WorldWideScience

Sample records for automated network analysis

  1. Automated Analysis of Security in Networking Systems

    DEFF Research Database (Denmark)

    Buchholtz, Mikael

    2004-01-01

    such networking systems are modelled in the process calculus LySa. On top of this programming language based formalism an analysis is developed, which relies on techniques from data and control ow analysis. These are techniques that can be fully automated, which make them an ideal basis for tools targeted at non...

  2. Automated analysis of Physarum network structure and dynamics

    Science.gov (United States)

    Fricker, Mark D.; Akita, Dai; Heaton, Luke LM; Jones, Nick; Obara, Boguslaw; Nakagaki, Toshiyuki

    2017-06-01

    We evaluate different ridge-enhancement and segmentation methods to automatically extract the network architecture from time-series of Physarum plasmodia withdrawing from an arena via a single exit. Whilst all methods gave reasonable results, judged by precision-recall analysis against a ground-truth skeleton, the mean phase angle (Feature Type) from intensity-independent, phase-congruency edge enhancement and watershed segmentation was the most robust to variation in threshold parameters. The resultant single pixel-wide segmented skeleton was converted to a graph representation as a set of weighted adjacency matrices containing the physical dimensions of each vein, and the inter-vein regions. We encapsulate the complete image processing and network analysis pipeline in a downloadable software package, and provide an extensive set of metrics that characterise the network structure, including hierarchical loop decomposition to analyse the nested structure of the developing network. In addition, the change in volume for each vein and intervening plasmodial sheet was used to predict the net flow across the network. The scaling relationships between predicted current, speed and shear force with vein radius were consistent with predictions from Murray’s law. This work was presented at PhysNet 2015.

  3. Automated analysis of Physarum network structure and dynamics

    International Nuclear Information System (INIS)

    Fricker, Mark D; Heaton, Luke LM; Akita, Dai; Jones, Nick; Obara, Boguslaw; Nakagaki, Toshiyuki

    2017-01-01

    We evaluate different ridge-enhancement and segmentation methods to automatically extract the network architecture from time-series of Physarum plasmodia withdrawing from an arena via a single exit. Whilst all methods gave reasonable results, judged by precision-recall analysis against a ground-truth skeleton, the mean phase angle (Feature Type) from intensity-independent, phase-congruency edge enhancement and watershed segmentation was the most robust to variation in threshold parameters. The resultant single pixel-wide segmented skeleton was converted to a graph representation as a set of weighted adjacency matrices containing the physical dimensions of each vein, and the inter-vein regions. We encapsulate the complete image processing and network analysis pipeline in a downloadable software package, and provide an extensive set of metrics that characterise the network structure, including hierarchical loop decomposition to analyse the nested structure of the developing network. In addition, the change in volume for each vein and intervening plasmodial sheet was used to predict the net flow across the network. The scaling relationships between predicted current, speed and shear force with vein radius were consistent with predictions from Murray’s law. This work was presented at PhysNet 2015. (paper)

  4. Artificial neural networks for automation of Rutherford backscattering spectroscopy experiments and data analysis

    International Nuclear Information System (INIS)

    Barradas, N.P.; Vieira, A.; Patricio, R.

    2002-01-01

    We present an algorithm based on artificial neural networks able to determine optimized experimental conditions for Rutherford backscattering measurements of Ge-implanted Si. The algorithm can be implemented for any other element implanted into a lighter substrate. It is foreseeable that the method developed in this work can be applied to still many other systems. The algorithm presented is a push-button black box, and does not require any human intervention. It is thus suited for automated control of an experimental setup, given an interface to the relevant hardware. Once the experimental conditions are optimized, the algorithm analyzes the final data obtained, and determines the desired parameters. The method is thus also suited for automated analysis of the data. The algorithm presented can be easily extended to other ion beam analysis techniques. Finally, it is suggested how the artificial neural networks required for automated control and analysis of experiments could be automatically generated. This would be suited for automated generation of the required computer code. Thus could RBS be done without experimentalists, data analysts, or programmers, with only technicians to keep the machines running

  5. A Neural Network Based Workstation for Automated Cell Proliferation Analysis

    Science.gov (United States)

    2001-10-25

    work was supported by the Programa de Apoyo a Proyectos de Desarrollo e Investigacíon en Informática REDII 2000. We thank Blanca Itzel Taboada for...Meléndez1, G. Corkidi.2 1Centro de Instrumentos, UNAM. P.O. Box 70-186, México 04510, D.F. 2Instituto de Biotecnología, UNAM. P.O. Box 510-3, 62250...proliferation analysis, of cytological microscope images. The software of the system assists the expert biotechnologist during cell proliferation and

  6. Automated analysis of information processing, kinetic independence and modular architecture in biochemical networks using MIDIA.

    Science.gov (United States)

    Bowsher, Clive G

    2011-02-15

    Understanding the encoding and propagation of information by biochemical reaction networks and the relationship of such information processing properties to modular network structure is of fundamental importance in the study of cell signalling and regulation. However, a rigorous, automated approach for general biochemical networks has not been available, and high-throughput analysis has therefore been out of reach. Modularization Identification by Dynamic Independence Algorithms (MIDIA) is a user-friendly, extensible R package that performs automated analysis of how information is processed by biochemical networks. An important component is the algorithm's ability to identify exact network decompositions based on both the mass action kinetics and informational properties of the network. These modularizations are visualized using a tree structure from which important dynamic conditional independence properties can be directly read. Only partial stoichiometric information needs to be used as input to MIDIA, and neither simulations nor knowledge of rate parameters are required. When applied to a signalling network, for example, the method identifies the routes and species involved in the sequential propagation of information between its multiple inputs and outputs. These routes correspond to the relevant paths in the tree structure and may be further visualized using the Input-Output Path Matrix tool. MIDIA remains computationally feasible for the largest network reconstructions currently available and is straightforward to use with models written in Systems Biology Markup Language (SBML). The package is distributed under the GNU General Public License and is available, together with a link to browsable Supplementary Material, at http://code.google.com/p/midia. Further information is at www.maths.bris.ac.uk/~macgb/Software.html.

  7. Driver-centred vehicle automation: using network analysis for agent-based modelling of the driver in highly automated driving systems.

    Science.gov (United States)

    Banks, Victoria A; Stanton, Neville A

    2016-11-01

    To the average driver, the concept of automation in driving infers that they can become completely 'hands and feet free'. This is a common misconception, however, one that has been shown through the application of Network Analysis to new Cruise Assist technologies that may feature on our roads by 2020. Through the adoption of a Systems Theoretic approach, this paper introduces the concept of driver-initiated automation which reflects the role of the driver in highly automated driving systems. Using a combination of traditional task analysis and the application of quantitative network metrics, this agent-based modelling paper shows how the role of the driver remains an integral part of the driving system implicating the need for designers to ensure they are provided with the tools necessary to remain actively in-the-loop despite giving increasing opportunities to delegate their control to the automated subsystems. Practitioner Summary: This paper describes and analyses a driver-initiated command and control system of automation using representations afforded by task and social networks to understand how drivers remain actively involved in the task. A network analysis of different driver commands suggests that such a strategy does maintain the driver in the control loop.

  8. Network meta-analysis using R: a review of currently available automated packages.

    Directory of Open Access Journals (Sweden)

    Binod Neupane

    Full Text Available Network meta-analysis (NMA--a statistical technique that allows comparison of multiple treatments in the same meta-analysis simultaneously--has become increasingly popular in the medical literature in recent years. The statistical methodology underpinning this technique and software tools for implementing the methods are evolving. Both commercial and freely available statistical software packages have been developed to facilitate the statistical computations using NMA with varying degrees of functionality and ease of use. This paper aims to introduce the reader to three R packages, namely, gemtc, pcnetmeta, and netmeta, which are freely available software tools implemented in R. Each automates the process of performing NMA so that users can perform the analysis with minimal computational effort. We present, compare and contrast the availability and functionality of different important features of NMA in these three packages so that clinical investigators and researchers can determine which R packages to implement depending on their analysis needs. Four summary tables detailing (i data input and network plotting, (ii modeling options, (iii assumption checking and diagnostic testing, and (iv inference and reporting tools, are provided, along with an analysis of a previously published dataset to illustrate the outputs available from each package. We demonstrate that each of the three packages provides a useful set of tools, and combined provide users with nearly all functionality that might be desired when conducting a NMA.

  9. Automated Analysis of Infinite Scenarios

    DEFF Research Database (Denmark)

    Buchholtz, Mikael

    2005-01-01

    The security of a network protocol crucially relies on the scenario in which the protocol is deployed. This paper describes syntactic constructs for modelling network scenarios and presents an automated analysis tool, which can guarantee that security properties hold in all of the (infinitely many...

  10. Logistic control in automated transportation networks

    NARCIS (Netherlands)

    Ebben, Mark

    2001-01-01

    Increasing congestion problems lead to a search for alternative transportation systems. Automated transportation networks, possibly underground, are an option. Logistic control systems are essential for future implementations of such automated transportation networks. This book contributes to the

  11. Automated minimax design of networks

    DEFF Research Database (Denmark)

    Madsen, Kaj; Schjær-Jacobsen, Hans; Voldby, J

    1975-01-01

    A new gradient algorithm for the solution of nonlinear minimax problems has been developed. The algorithm is well suited for automated minimax design of networks and it is very simple to use. It compares favorably with recent minimax and leastpth algorithms. General convergence problems related...

  12. Taiwan Automated Telescope Network

    Directory of Open Access Journals (Sweden)

    Dean-Yi Chou

    2010-01-01

    can be operated either interactively or fully automatically. In the interactive mode, it can be controlled through the Internet. In the fully automatic mode, the telescope operates with preset parameters without any human care, including taking dark frames and flat frames. The network can also be used for studies that require continuous observations for selected objects.

  13. Automated experimentation in ecological networks.

    Science.gov (United States)

    Lurgi, Miguel; Robertson, David

    2011-05-09

    In ecological networks, natural communities are studied from a complex systems perspective by representing interactions among species within them in the form of a graph, which is in turn analysed using mathematical tools. Topological features encountered in complex networks have been proved to provide the systems they represent with interesting attributes such as robustness and stability, which in ecological systems translates into the ability of communities to resist perturbations of different kinds. A focus of research in community ecology is on understanding the mechanisms by which these complex networks of interactions among species in a community arise. We employ an agent-based approach to model ecological processes operating at the species' interaction level for the study of the emergence of organisation in ecological networks. We have designed protocols of interaction among agents in a multi-agent system based on ecological processes occurring at the interaction level between species in plant-animal mutualistic communities. Interaction models for agents coordination thus engineered facilitate the emergence of network features such as those found in ecological networks of interacting species, in our artificial societies of agents. Agent based models developed in this way facilitate the automation of the design an execution of simulation experiments that allow for the exploration of diverse behavioural mechanisms believed to be responsible for community organisation in ecological communities. This automated way of conducting experiments empowers the study of ecological networks by exploiting the expressive power of interaction models specification in agent systems.

  14. The automated ground network system

    Science.gov (United States)

    Smith, Miles T.; Militch, Peter N.

    1993-01-01

    The primary goal of the Automated Ground Network System (AGNS) project is to reduce Ground Network (GN) station life-cycle costs. To accomplish this goal, the AGNS project will employ an object-oriented approach to develop a new infrastructure that will permit continuous application of new technologies and methodologies to the Ground Network's class of problems. The AGNS project is a Total Quality (TQ) project. Through use of an open collaborative development environment, developers and users will have equal input into the end-to-end design and development process. This will permit direct user input and feedback and will enable rapid prototyping for requirements clarification. This paper describes the AGNS objectives, operations concept, and proposed design.

  15. Network-based automation for SMEs

    DEFF Research Database (Denmark)

    Parizi, Mohammad Shahabeddini; Radziwon, Agnieszka

    2017-01-01

    The implementation of appropriate automation concepts which increase productivity in Small and Medium Sized Enterprises (SMEs) requires a lot of effort, due to their limited resources. Therefore, it is strongly recommended for small firms to open up for the external sources of knowledge, which...... could be obtained through network interaction. Based on two extreme cases of SMEs representing low-tech industry and an in-depth analysis of their manufacturing facilities this paper presents how collaboration between firms embedded in a regional ecosystem could result in implementation of new...... with other members of the same regional ecosystem. The findings highlight two main automation related areas where manufacturing SMEs could leverage on external sources on knowledge – these are assistance in defining automation problem as well as appropriate solution and provider selection. Consequently...

  16. A fully-automated neural network analysis of AFM force-distance curves for cancer tissue diagnosis

    Science.gov (United States)

    Minelli, Eleonora; Ciasca, Gabriele; Sassun, Tanya Enny; Antonelli, Manila; Palmieri, Valentina; Papi, Massimiliano; Maulucci, Giuseppe; Santoro, Antonio; Giangaspero, Felice; Delfini, Roberto; Campi, Gaetano; De Spirito, Marco

    2017-10-01

    Atomic Force Microscopy (AFM) has the unique capability of probing the nanoscale mechanical properties of biological systems that affect and are affected by the occurrence of many pathologies, including cancer. This capability has triggered growing interest in the translational process of AFM from physics laboratories to clinical practice. A factor still hindering the current use of AFM in diagnostics is related to the complexity of AFM data analysis, which is time-consuming and needs highly specialized personnel with a strong physical and mathematical background. In this work, we demonstrate an operator-independent neural-network approach for the analysis of surgically removed brain cancer tissues. This approach allowed us to distinguish—in a fully automated fashion—cancer from healthy tissues with high accuracy, also highlighting the presence and the location of infiltrating tumor cells.

  17. Automated generation of node-splitting models for assessment of inconsistency in network meta-analysis.

    Science.gov (United States)

    van Valkenhoef, Gert; Dias, Sofia; Ades, A E; Welton, Nicky J

    2016-03-01

    Network meta-analysis enables the simultaneous synthesis of a network of clinical trials comparing any number of treatments. Potential inconsistencies between estimates of relative treatment effects are an important concern, and several methods to detect inconsistency have been proposed. This paper is concerned with the node-splitting approach, which is particularly attractive because of its straightforward interpretation, contrasting estimates from both direct and indirect evidence. However, node-splitting analyses are labour-intensive because each comparison of interest requires a separate model. It would be advantageous if node-splitting models could be estimated automatically for all comparisons of interest. We present an unambiguous decision rule to choose which comparisons to split, and prove that it selects only comparisons in potentially inconsistent loops in the network, and that all potentially inconsistent loops in the network are investigated. Moreover, the decision rule circumvents problems with the parameterisation of multi-arm trials, ensuring that model generation is trivial in all cases. Thus, our methods eliminate most of the manual work involved in using the node-splitting approach, enabling the analyst to focus on interpreting the results. © 2015 The Authors Research Synthesis Methods Published by John Wiley & Sons Ltd.

  18. Automation of activation analysis

    International Nuclear Information System (INIS)

    Ivanov, I.N.; Ivanets, V.N.; Filippov, V.V.

    1985-01-01

    The basic data on the methods and equipment of activation analysis are presented. Recommendations on the selection of activation analysis techniques, and especially the technique envisaging the use of short-lived isotopes, are given. The equipment possibilities to increase dataway carrying capacity, using modern computers for the automation of the analysis and data processing procedure, are shown

  19. Application of neural network and pattern recognition software to the automated analysis of continuous nuclear monitoring of on-load reactors

    Energy Technology Data Exchange (ETDEWEB)

    Howell, J.A.; Eccleston, G.W.; Halbig, J.K.; Klosterbuer, S.F. [Los Alamos National Lab., NM (United States); Larson, T.W. [California Polytechnic State Univ., San Luis Obispo, CA (US)

    1993-08-01

    Automated analysis using pattern recognition and neural network software can help interpret data, call attention to potential anomalies, and improve safeguards effectiveness. Automated software analysis, based on pattern recognition and neural networks, was applied to data collected from a radiation core discharge monitor system located adjacent to an on-load reactor core. Unattended radiation sensors continuously collect data to monitor on-line refueling operations in the reactor. The huge volume of data collected from a number of radiation channels makes it difficult for a safeguards inspector to review it all, check for consistency among the measurement channels, and find anomalies. Pattern recognition and neural network software can analyze large volumes of data from continuous, unattended measurements, thereby improving and automating the detection of anomalies. The authors developed a prototype pattern recognition program that determines the reactor power level and identifies the times when fuel bundles are pushed through the core during on-line refueling. Neural network models were also developed to predict fuel bundle burnup to calculate the region on the on-load reactor face from which fuel bundles were discharged based on the radiation signals. In the preliminary data set, which was limited and consisted of four distinct burnup regions, the neural network model correctly predicted the burnup region with an accuracy of 92%.

  20. Technological Developments in Networking, Education and Automation

    CERN Document Server

    Elleithy, Khaled; Iskander, Magued; Kapila, Vikram; Karim, Mohammad A; Mahmood, Ausif

    2010-01-01

    "Technological Developments in Networking, Education and Automation" includes a set of rigorously reviewed world-class manuscripts addressing and detailing state-of-the-art research projects in the following areas: Computer Networks: Access Technologies, Medium Access Control, Network architectures and Equipment, Optical Networks and Switching, Telecommunication Technology, and Ultra Wideband Communications. Engineering Education and Online Learning: including development of courses and systems for engineering, technical and liberal studies programs; online laboratories; intelligent

  1. A machine learning approach to automated structural network analysis: application to neonatal encephalopathy.

    Directory of Open Access Journals (Sweden)

    Etay Ziv

    Full Text Available Neonatal encephalopathy represents a heterogeneous group of conditions associated with life-long developmental disabilities and neurological deficits. Clinical measures and current anatomic brain imaging remain inadequate predictors of outcome in children with neonatal encephalopathy. Some studies have suggested that brain development and, therefore, brain connectivity may be altered in the subgroup of patients who subsequently go on to develop clinically significant neurological abnormalities. Large-scale structural brain connectivity networks constructed using diffusion tractography have been posited to reflect organizational differences in white matter architecture at the mesoscale, and thus offer a unique tool for characterizing brain development in patients with neonatal encephalopathy. In this manuscript we use diffusion tractography to construct structural networks for a cohort of patients with neonatal encephalopathy. We systematically map these networks to a high-dimensional space and then apply standard machine learning algorithms to predict neurological outcome in the cohort. Using nested cross-validation we demonstrate high prediction accuracy that is both statistically significant and robust over a broad range of thresholds. Our algorithm offers a novel tool to evaluate neonates at risk for developing neurological deficit. The described approach can be applied to any brain pathology that affects structural connectivity.

  2. Content-driven analysis of an online community for smoking cessation: integration of qualitative techniques, automated text analysis, and affiliation networks.

    Science.gov (United States)

    Myneni, Sahiti; Fujimoto, Kayo; Cobb, Nathan; Cohen, Trevor

    2015-06-01

    We identified content-specific patterns of network diffusion underlying smoking cessation in the context of online platforms, with the aim of generating targeted intervention strategies. QuitNet is an online social network for smoking cessation. We analyzed 16 492 de-identified peer-to-peer messages from 1423 members, posted between March 1 and April 30, 2007. Our mixed-methods approach comprised qualitative coding, automated text analysis, and affiliation network analysis to identify, visualize, and analyze content-specific communication patterns underlying smoking behavior. Themes we identified in QuitNet messages included relapse, QuitNet-specific traditions, and cravings. QuitNet members who were exposed to other abstinent members by exchanging content related to interpersonal themes (e.g., social support, traditions, progress) tended to abstain. Themes found in other types of content did not show significant correlation with abstinence. Modeling health-related affiliation networks through content-driven methods can enable the identification of specific content related to higher abstinence rates, which facilitates targeted health promotion.

  3. MutaNET: a tool for automated analysis of genomic mutations in gene regulatory networks.

    Science.gov (United States)

    Hollander, Markus; Hamed, Mohamed; Helms, Volkhard; Neininger, Kerstin

    2018-03-01

    Mutations in genomic key elements can influence gene expression and function in various ways, and hence greatly contribute to the phenotype. We developed MutaNET to score the impact of individual mutations on gene regulation and function of a given genome. MutaNET performs statistical analyses of mutations in different genomic regions. The tool also incorporates the mutations in a provided gene regulatory network to estimate their global impact. The integration of a next-generation sequencing pipeline enables calling mutations prior to the analyses. As application example, we used MutaNET to analyze the impact of mutations in antibiotic resistance (AR) genes and their potential effect on AR of bacterial strains. MutaNET is freely available at https://sourceforge.net/projects/mutanet/. It is implemented in Python and supported on Mac OS X, Linux and MS Windows. Step-by-step instructions are available at http://service.bioinformatik.uni-saarland.de/mutanet/. volkhard.helms@bioinformatik.uni-saarland.de. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  4. Automated Motivic Analysis

    DEFF Research Database (Denmark)

    Lartillot, Olivier

    2016-01-01

    Motivic analysis provides very detailed understanding of musical composi- tions, but is also particularly difficult to formalize and systematize. A computational automation of the discovery of motivic patterns cannot be reduced to a mere extraction of all possible sequences of descriptions...... for lossless compression. The structural complexity resulting from successive repetitions of patterns can be controlled through a simple modelling of cycles. Generally, motivic patterns cannot always be defined solely as sequences of descriptions in a fixed set of dimensions: throughout the descriptions...... of the successive notes and intervals, various sets of musical parameters may be invoked. In this chapter, a method is presented that allows for these heterogeneous patterns to be discovered. Motivic repetition with local ornamentation is detected by reconstructing, on top of “surface-level” monodic voices, longer...

  5. Contaminant analysis automation, an overview

    International Nuclear Information System (INIS)

    Hollen, R.; Ramos, O. Jr.

    1996-01-01

    To meet the environmental restoration and waste minimization goals of government and industry, several government laboratories, universities, and private companies have formed the Contaminant Analysis Automation (CAA) team. The goal of this consortium is to design and fabricate robotics systems that standardize and automate the hardware and software of the most common environmental chemical methods. In essence, the CAA team takes conventional, regulatory- approved (EPA Methods) chemical analysis processes and automates them. The automation consists of standard laboratory modules (SLMs) that perform the work in a much more efficient, accurate, and cost- effective manner

  6. AUTOMATED ANALYSIS OF BREAKERS

    Directory of Open Access Journals (Sweden)

    E. M. Farhadzade

    2014-01-01

    Full Text Available Breakers relate to Electric Power Systems’ equipment, the reliability of which influence, to a great extend, on reliability of Power Plants. In particular, the breakers determine structural reliability of switchgear circuit of Power Stations and network substations. Failure in short-circuit switching off by breaker with further failure of reservation unit or system of long-distance protection lead quite often to system emergency.The problem of breakers’ reliability improvement and the reduction of maintenance expenses is becoming ever more urgent in conditions of systematic increasing of maintenance cost and repair expenses of oil circuit and air-break circuit breakers. The main direction of this problem solution is the improvement of diagnostic control methods and organization of on-condition maintenance. But this demands to use a great amount of statistic information about nameplate data of breakers and their operating conditions, about their failures, testing and repairing, advanced developments (software of computer technologies and specific automated information system (AIS.The new AIS with AISV logo was developed at the department: “Reliability of power equipment” of AzRDSI of Energy. The main features of AISV are:· to provide the security and data base accuracy;· to carry out systematic control of breakers conformity with operating conditions;· to make the estimation of individual  reliability’s value and characteristics of its changing for given combination of characteristics variety;· to provide personnel, who is responsible for technical maintenance of breakers, not only with information but also with methodological support, including recommendations for the given problem solving  and advanced methods for its realization.

  7. A Systematic, Automated Network Planning Method

    DEFF Research Database (Denmark)

    Holm, Jens Åge; Pedersen, Jens Myrup

    2006-01-01

    This paper describes a case study conducted to evaluate the viability of a systematic, automated network planning method. The motivation for developing the network planning method was that many data networks are planned in an adhoc manner with no assurance of quality of the solution with respect...... structures, that are ready to implement in a real world scenario, are discussed in the end of the paper. These are in the area of ensuring line independence and complexity of the design rules for the planning method....

  8. Automated sample analysis and remediation

    International Nuclear Information System (INIS)

    Hollen, R.; Settle, F.

    1995-01-01

    The Contaminant Analysis Automation Project is developing an automated chemical analysis system to address the current needs of the US Department of Energy (DOE). These needs focus on the remediation of large amounts of radioactive and chemically hazardous wastes stored, buried and still being processed at numerous DOE sites. This paper outlines the advantages of the system under development, and details the hardware and software design. A prototype system for characterizing polychlorinated biphenyls in soils is also described

  9. Optimization-based Method for Automated Road Network Extraction

    International Nuclear Information System (INIS)

    Xiong, D

    2001-01-01

    Automated road information extraction has significant applicability in transportation. It provides a means for creating, maintaining, and updating transportation network databases that are needed for purposes ranging from traffic management to automated vehicle navigation and guidance. This paper is to review literature on the subject of road extraction and to describe a study of an optimization-based method for automated road network extraction

  10. Library Automation and Networking in India: Problems and Prospects.

    Science.gov (United States)

    Vyas, S. D.

    1997-01-01

    Examines the information infrastructure and the impact of information technology in India. Highlights include attempts toward automation; library networking at the national and local level; descriptions of four major networks; library software; and constraints of networking in academic libraries. (LRW)

  11. Automated Analysis of Accountability

    DEFF Research Database (Denmark)

    Bruni, Alessandro; Giustolisi, Rosario; Schürmann, Carsten

    2017-01-01

    that the system can detect the misbehaving parties who caused that failure. Accountability is an intuitively stronger property than verifiability as the latter only rests on the possibility of detecting the failure of a goal. A plethora of accountability and verifiability definitions have been proposed...... in the literature. Those definitions are either very specific to the protocols in question, hence not applicable in other scenarios, or too general and widely applicable but requiring complicated and hard to follow manual proofs. In this paper, we advance formal definitions of verifiability and accountability...... that are amenable to automated verification. Our definitions are general enough to be applied to different classes of protocols and different automated security verification tools. Furthermore, we point out formally the relation between verifiability and accountability. We validate our definitions...

  12. Operational experiences with automated acoustic burst classification by neural networks

    International Nuclear Information System (INIS)

    Olma, B.; Ding, Y.; Enders, R.

    1996-01-01

    Monitoring of Loose Parts Monitoring System sensors for signal bursts associated with metallic impacts of loose parts has proved as an useful methodology for on-line assessing the mechanical integrity of components in the primary circuit of nuclear power plants. With the availability of neural networks new powerful possibilities for classification and diagnosis of burst signals can be realized for acoustic monitoring with the online system RAMSES. In order to look for relevant burst signals an automated classification is needed, that means acoustic signature analysis and assessment has to be performed automatically on-line. A back propagation neural network based on five pre-calculated signal parameter values has been set up for identification of different signal types. During a three-month monitoring program of medium-operated check valves burst signals have been measured and classified separately according to their cause. The successful results of the three measurement campaigns with an automated burst type classification are presented. (author)

  13. Automated activation-analysis system

    International Nuclear Information System (INIS)

    Minor, M.M.; Hensley, W.K.; Denton, M.M.; Garcia, S.R.

    1981-01-01

    An automated delayed neutron counting and instrumental neutron activation analysis system has been developed at Los Alamos National Laboratory's Omega West Reactor (OWR) to analyze samples for uranium and 31 additional elements with a maximum throughput of 400 samples per day. The system and its mode of operation for a large reconnaissance survey are described

  14. Automated activation-analysis system

    International Nuclear Information System (INIS)

    Minor, M.M.; Garcia, S.R.; Denton, M.M.

    1982-01-01

    An automated delayed neutron counting and instrumental neutron activation analysis system has been developed at Los Alamos National Laboratory's Omega West Reactor (OWR) to analyze samples for uranium and 31 additional elements with a maximum throughput of 400 samples per day

  15. Automated sensor networks to advance ocean science

    Science.gov (United States)

    Schofield, O.; Orcutt, J. A.; Arrott, M.; Vernon, F. L.; Peach, C. L.; Meisinger, M.; Krueger, I.; Kleinert, J.; Chao, Y.; Chien, S.; Thompson, D. R.; Chave, A. D.; Balasuriya, A.

    2010-12-01

    The National Science Foundation has funded the Ocean Observatories Initiative (OOI), which over the next five years will deploy infrastructure to expand scientist’s ability to remotely study the ocean. The deployed infrastructure will be linked by a robust cyberinfrastructure (CI) that will integrate marine observatories into a coherent system-of-systems. OOI is committed to engaging the ocean sciences community during the construction pahse. For the CI, this is being enabled by using a “spiral design strategy” allowing for input throughout the construction phase. In Fall 2009, the OOI CI development team used an existing ocean observing network in the Mid-Atlantic Bight (MAB) to test OOI CI software. The objective of this CI test was to aggregate data from ships, autonomous underwater vehicles (AUVs), shore-based radars, and satellites and make it available to five different data-assimilating ocean forecast models. Scientists used these multi-model forecasts to automate future glider missions in order to demonstrate the feasibility of two-way interactivity between the sensor web and predictive models. The CI software coordinated and prioritized the shared resources that allowed for the semi-automated reconfiguration of assett-tasking, and thus enabled an autonomous execution of observation plans for the fixed and mobile observation platforms. Efforts were coordinated through a web portal that provided an access point for the observational data and model forecasts. Researchers could use the CI software in tandem with the web data portal to assess the performance of individual numerical model results, or multi-model ensembles, through real-time comparisons with satellite, shore-based radar, and in situ robotic measurements. The resulting sensor net will enable a new means to explore and study the world’s oceans by providing scientists a responsive network in the world’s oceans that can be accessed via any wireless network.

  16. Automated Analysis of Corpora Callosa

    DEFF Research Database (Denmark)

    Stegmann, Mikkel Bille; Davies, Rhodri H.

    2003-01-01

    This report describes and evaluates the steps needed to perform modern model-based interpretation of the corpus callosum in MRI. The process is discussed from the initial landmark-free contours to full-fledged statistical models based on the Active Appearance Models framework. Topics treated incl...... include landmark placement, background modelling and multi-resolution analysis. Preliminary quantitative and qualitative validation in a cross-sectional study show that fully automated analysis and segmentation of the corpus callosum are feasible....

  17. Home Network Technologies and Automating Demand Response

    Energy Technology Data Exchange (ETDEWEB)

    McParland, Charles

    2009-12-01

    sophisticated energy consumers, it has been possible to improve the DR 'state of the art' with a manageable commitment of technical resources on both the utility and consumer side. Although numerous C & I DR applications of a DRAS infrastructure are still in either prototype or early production phases, these early attempts at automating DR have been notably successful for both utilities and C & I customers. Several factors have strongly contributed to this success and will be discussed below. These successes have motivated utilities and regulators to look closely at how DR programs can be expanded to encompass the remaining (roughly) half of the state's energy load - the light commercial and, in numerical terms, the more important residential customer market. This survey examines technical issues facing the implementation of automated DR in the residential environment. In particular, we will look at the potential role of home automation networks in implementing wide-scale DR systems that communicate directly to individual residences.

  18. Multichannel Mars Organic Analyzer (McMOA): Microfluidic Networks for the Automated In Situ Microchip Electrophoretic Analysis of Organic Biomarkers on Mars

    Science.gov (United States)

    Chiesl, T. N.; Benhabib, M.; Stockton, A. M.; Mathies, R. A.

    2010-04-01

    We present the Multichannel Mars Organic Analyzer (McMOA) for the analysis of Amino Acids, PAHs, and Oxidized Carbon. Microfluidic architecures integrating automated metering, mixing, on chip reactions, and serial dilutions are also discussed.

  19. Automated Software Vulnerability Analysis

    Science.gov (United States)

    Sezer, Emre C.; Kil, Chongkyung; Ning, Peng

    Despite decades of research, software continues to have vulnerabilities. Successful exploitations of these vulnerabilities by attackers cost millions of dollars to businesses and individuals. Unfortunately, most effective defensive measures, such as patching and intrusion prevention systems, require an intimate knowledge of the vulnerabilities. Many systems for detecting attacks have been proposed. However, the analysis of the exploited vulnerabilities is left to security experts and programmers. Both the human effortinvolved and the slow analysis process are unfavorable for timely defensive measure to be deployed. The problem is exacerbated by zero-day attacks.

  20. Research of the self-healing technologies in the optical communication network of distribution automation

    Science.gov (United States)

    Wang, Hao; Zhong, Guoxin

    2018-03-01

    Optical communication network is the mainstream technique of the communication networks for distribution automation, and self-healing technologies can improve the in reliability of the optical communication networks significantly. This paper discussed the technical characteristics and application scenarios of several network self-healing technologies in the access layer, the backbone layer and the core layer of the optical communication networks for distribution automation. On the base of the contrastive analysis, this paper gives an application suggestion of these self-healing technologies.

  1. Automated analysis of gastric emptying

    International Nuclear Information System (INIS)

    Abutaleb, A.; Frey, D.; Spicer, K.; Spivey, M.; Buckles, D.

    1986-01-01

    The authors devised a novel method to automate the analysis of nuclear gastric emptying studies. Many previous methods have been used to measure gastric emptying but, are cumbersome and require continuing interference by the operator to use. Two specific problems that occur are related to patient movement between images and changes in the location of the radioactive material within the stomach. Their method can be used with either dual or single phase studies. For dual phase studies the authors use In-111 labeled water and Tc-99MSC (Sulfur Colloid) labeled scrambled eggs. For single phase studies either the liquid or solid phase material is used

  2. Automating risk analysis of software design models.

    Science.gov (United States)

    Frydman, Maxime; Ruiz, Guifré; Heymann, Elisa; César, Eduardo; Miller, Barton P

    2014-01-01

    The growth of the internet and networked systems has exposed software to an increased amount of security threats. One of the responses from software developers to these threats is the introduction of security activities in the software development lifecycle. This paper describes an approach to reduce the need for costly human expertise to perform risk analysis in software, which is common in secure development methodologies, by automating threat modeling. Reducing the dependency on security experts aims at reducing the cost of secure development by allowing non-security-aware developers to apply secure development with little to no additional cost, making secure development more accessible. To automate threat modeling two data structures are introduced, identification trees and mitigation trees, to identify threats in software designs and advise mitigation techniques, while taking into account specification requirements and cost concerns. These are the components of our model for automated threat modeling, AutSEC. We validated AutSEC by implementing it in a tool based on data flow diagrams, from the Microsoft security development methodology, and applying it to VOMS, a grid middleware component, to evaluate our model's performance.

  3. A Method for Automated Planning of FTTH Access Network Infrastructures

    DEFF Research Database (Denmark)

    Riaz, Muhammad Tahir; Pedersen, Jens Myrup; Madsen, Ole Brun

    2005-01-01

    In this paper a method for automated planning of Fiber to the Home (FTTH) access networks is proposed. We introduced a systematic approach for planning access network infrastructure. The GIS data and a set of algorithms were employed to make the planning process more automatic. The method explains...... method. The method, however, does not fully automate the planning but make the planning process significantly fast. The results and discussion are presented and conclusion is given in the end....

  4. Reload safety analysis automation tools

    International Nuclear Information System (INIS)

    Havlůj, F.; Hejzlar, J.; Vočka, R.

    2013-01-01

    Performing core physics calculations for the sake of reload safety analysis is a very demanding and time consuming process. This process generally begins with the preparation of libraries for the core physics code using a lattice code. The next step involves creating a very large set of calculations with the core physics code. Lastly, the results of the calculations must be interpreted, correctly applying uncertainties and checking whether applicable limits are satisfied. Such a procedure requires three specialized experts. One must understand the lattice code in order to correctly calculate and interpret its results. The next expert must have a good understanding of the physics code in order to create libraries from the lattice code results and to correctly define all the calculations involved. The third expert must have a deep knowledge of the power plant and the reload safety analysis procedure in order to verify, that all the necessary calculations were performed. Such a procedure involves many steps and is very time consuming. At ÚJV Řež, a.s., we have developed a set of tools which can be used to automate and simplify the whole process of performing reload safety analysis. Our application QUADRIGA automates lattice code calculations for library preparation. It removes user interaction with the lattice code and reduces his task to defining fuel pin types, enrichments, assembly maps and operational parameters all through a very nice and user-friendly GUI. The second part in reload safety analysis calculations is done by CycleKit, a code which is linked with our core physics code ANDREA. Through CycleKit large sets of calculations with complicated interdependencies can be performed using simple and convenient notation. CycleKit automates the interaction with ANDREA, organizes all the calculations, collects the results, performs limit verification and displays the output in clickable html format. Using this set of tools for reload safety analysis simplifies

  5. An automated approach to network features of protein structure ensembles

    Science.gov (United States)

    Bhattacharyya, Moitrayee; Bhat, Chanda R; Vishveshwara, Saraswathi

    2013-01-01

    Network theory applied to protein structures provides insights into numerous problems of biological relevance. The explosion in structural data available from PDB and simulations establishes a need to introduce a standalone-efficient program that assembles network concepts/parameters under one hood in an automated manner. Herein, we discuss the development/application of an exhaustive, user-friendly, standalone program package named PSN-Ensemble, which can handle structural ensembles generated through molecular dynamics (MD) simulation/NMR studies or from multiple X-ray structures. The novelty in network construction lies in the explicit consideration of side-chain interactions among amino acids. The program evaluates network parameters dealing with topological organization and long-range allosteric communication. The introduction of a flexible weighing scheme in terms of residue pairwise cross-correlation/interaction energy in PSN-Ensemble brings in dynamical/chemical knowledge into the network representation. Also, the results are mapped on a graphical display of the structure, allowing an easy access of network analysis to a general biological community. The potential of PSN-Ensemble toward examining structural ensemble is exemplified using MD trajectories of an ubiquitin-conjugating enzyme (UbcH5b). Furthermore, insights derived from network parameters evaluated using PSN-Ensemble for single-static structures of active/inactive states of β2-adrenergic receptor and the ternary tRNA complexes of tyrosyl tRNA synthetases (from organisms across kingdoms) are discussed. PSN-Ensemble is freely available from http://vishgraph.mbu.iisc.ernet.in/PSN-Ensemble/psn_index.html. PMID:23934896

  6. Automated Item Generation with Recurrent Neural Networks.

    Science.gov (United States)

    von Davier, Matthias

    2018-03-12

    Utilizing technology for automated item generation is not a new idea. However, test items used in commercial testing programs or in research are still predominantly written by humans, in most cases by content experts or professional item writers. Human experts are a limited resource and testing agencies incur high costs in the process of continuous renewal of item banks to sustain testing programs. Using algorithms instead holds the promise of providing unlimited resources for this crucial part of assessment development. The approach presented here deviates in several ways from previous attempts to solve this problem. In the past, automatic item generation relied either on generating clones of narrowly defined item types such as those found in language free intelligence tests (e.g., Raven's progressive matrices) or on an extensive analysis of task components and derivation of schemata to produce items with pre-specified variability that are hoped to have predictable levels of difficulty. It is somewhat unlikely that researchers utilizing these previous approaches would look at the proposed approach with favor; however, recent applications of machine learning show success in solving tasks that seemed impossible for machines not too long ago. The proposed approach uses deep learning to implement probabilistic language models, not unlike what Google brain and Amazon Alexa use for language processing and generation.

  7. Automated analysis of instructional text

    Energy Technology Data Exchange (ETDEWEB)

    Norton, L.M.

    1983-05-01

    The development of a capability for automated processing of natural language text is a long-range goal of artificial intelligence. This paper discusses an investigation into the issues involved in the comprehension of descriptive, as opposed to illustrative, textual material. The comprehension process is viewed as the conversion of knowledge from one representation into another. The proposed target representation consists of statements of the prolog language, which can be interpreted both declaratively and procedurally, much like production rules. A computer program has been written to model in detail some ideas about this process. The program successfully analyzes several heavily edited paragraphs adapted from an elementary textbook on programming, automatically synthesizing as a result of the analysis a working Prolog program which, when executed, can parse and interpret let commands in the basic language. The paper discusses the motivations and philosophy of the project, the many kinds of prerequisite knowledge which are necessary, and the structure of the text analysis program. A sentence-by-sentence account of the analysis of the sample text is presented, describing the syntactic and semantic processing which is involved. The paper closes with a discussion of lessons learned from the project, possible alternative approaches, and possible extensions for future work. The entire project is presented as illustrative of the nature and complexity of the text analysis process, rather than as providing definitive or optimal solutions to any aspects of the task. 12 references.

  8. Capacity analysis of an automated kit transportation system

    NARCIS (Netherlands)

    Zijm, W.H.M.; Adan, I.J.B.F.; Buitenhek, R.; Houtum, van G.J.J.A.N.

    2000-01-01

    In this paper, we present a capacity analysis of an automated transportation system in a flexible assembly factory. The transportation system, together with the workstations, is modeled as a network of queues with multiple job classes. Due to its complex nature, the steadystate behavior of this

  9. An Automated Data Analysis Tool for Livestock Market Data

    Science.gov (United States)

    Williams, Galen S.; Raper, Kellie Curry

    2011-01-01

    This article describes an automated data analysis tool that allows Oklahoma Cooperative Extension Service educators to disseminate results in a timely manner. Primary data collected at Oklahoma Quality Beef Network (OQBN) certified calf auctions across the state results in a large amount of data per sale site. Sale summaries for an individual sale…

  10. Automation for System Safety Analysis

    Science.gov (United States)

    Malin, Jane T.; Fleming, Land; Throop, David; Thronesbery, Carroll; Flores, Joshua; Bennett, Ted; Wennberg, Paul

    2009-01-01

    This presentation describes work to integrate a set of tools to support early model-based analysis of failures and hazards due to system-software interactions. The tools perform and assist analysts in the following tasks: 1) extract model parts from text for architecture and safety/hazard models; 2) combine the parts with library information to develop the models for visualization and analysis; 3) perform graph analysis and simulation to identify and evaluate possible paths from hazard sources to vulnerable entities and functions, in nominal and anomalous system-software configurations and scenarios; and 4) identify resulting candidate scenarios for software integration testing. There has been significant technical progress in model extraction from Orion program text sources, architecture model derivation (components and connections) and documentation of extraction sources. Models have been derived from Internal Interface Requirements Documents (IIRDs) and FMEA documents. Linguistic text processing is used to extract model parts and relationships, and the Aerospace Ontology also aids automated model development from the extracted information. Visualizations of these models assist analysts in requirements overview and in checking consistency and completeness.

  11. Management issues in automated audit analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, K.A.; Hochberg, J.G.; Wilhelmy, S.K.; McClary, J.F.; Christoph, G.G.

    1994-03-01

    This paper discusses management issues associated with the design and implementation of an automated audit analysis system that we use to detect security events. It gives the viewpoint of a team directly responsible for developing and managing such a system. We use Los Alamos National Laboratory`s Network Anomaly Detection and Intrusion Reporter (NADIR) as a case in point. We examine issues encountered at Los Alamos, detail our solutions to them, and where appropriate suggest general solutions. After providing an introduction to NADIR, we explore four general management issues: cost-benefit questions, privacy considerations, legal issues, and system integrity. Our experiences are of general interest both to security professionals and to anyone who may wish to implement a similar system. While NADIR investigates security events, the methods used and the management issues are potentially applicable to a broad range of complex systems. These include those used to audit credit card transactions, medical care payments, and procurement systems.

  12. Optimizing a Drone Network to Deliver Automated External Defibrillators.

    Science.gov (United States)

    Boutilier, Justin J; Brooks, Steven C; Janmohamed, Alyf; Byers, Adam; Buick, Jason E; Zhan, Cathy; Schoellig, Angela P; Cheskes, Sheldon; Morrison, Laurie J; Chan, Timothy C Y

    2017-06-20

    Public access defibrillation programs can improve survival after out-of-hospital cardiac arrest, but automated external defibrillators (AEDs) are rarely available for bystander use at the scene. Drones are an emerging technology that can deliver an AED to the scene of an out-of-hospital cardiac arrest for bystander use. We hypothesize that a drone network designed with the aid of a mathematical model combining both optimization and queuing can reduce the time to AED arrival. We applied our model to 53 702 out-of-hospital cardiac arrests that occurred in the 8 regions of the Toronto Regional RescuNET between January 1, 2006, and December 31, 2014. Our primary analysis quantified the drone network size required to deliver an AED 1, 2, or 3 minutes faster than historical median 911 response times for each region independently. A secondary analysis quantified the reduction in drone resources required if RescuNET was treated as a large coordinated region. The region-specific analysis determined that 81 bases and 100 drones would be required to deliver an AED ahead of median 911 response times by 3 minutes. In the most urban region, the 90th percentile of the AED arrival time was reduced by 6 minutes and 43 seconds relative to historical 911 response times in the region. In the most rural region, the 90th percentile was reduced by 10 minutes and 34 seconds. A single coordinated drone network across all regions required 39.5% fewer bases and 30.0% fewer drones to achieve similar AED delivery times. An optimized drone network designed with the aid of a novel mathematical model can substantially reduce the AED delivery time to an out-of-hospital cardiac arrest event. © 2017 American Heart Association, Inc.

  13. Realtime Automation Networks in moVing industrial Environments

    Directory of Open Access Journals (Sweden)

    Rafael Leidinger

    2012-04-01

    Full Text Available The radio-based wireless data communication has made the realization of new technical solutions possible in many fields of the automation technology (AT. For about ten years, a constant disproportionate growth of wireless technologies can be observed in the automation technology. However, it shows that especially for the AT, conven-tional technologies of office automation are unsuitable and/or not manageable. The employment of mobile ser-vices in the industrial automation technology has the potential of significant cost and time savings. This leads to an increased productivity in various fields of the AT, for example in the factory and process automation or in production logistics. In this paper technologies and solu-tions for an automation-suited supply of mobile wireless services will be introduced under the criteria of real time suitability, IT-security and service orientation. Emphasis will be put on the investigation and develop-ment of wireless convergence layers for different radio technologies, on the central provision of support services for an easy-to-use, central, backup enabled management of combined wired / wireless networks and on the study on integrability in a Profinet real-time Ethernet network [1].

  14. Automated analysis of autoradiographic imagery

    International Nuclear Information System (INIS)

    Bisignani, W.T.; Greenhouse, S.C.

    1975-01-01

    A research programme is described which has as its objective the automated characterization of neurological tissue regions from autoradiographs by utilizing hybrid-resolution image processing techniques. An experimental system is discussed which includes raw imagery, scanning an digitizing equipments, feature-extraction algorithms, and regional characterization techniques. The parameters extracted by these algorithms are presented as well as the regional characteristics which are obtained by operating on the parameters with statistical sampling techniques. An approach is presented for validating the techniques and initial experimental results are obtained from an anlysis of an autoradiograph of a region of the hypothalamus. An extension of these automated techniques to other biomedical research areas is discussed as well as the implications of applying automated techniques to biomedical research problems. (author)

  15. A framework for automated service composition in collaborative networks

    NARCIS (Netherlands)

    Afsarmanesh, H.; Sargolzaei, M.; Shadi, M.

    2012-01-01

    This paper proposes a novel framework for automated software service composition that can significantly support and enhance collaboration among enterprises in service provision industry, such as in tourism insurance and e-commerce collaborative networks (CNs). Our proposed framework is founded on

  16. Building Automation Networks for Smart Grids

    Directory of Open Access Journals (Sweden)

    Peizhong Yi

    2011-01-01

    Full Text Available Smart grid, as an intelligent power generation, distribution, and control system, needs various communication systems to meet its requirements. The ability to communicate seamlessly across multiple networks and domains is an open issue which is yet to be adequately addressed in smart grid architectures. In this paper, we present a framework for end-to-end interoperability in home and building area networks within smart grids. 6LoWPAN and the compact application protocol are utilized to facilitate the use of IPv6 and Zigbee application profiles such as Zigbee smart energy for network and application layer interoperability, respectively. A differential service medium access control scheme enables end-to-end connectivity between 802.15.4 and IP networks while providing quality of service guarantees for Zigbee traffic over Wi-Fi. We also address several issues including interference mitigation, load scheduling, and security and propose solutions to them.

  17. Distribution system analysis and automation

    CERN Document Server

    Gers, Juan

    2013-01-01

    A comprehensive guide to techniques that allow engineers to simulate, analyse and optimise power distribution systems which combined with automation, underpin the emerging concept of the "smart grid". This book is supported by theoretical concepts with real-world applications and MATLAB exercises.

  18. Automated Negotiation for Resource Assignment in Wireless Surveillance Sensor Networks

    Directory of Open Access Journals (Sweden)

    Enrique de la Hoz

    2015-11-01

    Full Text Available Due to the low cost of CMOS IP-based cameras, wireless surveillance sensor networks have emerged as a new application of sensor networks able to monitor public or private areas or even country borders. Since these networks are bandwidth intensive and the radioelectric spectrum is limited, especially in unlicensed bands, it is mandatory to assign frequency channels in a smart manner. In this work, we propose the application of automated negotiation techniques for frequency assignment. Results show that these techniques are very suitable for the problem, being able to obtain the best solutions among the techniques with which we have compared them.

  19. The contaminant analysis automation robot implementation for the automated laboratory

    International Nuclear Information System (INIS)

    Younkin, J.R.; Igou, R.E.; Urenda, T.D.

    1995-01-01

    The Contaminant Analysis Automation (CAA) project defines the automated laboratory as a series of standard laboratory modules (SLM) serviced by a robotic standard support module (SSM). These SLMs are designed to allow plug-and-play integration into automated systems that perform standard analysis methods (SAM). While the SLMs are autonomous in the execution of their particular chemical processing task, the SAM concept relies on a high-level task sequence controller (TSC) to coordinate the robotic delivery of materials requisite for SLM operations, initiate an SLM operation with the chemical method dependent operating parameters, and coordinate the robotic removal of materials from the SLM when its commands and events has been established to allow ready them for transport operations as well as performing the Supervisor and Subsystems (GENISAS) software governs events from the SLMs and robot. The Intelligent System Operating Environment (ISOE) enables the inter-process communications used by GENISAS. CAA selected the Hewlett-Packard Optimized Robot for Chemical Analysis (ORCA) and its associated Windows based Methods Development Software (MDS) as the robot SSM. The MDS software is used to teach the robot each SLM position and required material port motions. To allow the TSC to command these SLM motions, a hardware and software implementation was required that allowed message passing between different operating systems. This implementation involved the use of a Virtual Memory Extended (VME) rack with a Force CPU-30 computer running VxWorks; a real-time multitasking operating system, and a Radiuses PC compatible VME computer running MDS. A GENISAS server on The Force computer accepts a transport command from the TSC, a GENISAS supervisor, over Ethernet and notifies software on the RadiSys PC of the pending command through VMEbus shared memory. The command is then delivered to the MDS robot control software using a Windows Dynamic Data Exchange conversation

  20. NetBench. Automated Network Performance Testing

    CERN Document Server

    Cadeddu, Mattia

    2016-01-01

    In order to evaluate the operation of high performance routers, CERN has developed the NetBench software to run benchmarking tests by injecting various traffic patterns and observing the network devices behaviour in real-time. The tool features a modular design with a Python based console used to inject traffic and collect the results in a database, and a web user

  1. Automated classification of computer network attacks

    CSIR Research Space (South Africa)

    Van Heerden, R

    2013-11-01

    Full Text Available according to the relevant types of attack scenarios depicted in the ontology. The two network attack instances are the Distributed Denial of Service attack on SpamHaus in 2013 and the theft of 42 million Rand ($6.7 million) from South African Postbank...

  2. An efficient automated parameter tuning framework for spiking neural networks.

    Science.gov (United States)

    Carlson, Kristofor D; Nageswaran, Jayram Moorkanikara; Dutt, Nikil; Krichmar, Jeffrey L

    2014-01-01

    As the desire for biologically realistic spiking neural networks (SNNs) increases, tuning the enormous number of open parameters in these models becomes a difficult challenge. SNNs have been used to successfully model complex neural circuits that explore various neural phenomena such as neural plasticity, vision systems, auditory systems, neural oscillations, and many other important topics of neural function. Additionally, SNNs are particularly well-adapted to run on neuromorphic hardware that will support biological brain-scale architectures. Although the inclusion of realistic plasticity equations, neural dynamics, and recurrent topologies has increased the descriptive power of SNNs, it has also made the task of tuning these biologically realistic SNNs difficult. To meet this challenge, we present an automated parameter tuning framework capable of tuning SNNs quickly and efficiently using evolutionary algorithms (EA) and inexpensive, readily accessible graphics processing units (GPUs). A sample SNN with 4104 neurons was tuned to give V1 simple cell-like tuning curve responses and produce self-organizing receptive fields (SORFs) when presented with a random sequence of counterphase sinusoidal grating stimuli. A performance analysis comparing the GPU-accelerated implementation to a single-threaded central processing unit (CPU) implementation was carried out and showed a speedup of 65× of the GPU implementation over the CPU implementation, or 0.35 h per generation for GPU vs. 23.5 h per generation for CPU. Additionally, the parameter value solutions found in the tuned SNN were studied and found to be stable and repeatable. The automated parameter tuning framework presented here will be of use to both the computational neuroscience and neuromorphic engineering communities, making the process of constructing and tuning large-scale SNNs much quicker and easier.

  3. Ecological network analysis: network construction

    NARCIS (Netherlands)

    Fath, B.D.; Scharler, U.M.; Ulanowicz, R.E.; Hannon, B.

    2007-01-01

    Ecological network analysis (ENA) is a systems-oriented methodology to analyze within system interactions used to identify holistic properties that are otherwise not evident from the direct observations. Like any analysis technique, the accuracy of the results is as good as the data available, but

  4. Automated diagnosis of rolling bearings using MRA and neural networks

    Science.gov (United States)

    Castejón, C.; Lara, O.; García-Prada, J. C.

    2010-01-01

    Any industry needs an efficient predictive plan in order to optimize the management of resources and improve the economy of the plant by reducing unnecessary costs and increasing the level of safety. A great percentage of breakdowns in productive processes are caused by bearings. They begin to deteriorate from early stages of their functional life, also called the incipient level. This manuscript develops an automated diagnosis of rolling bearings based on the analysis and classification of signature vibrations. The novelty of this work is the application of the methodology proposed for data collected from a quasi-real industrial machine, where rolling bearings support the radial and axial loads the bearings are designed for. Multiresolution analysis (MRA) is used in a first stage in order to extract the most interesting features from signals. Features will be used in a second stage as inputs of a supervised neural network (NN) for classification purposes. Experimental results carried out in a real system show the soundness of the method which detects four bearing conditions (normal, inner race fault, outer race fault and ball fault) in a very incipient stage.

  5. Automated analysis of slitless spectra. II. Quasars

    International Nuclear Information System (INIS)

    Edwards, G.; Beauchemin, M.; Borra, F.

    1988-01-01

    Automated software have been developed to process slitless spectra. The software, described in a previous paper, automatically separates stars from extended objects and quasars from stars. This paper describes the quasar search techniques and discusses the results. The performance of the software is compared and calibrated with a plate taken in a region of SA 57 that has been extensively surveyed by others using a variety of techniques: the proposed automated software performs very well. It is found that an eye search of the same plate is less complete than the automated search: surveys that rely on eye searches suffer from incompleteness at least from a magnitude brighter than the plate limit. It is shown how the complete automated analysis of a plate and computer simulations are used to calibrate and understand the characteristics of the present data. 20 references

  6. Automation of the Analysis of Moessbauer Spectra

    International Nuclear Information System (INIS)

    Souza, Paulo A. de Jr.; Garg, R.; Garg, V. K.

    1998-01-01

    In the present report we propose the automation of least square fitting of Moessbauer spectra, the identification of the substance, its crystal structure and the access to the references with the help of a genetic algorith, Fuzzy logic, and the artificial neural network associated with a databank of Moessbauer parameters and references. This system could be useful for specialists and non-specialists, in industry as well as in research laboratories

  7. Automated analysis in generic groups

    Science.gov (United States)

    Fagerholm, Edvard

    This thesis studies automated methods for analyzing hardness assumptions in generic group models, following ideas of symbolic cryptography. We define a broad class of generic and symbolic group models for different settings---symmetric or asymmetric (leveled) k-linear groups --- and prove ''computational soundness'' theorems for the symbolic models. Based on this result, we formulate a master theorem that relates the hardness of an assumption to solving problems in polynomial algebra. We systematically analyze these problems identifying different classes of assumptions and obtain decidability and undecidability results. Then, we develop automated procedures for verifying the conditions of our master theorems, and thus the validity of hardness assumptions in generic group models. The concrete outcome is an automated tool, the Generic Group Analyzer, which takes as input the statement of an assumption, and outputs either a proof of its generic hardness or shows an algebraic attack against the assumption. Structure-preserving signatures are signature schemes defined over bilinear groups in which messages, public keys and signatures are group elements, and the verification algorithm consists of evaluating ''pairing-product equations''. Recent work on structure-preserving signatures studies optimality of these schemes in terms of the number of group elements needed in the verification key and the signature, and the number of pairing-product equations in the verification algorithm. While the size of keys and signatures is crucial for many applications, another aspect of performance is the time it takes to verify a signature. The most expensive operation during verification is the computation of pairings. However, the concrete number of pairings is not captured by the number of pairing-product equations considered in earlier work. We consider the question of what is the minimal number of pairing computations needed to verify structure-preserving signatures. We build an

  8. Automation of seismic network signal interpolation: an artificial intelligence approach

    International Nuclear Information System (INIS)

    Chiaruttini, C.; Roberto, V.

    1988-01-01

    After discussing the current status of the automation in signal interpretation from seismic networks, a new approach, based on artificial-intelligence tecniques, is proposed. The knowledge of the human expert analyst is examined, with emphasis on its objects, strategies and reasoning techniques. It is argued that knowledge-based systems (or expert systems) provide the most appropriate tools for designing an automatic system, modelled on the expert behaviour

  9. DESIGN OF BUILDING AUTOMATION BASED ON PROFIBUS-DP NETWORK

    Directory of Open Access Journals (Sweden)

    Cemal YILMAZ

    2006-02-01

    Full Text Available In this study, a building automation has been designed by using the Profibus DP (Process Field Bus- Decentralized Periphery network. In the study; fire alarm, thief alarm, lighting, power, humidity and temperature control have been implemented. The data from building has been transmitted to the Profibus-DP network via control point located on the flats. The data taken from the building has been collected in the main control unit to achieve overall control of the system. The work has provided an optimum efficiency in energy consumption, control of power, security, temperature and humidity.

  10. Automated Technology for Verificiation and Analysis

    DEFF Research Database (Denmark)

    -of-the-art research on theoretical and practical aspects of automated analysis, verification, and synthesis. Among 74 research papers and 10 tool papers submitted to ATVA 2009, the Program Committee accepted 23 as regular papers and 3 as tool papers. In all, 33 experts from 17 countries worked hard to make sure......This volume contains the papers presented at the 7th International Symposium on Automated Technology for Verification and Analysis held during October 13-16 in Macao SAR, China. The primary objective of the ATVA conferences remains the same: to exchange and promote the latest advances of state...

  11. Anomaly detection in an automated safeguards system using neural networks

    International Nuclear Information System (INIS)

    Whiteson, R.; Howell, J.A.

    1992-01-01

    An automated safeguards system must be able to detect an anomalous event, identify the nature of the event, and recommend a corrective action. Neural networks represent a new way of thinking about basic computational mechanisms for intelligent information processing. In this paper, we discuss the issues involved in applying a neural network model to the first step of this process: anomaly detection in materials accounting systems. We extend our previous model to a 3-tank problem and compare different neural network architectures and algorithms. We evaluate the computational difficulties in training neural networks and explore how certain design principles affect the problems. The issues involved in building a neural network architecture include how the information flows, how the network is trained, how the neurons in a network are connected, how the neurons process information, and how the connections between neurons are modified. Our approach is based on the demonstrated ability of neural networks to model complex, nonlinear, real-time processes. By modeling the normal behavior of the processes, we can predict how a system should be behaving and, therefore, detect when an abnormality occurs

  12. Automated quantification of neuronal networks and single-cell calcium dynamics using calcium imaging.

    Science.gov (United States)

    Patel, Tapan P; Man, Karen; Firestein, Bonnie L; Meaney, David F

    2015-03-30

    Recent advances in genetically engineered calcium and membrane potential indicators provide the potential to estimate the activation dynamics of individual neurons within larger, mesoscale networks (100s-1000+neurons). However, a fully integrated automated workflow for the analysis and visualization of neural microcircuits from high speed fluorescence imaging data is lacking. Here we introduce FluoroSNNAP, Fluorescence Single Neuron and Network Analysis Package. FluoroSNNAP is an open-source, interactive software developed in MATLAB for automated quantification of numerous biologically relevant features of both the calcium dynamics of single-cells and network activity patterns. FluoroSNNAP integrates and improves upon existing tools for spike detection, synchronization analysis, and inference of functional connectivity, making it most useful to experimentalists with little or no programming knowledge. We apply FluoroSNNAP to characterize the activity patterns of neuronal microcircuits undergoing developmental maturation in vitro. Separately, we highlight the utility of single-cell analysis for phenotyping a mixed population of neurons expressing a human mutant variant of the microtubule associated protein tau and wild-type tau. We show the performance of semi-automated cell segmentation using spatiotemporal independent component analysis and significant improvement in detecting calcium transients using a template-based algorithm in comparison to peak-based or wavelet-based detection methods. Our software further enables automated analysis of microcircuits, which is an improvement over existing methods. We expect the dissemination of this software will facilitate a comprehensive analysis of neuronal networks, promoting the rapid interrogation of circuits in health and disease. Copyright © 2015. Published by Elsevier B.V.

  13. Automated x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    O'Connell, A.M.

    1977-01-01

    A fully automated x-ray fluorescence analytical system is described. The hardware is based on a Philips PW1220 sequential x-ray spectrometer. Software for on-line analysis of a wide range of sample types has been developed for the Hewlett-Packard 9810A programmable calculator. Routines to test the system hardware are also described. (Author)

  14. Computer-automated neutron activation analysis system

    International Nuclear Information System (INIS)

    Minor, M.M.; Garcia, S.R.

    1983-01-01

    An automated delayed neutron counting and instrumental neutron activation analysis system has been developed at Los Alamos National Laboratory's Omega West Reactor (OWR) to analyze samples for uranium and 31 additional elements with a maximum throughput of 400 samples per day. 5 references

  15. Statistical modelling of networked human-automation performance using working memory capacity.

    Science.gov (United States)

    Ahmed, Nisar; de Visser, Ewart; Shaw, Tyler; Mohamed-Ameen, Amira; Campbell, Mark; Parasuraman, Raja

    2014-01-01

    This study examines the challenging problem of modelling the interaction between individual attentional limitations and decision-making performance in networked human-automation system tasks. Analysis of real experimental data from a task involving networked supervision of multiple unmanned aerial vehicles by human participants shows that both task load and network message quality affect performance, but that these effects are modulated by individual differences in working memory (WM) capacity. These insights were used to assess three statistical approaches for modelling and making predictions with real experimental networked supervisory performance data: classical linear regression, non-parametric Gaussian processes and probabilistic Bayesian networks. It is shown that each of these approaches can help designers of networked human-automated systems cope with various uncertainties in order to accommodate future users by linking expected operating conditions and performance from real experimental data to observable cognitive traits like WM capacity. Practitioner Summary: Working memory (WM) capacity helps account for inter-individual variability in operator performance in networked unmanned aerial vehicle supervisory tasks. This is useful for reliable performance prediction near experimental conditions via linear models; robust statistical prediction beyond experimental conditions via Gaussian process models and probabilistic inference about unknown task conditions/WM capacities via Bayesian network models.

  16. A computational framework for the automated construction of glycosylation reaction networks.

    Science.gov (United States)

    Liu, Gang; Neelamegham, Sriram

    2014-01-01

    Glycosylation is among the most common and complex post-translational modifications identified to date. It proceeds through the catalytic action of multiple enzyme families that include the glycosyltransferases that add monosaccharides to growing glycans, and glycosidases which remove sugar residues to trim glycans. The expression level and specificity of these enzymes, in part, regulate the glycan distribution or glycome of specific cell/tissue systems. Currently, there is no systematic method to describe the enzymes and cellular reaction networks that catalyze glycosylation. To address this limitation, we present a streamlined machine-readable definition for the glycosylating enzymes and additional methodologies to construct and analyze glycosylation reaction networks. In this computational framework, the enzyme class is systematically designed to store detailed specificity data such as enzymatic functional group, linkage and substrate specificity. The new classes and their associated functions enable both single-reaction inference and automated full network reconstruction, when given a list of reactants and/or products along with the enzymes present in the system. In addition, graph theory is used to support functions that map the connectivity between two or more species in a network, and that generate subset models to identify rate-limiting steps regulating glycan biosynthesis. Finally, this framework allows the synthesis of biochemical reaction networks using mass spectrometry (MS) data. The features described above are illustrated using three case studies that examine: i) O-linked glycan biosynthesis during the construction of functional selectin-ligands; ii) automated N-linked glycosylation pathway construction; and iii) the handling and analysis of glycomics based MS data. Overall, the new computational framework enables automated glycosylation network model construction and analysis by integrating knowledge of glycan structure and enzyme biochemistry. All

  17. A computational framework for the automated construction of glycosylation reaction networks.

    Directory of Open Access Journals (Sweden)

    Gang Liu

    Full Text Available Glycosylation is among the most common and complex post-translational modifications identified to date. It proceeds through the catalytic action of multiple enzyme families that include the glycosyltransferases that add monosaccharides to growing glycans, and glycosidases which remove sugar residues to trim glycans. The expression level and specificity of these enzymes, in part, regulate the glycan distribution or glycome of specific cell/tissue systems. Currently, there is no systematic method to describe the enzymes and cellular reaction networks that catalyze glycosylation. To address this limitation, we present a streamlined machine-readable definition for the glycosylating enzymes and additional methodologies to construct and analyze glycosylation reaction networks. In this computational framework, the enzyme class is systematically designed to store detailed specificity data such as enzymatic functional group, linkage and substrate specificity. The new classes and their associated functions enable both single-reaction inference and automated full network reconstruction, when given a list of reactants and/or products along with the enzymes present in the system. In addition, graph theory is used to support functions that map the connectivity between two or more species in a network, and that generate subset models to identify rate-limiting steps regulating glycan biosynthesis. Finally, this framework allows the synthesis of biochemical reaction networks using mass spectrometry (MS data. The features described above are illustrated using three case studies that examine: i O-linked glycan biosynthesis during the construction of functional selectin-ligands; ii automated N-linked glycosylation pathway construction; and iii the handling and analysis of glycomics based MS data. Overall, the new computational framework enables automated glycosylation network model construction and analysis by integrating knowledge of glycan structure and enzyme

  18. Planning representation for automated exploratory data analysis

    Science.gov (United States)

    St. Amant, Robert; Cohen, Paul R.

    1994-03-01

    Igor is a knowledge-based system for exploratory statistical analysis of complex systems and environments. Igor has two related goals: to help automate the search for interesting patterns in data sets, and to help develop models that capture significant relationships in the data. We outline a language for Igor, based on techniques of opportunistic planning, which balances control and opportunism. We describe the application of Igor to the analysis of the behavior of Phoenix, an artificial intelligence planning system.

  19. Analysis And Control System For Automated Welding

    Science.gov (United States)

    Powell, Bradley W.; Burroughs, Ivan A.; Kennedy, Larry Z.; Rodgers, Michael H.; Goode, K. Wayne

    1994-01-01

    Automated variable-polarity plasma arc (VPPA) welding apparatus operates under electronic supervision by welding analysis and control system. System performs all major monitoring and controlling functions. It acquires, analyzes, and displays weld-quality data in real time and adjusts process parameters accordingly. Also records pertinent data for use in post-weld analysis and documentation of quality. System includes optoelectronic sensors and data processors that provide feedback control of welding process.

  20. Improvement of Binary Analysis Components in Automated Malware Analysis Framework

    Science.gov (United States)

    2017-02-21

    AFRL-AFOSR-JP-TR-2017-0018 Improvement of Binary Analysis Components in Automated Malware Analysis Framework Keiji Takeda KEIO UNIVERSITY Final...TYPE Final 3. DATES COVERED (From - To) 26 May 2015 to 25 Nov 2016 4. TITLE AND SUBTITLE Improvement of Binary Analysis Components in Automated Malware ...analyze malicious software ( malware ) with minimum human interaction. The system autonomously analyze malware samples by analyzing malware binary program

  1. Automated Loads Analysis System (ATLAS)

    Science.gov (United States)

    Gardner, Stephen; Frere, Scot; O’Reilly, Patrick

    2013-01-01

    ATLAS is a generalized solution that can be used for launch vehicles. ATLAS is used to produce modal transient analysis and quasi-static analysis results (i.e., accelerations, displacements, and forces) for the payload math models on a specific Shuttle Transport System (STS) flight using the shuttle math model and associated forcing functions. This innovation solves the problem of coupling of payload math models into a shuttle math model. It performs a transient loads analysis simulating liftoff, landing, and all flight events between liftoff and landing. ATLAS utilizes efficient and numerically stable algorithms available in MSC/NASTRAN.

  2. Tele command and network automation: strategy and results; Telecomando e automacao de redes: estrategia e resultados

    Energy Technology Data Exchange (ETDEWEB)

    Bargigia, Angelo; Cerreti, Alberto; Lembo, Giorgio di; Rogai, Sergio; Veglio, Gianfranco [Enel Distribuzione Spa, Rome (Italy)

    2004-02-01

    This article presents the adopted by the ENEL Distribuzione, Italy, for the tele command and automation in the distribution line. The article describes the medium term implementation program, based on the installation of remote terminal unities, with communication through cell phone GMS for transmission of collected data to the control centers of the network. A cost versus benefit analysis conducted and the obtained results are also evaluated.

  3. Supporting Control Room Operators in Highly Automated Future Power Networks

    DEFF Research Database (Denmark)

    Chen, Minjiang; Catterson, Victoria; Syed, Mazheruddin

    2017-01-01

    Operating power systems is an extremely challenging task, not least because power systems have become highly interconnected, as well as the range of network issues that can occur. It is therefore a necessity to develop decision support systems and visualisation that can effectively support the hu...... the human operators for decisionmaking in the complex and dynamic environment of future highly automated power system. This paper aims to investigate the decision support functions associated with frequency deviation events for the proposed Web of Cells concept....

  4. SONG-China Project: A Global Automated Observation Network

    Science.gov (United States)

    Yang, Z. Z.; Lu, X. M.; Tian, J. F.; Zhuang, C. G.; Wang, K.; Deng, L. C.

    2017-09-01

    Driven by advancements in technology and scientific objectives, data acquisition in observational astronomy has been changed greatly in recent years. Fully automated or even autonomous ground-based network of telescopes has now become a tendency for time-domain observational projects. The Stellar Observations Network Group (SONG) is an international collaboration with the participation and contribution of the Chinese astronomy community. The scientific goal of SONG is time-domain astrophysics such as asteroseismology and open cluster research. The SONG project aims to build a global network of 1 m telescopes equipped with high-precision and high-resolution spectrographs, and two-channel lucky-imaging cameras. It is the Chinese initiative to install a 50 cm binocular photometry telescope at each SONG node sharing the network platform and infrastructure. This work is focused on design and implementation in technology and methodology of SONG/50BiN, a typical ground-based network composed of multiple sites and a variety of instruments.

  5. Automated software analysis of nuclear core discharge data

    International Nuclear Information System (INIS)

    Larson, T.W.; Halbig, J.K.; Howell, J.A.; Eccleston, G.W.; Klosterbuer, S.F.

    1993-03-01

    Monitoring the fueling process of an on-load nuclear reactor is a full-time job for nuclear safeguarding agencies. Nuclear core discharge monitors (CDMS) can provide continuous, unattended recording of the reactor's fueling activity for later, qualitative review by a safeguards inspector. A quantitative analysis of this collected data could prove to be a great asset to inspectors because more information can be extracted from the data and the analysis time can be reduced considerably. This paper presents a prototype for an automated software analysis system capable of identifying when fuel bundle pushes occurred and monitoring the power level of the reactor. Neural network models were developed for calculating the region on the reactor face from which the fuel was discharged and predicting the burnup. These models were created and tested using actual data collected from a CDM system at an on-load reactor facility. Collectively, these automated quantitative analysis programs could help safeguarding agencies to gain a better perspective on the complete picture of the fueling activity of an on-load nuclear reactor. This type of system can provide a cost-effective solution for automated monitoring of on-load reactors significantly reducing time and effort

  6. Automated spectral and timing analysis of AGNs

    Science.gov (United States)

    Munz, F.; Karas, V.; Guainazzi, M.

    2006-12-01

    % We have developed an autonomous script that helps the user to automate the XMM-Newton data analysis for the purposes of extensive statistical investigations. We test this approach by examining X-ray spectra of bright AGNs pre-selected from the public database. The event lists extracted in this process were studied further by constructing their energy-resolved Fourier power-spectrum density. This analysis combines energy distributions, light-curves, and their power-spectra and it proves useful to assess the variability patterns present is the data. As another example, an automated search was based on the XSPEC package to reveal the emission features in 2-8 keV range.

  7. Techniques for Automated Performance Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Marcus, Ryan C. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-02

    The performance of a particular HPC code depends on a multitude of variables, including compiler selection, optimization flags, OpenMP pool size, file system load, memory usage, MPI configuration, etc. As a result of this complexity, current predictive models have limited applicability, especially at scale. We present a formulation of scientific codes, nodes, and clusters that reduces complex performance analysis to well-known mathematical techniques. Building accurate predictive models and enhancing our understanding of scientific codes at scale is an important step towards exascale computing.

  8. Automated information retrieval system for radioactivation analysis

    International Nuclear Information System (INIS)

    Lambrev, V.G.; Bochkov, P.E.; Gorokhov, S.A.; Nekrasov, V.V.; Tolstikova, L.I.

    1981-01-01

    An automated information retrieval system for radioactivation analysis has been developed. An ES-1022 computer and a problem-oriented software ''The description information search system'' were used for the purpose. Main aspects and sources of forming the system information fund, characteristics of the information retrieval language of the system are reported and examples of question-answer dialogue are given. Two modes can be used: selective information distribution and retrospective search [ru

  9. Survey on Wireless Sensor Network Technologies for Industrial Automation: The Security and Quality of Service Perspectives

    Directory of Open Access Journals (Sweden)

    Delphine Christin

    2010-04-01

    Full Text Available Wireless Sensor Networks (WSNs are gradually adopted in the industrial world due to their advantages over wired networks. In addition to saving cabling costs, WSNs widen the realm of environments feasible for monitoring. They thus add sensing and acting capabilities to objects in the physical world and allow for communication among these objects or with services in the future Internet. However, the acceptance of WSNs by the industrial automation community is impeded by open issues, such as security guarantees and provision of Quality of Service (QoS. To examine both of these perspectives, we select and survey relevant WSN technologies dedicated to industrial automation. We determine QoS requirements and carry out a threat analysis, which act as basis of our evaluation of the current state-of-the-art. According to the results of this evaluation, we identify and discuss open research issues.

  10. Automated analysis of objective-prism spectra

    International Nuclear Information System (INIS)

    Hewett, P.C.; Irwin, M.J.; Bunclark, P.; Bridgeland, M.T.; Kibblewhite, E.J.; Smith, M.G.

    1985-01-01

    A fully automated system for the location, measurement and analysis of large numbers of low-resolution objective-prism spectra is described. The system is based on the APM facility at the University of Cambridge, and allows processing of objective-prism, grens or grism data. Particular emphasis is placed on techniques to obtain the maximum signal-to-noise ratio from the data, both in the initial spectral estimation procedure and for subsequent feature identification. Comparison of a high-quality visual catalogue of faint quasar candidates with an equivalent automated sample demonstrates the ability of the APM system to identify all the visually selected quasar candidates. In addition, a large population of new, faint (msub(J)approx. 20) candidates is identified. (author)

  11. Automated mammographic breast density estimation using a fully convolutional network.

    Science.gov (United States)

    Lee, Juhun; Nishikawa, Robert M

    2018-03-01

    The purpose of this study was to develop a fully automated algorithm for mammographic breast density estimation using deep learning. Our algorithm used a fully convolutional network, which is a deep learning framework for image segmentation, to segment both the breast and the dense fibroglandular areas on mammographic images. Using the segmented breast and dense areas, our algorithm computed the breast percent density (PD), which is the faction of dense area in a breast. Our dataset included full-field digital screening mammograms of 604 women, which included 1208 mediolateral oblique (MLO) and 1208 craniocaudal (CC) views. We allocated 455, 58, and 91 of 604 women and their exams into training, testing, and validation datasets, respectively. We established ground truth for the breast and the dense fibroglandular areas via manual segmentation and segmentation using a simple thresholding based on BI-RADS density assessments by radiologists, respectively. Using the mammograms and ground truth, we fine-tuned a pretrained deep learning network to train the network to segment both the breast and the fibroglandular areas. Using the validation dataset, we evaluated the performance of the proposed algorithm against radiologists' BI-RADS density assessments. Specifically, we conducted a correlation analysis between a BI-RADS density assessment of a given breast and its corresponding PD estimate by the proposed algorithm. In addition, we evaluated our algorithm in terms of its ability to classify the BI-RADS density using PD estimates, and its ability to provide consistent PD estimates for the left and the right breast and the MLO and CC views of the same women. To show the effectiveness of our algorithm, we compared the performance of our algorithm against a state of the art algorithm, laboratory for individualized breast radiodensity assessment (LIBRA). The PD estimated by our algorithm correlated well with BI-RADS density ratings by radiologists. Pearson's rho values of

  12. Toward the automated generation of genome-scale metabolic networks in the SEED.

    Science.gov (United States)

    DeJongh, Matthew; Formsma, Kevin; Boillot, Paul; Gould, John; Rycenga, Matthew; Best, Aaron

    2007-04-26

    Current methods for the automated generation of genome-scale metabolic networks focus on genome annotation and preliminary biochemical reaction network assembly, but do not adequately address the process of identifying and filling gaps in the reaction network, and verifying that the network is suitable for systems level analysis. Thus, current methods are only sufficient for generating draft-quality networks, and refinement of the reaction network is still largely a manual, labor-intensive process. We have developed a method for generating genome-scale metabolic networks that produces substantially complete reaction networks, suitable for systems level analysis. Our method partitions the reaction space of central and intermediary metabolism into discrete, interconnected components that can be assembled and verified in isolation from each other, and then integrated and verified at the level of their interconnectivity. We have developed a database of components that are common across organisms, and have created tools for automatically assembling appropriate components for a particular organism based on the metabolic pathways encoded in the organism's genome. This focuses manual efforts on that portion of an organism's metabolism that is not yet represented in the database. We have demonstrated the efficacy of our method by reverse-engineering and automatically regenerating the reaction network from a published genome-scale metabolic model for Staphylococcus aureus. Additionally, we have verified that our method capitalizes on the database of common reaction network components created for S. aureus, by using these components to generate substantially complete reconstructions of the reaction networks from three other published metabolic models (Escherichia coli, Helicobacter pylori, and Lactococcus lactis). We have implemented our tools and database within the SEED, an open-source software environment for comparative genome annotation and analysis. Our method sets the

  13. Toward the automated generation of genome-scale metabolic networks in the SEED

    Directory of Open Access Journals (Sweden)

    Gould John

    2007-04-01

    Full Text Available Abstract Background Current methods for the automated generation of genome-scale metabolic networks focus on genome annotation and preliminary biochemical reaction network assembly, but do not adequately address the process of identifying and filling gaps in the reaction network, and verifying that the network is suitable for systems level analysis. Thus, current methods are only sufficient for generating draft-quality networks, and refinement of the reaction network is still largely a manual, labor-intensive process. Results We have developed a method for generating genome-scale metabolic networks that produces substantially complete reaction networks, suitable for systems level analysis. Our method partitions the reaction space of central and intermediary metabolism into discrete, interconnected components that can be assembled and verified in isolation from each other, and then integrated and verified at the level of their interconnectivity. We have developed a database of components that are common across organisms, and have created tools for automatically assembling appropriate components for a particular organism based on the metabolic pathways encoded in the organism's genome. This focuses manual efforts on that portion of an organism's metabolism that is not yet represented in the database. We have demonstrated the efficacy of our method by reverse-engineering and automatically regenerating the reaction network from a published genome-scale metabolic model for Staphylococcus aureus. Additionally, we have verified that our method capitalizes on the database of common reaction network components created for S. aureus, by using these components to generate substantially complete reconstructions of the reaction networks from three other published metabolic models (Escherichia coli, Helicobacter pylori, and Lactococcus lactis. We have implemented our tools and database within the SEED, an open-source software environment for comparative

  14. Automating Trend Analysis for Spacecraft Constellations

    Science.gov (United States)

    Davis, George; Cooter, Miranda; Updike, Clark; Carey, Everett; Mackey, Jennifer; Rykowski, Timothy; Powers, Edward I. (Technical Monitor)

    2001-01-01

    Spacecraft trend analysis is a vital mission operations function performed by satellite controllers and engineers, who perform detailed analyses of engineering telemetry data to diagnose subsystem faults and to detect trends that may potentially lead to degraded subsystem performance or failure in the future. It is this latter function that is of greatest importance, for careful trending can often predict or detect events that may lead to a spacecraft's entry into safe-hold. Early prediction and detection of such events could result in the avoidance of, or rapid return to service from, spacecraft safing, which not only results in reduced recovery costs but also in a higher overall level of service for the satellite system. Contemporary spacecraft trending activities are manually intensive and are primarily performed diagnostically after a fault occurs, rather than proactively to predict its occurrence. They also tend to rely on information systems and software that are oudated when compared to current technologies. When coupled with the fact that flight operations teams often have limited resources, proactive trending opportunities are limited, and detailed trend analysis is often reserved for critical responses to safe holds or other on-orbit events such as maneuvers. While the contemporary trend analysis approach has sufficed for current single-spacecraft operations, it will be unfeasible for NASA's planned and proposed space science constellations. Missions such as the Dynamics, Reconnection and Configuration Observatory (DRACO), for example, are planning to launch as many as 100 'nanospacecraft' to form a homogenous constellation. A simple extrapolation of resources and manpower based on single-spacecraft operations suggests that trending for such a large spacecraft fleet will be unmanageable, unwieldy, and cost-prohibitive. It is therefore imperative that an approach to automating the spacecraft trend analysis function be studied, developed, and applied to

  15. Communication Network Analysis Methods.

    Science.gov (United States)

    Farace, Richard V.; Mabee, Timothy

    This paper reviews a variety of analytic procedures that can be applied to network data, discussing the assumptions and usefulness of each procedure when applied to the complexity of human communication. Special attention is paid to the network properties measured or implied by each procedure. Factor analysis and multidimensional scaling are among…

  16. Automated reasoning applications to design analysis

    International Nuclear Information System (INIS)

    Stratton, R.C.

    1984-01-01

    Given the necessary relationships and definitions of design functions and components, validation of system incarnation (the physical product of design) and sneak function analysis can be achieved via automated reasoners. The relationships and definitions must define the design specification and incarnation functionally. For the design specification, the hierarchical functional representation is based on physics and engineering principles and bounded by design objectives and constraints. The relationships and definitions of the design incarnation are manifested as element functional definitions, state relationship to functions, functional relationship to direction, element connectivity, and functional hierarchical configuration

  17. Automated analysis for nitrate by hydrazine reduction

    Energy Technology Data Exchange (ETDEWEB)

    Kamphake, L J; Hannah, S A; Cohen, J M

    1967-01-01

    An automated procedure for the simultaneous determinations of nitrate and nitrite in water is presented. Nitrite initially present in the sample is determined by a conventional diazotization-coupling reaction. Nitrate in another portion of sample is quantitatively reduced with hydrazine sulfate to nitrite which is then determined by the same diazotization-coupling reaction. Subtracting the nitrite initially present in the sample from that after reduction yields nitrite equivalent to nitrate initially in the sample. The rate of analysis is 20 samples/hr. Applicable range of the described method is 0.05-10 mg/l nitrite or nitrate nitrogen; however, increased sensitivity can be obtained by suitable modifications.

  18. SWOT Analysis of Automation for Cash and Accounts Control in Construction

    OpenAIRE

    Mariya Deriy

    2013-01-01

    The possibility has been analyzed as to computerization of control over accounting and information systems data in terms of cash and payments in company practical activity provided that the problem is solved of the existence of well-functioning single computer network between different units of a developing company. Current state of the control organization and possibility of its automation has been observed. SWOT analysis of control automation to identify its strengths and weaknesses, obstac...

  19. Automated metabolic gas analysis systems: a review.

    Science.gov (United States)

    Macfarlane, D J

    2001-01-01

    The use of automated metabolic gas analysis systems or metabolic measurement carts (MMC) in exercise studies is common throughout the industrialised world. They have become essential tools for diagnosing many hospital patients, especially those with cardiorespiratory disease. Moreover, the measurement of maximal oxygen uptake (VO2max) is routine for many athletes in fitness laboratories and has become a defacto standard in spite of its limitations. The development of metabolic carts has also facilitated the noninvasive determination of the lactate threshold and cardiac output, respiratory gas exchange kinetics, as well as studies of outdoor activities via small portable systems that often use telemetry. Although the fundamental principles behind the measurement of oxygen uptake (VO2) and carbon dioxide production (VCO2) have not changed, the techniques used have, and indeed, some have almost turned through a full circle. Early scientists often employed a manual Douglas bag method together with separate chemical analyses, but the need for faster and more efficient techniques fuelled the development of semi- and full-automated systems by private and commercial institutions. Yet, recently some scientists are returning back to the traditional Douglas bag or Tissot-spirometer methods, or are using less complex automated systems to not only save capital costs, but also to have greater control over the measurement process. Over the last 40 years, a considerable number of automated systems have been developed, with over a dozen commercial manufacturers producing in excess of 20 different automated systems. The validity and reliability of all these different systems is not well known, with relatively few independent studies having been published in this area. For comparative studies to be possible and to facilitate greater consistency of measurements in test-retest or longitudinal studies of individuals, further knowledge about the performance characteristics of these

  20. Hybrid digital signal processing and neural networks for automated diagnostics using NDE methods

    International Nuclear Information System (INIS)

    Upadhyaya, B.R.; Yan, W.

    1993-11-01

    The primary purpose of the current research was to develop an integrated approach by combining information compression methods and artificial neural networks for the monitoring of plant components using nondestructive examination data. Specifically, data from eddy current inspection of heat exchanger tubing were utilized to evaluate this technology. The focus of the research was to develop and test various data compression methods (for eddy current data) and the performance of different neural network paradigms for defect classification and defect parameter estimation. Feedforward, fully-connected neural networks, that use the back-propagation algorithm for network training, were implemented for defect classification and defect parameter estimation using a modular network architecture. A large eddy current tube inspection database was acquired from the Metals and Ceramics Division of ORNL. These data were used to study the performance of artificial neural networks for defect type classification and for estimating defect parameters. A PC-based data preprocessing and display program was also developed as part of an expert system for data management and decision making. The results of the analysis showed that for effective (low-error) defect classification and estimation of parameters, it is necessary to identify proper feature vectors using different data representation methods. The integration of data compression and artificial neural networks for information processing was established as an effective technique for automation of diagnostics using nondestructive examination methods

  1. Automated and comprehensive link engineering supporting branched, ring, and mesh network topologies

    Science.gov (United States)

    Farina, J.; Khomchenko, D.; Yevseyenko, D.; Meester, J.; Richter, A.

    2016-02-01

    Link design, while relatively easy in the past, can become quite cumbersome with complex channel plans and equipment configurations. The task of designing optical transport systems and selecting equipment is often performed by an applications or sales engineer using simple tools, such as custom Excel spreadsheets. Eventually, every individual has their own version of the spreadsheet as well as their own methodology for building the network. This approach becomes unmanageable very quickly and leads to mistakes, bending of the engineering rules and installations that do not perform as expected. We demonstrate a comprehensive planning environment, which offers an efficient approach to unify, control and expedite the design process by controlling libraries of equipment and engineering methodologies, automating the process and providing the analysis tools necessary to predict system performance throughout the system and for all channels. In addition to the placement of EDFAs and DCEs, performance analysis metrics are provided at every step of the way. Metrics that can be tracked include power, CD and OSNR, SPM, XPM, FWM and SBS. Automated routine steps assist in design aspects such as equalization, padding and gain setting for EDFAs, the placement of ROADMs and transceivers, and creating regeneration points. DWDM networks consisting of a large number of nodes and repeater huts, interconnected in linear, branched, mesh and ring network topologies, can be designed much faster when compared with conventional design methods. Using flexible templates for all major optical components, our technology-agnostic planning approach supports the constant advances in optical communications.

  2. Specdata: Automated Analysis Software for Broadband Spectra

    Science.gov (United States)

    Oliveira, Jasmine N.; Martin-Drumel, Marie-Aline; McCarthy, Michael C.

    2017-06-01

    With the advancement of chirped-pulse techniques, broadband rotational spectra with a few tens to several hundred GHz of spectral coverage are now routinely recorded. When studying multi-component mixtures that might result, for example, with the use of an electrical discharge, lines of new chemical species are often obscured by those of known compounds, and analysis can be laborious. To address this issue, we have developed SPECdata, an open source, interactive tool which is designed to simplify and greatly accelerate the spectral analysis and discovery. Our software tool combines both automated and manual components that free the user from computation, while giving him/her considerable flexibility to assign, manipulate, interpret and export their analysis. The automated - and key - component of the new software is a database query system that rapidly assigns transitions of known species in an experimental spectrum. For each experiment, the software identifies spectral features, and subsequently assigns them to known molecules within an in-house database (Pickett .cat files, list of frequencies...), or those catalogued in Splatalogue (using automatic on-line queries). With suggested assignments, the control is then handed over to the user who can choose to accept, decline or add additional species. Data visualization, statistical information, and interactive widgets assist the user in making decisions about their data. SPECdata has several other useful features intended to improve the user experience. Exporting a full report of the analysis, or a peak file in which assigned lines are removed are among several options. A user may also save their progress to continue at another time. Additional features of SPECdata help the user to maintain and expand their database for future use. A user-friendly interface allows one to search, upload, edit or update catalog or experiment entries.

  3. Automated Stellar Classification for Large Surveys with EKF and RBF Neural Networks

    Institute of Scientific and Technical Information of China (English)

    Ling Bai; Ping Guo; Zhan-Yi Hu

    2005-01-01

    An automated classification technique for large size stellar surveys is proposed. It uses the extended Kalman filter as a feature selector and pre-classifier of the data, and the radial basis function neural networks for the classification.Experiments with real data have shown that the correct classification rate can reach as high as 93%, which is quite satisfactory. When different system models are selected for the extended Kalman filter, the classification results are relatively stable. It is shown that for this particular case the result using extended Kalman filter is better than using principal component analysis.

  4. Steam generator automated eddy current data analysis: A benchmarking study. Final report

    International Nuclear Information System (INIS)

    Brown, S.D.

    1998-12-01

    The eddy current examination of steam generator tubes is a very demanding process. Challenges include: complex signal analysis, massive amount of data to be reviewed quickly with extreme precision and accuracy, shortages of data analysts during peak periods, and the desire to reduce examination costs. One method to address these challenges is by incorporating automation into the data analysis process. Specific advantages, which automated data analysis has the potential to provide, include the ability to analyze data more quickly, consistently and accurately than can be performed manually. Also, automated data analysis can potentially perform the data analysis function with significantly smaller levels of analyst staffing. Despite the clear advantages that an automated data analysis system has the potential to provide, no automated system has been produced and qualified that can perform all of the functions that utility engineers demand. This report investigates the current status of automated data analysis, both at the commercial and developmental level. A summary of the various commercial and developmental data analysis systems is provided which includes the signal processing methodologies used and, where available, the performance data obtained for each system. Also, included in this report is input from seventeen research organizations regarding the actions required and obstacles to be overcome in order to bring automatic data analysis from the laboratory into the field environment. In order to provide assistance with ongoing and future research efforts in the automated data analysis arena, the most promising approaches to signal processing are described in this report. These approaches include: wavelet applications, pattern recognition, template matching, expert systems, artificial neural networks, fuzzy logic, case based reasoning and genetic algorithms. Utility engineers and NDE researchers can use this information to assist in developing automated data

  5. Automated Library Networking in American Public Community College Learning Resources Centers.

    Science.gov (United States)

    Miah, Adbul J.

    1994-01-01

    Discusses the need for community colleges to assess their participation in automated library networking systems (ALNs). Presents results of questionnaires sent to 253 community college learning resource center directors to determine their use of ALNs. Reviews benefits of automation and ALN activities, planning and communications, institution size,…

  6. Building Automation Systems Using Wireless Sensor Networks: Radio Characteristics and Energy Efficient Communication Protocols

    NARCIS (Netherlands)

    Shu, F.; Halgamuge, M.N.; Chen, W.

    2009-01-01

    Building automation systems (BAS) are typically used to monitor and control heating, ventilation, and air conditioning (HVAC) systems, manage building facilities (e.g., lighting, safety, and security), and automate meter reading. In recent years, the technology of wireless sensor network (WSN) has

  7. Automated X-ray image analysis for cargo security: Critical review and future promise.

    Science.gov (United States)

    Rogers, Thomas W; Jaccard, Nicolas; Morton, Edward J; Griffin, Lewis D

    2017-01-01

    We review the relatively immature field of automated image analysis for X-ray cargo imagery. There is increasing demand for automated analysis methods that can assist in the inspection and selection of containers, due to the ever-growing volumes of traded cargo and the increasing concerns that customs- and security-related threats are being smuggled across borders by organised crime and terrorist networks. We split the field into the classical pipeline of image preprocessing and image understanding. Preprocessing includes: image manipulation; quality improvement; Threat Image Projection (TIP); and material discrimination and segmentation. Image understanding includes: Automated Threat Detection (ATD); and Automated Contents Verification (ACV). We identify several gaps in the literature that need to be addressed and propose ideas for future research. Where the current literature is sparse we borrow from the single-view, multi-view, and CT X-ray baggage domains, which have some characteristics in common with X-ray cargo.

  8. An approach to automated chromosome analysis

    International Nuclear Information System (INIS)

    Le Go, Roland

    1972-01-01

    The methods of approach developed with a view to automatic processing of the different stages of chromosome analysis are described in this study divided into three parts. Part 1 relates the study of automated selection of metaphase spreads, which operates a decision process in order to reject ail the non-pertinent images and keep the good ones. This approach has been achieved by Computing a simulation program that has allowed to establish the proper selection algorithms in order to design a kit of electronic logical units. Part 2 deals with the automatic processing of the morphological study of the chromosome complements in a metaphase: the metaphase photographs are processed by an optical-to-digital converter which extracts the image information and writes it out as a digital data set on a magnetic tape. For one metaphase image this data set includes some 200 000 grey values, encoded according to a 16, 32 or 64 grey-level scale, and is processed by a pattern recognition program isolating the chromosomes and investigating their characteristic features (arm tips, centromere areas), in order to get measurements equivalent to the lengths of the four arms. Part 3 studies a program of automated karyotyping by optimized pairing of human chromosomes. The data are derived from direct digitizing of the arm lengths by means of a BENSON digital reader. The program supplies' 1/ a list of the pairs, 2/ a graphic representation of the pairs so constituted according to their respective lengths and centromeric indexes, and 3/ another BENSON graphic drawing according to the author's own representation of the chromosomes, i.e. crosses with orthogonal arms, each branch being the accurate measurement of the corresponding chromosome arm. This conventionalized karyotype indicates on the last line the really abnormal or non-standard images unpaired by the program, which are of special interest for the biologist. (author) [fr

  9. Constructing an Intelligent Patent Network Analysis Method

    Directory of Open Access Journals (Sweden)

    Chao-Chan Wu

    2012-11-01

    Full Text Available Patent network analysis, an advanced method of patent analysis, is a useful tool for technology management. This method visually displays all the relationships among the patents and enables the analysts to intuitively comprehend the overview of a set of patents in the field of the technology being studied. Although patent network analysis possesses relative advantages different from traditional methods of patent analysis, it is subject to several crucial limitations. To overcome the drawbacks of the current method, this study proposes a novel patent analysis method, called the intelligent patent network analysis method, to make a visual network with great precision. Based on artificial intelligence techniques, the proposed method provides an automated procedure for searching patent documents, extracting patent keywords, and determining the weight of each patent keyword in order to generate a sophisticated visualization of the patent network. This study proposes a detailed procedure for generating an intelligent patent network that is helpful for improving the efficiency and quality of patent analysis. Furthermore, patents in the field of Carbon Nanotube Backlight Unit (CNT-BLU were analyzed to verify the utility of the proposed method.

  10. Ecological Automation Design, Extending Work Domain Analysis

    NARCIS (Netherlands)

    Amelink, M.H.J.

    2010-01-01

    In high–risk domains like aviation, medicine and nuclear power plant control, automation has enabled new capabilities, increased the economy of operation and has greatly contributed to safety. However, automation increases the number of couplings in a system, which can inadvertently lead to more

  11. EddyOne automated analysis of PWR/WWER steam generator tubes eddy current data

    International Nuclear Information System (INIS)

    Nadinic, B.; Vanjak, Z.

    2004-01-01

    INETEC Institute for Nuclear Technology developed software package called Eddy One which has option of automated analysis of bobbin coil eddy current data. During its development and on site use, many valuable lessons were learned which are described in this article. In accordance with previous, the following topics are covered: General requirements for automated analysis of bobbin coil eddy current data; Main approaches to automated analysis; Multi rule algorithms for data screening; Landmark detection algorithms as prerequisite for automated analysis (threshold algorithms and algorithms based on neural network principles); Field experience with Eddy One software; Development directions (use of artificial intelligence with self learning abilities for indication detection and sizing); Automated analysis software qualification; Conclusions. Special emphasis is given on results obtained on different types of steam generators, condensers and heat exchangers. Such results are then compared with results obtained by other automated software vendors giving clear advantage to INETEC approach. It has to be pointed out that INETEC field experience was collected also on WWER steam generators what is for now unique experience.(author)

  12. Network performance analysis

    CERN Document Server

    Bonald, Thomas

    2013-01-01

    The book presents some key mathematical tools for the performance analysis of communication networks and computer systems.Communication networks and computer systems have become extremely complex. The statistical resource sharing induced by the random behavior of users and the underlying protocols and algorithms may affect Quality of Service.This book introduces the main results of queuing theory that are useful for analyzing the performance of these systems. These mathematical tools are key to the development of robust dimensioning rules and engineering methods. A number of examples i

  13. Network systems security analysis

    Science.gov (United States)

    Yilmaz, Ä.°smail

    2015-05-01

    Network Systems Security Analysis has utmost importance in today's world. Many companies, like banks which give priority to data management, test their own data security systems with "Penetration Tests" by time to time. In this context, companies must also test their own network/server systems and take precautions, as the data security draws attention. Based on this idea, the study cyber-attacks are researched throughoutly and Penetration Test technics are examined. With these information on, classification is made for the cyber-attacks and later network systems' security is tested systematically. After the testing period, all data is reported and filed for future reference. Consequently, it is found out that human beings are the weakest circle of the chain and simple mistakes may unintentionally cause huge problems. Thus, it is clear that some precautions must be taken to avoid such threats like updating the security software.

  14. Automated Image Analysis Corrosion Working Group Update: February 1, 2018

    Energy Technology Data Exchange (ETDEWEB)

    Wendelberger, James G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2018-02-01

    These are slides for the automated image analysis corrosion working group update. The overall goals were: automate the detection and quantification of features in images (faster, more accurate), how to do this (obtain data, analyze data), focus on Laser Scanning Confocal Microscope (LCM) data (laser intensity, laser height/depth, optical RGB, optical plus laser RGB).

  15. Problems and Prospects in Automation and Networking in Libraries in India

    OpenAIRE

    Pradip, Joshi; Nikose, S.M.

    2010-01-01

    This article presents Scenario of Automation and the networking of academic libraries are still in their formative stages. The reasons for, prerequisites of, and benefits of networking are given. Networking systems at the national and local levels are described, as are the salient features of INFLIBNET, which has been functioning since 1988. There are also three metropolitan networks, viz., DELNET, CALIBNET, and BONET. The libraries of the three metropolitan cities are already reaping the ben...

  16. Automated segmentation of geographic atrophy using deep convolutional neural networks

    Science.gov (United States)

    Hu, Zhihong; Wang, Ziyuan; Sadda, SriniVas R.

    2018-02-01

    Geographic atrophy (GA) is an end-stage manifestation of the advanced age-related macular degeneration (AMD), the leading cause of blindness and visual impairment in developed nations. Techniques to rapidly and precisely detect and quantify GA would appear to be of critical importance in advancing the understanding of its pathogenesis. In this study, we develop an automated supervised classification system using deep convolutional neural networks (CNNs) for segmenting GA in fundus autofluorescene (FAF) images. More specifically, to enhance the contrast of GA relative to the background, we apply the contrast limited adaptive histogram equalization. Blood vessels may cause GA segmentation errors due to similar intensity level to GA. A tensor-voting technique is performed to identify the blood vessels and a vessel inpainting technique is applied to suppress the GA segmentation errors due to the blood vessels. To handle the large variation of GA lesion sizes, three deep CNNs with three varying sized input image patches are applied. Fifty randomly chosen FAF images are obtained from fifty subjects with GA. The algorithm-defined GA regions are compared with manual delineation by a certified grader. A two-fold cross-validation is applied to evaluate the algorithm performance. The mean segmentation accuracy, true positive rate (i.e. sensitivity), true negative rate (i.e. specificity), positive predictive value, false discovery rate, and overlap ratio, between the algorithm- and manually-defined GA regions are 0.97 +/- 0.02, 0.89 +/- 0.08, 0.98 +/- 0.02, 0.87 +/- 0.12, 0.13 +/- 0.12, and 0.79 +/- 0.12 respectively, demonstrating a high level of agreement.

  17. Request-Driven Schedule Automation for the Deep Space Network

    Science.gov (United States)

    Johnston, Mark D.; Tran, Daniel; Arroyo, Belinda; Call, Jared; Mercado, Marisol

    2010-01-01

    The DSN Scheduling Engine (DSE) has been developed to increase the level of automated scheduling support available to users of NASA s Deep Space Network (DSN). We have adopted a request-driven approach to DSN scheduling, in contrast to the activity-oriented approach used up to now. Scheduling requests allow users to declaratively specify patterns and conditions on their DSN service allocations, including timing, resource requirements, gaps, overlaps, time linkages among services, repetition, priorities, and a wide range of additional factors and preferences. The DSE incorporates a model of the key constraints and preferences of the DSN scheduling domain, along with algorithms to expand scheduling requests into valid resource allocations, to resolve schedule conflicts, and to repair unsatisfied requests. We use time-bounded systematic search with constraint relaxation to return nearby solutions if exact ones cannot be found, where the relaxation options and order are under user control. To explore the usability aspects of our approach we have developed a graphical user interface incorporating some crucial features to make it easier to work with complex scheduling requests. Among these are: progressive revelation of relevant detail, immediate propagation and visual feedback from a user s decisions, and a meeting calendar metaphor for repeated patterns of requests. Even as a prototype, the DSE has been deployed and adopted as the initial step in building the operational DSN schedule, thus representing an important initial validation of our overall approach. The DSE is a core element of the DSN Service Scheduling Software (S(sup 3)), a web-based collaborative scheduling system now under development for deployment to all DSN users.

  18. SPECIAL LIBRARIES OF FRAGMENTS OF ALGORITHMIC NETWORKS TO AUTOMATE THE DEVELOPMENT OF ALGORITHMIC MODELS

    Directory of Open Access Journals (Sweden)

    V. E. Marley

    2015-01-01

    Full Text Available Summary. The concept of algorithmic models appeared from the algorithmic approach in which the simulated object, the phenomenon appears in the form of process, subject to strict rules of the algorithm, which placed the process of operation of the facility. Under the algorithmic model is the formalized description of the scenario subject specialist for the simulated process, the structure of which is comparable with the structure of the causal and temporal relationships between events of the process being modeled, together with all information necessary for its software implementation. To represent the structure of algorithmic models used algorithmic network. Normally, they were defined as loaded finite directed graph, the vertices which are mapped to operators and arcs are variables, bound by operators. The language of algorithmic networks has great features, the algorithms that it can display indifference the class of all random algorithms. In existing systems, automation modeling based on algorithmic nets, mainly used by operators working with real numbers. Although this reduces their ability, but enough for modeling a wide class of problems related to economy, environment, transport, technical processes. The task of modeling the execution of schedules and network diagrams is relevant and useful. There are many counting systems, network graphs, however, the monitoring process based analysis of gaps and terms of graphs, no analysis of prediction execution schedule or schedules. The library is designed to build similar predictive models. Specifying source data to obtain a set of projections from which to choose one and take it for a new plan.

  19. Analysis of computer networks

    CERN Document Server

    Gebali, Fayez

    2015-01-01

    This textbook presents the mathematical theory and techniques necessary for analyzing and modeling high-performance global networks, such as the Internet. The three main building blocks of high-performance networks are links, switching equipment connecting the links together, and software employed at the end nodes and intermediate switches. This book provides the basic techniques for modeling and analyzing these last two components. Topics covered include, but are not limited to: Markov chains and queuing analysis, traffic modeling, interconnection networks and switch architectures and buffering strategies.   ·         Provides techniques for modeling and analysis of network software and switching equipment; ·         Discusses design options used to build efficient switching equipment; ·         Includes many worked examples of the application of discrete-time Markov chains to communication systems; ·         Covers the mathematical theory and techniques necessary for ana...

  20. Automated fault tree analysis: the GRAFTER system

    International Nuclear Information System (INIS)

    Sancaktar, S.; Sharp, D.R.

    1985-01-01

    An inherent part of probabilistic risk assessment (PRA) is the construction and analysis of detailed fault trees. For this purpose, a fault tree computer graphics code named GRAFTER has been developed. The code system centers around the GRAFTER code. This code is used interactively to construct, store, update and print fault trees of small or large sizes. The SIMON code is used to provide data for the basic event probabilities. ENCODE is used to process the GRAFTER files to prepare input for the WAMCUT code. WAMCUT is used to quantify the top event probability and to identify the cutsets. This code system has been extensively used in various PRA projects. It has resulted in reduced manpower costs, increased QA capability, ease of documentation and it has simplified sensitivity analyses. Because of its automated nature, it is also suitable for LIVING PRA Studies which require updating and modifications during the lifetime of the plant. Brief descriptions and capabilities of the GRAFTER, SIMON and ENCODE codes are provided; an application of the GRAFTER system is outlined; and conclusions and comments on the code system are given

  1. Automated and connected vehicle implications and analysis.

    Science.gov (United States)

    2017-05-01

    Automated and connected vehicles (ACV) and, in particular, autonomous vehicles have captured : the interest of the public, industry and transportation authorities. ACVs can significantly reduce : accidents, fuel consumption, pollution and the costs o...

  2. System analysis of automated speed enforcement implementation.

    Science.gov (United States)

    2016-04-01

    Speeding is a major factor in a large proportion of traffic crashes, injuries, and fatalities in the United States. Automated Speed Enforcement (ASE) is one of many approaches shown to be effective in reducing speeding violations and crashes. However...

  3. Automated Interpretation of Blood Culture Gram Stains by Use of a Deep Convolutional Neural Network.

    Science.gov (United States)

    Smith, Kenneth P; Kang, Anthony D; Kirby, James E

    2018-03-01

    Microscopic interpretation of stained smears is one of the most operator-dependent and time-intensive activities in the clinical microbiology laboratory. Here, we investigated application of an automated image acquisition and convolutional neural network (CNN)-based approach for automated Gram stain classification. Using an automated microscopy platform, uncoverslipped slides were scanned with a 40× dry objective, generating images of sufficient resolution for interpretation. We collected 25,488 images from positive blood culture Gram stains prepared during routine clinical workup. These images were used to generate 100,213 crops containing Gram-positive cocci in clusters, Gram-positive cocci in chains/pairs, Gram-negative rods, or background (no cells). These categories were targeted for proof-of-concept development as they are associated with the majority of bloodstream infections. Our CNN model achieved a classification accuracy of 94.9% on a test set of image crops. Receiver operating characteristic (ROC) curve analysis indicated a robust ability to differentiate between categories with an area under the curve of >0.98 for each. After training and validation, we applied the classification algorithm to new images collected from 189 whole slides without human intervention. Sensitivity and specificity were 98.4% and 75.0% for Gram-positive cocci in chains and pairs, 93.2% and 97.2% for Gram-positive cocci in clusters, and 96.3% and 98.1% for Gram-negative rods. Taken together, our data support a proof of concept for a fully automated classification methodology for blood-culture Gram stains. Importantly, the algorithm was highly adept at identifying image crops with organisms and could be used to present prescreened, classified crops to technologists to accelerate smear review. This concept could potentially be extended to all Gram stain interpretive activities in the clinical laboratory. Copyright © 2018 American Society for Microbiology.

  4. Delineated Analysis of Robotic Process Automation Tools

    OpenAIRE

    Ruchi Isaac; Riya Muni; Kenali Desai

    2017-01-01

    In this age and time when celerity is expected out of all the sectors of the country, the speed of execution of various processes and hence efficiency, becomes a prominent factor. To facilitate the speeding demands of these diverse platforms, Robotic Process Automation (RPA) is used. Robotic Process Automation can expedite back-office tasks in commercial industries, remote management tasks in IT industries and conservation of resources in multiple sectors. To implement RPA, many software ...

  5. Automated Measurement and Signaling Systems for the Transactional Network

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann; Brown, Richard; Price, Phillip; Page, Janie; Granderson, Jessica; Riess, David; Czarnecki, Stephen; Ghatikar, Girish; Lanzisera, Steven

    2013-12-31

    The Transactional Network Project is a multi-lab activity funded by the US Department of Energy?s Building Technologies Office. The project team included staff from Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory and Oak Ridge National Laboratory. The team designed, prototyped and tested a transactional network (TN) platform to support energy, operational and financial transactions between any networked entities (equipment, organizations, buildings, grid, etc.). PNNL was responsible for the development of the TN platform, with agents for this platform developed by each of the three labs. LBNL contributed applications to measure the whole-building electric load response to various changes in building operations, particularly energy efficiency improvements and demand response events. We also provide a demand response signaling agent and an agent for cost savings analysis. LBNL and PNNL demonstrated actual transactions between packaged rooftop units and the electric grid using the platform and selected agents. This document describes the agents and applications developed by the LBNL team, and associated tests of the applications.

  6. Distributed Microprocessor Automation Network for Synthesizing Radiotracers Used in Positron Emission Tomography [PET

    Science.gov (United States)

    Russell, J. A. G.; Alexoff, D. L.; Wolf, A. P.

    1984-09-01

    This presentation describes an evolving distributed microprocessor network for automating the routine production synthesis of radiotracers used in Positron Emission Tomography. We first present a brief overview of the PET method for measuring biological function, and then outline the general procedure for producing a radiotracer. The paper identifies several reasons for our automating the syntheses of these compounds. There is a description of the distributed microprocessor network architecture chosen and the rationale for that choice. Finally, we speculate about how this network may be exploited to extend the power of the PET method from the large university or National Laboratory to the biomedical research and clinical community at large. (DT)

  7. Distributed microprocessor automation network for synthesizing radiotracers used in positron emission tomography

    International Nuclear Information System (INIS)

    Russell, J.A.G.; Alexoff, D.L.; Wolf, A.P.

    1984-01-01

    This presentation describes an evolving distributed microprocessor network for automating the routine production synthesis of radiotracers used in Positron Emission Tomography. We first present a brief overview of the PET method for measuring biological function, and then outline the general procedure for producing a radiotracer. The paper identifies several reasons for our automating the syntheses of these compounds. There is a description of the distributed microprocessor network architecture chosen and the rationale for that choice. Finally, we speculate about how this network may be exploited to extend the power of the PET method from the large university or National Laboratory to the biomedical research and clinical community at large. 20 refs. (DT)

  8. Alternative approach to automated management of load flow in engineering networks considering functional reliability

    Directory of Open Access Journals (Sweden)

    Ирина Александровна Гавриленко

    2016-02-01

    Full Text Available The approach to automated management of load flow in engineering networks considering functional reliability was proposed in the article. The improvement of the concept of operational and strategic management of load flow in engineering networks was considered. The verbal statement of the problem for thesis research is defined, namely, the problem of development of information technology for exact calculation of the functional reliability of the network, or the risk of short delivery of purpose-oriented product for consumers

  9. AN AUTOMATED NETWORK SECURITYCHECKING AND ALERT SYSTEM: A NEW FRAMEWORK

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Yadav

    2013-09-01

    Full Text Available Network security checking is a vital process to assess and to identify weaknesses in network for management of security. Insecure entry points of a network provide attackers an easy target to access and compromise. Open ports of network components such as firewalls, gateways and end systems are analogues to open gates of a building through which any one can get into. Network scanning is performed to identify insecure entry points in the network components. To find out vulnerabilities on these points vulnerability assessment is performed. So security checking consists of both activities- network scanning as well as vulnerability assessment. A single tool used for the security checking may not give reliable results. This paper presents a framework for assessing the security of a network using multiple Network Scanning and Vulnerability Assessment tools. The proposed framework is an extension of the framework given by Jun Yoon and Wontae Sim [1] which performs vulnerability scanning only. The framework presented here adds network scanning, alerting and reporting system to their framework. Network scanning and vulnerability tools together complement each other and make it amenable for centralized control and management. The reporting system of framework sends an email to the network administrator which contains detailed report (as attachment of security checking process. Alerting system sends a SMS message as an alert to the network administrator in case of severe threats found in the network. Initial results of the framework are encouraging and further work is in progress.

  10. Concept of a computer network architecture for complete automation of nuclear power plants

    International Nuclear Information System (INIS)

    Edwards, R.M.; Ray, A.

    1990-01-01

    The state of the art in automation of nuclear power plants has been largely limited to computerized data acquisition, monitoring, display, and recording of process signals. Complete automation of nuclear power plants, which would include plant operations, control, and management, fault diagnosis, and system reconfiguration with efficient and reliable man/machine interactions, has been projected as a realistic goal. This paper presents the concept of a computer network architecture that would use a high-speed optical data highway to integrate diverse, interacting, and spatially distributed functions that are essential for a fully automated nuclear power plant

  11. Automated Steel Cleanliness Analysis Tool (ASCAT)

    Energy Technology Data Exchange (ETDEWEB)

    Gary Casuccio (RJ Lee Group); Michael Potter (RJ Lee Group); Fred Schwerer (RJ Lee Group); Dr. Richard J. Fruehan (Carnegie Mellon University); Dr. Scott Story (US Steel)

    2005-12-30

    The objective of this study was to develop the Automated Steel Cleanliness Analysis Tool (ASCATTM) to permit steelmakers to evaluate the quality of the steel through the analysis of individual inclusions. By characterizing individual inclusions, determinations can be made as to the cleanliness of the steel. Understanding the complicating effects of inclusions in the steelmaking process and on the resulting properties of steel allows the steel producer to increase throughput, better control the process, reduce remelts, and improve the quality of the product. The ASCAT (Figure 1) is a steel-smart inclusion analysis tool developed around a customized next-generation computer controlled scanning electron microscopy (NG-CCSEM) hardware platform that permits acquisition of inclusion size and composition data at a rate never before possible in SEM-based instruments. With built-in customized ''intelligent'' software, the inclusion data is automatically sorted into clusters representing different inclusion types to define the characteristics of a particular heat (Figure 2). The ASCAT represents an innovative new tool for the collection of statistically meaningful data on inclusions, and provides a means of understanding the complicated effects of inclusions in the steel making process and on the resulting properties of steel. Research conducted by RJLG with AISI (American Iron and Steel Institute) and SMA (Steel Manufactures of America) members indicates that the ASCAT has application in high-grade bar, sheet, plate, tin products, pipes, SBQ, tire cord, welding rod, and specialty steels and alloys where control of inclusions, whether natural or engineered, are crucial to their specification for a given end-use. Example applications include castability of calcium treated steel; interstitial free (IF) degasser grade slag conditioning practice; tundish clogging and erosion minimization; degasser circulation and optimization; quality assessment

  12. Automated Steel Cleanliness Analysis Tool (ASCAT)

    International Nuclear Information System (INIS)

    Gary Casuccio; Michael Potter; Fred Schwerer; Richard J. Fruehan; Dr. Scott Story

    2005-01-01

    The objective of this study was to develop the Automated Steel Cleanliness Analysis Tool (ASCATTM) to permit steelmakers to evaluate the quality of the steel through the analysis of individual inclusions. By characterizing individual inclusions, determinations can be made as to the cleanliness of the steel. Understanding the complicating effects of inclusions in the steelmaking process and on the resulting properties of steel allows the steel producer to increase throughput, better control the process, reduce remelts, and improve the quality of the product. The ASCAT (Figure 1) is a steel-smart inclusion analysis tool developed around a customized next-generation computer controlled scanning electron microscopy (NG-CCSEM) hardware platform that permits acquisition of inclusion size and composition data at a rate never before possible in SEM-based instruments. With built-in customized ''intelligent'' software, the inclusion data is automatically sorted into clusters representing different inclusion types to define the characteristics of a particular heat (Figure 2). The ASCAT represents an innovative new tool for the collection of statistically meaningful data on inclusions, and provides a means of understanding the complicated effects of inclusions in the steel making process and on the resulting properties of steel. Research conducted by RJLG with AISI (American Iron and Steel Institute) and SMA (Steel Manufactures of America) members indicates that the ASCAT has application in high-grade bar, sheet, plate, tin products, pipes, SBQ, tire cord, welding rod, and specialty steels and alloys where control of inclusions, whether natural or engineered, are crucial to their specification for a given end-use. Example applications include castability of calcium treated steel; interstitial free (IF) degasser grade slag conditioning practice; tundish clogging and erosion minimization; degasser circulation and optimization; quality assessment/steel cleanliness; slab, billet

  13. Automated Cache Performance Analysis And Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Mohror, Kathryn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2013-12-23

    While there is no lack of performance counter tools for coarse-grained measurement of cache activity, there is a critical lack of tools for relating data layout to cache behavior to application performance. Generally, any nontrivial optimizations are either not done at all, or are done ”by hand” requiring significant time and expertise. To the best of our knowledge no tool available to users measures the latency of memory reference instructions for partic- ular addresses and makes this information available to users in an easy-to-use and intuitive way. In this project, we worked to enable the Open|SpeedShop performance analysis tool to gather memory reference latency information for specific instructions and memory ad- dresses, and to gather and display this information in an easy-to-use and intuitive way to aid performance analysts in identifying problematic data structures in their codes. This tool was primarily designed for use in the supercomputer domain as well as grid, cluster, cloud-based parallel e-commerce, and engineering systems and middleware. Ultimately, we envision a tool to automate optimization of application cache layout and utilization in the Open|SpeedShop performance analysis tool. To commercialize this soft- ware, we worked to develop core capabilities for gathering enhanced memory usage per- formance data from applications and create and apply novel methods for automatic data structure layout optimizations, tailoring the overall approach to support existing supercom- puter and cluster programming models and constraints. In this Phase I project, we focused on infrastructure necessary to gather performance data and present it in an intuitive way to users. With the advent of enhanced Precise Event-Based Sampling (PEBS) counters on recent Intel processor architectures and equivalent technology on AMD processors, we are now in a position to access memory reference information for particular addresses. Prior to the introduction of PEBS counters

  14. Obtaining informedness in collaborative networks through automated information provisioning

    DEFF Research Database (Denmark)

    Thimm, Heiko; Rasmussen, Karsten Boye

    2013-01-01

    Successful collaboration in business networks calls for well-informed network participants. Members who know about the many aspects of the network are an effective vehicle to successfully resolve conflicts, build a prospering collaboration climate and promote trust within the network. The importa......Successful collaboration in business networks calls for well-informed network participants. Members who know about the many aspects of the network are an effective vehicle to successfully resolve conflicts, build a prospering collaboration climate and promote trust within the network...... provisioning service. This article presents a corresponding modelling framework and a rule-based approach for the active system capabilities required. Details of a prototype implementation building on concepts of the research area of active databases are also reported....

  15. Automated migration analysis based on cell texture: method & reliability

    Directory of Open Access Journals (Sweden)

    Chittenden Thomas W

    2005-03-01

    Full Text Available Abstract Background In this paper, we present and validate a way to measure automatically the extent of cell migration based on automated examination of a series of digital photographs. It was designed specifically to identify the impact of Second Hand Smoke (SHS on endothelial cell migration but has broader applications. The analysis has two stages: (1 preprocessing of image texture, and (2 migration analysis. Results The output is a graphic overlay that indicates the front lines of cell migration superimposed on each original image, with automated reporting of the distance traversed vs. time. Expert preference compares to manual placement of leading edge shows complete equivalence of automated vs. manual leading edge definition for cell migration measurement. Conclusion Our method is indistinguishable from careful manual determinations of cell front lines, with the advantages of full automation, objectivity, and speed.

  16. Evaluation of an automated karyotyping system for chromosome aberration analysis

    International Nuclear Information System (INIS)

    Prichard, H.M.

    1987-01-01

    Chromosome aberration analysis is a promising complement to conventional radiation dosimetry, particularly in the complex radiation fields encountered in the space environment. The capabilities of a recently developed automated karyotyping system were evaluated both to determine current capabilities and limitations and to suggest areas where future development should be emphasized. Cells exposed to radiometric chemicals and to photon and particulate radiation were evaluated by manual inspection and by automated karyotyping. It was demonstrated that the evaluated programs were appropriate for image digitization, storage, and transmission. However, automated and semi-automated scoring techniques must be advanced significantly if in-flight chromosome aberration analysis is to be practical. A degree of artificial intelligence may be necessary to realize this goal

  17. A Study on Integrated Control Network for Multiple Automation Services-1st year report

    Energy Technology Data Exchange (ETDEWEB)

    Hyun, D.H.; Park, B.S.; Kim, M.S.; Lim, Y.H.; Ahn, S.K. [Korea Electric Power Research Institute, Taejon (Korea)

    2002-07-01

    This report describes the development of Integrated and Intelligent Gateway which is under developed. The network operating technique in this report can identifies the causes of the communication faults and can avoid communication network faults in advance. Utility companies spend large financial investment and time for supplying the stabilized power. Since this is deeply related to the reliability of Automation Systems, it is natural to employ Fault-Tolerant communication network for Automation Systems. Use of the network system developed in this report is not limited in DAS. It can be expandable to the many kinds of data services for customer. Thus this report suggests the direction of the communication network development. This 1st year report is composed of following contents, 1) The introduction and problems of DAS. 2) The configuration and functions of IIG. 3) The protocols. (author). 27 refs., 73 figs., 6 tabs.

  18. Multifractal analysis of complex networks

    International Nuclear Information System (INIS)

    Wang Dan-Ling; Yu Zu-Guo; Anh V

    2012-01-01

    Complex networks have recently attracted much attention in diverse areas of science and technology. Many networks such as the WWW and biological networks are known to display spatial heterogeneity which can be characterized by their fractal dimensions. Multifractal analysis is a useful way to systematically describe the spatial heterogeneity of both theoretical and experimental fractal patterns. In this paper, we introduce a new box-covering algorithm for multifractal analysis of complex networks. This algorithm is used to calculate the generalized fractal dimensions D q of some theoretical networks, namely scale-free networks, small world networks, and random networks, and one kind of real network, namely protein—protein interaction networks of different species. Our numerical results indicate the existence of multifractality in scale-free networks and protein—protein interaction networks, while the multifractal behavior is not clear-cut for small world networks and random networks. The possible variation of D q due to changes in the parameters of the theoretical network models is also discussed. (general)

  19. User-friendly Establishment of Trust in Distributed Home Automation Networks

    DEFF Research Database (Denmark)

    Solberg Hjorth, Theis; Torbensen, Rune; Madsen, Per Printz

    2014-01-01

    Current wireless technologies use a variety of methods to locally exchange and verify credentials between devices to establish trusted relationships. Scenarios in home automation networks also require this capability over the Internet, but the necessary involvement of non-expert users to setup...... these relationships can lead to misconfiguration or breaches of security. We outline a security system for Home Automation called Trusted Domain that can establish and maintain cryptographically secure relationships between devices connected via IP-based networks and the Internet. Trust establishment is presented...

  20. Automated quantitative cytological analysis using portable microfluidic microscopy.

    Science.gov (United States)

    Jagannadh, Veerendra Kalyan; Murthy, Rashmi Sreeramachandra; Srinivasan, Rajesh; Gorthi, Sai Siva

    2016-06-01

    In this article, a portable microfluidic microscopy based approach for automated cytological investigations is presented. Inexpensive optical and electronic components have been used to construct a simple microfluidic microscopy system. In contrast to the conventional slide-based methods, the presented method employs microfluidics to enable automated sample handling and image acquisition. The approach involves the use of simple in-suspension staining and automated image acquisition to enable quantitative cytological analysis of samples. The applicability of the presented approach to research in cellular biology is shown by performing an automated cell viability assessment on a given population of yeast cells. Further, the relevance of the presented approach to clinical diagnosis and prognosis has been demonstrated by performing detection and differential assessment of malaria infection in a given sample. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Automating sensitivity analysis of computer models using computer calculus

    International Nuclear Information System (INIS)

    Oblow, E.M.; Pin, F.G.

    1986-01-01

    An automated procedure for performing sensitivity analysis has been developed. The procedure uses a new FORTRAN compiler with computer calculus capabilities to generate the derivatives needed to set up sensitivity equations. The new compiler is called GRESS - Gradient Enhanced Software System. Application of the automated procedure with direct and adjoint sensitivity theory for the analysis of non-linear, iterative systems of equations is discussed. Calculational efficiency consideration and techniques for adjoint sensitivity analysis are emphasized. The new approach is found to preserve the traditional advantages of adjoint theory while removing the tedious human effort previously needed to apply this theoretical methodology. Conclusions are drawn about the applicability of the automated procedure in numerical analysis and large-scale modelling sensitivity studies

  2. Network Analysis, Architecture, and Design

    CERN Document Server

    McCabe, James D

    2007-01-01

    Traditionally, networking has had little or no basis in analysis or architectural development, with designers relying on technologies they are most familiar with or being influenced by vendors or consultants. However, the landscape of networking has changed so that network services have now become one of the most important factors to the success of many third generation networks. It has become an important feature of the designer's job to define the problems that exist in his network, choose and analyze several optimization parameters during the analysis process, and then prioritize and evalua

  3. Automated tool for virtual screening and pharmacology-based pathway prediction and analysis

    Directory of Open Access Journals (Sweden)

    Sugandh Kumar

    2017-10-01

    Full Text Available The virtual screening is an effective tool for the lead identification in drug discovery. However, there are limited numbers of crystal structures available as compared to the number of biological sequences which makes (Structure Based Drug Discovery SBDD a difficult choice. The current tool is an attempt to automate the protein structure modelling and automatic virtual screening followed by pharmacology-based prediction and analysis. Starting from sequence(s, this tool automates protein structure modelling, binding site identification, automated docking, ligand preparation, post docking analysis and identification of hits in the biological pathways that can be modulated by a group of ligands. This automation helps in the characterization of ligands selectivity and action of ligands on a complex biological molecular network as well as on individual receptor. The judicial combination of the ligands binding different receptors can be used to inhibit selective biological pathways in a disease. This tool also allows the user to systemically investigate network-dependent effects of a drug or drug candidate.

  4. Network topology analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, Jeffrey L.; Lee, David S.

    2008-01-01

    Emerging high-bandwidth, low-latency network technology has made network-based architectures both feasible and potentially desirable for use in satellite payload architectures. The selection of network topology is a critical component when developing these multi-node or multi-point architectures. This study examines network topologies and their effect on overall network performance. Numerous topologies were reviewed against a number of performance, reliability, and cost metrics. This document identifies a handful of good network topologies for satellite applications and the metrics used to justify them as such. Since often multiple topologies will meet the requirements of the satellite payload architecture under development, the choice of network topology is not easy, and in the end the choice of topology is influenced by both the design characteristics and requirements of the overall system and the experience of the developer.

  5. PollyNET - an emerging network of automated raman-polarizarion lidars for continuous aerosolprofiling

    Science.gov (United States)

    Baars, Holger; Althausen, Dietrich; Engelmann, Ronny; Heese, Birgit; Ansmann, Albert; Wandinger, Ulla; Hofer, Julian; Skupin, Annett; Komppula, Mika; Giannakaki, Eleni; Filioglou, Maria; Bortoli, Daniele; Silva, Ana Maria; Pereira, Sergio; Stachlewska, Iwona S.; Kumala, Wojciech; Szczepanik, Dominika; Amiridis, Vassilis; Marinou, Eleni; Kottas, Michail; Mattis, Ina; Müller, Gerhard

    2018-04-01

    PollyNET is a network of portable, automated, and continuously measuring Ramanpolarization lidars of type Polly operated by several institutes worldwide. The data from permanent and temporary measurements sites are automatically processed in terms of optical aerosol profiles and displayed in near-real time at polly.tropos.de. According to current schedules, the network will grow by 3-4 systems during the upcoming 2-3 years and will then comprise 11 permanent stations and 2 mobile platforms.

  6. Analysis of Trinity Power Metrics for Automated Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Michalenko, Ashley Christine [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-28

    This is a presentation from Los Alamos National Laboraotyr (LANL) about the analysis of trinity power metrics for automated monitoring. The following topics are covered: current monitoring efforts, motivation for analysis, tools used, the methodology, work performed during the summer, and future work planned.

  7. Initial development of an automated task analysis profiling system

    International Nuclear Information System (INIS)

    Jorgensen, C.C.

    1984-01-01

    A program for automated task analysis is described. Called TAPS (task analysis profiling system), the program accepts normal English prose and outputs skills, knowledges, attitudes, and abilities (SKAAs) along with specific guidance and recommended ability measurement tests for nuclear power plant operators. A new method for defining SKAAs is presented along with a sample program output

  8. Automating sensitivity analysis of computer models using computer calculus

    International Nuclear Information System (INIS)

    Oblow, E.M.; Pin, F.G.

    1985-01-01

    An automated procedure for performing sensitivity analyses has been developed. The procedure uses a new FORTRAN compiler with computer calculus capabilities to generate the derivatives needed to set up sensitivity equations. The new compiler is called GRESS - Gradient Enhanced Software System. Application of the automated procedure with ''direct'' and ''adjoint'' sensitivity theory for the analysis of non-linear, iterative systems of equations is discussed. Calculational efficiency consideration and techniques for adjoint sensitivity analysis are emphasized. The new approach is found to preserve the traditional advantages of adjoint theory while removing the tedious human effort previously needed to apply this theoretical methodology. Conclusions are drawn about the applicability of the automated procedure in numerical analysis and large-scale modelling sensitivity studies. 24 refs., 2 figs

  9. Tri-Band PCB Antenna for Wireless Sensor Network Transceivers in Home Automation Applications

    DEFF Research Database (Denmark)

    Rohde, John; Toftegaard, Thomas Skjødeberg

    2012-01-01

    A novel tri-band antenna design for wireless sensor network devices in home automation applications is proposed. The design is based on a combination of a conventional monopole wire antenna and discrete distributed load impedances. The load impedances are employed to ensure the degrees of freedom...

  10. SensorScheme: Supply Chain Management Automation using Wireless Sensor Networks

    NARCIS (Netherlands)

    Evers, L.; Havinga, Paul J.M.; Kuper, Jan; Lijding, M.E.M.; Meratnia, Nirvana

    2007-01-01

    The supply chain management business can benefit greatly from automation, as recent developments with RFID technology shows. The use of Wireless Sensor Network technology promises to bring the next leap in efficiency and quality of service. However, current WSN system software does not yet provide

  11. Modeling Multiple Human-Automation Distributed Systems using Network-form Games

    Science.gov (United States)

    Brat, Guillaume

    2012-01-01

    The paper describes at a high-level the network-form game framework (based on Bayes net and game theory), which can be used to model and analyze safety issues in large, distributed, mixed human-automation systems such as NextGen.

  12. Flow injection analysis: Emerging tool for laboratory automation in radiochemistry

    International Nuclear Information System (INIS)

    Egorov, O.; Ruzicka, J.; Grate, J.W.; Janata, J.

    1996-01-01

    Automation of routine and serial assays is a common practice of modern analytical laboratory, while it is virtually nonexistent in the field of radiochemistry. Flow injection analysis (FIA) is a general solution handling methodology that has been extensively used for automation of routine assays in many areas of analytical chemistry. Reproducible automated solution handling and on-line separation capabilities are among several distinctive features that make FI a very promising, yet under utilized tool for automation in analytical radiochemistry. The potential of the technique is demonstrated through the development of an automated 90 Sr analyzer and its application in the analysis of tank waste samples from the Hanford site. Sequential injection (SI), the latest generation of FIA, is used to rapidly separate 90 Sr from interfering radionuclides and deliver separated Sr zone to a flow-through liquid scintillation detector. The separation is performed on a mini column containing Sr-specific sorbent extraction material, which selectively retains Sr under acidic conditions. The 90 Sr is eluted with water, mixed with scintillation cocktail, and sent through the flow cell of a flow through counter, where 90 Sr radioactivity is detected as a transient signal. Both peak area and peak height can be used for quantification of sample radioactivity. Alternatively, stopped flow detection can be performed to improve detection precision for low activity samples. The authors current research activities are focused on expansion of radiochemical applications of FIA methodology, with an ultimate goal of creating a set of automated methods that will cover the basic needs of radiochemical analysis at the Hanford site. The results of preliminary experiments indicate that FIA is a highly suitable technique for the automation of chemically more challenging separations, such as separation of actinide elements

  13. A holistic approach to ZigBee performance enhancement for home automation networks.

    Science.gov (United States)

    Betzler, August; Gomez, Carles; Demirkol, Ilker; Paradells, Josep

    2014-08-14

    Wireless home automation networks are gaining importance for smart homes. In this ambit, ZigBee networks play an important role. The ZigBee specification defines a default set of protocol stack parameters and mechanisms that is further refined by the ZigBee Home Automation application profile. In a holistic approach, we analyze how the network performance is affected with the tuning of parameters and mechanisms across multiple layers of the ZigBee protocol stack and investigate possible performance gains by implementing and testing alternative settings. The evaluations are carried out in a testbed of 57 TelosB motes. The results show that considerable performance improvements can be achieved by using alternative protocol stack configurations. From these results, we derive two improved protocol stack configurations for ZigBee wireless home automation networks that are validated in various network scenarios. In our experiments, these improved configurations yield a relative packet delivery ratio increase of up to 33.6%, a delay decrease of up to 66.6% and an improvement of the energy efficiency for battery powered devices of up to 48.7%, obtainable without incurring any overhead to the network.

  14. A Holistic Approach to ZigBee Performance Enhancement for Home Automation Networks

    Science.gov (United States)

    Betzler, August; Gomez, Carles; Demirkol, Ilker; Paradells, Josep

    2014-01-01

    Wireless home automation networks are gaining importance for smart homes. In this ambit, ZigBee networks play an important role. The ZigBee specification defines a default set of protocol stack parameters and mechanisms that is further refined by the ZigBee Home Automation application profile. In a holistic approach, we analyze how the network performance is affected with the tuning of parameters and mechanisms across multiple layers of the ZigBee protocol stack and investigate possible performance gains by implementing and testing alternative settings. The evaluations are carried out in a testbed of 57 TelosB motes. The results show that considerable performance improvements can be achieved by using alternative protocol stack configurations. From these results, we derive two improved protocol stack configurations for ZigBee wireless home automation networks that are validated in various network scenarios. In our experiments, these improved configurations yield a relative packet delivery ratio increase of up to 33.6%, a delay decrease of up to 66.6% and an improvement of the energy efficiency for battery powered devices of up to 48.7%, obtainable without incurring any overhead to the network. PMID:25196004

  15. A Holistic Approach to ZigBee Performance Enhancement for Home Automation Networks

    Directory of Open Access Journals (Sweden)

    August Betzler

    2014-08-01

    Full Text Available Wireless home automation networks are gaining importance for smart homes. In this ambit, ZigBee networks play an important role. The ZigBee specification defines a default set of protocol stack parameters and mechanisms that is further refined by the ZigBee Home Automation application profile. In a holistic approach, we analyze how the network performance is affected with the tuning of parameters and mechanisms across multiple layers of the ZigBee protocol stack and investigate possible performance gains by implementing and testing alternative settings. The evaluations are carried out in a testbed of 57 TelosB motes. The results show that considerable performance improvements can be achieved by using alternative protocol stack configurations. From these results, we derive two improved protocol stack configurations for ZigBee wireless home automation networks that are validated in various network scenarios. In our experiments, these improved configurations yield a relative packet delivery ratio increase of up to 33.6%, a delay decrease of up to 66.6% and an improvement of the energy efficiency for battery powered devices of up to 48.7%, obtainable without incurring any overhead to the network.

  16. A catalog of automated analysis methods for enterprise models.

    Science.gov (United States)

    Florez, Hector; Sánchez, Mario; Villalobos, Jorge

    2016-01-01

    Enterprise models are created for documenting and communicating the structure and state of Business and Information Technologies elements of an enterprise. After models are completed, they are mainly used to support analysis. Model analysis is an activity typically based on human skills and due to the size and complexity of the models, this process can be complicated and omissions or miscalculations are very likely. This situation has fostered the research of automated analysis methods, for supporting analysts in enterprise analysis processes. By reviewing the literature, we found several analysis methods; nevertheless, they are based on specific situations and different metamodels; then, some analysis methods might not be applicable to all enterprise models. This paper presents the work of compilation (literature review), classification, structuring, and characterization of automated analysis methods for enterprise models, expressing them in a standardized modeling language. In addition, we have implemented the analysis methods in our modeling tool.

  17. Automated image analysis in the study of collagenous colitis

    DEFF Research Database (Denmark)

    Fiehn, Anne-Marie Kanstrup; Kristensson, Martin; Engel, Ulla

    2016-01-01

    PURPOSE: The aim of this study was to develop an automated image analysis software to measure the thickness of the subepithelial collagenous band in colon biopsies with collagenous colitis (CC) and incomplete CC (CCi). The software measures the thickness of the collagenous band on microscopic...... slides stained with Van Gieson (VG). PATIENTS AND METHODS: A training set consisting of ten biopsies diagnosed as CC, CCi, and normal colon mucosa was used to develop the automated image analysis (VG app) to match the assessment by a pathologist. The study set consisted of biopsies from 75 patients...

  18. Automated allocation and configuration of dual stack IP networks

    OpenAIRE

    Daniels, Wilfried; Vanbrabant, Bart; Hughes, Danny; Joosen, Wouter

    2013-01-01

    The manual configuration and management of a modern network infrastructure is an increasingly complex task. This complexity is caused by factors including heterogeneity, a high degree of change and dependencies between configuration parameters. Due to increasing complexity, manual configuration has become time consuming and error prone. This paper proposes an automatic configuration tool for dual stack IP networks that addresses these issues by using high level abstractions to model the netwo...

  19. Automation of reactor neutron activation analysis

    International Nuclear Information System (INIS)

    Pavlov, S.S.; Dmitriev, A.Yu.; Frontasyeva, M.V.

    2013-01-01

    The present status of the development of a software package designed for automation of NAA at the IBR-2 reactor of FLNP, JINR, Dubna, is reported. Following decisions adopted at the CRP Meeting in Delft, August 27-31, 2012, the missing tool - a sample changer - will be installed for NAA in compliance with the peculiar features of the radioanalytical laboratory REGATA at the IBR-2 reactor. The details of the design are presented. The software for operation with the sample changer consists of two parts. The first part is a user interface and the second one is a program to control the sample changer. The second part will be developed after installing the tool.

  20. Automated sensitivity analysis using the GRESS language

    International Nuclear Information System (INIS)

    Pin, F.G.; Oblow, E.M.; Wright, R.Q.

    1986-04-01

    An automated procedure for performing large-scale sensitivity studies based on the use of computer calculus is presented. The procedure is embodied in a FORTRAN precompiler called GRESS, which automatically processes computer models and adds derivative-taking capabilities to the normal calculated results. In this report, the GRESS code is described, tested against analytic and numerical test problems, and then applied to a major geohydrological modeling problem. The SWENT nuclear waste repository modeling code is used as the basis for these studies. Results for all problems are discussed in detail. Conclusions are drawn as to the applicability of GRESS in the problems at hand and for more general large-scale modeling sensitivity studies

  1. Automated processing of thermal infrared images of Osservatorio Vesuviano permanent surveillance network by using Matlab code

    Science.gov (United States)

    Sansivero, Fabio; Vilardo, Giuseppe; Caputo, Teresa

    2017-04-01

    The permanent thermal infrared surveillance network of Osservatorio Vesuviano (INGV) is composed of 6 stations which acquire IR frames of fumarole fields in the Campi Flegrei caldera and inside the Vesuvius crater (Italy). The IR frames are uploaded to a dedicated server in the Surveillance Center of Osservatorio Vesuviano in order to process the infrared data and to excerpt all the information contained. In a first phase the infrared data are processed by an automated system (A.S.I.R.A. Acq- Automated System of IR Analysis and Acquisition) developed in Matlab environment and with a user-friendly graphic user interface (GUI). ASIRA daily generates time-series of residual temperature values of the maximum temperatures observed in the IR scenes after the removal of seasonal effects. These time-series are displayed in the Surveillance Room of Osservatorio Vesuviano and provide information about the evolution of shallow temperatures field of the observed areas. In particular the features of ASIRA Acq include: a) efficient quality selection of IR scenes, b) IR images co-registration in respect of a reference frame, c) seasonal correction by using a background-removal methodology, a) filing of IR matrices and of the processed data in shared archives accessible to interrogation. The daily archived records can be also processed by ASIRA Plot (Matlab code with GUI) to visualize IR data time-series and to help in evaluating inputs parameters for further data processing and analysis. Additional processing features are accomplished in a second phase by ASIRA Tools which is Matlab code with GUI developed to extract further information from the dataset in automated way. The main functions of ASIRA Tools are: a) the analysis of temperature variations of each pixel of the IR frame in a given time interval, b) the removal of seasonal effects from temperature of every pixel in the IR frames by using an analytic approach (removal of sinusoidal long term seasonal component by using a

  2. Automated approach to quantitative error analysis

    International Nuclear Information System (INIS)

    Bareiss, E.H.

    1977-04-01

    A method is described how a quantitative measure for the robustness of a given neutron transport theory code for coarse network calculations can be obtained. A code that performs this task automatically and at only nominal cost is described. This code also generates user-oriented benchmark problems which exhibit the analytic behavior at interfaces. 5 figures, 1 table

  3. Automation tools for accelerator control a network based sequencer

    International Nuclear Information System (INIS)

    Clout, P.; Geib, M.; Westervelt, R.

    1991-01-01

    In conjunction with a major client, Vista Control Systems has developed a sequencer for control systems which works in conjunction with its realtime, distributed Vsystem database. Vsystem is a network-based data acquisition, monitoring and control system which has been applied successfully to both accelerator projects and projects outside this realm of research. The network-based sequencer allows a user to simply define a thread of execution in any supported computer on the network. The script defining a sequence has a simple syntax designed for non-programmers, with facilities for selectively abbreviating the channel names for easy reference. The semantics of the script contains most of the familiar capabilities of conventional programming languages, including standard stream I/O and the ability to start other processes with parameters passed. The script is compiled to threaded code for execution efficiency. The implementation is described in some detail and examples are given of applications for which the sequencer has been used

  4. Integrated evolutionary computation neural network quality controller for automated systems

    Energy Technology Data Exchange (ETDEWEB)

    Patro, S.; Kolarik, W.J. [Texas Tech Univ., Lubbock, TX (United States). Dept. of Industrial Engineering

    1999-06-01

    With increasing competition in the global market, more and more stringent quality standards and specifications are being demands at lower costs. Manufacturing applications of computing power are becoming more common. The application of neural networks to identification and control of dynamic processes has been discussed. The limitations of using neural networks for control purposes has been pointed out and a different technique, evolutionary computation, has been discussed. The results of identifying and controlling an unstable, dynamic process using evolutionary computation methods has been presented. A framework for an integrated system, using both neural networks and evolutionary computation, has been proposed to identify the process and then control the product quality, in a dynamic, multivariable system, in real-time.

  5. An overview of the contaminant analysis automation program

    International Nuclear Information System (INIS)

    Hollen, R.M.; Erkkila, T.; Beugelsdijk, T.J.

    1992-01-01

    The Department of Energy (DOE) has significant amounts of radioactive and hazardous wastes stored, buried, and still being generated at many sites within the United States. These wastes must be characterized to determine the elemental, isotopic, and compound content before remediation can begin. In this paper, the authors project that sampling requirements will necessitate generating more than 10 million samples by 1995, which will far exceed the capabilities of our current manual chemical analysis laboratories. The Contaminant Analysis Automation effort (CAA), with Los Alamos National Laboratory (LANL) as to the coordinating Laboratory, is designing and fabricating robotic systems that will standardize and automate both the hardware and the software of the most common environmental chemical methods. This will be accomplished by designing and producing several unique analysis systems called Standard Analysis Methods (SAM). Each SAM will automate a specific chemical method, including sample preparation, the analytical analysis, and the data interpretation, by using a building block known as the Standard Laboratory Module (SLM). This concept allows the chemist to assemble an automated environmental method using standardized SLMs easily and without the worry of hardware compatibility or the necessity of generating complicated control programs

  6. BACnet the global standard for building automation and control networks

    CERN Document Server

    Newman, Michael

    2013-01-01

    BACnet is a data communication protocol for building automation and control systems, developed within ASHRAE in cooperation with ANSI, CEN, and the ISO. This new book, by the original chairman of the BACnet committee, explains how the BACnet protocol manages all basic building functions in a seamless, integrated way. The book explains how BACnet works with all major control systems-including those provided by Honeywell, Siemens, and Johnson Controls, among many others-to manage everything from heating to ventilation to lighting to fire control and alarm systems. BACnet is used today throughout the world for commercial and institutional buildings with complex mechanical and electrical systems. Contractors, architects, building systems engineers, and facilities managers must all be cognizant of BACnet and its applications. With a real "seat at the table," you'll find it easier to understand the intent and use of each of the data sharing techniques, controller requirements, and opportunities for interoperability...

  7. Fuzzy Emotional Semantic Analysis and Automated Annotation of Scene Images

    Directory of Open Access Journals (Sweden)

    Jianfang Cao

    2015-01-01

    Full Text Available With the advances in electronic and imaging techniques, the production of digital images has rapidly increased, and the extraction and automated annotation of emotional semantics implied by images have become issues that must be urgently addressed. To better simulate human subjectivity and ambiguity for understanding scene images, the current study proposes an emotional semantic annotation method for scene images based on fuzzy set theory. A fuzzy membership degree was calculated to describe the emotional degree of a scene image and was implemented using the Adaboost algorithm and a back-propagation (BP neural network. The automated annotation method was trained and tested using scene images from the SUN Database. The annotation results were then compared with those based on artificial annotation. Our method showed an annotation accuracy rate of 91.2% for basic emotional values and 82.4% after extended emotional values were added, which correspond to increases of 5.5% and 8.9%, respectively, compared with the results from using a single BP neural network algorithm. Furthermore, the retrieval accuracy rate based on our method reached approximately 89%. This study attempts to lay a solid foundation for the automated emotional semantic annotation of more types of images and therefore is of practical significance.

  8. Automated analysis and design of complex structures

    International Nuclear Information System (INIS)

    Wilson, E.L.

    1977-01-01

    This paper discusses the following: 1. The relationship of analysis to design. 2. New methods of analysis. 3. Improved finite elements. 4. Effect of minicomputer on structural analysis methods. 5. The use of system of microprocessors for nonlinear structural analysis. 6. The role of interacting graphics systems in future analysis and design. The discussion focusses on the impact of new inexpensive computer hardware on design and analysis methods. (Auth.)

  9. Automated hazard analysis of digital control systems

    International Nuclear Information System (INIS)

    Garrett, Chris J.; Apostolakis, George E.

    2002-01-01

    Digital instrumentation and control (I and C) systems can provide important benefits in many safety-critical applications, but they can also introduce potential new failure modes that can affect safety. Unlike electro-mechanical systems, whose failure modes are fairly well understood and which can often be built to fail in a particular way, software errors are very unpredictable. There is virtually no nontrivial software that will function as expected under all conditions. Consequently, there is a great deal of concern about whether there is a sufficient basis on which to resolve questions about safety. In this paper, an approach for validating the safety requirements of digital I and C systems is developed which uses the Dynamic Flowgraph Methodology to conduct automated hazard analyses. The prime implicants of these analyses can be used to identify unknown system hazards, prioritize the disposition of known system hazards, and guide lower-level design decisions to either eliminate or mitigate known hazards. In a case study involving a space-based reactor control system, the method succeeded in identifying an unknown failure mechanism

  10. Automated image analysis for quantification of filamentous bacteria

    DEFF Research Database (Denmark)

    Fredborg, Marlene; Rosenvinge, Flemming Schønning; Spillum, Erik

    2015-01-01

    in systems relying on colorimetry or turbidometry (such as Vitek-2, Phoenix, MicroScan WalkAway). The objective was to examine an automated image analysis algorithm for quantification of filamentous bacteria using the 3D digital microscopy imaging system, oCelloScope. Results Three E. coli strains displaying...

  11. Automation of the Analysis and Classification of the Line Material

    Directory of Open Access Journals (Sweden)

    A. A. Machuev

    2011-03-01

    Full Text Available The work is devoted to the automation of the process of the analysis and verification of various formats of data presentation for what the special software is developed. Working out and testing the special software were made on an example of files with the typical expansions which features of structure are known in advance.

  12. IMAGE CONSTRUCTION TO AUTOMATION OF PROJECTIVE TECHNIQUES FOR PSYCHOPHYSIOLOGICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Natalia Pavlova

    2018-04-01

    Full Text Available The search for a solution of automation of the process of assessment of a psychological analysis of the person drawings created by it from an available set of some templates are presented at this article. It will allow to reveal more effectively infringements of persons mentality. In particular, such decision can be used for work with children who possess the developed figurative thinking, but are not yet capable of an accurate statement of the thoughts and experiences. For automation of testing by using a projective method, we construct interactive environment for visualization of compositions of the several images and then analyse

  13. Automated procedure for performing computer security risk analysis

    International Nuclear Information System (INIS)

    Smith, S.T.; Lim, J.J.

    1984-05-01

    Computers, the invisible backbone of nuclear safeguards, monitor and control plant operations and support many materials accounting systems. Our automated procedure to assess computer security effectiveness differs from traditional risk analysis methods. The system is modeled as an interactive questionnaire, fully automated on a portable microcomputer. A set of modular event trees links the questionnaire to the risk assessment. Qualitative scores are obtained for target vulnerability, and qualitative impact measures are evaluated for a spectrum of threat-target pairs. These are then combined by a linguistic algebra to provide an accurate and meaningful risk measure. 12 references, 7 figures

  14. ORIGAMI Automator Primer. Automated ORIGEN Source Terms and Spent Fuel Storage Pool Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wieselquist, William A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Thompson, Adam B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bowman, Stephen M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Peterson, Joshua L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-04-01

    Source terms and spent nuclear fuel (SNF) storage pool decay heat load analyses for operating nuclear power plants require a large number of Oak Ridge Isotope Generation and Depletion (ORIGEN) calculations. SNF source term calculations also require a significant amount of bookkeeping to track quantities such as core and assembly operating histories, spent fuel pool (SFP) residence times, heavy metal masses, and enrichments. The ORIGEN Assembly Isotopics (ORIGAMI) module in the SCALE code system provides a simple scheme for entering these data. However, given the large scope of the analysis, extensive scripting is necessary to convert formats and process data to create thousands of ORIGAMI input files (one per assembly) and to process the results into formats readily usable by follow-on analysis tools. This primer describes a project within the SCALE Fulcrum graphical user interface (GUI) called ORIGAMI Automator that was developed to automate the scripting and bookkeeping in large-scale source term analyses. The ORIGAMI Automator enables the analyst to (1) easily create, view, and edit the reactor site and assembly information, (2) automatically create and run ORIGAMI inputs, and (3) analyze the results from ORIGAMI. ORIGAMI Automator uses the standard ORIGEN binary concentrations files produced by ORIGAMI, with concentrations available at all time points in each assembly’s life. The GUI plots results such as mass, concentration, activity, and decay heat using a powerful new ORIGEN Post-Processing Utility for SCALE (OPUS) GUI component. This document includes a description and user guide for the GUI, a step-by-step tutorial for a simplified scenario, and appendices that document the file structures used.

  15. Artificial Neural Network Analysis System

    Science.gov (United States)

    2001-02-27

    Contract No. DASG60-00-M-0201 Purchase request no.: Foot in the Door-01 Title Name: Artificial Neural Network Analysis System Company: Atlantic... Artificial Neural Network Analysis System 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Powell, Bruce C 5d. PROJECT NUMBER 5e. TASK NUMBER...34) 27-02-2001 Report Type N/A Dates Covered (from... to) ("DD MON YYYY") 28-10-2000 27-02-2001 Title and Subtitle Artificial Neural Network Analysis

  16. Automating Deep Space Network scheduling and conflict resolution

    Science.gov (United States)

    Johnston, Mark D.; Clement, Bradley

    2005-01-01

    The Deep Space Network (DSN) is a central part of NASA's infrastructure for communicating with active space missions, from earth orbit to beyond the solar system. We describe our recent work in modeling the complexities of user requirements, and then scheduling and resolving conflicts on that basis. We emphasize our innovative use of background 'intelligent' assistants' that carry out search asynchrnously while the user is focusing on various aspects of the schedule.

  17. Automated Breast Ultrasound Lesions Detection using Convolutional Neural Networks.

    Science.gov (United States)

    Yap, Moi Hoon; Pons, Gerard; Marti, Joan; Ganau, Sergi; Sentis, Melcior; Zwiggelaar, Reyer; Davison, Adrian K; Marti, Robert

    2017-08-07

    Breast lesion detection using ultrasound imaging is considered an important step of Computer-Aided Diagnosis systems. Over the past decade, researchers have demonstrated the possibilities to automate the initial lesion detection. However, the lack of a common dataset impedes research when comparing the performance of such algorithms. This paper proposes the use of deep learning approaches for breast ultrasound lesion detection and investigates three different methods: a Patch-based LeNet, a U-Net, and a transfer learning approach with a pretrained FCN-AlexNet. Their performance is compared against four state-of-the-art lesion detection algorithms (i.e. Radial Gradient Index, Multifractal Filtering, Rule-based Region Ranking and Deformable Part Models). In addition, this paper compares and contrasts two conventional ultrasound image datasets acquired from two different ultrasound systems. Dataset A comprises 306 (60 malignant and 246 benign) images and Dataset B comprises 163 (53 malignant and 110 benign) images. To overcome the lack of public datasets in this domain, Dataset B will be made available for research purposes. The results demonstrate an overall improvement by the deep learning approaches when assessed on both datasets in terms of True Positive Fraction, False Positives per image, and F-measure.

  18. Combined process automation for large-scale EEG analysis.

    Science.gov (United States)

    Sfondouris, John L; Quebedeaux, Tabitha M; Holdgraf, Chris; Musto, Alberto E

    2012-01-01

    Epileptogenesis is a dynamic process producing increased seizure susceptibility. Electroencephalography (EEG) data provides information critical in understanding the evolution of epileptiform changes throughout epileptic foci. We designed an algorithm to facilitate efficient large-scale EEG analysis via linked automation of multiple data processing steps. Using EEG recordings obtained from electrical stimulation studies, the following steps of EEG analysis were automated: (1) alignment and isolation of pre- and post-stimulation intervals, (2) generation of user-defined band frequency waveforms, (3) spike-sorting, (4) quantification of spike and burst data and (5) power spectral density analysis. This algorithm allows for quicker, more efficient EEG analysis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Automated analysis and design of complex structures

    International Nuclear Information System (INIS)

    Wilson, E.L.

    1977-01-01

    The present application of optimum design appears to be restricted to components of the structure rather than to the total structural system. Since design normally involved many analysis of the system any improvement in the efficiency of the basic methods of analysis will allow more complicated systems to be designed by optimum methods. The evaluation of the risk and reliability of a structural system can be extremely important. Reliability studies have been made of many non-structural systems for which the individual components have been extensively tested and the service environment is known. For such systems the reliability studies are valid. For most structural systems, however, the properties of the components can only be estimated and statistical data associated with the potential loads is often minimum. Also, a potentially critical loading condition may be completely neglected in the study. For these reasons and the previous problems associated with the reliability of both linear and nonlinear analysis computer programs it appears to be premature to place a significant value on such studies for complex structures. With these comments as background the purpose of this paper is to discuss the following: the relationship of analysis to design; new methods of analysis; new of improved finite elements; effect of minicomputer on structural analysis methods; the use of system of microprocessors for nonlinear structural analysis; the role of interacting graphics systems in future analysis and design. This discussion will focus on the impact of new, inexpensive computer hardware on design and analysis methods

  20. Bluetooth Low Power Modes Applied to the Data Transportation Network in Home Automation Systems

    Science.gov (United States)

    Etxaniz, Josu; Aranguren, Gerardo

    2017-01-01

    Even though home automation is a well-known research and development area, recent technological improvements in different areas such as context recognition, sensing, wireless communications or embedded systems have boosted wireless smart homes. This paper focuses on some of those areas related to home automation. The paper draws attention to wireless communications issues on embedded systems. Specifically, the paper discusses the multi-hop networking together with Bluetooth technology and latency, as a quality of service (QoS) metric. Bluetooth is a worldwide standard that provides low power multi-hop networking. It is a radio license free technology and establishes point-to-point and point-to-multipoint links, known as piconets, or multi-hop networks, known as scatternets. This way, many Bluetooth nodes can be interconnected to deploy ambient intelligent networks. This paper introduces the research on multi-hop latency done with park and sniff low power modes of Bluetooth over the test platform developed. Besides, an empirical model is obtained to calculate the latency of Bluetooth multi-hop communications over asynchronous links when links in scatternets are always in sniff or the park mode. Smart home devices and networks designers would take advantage of the models and the estimation of the delay they provide in communications along Bluetooth multi-hop networks. PMID:28468294

  1. Bluetooth Low Power Modes Applied to the Data Transportation Network in Home Automation Systems

    Directory of Open Access Journals (Sweden)

    Josu Etxaniz

    2017-04-01

    Full Text Available Even though home automation is a well-known research and development area, recent technological improvements in different areas such as context recognition, sensing, wireless communications or embedded systems have boosted wireless smart homes. This paper focuses on some of those areas related to home automation. The paper draws attention to wireless communications issues on embedded systems. Specifically, the paper discusses the multi-hop networking together with Bluetooth technology and latency, as a quality of service (QoS metric. Bluetooth is a worldwide standard that provides low power multi-hop networking. It is a radio license free technology and establishes point-to-point and point-to-multipoint links, known as piconets, or multi-hop networks, known as scatternets. This way, many Bluetooth nodes can be interconnected to deploy ambient intelligent networks. This paper introduces the research on multi-hop latency done with park and sniff low power modes of Bluetooth over the test platform developed. Besides, an empirical model is obtained to calculate the latency of Bluetooth multi-hop communications over asynchronous links when links in scatternets are always in sniff or the park mode. Smart home devices and networks designers would take advantage of the models and the estimation of the delay they provide in communications along Bluetooth multi-hop networks.

  2. Bluetooth Low Power Modes Applied to the Data Transportation Network in Home Automation Systems.

    Science.gov (United States)

    Etxaniz, Josu; Aranguren, Gerardo

    2017-04-30

    Even though home automation is a well-known research and development area, recent technological improvements in different areas such as context recognition, sensing, wireless communications or embedded systems have boosted wireless smart homes. This paper focuses on some of those areas related to home automation. The paper draws attention to wireless communications issues on embedded systems. Specifically, the paper discusses the multi-hop networking together with Bluetooth technology and latency, as a quality of service (QoS) metric. Bluetooth is a worldwide standard that provides low power multi-hop networking. It is a radio license free technology and establishes point-to-point and point-to-multipoint links, known as piconets, or multi-hop networks, known as scatternets. This way, many Bluetooth nodes can be interconnected to deploy ambient intelligent networks. This paper introduces the research on multi-hop latency done with park and sniff low power modes of Bluetooth over the test platform developed. Besides, an empirical model is obtained to calculate the latency of Bluetooth multi-hop communications over asynchronous links when links in scatternets are always in sniff or the park mode. Smart home devices and networks designers would take advantage of the models and the estimation of the delay they provide in communications along Bluetooth multi-hop networks.

  3. A5: Automated Analysis of Adversarial Android Applications

    Science.gov (United States)

    2014-06-03

    A5: Automated Analysis of Adversarial Android Applications Timothy Vidas, Jiaqi Tan, Jay Nahata, Chaur Lih Tan, Nicolas Christin...detecting, on the device itself, that an application is malicious is much more complex without elevated privileges . In other words, given the...interface via website. Blasing et al. [7] describe another dynamic analysis system for Android . Their system focuses on classifying input applications as

  4. Neural network wavelet technology: A frontier of automation

    Science.gov (United States)

    Szu, Harold

    1994-01-01

    Neural networks are an outgrowth of interdisciplinary studies concerning the brain. These studies are guiding the field of Artificial Intelligence towards the, so-called, 6th Generation Computer. Enormous amounts of resources have been poured into R/D. Wavelet Transforms (WT) have replaced Fourier Transforms (FT) in Wideband Transient (WT) cases since the discovery of WT in 1985. The list of successful applications includes the following: earthquake prediction; radar identification; speech recognition; stock market forecasting; FBI finger print image compression; and telecommunication ISDN-data compression.

  5. The optimal number, type and location of devices in automation of electrical distribution networks

    Directory of Open Access Journals (Sweden)

    Popović Željko N.

    2015-01-01

    Full Text Available This paper presents the mixed integer linear programming based model for determining optimal number, type and location of remotely controlled and supervised devices in distribution networks in the presence of distributed generators. The proposed model takes into consideration a number of different devices simultaneously (remotely controlled circuit breakers/reclosers, sectionalizing switches, remotely supervised and local fault passage indicators along with the following: expected outage cost to consumers and producers due to momentary and long-term interruptions, automated device expenses (capital investment, installation, and annual operation and maintenance costs, number and expenses of crews involved in the isolation and restoration process. Furthermore, the other possible benefits of each of automated device are also taken into account (e.g., benefits due to decreasing the cost of switching operations in normal conditions. The obtained numerical results emphasize the importance of consideration of different types of automation devices simultaneously. They also show that the proposed approach have a potential to improve the process of determining of the best automation strategy in real life distribution networks.

  6. Cardiac imaging: working towards fully-automated machine analysis & interpretation.

    Science.gov (United States)

    Slomka, Piotr J; Dey, Damini; Sitek, Arkadiusz; Motwani, Manish; Berman, Daniel S; Germano, Guido

    2017-03-01

    Non-invasive imaging plays a critical role in managing patients with cardiovascular disease. Although subjective visual interpretation remains the clinical mainstay, quantitative analysis facilitates objective, evidence-based management, and advances in clinical research. This has driven developments in computing and software tools aimed at achieving fully automated image processing and quantitative analysis. In parallel, machine learning techniques have been used to rapidly integrate large amounts of clinical and quantitative imaging data to provide highly personalized individual patient-based conclusions. Areas covered: This review summarizes recent advances in automated quantitative imaging in cardiology and describes the latest techniques which incorporate machine learning principles. The review focuses on the cardiac imaging techniques which are in wide clinical use. It also discusses key issues and obstacles for these tools to become utilized in mainstream clinical practice. Expert commentary: Fully-automated processing and high-level computer interpretation of cardiac imaging are becoming a reality. Application of machine learning to the vast amounts of quantitative data generated per scan and integration with clinical data also facilitates a move to more patient-specific interpretation. These developments are unlikely to replace interpreting physicians but will provide them with highly accurate tools to detect disease, risk-stratify, and optimize patient-specific treatment. However, with each technological advance, we move further from human dependence and closer to fully-automated machine interpretation.

  7. Computational Social Network Analysis

    CERN Document Server

    Hassanien, Aboul-Ella

    2010-01-01

    Presents insight into the social behaviour of animals (including the study of animal tracks and learning by members of the same species). This book provides web-based evidence of social interaction, perceptual learning, information granulation and the behaviour of humans and affinities between web-based social networks

  8. Automated embolic signal detection using Deep Convolutional Neural Network.

    Science.gov (United States)

    Sombune, Praotasna; Phienphanich, Phongphan; Phuechpanpaisal, Sutanya; Muengtaweepongsa, Sombat; Ruamthanthong, Anuchit; Tantibundhit, Charturong

    2017-07-01

    This work investigated the potential of Deep Neural Network in detection of cerebral embolic signal (ES) from transcranial Doppler ultrasound (TCD). The resulting system is aimed to couple with TCD devices in diagnosing a risk of stroke in real-time with high accuracy. The Adaptive Gain Control (AGC) approach developed in our previous study is employed to capture suspected ESs in real-time. By using spectrograms of the same TCD signal dataset as that of our previous work as inputs and the same experimental setup, Deep Convolutional Neural Network (CNN), which can learn features while training, was investigated for its ability to bypass the traditional handcrafted feature extraction and selection process. Extracted feature vectors from the suspected ESs are later determined whether they are of an ES, artifact (AF) or normal (NR) interval. The effectiveness of the developed system was evaluated over 19 subjects going under procedures generating emboli. The CNN-based system could achieve in average of 83.0% sensitivity, 80.1% specificity, and 81.4% accuracy, with considerably much less time consumption in development. The certainly growing set of training samples and computational resources will contribute to high performance. Besides having potential use in various clinical ES monitoring settings, continuation of this promising study will benefit developments of wearable applications by leveraging learnable features to serve demographic differentials.

  9. Network analysis applications in hydrology

    Science.gov (United States)

    Price, Katie

    2017-04-01

    Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain under­explored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five long­term USGS streamflow and water quality gages, allowing network application of long­term flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long­ term and event­based hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwater­surface water interactions.

  10. Automated security management

    CERN Document Server

    Al-Shaer, Ehab; Xie, Geoffrey

    2013-01-01

    In this contributed volume, leading international researchers explore configuration modeling and checking, vulnerability and risk assessment, configuration analysis, and diagnostics and discovery. The authors equip readers to understand automated security management systems and techniques that increase overall network assurability and usability. These constantly changing networks defend against cyber attacks by integrating hundreds of security devices such as firewalls, IPSec gateways, IDS/IPS, authentication servers, authorization/RBAC servers, and crypto systems. Automated Security Managemen

  11. User-friendly establishment of trust in distributed home automation networks

    DEFF Research Database (Denmark)

    Hjorth, Theis Solberg; Madsen, Per Printz; Torbensen, Rune

    2012-01-01

    Current wireless technologies use a variety of methods to locally exchange and verify credentials between devices to establish trusted relationships. Scenarios in home automation networks also require this capability over the Internet, but the necessary involvement of non-expert users to setup...... these relationships can lead to misconfiguration or breaches of security. We outline a security system for Home Automation called Trusted Domain that can establish and maintain cryptographically secure relationships between devices connected via IP-based networks and the Internet. Trust establishment is presented...... of predefined pictograms. This method is designed to scale from smart-phones and tablets down to low-resource embedded systems. The presented approach is supported by an extensive literature study, and the ease of use and feasibility of the method has been indicated through a preliminary user study...

  12. An Automation System for Optimizing a Supply Chain Network Design under the Influence of Demand Uncertainty

    OpenAIRE

    Polany, Rany

    2012-01-01

    This research develops and applies an integrated hierarchical framework for modeling a multi-echelon supply chain network design, under the influence of demand uncertainty. The framework is a layered integration of two levels: macro, high-level scenario planning combined with micro, low-level Monte Carlo simulation of uncertainties in demand. To facilitate rapid simulation of the effects of demand uncertainty, the integrated framework was implemented as a dashboard automation system using Mic...

  13. Location-Based Self-Adaptive Routing Algorithm for Wireless Sensor Networks in Home Automation

    Directory of Open Access Journals (Sweden)

    Hong SeungHo

    2011-01-01

    Full Text Available The use of wireless sensor networks in home automation (WSNHA is attractive due to their characteristics of self-organization, high sensing fidelity, low cost, and potential for rapid deployment. Although the AODVjr routing algorithm in IEEE 802.15.4/ZigBee and other routing algorithms have been designed for wireless sensor networks, not all are suitable for WSNHA. In this paper, we propose a location-based self-adaptive routing algorithm for WSNHA called WSNHA-LBAR. It confines route discovery flooding to a cylindrical request zone, which reduces the routing overhead and decreases broadcast storm problems in the MAC layer. It also automatically adjusts the size of the request zone using a self-adaptive algorithm based on Bayes' theorem. This makes WSNHA-LBAR more adaptable to the changes of the network state and easier to implement. Simulation results show improved network reliability as well as reduced routing overhead.

  14. Design of Networked Home Automation System Based on μCOS-II and AMAZON

    Directory of Open Access Journals (Sweden)

    Liu Jianfeng

    2015-01-01

    Full Text Available In recent years, with the popularity of computers and smart phones and the development of intelligent building in electronics industry, people’s requirement of living environment is gradually changing. The intelligent home furnishing building has become the new focus of people purchasing. And the networked home automation system which relies on the advanced network technology to connect with air conditioning, lighting, security, curtains, TV, water heater and other home furnishing systems into a local area network becomes a networked control system. μC /OS is a real-time operating system with the free open-source code, the compact structure and the preemptive real-time kernel. In this paper, the author focuses on the design of home furnishing total controller based on AMAZON multimedia processor and μC/OS-II real-time operating system, and achieves the remote access connection and control through the Ethernet.

  15. Tank Farm Operations Surveillance Automation Analysis

    International Nuclear Information System (INIS)

    MARQUEZ, D.L.

    2000-01-01

    The Nuclear Operations Project Services identified the need to improve manual tank farm surveillance data collection, review, distribution and storage practices often referred to as Operator Rounds. This document provides the analysis in terms of feasibility to improve the manual data collection methods by using handheld computer units, barcode technology, a database for storage and acquisitions, associated software, and operational procedures to increase the efficiency of Operator Rounds associated with surveillance activities

  16. Automated optics inspection analysis for NIF

    Energy Technology Data Exchange (ETDEWEB)

    Kegelmeyer, Laura M., E-mail: kegelmeyer1@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA (United States); Clark, Raelyn; Leach, Richard R.; McGuigan, David; Kamm, Victoria Miller; Potter, Daniel; Salmon, J. Thad; Senecal, Joshua; Conder, Alan; Nostrand, Mike; Whitman, Pamela K. [Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2012-12-15

    The National Ignition Facility (NIF) is a high-energy laser facility comprised of 192 beamlines that house thousands of optics. These optics guide, amplify and tightly focus light onto a tiny target for fusion ignition research and high energy density physics experiments. The condition of these optics is key to the economic, efficient and maximally energetic performance of the laser. Our goal, and novel achievement, is to find on the optics any imperfections while they are tens of microns in size, track them through time to see if they grow and if so, remove the optic and repair the single site so the entire optic can then be re-installed for further use on the laser. This paper gives an overview of the image analysis used for detecting, measuring, and tracking sites of interest on an optic while it is installed on the beamline via in situ inspection and after it has been removed for maintenance. In this way, the condition of each optic is monitored throughout the optic's lifetime. This overview paper will summarize key algorithms and technical developments for custom image analysis and processing and highlight recent improvements. (Associated papers will include more details on these issues.) We will also discuss the use of OI Analysis for daily operation of the NIF laser and its extension to inspection of NIF targets.

  17. Micro photometer's automation for quantitative spectrograph analysis

    International Nuclear Information System (INIS)

    Gutierrez E, C.Y.A.

    1996-01-01

    A Microphotometer is used to increase the sharpness of dark spectral lines. Analyzing these lines one sample content and its concentration could be determined and the analysis is known as Quantitative Spectrographic Analysis. The Quantitative Spectrographic Analysis is carried out in 3 steps, as follows. 1. Emulsion calibration. This consists of gauging a photographic emulsion, to determine the intensity variations in terms of the incident radiation. For the procedure of emulsion calibration an adjustment with square minimum to the data obtained is applied to obtain a graph. It is possible to determine the density of dark spectral line against the incident light intensity shown by the microphotometer. 2. Working curves. The values of known concentration of an element against incident light intensity are plotted. Since the sample contains several elements, it is necessary to find a work curve for each one of them. 3. Analytical results. The calibration curve and working curves are compared and the concentration of the studied element is determined. The automatic data acquisition, calculation and obtaining of resulting, is done by means of a computer (PC) and a computer program. The conditioning signal circuits have the function of delivering TTL levels (Transistor Transistor Logic) to make the communication between the microphotometer and the computer possible. Data calculation is done using a computer programm

  18. Automated optics inspection analysis for NIF

    International Nuclear Information System (INIS)

    Kegelmeyer, Laura M.; Clark, Raelyn; Leach, Richard R.; McGuigan, David; Kamm, Victoria Miller; Potter, Daniel; Salmon, J. Thad; Senecal, Joshua; Conder, Alan; Nostrand, Mike; Whitman, Pamela K.

    2012-01-01

    The National Ignition Facility (NIF) is a high-energy laser facility comprised of 192 beamlines that house thousands of optics. These optics guide, amplify and tightly focus light onto a tiny target for fusion ignition research and high energy density physics experiments. The condition of these optics is key to the economic, efficient and maximally energetic performance of the laser. Our goal, and novel achievement, is to find on the optics any imperfections while they are tens of microns in size, track them through time to see if they grow and if so, remove the optic and repair the single site so the entire optic can then be re-installed for further use on the laser. This paper gives an overview of the image analysis used for detecting, measuring, and tracking sites of interest on an optic while it is installed on the beamline via in situ inspection and after it has been removed for maintenance. In this way, the condition of each optic is monitored throughout the optic's lifetime. This overview paper will summarize key algorithms and technical developments for custom image analysis and processing and highlight recent improvements. (Associated papers will include more details on these issues.) We will also discuss the use of OI Analysis for daily operation of the NIF laser and its extension to inspection of NIF targets.

  19. Automated reasoning applications to design validation and sneak function analysis

    International Nuclear Information System (INIS)

    Stratton, R.C.

    1984-01-01

    Argonne National Laboratory (ANL) is actively involved in the LMFBR Man-Machine Integration (MMI) Safety Program. The objective of this program is to enhance the operational safety and reliability of fast-breeder reactors by optimum integration of men and machines through the application of human factors principles and control engineering to the design, operation, and the control environment. ANL is developing methods to apply automated reasoning and computerization in the validation and sneak function analysis process. This project provides the element definitions and relations necessary for an automated reasoner (AR) to reason about design validation and sneak function analysis. This project also provides a demonstration of this AR application on an Experimental Breeder Reactor-II (EBR-II) system, the Argonne Cooling System

  20. Automated Asteroseismic Analysis of Solar-type Stars

    DEFF Research Database (Denmark)

    Karoff, Christoffer; Campante, T.L.; Chaplin, W.J.

    2010-01-01

    The rapidly increasing volume of asteroseismic observations on solar-type stars has revealed a need for automated analysis tools. The reason for this is not only that individual analyses of single stars are rather time consuming, but more importantly that these large volumes of observations open...... are calculated in a consistent way. Here we present a set of automated asterosesimic analysis tools. The main engine of these set of tools is an algorithm for modelling the autocovariance spectra of the stellar acoustic spectra allowing us to measure not only the frequency of maximum power and the large......, radius, luminosity, effective temperature, surface gravity and age based on grid modeling. All the tools take into account the window function of the observations which means that they work equally well for space-based photometry observations from e.g. the NASA Kepler satellite and ground-based velocity...

  1. Extended -Regular Sequence for Automated Analysis of Microarray Images

    Directory of Open Access Journals (Sweden)

    Jin Hee-Jeong

    2006-01-01

    Full Text Available Microarray study enables us to obtain hundreds of thousands of expressions of genes or genotypes at once, and it is an indispensable technology for genome research. The first step is the analysis of scanned microarray images. This is the most important procedure for obtaining biologically reliable data. Currently most microarray image processing systems require burdensome manual block/spot indexing work. Since the amount of experimental data is increasing very quickly, automated microarray image analysis software becomes important. In this paper, we propose two automated methods for analyzing microarray images. First, we propose the extended -regular sequence to index blocks and spots, which enables a novel automatic gridding procedure. Second, we provide a methodology, hierarchical metagrid alignment, to allow reliable and efficient batch processing for a set of microarray images. Experimental results show that the proposed methods are more reliable and convenient than the commercial tools.

  2. Automated analysis of damages for radiation in plastics surfaces

    International Nuclear Information System (INIS)

    Andrade, C.; Camacho M, E.; Tavera, L.; Balcazar, M.

    1990-02-01

    Analysis of damages done by the radiation in a polymer characterized by optic properties of polished surfaces, of uniformity and chemical resistance that the acrylic; resistant until the 150 centigrade grades of temperature, and with an approximate weight of half of the glass. An objective of this work is the development of a method that analyze in automated form the superficial damages induced by radiation in plastic materials means an images analyst. (Author)

  3. Experience based ageing analysis of NPP protection automation in Finland

    International Nuclear Information System (INIS)

    Simola, K.

    2000-01-01

    This paper describes three successive studies on ageing of protection automation of nuclear power plants. These studies were aimed at developing a methodology for an experience based ageing analysis, and applying it to identify the most critical components from ageing and safety points of view. The analyses resulted also to suggestions for improvement of data collection systems for the purpose of further ageing analyses. (author)

  4. An automated solution enrichment system for uranium analysis

    International Nuclear Information System (INIS)

    Jones, S.A.; Sparks, R.; Sampson, T.; Parker, J.; Horley, E.; Kelly, T.

    1993-01-01

    An automated Solution Enrichment system (SES) for analysis of Uranium and U-235 isotopes in process samples has been developed through a joint effort between Los Alamos National Laboratory and Martin Marietta Energy systems, Portsmouth Gaseous Diffusion Plant. This device features an advanced robotics system which in conjuction with stabilized passive gamma-ray and X-ray fluorescence detectors provides for rapid, non-destructive analyses of process samples for improved special nuclear material accountability and process control

  5. Automated Freedom from Interference Analysis for Automotive Software

    OpenAIRE

    Leitner-Fischer , Florian; Leue , Stefan; Liu , Sirui

    2016-01-01

    International audience; Freedom from Interference for automotive software systems developed according to the ISO 26262 standard means that a fault in a less safety critical software component will not lead to a fault in a more safety critical component. It is an important concern in the realm of functional safety for automotive systems. We present an automated method for the analysis of concurrency-related interferences based on the QuantUM approach and tool that we have previously developed....

  6. Using Automated Network Detection & Response to Visualize Malicious IT

    Science.gov (United States)

    execute this model that we call retrospective analytics, this analysis of being able to take what we know hand side here we have what we call our attack spiral, and what this is is our illustration of the kill call a hierarchy of experts model. The phrase is not new to us, but I think we're the only ones using

  7. Automated Construction of Node Software Using Attributes in a Ubiquitous Sensor Network Environment

    Science.gov (United States)

    Lee, Woojin; Kim, Juil; Kang, JangMook

    2010-01-01

    In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN) applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric—the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment. PMID:22163678

  8. Automated Construction of Node Software Using Attributes in a Ubiquitous Sensor Network Environment

    Directory of Open Access Journals (Sweden)

    JangMook Kang

    2010-09-01

    Full Text Available In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric—the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment.

  9. Automated construction of node software using attributes in a ubiquitous sensor network environment.

    Science.gov (United States)

    Lee, Woojin; Kim, Juil; Kang, JangMook

    2010-01-01

    In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN) applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric-the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment.

  10. Analysis of neural networks

    CERN Document Server

    Heiden, Uwe

    1980-01-01

    The purpose of this work is a unified and general treatment of activity in neural networks from a mathematical pOint of view. Possible applications of the theory presented are indica­ ted throughout the text. However, they are not explored in de­ tail for two reasons : first, the universal character of n- ral activity in nearly all animals requires some type of a general approach~ secondly, the mathematical perspicuity would suffer if too many experimental details and empirical peculiarities were interspersed among the mathematical investigation. A guide to many applications is supplied by the references concerning a variety of specific issues. Of course the theory does not aim at covering all individual problems. Moreover there are other approaches to neural network theory (see e.g. Poggio-Torre, 1978) based on the different lev­ els at which the nervous system may be viewed. The theory is a deterministic one reflecting the average be­ havior of neurons or neuron pools. In this respect the essay is writt...

  11. Transmission analysis in WDM networks

    DEFF Research Database (Denmark)

    Rasmussen, Christian Jørgen

    1999-01-01

    This thesis describes the development of a computer-based simulator for transmission analysis in optical wavelength division multiplexing networks. A great part of the work concerns fundamental optical network simulator issues. Among these issues are identification of the versatility and user...... the different component models are invoked during the simulation of a system. A simple set of rules which makes it possible to simulate any network architectures is laid down. The modelling of the nonlinear fibre and the optical receiver is also treated. The work on the fibre concerns the numerical solution...

  12. Modular analysis of biological networks.

    Science.gov (United States)

    Kaltenbach, Hans-Michael; Stelling, Jörg

    2012-01-01

    The analysis of complex biological networks has traditionally relied on decomposition into smaller, semi-autonomous units such as individual signaling pathways. With the increased scope of systems biology (models), rational approaches to modularization have become an important topic. With increasing acceptance of de facto modularity in biology, widely different definitions of what constitutes a module have sparked controversies. Here, we therefore review prominent classes of modular approaches based on formal network representations. Despite some promising research directions, several important theoretical challenges remain open on the way to formal, function-centered modular decompositions for dynamic biological networks.

  13. Discrimination between smiling faces: Human observers vs. automated face analysis.

    Science.gov (United States)

    Del Líbano, Mario; Calvo, Manuel G; Fernández-Martín, Andrés; Recio, Guillermo

    2018-05-11

    This study investigated (a) how prototypical happy faces (with happy eyes and a smile) can be discriminated from blended expressions with a smile but non-happy eyes, depending on type and intensity of the eye expression; and (b) how smile discrimination differs for human perceivers versus automated face analysis, depending on affective valence and morphological facial features. Human observers categorized faces as happy or non-happy, or rated their valence. Automated analysis (FACET software) computed seven expressions (including joy/happiness) and 20 facial action units (AUs). Physical properties (low-level image statistics and visual saliency) of the face stimuli were controlled. Results revealed, first, that some blended expressions (especially, with angry eyes) had lower discrimination thresholds (i.e., they were identified as "non-happy" at lower non-happy eye intensities) than others (especially, with neutral eyes). Second, discrimination sensitivity was better for human perceivers than for automated FACET analysis. As an additional finding, affective valence predicted human discrimination performance, whereas morphological AUs predicted FACET discrimination. FACET can be a valid tool for categorizing prototypical expressions, but is currently more limited than human observers for discrimination of blended expressions. Configural processing facilitates detection of in/congruence(s) across regions, and thus detection of non-genuine smiling faces (due to non-happy eyes). Copyright © 2018 Elsevier B.V. All rights reserved.

  14. An optimized method for automated analysis of algal pigments by HPLC

    NARCIS (Netherlands)

    van Leeuwe, M. A.; Villerius, L. A.; Roggeveld, J.; Visser, R. J. W.; Stefels, J.

    2006-01-01

    A recent development in algal pigment analysis by high-performance liquid chromatography (HPLC) is the application of automation. An optimization of a complete sampling and analysis protocol applied specifically in automation has not yet been performed. In this paper we show that automation can only

  15. Prevalence of discordant microscopic changes with automated CBC analysis

    Directory of Open Access Journals (Sweden)

    Fabiano de Jesus Santos

    2014-12-01

    Full Text Available Introduction:The most common cause of diagnostic error is related to errors in laboratory tests as well as errors of results interpretation. In order to reduce them, the laboratory currently has modern equipment which provides accurate and reliable results. The development of automation has revolutionized the laboratory procedures in Brazil and worldwide.Objective:To determine the prevalence of microscopic changes present in blood slides concordant and discordant with results obtained using fully automated procedures.Materials and method:From January to July 2013, 1,000 hematological parameters slides were analyzed. Automated analysis was performed on last generation equipment, which methodology is based on electrical impedance, and is able to quantify all the figurative elements of the blood in a universe of 22 parameters. The microscopy was performed by two experts in microscopy simultaneously.Results:The data showed that only 42.70% were concordant, comparing with 57.30% discordant. The main findings among discordant were: Changes in red blood cells 43.70% (n = 250, white blood cells 38.46% (n = 220, and number of platelet 17.80% (n = 102.Discussion:The data show that some results are not consistent with clinical or physiological state of an individual, and cannot be explained because they have not been investigated, which may compromise the final diagnosis.Conclusion:It was observed that it is of fundamental importance that the microscopy qualitative analysis must be performed in parallel with automated analysis in order to obtain reliable results, causing a positive impact on the prevention, diagnosis, prognosis, and therapeutic follow-up.

  16. Antenna analysis using neural networks

    Science.gov (United States)

    Smith, William T.

    1992-01-01

    Conventional computing schemes have long been used to analyze problems in electromagnetics (EM). The vast majority of EM applications require computationally intensive algorithms involving numerical integration and solutions to large systems of equations. The feasibility of using neural network computing algorithms for antenna analysis is investigated. The ultimate goal is to use a trained neural network algorithm to reduce the computational demands of existing reflector surface error compensation techniques. Neural networks are computational algorithms based on neurobiological systems. Neural nets consist of massively parallel interconnected nonlinear computational elements. They are often employed in pattern recognition and image processing problems. Recently, neural network analysis has been applied in the electromagnetics area for the design of frequency selective surfaces and beam forming networks. The backpropagation training algorithm was employed to simulate classical antenna array synthesis techniques. The Woodward-Lawson (W-L) and Dolph-Chebyshev (D-C) array pattern synthesis techniques were used to train the neural network. The inputs to the network were samples of the desired synthesis pattern. The outputs are the array element excitations required to synthesize the desired pattern. Once trained, the network is used to simulate the W-L or D-C techniques. Various sector patterns and cosecant-type patterns (27 total) generated using W-L synthesis were used to train the network. Desired pattern samples were then fed to the neural network. The outputs of the network were the simulated W-L excitations. A 20 element linear array was used. There were 41 input pattern samples with 40 output excitations (20 real parts, 20 imaginary). A comparison between the simulated and actual W-L techniques is shown for a triangular-shaped pattern. Dolph-Chebyshev is a different class of synthesis technique in that D-C is used for side lobe control as opposed to pattern

  17. Automated electric valve for electrokinetic separation in a networked microfluidic chip.

    Science.gov (United States)

    Cui, Huanchun; Huang, Zheng; Dutta, Prashanta; Ivory, Cornelius F

    2007-02-15

    This paper describes an automated electric valve system designed to reduce dispersion and sample loss into a side channel when an electrokinetically mobilized concentration zone passes a T-junction in a networked microfluidic chip. One way to reduce dispersion is to control current streamlines since charged species are driven along them in the absence of electroosmotic flow. Computer simulations demonstrate that dispersion and sample loss can be reduced by applying a constant additional electric field in the side channel to straighten current streamlines in linear electrokinetic flow (zone electrophoresis). This additional electric field was provided by a pair of platinum microelectrodes integrated into the chip in the vicinity of the T-junction. Both simulations and experiments of this electric valve with constant valve voltages were shown to provide unsatisfactory valve performance during nonlinear electrophoresis (isotachophoresis). On the basis of these results, however, an automated electric valve system was developed with improved valve performance. Experiments conducted with this system showed decreased dispersion and increased reproducibility as protein zones isotachophoretically passed the T-junction. Simulations of the automated electric valve offer further support that the desired shape of current streamlines was maintained at the T-junction during isotachophoresis. Valve performance was evaluated at different valve currents based on statistical variance due to dispersion. With the automated control system, two integrated microelectrodes provide an effective way to manipulate current streamlines, thus acting as an electric valve for charged species in electrokinetic separations.

  18. Automation of multi-agent control for complex dynamic systems in heterogeneous computational network

    Science.gov (United States)

    Oparin, Gennady; Feoktistov, Alexander; Bogdanova, Vera; Sidorov, Ivan

    2017-01-01

    The rapid progress of high-performance computing entails new challenges related to solving large scientific problems for various subject domains in a heterogeneous distributed computing environment (e.g., a network, Grid system, or Cloud infrastructure). The specialists in the field of parallel and distributed computing give the special attention to a scalability of applications for problem solving. An effective management of the scalable application in the heterogeneous distributed computing environment is still a non-trivial issue. Control systems that operate in networks, especially relate to this issue. We propose a new approach to the multi-agent management for the scalable applications in the heterogeneous computational network. The fundamentals of our approach are the integrated use of conceptual programming, simulation modeling, network monitoring, multi-agent management, and service-oriented programming. We developed a special framework for an automation of the problem solving. Advantages of the proposed approach are demonstrated on the parametric synthesis example of the static linear regulator for complex dynamic systems. Benefits of the scalable application for solving this problem include automation of the multi-agent control for the systems in a parallel mode with various degrees of its detailed elaboration.

  19. Automated road network extraction from high spatial resolution multi-spectral imagery

    Science.gov (United States)

    Zhang, Qiaoping

    For the last three decades, the Geomatics Engineering and Computer Science communities have considered automated road network extraction from remotely-sensed imagery to be a challenging and important research topic. The main objective of this research is to investigate the theory and methodology of automated feature extraction for image-based road database creation, refinement or updating, and to develop a series of algorithms for road network extraction from high resolution multi-spectral imagery. The proposed framework for road network extraction from multi-spectral imagery begins with an image segmentation using the k-means algorithm. This step mainly concerns the exploitation of the spectral information for feature extraction. The road cluster is automatically identified using a fuzzy classifier based on a set of predefined road surface membership functions. These membership functions are established based on the general spectral signature of road pavement materials and the corresponding normalized digital numbers on each multi-spectral band. Shape descriptors of the Angular Texture Signature are defined and used to reduce the misclassifications between roads and other spectrally similar objects (e.g., crop fields, parking lots, and buildings). An iterative and localized Radon transform is developed for the extraction of road centerlines from the classified images. The purpose of the transform is to accurately and completely detect the road centerlines. It is able to find short, long, and even curvilinear lines. The input image is partitioned into a set of subset images called road component images. An iterative Radon transform is locally applied to each road component image. At each iteration, road centerline segments are detected based on an accurate estimation of the line parameters and line widths. Three localization approaches are implemented and compared using qualitative and quantitative methods. Finally, the road centerline segments are grouped into a

  20. Automated implementation of rule-based expert systems with neural networks for time-critical applications

    Science.gov (United States)

    Ramamoorthy, P. A.; Huang, Song; Govind, Girish

    1991-01-01

    In fault diagnosis, control and real-time monitoring, both timing and accuracy are critical for operators or machines to reach proper solutions or appropriate actions. Expert systems are becoming more popular in the manufacturing community for dealing with such problems. In recent years, neural networks have revived and their applications have spread to many areas of science and engineering. A method of using neural networks to implement rule-based expert systems for time-critical applications is discussed here. This method can convert a given rule-based system into a neural network with fixed weights and thresholds. The rules governing the translation are presented along with some examples. We also present the results of automated machine implementation of such networks from the given rule-base. This significantly simplifies the translation process to neural network expert systems from conventional rule-based systems. Results comparing the performance of the proposed approach based on neural networks vs. the classical approach are given. The possibility of very large scale integration (VLSI) realization of such neural network expert systems is also discussed.

  1. NET-2 Network Analysis Program

    International Nuclear Information System (INIS)

    Malmberg, A.F.

    1974-01-01

    The NET-2 Network Analysis Program is a general purpose digital computer program which solves the nonlinear time domain response and the linearized small signal frequency domain response of an arbitrary network of interconnected components. NET-2 is capable of handling a variety of components and has been applied to problems in several engineering fields, including electronic circuit design and analysis, missile flight simulation, control systems, heat flow, fluid flow, mechanical systems, structural dynamics, digital logic, communications network design, solid state device physics, fluidic systems, and nuclear vulnerability due to blast, thermal, gamma radiation, neutron damage, and EMP effects. Network components may be selected from a repertoire of built-in models or they may be constructed by the user through appropriate combinations of mathematical, empirical, and topological functions. Higher-level components may be defined by subnetworks composed of any combination of user-defined components and built-in models. The program provides a modeling capability to represent and intermix system components on many levels, e.g., from hole and electron spatial charge distributions in solid state devices through discrete and integrated electronic components to functional system blocks. NET-2 is capable of simultaneous computation in both the time and frequency domain, and has statistical and optimization capability. Network topology may be controlled as a function of the network solution. (U.S.)

  2. Semi-automated retinal vessel analysis in nonmydriatic fundus photography.

    Science.gov (United States)

    Schuster, Alexander Karl-Georg; Fischer, Joachim Ernst; Vossmerbaeumer, Urs

    2014-02-01

    Funduscopic assessment of the retinal vessels may be used to assess the health status of microcirculation and as a component in the evaluation of cardiovascular risk factors. Typically, the evaluation is restricted to morphological appreciation without strict quantification. Our purpose was to develop and validate a software tool for semi-automated quantitative analysis of retinal vasculature in nonmydriatic fundus photography. matlab software was used to develop a semi-automated image recognition and analysis tool for the determination of the arterial-venous (A/V) ratio in the central vessel equivalent on 45° digital fundus photographs. Validity and reproducibility of the results were ascertained using nonmydriatic photographs of 50 eyes from 25 subjects recorded from a 3DOCT device (Topcon Corp.). Two hundred and thirty-three eyes of 121 healthy subjects were evaluated to define normative values. A software tool was developed using image thresholds for vessel recognition and vessel width calculation in a semi-automated three-step procedure: vessel recognition on the photograph and artery/vein designation, width measurement and calculation of central retinal vessel equivalents. Mean vessel recognition rate was 78%, vessel class designation rate 75% and reproducibility between 0.78 and 0.91. Mean A/V ratio was 0.84. Application on a healthy norm cohort showed high congruence with prior published manual methods. Processing time per image was one minute. Quantitative geometrical assessment of the retinal vasculature may be performed in a semi-automated manner using dedicated software tools. Yielding reproducible numerical data within a short time leap, this may contribute additional value to mere morphological estimates in the clinical evaluation of fundus photographs. © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  3. NAP: The Network Analysis Profiler, a web tool for easier topological analysis and comparison of medium-scale biological networks.

    Science.gov (United States)

    Theodosiou, Theodosios; Efstathiou, Georgios; Papanikolaou, Nikolas; Kyrpides, Nikos C; Bagos, Pantelis G; Iliopoulos, Ioannis; Pavlopoulos, Georgios A

    2017-07-14

    Nowadays, due to the technological advances of high-throughput techniques, Systems Biology has seen a tremendous growth of data generation. With network analysis, looking at biological systems at a higher level in order to better understand a system, its topology and the relationships between its components is of a great importance. Gene expression, signal transduction, protein/chemical interactions, biomedical literature co-occurrences, are few of the examples captured in biological network representations where nodes represent certain bioentities and edges represent the connections between them. Today, many tools for network visualization and analysis are available. Nevertheless, most of them are standalone applications that often (i) burden users with computing and calculation time depending on the network's size and (ii) focus on handling, editing and exploring a network interactively. While such functionality is of great importance, limited efforts have been made towards the comparison of the topological analysis of multiple networks. Network Analysis Provider (NAP) is a comprehensive web tool to automate network profiling and intra/inter-network topology comparison. It is designed to bridge the gap between network analysis, statistics, graph theory and partially visualization in a user-friendly way. It is freely available and aims to become a very appealing tool for the broader community. It hosts a great plethora of topological analysis methods such as node and edge rankings. Few of its powerful characteristics are: its ability to enable easy profile comparisons across multiple networks, find their intersection and provide users with simplified, high quality plots of any of the offered topological characteristics against any other within the same network. It is written in R and Shiny, it is based on the igraph library and it is able to handle medium-scale weighted/unweighted, directed/undirected and bipartite graphs. NAP is available at http://bioinformatics.med.uoc.gr/NAP .

  4. Using historical wafermap data for automated yield analysis

    International Nuclear Information System (INIS)

    Tobin, K.W.; Karnowski, T.P.; Gleason, S.S.; Jensen, D.; Lakhani, F.

    1999-01-01

    To be productive and profitable in a modern semiconductor fabrication environment, large amounts of manufacturing data must be collected, analyzed, and maintained. This includes data collected from in- and off-line wafer inspection systems and from the process equipment itself. This data is increasingly being used to design new processes, control and maintain tools, and to provide the information needed for rapid yield learning and prediction. Because of increasing device complexity, the amount of data being generated is outstripping the yield engineer close-quote s ability to effectively monitor and correct unexpected trends and excursions. The 1997 SIA National Technology Roadmap for Semiconductors highlights a need to address these issues through open-quotes automated data reduction algorithms to source defects from multiple data sources and to reduce defect sourcing time.close quotes SEMATECH and the Oak Ridge National Laboratory have been developing new strategies and technologies for providing the yield engineer with higher levels of assisted data reduction for the purpose of automated yield analysis. In this article, we will discuss the current state of the art and trends in yield management automation. copyright 1999 American Vacuum Society

  5. Automated Tracking of Cell Migration with Rapid Data Analysis.

    Science.gov (United States)

    DuChez, Brian J

    2017-09-01

    Cell migration is essential for many biological processes including development, wound healing, and metastasis. However, studying cell migration often requires the time-consuming and labor-intensive task of manually tracking cells. To accelerate the task of obtaining coordinate positions of migrating cells, we have developed a graphical user interface (GUI) capable of automating the tracking of fluorescently labeled nuclei. This GUI provides an intuitive user interface that makes automated tracking accessible to researchers with no image-processing experience or familiarity with particle-tracking approaches. Using this GUI, users can interactively determine a minimum of four parameters to identify fluorescently labeled cells and automate acquisition of cell trajectories. Additional features allow for batch processing of numerous time-lapse images, curation of unwanted tracks, and subsequent statistical analysis of tracked cells. Statistical outputs allow users to evaluate migratory phenotypes, including cell speed, distance, displacement, and persistence, as well as measures of directional movement, such as forward migration index (FMI) and angular displacement. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  6. Automated target recognition and tracking using an optical pattern recognition neural network

    Science.gov (United States)

    Chao, Tien-Hsin

    1991-01-01

    The on-going development of an automatic target recognition and tracking system at the Jet Propulsion Laboratory is presented. This system is an optical pattern recognition neural network (OPRNN) that is an integration of an innovative optical parallel processor and a feature extraction based neural net training algorithm. The parallel optical processor provides high speed and vast parallelism as well as full shift invariance. The neural network algorithm enables simultaneous discrimination of multiple noisy targets in spite of their scales, rotations, perspectives, and various deformations. This fully developed OPRNN system can be effectively utilized for the automated spacecraft recognition and tracking that will lead to success in the Automated Rendezvous and Capture (AR&C) of the unmanned Cargo Transfer Vehicle (CTV). One of the most powerful optical parallel processors for automatic target recognition is the multichannel correlator. With the inherent advantages of parallel processing capability and shift invariance, multiple objects can be simultaneously recognized and tracked using this multichannel correlator. This target tracking capability can be greatly enhanced by utilizing a powerful feature extraction based neural network training algorithm such as the neocognitron. The OPRNN, currently under investigation at JPL, is constructed with an optical multichannel correlator where holographic filters have been prepared using the neocognitron training algorithm. The computation speed of the neocognitron-type OPRNN is up to 10(exp 14) analog connections/sec that enabling the OPRNN to outperform its state-of-the-art electronics counterpart by at least two orders of magnitude.

  7. Applications of Automation Methods for Nonlinear Fracture Test Analysis

    Science.gov (United States)

    Allen, Phillip A.; Wells, Douglas N.

    2013-01-01

    Using automated and standardized computer tools to calculate the pertinent test result values has several advantages such as: 1. allowing high-fidelity solutions to complex nonlinear phenomena that would be impractical to express in written equation form, 2. eliminating errors associated with the interpretation and programing of analysis procedures from the text of test standards, 3. lessening the need for expertise in the areas of solid mechanics, fracture mechanics, numerical methods, and/or finite element modeling, to achieve sound results, 4. and providing one computer tool and/or one set of solutions for all users for a more "standardized" answer. In summary, this approach allows a non-expert with rudimentary training to get the best practical solution based on the latest understanding with minimum difficulty.Other existing ASTM standards that cover complicated phenomena use standard computer programs: 1. ASTM C1340/C1340M-10- Standard Practice for Estimation of Heat Gain or Loss Through Ceilings Under Attics Containing Radiant Barriers by Use of a Computer Program 2. ASTM F 2815 - Standard Practice for Chemical Permeation through Protective Clothing Materials: Testing Data Analysis by Use of a Computer Program 3. ASTM E2807 - Standard Specification for 3D Imaging Data Exchange, Version 1.0 The verification, validation, and round-robin processes required of a computer tool closely parallel the methods that are used to ensure the solution validity for equations included in test standard. The use of automated analysis tools allows the creation and practical implementation of advanced fracture mechanics test standards that capture the physics of a nonlinear fracture mechanics problem without adding undue burden or expense to the user. The presented approach forms a bridge between the equation-based fracture testing standards of today and the next generation of standards solving complex problems through analysis automation.

  8. Network Analysis Tools: from biological networks to clusters and pathways.

    Science.gov (United States)

    Brohée, Sylvain; Faust, Karoline; Lima-Mendez, Gipsi; Vanderstocken, Gilles; van Helden, Jacques

    2008-01-01

    Network Analysis Tools (NeAT) is a suite of computer tools that integrate various algorithms for the analysis of biological networks: comparison between graphs, between clusters, or between graphs and clusters; network randomization; analysis of degree distribution; network-based clustering and path finding. The tools are interconnected to enable a stepwise analysis of the network through a complete analytical workflow. In this protocol, we present a typical case of utilization, where the tasks above are combined to decipher a protein-protein interaction network retrieved from the STRING database. The results returned by NeAT are typically subnetworks, networks enriched with additional information (i.e., clusters or paths) or tables displaying statistics. Typical networks comprising several thousands of nodes and arcs can be analyzed within a few minutes. The complete protocol can be read and executed in approximately 1 h.

  9. Statistical network analysis for analyzing policy networks

    DEFF Research Database (Denmark)

    Robins, Garry; Lewis, Jenny; Wang, Peng

    2012-01-01

    and policy network methodology is the development of statistical modeling approaches that can accommodate such dependent data. In this article, we review three network statistical methods commonly used in the current literature: quadratic assignment procedures, exponential random graph models (ERGMs......To analyze social network data using standard statistical approaches is to risk incorrect inference. The dependencies among observations implied in a network conceptualization undermine standard assumptions of the usual general linear models. One of the most quickly expanding areas of social......), and stochastic actor-oriented models. We focus most attention on ERGMs by providing an illustrative example of a model for a strategic information network within a local government. We draw inferences about the structural role played by individuals recognized as key innovators and conclude that such an approach...

  10. AMDA: an R package for the automated microarray data analysis

    Directory of Open Access Journals (Sweden)

    Foti Maria

    2006-07-01

    Full Text Available Abstract Background Microarrays are routinely used to assess mRNA transcript levels on a genome-wide scale. Large amount of microarray datasets are now available in several databases, and new experiments are constantly being performed. In spite of this fact, few and limited tools exist for quickly and easily analyzing the results. Microarray analysis can be challenging for researchers without the necessary training and it can be time-consuming for service providers with many users. Results To address these problems we have developed an automated microarray data analysis (AMDA software, which provides scientists with an easy and integrated system for the analysis of Affymetrix microarray experiments. AMDA is free and it is available as an R package. It is based on the Bioconductor project that provides a number of powerful bioinformatics and microarray analysis tools. This automated pipeline integrates different functions available in the R and Bioconductor projects with newly developed functions. AMDA covers all of the steps, performing a full data analysis, including image analysis, quality controls, normalization, selection of differentially expressed genes, clustering, correspondence analysis and functional evaluation. Finally a LaTEX document is dynamically generated depending on the performed analysis steps. The generated report contains comments and analysis results as well as the references to several files for a deeper investigation. Conclusion AMDA is freely available as an R package under the GPL license. The package as well as an example analysis report can be downloaded in the Services/Bioinformatics section of the Genopolis http://www.genopolis.it/

  11. Statistical analysis of network data with R

    CERN Document Server

    Kolaczyk, Eric D

    2014-01-01

    Networks have permeated everyday life through everyday realities like the Internet, social networks, and viral marketing. As such, network analysis is an important growth area in the quantitative sciences, with roots in social network analysis going back to the 1930s and graph theory going back centuries. Measurement and analysis are integral components of network research. As a result, statistical methods play a critical role in network analysis. This book is the first of its kind in network research. It can be used as a stand-alone resource in which multiple R packages are used to illustrate how to conduct a wide range of network analyses, from basic manipulation and visualization, to summary and characterization, to modeling of network data. The central package is igraph, which provides extensive capabilities for studying network graphs in R. This text builds on Eric D. Kolaczyk’s book Statistical Analysis of Network Data (Springer, 2009).

  12. IFDOTMETER: A New Software Application for Automated Immunofluorescence Analysis.

    Science.gov (United States)

    Rodríguez-Arribas, Mario; Pizarro-Estrella, Elisa; Gómez-Sánchez, Rubén; Yakhine-Diop, S M S; Gragera-Hidalgo, Antonio; Cristo, Alejandro; Bravo-San Pedro, Jose M; González-Polo, Rosa A; Fuentes, José M

    2016-04-01

    Most laboratories interested in autophagy use different imaging software for managing and analyzing heterogeneous parameters in immunofluorescence experiments (e.g., LC3-puncta quantification and determination of the number and size of lysosomes). One solution would be software that works on a user's laptop or workstation that can access all image settings and provide quick and easy-to-use analysis of data. Thus, we have designed and implemented an application called IFDOTMETER, which can run on all major operating systems because it has been programmed using JAVA (Sun Microsystems). Briefly, IFDOTMETER software has been created to quantify a variety of biological hallmarks, including mitochondrial morphology and nuclear condensation. The program interface is intuitive and user-friendly, making it useful for users not familiar with computer handling. By setting previously defined parameters, the software can automatically analyze a large number of images without the supervision of the researcher. Once analysis is complete, the results are stored in a spreadsheet. Using software for high-throughput cell image analysis offers researchers the possibility of performing comprehensive and precise analysis of a high number of images in an automated manner, making this routine task easier. © 2015 Society for Laboratory Automation and Screening.

  13. Vibration analysis in nuclear power plant using neural networks

    International Nuclear Information System (INIS)

    Loskiewicz-Buczak, A.; Alguindigue, I.E.

    1993-01-01

    Vibration monitoring of components in nuclear power plants has been used for a number of years. This technique involves the analysis of vibration data coming from vital components of the plant to detect features which reflect the operational state of machinery. The analysis leads to the identification of potential failures and their causes, and makes it possible to perform efficient preventive maintenance. This paper documents the authors' work on the design of a vibration monitoring methodology enhanced by neural network technology. This technology provides an attractive complement to traditional vibration analysis because of the potential of neural networks to handle data which may be distorted or noisy. This paper describes three neural networks-based methods for the automation of some of the activities related to motion and vibration monitoring in engineering systems

  14. Automated system for load flow prediction in power substations using artificial neural networks

    Directory of Open Access Journals (Sweden)

    Arlys Michel Lastre Aleaga

    2015-09-01

    Full Text Available The load flow is of great importance in assisting the process of decision making and planning of generation, distribution and transmission of electricity. Ignorance of the values in this indicator, as well as their inappropriate prediction, difficult decision making and efficiency of the electricity service, and can cause undesirable situations such as; the on demand, overheating of the components that make up a substation, and incorrect planning processes electricity generation and distribution. Given the need for prediction of flow of electric charge of the substations in Ecuador this research proposes the concept for the development of an automated prediction system employing the use of Artificial Neural Networks.

  15. Urban Automation Networks: Current and Emerging Solutions for Sensed Data Collection and Actuation in Smart Cities.

    Science.gov (United States)

    Gomez, Carles; Paradells, Josep

    2015-09-10

    Urban Automation Networks (UANs) are being deployed worldwide in order to enable Smart City applications. Given the crucial role of UANs, as well as their diversity, it is critically important to assess their properties and trade-offs. This article introduces the requirements and challenges for UANs, characterizes the main current and emerging UAN paradigms, provides guidelines for their design and/or choice, and comparatively examines their performance in terms of a variety of parameters including coverage, power consumption, latency, standardization status and economic cost.

  16. Urban Automation Networks: Current and Emerging Solutions for Sensed Data Collection and Actuation in Smart Cities

    Directory of Open Access Journals (Sweden)

    Carles Gomez

    2015-09-01

    Full Text Available Urban Automation Networks (UANs are being deployed worldwide in order to enable Smart City applications. Given the crucial role of UANs, as well as their diversity, it is critically important to assess their properties and trade-offs. This article introduces the requirements and challenges for UANs, characterizes the main current and emerging UAN paradigms, provides guidelines for their design and/or choice, and comparatively examines their performance in terms of a variety of parameters including coverage, power consumption, latency, standardization status and economic cost.

  17. Automated collection and dissemination of ionospheric data from the digisonde network

    Directory of Open Access Journals (Sweden)

    B.W. Reinisch

    2004-01-01

    Full Text Available The growing demand for fast access to accurate ionospheric electron density profiles and ionospheric characteristics calls for efficient dissemination of data from the many ionosondes operating around the globe. The global digisonde network with over 70 stations takes advantage of the Internet to make many of these sounders remotely accessible for data transfer and control. Key elements of the digisonde system data management are the visualization and editing tool SAO Explorer, the digital ionogram database DIDBase, holding raw and derived digisonde data under an industrial-strength database management system, and the automated data request execution system ADRES.

  18. Assessment of Automated Data Analysis Application on VVER Steam Generator Tubing

    International Nuclear Information System (INIS)

    Picek, E.; Barilar, D.

    2006-01-01

    INETEC - Institute for Nuclear Technology has developed software package named EddyOne having an option of automated analysis of bobbin coil eddy current data. During its development and site use some features were noticed preventing the wide use automatic analysis on VVER SG data. This article discuss these specific problems as well evaluates possible solutions. With regards to current state of automated analysis technology an overview of advantaged and disadvantages of automated analysis on VVER SG is summarized as well.(author)

  19. Postprocessing algorithm for automated analysis of pelvic intraoperative neuromonitoring signals

    Directory of Open Access Journals (Sweden)

    Wegner Celine

    2016-09-01

    Full Text Available Two dimensional pelvic intraoperative neuromonitoring (pIONM® is based on electric stimulation of autonomic nerves under observation of electromyography of internal anal sphincter (IAS and manometry of urinary bladder. The method provides nerve identification and verification of its’ functional integrity. Currently pIONM® is gaining increased attention in times where preservation of function is becoming more and more important. Ongoing technical and methodological developments in experimental and clinical settings require further analysis of the obtained signals. This work describes a postprocessing algorithm for pIONM® signals, developed for automated analysis of huge amount of recorded data. The analysis routine includes a graphical representation of the recorded signals in the time and frequency domain, as well as a quantitative evaluation by means of features calculated from the time and frequency domain. The produced plots are summarized automatically in a PowerPoint presentation. The calculated features are filled into a standardized Excel-sheet, ready for statistical analysis.

  20. Semi-automated tabulation of the 3D topology and morphology of branching networks using CT: application to the airway tree

    International Nuclear Information System (INIS)

    Sauret, V.; Bailey, A.G.

    1999-01-01

    Detailed information on biological branching networks (optical nerves, airways or blood vessels) is often required to improve the analysis of 3D medical imaging data. A semi-automated algorithm has been developed to obtain the full 3D topology and dimensions (direction cosine, length, diameter, branching and gravity angles) of branching networks using their CT images. It has been tested using CT images of a simple Perspex branching network and applied to the CT images of a human cast of the airway tree. The morphology and topology of the computer derived network were compared with the manually measured dimensions. Good agreement was found. The airways dimensions also compared well with previous values quoted in literature. This algorithm can provide complete data set analysis much more quickly than manual measurements. Its use is limited by the CT resolution which means that very small branches are not visible. New data are presented on the branching angles of the airway tree. (author)

  1. Automated gamma spectrometry and data analysis on radiometric neutron dosimeters

    International Nuclear Information System (INIS)

    Matsumoto, W.Y.

    1983-01-01

    An automated gamma-ray spectrometry system was designed and implemented by the Westinghouse Hanford Company at the Hanford Engineering Development Laboratory (HEDL) to analyze radiometric neutron dosimeters. Unattended, automatic, 24 hour/day, 7 day/week operation with online data analysis and mainframe-computer compatible magnetic tape output are system features. The system was used to analyze most of the 4000-plus radiometric monitors (RM's) from extensive reactor characterization tests during startup and initial operation of th Fast Flux Test Facility (FFTF). The FFTF, operated by HEDL for the Department of Energy, incorporates a 400 MW(th) sodium-cooled fast reactor. Aumomated system hardware consists of a high purity germanium detector, a computerized multichannel analyzer data acquisition system (Nuclear Data, Inc. Model 6620) with two dual 2.5 Mbyte magnetic disk drives plus two 10.5 inch reel magnetic tape units for mass storage of programs/data and an automated Sample Changer-Positioner (ASC-P) run with a programmable controller. The ASC-P has a 200 sample capacity and 12 calibrated counting (analysis) positions ranging from 6 inches (15 cm) to more than 20 feet (6.1 m) from the detector. The system software was programmed in Fortran at HEDL, except for the Nuclear Data, Inc. Peak Search and Analysis Program and Disk Operating System (MIDAS+)

  2. Automated species-level identification and segmentation of planktonic foraminifera using convolutional neural networks

    Science.gov (United States)

    Marchitto, T. M., Jr.; Mitra, R.; Zhong, B.; Ge, Q.; Kanakiya, B.; Lobaton, E.

    2017-12-01

    Identification and picking of foraminifera from sediment samples is often a laborious and repetitive task. Previous attempts to automate this process have met with limited success, but we show that recent advances in machine learning can be brought to bear on the problem. As a `proof of concept' we have developed a system that is capable of recognizing six species of extant planktonic foraminifera that are commonly used in paleoceanographic studies. Our pipeline begins with digital photographs taken under 16 different illuminations using an LED ring, which are then fused into a single 3D image. Labeled image sets were used to train various types of image classification algorithms, and performance on unlabeled image sets was measured in terms of precision (whether IDs are correct) and recall (what fraction of the target species are found). We find that Convolutional Neural Network (CNN) approaches achieve precision and recall values between 80 and 90%, which is similar precision and better recall than human expert performance using the same type of photographs. We have also trained a CNN to segment the 3D images into individual chambers and apertures, which can not only improve identification performance but also automate the measurement of foraminifera for morphometric studies. Given that there are only 35 species of extant planktonic foraminifera larger than 150 μm, we suggest that a fully automated characterization of this assemblage is attainable. This is the first step toward the realization of a foram picking robot.

  3. Automated bony region identification using artificial neural networks: reliability and validation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gassman, Esther E.; Kallemeyn, Nicole A.; DeVries, Nicole A.; Shivanna, Kiran H. [The University of Iowa, Department of Biomedical Engineering, Seamans Center for the Engineering Arts and Sciences, Iowa City, IA (United States); The University of Iowa, Center for Computer-Aided Design, Iowa City, IA (United States); Powell, Stephanie M. [The University of Iowa, Department of Biomedical Engineering, Seamans Center for the Engineering Arts and Sciences, Iowa City, IA (United States); University of Iowa Hospitals and Clinics, The University of Iowa, Department of Radiology, Iowa City, IA (United States); Magnotta, Vincent A. [The University of Iowa, Department of Biomedical Engineering, Seamans Center for the Engineering Arts and Sciences, Iowa City, IA (United States); The University of Iowa, Center for Computer-Aided Design, Iowa City, IA (United States); University of Iowa Hospitals and Clinics, The University of Iowa, Department of Radiology, Iowa City, IA (United States); Ramme, Austin J. [University of Iowa Hospitals and Clinics, The University of Iowa, Department of Radiology, Iowa City, IA (United States); Adams, Brian D. [The University of Iowa, Department of Biomedical Engineering, Seamans Center for the Engineering Arts and Sciences, Iowa City, IA (United States); University of Iowa Hospitals and Clinics, The University of Iowa, Department of Orthopaedics and Rehabilitation, Iowa City, IA (United States); Grosland, Nicole M. [The University of Iowa, Department of Biomedical Engineering, Seamans Center for the Engineering Arts and Sciences, Iowa City, IA (United States); University of Iowa Hospitals and Clinics, The University of Iowa, Department of Orthopaedics and Rehabilitation, Iowa City, IA (United States); The University of Iowa, Center for Computer-Aided Design, Iowa City, IA (United States)

    2008-04-15

    The objective was to develop tools for automating the identification of bony structures, to assess the reliability of this technique against manual raters, and to validate the resulting regions of interest against physical surface scans obtained from the same specimen. Artificial intelligence-based algorithms have been used for image segmentation, specifically artificial neural networks (ANNs). For this study, an ANN was created and trained to identify the phalanges of the human hand. The relative overlap between the ANN and a manual tracer was 0.87, 0.82, and 0.76, for the proximal, middle, and distal index phalanx bones respectively. Compared with the physical surface scans, the ANN-generated surface representations differed on average by 0.35 mm, 0.29 mm, and 0.40 mm for the proximal, middle, and distal phalanges respectively. Furthermore, the ANN proved to segment the structures in less than one-tenth of the time required by a manual rater. The ANN has proven to be a reliable and valid means of segmenting the phalanx bones from CT images. Employing automated methods such as the ANN for segmentation, eliminates the likelihood of rater drift and inter-rater variability. Automated methods also decrease the amount of time and manual effort required to extract the data of interest, thereby making the feasibility of patient-specific modeling a reality. (orig.)

  4. Automated bony region identification using artificial neural networks: reliability and validation measurements

    International Nuclear Information System (INIS)

    Gassman, Esther E.; Kallemeyn, Nicole A.; DeVries, Nicole A.; Shivanna, Kiran H.; Powell, Stephanie M.; Magnotta, Vincent A.; Ramme, Austin J.; Adams, Brian D.; Grosland, Nicole M.

    2008-01-01

    The objective was to develop tools for automating the identification of bony structures, to assess the reliability of this technique against manual raters, and to validate the resulting regions of interest against physical surface scans obtained from the same specimen. Artificial intelligence-based algorithms have been used for image segmentation, specifically artificial neural networks (ANNs). For this study, an ANN was created and trained to identify the phalanges of the human hand. The relative overlap between the ANN and a manual tracer was 0.87, 0.82, and 0.76, for the proximal, middle, and distal index phalanx bones respectively. Compared with the physical surface scans, the ANN-generated surface representations differed on average by 0.35 mm, 0.29 mm, and 0.40 mm for the proximal, middle, and distal phalanges respectively. Furthermore, the ANN proved to segment the structures in less than one-tenth of the time required by a manual rater. The ANN has proven to be a reliable and valid means of segmenting the phalanx bones from CT images. Employing automated methods such as the ANN for segmentation, eliminates the likelihood of rater drift and inter-rater variability. Automated methods also decrease the amount of time and manual effort required to extract the data of interest, thereby making the feasibility of patient-specific modeling a reality. (orig.)

  5. The Spiral Discovery Network as an Automated General-Purpose Optimization Tool

    Directory of Open Access Journals (Sweden)

    Adam B. Csapo

    2018-01-01

    Full Text Available The Spiral Discovery Method (SDM was originally proposed as a cognitive artifact for dealing with black-box models that are dependent on multiple inputs with nonlinear and/or multiplicative interaction effects. Besides directly helping to identify functional patterns in such systems, SDM also simplifies their control through its characteristic spiral structure. In this paper, a neural network-based formulation of SDM is proposed together with a set of automatic update rules that makes it suitable for both semiautomated and automated forms of optimization. The behavior of the generalized SDM model, referred to as the Spiral Discovery Network (SDN, and its applicability to nondifferentiable nonconvex optimization problems are elucidated through simulation. Based on the simulation, the case is made that its applicability would be worth investigating in all areas where the default approach of gradient-based backpropagation is used today.

  6. The Effect of Information Analysis Automation Display Content on Human Judgment Performance in Noisy Environments

    OpenAIRE

    Bass, Ellen J.; Baumgart, Leigh A.; Shepley, Kathryn Klein

    2012-01-01

    Displaying both the strategy that information analysis automation employs to makes its judgments and variability in the task environment may improve human judgment performance, especially in cases where this variability impacts the judgment performance of the information analysis automation. This work investigated the contribution of providing either information analysis automation strategy information, task environment information, or both, on human judgment performance in a domain where noi...

  7. Analysis of Semantic Networks using Complex Networks Concepts

    DEFF Research Database (Denmark)

    Ortiz-Arroyo, Daniel

    2013-01-01

    In this paper we perform a preliminary analysis of semantic networks to determine the most important terms that could be used to optimize a summarization task. In our experiments, we measure how the properties of a semantic network change, when the terms in the network are removed. Our preliminar...

  8. Spectral Analysis of Rich Network Topology in Social Networks

    Science.gov (United States)

    Wu, Leting

    2013-01-01

    Social networks have received much attention these days. Researchers have developed different methods to study the structure and characteristics of the network topology. Our focus is on spectral analysis of the adjacency matrix of the underlying network. Recent work showed good properties in the adjacency spectral space but there are few…

  9. Calibration-measurement unit for the automation of vector network analyzer measurements

    Directory of Open Access Journals (Sweden)

    I. Rolfes

    2008-05-01

    Full Text Available With the availability of multi-port vector network analyzers, the need for automated, calibrated measurement facilities increases. In this contribution, a calibration-measurement unit is presented which realizes a repeatable automated calibration of the measurement setup as well as a user-friendly measurement of the device under test (DUT. In difference to commercially available calibration units, which are connected to the ports of the vector network analyzer preceding a measurement and which are then removed so that the DUT can be connected, the presented calibration-measurement unit is permanently connected to the ports of the VNA for the calibration as well as for the measurement of the DUT. This helps to simplify the calibrated measurement of complex scattering parameters. Moreover, a full integration of the calibration unit into the analyzer setup becomes possible. The calibration-measurement unit is based on a multiport switch setup of e.g. electromechanical relays. Under the assumption of symmetry of a switch, on the one hand the unit realizes the connection of calibration standards like one-port reflection standards and two-port through connections between different ports and on the other hand it enables the connection of the DUT. The calibration-measurement unit is applicable for two-port VNAs as well as for multiport VNAs. For the calibration of the unit, methods with completely known calibration standards like SOLT (short, open, load, through as well as self-calibration procedures like TMR or TLR can be applied.

  10. Quantifying biodiversity using digital cameras and automated image analysis.

    Science.gov (United States)

    Roadknight, C. M.; Rose, R. J.; Barber, M. L.; Price, M. C.; Marshall, I. W.

    2009-04-01

    Monitoring the effects on biodiversity of extensive grazing in complex semi-natural habitats is labour intensive. There are also concerns about the standardization of semi-quantitative data collection. We have chosen to focus initially on automating the most time consuming aspect - the image analysis. The advent of cheaper and more sophisticated digital camera technology has lead to a sudden increase in the number of habitat monitoring images and information that is being collected. We report on the use of automated trail cameras (designed for the game hunting market) to continuously capture images of grazer activity in a variety of habitats at Moor House National Nature Reserve, which is situated in the North of England at an average altitude of over 600m. Rainfall is high, and in most areas the soil consists of deep peat (1m to 3m), populated by a mix of heather, mosses and sedges. The cameras have been continuously in operation over a 6 month period, daylight images are in full colour and night images (IR flash) are black and white. We have developed artificial intelligence based methods to assist in the analysis of the large number of images collected, generating alert states for new or unusual image conditions. This paper describes the data collection techniques, outlines the quantitative and qualitative data collected and proposes online and offline systems that can reduce the manpower overheads and increase focus on important subsets in the collected data. By converting digital image data into statistical composite data it can be handled in a similar way to other biodiversity statistics thus improving the scalability of monitoring experiments. Unsupervised feature detection methods and supervised neural methods were tested and offered solutions to simplifying the process. Accurate (85 to 95%) categorization of faunal content can be obtained, requiring human intervention for only those images containing rare animals or unusual (undecidable) conditions, and

  11. Network-Based Real-time Integrated Fire Detection and Alarm (FDA) System with Building Automation

    Science.gov (United States)

    Anwar, F.; Boby, R. I.; Rashid, M. M.; Alam, M. M.; Shaikh, Z.

    2017-11-01

    Fire alarm systems have become increasingly an important lifesaving technology in many aspects, such as applications to detect, monitor and control any fire hazard. A large sum of money is being spent annually to install and maintain the fire alarm systems in buildings to protect property and lives from the unexpected spread of fire. Several methods are already developed and it is improving on a daily basis to reduce the cost as well as increase quality. An integrated Fire Detection and Alarm (FDA) systems with building automation was studied, to reduce cost and improve their reliability by preventing false alarm. This work proposes an improved framework for FDA system to ensure a robust intelligent network of FDA control panels in real-time. A shortest path algorithmic was chosen for series of buildings connected by fiber optic network. The framework shares information and communicates with each fire alarm panels connected in peer to peer configuration and declare the network state using network address declaration from any building connected in network. The fiber-optic connection was proposed to reduce signal noises, thus increasing large area coverage, real-time communication and long-term safety. Based on this proposed method an experimental setup was designed and a prototype system was developed to validate the performance in practice. Also, the distributed network system was proposed to connect with an optional remote monitoring terminal panel to validate proposed network performance and ensure fire survivability where the information is sequentially transmitted. The proposed FDA system is different from traditional fire alarm and detection system in terms of topology as it manages group of buildings in an optimal and efficient manner.Introduction

  12. Neural network expert system for X-ray analysis of welded joints

    Science.gov (United States)

    Kozlov, V. V.; Lapik, N. V.; Popova, N. V.

    2018-03-01

    The use of intelligent technologies for the automated analysis of product quality is one of the main trends in modern machine building. At the same time, rapid development in various spheres of human activity is experienced by methods associated with the use of artificial neural networks, as the basis for building automated intelligent diagnostic systems. Technologies of machine vision allow one to effectively detect the presence of certain regularities in the analyzed designation, including defects of welded joints according to radiography data.

  13. Complex Network Analysis of Guangzhou Metro

    OpenAIRE

    Yasir Tariq Mohmand; Fahad Mehmood; Fahd Amjad; Nedim Makarevic

    2015-01-01

    The structure and properties of public transportation networks can provide suggestions for urban planning and public policies. This study contributes a complex network analysis of the Guangzhou metro. The metro network has 236 kilometers of track and is the 6th busiest metro system of the world. In this paper topological properties of the network are explored. We observed that the network displays small world properties and is assortative in nature. The network possesses a high average degree...

  14. Automated water analyser computer supported system (AWACSS) Part I: Project objectives, basic technology, immunoassay development, software design and networking.

    Science.gov (United States)

    Tschmelak, Jens; Proll, Guenther; Riedt, Johannes; Kaiser, Joachim; Kraemmer, Peter; Bárzaga, Luis; Wilkinson, James S; Hua, Ping; Hole, J Patrick; Nudd, Richard; Jackson, Michael; Abuknesha, Ram; Barceló, Damià; Rodriguez-Mozaz, Sara; de Alda, Maria J López; Sacher, Frank; Stien, Jan; Slobodník, Jaroslav; Oswald, Peter; Kozmenko, Helena; Korenková, Eva; Tóthová, Lívia; Krascsenits, Zoltan; Gauglitz, Guenter

    2005-02-15

    A novel analytical system AWACSS (automated water analyser computer-supported system) based on immunochemical technology has been developed that can measure several organic pollutants at low nanogram per litre level in a single few-minutes analysis without any prior sample pre-concentration nor pre-treatment steps. Having in mind actual needs of water-sector managers related to the implementation of the Drinking Water Directive (DWD) (98/83/EC, 1998) and Water Framework Directive WFD (2000/60/EC, 2000), drinking, ground, surface, and waste waters were major media used for the evaluation of the system performance. The instrument was equipped with remote control and surveillance facilities. The system's software allows for the internet-based networking between the measurement and control stations, global management, trend analysis, and early-warning applications. The experience of water laboratories has been utilised at the design of the instrument's hardware and software in order to make the system rugged and user-friendly. Several market surveys were conducted during the project to assess the applicability of the final system. A web-based AWACSS database was created for automated evaluation and storage of the obtained data in a format compatible with major databases of environmental organic pollutants in Europe. This first part article gives the reader an overview of the aims and scope of the AWACSS project as well as details about basic technology, immunoassays, software, and networking developed and utilised within the research project. The second part article reports on the system performance, first real sample measurements, and an international collaborative trial (inter-laboratory tests) to compare the biosensor with conventional anayltical methods.

  15. COalitions in COOperation Networks (COCOON): Social Network Analysis and Game Theory to Enhance Cooperation Networks

    NARCIS (Netherlands)

    Sie, Rory

    2012-01-01

    Sie, R. L. L. (2012). COalitions in COOperation Networks (COCOON): Social Network Analysis and Game Theory to Enhance Cooperation Networks (Unpublished doctoral dissertation). September, 28, 2012, Open Universiteit in the Netherlands (CELSTEC), Heerlen, The Netherlands.

  16. Automated reticle inspection data analysis for wafer fabs

    Science.gov (United States)

    Summers, Derek; Chen, Gong; Reese, Bryan; Hutchinson, Trent; Liesching, Marcus; Ying, Hai; Dover, Russell

    2009-04-01

    To minimize potential wafer yield loss due to mask defects, most wafer fabs implement some form of reticle inspection system to monitor photomask quality in high-volume wafer manufacturing environments. Traditionally, experienced operators review reticle defects found by an inspection tool and then manually classify each defect as 'pass, warn, or fail' based on its size and location. However, in the event reticle defects are suspected of causing repeating wafer defects on a completed wafer, potential defects on all associated reticles must be manually searched on a layer-by-layer basis in an effort to identify the reticle responsible for the wafer yield loss. This 'problem reticle' search process is a very tedious and time-consuming task and may cause extended manufacturing line-down situations. Often times, Process Engineers and other team members need to manually investigate several reticle inspection reports to determine if yield loss can be tied to a specific layer. Because of the very nature of this detailed work, calculation errors may occur resulting in an incorrect root cause analysis effort. These delays waste valuable resources that could be spent working on other more productive activities. This paper examines an automated software solution for converting KLA-Tencor reticle inspection defect maps into a format compatible with KLA-Tencor's Klarity Defect(R) data analysis database. The objective is to use the graphical charting capabilities of Klarity Defect to reveal a clearer understanding of defect trends for individual reticle layers or entire mask sets. Automated analysis features include reticle defect count trend analysis and potentially stacking reticle defect maps for signature analysis against wafer inspection defect data. Other possible benefits include optimizing reticle inspection sample plans in an effort to support "lean manufacturing" initiatives for wafer fabs.

  17. Automated detection of masses on whole breast volume ultrasound scanner: false positive reduction using deep convolutional neural network

    Science.gov (United States)

    Hiramatsu, Yuya; Muramatsu, Chisako; Kobayashi, Hironobu; Hara, Takeshi; Fujita, Hiroshi

    2017-03-01

    Breast cancer screening with mammography and ultrasonography is expected to improve sensitivity compared with mammography alone, especially for women with dense breast. An automated breast volume scanner (ABVS) provides the operator-independent whole breast data which facilitate double reading and comparison with past exams, contralateral breast, and multimodality images. However, large volumetric data in screening practice increase radiologists' workload. Therefore, our goal is to develop a computer-aided detection scheme of breast masses in ABVS data for assisting radiologists' diagnosis and comparison with mammographic findings. In this study, false positive (FP) reduction scheme using deep convolutional neural network (DCNN) was investigated. For training DCNN, true positive and FP samples were obtained from the result of our initial mass detection scheme using the vector convergence filter. Regions of interest including the detected regions were extracted from the multiplanar reconstraction slices. We investigated methods to select effective FP samples for training the DCNN. Based on the free response receiver operating characteristic analysis, simple random sampling from the entire candidates was most effective in this study. Using DCNN, the number of FPs could be reduced by 60%, while retaining 90% of true masses. The result indicates the potential usefulness of DCNN for FP reduction in automated mass detection on ABVS images.

  18. Automated analysis of prerecorded evoked electromyographic activity from rat muscle.

    Science.gov (United States)

    Basarab-Horwath, I; Dewhurst, D G; Dixon, R; Meehan, A S; Odusanya, S

    1989-03-01

    An automated microprocessor-based data acquisition and analysis system has been developed specifically to quantify electromyographic (EMG) activity induced by the convulsant agent catechol in the anaesthetized rat. The stimulus and EMG response are recorded on magnetic tape. On playback, the stimulus triggers a digital oscilloscope and, via interface circuitry, a BBC B microcomputer. The myoelectric activity is digitized by the oscilloscope before being transferred under computer control via a RS232 link to the microcomputer. This system overcomes the problems of dealing with signals of variable latency and allows quantification of latency, amplitude, area and frequency of occurrence of specific components within the signal. The captured data can be used to generate either signal or superimposed high resolution graphic reproductions of the original waveforms. Although this system has been designed for a specific application, it could easily be modified to allow analysis of any complex waveform.

  19. Automated sensitivity analysis: New tools for modeling complex dynamic systems

    International Nuclear Information System (INIS)

    Pin, F.G.

    1987-01-01

    Sensitivity analysis is an established methodology used by researchers in almost every field to gain essential insight in design and modeling studies and in performance assessments of complex systems. Conventional sensitivity analysis methodologies, however, have not enjoyed the widespread use they deserve considering the wealth of information they can provide, partly because of their prohibitive cost or the large initial analytical investment they require. Automated systems have recently been developed at ORNL to eliminate these drawbacks. Compilers such as GRESS and EXAP now allow automatic and cost effective calculation of sensitivities in FORTRAN computer codes. In this paper, these and other related tools are described and their impact and applicability in the general areas of modeling, performance assessment and decision making for radioactive waste isolation problems are discussed

  20. Automated analysis of organic particles using cluster SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Gillen, Greg; Zeissler, Cindy; Mahoney, Christine; Lindstrom, Abigail; Fletcher, Robert; Chi, Peter; Verkouteren, Jennifer; Bright, David; Lareau, Richard T.; Boldman, Mike

    2004-06-15

    Cluster primary ion bombardment combined with secondary ion imaging is used on an ion microscope secondary ion mass spectrometer for the spatially resolved analysis of organic particles on various surfaces. Compared to the use of monoatomic primary ion beam bombardment, the use of a cluster primary ion beam (SF{sub 5}{sup +} or C{sub 8}{sup -}) provides significant improvement in molecular ion yields and a reduction in beam-induced degradation of the analyte molecules. These characteristics of cluster bombardment, along with automated sample stage control and custom image analysis software are utilized to rapidly characterize the spatial distribution of trace explosive particles, narcotics and inkjet-printed microarrays on a variety of surfaces.

  1. Automated rice leaf disease detection using color image analysis

    Science.gov (United States)

    Pugoy, Reinald Adrian D. L.; Mariano, Vladimir Y.

    2011-06-01

    In rice-related institutions such as the International Rice Research Institute, assessing the health condition of a rice plant through its leaves, which is usually done as a manual eyeball exercise, is important to come up with good nutrient and disease management strategies. In this paper, an automated system that can detect diseases present in a rice leaf using color image analysis is presented. In the system, the outlier region is first obtained from a rice leaf image to be tested using histogram intersection between the test and healthy rice leaf images. Upon obtaining the outlier, it is then subjected to a threshold-based K-means clustering algorithm to group related regions into clusters. Then, these clusters are subjected to further analysis to finally determine the suspected diseases of the rice leaf.

  2. Undelivered electricity as an indicator of the effects of automation in the 10 kV network PD ED Belgrade

    Directory of Open Access Journals (Sweden)

    Vrcelj Nada

    2013-01-01

    Full Text Available The paper discusses the effects of automation in the 10 kV PD ED Belgrade valorized through undelivered electricity. In the paper it was observed the parts of the network for which it was possible to reconstruct the events of the past. Calculations undelivered electricity were carried out for the period prior to the implementation of recloser in remote control system and during the period of probation system. A significant reduction in the duration of the fault, and thus undelivered electricity in automated network, indicates an increase in the reliability level after the implementation in the system SCADA SN.

  3. Automated analysis of invadopodia dynamics in live cells

    Directory of Open Access Journals (Sweden)

    Matthew E. Berginski

    2014-07-01

    Full Text Available Multiple cell types form specialized protein complexes that are used by the cell to actively degrade the surrounding extracellular matrix. These structures are called podosomes or invadopodia and collectively referred to as invadosomes. Due to their potential importance in both healthy physiology as well as in pathological conditions such as cancer, the characterization of these structures has been of increasing interest. Following early descriptions of invadopodia, assays were developed which labelled the matrix underneath metastatic cancer cells allowing for the assessment of invadopodia activity in motile cells. However, characterization of invadopodia using these methods has traditionally been done manually with time-consuming and potentially biased quantification methods, limiting the number of experiments and the quantity of data that can be analysed. We have developed a system to automate the segmentation, tracking and quantification of invadopodia in time-lapse fluorescence image sets at both the single invadopodia level and whole cell level. We rigorously tested the ability of the method to detect changes in invadopodia formation and dynamics through the use of well-characterized small molecule inhibitors, with known effects on invadopodia. Our results demonstrate the ability of this analysis method to quantify changes in invadopodia formation from live cell imaging data in a high throughput, automated manner.

  4. Networks and network analysis for defence and security

    CERN Document Server

    Masys, Anthony J

    2014-01-01

    Networks and Network Analysis for Defence and Security discusses relevant theoretical frameworks and applications of network analysis in support of the defence and security domains. This book details real world applications of network analysis to support defence and security. Shocks to regional, national and global systems stemming from natural hazards, acts of armed violence, terrorism and serious and organized crime have significant defence and security implications. Today, nations face an uncertain and complex security landscape in which threats impact/target the physical, social, economic

  5. Application of neural networks to quantitative spectrometry analysis

    International Nuclear Information System (INIS)

    Pilato, V.; Tola, F.; Martinez, J.M.; Huver, M.

    1999-01-01

    Accurate quantitative analysis of complex spectra (fission and activation products), relies upon experts' knowledge. In some cases several hours, even days of tedious calculations are needed. This is because current software is unable to solve deconvolution problems when several rays overlap. We have shown that such analysis can be correctly handled by a neural network, and the procedure can be automated with minimum laboratory measurements for networks training, as long as all the elements of the analysed solution figure in the training set and provided that adequate scaling of input data is performed. Once the network has been trained, analysis is carried out in a few seconds. On submitting to a test between several well-known laboratories, where unknown quantities of 57 Co, 58 Co, 85 Sr, 88 Y, 131 I, 139 Ce, 141 Ce present in a sample had to be determined, the results yielded by our network classed it amongst the best. The method is described, including experimental device and measures, training set designing, relevant input parameters definition, input data scaling and networks training. Main results are presented together with a statistical model allowing networks error prediction

  6. Automated uncertainty analysis methods in the FRAP computer codes

    International Nuclear Information System (INIS)

    Peck, S.O.

    1980-01-01

    A user oriented, automated uncertainty analysis capability has been incorporated in the Fuel Rod Analysis Program (FRAP) computer codes. The FRAP codes have been developed for the analysis of Light Water Reactor fuel rod behavior during steady state (FRAPCON) and transient (FRAP-T) conditions as part of the United States Nuclear Regulatory Commission's Water Reactor Safety Research Program. The objective of uncertainty analysis of these codes is to obtain estimates of the uncertainty in computed outputs of the codes is to obtain estimates of the uncertainty in computed outputs of the codes as a function of known uncertainties in input variables. This paper presents the methods used to generate an uncertainty analysis of a large computer code, discusses the assumptions that are made, and shows techniques for testing them. An uncertainty analysis of FRAP-T calculated fuel rod behavior during a hypothetical loss-of-coolant transient is presented as an example and carried through the discussion to illustrate the various concepts

  7. The Effect of Information Analysis Automation Display Content on Human Judgment Performance in Noisy Environments

    Science.gov (United States)

    Bass, Ellen J.; Baumgart, Leigh A.; Shepley, Kathryn Klein

    2014-01-01

    Displaying both the strategy that information analysis automation employs to makes its judgments and variability in the task environment may improve human judgment performance, especially in cases where this variability impacts the judgment performance of the information analysis automation. This work investigated the contribution of providing either information analysis automation strategy information, task environment information, or both, on human judgment performance in a domain where noisy sensor data are used by both the human and the information analysis automation to make judgments. In a simplified air traffic conflict prediction experiment, 32 participants made probability of horizontal conflict judgments under different display content conditions. After being exposed to the information analysis automation, judgment achievement significantly improved for all participants as compared to judgments without any of the automation's information. Participants provided with additional display content pertaining to cue variability in the task environment had significantly higher aided judgment achievement compared to those provided with only the automation's judgment of a probability of conflict. When designing information analysis automation for environments where the automation's judgment achievement is impacted by noisy environmental data, it may be beneficial to show additional task environment information to the human judge in order to improve judgment performance. PMID:24847184

  8. The Effect of Information Analysis Automation Display Content on Human Judgment Performance in Noisy Environments.

    Science.gov (United States)

    Bass, Ellen J; Baumgart, Leigh A; Shepley, Kathryn Klein

    2013-03-01

    Displaying both the strategy that information analysis automation employs to makes its judgments and variability in the task environment may improve human judgment performance, especially in cases where this variability impacts the judgment performance of the information analysis automation. This work investigated the contribution of providing either information analysis automation strategy information, task environment information, or both, on human judgment performance in a domain where noisy sensor data are used by both the human and the information analysis automation to make judgments. In a simplified air traffic conflict prediction experiment, 32 participants made probability of horizontal conflict judgments under different display content conditions. After being exposed to the information analysis automation, judgment achievement significantly improved for all participants as compared to judgments without any of the automation's information. Participants provided with additional display content pertaining to cue variability in the task environment had significantly higher aided judgment achievement compared to those provided with only the automation's judgment of a probability of conflict. When designing information analysis automation for environments where the automation's judgment achievement is impacted by noisy environmental data, it may be beneficial to show additional task environment information to the human judge in order to improve judgment performance.

  9. Automated differentiation of computer models for sensitivity analysis

    International Nuclear Information System (INIS)

    Worley, B.A.

    1990-01-01

    Sensitivity analysis of reactor physics computer models is an established discipline after more than twenty years of active development of generalized perturbations theory based on direct and adjoint methods. Many reactor physics models have been enhanced to solve for sensitivities of model results to model data. The calculated sensitivities are usually normalized first derivatives although some codes are capable of solving for higher-order sensitivities. The purpose of this paper is to report on the development and application of the GRESS system for automating the implementation of the direct and adjoint techniques into existing FORTRAN computer codes. The GRESS system was developed at ORNL to eliminate the costly man-power intensive effort required to implement the direct and adjoint techniques into already-existing FORTRAN codes. GRESS has been successfully tested for a number of codes over a wide range of applications and presently operates on VAX machines under both VMS and UNIX operating systems

  10. Automated differentiation of computer models for sensitivity analysis

    International Nuclear Information System (INIS)

    Worley, B.A.

    1991-01-01

    Sensitivity analysis of reactor physics computer models is an established discipline after more than twenty years of active development of generalized perturbations theory based on direct and adjoint methods. Many reactor physics models have been enhanced to solve for sensitivities of model results to model data. The calculated sensitivities are usually normalized first derivatives, although some codes are capable of solving for higher-order sensitivities. The purpose of this paper is to report on the development and application of the GRESS system for automating the implementation of the direct and adjoint techniques into existing FORTRAN computer codes. The GRESS system was developed at ORNL to eliminate the costly man-power intensive effort required to implement the direct and adjoint techniques into already-existing FORTRAN codes. GRESS has been successfully tested for a number of codes over a wide range of applications and presently operates on VAX machines under both VMS and UNIX operating systems. (author). 9 refs, 1 tab

  11. Crowdsourcing and Automated Retinal Image Analysis for Diabetic Retinopathy.

    Science.gov (United States)

    Mudie, Lucy I; Wang, Xueyang; Friedman, David S; Brady, Christopher J

    2017-09-23

    As the number of people with diabetic retinopathy (DR) in the USA is expected to increase threefold by 2050, the need to reduce health care costs associated with screening for this treatable disease is ever present. Crowdsourcing and automated retinal image analysis (ARIA) are two areas where new technology has been applied to reduce costs in screening for DR. This paper reviews the current literature surrounding these new technologies. Crowdsourcing has high sensitivity for normal vs abnormal images; however, when multiple categories for severity of DR are added, specificity is reduced. ARIAs have higher sensitivity and specificity, and some commercial ARIA programs are already in use. Deep learning enhanced ARIAs appear to offer even more improvement in ARIA grading accuracy. The utilization of crowdsourcing and ARIAs may be a key to reducing the time and cost burden of processing images from DR screening.

  12. Automated uranium analysis by delayed-neutron counting

    International Nuclear Information System (INIS)

    Kunzendorf, H.; Loevborg, L.; Christiansen, E.M.

    1980-10-01

    Automated uranium analysis by fission-induced delayed-neutron counting is described. A short description is given of the instrumentation including transfer system, process control, irradiation and counting sites, and computer operations. Characteristic parameters of the facility (sample preparations, background, and standards) are discussed. A sensitivity of 817 +- 22 counts per 10 -6 g U is found using irradiation, delay, and counting times of 20 s, 5 s, and 10 s, respectively. Presicion is generally less than 1% for normal geological samples. Critical level and detection limits for 7.5 g samples are 8 and 16 ppb, respectively. The importance of some physical and elemental interferences are outlined. Dead-time corrections of measured count rates are necessary and a polynomical expression is used for count rates up to 10 5 . The presence of rare earth elements is regarded as the most important elemental interference. A typical application is given and other areas of application are described. (auther)

  13. Analysis of Automated Aircraft Conflict Resolution and Weather Avoidance

    Science.gov (United States)

    Love, John F.; Chan, William N.; Lee, Chu Han

    2009-01-01

    This paper describes an analysis of using trajectory-based automation to resolve both aircraft and weather constraints for near-term air traffic management decision making. The auto resolution algorithm developed and tested at NASA-Ames to resolve aircraft to aircraft conflicts has been modified to mitigate convective weather constraints. Modifications include adding information about the size of a gap between weather constraints to the routing solution. Routes that traverse gaps that are smaller than a specific size are not used. An evaluation of the performance of the modified autoresolver to resolve both conflicts with aircraft and weather was performed. Integration with the Center-TRACON Traffic Management System was completed to evaluate the effect of weather routing on schedule delays.

  14. Knowledge-based requirements analysis for automating software development

    Science.gov (United States)

    Markosian, Lawrence Z.

    1988-01-01

    We present a new software development paradigm that automates the derivation of implementations from requirements. In this paradigm, informally-stated requirements are expressed in a domain-specific requirements specification language. This language is machine-understable and requirements expressed in it are captured in a knowledge base. Once the requirements are captured, more detailed specifications and eventually implementations are derived by the system using transformational synthesis. A key characteristic of the process is that the required human intervention is in the form of providing problem- and domain-specific engineering knowledge, not in writing detailed implementations. We describe a prototype system that applies the paradigm in the realm of communication engineering: the prototype automatically generates implementations of buffers following analysis of the requirements on each buffer.

  15. Automated generation of burnup chain for reactor analysis applications

    International Nuclear Information System (INIS)

    Tran Viet Phu; Tran Hoai Nam; Akio Yamamoto; Tomohiro Endo

    2015-01-01

    This paper presents the development of an automated generation of a new burnup chain for reactor analysis applications. The JENDL FP Decay Data File 2011 and Fission Yields Data File 2011 were used as the data sources. The nuclides in the new chain are determined by restrictions of the half-life and cumulative yield of fission products or from a given list. Then, decay modes, branching ratios and fission yields are recalculated taking into account intermediate reactions. The new burnup chain is output according to the format for the SRAC code system. Verification was performed to evaluate the accuracy of the new burnup chain. The results show that the new burnup chain reproduces well the results of a reference one with 193 fission products used in SRAC. Further development and applications are being planned with the burnup chain code. (author)

  16. Automated generation of burnup chain for reactor analysis applications

    International Nuclear Information System (INIS)

    Tran, Viet-Phu; Tran, Hoai-Nam; Yamamoto, Akio; Endo, Tomohiro

    2017-01-01

    This paper presents the development of an automated generation of burnup chain for reactor analysis applications. Algorithms are proposed to reevaluate decay modes, branching ratios and effective fission product (FP) cumulative yields of a given list of important FPs taking into account intermediate reactions. A new burnup chain is generated using the updated data sources taken from the JENDL FP decay data file 2011 and Fission yields data file 2011. The new burnup chain is output according to the format for the SRAC code system. Verification has been performed to evaluate the accuracy of the new burnup chain. The results show that the new burnup chain reproduces well the results of a reference one with 193 fission products used in SRAC. Burnup calculations using the new burnup chain have also been performed based on UO_2 and MOX fuel pin cells and compared with a reference chain th2cm6fp193bp6T.

  17. Automated generation of burnup chain for reactor analysis applications

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Viet-Phu [VINATOM, Hanoi (Viet Nam). Inst. for Nuclear Science and Technology; Tran, Hoai-Nam [Duy Tan Univ., Da Nang (Viet Nam). Inst. of Research and Development; Yamamoto, Akio; Endo, Tomohiro [Nagoya Univ., Nagoya-shi (Japan). Dept. of Materials, Physics and Energy Engineering

    2017-05-15

    This paper presents the development of an automated generation of burnup chain for reactor analysis applications. Algorithms are proposed to reevaluate decay modes, branching ratios and effective fission product (FP) cumulative yields of a given list of important FPs taking into account intermediate reactions. A new burnup chain is generated using the updated data sources taken from the JENDL FP decay data file 2011 and Fission yields data file 2011. The new burnup chain is output according to the format for the SRAC code system. Verification has been performed to evaluate the accuracy of the new burnup chain. The results show that the new burnup chain reproduces well the results of a reference one with 193 fission products used in SRAC. Burnup calculations using the new burnup chain have also been performed based on UO{sub 2} and MOX fuel pin cells and compared with a reference chain th2cm6fp193bp6T.

  18. A standard analysis method (SAM) for the automated analysis of polychlorinated biphenyls (PCBs) in soils using the chemical analysis automation (CAA) paradigm: validation and performance

    International Nuclear Information System (INIS)

    Rzeszutko, C.; Johnson, C.R.; Monagle, M.; Klatt, L.N.

    1997-10-01

    The Chemical Analysis Automation (CAA) program is developing a standardized modular automation strategy for chemical analysis. In this automation concept, analytical chemistry is performed with modular building blocks that correspond to individual elements of the steps in the analytical process. With a standardized set of behaviors and interactions, these blocks can be assembled in a 'plug and play' manner into a complete analysis system. These building blocks, which are referred to as Standard Laboratory Modules (SLM), interface to a host control system that orchestrates the entire analytical process, from sample preparation through data interpretation. The integrated system is called a Standard Analysis Method (SAME). A SAME for the automated determination of Polychlorinated Biphenyls (PCB) in soils, assembled in a mobile laboratory, is undergoing extensive testing and validation. The SAME consists of the following SLMs: a four channel Soxhlet extractor, a High Volume Concentrator, column clean up, a gas chromatograph, a PCB data interpretation module, a robot, and a human- computer interface. The SAME is configured to meet the requirements specified in U.S. Environmental Protection Agency's (EPA) SW-846 Methods 3541/3620A/8082 for the analysis of pcbs in soils. The PCB SAME will be described along with the developmental test plan. Performance data obtained during developmental testing will also be discussed

  19. Elemental misinterpretation in automated analysis of LIBS spectra.

    Science.gov (United States)

    Hübert, Waldemar; Ankerhold, Georg

    2011-07-01

    In this work, the Stark effect is shown to be mainly responsible for wrong elemental allocation by automated laser-induced breakdown spectroscopy (LIBS) software solutions. Due to broadening and shift of an elemental emission line affected by the Stark effect, its measured spectral position might interfere with the line position of several other elements. The micro-plasma is generated by focusing a frequency-doubled 200 mJ pulsed Nd/YAG laser on an aluminum target and furthermore on a brass sample in air at atmospheric pressure. After laser pulse excitation, we have measured the temporal evolution of the Al(II) ion line at 281.6 nm (4s(1)S-3p(1)P) during the decay of the laser-induced plasma. Depending on laser pulse power, the center of the measured line is red-shifted by 130 pm (490 GHz) with respect to the exact line position. In this case, the well-known spectral line positions of two moderate and strong lines of other elements coincide with the actual shifted position of the Al(II) line. Consequently, a time-resolving software analysis can lead to an elemental misinterpretation. To avoid a wrong interpretation of LIBS spectra in automated analysis software for a given LIBS system, we recommend using larger gate delays incorporating Stark broadening parameters and using a range of tolerance, which is non-symmetric around the measured line center. These suggestions may help to improve time-resolving LIBS software promising a smaller probability of wrong elemental identification and making LIBS more attractive for industrial applications.

  20. galaxieEST: addressing EST identity through automated phylogenetic analysis.

    Science.gov (United States)

    Nilsson, R Henrik; Rajashekar, Balaji; Larsson, Karl-Henrik; Ursing, Björn M

    2004-07-05

    Research involving expressed sequence tags (ESTs) is intricately coupled to the existence of large, well-annotated sequence repositories. Comparatively complete and satisfactory annotated public sequence libraries are, however, available only for a limited range of organisms, rendering the absence of sequences and gene structure information a tangible problem for those working with taxa lacking an EST or genome sequencing project. Paralogous genes belonging to the same gene family but distinguished by derived characteristics are particularly prone to misidentification and erroneous annotation; high but incomplete levels of sequence similarity are typically difficult to interpret and have formed the basis of many unsubstantiated assumptions of orthology. In these cases, a phylogenetic study of the query sequence together with the most similar sequences in the database may be of great value to the identification process. In order to facilitate this laborious procedure, a project to employ automated phylogenetic analysis in the identification of ESTs was initiated. galaxieEST is an open source Perl-CGI script package designed to complement traditional similarity-based identification of EST sequences through employment of automated phylogenetic analysis. It uses a series of BLAST runs as a sieve to retrieve nucleotide and protein sequences for inclusion in neighbour joining and parsimony analyses; the output includes the BLAST output, the results of the phylogenetic analyses, and the corresponding multiple alignments. galaxieEST is available as an on-line web service for identification of fungal ESTs and for download / local installation for use with any organism group at http://galaxie.cgb.ki.se/galaxieEST.html. By addressing sequence relatedness in addition to similarity, galaxieEST provides an integrative view on EST origin and identity, which may prove particularly useful in cases where similarity searches return one or more pertinent, but not full, matches and

  1. Automated Identification of Core Regulatory Genes in Human Gene Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Vipin Narang

    Full Text Available Human gene regulatory networks (GRN can be difficult to interpret due to a tangle of edges interconnecting thousands of genes. We constructed a general human GRN from extensive transcription factor and microRNA target data obtained from public databases. In a subnetwork of this GRN that is active during estrogen stimulation of MCF-7 breast cancer cells, we benchmarked automated algorithms for identifying core regulatory genes (transcription factors and microRNAs. Among these algorithms, we identified K-core decomposition, pagerank and betweenness centrality algorithms as the most effective for discovering core regulatory genes in the network evaluated based on previously known roles of these genes in MCF-7 biology as well as in their ability to explain the up or down expression status of up to 70% of the remaining genes. Finally, we validated the use of K-core algorithm for organizing the GRN in an easier to interpret layered hierarchy where more influential regulatory genes percolate towards the inner layers. The integrated human gene and miRNA network and software used in this study are provided as supplementary materials (S1 Data accompanying this manuscript.

  2. Artificial Neural Network for Total Laboratory Automation to Improve the Management of Sample Dilution.

    Science.gov (United States)

    Ialongo, Cristiano; Pieri, Massimo; Bernardini, Sergio

    2017-02-01

    Diluting a sample to obtain a measure within the analytical range is a common task in clinical laboratories. However, for urgent samples, it can cause delays in test reporting, which can put patients' safety at risk. The aim of this work is to show a simple artificial neural network that can be used to make it unnecessary to predilute a sample using the information available through the laboratory information system. Particularly, the Multilayer Perceptron neural network built on a data set of 16,106 cardiac troponin I test records produced a correct inference rate of 100% for samples not requiring predilution and 86.2% for those requiring predilution. With respect to the inference reliability, the most relevant inputs were the presence of a cardiac event or surgery and the result of the previous assay. Therefore, such an artificial neural network can be easily implemented into a total automation framework to sensibly reduce the turnaround time of critical orders delayed by the operation required to retrieve, dilute, and retest the sample.

  3. Structural Analysis of Complex Networks

    CERN Document Server

    Dehmer, Matthias

    2011-01-01

    Filling a gap in literature, this self-contained book presents theoretical and application-oriented results that allow for a structural exploration of complex networks. The work focuses not only on classical graph-theoretic methods, but also demonstrates the usefulness of structural graph theory as a tool for solving interdisciplinary problems. Applications to biology, chemistry, linguistics, and data analysis are emphasized. The book is suitable for a broad, interdisciplinary readership of researchers, practitioners, and graduate students in discrete mathematics, statistics, computer science,

  4. 14 CFR 1261.413 - Analysis of costs; automation; prevention of overpayments, delinquencies, or defaults.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Analysis of costs; automation; prevention of overpayments, delinquencies, or defaults. 1261.413 Section 1261.413 Aeronautics and Space NATIONAL...) § 1261.413 Analysis of costs; automation; prevention of overpayments, delinquencies, or defaults. The...

  5. Social Network Analysis and informal trade

    DEFF Research Database (Denmark)

    Walther, Olivier

    networks can be applied to better understand informal trade in developing countries, with a particular focus on Africa. The paper starts by discussing some of the fundamental concepts developed by social network analysis. Through a number of case studies, we show how social network analysis can...... illuminate the relevant causes of social patterns, the impact of social ties on economic performance, the diffusion of resources and information, and the exercise of power. The paper then examines some of the methodological challenges of social network analysis and how it can be combined with other...... approaches. The paper finally highlights some of the applications of social network analysis and their implications for trade policies....

  6. Automated method for identification and artery-venous classification of vessel trees in retinal vessel networks.

    Science.gov (United States)

    Joshi, Vinayak S; Reinhardt, Joseph M; Garvin, Mona K; Abramoff, Michael D

    2014-01-01

    The separation of the retinal vessel network into distinct arterial and venous vessel trees is of high interest. We propose an automated method for identification and separation of retinal vessel trees in a retinal color image by converting a vessel segmentation image into a vessel segment map and identifying the individual vessel trees by graph search. Orientation, width, and intensity of each vessel segment are utilized to find the optimal graph of vessel segments. The separated vessel trees are labeled as primary vessel or branches. We utilize the separated vessel trees for arterial-venous (AV) classification, based on the color properties of the vessels in each tree graph. We applied our approach to a dataset of 50 fundus images from 50 subjects. The proposed method resulted in an accuracy of 91.44% correctly classified vessel pixels as either artery or vein. The accuracy of correctly classified major vessel segments was 96.42%.

  7. Self-Powered Wireless Sensor Network for Automated Corrosion Prediction of Steel Reinforcement

    Directory of Open Access Journals (Sweden)

    Dan Su

    2018-01-01

    Full Text Available Corrosion is one of the key issues that affect the service life and hinders wide application of steel reinforcement. Moreover, corrosion is a long-term process and not visible for embedded reinforcement. Thus, this research aims at developing a self-powered smart sensor system with integrated innovative prediction module for forecasting corrosion process of embedded steel reinforcement. Vibration-based energy harvester is used to harvest energy for continuous corrosion data collection. Spatial interpolation module was developed to interpolate corrosion data at unmonitored locations. Dynamic prediction module is used to predict the long-term corrosion based on collected data. Utilizing this new sensor network, the corrosion process can be automated predicted and appropriate mitigation actions will be recommended accordingly.

  8. Instrumentation, Field Network And Process Automation for the LHC Cryogenic Line Tests

    CERN Document Server

    Bager, T; Bertrand, G; Casas-Cubillos, J; Gomes, P; Parente, C; Riddone, G; Suraci, A

    2000-01-01

    This paper describes the cryogenic control system and associated instrumentation of the test facility for 3 pre-series units of the LHC Cryogenic Distribution Line. For each unit, the process automation is based on a Programmable Logic Con-troller implementing more than 30 closed control loops and handling alarms, in-terlocks and overall process management. More than 160 sensors and actuators are distributed over 150 m on a Profibus DP/PA network. Parameterization, cali-bration and diagnosis are remotely available through the bus. Considering the diversity, amount and geographical distribution of the instru-mentation involved, this is a representative approach to the cryogenic control system for CERN's next accelerator.

  9. A fully automated entanglement-based quantum cryptography system for telecom fiber networks

    International Nuclear Information System (INIS)

    Treiber, Alexander; Ferrini, Daniele; Huebel, Hannes; Zeilinger, Anton; Poppe, Andreas; Loruenser, Thomas; Querasser, Edwin; Matyus, Thomas; Hentschel, Michael

    2009-01-01

    We present in this paper a quantum key distribution (QKD) system based on polarization entanglement for use in telecom fibers. A QKD exchange up to 50 km was demonstrated in the laboratory with a secure key rate of 550 bits s -1 . The system is compact and portable with a fully automated start-up, and stabilization modules for polarization, synchronization and photon coupling allow hands-off operation. Stable and reliable key exchange in a deployed optical fiber of 16 km length was demonstrated. In this fiber network, we achieved over 2 weeks an automatic key generation with an average key rate of 2000 bits s -1 without manual intervention. During this period, the system had an average entanglement visibility of 93%, highlighting the technical level and stability achieved for entanglement-based quantum cryptography.

  10. Automated SEM Modal Analysis Applied to the Diogenites

    Science.gov (United States)

    Bowman, L. E.; Spilde, M. N.; Papike, James J.

    1996-01-01

    Analysis of volume proportions of minerals, or modal analysis, is routinely accomplished by point counting on an optical microscope, but the process, particularly on brecciated samples such as the diogenite meteorites, is tedious and prone to error by misidentification of very small fragments, which may make up a significant volume of the sample. Precise volume percentage data can be gathered on a scanning electron microscope (SEM) utilizing digital imaging and an energy dispersive spectrometer (EDS). This form of automated phase analysis reduces error, and at the same time provides more information than could be gathered using simple point counting alone, such as particle morphology statistics and chemical analyses. We have previously studied major, minor, and trace-element chemistry of orthopyroxene from a suite of diogenites. This abstract describes the method applied to determine the modes on this same suite of meteorites and the results of that research. The modal abundances thus determined add additional information on the petrogenesis of the diogenites. In addition, low-abundance phases such as spinels were located for further analysis by this method.

  11. Analysis of Network Parameters Influencing Performance of Hybrid Multimedia Networks

    Directory of Open Access Journals (Sweden)

    Dominik Kovac

    2013-10-01

    Full Text Available Multimedia networks is an emerging subject that currently attracts the attention of research and industrial communities. This environment provides new entertainment services and business opportunities merged with all well-known network services like VoIP calls or file transfers. Such a heterogeneous system has to be able satisfy all network and end-user requirements which are increasing constantly. Therefore the simulation tools enabling deep analysis in order to find the key performance indicators and factors which influence the overall quality for specific network service the most are highly needed. This paper provides a study on the network parameters like communication technology, routing protocol, QoS mechanism, etc. and their effect on the performance of hybrid multimedia network. The analysis was performed in OPNET Modeler environment and the most interesting results are discussed at the end of this paper

  12. Granulometric profiling of aeolian dust deposits by automated image analysis

    Science.gov (United States)

    Varga, György; Újvári, Gábor; Kovács, János; Jakab, Gergely; Kiss, Klaudia; Szalai, Zoltán

    2016-04-01

    Determination of granulometric parameters is of growing interest in the Earth sciences. Particle size data of sedimentary deposits provide insights into the physicochemical environment of transport, accumulation and post-depositional alterations of sedimentary particles, and are important proxies applied in paleoclimatic reconstructions. It is especially true for aeolian dust deposits with a fairly narrow grain size range as a consequence of the extremely selective nature of wind sediment transport. Therefore, various aspects of aeolian sedimentation (wind strength, distance to source(s), possible secondary source regions and modes of sedimentation and transport) can be reconstructed only from precise grain size data. As terrestrial wind-blown deposits are among the most important archives of past environmental changes, proper explanation of the proxy data is a mandatory issue. Automated imaging provides a unique technique to gather direct information on granulometric characteristics of sedimentary particles. Granulometric data obtained from automatic image analysis of Malvern Morphologi G3-ID is a rarely applied new technique for particle size and shape analyses in sedimentary geology. Size and shape data of several hundred thousand (or even million) individual particles were automatically recorded in this study from 15 loess and paleosoil samples from the captured high-resolution images. Several size (e.g. circle-equivalent diameter, major axis, length, width, area) and shape parameters (e.g. elongation, circularity, convexity) were calculated by the instrument software. At the same time, the mean light intensity after transmission through each particle is automatically collected by the system as a proxy of optical properties of the material. Intensity values are dependent on chemical composition and/or thickness of the particles. The results of the automated imaging were compared to particle size data determined by three different laser diffraction instruments

  13. Automated Image Analysis of Offshore Infrastructure Marine Biofouling

    Directory of Open Access Journals (Sweden)

    Kate Gormley

    2018-01-01

    Full Text Available In the UK, some of the oldest oil and gas installations have been in the water for over 40 years and have considerable colonisation by marine organisms, which may lead to both industry challenges and/or potential biodiversity benefits (e.g., artificial reefs. The project objective was to test the use of an automated image analysis software (CoralNet on images of marine biofouling from offshore platforms on the UK continental shelf, with the aim of (i training the software to identify the main marine biofouling organisms on UK platforms; (ii testing the software performance on 3 platforms under 3 different analysis criteria (methods A–C; (iii calculating the percentage cover of marine biofouling organisms and (iv providing recommendations to industry. Following software training with 857 images, and testing of three platforms, results showed that diversity of the three platforms ranged from low (in the central North Sea to moderate (in the northern North Sea. The two central North Sea platforms were dominated by the plumose anemone Metridium dianthus; and the northern North Sea platform showed less obvious species domination. Three different analysis criteria were created, where the method of selection of points, number of points assessed and confidence level thresholds (CT varied: (method A random selection of 20 points with CT 80%, (method B stratified random of 50 points with CT of 90% and (method C a grid approach of 100 points with CT of 90%. Performed across the three platforms, the results showed that there were no significant differences across the majority of species and comparison pairs. No significant difference (across all species was noted between confirmed annotations methods (A, B and C. It was considered that the software performed well for the classification of the main fouling species in the North Sea. Overall, the study showed that the use of automated image analysis software may enable a more efficient and consistent

  14. Functional Module Analysis for Gene Coexpression Networks with Network Integration.

    Science.gov (United States)

    Zhang, Shuqin; Zhao, Hongyu; Ng, Michael K

    2015-01-01

    Network has been a general tool for studying the complex interactions between different genes, proteins, and other small molecules. Module as a fundamental property of many biological networks has been widely studied and many computational methods have been proposed to identify the modules in an individual network. However, in many cases, a single network is insufficient for module analysis due to the noise in the data or the tuning of parameters when building the biological network. The availability of a large amount of biological networks makes network integration study possible. By integrating such networks, more informative modules for some specific disease can be derived from the networks constructed from different tissues, and consistent factors for different diseases can be inferred. In this paper, we have developed an effective method for module identification from multiple networks under different conditions. The problem is formulated as an optimization model, which combines the module identification in each individual network and alignment of the modules from different networks together. An approximation algorithm based on eigenvector computation is proposed. Our method outperforms the existing methods, especially when the underlying modules in multiple networks are different in simulation studies. We also applied our method to two groups of gene coexpression networks for humans, which include one for three different cancers, and one for three tissues from the morbidly obese patients. We identified 13 modules with three complete subgraphs, and 11 modules with two complete subgraphs, respectively. The modules were validated through Gene Ontology enrichment and KEGG pathway enrichment analysis. We also showed that the main functions of most modules for the corresponding disease have been addressed by other researchers, which may provide the theoretical basis for further studying the modules experimentally.

  15. Automated radial basis function neural network based image classification system for diabetic retinopathy detection in retinal images

    Science.gov (United States)

    Anitha, J.; Vijila, C. Kezi Selva; Hemanth, D. Jude

    2010-02-01

    Diabetic retinopathy (DR) is a chronic eye disease for which early detection is highly essential to avoid any fatal results. Image processing of retinal images emerge as a feasible tool for this early diagnosis. Digital image processing techniques involve image classification which is a significant technique to detect the abnormality in the eye. Various automated classification systems have been developed in the recent years but most of them lack high classification accuracy. Artificial neural networks are the widely preferred artificial intelligence technique since it yields superior results in terms of classification accuracy. In this work, Radial Basis function (RBF) neural network based bi-level classification system is proposed to differentiate abnormal DR Images and normal retinal images. The results are analyzed in terms of classification accuracy, sensitivity and specificity. A comparative analysis is performed with the results of the probabilistic classifier namely Bayesian classifier to show the superior nature of neural classifier. Experimental results show promising results for the neural classifier in terms of the performance measures.

  16. Automated Communications Analysis System using Latent Semantic Analysis

    National Research Council Canada - National Science Library

    Foltz, Peter W

    2006-01-01

    ... and during the debriefing process to assess knowledge proficiency. In this report, the contractor describes prior research on communication analysis and how it can inform assessment of individual and team cognitive processing...

  17. Review Essay: Does Qualitative Network Analysis Exist?

    Directory of Open Access Journals (Sweden)

    Rainer Diaz-Bone

    2007-01-01

    Full Text Available Social network analysis was formed and established in the 1970s as a way of analyzing systems of social relations. In this review the theoretical-methodological standpoint of social network analysis ("structural analysis" is introduced and the different forms of social network analysis are presented. Structural analysis argues that social actors and social relations are embedded in social networks, meaning that action and perception of actors as well as the performance of social relations are influenced by the network structure. Since the 1990s structural analysis has integrated concepts such as agency, discourse and symbolic orientation and in this way structural analysis has opened itself. Since then there has been increasing use of qualitative methods in network analysis. They are used to include the perspective of the analyzed actors, to explore networks, and to understand network dynamics. In the reviewed book, edited by Betina HOLLSTEIN and Florian STRAUS, the twenty predominantly empirically orientated contributions demonstrate the possibilities of combining quantitative and qualitative methods in network analyses in different research fields. In this review we examine how the contributions succeed in applying and developing the structural analysis perspective, and the self-positioning of "qualitative network analysis" is evaluated. URN: urn:nbn:de:0114-fqs0701287

  18. Automated modelling of complex refrigeration cycles through topological structure analysis

    International Nuclear Information System (INIS)

    Belman-Flores, J.M.; Riesco-Avila, J.M.; Gallegos-Munoz, A.; Navarro-Esbri, J.; Aceves, S.M.

    2009-01-01

    We have developed a computational method for analysis of refrigeration cycles. The method is well suited for automated analysis of complex refrigeration systems. The refrigerator is specified through a description of flows representing thermodynamic sates at system locations; components that modify the thermodynamic state of a flow; and controls that specify flow characteristics at selected points in the diagram. A system of equations is then established for the refrigerator, based on mass, energy and momentum balances for each of the system components. Controls specify the values of certain system variables, thereby reducing the number of unknowns. It is found that the system of equations for the refrigerator may contain a number of redundant or duplicate equations, and therefore further equations are necessary for a full characterization. The number of additional equations is related to the number of loops in the cycle, and this is calculated by a matrix-based topological method. The methodology is demonstrated through an analysis of a two-stage refrigeration cycle.

  19. Automated computer analysis of plasma-streak traces from SCYLLAC

    International Nuclear Information System (INIS)

    Whitman, R.L.; Jahoda, F.C.; Kruger, R.P.

    1977-01-01

    An automated computer analysis technique that locates and references the approximate centroid of single- or dual-streak traces from the Los Alamos Scientific Laboratory SCYLLAC facility is described. The technique also determines the plasma-trace width over a limited self-adjusting region. The plasma traces are recorded with streak cameras on Polaroid film, then scanned and digitized for processing. The analysis technique uses scene segmentation to separate the plasma trace from a reference fiducial trace. The technique employs two methods of peak detection; one for the plasma trace and one for the fiducial trace. The width is obtained using an edge-detection, or slope, method. Timing data are derived from the intensity modulation of the fiducial trace. To smooth (despike) the output graphs showing the plasma-trace centroid and width, a technique of ''twicing'' developed by Tukey was employed. In addition, an interactive sorting algorithm allows retrieval of the centroid, width, and fiducial data from any test shot plasma for post analysis. As yet, only a limited set of sixteen plasma traces has been processed using this technique

  20. Automated computer analysis of plasma-streak traces from SCYLLAC

    International Nuclear Information System (INIS)

    Whiteman, R.L.; Jahoda, F.C.; Kruger, R.P.

    1977-11-01

    An automated computer analysis technique that locates and references the approximate centroid of single- or dual-streak traces from the Los Alamos Scientific Laboratory SCYLLAC facility is described. The technique also determines the plasma-trace width over a limited self-adjusting region. The plasma traces are recorded with streak cameras on Polaroid film, then scanned and digitized for processing. The analysis technique uses scene segmentation to separate the plasma trace from a reference fiducial trace. The technique employs two methods of peak detection; one for the plasma trace and one for the fiducial trace. The width is obtained using an edge-detection, or slope, method. Timing data are derived from the intensity modulation of the fiducial trace. To smooth (despike) the output graphs showing the plasma-trace centroid and width, a technique of ''twicing'' developed by Tukey was employed. In addition, an interactive sorting algorithm allows retrieval of the centroid, width, and fiducial data from any test shot plasma for post analysis. As yet, only a limited set of the plasma traces has been processed with this technique

  1. Development of a software for INAA analysis automation

    International Nuclear Information System (INIS)

    Zahn, Guilherme S.; Genezini, Frederico A.; Figueiredo, Ana Maria G.; Ticianelli, Regina B.

    2013-01-01

    In this work, a software to automate the post-counting tasks in comparative INAA has been developed that aims to become more flexible than the available options, integrating itself with some of the routines currently in use in the IPEN Activation Analysis Laboratory and allowing the user to choose between a fully-automatic analysis or an Excel-oriented one. The software makes use of the Genie 2000 data importing and analysis routines and stores each 'energy-counts-uncertainty' table as a separate ASCII file that can be used later on if required by the analyst. Moreover, it generates an Excel-compatible CSV (comma separated values) file with only the relevant results from the analyses for each sample or comparator, as well as the results of the concentration calculations and the results obtained with four different statistical tools (unweighted average, weighted average, normalized residuals and Rajeval technique), allowing the analyst to double-check the results. Finally, a 'summary' CSV file is also produced, with the final concentration results obtained for each element in each sample. (author)

  2. Intelligent Control in Automation Based on Wireless Traffic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kurt Derr; Milos Manic

    2007-08-01

    Wireless technology is a central component of many factory automation infrastructures in both the commercial and government sectors, providing connectivity among various components in industrial realms (distributed sensors, machines, mobile process controllers). However wireless technologies provide more threats to computer security than wired environments. The advantageous features of Bluetooth technology resulted in Bluetooth units shipments climbing to five million per week at the end of 2005 [1, 2]. This is why the real-time interpretation and understanding of Bluetooth traffic behavior is critical in both maintaining the integrity of computer systems and increasing the efficient use of this technology in control type applications. Although neuro-fuzzy approaches have been applied to wireless 802.11 behavior analysis in the past, a significantly different Bluetooth protocol framework has not been extensively explored using this technology. This paper presents a new neurofuzzy traffic analysis algorithm of this still new territory of Bluetooth traffic. Further enhancements of this algorithm are presented along with the comparison against the traditional, numerical approach. Through test examples, interesting Bluetooth traffic behavior characteristics were captured, and the comparative elegance of this computationally inexpensive approach was demonstrated. This analysis can be used to provide directions for future development and use of this prevailing technology in various control type applications, as well as making the use of it more secure.

  3. Intelligent Control in Automation Based on Wireless Traffic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kurt Derr; Milos Manic

    2007-09-01

    Wireless technology is a central component of many factory automation infrastructures in both the commercial and government sectors, providing connectivity among various components in industrial realms (distributed sensors, machines, mobile process controllers). However wireless technologies provide more threats to computer security than wired environments. The advantageous features of Bluetooth technology resulted in Bluetooth units shipments climbing to five million per week at the end of 2005 [1, 2]. This is why the real-time interpretation and understanding of Bluetooth traffic behavior is critical in both maintaining the integrity of computer systems and increasing the efficient use of this technology in control type applications. Although neuro-fuzzy approaches have been applied to wireless 802.11 behavior analysis in the past, a significantly different Bluetooth protocol framework has not been extensively explored using this technology. This paper presents a new neurofuzzy traffic analysis algorithm of this still new territory of Bluetooth traffic. Further enhancements of this algorithm are presented along with the comparison against the traditional, numerical approach. Through test examples, interesting Bluetooth traffic behavior characteristics were captured, and the comparative elegance of this computationally inexpensive approach was demonstrated. This analysis can be used to provide directions for future development and use of this prevailing technology in various control type applications, as well as making the use of it more secure.

  4. Google matrix analysis of directed networks

    Science.gov (United States)

    Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.

    2015-10-01

    In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory.

  5. Capacity Analysis of Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    M. I. Gumel

    2012-06-01

    Full Text Available The next generation wireless networks experienced a great development with emergence of wireless mesh networks (WMNs, which can be regarded as a realistic solution that provides wireless broadband access. The limited available bandwidth makes capacity analysis of the network very essential. While the network offers broadband wireless access to community and enterprise users, the problems that limit the network capacity must be addressed to exploit the optimum network performance. The wireless mesh network capacity analysis shows that the throughput of each mesh node degrades in order of l/n with increasing number of nodes (n in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network.

  6. Improving automated multiple sclerosis lesion segmentation with a cascaded 3D convolutional neural network approach.

    Science.gov (United States)

    Valverde, Sergi; Cabezas, Mariano; Roura, Eloy; González-Villà, Sandra; Pareto, Deborah; Vilanova, Joan C; Ramió-Torrentà, Lluís; Rovira, Àlex; Oliver, Arnau; Lladó, Xavier

    2017-07-15

    In this paper, we present a novel automated method for White Matter (WM) lesion segmentation of Multiple Sclerosis (MS) patient images. Our approach is based on a cascade of two 3D patch-wise convolutional neural networks (CNN). The first network is trained to be more sensitive revealing possible candidate lesion voxels while the second network is trained to reduce the number of misclassified voxels coming from the first network. This cascaded CNN architecture tends to learn well from a small (n≤35) set of labeled data of the same MRI contrast, which can be very interesting in practice, given the difficulty to obtain manual label annotations and the large amount of available unlabeled Magnetic Resonance Imaging (MRI) data. We evaluate the accuracy of the proposed method on the public MS lesion segmentation challenge MICCAI2008 dataset, comparing it with respect to other state-of-the-art MS lesion segmentation tools. Furthermore, the proposed method is also evaluated on two private MS clinical datasets, where the performance of our method is also compared with different recent public available state-of-the-art MS lesion segmentation methods. At the time of writing this paper, our method is the best ranked approach on the MICCAI2008 challenge, outperforming the rest of 60 participant methods when using all the available input modalities (T1-w, T2-w and FLAIR), while still in the top-rank (3rd position) when using only T1-w and FLAIR modalities. On clinical MS data, our approach exhibits a significant increase in the accuracy segmenting of WM lesions when compared with the rest of evaluated methods, highly correlating (r≥0.97) also with the expected lesion volume. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Automated Clean Chemistry for Bulk Analysis of Environmental Swipe Samples - FY17 Year End Report

    Energy Technology Data Exchange (ETDEWEB)

    Ticknor, Brian W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Metzger, Shalina C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McBay, Eddy H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hexel, Cole R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Tevepaugh, Kayron N. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bostick, Debra A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-11-30

    Sample preparation methods for mass spectrometry are being automated using commercial-off-the-shelf (COTS) equipment to shorten lengthy and costly manual chemical purification procedures. This development addresses a serious need in the International Atomic Energy Agency’s Network of Analytical Laboratories (IAEA NWAL) to increase efficiency in the Bulk Analysis of Environmental Samples for Safeguards program with a method that allows unattended, overnight operation. In collaboration with Elemental Scientific Inc., the prepFAST-MC2 was designed based on COTS equipment. It was modified for uranium/plutonium separations using renewable columns packed with Eichrom TEVA and UTEVA resins, with a chemical separation method based on the Oak Ridge National Laboratory (ORNL) NWAL chemical procedure. The newly designed prepFAST-SR has had several upgrades compared with the original prepFAST-MC2. Both systems are currently installed in the Ultra-Trace Forensics Science Center at ORNL.

  8. A fully automated fast analysis system for capillary gas chromatography. Part 1. Automation of system control

    NARCIS (Netherlands)

    Snijders, H.M.J.; Rijks, J.P.E.M.; Bombeeck, A.J.; Rijks, J.A.; Sandra, P.; Lee, M.L.

    1992-01-01

    This paper is dealing with the design, the automation and evaluation of a high speed capillary gas chromatographic system. A combination of software and hardware was developed for a new cold trap/reinjection device that allows selective solvent eliminating and on column sample enrichment and an

  9. Social network analysis community detection and evolution

    CERN Document Server

    Missaoui, Rokia

    2015-01-01

    This book is devoted to recent progress in social network analysis with a high focus on community detection and evolution. The eleven chapters cover the identification of cohesive groups, core components and key players either in static or dynamic networks of different kinds and levels of heterogeneity. Other important topics in social network analysis such as influential detection and maximization, information propagation, user behavior analysis, as well as network modeling and visualization are also presented. Many studies are validated through real social networks such as Twitter. This edit

  10. Network analysis literacy a practical approach to the analysis of networks

    CERN Document Server

    Zweig, Katharina A

    2014-01-01

    Network Analysis Literacy focuses on design principles for network analytics projects. The text enables readers to: pose a defined network analytic question; build a network to answer the question; choose or design the right network analytic methods for a particular purpose, and more.

  11. Space Environment Automated Alerts and Anomaly Analysis Assistant (SEA^5) for NASA

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a comprehensive analysis and dissemination system (Space Environment Automated Alerts  & Anomaly Analysis Assistant: SEA5) that will...

  12. Team performance in networked supervisory control of unmanned air vehicles: effects of automation, working memory, and communication content.

    Science.gov (United States)

    McKendrick, Ryan; Shaw, Tyler; de Visser, Ewart; Saqer, Haneen; Kidwell, Brian; Parasuraman, Raja

    2014-05-01

    Assess team performance within a net-worked supervisory control setting while manipulating automated decision aids and monitoring team communication and working memory ability. Networked systems such as multi-unmanned air vehicle (UAV) supervision have complex properties that make prediction of human-system performance difficult. Automated decision aid can provide valuable information to operators, individual abilities can limit or facilitate team performance, and team communication patterns can alter how effectively individuals work together. We hypothesized that reliable automation, higher working memory capacity, and increased communication rates of task-relevant information would offset performance decrements attributed to high task load. Two-person teams performed a simulated air defense task with two levels of task load and three levels of automated aid reliability. Teams communicated and received decision aid messages via chat window text messages. Task Load x Automation effects were significant across all performance measures. Reliable automation limited the decline in team performance with increasing task load. Average team spatial working memory was a stronger predictor than other measures of team working memory. Frequency of team rapport and enemy location communications positively related to team performance, and word count was negatively related to team performance. Reliable decision aiding mitigated team performance decline during increased task load during multi-UAV supervisory control. Team spatial working memory, communication of spatial information, and team rapport predicted team success. An automated decision aid can improve team performance under high task load. Assessment of spatial working memory and the communication of task-relevant information can help in operator and team selection in supervisory control systems.

  13. Automated Microfluidic Platform for Serial Polymerase Chain Reaction and High-Resolution Melting Analysis.

    Science.gov (United States)

    Cao, Weidong; Bean, Brian; Corey, Scott; Coursey, Johnathan S; Hasson, Kenton C; Inoue, Hiroshi; Isano, Taisuke; Kanderian, Sami; Lane, Ben; Liang, Hongye; Murphy, Brian; Owen, Greg; Shinoda, Nobuhiko; Zeng, Shulin; Knight, Ivor T

    2016-06-01

    We report the development of an automated genetic analyzer for human sample testing based on microfluidic rapid polymerase chain reaction (PCR) with high-resolution melting analysis (HRMA). The integrated DNA microfluidic cartridge was used on a platform designed with a robotic pipettor system that works by sequentially picking up different test solutions from a 384-well plate, mixing them in the tips, and delivering mixed fluids to the DNA cartridge. A novel image feedback flow control system based on a Canon 5D Mark II digital camera was developed for controlling fluid movement through a complex microfluidic branching network without the use of valves. The same camera was used for measuring the high-resolution melt curve of DNA amplicons that were generated in the microfluidic chip. Owing to fast heating and cooling as well as sensitive temperature measurement in the microfluidic channels, the time frame for PCR and HRMA was dramatically reduced from hours to minutes. Preliminary testing results demonstrated that rapid serial PCR and HRMA are possible while still achieving high data quality that is suitable for human sample testing. © 2015 Society for Laboratory Automation and Screening.

  14. A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network.

    Science.gov (United States)

    Pirbhulal, Sandeep; Zhang, Heye; E Alahi, Md Eshrat; Ghayvat, Hemant; Mukhopadhyay, Subhas Chandra; Zhang, Yuan-Ting; Wu, Wanqing

    2016-12-30

    Wireless sensor networks (WSNs) provide noteworthy benefits over traditional approaches for several applications, including smart homes, healthcare, environmental monitoring, and homeland security. WSNs are integrated with the Internet Protocol (IP) to develop the Internet of Things (IoT) for connecting everyday life objects to the internet. Hence, major challenges of WSNs include: (i) how to efficiently utilize small size and low-power nodes to implement security during data transmission among several sensor nodes; (ii) how to resolve security issues associated with the harsh and complex environmental conditions during data transmission over a long coverage range. In this study, a secure IoT-based smart home automation system was developed. To facilitate energy-efficient data encryption, a method namely Triangle Based Security Algorithm (TBSA) based on efficient key generation mechanism was proposed. The proposed TBSA in integration of the low power Wi-Fi were included in WSNs with the Internet to develop a novel IoT-based smart home which could provide secure data transmission among several associated sensor nodes in the network over a long converge range. The developed IoT based system has outstanding performance by fulfilling all the necessary security requirements. The experimental results showed that the proposed TBSA algorithm consumed less energy in comparison with some existing methods.

  15. A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Sandeep Pirbhulal

    2016-12-01

    Full Text Available Wireless sensor networks (WSNs provide noteworthy benefits over traditional approaches for several applications, including smart homes, healthcare, environmental monitoring, and homeland security. WSNs are integrated with the Internet Protocol (IP to develop the Internet of Things (IoT for connecting everyday life objects to the internet. Hence, major challenges of WSNs include: (i how to efficiently utilize small size and low-power nodes to implement security during data transmission among several sensor nodes; (ii how to resolve security issues associated with the harsh and complex environmental conditions during data transmission over a long coverage range. In this study, a secure IoT-based smart home automation system was developed. To facilitate energy-efficient data encryption, a method namely Triangle Based Security Algorithm (TBSA based on efficient key generation mechanism was proposed. The proposed TBSA in integration of the low power Wi-Fi were included in WSNs with the Internet to develop a novel IoT-based smart home which could provide secure data transmission among several associated sensor nodes in the network over a long converge range. The developed IoT based system has outstanding performance by fulfilling all the necessary security requirements. The experimental results showed that the proposed TBSA algorithm consumed less energy in comparison with some existing methods.

  16. A Novel Secure IoT-Based Smart Home Automation System Using a Wireless Sensor Network

    Science.gov (United States)

    Pirbhulal, Sandeep; Zhang, Heye; E Alahi, Md Eshrat; Ghayvat, Hemant; Mukhopadhyay, Subhas Chandra; Zhang, Yuan-Ting; Wu, Wanqing

    2016-01-01

    Wireless sensor networks (WSNs) provide noteworthy benefits over traditional approaches for several applications, including smart homes, healthcare, environmental monitoring, and homeland security. WSNs are integrated with the Internet Protocol (IP) to develop the Internet of Things (IoT) for connecting everyday life objects to the internet. Hence, major challenges of WSNs include: (i) how to efficiently utilize small size and low-power nodes to implement security during data transmission among several sensor nodes; (ii) how to resolve security issues associated with the harsh and complex environmental conditions during data transmission over a long coverage range. In this study, a secure IoT-based smart home automation system was developed. To facilitate energy-efficient data encryption, a method namely Triangle Based Security Algorithm (TBSA) based on efficient key generation mechanism was proposed. The proposed TBSA in integration of the low power Wi-Fi were included in WSNs with the Internet to develop a novel IoT-based smart home which could provide secure data transmission among several associated sensor nodes in the network over a long converge range. The developed IoT based system has outstanding performance by fulfilling all the necessary security requirements. The experimental results showed that the proposed TBSA algorithm consumed less energy in comparison with some existing methods. PMID:28042831

  17. Automated analysis for detecting beams in laser wakefield simulations

    International Nuclear Information System (INIS)

    Ushizima, Daniela M.; Rubel, Oliver; Prabhat, Mr.; Weber, Gunther H.; Bethel, E. Wes; Aragon, Cecilia R.; Geddes, Cameron G.R.; Cormier-Michel, Estelle; Hamann, Bernd; Messmer, Peter; Hagen, Hans

    2008-01-01

    Laser wakefield particle accelerators have shown the potential to generate electric fields thousands of times higher than those of conventional accelerators. The resulting extremely short particle acceleration distance could yield a potential new compact source of energetic electrons and radiation, with wide applications from medicine to physics. Physicists investigate laser-plasma internal dynamics by running particle-in-cell simulations; however, this generates a large dataset that requires time-consuming, manual inspection by experts in order to detect key features such as beam formation. This paper describes a framework to automate the data analysis and classification of simulation data. First, we propose a new method to identify locations with high density of particles in the space-time domain, based on maximum extremum point detection on the particle distribution. We analyze high density electron regions using a lifetime diagram by organizing and pruning the maximum extrema as nodes in a minimum spanning tree. Second, we partition the multivariate data using fuzzy clustering to detect time steps in a experiment that may contain a high quality electron beam. Finally, we combine results from fuzzy clustering and bunch lifetime analysis to estimate spatially confined beams. We demonstrate our algorithms successfully on four different simulation datasets

  18. GWATCH: a web platform for automated gene association discovery analysis

    Science.gov (United States)

    2014-01-01

    Background As genome-wide sequence analyses for complex human disease determinants are expanding, it is increasingly necessary to develop strategies to promote discovery and validation of potential disease-gene associations. Findings Here we present a dynamic web-based platform – GWATCH – that automates and facilitates four steps in genetic epidemiological discovery: 1) Rapid gene association search and discovery analysis of large genome-wide datasets; 2) Expanded visual display of gene associations for genome-wide variants (SNPs, indels, CNVs), including Manhattan plots, 2D and 3D snapshots of any gene region, and a dynamic genome browser illustrating gene association chromosomal regions; 3) Real-time validation/replication of candidate or putative genes suggested from other sources, limiting Bonferroni genome-wide association study (GWAS) penalties; 4) Open data release and sharing by eliminating privacy constraints (The National Human Genome Research Institute (NHGRI) Institutional Review Board (IRB), informed consent, The Health Insurance Portability and Accountability Act (HIPAA) of 1996 etc.) on unabridged results, which allows for open access comparative and meta-analysis. Conclusions GWATCH is suitable for both GWAS and whole genome sequence association datasets. We illustrate the utility of GWATCH with three large genome-wide association studies for HIV-AIDS resistance genes screened in large multicenter cohorts; however, association datasets from any study can be uploaded and analyzed by GWATCH. PMID:25374661

  19. SAHM - Simplification of one-dimensional hydraulic networks by automated processes evaluated on 1D/2D deterministic flood models

    DEFF Research Database (Denmark)

    Löwe, Roland; Davidsen, Steffen; Thrysøe, Cecilie

    We present an algorithm for automated simplification of 1D pipe network models. The impact of the simplifications on the flooding simulated by coupled 1D-2D models is evaluated in an Australian case study. Significant reductions of the simulation time of the coupled model are achieved by reducing...... the 1D network model. The simplifications lead to an underestimation of flooded area because interaction points between network and surface are removed and because water is transported downstream faster. These effects can be mitigated by maintaining nodes in flood-prone areas in the simplification...... and by adjusting pipe roughness to increase transport times....

  20. Networks and Bargaining in Policy Analysis

    DEFF Research Database (Denmark)

    Bogason, Peter

    2006-01-01

    A duscussion of the fight between proponents of rationalistic policy analysis and more political interaction models for policy analysis. The latter group is the foundation for the many network models of policy analysis of today.......A duscussion of the fight between proponents of rationalistic policy analysis and more political interaction models for policy analysis. The latter group is the foundation for the many network models of policy analysis of today....

  1. Cost and Benefit Analysis of an Automated Nursing Administration System: A Methodology*

    OpenAIRE

    Rieder, Karen A.

    1984-01-01

    In order for a nursing service administration to select the appropriate automated system for its requirements, a systematic process of evaluating alternative approaches must be completed. This paper describes a methodology for evaluating and comparing alternative automated systems based upon an economic analysis which includes two major categories of criteria: costs and benefits.

  2. 40 CFR 13.19 - Analysis of costs; automation; prevention of overpayments, delinquencies or defaults.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Analysis of costs; automation; prevention of overpayments, delinquencies or defaults. 13.19 Section 13.19 Protection of Environment...; automation; prevention of overpayments, delinquencies or defaults. (a) The Administrator may periodically...

  3. Analysis of Recurrent Analog Neural Networks

    Directory of Open Access Journals (Sweden)

    Z. Raida

    1998-06-01

    Full Text Available In this paper, an original rigorous analysis of recurrent analog neural networks, which are built from opamp neurons, is presented. The analysis, which comes from the approximate model of the operational amplifier, reveals causes of possible non-stable states and enables to determine convergence properties of the network. Results of the analysis are discussed in order to enable development of original robust and fast analog networks. In the analysis, the special attention is turned to the examination of the influence of real circuit elements and of the statistical parameters of processed signals to the parameters of the network.

  4. NEXCADE: perturbation analysis for complex networks.

    Directory of Open Access Journals (Sweden)

    Gitanjali Yadav

    Full Text Available Recent advances in network theory have led to considerable progress in our understanding of complex real world systems and their behavior in response to external threats or fluctuations. Much of this research has been invigorated by demonstration of the 'robust, yet fragile' nature of cellular and large-scale systems transcending biology, sociology, and ecology, through application of the network theory to diverse interactions observed in nature such as plant-pollinator, seed-dispersal agent and host-parasite relationships. In this work, we report the development of NEXCADE, an automated and interactive program for inducing disturbances into complex systems defined by networks, focusing on the changes in global network topology and connectivity as a function of the perturbation. NEXCADE uses a graph theoretical approach to simulate perturbations in a user-defined manner, singly, in clusters, or sequentially. To demonstrate the promise it holds for broader adoption by the research community, we provide pre-simulated examples from diverse real-world networks including eukaryotic protein-protein interaction networks, fungal biochemical networks, a variety of ecological food webs in nature as well as social networks. NEXCADE not only enables network visualization at every step of the targeted attacks, but also allows risk assessment, i.e. identification of nodes critical for the robustness of the system of interest, in order to devise and implement context-based strategies for restructuring a network, or to achieve resilience against link or node failures. Source code and license for the software, designed to work on a Linux-based operating system (OS can be downloaded at http://www.nipgr.res.in/nexcade_download.html. In addition, we have developed NEXCADE as an OS-independent online web server freely available to the scientific community without any login requirement at http://www.nipgr.res.in/nexcade.html.

  5. Superpixel-based and boundary-sensitive convolutional neural network for automated liver segmentation

    Science.gov (United States)

    Qin, Wenjian; Wu, Jia; Han, Fei; Yuan, Yixuan; Zhao, Wei; Ibragimov, Bulat; Gu, Jia; Xing, Lei

    2018-05-01

    Segmentation of liver in abdominal computed tomography (CT) is an important step for radiation therapy planning of hepatocellular carcinoma. Practically, a fully automatic segmentation of liver remains challenging because of low soft tissue contrast between liver and its surrounding organs, and its highly deformable shape. The purpose of this work is to develop a novel superpixel-based and boundary sensitive convolutional neural network (SBBS-CNN) pipeline for automated liver segmentation. The entire CT images were first partitioned into superpixel regions, where nearby pixels with similar CT number were aggregated. Secondly, we converted the conventional binary segmentation into a multinomial classification by labeling the superpixels into three classes: interior liver, liver boundary, and non-liver background. By doing this, the boundary region of the liver was explicitly identified and highlighted for the subsequent classification. Thirdly, we computed an entropy-based saliency map for each CT volume, and leveraged this map to guide the sampling of image patches over the superpixels. In this way, more patches were extracted from informative regions (e.g. the liver boundary with irregular changes) and fewer patches were extracted from homogeneous regions. Finally, deep CNN pipeline was built and trained to predict the probability map of the liver boundary. We tested the proposed algorithm in a cohort of 100 patients. With 10-fold cross validation, the SBBS-CNN achieved mean Dice similarity coefficients of 97.31  ±  0.36% and average symmetric surface distance of 1.77  ±  0.49 mm. Moreover, it showed superior performance in comparison with state-of-art methods, including U-Net, pixel-based CNN, active contour, level-sets and graph-cut algorithms. SBBS-CNN provides an accurate and effective tool for automated liver segmentation. It is also envisioned that the proposed framework is directly applicable in other medical image segmentation scenarios.

  6. Application of automated image analysis to coal petrography

    Science.gov (United States)

    Chao, E.C.T.; Minkin, J.A.; Thompson, C.L.

    1982-01-01

    The coal petrologist seeks to determine the petrographic characteristics of organic and inorganic coal constituents and their lateral and vertical variations within a single coal bed or different coal beds of a particular coal field. Definitive descriptions of coal characteristics and coal facies provide the basis for interpretation of depositional environments, diagenetic changes, and burial history and determination of the degree of coalification or metamorphism. Numerous coal core or columnar samples must be studied in detail in order to adequately describe and define coal microlithotypes, lithotypes, and lithologic facies and their variations. The large amount of petrographic information required can be obtained rapidly and quantitatively by use of an automated image-analysis system (AIAS). An AIAS can be used to generate quantitative megascopic and microscopic modal analyses for the lithologic units of an entire columnar section of a coal bed. In our scheme for megascopic analysis, distinctive bands 2 mm or more thick are first demarcated by visual inspection. These bands consist of either nearly pure microlithotypes or lithotypes such as vitrite/vitrain or fusite/fusain, or assemblages of microlithotypes. Megascopic analysis with the aid of the AIAS is next performed to determine volume percentages of vitrite, inertite, minerals, and microlithotype mixtures in bands 0.5 to 2 mm thick. The microlithotype mixtures are analyzed microscopically by use of the AIAS to determine their modal composition in terms of maceral and optically observable mineral components. Megascopic and microscopic data are combined to describe the coal unit quantitatively in terms of (V) for vitrite, (E) for liptite, (I) for inertite or fusite, (M) for mineral components other than iron sulfide, (S) for iron sulfide, and (VEIM) for the composition of the mixed phases (Xi) i = 1,2, etc. in terms of the maceral groups vitrinite V, exinite E, inertinite I, and optically observable mineral

  7. Egocentric Social Network Analysis of Pathological Gambling

    Science.gov (United States)

    Meisel, Matthew K.; Clifton, Allan D.; MacKillop, James; Miller, Joshua D.; Campbell, W. Keith; Goodie, Adam S.

    2012-01-01

    Aims To apply social network analysis (SNA) to investigate whether frequency and severity of gambling problems were associated with different network characteristics among friends, family, and co-workers. is an innovative way to look at relationships among individuals; the current study was the first to our knowledge to apply SNA to gambling behaviors. Design Egocentric social network analysis was used to formally characterize the relationships between social network characteristics and gambling pathology. Setting Laboratory-based questionnaire and interview administration. Participants Forty frequent gamblers (22 non-pathological gamblers, 18 pathological gamblers) were recruited from the community. Findings The SNA revealed significant social network compositional differences between the two groups: pathological gamblers (PGs) had more gamblers, smokers, and drinkers in their social networks than did nonpathological gamblers (NPGs). PGs had more individuals in their network with whom they personally gambled, smoked, and drank with than those with who were NPG. Network ties were closer to individuals in their networks who gambled, smoked, and drank more frequently. Associations between gambling severity and structural network characteristics were not significant. Conclusions Pathological gambling is associated with compositional but not structural differences in social networks. Pathological gamblers differ from non-pathological gamblers in the number of gamblers, smokers, and drinkers in their social networks. Homophily within the networks also indicates that gamblers tend to be closer with other gamblers. This homophily may serve to reinforce addictive behaviors, and may suggest avenues for future study or intervention. PMID:23072641

  8. Egocentric social network analysis of pathological gambling.

    Science.gov (United States)

    Meisel, Matthew K; Clifton, Allan D; Mackillop, James; Miller, Joshua D; Campbell, W Keith; Goodie, Adam S

    2013-03-01

    To apply social network analysis (SNA) to investigate whether frequency and severity of gambling problems were associated with different network characteristics among friends, family and co-workers is an innovative way to look at relationships among individuals; the current study was the first, to our knowledge, to apply SNA to gambling behaviors. Egocentric social network analysis was used to characterize formally the relationships between social network characteristics and gambling pathology. Laboratory-based questionnaire and interview administration. Forty frequent gamblers (22 non-pathological gamblers, 18 pathological gamblers) were recruited from the community. The SNA revealed significant social network compositional differences between the two groups: pathological gamblers (PGs) had more gamblers, smokers and drinkers in their social networks than did non-pathological gamblers (NPGs). PGs had more individuals in their network with whom they personally gambled, smoked and drank than those with who were NPG. Network ties were closer to individuals in their networks who gambled, smoked and drank more frequently. Associations between gambling severity and structural network characteristics were not significant. Pathological gambling is associated with compositional but not structural differences in social networks. Pathological gamblers differ from non-pathological gamblers in the number of gamblers, smokers and drinkers in their social networks. Homophily within the networks also indicates that gamblers tend to be closer with other gamblers. This homophily may serve to reinforce addictive behaviors, and may suggest avenues for future study or intervention. © 2012 The Authors, Addiction © 2012 Society for the Study of Addiction.

  9. Automated absolute activation analysis with californium-252 sources

    International Nuclear Information System (INIS)

    MacMurdo, K.W.; Bowman, W.W.

    1978-09-01

    A 100-mg 252 Cf neutron activation analysis facility is used routinely at the Savannah River Laboratory for multielement analysis of many solid and liquid samples. An absolute analysis technique converts counting data directly to elemental concentration without the use of classical comparative standards and flux monitors. With the totally automated pneumatic sample transfer system, cyclic irradiation-decay-count regimes can be pre-selected for up to 40 samples, and samples can be analyzed with the facility unattended. An automatic data control system starts and stops a high-resolution gamma-ray spectrometer and/or a delayed-neutron detector; the system also stores data and controls output modes. Gamma ray data are reduced by three main programs in the IBM 360/195 computer: the 4096-channel spectrum and pertinent experimental timing, counting, and sample data are stored on magnetic tape; the spectrum is then reduced to a list of significant photopeak energies, integrated areas, and their associated statistical errors; and the third program assigns gamma ray photopeaks to the appropriate neutron activation product(s) by comparing photopeak energies to tabulated gamma ray energies. Photopeak areas are then converted to elemental concentration by using experimental timing and sample data, calculated elemental neutron capture rates, absolute detector efficiencies, and absolute spectroscopic decay data. Calculational procedures have been developed so that fissile material can be analyzed by cyclic neutron activation and delayed-neutron counting procedures. These calculations are based on a 6 half-life group model of delayed neutron emission; calculations include corrections for delayed neutron interference from 17 O. Detection sensitivities of 239 Pu were demonstrated with 15-g samples at a throughput of up to 140 per day. Over 40 elements can be detected at the sub-ppM level

  10. Semi-automated analysis of three-dimensional track images

    International Nuclear Information System (INIS)

    Meesen, G.; Poffijn, A.

    2001-01-01

    In the past, three-dimensional (3-d) track images in solid state detectors were difficult to obtain. With the introduction of the confocal scanning laser microscope it is now possible to record 3-d track images in a non-destructive way. These 3-d track images can latter be used to measure typical track parameters. Preparing the detectors and recording the 3-d images however is only the first step. The second step in this process is enhancing the image quality by means of deconvolution techniques to obtain the maximum possible resolution. The third step is extracting the typical track parameters. This can be done on-screen by an experienced operator. For large sets of data however, this manual technique is not desirable. This paper will present some techniques to analyse 3-d track data in an automated way by means of image analysis routines. Advanced thresholding techniques guarantee stable results in different recording situations. By using pre-knowledge about the track shape, reliable object identification is obtained. In case of ambiguity, manual intervention is possible

  11. High-Throughput Analysis and Automation for Glycomics Studies.

    Science.gov (United States)

    Shubhakar, Archana; Reiding, Karli R; Gardner, Richard A; Spencer, Daniel I R; Fernandes, Daryl L; Wuhrer, Manfred

    This review covers advances in analytical technologies for high-throughput (HTP) glycomics. Our focus is on structural studies of glycoprotein glycosylation to support biopharmaceutical realization and the discovery of glycan biomarkers for human disease. For biopharmaceuticals, there is increasing use of glycomics in Quality by Design studies to help optimize glycan profiles of drugs with a view to improving their clinical performance. Glycomics is also used in comparability studies to ensure consistency of glycosylation both throughout product development and between biosimilars and innovator drugs. In clinical studies there is as well an expanding interest in the use of glycomics-for example in Genome Wide Association Studies-to follow changes in glycosylation patterns of biological tissues and fluids with the progress of certain diseases. These include cancers, neurodegenerative disorders and inflammatory conditions. Despite rising activity in this field, there are significant challenges in performing large scale glycomics studies. The requirement is accurate identification and quantitation of individual glycan structures. However, glycoconjugate samples are often very complex and heterogeneous and contain many diverse branched glycan structures. In this article we cover HTP sample preparation and derivatization methods, sample purification, robotization, optimized glycan profiling by UHPLC, MS and multiplexed CE, as well as hyphenated techniques and automated data analysis tools. Throughout, we summarize the advantages and challenges with each of these technologies. The issues considered include reliability of the methods for glycan identification and quantitation, sample throughput, labor intensity, and affordability for large sample numbers.

  12. Technical and economic viability of automated highway systems : preliminary analysis

    Science.gov (United States)

    1997-01-01

    Technical and economic investigations of automated highway systems (AHS) are addressed. It has generally been accepted that such systems show potential to alleviate urban traffic congestion, so most of the AHS research has been focused instead on tec...

  13. Computer automated mass spectrometer for isotope analysis on gas samples

    International Nuclear Information System (INIS)

    Pamula, A.; Kaucsar, M.; Fatu, C.; Ursu, D.; Vonica, D.; Bendea, D.; Muntean, F.

    1998-01-01

    A low resolution, high precision instrument was designed and realized in the mass spectrometry laboratory of the Institute of Isotopic and Molecular Technology, Cluj-Napoca. The paper presents the vacuum system, the sample inlet system, the ion source, the magnetic analyzer and the ion collector. The instrument is almost completely automated. There are described the analog-to-digital conversion circuits, the local control microcomputer, the automation systems and the performance checking. (authors)

  14. Social network analysis and supply chain management

    Directory of Open Access Journals (Sweden)

    Raúl Rodríguez Rodríguez

    2016-01-01

    Full Text Available This paper deals with social network analysis and how it could be integrated within supply chain management from a decision-making point of view. Even though the benefits of using social analysis have are widely accepted at both academic and industry/services context, there is still a lack of solid frameworks that allow decision-makers to connect the usage and obtained results of social network analysis – mainly both information and knowledge flows and derived results- with supply chain management objectives and goals. This paper gives an overview of social network analysis, the main social network analysis metrics, supply chain performance and, finally, it identifies how future frameworks could close the gap and link the results of social network analysis with the supply chain management decision-making processes.

  15. The Network Protocol Analysis Technique in Snort

    Science.gov (United States)

    Wu, Qing-Xiu

    Network protocol analysis is a network sniffer to capture data for further analysis and understanding of the technical means necessary packets. Network sniffing is intercepted by packet assembly binary format of the original message content. In order to obtain the information contained. Required based on TCP / IP protocol stack protocol specification. Again to restore the data packets at protocol format and content in each protocol layer. Actual data transferred, as well as the application tier.

  16. Automating dChip: toward reproducible sharing of microarray data analysis

    Directory of Open Access Journals (Sweden)

    Li Cheng

    2008-05-01

    Full Text Available Abstract Background During the past decade, many software packages have been developed for analysis and visualization of various types of microarrays. We have developed and maintained the widely used dChip as a microarray analysis software package accessible to both biologist and data analysts. However, challenges arise when dChip users want to analyze large number of arrays automatically and share data analysis procedures and parameters. Improvement is also needed when the dChip user support team tries to identify the causes of reported analysis errors or bugs from users. Results We report here implementation and application of the dChip automation module. Through this module, dChip automation files can be created to include menu steps, parameters, and data viewpoints to run automatically. A data-packaging function allows convenient transfer from one user to another of the dChip software, microarray data, and analysis procedures, so that the second user can reproduce the entire analysis session of the first user. An analysis report file can also be generated during an automated run, including analysis logs, user comments, and viewpoint screenshots. Conclusion The dChip automation module is a step toward reproducible research, and it can prompt a more convenient and reproducible mechanism for sharing microarray software, data, and analysis procedures and results. Automation data packages can also be used as publication supplements. Similar automation mechanisms could be valuable to the research community if implemented in other genomics and bioinformatics software packages.

  17. Ecological network analysis for a virtual water network.

    Science.gov (United States)

    Fang, Delin; Chen, Bin

    2015-06-02

    The notions of virtual water flows provide important indicators to manifest the water consumption and allocation between different sectors via product transactions. However, the configuration of virtual water network (VWN) still needs further investigation to identify the water interdependency among different sectors as well as the network efficiency and stability in a socio-economic system. Ecological network analysis is chosen as a useful tool to examine the structure and function of VWN and the interactions among its sectors. A balance analysis of efficiency and redundancy is also conducted to describe the robustness (RVWN) of VWN. Then, network control analysis and network utility analysis are performed to investigate the dominant sectors and pathways for virtual water circulation and the mutual relationships between pairwise sectors. A case study of the Heihe River Basin in China shows that the balance between efficiency and redundancy is situated on the left side of the robustness curve with less efficiency and higher redundancy. The forestation, herding and fishing sectors and industrial sectors are found to be the main controllers. The network tends to be more mutualistic and synergic, though some competitive relationships that weaken the virtual water circulation still exist.

  18. Robotics/Automated Systems Task Analysis and Description of Required Job Competencies Report. Task Analysis and Description of Required Job Competencies of Robotics/Automated Systems Technicians.

    Science.gov (United States)

    Hull, Daniel M.; Lovett, James E.

    This task analysis report for the Robotics/Automated Systems Technician (RAST) curriculum project first provides a RAST job description. It then discusses the task analysis, including the identification of tasks, the grouping of tasks according to major areas of specialty, and the comparison of the competencies to existing or new courses to…

  19. Basic general concepts in the network analysis

    Directory of Open Access Journals (Sweden)

    Boja Nicolae

    2004-01-01

    Full Text Available This survey is concerned oneself with the study of those types of material networks which can be met both in civil engineering and also in electrotechnics, in mechanics, or in hydrotechnics, and of which behavior lead to linear problems, solvable by means of Finite Element Method and adequate algorithms. Here, it is presented a unitary theory of networks met in the domains mentioned above and this one is illustrated with examples for the structural networks in civil engineering, electric circuits, and water supply networks, but also planar or spatial mechanisms can be comprised in this theory. The attention is focused to make evident the essential proper- ties and concepts in the network analysis, which differentiate the networks under force from other types of material networks. To such a network a planar, connected, and directed or undirected graph is associated, and with some vector fields on the vertex set this graph is endowed. .

  20. Network Analysis on Attitudes: A Brief Tutorial.

    Science.gov (United States)

    Dalege, Jonas; Borsboom, Denny; van Harreveld, Frenk; van der Maas, Han L J

    2017-07-01

    In this article, we provide a brief tutorial on the estimation, analysis, and simulation on attitude networks using the programming language R. We first discuss what a network is and subsequently show how one can estimate a regularized network on typical attitude data. For this, we use open-access data on the attitudes toward Barack Obama during the 2012 American presidential election. Second, we show how one can calculate standard network measures such as community structure, centrality, and connectivity on this estimated attitude network. Third, we show how one can simulate from an estimated attitude network to derive predictions from attitude networks. By this, we highlight that network theory provides a framework for both testing and developing formalized hypotheses on attitudes and related core social psychological constructs.

  1. 4th International Conference in Network Analysis

    CERN Document Server

    Koldanov, Petr; Pardalos, Panos

    2016-01-01

    The contributions in this volume cover a broad range of topics including maximum cliques, graph coloring, data mining, brain networks, Steiner forest, logistic and supply chain networks. Network algorithms and their applications to market graphs, manufacturing problems, internet networks and social networks are highlighted. The "Fourth International Conference in Network Analysis," held at the Higher School of Economics, Nizhny Novgorod in May 2014, initiated joint research between scientists, engineers and researchers from academia, industry and government; the major results of conference participants have been reviewed and collected in this Work. Researchers and students in mathematics, economics, statistics, computer science and engineering will find this collection a valuable resource filled with the latest research in network analysis.

  2. An investigation and comparison on network performance analysis

    OpenAIRE

    Lanxiaopu, Mi

    2012-01-01

    This thesis is generally about network performance analysis. It contains two parts. The theory part summarizes what network performance is and inducts the methods of doing network performance analysis. To answer what network performance is, a study into what network services are is done. And based on the background research, there are two important network performance metrics: Network delay and Throughput should be included in network performance analysis. Among the methods of network a...

  3. Isochronous wireless network for real-time communication in industrial automation

    CERN Document Server

    Trsek, Henning

    2016-01-01

    This dissertation proposes and investigates an isochronous wireless network for industrial control applications with guaranteed latencies and jitter. Based on a requirements analysis of real industrial applications and the characterisation of the wireless channel, the solution approach is developed. It consists of a TDMA-based medium access control, a dynamic resource allocation and the provision of a global time base for the wired and the wireless network. Due to the global time base, the solution approach allows a seamless and synchronous integration into existing wired Real-time Ethernet systems.

  4. Investigating biofuels through network analysis

    International Nuclear Information System (INIS)

    Curci, Ylenia; Mongeau Ospina, Christian A.

    2016-01-01

    Biofuel policies are motivated by a plethora of political concerns related to energy security, environmental damages, and support of the agricultural sector. In response to this, much scientific work has chiefly focussed on analysing the biofuel domain and on giving policy advice and recommendations. Although innovation has been acknowledged as one of the key factors in sustainable and cost-effective biofuel development, there is an urgent need to investigate technological trajectories in the biofuel sector by starting from consistent data and appropriate methodological tools. To do so, this work proposes a procedure to select patent data unequivocally related to the investigated sector, it uses co-occurrence of technological terms to compute patent similarity and highlights content and interdependencies of biofuels technological trajectories by revealing hidden topics from unstructured patent text fields. The analysis suggests that there is a breaking trend towards modern generation biofuels and that innovators seem to focus increasingly on the ability of alternative energy sources to adapt to the transport/industrial sector. - Highlights: • Innovative effort is devoted to biofuels additives and modern biofuels technologies. • A breaking trend can be observed from the second half of the last decade. • A patent network is identified via text mining techniques that extract latent topics.

  5. Development of a fully automated online mixing system for SAXS protein structure analysis

    DEFF Research Database (Denmark)

    Nielsen, Søren Skou; Arleth, Lise

    2010-01-01

    This thesis presents the development of an automated high-throughput mixing and exposure system for Small-Angle Scattering analysis on a synchrotron using polymer microfluidics. Software and hardware for both automated mixing, exposure control on a beamline and automated data reduction...... and preliminary analysis is presented. Three mixing systems that have been the corner stones of the development process are presented including a fully functioning high-throughput microfluidic system that is able to produce and expose 36 mixed samples per hour using 30 μL of sample volume. The system is tested...

  6. Development of a robotics system for automated chemical analysis of sediments, sludges, and soils

    International Nuclear Information System (INIS)

    McGrail, B.P.; Dodson, M.G.; Skorpik, J.R.; Strachan, D.M.; Barich, J.J.

    1989-01-01

    Adaptation and use of a high-reliability robot to conduct a standard laboratory procedure for soil chemical analysis are reported. Results from a blind comparative test were used to obtain a quantitative measure of the improvement in precision possible with the automated test method. Results from the automated chemical analysis procedure were compared with values obtained from an EPA-certified lab and with results from a more extensive interlaboratory round robin conducted by the EPA. For several elements, up to fivefold improvement in precision was obtained with the automated test method

  7. Automated Design and Analysis Tool for CEV Structural and TPS Components, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation of the proposed effort is a unique automated process for the analysis, design, and sizing of CEV structures and TPS. This developed process will...

  8. Automated Design and Analysis Tool for CLV/CEV Composite and Metallic Structural Components, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation of the proposed effort is a unique automated process for the analysis, design, and sizing of CLV/CEV composite and metallic structures. This developed...

  9. An Analysis of Automated Solutions for the Certification and Accreditation of Navy Medicine Information Assets

    National Research Council Canada - National Science Library

    Gonzales, Dominic V

    2005-01-01

    ... improve Navy Medicine's current C AND A security posture. The primary research reviewed C AND A policy and included a comparative analysis of two cutting edge automated C AND A tools namely, Xacta and eMASS...

  10. GRN2SBML: automated encoding and annotation of inferred gene regulatory networks complying with SBML.

    Science.gov (United States)

    Vlaic, Sebastian; Hoffmann, Bianca; Kupfer, Peter; Weber, Michael; Dräger, Andreas

    2013-09-01

    GRN2SBML automatically encodes gene regulatory networks derived from several inference tools in systems biology markup language. Providing a graphical user interface, the networks can be annotated via the simple object access protocol (SOAP)-based application programming interface of BioMart Central Portal and minimum information required in the annotation of models registry. Additionally, we provide an R-package, which processes the output of supported inference algorithms and automatically passes all required parameters to GRN2SBML. Therefore, GRN2SBML closes a gap in the processing pipeline between the inference of gene regulatory networks and their subsequent analysis, visualization and storage. GRN2SBML is freely available under the GNU Public License version 3 and can be downloaded from http://www.hki-jena.de/index.php/0/2/490. General information on GRN2SBML, examples and tutorials are available at the tool's web page.

  11. Automated processing of measuring information and control processes of eutrophication in water for household purpose, based on artificial neural networks

    Directory of Open Access Journals (Sweden)

    О.М. Безвесільна

    2006-04-01

    Full Text Available  The possibilities of application  informational-computer technologies for automated handling of a measuring information about development of seaweed (evtrofication in household reservoirs are considered. The input data’s for a research of processes evtrofication are videoimages of tests of water, which are used for the definition of geometric characteristics, number and biomass of seaweed. For handling a measuring information the methods of digital handling videoimages and mathematical means of artificial neural networks are offered.

  12. Manual versus Automated Narrative Analysis of Agrammatic Production Patterns: The Northwestern Narrative Language Analysis and Computerized Language Analysis

    Science.gov (United States)

    Hsu, Chien-Ju; Thompson, Cynthia K.

    2018-01-01

    Purpose: The purpose of this study is to compare the outcomes of the manually coded Northwestern Narrative Language Analysis (NNLA) system, which was developed for characterizing agrammatic production patterns, and the automated Computerized Language Analysis (CLAN) system, which has recently been adopted to analyze speech samples of individuals…

  13. Meteorological and oceanographic data collected from the National Data Buoy Center Coastal-Marine Automated Network (C-MAN) and moored (weather) buoys

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) established the Coastal-Marine Automated Network (C-MAN) for the National Weather Service in the early 1980's. NDBC has...

  14. Automated computation of autonomous spectral submanifolds for nonlinear modal analysis

    Science.gov (United States)

    Ponsioen, Sten; Pedergnana, Tiemo; Haller, George

    2018-04-01

    We discuss an automated computational methodology for computing two-dimensional spectral submanifolds (SSMs) in autonomous nonlinear mechanical systems of arbitrary degrees of freedom. In our algorithm, SSMs, the smoothest nonlinear continuations of modal subspaces of the linearized system, are constructed up to arbitrary orders of accuracy, using the parameterization method. An advantage of this approach is that the construction of the SSMs does not break down when the SSM folds over its underlying spectral subspace. A further advantage is an automated a posteriori error estimation feature that enables a systematic increase in the orders of the SSM computation until the required accuracy is reached. We find that the present algorithm provides a major speed-up, relative to numerical continuation methods, in the computation of backbone curves, especially in higher-dimensional problems. We illustrate the accuracy and speed of the automated SSM algorithm on lower- and higher-dimensional mechanical systems.

  15. Economic and workflow analysis of a blood bank automated system.

    Science.gov (United States)

    Shin, Kyung-Hwa; Kim, Hyung Hoi; Chang, Chulhun L; Lee, Eun Yup

    2013-07-01

    This study compared the estimated costs and times required for ABO/Rh(D) typing and unexpected antibody screening using an automated system and manual methods. The total cost included direct and labor costs. Labor costs were calculated on the basis of the average operator salaries and unit values (minutes), which was the hands-on time required to test one sample. To estimate unit values, workflows were recorded on video, and the time required for each process was analyzed separately. The unit values of ABO/Rh(D) typing using the manual method were 5.65 and 8.1 min during regular and unsocial working hours, respectively. The unit value was less than 3.5 min when several samples were tested simultaneously. The unit value for unexpected antibody screening was 2.6 min. The unit values using the automated method for ABO/Rh(D) typing, unexpected antibody screening, and both simultaneously were all 1.5 min. The total cost of ABO/Rh(D) typing of only one sample using the automated analyzer was lower than that of testing only one sample using the manual technique but higher than that of testing several samples simultaneously. The total cost of unexpected antibody screening using an automated analyzer was less than that using the manual method. ABO/Rh(D) typing using an automated analyzer incurs a lower unit value and cost than that using the manual technique when only one sample is tested at a time. Unexpected antibody screening using an automated analyzer always incurs a lower unit value and cost than that using the manual technique.

  16. Energy consumption control automation using Artificial Neural Networks and adaptive algorithms: Proposal of a new methodology and case study

    International Nuclear Information System (INIS)

    Benedetti, Miriam; Cesarotti, Vittorio; Introna, Vito; Serranti, Jacopo

    2016-01-01

    Highlights: • A methodology to enable energy consumption control automation is proposed. • The methodology is based on the use of Artificial Neural Networks. • A method to control the accuracy of the model over time is proposed. • Two methods to enable automatic retraining of the network are proposed. • Retraining methods are evaluated on their accuracy over time. - Abstract: Energy consumption control in energy intensive companies is always more considered as a critical activity to continuously improve energy performance. It undoubtedly requires a huge effort in data gathering and analysis, and the amount of these data together with the scarceness of human resources devoted to Energy Management activities who could maintain and update the analyses’ output are often the main barriers to its diffusion in companies. Advanced tools such as software based on machine learning techniques are therefore the key to overcome these barriers and allow an easy but accurate control. This type of systems is able to solve complex problems obtaining reliable results over time, but not to understand when the reliability of the results is declining (a common situation considering energy using systems, often undergoing structural changes) and to automatically adapt itself using a limited amount of training data, so that a completely automatic application is not yet available and the automatic energy consumption control using intelligent systems is still a challenge. This paper presents a whole new approach to energy consumption control, proposing a methodology based on Artificial Neural Networks (ANNs) and aimed at creating an automatic energy consumption control system. First of all, three different structures of neural networks are proposed and trained using a huge amount of data. Three different performance indicators are then used to identify the most suitable structure, which is implemented to create an energy consumption control tool. In addition, considering that

  17. The effects of local street network characteristics on the positional accuracy of automated geocoding for geographic health studies

    Directory of Open Access Journals (Sweden)

    Zimmerman Dale L

    2010-02-01

    Full Text Available Abstract Background Automated geocoding of patient addresses for the purpose of conducting spatial epidemiologic studies results in positional errors. It is well documented that errors tend to be larger in rural areas than in cities, but possible effects of local characteristics of the street network, such as street intersection density and street length, on errors have not yet been documented. Our study quantifies effects of these local street network characteristics on the means and the entire probability distributions of positional errors, using regression methods and tolerance intervals/regions, for more than 6000 geocoded patient addresses from an Iowa county. Results Positional errors were determined for 6376 addresses in Carroll County, Iowa, as the vector difference between each 100%-matched automated geocode and its ground-truthed location. Mean positional error magnitude was inversely related to proximate street intersection density. This effect was statistically significant for both rural and municipal addresses, but more so for the former. Also, the effect of street segment length on geocoding accuracy was statistically significant for municipal, but not rural, addresses; for municipal addresses mean error magnitude increased with length. Conclusion Local street network characteristics may have statistically significant effects on geocoding accuracy in some places, but not others. Even in those locales where their effects are statistically significant, street network characteristics may explain a relatively small portion of the variability among geocoding errors. It appears that additional factors besides rurality and local street network characteristics affect accuracy in general.

  18. Weighted Complex Network Analysis of Pakistan Highways

    Directory of Open Access Journals (Sweden)

    Yasir Tariq Mohmand

    2013-01-01

    Full Text Available The structure and properties of public transportation networks have great implications in urban planning, public policies, and infectious disease control. This study contributes a weighted complex network analysis of travel routes on the national highway network of Pakistan. The network is responsible for handling 75 percent of the road traffic yet is largely inadequate, poor, and unreliable. The highway network displays small world properties and is assortative in nature. Based on the betweenness centrality of the nodes, the most important cities are identified as this could help in identifying the potential congestion points in the network. Keeping in view the strategic location of Pakistan, such a study is of practical importance and could provide opportunities for policy makers to improve the performance of the highway network.

  19. Noise Analysis studies with neural networks

    International Nuclear Information System (INIS)

    Seker, S.; Ciftcioglu, O.

    1996-01-01

    Noise analysis studies with neural network are aimed. Stochastic signals at the input of the network are used to obtain an algorithmic multivariate stochastic signal modeling. To this end, lattice modeling of a stochastic signal is performed to obtain backward residual noise sources which are uncorrelated among themselves. There are applied together with an additional input to the network to obtain an algorithmic model which is used for signal detection for early failure in plant monitoring. The additional input provides the information to the network to minimize the difference between the signal and the network's one-step-ahead prediction. A stochastic algorithm is used for training where the errors reflecting the measurement error during the training are also modelled so that fast and consistent convergence of network's weights is obtained. The lattice structure coupled to neural network investigated with measured signals from an actual power plant. (authors)

  20. A simple and robust method for automated photometric classification of supernovae using neural networks

    Science.gov (United States)

    Karpenka, N. V.; Feroz, F.; Hobson, M. P.

    2013-02-01

    A method is presented for automated photometric classification of supernovae (SNe) as Type Ia or non-Ia. A two-step approach is adopted in which (i) the SN light curve flux measurements in each observing filter are fitted separately to an analytical parametrized function that is sufficiently flexible to accommodate virtually all types of SNe and (ii) the fitted function parameters and their associated uncertainties, along with the number of flux measurements, the maximum-likelihood value of the fit and Bayesian evidence for the model, are used as the input feature vector to a classification neural network that outputs the probability that the SN under consideration is of Type Ia. The method is trained and tested using data released following the Supernova Photometric Classification Challenge (SNPCC), consisting of light curves for 20 895 SNe in total. We consider several random divisions of the data into training and testing sets: for instance, for our sample D_1 (D_4), a total of 10 (40) per cent of the data are involved in training the algorithm and the remainder used for blind testing of the resulting classifier; we make no selection cuts. Assigning a canonical threshold probability of pth = 0.5 on the network output to class an SN as Type Ia, for the sample D_1 (D_4) we obtain a completeness of 0.78 (0.82), purity of 0.77 (0.82) and SNPCC figure of merit of 0.41 (0.50). Including the SN host-galaxy redshift and its uncertainty as additional inputs to the classification network results in a modest 5-10 per cent increase in these values. We find that the quality of the classification does not vary significantly with SN redshift. Moreover, our probabilistic classification method allows one to calculate the expected completeness, purity and figure of merit (or other measures of classification quality) as a function of the threshold probability pth, without knowing the true classes of the SNe in the testing sample, as is the case in the classification of real SNe

  1. Deep multi-scale location-aware 3D convolutional neural networks for automated detection of lacunes of presumed vascular origin

    Directory of Open Access Journals (Sweden)

    Mohsen Ghafoorian

    2017-01-01

    In this paper, we propose an automated two-stage method using deep convolutional neural networks (CNN. We show that this method has good performance and can considerably benefit readers. We first use a fully convolutional neural network to detect initial candidates. In the second step, we employ a 3D CNN as a false positive reduction tool. As the location information is important to the analysis of candidate structures, we further equip the network with contextual information using multi-scale analysis and integration of explicit location features. We trained, validated and tested our networks on a large dataset of 1075 cases obtained from two different studies. Subsequently, we conducted an observer study with four trained observers and compared our method with them using a free-response operating characteristic analysis. Shown on a test set of 111 cases, the resulting CAD system exhibits performance similar to the trained human observers and achieves a sensitivity of 0.974 with 0.13 false positives per slice. A feasibility study also showed that a trained human observer would considerably benefit once aided by the CAD system.

  2. Automated modal parameter estimation using correlation analysis and bootstrap sampling

    Science.gov (United States)

    Yaghoubi, Vahid; Vakilzadeh, Majid K.; Abrahamsson, Thomas J. S.

    2018-02-01

    The estimation of modal parameters from a set of noisy measured data is a highly judgmental task, with user expertise playing a significant role in distinguishing between estimated physical and noise modes of a test-piece. Various methods have been developed to automate this procedure. The common approach is to identify models with different orders and cluster similar modes together. However, most proposed methods based on this approach suffer from high-dimensional optimization problems in either the estimation or clustering step. To overcome this problem, this study presents an algorithm for autonomous modal parameter estimation in which the only required optimization is performed in a three-dimensional space. To this end, a subspace-based identification method is employed for the estimation and a non-iterative correlation-based method is used for the clustering. This clustering is at the heart of the paper. The keys to success are correlation metrics that are able to treat the problems of spatial eigenvector aliasing and nonunique eigenvectors of coalescent modes simultaneously. The algorithm commences by the identification of an excessively high-order model from frequency response function test data. The high number of modes of this model provides bases for two subspaces: one for likely physical modes of the tested system and one for its complement dubbed the subspace of noise modes. By employing the bootstrap resampling technique, several subsets are generated from the same basic dataset and for each of them a model is identified to form a set of models. Then, by correlation analysis with the two aforementioned subspaces, highly correlated modes of these models which appear repeatedly are clustered together and the noise modes are collected in a so-called Trashbox cluster. Stray noise modes attracted to the mode clusters are trimmed away in a second step by correlation analysis. The final step of the algorithm is a fuzzy c-means clustering procedure applied to

  3. Automated analysis of high-content microscopy data with deep learning.

    Science.gov (United States)

    Kraus, Oren Z; Grys, Ben T; Ba, Jimmy; Chong, Yolanda; Frey, Brendan J; Boone, Charles; Andrews, Brenda J

    2017-04-18

    Existing computational pipelines for quantitative analysis of high-content microscopy data rely on traditional machine learning approaches that fail to accurately classify more than a single dataset without substantial tuning and training, requiring extensive analysis. Here, we demonstrate that the application of deep learning to biological image data can overcome the pitfalls associated with conventional machine learning classifiers. Using a deep convolutional neural network (DeepLoc) to analyze yeast cell images, we show improved performance over traditional approaches in the automated classification of protein subcellular localization. We also demonstrate the ability of DeepLoc to classify highly divergent image sets, including images of pheromone-arrested cells with abnormal cellular morphology, as well as images generated in different genetic backgrounds and in different laboratories. We offer an open-source implementation that enables updating DeepLoc on new microscopy datasets. This study highlights deep learning as an important tool for the expedited analysis of high-content microscopy data. © 2017 The Authors. Published under the terms of the CC BY 4.0 license.

  4. Classification and Analysis of Computer Network Traffic

    OpenAIRE

    Bujlow, Tomasz

    2014-01-01

    Traffic monitoring and analysis can be done for multiple different reasons: to investigate the usage of network resources, assess the performance of network applications, adjust Quality of Service (QoS) policies in the network, log the traffic to comply with the law, or create realistic models of traffic for academic purposes. We define the objective of this thesis as finding a way to evaluate the performance of various applications in a high-speed Internet infrastructure. To satisfy the obje...

  5. Wireless Sensor Network Security Analysis

    OpenAIRE

    Hemanta Kumar Kalita; Avijit Kar

    2009-01-01

    The emergence of sensor networks as one of the dominant technology trends in the coming decades hasposed numerous unique challenges to researchers. These networks are likely to be composed of hundreds,and potentially thousands of tiny sensor nodes, functioning autonomously, and in many cases, withoutaccess to renewable energy resources. Cost constraints and the need for ubiquitous, invisibledeployments will result in small sized, resource-constrained sensor nodes. While the set of challenges ...

  6. Future Control and Automation : Proceedings of the 2nd International Conference on Future Control and Automation

    CERN Document Server

    2012-01-01

    This volume Future Control and Automation- Volume 2 includes best papers from 2012 2nd International Conference on Future Control and Automation (ICFCA 2012) held on July 1-2, 2012, Changsha, China. Future control and automation is the use of control systems and information technologies to reduce the need for human work in the production of goods and services. This volume can be divided into six sessions on the basis of the classification of manuscripts considered, which is listed as follows: Mathematical Modeling, Analysis and Computation, Control Engineering, Reliable Networks Design, Vehicular Communications and Networking, Automation and Mechatronics.

  7. Prajna: adding automated reasoning to the visual- analysis process.

    Science.gov (United States)

    Swing, E

    2010-01-01

    Developers who create applications for knowledge representation must contend with challenges in both the abundance of data and the variety of toolkits, architectures, and standards for representing it. Prajna is a flexible Java toolkit designed to overcome these challenges with an extensible architecture that supports both visualization and automated reasoning.

  8. Physical explosion analysis in heat exchanger network design

    Science.gov (United States)

    Pasha, M.; Zaini, D.; Shariff, A. M.

    2016-06-01

    The failure of shell and tube heat exchangers is being extensively experienced by the chemical process industries. This failure can create a loss of production for long time duration. Moreover, loss of containment through heat exchanger could potentially lead to a credible event such as fire, explosion and toxic release. There is a need to analyse the possible worst case effect originated from the loss of containment of the heat exchanger at the early design stage. Physical explosion analysis during the heat exchanger network design is presented in this work. Baker and Prugh explosion models are deployed for assessing the explosion effect. Microsoft Excel integrated with process design simulator through object linking and embedded (OLE) automation for this analysis. Aspen HYSYS V (8.0) used as a simulation platform in this work. A typical heat exchanger network of steam reforming and shift conversion process was presented as a case study. It is investigated from this analysis that overpressure generated from the physical explosion of each heat exchanger can be estimated in a more precise manner by using Prugh model. The present work could potentially assist the design engineer to identify the critical heat exchanger in the network at the preliminary design stage.

  9. Industrial entrepreneurial network: Structural and functional analysis

    Science.gov (United States)

    Medvedeva, M. A.; Davletbaev, R. H.; Berg, D. B.; Nazarova, J. J.; Parusheva, S. S.

    2016-12-01

    Structure and functioning of two model industrial entrepreneurial networks are investigated in the present paper. One of these networks is forming when implementing an integrated project and consists of eight agents, which interact with each other and external environment. The other one is obtained from the municipal economy and is based on the set of the 12 real business entities. Analysis of the networks is carried out on the basis of the matrix of mutual payments aggregated over the certain time period. The matrix is created by the methods of experimental economics. Social Network Analysis (SNA) methods and instruments were used in the present research. The set of basic structural characteristics was investigated: set of quantitative parameters such as density, diameter, clustering coefficient, different kinds of centrality, and etc. They were compared with the random Bernoulli graphs of the corresponding size and density. Discovered variations of random and entrepreneurial networks structure are explained by the peculiarities of agents functioning in production network. Separately, were identified the closed exchange circuits (cyclically closed contours of graph) forming an autopoietic (self-replicating) network pattern. The purpose of the functional analysis was to identify the contribution of the autopoietic network pattern in its gross product. It was found that the magnitude of this contribution is more than 20%. Such value allows using of the complementary currency in order to stimulate economic activity of network agents.

  10. 3rd International Conference on Network Analysis

    CERN Document Server

    Kalyagin, Valery; Pardalos, Panos

    2014-01-01

    This volume compiles the major results of conference participants from the "Third International Conference in Network Analysis" held at the Higher School of Economics, Nizhny Novgorod in May 2013, with the aim to initiate further joint research among different groups. The contributions in this book cover a broad range of topics relevant to the theory and practice of network analysis, including the reliability of complex networks, software, theory, methodology, and applications.  Network analysis has become a major research topic over the last several years. The broad range of applications that can be described and analyzed by means of a network has brought together researchers, practitioners from numerous fields such as operations research, computer science, transportation, energy, biomedicine, computational neuroscience and social sciences. In addition, new approaches and computer environments such as parallel computing, grid computing, cloud computing, and quantum computing have helped to solve large scale...

  11. Automated analysis of angle closure from anterior chamber angle images.

    Science.gov (United States)

    Baskaran, Mani; Cheng, Jun; Perera, Shamira A; Tun, Tin A; Liu, Jiang; Aung, Tin

    2014-10-21

    To evaluate a novel software capable of automatically grading angle closure on EyeCam angle images in comparison with manual grading of images, with gonioscopy as the reference standard. In this hospital-based, prospective study, subjects underwent gonioscopy by a single observer, and EyeCam imaging by a different operator. The anterior chamber angle in a quadrant was classified as closed if the posterior trabecular meshwork could not be seen. An eye was classified as having angle closure if there were two or more quadrants of closure. Automated grading of the angle images was performed using customized software. Agreement between the methods was ascertained by κ statistic and comparison of area under receiver operating characteristic curves (AUC). One hundred forty subjects (140 eyes) were included, most of whom were Chinese (102/140, 72.9%) and women (72/140, 51.5%). Angle closure was detected in 61 eyes (43.6%) with gonioscopy in comparison with 59 eyes (42.1%, P = 0.73) using manual grading, and 67 eyes (47.9%, P = 0.24) with automated grading of EyeCam images. The agreement for angle closure diagnosis between gonioscopy and both manual (κ = 0.88; 95% confidence interval [CI), 0.81-0.96) and automated grading of EyeCam images was good (κ = 0.74; 95% CI, 0.63-0.85). The AUC for detecting eyes with gonioscopic angle closure was comparable for manual and automated grading (AUC 0.974 vs. 0.954, P = 0.31) of EyeCam images. Customized software for automated grading of EyeCam angle images was found to have good agreement with gonioscopy. Human observation of the EyeCam images may still be needed to avoid gross misclassification, especially in eyes with extensive angle closure. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  12. Custom Ontologies for Expanded Network Analysis

    Science.gov (United States)

    2006-12-01

    for Expanded Network Analysis. In Visualising Network Information (pp. 6-1 – 6-10). Meeting Proceedings RTO-MP-IST-063, Paper 6. Neuilly-sur-Seine...Even to this day, current research groups are working to develop an approach that involves taking all available text, video, imagery and audio and

  13. Analysis of complex networks using aggressive abstraction.

    Energy Technology Data Exchange (ETDEWEB)

    Colbaugh, Richard; Glass, Kristin.; Willard, Gerald

    2008-10-01

    This paper presents a new methodology for analyzing complex networks in which the network of interest is first abstracted to a much simpler (but equivalent) representation, the required analysis is performed using the abstraction, and analytic conclusions are then mapped back to the original network and interpreted there. We begin by identifying a broad and important class of complex networks which admit abstractions that are simultaneously dramatically simplifying and property preserving we call these aggressive abstractions -- and which can therefore be analyzed using the proposed approach. We then introduce and develop two forms of aggressive abstraction: 1.) finite state abstraction, in which dynamical networks with uncountable state spaces are modeled using finite state systems, and 2.) onedimensional abstraction, whereby high dimensional network dynamics are captured in a meaningful way using a single scalar variable. In each case, the property preserving nature of the abstraction process is rigorously established and efficient algorithms are presented for computing the abstraction. The considerable potential of the proposed approach to complex networks analysis is illustrated through case studies involving vulnerability analysis of technological networks and predictive analysis for social processes.

  14. Consistency analysis of network traffic repositories

    NARCIS (Netherlands)

    Lastdrager, Elmer; Lastdrager, E.E.H.; Pras, Aiko

    Traffic repositories with TCP/IP header information are very important for network analysis. Researchers often assume that such repositories reliably represent all traffic that has been flowing over the network; little thoughts are made regarding the consistency of these repositories. Still, for

  15. Automated diagnosis of prostate cancer in multi-parametric MRI based on multimodal convolutional neural networks

    Science.gov (United States)

    Le, Minh Hung; Chen, Jingyu; Wang, Liang; Wang, Zhiwei; Liu, Wenyu; (Tim Cheng, Kwang-Ting; Yang, Xin

    2017-08-01

    Automated methods for prostate cancer (PCa) diagnosis in multi-parametric magnetic resonance imaging (MP-MRIs) are critical for alleviating requirements for interpretation of radiographs while helping to improve diagnostic accuracy (Artan et al 2010 IEEE Trans. Image Process. 19 2444-55, Litjens et al 2014 IEEE Trans. Med. Imaging 33 1083-92, Liu et al 2013 SPIE Medical Imaging (International Society for Optics and Photonics) p 86701G, Moradi et al 2012 J. Magn. Reson. Imaging 35 1403-13, Niaf et al 2014 IEEE Trans. Image Process. 23 979-91, Niaf et al 2012 Phys. Med. Biol. 57 3833, Peng et al 2013a SPIE Medical Imaging (International Society for Optics and Photonics) p 86701H, Peng et al 2013b Radiology 267 787-96, Wang et al 2014 BioMed. Res. Int. 2014). This paper presents an automated method based on multimodal convolutional neural networks (CNNs) for two PCa diagnostic tasks: (1) distinguishing between cancerous and noncancerous tissues and (2) distinguishing between clinically significant (CS) and indolent PCa. Specifically, our multimodal CNNs effectively fuse apparent diffusion coefficients (ADCs) and T2-weighted MP-MRI images (T2WIs). To effectively fuse ADCs and T2WIs we design a new similarity loss function to enforce consistent features being extracted from both ADCs and T2WIs. The similarity loss is combined with the conventional classification loss functions and integrated into the back-propagation procedure of CNN training. The similarity loss enables better fusion results than existing methods as the feature learning processes of both modalities are mutually guided, jointly facilitating CNN to ‘see’ the true visual patterns of PCa. The classification results of multimodal CNNs are further combined with the results based on handcrafted features using a support vector machine classifier. To achieve a satisfactory accuracy for clinical use, we comprehensively investigate three critical factors which could greatly affect the performance of our

  16. Boolean Factor Analysis by Attractor Neural Network

    Czech Academy of Sciences Publication Activity Database

    Frolov, A. A.; Húsek, Dušan; Muraviev, I. P.; Polyakov, P.Y.

    2007-01-01

    Roč. 18, č. 3 (2007), s. 698-707 ISSN 1045-9227 R&D Projects: GA AV ČR 1ET100300419; GA ČR GA201/05/0079 Institutional research plan: CEZ:AV0Z10300504 Keywords : recurrent neural network * Hopfield-like neural network * associative memory * unsupervised learning * neural network architecture * neural network application * statistics * Boolean factor analysis * dimensionality reduction * features clustering * concepts search * information retrieval Subject RIV: BB - Applied Statistics, Operational Research Impact factor: 2.769, year: 2007

  17. Extending and automating a Systems-Theoretic hazard analysis for requirements generation and analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, John (Massachusetts Institute of Technology)

    2012-05-01

    Systems Theoretic Process Analysis (STPA) is a powerful new hazard analysis method designed to go beyond traditional safety techniques - such as Fault Tree Analysis (FTA) - that overlook important causes of accidents like flawed requirements, dysfunctional component interactions, and software errors. While proving to be very effective on real systems, no formal structure has been defined for STPA and its application has been ad-hoc with no rigorous procedures or model-based design tools. This report defines a formal mathematical structure underlying STPA and describes a procedure for systematically performing an STPA analysis based on that structure. A method for using the results of the hazard analysis to generate formal safety-critical, model-based system and software requirements is also presented. Techniques to automate both the analysis and the requirements generation are introduced, as well as a method to detect conflicts between the safety and other functional model-based requirements during early development of the system.

  18. Spectrum-Based and Collaborative Network Topology Analysis and Visualization

    Science.gov (United States)

    Hu, Xianlin

    2013-01-01

    Networks are of significant importance in many application domains, such as World Wide Web and social networks, which often embed rich topological information. Since network topology captures the organization of network nodes and links, studying network topology is very important to network analysis. In this dissertation, we study networks by…

  19. Analysis and Testing of Mobile Wireless Networks

    Science.gov (United States)

    Alena, Richard; Evenson, Darin; Rundquist, Victor; Clancy, Daniel (Technical Monitor)

    2002-01-01

    Wireless networks are being used to connect mobile computing elements in more applications as the technology matures. There are now many products (such as 802.11 and 802.11b) which ran in the ISM frequency band and comply with wireless network standards. They are being used increasingly to link mobile Intranet into Wired networks. Standard methods of analyzing and testing their performance and compatibility are needed to determine the limits of the technology. This paper presents analytical and experimental methods of determining network throughput, range and coverage, and interference sources. Both radio frequency (BE) domain and network domain analysis have been applied to determine wireless network throughput and range in the outdoor environment- Comparison of field test data taken under optimal conditions, with performance predicted from RF analysis, yielded quantitative results applicable to future designs. Layering multiple wireless network- sooners can increase performance. Wireless network components can be set to different radio frequency-hopping sequences or spreading functions, allowing more than one sooner to coexist. Therefore, we ran multiple 802.11-compliant systems concurrently in the same geographical area to determine interference effects and scalability, The results can be used to design of more robust networks which have multiple layers of wireless data communication paths and provide increased throughput overall.

  20. Complex Network Analysis of Guangzhou Metro

    Directory of Open Access Journals (Sweden)

    Yasir Tariq Mohmand

    2015-11-01

    Full Text Available The structure and properties of public transportation networks can provide suggestions for urban planning and public policies. This study contributes a complex network analysis of the Guangzhou metro. The metro network has 236 kilometers of track and is the 6th busiest metro system of the world. In this paper topological properties of the network are explored. We observed that the network displays small world properties and is assortative in nature. The network possesses a high average degree of 17.5 with a small diameter of 5. Furthermore, we also identified the most important metro stations based on betweenness and closeness centralities. These could help in identifying the probable congestion points in the metro system and provide policy makers with an opportunity to improve the performance of the metro system.

  1. Extending Stochastic Network Calculus to Loss Analysis

    Directory of Open Access Journals (Sweden)

    Chao Luo

    2013-01-01

    Full Text Available Loss is an important parameter of Quality of Service (QoS. Though stochastic network calculus is a very useful tool for performance evaluation of computer networks, existing studies on stochastic service guarantees mainly focused on the delay and backlog. Some efforts have been made to analyse loss by deterministic network calculus, but there are few results to extend stochastic network calculus for loss analysis. In this paper, we introduce a new parameter named loss factor into stochastic network calculus and then derive the loss bound through the existing arrival curve and service curve via this parameter. We then prove that our result is suitable for the networks with multiple input flows. Simulations show the impact of buffer size, arrival traffic, and service on the loss factor.

  2. Automated Source Code Analysis to Identify and Remove Software Security Vulnerabilities: Case Studies on Java Programs

    OpenAIRE

    Natarajan Meghanathan

    2013-01-01

    The high-level contribution of this paper is to illustrate the development of generic solution strategies to remove software security vulnerabilities that could be identified using automated tools for source code analysis on software programs (developed in Java). We use the Source Code Analyzer and Audit Workbench automated tools, developed by HP Fortify Inc., for our testing purposes. We present case studies involving a file writer program embedded with features for password validation, and ...

  3. Redefining the Practice of Peer Review Through Intelligent Automation-Part 3: Automated Report Analysis and Data Reconciliation.

    Science.gov (United States)

    Reiner, Bruce I

    2018-02-01

    One method for addressing existing peer review limitations is the assignment of peer review cases on a completely blinded basis, in which the peer reviewer would create an independent report which can then be cross-referenced with the primary reader report of record. By leveraging existing computerized data mining techniques, one could in theory automate and objectify the process of report data extraction, classification, and analysis, while reducing time and resource requirements intrinsic to manual peer review report analysis. Once inter-report analysis has been performed, resulting inter-report discrepancies can be presented to the radiologist of record for review, along with the option to directly communicate with the peer reviewer through an electronic data reconciliation tool aimed at collaboratively resolving inter-report discrepancies and improving report accuracy. All associated report and reconciled data could in turn be recorded in a referenceable peer review database, which provides opportunity for context and user-specific education and decision support.

  4. Computer network environment planning and analysis

    Science.gov (United States)

    Dalphin, John F.

    1989-01-01

    The GSFC Computer Network Environment provides a broadband RF cable between campus buildings and ethernet spines in buildings for the interlinking of Local Area Networks (LANs). This system provides terminal and computer linkage among host and user systems thereby providing E-mail services, file exchange capability, and certain distributed computing opportunities. The Environment is designed to be transparent and supports multiple protocols. Networking at Goddard has a short history and has been under coordinated control of a Network Steering Committee for slightly more than two years; network growth has been rapid with more than 1500 nodes currently addressed and greater expansion expected. A new RF cable system with a different topology is being installed during summer 1989; consideration of a fiber optics system for the future will begin soon. Summmer study was directed toward Network Steering Committee operation and planning plus consideration of Center Network Environment analysis and modeling. Biweekly Steering Committee meetings were attended to learn the background of the network and the concerns of those managing it. Suggestions for historical data gathering have been made to support future planning and modeling. Data Systems Dynamic Simulator, a simulation package developed at NASA and maintained at GSFC was studied as a possible modeling tool for the network environment. A modeling concept based on a hierarchical model was hypothesized for further development. Such a model would allow input of newly updated parameters and would provide an estimation of the behavior of the network.

  5. UMA/GAN network architecture analysis

    Science.gov (United States)

    Yang, Liang; Li, Wensheng; Deng, Chunjian; Lv, Yi

    2009-07-01

    This paper is to critically analyze the architecture of UMA which is one of Fix Mobile Convergence (FMC) solutions, and also included by the third generation partnership project(3GPP). In UMA/GAN network architecture, UMA Network Controller (UNC) is the key equipment which connects with cellular core network and mobile station (MS). UMA network could be easily integrated into the existing cellular networks without influencing mobile core network, and could provides high-quality mobile services with preferentially priced indoor voice and data usage. This helps to improve subscriber's experience. On the other hand, UMA/GAN architecture helps to integrate other radio technique into cellular network which includes WiFi, Bluetooth, and WiMax and so on. This offers the traditional mobile operators an opportunity to integrate WiMax technique into cellular network. In the end of this article, we also give an analysis of potential influence on the cellular core networks ,which is pulled by UMA network.

  6. Techniques for Intelligence Analysis of Networks

    National Research Council Canada - National Science Library

    Cares, Jeffrey R

    2005-01-01

    ...) there are significant intelligence analysis manifestations of these properties; and (4) a more satisfying theory of Networked Competition than currently exists for NCW/NCO is emerging from this research...

  7. Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis

    Directory of Open Access Journals (Sweden)

    Qu Lijia

    2009-03-01

    Full Text Available Abstract Background Spectral processing and post-experimental data analysis are the major tasks in NMR-based metabonomics studies. While there are commercial and free licensed software tools available to assist these tasks, researchers usually have to use multiple software packages for their studies because software packages generally focus on specific tasks. It would be beneficial to have a highly integrated platform, in which these tasks can be completed within one package. Moreover, with open source architecture, newly proposed algorithms or methods for spectral processing and data analysis can be implemented much more easily and accessed freely by the public. Results In this paper, we report an open source software tool, Automics, which is specifically designed for NMR-based metabonomics studies. Automics is a highly integrated platform that provides functions covering almost all the stages of NMR-based metabonomics studies. Automics provides high throughput automatic modules with most recently proposed algorithms and powerful manual modules for 1D NMR spectral processing. In addition to spectral processing functions, powerful features for data organization, data pre-processing, and data analysis have been implemented. Nine statistical methods can be applied to analyses including: feature selection (Fisher's criterion, data reduction (PCA, LDA, ULDA, unsupervised clustering (K-Mean and supervised regression and classification (PLS/PLS-DA, KNN, SIMCA, SVM. Moreover, Automics has a user-friendly graphical interface for visualizing NMR spectra and data analysis results. The functional ability of Automics is demonstrated with an analysis of a type 2 diabetes metabolic profile. Conclusion Automics facilitates high throughput 1D NMR spectral processing and high dimensional data analysis for NMR-based metabonomics applications. Using Automics, users can complete spectral processing and data analysis within one software package in most cases

  8. Automics: an integrated platform for NMR-based metabonomics spectral processing and data analysis.

    Science.gov (United States)

    Wang, Tao; Shao, Kang; Chu, Qinying; Ren, Yanfei; Mu, Yiming; Qu, Lijia; He, Jie; Jin, Changwen; Xia, Bin

    2009-03-16

    Spectral processing and post-experimental data analysis are the major tasks in NMR-based metabonomics studies. While there are commercial and free licensed software tools available to assist these tasks, researchers usually have to use multiple software packages for their studies because software packages generally focus on specific tasks. It would be beneficial to have a highly integrated platform, in which these tasks can be completed within one package. Moreover, with open source architecture, newly proposed algorithms or methods for spectral processing and data analysis can be implemented much more easily and accessed freely by the public. In this paper, we report an open source software tool, Automics, which is specifically designed for NMR-based metabonomics studies. Automics is a highly integrated platform that provides functions covering almost all the stages of NMR-based metabonomics studies. Automics provides high throughput automatic modules with most recently proposed algorithms and powerful manual modules for 1D NMR spectral processing. In addition to spectral processing functions, powerful features for data organization, data pre-processing, and data analysis have been implemented. Nine statistical methods can be applied to analyses including: feature selection (Fisher's criterion), data reduction (PCA, LDA, ULDA), unsupervised clustering (K-Mean) and supervised regression and classification (PLS/PLS-DA, KNN, SIMCA, SVM). Moreover, Automics has a user-friendly graphical interface for visualizing NMR spectra and data analysis results. The functional ability of Automics is demonstrated with an analysis of a type 2 diabetes metabolic profile. Automics facilitates high throughput 1D NMR spectral processing and high dimensional data analysis for NMR-based metabonomics applications. Using Automics, users can complete spectral processing and data analysis within one software package in most cases. Moreover, with its open source architecture, interested

  9. Deep convolutional neural network for the automated detection and diagnosis of seizure using EEG signals.

    Science.gov (United States)

    Acharya, U Rajendra; Oh, Shu Lih; Hagiwara, Yuki; Tan, Jen Hong; Adeli, Hojjat

    2017-09-27

    An encephalogram (EEG) is a commonly used ancillary test to aide in the diagnosis of epilepsy. The EEG signal contains information about the electrical activity of the brain. Traditionally, neurologists employ direct visual inspection to identify epileptiform abnormalities. This technique can be time-consuming, limited by technical artifact, provides variable results secondary to reader expertise level, and is limited in identifying abnormalities. Therefore, it is essential to develop a computer-aided diagnosis (CAD) system to automatically distinguish the class of these EEG signals using machine learning techniques. This is the first study to employ the convolutional neural network (CNN) for analysis of EEG signals. In this work, a 13-layer deep convolutional neural network (CNN) algorithm is implemented to detect normal, preictal, and seizure classes. The proposed technique achieved an accuracy, specificity, and sensitivity of 88.67%, 90.00% and 95.00%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Automated defect spatial signature analysis for semiconductor manufacturing process

    Science.gov (United States)

    Tobin, Jr., Kenneth W.; Gleason, Shaun S.; Karnowski, Thomas P.; Sari-Sarraf, Hamed

    1999-01-01

    An apparatus and method for performing automated defect spatial signature alysis on a data set representing defect coordinates and wafer processing information includes categorizing data from the data set into a plurality of high level categories, classifying the categorized data contained in each high level category into user-labeled signature events, and correlating the categorized, classified signature events to a present or incipient anomalous process condition.

  11. Automated handling for SAF batch furnace and chemistry analysis operations

    International Nuclear Information System (INIS)

    Bowen, W.W.; Sherrell, D.L.; Wiemers, M.J.

    1981-01-01

    The Secure Automated Fabrication Program is developing a remotely operated breeder reactor fuel pin fabrication line. The equipment will be installed in the Fuels and Materials Examination Facility being constructed at Hanford, Washington. Production is scheduled to start in mid-1986. The application of small pneumatically operated industrial robots for loading and unloading product into and out of batch furnaces and for distribution and handling of chemistry samples is described

  12. Alert management for home healthcare based on home automation analysis.

    Science.gov (United States)

    Truong, T T; de Lamotte, F; Diguet, J-Ph; Said-Hocine, F

    2010-01-01

    Rising healthcare for elder and disabled people can be controlled by offering people autonomy at home by means of information technology. In this paper, we present an original and sensorless alert management solution which performs multimedia and home automation service discrimination and extracts highly regular home activities as sensors for alert management. The results of simulation data, based on real context, allow us to evaluate our approach before application to real data.

  13. Improving Automated Lexical and Discourse Analysis of Online Chat Dialog

    Science.gov (United States)

    2007-09-01

    chatbots ”. Chatbots are automated user software independent of the chat room system that assist human participants, provide entertainment to the chat...both the chat room system and chatbots as well as information provided by the system and chatbots were often preceded by either the token “.” or...personal chatbots . Finally, we also classified chatbot responses as system dialog acts. The Yes/No Question chat dialog act is simply a question that

  14. Prototype Software for Automated Structural Analysis of Systems

    DEFF Research Database (Denmark)

    Jørgensen, A.; Izadi-Zamanabadi, Roozbeh; Kristensen, M.

    2004-01-01

    In this paper we present a prototype software tool that is developed to analyse the structural model of automated systems in order to identify redundant information that is hence utilized for Fault detection and Isolation (FDI) purposes. The dedicated algorithms in this software tool use a tri......-partite graph that represents the structural model of the system. A component-based approach has been used to address issues such as system complexity and recon¯gurability possibilities....

  15. Prototype Software for Automated Structural Analysis of Systems

    DEFF Research Database (Denmark)

    Jørgensen, A.; Izadi-Zamanabadi, Roozbeh; Kristensen, M.

    2004-01-01

    In this paper we present a prototype software tool that is developed to analyse the structural model of automated systems in order to identify redundant information that is hence utilized for Fault detection and Isolation (FDI) purposes. The dedicated algorithms in this software tool use a tri......-partite graph that represents the structural model of the system. A component-based approach has been used to address issues such as system complexity and reconfigurability possibilities....

  16. Topological Analysis of Wireless Networks (TAWN)

    Science.gov (United States)

    2016-05-31

    19b. TELEPHONE NUMBER (Include area code) 31-05-2016 FINAL REPORT 12-02-2015 -- 31-05-2016 Topological Analysis of Wireless Networks (TAWN) Robinson...Release, Distribution Unlimited) N/A The goal of this project was to develop topological methods to detect and localize vulnerabilities of wireless... topology U U U UU 32 Michael Robinson 202-885-3681 Final Report: May 2016 Topological Analysis of Wireless Networks Principal Investigator: Prof. Michael

  17. Analysis of FOXO transcriptional networks

    NARCIS (Netherlands)

    van der Vos, K.E.

    2010-01-01

    The PI3K-PKB-FOXO signalling module plays a pivotal role in a wide variety of cellular processes, including proliferation, survival, differentiation and metabolism. Inappropriate activation of this network is frequently observed in human cancer and causes uncontrolled proliferation and survival. In

  18. Automated multivariate analysis of comprehensive two-dimensional gas chromatograms of petroleum

    DEFF Research Database (Denmark)

    Skov, Søren Furbo

    of separated compounds makes the analysis of GCGC chromatograms tricky, as there are too much data for manual analysis , and automated analysis is not always trouble-free: Manual checking of the results is often necessary. In this work, I will investigate the possibility of another approach to analysis of GCGC...... impossible to find it. For a special class of models, multi-way models, unique solutions often exist, meaning that the underlying phenomena can be found. I have tested this class of models on GCGC data from petroleum and conclude that more work is needed before they can be automated. I demonstrate how...

  19. Development of Process Automation in the Neutron Activation Analysis Facility in Malaysian Nuclear Agency

    International Nuclear Information System (INIS)

    Yussup, N.; Azman, A.; Ibrahim, M.M.; Rahman, N.A.A.; Che Sohashaari, S.; Atan, M.N.; Hamzah, M.A.; Mokhtar, M.; Khalid, M.A.; Salim, N.A.A.; Hamzah, M.S.

    2018-01-01

    Neutron Activation Analysis (NAA) has been established in Malaysian Nuclear Agency (Nuclear Malaysia) since 1980s. Most of the procedures established from sample registration to analysis are performed manually. These manual procedures carried out by the NAA laboratory personnel are time consuming and inefficient. Hence, system automation is developed in order to provide an effective method to replace redundant manual data entries and produce faster sample analysis and calculation process. This report explains NAA process in Nuclear Malaysia and describes the automation development in detail which includes sample registration software, automatic sample changer system which consists of hardware and software; and sample analysis software. (author)

  20. Methods for Automating Analysis of Glacier Morphology for Regional Modelling: Centerlines, Extensions, and Elevation Bands

    Science.gov (United States)

    Viger, R. J.; Van Beusekom, A. E.

    2016-12-01

    The treatment of glaciers in modeling requires information about their shape and extent. This presentation discusses new methods and their application in a new glacier-capable variant of the USGS PRMS model, a physically-based, spatially distributed daily time-step model designed to simulate the runoff and evolution of glaciers through time. In addition to developing parameters describing PRMS land surfaces (hydrologic response units, HRUs), several of the analyses and products are likely of interest to cryospheric science community in general. The first method is a (fully automated) variation of logic previously presented in the literature for definition of the glacier centerline. Given that the surface of a glacier might be convex, using traditional topographic analyses based on a DEM to trace a path down the glacier is not reliable. Instead a path is derived based on a cost function. Although only a single path is presented in our results, the method can be easily modified to delineate a branched network of centerlines for each glacier. The second method extends the glacier terminus downslope by an arbitrary distance, according to local surface topography. This product is can be used to explore possible, if unlikely, scenarios under which glacier area grows. More usefully, this method can be used to approximate glacier extents from previous years without needing historical imagery. The final method presents an approach for segmenting the glacier into altitude-based HRUs. Successful integration of this information with traditional approaches for discretizing the non-glacierized portions of a basin requires several additional steps. These include synthesizing the glacier centerline network with one developed with a traditional DEM analysis, ensuring that flow can be routed under and beyond glaciers to a basin outlet. Results are presented based on analysis of the Copper River Basin, Alaska.

  1. Flexible automated systems of real time mining operation management: concepts, architecture, models of network engineering for data transmission and processing

    Energy Technology Data Exchange (ETDEWEB)

    Markhasin, A.B.

    1987-11-01

    Since the mid 1960's considerable effort has been invested by the mining industry and its research institutions and by universities to create real time mining management automation systems. Some of the shortcomings which still persist in realizing the efficiency such systems can offer are due to objective and subjective factors within and outside the management systems: the creation of the component base, automation equipment, and computer technology, on the one hand, and the organization, process, engineering, and coordination of mining work on the other. This review addresses several of these shortcomings with recommendations for their solution in a primary and systematic way and suggests methods for the implementation of microprocessors and a network of flexible data transmission and processing facilities for both surface and underground mining.

  2. 1st International Conference on Network Analysis

    CERN Document Server

    Kalyagin, Valery; Pardalos, Panos

    2013-01-01

    This volume contains a selection of contributions from the "First International Conference in Network Analysis," held at the University of Florida, Gainesville, on December 14-16, 2011. The remarkable diversity of fields that take advantage of Network Analysis makes the endeavor of gathering up-to-date material in a single compilation a useful, yet very difficult, task. The purpose of this volume is to overcome this difficulty by collecting the major results found by the participants and combining them in one easily accessible compilation. Network analysis has become a major research topic over the last several years. The broad range of applications that can be described and analyzed by means of a network is bringing together researchers, practitioners and other scientific communities from numerous fields such as Operations Research, Computer Science, Transportation, Energy, Social Sciences, and more. The contributions not only come from different fields, but also cover a broad range of topics relevant to the...

  3. Artificial neural networks for plasma spectroscopy analysis

    International Nuclear Information System (INIS)

    Morgan, W.L.; Larsen, J.T.; Goldstein, W.H.

    1992-01-01

    Artificial neural networks have been applied to a variety of signal processing and image recognition problems. Of the several common neural models the feed-forward, back-propagation network is well suited for the analysis of scientific laboratory data, which can be viewed as a pattern recognition problem. The authors present a discussion of the basic neural network concepts and illustrate its potential for analysis of experiments by applying it to the spectra of laser produced plasmas in order to obtain estimates of electron temperatures and densities. Although these are high temperature and density plasmas, the neural network technique may be of interest in the analysis of the low temperature and density plasmas characteristic of experiments and devices in gaseous electronics

  4. Visualization and Analysis of Complex Covert Networks

    DEFF Research Database (Denmark)

    Memon, Bisharat

    systems that are covert and hence inherently complex. My Ph.D. is positioned within the wider framework of CrimeFighter project. The framework envisions a number of key knowledge management processes that are involved in the workflow, and the toolbox provides supporting tools to assist human end......This report discusses and summarize the results of my work so far in relation to my Ph.D. project entitled "Visualization and Analysis of Complex Covert Networks". The focus of my research is primarily on development of methods and supporting tools for visualization and analysis of networked......-users (intelligence analysts) in harvesting, filtering, storing, managing, structuring, mining, analyzing, interpreting, and visualizing data about offensive networks. The methods and tools proposed and discussed in this work can also be applied to analysis of more generic complex networks....

  5. Historical Network Analysis of the Web

    DEFF Research Database (Denmark)

    Brügger, Niels

    2013-01-01

    This article discusses some of the fundamental methodological challenges related to doing historical network analyses of the web based on material in web archives. Since the late 1990s many countries have established extensive national web archives, and software supported network analysis...... of the online web has for a number of years gained currency within Internet studies. However, the combination of these two phenomena—historical network analysis of material in web archives—can at best be characterized as an emerging new area of study. Most of the methodological challenges within this new area...... revolve around the specific nature of archived web material. On the basis of an introduction to the processes involved in web archiving as well as of the characteristics of archived web material, the article outlines and scrutinizes some of the major challenges which may arise when doing network analysis...

  6. Development of an Automated Technique for Failure Modes and Effect Analysis

    DEFF Research Database (Denmark)

    Blanke, M.; Borch, Ole; Allasia, G.

    1999-01-01

    Advances in automation have provided integration of monitoring and control functions to enhance the operator's overview and ability to take remedy actions when faults occur. Automation in plant supervision is technically possible with integrated automation systems as platforms, but new design...... methods are needed to cope efficiently with the complexity and to ensure that the functionality of a supervisor is correct and consistent. In particular these methods are expected to significantly improve fault tolerance of the designed systems. The purpose of this work is to develop a software module...... implementing an automated technique for Failure Modes and Effects Analysis (FMEA). This technique is based on the matrix formulation of FMEA for the investigation of failure propagation through a system. As main result, this technique will provide the design engineer with decision tables for fault handling...

  7. Automated longitudinal intra-subject analysis (ALISA) for diffusion MRI tractography

    DEFF Research Database (Denmark)

    Aarnink, Saskia H; Vos, Sjoerd B; Leemans, Alexander

    2014-01-01

    the inter-subject and intra-subject automation in this situation are intended for subjects without gross pathology. In this work, we propose such an automated longitudinal intra-subject analysis (dubbed ALISA) approach, and assessed whether ALISA could preserve the same level of reliability as obtained....... The major disadvantage of manual FT segmentations, unfortunately, is that placing regions-of-interest for tract selection can be very labor-intensive and time-consuming. Although there are several methods that can identify specific WM fiber bundles in an automated way, manual FT segmentations across...... multiple subjects performed by a trained rater with neuroanatomical expertise are generally assumed to be more accurate. However, for longitudinal DTI analyses it may still be beneficial to automate the FT segmentation across multiple time points, but then for each individual subject separately. Both...

  8. Development of an automated technique for failure modes and effect analysis

    DEFF Research Database (Denmark)

    Blanke, Mogens; Borch, Ole; Bagnoli, F.

    1999-01-01

    Advances in automation have provided integration of monitoring and control functions to enhance the operator's overview and ability to take remedy actions when faults occur. Automation in plant supervision is technically possible with integrated automation systems as platforms, but new design...... methods are needed to cope efficiently with the complexity and to ensure that the functionality of a supervisor is correct and consistent. In particular these methods are expected to significantly improve fault tolerance of the designed systems. The purpose of this work is to develop a software module...... implementing an automated technique for Failure Modes and Effects Analysis (FMEA). This technique is based on the matrix formulation of FMEA for the investigation of failure propagation through a system. As main result, this technique will provide the design engineer with decision tables for fault handling...

  9. Engineering Mathematical Analysis Method for Productivity Rate in Linear Arrangement Serial Structure Automated Flow Assembly Line

    Directory of Open Access Journals (Sweden)

    Tan Chan Sin

    2015-01-01

    Full Text Available Productivity rate (Q or production rate is one of the important indicator criteria for industrial engineer to improve the system and finish good output in production or assembly line. Mathematical and statistical analysis method is required to be applied for productivity rate in industry visual overviews of the failure factors and further improvement within the production line especially for automated flow line since it is complicated. Mathematical model of productivity rate in linear arrangement serial structure automated flow line with different failure rate and bottleneck machining time parameters becomes the basic model for this productivity analysis. This paper presents the engineering mathematical analysis method which is applied in an automotive company which possesses automated flow assembly line in final assembly line to produce motorcycle in Malaysia. DCAS engineering and mathematical analysis method that consists of four stages known as data collection, calculation and comparison, analysis, and sustainable improvement is used to analyze productivity in automated flow assembly line based on particular mathematical model. Variety of failure rate that causes loss of productivity and bottleneck machining time is shown specifically in mathematic figure and presents the sustainable solution for productivity improvement for this final assembly automated flow line.

  10. 32 CFR 2001.50 - Telecommunications automated information systems and network security.

    Science.gov (United States)

    2010-07-01

    ... NATIONAL SECURITY INFORMATION Safeguarding § 2001.50 Telecommunications automated information systems and... identified in the Committee on National Security Systems (CNSS) issuances and the Intelligence Community Directive (ICD) 503, Intelligence Community Information Technology Systems Security Risk Management...

  11. The International Trade Network: weighted network analysis and modelling

    International Nuclear Information System (INIS)

    Bhattacharya, K; Mukherjee, G; Manna, S S; Saramäki, J; Kaski, K

    2008-01-01

    Tools of the theory of critical phenomena, namely the scaling analysis and universality, are argued to be applicable to large complex web-like network structures. Using a detailed analysis of the real data of the International Trade Network we argue that the scaled link weight distribution has an approximate log-normal distribution which remains robust over a period of 53 years. Another universal feature is observed in the power-law growth of the trade strength with gross domestic product, the exponent being similar for all countries. Using the 'rich-club' coefficient measure of the weighted networks it has been shown that the size of the rich-club controlling half of the world's trade is actually shrinking. While the gravity law is known to describe well the social interactions in the static networks of population migration, international trade, etc, here for the first time we studied a non-conservative dynamical model based on the gravity law which excellently reproduced many empirical features of the ITN

  12. Network Anomaly Detection Based on Wavelet Analysis

    Directory of Open Access Journals (Sweden)

    Ali A. Ghorbani

    2008-11-01

    Full Text Available Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  13. Network Anomaly Detection Based on Wavelet Analysis

    Science.gov (United States)

    Lu, Wei; Ghorbani, Ali A.

    2008-12-01

    Signal processing techniques have been applied recently for analyzing and detecting network anomalies due to their potential to find novel or unknown intrusions. In this paper, we propose a new network signal modelling technique for detecting network anomalies, combining the wavelet approximation and system identification theory. In order to characterize network traffic behaviors, we present fifteen features and use them as the input signals in our system. We then evaluate our approach with the 1999 DARPA intrusion detection dataset and conduct a comprehensive analysis of the intrusions in the dataset. Evaluation results show that the approach achieves high-detection rates in terms of both attack instances and attack types. Furthermore, we conduct a full day's evaluation in a real large-scale WiFi ISP network where five attack types are successfully detected from over 30 millions flows.

  14. Trimming of mammalian transcriptional networks using network component analysis

    Directory of Open Access Journals (Sweden)

    Liao James C

    2010-10-01

    Full Text Available Abstract Background Network Component Analysis (NCA has been used to deduce the activities of transcription factors (TFs from gene expression data and the TF-gene binding relationship. However, the TF-gene interaction varies in different environmental conditions and tissues, but such information is rarely available and cannot be predicted simply by motif analysis. Thus, it is beneficial to identify key TF-gene interactions under the experimental condition based on transcriptome data. Such information would be useful in identifying key regulatory pathways and gene markers of TFs in further studies. Results We developed an algorithm to trim network connectivity such that the important regulatory interactions between the TFs and the genes were retained and the regulatory signals were deduced. Theoretical studies demonstrated that the regulatory signals were accurately reconstructed even in the case where only three independent transcriptome datasets were available. At least 80% of the main target genes were correctly predicted in the extreme condition of high noise level and small number of datasets. Our algorithm was tested with transcriptome data taken from mice under rapamycin treatment. The initial network topology from the literature contains 70 TFs, 778 genes, and 1423 edges between the TFs and genes. Our method retained 1074 edges (i.e. 75% of the original edge number and identified 17 TFs as being significantly perturbed under the experimental condition. Twelve of these TFs are involved in MAPK signaling or myeloid leukemia pathways defined in the KEGG database, or are known to physically interact with each other. Additionally, four of these TFs, which are Hif1a, Cebpb, Nfkb1, and Atf1, are known targets of rapamycin. Furthermore, the trimmed network was able to predict Eno1 as an important target of Hif1a; this key interaction could not be detected without trimming the regulatory network. Conclusions The advantage of our new algorithm

  15. Sharing Feelings Online: Studying Emotional Well-Being via Automated Text Analysis of Facebook Posts

    Directory of Open Access Journals (Sweden)

    Michele eSettanni

    2015-07-01

    Full Text Available Digital traces of activity on social network sites represent a vast source of ecological data with potential connections with individual behavioral and psychological characteristics. The present study investigates the relationship between user-generated textual content shared on Facebook and emotional well-being. Self-report measures of depression, anxiety and stress were collected from 201 adult Facebook users from North Italy. Emotion-related textual indicators, including emoticon use, were extracted form users’ Facebook posts via automated text analysis. Correlation analyses revealed that individuals with higher levels of depression, anxiety expressed negative emotions on Facebook more frequently. In addition, use of emoticons expressing positive emotions correlated negatively with stress level. When comparing age groups, younger users reported higher frequency of both emotion-related words and emoticon use in their posts. Also, the relationship between online emotional expression and self-report emotional well-being was generally stronger in the younger group. Overall, findings support the feasibility and validity of studying individual emotional well-being by means of examination of Facebook profiles. Implications for online screening purposes and future research directions are discussed.

  16. Sharing feelings online: studying emotional well-being via automated text analysis of Facebook posts.

    Science.gov (United States)

    Settanni, Michele; Marengo, Davide

    2015-01-01

    Digital traces of activity on social network sites represent a vast source of ecological data with potential connections with individual behavioral and psychological characteristics. The present study investigates the relationship between user-generated textual content shared on Facebook and emotional well-being. Self-report measures of depression, anxiety, and stress were collected from 201 adult Facebook users from North Italy. Emotion-related textual indicators, including emoticon use, were extracted form users' Facebook posts via automated text analysis. Correlation analyses revealed that individuals with higher levels of depression, anxiety expressed negative emotions on Facebook more frequently. In addition, use of emoticons expressing positive emotions correlated negatively with stress level. When comparing age groups, younger users reported higher frequency of both emotion-related words and emoticon use in their posts. Also, the relationship between online emotional expression and self-report emotional well-being was generally stronger in the younger group. Overall, findings support the feasibility and validity of studying individual emotional well-being by means of examination of Facebook profiles. Implications for online screening purposes and future research directions are discussed.

  17. Application of quantum dots as analytical tools in automated chemical analysis: A review

    International Nuclear Information System (INIS)

    Frigerio, Christian; Ribeiro, David S.M.; Rodrigues, S. Sofia M.; Abreu, Vera L.R.G.; Barbosa, João A.C.; Prior, João A.V.; Marques, Karine L.; Santos, João L.M.

    2012-01-01

    Highlights: ► Review on quantum dots application in automated chemical analysis. ► Automation by using flow-based techniques. ► Quantum dots in liquid chromatography and capillary electrophoresis. ► Detection by fluorescence and chemiluminescence. ► Electrochemiluminescence and radical generation. - Abstract: Colloidal semiconductor nanocrystals or quantum dots (QDs) are one of the most relevant developments in the fast-growing world of nanotechnology. Initially proposed as luminescent biological labels, they are finding new important fields of application in analytical chemistry, where their photoluminescent properties have been exploited in environmental monitoring, pharmaceutical and clinical analysis and food quality control. Despite the enormous variety of applications that have been developed, the automation of QDs-based analytical methodologies by resorting to automation tools such as continuous flow analysis and related techniques, which would allow to take advantage of particular features of the nanocrystals such as the versatile surface chemistry and ligand binding ability, the aptitude to generate reactive species, the possibility of encapsulation in different materials while retaining native luminescence providing the means for the implementation of renewable chemosensors or even the utilisation of more drastic and even stability impairing reaction conditions, is hitherto very limited. In this review, we provide insights into the analytical potential of quantum dots focusing on prospects of their utilisation in automated flow-based and flow-related approaches and the future outlook of QDs applications in chemical analysis.

  18. Automated Machinery Health Monitoring Using Stress Wave Analysis & Artificial Intelligence

    National Research Council Canada - National Science Library

    Board, David

    1998-01-01

    .... Army, for application to helicopter drive train components. The system will detect structure borne, high frequency acoustic data, and process it with feature extraction and polynomial network artificial intelligence software...

  19. Automated Detection of Fronts using a Deep Learning Convolutional Neural Network

    Science.gov (United States)

    Biard, J. C.; Kunkel, K.; Racah, E.

    2017-12-01

    A deeper understanding of climate model simulations and the future effects of global warming on extreme weather can be attained through direct analyses of the phenomena that produce weather. Such analyses require these phenomena to be identified in automatic, unbiased, and comprehensive ways. Atmospheric fronts are centrally important weather phenomena because of the variety of significant weather events, such as thunderstorms, directly associated with them. In current operational meteorology, fronts are identified and drawn visually based on the approximate spatial coincidence of a number of quasi-linear localized features - a trough (relative minimum) in air pressure in combination with gradients in air temperature and/or humidity and a shift in wind, and are categorized as cold, warm, stationary, or occluded, with each type exhibiting somewhat different characteristics. Fronts are extended in space with one dimension much larger than the other (often represented by complex curved lines), which poses a significant challenge for automated approaches. We addressed this challenge by using a Deep Learning Convolutional Neural Network (CNN) to automatically identify and classify fronts. The CNN was trained using a "truth" dataset of front locations identified by National Weather Service meteorologists as part of operational 3-hourly surface analyses. The input to the CNN is a set of 5 gridded fields of surface atmospheric variables, including 2m temperature, 2m specific humidity, surface pressure, and the two components of the 10m horizontal wind velocity vector at 3-hr resolution. The output is a set of feature maps containing the per - grid cell probabilities for the presence of the 4 front types. The CNN was trained on a subset of the data and then used to produce front probabilities for each 3-hr time snapshot over a 14-year period covering the continental United States and some adjacent areas. The total frequencies of fronts derived from the CNN outputs matches

  20. Social network analysis applied to team sports analysis

    CERN Document Server

    Clemente, Filipe Manuel; Mendes, Rui Sousa

    2016-01-01

    Explaining how graph theory and social network analysis can be applied to team sports analysis, This book presents useful approaches, models and methods that can be used to characterise the overall properties of team networks and identify the prominence of each team player. Exploring the different possible network metrics that can be utilised in sports analysis, their possible applications and variances from situation to situation, the respective chapters present an array of illustrative case studies. Identifying the general concepts of social network analysis and network centrality metrics, readers are shown how to generate a methodological protocol for data collection. As such, the book provides a valuable resource for students of the sport sciences, sports engineering, applied computation and the social sciences.

  1. Malware Classification Based on the Behavior Analysis and Back Propagation Neural Network

    Directory of Open Access Journals (Sweden)

    Pan Zhi-Peng

    2016-01-01

    Full Text Available With the development of the Internet, malwares have also been expanded on the network systems rapidly. In order to deal with the diversity and amount of the variants, a number of automated behavior analysis tools have emerged as the time requires. Yet these tools produce detailed behavior reports of the malwares, it still needs to specify its category and judge its criticality manually. In this paper, we propose an automated malware classification approach based on the behavior analysis. We firstly perform dynamic analyses to obtain the detailed behavior profiles of the malwares, which are then used to abstract the main features of the malwares and serve as the inputs of the Back Propagation (BP Neural Network model.The experimental results demonstrate that our classification technique is able to classify the malware variants effectively and detect malware accurately.

  2. Fast network centrality analysis using GPUs

    Directory of Open Access Journals (Sweden)

    Shi Zhiao

    2011-05-01

    Full Text Available Abstract Background With the exploding volume of data generated by continuously evolving high-throughput technologies, biological network analysis problems are growing larger in scale and craving for more computational power. General Purpose computation on Graphics Processing Units (GPGPU provides a cost-effective technology for the study of large-scale biological networks. Designing algorithms that maximize data parallelism is the key in leveraging the power of GPUs. Results We proposed an efficient data parallel formulation of the All-Pairs Shortest Path problem, which is the key component for shortest path-based centrality computation. A betweenness centrality algorithm built upon this formulation was developed and benchmarked against the most recent GPU-based algorithm. Speedup between 11 to 19% was observed in various simulated scale-free networks. We further designed three algorithms based on this core component to compute closeness centrality, eccentricity centrality and stress centrality. To make all these algorithms available to the research community, we developed a software package gpu-fan (GPU-based Fast Analysis of Networks for CUDA enabled GPUs. Speedup of 10-50× compared with CPU implementations was observed for simulated scale-free networks and real world biological networks. Conclusions gpu-fan provides a significant performance improvement for centrality computation in large-scale networks. Source code is available under the GNU Public License (GPL at http://bioinfo.vanderbilt.edu/gpu-fan/.

  3. Web-based automation of green building rating index and life cycle cost analysis

    Science.gov (United States)

    Shahzaib Khan, Jam; Zakaria, Rozana; Aminuddin, Eeydzah; IzieAdiana Abidin, Nur; Sahamir, Shaza Rina; Ahmad, Rosli; Nafis Abas, Darul

    2018-04-01

    Sudden decline in financial markets and economic meltdown has slow down adaptation and lowered interest of investors towards green certified buildings due to their higher initial costs. Similarly, it is essential to fetch investor’s attention towards more development of green buildings through automated tools for the construction projects. Though, historical dearth is found on the automation of green building rating tools that brings up an essential gap to develop an automated analog computerized programming tool. This paper present a proposed research aim to develop an integrated web-based automated analog computerized programming that applies green building rating assessment tool, green technology and life cycle cost analysis. It also emphasizes to identify variables of MyCrest and LCC to be integrated and developed in a framework then transformed into automated analog computerized programming. A mix methodology of qualitative and quantitative survey and its development portray the planned to carry MyCrest-LCC integration to an automated level. In this study, the preliminary literature review enriches better understanding of Green Building Rating Tools (GBRT) integration to LCC. The outcome of this research is a pave way for future researchers to integrate other efficient tool and parameters that contributes towards green buildings and future agendas.

  4. Comparative analysis of automation of production process with industrial robots in Asia/Australia and Europe

    Directory of Open Access Journals (Sweden)

    I. Karabegović

    2017-01-01

    Full Text Available The term "INDUSTRY 4.0" or "fourth industrial revolution" was first introduced at the fair in 2011 in Hannover. It comes from the high-tech strategy of the German Federal Government that promotes automation-computerization to complete smart automation, meaning the introduction of a method of self-automation, self-configuration, self-diagnosing and fixing the problem, knowledge and intelligent decision-making. Any automation, including smart, cannot be imagined without industrial robots. Along with the fourth industrial revolution, ‘’robotic revolution’’ is taking place in Japan. Robotic revolution refers to the development and research of robotic technology with the aim of using robots in all production processes, and the use of robots in real life, to be of service to a man in daily life. Knowing these facts, an analysis was conducted of the representation of industrial robots in the production processes on the two continents of Europe and Asia /Australia, as well as research that industry is ready for the introduction of intelligent automation with the goal of establishing future smart factories. The paper gives a representation of the automation of production processes in Europe and Asia/Australia, with predictions for the future.

  5. Crawling Facebook for Social Network Analysis Purposes

    OpenAIRE

    Catanese, Salvatore A.; De Meo, Pasquale; Ferrara, Emilio; Fiumara, Giacomo; Provetti, Alessandro

    2011-01-01

    We describe our work in the collection and analysis of massive data describing the connections between participants to online social networks. Alternative approaches to social network data collection are defined and evaluated in practice, against the popular Facebook Web site. Thanks to our ad-hoc, privacy-compliant crawlers, two large samples, comprising millions of connections, have been collected; the data is anonymous and organized as an undirected graph. We describe a set of tools that w...

  6. Network Analysis in Community Psychology: Looking Back, Looking Forward

    OpenAIRE

    Neal, Zachary P.; Neal, Jennifer Watling

    2017-01-01

    Highlights Network analysis is ideally suited for community psychology research because it focuses on context. Use of network analysis in community psychology is growing. Network analysis in community psychology has employed some potentially problematic practices. Recommended practices are identified to improve network analysis in community psychology.

  7. Automated daily quality control analysis for mammography in a multi-unit imaging center.

    Science.gov (United States)

    Sundell, Veli-Matti; Mäkelä, Teemu; Meaney, Alexander; Kaasalainen, Touko; Savolainen, Sauli

    2018-01-01

    Background The high requirements for mammography image quality necessitate a systematic quality assurance process. Digital imaging allows automation of the image quality analysis, which can potentially improve repeatability and objectivity compared to a visual evaluation made by the users. Purpose To develop an automatic image quality analysis software for daily mammography quality control in a multi-unit imaging center. Material and Methods An automated image quality analysis software using the discrete wavelet transform and multiresolution analysis was developed for the American College of Radiology accreditation phantom. The software was validated by analyzing 60 randomly selected phantom images from six mammography systems and 20 phantom images with different dose levels from one mammography system. The results were compared to a visual analysis made by four reviewers. Additionally, long-term image quality trends of a full-field digital mammography system and a computed radiography mammography system were investigated. Results The automated software produced feature detection levels comparable to visual analysis. The agreement was good in the case of fibers, while the software detected somewhat more microcalcifications and characteristic masses. Long-term follow-up via a quality assurance web portal demonstrated the feasibility of using the software for monitoring the performance of mammography systems in a multi-unit imaging center. Conclusion Automated image quality analysis enables monitoring the performance of digital mammography systems in an efficient, centralized manner.

  8. Completely automated modal analysis procedure based on the combination of different OMA methods

    Science.gov (United States)

    Ripamonti, Francesco; Bussini, Alberto; Resta, Ferruccio

    2018-03-01

    In this work a completely automated output-only Modal Analysis procedure is presented and all its benefits are listed. Based on the merging of different Operational Modal Analysis methods and a statistical approach, the identification process has been improved becoming more robust and giving as results only the real natural frequencies, damping ratios and mode shapes of the system. The effect of the temperature can be taken into account as well, leading to the creation of a better tool for automated Structural Health Monitoring. The algorithm has been developed and tested on a numerical model of a scaled three-story steel building present in the laboratories of Politecnico di Milano.

  9. Radial basis function (RBF) neural network control for mechanical systems design, analysis and Matlab simulation

    CERN Document Server

    Liu, Jinkun

    2013-01-01

    Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design.   This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronauti...

  10. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network

    Directory of Open Access Journals (Sweden)

    Kim Hyun

    2011-12-01

    Full Text Available Abstract Background Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. Results We herein introduce a framework for network modularization and Bayesian network analysis (FMB to investigate organism’s metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. Conclusions After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.

  11. Framework for network modularization and Bayesian network analysis to investigate the perturbed metabolic network.

    Science.gov (United States)

    Kim, Hyun Uk; Kim, Tae Yong; Lee, Sang Yup

    2011-01-01

    Genome-scale metabolic network models have contributed to elucidating biological phenomena, and predicting gene targets to engineer for biotechnological applications. With their increasing importance, their precise network characterization has also been crucial for better understanding of the cellular physiology. We herein introduce a framework for network modularization and Bayesian network analysis (FMB) to investigate organism's metabolism under perturbation. FMB reveals direction of influences among metabolic modules, in which reactions with similar or positively correlated flux variation patterns are clustered, in response to specific perturbation using metabolic flux data. With metabolic flux data calculated by constraints-based flux analysis under both control and perturbation conditions, FMB, in essence, reveals the effects of specific perturbations on the biological system through network modularization and Bayesian network analysis at metabolic modular level. As a demonstration, this framework was applied to the genetically perturbed Escherichia coli metabolism, which is a lpdA gene knockout mutant, using its genome-scale metabolic network model. After all, it provides alternative scenarios of metabolic flux distributions in response to the perturbation, which are complementary to the data obtained from conventionally available genome-wide high-throughput techniques or metabolic flux analysis.

  12. 3D Assembly Group Analysis for Cognitive Automation

    Directory of Open Access Journals (Sweden)

    Christian Brecher

    2012-01-01

    Full Text Available A concept that allows the cognitive automation of robotic assembly processes is introduced. An assembly cell comprised of two robots was designed to verify the concept. For the purpose of validation a customer-defined part group consisting of Hubelino bricks is assembled. One of the key aspects for this process is the verification of the assembly group. Hence a software component was designed that utilizes the Microsoft Kinect to perceive both depth and color data in the assembly area. This information is used to determine the current state of the assembly group and is compared to a CAD model for validation purposes. In order to efficiently resolve erroneous situations, the results are interactively accessible to a human expert. The implications for an industrial application are demonstrated by transferring the developed concepts to an assembly scenario for switch-cabinet systems.

  13. An approach for automated analysis of particle holograms

    Science.gov (United States)

    Stanton, A. C.; Caulfield, H. J.; Stewart, G. W.

    1984-01-01

    A simple method for analyzing droplet holograms is proposed that is readily adaptable to automation using modern image digitizers and analyzers for determination of the number, location, and size distributions of spherical or nearly spherical droplets. The method determines these parameters by finding the spatial location of best focus of the droplet images. With this location known, the particle size may be determined by direct measurement of image area in the focal plane. Particle velocity and trajectory may be determined by comparison of image locations at different instants in time. The method is tested by analyzing digitized images from a reconstructed in-line hologram, and the results show that the method is more accurate than a time-consuming plane-by-plane search for sharpest focus.

  14. Automated Multivariate Optimization Tool for Energy Analysis: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P. G.; Griffith, B. T.; Long, N.; Torcellini, P. A.; Crawley, D.

    2006-07-01

    Building energy simulations are often used for trial-and-error evaluation of ''what-if'' options in building design--a limited search for an optimal solution, or ''optimization''. Computerized searching has the potential to automate the input and output, evaluate many options, and perform enough simulations to account for the complex interactions among combinations of options. This paper describes ongoing efforts to develop such a tool. The optimization tool employs multiple modules, including a graphical user interface, a database, a preprocessor, the EnergyPlus simulation engine, an optimization engine, and a simulation run manager. Each module is described and the overall application architecture is summarized.

  15. Fatigue analysis through automated cycle counting using ThermAND

    International Nuclear Information System (INIS)

    Burton, G.R.; Ding, Y.; Scovil, A.; Yetisir, M.

    2008-01-01

    The potential for fatigue damage due to thermal transients is one of the degradation mechanisms that needs to be managed for plant components. The original design of CANDU stations accounts for projected fatigue usage for specific components over a specified design lifetime. Fatigue design calculations were based on estimates of the number and severity of expected transients for 30 years operation at 80% power. Many CANDU plants are now approaching the end of their design lives and are being considered for extended operation. Industry practice is to have a comprehensive fatigue management program in place for extended operation beyond the original design life. A CANDU-specific framework for fatigue management has recently been developed to identify the options for implementation, and the critical components and locations requiring long-term fatigue monitoring. An essential element of fatigue monitoring is to identify, count and monitor the number of plant transients to ensure that the number assumed in the original design is not exceeded. The number and severity of actual CANDU station thermal transients at key locations in critical systems have been assessed using ThermAND, AECL's health monitor for systems and components, based on archived station operational data. The automated cycle counting has demonstrated that actual transients are generally less numerous than the quantity assumed in the design basis, and are almost always significantly less severe. This paper will discuss the methodology to adapt ThermAND for automated cycle counting of specific system transients, illustrate and test this capability for cycle-based fatigue monitoring using CANDU station data, report the results, and provide data for stress-based fatigue calculations. (author)

  16. Comparison of manual & automated analysis methods for corneal endothelial cell density measurements by specular microscopy.

    Science.gov (United States)

    Huang, Jianyan; Maram, Jyotsna; Tepelus, Tudor C; Modak, Cristina; Marion, Ken; Sadda, SriniVas R; Chopra, Vikas; Lee, Olivia L

    2017-08-07

    To determine the reliability of corneal endothelial cell density (ECD) obtained by automated specular microscopy versus that of validated manual methods and factors that predict such reliability. Sharp central images from 94 control and 106 glaucomatous eyes were captured with Konan specular microscope NSP-9900. All images were analyzed by trained graders using Konan CellChek Software, employing the fully- and semi-automated methods as well as Center Method. Images with low cell count (input cells number <100) and/or guttata were compared with the Center and Flex-Center Methods. ECDs were compared and absolute error was used to assess variation. The effect on ECD of age, cell count, cell size, and cell size variation was evaluated. No significant difference was observed between the Center and Flex-Center Methods in corneas with guttata (p=0.48) or low ECD (p=0.11). No difference (p=0.32) was observed in ECD of normal controls <40 yrs old between the fully-automated method and manual Center Method. However, in older controls and glaucomatous eyes, ECD was overestimated by the fully-automated method (p=0.034) and semi-automated method (p=0.025) as compared to manual method. Our findings show that automated analysis significantly overestimates ECD in the eyes with high polymegathism and/or large cell size, compared to the manual method. Therefore, we discourage reliance upon the fully-automated method alone to perform specular microscopy analysis, particularly if an accurate ECD value is imperative. Copyright © 2017. Published by Elsevier España, S.L.U.

  17. Social network analysis of study environment

    Directory of Open Access Journals (Sweden)

    Blaženka Divjak

    2010-06-01

    Full Text Available Student working environment influences student learning and achievement level. In this respect social aspects of students’ formal and non-formal learning play special role in learning environment. The main research problem of this paper is to find out if students' academic performance influences their position in different students' social networks. Further, there is a need to identify other predictors of this position. In the process of problem solving we use the Social Network Analysis (SNA that is based on the data we collected from the students at the Faculty of Organization and Informatics, University of Zagreb. There are two data samples: in the basic sample N=27 and in the extended sample N=52. We collected data on social-demographic position, academic performance, learning and motivation styles, student status (full-time/part-time, attitudes towards individual and teamwork as well as informal cooperation. Afterwards five different networks (exchange of learning materials, teamwork, informal communication, basic and aggregated social network were constructed. These networks were analyzed with different metrics and the most important were betweenness, closeness and degree centrality. The main result is, firstly, that the position in a social network cannot be forecast only by academic success and, secondly, that part-time students tend to form separate groups that are poorly connected with full-time students. In general, position of a student in social networks in study environment can influence student learning as well as her/his future employability and therefore it is worthwhile to be investigated.

  18. Digital image analysis applied to industrial nondestructive evaluation and automated parts assembly

    International Nuclear Information System (INIS)

    Janney, D.H.; Kruger, R.P.

    1979-01-01

    Many ideas of image enhancement and analysis are relevant to the needs of the nondestructive testing engineer. These ideas not only aid the engineer in the performance of his current responsibilities, they also open to him new areas of industrial development and automation which are logical extensions of classical testing problems. The paper begins with a tutorial on the fundamentals of computerized image enhancement as applied to nondestructive testing, then progresses through pattern recognition and automated inspection to automated, or robotic, assembly procedures. It is believed that such procedures are cost-effective in many instances, and are but the logical extension of those techniques now commonly used, but often limited to analysis of data from quality-assurance images. Many references are given in order to help the reader who wishes to pursue a given idea further

  19. Performance Analysis of Wireless Networks for Industrial Automation-Process Automation (WIA-PA)

    Science.gov (United States)

    2017-09-01

    accordance with [28]. Our model does not simulate the joining process because we were not able to use multiple processing threads in our MATLAB...of 1 ms, but implementing this becomes too computationally intensive and other process do not get scheduled. Due to this, we expanded our simulation ...time to be in terms of seconds, and scaled data rates and processing rates to match. For simulation purposes, our timeslot within the superframe is

  20. Performance of an Artificial Multi-observer Deep Neural Network for Fully Automated Segmentation of Polycystic Kidneys.

    Science.gov (United States)

    Kline, Timothy L; Korfiatis, Panagiotis; Edwards, Marie E; Blais, Jaime D; Czerwiec, Frank S; Harris, Peter C; King, Bernard F; Torres, Vicente E; Erickson, Bradley J

    2017-08-01

    Deep learning techniques are being rapidly applied to medical imaging tasks-from organ and lesion segmentation to tissue and tumor classification. These techniques are becoming the leading algorithmic approaches to solve inherently difficult image processing tasks. Currently, the most critical requirement for successful implementation lies in the need for relatively large datasets that can be used for training the deep learning networks. Based on our initial studies of MR imaging examinations of the kidneys of patients affected by polycystic kidney disease (PKD), we have generated a unique database of imaging data and corresponding reference standard segmentations of polycystic kidneys. In the study of PKD, segmentation of the kidneys is needed in order to measure total kidney volume (TKV). Automated methods to segment the kidneys and measure TKV are needed to increase measurement throughput and alleviate the inherent variability of human-derived measurements. We hypothesize that deep learning techniques can be leveraged to perform fast, accurate, reproducible, and fully automated segmentation of polycystic kidneys. Here, we describe a fully automated approach for segmenting PKD kidneys within MR images that simulates a multi-observer approach in order to create an accurate and robust method for the task of segmentation and computation of TKV for PKD patients. A total of 2000 cases were used for training and validation, and 400 cases were used for testing. The multi-observer ensemble method had mean ± SD percent volume difference of 0.68 ± 2.2% compared with the reference standard segmentations. The complete framework performs fully automated segmentation at a level comparable with interobserver variability and could be considered as a replacement for the task of segmentation of PKD kidneys by a human.

  1. NAPS: Network Analysis of Protein Structures

    Science.gov (United States)

    Chakrabarty, Broto; Parekh, Nita

    2016-01-01

    Traditionally, protein structures have been analysed by the secondary structure architecture and fold arrangement. An alternative approach that has shown promise is modelling proteins as a network of non-covalent interactions between amino acid residues. The network representation of proteins provide a systems approach to topological analysis of complex three-dimensional structures irrespective of secondary structure and fold type and provide insights into structure-function relationship. We have developed a web server for network based analysis of protein structures, NAPS, that facilitates quantitative and qualitative (visual) analysis of residue–residue interactions in: single chains, protein complex, modelled protein structures and trajectories (e.g. from molecular dynamics simulations). The user can specify atom type for network construction, distance range (in Å) and minimal amino acid separation along the sequence. NAPS provides users selection of node(s) and its neighbourhood based on centrality measures, physicochemical properties of amino acids or cluster of well-connected residues (k-cliques) for further analysis. Visual analysis of interacting domains and protein chains, and shortest path lengths between pair of residues are additional features that aid in functional analysis. NAPS support various analyses and visualization views for identifying functional residues, provide insight into mechanisms of protein folding, domain-domain and protein–protein interactions for understanding communication within and between proteins. URL:http://bioinf.iiit.ac.in/NAPS/. PMID:27151201

  2. Information flow analysis of interactome networks.

    Directory of Open Access Journals (Sweden)

    Patrycja Vasilyev Missiuro

    2009-04-01

    Full Text Available Recent studies of cellular networks have revealed modular organizations of genes and proteins. For example, in interactome networks, a module refers to a group of interacting proteins that form molecular complexes and/or biochemical pathways and together mediate a biological process. However, it is still poorly understood how biological information is transmitted between different modules. We have developed information flow analysis, a new computational approach that identifies proteins central to the transmission of biological information throughout the network. In the information flow analysis, we represent an interactome network as an electrical circuit, where interactions are modeled as resistors and proteins as interconnecting junctions. Construing the propagation of biological signals as flow of electrical current, our method calculates an information flow score for every protein. Unlike previous metrics of network centrality such as degree or betweenness that only consider topological features, our approach incorporates confidence scores of protein-protein interactions and automatically considers all possible paths in a network when evaluating the importance of each protein. We apply our method to the interactome networks of Saccharomyces cerevisiae and Caenorhabditis elegans. We find that the likelihood of observing lethality and pleiotropy when a protein is eliminated is positively correlated with the protein's information flow score. Even among proteins of low degree or low betweenness, high information scores serve as a strong predictor of loss-of-function lethality or pleiotropy. The correlation between information flow scores and phenotypes supports our hypothesis that the proteins of high information flow reside in central positions in interactome networks. We also show that the ranks of information flow scores are more consistent than that of betweenness when a large amount of noisy data is added to an interactome. Finally, we

  3. TopoGen: A Network Topology Generation Architecture with application to automating simulations of Software Defined Networks

    CERN Document Server

    Laurito, Andres; The ATLAS collaboration

    2017-01-01

    Simulation is an important tool to validate the performance impact of control decisions in Software Defined Networks (SDN). Yet, the manual modeling of complex topologies that may change often during a design process can be a tedious error-prone task. We present TopoGen, a general purpose architecture and tool for systematic translation and generation of network topologies. TopoGen can be used to generate network simulation models automatically by querying information available at diverse sources, notably SDN controllers. The DEVS modeling and simulation framework facilitates a systematic translation of structured knowledge about a network topology into a formal modular and hierarchical coupling of preexisting or new models of network entities (physical or logical). TopoGen can be flexibly extended with new parsers and generators to grow its scope of applicability. This permits to design arbitrary workflows of topology transformations. We tested TopoGen in a network engineering project for the ATLAS detector ...

  4. TopoGen: A Network Topology Generation Architecture with application to automating simulations of Software Defined Networks

    CERN Document Server

    Laurito, Andres; The ATLAS collaboration

    2018-01-01

    Simulation is an important tool to validate the performance impact of control decisions in Software Defined Networks (SDN). Yet, the manual modeling of complex topologies that may change often during a design process can be a tedious error-prone task. We present TopoGen, a general purpose architecture and tool for systematic translation and generation of network topologies. TopoGen can be used to generate network simulation models automatically by querying information available at diverse sources, notably SDN controllers. The DEVS modeling and simulation framework facilitates a systematic translation of structured knowledge about a network topology into a formal modular and hierarchical coupling of preexisting or new models of network entities (physical or logical). TopoGen can be flexibly extended with new parsers and generators to grow its scope of applicability. This permits to design arbitrary workflows of topology transformations. We tested TopoGen in a network engineering project for the ATLAS detector ...

  5. A statistical analysis of UK financial networks

    Science.gov (United States)

    Chu, J.; Nadarajah, S.

    2017-04-01

    In recent years, with a growing interest in big or large datasets, there has been a rise in the application of large graphs and networks to financial big data. Much of this research has focused on the construction and analysis of the network structure of stock markets, based on the relationships between stock prices. Motivated by Boginski et al. (2005), who studied the characteristics of a network structure of the US stock market, we construct network graphs of the UK stock market using same method. We fit four distributions to the degree density of the vertices from these graphs, the Pareto I, Fréchet, lognormal, and generalised Pareto distributions, and assess the goodness of fit. Our results show that the degree density of the complements of the market graphs, constructed using a negative threshold value close to zero, can be fitted well with the Fréchet and lognormal distributions.

  6. Automated corresponding point candidate selection for image registration using wavelet transformation neurla network with rotation invariant inputs and context information about neighboring candidates

    Science.gov (United States)

    Okumura, Hiroshi; Suezaki, Masashi; Sueyasu, Hideki; Arai, Kohei

    2003-03-01

    An automated method that can select corresponding point candidates is developed. This method has the following three features: 1) employment of the RIN-net for corresponding point candidate selection; 2) employment of multi resolution analysis with Haar wavelet transformation for improvement of selection accuracy and noise tolerance; 3) employment of context information about corresponding point candidates for screening of selected candidates. Here, the 'RIN-net' means the back-propagation trained feed-forward 3-layer artificial neural network that feeds rotation invariants as input data. In our system, pseudo Zernike moments are employed as the rotation invariants. The RIN-net has N x N pixels field of view (FOV). Some experiments are conducted to evaluate corresponding point candidate selection capability of the proposed method by using various kinds of remotely sensed images. The experimental results show the proposed method achieves fewer training patterns, less training time, and higher selection accuracy than conventional method.

  7. Automated aerosol sampling and analysis for the Comprehensive Test Ban Treaty

    International Nuclear Information System (INIS)

    Miley, H.S.; Bowyer, S.M.; Hubbard, C.W.; McKinnon, A.D.; Perkins, R.W.; Thompson, R.C.; Warner, R.A.

    1998-01-01

    Detecting nuclear debris from a nuclear weapon exploded in or substantially vented to the Earth's atmosphere constitutes the most certain indication that a violation of the Comprehensive Test Ban Treaty has occurred. For this reason, a radionuclide portion of the International Monitoring System is being designed and implemented. The IMS will monitor aerosols and gaseous xenon isotopes to detect atmospheric and underground tests, respectively. An automated system, the Radionuclide Aerosol Sampler/Analyzer (RASA), has been developed at Pacific Northwest National Laboratory to meet CTBT aerosol measurement requirements. This is achieved by the use of a novel sampling apparatus, a high-resolution germanium detector, and very sophisticated software. This system draws a large volume of air (∼ 20,000 m 3 /day), performs automated gamma-ray spectral measurements (MDC( 140 Ba) 3 ), and communicates this and other data to a central data facility. Automated systems offer the added benefit of rigid controls, easily implemented QA/QC procedures, and centralized depot maintenance and operation. Other types of automated communication include pull or push transmission of State-Of-Health data, commands, and configuration data. In addition, a graphical user interface, Telnet, and other interactive communications are supported over ordinary phone or network lines. This system has been the subject of a USAF commercialization effort to meet US CTBT monitoring commitments. It will also be available to other CTBT signatories and the monitoring community for various governmental, environmental, or commercial needs. The current status of the commercialization is discussed

  8. Semi-automated analysis of EEG spikes in the preterm fetal sheep using wavelet analysis

    International Nuclear Information System (INIS)

    Walbran, A.C.; Unsworth, C.P.; Gunn, A.J.; Benett, L.

    2010-01-01

    Full text: Presentation Preference Oral Presentation Perinatal hypoxia plays a key role in the cause of brain injury in premature infants. Cerebral hypothermia commenced in the latent phase of evolving injury (first 6-8 h post hypoxic-ischemic insult) is the lead candidate for treatment however currently there is no means to identify which infants can benefit from treatment. Recent studies suggest that epileptiform transients in latent phase are predictive of neural outcome. To quantify this, an automated means of EEG analysis is required as EEG monitoring produces vast amounts of data which is timely to analyse manually. We have developed a semi-automated EEG spike detection method which employs a discretized version of the continuous wavelet transform (CWT). EEG data was obtained from a fetal sheep at approximately 0.7 of gestation. Fetal asphyxia was maintained for 25 min and the EEG recorded for 8 h before and after asphyxia. The CWT was calculated followed by the power of the wavelet transform coefficients. Areas of high power corresponded to spike waves so thresholding was employed to identify the spikes. The performance of the method was found have a good sensitivity and selectivity, thus demonstrating that this method is a simple, robust and potentially effective spike detection algorithm.

  9. Deep multi-scale location-aware 3D convolutional neural networks for automated detection of lacunes of presumed vascular origin.

    Science.gov (United States)

    Ghafoorian, Mohsen; Karssemeijer, Nico; Heskes, Tom; Bergkamp, Mayra; Wissink, Joost; Obels, Jiri; Keizer, Karlijn; de Leeuw, Frank-Erik; Ginneken, Bram van; Marchiori, Elena; Platel, Bram

    2017-01-01

    Lacunes of presumed vascular origin (lacunes) are associated with an increased risk of stroke, gait impairment, and dementia and are a primary imaging feature of the small vessel disease. Quantification of lacunes may be of great importance to elucidate the mechanisms behind neuro-degenerative disorders and is recommended as part of study standards for small vessel disease research. However, due to the different appearance of lacunes in various brain regions and the existence of other similar-looking structures, such as perivascular spaces, manual annotation is a difficult, elaborative and subjective task, which can potentially be greatly improved by reliable and consistent computer-aided detection (CAD) routines. In this paper, we propose an automated two-stage method using deep convolutional neural networks (CNN). We show that this method has good performance and can considerably benefit readers. We first use a fully convolutional neural network to detect initial candidates. In the second step, we employ a 3D CNN as a false positive reduction tool. As the location information is important to the analysis of candidate structures, we further equip the network with contextual information using multi-scale analysis and integration of explicit location features. We trained, validated and tested our networks on a large dataset of 1075 cases obtained from two different studies. Subsequently, we conducted an observer study with four trained observers and compared our method with them using a free-response operating characteristic analysis. Shown on a test set of 111 cases, the resulting CAD system exhibits performance similar to the trained human observers and achieves a sensitivity of 0.974 with 0.13 false positives per slice. A feasibility study also showed that a trained human observer would considerably benefit once aided by the CAD system.

  10. Network Analysis of Rodent Transcriptomes in Spaceflight

    Science.gov (United States)

    Ramachandran, Maya; Fogle, Homer; Costes, Sylvain

    2017-01-01

    Network analysis methods leverage prior knowledge of cellular systems and the statistical and conceptual relationships between analyte measurements to determine gene connectivity. Correlation and conditional metrics are used to infer a network topology and provide a systems-level context for cellular responses. Integration across multiple experimental conditions and omics domains can reveal the regulatory mechanisms that underlie gene expression. GeneLab has assembled rich multi-omic (transcriptomics, proteomics, epigenomics, and epitranscriptomics) datasets for multiple murine tissues from the Rodent Research 1 (RR-1) experiment. RR-1 assesses the impact of 37 days of spaceflight on gene expression across a variety of tissue types, such as adrenal glands, quadriceps, gastrocnemius, tibalius anterior, extensor digitorum longus, soleus, eye, and kidney. Network analysis is particularly useful for RR-1 -omics datasets because it reinforces subtle relationships that may be overlooked in isolated analyses and subdues confounding factors. Our objective is to use network analysis to determine potential target nodes for therapeutic intervention and identify similarities with existing disease models. Multiple network algorithms are used for a higher confidence consensus.

  11. Direct evidence of intra- and interhemispheric corticomotor network degeneration in amyotrophic lateral sclerosis: an automated MRI structural connectivity study.

    Science.gov (United States)

    Rose, Stephen; Pannek, Kerstin; Bell, Christopher; Baumann, Fusun; Hutchinson, Nicole; Coulthard, Alan; McCombe, Pamela; Henderson, Robert

    2012-02-01

    Although the pathogenesis of amyotrophic lateral sclerosis (ALS) is uncertain, there is mounting neuroimaging evidence to suggest a mechanism involving the degeneration of multiple white matter (WM) motor and extramotor neural networks. This insight has been achieved, in part, by using MRI Diffusion Tensor Imaging (DTI) and the voxelwise analysis of anisotropy indices, along with DTI tractography to determine which specific motor pathways are involved with ALS pathology. Automated MRI structural connectivity analyses, which probe WM connections linking various functionally discrete cortical regions, have the potential to provide novel information about degenerative processes within multiple white matter (WM) pathways. Our hypothesis is that measures of altered intra- and interhemispheric structural connectivity of the primary motor and somatosensory cortex will provide an improved assessment of corticomotor involvement in ALS. To test this hypothesis, we acquired High Angular Resolution Diffusion Imaging (HARDI) scans along with high resolution structural images (sMRI) on 15 patients with clinical evidence of upper and lower motor neuron involvement, and 20 matched control participants. Whole brain probabilistic tractography was applied to define specific WM pathways connecting discrete corticomotor targets generated from anatomical parcellation of sMRI of the brain. The integrity of these connections was interrogated by comparing the mean fractional anisotropy (FA) derived for each WM pathway. To assist in the interpretation of results, we measured the reproducibility of the FA summary measures over time (6months) in control participants. We also incorporated into our analysis pipeline the evaluation and replacement of outlier voxels due to head motion and physiological noise. When assessing corticomotor connectivity, we found a significant reduction in mean FA within a number of intra- and interhemispheric motor pathways in ALS patients. The abnormal

  12. Temperature control of fimbriation circuit switch in uropathogenic Escherichia coli: quantitative analysis via automated model abstraction.

    Science.gov (United States)

    Kuwahara, Hiroyuki; Myers, Chris J; Samoilov, Michael S

    2010-03-26

    Uropathogenic Escherichia coli (UPEC) represent the predominant cause of urinary tract infections (UTIs). A key UPEC molecular virulence mechanism is type 1 fimbriae, whose expression is controlled by the orientation of an invertible chromosomal DNA element-the fim switch. Temperature has been shown to act as a major regulator of fim switching behavior and is overall an important indicator as well as functional feature of many urologic diseases, including UPEC host-pathogen interaction dynamics. Given this panoptic physiological role of temperature during UTI progression and notable empirical challenges to its direct in vivo studies, in silico modeling of corresponding biochemical and biophysical mechanisms essential to UPEC pathogenicity may significantly aid our understanding of the underlying disease processes. However, rigorous computational analysis of biological systems, such as fim switch temperature control circuit, has hereto presented a notoriously demanding problem due to both the substantial complexity of the gene regulatory networks involved as well as their often characteristically discrete and stochastic dynamics. To address these issues, we have developed an approach that enables automated multiscale abstraction of biological system descriptions based on reaction kinetics. Implemented as a computational tool, this method has allowed us to efficiently analyze the modular organization and behavior of the E. coli fimbriation switch circuit at different temperature settings, thus facilitating new insights into this mode of UPEC molecular virulence regulation. In particular, our results suggest that, with respect to its role in shutting down fimbriae expression, the primary function of FimB recombinase may be to effect a controlled down-regulation (rather than increase) of the ON-to-OFF fim switching rate via temperature-dependent suppression of competing dynamics mediated by recombinase FimE. Our computational analysis further implies that this down

  13. Temperature control of fimbriation circuit switch in uropathogenic Escherichia coli: quantitative analysis via automated model abstraction.

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kuwahara

    2010-03-01

    Full Text Available Uropathogenic Escherichia coli (UPEC represent the predominant cause of urinary tract infections (UTIs. A key UPEC molecular virulence mechanism is type 1 fimbriae, whose expression is controlled by the orientation of an invertible chromosomal DNA element-the fim switch. Temperature has been shown to act as a major regulator of fim switching behavior and is overall an important indicator as well as functional feature of many urologic diseases, including UPEC host-pathogen interaction dynamics. Given this panoptic physiological role of temperature during UTI progression and notable empirical challenges to its direct in vivo studies, in silico modeling of corresponding biochemical and biophysical mechanisms essential to UPEC pathogenicity may significantly aid our understanding of the underlying disease processes. However, rigorous computational analysis of biological systems, such as fim switch temperature control circuit, has hereto presented a notoriously demanding problem due to both the substantial complexity of the gene regulatory networks involved as well as their often characteristically discrete and stochastic dynamics. To address these issues, we have developed an approach that enables automated multiscale abstraction of biological system descriptions based on reaction kinetics. Implemented as a computational tool, this method has allowed us to efficiently analyze the modular organization and behavior of the E. coli fimbriation switch circuit at different temperature settings, thus facilitating new insights into this mode of UPEC molecular virulence regulation. In particular, our results suggest that, with respect to its role in shutting down fimbriae expression, the primary function of FimB recombinase may be to effect a controlled down-regulation (rather than increase of the ON-to-OFF fim switching rate via temperature-dependent suppression of competing dynamics mediated by recombinase FimE. Our computational analysis further implies

  14. Automated striatal uptake analysis of 18F-FDOPA PET images applied to Parkinson's disease patients

    International Nuclear Information System (INIS)

    Chang Icheng; Lue Kunhan; Hsieh Hungjen; Liu Shuhsin; Kao, Chinhao K.

    2011-01-01

    6-[ 18 F]Fluoro-L-DOPA (FDOPA) is a radiopharmaceutical valuable for assessing the presynaptic dopaminergic function when used with positron emission tomography (PET). More specifically, the striatal-to-occipital ratio (SOR) of FDOPA uptake images has been extensively used as a quantitative parameter in these PET studies. Our aim was to develop an easy, automated method capable of performing objective analysis of SOR in FDOPA PET images of Parkinson's disease (PD) patients. Brain images from FDOPA PET studies of 21 patients with PD and 6 healthy subjects were included in our automated striatal analyses. Images of each individual were spatially normalized into an FDOPA template. Subsequently, the image slice with the highest level of basal ganglia activity was chosen among the series of normalized images. Also, the immediate preceding and following slices of the chosen image were then selected. Finally, the summation of these three images was used to quantify and calculate the SOR values. The results obtained by automated analysis were compared with manual analysis by a trained and experienced image processing technologist. The SOR values obtained from the automated analysis had a good agreement and high correlation with manual analysis. The differences in caudate, putamen, and striatum were -0.023, -0.029, and -0.025, respectively; correlation coefficients 0.961, 0.957, and 0.972, respectively. We have successfully developed a method for automated striatal uptake analysis of FDOPA PET images. There was no significant difference between the SOR values obtained from this method and using manual analysis. Yet it is an unbiased time-saving and cost-effective program and easy to implement on a personal computer. (author)

  15. Complex network analysis of state spaces for random Boolean networks

    Energy Technology Data Exchange (ETDEWEB)

    Shreim, Amer [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Berdahl, Andrew [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Sood, Vishal [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Grassberger, Peter [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada); Paczuski, Maya [Complexity Science Group, Department of Physics and Astronomy, University of Calgary, Calgary, AB, T2N 1N4 (Canada)

    2008-01-15

    We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains N Boolean elements each with K inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of these SSNs at both local and global scales, as well as sample to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure, and the path diversity (Shreim A et al 2007 Phys. Rev. Lett. 98 198701) of an SSN as a global topological measure. RBNs with 2 {<=} K {<=} 5 exhibit non-trivial fluctuations at both local and global scales, while K = 2 exhibits the largest sample-to-sample (possibly non-self-averaging) fluctuations. We interpret the observed 'multi scale' fluctuations in the SSNs as indicative of the criticality and complexity of K = 2 RBNs. 'Garden of Eden' (GoE) states are nodes on an SSN that have in-degree zero. While in-degrees of non-GoE nodes for K > 1 SSNs can assume any integer value between 0 and 2{sup N}, for K = 1 all the non-GoE nodes in a given SSN have the same in-degree which is always a power of two.

  16. Complex network analysis of state spaces for random Boolean networks

    International Nuclear Information System (INIS)

    Shreim, Amer; Berdahl, Andrew; Sood, Vishal; Grassberger, Peter; Paczuski, Maya

    2008-01-01

    We apply complex network analysis to the state spaces of random Boolean networks (RBNs). An RBN contains N Boolean elements each with K inputs. A directed state space network (SSN) is constructed by linking each dynamical state, represented as a node, to its temporal successor. We study the heterogeneity of these SSNs at both local and global scales, as well as sample to-sample fluctuations within an ensemble of SSNs. We use in-degrees of nodes as a local topological measure, and the path diversity (Shreim A et al 2007 Phys. Rev. Lett. 98 198701) of an SSN as a global topological measure. RBNs with 2 ≤ K ≤ 5 exhibit non-trivial fluctuations at both local and global scales, while K = 2 exhibits the largest sample-to-sample (possibly non-self-averaging) fluctuations. We interpret the observed 'multi scale' fluctuations in the SSNs as indicative of the criticality and complexity of K = 2 RBNs. 'Garden of Eden' (GoE) states are nodes on an SSN that have in-degree zero. While in-degrees of non-GoE nodes for K > 1 SSNs can assume any integer value between 0 and 2 N , for K = 1 all the non-GoE nodes in a given SSN have the same in-degree which is always a power of two

  17. Northern emporia and maritime networks. Modelling past communication using archaeological network analysis

    DEFF Research Database (Denmark)

    Sindbæk, Søren Michael

    2015-01-01

    preserve patterns of thisinteraction. Formal network analysis and modelling holds the potential to identify anddemonstrate such patterns, where traditional methods often prove inadequate. Thearchaeological study of communication networks in the past, however, calls for radically different analytical...... this is not a problem of network analysis, but network synthesis: theclassic problem of cracking codes or reconstructing black-box circuits. It is proposedthat archaeological approaches to network synthesis must involve a contextualreading of network data: observations arising from individual contexts, morphologies...

  18. MONGKIE: an integrated tool for network analysis and visualization for multi-omics data.

    Science.gov (United States)

    Jang, Yeongjun; Yu, Namhee; Seo, Jihae; Kim, Sun; Lee, Sanghyuk

    2016-03-18

    Network-based integrative analysis is a powerful technique for extracting biological insights from multilayered omics data such as somatic mutations, copy number variations, and gene expression data. However, integrated analysis of multi-omics data is quite complicated and can hardly be done in an automated way. Thus, a powerful interactive visual mining tool supporting diverse analysis algorithms for identification of driver genes and regulatory modules is much needed. Here, we present a software platform that integrates network visualization with omics data analysis tools seamlessly. The visualization unit supports various options for displaying multi-omics data as well as unique network models for describing sophisticated biological networks such as complex biomolecular reactions. In addition, we implemented diverse in-house algorithms for network analysis including network clustering and over-representation analysis. Novel functions include facile definition and optimized visualization of subgroups, comparison of a series of data sets in an identical network by data-to-visual mapping and subsequent overlaying function, and management of custom interaction networks. Utility of MONGKIE for network-based visual data mining of multi-omics data was demonstrated by analysis of the TCGA glioblastoma data. MONGKIE was developed in Java based on the NetBeans plugin architecture, thus being OS-independent with intrinsic support of module extension by third-party developers. We believe that MONGKIE would be a valuable addition to network analysis software by supporting many unique features and visualization options, especially for analysing multi-omics data sets in cancer and other diseases. .

  19. Automated analysis of small animal PET studies through deformable registration to an atlas

    International Nuclear Information System (INIS)

    Gutierrez, Daniel F.; Zaidi, Habib

    2012-01-01

    This work aims to develop a methodology for automated atlas-guided analysis of small animal positron emission tomography (PET) data through deformable registration to an anatomical mouse model. A non-rigid registration technique is used to put into correspondence relevant anatomical regions of rodent CT images from combined PET/CT studies to corresponding CT images of the Digimouse anatomical mouse model. The latter provides a pre-segmented atlas consisting of 21 anatomical regions suitable for automated quantitative analysis. Image registration is performed using a package based on the Insight Toolkit allowing the implementation of various image registration algorithms. The optimal parameters obtained for deformable registration were applied to simulated and experimental mouse PET/CT studies. The accuracy of the image registration procedure was assessed by segmenting mouse CT images into seven regions: brain, lungs, heart, kidneys, bladder, skeleton and the rest of the body. This was accomplished prior to image registration using a semi-automated algorithm. Each mouse segmentation was transformed using the parameters obtained during CT to CT image registration. The resulting segmentation was compared with the original Digimouse atlas to quantify image registration accuracy using established metrics such as the Dice coefficient and Hausdorff distance. PET images were then transformed using the same technique and automated quantitative analysis of tracer uptake performed. The Dice coefficient and Hausdorff distance show fair to excellent agreement and a mean registration mismatch distance of about 6 mm. The results demonstrate good quantification accuracy in most of the regions, especially the brain, but not in the bladder, as expected. Normalized mean activity estimates were preserved between the reference and automated quantification techniques with relative errors below 10 % in most of the organs considered. The proposed automated quantification technique is

  20. Automated data acquisition and analysis system for inventory verification

    International Nuclear Information System (INIS)

    Sorenson, R.J.; Kaye, J.H.

    1974-03-01

    A real-time system is proposed which would allow CLO Safeguards Branch to conduct a meaningful inventory verification using a variety of NDA instruments. The overall system would include the NDA instruments, automated data handling equipment, and a vehicle to house and transport the instruments and equipment. For the purpose of the preliminary cost estimate a specific data handling system and vehicle were required. A Tracor Northern TN-11 data handling system including a PDP-11 minicomputer and a measurement vehicle similar to the Commission's Regulatory Region I van were used. The basic system is currently estimated to cost about $100,000, and future add-ons which would expand the systems' capabilities are estimated to cost about $40,000. The concept of using a vehicle in order to permanently rack mount the data handling equipmentoffers a number of benefits such as control of equipment environment and allowance for improvements, expansion, and flexibility in the system. Justification is also presented for local design and assembly of the overall system. A summary of the demonstration system which illustrates the advantages and feasibility of the overall system is included in this discussion. Two ideas are discussed which are not considered to be viable alternatives to the proposed system: addition of the data handling capabilities to the semiportable ''cart'' and use of a telephone link to a large computer center

  1. Automating X-ray Fluorescence Analysis for Rapid Astrobiology Surveys.

    Science.gov (United States)

    Thompson, David R; Flannery, David T; Lanka, Ravi; Allwood, Abigail C; Bue, Brian D; Clark, Benton C; Elam, W Timothy; Estlin, Tara A; Hodyss, Robert P; Hurowitz, Joel A; Liu, Yang; Wade, Lawrence A

    2015-11-01

    A new generation of planetary rover instruments, such as PIXL (Planetary Instrument for X-ray Lithochemistry) and SHERLOC (Scanning Habitable Environments with Raman Luminescence for Organics and Chemicals) selected for the Mars 2020 mission rover payload, aim to map mineralogical and elemental composition in situ at microscopic scales. These instruments will produce large spectral cubes with thousands of channels acquired over thousands of spatial locations, a large potential science yield limited mainly by the time required to acquire a measurement after placement. A secondary bottleneck also faces mission planners after downlink; analysts must interpret the complex data products quickly to inform tactical planning for the next command cycle. This study demonstrates operational approaches to overcome these bottlenecks by specialized early-stage science data processing. Onboard, simple real-time systems can perform a basic compositional assessment, recognizing specific features of interest and optimizing sensor integration time to characterize anomalies. On the ground, statistically motivated visualization can make raw uncalibrated data products more interpretable for tactical decision making. Techniques such as manifold dimensionality reduction can help operators comprehend large databases at a glance, identifying trends and anomalies in data. These onboard and ground-side analyses can complement a quantitative interpretation. We evaluate system performance for the case study of PIXL, an X-ray fluorescence spectrometer. Experiments on three representative samples demonstrate improved methods for onboard and ground-side automation and illustrate new astrobiological science capabilities unavailable in previous planetary instruments. Dimensionality reduction-Planetary science-Visualization.

  2. Development of automated system based on neural network algorithm for detecting defects on molds installed on casting machines

    Science.gov (United States)

    Bazhin, V. Yu; Danilov, I. V.; Petrov, P. A.

    2018-05-01

    During the casting of light alloys and ligatures based on aluminum and magnesium, problems of the qualitative distribution of the metal and its crystallization in the mold arise. To monitor the defects of molds on the casting conveyor, a camera with a resolution of 780 x 580 pixels and a shooting rate of 75 frames per second was selected. Images of molds from casting machines were used as input data for neural network algorithm. On the preparation of a digital database and its analytical evaluation stage, the architecture of the convolutional neural network was chosen for the algorithm. The information flow from the local controller is transferred to the OPC server and then to the SCADA system of foundry. After the training, accuracy of neural network defect recognition was about 95.1% on a validation split. After the training, weight coefficients of the neural network were used on testing split and algorithm had identical accuracy with validation images. The proposed technical solutions make it possible to increase the efficiency of the automated process control system in the foundry by expanding the digital database.

  3. Traffic Analysis for Real-Time Communication Networks onboard Ships

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Nielsen, Jens Frederik Dalsgaard; Jørgensen, N.

    1998-01-01

    The paper presents a novel method for establishing worst case estimates of queue lenghts and transmission delays in networks of interconnected segments each of ring topology as defined by the ATOMOS project for marine automation. A non probalistic model for describing traffic is introduced as well...

  4. Traffic Analysis for Real-Time Communication Networks onboard Ships

    DEFF Research Database (Denmark)

    Schiøler, Henrik; Nielsen, Jens Frederik Dalsgaard; Jørgensen, N.

    The paper presents a novel method for establishing worst case estimates of queue lenghts and transmission delays in networks of interconnected segments each of ring topology as defined by the ATOMOS project for marine automation. A non probalistic model for describing traffic is introduced as well...

  5. Development of a novel and automated fluorescent immunoassay for the analysis of beta-lactam antibiotics

    NARCIS (Netherlands)

    Benito-Pena, E.; Moreno-Bondi, M.C.; Orellana, G.; Maquieira, K.; Amerongen, van A.

    2005-01-01

    An automated immunosensor for the rapid and sensitive analysis of penicillin type -lactam antibiotics has been developed and optimized. An immunogen was prepared by coupling the common structure of the penicillanic -lactam antibiotics, i.e., 6-aminopenicillanic acid to keyhole limpet hemocyanin.

  6. Automated analysis of small animal PET studies through deformable registration to an atlas

    NARCIS (Netherlands)

    Gutierrez, Daniel F.; Zaidi, Habib

    This work aims to develop a methodology for automated atlas-guided analysis of small animal positron emission tomography (PET) data through deformable registration to an anatomical mouse model. A non-rigid registration technique is used to put into correspondence relevant anatomical regions of

  7. UAV : Warnings From Multiple Automated Static Analysis Tools At A Glance

    NARCIS (Netherlands)

    Buckers, T.B.; Cao, C.S.; Doesburg, M.S.; Gong, Boning; Wang, Sunwei; Beller, M.M.; Zaidman, A.E.; Pinzger, Martin; Bavota, Gabriele; Marcus, Andrian

    2017-01-01

    Automated Static Analysis Tools (ASATs) are an integral part of today’s software quality assurance practices. At present, a plethora of ASATs exist, each with different strengths. However, there is little guidance for developers on which of these ASATs to choose and combine for a project. As a

  8. Substructure analysis techniques and automation. [to eliminate logistical data handling and generation chores

    Science.gov (United States)

    Hennrich, C. W.; Konrath, E. J., Jr.

    1973-01-01

    A basic automated substructure analysis capability for NASTRAN is presented which eliminates most of the logistical data handling and generation chores that are currently associated with the method. Rigid formats are proposed which will accomplish this using three new modules, all of which can be added to level 16 with a relatively small effort.

  9. Automated voxel-based analysis of brain perfusion SPECT for vasospasm after subarachnoid haemorrhage

    International Nuclear Information System (INIS)

    Iwabuchi, S.; Yokouchi, T.; Hayashi, M.; Kimura, H.; Tomiyama, A.; Hirata, Y.; Saito, N.; Harashina, J.; Nakayama, H.; Sato, K.; Aoki, K.; Samejima, H.; Ueda, M.; Terada, H.; Hamazaki, K.

    2008-01-01

    We evaluated regional cerebral blood flow (rCBF) during vasospasm after subarachnoid haemorrhage ISAH) using automated voxel-based analysis of brain perfusion single-photon emission computed tomography (SPELT). Brain perfusion SPECT was performed 7 to 10 days after onset of SAH. Automated voxel-based analysis of SPECT used a Z-score map that was calculated by comparing the patients data with a control database. In cases where computed tomography (CT) scans detected an ischemic region due to vasospasm, automated voxel-based analysis of brain perfusion SPECT revealed dramatically reduced rCBF (Z-score ≤ -4). No patients with mildly or moderately diminished rCBF (Z-score > -3) progressed to cerebral infarction. Some patients with a Z-score < -4 did not progress to cerebral infarction after active treatment with a angioplasty. Three-dimensional images provided detailed anatomical information and helped us to distinguish surgical sequelae from vasospasm. In conclusion, automated voxel-based analysis of brain perfusion SPECT using a Z-score map is helpful in evaluating decreased rCBF due to vasospasm. (author)

  10. Automated Analysis of ARM Binaries using the Low-Level Virtual Machine Compiler Framework

    Science.gov (United States)

    2011-03-01

    Maintenance ABACAS offers a level of flexibility in software development that would be very useful later in the software engineering life cycle. New... Blackjacking : security threats to blackberry devices, PDAs and cell phones in the enterprise. Indianapolis, Indiana, U.S.A.: Wiley Publishing, 2007...AUTOMATED ANALYSIS OF ARM BINARIES USING THE LOW- LEVEL VIRTUAL MACHINE COMPILER FRAMEWORK THESIS Jeffrey B. Scott

  11. Application of fluorescence-based semi-automated AFLP analysis in barley and wheat

    DEFF Research Database (Denmark)

    Schwarz, G.; Herz, M.; Huang, X.Q.

    2000-01-01

    of semi-automated codominant analysis for hemizygous AFLP markers in an F-2 population was too low, proposing the use of dominant allele-typing defaults. Nevertheless, the efficiency of genetic mapping, especially of complex plant genomes, will be accelerated by combining the presented genotyping......Genetic mapping and the selection of closely linked molecular markers for important agronomic traits require efficient, large-scale genotyping methods. A semi-automated multifluorophore technique was applied for genotyping AFLP marker loci in barley and wheat. In comparison to conventional P-33...

  12. Vulnerability analysis methods for road networks

    Science.gov (United States)

    Bíl, Michal; Vodák, Rostislav; Kubeček, Jan; Rebok, Tomáš; Svoboda, Tomáš

    2014-05-01

    Road networks rank among the most important lifelines of modern society. They can be damaged by either random or intentional events. Roads are also often affected by natural hazards, the impacts of which are both direct and indirect. Whereas direct impacts (e.g. roads damaged by a landslide or due to flooding) are localized in close proximity to the natural hazard occurrence, the indirect impacts can entail widespread service disabilities and considerable travel delays. The change in flows in the network may affect the population living far from the places originally impacted by the natural disaster. These effects are primarily possible due to the intrinsic nature of this system. The consequences and extent of the indirect costs also depend on the set of road links which were damaged, because the road links differ in terms of their importance. The more robust (interconnected) the road network is, the less time is usually needed to secure the serviceability of an area hit by a disaster. These kinds of networks also demonstrate a higher degree of resilience. Evaluating road network structures is therefore essential in any type of vulnerability and resilience analysis. There are a range of approaches used for evaluation of the vulnerability of a network and for identification of the weakest road links. Only few of them are, however, capable of simulating the impacts of the simultaneous closure of numerous links, which often occurs during a disaster. The primary problem is that in the case of a disaster, which usually has a large regional extent, the road network may remain disconnected. The majority of the commonly used indices use direct computation of the shortest paths or time between OD (origin - destination) pairs and therefore cannot be applied when the network breaks up into two or more components. Since extensive break-ups often occur in cases of major disasters, it is important to study the network vulnerability in these cases as well, so that appropriate

  13. Diversity Performance Analysis on Multiple HAP Networks

    Science.gov (United States)

    Dong, Feihong; Li, Min; Gong, Xiangwu; Li, Hongjun; Gao, Fengyue

    2015-01-01

    One of the main design challenges in wireless sensor networks (WSNs) is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP) is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO) techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO) model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV). In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF) and cumulative distribution function (CDF) of the received signal-to-noise ratio (SNR) are derived. In addition, the average symbol error rate (ASER) with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI) and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques. PMID:26134102

  14. Diversity Performance Analysis on Multiple HAP Networks

    Directory of Open Access Journals (Sweden)

    Feihong Dong

    2015-06-01

    Full Text Available One of the main design challenges in wireless sensor networks (WSNs is achieving a high-data-rate transmission for individual sensor devices. The high altitude platform (HAP is an important communication relay platform for WSNs and next-generation wireless networks. Multiple-input multiple-output (MIMO techniques provide the diversity and multiplexing gain, which can improve the network performance effectively. In this paper, a virtual MIMO (V-MIMO model is proposed by networking multiple HAPs with the concept of multiple assets in view (MAV. In a shadowed Rician fading channel, the diversity performance is investigated. The probability density function (PDF and cumulative distribution function (CDF of the received signal-to-noise ratio (SNR are derived. In addition, the average symbol error rate (ASER with BPSK and QPSK is given for the V-MIMO model. The system capacity is studied for both perfect channel state information (CSI and unknown CSI individually. The ergodic capacity with various SNR and Rician factors for different network configurations is also analyzed. The simulation results validate the effectiveness of the performance analysis. It is shown that the performance of the HAPs network in WSNs can be significantly improved by utilizing the MAV to achieve overlapping coverage, with the help of the V-MIMO techniques.

  15. Automated Diatom Analysis Applied to Traditional Light Microscopy: A Proof-of-Concept Study

    Science.gov (United States)

    Little, Z. H. L.; Bishop, I.; Spaulding, S. A.; Nelson, H.; Mahoney, C.

    2017-12-01

    Diatom identification and enumeration by high resolution light microscopy is required for many areas of research and water quality assessment. Such analyses, however, are both expertise and labor-intensive. These challenges motivate the need for an automated process to efficiently and accurately identify and enumerate diatoms. Improvements in particle analysis software have increased the likelihood that diatom enumeration can be automated. VisualSpreadsheet software provides a possible solution for automated particle analysis of high-resolution light microscope diatom images. We applied the software, independent of its complementary FlowCam hardware, to automated analysis of light microscope images containing diatoms. Through numerous trials, we arrived at threshold settings to correctly segment 67% of the total possible diatom valves and fragments from broad fields of view. (183 light microscope images were examined containing 255 diatom particles. Of the 255 diatom particles present, 216 diatoms valves and fragments of valves were processed, with 170 properly analyzed and focused upon by the software). Manual analysis of the images yielded 255 particles in 400 seconds, whereas the software yielded a total of 216 particles in 68 seconds, thus highlighting that the software has an approximate five-fold efficiency advantage in particle analysis time. As in past efforts, incomplete or incorrect recognition was found for images with multiple valves in contact or valves with little contrast. The software has potential to be an effective tool in assisting taxonomists with diatom enumeration by completing a large portion of analyses. Benefits and limitations of the approach are presented to allow for development of future work in image analysis and automated enumeration of traditional light microscope images containing diatoms.

  16. Scoring of radiation-induced micronuclei in cytokinesis-blocked human lymphocytes by automated image analysis

    International Nuclear Information System (INIS)

    Verhaegen, F.; Seuntjens, J.; Thierens, H.

    1994-01-01

    The micronucleus assay in human lymphocytes is, at present, frequently used to assess chromosomal damage caused by ionizing radiation or mutagens. Manual scoring of micronuclei (MN) by trained personnel is very time-consuming, tiring work, and the results depend on subjective interpretation of scoring criteria. More objective scoring can be accomplished only if the test can be automated. Furthermore, an automated system allows scoring of large numbers of cells, thereby increasing the statistical significance of the results. This is of special importance for screening programs for low doses of chromosome-damaging agents. In this paper, the first results of our effort to automate the micronucleus assay with an image-analysis system are represented. The method we used is described in detail, and the results are compared to those of other groups. Our system is able to detect 88% of the binucleated lymphocytes on the slides. The procedure consists of a fully automated localization of binucleated cells and counting of the MN within these cells, followed by a simple and fast manual operation in which the false positives are removed. Preliminary measurements for blood samples irradiated with a dose of 1 Gy X-rays indicate that the automated system can find 89% ± 12% of the micronuclei within the binucleated cells compared to a manual screening. 18 refs., 8 figs., 1 tab

  17. Mixed Methods Analysis of Enterprise Social Networks

    DEFF Research Database (Denmark)

    Behrendt, Sebastian; Richter, Alexander; Trier, Matthias

    2014-01-01

    The increasing use of enterprise social networks (ESN) generates vast amounts of data, giving researchers and managerial decision makers unprecedented opportunities for analysis. However, more transparency about the available data dimensions and how these can be combined is needed to yield accurate...

  18. Nonlinear Time Series Analysis via Neural Networks

    Science.gov (United States)

    Volná, Eva; Janošek, Michal; Kocian, Václav; Kotyrba, Martin

    This article deals with a time series analysis based on neural networks in order to make an effective forex market [Moore and Roche, J. Int. Econ. 58, 387-411 (2002)] pattern recognition. Our goal is to find and recognize important patterns which repeatedly appear in the market history to adapt our trading system behaviour based on them.

  19. Integrating neural network technology and noise analysis

    International Nuclear Information System (INIS)

    Uhrig, R.E.; Oak Ridge National Lab., TN

    1995-01-01

    The integrated use of neural network and noise analysis technologies offers advantages not available by the use of either technology alone. The application of neural network technology to noise analysis offers an opportunity to expand the scope of problems where noise analysis is useful and unique ways in which the integration of these technologies can be used productively. The two-sensor technique, in which the responses of two sensors to an unknown driving source are related, is used to demonstration such integration. The relationship between power spectral densities (PSDs) of accelerometer signals is derived theoretically using noise analysis to demonstrate its uniqueness. This relationship is modeled from experimental data using a neural network when the system is working properly, and the actual PSD of one sensor is compared with the PSD of that sensor predicted by the neural network using the PSD of the other sensor as an input. A significant deviation between the actual and predicted PSDs indicate that system is changing (i.e., failing). Experiments carried out on check values and bearings illustrate the usefulness of the methodology developed. (Author)

  20. An automated method for estimating reliability of grid systems using Bayesian networks

    International Nuclear Information System (INIS)

    Doguc, Ozge; Emmanuel Ramirez-Marquez, Jose

    2012-01-01

    Grid computing has become relevant due to its applications to large-scale resource sharing, wide-area information transfer, and multi-institutional collaborating. In general, in grid computing a service requests the use of a set of resources, available in a grid, to complete certain tasks. Although analysis tools and techniques for these types of systems have been studied, grid reliability analysis is generally computation-intensive to obtain due to the complexity of the system. Moreover, conventional reliability models have some common assumptions that cannot be applied to the grid systems. Therefore, new analytical methods are needed for effective and accurate assessment of grid reliability. This study presents a new method for estimating grid service reliability, which does not require prior knowledge about the grid system structure unlike the previous studies. Moreover, the proposed method does not rely on any assumptions about the link and node failure rates. This approach is based on a data-mining algorithm, the K2, to discover the grid system structure from raw historical system data, that allows to find minimum resource spanning trees (MRST) within the grid then, uses Bayesian networks (BN) to model the MRST and estimate grid service reliability.

  1. Evaluation of damping estimates by automated Operational Modal Analysis for offshore wind turbine tower vibrations

    DEFF Research Database (Denmark)

    Bajrić, Anela; Høgsberg, Jan Becker; Rüdinger, Finn

    2018-01-01

    Reliable predictions of the lifetime of offshore wind turbine structures are influenced by the limited knowledge concerning the inherent level of damping during downtime. Error measures and an automated procedure for covariance driven Operational Modal Analysis (OMA) techniques has been proposed....... In order to obtain algorithmic independent answers, three identification techniques are compared: Eigensystem Realization Algorithm (ERA), covariance driven Stochastic Subspace Identification (COV-SSI) and the Enhanced Frequency Domain Decomposition (EFDD). Discrepancies between automated identification...... techniques are discussed and illustrated with respect to signal noise, measurement time, vibration amplitudes and stationarity of the ambient response. The best bias-variance error trade-off of damping estimates is obtained by the COV-SSI. The proposed automated procedure is validated by real vibration...

  2. Evaluation of automated analysis of 15N and total N in plant material and soil

    DEFF Research Database (Denmark)

    Jensen, E.S.

    1991-01-01

    Simultaneous determination of N-15 and total N using an automated nitrogen analyser interfaced to a continuous-flow isotope ratio mass spectrometer (ANA-MS method) was evaluated. The coefficient of variation (CV) of repeated analyses of homogeneous standards and samples at natural abundance...... was lower than 0.1%. The CV of repeated analyses of N-15-labelled plant material and soil samples varied between 0.3% and 1.1%. The reproducibility of repeated total N analyses using the automated method was comparable to results obtained with a semi-micro Kjeldahl procedure. However, the automated method...... analysis showed that the recovery of inorganic N in the NH3 trap was lower when the N was diffused from water than from 2 M KCl. The results also indicated that different proportions of the NO3- and the NH4+ in aqueous solution were recovered in the trap after combined diffusion. The method is most suited...

  3. ROBOCAL: An automated NDA [nondestructive analysis] calorimetry and gamma isotopic system

    International Nuclear Information System (INIS)

    Hurd, J.R.; Powell, W.D.; Ostenak, C.A.

    1989-01-01

    ROBOCAL, which is presently being developed and tested at Los Alamos National Laboratory, is a full-scale, prototype robotic system for remote calorimetric and gamma-ray analysis of special nuclear materials. It integrates a fully automated, multidrawer, vertical stacker-retriever system for staging unmeasured nuclear materials, and a fully automated gantry robot for computer-based selection and transfer of nuclear materials to calorimetric and gamma-ray measurement stations. Since ROBOCAL is designed for minimal operator intervention, a completely programmed user interface is provided to interact with the automated mechanical and assay systems. The assay system is designed to completely integrate calorimetric and gamma-ray data acquisition and to perform state-of-the-art analyses on both homogeneous and heterogeneous distributions of nuclear materials in a wide variety of matrices

  4. An independent evaluation of a new method for automated interpretation of lung scintigrams using artificial neural networks

    International Nuclear Information System (INIS)

    Holst, H.; Jaerund, A.; Evander, E.; Taegil, K.; Edenbrandt, L.; Maare, K.; Aastroem, K.; Ohlsson, M.

    2001-01-01

    The purpose of this study was to evaluate a new automated method for the interpretation of lung perfusion scintigrams using patients from a hospital other than that where the method was developed, and then to compare the performance of the technique against that of experienced physicians. A total of 1,087 scintigrams from patients with suspected pulmonary embolism comprised the training group. The test group consisted of scintigrams from 140 patients collected in a hospital different to that from which the training group had been drawn. An artificial neural network was trained using 18 automatically obtained features from each set of perfusion scintigrams. The image processing techniques included alignment to templates, construction of quotient images based on the perfusion/template images, and finally calculation of features describing segmental perfusion defects in the quotient images. The templates represented lungs of normal size and shape without any pathological changes. The performance of the neural network was compared with that of three experienced physicians who read the same test scintigrams according to the modified PIOPED criteria using, in addition to perfusion images, ventilation images when available and chest radiographs for all patients. Performances were measured as area under the receiver operating characteristic curve. The performance of the neural network evaluated in the test group was 0.88 (95% confidence limits 0.81-0.94). The performance of the three experienced experts was in the range 0.87-0.93 when using the perfusion images, chest radiographs and ventilation images when available. Perfusion scintigrams can be interpreted regarding the diagnosis of pulmonary embolism by the use of an automated method also in a hospital other than that where it was developed. The performance of this method is similar to that of experienced physicians even though the physicians, in addition to perfusion images, also had access to ventilation images for

  5. Reliability Analysis Techniques for Communication Networks in Nuclear Power Plant

    International Nuclear Information System (INIS)

    Lim, T. J.; Jang, S. C.; Kang, H. G.; Kim, M. C.; Eom, H. S.; Lee, H. J.

    2006-09-01

    The objectives of this project is to investigate and study existing reliability analysis techniques for communication networks in order to develop reliability analysis models for nuclear power plant's safety-critical networks. It is necessary to make a comprehensive survey of current methodologies for communication network reliability. Major outputs of this study are design characteristics of safety-critical communication networks, efficient algorithms for quantifying reliability of communication networks, and preliminary models for assessing reliability of safety-critical communication networks

  6. Time series analysis of temporal networks

    Science.gov (United States)

    Sikdar, Sandipan; Ganguly, Niloy; Mukherjee, Animesh

    2016-01-01

    A common but an important feature of all real-world networks is that they are temporal in nature, i.e., the network structure changes over time. Due to this dynamic nature, it becomes difficult to propose suitable growth models that can explain the various important characteristic properties of these networks. In fact, in many application oriented studies only knowing these properties is sufficient. For instance, if one wishes to launch a targeted attack on a network, this can be done even without the knowledge of the full network structure; rather an estimate of some of the properties is sufficient enough to launch the attack. We, in this paper show that even if the network structure at a future time point is not available one can still manage to estimate its properties. We propose a novel method to map a temporal network to a set of time series instances, analyze them and using a standard forecast model of time series, try to predict the properties of a temporal network at a later time instance. To our aim, we consider eight properties such as number of active nodes, average degree, clustering coefficient etc. and apply our prediction framework on them. We mainly focus on the temporal network of human face-to-face contacts and observe that it represents a stochastic process with memory that can be modeled as Auto-Regressive-Integrated-Moving-Average (ARIMA). We use cross validation techniques to find the percentage accuracy of our predictions. An important observation is that the frequency domain properties of the time series obtained from spectrogram analysis could be used to refine the prediction framework by identifying beforehand the cases where the error in prediction is likely to be high. This leads to an improvement of 7.96% (for error level ≤20%) in prediction accuracy on an average across all datasets. As an application we show how such prediction scheme can be used to launch targeted attacks on temporal networks. Contribution to the Topical Issue

  7. Towards Automated Analysis of Urban Infrastructure after Natural Disasters using Remote Sensing

    Science.gov (United States)

    Axel, Colin

    Natural disasters, such as earthquakes and hurricanes, are an unpreventable component of the complex and changing environment we live in. Continued research and advancement in disaster mitigation through prediction of and preparation for impacts have undoubtedly saved many lives and prevented significant amounts of damage, but it is inevitable that some events will cause destruction and loss of life due to their sheer magnitude and proximity to built-up areas. Consequently, development of effective and efficient disaster response methodologies is a research topic of great interest. A successful emergency response is dependent on a comprehensive understanding of the scenario at hand. It is crucial to assess the state of the infrastructure and transportation network, so that resources can be allocated efficiently. Obstructions to the roadways are one of the biggest inhibitors to effective emergency response. To this end, airborne and satellite remote sensing platforms have been used extensively to collect overhead imagery and other types of data in the event of a natural disaster. The ability of these platforms to rapidly probe large areas is ideal in a situation where a timely response could result in saving lives. Typically, imagery is delivered to emergency management officials who then visually inspect it to determine where roads are obstructed and buildings have collapsed. Manual interpretation of imagery is a slow process and is limited by the quality of the imagery and what the human eye can perceive. In order to overcome the time and resource limitations of manual interpretation, this dissertation inves- tigated the feasibility of performing fully automated post-disaster analysis of roadways and buildings using airborne remote sensing data. First, a novel algorithm for detecting roadway debris piles from airborne light detection and ranging (lidar) point clouds and estimating their volumes is presented. Next, a method for detecting roadway flooding in aerial

  8. Network analysis for the visualization and analysis of qualitative data.

    Science.gov (United States)

    Pokorny, Jennifer J; Norman, Alex; Zanesco, Anthony P; Bauer-Wu, Susan; Sahdra, Baljinder K; Saron, Clifford D

    2018-03-01

    We present a novel manner in which to visualize the coding of qualitative data that enables representation and analysis of connections between codes using graph theory and network analysis. Network graphs are created from codes applied to a transcript or audio file using the code names and their chronological location. The resulting network is a representation of the coding data that characterizes the interrelations of codes. This approach enables quantification of qualitative codes using network analysis and facilitates examination of associations of network indices with other quantitative variables using common statistical procedures. Here, as a proof of concept, we applied this method to a set of interview transcripts that had been coded in 2 different ways and the resultant network graphs were examined. The creation of network graphs allows researchers an opportunity to view and share their qualitative data in an innovative way that may provide new insights and enhance transparency of the analytical process by which they reach their conclusions. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  9. Capacity analysis of wireless mesh networks | Gumel | Nigerian ...

    African Journals Online (AJOL)

    ... number of nodes (n) in a linear topology. The degradation is found to be higher in a fully mesh network as a result of increase in interference and MAC layer contention in the network. Key words: Wireless mesh network (WMN), Adhoc network, Network capacity analysis, Bottleneck collision domain, Medium access control ...

  10. Library Automation.

    Science.gov (United States)

    Husby, Ole

    1990-01-01

    The challenges and potential benefits of automating university libraries are reviewed, with special attention given to cooperative systems. Aspects discussed include database size, the role of the university computer center, storage modes, multi-institutional systems, resource sharing, cooperative system management, networking, and intelligent…

  11. An automated multi-scale network-based scheme for detection and location of seismic sources

    Science.gov (United States)

    Poiata, N.; Aden-Antoniow, F.; Satriano, C.; Bernard, P.; Vilotte, J. P.; Obara, K.

    2017-12-01

    We present a recently developed method - BackTrackBB (Poiata et al. 2016) - allowing to image energy radiation from different seismic sources (e.g., earthquakes, LFEs, tremors) in different tectonic environments using continuous seismic records. The method exploits multi-scale frequency-selective coherence in the wave field, recorded by regional seismic networks or local arrays. The detection and location scheme is based on space-time reconstruction of the seismic sources through an imaging function built from the sum of station-pair time-delay likelihood functions, projected onto theoretical 3D time-delay grids. This imaging function is interpreted as the location likelihood of the seismic source. A signal pre-processing step constructs a multi-band statistical representation of the non stationary signal, i.e. time series, by means of higher-order statistics or energy envelope characteristic functions. Such signal-processing is designed to detect in time signal transients - of different scales and a priori unknown predominant frequency - potentially associated with a variety of sources (e.g., earthquakes, LFE, tremors), and to improve the performance and the robustness of the detection-and-location location step. The initial detection-location, based on a single phase analysis with the P- or S-phase only, can then be improved recursively in a station selection scheme. This scheme - exploiting the 3-component records - makes use of P- and S-phase characteristic functions, extracted after a polarization analysis of the event waveforms, and combines the single phase imaging functions with the S-P differential imaging functions. The performance of the method is demonstrated here in different tectonic environments: (1) analysis of the one year long precursory phase of 2014 Iquique earthquake in Chile; (2) detection and location of tectonic tremor sources and low-frequency earthquakes during the multiple episodes of tectonic tremor activity in southwestern Japan.

  12. Semi-automated digital image analysis of patellofemoral joint space width from lateral knee radiographs

    Energy Technology Data Exchange (ETDEWEB)

    Grochowski, S.J. [Mayo Clinic, Department of Orthopedic Surgery, Rochester (United States); Amrami, K.K. [Mayo Clinic, Department of Radiology, Rochester (United States); Kaufman, K. [Mayo Clinic, Department of Orthopedic Surgery, Rochester (United States); Mayo Clinic/Foundation, Biomechanics Laboratory, Department of Orthopedic Surgery, Charlton North L-110L, Rochester (United States)

    2005-10-01

    To design a semi-automated program to measure minimum patellofemoral joint space width (JSW) using standing lateral view radiographs. Lateral patellofemoral knee radiographs were obtained from 35 asymptomatic subjects. The radiographs were analyzed to report both the repeatability of the image analysis program and the reproducibility of JSW measurements within a 2 week period. The results were also compared with manual measurements done by an experienced musculoskeletal radiologist. The image analysis program was shown to have an excellent coefficient of repeatability of 0.18 and 0.23 mm for intra- and inter-observer measurements respectively. The manual method measured a greater minimum JSW than the automated method. Reproducibility between days was comparable to other published results, but was less satisfactory for both manual and semi-automated measurements. The image analysis program had an inter-day coefficient of repeatability of 1.24 mm, which was lower than 1.66 mm for the manual method. A repeatable semi-automated method for measurement of the patellofemoral JSW from radiographs has been developed. The method is more accurate than manual measurements. However, the between-day reproducibility is higher than the intra-day reproducibility. Further investigation of the protocol for obtaining sequential lateral knee radiographs is needed in order to reduce the between-day variability. (orig.)

  13. Recent developments in the dissolution and automated analysis of plutonium and uranium for safeguards measurements

    International Nuclear Information System (INIS)

    Jackson, D.D.; Marsh, S.F.; Rein, J.E.; Waterbury, G.R.

    1975-01-01

    The status of a program to develop assay methods for plutonium and uranium for safeguards purposes is presented. The current effort is directed more toward analyses of scrap-type material with an end goal of precise automated methods that also will be applicable to product materials. A guiding philosophy for the analysis of scrap-type materials, characterized by heterogeneity and difficult dissolution, is relatively fast dissolution treatment to effect 90 percent or more solubilization of the uranium and plutonium, analysis of the soluble fraction by precise automated methods, and gamma-counting assay of any residue fraction using simple techniques. A Teflon-container metal-shell apparatus provides acid dissolutions of typical fuel cycle materials at temperatures to 275 0 C and pressures to 340 atm. Gas--solid reactions at elevated temperatures separate uranium from refractory materials by the formation of volatile uranium compounds. The condensed compounds then are dissolved in acid for subsequent analysis. An automated spectrophotometer is used for the determination of uranium and plutonium. The measurement range is 1 to 14 mg of either element with a relative standard deviation of 0.5 percent over most of the range. The throughput rate is 5 min per sample. A second-generation automated instrument is being developed for the determination of plutonium. A precise and specific electroanalytical method is used as its operational basis. (auth)

  14. Capacity analysis of vehicular communication networks

    CERN Document Server

    Lu, Ning

    2013-01-01

    This SpringerBrief focuses on the network capacity analysis of VANETs, a key topic as fundamental guidance on design and deployment of VANETs is very limited. Moreover, unique characteristics of VANETs impose distinguished challenges on such an investigation. This SpringerBrief first introduces capacity scaling laws for wireless networks and briefly reviews the prior arts in deriving the capacity of VANETs. It then studies the unicast capacity considering the socialized mobility model of VANETs. With vehicles communicating based on a two-hop relaying scheme, the unicast capacity bound is deriv

  15. Building Automation System Cyber Networks: An Unmitigated Risk to Federal Facilities

    Science.gov (United States)

    2015-12-01

    Cybersecurity, Appendix III, IV. xviii on the GSA network, and protected behind the GSA firewall ; the remaining facilities are operated on private...control systems by delaying or blocking the flow of information through control networks, thereby denying availability of the networks to control system...a worm, malware , or virus with no specific target.43 A targeted attack occurs when an individual or group attacks a specific system at a specific

  16. Unified Tractable Model for Large-Scale Networks Using Stochastic Geometry: Analysis and Design

    KAUST Repository

    Afify, Laila H.

    2016-12-01

    The ever-growing demands for wireless technologies necessitate the evolution of next generation wireless networks that fulfill the diverse wireless users requirements. However, upscaling existing wireless networks implies upscaling an intrinsic component in the wireless domain; the aggregate network interference. Being the main performance limiting factor, it becomes crucial to develop a rigorous analytical framework to accurately characterize the out-of-cell interference, to reap the benefits of emerging networks. Due to the different network setups and key performance indicators, it is essential to conduct a comprehensive study that unifies the various network configurations together with the different tangible performance metrics. In that regard, the focus of this thesis is to present a unified mathematical paradigm, based on Stochastic Geometry, for large-scale networks with different antenna/network configurations. By exploiting such a unified study, we propose an efficient automated network design strategy to satisfy the desired network objectives. First, this thesis studies the exact aggregate network interference characterization, by accounting for each of the interferers signals in the large-scale network. Second, we show that the information about the interferers symbols can be approximated via the Gaussian signaling approach. The developed mathematical model presents twofold analysis unification for uplink and downlink cellular networks literature. It aligns the tangible decoding error probability analysis with the abstract outage probability and ergodic rate analysis. Furthermore, it unifies the analysis for different antenna configurations, i.e., various multiple-input multiple-output (MIMO) systems. Accordingly, we propose a novel reliable network design strategy that is capable of appropriately adjusting the network parameters to meet desired design criteria. In addition, we discuss the diversity-multiplexing tradeoffs imposed by differently favored

  17. Mathematical Analysis of Urban Spatial Networks

    CERN Document Server

    Blanchard, Philippe

    2009-01-01

    Cities can be considered to be among the largest and most complex artificial networks created by human beings. Due to the numerous and diverse human-driven activities, urban network topology and dynamics can differ quite substantially from that of natural networks and so call for an alternative method of analysis. The intent of the present monograph is to lay down the theoretical foundations for studying the topology of compact urban patterns, using methods from spectral graph theory and statistical physics. These methods are demonstrated as tools to investigate the structure of a number of real cities with widely differing properties: medieval German cities, the webs of city canals in Amsterdam and Venice, and a modern urban structure such as found in Manhattan. Last but not least, the book concludes by providing a brief overview of possible applications that will eventually lead to a useful body of knowledge for architects, urban planners and civil engineers.

  18. Intentional risk management through complex networks analysis

    CERN Document Server

    Chapela, Victor; Moral, Santiago; Romance, Miguel

    2015-01-01

    This book combines game theory and complex networks to examine intentional technological risk through modeling. As information security risks are in constant evolution,  the methodologies and tools to manage them must evolve to an ever-changing environment. A formal global methodology is explained  in this book, which is able to analyze risks in cyber security based on complex network models and ideas extracted from the Nash equilibrium. A risk management methodology for IT critical infrastructures is introduced which provides guidance and analysis on decision making models and real situations. This model manages the risk of succumbing to a digital attack and assesses an attack from the following three variables: income obtained, expense needed to carry out an attack, and the potential consequences for an attack. Graduate students and researchers interested in cyber security, complex network applications and intentional risk will find this book useful as it is filled with a number of models, methodologies a...

  19. A Network Thermodynamic Approach to Compartmental Analysis

    Science.gov (United States)

    Mikulecky, D. C.; Huf, E. G.; Thomas, S. R.

    1979-01-01

    We introduce a general network thermodynamic method for compartmental analysis which uses a compartmental model of sodium flows through frog skin as an illustrative example (Huf and Howell, 1974a). We use network thermodynamics (Mikulecky et al., 1977b) to formulate the problem, and a circuit simulation program (ASTEC 2, SPICE2, or PCAP) for computation. In this way, the compartment concentrations and net fluxes between compartments are readily obtained for a set of experimental conditions involving a square-wave pulse of labeled sodium at the outer surface of the skin. Qualitative features of the influx at the outer surface correlate very well with those observed for the short circuit current under another similar set of conditions by Morel and LeBlanc (1975). In related work, the compartmental model is used as a basis for simulation of the short circuit current and sodium flows simultaneously using a two-port network (Mikulecky et al., 1977a, and Mikulecky et al., A network thermodynamic model for short circuit current transients in frog skin. Manuscript in preparation; Gary-Bobo et al., 1978). The network approach lends itself to computation of classic compartmental problems in a simple manner using circuit simulation programs (Chua and Lin, 1975), and it further extends the compartmental models to more complicated situations involving coupled flows and non-linearities such as concentration dependencies, chemical reaction kinetics, etc. PMID:262387

  20. Automated quantification and sizing of unbranched filamentous cyanobacteria by model based object oriented image analysis

    OpenAIRE

    Zeder, M; Van den Wyngaert, S; Köster, O; Felder, K M; Pernthaler, J

    2010-01-01

    Quantification and sizing of filamentous cyanobacteria in environmental samples or cultures are time-consuming and are often performed by using manual or semiautomated microscopic analysis. Automation of conventional image analysis is difficult because filaments may exhibit great variations in length and patchy autofluorescence. Moreover, individual filaments frequently cross each other in microscopic preparations, as deduced by modeling. This paper describes a novel approach based on object-...