States)

    Ding, R. Jeffrey

    2003-01-01

    Thermal stir welding is a new welding process developed at NASA's Marshall Space Flight Center in Huntsville, AL. Thermal stir welding is similar to friction stir welding in that it joins similar or dissimilar materials without melting the parent material. However, unlike friction stir welding, the heating, stirring and forging elements of the process are all independent of each other and are separately controlled. Furthermore, the heating element of the process can be either a solid-state process (such as a thermal blanket, induction type process, etc), or, a fusion process (YG laser, plasma torch, etc.) The separation of the heating, stirring, forging elements of the process allows more degrees of freedom for greater process control. This paper introduces the mechanics of the thermal stir welding process. In addition, weld mechanical property data is presented for selected alloys as well as metallurgical analysis.

  4. Sustainability of Welding Process through Bobbin Friction Stir Welding

    Science.gov (United States)

    Sued, M. K.; Samsuri, S. S. M.; Kassim, M. K. A. M.; Nasir, S. N. N. M.

    2018-03-01

    Welding process is in high demand, which required a competitive technology to be adopted. This is important for sustaining the needs of the joining industries without ignoring the impact of the process to the environment. Friction stir welding (FSW) is stated to be benefitting the environment through low energy consumption, which cannot be achieved through traditional arc welding. However, this is not well documented, especially for bobbin friction stir welding (BFSW). Therefore, an investigation is conducted by measuring current consumption of the machine during the BFSW process. From the measurement, different phases of BFSW welding process and its electrical demand are presented. It is found that in general total energy in BFSW is about 130kW inclusive of all identified process phases. The phase that utilise for joint formation is in weld phase that used the highest total energy of 120kWs. The recorded total energy is still far below the traditional welding technology and the conventional friction stir welding (CFSW) energy demand. This indicates that BFSW technology with its vast benefit able to sustain the joining technology in near future.

  5. Microstructure and Mechanical Properties of 21-6-9 Stainless Steel Electron Beam Welds

    Science.gov (United States)

    Elmer, John W.; Ellsworth, G. Fred; Florando, Jeffrey N.; Golosker, Ilya V.; Mulay, Rupalee P.

    2017-04-01

    Welds can either be stronger or weaker than the base metals that they join depending on the microstructures that form in the fusion and heat-affected zones of the weld. In this paper, weld strengthening in the fusion zone of annealed 21-6-9 stainless steel is investigated using cross-weld tensile samples, hardness testing, and microstructural characterization. Due to the stronger nature of the weld, the cross-weld tensile tests failed in the base metal and were not able to generate true fusion zone mechanical properties. Nanoindentation with a spherical indenter was instead used to predict the tensile behavior for the weld metal. Extrapolation of the nanoindentation results to higher strains was performed using the Steinberg-Guinan and Johnson-Cook strength models, and the results can be used for weld strength modeling purposes. The results illustrate how microstructural refinement and residual ferrite formation in the weld fusion zone can be an effective strengthener for 21-6-9 stainless steel.

  6. The Influence of Friction Stir Weld Tool Form and Welding Parameters on Weld Structure and Properties: Nugget Bulge in Self-Reacting Friction Stir Welds

    Science.gov (United States)

    Schneider, Judy; Nunes, Arthur C., Jr.; Brendel, Michael S.

    2010-01-01

    Although friction stir welding (FSW) was patented in 1991, process development has been based upon trial and error and the literature still exhibits little understanding of the mechanisms determining weld structure and properties. New concepts emerging from a better understanding of these mechanisms enhance the ability of FSW engineers to think about the FSW process in new ways, inevitably leading to advances in the technology. A kinematic approach in which the FSW flow process is decomposed into several simple flow components has been found to explain the basic structural features of FSW welds and to relate them to tool geometry and process parameters. Using this modelling approach, this study reports on a correlation between the features of the weld nugget, process parameters, weld tool geometry, and weld strength. This correlation presents a way to select process parameters for a given tool geometry so as to optimize weld strength. It also provides clues that may ultimately explain why the weld strength varies within the sample population.

  7. Finite-Element Thermal Analysis and Grain Growth Behavior of HAZ on Argon Tungsten-Arc Welding of 443 Stainless Steel

    Directory of Open Access Journals (Sweden)

    Yichen Wang

    2016-03-01

    Full Text Available This paper presents a numerical and infrared experimental study of thermal and grain growth behavior during argon tungsten arc welding of 443 stainless steel. A 3D finite element model was proposed to simulate the welding process. The simulations were carried out via the Ansys Parametric Design Language (APDL available in the finite-element code, ANSYS. To validate the simulation accuracy, a series of experiments using a fully-automated welding process was conducted. The results of the numerical analysis show that the simulation weld bead size and the experiment results have good agreement. The grain growth in the heat-affected zone of 443 stainless steel is influenced via three factors: (1 the thermal cycle experienced; (2 grain boundary migration; and (3 particle precipitation. Grain boundary migration is the main factor. The modified coefficient k of the grain growth index is calculated. The value is 1.16. Moreover, the microhardness of the weld bead softened slightly compared to the base metal.

  8. Evaluating the Properties of Dissimilar Metal Welding Between Inconel 625 and 316L Stainless Steel by Applying Different Welding Methods and Consumables

    Science.gov (United States)

    Kourdani, Ahmad; Derakhshandeh-Haghighi, Reza

    2018-04-01

    The current work was carried out to characterize welding of Inconel 625 superalloy and 316L stainless steel. In the present study, shielded metal arc welding (SMAW) and gas tungsten arc welding (GTAW) with two types of filler metals (ERNiCrMo-3 and ERSS316L) and an electrode (ENiCrMo-3) were utilized. This paper describes the selection of the proper welding method and welding consumables in dissimilar metal joining. During solidification of ERNiCrMo-3 filler metal, Nb and Mo leave dendritic cores and are rejected to inter-dendritic regions. However, ERSS316L filler metal has small amounts of elements with a high tendency for segregation. So, occurrence of constitutional super-cooling for changing the solidification mode from cellular to dendritic or equiaxed is less probable. Using GTAW with lower heat input results in higher cooling rate and finer microstructure and less Nb segregation. The interface between weld metal and base metal and also unmixed zones was evaluated by scanning electron microscopy and energy dispersive X-ray (EDX) analysis. Microhardness measurements, tensile test, and Charpy impact test were performed to see the effect of these parameters on mechanical properties of the joints.

  9. Nondestructive testing of welds in steam generators for advanced gas cooled reactors at Heyshamm II and Torness

    International Nuclear Information System (INIS)

    Parkin, K.; Bainbridge, A.; Carver, K.; Hammell, R.; Lack, B.J.

    1985-01-01

    The paper concerns non-destructive testing (NDT) of welds in advanced gas cooled steam generators for Heysham II and Torness nuclear power stations. A description is given of the steam generator. The selection of NDT techniques is also outlined, including the factors considered to ascertain the viability of a technique. Examples are given of applied NDT methods which match particular fabrication processes; these include: microfocus radiography, ultrasonic testing of austenitic tube butt welds, gamma-ray isotope projection system, surface crack detection, and automated radiography. Finally, future trends in this field of NDT are highlighted. (UK)

  10. Automatic orbital GTAW welding: Highest quality welds for tomorrow's high-performance systems

    Science.gov (United States)

    Henon, B. K.

    1985-01-01

    Automatic orbital gas tungsten arc welding (GTAW) or TIG welding is certain to play an increasingly prominent role in tomorrow's technology. The welds are of the highest quality and the repeatability of automatic weldings is vastly superior to that of manual welding. Since less heat is applied to the weld during automatic welding than manual welding, there is less change in the metallurgical properties of the parent material. The possibility of accurate control and the cleanliness of the automatic GTAW welding process make it highly suitable to the welding of the more exotic and expensive materials which are now widely used in the aerospace and hydrospace industries. Titanium, stainless steel, Inconel, and Incoloy, as well as, aluminum can all be welded to the highest quality specifications automatically. Automatic orbital GTAW equipment is available for the fusion butt welding of tube-to-tube, as well as, tube to autobuttweld fittings. The same equipment can also be used for the fusion butt welding of up to 6 inch pipe with a wall thickness of up to 0.154 inches.

  11. Advanced characterization techniques in understanding the roles of nickel in enhancing strength and toughness of submerged arc welding high strength low alloy steel multiple pass welds in the as-welded condition

    Science.gov (United States)

    Sham, Kin-Ling

    Striving for higher strength along with higher toughness is a constant goal in material properties. Even though nickel is known as an effective alloying element in improving the resistance of a steel to impact fracture, it is not fully understood how nickel enhances toughness. It was the goal of this work to assist and further the understanding of how nickel enhanced toughness and maintained strength in particular for high strength low alloy (HSLA) steel submerged arc welding multiple pass welds in the as-welded condition. Using advanced analytical techniques such as electron backscatter diffraction, x-ray diffraction, electron microprobe, differential scanning calorimetry, and thermodynamic modeling software, the effect of nickel was studied with nickel varying from one to five wt. pct. in increments of one wt. pct. in a specific HSLA steel submerged arc welding multiple pass weldment. The test matrix of five different nickel compositions in the as-welded and stress-relieved condition was to meet the targeted mechanical properties with a yield strength greater than or equal to 85 ksi, a ultimate tensile strength greater than or equal to 105 ksi, and a nil ductility temperature less than or equal to -140 degrees F. Mechanical testing demonstrated that nickel content of three wt. pct and greater in the as-welded condition fulfilled the targeted mechanical properties. Therefore, one, three, and five wt. pct. nickel in the as-welded condition was further studied to determine the effect of nickel on primary solidification mode, nickel solute segregation, dendrite thickness, phase transformation temperatures, effective ferrite grain size, dislocation density and strain, grain misorientation distribution, and precipitates. From one to five wt. pct nickel content in the as-welded condition, the primary solidification was shown to change from primary delta-ferrite to primary austenite. The nickel partitioning coefficient increased and dendrite/cellular thickness was

  12. Automated delineation and characterization of drumlins using a localized contour tree approach

    Science.gov (United States)

    Wang, Shujie; Wu, Qiusheng; Ward, Dylan

    2017-10-01

    Drumlins are ubiquitous landforms in previously glaciated regions, formed through a series of complex subglacial processes operating underneath the paleo-ice sheets. Accurate delineation and characterization of drumlins are essential for understanding the formation mechanism of drumlins as well as the flow behaviors and basal conditions of paleo-ice sheets. Automated mapping of drumlins is particularly important for examining the distribution patterns of drumlins across large spatial scales. This paper presents an automated vector-based approach to mapping drumlins from high-resolution light detection and ranging (LiDAR) data. The rationale is to extract a set of concentric contours by building localized contour trees and establishing topological relationships. This automated method can overcome the shortcomings of previously manual and automated methods for mapping drumlins, for instance, the azimuthal biases during the generation of shaded relief images. A case study was carried out over a portion of the New York Drumlin Field. Overall 1181 drumlins were identified from the LiDAR-derived DEM across the study region, which had been underestimated in previous literature. The delineation results were visually and statistically compared to the manual digitization results. The morphology of drumlins was characterized by quantifying the length, width, elongation ratio, height, area, and volume. Statistical and spatial analyses were conducted to examine the distribution pattern and spatial variability of drumlin size and form. The drumlins and the morphologic characteristics exhibit significant spatial clustering rather than randomly distributed patterns. The form of drumlins varies from ovoid to spindle shapes towards the downstream direction of paleo ice flows, along with the decrease in width, area, and volume. This observation is in line with previous studies, which may be explained by the variations in sediment thickness and/or the velocity increases of ice flows

  13. Influence of Welding Process and Post Weld Heat Treatment on Microstructure and Pitting Corrosion Behavior of Dissimilar Aluminium Alloy Welds

    Science.gov (United States)

    Venkata Ramana, V. S. N.; Mohammed, Raffi; Madhusudhan Reddy, G.; Srinivasa Rao, K.

    2018-03-01

    Welding of dissimilar Aluminum alloy welds is becoming important in aerospace, shipbuilding and defence applications. In the present work, an attempt has been made to weld dissimilar aluminium alloys using conventional gas tungsten arc welding (GTAW) and friction stir welding (FSW) processes. An attempt was also made to study the effect of post weld heat treatment (T4 condition) on microstructure and pitting corrosion behaviour of these welds. Results of the present investigation established the differences in microstructures of the base metals in T4 condition and in annealed conditions. It is evident that the thickness of the PMZ is relatively more on AA2014 side than that of AA6061 side. In FS welds, lamellar like shear bands are well noticed on the top of the stir zone. The concentration profile of dissimilar friction stir weld in T4 condition revealed that no diffusion has taken place at the interface. Poor Hardness is observed in all regions of FS welds compared to that of GTA welds. Pitting corrosion resistance of the dissimilar FS welds in all regions was improved by post weld heat treatment.

  14. A control system for uniform bead in fillet arc welding on tack welds

    International Nuclear Information System (INIS)

    Kim, Jae Woong; Lee, Jun Young

    2008-01-01

    Positioning a workpiece accurately and preventing weld distortion, tack welding is often adopted before main welding in the construction of welded structures. However, this tack weld deteriorates the final weld bead profile, so that the grinding process is usually performed for a uniform weld bead profile. In this study, a control system for uniform weld bead is proposed for the fillet arc welding on tack welds. The system consists of GMA welding machine, torch manipulator, laser vision sensor for measuring the tack weld size and the database for optimal welding conditions. Experiments have been performed for constructing the database and for evaluating the control capability of the system. It has been shown that the system has the capability to smooth the bead at the high level of quality

  15. Characterization of phosphorus segregation in neutron-irradiated Russian pressure vessel steel weld

    International Nuclear Information System (INIS)

    Miller, M.K.; Jayaram, R.; Russell, K.F.

    1995-01-01

    An atom probe field ion microscopy characterization of three Russian pressure vessel steels has been performed. Field ion micrographs of several lath boundaries have indicated that they are decorated with a semicontinuous film of discrete brightly-imaging precipitates that were identified as molybdenum carbonitrides. In addition, extremely high phosphorus levels were measured at the lath boundaries. The phosphorus was found to be confined to an extremely narrow region indicative of monolayer type segregation. The phosphorus coverage determined from the atom probe results of the unirradiated materials agree with predictions based on McLean's equilibrium model of grain boundary segregation. The boundary phosphorus coverage of a neutron-irradiated weld material was significantly higher than in the unirradiated material. Ultrafine darkly-imaging copper- and phosphorus-enriched precipitates were also observed in the matrix of the neutron-irradiated material. (orig.)

  16. Torque Measurement of Welding of Endplug-Endplate using Multi-pin Remote Welding System

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Dae-Seo; Kim, Soo-Sung; Park, Geun-Il; Lee, Jung-Won; Song, Kee-Chan [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2006-07-01

    As fuel bundles in PHWR irradiates, inner pressure in claddings of fuel rods increases owing to outer pressure and fission products of nuclear fissions. Because of leak possibility of welding between cladding and end plug, this welding part connects with safety of nuclear fuel rods. Because of importance of this welding part, weldability of end plug-cladding of nuclear fuel rods is continually researched. Welding method for research and commercialization is classified as melting, solid type welding or resistance welding. End plug cladding welding of nuclear fuel rods in PHWR takes advantage of resistance upset butt welding using multicycle mode. This method makes weld flash and shapes re-entrant corner owing to welding heat due to resistivity, contact resistance of cladding-end plug, and inelasticity deformation due to pressure. Welding part between cladding and end plug receives stresses and makes small cracks. In this study, remote welding system for multi-pin assembly was designed, fabricated and welding specimens of end plug-endplate were made using electrical resistance method. The torques of welding between end plug and endplate were measured. These results on welding current, pressure of main electrode and pressure of branch electrode were analyzed. Weldability between end plug and endplate was confirmed through metallographic examinations. In the future, optimal welding examinations due to welding current, welding pressure and welding time will be performed to improve weldability of end plug-endplate.

  17. Advantages of new micro-jet welding technology on weld microstructure control

    Directory of Open Access Journals (Sweden)

    Jan PIWNIK

    2013-01-01

    Full Text Available An innovative apparatus to welding process with micro-jet cooling of the weld made it possible to carry out technological tests, which have proved theoretical considerations about this problem. This project gives real opportunities for professional development in the field of welding with controlling the parameters of weld structure. These tests have proved that the new micro-jet technology has the potential for growth. It may be great achievement of welding technology in order to increase weld metal strength. The new technology with micro-jet cooling may have many practical applications in many fields, for example such as in the transport industry or to repair damaged metal elements. The advantages of the new device over the traditional system are the ability to control the structure of the weld, the weld mechanical performance increases and improve the quality of welded joints.

  18. Microstructure evolution of electron beam welded Ti3Al-Nb joint

    International Nuclear Information System (INIS)

    Feng Jicai; Wu Huiqiang; He Jingshan; Zhang Bingang

    2005-01-01

    The microstructure evolution characterization in high containing Nb, low Al titanium aluminide alloy of electron beam welded joints was investigated by means of OM, SEM, XRD, TEM and microhardness analysis. The results indicated that the microstructure of the weld metal made with electron beam under the welding conditions employed in this work was predominantly metastable, retaining ordered β phase (namely B2 phase), and was independent of the welding parameters but independent of the size and the orientation of the weld solidification structures. As the heat input is decreased, the cellular structure zone is significantly reduced, and then the crystallizing morphology of fusion zone presented dendritically columnar structure. There existed grain growth coarsening in heat affected zone (HAZ) for insufficient polygonization. Both fusion zone (FZ) and the HAZ had higher microhardness than the base metal

  19. Metallurgy and mechanical properties variation with heat input,during dissimilar metal welding between stainless and carbon steel

    Science.gov (United States)

    Ramdan, RD; Koswara, AL; Surasno; Wirawan, R.; Faturohman, F.; Widyanto, B.; Suratman, R.

    2018-02-01

    The present research focus on the metallurgy and mechanical aspect of dissimilar metal welding.One of the common parameters that significantly contribute to the metallurgical aspect on the metal during welding is heat input. Regarding this point, in the present research, voltage, current and the welding speed has been varied in order to observe the effect of heat input on the metallurgical and mechanical aspect of both welded metals. Welding was conducted by Gas Metal Arc Welding (GMAW) on stainless and carbon steel with filler metal of ER 309. After welding, hardness test (micro-Vickers), tensile test, macro and micro-structure characterization and Energy Dispersive Spectroscopy (EDS) characterization were performed. It was observed no brittle martensite observed at HAZ of carbon steel, whereas sensitization was observed at the HAZ of stainless steel for all heat input variation at the present research. Generally, both HAZ at carbon steel and stainless steel did not affect tensile test result, however the formation of chromium carbide at the grain boundary of HAZ structure (sensitization) of stainless steel, indicate that better process and control of welding is required for dissimilar metal welding, especially to overcome this issue.

  20. TECHNOLOGICAL ISSUES IN MECHANISED FEED WIG/TIG WELDING SURFACING OF WELDING

    Directory of Open Access Journals (Sweden)

    BURCA Mircea

    2016-09-01

    manual welding tests in the light of using the process for welding surfacing being known that in such applications mechanised operations are recommended whenever possible given the latter strengths i.e. increased productivity and quality deposits. The research also aims at achieving a comparative a study between wire mechanised feed based WIG manual welding and the manual rod entry based manual welding in terms of geometry deposits, deposits aesthetics, operating technique, productivity, etc . In this regard deposits were made by means of two welding procedures, and subsequently welding surfacing was made with the optimum values of the welding parameters in this case.

  1. Welding Penetration Control of Fixed Pipe in TIG Welding Using Fuzzy Inference System

    Science.gov (United States)

    Baskoro, Ario Sunar; Kabutomori, Masashi; Suga, Yasuo

    This paper presents a study on welding penetration control of fixed pipe in Tungsten Inert Gas (TIG) welding using fuzzy inference system. The welding penetration control is essential to the production quality welds with a specified geometry. For pipe welding using constant arc current and welding speed, the bead width becomes wider as the circumferential welding of small diameter pipes progresses. Having welded pipe in fixed position, obviously, the excessive arc current yields burn through of metals; in contrary, insufficient arc current produces imperfect welding. In order to avoid these errors and to obtain the uniform weld bead over the entire circumference of the pipe, the welding conditions should be controlled as the welding proceeds. This research studies the intelligent welding process of aluminum alloy pipe 6063S-T5 in fixed position using the AC welding machine. The monitoring system used a charge-coupled device (CCD) camera to monitor backside image of molten pool. The captured image was processed to recognize the edge of molten pool by image processing algorithm. Simulation of welding control using fuzzy inference system was constructed to simulate the welding control process. The simulation result shows that fuzzy controller was suitable for controlling the welding speed and appropriate to be implemented into the welding system. A series of experiments was conducted to evaluate the performance of the fuzzy controller. The experimental results show the effectiveness of the control system that is confirmed by sound welds.

  2. Microstructural Characterization and Mechanical Properties Analysis of Weld Metals with Two Ni Contents During Post-Weld Heat Treatments

    Science.gov (United States)

    Wu, Da-yong; Han, Xiu-lin; Tian, Hong-tao; Liao, Bo; Xiao, Fu-ren

    2015-05-01

    This study designed post-weld heat treatments, including reheating and tempering, associated with hot bending to investigate the microstructures, toughness, and hardness of two weld metals with different Ni contents (transformation temperature and increased the proportion of acicular ferrite (AF). Furthermore, a high Ni content promoted the martensite/austenite (M/A) constituent formation after reheating. The promotion of the M/A formation increased the number of cementite particles, and accelerated cementite coarsening during tempering. The large-angle grain boundary density from the AF improved the toughness despite the negative effect of cementite. The strengthening contributions were calculated, and the grain refinement was the greatest. The high Ni content decreased the effective grain size with a 2 deg tolerance angle, thus enhancing the grain refinement contribution.

  3. Effect of Welding Parameters on Dilution and Weld Bead Geometry in Cladding

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effect of pulsed gas metal arc welding (GMAW) variables on the dilution and weld bead geometry in cladding X65 pipeline steel with 316L stainless steel was studied. Using a full factorial method, a series of experiments were carried out to know the effect of wire feed rate, welding speed, distance between gas nozzle and plate, and the vertical angle of welding on dilution and weld bead geometry. The findings indicate that the dilution of weld metal and its dimension i.e. width, height and depth increase with the feed rate, but the contact angle of the bead decreases first and then increases. Meantime, welding speed has an opposite effect except for dilution. There is an interaction effect between welding parameters at the contact angle. The results also show forehand welding or decreasing electrode extension decrease the angle of contact. Finally,a mathematical model is contrived to highlight the relationship between welding variables with dilution and weld bead geometry.

  4. Similar and dissimilar friction welding of Zr-Cu-Al bulk glassy alloys

    International Nuclear Information System (INIS)

    Shin, Hyung-Seop; Park, Jung-Soo; Jung, Yoon-Chul; Ahn, Jung-Ho; Yokoyama, Yoshihiko; Inoue, Akihisa

    2009-01-01

    The friction welding of three kinds of Zr-Cu-Al bulk glassy alloys (BGAs) which show eutectic or hypoeutectic compositions to similar and dissimilar BGAs and crystalline metals has been tried. The shape and volume of the protrusion formed at the weld interface were investigated. In order to characterize the friction welded interface, micrographic observation and X-ray diffraction analysis on the weld cross-section were carried out. A successful joining of Zr-Cu-Al bulk glassy alloys to similar and dissimilar BGAs was achieved without occurrence of crystallizations at the weld interface through the precise control of friction conditions. In addition, the joining of Zr 50 Cu 40 Al 10 BGA to crystalline alloys was tried, but it was only successful for specific material combinations. The residual strength after welding of dissimilar BGAs was evaluated by the four-point bending test.

  5. Efecto del procedimiento de soldadura sobre las propiedades de uniones soldadas de aceros microaleados para cañería Welding procedure effect on the properties of microalloyed steel welded joints for metal fabrication

    Directory of Open Access Journals (Sweden)

    Mónica Zalazar

    2009-03-01

    Full Text Available El objetivo del trabajo fue, en esta primera etapa, comparar las propiedades mecánicas y la microestructura del acero HIC, aleado al Nb-Ti-Cu-Ni, resistente a la corrosión, con las del acero normal NOR, microaleado con Nb-V-Ti, ambos caracterizados mediante análisis químico, mediciones de dureza, estudios metalográficos y ensayos de tracción e impacto. Con el fin de establecer la temperatura de precalentamiento óptima se realizaron ensayos de soldabilidad Tekken a distintas temperaturas y de acuerdo con la Norma JIS Z 3158. Luego se llevaron a cabo soldaduras circunferenciales de cañerías fabricadas con ambos aceros diseñándose procedimientos para la utilización, por un lado, de electrodos revestidos (SMAW: shielded metal arc welding, electrodos de distintos proveedores para todas las pasadas y por el otro, la primera pasada usando soldadura automática con alambre macizo bajo CO2 (GMAW: gas metal arc welding y el resto de las mismas con alambre tubular autoprotegido (FCAW-S: flux cored arc welding-selfshielded. Las soldaduras fueron calificadas de acuerdo con el Código API 1104. Los resultados de los análisis metalográficos y los ensayos mecánicos de tracción, dureza e impacto de las juntas soldadas revelaron la influencia de los consumibles de soldadura y del metal base en las propiedades de las uniones. Se observaron diferencias en las propiedades de las uniones soldadas con consumibles de igual especificación y distintos proveedores. De las diferentes combinaciones ensayadas se definieron valores óptimos para la soldadura de estos aceros.The objective of this work was, in this first step, to compare mechanical property and microstructure of the steel HIC, alloyed with Nb-Ti-Cu-Ni, corrosion resistant, to those of a normal steel NOR, microlloyed with Nb-V-Ti, characterized through chemical analysis, hardness measurements, metallographic studies and tensile and Charpy-V properties. The preheating temperature was established

  6. Evaluation the Mechanical Properties of Shot Peened TIG Welded Aluminum Sheets

    Directory of Open Access Journals (Sweden)

    Ahmed Ameed Zain Al-Abideen

    2017-04-01

    Full Text Available A tungsten inert gas (TIG welding is one of the most popular kinds of welding used to join metals mainly for aluminum alloys. However, many challenges may be met with this kind of joining process; these challenges arise from decay of mechanical properties of welded materials. In the present study, an attempt was made to enhancing the mechanical properties of TIG weld joint of 6061-T6 aluminum alloy by hardening the surfaces using shoot peening technique. To optimize the shoot peening process three times of exposure (5, 10, and 15 min. was used. All peened and unpeened, and welded and unwelded samples were characterized by metallographic test to indicate the phase transformation and modification in microstructure occurring during welding process. Tensile test and Vickers micro-hardness measurements were performed for all samples to investigate the effect of shoot peening on mechanical properties of welded aluminum. The results indicated a significant improvement in properties for peened welded and unwelded samples compared with those unpeened one. Also, the results showed that the tensile and microhardness properties were increased with increasing the time of exposure to 15 min. due to generation of compressive residual stresses at surface.

  7. Modeling of welded bead profile for rapid prototyping by robotic MAG welding

    Institute of Scientific and Technical Information of China (English)

    CAO Yong; ZHU Sheng; WANG Tao; WANG Wanglong

    2009-01-01

    As a deposition technology, robotic metal active gas(MAG) welding has shown new promise for rapid prototyping (RP) of metallic parts. During the process of metal forming using robotic MAG welding, sectional profile of single-pass welded bead is critical to formed accuracy and quality of metal pans. In this paper, the experiments of single-pass welded bead for rapid prototyping using robotic MAG welding were carried out. The effect of some edge detectors on the cross-sectional edge of welded bead was discussed and curve fitting was applied using leat square fitting. Consequently, the mathematical model of welded bead profile was developed. The experimental results show that good shape could be obtained under suitable welding parameters. Canny operawr is suitable to edge detection of welded bead profile, and the mathematical model of welded bead profile developed is approximately parabola.

  8. Prediction of mechanical properties in friction stir welds of pure copper

    International Nuclear Information System (INIS)

    Heidarzadeh, A.; Saeid, T.

    2013-01-01

    Highlights: • Range of parameters for defect-free friction stir welded pure copper was reached. • Models were developed for predicting UTS, TE and hardness of pure copper joints. • Analysis of variance was used to validate the developed models. • Effect of welding parameters on mechanical behavior of welded joints was explored. • The microstructure and fracture surface of welded joints were investigated. - Abstract: This research was carried out to predict the mechanical properties of friction stir welded pure copper joints. Response surface methodology based on a central composite rotatable design with three parameters, five levels, and 20 runs, was used to conduct the experiments and to develop the mathematical regression model by using of Design-Expert software. The three welding parameters considered were rotational speed, welding speed, and axial force. Analysis of variance was applied to validate the predicted models. Microstructural characterization and fractography of joints were examined using optical and scanning electron microscopes. Also, the effects of the welding parameters on mechanical properties of friction stir welded joints were analyzed in detail. The results showed that the developed models were reasonably accurate. The increase in welding parameters resulted in increasing of tensile strength of the joints up to a maximum value. Elongation percent of the joints increased with increase of rotational speed and axial force, but decreased by increasing of welding speed, continuously. In addition, hardness of the joints decreased with increase of rotational speed and axial force, but increased by increasing of welding speed. The joints welded at higher heat input conditions revealed more ductility fracture mode

  9. Analysis of parameter interference in welding process for manufacturing structures in steel

    International Nuclear Information System (INIS)

    Vidor, M.; Vieira, L.; Giacomelli, T.; Kunst, S.R.; Gerhardt, G.J.L.

    2016-01-01

    This work studies and characterizes the effect of welding operations on industrial steel samples making a comparison between a non-destructive measurement (magnetic Barkhausen noise (BN) and traction tests. Three groups of samples were tested: two welded groups with distinct processes (faster and slower) and a control without welding. Welded and control samples were mapped onto its surface using BN and the BN variance along the surface was compared to the traction test results. The variation in tensile traction showed correlation with the variation of the BN mapped surface so that it is possible to expect that this non-destructive test can be used for quality control purposes at low cost in welding processes, where homogeneity plays a fundamental role. (author)

  10. Investigation of the Microstructure of Laser-Arc Hybrid Welded Boron Steel

    Science.gov (United States)

    Son, Seungwoo; Lee, Young Ho; Choi, Dong-Won; Cho, Kuk-Rae; Shin, Seung Man; Lee, Youngseog; Kang, Seong-Hoon; Lee, Zonghoon

    2018-05-01

    The microstructure of boron steel for automotive driving shaft manufacturing after laser-arc hybrid welding was investigated. Laser-arc hybrid welding technology was applied to 3-mm-thick plates of boron steel, ST35MnB. The temperature distribution of the welding pool was analyzed using the finite element method, and the microstructure of the welded boron steel was characterized using optical microscopy and scanning and transmission electron microscopies. The microstructure of the weld joint was classified into the fusion zone, the heat-affected zone (HAZ), and the base material. At the fusion zone, the bainite grains exist in the martensite matrix and show directionality because of heat input from the welding. The HAZ is composed of smaller grains, and the hardness of the HAZ is greater than that of the fusion zone. We discuss that the measured grain size and the hardness of the HAZ originate from undissolved precipitates that retard the grain growth of austenite.

  11. Fusion welding process

    Science.gov (United States)

    Thomas, Kenneth C.; Jones, Eric D.; McBride, Marvin A.

    1983-01-01

    A process for the fusion welding of nickel alloy steel members wherein a ferrite containing pellet is inserted into a cavity in one member and melted by a welding torch. The resulting weld nugget, a fusion of the nickel containing alloy from the members to be welded and the pellet, has a composition which is sufficiently low in nickel content such that ferrite phases occur within the weld nugget, resulting in improved weld properties. The steel alloys encompassed also include alloys containing carbon and manganese, considered nickel equivalents.

  12. Melt pool and keyhole behaviour analysis for deep penetration laser welding

    International Nuclear Information System (INIS)

    Fabbro, R

    2010-01-01

    One usually defines the main characteristic of the welding performances of a given laser system by its 'penetration curve' that corresponds to the welding depth as a function of the welding speed V w for a given set of operating parameters. Analysis of a penetration curve is interesting and gives very fruitful results. Coupled with high-speed video imaging of melt pool surface and ejected plume behaviour, the analysis of this penetration curve on a very large range of welding speeds, typically from 0 to 50 m min -1 , has allowed us to observe very different and characteristic regimes. These regimes are mainly characterized by the physical processes by which they impede the laser beam penetration inside the material. We show that it is only at rather high welding speeds that these limiting processes are reduced. Consequently, the scaling law of welding depth with welding speed is in agreement with adapted modelling of this process. On the other hand, as the welding speed is reduced, different effects depending on the weld pool dynamics and plume interaction strongly disturb the keyhole stability and are responsible for the deviation of the penetration curve from the previous modelling that agrees with a 1/V w scaling law. A corresponding criterion for the occurrence of this effect is defined.

  13. Q-switch Nd:YAG laser welding of AISI 304 stainless steel foils

    Energy Technology Data Exchange (ETDEWEB)

    P' ng, Danny [Laboratory for Lasers, MEMS and Nanotechnology, Department of Mechanical Engineering, Iowa State University, Ames, IA 50011-2161 (United States); Molian, Pal [Laboratory for Lasers, MEMS and Nanotechnology, Department of Mechanical Engineering, Iowa State University, Ames, IA 50011-2161 (United States)], E-mail: molian@iastate.edu

    2008-07-15

    Conventional fusion welding of stainless steel foils (<100 {mu}m thickness) used in computer disk, precision machinery and medical device applications suffer from excessive distortion, formation of discontinuities (pore, void and hot crack), uncontrolled melting (melt-drop through) and poor aesthetics. In this work, a 15 ns pulsed, 400 mJ Nd:YAG laser beam was utilized to overcome these barriers in seam welding of 60 {mu}m thin foil of AISI 304 stainless steel. Transmission electron microscopy was used to characterize the microstructures while hardness and tensile-shear tests were used to evaluate the strengths. Surface roughness was measured using a DekTak profilometer while porosity content was estimated using the light microscope. Results were compared against the data obtained from resistance seam welding. Laser welding, compared to resistance seam welding, required nearly three times less heat input and produced welds having 50% narrower seam, 15% less porosity, 25% stronger and improved surface aesthetics. In addition, there was no evidence of {delta}-ferrite in laser welds, supporting the absence of hot cracking unlike resistance welding.

  14. Corrosion resistance of ERW (Electric Resistance Welded) seam welds as compared to metal base in API 5L steel pipes

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Velasquez, Jorge L.; Godinez Salcedo, Jesus G.; Lopez Fajardo, Pedro [Instituto Politecnico Nacional (IPN), Mexico D.F. (Mexico). Escuela Superior de Ingenieria Quimica e Industrias Extractivas (ESIQIE). Dept. de Ingenieria Metalurgica

    2009-07-01

    The corrosion resistance of ERW seam welds and the base metal in API 5L X70 steel pipes was evaluated by Tafel tests. The procedure was according to ASTM G3 standard. The study was completed with metallographic and chemical characterization of the tested zones, that is, the welded zone and the base metal away of the weld. All tests were made on the internal surface of the pipe in order to assess the internal corrosion of an in-service pipeline made of the API 5L X70 steel. The test solution was acid brine prepared according to NACE Publications 1D182 and 1D196. The results showed that the ERW seam weld corrodes as much as three times faster than the base material. This behavior is attributed to a more heterogeneous microstructure with higher internal energy in the ERW seam weld zone, as compared to the base metal, which is basically a ferrite pearlite microstructure in a normalized condition. This result also indicates that pipeline segments made of ERW steel pipe where the seam weld is located near or at the bottom of the pipe are prone to a highly localized attack that may form channels of metal loss if there is water accumulation at the bottom of the pipeline. (author)

  15. Effect on spot welding variables on nugget size and bond strength of 304 austenitic stainless steel

    International Nuclear Information System (INIS)

    Charde, Nachimani

    2012-01-01

    Resistance spot welding (RSW) has revolutionized mechanical assembly in the automotive industry since its introduction in the early 1970s. Currently, one mechanical assembly in five is welded using spot welding technology, with welding of stainless steel sheet becoming increasingly common. Consequently, this research paper examines the spot welding of 2 mm thick 304 austenitic stainless steel sheet. The size of a spot weld nugget is primarily determined by the welding parameters: welding current, welding time, electrode force and electrode tip diameter However, other factors such as electrode deformation, corrosion, dissimilar materials and material properties also affect the nugget size and shape. This paper analyzes only the effects of current, weld time and force variations with unchanged electrode tip diameter. A pneumatically driven 75kVA spot welder was used to accomplish the welding process and the welded samples were subjected to tensile, hardness and metallurgical testing to characterize the size and shape of the weld nugget and the bond strength.

  16. MAG narrow gap welding - an economic way to minimize welding expenses

    International Nuclear Information System (INIS)

    Kast, W.; Scholz, E.; Weyland, F.

    1982-01-01

    The thicker structural components are, the more important it is to take measures to reduce the volume of the weld. The welding process requiring the smallest possible weld section is the so-called narrow gap process. In submerged arc narrow gap welding as well as in MAG narrow gap welding different variants are imaginable, some of them already in practical use. With regard to efficiency and weld quality an optimum variant of the MAG narrow gap welding process is described. It constitutes a two wire system in which two wire electrodes of 1.2 mm diameter are arranged one behind the other. In order to avoid lack of fusion, the wire guides are slightly pointed towards each groove face. Thus, by inclining the two arcs burning one behind the other in the direction of weld progress, it is achieved that two separately solidifying weld pools and two beads per layer are simultaneously formed. Welding parameters are selected in such a way that a heat input of 16-20 kJ/cm and a deposition rate of 11-16 kgs/h are obtained. In spite of this comparatively high deposition rate, good impact values are found both in the weld and HAZ (largely reduced coarse-grain zone) which is due to an optimum weld build-up. With the available welding equipment the process can be applied to structural members having a thickness of 40-400 mm. The width of gap is 13 mm (root section) with a bevel angle of 1 0 . As filler metal, basic flux-cored wires are used which, depending on the base metal to be welded and the required tensile properties, can be of the Mn-, MnMo-, MnCrMo-, MnNi-, or MnNiMo-alloyed types. (orig.)

  17. Flexural testing of weld site and HVOF coating characteristics

    CERN Document Server

    Yilbas, Bekir Sami; Sahin, Ahmet

    2014-01-01

    This book provides fundamental understanding and practical application of characteristics of flexural motion in the assessment of the weld size and coating thickness. Some formulations of heat transfer and flexural motion are introduced while displacement and load correlation are used to estimate elastic modules and the size of the heat affected zone as well as the coating thickness. The case studies presented give a practical understanding of weld size and coating thickness characterizations.

  18. Advanced Welding Applications

    Science.gov (United States)

    Ding, Robert J.

    2010-01-01

    Some of the applications of advanced welding techniques are shown in this poster presentation. Included are brief explanations of the use on the Ares I and Ares V launch vehicle and on the Space Shuttle Launch vehicle. Also included are microstructural views from four advanced welding techniques: Variable Polarity Plasma Arc (VPPA) weld (fusion), self-reacting friction stir welding (SR-FSW), conventional FSW, and Tube Socket Weld (TSW) on aluminum.

  19. WELDING METHOD

    Science.gov (United States)

    Cornell, A.A.; Dunbar, J.V.; Ruffner, J.H.

    1959-09-29

    A semi-automatic method is described for the weld joining of pipes and fittings which utilizes the inert gasshielded consumable electrode electric arc welding technique, comprising laying down the root pass at a first peripheral velocity and thereafter laying down the filler passes over the root pass necessary to complete the weld by revolving the pipes and fittings at a second peripheral velocity different from the first peripheral velocity, maintaining the welding head in a fixed position as to the specific direction of revolution, while the longitudinal axis of the welding head is disposed angularly in the direction of revolution at amounts between twenty minutas and about four degrees from the first position.

  20. Friction stir welding tool and process for welding dissimilar materials

    Science.gov (United States)

    Hovanski, Yuri; Grant, Glenn J; Jana, Saumyadeep; Mattlin, Karl F

    2013-05-07

    A friction stir welding tool and process for lap welding dissimilar materials are detailed. The invention includes a cutter scribe that penetrates and extrudes a first material of a lap weld stack to a preselected depth and further cuts a second material to provide a beneficial geometry defined by a plurality of mechanically interlocking features. The tool backfills the interlocking features generating a lap weld across the length of the interface between the dissimilar materials that enhances the shear strength of the lap weld.

  1. Syllabus in Trade Welding.

    Science.gov (United States)

    New York State Education Dept., Albany. Bureau of Secondary Curriculum Development.

    The syllabus outlines material for a course two academic years in length (minimum two and one-half hours daily experience) leading to entry-level occupational ability in several welding trade areas. Fourteen units covering are welding, gas welding, oxyacetylene welding, cutting, nonfusion processes, inert gas shielded-arc welding, welding cast…

  2. Investigation and application of intense magnetic fields to welding of stainless steel tubes

    International Nuclear Information System (INIS)

    Gallizzi, H.

    1986-05-01

    Conventional welding techniques are not always suitable for stainless steels and for a number of other alloys with highly interesting properties, so that new methods must be developed. The purpose of this work was to experiment with a high velocity impact welding method using intense magnetic fields produced in a coil supplied by an electric pulse generator. Nondestructive and destructive tests demonstrated the quality of the resulting weld. Metallurgical analysis of the weld zone confirmed the properties characterizing a satisfactory weld in the solid state with interdiffusion. Potential industrial applications of this technique may be considered after upgrading the pulse generator utilized and in particular for joints of fuel pins for fast reactors [fr

  3. Nanoindentation of Electropolished FeCrAl Alloy Welds

    Energy Technology Data Exchange (ETDEWEB)

    Weaver, Jordan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aydogan, Eda [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mara, Nathan Allan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Maloy, Stuart Andrew [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-13

    The present report summarizes Berkovich nanoindentation modulus and hardness measurements on two candidate FeCrAl alloys (C35M and C37M) on as-received (AR) and welded samples. In addition, spherical nanoindentation stress-strain measurements were performed on individual grains to provide further information and demonstrate the applicability of these protocols to mechanically characterizing welds in FeCrAl alloys. The indentation results are compared against the reported tensile properties for these alloys to provide relationships between nanoindentation and tensile tests and insight into weldsoftening for these FeCrAl alloys. Hardness measurements revealed weld-softening for both alloys in good agreement with tensile test results. C35M showed a larger reduction in hardness at the weld center from the AR material compared to C37M; this is also consistent with tensile tests. In general, nanohardness was shown to be a good predictor of tensile yield strength and ultimate tensile stress for FeCrAl alloys. Spherical nanoindentation measurements revealed that the fusion zone (FZ) + heat affected zone (HAZ) has a very low defect density typical of well-annealed metals as indicated by the frequent pop-in events. Spherical nanoindentation yield strength, Berkovich hardness, and tensile yield strength measurements on the welded material all show that the C37M welded material has a higher strength than C35M welded material. From the comparison of nanoindentation and tensile tests, EBSD microstructure analysis, and information on the processing history, it can be deduced that the primary driver for weld-softening is a change in the defect structure at the grain-scale between the AR and welded material. These measurements serve as baseline data for utilizing nanoindentation for studying the effects of radiation damage on these alloys.

  4. Latest MIG, TIG arc-YAG laser hybrid welding systems for various welding products

    Science.gov (United States)

    Ishide, Takashi; Tsubota, Shuho; Watanabe, Masao

    2003-03-01

    Laser welding is capable of high-efficiency low-strain welding, and so its applications are started to various products. We have also put the high-power YAG laser of up to 10 kW to practical welding use for various products. On the other hand the weakest point of this laser welding is considered to be strict in the welding gap aiming allowance. In order to solve this problem, we have developed hybrid welding of TIG, MIG arc and YAG laser, taking the most advantages of both the laser and arc welding. Since the electrode is coaxial to the optical axis of the YAG laser in this process, it can be applied to welding of various objects. In the coaxial MIG, TIG-YAG welding, in order to make irradiation positions of the YAG laser beams having been guided in a wire or an electrode focused to the same position, the beam transmitted in fibers is separated to form a space between the separated beams, in which the laser is guided. With this method the beam-irradiating area can be brought near or to the arc-generating point. This enables welding of all directions even for the member of a three-dimensional shape. This time we carried out welding for various materials and have made their welding of up to 1 mm or more in welding groove gap possible. We have realized high-speed 1-pass butt welding of 4m/min in welding speed with the laser power of 3 kW for an aluminum alloy plate of approximately 4 mm thick. For a mild steel plate also we have realized butt welding of 1m/min with 5 kW for 6 mm thick. Further, in welding of stainless steel we have shown its welding possibility, by stabilizing the arc with the YAG laser in the welding atmosphere of pure argon, and shown that this welding is effective in high-efficiency welding of various materials. Here we will report the fundamental welding performances and applications to various objects for the coaxial MIG, TIG-YAG welding we have developed.

  5. Ultrasonic testing of austenitic welds and its dependency on the welding process

    International Nuclear Information System (INIS)

    Tabatabaeipour, S.M.; Honarvar, F.

    2009-01-01

    This paper describes the ultrasonic testing of austenitic welds prepared by two different welding processes. The tests were carried out by the ultrasonic Time-of-Flight Diffraction (ToFD) technique. Shielded Metal Arc Welding (SMAW) and Gas Tungsten Arc Welding (GTAW) are the welding processes used for preparing the specimens. Identical artificial defects were implanted in both welds during the welding process. Both specimens were examined by the ToFD technique under similar conditions. Metallographic images were also obtained from the cross sectional plane of both the SMA and GTA welds. These images show that the grain orientation in the two welded specimens are different. D-scan images obtained by the ToFD technique from these welds indicates that inspecting the specimens prepared by the SMAW process is easier than the one made by the GTAW process. The results also show that the D-scan images cannot reveal the small vertical drilled holes implanted in the specimens. (author)

  6. Double-Sided Single-Pass Submerged Arc Welding for 2205 Duplex Stainless Steel

    Science.gov (United States)

    Luo, Jian; Yuan, Yi; Wang, Xiaoming; Yao, Zongxiang

    2013-09-01

    The duplex stainless steel (DSS), which combines the characteristics of ferritic steel and austenitic steel, is used widely. The submerged arc welding (SAW) method is usually applied to join thick plates of DSS. However, an effective welding procedure is needed in order to obtain ideal DSS welds with an appropriate proportion of ferrite (δ) and austenite (γ) in the weld zone, particularly in the melted zone and heat-affected zone. This study evaluated the effectiveness of a high efficiency double-sided single-pass (DSSP) SAW joining method for thick DSS plates. The effectiveness of the converse welding procedure, characterizations of weld zone, and mechanical properties of welded joint are analyzed. The results show an increasing appearance and continuous distribution feature of the σ phase in the fusion zone of the leading welded seam. The converse welding procedure promotes the σ phase to precipitate in the fusion zone of leading welded side. The microhardness appears to significantly increase in the center of leading welded side. Ductile fracture mode is observed in the weld zone. A mixture fracture feature appears with a shear lip and tears in the fusion zone near the fusion line. The ductility, plasticity, and microhardness of the joints have a significant relationship with σ phase and heat treatment effect influenced by the converse welding step. An available heat input controlling technology of the DSSP formation method is discussed for SAW of thick DSS plates.

  7. Friction Stir Welding of Tapered Thickness Welds Using an Adjustable Pin Tool

    Science.gov (United States)

    Adams, Glynn; Venable, Richard; Lawless, Kirby

    2003-01-01

    Friction stir welding (FSW) can be used for joining weld lands that vary in thickness along the length of the weld. An adjustable pin tool mechanism can be used to accomplish this in a single-pass, full-penetration weld by providing for precise changes in the pin length relative to the shoulder face during the weld process. The difficulty with this approach is in accurately adjusting the pin length to provide a consistent penetration ligament throughout the weld. The weld technique, control system, and instrumentation must account for mechanical and thermal compliances of the tooling system to conduct tapered welds successfully. In this study, a combination of static and in-situ measurements, as well as active control, is used to locate the pin accurately and maintain the desired penetration ligament. Frictional forces at the pin/shoulder interface were a source of error that affected accurate pin position. A traditional FSW pin tool design that requires a lead angle was used to join butt weld configurations that included both constant thickness and tapered sections. The pitch axis of the tooling was fixed throughout the weld; therefore, the effective lead angle in the tapered sections was restricted to within the tolerances allowed by the pin tool design. The sensitivity of the FSW process to factors such as thickness offset, joint gap, centerline offset, and taper transition offset were also studied. The joint gap and the thickness offset demonstrated the most adverse affects on the weld quality. Two separate tooling configurations were used to conduct tapered thickness welds successfully. The weld configurations included sections in which the thickness decreased along the weld, as well as sections in which the thickness increased along the weld. The data presented here include weld metallography, strength data, and process load data.

  8. The technology and welding joint properties of hybrid laser-tig welding on thick plate

    Science.gov (United States)

    Shenghai, Zhang; Yifu, Shen; Huijuan, Qiu

    2013-06-01

    The technologies of autogenous laser welding and hybrid laser-TIG welding are used on thick plate of high strength lower alloy structural steel 10CrNiMnMoV in this article. The unique advantages of hybrid laser-TIG welding is summarized by comparing and analyzing the process parameters and welding joints of autogenous laser welding laser welding and hybrid laser-TIG welding. With the optimal process parameters of hybrid welding, the good welding joint without visible flaws can be obtained and its mechanical properties are tested according to industry standards. The results show that the hybrid welding technology has certain advantages and possibility in welding thick plates. It can reduce the demands of laser power, and it is significant for lowering the aspect ratio of weld during hybrid welding, so the gas in the molten pool can rise and escape easily while welding thick plates. Therefore, the pores forming tendency decreases. At the same time, hybrid welding enhances welding speed, and optimizes the energy input. The transition and grain size of the microstructure of hybrid welding joint is better and its hardness is higher than base material. Furthermore, its tensile strength and impact toughness is as good as base material. Consequently, the hybrid welding joint can meet the industry needs completely.

  9. Improving friction stir welding of blanks of different thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Fratini, L. [Dipartimento di Tecnologia Meccanica, Produzione e Ingegneria Gestionale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy)], E-mail: abaqus@dtpm.unipa.it; Buffa, G. [Dipartimento di Tecnologia Meccanica, Produzione e Ingegneria Gestionale, Universita di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Shivpuri, R. [Ohio State University, Department of Industrial, Welding and Systems Engineering, 1971 Neil Avenue, 210 Baker Systems, Columbus, Ohio 43210 (United States)

    2007-06-25

    Friction stir welding (FSW) appears to be a promising process even in the welding of blanks of different thicknesses. Actually, such particular tailor welded blanks (TWBs) are usually characterized by a reduction in ductility due to the utilized fusion welding process. In this paper the authors, starting from a preliminary feasibility study, investigate the possibility to improve the mechanical performances of friction stir welded blanks of aluminum alloy with different thicknesses. Both experiments and a FE analyses are developed for a few case studies with different thickness ratios between the blanks. The numerical investigations are performed with the aim to highlight the material temperature distribution during the process in order to determine process conditions for which an almost symmetric thermal flow is obtained in the two blanks of the joint. In this way, a few simple process design rules are derived and verified through experiments. In particular a thickness ratio up to 2 was considered and a joint resistance of about the 80% of the parent material ultimate tensile strength was observed.

  10. Improving friction stir welding of blanks of different thicknesses

    International Nuclear Information System (INIS)

    Fratini, L.; Buffa, G.; Shivpuri, R.

    2007-01-01

    Friction stir welding (FSW) appears to be a promising process even in the welding of blanks of different thicknesses. Actually, such particular tailor welded blanks (TWBs) are usually characterized by a reduction in ductility due to the utilized fusion welding process. In this paper the authors, starting from a preliminary feasibility study, investigate the possibility to improve the mechanical performances of friction stir welded blanks of aluminum alloy with different thicknesses. Both experiments and a FE analyses are developed for a few case studies with different thickness ratios between the blanks. The numerical investigations are performed with the aim to highlight the material temperature distribution during the process in order to determine process conditions for which an almost symmetric thermal flow is obtained in the two blanks of the joint. In this way, a few simple process design rules are derived and verified through experiments. In particular a thickness ratio up to 2 was considered and a joint resistance of about the 80% of the parent material ultimate tensile strength was observed

  11. Microstructural analysis of the 2195 aluminum-lithium alloy welds

    Science.gov (United States)

    Talia, George E.

    1993-01-01

    The principal objective of this research was to explain a tendency of 2195 Al-Li alloy to crack at elevated temperature during welding. Therefore, a study was made on the effect of welding and thermal treatment on the microstructure of Al-Li Alloy 2195. The critical roles of precipitates, boundaries, phases, and other features of the microstructure were inferred from the crack propagation paths and the morphology of fracture surface of the alloy with different microstructures. Particular emphasis was placed on the microstructures generated by the welding process and the mechanisms of crack propagation in such structures. Variation of the welding parameters and thermal treatments were used to alter the micro/macro structures, and they were characterized by optical and scanning electron microscopy. A theoretical model is proposed to explain changes in the microstructure of welded material. This model proposes a chemical reaction in which gases from the air (i.e., nitrogen) release hydrogen inside the alloy. Such a reaction could generate large internal stresses capable to induce porosity and crack-like delamination in the material.

  12. Sustainability assessment of shielded metal arc welding (SMAW) process

    Science.gov (United States)

    Alkahla, Ibrahim; Pervaiz, Salman

    2017-09-01

    Shielded metal arc welding (SMAW) process is one of the most commonly employed material joining processes utilized in the various industrial sectors such as marine, ship-building, automotive, aerospace, construction and petrochemicals etc. The increasing pressure on manufacturing sector wants the welding process to be sustainable in nature. The SMAW process incorporates several types of inputs and output streams. The sustainability concerns associated with SMAW process are linked with the various input and output streams such as electrical energy requirement, input material consumptions, slag formation, fumes emission and hazardous working conditions associated with the human health and occupational safety. To enhance the environmental performance of the SMAW welding process, there is a need to characterize the sustainability for the SMAW process under the broad framework of sustainability. Most of the available literature focuses on the technical and economic aspects of the welding process, however the environmental and social aspects are rarely addressed. The study reviews SMAW process with respect to the triple bottom line (economic, environmental and social) sustainability approach. Finally, the study concluded recommendations towards achieving economical and sustainable SMAW welding process.

  13. Rotary friction welding of dissimilar joints and bonding interface characterization by EDX and XPS

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Eder Paduan; Dollinger, Christian Avila [Instituto de Aeronautica e Espaco (IAE), Sao Jose dos Campos, SP (Brazil); Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro; Toledo, Rafael Cardoso; Piorino Neto, Francisco; An, Chen Ying, E-mail: eder.padua@yahoo.com.br [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: Welding of dissimilar materials has been a challenge to engineering. The study and development of new union processes that meet the requirements of projects in the aerospace, nuclear and aviation sector are of great importance to the scientific and productive means. The Rotary friction welding process (RFW) is a process of union that occurs in the solid state, without occurrence of fusion between the parties, and that have like the main bonding mechanisms the diffusion and mechanical mixture. This work has as objective the obtaining of dissimilar joints involving AA 6351-T6 alloy and stainless steel AISI 304l for applications in the aerospace area. The joints obtained by RFW who had procedures and qualified welding process have undergone the techniques of Energy Dispersive X-Ray Spectroscopy (EDX) and X-Ray Photoelectron Spectroscopy (XPS) for analysis of the bonding interface. Were obtained joints with superior mechanical properties the AA 6351-T6 alloy, with the fracture occurring in aluminum away from the bonding interface. The analyses carried out by EDX and XPS have shown the occurrence of interdiffusion among the main elements of the materials involved. The Rotary friction welding process proved to be a great method for obtaining of joints between dissimilar materials that are not possible by fusion welding processes. (author)

  14. Rotary friction welding of dissimilar joints and bonding interface characterization by EDX and XPS

    International Nuclear Information System (INIS)

    Alves, Eder Paduan; Dollinger, Christian Avila; Marcuzzo, Jossano Saldanha; Baldan, Mauricio Ribeiro; Toledo, Rafael Cardoso; Piorino Neto, Francisco; An, Chen Ying

    2016-01-01

    Full text: Welding of dissimilar materials has been a challenge to engineering. The study and development of new union processes that meet the requirements of projects in the aerospace, nuclear and aviation sector are of great importance to the scientific and productive means. The Rotary friction welding process (RFW) is a process of union that occurs in the solid state, without occurrence of fusion between the parties, and that have like the main bonding mechanisms the diffusion and mechanical mixture. This work has as objective the obtaining of dissimilar joints involving AA 6351-T6 alloy and stainless steel AISI 304l for applications in the aerospace area. The joints obtained by RFW who had procedures and qualified welding process have undergone the techniques of Energy Dispersive X-Ray Spectroscopy (EDX) and X-Ray Photoelectron Spectroscopy (XPS) for analysis of the bonding interface. Were obtained joints with superior mechanical properties the AA 6351-T6 alloy, with the fracture occurring in aluminum away from the bonding interface. The analyses carried out by EDX and XPS have shown the occurrence of interdiffusion among the main elements of the materials involved. The Rotary friction welding process proved to be a great method for obtaining of joints between dissimilar materials that are not possible by fusion welding processes. (author)

  15. On use of weld zone temperatures for online monitoring of weld quality in friction stir welding of naturally aged aluminium alloys

    International Nuclear Information System (INIS)

    Imam, Murshid; Biswas, Kajal; Racherla, Vikranth

    2013-01-01

    Highlights: • FSWs for 6063-T4 AA are done at different process parameters and sheet thicknesses. • Weld nugget zone and heat affected zone temperatures are monitored for each case. • Microstructural and mechanical characterisation of welds is done in all cases. • Weld ductility is found to be particularly sensitive to weld zone temperatures. • Strong correlation is found between WNZ and HAZ temperatures and weld properties. - Abstract: 6063-T4 aluminium alloy sheets of 3 and 6 mm thicknesses were friction stir butt welded using a square tool pin at a wide range of tool rotational speeds. Properties of obtained welds were characterised using tensile tests, optical micrographs, X-ray diffraction, and transmission electron microscopy. Shape, size, and distribution of precipitates in weld zones, and strength and ductility of welds were seen to directly correlate with peak temperatures in weld nugget and heat affected zones, independent of sheet thickness. In addition, fluctuations in measured temperature profiles, for 3 mm sheets, were seen to correlate with an increase in scatter of weld nugget zone properties for 3 mm sheets. Optimal weld strength and ductility were obtained for peak weld nugget zone temperatures of around 450 °C and corresponding peak heat affected zone temperatures of around 360–380 °C. Results obtained suggest that, at least for naturally aged aluminium alloys, nature of temperature evolution and magnitudes of peak temperatures in weld nugget and heat affected zones provide information on uniformity of properties in weld zones, overaging of heat affected zones, and formation of tunnel defects from improper material mixing at low weld zone temperatures

  16. Ultrasonic spot welding of Al/Mg/Al tri-layered clad sheets

    International Nuclear Information System (INIS)

    Macwan, A.; Patel, V.K.; Jiang, X.Q.; Li, C.; Bhole, S.D.; Chen, D.L.

    2014-01-01

    Highlights: • The optimal welding condition is achieved at 100 J and 0.1 s. • Failure load first increases and then decreases with increasing welding energy. • The highest failure load after welding is close to that of the clad sheets. • At low energy levels failure occurs in the mode of interfacial failure. • At high energy levels failure takes place at the edge of nugget region. - Abstract: Solid-state ultrasonic spot welding (USW) was used to join Al/Mg/Al tri-layered clad sheets, aiming at exploring weldability and identifying failure mode in relation to the welding energy. It was observed that the application of a low welding energy of 100 J was able to achieve the optimal welding condition during USW at a very short welding time of 0.1 s for the tri-layered clad sheets. The optimal lap shear failure load obtained was equivalent to that of the as-received Al/Mg/Al tri-layered clad sheets. With increasing welding energy, the lap shear failure load initially increased and then decreased after reaching a maximum value. At a welding energy of 25 J, failure occurred in the mode of interfacial failure along the center Al/Al weld interface due to insufficient bonding. At a welding energy of 50 J, 75 J and 100 J, failure was also characterized by the interfacial failure mode, but it occurred along the Al/Mg clad interface rather than the center Al/Al weld interface, suggesting stronger bonding of the Al/Al weld interface than that of the Al/Mg clad interface. The overall weld strength of the Al/Mg/Al tri-layered clad sheets was thus governed by the Al/Mg clad interface strength. At a welding energy of 125 J and 150 J, thinning of weld nugget and extensive deformation at the edge of welding tip caused failure at the edge of nugget region, leading to a lower lap shear failure load

  17. Modified Welding Technique of a Hypo-Eutectic Al-Cu Alloy for Higher Mechanical Properties

    Science.gov (United States)

    Ghosh, B. R.; Gupta, R. K.; Biju, S.; Sinha, P. P.

    GTAW process is used for welding of pressure vessels made of hypo-eutectic Al-Cu alloy AA2219 containing 6.3% Cu. As welded Yield strength of the alloy was found to be in the range of 140-150 MPa, using conventional single pass GTAW technique on both AC and DCSP modes. Interestingly, it was also found that weld-strength decreased with increase in thickness of the weld coupons. Welding metallurgy of AA2219 Al alloy was critically reviewed and factors responsible for lower properties were identified. Multipass GTAW on DCSP mode was postulated to improve the weld strength of this alloy. A systematic experimentation using 12 mm thick plates was carried out and YS of 200 MPa has been achieved in the as welded condition. Thorough characterization including optical and electron microscopy was conducted to validate the metallurgical phenomena attributable to improvement in weld strength. This paper presents the conceptual understanding of welding metallurgy of AA2219 alloy and validation by experiments, which could lead to better weld properties using multipass GTAW on DCSP mode.

  18. Development of stress corrosion cracking resistant welds of 321 stainless steel by simple surface engineering

    Science.gov (United States)

    Mankari, Kamal; Acharyya, Swati Ghosh

    2017-12-01

    We hereby report a simple surface engineering technique to make AISI grade 321 stainless steel (SS) welds resistant to stress corrosion cracking (SCC) in chloride environment. Heat exchanger tubes of AISI 321 SS, welded either by (a) laser beam welding (LBW) or by (b) metal inert gas welding (MIG) were used for the study. The welds had high magnitude of tensile residual stresses and had undergone SCC in chloride environment while in service. The welds were characterized using field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD). Subsequently, the welded surfaces were subjected to buffing operation followed by determination of residual stress distribution and surface roughness by XRD and surface profilometer measurements respectively. The susceptibility of the welds to SCC was tested in buffed and un-buffed condition as per ASTM G-36 in boiling MgCl2 for 5 h and 10 h, followed by microstructural characterization by using optical microscope and FESEM. The results showed that the buffed surfaces (both welds and base material) were resistant to SCC even after 10 h of exposure to boiling MgCl2 whereas the un-buffed surfaces underwent severe SCC for the same exposure time. Buffing imparted high magnitude of compressive stresses on the surface of stainless steel together with reduction in its surface roughness and reduction in plastic strain on the surface which made the welded surface, resistant to chloride assisted SCC. Buffing being a very simple, portable and economic technique can be easily adapted by the designers as the last step of component fabrication to make 321 stainless steel welds resistant to chloride assisted SCC.

  19. Measuring weld heat to evaluate weld integrity

    Energy Technology Data Exchange (ETDEWEB)

    Schauder, V., E-mail: schauder@hks-prozesstechnik.de [HKS-Prozesstechnik GmbH, Halle (Germany)

    2015-11-15

    Eddy current and ultrasonic testing are suitable for tube and pipe mills and have been used for weld seam flaw detection for decades, but a new process, thermography, is an alternative. By measuring the heat signature of the weld seam as it cools, it provides information about weld integrity at and below the surface. The thermal processes used to join metals, such as plasma, induction, laser, and gas tungsten arc welding (GTAW), have improved since they were developed, and they get better with each passing year. However, no industrial process is perfect, so companies that conduct research in flaw detection likewise continue to develop and improve the technologies used to verify weld integrity: ultrasonic testing (UT), eddy current testing (ET), hydrostatic, X-ray, magnetic particle, and liquid penetrant are among the most common. Two of these are used for verifying the integrity of the continuous welds such as those used on pipe and tube mills: UT and ET. Each uses a transmitter to send waves of ultrasonic energy or electrical current through the material and a receiver (probe) to detect disturbances in the flow. The two processes often are combined to capitalize on the strengths of each. While ET is good at detecting flaws at or near the surface, UT penetrates the material, detecting subsurface flaws. One drawback is that sound waves and electrical current waves have a specific direction of travel, or an alignment. A linear defect that runs parallel to the direction of travel of the ultrasonic sound wave or a flaw that is parallel to the coil winding direction of the ET probe can go undetected. A second drawback is that they don't detect cold welds. An alternative process, thermography, works in a different fashion: It monitors the heat of the material as the weld cools. Although it measures the heat at the surface, the heat signature provides clues about cooling activity deep in the material, resulting in a thorough assessment of the weld's integrity It

  20. Study of Dynamic Features of Surface Plasma in High-Power Disk Laser Welding

    International Nuclear Information System (INIS)

    Wang Teng; Gao Xiangdong; Seiji, Katayama; Jin, Xiaoli

    2012-01-01

    High-speed photography was used to obtain the dynamic changes in the surface plasma during a high-power disk laser welding process. A color space clustering algorithm to extract the edge information of the surface plasma region was developed in order to improve the accuracy of image processing. With a comparative analysis of the plasma features, i.e., area and height, and the characteristics of the welded seam, the relationship between the surface plasma and the stability of the laser welding process was characterized, which provides a basic understanding for the real-time monitoring of laser welding.

  1. Fracture toughness of fabrication welds investigated by metallographic methods

    International Nuclear Information System (INIS)

    Canonico, D.A.; Crouse, R.S.

    1978-01-01

    The intermediate scale test vessels (ITV) were fabricated to provide test specimens that have sufficient wall thickness and simulate light water reactor pressure vessels. They were fabricated from grades of steel that are similar to those used for nuclear pressure vessels, having a wall thickness of 150mm and the same welded construction. They are, however, considerably smaller in height and diameter than actual vessels. To date, ten vessels have been fabricated and eight have been tested. In preparation for testing the eighth vessel (ITV-8), an extensive investigation was conducted of the toughness properties of the fabrication weld. It was thoroughly characterized and the fracture specimens used in this metallographic investigation were taken from that weld metal

  2. Weld-forged rotors of the turbines for nuclear and thermal power plants

    International Nuclear Information System (INIS)

    Rudkovskij, A.F.; German, S.I.

    1979-01-01

    Considered is a principally new technology and equipment for assembling and welding superheavy rotors with mass up to 200 tons. Construction peculiarities and advantages of the application of weld-forged rotors are noted. The technology proposed permits to provide for a horizontal assembling, subsequent welding and quality control of rotors, one bench being used instead of three ones. The application of horizontal assembling and complex welding of rotors in one position permits not only to shorten the cycle of assembling and welding, too decrease the equipment costs and release production capacities, but also to improve substantially the quality of welds and especially the accuracy of rotor production. The equipment allows one to assemble and weld rotors with the mass up to 250 tons at maximum rotor diameter up to 2500 mm and length up to 13000 mm. Presented are data characterizing chemical composition and mechanical properties of steels used for forging of welded rotors. Also given are the results of studying mechanical properties of welded joints, welding and thermal treatment of which were made in accordance with the technology proposed. Serial production of rotors for turbines with the power of 500, 1000 and 1200 Mw is shown to be mastered along with the manufacture of welded rotors for cylinders of low, medium and high pressure turbines

  3. The effect of post-welding conditions in friction stir welds: From weld simulation to Ductile Failure

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri; Nielsen, Kim Lau; Tutum, Cem Celal

    2012-01-01

    software ANSYS, a thermo-mechanical model is employed to predict the thermally induced stresses and strains during welding, while an in-house finite element code is used to study the plastic flow localization and failure in a subsequent structural analysis. The coupling between the two models is made......The post-welding stress state, strain history and material conditions of friction stir welded joints are often strongly idealized when used in subsequent modeling analyses, typically by neglecting one or more of the features above. But, it is obvious that the conditions after welding do influence......, showed the largest influence of the post-welding conditions, even though significant relaxation of the residual stress state was predicted....

  4. Nitrogen And Oxygen Amount In Weld After Welding With Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Węgrzyn T.

    2015-06-01

    Full Text Available Micro-jet cooling after welding was tested only for MIG welding process with argon, helium and nitrogen as a shielded gases. A paper presents a piece of information about nitrogen and oxygen in weld after micro-jet cooling. There are put down information about gases that could be chosen both for MIG/MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gases on metallographic structure of steel welds. Mechanical properties of weld was presented in terms of nitrogen and oxygen amount in WMD (weld metal deposit.

  5. A study of weld quality in ultrasonic spot welding of similar and dissimilar metals

    International Nuclear Information System (INIS)

    Al-Sarraf, Z; Lucas, M

    2012-01-01

    Several difficulties are faced in joining thinner sheets of similar and dissimilar materials from fusion welding processes such as resistance welding and laser welding. Ultrasonic metal welding overcomes many of these difficulties by using high frequency vibration and applied pressure to create a solid-state weld. Ultrasonic metal welding is an effective technique in joining small components, such as in wire bonding, but is also capable of joining thicker sheet, depending on the control of welding conditions. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal welding device. The ultrasonic welding horn is modelled using finite element analysis and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. Control of the vibration amplitude profile through the weld cycle is used to enhance weld strength and quality, providing an opportunity to reduce part marking. Optical microscopic examination and scanning electron microscopy (SEM) were employed to investigate the weld quality. The results show how the weld quality is particularly sensitive to the combination of clamping force and vibration amplitude of the welding tip.

  6. Experimental and Simulative Investigation of Laser Transmission Welding under Consideration of Scattering

    Science.gov (United States)

    Devrient, M.; Da, X.; Frick, T.; Schmidt, M.

    Laser transmission welding is a well known joining technology for thermoplastics. Because of the needs of lightweight, cost effective and green production thermoplastics are usually filled with glass fibers. These lead to higher absorption and more scattering within the upper joining partner with a negative influence on the welding process. Here an experimental method for the characterization of the scattering behavior of semi crystalline thermoplastics filled with short glass fibers and a finite element model of the welding process capable to consider scattering as well as an analytical model are introduced. The experimental data is used for the numerical and analytical investigation of laser transmission welding under consideration of scattering. The scattering effects of several thermoplastics onto the calculated temperature fields as well as weld seam geometries are quantified.

  7. Welding and cutting

    International Nuclear Information System (INIS)

    Drews, P.; Schulze Frielinghaus, W.

    1978-01-01

    This is a survey, with 198 literature references, of the papers published in the fields of welding and cutting within the last three years. The subjects dealt with are: weldability of the materials - Welding methods - Thermal cutting - Shaping and calculation of welded joints - Environmental protection in welding and cutting. (orig.) [de

  8. Simplified welding distortion analysis for fillet welding using composite shell elements

    Directory of Open Access Journals (Sweden)

    Mingyu Kim

    2015-05-01

    Full Text Available This paper presents the simplified welding distortion analysis method to predict the welding deformation of both plate and stiffener in fillet welds. Currently, the methods based on equivalent thermal strain like Strain as Direct Boundary (SDB has been widely used due to effective prediction of welding deformation. Regarding the fillet welding, however, those methods cannot represent deformation of both members at once since the temperature degree of freedom is shared at the intersection nodes in both members. In this paper, we propose new approach to simulate deformation of both members. The method can simulate fillet weld deformations by employing composite shell element and using different thermal expansion coefficients according to thickness direction with fixed temperature at intersection nodes. For verification purpose, we compare of result from experiments, 3D thermo elastic plastic analysis, SDB method and proposed method. Compared of experiments results, the proposed method can effectively predict welding deformation for fillet welds.

  9. Welding Technician

    Science.gov (United States)

    Smith, Ken

    2009-01-01

    About 95% of all manufactured goods in this country are welded or joined in some way. These welded products range in nature from bicycle handlebars and skyscrapers to bridges and race cars. The author discusses what students need to know about careers for welding technicians--wages, responsibilities, skills needed, career advancement…

  10. Introduction to Welding.

    Science.gov (United States)

    Fortney, Clarence; Gregory, Mike

    This curriculum guide provides six units of instruction on basic welding. Addressed in the individual units of instruction are the following topics: employment opportunities for welders, welding safety and first aid, welding tools and equipment, basic metals and metallurgy, basic math and measuring, and procedures for applying for a welding job.…

  11. Orbital welding technique

    International Nuclear Information System (INIS)

    Hoeschen, W.

    2003-01-01

    The TIG (Tungsten-inert gas) orbital welding technique is applied in all areas of pipe welding. The process is mainly used for austenitic and ferritic materials but also for materials like aluminium, nickel, and titanium alloys are commonly welded according to this technique. Thin-walled as well as thick-walled pipes are welded economically. The application of orbital welding is of particular interest in the area of maintenance of thick-walled pipes that is described in this article. (orig.) [de

  12. Welding stresses

    International Nuclear Information System (INIS)

    Poirier, J.; Barbe, B.; Jolly, N.

    1976-01-01

    The aim is to show how internal stresses are generated and to fix the orders of magnitude. A realistic case, the vertical welding of thick plates free to move one against the other, is described and the deformations and stresses are analyzed. The mathematical model UEDA, which accounts for the elastic modulus, the yield strength and the expansion coefficient of the metal with temperature, is presented. The hypotheses and results given apply only to the instantaneous welding of a welded plate and to a plate welded by a moving electrode [fr

  13. Reduction of Biomechanical and Welding Fume Exposures in Stud Welding.

    Science.gov (United States)

    Fethke, Nathan B; Peters, Thomas M; Leonard, Stephanie; Metwali, Mahmoud; Mudunkotuwa, Imali A

    2016-04-01

    The welding of shear stud connectors to structural steel in construction requires a prolonged stooped posture that exposes ironworkers to biomechanical and welding fume hazards. In this study, biomechanical and welding fume exposures during stud welding using conventional methods were compared to exposures associated with use of a prototype system that allowed participants to weld from an upright position. The effect of base material (i.e. bare structural beam versus galvanized decking) on welding fume concentration (particle number and mass), particle size distribution, and particle composition was also explored. Thirty participants completed a series of stud welding simulations in a local apprenticeship training facility. Use of the upright system was associated with substantial reductions in trunk inclination and the activity levels of several muscle groups. Inhalable mass concentrations of welding fume (averaged over ~18 min) when using conventional methods were high (18.2 mg m(-3) for bare beam; 65.7 mg m(-3) for through deck), with estimated mass concentrations of iron (7.8 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), zinc (0.2 mg m(-3) for bare beam; 15.8 mg m(-3) for through deck), and manganese (0.9 mg m(-3) for bare beam; 1.5 mg m(-3) for through deck) often exceeding the American Conference of Governmental Industrial Hygienists Threshold Limit Values (TLVs). Number and mass concentrations were substantially reduced when using the upright system, although the total inhalable mass concentration remained above the TLV when welding through decking. The average diameters of the welding fume particles for both bare beam (31±17 nm) through deck conditions (34±34 nm) and the chemical composition of the particles indicated the presence of metallic nanoparticles. Stud welding exposes ironworkers to potentially high levels of biomechanical loading (primarily to the low back) and welding fume. The upright system used in this study improved exposure

  14. Microstructure characterization and corrosion testing of MAG pulsed duplex stainless steel welds

    Energy Technology Data Exchange (ETDEWEB)

    Mitelea, Ion; Utu, Ion Dragos; Urlan, Sorin Dumitru; Karancsi, Olimpiu [Politehnica Univ. Timisoara (Romania). Faculty of Mechanical Engineering

    2017-08-01

    Duplex stainless steels are extremely attractive construction materials for their usage in intense aggressive environments. They offer numerous advantages compared to the austenitic stainless steels having an excellent behavior to pitting and cavernous corrosion, and a high resistance to stress cracking corrosion in chlorides media. However, their corrosion properties are largely dependent on the microstructural factors such as: the quantitative ratio of the two phases ferrite/austenite (F/A), the presence of intermetallic compounds and the distribution of the alloying elements between the ferrite and austenite. As a result of the thermal cycles experienced by the base metal without a post-weld heat treatment, the mechanical properties are significantly different in the heat affected zone and the deposited metal compared with the properties of the base metal. The present paper highlights the effect of the post-weld solution treatment in order to restore the balance between austenite and ferrite in the welded joint areas and also to limit undesirable precipitation of secondary phases with implications for increasing the corrosion resistance.

  15. Microstructure characterization and corrosion testing of MAG pulsed duplex stainless steel welds

    International Nuclear Information System (INIS)

    Mitelea, Ion; Utu, Ion Dragos; Urlan, Sorin Dumitru; Karancsi, Olimpiu

    2017-01-01

    Duplex stainless steels are extremely attractive construction materials for their usage in intense aggressive environments. They offer numerous advantages compared to the austenitic stainless steels having an excellent behavior to pitting and cavernous corrosion, and a high resistance to stress cracking corrosion in chlorides media. However, their corrosion properties are largely dependent on the microstructural factors such as: the quantitative ratio of the two phases ferrite/austenite (F/A), the presence of intermetallic compounds and the distribution of the alloying elements between the ferrite and austenite. As a result of the thermal cycles experienced by the base metal without a post-weld heat treatment, the mechanical properties are significantly different in the heat affected zone and the deposited metal compared with the properties of the base metal. The present paper highlights the effect of the post-weld solution treatment in order to restore the balance between austenite and ferrite in the welded joint areas and also to limit undesirable precipitation of secondary phases with implications for increasing the corrosion resistance.

  16. Estimation of weld nugget temperature by thermography method in resistance projection welding process

    International Nuclear Information System (INIS)

    Setty, D.S.; Rameswara Roa, A.; Hemantha Rao, G.V.S.; Jaya Raj, R.N.

    2008-01-01

    In the Pressurized Heavy Water Reactor (PHWR) fuel manufacturing, zirconium alloy appendages like spacer and bearing pads are welded to the thin wall zirconium alloy fuel tubes by using resistance projection welding process. Out of many joining processes available, resistance-welding process is reliable, environment friendly and best suitable for mass production applications. In the fuel assembly, spacer pads are used to get the required inter-element spacing and Bearing pads are used to get the required load-bearing surface for the fuel assembly. Performance of the fuel assembly in the reactor is greatly influenced by these weld joint's quality. Phase transformation from α to β phase is not acceptable while welding these tiny appendages. At present only destructive metallography test is available for this purpose. This can also be achieved by measuring weld nugget temperature where in the phase transformation temperature for zirconium alloy material is 853 o C. The temperature distribution during resistance welding of tiny parts cannot be measured by conventional methods due to very small space and short weld times involved in the process. Shear strength, dimensional accuracy and weld microstructures are some of the key parameters used to measure the quality of appendage weld joints. Weld parameters were optimized with the help of industrial experimentation methodology. Individual projection welding by split electrode concept, and during welding on empty tube firm support is achieved on inner side of the tube by using expandable pneumatic mandrel. In the present paper, an attempt was made to measure the weld nugget temperature by thermography technique and is correlated with standard microstructures of zirconium alloy material. The temperature profiles in the welding process are presented for different welding conditions. This technique has helped in measuring the weld nugget temperature more accurately. It was observed that in the present appendage welding

  17. Influence of Loading Direction and Weld Reinforcement on Fatigue Performance of TIG Weld Seam

    Directory of Open Access Journals (Sweden)

    HUI Li

    2018-02-01

    Full Text Available The influence of loading direction and weld reinforcement on fatigue performance of TC2 titanium alloy TIG weld seam was investigated via fatigue experiments and SEM fracture observation. The results show that the fatigue life of retaining weld reinforcement specimens is lower than that of removing one in the same weld direction. The fatigue life of oblique weld specimens is higher than that of straight one with the same weld reinforcement treatment. The initiation of removing weld reinforcement specimens' fatigue crack sources is in the hole defect, but the weld reinforcement specimen initiate at the weld toes. During the early stage of fatigue crack propagation, the cracks all grow inside the weld seam metal with obvious fatigue striation. And the fatigue cracks of oblique weld specimens pass through the weld seam into the base with a typical toughness fatigue striation during the last stage of fatigue crack propagation. The dimple of straight weld specimens is little and shallow in the final fracture zone. The oblique weld specimens broke in the base metal area, and the dimple is dense.

  18. Welding of nickel free high nitrogen stainless steel: Microstructure and mechanical properties

    Directory of Open Access Journals (Sweden)

    Raffi Mohammed

    2017-04-01

    Full Text Available High nitrogen stainless steel (HNS is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance. Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties. The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding (SMAW, gas tungsten arc welding (GTAW, electron beam welding (EBW and friction stir welding (FSW processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds. Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds. Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains.

  19. Nitrogen And Oxygen Amount In Weld After Welding With Micro-Jet Cooling

    OpenAIRE

    Węgrzyn T.; Piwnik J.

    2015-01-01

    Micro-jet cooling after welding was tested only for MIG welding process with argon, helium and nitrogen as a shielded gases. A paper presents a piece of information about nitrogen and oxygen in weld after micro-jet cooling. There are put down information about gases that could be chosen both for MIG/MAG welding and for micro-jet process. There were given main information about influence of various micro-jet gases on metallographic structure of steel welds. Mechanical properties of weld was pr...

  20. Evaluation of welding by MIG in martensitic stainless steel; Avaliacao da soldagem pelo processo MIG em aco inoxidavel martensitico

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, M.A. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Mariano, N.A.; Marinho, D.H.C. Marinho, E-mail: neideaparecidamariano@gmail.co [Universidade Federal de Alfenas (UNIFAL), Pocos de Caldas, MG (Brazil)

    2010-07-01

    This work evaluated structure's characterization and mechanical properties after the welding process of the stainless steel CA6NM. The employed welding process was the metal active gas with tubular wire. The control of the thermal cycle in the welding process has fundamental importance regarding the properties of the welded joint, particularly in the thermally affected zone. The mechanical properties were appraised through impact resistance tests and the hardness and microstructure through metallographic characterization and Ray-X diffraction. The parameters and the process of welding used promoted the hardness and toughness appropriate to the applications of the steel. Welding energy's control becomes an essential factor that can affect the temperature of carbide precipitation and the nucleation of the retained austenite in the in the region of the in the thermally affected zone. (author)

  1. Electromagnetic characteristic of twin-wire indirect arc welding

    Science.gov (United States)

    Shi, Chuanwei; Zou, Yong; Zou, Zengda; Wu, Dongting

    2015-01-01

    Traditional welding methods are limited in low heat input to workpiece and high welding wire melting rate. Twin-wire indirect arc(TWIA) welding is a new welding method characterized by high melting rate and low heat input. This method uses two wires: one connected to the negative electrode and another to the positive electrode of a direct-current(DC) power source. The workpiece is an independent, non-connected unit. A three dimensional finite element model of TWIA is devised. Electric and magnetic fields are calculated and their influence upon TWIA behavior and the welding process is discussed. The results show that with a 100 A welding current, the maximum temperature reached is 17 758 K, arc voltage is 14.646 V while maximum current density was 61 A/mm2 with a maximum Lorene force of 84.5 μN. The above mentioned arc parameters near the cathode and anode regions are far higher than those in the arc column region. The Lorene force is the key reason for plasma velocity direction deviated and charged particles flowed in the channel formed by the cathode, anode and upper part of arc column regions. This led to most of the energy being supplied to the polar and upper part of arc column regions. The interaction between electric and magnetic fields is a major determinant in shaping TWIA as well as heat input on the workpiece. This is a first study of electromagnetic characteristics and their influences in the TWIA welding process, and it is significant in both a theoretical and practical sense.

  2. Influence of weld structure on cross-weld creep behavior in P23 steel

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.J.; Degnan, C.C. [E.ON Engineering (United Kingdom); Brett, S.J. [RWE npower (United Kingdom); Buchanan, L.W. [Doosan Babcock (United Kingdom)

    2010-07-01

    A thick section pipe weld in low alloy steel P23 has been characterised by cross-weld creep rupture testing at a range of stresses, together with all-weld-metal and parent material testing, under the auspices of the UK High Temperature Power Plant Forum. The results generally show that the weld metal can be weak when tested in the transverse (cross-weld) orientation, and can fail with limited overall ductility by cracking in the zone of refined weld metal beneath the fusion boundary of the superposed weld bead. However, one specimen showed a much superior performance, which could be understood in terms of its locally more creep resistant weld macrostructure. The implications for P23 performance and weld manufacture are discussed. (orig.)

  3. Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials

    Science.gov (United States)

    Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Liu, Wei

    2016-11-01

    Dissimilar materials welded joints provide many advantages in power, automotive, chemical, and spacecraft industries. The weld bead integrity which is determined by process parameters plays a significant role in the welding quality during the fiber laser welding (FLW) of dissimilar materials. In this paper, an optimization method by taking the integrity of the weld bead and weld area into consideration is proposed for FLW of dissimilar materials, the low carbon steel and stainless steel. The relationships between the weld bead integrity and process parameters are developed by the genetic algorithm optimized back propagation neural network (GA-BPNN). The particle swarm optimization (PSO) algorithm is taken for optimizing the predicted outputs from GA-BPNN for the objective. Through the optimization process, the desired weld bead with good integrity and minimum weld area are obtained and the corresponding microstructure and microhardness are excellent. The mechanical properties of the optimized joints are greatly improved compared with that of the un-optimized welded joints. Moreover, the effects of significant factors are analyzed based on the statistical approach and the laser power (LP) is identified as the most significant factor on the weld bead integrity and weld area. The results indicate that the proposed method is effective for improving the reliability and stability of welded joints in the practical production.

  4. Metallurgical characterization of pulsed current gas tungsten arc, friction stir and laser beam welded AZ31B magnesium alloy joints

    International Nuclear Information System (INIS)

    Padmanaban, G.; Balasubramanian, V.

    2011-01-01

    This paper reports the influences of welding processes such as friction stir welding (FSW), laser beam welding (LBW) and pulsed current gas tungsten arc welding (PCGTAW) on mechanical and metallurgical properties of AZ31B magnesium alloy. Optical microscopy, scanning electron microscopy, transmission electron microscopy and X-Ray diffraction technique were used to evaluate the metallurgical characteristics of welded joints. LBW joints exhibited superior tensile properties compared to FSW and PCGTAW joints due to the formation of finer grains in weld region, higher fusion zone hardness, the absence of heat affected zone, presence of uniformly distributed finer precipitates in weld region.

  5. Effect of microalloying on precipitate evolution in ferritic welds and implications for toughness

    International Nuclear Information System (INIS)

    Narayanan, Badri K.; Kovarik, L.; Sarosi, Peter M.; Quintana, Marie A.; Mills, M.J.

    2010-01-01

    Ferritic weld metal deposited with a self-shielded arc-welding process has intentional additions of aluminum, magnesium, titanium and zirconium. This results in a complex precipitation process that has been characterized with a combination of electron microscopy techniques. This work indicates that the formation of a spinel oxide is critical for the nucleation of nitrides of zirconium and titanium and prevents the agglomeration of aluminum rich oxides and the formation of large aluminum nitrides. High-resolution transmission electron microscopy has been used to characterize the core/shell structure of the precipitates with microalloying additions. Thermodynamic modeling of the precipitate formation during solidification is consistent with the microstructural observations. The evolution of precipitate formation is critical to limit large inclusions and improve weld metal toughness.

  6. The effect of gas tungsten arc welding and pulsed-gas tungsten arc welding processes’ parameters on the heat affected zone-softening behavior of strain-hardened Al–6.7Mg alloy

    International Nuclear Information System (INIS)

    Hadadzadeh, Amir; Ghaznavi, Majid Mahmoudi; Kokabi, Amir Hossein

    2014-01-01

    Highlights: • The strain-hardened Al–6.7Mg alloy was welded using GTAW and PGTAW processes. • The HAZ softening behavior of the welding joint was characterized. • Employing pulsed current in GTAW process eliminated the HAZ softening. • Duration ratio did not affect the weld strength while the frequency influenced it. - Abstract: The heat affected zone (HAZ) softening behavior of strain-hardened Al–6.7Mg alloy welded by gas tungsten arc welding (GTAW) process was investigated. Increasing the heat input during welding led to formation of a wider HAZ. Moreover, the size of the precipitates was increased at higher heat inputs. Consequently, by increasing the heat input, lower strength was obtained for the welding joints. At the second stage of the study, pulsed-GTAW (PGTAW) process was employed to improve the strength of the joints. It was observed that the overall strength of the welding joints was improved and the fracture during tensile test was moved from the HAZ to the fusion zone. Moreover, the effect of duration ratio and pulse frequency was studied. For the current study, the duration ratio did not have a significant effect on the strength and microstructure of the weld, but increasing the frequency led to higher strength of the weld and finer microstructure

  7. Study of residual stresses in welded joints of dual phase HSLA steel used in automotive industry

    International Nuclear Information System (INIS)

    Barbato, D.S.; Fonseca, M.P. Cindra; Marques Junior, A.S.; Chuvas, T.C.; Pardal, J.M.

    2010-01-01

    One way of weight reduction in automotive vehicles is through the use of high strength and low alloy (HSLA) steels, which enables the use of small thickness plates. Whereas the appearance of residual stresses is intrinsic to the welding process, this study evaluates the residual stresses generated in welded joints obtained by TIG and LASER welding processes and comparing them. Residual stresses were measured by X-rays diffraction technique, using a portable device with Crκα radiation applying the double exposure method. It also evaluates the influence of shot peening treatment applied after welding, in the bend tests conducted for both welding conditions and TIG welded joints showed higher stability of compressive stresses after welding. The metallographic analysis by optical microscopy complemented the welded joints characterization. (author)

  8. Laser Welding Test Results with Gas Atmospheres in Welding Chamber

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Hong, Jin-Tae; Ahn, Sung-Ho; Heo, Sung-Ho; Jang, Seo-Yun; Yang, Tae-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The weld beads of specimens welded under identical conditions in the helium and argon gas were cleaner, more regular, and steadier than those in a vacuum. The penetration depth of the FZ in the vacuum was much deeper than those in the helium and argon gas. To measure the irradiation properties of nuclear fuel in a test reactor, a nuclear fuel test rod instrumented with various sensors must be fabricated with assembly processes. A laser welding system to assemble the nuclear fuel test rod was designed and fabricated to develop various welding technologies of the fuel test rods to joint between a cladding tube and end-caps. It is an air-cooling optical fiber type and its emission modes are a continuous (CW) mode of which the laser generates continuous emission, and pulse (QCW) mode in which the laser internally generates sequences of pulses. We considered the system welding a sample in a chamber that can weld a specimen in a vacuum and inert gas atmosphere, and the chamber was installed on the working plate of the laser welding system. In the chamber, the laser welding process should be conducted to have no defects on the sealing area between a cladding tube and an end-cap.

  9. Welding of Thin Steel Plates by Hybrid Welding Process Combined TIG Arc with YAG Laser

    Science.gov (United States)

    Kim, Taewon; Suga, Yasuo; Koike, Takashi

    TIG arc welding and laser welding are used widely in the world. However, these welding processes have some advantages and problems respectively. In order to improve problems and make use of advantages of the arc welding and the laser welding processes, hybrid welding process combined the TIG arc with the YAG laser was studied. Especially, the suitable welding conditions for thin steel plate welding were investigated to obtain sound weld with beautiful surface and back beads but without weld defects. As a result, it was confirmed that the shot position of the laser beam is very important to obtain sound welds in hybrid welding. Therefore, a new intelligent system to monitor the welding area using vision sensor is constructed. Furthermore, control system to shot the laser beam to a selected position in molten pool, which is formed by TIG arc, is constructed. As a result of welding experiments using these systems, it is confirmed that the hybrid welding process and the control system are effective on the stable welding of thin stainless steel plates.

  10. Hybrid laser-arc welding

    DEFF Research Database (Denmark)

    Hybrid laser-arc welding (HLAW) is a combination of laser welding with arc welding that overcomes many of the shortfalls of both processes. This important book gives a comprehensive account of hybrid laser-arc welding technology and applications. The first part of the book reviews...... the characteristics of the process, including the properties of joints produced by hybrid laser-arc welding and ways of assessing weld quality. Part II discusses applications of the process to such metals as magnesium alloys, aluminium and steel as well as the use of hybrid laser-arc welding in such sectors as ship...... building and the automotive industry. With its distinguished editor and international team of contributors, Hybrid laser-arc welding, will be a valuable source of reference for all those using this important welding technology. Professor Flemming Ove Olsen works in the Department of Manufacturing...

  11. [New welding processes and health effects of welding].

    Science.gov (United States)

    La Vecchia, G Marina; Maestrelli, Piero

    2011-01-01

    This paper describes some of the recent developments in the control technology to enhance capability of Pulse Gas Metal Arc Welding. Friction Stir Welding (FSW) processing has been also considered. FSW is a new solid-state joining technique. Heat generated by friction at the rotating tool softens the material being welded. FSW can be considered a green and energy-efficient technique without deleterious fumes, gas, radiation, and noise. Application of new welding processes is limited and studies on health effects in exposed workers are lacking. Acute and chronic health effects of conventional welding have been described. Metal fume fever and cross-shift decline of lung function are the main acute respiratory effects. Skin and eyes may be affected by heat, electricity and UV radiations. Chronic effects on respiratory system include chronic bronchitis, a benign pneumoconiosis (siderosis), asthma, and a possible increase in the incidence of lung cancer. Pulmonary infections are increased in terms of severity, duration, and frequency among welders.

  12. Plug-welding of ODS cladding tube for BOR-60 irradiation. Welding condition setting. Device remodeling and welding

    International Nuclear Information System (INIS)

    Seki, Masayuki; Ishibashi, Fujio; Kono, Syusaku; Hirako, Kazuhito; Tsukada, Tatsuya

    2003-04-01

    Irradiation test in BOR-60 at RIAR to judge practical use prospect of ODS cladding tube at early stage is planned as Japan-Russia a joint research. RIAR does fuel design of fuel pin used for this joint research. JNC manufactures ODS cladding tube and bar materials (two steel kind of martensite and ferrite), upper endplug production. They are welded by pressurized resistance welding, and are inspected in JNC Tokai, transported to RIAR. And RIAR manufactures vibration packing fuel pin. On the upper endplug welding by pressurized resistance welding method, we worded on the problems such as decision of welding condition by changing the size and crystallization of cladding tube and the design of endplug, and the chucking device remodeling to correspond to the long scale cladding tube welding system (included handling) and of quality assurance method. Especially, use of long scale cladding tube caused problem that bending transformation occurred in cladding tube by welding pressure. However, we solved this problem by shortening the distance of cladding tube colette chuck and pressure receiving, and by putting the sleeve in an internal space of welding machine, losing the bending of cladding tube. Moreover, welding defects were occurred by the difference of an inside state, an inside defect and recrystallization of cladding tube. We solved the problem by inside grinding for the edge of tube, angle beam method by ultrasonic wave, and ultrasonic wave form confirmation. Manufacturing process with long scale cladding tube including heat-treatment to remove combustion return and remaining stress was established besides, Afterwards, welding of ODS cladding tube and upper endplug. As the quality assurance system, we constructed [Documented procedure (referred to JOYO)] based on [Document of the QA plan] by OEC. Welding and inspection were executed by the document procedure. It is thought that the quality assurance method become references for the irradiation test in JOYO in the

  13. Globalization of Japanese steel industry. Part 2. Welding materials; Tekkogyo no kokusaika. 2. Yozai

    Energy Technology Data Exchange (ETDEWEB)

    Aida, I. [Kobe Steel, Ltd., Kobe (Japan)

    1995-01-01

    This paper mainly discusses the current status and problems of arc welding materials. The domestic production of welding materials has decreased. The recent trend of demand is characterized by the change of form make-up of welding materials. Various technologies for welding materials and their operation in Japan have developed with the progress of steel materials. The high quality and high-grade welding technologies, highly efficient production processes, laborsaving, and robotization have been promoted in various fields. In response to the rapid strong yen, quality and cost have to be further pursued, and amenity and cleanliness of welding have to be realized. The welding technologies have to be developed for large structures, such as ultra high-rise buildings, energy and chemical plants, ships, marine structures, etc. For the welding materials which are applied to robots and robot systems, obstruction factors for the operation have to be removed, which include the unsteady arc, re-arc badness, spattering, wear of chip, slag formation, etc. These measures promote the globalization of welding materials. 17 refs., 4 figs.

  14. Characterization of 2.25Cr1Mo welded ferritic steel plate by using diffractometric and ultrasonic techniques

    Energy Technology Data Exchange (ETDEWEB)

    Cernuschi, F.; Ghia, S. [Ente Nazionale per l`Energia Elettrica, Milan (Italy); Albertini, G.; Ceretti, M.; Rustichelli, F. [Ancona Univ. (Italy). Ist. di Fisica Medica; Castelnuovo, A.; Depero, L. [Univ. degli studi, Brescia.Fac. di ingegneria, dip. di ingegneria meccanica (Italy); Giamboni, S.; Gori, M. [Centro Elettrotecnico Sperimentale Italiano (CESI), Milan (Italy)

    1995-12-01

    Four different techniques (X-ray and neutron diffraction, ultrasonic birefringence and incremental hole drilling method) were applied for evaluating residual stress in a butt-welded ferritic steel palte. Measurements were carried out both before and after welding. Effects of post-welding heat treatment is also considered. A comparison between results obtained by using four different techniques is done.

  15. Welding process decoupling for improved control

    International Nuclear Information System (INIS)

    Hardt, D.E.; Eagar, T.W.; Lang, J.H.; Jones, L.

    1993-01-01

    The Gas Metal Arc Welding Process is characterized by many important process outputs, all of which should be controlled to ensure consistent high performance joints. However, application of multivariable control methods is confounded by the strong physical coupling of typical outputs of bead shape and thermal properties. This coupling arises from the three dimensional thermal diffusion processes inherent in welding, and cannot be overcome without significant process modification. This paper presents data on the extent of coupling of the process, and proposes process changes to overcome such strong output coupling. Work in rapid torch vibration to change the heat input distribution is detailed, and methods for changing the heat balance between base and fill material heat are described

  16. Characterization and analysis of weld lines on micro-injection moulded parts using atomic force microscopy (AFM)

    DEFF Research Database (Denmark)

    Tosello, Guido; Gava, Alberto; Hansen, Hans Nørgaard

    2009-01-01

    In recent years plastic moulding techniques, such as injection moulding, have been developed to fulfil the needs of micro-components fabrication. Micro-injection moulding (SLIM) is the process which enables the mass production of polymer micro-systems such as micro-mechanical parts, micro...... the two original flows will generate and a weld line is formed on the surface of the micro-moulded part. This phenomenon has to be avoided or at least reduced, since in the weld line area the mechanical properties are poorer than in the bulk part, creating strength problems on the final part. Although...... injection moulding parameters on the weld lines' dimensions is presented, using an atomic force microscope (AFM). Depth and width of weld lines were chosen as parameters to be optimized....

  17. Fine tuning of dwelling time in friction stir welding for preventing material overheating, weld tensile strength increase and weld nugget size decrease

    Directory of Open Access Journals (Sweden)

    Mijajlović Miroslav M.

    2016-01-01

    Full Text Available After successful welding, destructive testing into test samples from Al 2024-T351 friction stir butt welds showed that tensile strength of the weld improve along the joint line, while dimensions of the weld nugget decrease. For those welds, both the base material and the welding tool constantly cool down during the welding phase. Obviously, the base material became overheated during the long dwelling phase what made conditions for creation of joints with the reduced mechanical properties. Preserving all process parameters but varying the dwelling time from 5-27 seconds a new set of welding is done to reach maximal achievable tensile strength. An analytical-numerical-experimental model is used for optimising the duration of the dwelling time while searching for the maximal tensile strength of the welds

  18. Comparative microscopic study of human and rat lungs after overexposure to welding fume.

    Science.gov (United States)

    Antonini, James M; Roberts, Jenny R; Schwegler-Berry, Diane; Mercer, Robert R

    2013-11-01

    Welding is a common industrial process used to join metals and generates complex aerosols of potentially hazardous metal fumes and gases. Most long-time welders experience some type of respiratory disorder during their time of employment. The use of animal models and the ability to control the welding fume exposure in toxicology studies have been helpful in developing a better understanding of how welding fumes affect health. There are no studies that have performed a side-by-side comparison of the pulmonary responses from an animal toxicology welding fume study with the lung responses associated with chronic exposure to welding fume by a career welder. In this study, post-mortem lung tissue was donated from a long-time welder with a well-characterized work background and a history of extensive welding fume exposure. To simulate a long-term welding exposure in an animal model, Sprague-Dawley rats were treated once a week for 28 weeks by intratracheal instillation with 2mg of a stainless steel, hard-surfacing welding fume. Lung tissues from the welder and the welding fume-treated rats were examined by light and electron microscopy. Pathological analysis of lung tissue collected from the welder demonstrated inflammatory cell influx and significant pulmonary injury. The poor and deteriorating lung condition observed in the welder examined in this study was likely due to exposure to very high levels of potentially toxic metal fumes and gases for a significant number of years due to work in confined spaces. The lung toxicity profile for the rats treated with welding fume was similar. For tissue samples from both the welder and treated rats, welding particle accumulations deposited and persisted in lung structures and were easily visualized using light microscopic techniques. Agglomerates of deposited welding particles mostly were observed within lung cells, particularly alveolar macrophages. Analysis of individual particles within the agglomerates showed that these

  19. Optimum welding condition of 2017 aluminum similar alloy friction welded joints

    Energy Technology Data Exchange (ETDEWEB)

    Tsujino R.; Ochi, H. [Osaka Inst. of Tech., Osaka (Japan); Morikawa, K. [Osaka Sangyo Univ., Osaka (Japan); Yamaguchi, H.; Ogawa, K. [Osaka Prefecture Univ., Osaka (Japan); Fujishiro, Y.; Yoshida, M. [Sumitomo Metal Technology Ltd., Hyogo (Japan)

    2002-07-01

    Usefulness of the statistical analysis for judging optimization of the friction welding conditions was investigated by using 2017 aluminum similar alloy, where many samples under fixed welding conditions were friction welded and analyzed statistically. In general, selection of the optimum friction welding conditions for similar materials is easy. However, it was not always the case for 2017 aluminum alloy. For optimum friction welding conditions of this material, it is necessary to apply relatively larger upset pressure to obtain high friction heating. Joint efficiencies obtained under the optimum friction welding conditions showed large shape parameter (m value) of Weibull distribution as well as in the dissimilar materials previously reported. The m value calculated on the small number of data can be substituted for m value on the 30 data. Therefore, m value is useful for practical use in the factory for assuming the propriety of the friction welding conditions. (orig.)

  20. Dual wire welding torch and method

    Science.gov (United States)

    Diez, Fernando Martinez; Stump, Kevin S.; Ludewig, Howard W.; Kilty, Alan L.; Robinson, Matthew M.; Egland, Keith M.

    2009-04-28

    A welding torch includes a nozzle with a first welding wire guide configured to orient a first welding wire in a first welding wire orientation, and a second welding wire guide configured to orient a second welding wire in a second welding wire orientation that is non-coplanar and divergent with respect to the first welding wire orientation. A method of welding includes moving a welding torch with respect to a workpiece joint to be welded. During moving the welding torch, a first welding wire is fed through a first welding wire guide defining a first welding wire orientation and a second welding wire is fed through a second welding wire guide defining a second welding wire orientation that is divergent and non-coplanar with respect to the first welding wire orientation.

  1. TIG welding method and TIG welding device

    International Nuclear Information System (INIS)

    Yoneda, Eishi

    1998-01-01

    The present invention provides a method of TIG welding for members having different heat capacities including a cladding tube and an end plug of a fuel rod to be used, for example, in a reactor, and a device therefor. Namely, in the TIG welding method, the flow rate of a sealed gas to the side of a member having smaller heat capacity is made greater than that on the side of the member having greater heat capacity bordered on the top end of a welding electrode. Since the sealed gas is jetted being localized relative to the welding electrode, arc is restricted in a region of the member having smaller heat capacity and is increased at a region having a larger heat capacity. As a result, the arc is localized, so that the heat input amount to the region having a large heat capacity is increased, and then a plurality of members at the abutting portion are melted uniformly thereby capable of obtaining a uniform molten pool. A bead is formed at the abutting portion thereby capable of obtaining a welded portion with less unevenness and having large strength. (I.S.)

  2. Experimental investigation on the weld pool formation process in plasma keyhole arc welding

    Science.gov (United States)

    Van Anh, Nguyen; Tashiro, Shinichi; Van Hanh, Bui; Tanaka, Manabu

    2018-01-01

    This paper seeks to clarify the weld pool formation process in plasma keyhole arc welding (PKAW). We adopted, for the first time, the measurement of the 3D convection inside the weld pool in PKAW by stereo synchronous imaging of tungsten tracer particles using two sets of x-ray transmission systems. The 2D convection on the weld pool surface was also measured using zirconia tracer particles. Through these measurements, the convection in a wide range of weld pools from the vicinity of the keyhole to the rear region was successfully visualized. In order to discuss the heat transport process in a weld pool, the 2D temperature distribution on the weld pool surface was also measured by two-color pyrometry. The results of the comprehensive experimental measurement indicate that the shear force due to plasma flow is found to be the dominant driving force in the weld pool formation process in PKAW. Thus, heat transport in a weld pool is considered to be governed by two large convective patterns near the keyhole: (1) eddy pairs on the surface (perpendicular to the torch axis), and (2) eddy pairs on the bulk of the weld pool (on the plane of the torch). They are formed with an equal velocity of approximately 0.35 m s-1 and are mainly driven by shear force. Furthermore, the flow velocity of the weld pool convection becomes considerably higher than that of other welding processes, such as TIG welding and GMA welding, due to larger plasma flow velocity.

  3. Interfacial microstructure and properties of copper clad steel produced using friction stir welding versus gas metal arc welding

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Z.; Chen, Y. [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada); Haghshenas, M., E-mail: mhaghshe@uwaterloo.ca [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada); Nguyen, T. [Mechanical Systems Engineering, Conestoga College, Kitchener (Canada); Galloway, J. [Welding Engineering Technology, Conestoga College, Kitchener (Canada); Gerlich, A.P. [Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo (Canada)

    2015-06-15

    A preliminary study compares the feasibility and microstructures of pure copper claddings produced on a pressure vessel A516 Gr. 70 steel plate, using friction stir welding versus gas metal arc welding. A combination of optical and scanning electron microscopy is used to characterize the grain structures in both the copper cladding and heat affected zone in the steel near the fusion line. The friction stir welding technique produces copper cladding with a grain size of around 25 μm, and no evidence of liquid copper penetration into the steel. The gas metal arc welding of copper cladding exhibits grain sizes over 1 mm, and with surface microcracks as well as penetration of liquid copper up to 50 μm into the steel substrate. Transmission electron microscopy reveals that metallurgical bonding is produced in both processes. Increased diffusion of Mn and Si into the copper cladding occurs when using gas metal arc welding, although some nano-pores were detected in the FSW joint interface. - Highlights: • Cladding of steel with pure copper is possible using either FSW or GMAW. • The FSW yielded a finer grain structure in the copper, with no evidence of cracking. • The FSW joint contains some evidence of nano-pores at the interface of the steel/copper. • Copper cladding by GMAW contained surface cracks attributed to high thermal stresses. • The steel adjacent to the fusion line maintained a hardness value below 248 HV.

  4. Evolution of weld metal microstructure in shielded metal arc welding of X70 HSLA steel with cellulosic electrodes: A case study

    International Nuclear Information System (INIS)

    Ghomashchi, Reza; Costin, Walter; Kurji, Rahim

    2015-01-01

    The microstructure of weld joint in X70 line pipe steel resulted from shielded metal arc welding with E6010 cellulosic electrodes is characterized using optical and electron microscopy. A range of ferritic morphologies have been identified ranging from polygonal inter- and intra-prior austenite grains allotriomorphic, idiomorphic ferrites to Widmanstätten, acicular and bainitic ferrites. Electron Backscatter Diffraction (EBSD) analysis using Image Quality (IQ) and Inverse Pole Figure (IPF) maps through superimposition of IQ and IPF maps and measurement of percentages of high and low angle grain boundaries was identified to assist in differentiation of acicular ferrite from Widmanstätten and bainitic ferrite morphologies. In addition two types of pearlitic structures were identified. There was no martensite detected in this weld structure. The morphology, size and chemistry of non-metallic inclusions are also discussed briefly. - Highlights: • Application of EBSD reveals orientation relationships in a range of phases for shielded metal arc welding of HSLA steel. • Nucleation sites of various ferrite morphologies identified • Formation of upper and lower bainite and their morphologies

  5. Evolution of weld metal microstructure in shielded metal arc welding of X70 HSLA steel with cellulosic electrodes: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Ghomashchi, Reza, E-mail: reza.ghomashchi@adelaide.edu.au; Costin, Walter; Kurji, Rahim

    2015-09-15

    The microstructure of weld joint in X70 line pipe steel resulted from shielded metal arc welding with E6010 cellulosic electrodes is characterized using optical and electron microscopy. A range of ferritic morphologies have been identified ranging from polygonal inter- and intra-prior austenite grains allotriomorphic, idiomorphic ferrites to Widmanstätten, acicular and bainitic ferrites. Electron Backscatter Diffraction (EBSD) analysis using Image Quality (IQ) and Inverse Pole Figure (IPF) maps through superimposition of IQ and IPF maps and measurement of percentages of high and low angle grain boundaries was identified to assist in differentiation of acicular ferrite from Widmanstätten and bainitic ferrite morphologies. In addition two types of pearlitic structures were identified. There was no martensite detected in this weld structure. The morphology, size and chemistry of non-metallic inclusions are also discussed briefly. - Highlights: • Application of EBSD reveals orientation relationships in a range of phases for shielded metal arc welding of HSLA steel. • Nucleation sites of various ferrite morphologies identified • Formation of upper and lower bainite and their morphologies.

  6. Some microstructural characterisations in a friction stir welded oxide dispersion strengthened ferritic steel alloy

    International Nuclear Information System (INIS)

    Legendre, F.; Poissonnet, S.; Bonnaillie, P.; Boulanger, L.; Forest, L.

    2009-01-01

    The goal of this study is to characterize microstructure of a friction stir welded oxide dispersion strengthened alloy. The welded material is constituted by two sheets of an yttria-dispersion-strengthened PM 2000 ferritic steel. Different areas of the friction stir welded product were analyzed using field emission gun secondary electron microscopy (FEG-SEM) and electron microprobe whereas nanoindentation was used to evaluate mechanical properties. The observed microstructural evolution, including distribution of the yttria dispersoids, after friction stir welding process is discussed and a correlation between the microstructure and the results of nanoindentation tests is established.

  7. Automated setup for characterization of intact histone tails in Suz12-/- stem cells

    DEFF Research Database (Denmark)

    Sidoli, Simone; Schwämmle, Veit; Hansen, Thomas Aarup

    Epigenetics is defined as the study of heritable changes that occur without modifying the DNA sequence. Histone proteins are crucial components of epigenetic mechanisms and regulation, since they are fundamental for chromatin structure. Mass spectrometry-based proteomics is already an integrated...... developed a high-resolving and automated LC-MS/MS setup to characterize intact histone tails (middle-down strategy)...

  8. Yb-fibre Laser Welding of 6 mm Duplex Stainless Steel 2205

    Science.gov (United States)

    Bolut, M.; Kong, C. Y.; Blackburn, J.; Cashell, K. A.; Hobson, P. R.

    Duplex stainless steel (DSS) is one of the materials of choice for structural and nuclear applications, having high strength and good corrosion resistance when compared with other grades of stainless steel. The welding process used to join these materials is critical as transformation of the microstructure during welding directly affects the material properties. High power laser welding has recently seen an increase in research interest as it offers both speed and flexibility. This paper presents an investigation into the important parameters affecting laser welding of DSS grade 2205, with particular focus given to the critical issue of phase transformation during welding. Bead-on-plate melt-run trials without filler material were performed on 6mm thick plates using a 5 kW Yb-fibre laser. The laser beam was characterized and a Design of Experiment approach was used to quantify the impact of the process parameters. Optical metallographic methods were used to examine the resulting microstructures.

  9. Comparison study between GTWA and PAW welding techniques in zircaloy-4

    International Nuclear Information System (INIS)

    Martinez, R.L.; Boccanera, L.; Ortiz, L.; Fernandez, L.; Corso, H.

    2003-01-01

    The wide use of zirconium alloys in different structural parts of nuclear reactors mainly under severe environmental conditions has encouraged the study of Zircaloy-4 and specifically welded joints of this material.Many different factors affect mechanical properties, specifically hydrides, formed by absorbed hydrogen.Hydrogen solubility in Zircaloy-4 is low and because Zircaloy-4 picks up hydrogen during service the potential exist that zirconium hydrides phase precipitate causing loss of ductility, the most undesirable consequence. Therefore, the study and characterization of welded joint of nuclear materials assumes fundamental importance in the safety of nuclear reactors.This paper presents experimental results regarding of hardness and hydrogen concentration in Zircaloy-4 plates obtained by two different welding techniques GTWA (Gas Tungsten Arc Welding) and PAW (Plasma Arc Welding).In this work following these remarks the difference observed between these two techniques are presented and point out some aspects of PAW for further discussion

  10. Automatization of welding

    International Nuclear Information System (INIS)

    Iwabuchi, Masashi; Tomita, Jinji; Nishihara, Katsunori.

    1978-01-01

    Automatization of welding is one of the effective measures for securing high degree of quality of nuclear power equipment, as well as for correspondence to the environment at the site of plant. As the latest ones of the automatic welders practically used for welding of nuclear power apparatuses in factories of Toshiba and IHI, those for pipes and lining tanks are described here. The pipe welder performs the battering welding on the inside of pipe end as the so-called IGSCC countermeasure and the succeeding butt welding through the same controller. The lining tank welder is able to perform simultaneous welding of two parallel weld lines on a large thin plate lining tank. Both types of the welders are demonstrating excellent performance at the shops as well as at the plant site. (author)

  11. Electric arc welding gun

    Science.gov (United States)

    Luttrell, Edward; Turner, Paul W.

    1978-01-01

    This invention relates to improved apparatus for arc welding an interior joint formed by intersecting tubular members. As an example, the invention is well suited for applications where many similar small-diameter vertical lines are to be welded to a long horizontal header. The improved apparatus includes an arc welding gun having a specially designed welding head which is not only very compact but also produces welds that are essentially free from rolled-over solidified metal. The welding head consists of the upper end of the barrel and a reversely extending electrode holder, or tip, which defines an acute angle with the barrel. As used in the above-mentioned example, the gun is positioned to extend upwardly through the vertical member and the joint to be welded, with its welding head disposed within the horizontal header. Depending on the design of the welding head, the barrel then is either rotated or revolved about the axis of the vertical member to cause the electrode to track the joint.

  12. A novel weld seam detection method for space weld seam of narrow butt joint in laser welding

    Science.gov (United States)

    Shao, Wen Jun; Huang, Yu; Zhang, Yong

    2018-02-01

    Structured light measurement is widely used for weld seam detection owing to its high measurement precision and robust. However, there is nearly no geometrical deformation of the stripe projected onto weld face, whose seam width is less than 0.1 mm and without misalignment. So, it's very difficult to ensure an exact retrieval of the seam feature. This issue is raised as laser welding for butt joint of thin metal plate is widely applied. Moreover, measurement for the seam width, seam center and the normal vector of the weld face at the same time during welding process is of great importance to the welding quality but rarely reported. Consequently, a seam measurement method based on vision sensor for space weld seam of narrow butt joint is proposed in this article. Three laser stripes with different wave length are project on the weldment, in which two red laser stripes are designed and used to measure the three dimensional profile of the weld face by the principle of optical triangulation, and the third green laser stripe is used as light source to measure the edge and the centerline of the seam by the principle of passive vision sensor. The corresponding image process algorithm is proposed to extract the centerline of the red laser stripes as well as the seam feature. All these three laser stripes are captured and processed in a single image so that the three dimensional position of the space weld seam can be obtained simultaneously. Finally, the result of experiment reveals that the proposed method can meet the precision demand of space narrow butt joint.

  13. Influence of Thermal Aging on Tensile and Low Cycle Fatigue Behavior of Type 316LN Austenitic Stainless Steel Weld Joint

    Science.gov (United States)

    Suresh Kumar, T.; Nagesha, A.; Ganesh Kumar, J.; Parameswaran, P.; Sandhya, R.

    2018-05-01

    Influence of short-term thermal aging on the low-cycle fatigue (LCF) behavior of 316LN austenitic stainless steel weld joint with 0.07 wt pct N has been investigated. Prior thermal exposure was found to improve the fatigue life compared with the as-welded condition. Besides, the treatment also imparted a softening effect on the weld metal, leading to an increase in the ductility of the weld joint which had a bearing on the cyclic stress response. The degree of cyclic hardening was seen to increase after aging. Automated ball-indentation (ABI) technique was employed toward understanding the mechanical properties of individual zones across the weld joint. It was observed that the base metal takes most of the applied cyclic strain during LCF deformation in the as-welded condition. In the aged condition, however, the weld also participates in the cyclic deformation. The beneficial effect of thermal aging on cyclic life is attributed to a reduction in the severity of the metallurgical notch leading to a restoration of ductility of the weld region. The transformation of δ-ferrite to σ-phase during the aging treatment was found to influence the location of crack initiation. Fatigue cracks were found to initiate in the base metal region of the joint in most of the testing conditions. However, embrittlement in the weld metal caused a shift in the point of crack initiation with increasing strain amplitude under LCF.

  14. Investigation into Variations of Welding Residual Stresses and Redistribution Behaviors for Different Repair Welding Widths

    International Nuclear Information System (INIS)

    Park, Chiyong; Lee, Hweesueng; Huh, Namsu

    2014-01-01

    In this study, we investigated the variations in welding residual stresses in dissimilar metal butt weld due to width of repair welding and re-distribution behaviors resulting from similar metal welding (SMW) and mechanical loading. To this end, detailed two-dimensional axi-symmetric finite element (FE) analyses were performed considering five different repair welding widths. Based on the FE results, we first evaluated the welding residual stress distributions in repair welding. We then investigated the re-distribution behaviors of the residual stresses due to SMW and mechanical loads. It is revealed that large tensile welding residual stresses take place in the inner surface and that its distribution is affected, provided repair welding width is larger than certain value. The welding residual stresses resulting from repair welding are remarkably reduced due to SMW and mechanical loading, regardless of the width of the repair welding

  15. Certification of a weld produced by friction stir welding

    Science.gov (United States)

    Obaditch, Chris; Grant, Glenn J

    2013-10-01

    Methods, devices, and systems for providing certification of friction stir welds are disclosed. A sensor is used to collect information related to a friction stir weld. Data from the sensor is compared to threshold values provided by an extrinsic standard setting organizations using a certification engine. The certification engine subsequently produces a report on the certification status of the weld.

  16. Laser beam welding and friction stir welding of 6013-T6 aluminium alloy sheet

    International Nuclear Information System (INIS)

    Braun, R.; Dalle Donne, C.; Staniek, G.

    2000-01-01

    Butt welds of 1.6 mm thick 6013-T6 sheet were produced using laser beam welding and friction stir welding processes. Employing the former joining technique, filler powders of the alloys Al-5%Mg and Al-12%Si were used. Microstructure, hardness profiles, tensile properties and the corrosion behaviour of the welds in the as-welded condition were investigated. The hardness in the weld zone was lower compared to that of the base material in the peak-aged temper. Hardness minima were measured in the fusion zone and in the thermomechanically affected zone for laser beam welded and friction stir welded joints, respectively. Metallographic and fractographic examinations revealed pores in the fusion zone of the laser beam welds. Porosity was higher in welds made using the filler alloy Al-5%Mg than using the filler metal Al-12%Si. Transmission electron microscopy indicated that the β '' (Mg 2 Si) hardening precipitates were dissolved in the weld zone due to the heat input of the joining processes. Joint efficiencies achieved for laser beam welds depended upon the filler powders, being about 60 and 80% using the alloys Al-5%Mg and Al-12%Si, respectively. Strength of the friction stir weld approached over 80% of the ultimate tensile strength of the 6013-T6 base material. Fracture occurred in the region of hardness minima unless defects in the weld zone led to premature failure. The heat input during welding did not cause a degradation of the corrosion behaviour of the welds, as found in continuous immersion tests in an aqueous chloride-peroxide solution. In contrast to the 6013-T6 parent material, the weld zone was not sensitive to intergranular corrosion. Alternate immersion tests in 3.5% NaCl solution indicated high stress corrosion cracking resistance of the joints. For laser beam welded sheet, the weld zone of alternately immersed specimens suffered severe degradation by pitting and intergranular corrosion, which may be associated with galvanic coupling of filler metal and

  17. Characterization of a manganese ore to define the use in the fluxes synthesis for submerged arc welding

    International Nuclear Information System (INIS)

    Cruz, A.; Quintana, R.; Perdomo, L.; Garcia, L. L.; Formoso, A.; Cores, A.

    2003-01-01

    Chemical analysis, thermal analysis (DTA and TG), phase determination by X-ray diffraction and granulometric analysis of the manganese ore from the location Margarita de Cambute in the eastern part of cuba were carried out. Based on these characterization results, a flux synthesis strategy was established, comprising the definition, as a basic condition, of the MnO/SiO 2 range of values. This strategy was confirmed experimentally by obtaining a flux prototype in an electric arc furnace connected to direct current source and the carrying out of the flux in submerged arc welding tests. (Author) 26 refs

  18. Process for quality assurance of welded joints for electrical resistance point welding

    International Nuclear Information System (INIS)

    Schaefer, R.; Singh, S.

    1977-01-01

    In order to guarantee the reproducibility of welded joints of even quality (above all in the metal working industry), it is proposed that before starting resistance point welding, a preheating current should be allowed to flow at the site of the weld. A given reduction of the total resistance at the site of the weld should effect the time when the preheating current is switched over to welding current. This value is always predetermined empirically. Further possibilities of controlling the welding process are described, where the measurement of thermal expansion of the parts is used. A standard welding time is given. The rated course of electrode movement during the process can be predicted and a running comparison of nominal and actual values can be carried out. (RW) [de

  19. Weld nugget formation in resistance spot welding of new lightweight sandwich material

    DEFF Research Database (Denmark)

    Sagüés Tanco, J.; Nielsen, Chris Valentin; Chergui, Azeddine

    2015-01-01

    Weldability of a new lightweight sandwich material, LITECOR®, by resistance spot welding is analyzed by experiments and numerical simulations. The spot welding process is accommodated by a first pulse squeezing out the non-conductive polymer core of the sandwich material locally to allow metal......–metal contact. This is facilitated by the use of a shunt tool and is followed by a second pulse for the actual spot welding and nugget formation. A weldability lobe in the time-current space of the second pulse reveals a process window of acceptable size for automotive assembly lines. Weld growth curves...... with experimental results in the range of welding parameters leading to acceptable weld nugget sizes. The validated accuracy of the commercially available software proves the tool useful for assisting the choice of welding parameters....

  20. Pulmonary fibrosis and exposure to steel welding fume.

    Science.gov (United States)

    Cosgrove, M P

    2015-12-01

    Arc welders who have been exposed to high concentrations of steel welding fume for prolonged periods of time may develop pulmonary fibrosis but the nature of the fibrotic changes has been debated over the last 80 years without any clear international consensus. To characterize the nature of the pulmonary fibrosis that develops in response to steel welding fume exposure and to provide a working hypothesis that would explain the findings of the existing research, to provide a platform for future research and to inform future occupational and clinical management of welders with pulmonary effects from welding fume. Review of the world literature on pulmonary fibrosis and welding of steel in all languages using PubMed, with further secondary search of references in the articles found in the primary search. Google and Reference Manager were used as further confirmatory search tools. Only case series and case reports were found but these provided consistent evidence that the consequence of exposure to steel welding fume at high levels for a prolonged period of time is a type of pulmonary fibrosis similar to, and possibly the same as, respiratory bronchiolitis which eventually develops into desquamative interstitial pneumonia with ongoing exposure. Steel welding fume may cause an occupational respiratory bronchiolitis which may develop into de squamative interstitial pneumonia with ongoing exposure. This concept may explain the difficulties in interpreting the wider literature on welding fume and lung function at lower exposures and may also explain the increased risk of lung cancer in welders. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Residual stress by repair welds

    International Nuclear Information System (INIS)

    Mochizuki, Masahito; Toyoda, Masao

    2003-01-01

    Residual stress by repair welds is computed using the thermal elastic-plastic analysis with phase-transformation effect. Coupling phenomena of temperature, microstructure, and stress-strain fields are simulated in the finite-element analysis. Weld bond of a plate butt-welded joint is gouged and then deposited by weld metal in repair process. Heat source is synchronously moved with the deposition of the finite-element as the weld deposition. Microstructure is considered by using CCT diagram and the transformation behavior in the repair weld is also simulated. The effects of initial stress, heat input, and weld length on residual stress distribution are studied from the organic results of numerical analysis. Initial residual stress before repair weld has no influence on the residual stress after repair treatment near weld metal, because the initial stress near weld metal releases due to high temperature of repair weld and then stress by repair weld regenerates. Heat input has an effect for residual stress distribution, for not its magnitude but distribution zone. Weld length should be considered reducing the magnitude of residual stress in the edge of weld bead; short bead induces high tensile residual stress. (author)

  2. Comparisons between TiO2- and SiO2-flux assisted TIG welding processes.

    Science.gov (United States)

    Tseng, Kuang-Hung; Chen, Kuan-Lung

    2012-08-01

    This study investigates the effects of flux compounds on the weld shape, ferrite content, and hardness profile in the tungsten inert gas (TIG) welding of 6 mm-thick austenitic 316 L stainless steel plates, using TiO2 and SiO2 powders as the activated fluxes. The metallurgical characterizations of weld metal produced with the oxide powders were evaluated using ferritoscope, optical microscopy, and Vickers microhardness test. Under the same welding parameters, the penetration capability of TIG welding with TiO2 and SiO2 fluxes was approximately 240% and 292%, respectively. A plasma column made with SiO2 flux exhibited greater constriction than that made with TiO2 flux. In addition, an anode root made with SiO2 flux exhibited more condensation than that made with TiO2 flux. Results indicate that energy density of SiO2-flux assisted TIG welding is higher than that of TiO2-flux assisted TIG welding.

  3. Studies on the Parametric Effects of Plasma Arc Welding of 2205 Duplex Stainless Steel

    Science.gov (United States)

    Selva Bharathi, R.; Siva Shanmugam, N.; Murali Kannan, R.; Arungalai Vendan, S.

    2018-03-01

    This research study attempts to create an optimized parametric window by employing Taguchi algorithm for Plasma Arc Welding (PAW) of 2 mm thick 2205 duplex stainless steel. The parameters considered for experimentation and optimization are the welding current, welding speed and pilot arc length respectively. The experimentation involves the parameters variation and subsequently recording the depth of penetration and bead width. Welding current of 60-70 A, welding speed of 250-300 mm/min and pilot arc length of 1-2 mm are the range between which the parameters are varied. Design of experiments is used for the experimental trials. Back propagation neural network, Genetic algorithm and Taguchi techniques are used for predicting the bead width, depth of penetration and validated with experimentally achieved results which were in good agreement. Additionally, micro-structural characterizations are carried out to examine the weld quality. The extrapolation of these optimized parametric values yield enhanced weld strength with cost and time reduction.

  4. Handbook of Plastic Welding

    DEFF Research Database (Denmark)

    Islam, Aminul

    The purpose of this document is to summarize the information about the laser welding of plastic. Laser welding is a matured process nevertheless laser welding of micro dimensional plastic parts is still a big challenge. This report collects the latest information about the laser welding of plastic...... materials and provides an extensive knowhow on the industrial plastic welding process. The objectives of the report include: - Provide the general knowhow of laser welding for the beginners - Summarize the state-of-the-art information on the laser welding of plastics - Find the technological limits in terms...... of design, materials and process - Find the best technology, process and machines adaptive to Sonion’s components - Provide the skills to Sonion’s Design Engineers for successful design of the of the plastic components suitable for the laser welding The ultimate goal of this report is to serve...

  5. Analysis of welding distortion due to narrow-gap welding of upper port plug

    International Nuclear Information System (INIS)

    Biswas, Pankaj; Mandal, N.R.; Vasu, Parameswaran; Padasalag, Shrishail B.

    2010-01-01

    Narrow-gap welding is a low distortion welding process. This process allows very thick plates to be joined using fewer weld passes as compared to conventional V-groove or double V-groove welding. In case of narrow-gap arc welding as the heat input and weld volume is low, it reduces thermal stress leading to reduction of both residual stress and distortion. In this present study the effect of narrow-gap welding was studied on fabrication of a scaled down port plug in the form of a trapezoidal box made of 10 mm thick mild steel (MS) plates using gas tungsten arc welding (GTAW). Inherent strain method was used for numerical prediction of resulting distortions. The numerical results compared well with that of the experimentally measured distortion. The validated numerical scheme was used for prediction of weld induced distortion due to narrow-gap welding of full scale upper port plug made of 60 mm thick SS316LN material as is proposed for use in ITER project. It was observed that it is feasible to fabricate the said port plug keeping the distortions minimum within about 7 mm using GTAW for root pass welding followed by SMAW for filler runs.

  6. Online NIR diagnostic of laser welding processes and its potential for quality assuring sensor systems

    Science.gov (United States)

    Dorsch, Friedhelm; Braun, Holger; Keβler, Steffen; Pfitzner, Dieter; Rominger, Volker

    2014-02-01

    We have integrated an imaging thermographic sensor into commercial welding optics for observation of the weld zone. Key element of the sensor is an InGaAs-camera that detects the thermal radiation of the welding process in the wavelength range of 1,200 to 1,700 nm. This is well suited to record images of the keyhole, the melt pool and the thermal trace. The sensor was integrated to the welding heads for on-axis observation to minimize the interfering contour to ensure easy adaption to industrial processes. The welding heads used were established industrial-grade TRUMPF optics: a BEO fixed optics with 280 mm focal length, or a TRUMPF PFO-3D scanner optics with 450 mm focal length. We used a TRUMPF TruDisk 16002 16kW-thin disk laser that transmits its power through a 200 μm core diameter light cable. The images were recorded and features of the various process zones were evaluated by image processing. It turns out that almost all weld faults can be clearly detected in the NIR images. Quantitative features like the dimension of the melt pool and the thermal trace can be derived from the captured images. They are correlated to process input parameters as well as to process results. In contrast to observation in the visible spectrum the NIR camera records the melt pool without auxiliary illumination. As an unrivaled attribute of the NIR sensor it supports an online heat flow thermography of the seam and allows identifying missing fusion ("false friends") of lap joints virtually during the welding process. Automated weld fault detection and documentation is possible by online image processing which sets the basis for comprehensive data documentation for quality assurance and traceability.

  7. A novel automated alternating current biosusceptometry method to characterization of controlled-release magnetic floating tablets of metronidazole.

    Science.gov (United States)

    Ferrari, Priscileila Colerato; dos Santos Grossklauss, Dany Bruno Borella; Alvarez, Matheus; Paixão, Fabiano Carlos; Andreis, Uilian; Crispim, Alexandre Giordano; de Castro, Ana Dóris; Evangelista, Raul Cesar; de Arruda Miranda, José Ricardo

    2014-08-01

    Alternating Current Biosusceptometry is a magnetically method used to characterize drug delivery systems. This work presents a system composed by an automated ACB sensor to acquire magnetic images of floating tablets. The purpose of this study was to use an automated Alternating Current Biosusceptometry (ACB) to characterize magnetic floating tablets for controlled drug delivery. Floating tablets were prepared with hydroxypropyl methylcellulose (HPMC) as hydrophilic gel material, sodium bicarbonate as gas-generating agent and ferrite as magnetic marker. ACB was used to characterize the floating lag time and the tablet hydration rate, by quantification of the magnetic images to magnetic area. Besides the buoyancy, the floating tablets were evaluated for weight uniformity, hardness, swelling and in vitro drug release. The optimized tablets were prepared with equal amounts of HPMC and ferrite, and began to float within 4 min, maintaining the flotation during more than 24 h. The data of all physical parameters lied within the pharmacopeial limits. Drug release at 24 h was about 40%. The ACB results showed that this study provided a new approach for in vitro investigation of controlled-release dosage forms. Moreover, using automated ACB will also be possible to test these parameters in humans allowing to establish an in vitro.in vivo correlation (IVIVC).

  8. Welding processes handbook

    CERN Document Server

    Weman, Klas

    2003-01-01

    Deals with the main commercially significant and commonly used welding processes. This title takes the student or novice welder through the individual steps involved in each process in an easily understood way. It covers many of the requirements referred to in European Standards including EN719, EN 729, EN 729 and EN 287.$bWelding processes handbook is a concise, explanatory guide to the main commercially significant and commonly-used welding processes. It takes the novice welder or student through the individual steps involved in each process in a clear and easily understood way. It is intended to provide an up-to-date reference to the major applications of welding as they are used in industry. The contents have been arranged so that it can be used as a textbook for European welding courses in accordance with guidelines from the European Welding Federation. Welding processes and equipment necessary for each process are described so that they can be applied to all instruction levels required by the EWF and th...

  9. Studies on Fusion Welding of High Nitrogen Stainless Steel: Microstructure, Mechanical and corrosion Behaviour

    Science.gov (United States)

    Mohammed, Raffi; Srinivasa Rao, K.; Madhusudhan Reddy, G.

    2018-03-01

    An attempt has been made in the present investigation to weld high nitrogen steel of 5mm thick plates using various process i.e., shielded metal arc welding (SMAW), gas tungsten arc welding (GTAW) and autogenous electron beam welding (EBW) process. Present work is aimed at studying the microstructural changes and its effects on mechanical properties and corrosion resistance. Microstructure is characterized by optical, scanning electron microscopy and electron back scattered diffraction technique. Vickers hardness, tensile properties, impact toughness and face bend ductility testing of the welds was carried out. Pitting corrosion resistance of welds was determined using potentio-dynamic polarization testing in 3.5%NaCl solution. Results of the present investigation established that SMA welds made using Cr-Mn-N electrode were observed to have a austenite dendritic grain structure in the weld metal and is having poor mechanical properties but good corrosion resistance. GTA welds made using 18Ni (MDN 250) filler wire were observed to have a reverted austenite in martensite matrix of the weld metal and formation of unmixed zone at the fusion boundary which resulted in better mechanical properties and poor corrosion resistance. Fine grains and uniform distribution of delta ferrite in the austenite matrix and narrow width of weld zone are observed in autogeneous electron beam welds. A good combination of mechanical properties and corrosion resistance was achieved for electron beam welds of high nitrogen steel when compared to SMA and GTA welds.

  10. Ultrasonic Stir Welding

    Science.gov (United States)

    Nabors, Sammy

    2015-01-01

    NASA Marshall Space Flight Center (MSFC) developed Ultrasonic Stir Welding (USW) to join large pieces of very high-strength metals such as titanium and Inconel. USW, a solid-state weld process, improves current thermal stir welding processes by adding high-power ultrasonic (HPU) energy at 20 kHz frequency. The addition of ultrasonic energy significantly reduces axial, frictional, and shear forces; increases travel rates; and reduces wear on the stir rod, which results in extended stir rod life. The USW process decouples the heating, stirring, and forging elements found in the friction stir welding process allowing for independent control of each process element and, ultimately, greater process control and repeatability. Because of the independent control of USW process elements, closed-loop temperature control can be integrated into the system so that a constant weld nugget temperature can be maintained during welding.

  11. Ultrasonic test data acquisition and defect verification of stainless-steel welds at 4000F

    International Nuclear Information System (INIS)

    Mech, S.J.

    1983-01-01

    This paper describes techniques developed to characterize the features found during ultrasonic examination of stainless steel welds which are indicative of defects. Feature inspection technology allows reliable discrimination weld signals and other noise under remote, automatic, high temperature conditions. Ultrasonic feature inspection techniques have been successfully implemented under 400 0 F (200 0 C) flowing sodium pipe welds. The challenge is to develop techniques which find defects, but ignore variations associated with the normal cast type microstructure of the weld zone. This study was directed at gathering data on a welded pipe section with notches used to simulate defects and is an example of computer acquisition and analysis techniques of ultrasonic data. Various analysis methods were compared to find signal analysis algorithms sensitive to these simulated defects

  12. Laser weld reconstitution of conventional Charpy and Miniaturized Notch Test (MNT) specimens

    International Nuclear Information System (INIS)

    Manahan, M.P.; Williams, J.; Martukanitz, R.P.

    1993-01-01

    As nuclear power plants approach end-of-license (EOL) and consideration is given to license renewal, there is an ever increasing need to expand the amount of data obtainable from the original surveillance specimens. A laser welding technique to reconstitute broken Charpy specimens is being developed to produce both conventional and miniaturized Charpy specimens. This paper reports on early laser welding development efforts and summarizes previous proof-of-principle experiments on a 1/16 scale miniaturized Charpy test. In order to benchmark the laser welding procedure, the laser-reconstituted specimen data have been compared with the original specimen data. In addition, the microstructure after welding has been examined to ensure that the material in the vicinity of the notch is essentially unchanged after the welding process. Data which characterize the thermal transient during welding are obtained by attaching thermocouples to the specimens. Other important considerations include perturbation of the stress field near the notch, dynamic stress waves, and contact of the weld region with the tup. Precise control of welding parameters has been demonstrated, heat-affected zones as small as 0.25 mm can be achieved, and sufficient penetration depth can be obtained to enable welding thick sections (1T or greater) to yield conventional Charpy specimens or fracture toughness specimens and thin sections (∼5 mm) to yield Miniaturized Notch Test (MNT) specimens

  13. The effects of welded joint characteristics on its properties in HDPE thermal fusion welding

    Science.gov (United States)

    Dai, Hongbin; Peng, Jun

    2017-05-01

    In this paper, PE100 pipes with the diameter of 200 mm and the thickness of 11.9 mm were used as material. The welded joints were obtained in different welding pressures with the optimal welding temperature of 220∘C. Reheating process on the welded joints with the temperature of 130∘C was carried out. The joints exhibited X-type, and the cause of X-type joints was discussed. The temperature field in the forming process of welded joints was measured, and tensile and bending tests on welded joints were carried out. The fracture surface of welded joints was observed by scanning electron microscopy (SEM), and crystallinity calculation was taken by X-ray diffraction (XRD). The mechanism of X-type weld profile effects on welded joints properties was analyzed. It was concluded that the mechanical properties of welded joints decrease with the reduced X distance between lines.

  14. Mechanical evaluation of linear friction welds in titanium alloys through indentation experiments

    International Nuclear Information System (INIS)

    Corzo, M.; Casals, O.; Alcala, J.; Mateo, A.; Anglada, M.

    2005-01-01

    This article shows the results of a project that focuses on the characterization of the weld interface region of dissimilar joints between titanium alloys for aeronautical applications, specifically Ti-6Al-2Sn-4Zr-6Mo with Ti-6Al-4V, and Ti-6Al-2Sn-4Zr-6Mo with Ti-6Al-2Sn-4Zr-2Mo. The uniaxial flow stress and hardening response of the material containing the weld were analyzed following the finite elements simulations and mathematical formulations to correlate hardness and the amount of pile-up and sinking-in phenomena around sharp indenters with uniaxial mechanical properties. This allows to accurately stablishing the influence that welding process has on the mechanical response of the parts. Tests performed on these friction-welded specimens showed that the fine grained microstructures in the welds exhibited better properties than the base materials. (Author) 12 refs

  15. Modeling of the mechanical behaviour of welded structures: behaviour laws and rupture criteria

    International Nuclear Information System (INIS)

    Paris, T.; Delaplanche, D.; Saanouni, K.

    2006-01-01

    In the framework of the technological developments carried out in the CEA, the analysis of the mechanical behaviour of the heterogeneous welded bonds Ta/TA6V is a main preoccupation. Indeed, the welding of these two materials which cannot be distinguished by their mechanical and thermal properties induces strong microstructural heterogeneities in the melted zone. In order to characterize the behaviour of the welded joints and to develop a model of mechanical behaviour, a four points bending test on a notched specimen has been developed and implemented. This new test has allowed to obtain a macroscopic response of strength-displacement type but to analyze too more finely, with an optical extensometry and images correlation method, the influence of the heterogeneities on the local deformation of the welded joint. The confrontation of these results to a metallurgical study allows to validate the first conclusions deduced of the mechanical characterization tests and to conclude as for the local mechanisms governing the behaviour and the damage of the melted zone. The mechanical behaviour can be restored by an elasto-viscoplastic model with isotropic and non linear kinematic strain hardening coupled to this damage. The proposed model allows to identify the macroscopic behaviour of the weld bead. (O.M.)

  16. Microstructural Evolution in Friction Stir Welding of Ti-6Al-4V

    Science.gov (United States)

    Rubisoff, H.; Querin, J.; Magee, D.; Schneider, J.

    2008-01-01

    Friction stir welding (FSW) is a thermo-mechanical process that utilizes a nonconsumable rotating pin tool to consolidate a weld joint. In the conventional FSW process, the pin tool is responsible for generating both the heat required to soften the material and the forces necessary to deform and combine the weld seam. As such, the geometry of the pin tool is important to the quality of the weld and the process parameters required to produce the weld. Because the geometry of the pin tool is limitless, a reduced set of pin tools was formed to systematically study their effect on the weldment with respect to mechanical properties and resultant microstructure. In this study 0deg, 15deg, 30deg, 45deg, and 60deg tapered, microwave sintered, tungsten carbide (WC) pin tools were used to FSW Ti-6Al-4V. Transverse sections of the weld were used to test for mechanical properties and to document the microstructure using optical microscopy. X-ray diffraction (XRD) was also used to characterize the microstructure in the welds. FSW results for the 45deg and 60deg pin tools are reported in this paper.

  17. Recent advances in the TIG welding process and the application of the welding of nuclear components

    International Nuclear Information System (INIS)

    Lucas, W.; Males, B.O.

    1982-01-01

    Recent advances in the field of precision arc welding techniques and infacilities for production of nuclear power plant components arc presented. Of the precision welding techniques, pulsed TIG welding, pulsed plasma arc welding, hot-wire TIG welding, and pulsed inert-gas metal-arc welding. In the field of weld cladding, GMA plasma welding is cited as an alternative to submerged-arc welding with a strip electrode. Transistors and computer-controlled welding systems get a special mention. Applications of TIG welding in the UK are cited, e.g. welding of components for the AGR nuclear power plant and construction of equipment for repair work in feedwater pipes of the MAGNOX reactor. (orig.) [de

  18. WELDING TORCH

    Science.gov (United States)

    Correy, T.B.

    1961-10-01

    A welding torch into which water and inert gas are piped separately for cooling and for providing a suitable gaseous atmosphere is described. A welding electrode is clamped in the torch by a removable collet sleeve and a removable collet head. Replacement of the sleeve and head with larger or smaller sleeve and head permits a larger or smaller welding electrode to be substituted on the torch. (AEC)

  19. Welding procedure specification for arc welding of St 52-3N steel plates with covered electrodes

    International Nuclear Information System (INIS)

    Cvetkovski, S.; Slavkov, D.; Magdeski, J.

    2003-01-01

    In this paper the results of approval welding technology for arc welding of plates made of St 52-3N steel are presented. Metal arc welding with covered electrode is used welding process. Test specimens are butt welded in different welding positions P A , P F , P C and P D . Before start welding preliminary welding procedure was prepared. After welding of test specimens non destructive and destructive testing was performed. Obtained results were compared with standard DIN 17100 which concerns to chemical composition and mechanical properties of base material. It was confirmed that in all cases mechanical properties of welded joint are higher than those of base material, so preliminary welding procedure (pWTS) can be accepted as welding procedure specification WPS for metal arc welding of St52-3N steel. (Original)

  20. Variant selection of martensites in steel welded joints with low transformation temperature weld metals

    International Nuclear Information System (INIS)

    Takahashi, Masaru; Yasuda, Hiroyuki Y.

    2013-01-01

    Highlights: ► We examined the variant selection of martensites in the weld metals. ► We also measured the residual stress developed in the butt and box welded joints. ► 24 martensite variants were randomly selected in the butt welded joint. ► High tensile residual stress in the box welded joint led to the strong variant selection. ► We discussed the rule of the variant selection focusing on the residual stress. -- Abstract: Martensitic transformation behavior in steel welded joints with low transformation temperature weld (LTTW) metal was examined focusing on the variant selection of martensites. The butt and box welded joints were prepared with LTTW metals and 980 MPa grade high strength steels. The residual stress of the welded joints, which was measured by a neutron diffraction technique, was effectively reduced by the expansion of the LTTW metals by the martensitic transformation during cooling after the welding process. In the LTTW metals, the retained austenite and martensite phases have the Kurdjumov–Sachs (K–S) orientation relationship. The variant selection of the martensites in the LTTW metals depended strongly on the type of welded joints. In the butt welded joint, 24 K–S variants were almost randomly selected while a few variants were preferentially chosen in the box welded joint. This suggests that the high residual stress developed in the box welded joint accelerated the formation of specific variants during the cooling process, in contrast to the butt welded joint with low residual stress

  1. The Automation and Exoplanet Orbital Characterization from the Gemini Planet Imager Exoplanet Survey

    Science.gov (United States)

    Jinfei Wang, Jason; Graham, James; Perrin, Marshall; Pueyo, Laurent; Savransky, Dmitry; Kalas, Paul; arriaga, Pauline; Chilcote, Jeffrey K.; De Rosa, Robert J.; Ruffio, Jean-Baptiste; Sivaramakrishnan, Anand; Gemini Planet Imager Exoplanet Survey Collaboration

    2018-01-01

    The Gemini Planet Imager (GPI) Exoplanet Survey (GPIES) is a multi-year 600-star survey to discover and characterize young Jovian exoplanets and their planet forming environments. For large surveys like GPIES, it is critical to have a uniform dataset processed with the latest techniques and calibrations. I will describe the GPI Data Cruncher, an automated data processing framework that is able to generate fully reduced data minutes after the data are taken and can also reprocess the entire campaign in a single day on a supercomputer. The Data Cruncher integrates into a larger automated data processing infrastructure which syncs, logs, and displays the data. I will discuss the benefits of the GPIES data infrastructure, including optimizing observing strategies, finding planets, characterizing instrument performance, and constraining giant planet occurrence. I will also discuss my work in characterizing the exoplanets we have imaged in GPIES through monitoring their orbits. Using advanced data processing algorithms and GPI's precise astrometric calibration, I will show that GPI can achieve one milliarcsecond astrometry on the extensively-studied planet Beta Pic b. With GPI, we can confidently rule out a possible transit of Beta Pic b, but have precise timings on a Hill sphere transit, and I will discuss efforts to search for transiting circumplanetary material this year. I will also discuss the orbital monitoring of other exoplanets as part of GPIES.

  2. Distortion Control during Welding

    NARCIS (Netherlands)

    Akbari Pazooki, A.M.

    2014-01-01

    The local material expansion and contraction involved in welding result in permanent deformations or instability i.e., welding distortion. Considerable efforts have been made in controlling welding distortion prior to, during or after welding. Thermal Tensioning (TT) describes a group of in-situ

  3. Effect of multiple repairs in girth welds of pipelines on the mechanical properties

    International Nuclear Information System (INIS)

    Vega, O.E.; Hallen, J.M.; Villagomez, A.; Contreras, A.

    2008-01-01

    This work presents the results of multiple weld repairs in the same area in seamless API X-52 microalloyed steel pipe. Four conditions of shielded metal arc welding repairs and one as-welded specimen of the girth weld were characterized to determine changes in the microstructure, grain size in the heat affected zone, and to evaluate their effect on the mechanical properties of the weld joints. The mechanical properties by means of tension tests, Charpy-V impact resistance and Vickers hardness of the welds were analyzed. The results indicate that significant changes are not generated in the microstructural constituents of the heat affected zone. Grain growth in the heat affected zone at the specimen mid-thickness with the number of repairs was observed. Tensile strength of the weld joints meets the requirement of the API 1104 standard even after the fourth weld repair. Significant reduction in Charpy-V impact resistance with the number of weld repairs was found when the notch location was in the intersection of the fusion line with the specimen mid-thickness. A significant increase in the Vickers hardness of the heat affected zone occurred after the first repair and a gradual decrease in the Vickers hardness occurred as the number of repairs increases

  4. Corrosion behavior of Al6061 alloy weldment produced by friction stir welding process

    Directory of Open Access Journals (Sweden)

    Farhad Gharavi

    2015-07-01

    Full Text Available In this work, the corrosion behavior of welded lap joints of AA6061-T6 aluminum alloy produced by friction stir welding process has been investigated. Corrosion properties of welded lap joints were studied by cyclic polarization and electrochemical impedance spectroscopy tests. All tests were performed in an aerated 0.6 mol L−1 NaCl aqueous solution with pH = 6.5 at a temperature of 30 °C to characterize corrosion morphology and realize corrosion features of weld regions as opposed to the parent alloy. The microstructure of weld nugget (WN, heated affected zone (HAZ, and parent alloy were analyzed using scanning electron microscopy and energy dispersive spectroscopy. The experimental results indicated that the welding process has a major effect on the corrosion resistance, which possibly associated to the break-down and dissolution of intermetallic particles. It is supposed that an increasing in intermetallic distributed throughout the matrix of weld regions increases the galvanic corrosion couples. Furthermore, by decreasing the grain size in the weld regions, the susceptibility to corrosion is enhanced. The pitting corrosion and intergranular attack are the dominant corrosion types in the weld regions and the parent alloy.

  5. Deformation behavior of a 16-8-2 GTA weld as influenced by its solidification substructure

    International Nuclear Information System (INIS)

    Foulds, J.R.; Moteff, J.; Sikka, V.K.; McEnerney, J.W.

    1983-01-01

    Weldment sections from formed and welded type 316 stainless steel pipe are characterized with respect to some time-independent (tensile) and time-dependent (creep) mechanical properties at temperatures between 25 0 C and 649 0 C. The GTA weldment, welded with 16-8-2 filler metal, is sectioned from pipe in the formed + welded + solution annealed + straightened condition, as well as in the same condition with an additional re-solution treatment. Detailed room temperature microhardness measurements on these sections before and after reannealing enable a determination of the different recovery characteristics of weld and base metal. The observed stable weld metal solidification dislocation substructure in comparison with the base metal random dislocation structure, in fact, adequately explains weld/base metal elevated temperature mechanical behavior differences from this recovery characteristic standpoint. The weld metal substructure is the only parameter common to the variety of austenitic stainless steel welds exhibiting the consistent parent/weld metal deformation behavior differences described. As such, it must be considered the key to understanding weldment mechanical behavior

  6. Arc-weld pool interactions

    International Nuclear Information System (INIS)

    Glickstein, S.S.

    1978-08-01

    The mechanisms involved in arc-weld pool interactions are extremely complex and no complete theory is presently available to describe much of the phenomena observed during welding. For the past several years, experimental and analytical studies have been undertaken at the Bettis Atomic Power Laboratory to increase basic understanding of the gas tungsten arc welding process. These studies have included experimental spectral analysis of the arc in order to determine arc temperature and analytical modeling of the arc and weld puddle. The investigations have been directed toward determining the cause and effects of variations in the energy distribution incident upon the weldment. In addition, the effect of weld puddle distortion on weld penetration was investigated, and experimental and analytical studies of weld process variables have been undertaken to determine the effects of the variables upon weld penetration and configuration. A review of the results and analysis of these studies are presented

  7. Automated ultrasonic testing of nuclear reactor welds and overlays in pre-service and in-service inspections

    International Nuclear Information System (INIS)

    Sladky, J.

    1988-01-01

    Since 1982, automatic pre-service and in-service checks are being made of welded joints and overlays on pressure vessels of WWER-440 nuclear reactors in Czechoslovakia. This is being done using the SKODA REACTORTEST TRC facility which is used for checking peripheral welded joints on the pressure vessel, neck joints, overlays in other selected areas of the cylindrical section of the pressure vessel, on radius transitions of the pressure vessel and of necks, and on the cylindrical part of necks, and also for checking the base material in selected parts of the pressure vessel and the base material of the neck extension piece. The tests are of two types, namely tests of peripheral welds and overlays of the cylindrical parts of the pressure vessel, and tests of the necks. Different ultrasonic probe holders are used for the tests, with totally different design. Ultrasonic probes which were initially used were of foreign make while at present, those of Czechoslovak make are used. For each pressure vessel a set of ultrasonic probes is used which should suffice for the life of the vessel. Experience gained so far is being used in work on the project of a new device for testing nuclear reactor presure vessels from the inside. (Z.M.)

  8. Welding electrode for peripheral welds of A-1 reactor pressure vessel

    International Nuclear Information System (INIS)

    Lakatos, L.

    1975-01-01

    The properties are outlined of the VUZ-AC1-52 welding electrode used in welding the Bohunice A-1 reactor pressure vessel. The mechanical properties of welded joints after the final thermal treatment are summed up. (J.K.)

  9. Phenomenological study and modelling of weld behaviour for the control of GTA process by computer aided welding; Etude phenomenologique et modelisation du comportement du bain de fusion en soudage TIG en vue d'une application au controle du procede

    Energy Technology Data Exchange (ETDEWEB)

    Tissot, F.X

    1998-07-01

    The CEA-CEREM/LMS has been working on automation of arc welding processes for years. Particularly, a computer aided welding (CAW) system called 'SYLVARC' was developed to compensate the effects of any eventual disturbance, by means of a real-time control of the welding parameters. Images analysis of the topside weld pool permits to maintain its width at a nominal value. For each welding case, the control parameters have to be determined by considering the transient changes in the weld pool shape following a shift of the welding operating conditions around the nominal working setpoint. However, each corresponding empirical law do not allow any prediction nor any interpretation of the variations which are displayed. Thus, a theoretical model has been developed in this study, by using an analytical solution of heat conduction equations in the case of a Gaussian heat source, moving at constant speed at the surface of a thick plate. In parallel, a numerical approach using the finite elements code MARCUS has been carried out to validate the assumption that the eventual effects which could come from the chosen hypothesis (convection flows in the melt, latent heat transfers and temperature-dependence of the thermo-physical properties of the material are neglected) are constant for small variations around the working setpoint. This has shown that the weld behaviour around the working setpoint is easily predicted by the analytical model if restricted to conduction heat transfers. The using conditions of the model have been optimised as a result of a thorough parametric study. Experimental validations of the approach have been carried out focusing on the welding of stainless steel plates of low thickness. Particularly, in the case of a sharp step in the plate thickness, there is a good agreement of the simulation with the transient behaviour of the weld pool. (author)

  10. Quantification of Microtexture at Weld Nugget of Friction Stir-Welded Carbon Steel

    Science.gov (United States)

    Husain, Md M.; Sarkar, R.; Pal, T. K.; Ghosh, M.; Prabhu, N.

    2017-05-01

    Friction stir welding of C-Mn steel was carried out under 800-1400 rpm tool rotation. Tool traversing speed of 50 mm/min remained same for all joints. Effect of thermal state and deformation on texture and microstructure at weld nugget was investigated. Weld nugget consisted of ferrite + bainite/Widmanstatten ferrite with different matrix grain sizes depending on peak temperature. A texture around ( ϕ 2 = 0°, φ = 30°, ϕ 2 = 45°) was developed at weld nugget. Grain boundary misorientation at weld nugget indicated that continuous dynamic recrystallization influenced the development of fine equiaxed grain structure. Pole figures and orientation distribution function were used to determine crystallographic texture at weld nugget and base metal. Shear texture components D1, D2 and F were present at weld nugget. D1 shear texture was more prominent among all. Large number of high-angle grain boundaries ( 60-70%) was observed at weld nugget and was the resultant of accumulation of high amount of dislocation, followed by subgrain formation.

  11. Nickel-base alloy overlay weld with improved ultrasonic flaw detection by magnetic stirring welding

    International Nuclear Information System (INIS)

    Takashi, Hirano; Kenji, Hirano; Masayuki, Watando; Takahiro, Arakawa; Minoru, Maeda

    2001-01-01

    Ultrasonic flaw detection is more difficult in Nickel-base alloy welds containing dendrites owing to the decrease ultrasonic transmissibility they cause. The present paper discusses application of magnetic stirring welding as a means for reducing dendrite growth with consequent improvement in ultrasonic transmissibility. Single pass and multi-pass welding tests were conducted to determine optimal welding conditions. By PT and macro observation subsequent to welding was carried out, optimal operation conditions were clarified. Overlay welding tests and UT clearly indicated ultrasonic beam transmissibility in overlay welds to be improved and detection capacity to be greater through application of magnetic stirring welding. Optimal operation conditions were determined based on examination of temper bead effects in the heat affected zone of low alloy steel by application of magnetic stirring welding to the butt welded joints between low alloy and stainless steel. Hardness in this zone of low alloy steel after the fourth layer was less than 350 HV. (author)

  12. Effect of weld spacing on microstructure and mechanical properties of CLAM electron beam welding joints

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Yutao; Huang, Bo, E-mail: aufa0007@163.com; Zhang, Junyu; Zhang, Baoren; Liu, Shaojun; Huang, Qunying

    2016-11-15

    Highlights: • The welded joints of CLAM steel with different weld spacings have been fabricated with electron beam welding, and a simplified model of CLAM sheet was proposed. • The microstructure and mechanical properties such as microhardness, impact and tensile were investigated at different welding spacing for both conditions of as-welded and post weld heat treatment (PWHT). • The effect of the welding thermal cycle was significantly when the weld spacings were smaller than 4 mm. • When the