WorldWideScience

Sample records for automated multiplex sequencing

  1. Automation and integration of multiplexed on-line sample preparation with capillary electrophoresis for DNA sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Tan, H.

    1999-03-31

    The purpose of this research is to develop a multiplexed sample processing system in conjunction with multiplexed capillary electrophoresis for high-throughput DNA sequencing. The concept from DNA template to called bases was first demonstrated with a manually operated single capillary system. Later, an automated microfluidic system with 8 channels based on the same principle was successfully constructed. The instrument automatically processes 8 templates through reaction, purification, denaturation, pre-concentration, injection, separation and detection in a parallel fashion. A multiplexed freeze/thaw switching principle and a distribution network were implemented to manage flow direction and sample transportation. Dye-labeled terminator cycle-sequencing reactions are performed in an 8-capillary array in a hot air thermal cycler. Subsequently, the sequencing ladders are directly loaded into a corresponding size-exclusion chromatographic column operated at {approximately} 60 C for purification. On-line denaturation and stacking injection for capillary electrophoresis is simultaneously accomplished at a cross assembly set at {approximately} 70 C. Not only the separation capillary array but also the reaction capillary array and purification columns can be regenerated after every run. DNA sequencing data from this system allow base calling up to 460 bases with accuracy of 98%.

  2. Computer assisted multiplex sequencing. Performance report, August 1, 1992--July 15, 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    The objectives of this project are automation for optimization of multiplex sequencing. We have integrated direct transfer electrophoresis, automated multiplex hybridizations and automated film reading and applied this toward sequencing of E. coli and human DNA. Primers for the directed dideoxy sequence walking and sequence confirmation steps are synthesized to include DNA tags complementary to an alkaline phosphatase conjugate. A higher throughput synthesis device is well along in testing as are new automated hybridization devices. We have developed software for automatically annotating ORFs and databases of precise termini of proteins and RNA.

  3. Multiplexed microsatellite recovery using massively parallel sequencing

    Science.gov (United States)

    Jennings, T.N.; Knaus, B.J.; Mullins, T.D.; Haig, S.M.; Cronn, R.C.

    2011-01-01

    Conservation and management of natural populations requires accurate and inexpensive genotyping methods. Traditional microsatellite, or simple sequence repeat (SSR), marker analysis remains a popular genotyping method because of the comparatively low cost of marker development, ease of analysis and high power of genotype discrimination. With the availability of massively parallel sequencing (MPS), it is now possible to sequence microsatellite-enriched genomic libraries in multiplex pools. To test this approach, we prepared seven microsatellite-enriched, barcoded genomic libraries from diverse taxa (two conifer trees, five birds) and sequenced these on one lane of the Illumina Genome Analyzer using paired-end 80-bp reads. In this experiment, we screened 6.1 million sequences and identified 356958 unique microreads that contained di- or trinucleotide microsatellites. Examination of four species shows that our conversion rate from raw sequences to polymorphic markers compares favourably to Sanger- and 454-based methods. The advantage of multiplexed MPS is that the staggering capacity of modern microread sequencing is spread across many libraries; this reduces sample preparation and sequencing costs to less than $400 (USD) per species. This price is sufficiently low that microsatellite libraries could be prepared and sequenced for all 1373 organisms listed as 'threatened' and 'endangered' in the United States for under $0.5M (USD).

  4. Technical Considerations for Reduced Representation Bisulfite Sequencing with Multiplexed Libraries

    Science.gov (United States)

    Chatterjee, Aniruddha; Rodger, Euan J.; Stockwell, Peter A.; Weeks, Robert J.; Morison, Ian M.

    2012-01-01

    Reduced representation bisulfite sequencing (RRBS), which couples bisulfite conversion and next generation sequencing, is an innovative method that specifically enriches genomic regions with a high density of potential methylation sites and enables investigation of DNA methylation at single-nucleotide resolution. Recent advances in the Illumina DNA sample preparation protocol and sequencing technology have vastly improved sequencing throughput capacity. Although the new Illumina technology is now widely used, the unique challenges associated with multiplexed RRBS libraries on this platform have not been previously described. We have made modifications to the RRBS library preparation protocol to sequence multiplexed libraries on a single flow cell lane of the Illumina HiSeq 2000. Furthermore, our analysis incorporates a bioinformatics pipeline specifically designed to process bisulfite-converted sequencing reads and evaluate the output and quality of the sequencing data generated from the multiplexed libraries. We obtained an average of 42 million paired-end reads per sample for each flow-cell lane, with a high unique mapping efficiency to the reference human genome. Here we provide a roadmap of modifications, strategies, and trouble shooting approaches we implemented to optimize sequencing of multiplexed libraries on an a RRBS background. PMID:23193365

  5. "First generation" automated DNA sequencing technology.

    Science.gov (United States)

    Slatko, Barton E; Kieleczawa, Jan; Ju, Jingyue; Gardner, Andrew F; Hendrickson, Cynthia L; Ausubel, Frederick M

    2011-10-01

    Beginning in the 1980s, automation of DNA sequencing has greatly increased throughput, reduced costs, and enabled large projects to be completed more easily. The development of automation technology paralleled the development of other aspects of DNA sequencing: better enzymes and chemistry, separation and imaging technology, sequencing protocols, robotics, and computational advancements (including base-calling algorithms with quality scores, database developments, and sequence analysis programs). Despite the emergence of high-throughput sequencing platforms, automated Sanger sequencing technology remains useful for many applications. This unit provides background and a description of the "First-Generation" automated DNA sequencing technology. It also includes protocols for using the current Applied Biosystems (ABI) automated DNA sequencing machines. © 2011 by John Wiley & Sons, Inc.

  6. Rapid Multiplex Small DNA Sequencing on the MinION Nanopore Sequencing Platform

    Directory of Open Access Journals (Sweden)

    Shan Wei

    2018-05-01

    Full Text Available Real-time sequencing of short DNA reads has a wide variety of clinical and research applications including screening for mutations, target sequences and aneuploidy. We recently demonstrated that MinION, a nanopore-based DNA sequencing device the size of a USB drive, could be used for short-read DNA sequencing. In this study, an ultra-rapid multiplex library preparation and sequencing method for the MinION is presented and applied to accurately test normal diploid and aneuploidy samples’ genomic DNA in under three hours, including library preparation and sequencing. This novel method shows great promise as a clinical diagnostic test for applications requiring rapid short-read DNA sequencing.

  7. Preparation of highly multiplexed small RNA sequencing libraries.

    Science.gov (United States)

    Persson, Helena; Søkilde, Rolf; Pirona, Anna Chiara; Rovira, Carlos

    2017-08-01

    MicroRNAs (miRNAs) are ~22-nucleotide-long small non-coding RNAs that regulate the expression of protein-coding genes by base pairing to partially complementary target sites, preferentially located in the 3´ untranslated region (UTR) of target mRNAs. The expression and function of miRNAs have been extensively studied in human disease, as well as the possibility of using these molecules as biomarkers for prognostication and treatment guidance. To identify and validate miRNAs as biomarkers, their expression must be screened in large collections of patient samples. Here, we develop a scalable protocol for the rapid and economical preparation of a large number of small RNA sequencing libraries using dual indexing for multiplexing. Combined with the use of off-the-shelf reagents, more samples can be sequenced simultaneously on large-scale sequencing platforms at a considerably lower cost per sample. Sample preparation is simplified by pooling libraries prior to gel purification, which allows for the selection of a narrow size range while minimizing sample variation. A comparison with publicly available data from benchmarking of miRNA analysis platforms showed that this method captures absolute and differential expression as effectively as commercially available alternatives.

  8. Automated Testing with Targeted Event Sequence Generation

    DEFF Research Database (Denmark)

    Jensen, Casper Svenning; Prasad, Mukul R.; Møller, Anders

    2013-01-01

    Automated software testing aims to detect errors by producing test inputs that cover as much of the application source code as possible. Applications for mobile devices are typically event-driven, which raises the challenge of automatically producing event sequences that result in high coverage...

  9. Modeling of prepregs during automated draping sequences

    Science.gov (United States)

    Krogh, Christian; Glud, Jens A.; Jakobsen, Johnny

    2017-10-01

    The behavior of wowen prepreg fabric during automated draping sequences is investigated. A drape tool under development with an arrangement of grippers facilitates the placement of a woven prepreg fabric in a mold. It is essential that the draped configuration is free from wrinkles and other defects. The present study aims at setting up a virtual draping framework capable of modeling the draping process from the initial flat fabric to the final double curved shape and aims at assisting the development of an automated drape tool. The virtual draping framework consists of a kinematic mapping algorithm used to generate target points on the mold which are used as input to a draping sequence planner. The draping sequence planner prescribes the displacement history for each gripper in the drape tool and these displacements are then applied to each gripper in a transient model of the draping sequence. The model is based on a transient finite element analysis with the material's constitutive behavior currently being approximated as linear elastic orthotropic. In-plane tensile and bias-extension tests as well as bending tests are conducted and used as input for the model. The virtual draping framework shows a good potential for obtaining a better understanding of the drape process and guide the development of the drape tool. However, results obtained from using the framework on a simple test case indicate that the generation of draping sequences is non-trivial.

  10. Enhanced throughput for infrared automated DNA sequencing

    Science.gov (United States)

    Middendorf, Lyle R.; Gartside, Bill O.; Humphrey, Pat G.; Roemer, Stephen C.; Sorensen, David R.; Steffens, David L.; Sutter, Scott L.

    1995-04-01

    Several enhancements have been developed and applied to infrared automated DNA sequencing resulting in significantly higher throughput. A 41 cm sequencing gel (31 cm well- to-read distance) combines high resolution of DNA sequencing fragments with optimized run times yielding two runs per day of 500 bases per sample. A 66 cm sequencing gel (56 cm well-to-read distance) produces sequence read lengths of up to 1000 bases for ds and ss templates using either T7 polymerase or cycle-sequencing protocols. Using a multichannel syringe to load 64 lanes allows 16 samples (compatible with 96-well format) to be visualized for each run. The 41 cm gel configuration allows 16,000 bases per day (16 samples X 500 bases/sample X 2 ten hour runs/day) to be sequenced with the advantages of infrared technology. Enhancements to internal labeling techniques using an infrared-labeled dATP molecule (Boehringer Mannheim GmbH, Penzberg, Germany; Sequenase (U.S. Biochemical) have also been made. The inclusion of glycerol in the sequencing reactions yields greatly improved results for some primer and template combinations. The inclusion of (alpha) -Thio-dNTP's in the labeling reaction increases signal intensity two- to three-fold.

  11. Levenshtein error-correcting barcodes for multiplexed DNA sequencing

    NARCIS (Netherlands)

    Buschmann, Tilo; Bystrykh, Leonid V.

    2013-01-01

    Background: High-throughput sequencing technologies are improving in quality, capacity and costs, providing versatile applications in DNA and RNA research. For small genomes or fraction of larger genomes, DNA samples can be mixed and loaded together on the same sequencing track. This so-called

  12. A new trilocus sequence-based multiplex-PCR to detect major Acinetobacter baumannii clones.

    Science.gov (United States)

    Martins, Natacha; Picão, Renata Cristina; Cerqueira-Alves, Morgana; Uehara, Aline; Barbosa, Lívia Carvalho; Riley, Lee W; Moreira, Beatriz Meurer

    2016-08-01

    A collection of 163 Acinetobacter baumannii isolates detected in a large Brazilian hospital, was potentially related with the dissemination of four clonal complexes (CC): 113/79, 103/15, 109/1 and 110/25, defined by University of Oxford/Institut Pasteur multilocus sequence typing (MLST) schemes. The urge of a simple multiplex-PCR scheme to specify these clones has motivated the present study. The established trilocus sequence-based typing (3LST, for ompA, csuE and blaOXA-51-like genes) multiplex-PCR rapidly identifies international clones I (CC109/1), II (CC118/2) and III (CC187/3). Thus, the system detects only one (CC109/1) out of four main CC in Brazil. We aimed to develop an alternative multiplex-PCR scheme to detect these clones, known to be present additionally in Africa, Asia, Europe, USA and South America. MLST, performed in the present study to complement typing our whole collection of isolates, confirmed that all isolates belonged to the same four CC detected previously. When typed by 3LST-based multiplex-PCR, only 12% of the 163 isolates were classified into groups. By comparative sequence analysis of ompA, csuE and blaOXA-51-like genes, a set of eight primers was designed for an alternative multiplex-PCR to distinguish the five CC 113/79, 103/15, 109/1, 110/25 and 118/2. Study isolates and one CC118/2 isolate were blind-tested with the new alternative PCR scheme; all were correctly clustered in groups of the corresponding CC. The new multiplex-PCR, with the advantage of fitting in a single reaction, detects five leading A. baumannii clones and could help preventing the spread in healthcare settings. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. An automated annotation tool for genomic DNA sequences using

    Indian Academy of Sciences (India)

    Genomic sequence data are often available well before the annotated sequence is published. We present a method for analysis of genomic DNA to identify coding sequences using the GeneScan algorithm and characterize these resultant sequences by BLAST. The routines are used to develop a system for automated ...

  14. Highly multiplexed targeted DNA sequencing from single nuclei.

    Science.gov (United States)

    Leung, Marco L; Wang, Yong; Kim, Charissa; Gao, Ruli; Jiang, Jerry; Sei, Emi; Navin, Nicholas E

    2016-02-01

    Single-cell DNA sequencing methods are challenged by poor physical coverage, high technical error rates and low throughput. To address these issues, we developed a single-cell DNA sequencing protocol that combines flow-sorting of single nuclei, time-limited multiple-displacement amplification (MDA), low-input library preparation, DNA barcoding, targeted capture and next-generation sequencing (NGS). This approach represents a major improvement over our previous single nucleus sequencing (SNS) Nature Protocols paper in terms of generating higher-coverage data (>90%), thereby enabling the detection of genome-wide variants in single mammalian cells at base-pair resolution. Furthermore, by pooling 48-96 single-cell libraries together for targeted capture, this approach can be used to sequence many single-cell libraries in parallel in a single reaction. This protocol greatly reduces the cost of single-cell DNA sequencing, and it can be completed in 5-6 d by advanced users. This single-cell DNA sequencing protocol has broad applications for studying rare cells and complex populations in diverse fields of biological research and medicine.

  15. Modular high power diode lasers with flexible 3D multiplexing arrangement optimized for automated manufacturing

    Science.gov (United States)

    Könning, Tobias; Bayer, Andreas; Plappert, Nora; Faßbender, Wilhelm; Dürsch, Sascha; Küster, Matthias; Hubrich, Ralf; Wolf, Paul; Köhler, Bernd; Biesenbach, Jens

    2018-02-01

    A novel 3-dimensional arrangement of mirrors is used to re-arrange beams from 1-D and 2-D high power diode laser arrays. The approach allows for a variety of stacking geometries, depending on individual requirements. While basic building blocks, including collimating optics, always remain the same, most adaptations can be realized by simple rearrangement of a few optical components. Due to fully automated alignment processes, the required changes can be realized in software by changing coordinates, rather than requiring customized mechanical components. This approach minimizes development costs due to its flexibility, while reducing overall product cost by using similar building blocks for a variety of products and utilizing a high grade of automation. The modules can be operated with industrial grade water, lowering overall system and maintenance cost. Stackable macro coolers are used as the smallest building block of the system. Each cooler can hold up to five diode laser bars. Micro optical components, collimating the beam, are mounted directly to the cooler. All optical assembly steps are fully automated. Initially, the beams from all laser bars propagate in the same direction. Key to the concept is an arrangement of deflectors, which re-arrange the beams into a 2-D array of the desired shape and high fill factor. Standard multiplexing techniques like polarization- or wavelengths-multiplexing have been implemented as well. A variety of fiber coupled modules ranging from a few hundred watts of optical output power to multiple kilowatts of power, as well as customized laser spot geometries like uniform line sources, have been realized.

  16. Digital transplantation pathology: combining whole slide imaging, multiplex staining and automated image analysis.

    Science.gov (United States)

    Isse, K; Lesniak, A; Grama, K; Roysam, B; Minervini, M I; Demetris, A J

    2012-01-01

    Conventional histopathology is the gold standard for allograft monitoring, but its value proposition is increasingly questioned. "-Omics" analysis of tissues, peripheral blood and fluids and targeted serologic studies provide mechanistic insights into allograft injury not currently provided by conventional histology. Microscopic biopsy analysis, however, provides valuable and unique information: (a) spatial-temporal relationships; (b) rare events/cells; (c) complex structural context; and (d) integration into a "systems" model. Nevertheless, except for immunostaining, no transformative advancements have "modernized" routine microscopy in over 100 years. Pathologists now team with hardware and software engineers to exploit remarkable developments in digital imaging, nanoparticle multiplex staining, and computational image analysis software to bridge the traditional histology-global "-omic" analyses gap. Included are side-by-side comparisons, objective biopsy finding quantification, multiplexing, automated image analysis, and electronic data and resource sharing. Current utilization for teaching, quality assurance, conferencing, consultations, research and clinical trials is evolving toward implementation for low-volume, high-complexity clinical services like transplantation pathology. Cost, complexities of implementation, fluid/evolving standards, and unsettled medical/legal and regulatory issues remain as challenges. Regardless, challenges will be overcome and these technologies will enable transplant pathologists to increase information extraction from tissue specimens and contribute to cross-platform biomarker discovery for improved outcomes. ©Copyright 2011 The American Society of Transplantation and the American Society of Transplant Surgeons.

  17. Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics.

    Science.gov (United States)

    Timmermans, M J T N; Dodsworth, S; Culverwell, C L; Bocak, L; Ahrens, D; Littlewood, D T J; Pons, J; Vogler, A P

    2010-11-01

    Mitochondrial genome sequences are important markers for phylogenetics but taxon sampling remains sporadic because of the great effort and cost required to acquire full-length sequences. Here, we demonstrate a simple, cost-effective way to sequence the full complement of protein coding mitochondrial genes from pooled samples using the 454/Roche platform. Multiplexing was achieved without the need for expensive indexing tags ('barcodes'). The method was trialled with a set of long-range polymerase chain reaction (PCR) fragments from 30 species of Coleoptera (beetles) sequenced in a 1/16th sector of a sequencing plate. Long contigs were produced from the pooled sequences with sequencing depths ranging from ∼10 to 100× per contig. Species identity of individual contigs was established via three 'bait' sequences matching disparate parts of the mitochondrial genome obtained by conventional PCR and Sanger sequencing. This proved that assembly of contigs from the sequencing pool was correct. Our study produced sequences for 21 nearly complete and seven partial sets of protein coding mitochondrial genes. Combined with existing sequences for 25 taxa, an improved estimate of basal relationships in Coleoptera was obtained. The procedure could be employed routinely for mitochondrial genome sequencing at the species level, to provide improved species 'barcodes' that currently use the cox1 gene only.

  18. Application of massively parallel sequencing to genetic diagnosis in multiplex families with idiopathic sensorineural hearing impairment.

    Directory of Open Access Journals (Sweden)

    Chen-Chi Wu

    Full Text Available Despite the clinical utility of genetic diagnosis to address idiopathic sensorineural hearing impairment (SNHI, the current strategy for screening mutations via Sanger sequencing suffers from the limitation that only a limited number of DNA fragments associated with common deafness mutations can be genotyped. Consequently, a definitive genetic diagnosis cannot be achieved in many families with discernible family history. To investigate the diagnostic utility of massively parallel sequencing (MPS, we applied the MPS technique to 12 multiplex families with idiopathic SNHI in which common deafness mutations had previously been ruled out. NimbleGen sequence capture array was designed to target all protein coding sequences (CDSs and 100 bp of the flanking sequence of 80 common deafness genes. We performed MPS on the Illumina HiSeq2000, and applied BWA, SAMtools, Picard, GATK, Variant Tools, ANNOVAR, and IGV for bioinformatics analyses. Initial data filtering with allele frequencies (0.95 prioritized 5 indels (insertions/deletions and 36 missense variants in the 12 multiplex families. After further validation by Sanger sequencing, segregation pattern, and evolutionary conservation of amino acid residues, we identified 4 variants in 4 different genes, which might lead to SNHI in 4 families compatible with autosomal dominant inheritance. These included GJB2 p.R75Q, MYO7A p.T381M, KCNQ4 p.S680F, and MYH9 p.E1256K. Among them, KCNQ4 p.S680F and MYH9 p.E1256K were novel. In conclusion, MPS allows genetic diagnosis in multiplex families with idiopathic SNHI by detecting mutations in relatively uncommon deafness genes.

  19. Preliminary Genomic Characterization of Ten Hardwood Tree Species from Multiplexed Low Coverage Whole Genome Sequencing.

    Directory of Open Access Journals (Sweden)

    Margaret Staton

    Full Text Available Forest health issues are on the rise in the United States, resulting from introduction of alien pests and diseases, coupled with abiotic stresses related to climate change. Increasingly, forest scientists are finding genetic/genomic resources valuable in addressing forest health issues. For a set of ten ecologically and economically important native hardwood tree species representing a broad phylogenetic spectrum, we used low coverage whole genome sequencing from multiplex Illumina paired ends to economically profile their genomic content. For six species, the genome content was further analyzed by flow cytometry in order to determine the nuclear genome size. Sequencing yielded a depth of 0.8X to 7.5X, from which in silico analysis yielded preliminary estimates of gene and repetitive sequence content in the genome for each species. Thousands of genomic SSRs were identified, with a clear predisposition toward dinucleotide repeats and AT-rich repeat motifs. Flanking primers were designed for SSR loci for all ten species, ranging from 891 loci in sugar maple to 18,167 in redbay. In summary, we have demonstrated that useful preliminary genome information including repeat content, gene content and useful SSR markers can be obtained at low cost and time input from a single lane of Illumina multiplex sequence.

  20. Genome-wide profiling of DNA-binding proteins using barcode-based multiplex Solexa sequencing.

    Science.gov (United States)

    Raghav, Sunil Kumar; Deplancke, Bart

    2012-01-01

    Chromatin immunoprecipitation (ChIP) is a commonly used technique to detect the in vivo binding of proteins to DNA. ChIP is now routinely paired to microarray analysis (ChIP-chip) or next-generation sequencing (ChIP-Seq) to profile the DNA occupancy of proteins of interest on a genome-wide level. Because ChIP-chip introduces several biases, most notably due to the use of a fixed number of probes, ChIP-Seq has quickly become the method of choice as, depending on the sequencing depth, it is more sensitive, quantitative, and provides a greater binding site location resolution. With the ever increasing number of reads that can be generated per sequencing run, it has now become possible to analyze several samples simultaneously while maintaining sufficient sequence coverage, thus significantly reducing the cost per ChIP-Seq experiment. In this chapter, we provide a step-by-step guide on how to perform multiplexed ChIP-Seq analyses. As a proof-of-concept, we focus on the genome-wide profiling of RNA Polymerase II as measuring its DNA occupancy at different stages of any biological process can provide insights into the gene regulatory mechanisms involved. However, the protocol can also be used to perform multiplexed ChIP-Seq analyses of other DNA-binding proteins such as chromatin modifiers and transcription factors.

  1. Modeling of Prepregs during Automated Draping Sequences

    DEFF Research Database (Denmark)

    Krogh, Christian; Glud, Jens Ammitzbøll; Jakobsen, Johnny

    2017-01-01

    algorithm used to generate target points on the mold which are used as input to a draping sequence planner. The draping sequence planner prescribes the displacement history for each gripper in the drape tool and these displacements are then applied to each gripper in a transient model of the draping...... sequence. The model is based on a transient finite element analysis with the material’s constitutive behavior currently being approximated as linear elastic orthotropic. In-plane tensile and bias-extension tests as well as bending tests are conducted and used as input for the model. The virtual draping...

  2. Automated Selection Of Pictures In Sequences

    Science.gov (United States)

    Rorvig, Mark E.; Shelton, Robert O.

    1995-01-01

    Method of automated selection of film or video motion-picture frames for storage or examination developed. Beneficial in situations in which quantity of visual information available exceeds amount stored or examined by humans in reasonable amount of time, and/or necessary to reduce large number of motion-picture frames to few conveying significantly different information in manner intermediate between movie and comic book or storyboard. For example, computerized vision system monitoring industrial process programmed to sound alarm when changes in scene exceed normal limits.

  3. Automated constraint checking of spacecraft command sequences

    Science.gov (United States)

    Horvath, Joan C.; Alkalaj, Leon J.; Schneider, Karl M.; Spitale, Joseph M.; Le, Dang

    1995-01-01

    Robotic spacecraft are controlled by onboard sets of commands called "sequences." Determining that sequences will have the desired effect on the spacecraft can be expensive in terms of both labor and computer coding time, with different particular costs for different types of spacecraft. Specification languages and appropriate user interface to the languages can be used to make the most effective use of engineering validation time. This paper describes one specification and verification environment ("SAVE") designed for validating that command sequences have not violated any flight rules. This SAVE system was subsequently adapted for flight use on the TOPEX/Poseidon spacecraft. The relationship of this work to rule-based artificial intelligence and to other specification techniques is discussed, as well as the issues that arise in the transfer of technology from a research prototype to a full flight system.

  4. ASAP: an environment for automated preprocessing of sequencing data

    Directory of Open Access Journals (Sweden)

    Torstenson Eric S

    2013-01-01

    Full Text Available Abstract Background Next-generation sequencing (NGS has yielded an unprecedented amount of data for genetics research. It is a daunting task to process the data from raw sequence reads to variant calls and manually processing this data can significantly delay downstream analysis and increase the possibility for human error. The research community has produced tools to properly prepare sequence data for analysis and established guidelines on how to apply those tools to achieve the best results, however, existing pipeline programs to automate the process through its entirety are either inaccessible to investigators, or web-based and require a certain amount of administrative expertise to set up. Findings Advanced Sequence Automated Pipeline (ASAP was developed to provide a framework for automating the translation of sequencing data into annotated variant calls with the goal of minimizing user involvement without the need for dedicated hardware or administrative rights. ASAP works both on computer clusters and on standalone machines with minimal human involvement and maintains high data integrity, while allowing complete control over the configuration of its component programs. It offers an easy-to-use interface for submitting and tracking jobs as well as resuming failed jobs. It also provides tools for quality checking and for dividing jobs into pieces for maximum throughput. Conclusions ASAP provides an environment for building an automated pipeline for NGS data preprocessing. This environment is flexible for use and future development. It is freely available at http://biostat.mc.vanderbilt.edu/ASAP.

  5. ASAP: an environment for automated preprocessing of sequencing data.

    Science.gov (United States)

    Torstenson, Eric S; Li, Bingshan; Li, Chun

    2013-01-04

    Next-generation sequencing (NGS) has yielded an unprecedented amount of data for genetics research. It is a daunting task to process the data from raw sequence reads to variant calls and manually processing this data can significantly delay downstream analysis and increase the possibility for human error. The research community has produced tools to properly prepare sequence data for analysis and established guidelines on how to apply those tools to achieve the best results, however, existing pipeline programs to automate the process through its entirety are either inaccessible to investigators, or web-based and require a certain amount of administrative expertise to set up. Advanced Sequence Automated Pipeline (ASAP) was developed to provide a framework for automating the translation of sequencing data into annotated variant calls with the goal of minimizing user involvement without the need for dedicated hardware or administrative rights. ASAP works both on computer clusters and on standalone machines with minimal human involvement and maintains high data integrity, while allowing complete control over the configuration of its component programs. It offers an easy-to-use interface for submitting and tracking jobs as well as resuming failed jobs. It also provides tools for quality checking and for dividing jobs into pieces for maximum throughput. ASAP provides an environment for building an automated pipeline for NGS data preprocessing. This environment is flexible for use and future development. It is freely available at http://biostat.mc.vanderbilt.edu/ASAP.

  6. ASAP: an environment for automated preprocessing of sequencing data

    Science.gov (United States)

    2013-01-01

    Background Next-generation sequencing (NGS) has yielded an unprecedented amount of data for genetics research. It is a daunting task to process the data from raw sequence reads to variant calls and manually processing this data can significantly delay downstream analysis and increase the possibility for human error. The research community has produced tools to properly prepare sequence data for analysis and established guidelines on how to apply those tools to achieve the best results, however, existing pipeline programs to automate the process through its entirety are either inaccessible to investigators, or web-based and require a certain amount of administrative expertise to set up. Findings Advanced Sequence Automated Pipeline (ASAP) was developed to provide a framework for automating the translation of sequencing data into annotated variant calls with the goal of minimizing user involvement without the need for dedicated hardware or administrative rights. ASAP works both on computer clusters and on standalone machines with minimal human involvement and maintains high data integrity, while allowing complete control over the configuration of its component programs. It offers an easy-to-use interface for submitting and tracking jobs as well as resuming failed jobs. It also provides tools for quality checking and for dividing jobs into pieces for maximum throughput. Conclusions ASAP provides an environment for building an automated pipeline for NGS data preprocessing. This environment is flexible for use and future development. It is freely available at http://biostat.mc.vanderbilt.edu/ASAP. PMID:23289815

  7. An automated microfluidic multiplexer for fast delivery of C. elegans populations from multiwells.

    Directory of Open Access Journals (Sweden)

    Navid Ghorashian

    Full Text Available Automated biosorter platforms, including recently developed microfluidic devices, enable and accelerate high-throughput and/or high-resolution bioassays on small animal models. However, time-consuming delivery of different organism populations to these systems introduces a major bottleneck to executing large-scale screens. Current population delivery strategies rely on suction from conventional well plates through tubing periodically exposed to air, leading to certain disadvantages: 1 bubble introduction to the sample, interfering with analysis in the downstream system, 2 substantial time drain from added bubble-cleaning steps, and 3 the need for complex mechanical systems to manipulate well plate position. To address these concerns, we developed a multiwell-format microfluidic platform that can deliver multiple distinct animal populations from on-chip wells using multiplexed valve control. This Population Delivery Chip could operate autonomously as part of a relatively simple setup that did not require any of the major mechanical moving parts typical of plate-handling systems to address a given well. We demonstrated automatic serial delivery of 16 distinct C. elegans worm populations to a single outlet without introducing any bubbles to the samples, causing cross-contamination, or damaging the animals. The device achieved delivery of more than 90% of the population preloaded into a given well in 4.7 seconds; an order of magnitude faster than delivery modalities in current use. This platform could potentially handle other similarly sized model organisms, such as zebrafish and drosophila larvae or cellular micro-colonies. The device's architecture and microchannel dimensions allow simple expansion for processing larger numbers of populations.

  8. Multiplexed enrichment of rare DNA variants via sequence-selective and temperature-robust amplification

    Science.gov (United States)

    Wu, Lucia R.; Chen, Sherry X.; Wu, Yalei; Patel, Abhijit A.; Zhang, David Yu

    2018-01-01

    Rare DNA-sequence variants hold important clinical and biological information, but existing detection techniques are expensive, complex, allele-specific, or don’t allow for significant multiplexing. Here, we report a temperature-robust polymerase-chain-reaction method, which we term blocker displacement amplification (BDA), that selectively amplifies all sequence variants, including single-nucleotide variants (SNVs), within a roughly 20-nucleotide window by 1,000-fold over wild-type sequences. This allows for easy detection and quantitation of hundreds of potential variants originally at ≤0.1% in allele frequency. BDA is compatible with inexpensive thermocycler instrumentation and employs a rationally designed competitive hybridization reaction to achieve comparable enrichment performance across annealing temperatures ranging from 56 °C to 64 °C. To show the sequence generality of BDA, we demonstrate enrichment of 156 SNVs and the reliable detection of single-digit copies. We also show that the BDA detection of rare driver mutations in cell-free DNA samples extracted from the blood plasma of lung-cancer patients is highly consistent with deep sequencing using molecular lineage tags, with a receiver operator characteristic accuracy of 95%. PMID:29805844

  9. The Quest for Rare Variants: Pooled Multiplexed Next Generation Sequencing in Plants

    Directory of Open Access Journals (Sweden)

    Fabio eMarroni

    2012-06-01

    Full Text Available Next generation sequencing (NGS instruments produce an unprecedented amount of sequence data at contained costs. This gives researchers the possibility of designing studies with adequate power to identify rare variants at a fraction of the economic and labor resources required by individual Sanger sequencing. As of today, only three research groups working in plant sciences have exploited this potentiality. They showed that pooled NGS can provide results in excellent agreement with those obtained by individual Sanger sequencing. Aim of this review is to convey to the reader the general ideas underlying the use of pooled NGS for the identification of rare variants. To facilitate a thorough understanding of the possibilities of the method we will explain in detail the variations in study design and discuss their advantages and disadvantages. We will show that information on allele frequency obtained by pooled next generation sequencing can be used to accurately compute basic population genetics indexes such as allele frequency, nucleotide diversity and Tajima’s D. Finally we will discuss applications and future perspectives of the multiplexed NGS approach.

  10. A test matrix sequencer for research test facility automation

    Science.gov (United States)

    Mccartney, Timothy P.; Emery, Edward F.

    1990-01-01

    The hardware and software configuration of a Test Matrix Sequencer, a general purpose test matrix profiler that was developed for research test facility automation at the NASA Lewis Research Center, is described. The system provides set points to controllers and contact closures to data systems during the course of a test. The Test Matrix Sequencer consists of a microprocessor controlled system which is operated from a personal computer. The software program, which is the main element of the overall system is interactive and menu driven with pop-up windows and help screens. Analog and digital input/output channels can be controlled from a personal computer using the software program. The Test Matrix Sequencer provides more efficient use of aeronautics test facilities by automating repetitive tasks that were once done manually.

  11. Iterative normalization technique for reference sequence generation for zero-tail discrete fourier transform spread orthogonal frequency division multiplexing

    DEFF Research Database (Denmark)

    2017-01-01

    Systems, methods, apparatuses, and computer program products for generating sequences for zero-tail discrete fourier transform (DFT)-spread-orthogonal frequency division multiplexing (OFDM) (ZT DFT-s-OFDM) reference signals. One method includes adding a zero vector to an input sequence...... of each of the elements, converting the sequence to time domain, generating a zero-padded sequence by forcing a zero head and tail of the sequence, and repeating the steps until a final sequence with zero-tail and flat frequency response is obtained....

  12. The quest for rare variants: pooled multiplexed next generation sequencing in plants.

    Science.gov (United States)

    Marroni, Fabio; Pinosio, Sara; Morgante, Michele

    2012-01-01

    Next generation sequencing (NGS) instruments produce an unprecedented amount of sequence data at contained costs. This gives researchers the possibility of designing studies with adequate power to identify rare variants at a fraction of the economic and labor resources required by individual Sanger sequencing. As of today, few research groups working in plant sciences have exploited this potentiality, showing that pooled NGS provides results in excellent agreement with those obtained by individual Sanger sequencing. The aim of this review is to convey to the reader the general ideas underlying the use of pooled NGS for the identification of rare variants. To facilitate a thorough understanding of the possibilities of the method, we will explain in detail the possible experimental and analytical approaches and discuss their advantages and disadvantages. We will show that information on allele frequency obtained by pooled NGS can be used to accurately compute basic population genetics indexes such as allele frequency, nucleotide diversity, and Tajima's D. Finally, we will discuss applications and future perspectives of the multiplexed NGS approach.

  13. Multiplex RT-PCR and Automated Microarray for Detection of Eight Bovine Viruses.

    Science.gov (United States)

    Lung, O; Furukawa-Stoffer, T; Burton Hughes, K; Pasick, J; King, D P; Hodko, D

    2017-12-01

    Microarrays can be a useful tool for pathogen detection as it allow for simultaneous interrogation of the presence of a large number of genetic sequences in a sample. However, conventional microarrays require extensive manual handling and multiple pieces of equipment for printing probes, hybridization, washing and signal detection. In this study, a reverse transcription (RT)-PCR with an accompanying novel automated microarray for simultaneous detection of eight viruses that affect cattle [vesicular stomatitis virus (VSV), bovine viral diarrhoea virus type 1 and type 2, bovine herpesvirus 1, bluetongue virus, malignant catarrhal fever virus, rinderpest virus (RPV) and parapox viruses] is described. The assay accurately identified a panel of 37 strains of the target viruses and identified a mixed infection. No non-specific reactions were observed with a panel of 23 non-target viruses associated with livestock. Vesicular stomatitis virus was detected as early as 2 days post-inoculation in oral swabs from experimentally infected animals. The limit of detection of the microarray assay was as low as 1 TCID 50 /ml for RPV. The novel microarray platform automates the entire post-PCR steps of the assay and integrates electrophoretic-driven capture probe printing in a single user-friendly instrument that allows array layout and assay configuration to be user-customized on-site. © 2016 Her Majesty the Queen in Right of Canada.

  14. Performance of automated multiplex PCR using sonication fluid for diagnosis of periprosthetic joint infection: a prospective cohort.

    Science.gov (United States)

    Renz, Nora; Feihl, Susanne; Cabric, Sabrina; Trampuz, Andrej

    2017-12-01

    Sonication of explanted prostheses improved the microbiological diagnosis of periprosthetic joint infections (PJI). We evaluated the performance of automated multiplex polymerase chain reaction (PCR) using sonication fluid for the microbiological diagnosis of PJI. In a prospective cohort using uniform definition criteria for PJI, explanted joint prostheses were investigated by sonication and the resulting sonication fluid was analyzed by culture and multiplex PCR. McNemar's Chi-squared test was used to compare the performance of diagnostic tests. Among 111 patients, PJI was diagnosed in 78 (70%) and aseptic failure in 33 (30%). For the diagnosis of PJI, the sensitivity and specificity of periprosthetic tissue culture was 51 and 100%, of sonication fluid culture 58 and 100%, and of sonication fluid PCR 51 and 94%, respectively. Among 70 microorganisms, periprosthetic tissue culture grew 52 (74%), sonication fluid culture grew 50 (71%) and sonication fluid PCR detected 37 pathogens (53%). If only organisms are considered, for which primers are included in the test panel, PCR detected 37 of 58 pathogens (64%). The sonication fluid PCR missed 19 pathogens (predominantly oral streptococci and anaerobes), whereas 7 additional microorganisms were detected only by PCR (including Cutibacterium spp. and coagulase-negative staphylococci). The performance of multiplex PCR using sonication fluid is comparable to culture of periprosthetic tissue or sonication fluid. The advantages of PCR are short processing time (PCR, especially of low-virulent organisms.

  15. De Novo whole genome sequence of Xylella fastidiosa subsp. multiplex strain BB01 from blueberry in Georgia, USA

    Science.gov (United States)

    This study reports a de novo assembled draft genome sequence of Xylella fastidiosa subsp. multiplex strain BB01 causing blueberry bacterial leaf scorch in Georgia, USA. The BB01 genome is 2,517,579 bp with a G+C content of 51.8% and 2,943 open reading frames (ORFs) and 48 RNA genes....

  16. ddPCRclust - An R package and Shiny app for automated analysis of multiplexed ddPCR data.

    Science.gov (United States)

    Brink, Benedikt G; Meskas, Justin; Brinkman, Ryan R

    2018-03-09

    Droplet digital PCR (ddPCR) is an emerging technology for quantifying DNA. By partitioning the target DNA into ∼20000 droplets, each serving as its own PCR reaction compartment, a very high sensitivity of DNA quantification can be achieved. However, manual analysis of the data is time consuming and algorithms for automated analysis of non-orthogonal, multiplexed ddPCR data are unavailable, presenting a major bottleneck for the advancement of ddPCR transitioning from low-throughput to high- throughput. ddPCRclust is an R package for automated analysis of data from Bio-Rad's droplet digital PCR systems (QX100 and QX200). It can automatically analyse and visualise multiplexed ddPCR experiments with up to four targets per reaction. Results are on par with manual analysis, but only take minutes to compute instead of hours. The accompanying Shiny app ddPCRvis provides easy access to the functionalities of ddPCRclust through a web-browser based GUI. R package: https://github.com/bgbrink/ddPCRclust; Interface: https://github.com/bgbrink/ddPCRvis/; Web: https://bibiserv.cebitec.uni-bielefeld.de/ddPCRvis/. bbrink@cebitec.uni-bielefeld.de.

  17. Extended -Regular Sequence for Automated Analysis of Microarray Images

    Directory of Open Access Journals (Sweden)

    Jin Hee-Jeong

    2006-01-01

    Full Text Available Microarray study enables us to obtain hundreds of thousands of expressions of genes or genotypes at once, and it is an indispensable technology for genome research. The first step is the analysis of scanned microarray images. This is the most important procedure for obtaining biologically reliable data. Currently most microarray image processing systems require burdensome manual block/spot indexing work. Since the amount of experimental data is increasing very quickly, automated microarray image analysis software becomes important. In this paper, we propose two automated methods for analyzing microarray images. First, we propose the extended -regular sequence to index blocks and spots, which enables a novel automatic gridding procedure. Second, we provide a methodology, hierarchical metagrid alignment, to allow reliable and efficient batch processing for a set of microarray images. Experimental results show that the proposed methods are more reliable and convenient than the commercial tools.

  18. Automation Selection and Sequencing of Traps for Vibratory Feeders

    DEFF Research Database (Denmark)

    Mathiesen, Simon; Ellekilde, Lars-Peter

    2017-01-01

    Vibratory parts feeders with mechanical orienting devices are used extensively in the assembly automation industry. Even so, the design process is based on trial-and-error approaches and is largely manual. In this paper, a methodology is presented for automatic design of this type of feeder....... The approach uses dynamic simulation for generating the necessary data for configuring a feeder with a sequence of mechanical orienting devices called traps, with the goal of reorienting all parts from a random to fixed orientation. Then, a fast algorithm for facilitating this configuration task automatically...

  19. Basic MR sequence parameters systematically bias automated brain volume estimation

    International Nuclear Information System (INIS)

    Haller, Sven; Falkovskiy, Pavel; Roche, Alexis; Marechal, Benedicte; Meuli, Reto; Thiran, Jean-Philippe; Krueger, Gunnar; Lovblad, Karl-Olof; Kober, Tobias

    2016-01-01

    Automated brain MRI morphometry, including hippocampal volumetry for Alzheimer disease, is increasingly recognized as a biomarker. Consequently, a rapidly increasing number of software tools have become available. We tested whether modifications of simple MR protocol parameters typically used in clinical routine systematically bias automated brain MRI segmentation results. The study was approved by the local ethical committee and included 20 consecutive patients (13 females, mean age 75.8 ± 13.8 years) undergoing clinical brain MRI at 1.5 T for workup of cognitive decline. We compared three 3D T1 magnetization prepared rapid gradient echo (MPRAGE) sequences with the following parameter settings: ADNI-2 1.2 mm iso-voxel, no image filtering, LOCAL- 1.0 mm iso-voxel no image filtering, LOCAL+ 1.0 mm iso-voxel with image edge enhancement. Brain segmentation was performed by two different and established analysis tools, FreeSurfer and MorphoBox, using standard parameters. Spatial resolution (1.0 versus 1.2 mm iso-voxel) and modification in contrast resulted in relative estimated volume difference of up to 4.28 % (p < 0.001) in cortical gray matter and 4.16 % (p < 0.01) in hippocampus. Image data filtering resulted in estimated volume difference of up to 5.48 % (p < 0.05) in cortical gray matter. A simple change of MR parameters, notably spatial resolution, contrast, and filtering, may systematically bias results of automated brain MRI morphometry of up to 4-5 %. This is in the same range as early disease-related brain volume alterations, for example, in Alzheimer disease. Automated brain segmentation software packages should therefore require strict MR parameter selection or include compensatory algorithms to avoid MR parameter-related bias of brain morphometry results. (orig.)

  20. Basic MR sequence parameters systematically bias automated brain volume estimation

    Energy Technology Data Exchange (ETDEWEB)

    Haller, Sven [University of Geneva, Faculty of Medicine, Geneva (Switzerland); Affidea Centre de Diagnostique Radiologique de Carouge CDRC, Geneva (Switzerland); Falkovskiy, Pavel; Roche, Alexis; Marechal, Benedicte [Siemens Healthcare HC CEMEA SUI DI BM PI, Advanced Clinical Imaging Technology, Lausanne (Switzerland); University Hospital (CHUV), Department of Radiology, Lausanne (Switzerland); Meuli, Reto [University Hospital (CHUV), Department of Radiology, Lausanne (Switzerland); Thiran, Jean-Philippe [LTS5, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland); Krueger, Gunnar [Siemens Medical Solutions USA, Inc., Boston, MA (United States); Lovblad, Karl-Olof [University of Geneva, Faculty of Medicine, Geneva (Switzerland); University Hospitals of Geneva, Geneva (Switzerland); Kober, Tobias [Siemens Healthcare HC CEMEA SUI DI BM PI, Advanced Clinical Imaging Technology, Lausanne (Switzerland); LTS5, Ecole Polytechnique Federale de Lausanne, Lausanne (Switzerland)

    2016-11-15

    Automated brain MRI morphometry, including hippocampal volumetry for Alzheimer disease, is increasingly recognized as a biomarker. Consequently, a rapidly increasing number of software tools have become available. We tested whether modifications of simple MR protocol parameters typically used in clinical routine systematically bias automated brain MRI segmentation results. The study was approved by the local ethical committee and included 20 consecutive patients (13 females, mean age 75.8 ± 13.8 years) undergoing clinical brain MRI at 1.5 T for workup of cognitive decline. We compared three 3D T1 magnetization prepared rapid gradient echo (MPRAGE) sequences with the following parameter settings: ADNI-2 1.2 mm iso-voxel, no image filtering, LOCAL- 1.0 mm iso-voxel no image filtering, LOCAL+ 1.0 mm iso-voxel with image edge enhancement. Brain segmentation was performed by two different and established analysis tools, FreeSurfer and MorphoBox, using standard parameters. Spatial resolution (1.0 versus 1.2 mm iso-voxel) and modification in contrast resulted in relative estimated volume difference of up to 4.28 % (p < 0.001) in cortical gray matter and 4.16 % (p < 0.01) in hippocampus. Image data filtering resulted in estimated volume difference of up to 5.48 % (p < 0.05) in cortical gray matter. A simple change of MR parameters, notably spatial resolution, contrast, and filtering, may systematically bias results of automated brain MRI morphometry of up to 4-5 %. This is in the same range as early disease-related brain volume alterations, for example, in Alzheimer disease. Automated brain segmentation software packages should therefore require strict MR parameter selection or include compensatory algorithms to avoid MR parameter-related bias of brain morphometry results. (orig.)

  1. Multiplexed detection of DNA sequences using a competitive displacement assay in a microfluidic SERRS-based device.

    Science.gov (United States)

    Yazdi, Soroush H; Giles, Kristen L; White, Ian M

    2013-11-05

    We demonstrate sensitive and multiplexed detection of DNA sequences through a surface enhanced resonance Raman spectroscopy (SERRS)-based competitive displacement assay in an integrated microsystem. The use of the competitive displacement scheme, in which the target DNA sequence displaces a Raman-labeled reporter sequence that has lower affinity for the immobilized probe, enables detection of unlabeled target DNA sequences with a simple single-step procedure. In our implementation, the displacement reaction occurs in a microporous packed column of silica beads prefunctionalized with probe-reporter pairs. The use of a functionalized packed-bead column in a microfluidic channel provides two major advantages: (i) immobilization surface chemistry can be performed as a batch process instead of on a chip-by-chip basis, and (ii) the microporous network eliminates the diffusion limitations of a typical biological assay, which increases the sensitivity. Packed silica beads are also leveraged to improve the SERRS detection of the Raman-labeled reporter. Following displacement, the reporter adsorbs onto aggregated silver nanoparticles in a microfluidic mixer; the nanoparticle-reporter conjugates are then trapped and concentrated in the silica bead matrix, which leads to a significant increase in plasmonic nanoparticles and adsorbed Raman reporters within the detection volume as compared to an open microfluidic channel. The experimental results reported here demonstrate detection down to 100 pM of the target DNA sequence, and the experiments are shown to be specific, repeatable, and quantitative. Furthermore, we illustrate the advantage of using SERRS by demonstrating multiplexed detection. The sensitivity of the assay, combined with the advantages of multiplexed detection and single-step operation with unlabeled target sequences makes this method attractive for practical applications. Importantly, while we illustrate DNA sequence detection, the SERRS-based competitive

  2. A multiplex reverse transcription PCR and automated electronic microarray assay for detection and differentiation of seven viruses affecting swine.

    Science.gov (United States)

    Erickson, A; Fisher, M; Furukawa-Stoffer, T; Ambagala, A; Hodko, D; Pasick, J; King, D P; Nfon, C; Ortega Polo, R; Lung, O

    2018-04-01

    Microarray technology can be useful for pathogen detection as it allows simultaneous interrogation of the presence or absence of a large number of genetic signatures. However, most microarray assays are labour-intensive and time-consuming to perform. This study describes the development and initial evaluation of a multiplex reverse transcription (RT)-PCR and novel accompanying automated electronic microarray assay for simultaneous detection and differentiation of seven important viruses that affect swine (foot-and-mouth disease virus [FMDV], swine vesicular disease virus [SVDV], vesicular exanthema of swine virus [VESV], African swine fever virus [ASFV], classical swine fever virus [CSFV], porcine respiratory and reproductive syndrome virus [PRRSV] and porcine circovirus type 2 [PCV2]). The novel electronic microarray assay utilizes a single, user-friendly instrument that integrates and automates capture probe printing, hybridization, washing and reporting on a disposable electronic microarray cartridge with 400 features. This assay accurately detected and identified a total of 68 isolates of the seven targeted virus species including 23 samples of FMDV, representing all seven serotypes, and 10 CSFV strains, representing all three genotypes. The assay successfully detected viruses in clinical samples from the field, experimentally infected animals (as early as 1 day post-infection (dpi) for FMDV and SVDV, 4 dpi for ASFV, 5 dpi for CSFV), as well as in biological material that were spiked with target viruses. The limit of detection was 10 copies/μl for ASFV, PCV2 and PRRSV, 100 copies/μl for SVDV, CSFV, VESV and 1,000 copies/μl for FMDV. The electronic microarray component had reduced analytical sensitivity for several of the target viruses when compared with the multiplex RT-PCR. The integration of capture probe printing allows custom onsite array printing as needed, while electrophoretically driven hybridization generates results faster than conventional

  3. Comparison of three human papillomavirus DNA detection methods: Next generation sequencing, multiplex-PCR and nested-PCR followed by Sanger based sequencing.

    Science.gov (United States)

    da Fonseca, Allex Jardim; Galvão, Renata Silva; Miranda, Angelica Espinosa; Ferreira, Luiz Carlos de Lima; Chen, Zigui

    2016-05-01

    To compare the diagnostic performance for HPV infection using three laboratorial techniques. Ninty-five cervicovaginal samples were randomly selected; each was tested for HPV DNA and genotypes using 3 methods in parallel: Multiplex-PCR, the Nested PCR followed by Sanger sequencing, and the Next_Gen Sequencing (NGS) with two assays (NGS-A1, NGS-A2). The study was approved by the Brazilian National IRB (CONEP protocol 16,800). The prevalence of HPV by the NGS assays was higher than that using the Multiplex-PCR (64.2% vs. 45.2%, respectively; P = 0.001) and the Nested-PCR (64.2% vs. 49.5%, respectively; P = 0.003). NGS also showed better performance in detecting high-risk HPV (HR-HPV) and HPV16. There was a weak interobservers agreement between the results of Multiplex-PCR and Nested-PCR in relation to NGS for the diagnosis of HPV infection, and a moderate correlation for HR-HPV detection. Both NGS assays showed a strong correlation for detection of HPVs (k = 0.86), HR-HPVs (k = 0.91), HPV16 (k = 0.92) and HPV18 (k = 0.91). NGS is more sensitive than the traditional Sanger sequencing and the Multiplex PCR to genotype HPVs, with promising ability to detect multiple infections, and may have the potential to establish an alternative method for the diagnosis and genotyping of HPV. © 2015 Wiley Periodicals, Inc.

  4. High-throughput screening of cellulase F mutants from multiplexed plasmid sets using an automated plate assay on a functional proteomic robotic workcell

    Directory of Open Access Journals (Sweden)

    Qureshi Nasib

    2006-05-01

    Full Text Available Abstract Background The field of plasmid-based functional proteomics requires the rapid assay of proteins expressed from plasmid libraries. Automation is essential since large sets of mutant open reading frames are being cloned for evaluation. To date no integrated automated platform is available to carry out the entire process including production of plasmid libraries, expression of cloned genes, and functional testing of expressed proteins. Results We used a functional proteomic assay in a multiplexed setting on an integrated plasmid-based robotic workcell for high-throughput screening of mutants of cellulase F, an endoglucanase from the anaerobic fungus Orpinomyces PC-2. This allowed us to identify plasmids containing optimized clones expressing mutants with improved activity at lower pH. A plasmid library of mutagenized clones of the celF gene with targeted variations in the last four codons was constructed by site-directed PCR mutagenesis and transformed into Escherichia coli. A robotic picker integrated into the workcell was used to inoculate medium in a 96-well deep well plate, combining the transformants into a multiplexed set in each well, and the plate was incubated on the workcell. Plasmids were prepared from the multiplexed culture on the liquid handler component of the workcell and used for in vitro transcription/translation. The multiplexed expressed recombinant proteins were screened for improved activity and stability in an azo-carboxymethylcellulose plate assay. The multiplexed wells containing mutants with improved activity were identified and linked back to the corresponding multiplexed cultures stored in glycerol. Spread plates were prepared from the glycerol stocks and the workcell was used to pick single colonies from the spread plates, prepare plasmid, produce recombinant protein, and assay for activity. The screening assay and subsequent deconvolution of the multiplexed wells resulted in identification of improved Cel

  5. Exome sequences of multiplex, multigenerational families reveal schizophrenia risk loci with potential implications for neurocognitive performance.

    Science.gov (United States)

    Kos, Mark Z; Carless, Melanie A; Peralta, Juan; Curran, Joanne E; Quillen, Ellen E; Almeida, Marcio; Blackburn, August; Blondell, Lucy; Roalf, David R; Pogue-Geile, Michael F; Gur, Ruben C; Göring, Harald H H; Nimgaonkar, Vishwajit L; Gur, Raquel E; Almasy, Laura

    2017-12-01

    Schizophrenia is a serious mental illness, involving disruptions in thought and behavior, with a worldwide prevalence of about one percent. Although highly heritable, much of the genetic liability of schizophrenia is yet to be explained. We searched for susceptibility loci in multiplex, multigenerational families affected by schizophrenia, targeting protein-altering variation with in silico predicted functional effects. Exome sequencing was performed on 136 samples from eight European-American families, including 23 individuals diagnosed with schizophrenia or schizoaffective disorder. In total, 11,878 non-synonymous variants from 6,396 genes were tested for their association with schizophrenia spectrum disorders. Pathway enrichment analyses were conducted on gene-based test results, protein-protein interaction (PPI) networks, and epistatic effects. Using a significance threshold of FDR < 0.1, association was detected for rs10941112 (p = 2.1 × 10 -5 ; q-value = 0.073) in AMACR, a gene involved in fatty acid metabolism and previously implicated in schizophrenia, with significant cis effects on gene expression (p = 5.5 × 10 -4 ), including brain tissue data from the Genotype-Tissue Expression project (minimum p = 6.0 × 10 -5 ). A second SNP, rs10378 located in TMEM176A, also shows risk effects in the exome data (p = 2.8 × 10 -5 ; q-value = 0.073). PPIs among our top gene-based association results (p < 0.05; n = 359 genes) reveal significant enrichment of genes involved in NCAM-mediated neurite outgrowth (p = 3.0 × 10 -5 ), while exome-wide SNP-SNP interaction effects for rs10941112 and rs10378 indicate a potential role for kinase-mediated signaling involved in memory and learning. In conclusion, these association results implicate AMACR and TMEM176A in schizophrenia risk, whose effects may be modulated by genes involved in synaptic plasticity and neurocognitive performance. © 2017 Wiley Periodicals, Inc.

  6. Multiplexed resequencing analysis to identify rare variants in pooled DNA with barcode indexing using next-generation sequencer.

    Science.gov (United States)

    Mitsui, Jun; Fukuda, Yoko; Azuma, Kyo; Tozaki, Hirokazu; Ishiura, Hiroyuki; Takahashi, Yuji; Goto, Jun; Tsuji, Shoji

    2010-07-01

    We have recently found that multiple rare variants of the glucocerebrosidase gene (GBA) confer a robust risk for Parkinson disease, supporting the 'common disease-multiple rare variants' hypothesis. To develop an efficient method of identifying rare variants in a large number of samples, we applied multiplexed resequencing using a next-generation sequencer to identification of rare variants of GBA. Sixteen sets of pooled DNAs from six pooled DNA samples were prepared. Each set of pooled DNAs was subjected to polymerase chain reaction to amplify the target gene (GBA) covering 6.5 kb, pooled into one tube with barcode indexing, and then subjected to extensive sequence analysis using the SOLiD System. Individual samples were also subjected to direct nucleotide sequence analysis. With the optimization of data processing, we were able to extract all the variants from 96 samples with acceptable rates of false-positive single-nucleotide variants.

  7. Translational database selection and multiplexed sequence capture for up front filtering of reliable breast cancer biomarker candidates.

    Directory of Open Access Journals (Sweden)

    Patrik L Ståhl

    Full Text Available Biomarker identification is of utmost importance for the development of novel diagnostics and therapeutics. Here we make use of a translational database selection strategy, utilizing data from the Human Protein Atlas (HPA on differentially expressed protein patterns in healthy and breast cancer tissues as a means to filter out potential biomarkers for underlying genetic causatives of the disease. DNA was isolated from ten breast cancer biopsies, and the protein coding and flanking non-coding genomic regions corresponding to the selected proteins were extracted in a multiplexed format from the samples using a single DNA sequence capture array. Deep sequencing revealed an even enrichment of the multiplexed samples and a great variation of genetic alterations in the tumors of the sampled individuals. Benefiting from the upstream filtering method, the final set of biomarker candidates could be completely verified through bidirectional Sanger sequencing, revealing a 40 percent false positive rate despite high read coverage. Of the variants encountered in translated regions, nine novel non-synonymous variations were identified and verified, two of which were present in more than one of the ten tumor samples.

  8. Correlation of maple sap composition with bacterial and fungal communities determined by multiplex automated ribosomal intergenic spacer analysis (MARISA).

    Science.gov (United States)

    Filteau, Marie; Lagacé, Luc; LaPointe, Gisèle; Roy, Denis

    2011-08-01

    During collection, maple sap is contaminated by bacteria and fungi that subsequently colonize the tubing system. The bacterial microbiota has been more characterized than the fungal microbiota, but the impact of both components on maple sap quality remains unclear. This study focused on identifying bacterial and fungal members of maple sap and correlating microbiota composition with maple sap properties. A multiplex automated ribosomal intergenic spacer analysis (MARISA) method was developed to presumptively identify bacterial and fungal members of maple sap samples collected from 19 production sites during the tapping period. Results indicate that the fungal community of maple sap is mainly composed of yeast related to Mrakia sp., Mrakiella sp., Guehomyces pullulans, Cryptococcus victoriae and Williopsis saturnus. Mrakia, Mrakiella and Guehomyces peaks were identified in samples of all production sites and can be considered dominant and stable members of the fungal microbiota of maple sap. A multivariate analysis based on MARISA profiles and maple sap chemical composition data showed correlations between Candida sake, Janthinobacterium lividum, Williopsis sp., Leuconostoc mesenteroides, Mrakia sp., Rhodococcus sp., Pseudomonas tolaasii, G. pullulans and maple sap composition at different flow periods. This study provides new insights on the relationship between microbial community and maple sap quality. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Automated degenerate PCR primer design for high-throughput sequencing improves efficiency of viral sequencing

    Directory of Open Access Journals (Sweden)

    Li Kelvin

    2012-11-01

    Full Text Available Abstract Background In a high-throughput environment, to PCR amplify and sequence a large set of viral isolates from populations that are potentially heterogeneous and continuously evolving, the use of degenerate PCR primers is an important strategy. Degenerate primers allow for the PCR amplification of a wider range of viral isolates with only one set of pre-mixed primers, thus increasing amplification success rates and minimizing the necessity for genome finishing activities. To successfully select a large set of degenerate PCR primers necessary to tile across an entire viral genome and maximize their success, this process is best performed computationally. Results We have developed a fully automated degenerate PCR primer design system that plays a key role in the J. Craig Venter Institute’s (JCVI high-throughput viral sequencing pipeline. A consensus viral genome, or a set of consensus segment sequences in the case of a segmented virus, is specified using IUPAC ambiguity codes in the consensus template sequence to represent the allelic diversity of the target population. PCR primer pairs are then selected computationally to produce a minimal amplicon set capable of tiling across the full length of the specified target region. As part of the tiling process, primer pairs are computationally screened to meet the criteria for successful PCR with one of two described amplification protocols. The actual sequencing success rates for designed primers for measles virus, mumps virus, human parainfluenza virus 1 and 3, human respiratory syncytial virus A and B and human metapneumovirus are described, where >90% of designed primer pairs were able to consistently successfully amplify >75% of the isolates. Conclusions Augmenting our previously developed and published JCVI Primer Design Pipeline, we achieved similarly high sequencing success rates with only minor software modifications. The recommended methodology for the construction of the consensus

  10. Development and preliminary evaluation of a multiplexed amplification and next generation sequencing method for viral hemorrhagic fever diagnostics.

    Directory of Open Access Journals (Sweden)

    Annika Brinkmann

    2017-11-01

    Full Text Available We describe the development and evaluation of a novel method for targeted amplification and Next Generation Sequencing (NGS-based identification of viral hemorrhagic fever (VHF agents and assess the feasibility of this approach in diagnostics.An ultrahigh-multiplex panel was designed with primers to amplify all known variants of VHF-associated viruses and relevant controls. The performance of the panel was evaluated via serially quantified nucleic acids from Yellow fever virus, Rift Valley fever virus, Crimean-Congo hemorrhagic fever (CCHF virus, Ebola virus, Junin virus and Chikungunya virus in a semiconductor-based sequencing platform. A comparison of direct NGS and targeted amplification-NGS was performed. The panel was further tested via a real-time nanopore sequencing-based platform, using clinical specimens from CCHF patients.The multiplex primer panel comprises two pools of 285 and 256 primer pairs for the identification of 46 virus species causing hemorrhagic fevers, encompassing 6,130 genetic variants of the strains involved. In silico validation revealed that the panel detected over 97% of all known genetic variants of the targeted virus species. High levels of specificity and sensitivity were observed for the tested virus strains. Targeted amplification ensured viral read detection in specimens with the lowest virus concentration (1-10 genome equivalents and enabled significant increases in specific reads over background for all viruses investigated. In clinical specimens, the panel enabled detection of the causative agent and its characterization within 10 minutes of sequencing, with sample-to-result time of less than 3.5 hours.Virus enrichment via targeted amplification followed by NGS is an applicable strategy for the diagnosis of VHFs which can be adapted for high-throughput or nanopore sequencing platforms and employed for surveillance or outbreak monitoring.

  11. Development and preliminary evaluation of a multiplexed amplification and next generation sequencing method for viral hemorrhagic fever diagnostics.

    Science.gov (United States)

    Brinkmann, Annika; Ergünay, Koray; Radonić, Aleksandar; Kocak Tufan, Zeliha; Domingo, Cristina; Nitsche, Andreas

    2017-11-01

    We describe the development and evaluation of a novel method for targeted amplification and Next Generation Sequencing (NGS)-based identification of viral hemorrhagic fever (VHF) agents and assess the feasibility of this approach in diagnostics. An ultrahigh-multiplex panel was designed with primers to amplify all known variants of VHF-associated viruses and relevant controls. The performance of the panel was evaluated via serially quantified nucleic acids from Yellow fever virus, Rift Valley fever virus, Crimean-Congo hemorrhagic fever (CCHF) virus, Ebola virus, Junin virus and Chikungunya virus in a semiconductor-based sequencing platform. A comparison of direct NGS and targeted amplification-NGS was performed. The panel was further tested via a real-time nanopore sequencing-based platform, using clinical specimens from CCHF patients. The multiplex primer panel comprises two pools of 285 and 256 primer pairs for the identification of 46 virus species causing hemorrhagic fevers, encompassing 6,130 genetic variants of the strains involved. In silico validation revealed that the panel detected over 97% of all known genetic variants of the targeted virus species. High levels of specificity and sensitivity were observed for the tested virus strains. Targeted amplification ensured viral read detection in specimens with the lowest virus concentration (1-10 genome equivalents) and enabled significant increases in specific reads over background for all viruses investigated. In clinical specimens, the panel enabled detection of the causative agent and its characterization within 10 minutes of sequencing, with sample-to-result time of less than 3.5 hours. Virus enrichment via targeted amplification followed by NGS is an applicable strategy for the diagnosis of VHFs which can be adapted for high-throughput or nanopore sequencing platforms and employed for surveillance or outbreak monitoring.

  12. Rapid focused sequencing: a multiplexed assay for simultaneous detection and strain typing of Bacillus anthracis, Francisella tularensis, and Yersinia pestis.

    Directory of Open Access Journals (Sweden)

    Rosemary S Turingan

    Full Text Available BACKGROUND: The intentional release of Bacillus anthracis in the United States in 2001 has heightened concern about the use of pathogenic microorganisms in bioterrorism attacks. Many of the deadliest bacteria, including the Class A Select Agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis, are highly infectious via the pulmonary route when released in aerosolized form. Hence, rapid, sensitive, and reliable methods for detection of these biothreats and characterization of their potential impact on the exposed population are of critical importance to initiate and support rapid military, public health, and clinical responses. METHODOLOGY/PRINCIPAL FINDINGS: We have developed microfluidic multiplexed PCR and sequencing assays based on the simultaneous interrogation of three pathogens per assay and ten loci per pathogen. Microfluidic separation of amplified fluorescently labeled fragments generated characteristic electrophoretic signatures for identification of each agent. The three sets of primers allowed significant strain typing and discrimination from non-pathogenic closely-related species and environmental background strains based on amplicon sizes alone. Furthermore, sequencing of the 10 amplicons per pathogen, termed "Rapid Focused Sequencing," allowed an even greater degree of strain discrimination and, in some cases, can be used to determine virulence. Both amplification and sequencing assays were performed in microfluidic biochips developed for fast thermal cycling and requiring 7 µL per reaction. The 30-plex sequencing assay resulted in genotypic resolution of 84 representative strains belonging to each of the three biothreat species. CONCLUSIONS/SIGNIFICANCE: The microfluidic multiplexed assays allowed identification and strain differentiation of the biothreat agents Bacillus anthracis, Francisella tularensis, and Yersinia pestis and clear discrimination from closely-related species and several environmental

  13. An automated multiplex specific IgE assay system using a photoimmobilized microarray.

    Science.gov (United States)

    Ito, Yoshihiro; Moritsugu, Nozomi; Matsue, Takahisa; Mitsukoshi, Kiyomi; Ayame, Hirohito; Okochi, Norihiko; Hattori, Hideshi; Tashiro, Hideo; Sato, Sakura; Ebisawa, Motohiro

    2012-11-15

    An automated microarray diagnostic system for specific IgE using photoimmobilized allergen has been developed. Photoimmobilization is useful for preparing microarrays, where various types of biological components are covalently immobilized on a plate. Because the immobilization is based on a photo-induced radical cross-linking reaction, it does not require specific functional groups on the immobilized components. Here, an aqueous solution of a photoreactive poly(ethylene glycol)-based polymer was spin-coated on a plate, and an aqueous solution of each allergen was microspotted on the coated plate and allowed to dry in air. Finally, the plate was irradiated with an ultraviolet lamp for covalent immobilization. An automated machine using these plates was developed for the assay of antigen-specific IgE. Initially, the patient serum was added to the microarray plate, and after reaction of the microspotted allergen with IgE, the adsorbed IgE was detected by a peroxidase-conjugated anti-IgE-antibody. The chemical luminescence intensity of the substrate decomposed by the peroxidase was automatically detected using a sensitive charge-coupled device camera. All the allergens were immobilized stably using this method, which was used to screen for allergen-specific IgE. The results were comparable with those using conventional specific IgE. Using this system, six different allergen-specific IgE were assayed using 10 μL of serum within a period of 20 min. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. The Quest for Rare Variants: Pooled Multiplexed Next Generation Sequencing in Plants

    OpenAIRE

    Fabio eMarroni; Sara ePinosio; Sara ePinosio; Michele eMorgante

    2012-01-01

    Next generation sequencing (NGS) instruments produce an unprecedented amount of sequence data at contained costs. This gives researchers the possibility of designing studies with adequate power to identify rare variants at a fraction of the economic and labor resources required by individual Sanger sequencing. As of today, only three research groups working in plant sciences have exploited this potentiality. They showed that pooled NGS can provide results in excellent agreement with those obt...

  15. The Quest for Rare Variants: Pooled Multiplexed Next Generation Sequencing in Plants

    OpenAIRE

    Marroni, Fabio; Pinosio, Sara; Morgante, Michele

    2012-01-01

    Next generation sequencing (NGS) instruments produce an unprecedented amount of sequence data at contained costs. This gives researchers the possibility of designing studies with adequate power to identify rare variants at a fraction of the economic and labor resources required by individual Sanger sequencing. As of today, few research groups working in plant sciences have exploited this potentiality, showing that pooled NGS provides results in excellent agreement with those obtained by indiv...

  16. Configuring the Orion Guidance, Navigation, and Control Flight Software for Automated Sequencing

    Science.gov (United States)

    Odegard, Ryan G.; Siliwinski, Tomasz K.; King, Ellis T.; Hart, Jeremy J.

    2010-01-01

    The Orion Crew Exploration Vehicle is being designed with greater automation capabilities than any other crewed spacecraft in NASA s history. The Guidance, Navigation, and Control (GN&C) flight software architecture is designed to provide a flexible and evolvable framework that accommodates increasing levels of automation over time. Within the GN&C flight software, a data-driven approach is used to configure software. This approach allows data reconfiguration and updates to automated sequences without requiring recompilation of the software. Because of the great dependency of the automation and the flight software on the configuration data, the data management is a vital component of the processes for software certification, mission design, and flight operations. To enable the automated sequencing and data configuration of the GN&C subsystem on Orion, a desktop database configuration tool has been developed. The database tool allows the specification of the GN&C activity sequences, the automated transitions in the software, and the corresponding parameter reconfigurations. These aspects of the GN&C automation on Orion are all coordinated via data management, and the database tool provides the ability to test the automation capabilities during the development of the GN&C software. In addition to providing the infrastructure to manage the GN&C automation, the database tool has been designed with capabilities to import and export artifacts for simulation analysis and documentation purposes. Furthermore, the database configuration tool, currently used to manage simulation data, is envisioned to evolve into a mission planning tool for generating and testing GN&C software sequences and configurations. A key enabler of the GN&C automation design, the database tool allows both the creation and maintenance of the data artifacts, as well as serving the critical role of helping to manage, visualize, and understand the data-driven parameters both during software development

  17. Systematic Dissection of Sequence Elements Controlling σ70 Promoters Using a Genomically-Encoded Multiplexed Reporter Assay in E. coli.

    Science.gov (United States)

    Urtecho, Guillaume; Tripp, Arielle D; Insigne, Kimberly; Kim, Hwangbeom; Kosuri, Sriram

    2018-02-01

    Promoters are the key drivers of gene expression and are largely responsible for the regulation of cellular responses to time and environment. In E. coli , decades of studies have revealed most, if not all, of the sequence elements necessary to encode promoter function. Despite our knowledge of these motifs, it is still not possible to predict the strength and regulation of a promoter from primary sequence alone. Here we develop a novel multiplexed assay to study promoter function in E. coli by building a site-specific genomic recombination-mediated cassette exchange (RMCE) system that allows for the facile construction and testing of large libraries of genetic designs integrated into precise genomic locations. We build and test a library of 10,898 σ70 promoter variants consisting of all combinations of a set of eight -35 elements, eight -10 elements, three UP elements, eight spacers, and eight backgrounds. We find that the -35 and -10 sequence elements can explain approximately 74% of the variance in promoter strength within our dataset using a simple log-linear statistical model. Neural network models can explain greater than 95% of the variance in our dataset, and show the increased power is due to nonlinear interactions of other elements such as the spacer, background, and UP elements.

  18. Inaugural Genomics Automation Congress and the coming deluge of sequencing data.

    Science.gov (United States)

    Creighton, Chad J

    2010-10-01

    Presentations at Select Biosciences's first 'Genomics Automation Congress' (Boston, MA, USA) in 2010 focused on next-generation sequencing and the platforms and methodology around them. The meeting provided an overview of sequencing technologies, both new and emerging. Speakers shared their recent work on applying sequencing to profile cells for various levels of biomolecular complexity, including DNA sequences, DNA copy, DNA methylation, mRNA and microRNA. With sequencing time and costs continuing to drop dramatically, a virtual explosion of very large sequencing datasets is at hand, which will probably present challenges and opportunities for high-level data analysis and interpretation, as well as for information technology infrastructure.

  19. Differentiating Authentic Adenophorae Radix from Its Adulterants in Commercially-Processed Samples Using Multiplexed ITS Sequence-Based SCAR Markers

    Directory of Open Access Journals (Sweden)

    Byeong Cheol Moon

    2017-06-01

    Full Text Available Determining the precise botanical origin of a traditional herbal medicine is important for basic quality control. In both the Chinese and Korean herbal pharmacopoeia, authentic Adenophorae Radix is defined as the roots of Adenophora stricta and Adenophora triphylla. However, the roots of Codonopsis lanceolata, Codonopsis pilosula, and Glehnia littoralis are frequently distributed as Adenophorae Radix in Korean herbal markets. Unfortunately, correctly identifying dried roots is difficult using conventional methods because the roots of those species are morphologically similar. Therefore, we developed DNA-based markers for the identification of authentic Adenophorae Radix and its common adulterants in commercially-processed samples. To develop a reliable method to discriminate between Adenophorae Radix and its adulterants, we sequenced the nuclear ribosomal DNA internal transcribed spacers (nrDNA-ITS and designed sequence-characterized amplified region (SCAR primers specific to the authentic and adulterant species. Using these primers, we developed SCAR markers for each species and established a multiplex-PCR method that can authenticate the four herbal medicines in a single PCR reaction. Furthermore, we confirmed that commercially-processed herbal medicines, which often have degraded DNA, could be assessed with our method. Therefore, our method is a reliable genetic tool to protect against adulteration and to standardize the quality of Adenophorae Radix.

  20. Evaluating multiplexed next-generation sequencing as a method in palynology for mixed pollen samples.

    Science.gov (United States)

    Keller, A; Danner, N; Grimmer, G; Ankenbrand, M; von der Ohe, K; von der Ohe, W; Rost, S; Härtel, S; Steffan-Dewenter, I

    2015-03-01

    The identification of pollen plays an important role in ecology, palaeo-climatology, honey quality control and other areas. Currently, expert knowledge and reference collections are essential to identify pollen origin through light microscopy. Pollen identification through molecular sequencing and DNA barcoding has been proposed as an alternative approach, but the assessment of mixed pollen samples originating from multiple plant species is still a tedious and error-prone task. Next-generation sequencing has been proposed to avoid this hindrance. In this study we assessed mixed pollen probes through next-generation sequencing of amplicons from the highly variable, species-specific internal transcribed spacer 2 region of nuclear ribosomal DNA. Further, we developed a bioinformatic workflow to analyse these high-throughput data with a newly created reference database. To evaluate the feasibility, we compared results from classical identification based on light microscopy from the same samples with our sequencing results. We assessed in total 16 mixed pollen samples, 14 originated from honeybee colonies and two from solitary bee nests. The sequencing technique resulted in higher taxon richness (deeper assignments and more identified taxa) compared to light microscopy. Abundance estimations from sequencing data were significantly correlated with counted abundances through light microscopy. Simulation analyses of taxon specificity and sensitivity indicate that 96% of taxa present in the database are correctly identifiable at the genus level and 70% at the species level. Next-generation sequencing thus presents a useful and efficient workflow to identify pollen at the genus and species level without requiring specialised palynological expert knowledge. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  1. Multiplex Amplification Refractory Mutation System PCR (ARMS-PCR) provides sequencing independent typing of canine parvovirus.

    Science.gov (United States)

    Chander, Vishal; Chakravarti, Soumendu; Gupta, Vikas; Nandi, Sukdeb; Singh, Mithilesh; Badasara, Surendra Kumar; Sharma, Chhavi; Mittal, Mitesh; Dandapat, S; Gupta, V K

    2016-12-01

    Canine parvovirus-2 antigenic variants (CPV-2a, CPV-2b and CPV-2c) ubiquitously distributed worldwide in canine population causes severe fatal gastroenteritis. Antigenic typing of CPV-2 remains a prime focus of research groups worldwide in understanding the disease epidemiology and virus evolution. The present study was thus envisioned to provide a simple sequencing independent, rapid, robust, specific, user-friendly technique for detecting and typing of presently circulating CPV-2 antigenic variants. ARMS-PCR strategy was employed using specific primers for CPV-2a, CPV-2b and CPV-2c to differentiate these antigenic types. ARMS-PCR was initially optimized with reference positive controls in two steps; where first reaction was used to differentiate CPV-2a from CPV-2b/CPV-2c. The second reaction was carried out with CPV-2c specific primers to confirm the presence of CPV-2c. Initial validation of the ARMS-PCR was carried out with 24 sequenced samples and the results were matched with the sequencing results. ARMS-PCR technique was further used to screen and type 90 suspected clinical samples. Randomly selected 15 suspected clinical samples that were typed with this technique were sequenced. The results of ARMS-PCR and the sequencing matched exactly with each other. The developed technique has a potential to become a sequencing independent method for simultaneous detection and typing of CPV-2 antigenic variants in veterinary disease diagnostic laboratories globally. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Automation tools for accelerator control a network based sequencer

    International Nuclear Information System (INIS)

    Clout, P.; Geib, M.; Westervelt, R.

    1991-01-01

    In conjunction with a major client, Vista Control Systems has developed a sequencer for control systems which works in conjunction with its realtime, distributed Vsystem database. Vsystem is a network-based data acquisition, monitoring and control system which has been applied successfully to both accelerator projects and projects outside this realm of research. The network-based sequencer allows a user to simply define a thread of execution in any supported computer on the network. The script defining a sequence has a simple syntax designed for non-programmers, with facilities for selectively abbreviating the channel names for easy reference. The semantics of the script contains most of the familiar capabilities of conventional programming languages, including standard stream I/O and the ability to start other processes with parameters passed. The script is compiled to threaded code for execution efficiency. The implementation is described in some detail and examples are given of applications for which the sequencer has been used

  3. Null alleles and sequence variations at primer binding sites of STR loci within multiplex typing systems.

    Science.gov (United States)

    Yao, Yining; Yang, Qinrui; Shao, Chengchen; Liu, Baonian; Zhou, Yuxiang; Xu, Hongmei; Zhou, Yueqin; Tang, Qiqun; Xie, Jianhui

    2018-01-01

    Rare variants are widely observed in human genome and sequence variations at primer binding sites might impair the process of PCR amplification resulting in dropouts of alleles, named as null alleles. In this study, 5 cases from routine paternity testing using PowerPlex ® 21 System for STR genotyping were considered to harbor null alleles at TH01, FGA, D5S818, D8S1179, and D16S539, respectively. The dropout of alleles was confirmed by using alternative commercial kits AGCU Expressmarker 22 PCR amplification kit and AmpFℓSTR ® . Identifiler ® Plus Kit, and sequencing results revealed a single base variation at the primer binding site of each STR locus. Results from the collection of previous reports show that null alleles at D5S818 were frequently observed in population detected by two PowerPlex ® typing systems and null alleles at D19S433 were mostly observed in Japanese population detected by two AmpFℓSTR™ typing systems. Furthermore, the most popular mutation type appeared the transition from C to T with G to A, which might have a potential relationship with DNA methylation. Altogether, these results can provide helpful information in forensic practice to the elimination of genotyping discrepancy and the development of primer sets. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Multiplex Sequence Analysis Demonstrates the Competitive Growth Advantage of the A-to-G Mutants of Clarithromycin-Resistant Helicobacter pylori

    OpenAIRE

    Wang, Ge; Rahman, M. Sayeedur; Humayun, M. Zafri; Taylor, Diane E.

    1999-01-01

    Clarithromycin resistance in Helicobacter pylori is due to point mutation within the 23S rRNA. We examined the growth rates of different types of site-directed mutants and demonstrated quantitatively the competitive growth advantage of A-to-G mutants over other types of mutants by a multiplex sequencing assay. The results provide a rational explanation of why A-to-G mutants are predominantly observed among clarithromycin-resistant clinical isolates.

  5. Multiplex sequence analysis demonstrates the competitive growth advantage of the A-to-G mutants of clarithromycin-resistant Helicobacter pylori.

    Science.gov (United States)

    Wang, G; Rahman, M S; Humayun, M Z; Taylor, D E

    1999-03-01

    Clarithromycin resistance in Helicobacter pylori is due to point mutation within the 23S rRNA. We examined the growth rates of different types of site-directed mutants and demonstrated quantitatively the competitive growth advantage of A-to-G mutants over other types of mutants by a multiplex sequencing assay. The results provide a rational explanation of why A-to-G mutants are predominantly observed among clarithromycin-resistant clinical isolates.

  6. CloVR-Comparative: automated, cloud-enabled comparative microbial genome sequence analysis pipeline

    OpenAIRE

    Agrawal, Sonia; Arze, Cesar; Adkins, Ricky S.; Crabtree, Jonathan; Riley, David; Vangala, Mahesh; Galens, Kevin; Fraser, Claire M.; Tettelin, Herv?; White, Owen; Angiuoli, Samuel V.; Mahurkar, Anup; Fricke, W. Florian

    2017-01-01

    Background The benefit of increasing genomic sequence data to the scientific community depends on easy-to-use, scalable bioinformatics support. CloVR-Comparative combines commonly used bioinformatics tools into an intuitive, automated, and cloud-enabled analysis pipeline for comparative microbial genomics. Results CloVR-Comparative runs on annotated complete or draft genome sequences that are uploaded by the user or selected via a taxonomic tree-based user interface and downloaded from NCBI. ...

  7. Multiplex Nucleic Acid Sequence-Based Amplification for Simultaneous Detection of Several Enteric Viruses in Model Ready-To-Eat Foods†

    Science.gov (United States)

    Jean, Julie; D'Souza, Doris H.; Jaykus, Lee-Ann

    2004-01-01

    Human enteric viruses are currently recognized as one of the most important causes of food-borne disease. Implication of enteric viruses in food-borne outbreaks can be difficult to confirm due to the inadequacy of the detection methods available. In this study, a nucleic acid sequence-based amplification (NASBA) method was developed in a multiplex format for the specific, simultaneous, and rapid detection of epidemiologically relevant human enteric viruses. Three previously reported primer sets were used in a single reaction for the amplification of RNA target fragments of 474, 371, and 165 nucleotides for the detection of hepatitis A virus and genogroup I and genogroup II noroviruses, respectively. Amplicons were detected by agarose gel electrophoresis and confirmed by electrochemiluminescence and Northern hybridization. Endpoint detection sensitivity for the multiplex NASBA assay was approximately 10−1 reverse transcription-PCR-detectable units (or PFU, as appropriate) per reaction. When representative ready-to-eat foods (deli sliced turkey and lettuce) were inoculated with various concentrations of each virus and processed for virus detection with the multiplex NASBA method, all three human enteric viruses were simultaneously detected at initial inoculum levels of 100 to 102 reverse transcription-PCR-detectable units (or PFU)/9 cm2 in both food commodities. The multiplex NASBA system provides rapid and simultaneous detection of clinically relevant food-borne viruses in a single reaction tube and may be a promising alternative to reverse transcription-PCR for the detection of viral contamination of foods. PMID:15528524

  8. Multiplex nucleic acid sequence-based amplification for simultaneous detection of several enteric viruses in model ready-to-eat foods.

    Science.gov (United States)

    Jean, Julie; D'Souza, Doris H; Jaykus, Lee-Ann

    2004-11-01

    Human enteric viruses are currently recognized as one of the most important causes of food-borne disease. Implication of enteric viruses in food-borne outbreaks can be difficult to confirm due to the inadequacy of the detection methods available. In this study, a nucleic acid sequence-based amplification (NASBA) method was developed in a multiplex format for the specific, simultaneous, and rapid detection of epidemiologically relevant human enteric viruses. Three previously reported primer sets were used in a single reaction for the amplification of RNA target fragments of 474, 371, and 165 nucleotides for the detection of hepatitis A virus and genogroup I and genogroup II noroviruses, respectively. Amplicons were detected by agarose gel electrophoresis and confirmed by electrochemiluminescence and Northern hybridization. Endpoint detection sensitivity for the multiplex NASBA assay was approximately 10(-1) reverse transcription-PCR-detectable units (or PFU, as appropriate) per reaction. When representative ready-to-eat foods (deli sliced turkey and lettuce) were inoculated with various concentrations of each virus and processed for virus detection with the multiplex NASBA method, all three human enteric viruses were simultaneously detected at initial inoculum levels of 10(0) to 10(2) reverse transcription-PCR-detectable units (or PFU)/9 cm2 in both food commodities. The multiplex NASBA system provides rapid and simultaneous detection of clinically relevant food-borne viruses in a single reaction tube and may be a promising alternative to reverse transcription-PCR for the detection of viral contamination of foods.

  9. Efficiency of semi-automated fluorescent multiplex PCRs with 11 microsatellite markers for genetic studies of deer populations.

    Science.gov (United States)

    Bonnet, A; Thévenon, S; Maudet, F; Maillard, J C

    2002-10-01

    Thirty bovine and eight ovine microsatellite primer pairs were tested on four tropical deer species: Eld's and Swamp deer (highly threatened) and Rusa and Vietnamese Sika deer (economically important). Thirty markers gave an amplified product in all four species (78.9%). The number of polymorphic microsatellite markers varied among the species from 14 in Eld's deer (47%) to 20 in Swamp deer (67%). Among them, 11 microsatellite loci were multiplexed in three polymerase chain reactions (PCRs) and labelled with three different fluorochromes that can be loaded in one gel-lane. To test the efficiency of the multiplex, primary genetic studies (mean number of alleles, expected heterozygosities and Fis values) were carried out on four deer populations. Parentage exclusion probability and probability of identity were computed and discussed on a Swamp deer population. These multiplexes PCRs were also tested on several other deer species and subspecies. The aim of this study is to establish a tool useful for genetic studies of population structure and diversity in four tropical deer species which with few modifications can be applied to other species of the genus Cervus.

  10. A novel approach to sequence validating protein expression clones with automated decision making

    Directory of Open Access Journals (Sweden)

    Mohr Stephanie E

    2007-06-01

    Full Text Available Abstract Background Whereas the molecular assembly of protein expression clones is readily automated and routinely accomplished in high throughput, sequence verification of these clones is still largely performed manually, an arduous and time consuming process. The ultimate goal of validation is to determine if a given plasmid clone matches its reference sequence sufficiently to be "acceptable" for use in protein expression experiments. Given the accelerating increase in availability of tens of thousands of unverified clones, there is a strong demand for rapid, efficient and accurate software that automates clone validation. Results We have developed an Automated Clone Evaluation (ACE system – the first comprehensive, multi-platform, web-based plasmid sequence verification software package. ACE automates the clone verification process by defining each clone sequence as a list of multidimensional discrepancy objects, each describing a difference between the clone and its expected sequence including the resulting polypeptide consequences. To evaluate clones automatically, this list can be compared against user acceptance criteria that specify the allowable number of discrepancies of each type. This strategy allows users to re-evaluate the same set of clones against different acceptance criteria as needed for use in other experiments. ACE manages the entire sequence validation process including contig management, identifying and annotating discrepancies, determining if discrepancies correspond to polymorphisms and clone finishing. Designed to manage thousands of clones simultaneously, ACE maintains a relational database to store information about clones at various completion stages, project processing parameters and acceptance criteria. In a direct comparison, the automated analysis by ACE took less time and was more accurate than a manual analysis of a 93 gene clone set. Conclusion ACE was designed to facilitate high throughput clone sequence

  11. Aozan: an automated post-sequencing data-processing pipeline.

    Science.gov (United States)

    Perrin, Sandrine; Firmo, Cyril; Lemoine, Sophie; Le Crom, Stéphane; Jourdren, Laurent

    2017-07-15

    Data management and quality control of output from Illumina sequencers is a disk space- and time-consuming task. Thus, we developed Aozan to automatically handle data transfer, demultiplexing, conversion and quality control once a run has finished. This software greatly improves run data management and the monitoring of run statistics via automatic emails and HTML web reports. Aozan is implemented in Java and Python, supported on Linux systems, and distributed under the GPLv3 License at: http://www.outils.genomique.biologie.ens.fr/aozan/ . Aozan source code is available on GitHub: https://github.com/GenomicParisCentre/aozan . aozan@biologie.ens.fr. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  12. Multiplex editing system

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a multiplex editing system. The system allows multiple editing of nucleic acid sequences such as genomic sequences, such as knockins of genes of interest in a genome, knockouts of genomic sequences and/or allele replacement. Also provided herein are a method...... for editing nucleic acids and a cell comprising a stably integrated endonuclease....

  13. A fully automated 384 capillary array for DNA sequencer. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qingbo; Kane, T

    2003-03-20

    Phase I SpectruMedix has successfully developed an automatic 96-capillary array DNA prototype based on the multiplexed capillary electrophoresis system originated from Ames Laboratory-USDOE, Iowa State University. With computer control of all steps involved in a 96-capillary array running cycle, the prototype instrument (the SCE9600) is now capable of sequencing 450 base pairs (bp) per capillary, or 48,000 bp per instrument run within 2 hrs. Phase II of this grant involved the advancement of the core 96 capillary technologies, as well as designing a high density 384 capillary prototype. True commercialization of the 96 capillary instrument involved finalization of the gel matrix, streamlining the instrument hardware, creating a more reliable capillary cartridge, and further advancement of the data processing software. Together these silos of technology create a truly commercializable product (the SCE9610) capable of meeting the operation needs of the sequencing centers.

  14. Automated side-chain model building and sequence assignment by template matching

    International Nuclear Information System (INIS)

    Terwilliger, Thomas C.

    2002-01-01

    A method for automated macromolecular side-chain model building and for aligning the sequence to the map is described. An algorithm is described for automated building of side chains in an electron-density map once a main-chain model is built and for alignment of the protein sequence to the map. The procedure is based on a comparison of electron density at the expected side-chain positions with electron-density templates. The templates are constructed from average amino-acid side-chain densities in 574 refined protein structures. For each contiguous segment of main chain, a matrix with entries corresponding to an estimate of the probability that each of the 20 amino acids is located at each position of the main-chain model is obtained. The probability that this segment corresponds to each possible alignment with the sequence of the protein is estimated using a Bayesian approach and high-confidence matches are kept. Once side-chain identities are determined, the most probable rotamer for each side chain is built into the model. The automated procedure has been implemented in the RESOLVE software. Combined with automated main-chain model building, the procedure produces a preliminary model suitable for refinement and extension by an experienced crystallographer

  15. A low-cost, multiplexable, automated flow cytometry procedure for the characterization of microbial stress dynamics in bioreactors

    DEFF Research Database (Denmark)

    Brognaux, Alison; Han, Shanshan; Sørensen, Søren Johannes

    2013-01-01

    BACKGROUND:Microbial cell population heterogeneity is now recognized as a major source of issues in the development and optimization of bioprocesses. Even if single cell technologies are available for the study of microbial population heterogeneity, only a few of these methods are available...... to the protease content and energy status of the cells. In this respect, multiplexed experiments have shown a correlation between heat shock and ATP content and the stability of the reporter molecule.CONCLUSION:This work demonstrates that a simplified version of on-line FC can be used at the process level...

  16. HPV-QUEST: A highly customized system for automated HPV sequence analysis capable of processing Next Generation sequencing data set.

    Science.gov (United States)

    Yin, Li; Yao, Jiqiang; Gardner, Brent P; Chang, Kaifen; Yu, Fahong; Goodenow, Maureen M

    2012-01-01

    Next Generation sequencing (NGS) applied to human papilloma viruses (HPV) can provide sensitive methods to investigate the molecular epidemiology of multiple type HPV infection. Currently a genotyping system with a comprehensive collection of updated HPV reference sequences and a capacity to handle NGS data sets is lacking. HPV-QUEST was developed as an automated and rapid HPV genotyping system. The web-based HPV-QUEST subtyping algorithm was developed using HTML, PHP, Perl scripting language, and MYSQL as the database backend. HPV-QUEST includes a database of annotated HPV reference sequences with updated nomenclature covering 5 genuses, 14 species and 150 mucosal and cutaneous types to genotype blasted query sequences. HPV-QUEST processes up to 10 megabases of sequences within 1 to 2 minutes. Results are reported in html, text and excel formats and display e-value, blast score, and local and coverage identities; provide genus, species, type, infection site and risk for the best matched reference HPV sequence; and produce results ready for additional analyses.

  17. Automated cleaning and pre-processing of immunoglobulin gene sequences from high-throughput sequencing

    Directory of Open Access Journals (Sweden)

    Miri eMichaeli

    2012-12-01

    Full Text Available High throughput sequencing (HTS yields tens of thousands to millions of sequences that require a large amount of pre-processing work to clean various artifacts. Such cleaning cannot be performed manually. Existing programs are not suitable for immunoglobulin (Ig genes, which are variable and often highly mutated. This paper describes Ig-HTS-Cleaner (Ig High Throughput Sequencing Cleaner, a program containing a simple cleaning procedure that successfully deals with pre-processing of Ig sequences derived from HTS, and Ig-Indel-Identifier (Ig Insertion – Deletion Identifier, a program for identifying legitimate and artifact insertions and/or deletions (indels. Our programs were designed for analyzing Ig gene sequences obtained by 454 sequencing, but they are applicable to all types of sequences and sequencing platforms. Ig-HTS-Cleaner and Ig-Indel-Identifier have been implemented in Java and saved as executable JAR files, supported on Linux and MS Windows. No special requirements are needed in order to run the programs, except for correctly constructing the input files as explained in the text. The programs' performance has been tested and validated on real and simulated data sets.

  18. A Novel Strategy for Detection and Enumeration of Circulating Rare Cell Populations in Metastatic Cancer Patients Using Automated Microfluidic Filtration and Multiplex Immunoassay.

    Directory of Open Access Journals (Sweden)

    Mark Jesus M Magbanua

    Full Text Available Size selection via filtration offers an antigen-independent approach for the enrichment of rare cell populations in blood of cancer patients. We evaluated the performance of a novel approach for multiplex rare cell detection in blood samples from metastatic breast (n = 19 and lung cancer patients (n = 21, and healthy controls (n = 30 using an automated microfluidic filtration and multiplex immunoassay strategy. Captured cells were enumerated after sequential staining for specific markers to identify circulating tumor cells (CTCs, circulating mesenchymal cells (CMCs, putative circulating stem cells (CSCs, and circulating endothelial cells (CECs. Preclinical validation experiments using cancer cells spiked into healthy blood demonstrated high recovery rate (mean = 85% and reproducibility of the assay. In clinical studies, CTCs and CMCs were detected in 35% and 58% of cancer patients, respectively, and were largely absent from healthy controls (3%, p = 0.001. Mean levels of CTCs were significantly higher in breast than in lung cancer patients (p = 0.03. Fifty-three percent (53% of cancer patients harbored putative CSCs, while none were detectable in healthy controls (p<0.0001. In contrast, CECs were observed in both cancer and control groups. Direct comparison of CellSearch® vs. our microfluidic filter method revealed moderate correlation (R2 = 0.46, kappa = 0.47. Serial blood analysis in breast cancer patients demonstrated the feasibility of monitoring circulating rare cell populations over time. Simultaneous assessment of CTCs, CMCs, CSCs and CECs may provide new tools to study mechanisms of disease progression and treatment response/resistance.

  19. A Novel Strategy for Detection and Enumeration of Circulating Rare Cell Populations in Metastatic Cancer Patients Using Automated Microfluidic Filtration and Multiplex Immunoassay.

    Science.gov (United States)

    Magbanua, Mark Jesus M; Pugia, Michael; Lee, Jin Sun; Jabon, Marc; Wang, Victoria; Gubens, Matthew; Marfurt, Karen; Pence, Julia; Sidhu, Harwinder; Uzgiris, Arejas; Rugo, Hope S; Park, John W

    2015-01-01

    Size selection via filtration offers an antigen-independent approach for the enrichment of rare cell populations in blood of cancer patients. We evaluated the performance of a novel approach for multiplex rare cell detection in blood samples from metastatic breast (n = 19) and lung cancer patients (n = 21), and healthy controls (n = 30) using an automated microfluidic filtration and multiplex immunoassay strategy. Captured cells were enumerated after sequential staining for specific markers to identify circulating tumor cells (CTCs), circulating mesenchymal cells (CMCs), putative circulating stem cells (CSCs), and circulating endothelial cells (CECs). Preclinical validation experiments using cancer cells spiked into healthy blood demonstrated high recovery rate (mean = 85%) and reproducibility of the assay. In clinical studies, CTCs and CMCs were detected in 35% and 58% of cancer patients, respectively, and were largely absent from healthy controls (3%, p = 0.001). Mean levels of CTCs were significantly higher in breast than in lung cancer patients (p = 0.03). Fifty-three percent (53%) of cancer patients harbored putative CSCs, while none were detectable in healthy controls (p<0.0001). In contrast, CECs were observed in both cancer and control groups. Direct comparison of CellSearch® vs. our microfluidic filter method revealed moderate correlation (R2 = 0.46, kappa = 0.47). Serial blood analysis in breast cancer patients demonstrated the feasibility of monitoring circulating rare cell populations over time. Simultaneous assessment of CTCs, CMCs, CSCs and CECs may provide new tools to study mechanisms of disease progression and treatment response/resistance.

  20. Aptaligner: automated software for aligning pseudorandom DNA X-aptamers from next-generation sequencing data.

    Science.gov (United States)

    Lu, Emily; Elizondo-Riojas, Miguel-Angel; Chang, Jeffrey T; Volk, David E

    2014-06-10

    Next-generation sequencing results from bead-based aptamer libraries have demonstrated that traditional DNA/RNA alignment software is insufficient. This is particularly true for X-aptamers containing specialty bases (W, X, Y, Z, ...) that are identified by special encoding. Thus, we sought an automated program that uses the inherent design scheme of bead-based X-aptamers to create a hypothetical reference library and Markov modeling techniques to provide improved alignments. Aptaligner provides this feature as well as length error and noise level cutoff features, is parallelized to run on multiple central processing units (cores), and sorts sequences from a single chip into projects and subprojects.

  1. galaxie--CGI scripts for sequence identification through automated phylogenetic analysis.

    Science.gov (United States)

    Nilsson, R Henrik; Larsson, Karl-Henrik; Ursing, Björn M

    2004-06-12

    The prevalent use of similarity searches like BLAST to identify sequences and species implicitly assumes the reference database to be of extensive sequence sampling. This is often not the case, restraining the correctness of the outcome as a basis for sequence identification. Phylogenetic inference outperforms similarity searches in retrieving correct phylogenies and consequently sequence identities, and a project was initiated to design a freely available script package for sequence identification through automated Web-based phylogenetic analysis. Three CGI scripts were designed to facilitate qualified sequence identification from a Web interface. Query sequences are aligned to pre-made alignments or to alignments made by ClustalW with entries retrieved from a BLAST search. The subsequent phylogenetic analysis is based on the PHYLIP package for inferring neighbor-joining and parsimony trees. The scripts are highly configurable. A service installation and a version for local use are found at http://andromeda.botany.gu.se/galaxiewelcome.html and http://galaxie.cgb.ki.se

  2. Automated side-chain model building and sequence assignment by template matching.

    Science.gov (United States)

    Terwilliger, Thomas C

    2003-01-01

    An algorithm is described for automated building of side chains in an electron-density map once a main-chain model is built and for alignment of the protein sequence to the map. The procedure is based on a comparison of electron density at the expected side-chain positions with electron-density templates. The templates are constructed from average amino-acid side-chain densities in 574 refined protein structures. For each contiguous segment of main chain, a matrix with entries corresponding to an estimate of the probability that each of the 20 amino acids is located at each position of the main-chain model is obtained. The probability that this segment corresponds to each possible alignment with the sequence of the protein is estimated using a Bayesian approach and high-confidence matches are kept. Once side-chain identities are determined, the most probable rotamer for each side chain is built into the model. The automated procedure has been implemented in the RESOLVE software. Combined with automated main-chain model building, the procedure produces a preliminary model suitable for refinement and extension by an experienced crystallographer.

  3. Automated methods for single-stranded DNA isolation and dideoxynucleotide DNA sequencing reactions on a robotic workstation

    International Nuclear Information System (INIS)

    Mardis, E.R.; Roe, B.A.

    1989-01-01

    Automated procedures have been developed for both the simultaneous isolation of 96 single-stranded M13 chimeric template DNAs in less than two hours, and for simultaneously pipetting 24 dideoxynucleotide sequencing reactions on a commercially available laboratory workstation. The DNA sequencing results obtained by either radiolabeled or fluorescent methods are consistent with the premise that automation of these portions of DNA sequencing projects will improve the reproducibility of the DNA isolation and the procedures for these normally labor-intensive steps provides an approach for rapid acquisition of large amounts of high quality, reproducible DNA sequence data

  4. 'Mitominis': multiplex PCR analysis of reduced size amplicons for compound sequence analysis of the entire mtDNA control region in highly degraded samples.

    Science.gov (United States)

    Eichmann, Cordula; Parson, Walther

    2008-09-01

    The traditional protocol for forensic mitochondrial DNA (mtDNA) analyses involves the amplification and sequencing of the two hypervariable segments HVS-I and HVS-II of the mtDNA control region. The primers usually span fragment sizes of 300-400 bp each region, which may result in weak or failed amplification in highly degraded samples. Here we introduce an improved and more stable approach using shortened amplicons in the fragment range between 144 and 237 bp. Ten such amplicons were required to produce overlapping fragments that cover the entire human mtDNA control region. These were co-amplified in two multiplex polymerase chain reactions and sequenced with the individual amplification primers. The primers were carefully selected to minimize binding on homoplasic and haplogroup-specific sites that would otherwise result in loss of amplification due to mis-priming. The multiplexes have successfully been applied to ancient and forensic samples such as bones and teeth that showed a high degree of degradation.

  5. Multiplex, Rapid, and Sensitive Isothermal Detection of Nucleic-Acid Sequence by Endonuclease Restriction-Mediated Real-Time Multiple Cross Displacement Amplification.

    Science.gov (United States)

    Wang, Yi; Wang, Yan; Zhang, Lu; Liu, Dongxin; Luo, Lijuan; Li, Hua; Cao, Xiaolong; Liu, Kai; Xu, Jianguo; Ye, Changyun

    2016-01-01

    We have devised a novel isothermal amplification technology, termed endonuclease restriction-mediated real-time multiple cross displacement amplification (ET-MCDA), which facilitated multiplex, rapid, specific and sensitive detection of nucleic-acid sequences at a constant temperature. The ET-MCDA integrated multiple cross displacement amplification strategy, restriction endonuclease cleavage and real-time fluorescence detection technique. In the ET-MCDA system, the functional cross primer E-CP1 or E-CP2 was constructed by adding a short sequence at the 5' end of CP1 or CP2, respectively, and the new E-CP1 or E-CP2 primer was labeled at the 5' end with a fluorophore and in the middle with a dark quencher. The restriction endonuclease Nb.BsrDI specifically recognized the short sequence and digested the newly synthesized double-stranded terminal sequences (5' end short sequences and their complementary sequences), which released the quenching, resulting on a gain of fluorescence signal. Thus, the ET-MCDA allowed real-time detection of single or multiple targets in only a single reaction, and the positive results were observed in as short as 12 min, detecting down to 3.125 fg of genomic DNA per tube. Moreover, the analytical specificity and the practical application of the ET-MCDA were also successfully evaluated in this study. Here, we provided the details on the novel ET-MCDA technique and expounded the basic ET-MCDA amplification mechanism.

  6. MG-Digger: an automated pipeline to search for giant virus-related sequences in metagenomes

    Directory of Open Access Journals (Sweden)

    Jonathan eVerneau

    2016-03-01

    Full Text Available The number of metagenomic studies conducted each year is growing dramatically. Storage and analysis of such big data is difficult and time-consuming. Interestingly, analysis shows that environmental and human metagenomes include a significant amount of non-annotated sequences, representing a ‘dark matter’. We established a bioinformatics pipeline that automatically detects metagenome reads matching query sequences from a given set and applied this tool to the detection of sequences matching large and giant DNA viral members of the proposed order Megavirales or virophages. A total of 1,045 environmental and human metagenomes (≈ 1 Terabase pairs were collected, processed and stored on our bioinformatics server. In addition, nucleotide and protein sequences from 93 Megavirales representatives, including 19 giant viruses of amoeba, and five virophages, were collected. The pipeline was generated by scripts written in Python language and entitled MG-Digger. Metagenomes previously found to contain megavirus-like sequences were tested as controls. MG-Digger was able to annotate hundreds of metagenome sequences as best matching those of giant viruses. These sequences were most often found to be similar to phycodnavirus or mimivirus sequences, but included reads related to recently available pandoraviruses, Pithovirus sibericum, and faustoviruses. Compared to other tools, MG-Digger combined stand-alone use on Linux or Windows operating systems through a user-friendly interface, implementation of ready-to-use customized metagenome databases and query sequence databases, adjustable parameters for BLAST searches, and creation of output files containing selected reads with best match identification. Compared to Metavir 2, a reference tool in viral metagenome analysis, MG-Digger detected 8% more true positive Megavirales-related reads in a control metagenome. The present work shows that massive, automated and recurrent analyses of metagenomes are

  7. Automated sequence-specific protein NMR assignment using the memetic algorithm MATCH

    International Nuclear Information System (INIS)

    Volk, Jochen; Herrmann, Torsten; Wuethrich, Kurt

    2008-01-01

    MATCH (Memetic Algorithm and Combinatorial Optimization Heuristics) is a new memetic algorithm for automated sequence-specific polypeptide backbone NMR assignment of proteins. MATCH employs local optimization for tracing partial sequence-specific assignments within a global, population-based search environment, where the simultaneous application of local and global optimization heuristics guarantees high efficiency and robustness. MATCH thus makes combined use of the two predominant concepts in use for automated NMR assignment of proteins. Dynamic transition and inherent mutation are new techniques that enable automatic adaptation to variable quality of the experimental input data. The concept of dynamic transition is incorporated in all major building blocks of the algorithm, where it enables switching between local and global optimization heuristics at any time during the assignment process. Inherent mutation restricts the intrinsically required randomness of the evolutionary algorithm to those regions of the conformation space that are compatible with the experimental input data. Using intact and artificially deteriorated APSY-NMR input data of proteins, MATCH performed sequence-specific resonance assignment with high efficiency and robustness

  8. Iterative normalization technique for reference sequence generation for zero-tail discrete fourier transform spread orthogonal frequency division multiplexing

    DEFF Research Database (Denmark)

    2017-01-01

    , and performing an iterative manipulation of the input sequence. The performing of the iterative manipulation of the input sequence may include, for example: computing frequency domain response of the sequence, normalizing elements of the computed frequency domain sequence to unitary power while maintaining phase...

  9. AST: an automated sequence-sampling method for improving the taxonomic diversity of gene phylogenetic trees.

    Science.gov (United States)

    Zhou, Chan; Mao, Fenglou; Yin, Yanbin; Huang, Jinling; Gogarten, Johann Peter; Xu, Ying

    2014-01-01

    A challenge in phylogenetic inference of gene trees is how to properly sample a large pool of homologous sequences to derive a good representative subset of sequences. Such a need arises in various applications, e.g. when (1) accuracy-oriented phylogenetic reconstruction methods may not be able to deal with a large pool of sequences due to their high demand in computing resources; (2) applications analyzing a collection of gene trees may prefer to use trees with fewer operational taxonomic units (OTUs), for instance for the detection of horizontal gene transfer events by identifying phylogenetic conflicts; and (3) the pool of available sequences is biased towards extensively studied species. In the past, the creation of subsamples often relied on manual selection. Here we present an Automated sequence-Sampling method for improving the Taxonomic diversity of gene phylogenetic trees, AST, to obtain representative sequences that maximize the taxonomic diversity of the sampled sequences. To demonstrate the effectiveness of AST, we have tested it to solve four problems, namely, inference of the evolutionary histories of the small ribosomal subunit protein S5 of E. coli, 16 S ribosomal RNAs and glycosyl-transferase gene family 8, and a study of ancient horizontal gene transfers from bacteria to plants. Our results show that the resolution of our computational results is almost as good as that of manual inference by domain experts, hence making the tool generally useful to phylogenetic studies by non-phylogeny specialists. The program is available at http://csbl.bmb.uga.edu/~zhouchan/AST.php.

  10. Effective automated feature construction and selection for classification of biological sequences.

    Directory of Open Access Journals (Sweden)

    Uday Kamath

    Full Text Available Many open problems in bioinformatics involve elucidating underlying functional signals in biological sequences. DNA sequences, in particular, are characterized by rich architectures in which functional signals are increasingly found to combine local and distal interactions at the nucleotide level. Problems of interest include detection of regulatory regions, splice sites, exons, hypersensitive sites, and more. These problems naturally lend themselves to formulation as classification problems in machine learning. When classification is based on features extracted from the sequences under investigation, success is critically dependent on the chosen set of features.We present an algorithmic framework (EFFECT for automated detection of functional signals in biological sequences. We focus here on classification problems involving DNA sequences which state-of-the-art work in machine learning shows to be challenging and involve complex combinations of local and distal features. EFFECT uses a two-stage process to first construct a set of candidate sequence-based features and then select a most effective subset for the classification task at hand. Both stages make heavy use of evolutionary algorithms to efficiently guide the search towards informative features capable of discriminating between sequences that contain a particular functional signal and those that do not.To demonstrate its generality, EFFECT is applied to three separate problems of importance in DNA research: the recognition of hypersensitive sites, splice sites, and ALU sites. Comparisons with state-of-the-art algorithms show that the framework is both general and powerful. In addition, a detailed analysis of the constructed features shows that they contain valuable biological information about DNA architecture, allowing biologists and other researchers to directly inspect the features and potentially use the insights obtained to assist wet-laboratory studies on retainment or modification

  11. SequenceL: Automated Parallel Algorithms Derived from CSP-NT Computational Laws

    Science.gov (United States)

    Cooke, Daniel; Rushton, Nelson

    2013-01-01

    With the introduction of new parallel architectures like the cell and multicore chips from IBM, Intel, AMD, and ARM, as well as the petascale processing available for highend computing, a larger number of programmers will need to write parallel codes. Adding the parallel control structure to the sequence, selection, and iterative control constructs increases the complexity of code development, which often results in increased development costs and decreased reliability. SequenceL is a high-level programming language that is, a programming language that is closer to a human s way of thinking than to a machine s. Historically, high-level languages have resulted in decreased development costs and increased reliability, at the expense of performance. In recent applications at JSC and in industry, SequenceL has demonstrated the usual advantages of high-level programming in terms of low cost and high reliability. SequenceL programs, however, have run at speeds typically comparable with, and in many cases faster than, their counterparts written in C and C++ when run on single-core processors. Moreover, SequenceL is able to generate parallel executables automatically for multicore hardware, gaining parallel speedups without any extra effort from the programmer beyond what is required to write the sequen tial/singlecore code. A SequenceL-to-C++ translator has been developed that automatically renders readable multithreaded C++ from a combination of a SequenceL program and sample data input. The SequenceL language is based on two fundamental computational laws, Consume-Simplify- Produce (CSP) and Normalize-Trans - pose (NT), which enable it to automate the creation of parallel algorithms from high-level code that has no annotations of parallelism whatsoever. In our anecdotal experience, SequenceL development has been in every case less costly than development of the same algorithm in sequential (that is, single-core, single process) C or C++, and an order of magnitude less

  12. A multiplexed miRNA and transgene expression platform for simultaneous repression and expression of protein coding sequences.

    Science.gov (United States)

    Seyhan, Attila A

    2016-01-01

    Knockdown of single or multiple gene targets by RNA interference (RNAi) is necessary to overcome escape mutants or isoform redundancy. It is also necessary to use multiple RNAi reagents to knockdown multiple targets. It is also desirable to express a transgene or positive regulatory elements and inhibit a target gene in a coordinated fashion. This study reports a flexible multiplexed RNAi and transgene platform using endogenous intronic primary microRNAs (pri-miRNAs) as a scaffold located in the green fluorescent protein (GFP) as a model for any functional transgene. The multiplexed intronic miRNA - GFP transgene platform was designed to co-express multiple small RNAs within the polycistronic cluster from a Pol II promoter at more moderate levels to reduce potential vector toxicity. The native intronic miRNAs are co-transcribed with a precursor GFP mRNA as a single transcript and presumably cleaved out of the precursor-(pre) mRNA by the RNA splicing machinery, spliceosome. The spliced intron with miRNA hairpins will be further processed into mature miRNAs or small interfering RNAs (siRNAs) capable of triggering RNAi effects, while the ligated exons become a mature messenger RNA for the translation of the functional GFP protein. Data show that this approach led to robust RNAi-mediated silencing of multiple Renilla Luciferase (R-Luc)-tagged target genes and coordinated expression of functional GFP from a single transcript in transiently transfected HeLa cells. The results demonstrated that this design facilitates the coordinated expression of all mature miRNAs either as individual miRNAs or as multiple miRNAs and the associated protein. The data suggest that, it is possible to simultaneously deliver multiple negative (miRNA or shRNA) and positive (transgene) regulatory elements. Because many cellular processes require simultaneous repression and activation of downstream pathways, this approach offers a platform technology to achieve that dual manipulation efficiently

  13. Multiplex, rapid and sensitive isothermal detection of nucleic-acid sequence by endonuclease restriction-mediated real-time multiple cross displacement amplification

    Directory of Open Access Journals (Sweden)

    Yi eWang

    2016-05-01

    Full Text Available We have devised a novel isothermal amplification technology, termed endonuclease restriction-mediated real-time multiple cross displacement amplification (ET-MCDA, which facilitated multiplex, rapid, specific and sensitive detection of nucleic-acid sequences at a constant temperature. The ET-MCDA integrated multiple cross displacement amplification strategy, restriction endonuclease cleavage and real-time fluorescence detection technique. In the ET-MCDA system, the functional cross primer E-CP1 or E-CP2 was constructed by adding a short sequence at the 5’ end of CP1 or CP2, respectively, and the new E-CP1 or E-CP2 primer was labelled at the 5’ end with a fluorophore and in the middle with a dark quencher. The restriction endonuclease Nb.BsrDI specifically recognized the short sequence and digested the newly synthesized double-stranded terminal sequences (5’ end short sequences and their complementary sequences, which released the quenching, resulting on a gain of fluorescence signal. Thus, the ET-MCDA allowed real-time detection of single or multiple targets in only a single reaction, and the positive results were observed in as short as 12 minutes, detecting down to 3.125 fg of genomic DNA per tube. Moreover, the analytical specificity and the practical application of the ET-MCDA were also successfully evaluated in this study. Here we provided the details on the novel ET-MCDA technique and expounded the basic ET-MCDA amplification mechanism.

  14. The Orion GN and C Data-Driven Flight Software Architecture for Automated Sequencing and Fault Recovery

    Science.gov (United States)

    King, Ellis; Hart, Jeremy; Odegard, Ryan

    2010-01-01

    The Orion Crew Exploration Vehicle (CET) is being designed to include significantly more automation capability than either the Space Shuttle or the International Space Station (ISS). In particular, the vehicle flight software has requirements to accommodate increasingly automated missions throughout all phases of flight. A data-driven flight software architecture will provide an evolvable automation capability to sequence through Guidance, Navigation & Control (GN&C) flight software modes and configurations while maintaining the required flexibility and human control over the automation. This flexibility is a key aspect needed to address the maturation of operational concepts, to permit ground and crew operators to gain trust in the system and mitigate unpredictability in human spaceflight. To allow for mission flexibility and reconfrgurability, a data driven approach is being taken to load the mission event plan as well cis the flight software artifacts associated with the GN&C subsystem. A database of GN&C level sequencing data is presented which manages and tracks the mission specific and algorithm parameters to provide a capability to schedule GN&C events within mission segments. The flight software data schema for performing automated mission sequencing is presented with a concept of operations for interactions with ground and onboard crew members. A prototype architecture for fault identification, isolation and recovery interactions with the automation software is presented and discussed as a forward work item.

  15. CloVR-Comparative: automated, cloud-enabled comparative microbial genome sequence analysis pipeline.

    Science.gov (United States)

    Agrawal, Sonia; Arze, Cesar; Adkins, Ricky S; Crabtree, Jonathan; Riley, David; Vangala, Mahesh; Galens, Kevin; Fraser, Claire M; Tettelin, Hervé; White, Owen; Angiuoli, Samuel V; Mahurkar, Anup; Fricke, W Florian

    2017-04-27

    The benefit of increasing genomic sequence data to the scientific community depends on easy-to-use, scalable bioinformatics support. CloVR-Comparative combines commonly used bioinformatics tools into an intuitive, automated, and cloud-enabled analysis pipeline for comparative microbial genomics. CloVR-Comparative runs on annotated complete or draft genome sequences that are uploaded by the user or selected via a taxonomic tree-based user interface and downloaded from NCBI. CloVR-Comparative runs reference-free multiple whole-genome alignments to determine unique, shared and core coding sequences (CDSs) and single nucleotide polymorphisms (SNPs). Output includes short summary reports and detailed text-based results files, graphical visualizations (phylogenetic trees, circular figures), and a database file linked to the Sybil comparative genome browser. Data up- and download, pipeline configuration and monitoring, and access to Sybil are managed through CloVR-Comparative web interface. CloVR-Comparative and Sybil are distributed as part of the CloVR virtual appliance, which runs on local computers or the Amazon EC2 cloud. Representative datasets (e.g. 40 draft and complete Escherichia coli genomes) are processed in genomics projects, while eliminating the need for on-site computational resources and expertise.

  16. Analogue multiplexer

    International Nuclear Information System (INIS)

    Gorshkov, V.A.; Kuznetsov, A.N.

    1980-01-01

    In systems of signal recording from several parallel spectrometric channels one can considerably reduce the total apparatus volume using a special unit - an analog multiplexer. A description of the multiplexer in the CAMAC system on the base of fast linear gating circuits which allows one analog-to-code converter to attend four spectrometric channels is given. On the example of the 4-channel spectrometer the logics of interaction of the multiple with analog-to-digital coxernver and signal recorder is shown. Electrical and functional multiplexer flow-sheets are given and its main characteristics are presented

  17. Automated typing of red blood cell and platelet antigens: a whole-genome sequencing study.

    Science.gov (United States)

    Lane, William J; Westhoff, Connie M; Gleadall, Nicholas S; Aguad, Maria; Smeland-Wagman, Robin; Vege, Sunitha; Simmons, Daimon P; Mah, Helen H; Lebo, Matthew S; Walter, Klaudia; Soranzo, Nicole; Di Angelantonio, Emanuele; Danesh, John; Roberts, David J; Watkins, Nick A; Ouwehand, Willem H; Butterworth, Adam S; Kaufman, Richard M; Rehm, Heidi L; Silberstein, Leslie E; Green, Robert C

    2018-06-01

    There are more than 300 known red blood cell (RBC) antigens and 33 platelet antigens that differ between individuals. Sensitisation to antigens is a serious complication that can occur in prenatal medicine and after blood transfusion, particularly for patients who require multiple transfusions. Although pre-transfusion compatibility testing largely relies on serological methods, reagents are not available for many antigens. Methods based on single-nucleotide polymorphism (SNP) arrays have been used, but typing for ABO and Rh-the most important blood groups-cannot be done with SNP typing alone. We aimed to develop a novel method based on whole-genome sequencing to identify RBC and platelet antigens. This whole-genome sequencing study is a subanalysis of data from patients in the whole-genome sequencing arm of the MedSeq Project randomised controlled trial (NCT01736566) with no measured patient outcomes. We created a database of molecular changes in RBC and platelet antigens and developed an automated antigen-typing algorithm based on whole-genome sequencing (bloodTyper). This algorithm was iteratively improved to address cis-trans haplotype ambiguities and homologous gene alignments. Whole-genome sequencing data from 110 MedSeq participants (30 × depth) were used to initially validate bloodTyper through comparison with conventional serology and SNP methods for typing of 38 RBC antigens in 12 blood-group systems and 22 human platelet antigens. bloodTyper was further validated with whole-genome sequencing data from 200 INTERVAL trial participants (15 × depth) with serological comparisons. We iteratively improved bloodTyper by comparing its typing results with conventional serological and SNP typing in three rounds of testing. The initial whole-genome sequencing typing algorithm was 99·5% concordant across the first 20 MedSeq genomes. Addressing discordances led to development of an improved algorithm that was 99·8% concordant for the remaining 90 Med

  18. Automation of C-terminal sequence analysis of 2D-PAGE separated proteins

    Directory of Open Access Journals (Sweden)

    P.P. Moerman

    2014-06-01

    Full Text Available Experimental assignment of the protein termini remains essential to define the functional protein structure. Here, we report on the improvement of a proteomic C-terminal sequence analysis method. The approach aims to discriminate the C-terminal peptide in a CNBr-digest where Met-Xxx peptide bonds are cleaved in internal peptides ending at a homoserine lactone (hsl-derivative. pH-dependent partial opening of the lactone ring results in the formation of doublets for all internal peptides. C-terminal peptides are distinguished as singlet peaks by MALDI-TOF MS and MS/MS is then used for their identification. We present a fully automated protocol established on a robotic liquid-handling station.

  19. Automated Clustering Analysis of Immunoglobulin Sequences in Chronic Lymphocytic Leukemia Based on 3D Structural Descriptors

    DEFF Research Database (Denmark)

    Marcatili, Paolo; Mochament, Konstantinos; Agathangelidis, Andreas

    2016-01-01

    study, we used the structure prediction tools PIGS and I-TASSER for creating the 3D models and the TM-align algorithm to superpose them. The innovation of the current methodology resides in the usage of methods adapted from 3D content-based search methodologies to determine the local structural...... determine it are extremely laborious and demanding. Hence, the ability to gain insight into the structure of Igs at large relies on the availability of tools and algorithms for producing accurate Ig structural models based on their primary sequence alone. These models can then be used to determine...... to achieve an optimal solution to this task yet their results were hindered mainly due to the lack of efficient clustering methods based on the similarity of 3D structure descriptors. Here, we present a novel workflow for robust Ig 3D modeling and automated clustering. We validated our protocol in chronic...

  20. Peak-to-average power ratio reduction in orthogonal frequency division multiplexing-based visible light communication systems using a modified partial transmit sequence technique

    Science.gov (United States)

    Liu, Yan; Deng, Honggui; Ren, Shuang; Tang, Chengying; Qian, Xuewen

    2018-01-01

    We propose an efficient partial transmit sequence technique based on genetic algorithm and peak-value optimization algorithm (GAPOA) to reduce high peak-to-average power ratio (PAPR) in visible light communication systems based on orthogonal frequency division multiplexing (VLC-OFDM). By analysis of hill-climbing algorithm's pros and cons, we propose the POA with excellent local search ability to further process the signals whose PAPR is still over the threshold after processed by genetic algorithm (GA). To verify the effectiveness of the proposed technique and algorithm, we evaluate the PAPR performance and the bit error rate (BER) performance and compare them with partial transmit sequence (PTS) technique based on GA (GA-PTS), PTS technique based on genetic and hill-climbing algorithm (GH-PTS), and PTS based on shuffled frog leaping algorithm and hill-climbing algorithm (SFLAHC-PTS). The results show that our technique and algorithm have not only better PAPR performance but also lower computational complexity and BER than GA-PTS, GH-PTS, and SFLAHC-PTS technique.

  1. WebPrInSeS: automated full-length clone sequence identification and verification using high-throughput sequencing data.

    Science.gov (United States)

    Massouras, Andreas; Decouttere, Frederik; Hens, Korneel; Deplancke, Bart

    2010-07-01

    High-throughput sequencing (HTS) is revolutionizing our ability to obtain cheap, fast and reliable sequence information. Many experimental approaches are expected to benefit from the incorporation of such sequencing features in their pipeline. Consequently, software tools that facilitate such an incorporation should be of great interest. In this context, we developed WebPrInSeS, a web server tool allowing automated full-length clone sequence identification and verification using HTS data. WebPrInSeS encompasses two separate software applications. The first is WebPrInSeS-C which performs automated sequence verification of user-defined open-reading frame (ORF) clone libraries. The second is WebPrInSeS-E, which identifies positive hits in cDNA or ORF-based library screening experiments such as yeast one- or two-hybrid assays. Both tools perform de novo assembly using HTS data from any of the three major sequencing platforms. Thus, WebPrInSeS provides a highly integrated, cost-effective and efficient way to sequence-verify or identify clones of interest. WebPrInSeS is available at http://webprinses.epfl.ch/ and is open to all users.

  2. GLASSgo – Automated and Reliable Detection of sRNA Homologs From a Single Input Sequence

    Directory of Open Access Journals (Sweden)

    Steffen C. Lott

    2018-04-01

    Full Text Available Bacterial small RNAs (sRNAs are important post-transcriptional regulators of gene expression. The functional and evolutionary characterization of sRNAs requires the identification of homologs, which is frequently challenging due to their heterogeneity, short length and partly, little sequence conservation. We developed the GLobal Automatic Small RNA Search go (GLASSgo algorithm to identify sRNA homologs in complex genomic databases starting from a single sequence. GLASSgo combines an iterative BLAST strategy with pairwise identity filtering and a graph-based clustering method that utilizes RNA secondary structure information. We tested the specificity, sensitivity and runtime of GLASSgo, BLAST and the combination RNAlien/cmsearch in a typical use case scenario on 40 bacterial sRNA families. The sensitivity of the tested methods was similar, while the specificity of GLASSgo and RNAlien/cmsearch was significantly higher than that of BLAST. GLASSgo was on average ∼87 times faster than RNAlien/cmsearch, and only ∼7.5 times slower than BLAST, which shows that GLASSgo optimizes the trade-off between speed and accuracy in the task of finding sRNA homologs. GLASSgo is fully automated, whereas BLAST often recovers only parts of homologs and RNAlien/cmsearch requires extensive additional bioinformatic work to get a comprehensive set of homologs. GLASSgo is available as an easy-to-use web server to find homologous sRNAs in large databases.

  3. QuickNGS elevates Next-Generation Sequencing data analysis to a new level of automation.

    Science.gov (United States)

    Wagle, Prerana; Nikolić, Miloš; Frommolt, Peter

    2015-07-01

    Next-Generation Sequencing (NGS) has emerged as a widely used tool in molecular biology. While time and cost for the sequencing itself are decreasing, the analysis of the massive amounts of data remains challenging. Since multiple algorithmic approaches for the basic data analysis have been developed, there is now an increasing need to efficiently use these tools to obtain results in reasonable time. We have developed QuickNGS, a new workflow system for laboratories with the need to analyze data from multiple NGS projects at a time. QuickNGS takes advantage of parallel computing resources, a comprehensive back-end database, and a careful selection of previously published algorithmic approaches to build fully automated data analysis workflows. We demonstrate the efficiency of our new software by a comprehensive analysis of 10 RNA-Seq samples which we can finish in only a few minutes of hands-on time. The approach we have taken is suitable to process even much larger numbers of samples and multiple projects at a time. Our approach considerably reduces the barriers that still limit the usability of the powerful NGS technology and finally decreases the time to be spent before proceeding to further downstream analysis and interpretation of the data.

  4. Improvement of the banana "Musa acuminata" reference sequence using NGS data and semi-automated bioinformatics methods.

    Science.gov (United States)

    Martin, Guillaume; Baurens, Franc-Christophe; Droc, Gaëtan; Rouard, Mathieu; Cenci, Alberto; Kilian, Andrzej; Hastie, Alex; Doležel, Jaroslav; Aury, Jean-Marc; Alberti, Adriana; Carreel, Françoise; D'Hont, Angélique

    2016-03-16

    Recent advances in genomics indicate functional significance of a majority of genome sequences and their long range interactions. As a detailed examination of genome organization and function requires very high quality genome sequence, the objective of this study was to improve reference genome assembly of banana (Musa acuminata). We have developed a modular bioinformatics pipeline to improve genome sequence assemblies, which can handle various types of data. The pipeline comprises several semi-automated tools. However, unlike classical automated tools that are based on global parameters, the semi-automated tools proposed an expert mode for a user who can decide on suggested improvements through local compromises. The pipeline was used to improve the draft genome sequence of Musa acuminata. Genotyping by sequencing (GBS) of a segregating population and paired-end sequencing were used to detect and correct scaffold misassemblies. Long insert size paired-end reads identified scaffold junctions and fusions missed by automated assembly methods. GBS markers were used to anchor scaffolds to pseudo-molecules with a new bioinformatics approach that avoids the tedious step of marker ordering during genetic map construction. Furthermore, a genome map was constructed and used to assemble scaffolds into super scaffolds. Finally, a consensus gene annotation was projected on the new assembly from two pre-existing annotations. This approach reduced the total Musa scaffold number from 7513 to 1532 (i.e. by 80%), with an N50 that increased from 1.3 Mb (65 scaffolds) to 3.0 Mb (26 scaffolds). 89.5% of the assembly was anchored to the 11 Musa chromosomes compared to the previous 70%. Unknown sites (N) were reduced from 17.3 to 10.0%. The release of the Musa acuminata reference genome version 2 provides a platform for detailed analysis of banana genome variation, function and evolution. Bioinformatics tools developed in this work can be used to improve genome sequence assemblies in

  5. Synthetic internal control sequences to increase negative call veracity in multiplexed, quantitative PCR assays for Phakopsora pachyrhizi

    Science.gov (United States)

    Quantitative PCR (Q-PCR) utilizing specific primer sequences and a fluorogenic, 5’-exonuclease linear hydrolysis probe is well established as a detection and identification method for Phakopsora pachyrhizi, the soybean rust pathogen. Because of the extreme sensitivity of Q-PCR, the DNA of a single u...

  6. Lessons learned from whole exome sequencing in multiplex families affected by a complex genetic disorder, intracranial aneurysm.

    Directory of Open Access Journals (Sweden)

    Janice L Farlow

    Full Text Available Genetic risk factors for intracranial aneurysm (IA are not yet fully understood. Genomewide association studies have been successful at identifying common variants; however, the role of rare variation in IA susceptibility has not been fully explored. In this study, we report the use of whole exome sequencing (WES in seven densely-affected families (45 individuals recruited as part of the Familial Intracranial Aneurysm study. WES variants were prioritized by functional prediction, frequency, predicted pathogenicity, and segregation within families. Using these criteria, 68 variants in 68 genes were prioritized across the seven families. Of the genes that were expressed in IA tissue, one gene (TMEM132B was differentially expressed in aneurysmal samples (n=44 as compared to control samples (n=16 (false discovery rate adjusted p-value=0.023. We demonstrate that sequencing of densely affected families permits exploration of the role of rare variants in a relatively common disease such as IA, although there are important study design considerations for applying sequencing to complex disorders. In this study, we explore methods of WES variant prioritization, including the incorporation of unaffected individuals, multipoint linkage analysis, biological pathway information, and transcriptome profiling. Further studies are needed to validate and characterize the set of variants and genes identified in this study.

  7. Diagnosis of Fanconi Anemia: Mutation Analysis by Multiplex Ligation-Dependent Probe Amplification and PCR-Based Sanger Sequencing

    Science.gov (United States)

    Gille, Johan J. P.; Floor, Karijn; Kerkhoven, Lianne; Ameziane, Najim; Joenje, Hans; de Winter, Johan P.

    2012-01-01

    Fanconi anemia (FA) is a rare inherited disease characterized by developmental defects, short stature, bone marrow failure, and a high risk of malignancies. FA is heterogeneous: 15 genetic subtypes have been distinguished so far. A clinical diagnosis of FA needs to be confirmed by testing cells for sensitivity to cross-linking agents in a chromosomal breakage test. As a second step, DNA testing can be employed to elucidate the genetic subtype of the patient and to identify the familial mutations. This knowledge allows preimplantation genetic diagnosis (PGD) and enables prenatal DNA testing in future pregnancies. Although simultaneous testing of all FA genes by next generation sequencing will be possible in the near future, this technique will not be available immediately for all laboratories. In addition, in populations with strong founder mutations, a limited test using Sanger sequencing and MLPA will be a cost-effective alternative. We describe a strategy and optimized conditions for the screening of FANCA, FANCB, FANCC, FANCE, FANCF, and FANCG and present the results obtained in a cohort of 54 patients referred to our diagnostic service since 2008. In addition, the follow up with respect to genetic counseling and carrier screening in the families is discussed. PMID:22778927

  8. Diagnosis of Fanconi Anemia: Mutation Analysis by Multiplex Ligation-Dependent Probe Amplification and PCR-Based Sanger Sequencing

    Directory of Open Access Journals (Sweden)

    Johan J. P. Gille

    2012-01-01

    Full Text Available Fanconi anemia (FA is a rare inherited disease characterized by developmental defects, short stature, bone marrow failure, and a high risk of malignancies. FA is heterogeneous: 15 genetic subtypes have been distinguished so far. A clinical diagnosis of FA needs to be confirmed by testing cells for sensitivity to cross-linking agents in a chromosomal breakage test. As a second step, DNA testing can be employed to elucidate the genetic subtype of the patient and to identify the familial mutations. This knowledge allows preimplantation genetic diagnosis (PGD and enables prenatal DNA testing in future pregnancies. Although simultaneous testing of all FA genes by next generation sequencing will be possible in the near future, this technique will not be available immediately for all laboratories. In addition, in populations with strong founder mutations, a limited test using Sanger sequencing and MLPA will be a cost-effective alternative. We describe a strategy and optimized conditions for the screening of FANCA, FANCB, FANCC, FANCE, FANCF, and FANCG and present the results obtained in a cohort of 54 patients referred to our diagnostic service since 2008. In addition, the follow up with respect to genetic counseling and carrier screening in the families is discussed.

  9. CloVR: A virtual machine for automated and portable sequence analysis from the desktop using cloud computing

    Science.gov (United States)

    2011-01-01

    Background Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. Results We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. Conclusion The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing. PMID:21878105

  10. CloVR: a virtual machine for automated and portable sequence analysis from the desktop using cloud computing.

    Science.gov (United States)

    Angiuoli, Samuel V; Matalka, Malcolm; Gussman, Aaron; Galens, Kevin; Vangala, Mahesh; Riley, David R; Arze, Cesar; White, James R; White, Owen; Fricke, W Florian

    2011-08-30

    Next-generation sequencing technologies have decentralized sequence acquisition, increasing the demand for new bioinformatics tools that are easy to use, portable across multiple platforms, and scalable for high-throughput applications. Cloud computing platforms provide on-demand access to computing infrastructure over the Internet and can be used in combination with custom built virtual machines to distribute pre-packaged with pre-configured software. We describe the Cloud Virtual Resource, CloVR, a new desktop application for push-button automated sequence analysis that can utilize cloud computing resources. CloVR is implemented as a single portable virtual machine (VM) that provides several automated analysis pipelines for microbial genomics, including 16S, whole genome and metagenome sequence analysis. The CloVR VM runs on a personal computer, utilizes local computer resources and requires minimal installation, addressing key challenges in deploying bioinformatics workflows. In addition CloVR supports use of remote cloud computing resources to improve performance for large-scale sequence processing. In a case study, we demonstrate the use of CloVR to automatically process next-generation sequencing data on multiple cloud computing platforms. The CloVR VM and associated architecture lowers the barrier of entry for utilizing complex analysis protocols on both local single- and multi-core computers and cloud systems for high throughput data processing.

  11. Visualization and correction of automated segmentation, tracking and lineaging from 5-D stem cell image sequences.

    Science.gov (United States)

    Wait, Eric; Winter, Mark; Bjornsson, Chris; Kokovay, Erzsebet; Wang, Yue; Goderie, Susan; Temple, Sally; Cohen, Andrew R

    2014-10-03

    Neural stem cells are motile and proliferative cells that undergo mitosis, dividing to produce daughter cells and ultimately generating differentiated neurons and glia. Understanding the mechanisms controlling neural stem cell proliferation and differentiation will play a key role in the emerging fields of regenerative medicine and cancer therapeutics. Stem cell studies in vitro from 2-D image data are well established. Visualizing and analyzing large three dimensional images of intact tissue is a challenging task. It becomes more difficult as the dimensionality of the image data increases to include time and additional fluorescence channels. There is a pressing need for 5-D image analysis and visualization tools to study cellular dynamics in the intact niche and to quantify the role that environmental factors play in determining cell fate. We present an application that integrates visualization and quantitative analysis of 5-D (x,y,z,t,channel) and large montage confocal fluorescence microscopy images. The image sequences show stem cells together with blood vessels, enabling quantification of the dynamic behaviors of stem cells in relation to their vascular niche, with applications in developmental and cancer biology. Our application automatically segments, tracks, and lineages the image sequence data and then allows the user to view and edit the results of automated algorithms in a stereoscopic 3-D window while simultaneously viewing the stem cell lineage tree in a 2-D window. Using the GPU to store and render the image sequence data enables a hybrid computational approach. An inference-based approach utilizing user-provided edits to automatically correct related mistakes executes interactively on the system CPU while the GPU handles 3-D visualization tasks. By exploiting commodity computer gaming hardware, we have developed an application that can be run in the laboratory to facilitate rapid iteration through biological experiments. We combine unsupervised image

  12. MannDB – A microbial database of automated protein sequence analyses and evidence integration for protein characterization

    Directory of Open Access Journals (Sweden)

    Kuczmarski Thomas A

    2006-10-01

    Full Text Available Abstract Background MannDB was created to meet a need for rapid, comprehensive automated protein sequence analyses to support selection of proteins suitable as targets for driving the development of reagents for pathogen or protein toxin detection. Because a large number of open-source tools were needed, it was necessary to produce a software system to scale the computations for whole-proteome analysis. Thus, we built a fully automated system for executing software tools and for storage, integration, and display of automated protein sequence analysis and annotation data. Description MannDB is a relational database that organizes data resulting from fully automated, high-throughput protein-sequence analyses using open-source tools. Types of analyses provided include predictions of cleavage, chemical properties, classification, features, functional assignment, post-translational modifications, motifs, antigenicity, and secondary structure. Proteomes (lists of hypothetical and known proteins are downloaded and parsed from Genbank and then inserted into MannDB, and annotations from SwissProt are downloaded when identifiers are found in the Genbank entry or when identical sequences are identified. Currently 36 open-source tools are run against MannDB protein sequences either on local systems or by means of batch submission to external servers. In addition, BLAST against protein entries in MvirDB, our database of microbial virulence factors, is performed. A web client browser enables viewing of computational results and downloaded annotations, and a query tool enables structured and free-text search capabilities. When available, links to external databases, including MvirDB, are provided. MannDB contains whole-proteome analyses for at least one representative organism from each category of biological threat organism listed by APHIS, CDC, HHS, NIAID, USDA, USFDA, and WHO. Conclusion MannDB comprises a large number of genomes and comprehensive protein

  13. REFGEN and TREENAMER: Automated Sequence Data Handling for Phylogenetic Analysis in the Genomic Era

    Science.gov (United States)

    Leonard, Guy; Stevens, Jamie R.; Richards, Thomas A.

    2009-01-01

    The phylogenetic analysis of nucleotide sequences and increasingly that of amino acid sequences is used to address a number of biological questions. Access to extensive datasets, including numerous genome projects, means that standard phylogenetic analyses can include many hundreds of sequences. Unfortunately, most phylogenetic analysis programs do not tolerate the sequence naming conventions of genome databases. Managing large numbers of sequences and standardizing sequence labels for use in phylogenetic analysis programs can be a time consuming and laborious task. Here we report the availability of an online resource for the management of gene sequences recovered from public access genome databases such as GenBank. These web utilities include the facility for renaming every sequence in a FASTA alignment file, with each sequence label derived from a user-defined combination of the species name and/or database accession number. This facility enables the user to keep track of the branching order of the sequences/taxa during multiple tree calculations and re-optimisations. Post phylogenetic analysis, these webpages can then be used to rename every label in the subsequent tree files (with a user-defined combination of species name and/or database accession number). Together these programs drastically reduce the time required for managing sequence alignments and labelling phylogenetic figures. Additional features of our platform include the automatic removal of identical accession numbers (recorded in the report file) and generation of species and accession number lists for use in supplementary materials or figure legends. PMID:19812722

  14. REFGEN and TREENAMER: Automated Sequence Data Handling for Phylogenetic Analysis in the Genomic Era

    Directory of Open Access Journals (Sweden)

    Guy Leonard

    2009-01-01

    Full Text Available The phylogenetic analysis of nucleotide sequences and increasingly that of amino acid sequences is used to address a number of biological questions. Access to extensive datasets, including numerous genome projects, means that standard phylogenetic analyses can include many hundreds of sequences. Unfortunately, most phylogenetic analysis programs do not tolerate the sequence naming conventions of genome databases. Managing large numbers of sequences and standardizing sequence labels for use in phylogenetic analysis programs can be a time consuming and laborious task. Here we report the availability of an online resource for the management of gene sequences recovered from public access genome databases such as GenBank. These web utilities include the facility for renaming every sequence in a FASTA alignment fi le, with each sequence label derived from a user-defined combination of the species name and/or database accession number. This facility enables the user to keep track of the branching order of the sequences/taxa during multiple tree calculations and re-optimisations. Post phylogenetic analysis, these webpages can then be used to rename every label in the subsequent tree fi les (with a user-defined combination of species name and/or database accession number. Together these programs drastically reduce the time required for managing sequence alignments and labelling phylogenetic figures. Additional features of our platform include the automatic removal of identical accession numbers (recorded in the report file and generation of species and accession number lists for use in supplementary materials or figure legends.

  15. Carcinoma multiplex

    International Nuclear Information System (INIS)

    Shah, S. A.; Riaz, U.; Zahoor, I.; Jalil, A.; Zubair, M.

    2013-01-01

    Multiple primaries in a single patient are uncommon, though not very rare. The existence of such cancers in two un-related, non-paired organs is even more un-common. Here, we present a case of 55 years old male who presented to us with a mucoepidermoid carcinoma of the parotid gland and was operated. Later on, he presented with a large cystic swelling in the pelvis which turned out to be pseudomyxoma peritonei. A review of slides and immunohistochemistry indicated it to be adenocarcinoma colon. He presented again with recurrent mucoepidermoid carcinoma of the parotid which was operated successfully with the use of myocutaneous flap for wound closure. He is currently undergoing chemotherapy. In order to establish a separate mono-clonal etiology of both tumours, immunohistochemistry was performed. To the best of our knowledge, carcinoma multiplex in the colon and the parotid has never been reported before. (author)

  16. JACOP: A simple and robust method for the automated classification of protein sequences with modular architecture

    Directory of Open Access Journals (Sweden)

    Pagni Marco

    2005-08-01

    Full Text Available Abstract Background Whole-genome sequencing projects are rapidly producing an enormous number of new sequences. Consequently almost every family of proteins now contains hundreds of members. It has thus become necessary to develop tools, which classify protein sequences automatically and also quickly and reliably. The difficulty of this task is intimately linked to the mechanism by which protein sequences diverge, i.e. by simultaneous residue substitutions, insertions and/or deletions and whole domain reorganisations (duplications/swapping/fusion. Results Here we present a novel approach, which is based on random sampling of sub-sequences (probes out of a set of input sequences. The probes are compared to the input sequences, after a normalisation step; the results are used to partition the input sequences into homogeneous groups of proteins. In addition, this method provides information on diagnostic parts of the proteins. The performance of this method is challenged by two data sets. The first one contains the sequences of prokaryotic lyases that could be arranged as a multiple sequence alignment. The second one contains all proteins from Swiss-Prot Release 36 with at least one Src homology 2 (SH2 domain – a classical example for proteins with modular architecture. Conclusion The outcome of our method is robust, highly reproducible as shown using bootstrap and resampling validation procedures. The results are essentially coherent with the biology. This method depends solely on well-established publicly available software and algorithms.

  17. TAPDANCE: An automated tool to identify and annotate transposon insertion CISs and associations between CISs from next generation sequence data

    Directory of Open Access Journals (Sweden)

    Sarver Aaron L

    2012-06-01

    Full Text Available Abstract Background Next generation sequencing approaches applied to the analyses of transposon insertion junction fragments generated in high throughput forward genetic screens has created the need for clear informatics and statistical approaches to deal with the massive amount of data currently being generated. Previous approaches utilized to 1 map junction fragments within the genome and 2 identify Common Insertion Sites (CISs within the genome are not practical due to the volume of data generated by current sequencing technologies. Previous approaches applied to this problem also required significant manual annotation. Results We describe Transposon Annotation Poisson Distribution Association Network Connectivity Environment (TAPDANCE software, which automates the identification of CISs within transposon junction fragment insertion data. Starting with barcoded sequence data, the software identifies and trims sequences and maps putative genomic sequence to a reference genome using the bowtie short read mapper. Poisson distribution statistics are then applied to assess and rank genomic regions showing significant enrichment for transposon insertion. Novel methods of counting insertions are used to ensure that the results presented have the expected characteristics of informative CISs. A persistent mySQL database is generated and utilized to keep track of sequences, mappings and common insertion sites. Additionally, associations between phenotypes and CISs are also identified using Fisher’s exact test with multiple testing correction. In a case study using previously published data we show that the TAPDANCE software identifies CISs as previously described, prioritizes them based on p-value, allows holistic visualization of the data within genome browser software and identifies relationships present in the structure of the data. Conclusions The TAPDANCE process is fully automated, performs similarly to previous labor intensive approaches

  18. Development of a real-time PCR for detection of Staphylococcus pseudintermedius using a novel automated comparison of whole-genome sequences.

    Directory of Open Access Journals (Sweden)

    Koen M Verstappen

    Full Text Available Staphylococcus pseudintermedius is an opportunistic pathogen in dogs and cats and occasionally causes infections in humans. S. pseudintermedius is often resistant to multiple classes of antimicrobials. It requires a reliable detection so that it is not misidentified as S. aureus. Phenotypic and currently-used molecular-based diagnostic assays lack specificity or are labour-intensive using multiplex PCR or nucleic acid sequencing. The aim of this study was to identify a specific target for real-time PCR by comparing whole genome sequences of S. pseudintermedius and non-pseudintermedius.Genome sequences were downloaded from public repositories and supplemented by isolates that were sequenced in this study. A Perl-script was written that analysed 300-nt fragments from a reference genome sequence of S. pseudintermedius and checked if this sequence was present in other S. pseudintermedius genomes (n = 74 and non-pseudintermedius genomes (n = 138. Six sequences specific for S. pseudintermedius were identified (sequence length between 300-500 nt. One sequence, which was located in the spsJ gene, was used to develop primers and a probe. The real-time PCR showed 100% specificity when testing for S. pseudintermedius isolates (n = 54, and eight other staphylococcal species (n = 43. In conclusion, a novel approach by comparing whole genome sequences identified a sequence that is specific for S. pseudintermedius and provided a real-time PCR target for rapid and reliable detection of S. pseudintermedius.

  19. Automated Leaf Tracking using Multi-view Image Sequences of Maize Plants for Leaf-growth Monitoring

    Science.gov (United States)

    Das Choudhury, S.; Awada, T.; Samal, A.; Stoerger, V.; Bashyam, S.

    2017-12-01

    Extraction of phenotypes with botanical importance by analyzing plant image sequences has the desirable advantages of non-destructive temporal phenotypic measurements of a large number of plants with little or no manual intervention in a relatively short period of time. The health of a plant is best interpreted by the emergence timing and temporal growth of individual leaves. For automated leaf growth monitoring, it is essential to track each leaf throughout the life cycle of the plant. Plants are constantly changing organisms with increasing complexity in architecture due to variations in self-occlusions and phyllotaxy, i.e., arrangements of leaves around the stem. The leaf cross-overs pose challenges to accurately track each leaf using single view image sequence. Thus, we introduce a novel automated leaf tracking algorithm using a graph theoretic approach by multi-view image sequence analysis based on the determination of leaf-tips and leaf-junctions in the 3D space. The basis of the leaf tracking algorithm is: the leaves emerge using bottom-up approach in the case of a maize plant, and the direction of leaf emergence strictly alternates in terms of direction. The algorithm involves labeling of the individual parts of a plant, i.e., leaves and stem, following graphical representation of the plant skeleton, i.e., one-pixel wide connected line obtained from the binary image. The length of the leaf is measured by the number of pixels in the leaf skeleton. To evaluate the performance of the algorithm, a benchmark dataset is indispensable. Thus, we publicly release University of Nebraska-Lincoln Component Plant Phenotyping dataset-2 (UNL-CPPD-2) consisting of images of the 20 maize plants captured by visible light camera of the Lemnatec Scanalyzer 3D high throughout plant phenotyping facility once daily for 60 days from 10 different views. The dataset is aimed to facilitate the development and evaluation of leaf tracking algorithms and their uniform comparisons.

  20. Evaluation of three automated nucleic acid extraction systems for identification of respiratory viruses in clinical specimens by multiplex real-time PCR.

    Science.gov (United States)

    Kim, Yoonjung; Han, Mi-Soon; Kim, Juwon; Kwon, Aerin; Lee, Kyung-A

    2014-01-01

    A total of 84 nasopharyngeal swab specimens were collected from 84 patients. Viral nucleic acid was extracted by three automated extraction systems: QIAcube (Qiagen, Germany), EZ1 Advanced XL (Qiagen), and MICROLAB Nimbus IVD (Hamilton, USA). Fourteen RNA viruses and two DNA viruses were detected using the Anyplex II RV16 Detection kit (Seegene, Republic of Korea). The EZ1 Advanced XL system demonstrated the best analytical sensitivity for all the three viral strains. The nucleic acids extracted by EZ1 Advanced XL showed higher positive rates for virus detection than the others. Meanwhile, the MICROLAB Nimbus IVD system was comprised of fully automated steps from nucleic extraction to PCR setup function that could reduce human errors. For the nucleic acids recovered from nasopharyngeal swab specimens, the QIAcube system showed the fewest false negative results and the best concordance rate, and it may be more suitable for detecting various viruses including RNA and DNA virus strains. Each system showed different sensitivity and specificity for detection of certain viral pathogens and demonstrated different characteristics such as turnaround time and sample capacity. Therefore, these factors should be considered when new nucleic acid extraction systems are introduced to the laboratory.

  1. SWANS: A Prototypic SCALE Criticality Sequence for Automated Optimization Using the SWAN Methodology

    International Nuclear Information System (INIS)

    Greenspan, E.

    2001-01-01

    SWANS is a new prototypic analysis sequence that provides an intelligent, semi-automatic search for the maximum k eff of a given amount of specified fissile material, or of the minimum critical mass. It combines the optimization strategy of the SWAN code with the composition-dependent resonance self-shielded cross sections of the SCALE package. For a given system composition arrived at during the iterative optimization process, the value of k eff is as accurate and reliable as obtained using the CSAS1X Sequence of SCALE-4.4. This report describes how SWAN is integrated within the SCALE system to form the new prototypic optimization sequence, describes the optimization procedure, provides a user guide for SWANS, and illustrates its application to five different types of problems. In addition, the report illustrates that resonance self-shielding might have a significant effect on the maximum k eff value a given fissile material mass can have

  2. PFP: Automated prediction of gene ontology functional annotations with confidence scores using protein sequence data.

    Science.gov (United States)

    Hawkins, Troy; Chitale, Meghana; Luban, Stanislav; Kihara, Daisuke

    2009-02-15

    Protein function prediction is a central problem in bioinformatics, increasing in importance recently due to the rapid accumulation of biological data awaiting interpretation. Sequence data represents the bulk of this new stock and is the obvious target for consideration as input, as newly sequenced organisms often lack any other type of biological characterization. We have previously introduced PFP (Protein Function Prediction) as our sequence-based predictor of Gene Ontology (GO) functional terms. PFP interprets the results of a PSI-BLAST search by extracting and scoring individual functional attributes, searching a wide range of E-value sequence matches, and utilizing conventional data mining techniques to fill in missing information. We have shown it to be effective in predicting both specific and low-resolution functional attributes when sufficient data is unavailable. Here we describe (1) significant improvements to the PFP infrastructure, including the addition of prediction significance and confidence scores, (2) a thorough benchmark of performance and comparisons to other related prediction methods, and (3) applications of PFP predictions to genome-scale data. We applied PFP predictions to uncharacterized protein sequences from 15 organisms. Among these sequences, 60-90% could be annotated with a GO molecular function term at high confidence (>or=80%). We also applied our predictions to the protein-protein interaction network of the Malaria plasmodium (Plasmodium falciparum). High confidence GO biological process predictions (>or=90%) from PFP increased the number of fully enriched interactions in this dataset from 23% of interactions to 94%. Our benchmark comparison shows significant performance improvement of PFP relative to GOtcha, InterProScan, and PSI-BLAST predictions. This is consistent with the performance of PFP as the overall best predictor in both the AFP-SIG '05 and CASP7 function (FN) assessments. PFP is available as a web service at http

  3. Development of a multiplex polymerase chain reaction-sequence-specific primer method for NKG2D and NKG2F single-nucleotide polymorphism typing using isothermal multiple displacement amplification products.

    Science.gov (United States)

    Kaewmanee, M; Phoksawat, W; Romphruk, A; Romphruk, A V; Jumnainsong, A; Leelayuwat, C

    2013-06-01

    Natural killer group 2 member D (NKG2D) on immune effector cells recognizes multiple stress-inducible ligands. NKG2D single-nucleotide polymorphism (SNP) haplotypes were related to the levels of cytotoxic activity of peripheral blood mononuclear cells. Indeed, these polymorphisms were also located in NKG2F. Isothermal multiple displacement amplification (IMDA) is used for whole genome amplification (WGA) that can amplify very small genomic DNA templates into microgram with whole genome coverage. This is particularly useful in the cases of limited amount of valuable DNA samples requiring multi-locus genotyping. In this study, we evaluated the quality and applicability of IMDA to genetic studies in terms of sensitivity, efficiency of IMDA re-amplification and stability of IMDA products. The smallest amount of DNA to be effectively amplified by IMDA was 200 pg yielding final DNA of approximately 16 µg within 1.5 h. IMDA could be re-amplified only once (second round of amplification), and could be kept for 5 months at 4°C and more than a year at -20°C without loosing genome coverage. The amplified products were used successfully to setup a multiplex polymerase chain reaction-sequence-specific primer for SNP typing of the NKG2D/F genes. The NKG2D/F multiplex polymerase chain reaction (PCR) contained six PCR mixtures for detecting 10 selected SNPs, including 8 NKG2D/F SNP haplotypes and 2 additional NKG2D coding SNPs. This typing procedure will be applicable in both clinical and research laboratories. Thus, our data provide useful information and limitations for utilization of genome-wide amplification using IMDA and its application for multiplex NKG2D/F typing. © 2013 John Wiley & Sons Ltd.

  4. Codon-Precise, Synthetic, Antibody Fragment Libraries Built Using Automated Hexamer Codon Additions and Validated through Next Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Laura Frigotto

    2015-05-01

    Full Text Available We have previously described ProxiMAX, a technology that enables the fabrication of precise, combinatorial gene libraries via codon-by-codon saturation mutagenesis. ProxiMAX was originally performed using manual, enzymatic transfer of codons via blunt-end ligation. Here we present Colibra™: an automated, proprietary version of ProxiMAX used specifically for antibody library generation, in which double-codon hexamers are transferred during the saturation cycling process. The reduction in process complexity, resulting library quality and an unprecedented saturation of up to 24 contiguous codons are described. Utility of the method is demonstrated via fabrication of complementarity determining regions (CDR in antibody fragment libraries and next generation sequencing (NGS analysis of their quality and diversity.

  5. A robotics platform for automated batch fabrication of high density, microfluidics-based DNA microarrays, with applications to single cell, multiplex assays of secreted proteins

    Science.gov (United States)

    Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R.

    2011-09-01

    Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells.

  6. A robotics platform for automated batch fabrication of high density, microfluidics-based DNA microarrays, with applications to single cell, multiplex assays of secreted proteins.

    Science.gov (United States)

    Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R

    2011-09-01

    Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells. © 2011 American Institute of Physics

  7. SeqReporter: automating next-generation sequencing result interpretation and reporting workflow in a clinical laboratory.

    Science.gov (United States)

    Roy, Somak; Durso, Mary Beth; Wald, Abigail; Nikiforov, Yuri E; Nikiforova, Marina N

    2014-01-01

    A wide repertoire of bioinformatics applications exist for next-generation sequencing data analysis; however, certain requirements of the clinical molecular laboratory limit their use: i) comprehensive report generation, ii) compatibility with existing laboratory information systems and computer operating system, iii) knowledgebase development, iv) quality management, and v) data security. SeqReporter is a web-based application developed using ASP.NET framework version 4.0. The client-side was designed using HTML5, CSS3, and Javascript. The server-side processing (VB.NET) relied on interaction with a customized SQL server 2008 R2 database. Overall, 104 cases (1062 variant calls) were analyzed by SeqReporter. Each variant call was classified into one of five report levels: i) known clinical significance, ii) uncertain clinical significance, iii) pending pathologists' review, iv) synonymous and deep intronic, and v) platform and panel-specific sequence errors. SeqReporter correctly annotated and classified 99.9% (859 of 860) of sequence variants, including 68.7% synonymous single-nucleotide variants, 28.3% nonsynonymous single-nucleotide variants, 1.7% insertions, and 1.3% deletions. One variant of potential clinical significance was re-classified after pathologist review. Laboratory information system-compatible clinical reports were generated automatically. SeqReporter also facilitated quality management activities. SeqReporter is an example of a customized and well-designed informatics solution to optimize and automate the downstream analysis of clinical next-generation sequencing data. We propose it as a model that may envisage the development of a comprehensive clinical informatics solution. Copyright © 2014 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  8. SWANS: A Prototypic SCALE Criticality Sequence for Automated Optimization Using the SWAN Methodology

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, E.

    2001-01-11

    SWANS is a new prototypic analysis sequence that provides an intelligent, semi-automatic search for the maximum k{sub eff} of a given amount of specified fissile material, or of the minimum critical mass. It combines the optimization strategy of the SWAN code with the composition-dependent resonance self-shielded cross sections of the SCALE package. For a given system composition arrived at during the iterative optimization process, the value of k{sub eff} is as accurate and reliable as obtained using the CSAS1X Sequence of SCALE-4.4. This report describes how SWAN is integrated within the SCALE system to form the new prototypic optimization sequence, describes the optimization procedure, provides a user guide for SWANS, and illustrates its application to five different types of problems. In addition, the report illustrates that resonance self-shielding might have a significant effect on the maximum k{sub eff} value a given fissile material mass can have.

  9. ViCTree: An automated framework for taxonomic classification from protein sequences.

    Science.gov (United States)

    Modha, Sejal; Thanki, Anil; Cotmore, Susan F; Davison, Andrew J; Hughes, Joseph

    2018-02-20

    The increasing rate of submission of genetic sequences into public databases is providing a growing resource for classifying the organisms that these sequences represent. To aid viral classification, we have developed ViCTree, which automatically integrates the relevant sets of sequences in NCBI GenBank and transforms them into an interactive maximum likelihood phylogenetic tree that can be updated automatically. ViCTree incorporates ViCTreeView, which is a JavaScript-based visualisation tool that enables the tree to be explored interactively in the context of pairwise distance data. To demonstrate utility, ViCTree was applied to subfamily Densovirinae of family Parvoviridae. This led to the identification of six new species of insect virus. ViCTree is open-source and can be run on any Linux- or Unix-based computer or cluster. A tutorial, the documentation and the source code are available under a GPL3 license, and can be accessed at http://bioinformatics.cvr.ac.uk/victree_web/. sejal.modha@glasgow.ac.uk.

  10. Automated two-point dixon screening for the evaluation of hepatic steatosis and siderosis: comparison with R2-relaxometry and chemical shift-based sequences.

    Science.gov (United States)

    Henninger, B; Zoller, H; Rauch, S; Schocke, M; Kannengiesser, S; Zhong, X; Reiter, G; Jaschke, W; Kremser, C

    2015-05-01

    To evaluate the automated two-point Dixon screening sequence for the detection and estimated quantification of hepatic iron and fat compared with standard sequences as a reference. One hundred and two patients with suspected diffuse liver disease were included in this prospective study. The following MRI protocol was used: 3D-T1-weighted opposed- and in-phase gradient echo with two-point Dixon reconstruction and dual-ratio signal discrimination algorithm ("screening" sequence); fat-saturated, multi-gradient-echo sequence with 12 echoes; gradient-echo T1 FLASH opposed- and in-phase. Bland-Altman plots were generated and correlation coefficients were calculated to compare the sequences. The screening sequence diagnosed fat in 33, iron in 35 and a combination of both in 4 patients. Correlation between R2* values of the screening sequence and the standard relaxometry was excellent (r = 0.988). A slightly lower correlation (r = 0.978) was found between the fat fraction of the screening sequence and the standard sequence. Bland-Altman revealed systematically lower R2* values obtained from the screening sequence and higher fat fraction values obtained with the standard sequence with a rather high variability in agreement. The screening sequence is a promising method with fast diagnosis of the predominant liver disease. It is capable of estimating the amount of hepatic fat and iron comparable to standard methods. • MRI plays a major role in the clarification of diffuse liver disease. • The screening sequence was introduced for the assessment of diffuse liver disease. • It is a fast and automated algorithm for the evaluation of hepatic iron and fat. • It is capable of estimating the amount of hepatic fat and iron.

  11. Automated two-point dixon screening for the evaluation of hepatic steatosis and siderosis: comparison with R2*-relaxometry and chemical shift-based sequences

    Energy Technology Data Exchange (ETDEWEB)

    Henninger, B.; Rauch, S.; Schocke, M.; Jaschke, W.; Kremser, C. [Medical University of Innsbruck, Department of Radiology, Innsbruck (Austria); Zoller, H. [Medical University of Innsbruck, Department of Internal Medicine, Innsbruck (Austria); Kannengiesser, S. [Siemens AG, Healthcare Sector, MR Applications Development, Erlangen (Germany); Zhong, X. [Siemens Healthcare, MR R and D Collaborations, Atlanta, GA (United States); Reiter, G. [Siemens AG, Healthcare Sector, MR R and D Collaborations, Graz (Austria)

    2015-05-01

    To evaluate the automated two-point Dixon screening sequence for the detection and estimated quantification of hepatic iron and fat compared with standard sequences as a reference. One hundred and two patients with suspected diffuse liver disease were included in this prospective study. The following MRI protocol was used: 3D-T1-weighted opposed- and in-phase gradient echo with two-point Dixon reconstruction and dual-ratio signal discrimination algorithm (''screening'' sequence); fat-saturated, multi-gradient-echo sequence with 12 echoes; gradient-echo T1 FLASH opposed- and in-phase. Bland-Altman plots were generated and correlation coefficients were calculated to compare the sequences. The screening sequence diagnosed fat in 33, iron in 35 and a combination of both in 4 patients. Correlation between R2* values of the screening sequence and the standard relaxometry was excellent (r = 0.988). A slightly lower correlation (r = 0.978) was found between the fat fraction of the screening sequence and the standard sequence. Bland-Altman revealed systematically lower R2* values obtained from the screening sequence and higher fat fraction values obtained with the standard sequence with a rather high variability in agreement. The screening sequence is a promising method with fast diagnosis of the predominant liver disease. It is capable of estimating the amount of hepatic fat and iron comparable to standard methods. (orig.)

  12. Automated two-point dixon screening for the evaluation of hepatic steatosis and siderosis: comparison with R2*-relaxometry and chemical shift-based sequences

    International Nuclear Information System (INIS)

    Henninger, B.; Rauch, S.; Schocke, M.; Jaschke, W.; Kremser, C.; Zoller, H.; Kannengiesser, S.; Zhong, X.; Reiter, G.

    2015-01-01

    To evaluate the automated two-point Dixon screening sequence for the detection and estimated quantification of hepatic iron and fat compared with standard sequences as a reference. One hundred and two patients with suspected diffuse liver disease were included in this prospective study. The following MRI protocol was used: 3D-T1-weighted opposed- and in-phase gradient echo with two-point Dixon reconstruction and dual-ratio signal discrimination algorithm (''screening'' sequence); fat-saturated, multi-gradient-echo sequence with 12 echoes; gradient-echo T1 FLASH opposed- and in-phase. Bland-Altman plots were generated and correlation coefficients were calculated to compare the sequences. The screening sequence diagnosed fat in 33, iron in 35 and a combination of both in 4 patients. Correlation between R2* values of the screening sequence and the standard relaxometry was excellent (r = 0.988). A slightly lower correlation (r = 0.978) was found between the fat fraction of the screening sequence and the standard sequence. Bland-Altman revealed systematically lower R2* values obtained from the screening sequence and higher fat fraction values obtained with the standard sequence with a rather high variability in agreement. The screening sequence is a promising method with fast diagnosis of the predominant liver disease. It is capable of estimating the amount of hepatic fat and iron comparable to standard methods. (orig.)

  13. CFSAN SNP Pipeline: an automated method for constructing SNP matrices from next-generation sequence data

    Directory of Open Access Journals (Sweden)

    Steve Davis

    2015-08-01

    Full Text Available The analysis of next-generation sequence (NGS data is often a fragmented step-wise process. For example, multiple pieces of software are typically needed to map NGS reads, extract variant sites, and construct a DNA sequence matrix containing only single nucleotide polymorphisms (i.e., a SNP matrix for a set of individuals. The management and chaining of these software pieces and their outputs can often be a cumbersome and difficult task. Here, we present CFSAN SNP Pipeline, which combines into a single package the mapping of NGS reads to a reference genome with Bowtie2, processing of those mapping (BAM files using SAMtools, identification of variant sites using VarScan, and production of a SNP matrix using custom Python scripts. We also introduce a Python package (CFSAN SNP Mutator that when given a reference genome will generate variants of known position against which we validate our pipeline. We created 1,000 simulated Salmonella enterica sp. enterica Serovar Agona genomes at 100× and 20× coverage, each containing 500 SNPs, 20 single-base insertions and 20 single-base deletions. For the 100× dataset, the CFSAN SNP Pipeline recovered 98.9% of the introduced SNPs and had a false positive rate of 1.04 × 10−6; for the 20× dataset 98.8% of SNPs were recovered and the false positive rate was 8.34 × 10−7. Based on these results, CFSAN SNP Pipeline is a robust and accurate tool that it is among the first to combine into a single executable the myriad steps required to produce a SNP matrix from NGS data. Such a tool is useful to those working in an applied setting (e.g., food safety traceback investigations as well as for those interested in evolutionary questions.

  14. Centrality in earthquake multiplex networks

    Science.gov (United States)

    Lotfi, Nastaran; Darooneh, Amir Hossein; Rodrigues, Francisco A.

    2018-06-01

    Seismic time series has been mapped as a complex network, where a geographical region is divided into square cells that represent the nodes and connections are defined according to the sequence of earthquakes. In this paper, we map a seismic time series to a temporal network, described by a multiplex network, and characterize the evolution of the network structure in terms of the eigenvector centrality measure. We generalize previous works that considered the single layer representation of earthquake networks. Our results suggest that the multiplex representation captures better earthquake activity than methods based on single layer networks. We also verify that the regions with highest seismological activities in Iran and California can be identified from the network centrality analysis. The temporal modeling of seismic data provided here may open new possibilities for a better comprehension of the physics of earthquakes.

  15. Multiplex PCR identification of Taenia spp. in rodents and carnivores.

    Science.gov (United States)

    Al-Sabi, Mohammad N S; Kapel, Christian M O

    2011-11-01

    The genus Taenia includes several species of veterinary and public health importance, but diagnosis of the etiological agent in definitive and intermediate hosts often relies on labor intensive and few specific morphometric criteria, especially in immature worms and underdeveloped metacestodes. In the present study, a multiplex PCR, based on five primers targeting the 18S rDNA and ITS2 sequences, produced a species-specific banding patterns for a range of Taenia spp. Species typing by the multiplex PCR was compared to morphological identification and sequencing of cox1 and/or 12S rDNA genes. As compared to sequencing, the multiplex PCR identified 31 of 32 Taenia metacestodes from rodents, whereas only 14 cysts were specifically identified by morphology. Likewise, the multiplex PCR identified 108 of 130 adult worms, while only 57 were identified to species by morphology. The tested multiplex PCR system may potentially be used for studies of Taenia spp. transmitted between rodents and carnivores.

  16. Automated statistical matching of multiple tephra records exemplified using five long maar sequences younger than 75 ka, Auckland, New Zealand

    Science.gov (United States)

    Green, Rebecca M.; Bebbington, Mark S.; Cronin, Shane J.; Jones, Geoff

    2014-09-01

    Detailed tephrochronologies are built to underpin probabilistic volcanic hazard forecasting, and to understand the dynamics and history of diverse geomorphic, climatic, soil-forming and environmental processes. Complicating factors include highly variable tephra distribution over time; difficulty in correlating tephras from site to site based on physical and chemical properties; and uncertain age determinations. Multiple sites permit construction of more accurate composite tephra records, but correctly merging individual site records by recognizing common events and site-specific gaps is complex. We present an automated procedure for matching tephra sequences between multiple deposition sites using stochastic local optimization techniques. If individual tephra age determinations are not significantly different between sites, they are matched and a more precise age is assigned. Known stratigraphy and mineralogical or geochemical compositions are used to constrain tephra matches. We apply this method to match tephra records from five long sediment cores (≤ 75 cal ka BP) in Auckland, New Zealand. Sediments at these sites preserve basaltic tephras from local eruptions of the Auckland Volcanic Field as well as distal rhyolitic and andesitic tephras from Okataina, Taupo, Egmont, Tongariro, and Tuhua (Mayor Island) volcanic centers. The new correlated record compiled is statistically more likely than previously published arrangements from this area.

  17. Optic disc boundary segmentation from diffeomorphic demons registration of monocular fundus image sequences versus 3D visualization of stereo fundus image pairs for automated early stage glaucoma assessment

    Science.gov (United States)

    Gatti, Vijay; Hill, Jason; Mitra, Sunanda; Nutter, Brian

    2014-03-01

    Despite the current availability in resource-rich regions of advanced technologies in scanning and 3-D imaging in current ophthalmology practice, world-wide screening tests for early detection and progression of glaucoma still consist of a variety of simple tools, including fundus image-based parameters such as CDR (cup to disc diameter ratio) and CAR (cup to disc area ratio), especially in resource -poor regions. Reliable automated computation of the relevant parameters from fundus image sequences requires robust non-rigid registration and segmentation techniques. Recent research work demonstrated that proper non-rigid registration of multi-view monocular fundus image sequences could result in acceptable segmentation of cup boundaries for automated computation of CAR and CDR. This research work introduces a composite diffeomorphic demons registration algorithm for segmentation of cup boundaries from a sequence of monocular images and compares the resulting CAR and CDR values with those computed manually by experts and from 3-D visualization of stereo pairs. Our preliminary results show that the automated computation of CDR and CAR from composite diffeomorphic segmentation of monocular image sequences yield values comparable with those from the other two techniques and thus may provide global healthcare with a cost-effective yet accurate tool for management of glaucoma in its early stage.

  18. An objective method to optimize the MR sequence set for plaque classification in carotid vessel wall images using automated image segmentation.

    Directory of Open Access Journals (Sweden)

    Ronald van 't Klooster

    Full Text Available A typical MR imaging protocol to study the status of atherosclerosis in the carotid artery consists of the application of multiple MR sequences. Since scanner time is limited, a balance has to be reached between the duration of the applied MR protocol and the quantity and quality of the resulting images which are needed to assess the disease. In this study an objective method to optimize the MR sequence set for classification of soft plaque in vessel wall images of the carotid artery using automated image segmentation was developed. The automated method employs statistical pattern recognition techniques and was developed based on an extensive set of MR contrast weightings and corresponding manual segmentations of the vessel wall and soft plaque components, which were validated by histological sections. Evaluation of the results from nine contrast weightings showed the tradeoff between scan duration and automated image segmentation performance. For our dataset the best segmentation performance was achieved by selecting five contrast weightings. Similar performance was achieved with a set of three contrast weightings, which resulted in a reduction of scan time by more than 60%. The presented approach can help others to optimize MR imaging protocols by investigating the tradeoff between scan duration and automated image segmentation performance possibly leading to shorter scanning times and better image interpretation. This approach can potentially also be applied to other research fields focusing on different diseases and anatomical regions.

  19. Simultaneous discrimination of species and strains in Lactobacillus rhamnosus using species-specific PCR combined with multiplex mini-sequencing technology.

    Science.gov (United States)

    Huang, Chien-Hsun; Chang, Mu-Tzu; Huang, Lina; Chu, Wen-Shen

    2015-12-01

    This study described the use of species-specific PCR in combination with SNaPshot mini-sequencing to achieve species identification and strain differentiation in Lactobacillus rhamnosus. To develop species-specific PCR and strain subtyping primers, the dnaJ gene was used as a target, and its corresponding sequences were analyzed both in Lb. rhamnosus and in a subset of its phylogenetically closest species. The results indicated that the species-specific primer pair was indeed specific for Lb. rhamnosus, and the mini-sequencing assay was able to unambiguously distinguish Lb. rhamnosus strains into different haplotypes. In conclusion, we have successfully developed a rapid, accurate and cost-effective assay for inter- and intraspecies discrimination of Lb. rhamnosus, which can be applied to achieve efficient quality control of probiotic products. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Development and characterization of multiplex panels of microsatellite markers for Syphacia obvelata, a parasite of the house mouse (Mus musculus), using a high throughput DNA sequencing approach

    Czech Academy of Sciences Publication Activity Database

    Wasimuddin, Wasimuddin; Čížková, Dagmar; Ribas, Alexis; Piálek, Jaroslav; Goüy de Bellocq, Joëlle; Bryja, Josef

    2012-01-01

    Roč. 185, č. 2 (2012), s. 154-156 ISSN 0166-6851 R&D Projects: GA ČR GA206/08/0640; GA MŠk LC06073 Institutional support: RVO:68081766 Keywords : Microsatellites * Next-generation sequencing * Nematoda * Population genetics Subject RIV: EG - Zoology Impact factor: 2.734, year: 2012

  1. Integrated photonics : compact multiplexing

    NARCIS (Netherlands)

    Pile, D.; Chen, H.; Uden, van R.G.H.; Okonkwo, C.M.; Koonen, A.M.J.

    2015-01-01

    Spatial multiplexers (SMUXs) for mode division multiplexing often involve multiple strategies for mode-selective excitation and the minimization of insertion and other losses. Haoshuo Chen, Roy van Uden, Chigo Okonkwo and Ton Koonen, working at the COBRA Institute at the Eindhoven University of

  2. Dynamic Optically Multiplexed Imaging

    Science.gov (United States)

    2015-07-29

    Dynamic Optically Multiplexed Imaging Yaron Rachlin, Vinay Shah, R. Hamilton Shepard, and Tina Shih Lincoln Laboratory, Massachusetts Institute of...V. Shah, and T. Shih “Design Architectures for Optically Multiplexed Imaging,” in submission 9 R. Gupta , P. Indyk, E. Price, and Y. Rachlin

  3. A Microfluidic Device for Preparing Next Generation DNA Sequencing Libraries and for Automating Other Laboratory Protocols That Require One or More Column Chromatography Steps

    Science.gov (United States)

    Tan, Swee Jin; Phan, Huan; Gerry, Benjamin Michael; Kuhn, Alexandre; Hong, Lewis Zuocheng; Min Ong, Yao; Poon, Polly Suk Yean; Unger, Marc Alexander; Jones, Robert C.; Quake, Stephen R.; Burkholder, William F.

    2013-01-01

    Library preparation for next-generation DNA sequencing (NGS) remains a key bottleneck in the sequencing process which can be relieved through improved automation and miniaturization. We describe a microfluidic device for automating laboratory protocols that require one or more column chromatography steps and demonstrate its utility for preparing Next Generation sequencing libraries for the Illumina and Ion Torrent platforms. Sixteen different libraries can be generated simultaneously with significantly reduced reagent cost and hands-on time compared to manual library preparation. Using an appropriate column matrix and buffers, size selection can be performed on-chip following end-repair, dA tailing, and linker ligation, so that the libraries eluted from the chip are ready for sequencing. The core architecture of the device ensures uniform, reproducible column packing without user supervision and accommodates multiple routine protocol steps in any sequence, such as reagent mixing and incubation; column packing, loading, washing, elution, and regeneration; capture of eluted material for use as a substrate in a later step of the protocol; and removal of one column matrix so that two or more column matrices with different functional properties can be used in the same protocol. The microfluidic device is mounted on a plastic carrier so that reagents and products can be aliquoted and recovered using standard pipettors and liquid handling robots. The carrier-mounted device is operated using a benchtop controller that seals and operates the device with programmable temperature control, eliminating any requirement for the user to manually attach tubing or connectors. In addition to NGS library preparation, the device and controller are suitable for automating other time-consuming and error-prone laboratory protocols requiring column chromatography steps, such as chromatin immunoprecipitation. PMID:23894273

  4. A microfluidic device for preparing next generation DNA sequencing libraries and for automating other laboratory protocols that require one or more column chromatography steps.

    Directory of Open Access Journals (Sweden)

    Swee Jin Tan

    Full Text Available Library preparation for next-generation DNA sequencing (NGS remains a key bottleneck in the sequencing process which can be relieved through improved automation and miniaturization. We describe a microfluidic device for automating laboratory protocols that require one or more column chromatography steps and demonstrate its utility for preparing Next Generation sequencing libraries for the Illumina and Ion Torrent platforms. Sixteen different libraries can be generated simultaneously with significantly reduced reagent cost and hands-on time compared to manual library preparation. Using an appropriate column matrix and buffers, size selection can be performed on-chip following end-repair, dA tailing, and linker ligation, so that the libraries eluted from the chip are ready for sequencing. The core architecture of the device ensures uniform, reproducible column packing without user supervision and accommodates multiple routine protocol steps in any sequence, such as reagent mixing and incubation; column packing, loading, washing, elution, and regeneration; capture of eluted material for use as a substrate in a later step of the protocol; and removal of one column matrix so that two or more column matrices with different functional properties can be used in the same protocol. The microfluidic device is mounted on a plastic carrier so that reagents and products can be aliquoted and recovered using standard pipettors and liquid handling robots. The carrier-mounted device is operated using a benchtop controller that seals and operates the device with programmable temperature control, eliminating any requirement for the user to manually attach tubing or connectors. In addition to NGS library preparation, the device and controller are suitable for automating other time-consuming and error-prone laboratory protocols requiring column chromatography steps, such as chromatin immunoprecipitation.

  5. Multiplexing Short Primers for Viral Family PCR

    Energy Technology Data Exchange (ETDEWEB)

    Gardner, S N; Hiddessen, A L; Hara, C A; Williams, P L; Wagner, M; Colston, B W

    2008-06-26

    We describe a Multiplex Primer Prediction (MPP) algorithm to build multiplex compatible primer sets for large, diverse, and unalignable sets of target sequences. The MPP algorithm is scalable to larger target sets than other available software, and it does not require a multiple sequence alignment. We applied it to questions in viral detection, and demonstrated that there are no universally conserved priming sequences among viruses and that it could require an unfeasibly large number of primers ({approx}3700 18-mers or {approx}2000 10-mers) to generate amplicons from all sequenced viruses. We then designed primer sets separately for each viral family, and for several diverse species such as foot-and-mouth disease virus, hemagglutinin and neuraminidase segments of influenza A virus, Norwalk virus, and HIV-1.

  6. Multiplex PageRank.

    Science.gov (United States)

    Halu, Arda; Mondragón, Raúl J; Panzarasa, Pietro; Bianconi, Ginestra

    2013-01-01

    Many complex systems can be described as multiplex networks in which the same nodes can interact with one another in different layers, thus forming a set of interacting and co-evolving networks. Examples of such multiplex systems are social networks where people are involved in different types of relationships and interact through various forms of communication media. The ranking of nodes in multiplex networks is one of the most pressing and challenging tasks that research on complex networks is currently facing. When pairs of nodes can be connected through multiple links and in multiple layers, the ranking of nodes should necessarily reflect the importance of nodes in one layer as well as their importance in other interdependent layers. In this paper, we draw on the idea of biased random walks to define the Multiplex PageRank centrality measure in which the effects of the interplay between networks on the centrality of nodes are directly taken into account. In particular, depending on the intensity of the interaction between layers, we define the Additive, Multiplicative, Combined, and Neutral versions of Multiplex PageRank, and show how each version reflects the extent to which the importance of a node in one layer affects the importance the node can gain in another layer. We discuss these measures and apply them to an online multiplex social network. Findings indicate that taking the multiplex nature of the network into account helps uncover the emergence of rankings of nodes that differ from the rankings obtained from one single layer. Results provide support in favor of the salience of multiplex centrality measures, like Multiplex PageRank, for assessing the prominence of nodes embedded in multiple interacting networks, and for shedding a new light on structural properties that would otherwise remain undetected if each of the interacting networks were analyzed in isolation.

  7. Multiplex PageRank.

    Directory of Open Access Journals (Sweden)

    Arda Halu

    Full Text Available Many complex systems can be described as multiplex networks in which the same nodes can interact with one another in different layers, thus forming a set of interacting and co-evolving networks. Examples of such multiplex systems are social networks where people are involved in different types of relationships and interact through various forms of communication media. The ranking of nodes in multiplex networks is one of the most pressing and challenging tasks that research on complex networks is currently facing. When pairs of nodes can be connected through multiple links and in multiple layers, the ranking of nodes should necessarily reflect the importance of nodes in one layer as well as their importance in other interdependent layers. In this paper, we draw on the idea of biased random walks to define the Multiplex PageRank centrality measure in which the effects of the interplay between networks on the centrality of nodes are directly taken into account. In particular, depending on the intensity of the interaction between layers, we define the Additive, Multiplicative, Combined, and Neutral versions of Multiplex PageRank, and show how each version reflects the extent to which the importance of a node in one layer affects the importance the node can gain in another layer. We discuss these measures and apply them to an online multiplex social network. Findings indicate that taking the multiplex nature of the network into account helps uncover the emergence of rankings of nodes that differ from the rankings obtained from one single layer. Results provide support in favor of the salience of multiplex centrality measures, like Multiplex PageRank, for assessing the prominence of nodes embedded in multiple interacting networks, and for shedding a new light on structural properties that would otherwise remain undetected if each of the interacting networks were analyzed in isolation.

  8. Multiplex gas chromatography

    Science.gov (United States)

    Valentin, Jose R.

    1990-01-01

    The principles of the multiplex gas chromatography (GC) technique, which is a possible candidate for chemical analysis of planetary atmospheres, are discussed. Particular attention is given to the chemical modulators developed by present investigators for multiplex GC, namely, the thermal-desorption, thermal-decomposition, and catalytic modulators, as well as to mechanical modulators. The basic technique of multiplex GC using chemical modulators and a mechanical modulator is demonstrated. It is shown that, with the chemical modulators, only one gas stream consisting of the carrier in combination with the components is being analyzed, resulting in a simplified instrument that requires relatively few consumables. The mechanical modulator demonstrated a direct application of multiplex GC for the analysis of gases in atmosphere of Titan at very low pressures.

  9. Multiplexed Engineering in Biology.

    Science.gov (United States)

    Rogers, Jameson K; Church, George M

    2016-03-01

    Biotechnology is the manufacturing technology of the future. However, engineering biology is complex, and many possible genetic designs must be evaluated to find cells that produce high levels of a desired drug or chemical. Recent advances have enabled the design and construction of billions of genetic variants per day, but evaluation capacity remains limited to thousands of variants per day. Here we evaluate biological engineering through the lens of the design–build–test cycle framework and highlight the role that multiplexing has had in transforming the design and build steps. We describe a multiplexed solution to the ‘test’ step that is enabled by new research. Achieving a multiplexed test step will permit a fully multiplexed engineering cycle and boost the throughput of biobased product development by up to a millionfold.

  10. Bilevel alarm monitoring multiplexer

    International Nuclear Information System (INIS)

    Johnson, C.S.

    1977-06-01

    This report describes the operation of the Bilevel Alarm Monitoring Multiplexer used in the Adaptive Intrusion Data System (AIDS) to transfer and control alarm signals being sent to the Nova 2 computer, the Memory Controlled Data Processor, and its own integral Display Panel. The multiplexer can handle 48 alarm channels and format the alarms into binary formats compatible with the destination of the alarm data

  11. An Automated Pipeline for Engineering Many-Enzyme Pathways: Computational Sequence Design, Pathway Expression-Flux Mapping, and Scalable Pathway Optimization.

    Science.gov (United States)

    Halper, Sean M; Cetnar, Daniel P; Salis, Howard M

    2018-01-01

    Engineering many-enzyme metabolic pathways suffers from the design curse of dimensionality. There are an astronomical number of synonymous DNA sequence choices, though relatively few will express an evolutionary robust, maximally productive pathway without metabolic bottlenecks. To solve this challenge, we have developed an integrated, automated computational-experimental pipeline that identifies a pathway's optimal DNA sequence without high-throughput screening or many cycles of design-build-test. The first step applies our Operon Calculator algorithm to design a host-specific evolutionary robust bacterial operon sequence with maximally tunable enzyme expression levels. The second step applies our RBS Library Calculator algorithm to systematically vary enzyme expression levels with the smallest-sized library. After characterizing a small number of constructed pathway variants, measurements are supplied to our Pathway Map Calculator algorithm, which then parameterizes a kinetic metabolic model that ultimately predicts the pathway's optimal enzyme expression levels and DNA sequences. Altogether, our algorithms provide the ability to efficiently map the pathway's sequence-expression-activity space and predict DNA sequences with desired metabolic fluxes. Here, we provide a step-by-step guide to applying the Pathway Optimization Pipeline on a desired multi-enzyme pathway in a bacterial host.

  12. Metaxa: a software tool for automated detection and discrimination among ribosomal small subunit (12S/16S/18S) sequences of archaea, bacteria, eukaryotes, mitochondria, and chloroplasts in metagenomes and environmental sequencing datasets.

    Science.gov (United States)

    Bengtsson, Johan; Eriksson, K Martin; Hartmann, Martin; Wang, Zheng; Shenoy, Belle Damodara; Grelet, Gwen-Aëlle; Abarenkov, Kessy; Petri, Anna; Rosenblad, Magnus Alm; Nilsson, R Henrik

    2011-10-01

    The ribosomal small subunit (SSU) rRNA gene has emerged as an important genetic marker for taxonomic identification in environmental sequencing datasets. In addition to being present in the nucleus of eukaryotes and the core genome of prokaryotes, the gene is also found in the mitochondria of eukaryotes and in the chloroplasts of photosynthetic eukaryotes. These three sets of genes are conceptually paralogous and should in most situations not be aligned and analyzed jointly. To identify the origin of SSU sequences in complex sequence datasets has hitherto been a time-consuming and largely manual undertaking. However, the present study introduces Metaxa ( http://microbiology.se/software/metaxa/ ), an automated software tool to extract full-length and partial SSU sequences from larger sequence datasets and assign them to an archaeal, bacterial, nuclear eukaryote, mitochondrial, or chloroplast origin. Using data from reference databases and from full-length organelle and organism genomes, we show that Metaxa detects and scores SSU sequences for origin with very low proportions of false positives and negatives. We believe that this tool will be useful in microbial and evolutionary ecology as well as in metagenomics.

  13. Whole Genome Sequencing and Multiplex qPCR Methods to Identify Campylobacter jejuni Encoding cst-II or cst-III Sialyltransferase

    Directory of Open Access Journals (Sweden)

    Jason M. Neal-McKinney

    2018-03-01

    Full Text Available Campylobacter jejuni causes more than 2 million cases of gastroenteritis annually in the United States, and is also linked to the autoimmune sequelae Guillan–Barre syndrome (GBS. GBS often results in flaccid paralysis, as the myelin sheaths of nerve cells are degraded by the adaptive immune response. Certain strains of C. jejuni modify their lipooligosaccharide (LOS with the addition of neuraminic acid, resulting in LOS moieties that are structurally similar to gangliosides present on nerve cells. This can trigger GBS in a susceptible host, as antibodies generated against C. jejuni can cross-react with gangliosides, leading to demyelination of nerves and a loss of signal transduction. The goal of this study was to develop a quantitative PCR (qPCR method and use whole genome sequencing data to detect the Campylobactersialyltransferase (cst genes responsible for the addition of neuraminic acid to LOS. The qPCR method was used to screen a library of 89 C. jejuni field samples collected by the Food and Drug Administration Pacific Northwest Lab (PNL as well as clinical isolates transferred to PNL. In silico analysis was used to screen 827 C. jejuni genomes in the FDA GenomeTrakr SRA database. The results indicate that a majority of C. jejuni strains could produce LOS with ganglioside mimicry, as 43.8% of PNL isolates and 46.9% of the GenomeTrakr isolates lacked the cst genes. The methods described in this study can be used by public health laboratories to rapidly determine whether a C. jejuni isolate has the potential to induce GBS. Based on these results, a majority of C. jejuni in the PNL collection and submitted to GenomeTrakr have the potential to produce LOS that mimics human gangliosides.

  14. Definition and Analysis of a System for the Automated Comparison of Curriculum Sequencing Algorithms in Adaptive Distance Learning

    Science.gov (United States)

    Limongelli, Carla; Sciarrone, Filippo; Temperini, Marco; Vaste, Giulia

    2011-01-01

    LS-Lab provides automatic support to comparison/evaluation of the Learning Object Sequences produced by different Curriculum Sequencing Algorithms. Through this framework a teacher can verify the correspondence between the behaviour of different sequencing algorithms and her pedagogical preferences. In fact the teacher can compare algorithms…

  15. [Multiplexing mapping of human cDNAs]. Final report, September 1, 1991--February 28, 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-04-01

    Using PCR with automated product analysis, 329 human brain cDNA sequences have been assigned to individual human chromosomes. Primers were designed from single-pass cDNA sequences expressed sequence tags (ESTs). Primers were used in PCR reactions with DNA from somatic cell hybrid mapping panels as templates, often with multiplexing. Many ESTs mapped match sequence database records. To evaluate of these matches, the position of the primers relative to the matching region (In), the BLAST scores and the Poisson probability values of the EST/sequence record match were determined. In cases where the gene product was stringently identified by the sequence match had already been mapped, the gene locus determined by EST was consistent with the previous position which strongly supports the validity of assigning unknown genes to human chromosomes based on the EST sequence matches. In the present cases mapping the ESTs to a chromosome can also be considered to have mapped the known gene product: rolipram-sensitive cAMP phosphodiesterase, chromosome 1; protein phosphatase 2A{beta}, chromosome 4; alpha-catenin, chromosome 5; the ELE1 oncogene, chromosome 10q11.2 or q2.1-q23; MXII protein, chromosome l0q24-qter; ribosomal protein L18a homologue, chromosome 14; ribosomal protein L3, chromosome 17; and moesin, Xp11-cen. There were also ESTs mapped that were closely related to non-human sequence records. These matches therefore can be considered to identify human counterparts of known gene products, or members of known gene families. Examples of these include membrane proteins, translation-associated proteins, structural proteins, and enzymes. These data then demonstrate that single pass sequence information is sufficient to design PCR primers useful for assigning cDNA sequences to human chromosomes. When the EST sequence matches previous sequence database records, the chromosome assignments of the EST can be used to make preliminary assignments of the human gene to a chromosome.

  16. ReseqChip: Automated integration of multiple local context probe data from the MitoChip array in mitochondrial DNA sequence assembly

    Directory of Open Access Journals (Sweden)

    Spang Rainer

    2009-12-01

    Full Text Available Abstract Background The Affymetrix MitoChip v2.0 is an oligonucleotide tiling array for the resequencing of the human mitochondrial (mt genome. For each of 16,569 nucleotide positions of the mt genome it holds two sets of four 25-mer probes each that match the heavy and the light strand of a reference mt genome and vary only at their central position to interrogate all four possible alleles. In addition, the MitoChip v2.0 carries alternative local context probes to account for known mtDNA variants. These probes have been neglected in most studies due to the lack of software for their automated analysis. Results We provide ReseqChip, a free software that automates the process of resequencing mtDNA using multiple local context probes on the MitoChip v2.0. ReseqChip significantly improves base call rate and sequence accuracy. ReseqChip is available at http://code.open-bio.org/svnweb/index.cgi/bioperl/browse/bioperl-live/trunk/Bio/Microarray/Tools/. Conclusions ReseqChip allows for the automated consolidation of base calls from alternative local mt genome context probes. It thereby improves the accuracy of resequencing, while reducing the number of non-called bases.

  17. Automated genotyping of dinucleotide repeat markers

    Energy Technology Data Exchange (ETDEWEB)

    Perlin, M.W.; Hoffman, E.P. [Carnegie Mellon Univ., Pittsburgh, PA (United States)]|[Univ. of Pittsburgh, PA (United States)

    1994-09-01

    The dinucleotide repeats (i.e., microsatellites) such as CA-repeats are a highly polymorphic, highly abundant class of PCR-amplifiable markers that have greatly streamlined genetic mapping experimentation. It is expected that over 30,000 such markers (including tri- and tetranucleotide repeats) will be characterized for routine use in the next few years. Since only size determination, and not sequencing, is required to determine alleles, in principle, dinucleotide repeat genotyping is easily performed on electrophoretic gels, and can be automated using DNA sequencers. Unfortunately, PCR stuttering with these markers generates not one band for each allele, but a pattern of bands. Since closely spaced alleles must be disambiguated by human scoring, this poses a key obstacle to full automation. We have developed methods that overcome this obstacle. Our model is that the observed data is generated by arithmetic superposition (i.e., convolution) of multiple allele patterns. By quantitatively measuring the size of each component band, and exploiting the unique stutter pattern associated with each marker, closely spaced alleles can be deconvolved; this unambiguously reconstructs the {open_quotes}true{close_quotes} allele bands, with stutter artifact removed. We used this approach in a system for automated diagnosis of (X-linked) Duchenne muscular dystrophy; four multiplexed CA-repeats within the dystrophin gene were assayed on a DNA sequencer. Our method accurately detected small variations in gel migration that shifted the allele size estimate. In 167 nonmutated alleles, 89% (149/167) showed no size variation, 9% (15/167) showed 1 bp variation, and 2% (3/167) showed 2 bp variation. We are currently developing a library of dinucleotide repeat patterns; together with our deconvolution methods, this library will enable fully automated genotyping of dinucleotide repeats from sizing data.

  18. Hepatic fat quantification using automated six-point Dixon: Comparison with conventional chemical shift based sequences and computed tomography.

    Science.gov (United States)

    Shimizu, Kie; Namimoto, Tomohiro; Nakagawa, Masataka; Morita, Kosuke; Oda, Seitaro; Nakaura, Takeshi; Utsunomiya, Daisuke; Yamashita, Yasuyuki

    To compare automated six-point Dixon (6-p-Dixon) MRI comparing with dual-echo chemical-shift-imaging (CSI) and CT for hepatic fat fraction in phantoms and clinical study. Phantoms and fifty-nine patients were examined both MRI and CT for quantitative fat measurements. In phantom study, linear regression between fat concentration and 6-p-Dixon showed good agreement. In clinical study, linear regression between 6-p-Dixon and dual-echo CSI showed good agreement. CT attenuation value was strongly correlated with 6-p-Dixon (R 2 =0.852; PDixon and dual-echo CSI were accurate correlation with CT attenuation value of liver parenchyma. 6-p-Dixon has the potential for automated hepatic fat quantification. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A multiplex microplatform for the detection of multiple DNA methylation events using gold-DNA affinity.

    Science.gov (United States)

    Sina, Abu Ali Ibn; Foster, Matthew Thomas; Korbie, Darren; Carrascosa, Laura G; Shiddiky, Muhammad J A; Gao, Jing; Dey, Shuvashis; Trau, Matt

    2017-10-07

    We report a new multiplexed strategy for the electrochemical detection of regional DNA methylation across multiple regions. Using the sequence dependent affinity of bisulfite treated DNA towards gold surfaces, the method integrates the high sensitivity of a micro-fabricated multiplex device comprising a microarray of gold electrodes, with the powerful multiplexing capability of multiplex-PCR. The synergy of this combination enables the monitoring of the methylation changes across several genomic regions simultaneously from as low as 500 pg μl -1 of DNA with no sequencing requirement.

  20. Moving through a multiplex holographic scene

    Science.gov (United States)

    Mrongovius, Martina

    2013-02-01

    This paper explores how movement can be used as a compositional element in installations of multiplex holograms. My holographic images are created from montages of hand-held video and photo-sequences. These spatially dynamic compositions are visually complex but anchored to landmarks and hints of the capturing process - such as the appearance of the photographer's shadow - to establish a sense of connection to the holographic scene. Moving around in front of the hologram, the viewer animates the holographic scene. A perception of motion then results from the viewer's bodily awareness of physical motion and the visual reading of dynamics within the scene or movement of perspective through a virtual suggestion of space. By linking and transforming the physical motion of the viewer with the visual animation, the viewer's bodily awareness - including proprioception, balance and orientation - play into the holographic composition. How multiplex holography can be a tool for exploring coupled, cross-referenced and transformed perceptions of movement is demonstrated with a number of holographic image installations. Through this process I expanded my creative composition practice to consider how dynamic and spatial scenes can be conveyed through the fragmented view of a multiplex hologram. This body of work was developed through an installation art practice and was the basis of my recently completed doctoral thesis: 'The Emergent Holographic Scene — compositions of movement and affect using multiplex holographic images'.

  1. Multiplexing a high-throughput liability assay to leverage efficiencies.

    Science.gov (United States)

    Herbst, John; Anthony, Monique; Stewart, Jeremy; Connors, David; Chen, Taosheng; Banks, Martyn; Petrillo, Edward W; Agler, Michele

    2009-06-01

    In order to identify potential cytochrome P-450 3A4 (drug-metabolizing enzyme) inducers at an early stage of the drug discovery process, a cell-based transactivation high-throughput luciferase reporter assay for the human pregnane X receptor (PXR) in HepG2 cells has been implemented and multiplexed with a viability end point for data interpretation, as part of a Lead Profiling portfolio of assays. As a routine part of Lead Profiling operations, assays are periodically evaluated for utility as well as for potential improvements in technology or process. We used a recent evaluation of our PXR-transactivation assay as a model for the application of Lean Thinking-based process analysis to lab-bench assay optimization and automation. This resulted in the development of a 384-well multiplexed homogeneous assay simultaneously detecting PXR transactivation and HepG2 cell cytotoxicity. In order to multiplex fluorescent and luminescent read-outs, modifications to each assay were necessary, which included optimization of multiple assay parameters such as cell density, plate type, and reagent concentrations. Subsequently, a set of compounds including known cytotoxic compounds and PXR inducers were used to validate the multiplexed assay. Results from the multiplexed assay correlate well with those from the singleplexed assay formats measuring PXR transactivation and viability separately. Implementation of the multiplexed assay for routine compound profiling provides improved data quality, sample conservation, cost savings, and resource efficiencies.

  2. Coherence Multiplex System Topologies

    NARCIS (Netherlands)

    Meijerink, Arjan; Taniman, R.O.; Heideman, G.H.L.M.; van Etten, Wim

    2007-01-01

    Coherence multiplexing is a potentially inexpensive form of optical code-division multiple access, which is particularly suitable for short-range applications with moderate bandwidth requirements, such as access networks, LANs, or interconnects. Various topologies are known for constructing an

  3. Microprocessorized message multiplexer

    International Nuclear Information System (INIS)

    Ejzman, S.; Guglielmi, L.; Jaeger, J.J.

    1980-07-01

    The 'Microprocessorized Message Multiplexer' is an elementary development tool used to create and debug the software of a target microprocessor (User Module: UM). It connects together four devices: a terminal, a cassette recorder, the target microprocessor and a host computer where macro and editor for the M 6800 microprocessor are resident [fr

  4. phylotaR: An Automated Pipeline for Retrieving Orthologous DNA Sequences from GenBank in R

    Directory of Open Access Journals (Sweden)

    Dominic J. Bennett

    2018-06-01

    Full Text Available The exceptional increase in molecular DNA sequence data in open repositories is mirrored by an ever-growing interest among evolutionary biologists to harvest and use those data for phylogenetic inference. Many quality issues, however, are known and the sheer amount and complexity of data available can pose considerable barriers to their usefulness. A key issue in this domain is the high frequency of sequence mislabeling encountered when searching for suitable sequences for phylogenetic analysis. These issues include, among others, the incorrect identification of sequenced species, non-standardized and ambiguous sequence annotation, and the inadvertent addition of paralogous sequences by users. Taken together, these issues likely add considerable noise, error or bias to phylogenetic inference, a risk that is likely to increase with the size of phylogenies or the molecular datasets used to generate them. Here we present a software package, phylotaR that bypasses the above issues by using instead an alignment search tool to identify orthologous sequences. Our package builds on the framework of its predecessor, PhyLoTa, by providing a modular pipeline for identifying overlapping sequence clusters using up-to-date GenBank data and providing new features, improvements and tools. We demonstrate and test our pipeline’s effectiveness by presenting trees generated from phylotaR clusters for two large taxonomic clades: Palms and primates. Given the versatility of this package, we hope that it will become a standard tool for any research aiming to use GenBank data for phylogenetic analysis.

  5. Extracting information from multiplex networks

    Science.gov (United States)

    Iacovacci, Jacopo; Bianconi, Ginestra

    2016-06-01

    Multiplex networks are generalized network structures that are able to describe networks in which the same set of nodes are connected by links that have different connotations. Multiplex networks are ubiquitous since they describe social, financial, engineering, and biological networks as well. Extending our ability to analyze complex networks to multiplex network structures increases greatly the level of information that is possible to extract from big data. For these reasons, characterizing the centrality of nodes in multiplex networks and finding new ways to solve challenging inference problems defined on multiplex networks are fundamental questions of network science. In this paper, we discuss the relevance of the Multiplex PageRank algorithm for measuring the centrality of nodes in multilayer networks and we characterize the utility of the recently introduced indicator function Θ ˜ S for describing their mesoscale organization and community structure. As working examples for studying these measures, we consider three multiplex network datasets coming for social science.

  6. Automated insertion of sequences into a ribosomal RNA alignment: An application of computational linguistics in molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Ronald C. [Case Western Reserve Univ., Cleveland, OH (United States)

    1991-11-01

    This thesis involved the construction of (1) a grammar that incorporates knowledge on base invariancy and secondary structure in a molecule and (2) a parser engine that uses the grammar to position bases into the structural subunits of the molecule. These concepts were combined with a novel pinning technique to form a tool that semi-automates insertion of a new species into the alignment for the 16S rRNA molecule (a component of the ribosome) maintained by Dr. Carl Woese`s group at the University of Illinois at Urbana. The tool was tested on species extracted from the alignment and on a group of entirely new species. The results were very encouraging, and the tool should be substantial aid to the curators of the 16S alignment. The construction of the grammar was itself automated, allowing application of the tool to alignments for other molecules. The logic programming language Prolog was used to construct all programs involved. The computational linguistics approach used here was found to be a useful way to attach the problem of insertion into an alignment.

  7. Automated insertion of sequences into a ribosomal RNA alignment: An application of computational linguistics in molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.C.

    1991-11-01

    This thesis involved the construction of (1) a grammar that incorporates knowledge on base invariancy and secondary structure in a molecule and (2) a parser engine that uses the grammar to position bases into the structural subunits of the molecule. These concepts were combined with a novel pinning technique to form a tool that semi-automates insertion of a new species into the alignment for the 16S rRNA molecule (a component of the ribosome) maintained by Dr. Carl Woese's group at the University of Illinois at Urbana. The tool was tested on species extracted from the alignment and on a group of entirely new species. The results were very encouraging, and the tool should be substantial aid to the curators of the 16S alignment. The construction of the grammar was itself automated, allowing application of the tool to alignments for other molecules. The logic programming language Prolog was used to construct all programs involved. The computational linguistics approach used here was found to be a useful way to attach the problem of insertion into an alignment.

  8. HotSpot Wizard 3.0: web server for automated design of mutations and smart libraries based on sequence input information.

    Science.gov (United States)

    Sumbalova, Lenka; Stourac, Jan; Martinek, Tomas; Bednar, David; Damborsky, Jiri

    2018-05-23

    HotSpot Wizard is a web server used for the automated identification of hotspots in semi-rational protein design to give improved protein stability, catalytic activity, substrate specificity and enantioselectivity. Since there are three orders of magnitude fewer protein structures than sequences in bioinformatic databases, the major limitation to the usability of previous versions was the requirement for the protein structure to be a compulsory input for the calculation. HotSpot Wizard 3.0 now accepts the protein sequence as input data. The protein structure for the query sequence is obtained either from eight repositories of homology models or is modeled using Modeller and I-Tasser. The quality of the models is then evaluated using three quality assessment tools-WHAT_CHECK, PROCHECK and MolProbity. During follow-up analyses, the system automatically warns the users whenever they attempt to redesign poorly predicted parts of their homology models. The second main limitation of HotSpot Wizard's predictions is that it identifies suitable positions for mutagenesis, but does not provide any reliable advice on particular substitutions. A new module for the estimation of thermodynamic stabilities using the Rosetta and FoldX suites has been introduced which prevents destabilizing mutations among pre-selected variants entering experimental testing. HotSpot Wizard is freely available at http://loschmidt.chemi.muni.cz/hotspotwizard.

  9. Automated volumetric assessment of the Achilles tendon (AVAT) using a 3D T2 weighted SPACE sequence at 3 T in healthy and pathologic cases

    International Nuclear Information System (INIS)

    Syha, R.; Würslin, C.; Ketelsen, D.; Martirosian, P.; Grosse, U.; Schick, F.; Claussen, C.D.; Springer, F.

    2012-01-01

    Purpose: Achilles tendinopathy has been reported to be frequently associated with increasing volume of the tendon. This work aims at reliable and accurate volumetric quantification of the Achilles tendon using a newly developed contour detection algorithm applied on high resolution MRI data sets recorded at 3 T. Materials and methods: A total of 26 healthy tendons and 4 degenerated tendons were examined for this study. Automated identification (AI) of tendon boundaries was performed in transverse slices with isotropic resolution (0.8 mm) gained with a T2-weighted SPACE sequence at 3 T. For AI a snake algorithm was applied and compared to manual tracing (MT). Results: AI was feasible in all examined tendons without further correction. AI of both tendons was performed in each participant within 2 min (2 × 37 slices) compared to MT lasting 20 min. MT and AI showed excellent agreement and correlation (R 2 = 0.99, p 3 vs. 0.5 cm 3 ) and coefficient of variation (1% vs. 2%). Discussion: Compared to MT the AI allows assessment of tendon volumes in highly resolved MRI data in a more accurate and reliable time-saving way. Therefore automated volume detection is seen as a helpful clinical tool for evaluation of small volumetric changes of the Achilles tendon.

  10. Whole genome sequencing of group A Streptococcus: development and evaluation of an automated pipeline for emmgene typing

    Directory of Open Access Journals (Sweden)

    Georgia Kapatai

    2017-04-01

    Full Text Available Streptococcus pyogenes group A Streptococcus (GAS is the most common cause of bacterial throat infections, and can cause mild to severe skin and soft tissue infections, including impetigo, erysipelas, necrotizing fasciitis, as well as systemic and fatal infections including septicaemia and meningitis. Estimated annual incidence for invasive group A streptococcal infection (iGAS in industrialised countries is approximately three per 100,000 per year. Typing is currently used in England and Wales to monitor bacterial strains of S. pyogenes causing invasive infections and those isolated from patients and healthcare/care workers in cluster and outbreak situations. Sequence analysis of the emm gene is the currently accepted gold standard methodology for GAS typing. A comprehensive database of emm types observed from superficial and invasive GAS strains from England and Wales informs outbreak control teams during investigations. Each year the Bacterial Reference Department, Public Health England (PHE receives approximately 3,000 GAS isolates from England and Wales. In April 2014 the Bacterial Reference Department, PHE began genomic sequencing of referred S. pyogenes isolates and those pertaining to selected elderly/nursing care or maternity clusters from 2010 to inform future reference services and outbreak analysis (n = 3, 047. In line with the modernizing strategy of PHE, we developed a novel bioinformatics pipeline that can predict emmtypes using whole genome sequence (WGS data. The efficiency of this method was measured by comparing the emmtype assigned by this method against the result from the current gold standard methodology; concordance to emmsubtype level was observed in 93.8% (2,852/3,040 of our cases, whereas in 2.4% (n = 72 of our cases concordance was observed to emm type level. The remaining 3.8% (n = 117 of our cases corresponded to novel types/subtypes, contamination, laboratory sample transcription errors or problems arising

  11. Integrated optimization of location assignment and sequencing in multi-shuttle automated storage and retrieval systems under modified 2n-command cycle pattern

    Science.gov (United States)

    Yang, Peng; Peng, Yongfei; Ye, Bin; Miao, Lixin

    2017-09-01

    This article explores the integrated optimization problem of location assignment and sequencing in multi-shuttle automated storage/retrieval systems under the modified 2n-command cycle pattern. The decision of storage and retrieval (S/R) location assignment and S/R request sequencing are jointly considered. An integer quadratic programming model is formulated to describe this integrated optimization problem. The optimal travel cycles for multi-shuttle S/R machines can be obtained to process S/R requests in the storage and retrieval request order lists by solving the model. The small-sized instances are optimally solved using CPLEX. For large-sized problems, two tabu search algorithms are proposed, in which the first come, first served and nearest neighbour are used to generate initial solutions. Various numerical experiments are conducted to examine the heuristics' performance and the sensitivity of algorithm parameters. Furthermore, the experimental results are analysed from the viewpoint of practical application, and a parameter list for applying the proposed heuristics is recommended under different real-life scenarios.

  12. PhyloBot: A Web Portal for Automated Phylogenetics, Ancestral Sequence Reconstruction, and Exploration of Mutational Trajectories.

    Directory of Open Access Journals (Sweden)

    Victor Hanson-Smith

    2016-07-01

    Full Text Available The method of phylogenetic ancestral sequence reconstruction is a powerful approach for studying evolutionary relationships among protein sequence, structure, and function. In particular, this approach allows investigators to (1 reconstruct and "resurrect" (that is, synthesize in vivo or in vitro extinct proteins to study how they differ from modern proteins, (2 identify key amino acid changes that, over evolutionary timescales, have altered the function of the protein, and (3 order historical events in the evolution of protein function. Widespread use of this approach has been slow among molecular biologists, in part because the methods require significant computational expertise. Here we present PhyloBot, a web-based software tool that makes ancestral sequence reconstruction easy. Designed for non-experts, it integrates all the necessary software into a single user interface. Additionally, PhyloBot provides interactive tools to explore evolutionary trajectories between ancestors, enabling the rapid generation of hypotheses that can be tested using genetic or biochemical approaches. Early versions of this software were used in previous studies to discover genetic mechanisms underlying the functions of diverse protein families, including V-ATPase ion pumps, DNA-binding transcription regulators, and serine/threonine protein kinases. PhyloBot runs in a web browser, and is available at the following URL: http://www.phylobot.com. The software is implemented in Python using the Django web framework, and runs on elastic cloud computing resources from Amazon Web Services. Users can create and submit jobs on our free server (at the URL listed above, or use our open-source code to launch their own PhyloBot server.

  13. Functional Multiplex PageRank

    Science.gov (United States)

    Iacovacci, Jacopo; Rahmede, Christoph; Arenas, Alex; Bianconi, Ginestra

    2016-10-01

    Recently it has been recognized that many complex social, technological and biological networks have a multilayer nature and can be described by multiplex networks. Multiplex networks are formed by a set of nodes connected by links having different connotations forming the different layers of the multiplex. Characterizing the centrality of the nodes in a multiplex network is a challenging task since the centrality of the node naturally depends on the importance associated to links of a certain type. Here we propose to assign to each node of a multiplex network a centrality called Functional Multiplex PageRank that is a function of the weights given to every different pattern of connections (multilinks) existent in the multiplex network between any two nodes. Since multilinks distinguish all the possible ways in which the links in different layers can overlap, the Functional Multiplex PageRank can describe important non-linear effects when large relevance or small relevance is assigned to multilinks with overlap. Here we apply the Functional Page Rank to the multiplex airport networks, to the neuronal network of the nematode C. elegans, and to social collaboration and citation networks between scientists. This analysis reveals important differences existing between the most central nodes of these networks, and the correlations between their so-called pattern to success.

  14. Multiplex measuring systems in physics

    International Nuclear Information System (INIS)

    Soroko, L.M.

    1980-01-01

    The principles of operation of multiplex devices used in different spheres of physics are discussed. The ''multiplex'' notion means that the data output of the device is an integral image of the functional dependence under investigation, but not its readings as in usual instruments. The analysis of the present state of developments of the multiplex systems in optics, nuclear magnetic resonance spectroscopy, in time-of-flight spectrometers for slow and fast neutrons, as well as elementary particle detectors, is given. The construction algorithms for the digital codes are presented, the history of development of the multiplex measuring principle is given [ru

  15. Comparison of Boiling and Robotics Automation Method in DNA Extraction for Metagenomic Sequencing of Human Oral Microbes.

    Science.gov (United States)

    Yamagishi, Junya; Sato, Yukuto; Shinozaki, Natsuko; Ye, Bin; Tsuboi, Akito; Nagasaki, Masao; Yamashita, Riu

    2016-01-01

    The rapid improvement of next-generation sequencing performance now enables us to analyze huge sample sets with more than ten thousand specimens. However, DNA extraction can still be a limiting step in such metagenomic approaches. In this study, we analyzed human oral microbes to compare the performance of three DNA extraction methods: PowerSoil (a method widely used in this field), QIAsymphony (a robotics method), and a simple boiling method. Dental plaque was initially collected from three volunteers in the pilot study and then expanded to 12 volunteers in the follow-up study. Bacterial flora was estimated by sequencing the V4 region of 16S rRNA following species-level profiling. Our results indicate that the efficiency of PowerSoil and QIAsymphony was comparable to the boiling method. Therefore, the boiling method may be a promising alternative because of its simplicity, cost effectiveness, and short handling time. Moreover, this method was reliable for estimating bacterial species and could be used in the future to examine the correlation between oral flora and health status. Despite this, differences in the efficiency of DNA extraction for various bacterial species were observed among the three methods. Based on these findings, there is no "gold standard" for DNA extraction. In future, we suggest that the DNA extraction method should be selected on a case-by-case basis considering the aims and specimens of the study.

  16. Comparison of Boiling and Robotics Automation Method in DNA Extraction for Metagenomic Sequencing of Human Oral Microbes.

    Directory of Open Access Journals (Sweden)

    Junya Yamagishi

    Full Text Available The rapid improvement of next-generation sequencing performance now enables us to analyze huge sample sets with more than ten thousand specimens. However, DNA extraction can still be a limiting step in such metagenomic approaches. In this study, we analyzed human oral microbes to compare the performance of three DNA extraction methods: PowerSoil (a method widely used in this field, QIAsymphony (a robotics method, and a simple boiling method. Dental plaque was initially collected from three volunteers in the pilot study and then expanded to 12 volunteers in the follow-up study. Bacterial flora was estimated by sequencing the V4 region of 16S rRNA following species-level profiling. Our results indicate that the efficiency of PowerSoil and QIAsymphony was comparable to the boiling method. Therefore, the boiling method may be a promising alternative because of its simplicity, cost effectiveness, and short handling time. Moreover, this method was reliable for estimating bacterial species and could be used in the future to examine the correlation between oral flora and health status. Despite this, differences in the efficiency of DNA extraction for various bacterial species were observed among the three methods. Based on these findings, there is no "gold standard" for DNA extraction. In future, we suggest that the DNA extraction method should be selected on a case-by-case basis considering the aims and specimens of the study.

  17. Multiplex amplification of large sets of human exons.

    Science.gov (United States)

    Porreca, Gregory J; Zhang, Kun; Li, Jin Billy; Xie, Bin; Austin, Derek; Vassallo, Sara L; LeProust, Emily M; Peck, Bill J; Emig, Christopher J; Dahl, Fredrik; Gao, Yuan; Church, George M; Shendure, Jay

    2007-11-01

    A new generation of technologies is poised to reduce DNA sequencing costs by several orders of magnitude. But our ability to fully leverage the power of these technologies is crippled by the absence of suitable 'front-end' methods for isolating complex subsets of a mammalian genome at a scale that matches the throughput at which these platforms will routinely operate. We show that targeting oligonucleotides released from programmable microarrays can be used to capture and amplify approximately 10,000 human exons in a single multiplex reaction. Additionally, we show integration of this protocol with ultra-high-throughput sequencing for targeted variation discovery. Although the multiplex capture reaction is highly specific, we found that nonuniform capture is a key issue that will need to be resolved by additional optimization. We anticipate that highly multiplexed methods for targeted amplification will enable the comprehensive resequencing of human exons at a fraction of the cost of whole-genome resequencing.

  18. metaBIT, an integrative and automated metagenomic pipeline for analysing microbial profiles from high-throughput sequencing shotgun data

    DEFF Research Database (Denmark)

    Louvel, Guillaume; Der Sarkissian, Clio; Hanghøj, Kristian Ebbesen

    2016-01-01

    -throughput DNA sequencing (HTS). Here, we develop metaBIT, an open-source computational pipeline automatizing routine microbial profiling of shotgun HTS data. Customizable by the user at different stringency levels, it performs robust taxonomy-based assignment and relative abundance calculation of microbial taxa......, as well as cross-sample statistical analyses of microbial diversity distributions. We demonstrate the versatility of metaBIT within a range of published HTS data sets sampled from the environment (soil and seawater) and the human body (skin and gut), but also from archaeological specimens. We present......-friendly profiling of the microbial DNA present in HTS shotgun data sets. The applications of metaBIT are vast, from monitoring of laboratory errors and contaminations, to the reconstruction of past and present microbiota, and the detection of candidate species, including pathogens....

  19. A simple electron multiplexer

    International Nuclear Information System (INIS)

    Dobrzynski, L; Akjouj, A; Djafari-Rouhani, B; Al-Wahsh, H; Zielinski, P

    2003-01-01

    We present a simple multiplexing device made of two atomic chains coupled by two other transition metal atoms. We show that this simple atomic device can transfer electrons at a given energy from one wire to the other, leaving all other electron states unaffected. Closed-form relations between the transmission coefficients and the inter-atomic distances are given to optimize the desired directional electron ejection. Such devices can be adsorbed on insulating substrates and characterized by current surface technologies. (letter to the editor)

  20. Automation and robotics

    Science.gov (United States)

    Montemerlo, Melvin

    1988-01-01

    The Autonomous Systems focus on the automation of control systems for the Space Station and mission operations. Telerobotics focuses on automation for in-space servicing, assembly, and repair. The Autonomous Systems and Telerobotics each have a planned sequence of integrated demonstrations showing the evolutionary advance of the state-of-the-art. Progress is briefly described for each area of concern.

  1. TSSer: an automated method to identify transcription start sites in prokaryotic genomes from differential RNA sequencing data.

    Science.gov (United States)

    Jorjani, Hadi; Zavolan, Mihaela

    2014-04-01

    Accurate identification of transcription start sites (TSSs) is an essential step in the analysis of transcription regulatory networks. In higher eukaryotes, the capped analysis of gene expression technology enabled comprehensive annotation of TSSs in genomes such as those of mice and humans. In bacteria, an equivalent approach, termed differential RNA sequencing (dRNA-seq), has recently been proposed, but the application of this approach to a large number of genomes is hindered by the paucity of computational analysis methods. With few exceptions, when the method has been used, annotation of TSSs has been largely done manually. In this work, we present a computational method called 'TSSer' that enables the automatic inference of TSSs from dRNA-seq data. The method rests on a probabilistic framework for identifying both genomic positions that are preferentially enriched in the dRNA-seq data as well as preferentially captured relative to neighboring genomic regions. Evaluating our approach for TSS calling on several publicly available datasets, we find that TSSer achieves high consistency with the curated lists of annotated TSSs, but identifies many additional TSSs. Therefore, TSSer can accelerate genome-wide identification of TSSs in bacterial genomes and can aid in further characterization of bacterial transcription regulatory networks. TSSer is freely available under GPL license at http://www.clipz.unibas.ch/TSSer/index.php

  2. Multiplex Recurrence Networks

    Science.gov (United States)

    Eroglu, Deniz; Marwan, Norbert

    2017-04-01

    The complex nature of a variety of phenomena in physical, biological, or earth sciences is driven by a large number of degrees of freedom which are strongly interconnected. Although the evolution of such systems is described by multivariate time series (MTS), so far research mostly focuses on analyzing these components one by one. Recurrence based analyses are powerful methods to understand the underlying dynamics of a dynamical system and have been used for many successful applications including examples from earth science, economics, or chemical reactions. The backbone of these techniques is creating the phase space of the system. However, increasing the dimension of a system requires increasing the length of the time series in order get significant and reliable results. This requirement is one of the challenges in many disciplines, in particular in palaeoclimate, thus, it is not easy to create a phase space from measured MTS due to the limited number of available obervations (samples). To overcome this problem, we suggest to create recurrence networks from each component of the system and combine them into a multiplex network structure, the multiplex recurrence network (MRN). We test the MRN by using prototypical mathematical models and demonstrate its use by studying high-dimensional palaeoclimate dynamics derived from pollen data from the Bear Lake (Utah, US). By using the MRN, we can distinguish typical climate transition events, e.g., such between Marine Isotope Stages.

  3. Cranberry SSR multiplexing panels for DNA horticultural fingerprinting and genetic studies

    Science.gov (United States)

    Cranberry (Vaccinium macrocarpon) is in need of inexpensive high-throughput DNA fingerprinting methods for genetic research and germplasm purity testing for agricultural purposes. Therefore, we designed and validated 16-multiplexing panels containing 61 evenly distributed simple sequence (SSR) marke...

  4. Learning-based automated segmentation of the carotid artery vessel wall in dual-sequence MRI using subdivision surface fitting.

    Science.gov (United States)

    Gao, Shan; van 't Klooster, Ronald; Kitslaar, Pieter H; Coolen, Bram F; van den Berg, Alexandra M; Smits, Loek P; Shahzad, Rahil; Shamonin, Denis P; de Koning, Patrick J H; Nederveen, Aart J; van der Geest, Rob J

    2017-10-01

    The quantification of vessel wall morphology and plaque burden requires vessel segmentation, which is generally performed by manual delineations. The purpose of our work is to develop and evaluate a new 3D model-based approach for carotid artery wall segmentation from dual-sequence MRI. The proposed method segments the lumen and outer wall surfaces including the bifurcation region by fitting a subdivision surface constructed hierarchical-tree model to the image data. In particular, a hybrid segmentation which combines deformable model fitting with boundary classification was applied to extract the lumen surface. The 3D model ensures the correct shape and topology of the carotid artery, while the boundary classification uses combined image information of 3D TOF-MRA and 3D BB-MRI to promote accurate delineation of the lumen boundaries. The proposed algorithm was validated on 25 subjects (48 arteries) including both healthy volunteers and atherosclerotic patients with 30% to 70% carotid stenosis. For both lumen and outer wall border detection, our result shows good agreement between manually and automatically determined contours, with contour-to-contour distance less than 1 pixel as well as Dice overlap greater than 0.87 at all different carotid artery sections. The presented 3D segmentation technique has demonstrated the capability of providing vessel wall delineation for 3D carotid MRI data with high accuracy and limited user interaction. This brings benefits to large-scale patient studies for assessing the effect of pharmacological treatment of atherosclerosis by reducing image analysis time and bias between human observers. © 2017 American Association of Physicists in Medicine.

  5. Multiplexed Western Blotting Using Microchip Electrophoresis.

    Science.gov (United States)

    Jin, Shi; Furtaw, Michael D; Chen, Huaxian; Lamb, Don T; Ferguson, Stephen A; Arvin, Natalie E; Dawod, Mohamed; Kennedy, Robert T

    2016-07-05

    Western blotting is a commonly used protein assay that combines the selectivity of electrophoretic separation and immunoassay. The technique is limited by long time, manual operation with mediocre reproducibility, and large sample consumption, typically 10-20 μg per assay. Western blots are also usually used to measure only one protein per assay with an additional housekeeping protein for normalization. Measurement of multiple proteins is possible; however, it requires stripping membranes of antibody and then reprobing with a second antibody. Miniaturized alternatives to Western blot based on microfluidic or capillary electrophoresis have been developed that enable higher-throughput, automation, and greater mass sensitivity. In one approach, proteins are separated by electrophoresis on a microchip that is dragged along a polyvinylidene fluoride membrane so that as proteins exit the chip they are captured on the membrane for immunoassay. In this work, we improve this method to allow multiplexed protein detection. Multiple injections made from the same sample can be deposited in separate tracks so that each is probed with a different antibody. To further enhance multiplexing capability, the electrophoresis channel dimensions were optimized for resolution while keeping separation and blotting times to less than 8 min. Using a 15 μm deep × 50 μm wide × 8.6 cm long channel, it is possible to achieve baseline resolution of proteins that differ by 5% in molecular weight, e.g., ERK1 (44 kDa) from ERK2 (42 kDa). This resolution allows similar proteins detected by cross-reactive antibodies in a single track. We demonstrate detection of 11 proteins from 9 injections from a single Jurkat cell lysate sample consisting of 400 ng of total protein using this procedure. Thus, multiplexed Western blots are possible without cumbersome stripping and reprobing steps.

  6. Multiplexing symbolic dynamics-based chaos communications using synchronization

    International Nuclear Information System (INIS)

    Blakely, Jonathan N; Corron, Ned J

    2005-01-01

    A novel form of multiplexing information-bearing chaotic waveforms is demonstrated experimentally. This scheme dramatically increases the information carrying capacity of a chaotic communication system. In the transmitter, information is encoded in the chaotic waveforms of two electronic circuits using small perturbations to induce the symbolic dynamics to follow a prescribed symbol sequence. Waveforms from each of the drive oscillators are summed to form a single scalar signal that is transmitted to the receiver. Identical oscillators in the receiver synchronize to their counterparts in the drive system, effectively de-multiplexing the transmitted signal. The transmitted information in each channel is extracted from simple return maps of the receiver oscillators

  7. Multiplexing symbolic dynamics-based chaos communications using synchronization

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, Jonathan N; Corron, Ned J [US Army RDECOM, AMSRD-AMR-WS-ST, Redstone Arsenal, Huntsville, AL 35898 (United States)

    2005-01-01

    A novel form of multiplexing information-bearing chaotic waveforms is demonstrated experimentally. This scheme dramatically increases the information carrying capacity of a chaotic communication system. In the transmitter, information is encoded in the chaotic waveforms of two electronic circuits using small perturbations to induce the symbolic dynamics to follow a prescribed symbol sequence. Waveforms from each of the drive oscillators are summed to form a single scalar signal that is transmitted to the receiver. Identical oscillators in the receiver synchronize to their counterparts in the drive system, effectively de-multiplexing the transmitted signal. The transmitted information in each channel is extracted from simple return maps of the receiver oscillators.

  8. Multiplex families with epilepsy

    Science.gov (United States)

    Afawi, Zaid; Oliver, Karen L.; Kivity, Sara; Mazarib, Aziz; Blatt, Ilan; Neufeld, Miriam Y.; Helbig, Katherine L.; Goldberg-Stern, Hadassa; Misk, Adel J.; Straussberg, Rachel; Walid, Simri; Mahajnah, Muhammad; Lerman-Sagie, Tally; Ben-Zeev, Bruria; Kahana, Esther; Masalha, Rafik; Kramer, Uri; Ekstein, Dana; Shorer, Zamir; Wallace, Robyn H.; Mangelsdorf, Marie; MacPherson, James N.; Carvill, Gemma L.; Mefford, Heather C.; Jackson, Graeme D.; Scheffer, Ingrid E.; Bahlo, Melanie; Gecz, Jozef; Heron, Sarah E.; Corbett, Mark; Mulley, John C.; Dibbens, Leanne M.; Korczyn, Amos D.

    2016-01-01

    Objective: To analyze the clinical syndromes and inheritance patterns of multiplex families with epilepsy toward the ultimate aim of uncovering the underlying molecular genetic basis. Methods: Following the referral of families with 2 or more relatives with epilepsy, individuals were classified into epilepsy syndromes. Families were classified into syndromes where at least 2 family members had a specific diagnosis. Pedigrees were analyzed and molecular genetic studies were performed as appropriate. Results: A total of 211 families were ascertained over an 11-year period in Israel. A total of 169 were classified into broad familial epilepsy syndrome groups: 61 generalized, 22 focal, 24 febrile seizure syndromes, 33 special syndromes, and 29 mixed. A total of 42 families remained unclassified. Pathogenic variants were identified in 49/211 families (23%). The majority were found in established epilepsy genes (e.g., SCN1A, KCNQ2, CSTB), but in 11 families, this cohort contributed to the initial discovery (e.g., KCNT1, PCDH19, TBC1D24). We expand the phenotypic spectrum of established epilepsy genes by reporting a familial LAMC3 homozygous variant, where the predominant phenotype was epilepsy with myoclonic-atonic seizures, and a pathogenic SCN1A variant in a family where in 5 siblings the phenotype was broadly consistent with Dravet syndrome, a disorder that usually occurs sporadically. Conclusion: A total of 80% of families were successfully classified, with pathogenic variants identified in 23%. The successful characterization of familial electroclinical and inheritance patterns has highlighted the value of studying multiplex families and their contribution towards uncovering the genetic basis of the epilepsies. PMID:26802095

  9. Polarization-multiplexing ghost imaging

    Science.gov (United States)

    Dongfeng, Shi; Jiamin, Zhang; Jian, Huang; Yingjian, Wang; Kee, Yuan; Kaifa, Cao; Chenbo, Xie; Dong, Liu; Wenyue, Zhu

    2018-03-01

    A novel technique for polarization-multiplexing ghost imaging is proposed to simultaneously obtain multiple polarimetric information by a single detector. Here, polarization-division multiplexing speckles are employed for object illumination. The light reflected from the objects is detected by a single-pixel detector. An iterative reconstruction method is used to restore the fused image containing the different polarimetric information by using the weighted sum of the multiplexed speckles based on the correlation coefficients obtained from the detected intensities. Next, clear images of the different polarimetric information are recovered by demultiplexing the fused image. The results clearly demonstrate that the proposed method is effective.

  10. Signal multiplexing scheme for LINAC

    International Nuclear Information System (INIS)

    Sujo, C.I.; Mohan, Shyam; Joshi, Gopal; Singh, S.K.; Karande, Jitendra

    2004-01-01

    For the proper operation of the LINAC some signals, RF (radio frequency) as well as LF (low frequency) have to be available at the Master Control Station (MCS). These signals are needed to control, calibrate and characterize the RF fields in the resonators. This can be achieved by proper multiplexing of various signals locally and then routing the selected signals to the MCS. A multiplexing scheme has been designed and implemented, which will allow the signals from the selected cavity to the MCS. High isolation between channels and low insertion loss for a given signal are important issues while selecting the multiplexing scheme. (author)

  11. Online Continuous Trace Process Analytics Using Multiplexing Gas Chromatography.

    Science.gov (United States)

    Wunsch, Marco R; Lehnig, Rudolf; Trapp, Oliver

    2017-04-04

    The analysis of impurities at a trace level in chemical products, nutrition additives, and drugs is highly important to guarantee safe products suitable for consumption. However, trace analysis in the presence of a dominating component can be a challenging task because of noncompatible linear detection ranges or strong signal overlap that suppresses the signal of interest. Here, we developed a technique for quantitative analysis using multiplexing gas chromatography (mpGC) for continuous and completely automated process trace analytics exemplified for the analysis of a CO 2 stream in a production plant for detection of benzene, toluene, ethylbenzene, and the three structural isomers of xylene (BTEX) in the concentration range of 0-10 ppb. Additional minor components are methane and methanol with concentrations up to 100 ppm. The sample is injected up to 512 times according to a pseudorandom binary sequence (PRBS) with a mean frequency of 0.1 Hz into a gas chromatograph equipped with a flame ionization detector (FID). A superimposed chromatogram is recorded which is deconvoluted into an averaged chromatogram with Hadamard transformation. Novel algorithms to maintain the data acquisition rate of the detector by application of Hadamard transformation and to suppress correlation noise induced by components with much higher concentrations than the target substances are shown. Compared to conventional GC-FID, the signal-to-noise ratio has been increased by a factor of 10 with mpGC-FID. Correspondingly, the detection limits for BTEX in CO 2 have been lowered from 10 to 1 ppb each. This has been achieved despite the presence of detectable components (methane and methanol) with a concentration about 1000 times higher than the target substances. The robustness and reliability of mpGC has been proven in a two-month field test in a chemical production plant.

  12. Percolation in real multiplex networks

    Science.gov (United States)

    Bianconi, Ginestra; Radicchi, Filippo

    2016-12-01

    We present an exact mathematical framework able to describe site-percolation transitions in real multiplex networks. Specifically, we consider the average percolation diagram valid over an infinite number of random configurations where nodes are present in the system with given probability. The approach relies on the locally treelike ansatz, so that it is expected to accurately reproduce the true percolation diagram of sparse multiplex networks with negligible number of short loops. The performance of our theory is tested in social, biological, and transportation multiplex graphs. When compared against previously introduced methods, we observe improvements in the prediction of the percolation diagrams in all networks analyzed. Results from our method confirm previous claims about the robustness of real multiplex networks, in the sense that the average connectedness of the system does not exhibit any significant abrupt change as its individual components are randomly destroyed.

  13. Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers

    OpenAIRE

    Girardot, Charles; Scholtalbers, Jelle; Sauer, Sajoscha; Su, Shu-Yi; Furlong, Eileen E.M.

    2016-01-01

    Background The yield obtained from next generation sequencers has increased almost exponentially in recent years, making sample multiplexing common practice. While barcodes (known sequences of fixed length) primarily encode the sample identity of sequenced DNA fragments, barcodes made of random sequences (Unique Molecular Identifier or UMIs) are often used to distinguish between PCR duplicates and transcript abundance in, for example, single-cell RNA sequencing (scRNA-seq). In paired-end sequ...

  14. Thermally multiplexed polymerase chain reaction.

    Science.gov (United States)

    Phaneuf, Christopher R; Pak, Nikita; Saunders, D Curtis; Holst, Gregory L; Birjiniuk, Joav; Nagpal, Nikita; Culpepper, Stephen; Popler, Emily; Shane, Andi L; Jerris, Robert; Forest, Craig R

    2015-07-01

    Amplification of multiple unique genetic targets using the polymerase chain reaction (PCR) is commonly required in molecular biology laboratories. Such reactions are typically performed either serially or by multiplex PCR. Serial reactions are time consuming, and multiplex PCR, while powerful and widely used, can be prone to amplification bias, PCR drift, and primer-primer interactions. We present a new thermocycling method, termed thermal multiplexing, in which a single heat source is uniformly distributed and selectively modulated for independent temperature control of an array of PCR reactions. Thermal multiplexing allows amplification of multiple targets simultaneously-each reaction segregated and performed at optimal conditions. We demonstrate the method using a microfluidic system consisting of an infrared laser thermocycler, a polymer microchip featuring 1 μl, oil-encapsulated reactions, and closed-loop pulse-width modulation control. Heat transfer modeling is used to characterize thermal performance limitations of the system. We validate the model and perform two reactions simultaneously with widely varying annealing temperatures (48 °C and 68 °C), demonstrating excellent amplification. In addition, to demonstrate microfluidic infrared PCR using clinical specimens, we successfully amplified and detected both influenza A and B from human nasopharyngeal swabs. Thermal multiplexing is scalable and applicable to challenges such as pathogen detection where patients presenting non-specific symptoms need to be efficiently screened across a viral or bacterial panel.

  15. A multiplex PCR for detection of six viruses in ducks.

    Science.gov (United States)

    Wang, Yongjuan; Zhu, Shanyuan; Hong, Weiming; Wang, Anping; Zuo, Weiyong

    2017-10-01

    In this study, six pairs of specific primers that can amplify DNA fragments of different sizes were designed and synthesized according to viral protein gene sequences published in GenBank. Then, a multiplex PCR method was established for rapid detection of duck hepatitis virus 1, duck plague virus, duck Tembusu virus, muscovy duck parvovirus, muscovy duck reovirus, and duck H9N2 avian influenza virus, and achieve simple and rapid detection of viral diseases in ducks. Single PCR was used to confirm primer specificity, and PCR conditions were optimized to construct a multiplex PCR system. Specificity and sensitivity assays were also developed. The multiplex PCR was used to detect duck embryos infected with mixed viruses and those with clinically suspected diseases to verify the feasibility of the multiplex PCR. Results show that the primers can specifically amplify target fragments, without any cross-amplification with other viruses. The multiplex PCR system can amplify six DNA fragments from the pooled viral genomes and specifically detect nucleic acids of the six duck susceptible viruses when the template amount is 10 2 copies/μl. In addition, the system can be used to detect viral nucleic acids in duck embryos infected with the six common viruses. The detection results for clinical samples are consistent with those detected by single PCR. Therefore, the established multiplex PCR method can perform specific, sensitive, and high-throughput detection of six duck-infecting viruses and can be applied to clinical identification and diagnosis of viral infection in ducks. Copyright © 2017. Published by Elsevier B.V.

  16. Helicity multiplexed broadband metasurface holograms.

    Science.gov (United States)

    Wen, Dandan; Yue, Fuyong; Li, Guixin; Zheng, Guoxing; Chan, Kinlong; Chen, Shumei; Chen, Ming; Li, King Fai; Wong, Polis Wing Han; Cheah, Kok Wai; Pun, Edwin Yue Bun; Zhang, Shuang; Chen, Xianzhong

    2015-09-10

    Metasurfaces are engineered interfaces that contain a thin layer of plasmonic or dielectric nanostructures capable of manipulating light in a desirable manner. Advances in metasurfaces have led to various practical applications ranging from lensing to holography. Metasurface holograms that can be switched by the polarization state of incident light have been demonstrated for achieving polarization multiplexed functionalities. However, practical application of these devices has been limited by their capability for achieving high efficiency and high image quality. Here we experimentally demonstrate a helicity multiplexed metasurface hologram with high efficiency and good image fidelity over a broad range of frequencies. The metasurface hologram features the combination of two sets of hologram patterns operating with opposite incident helicities. Two symmetrically distributed off-axis images are interchangeable by controlling the helicity of the input light. The demonstrated helicity multiplexed metasurface hologram with its high performance opens avenues for future applications with functionality switchable optical devices.

  17. Laguerre Gaussian beam multiplexing through turbulence

    CSIR Research Space (South Africa)

    Trichili, A

    2014-08-17

    Full Text Available We analyze the effect of atmospheric turbulence on the propagation of multiplexed Laguerre Gaussian modes. We present a method to multiplex Laguerre Gaussian modes using digital holograms and decompose the resulting field after encountering a...

  18. A high-throughput multiplex method adapted for GMO detection.

    Science.gov (United States)

    Chaouachi, Maher; Chupeau, Gaëlle; Berard, Aurélie; McKhann, Heather; Romaniuk, Marcel; Giancola, Sandra; Laval, Valérie; Bertheau, Yves; Brunel, Dominique

    2008-12-24

    A high-throughput multiplex assay for the detection of genetically modified organisms (GMO) was developed on the basis of the existing SNPlex method designed for SNP genotyping. This SNPlex assay allows the simultaneous detection of up to 48 short DNA sequences (approximately 70 bp; "signature sequences") from taxa endogenous reference genes, from GMO constructions, screening targets, construct-specific, and event-specific targets, and finally from donor organisms. This assay avoids certain shortcomings of multiplex PCR-based methods already in widespread use for GMO detection. The assay demonstrated high specificity and sensitivity. The results suggest that this assay is reliable, flexible, and cost- and time-effective for high-throughput GMO detection.

  19. Spatial analysis of various multiplex cinema types

    Directory of Open Access Journals (Sweden)

    Young-Seo Park

    2016-03-01

    Full Text Available This study identifies the spatial characteristics and relationships of each used space according to the multiplex type. In this study, multiplexes are classified according to screen rooms and circulation systems, and each used space is quantitatively analyzed. The multiplex type based on screen rooms and moving line systems influences the relationship and characteristics of each used space in various ways. In particular, the structure of the used space of multiplexes has a significant effect on profit generation and audience convenience.

  20. On-chip mode division multiplexing technologies

    DEFF Research Database (Denmark)

    Ding, Yunhong; Frellsen, Louise Floor; Guan, Xiaowei

    2016-01-01

    Space division multiplexing (SDM) is currently widely investigated in order to provide enhanced capacity thanks to the utilization of space as a new degree of multiplexing freedom in both optical fiber communication and on-chip interconnects. Basic components allowing the processing of spatial...... photonic integrated circuit mode (de) multiplexer for few-mode fibers (FMFs)....

  1. Automated purification of Borrelia burgdorferi s.l. PCR products with KingFisherTM magnetic particle processor prior to genome sequencing

    International Nuclear Information System (INIS)

    Maekinen, Johanna; Marttila, Harri; Viljanen, Matti K.

    2001-01-01

    Borrelia burgdorferi sensu lato genospecies were differentiated by PCR-based sequencing of the borrelial flagellin gene. To evaluate the usefulness of KingFisher TM magnetic particle processor in PCR product purification, borrelia PCR products were purified with KingFisher TM magnetic particle processor prior to cycle sequencing and the quality of the sequence data received was analyzed. KingFisher was found to offer a rapid and reliable alternative for borrelial PCR product purification

  2. Programming cells by multiplex genome engineering and accelerated evolution.

    Science.gov (United States)

    Wang, Harris H; Isaacs, Farren J; Carr, Peter A; Sun, Zachary Z; Xu, George; Forest, Craig R; Church, George M

    2009-08-13

    The breadth of genomic diversity found among organisms in nature allows populations to adapt to diverse environments. However, genomic diversity is difficult to generate in the laboratory and new phenotypes do not easily arise on practical timescales. Although in vitro and directed evolution methods have created genetic variants with usefully altered phenotypes, these methods are limited to laborious and serial manipulation of single genes and are not used for parallel and continuous directed evolution of gene networks or genomes. Here, we describe multiplex automated genome engineering (MAGE) for large-scale programming and evolution of cells. MAGE simultaneously targets many locations on the chromosome for modification in a single cell or across a population of cells, thus producing combinatorial genomic diversity. Because the process is cyclical and scalable, we constructed prototype devices that automate the MAGE technology to facilitate rapid and continuous generation of a diverse set of genetic changes (mismatches, insertions, deletions). We applied MAGE to optimize the 1-deoxy-D-xylulose-5-phosphate (DXP) biosynthesis pathway in Escherichia coli to overproduce the industrially important isoprenoid lycopene. Twenty-four genetic components in the DXP pathway were modified simultaneously using a complex pool of synthetic DNA, creating over 4.3 billion combinatorial genomic variants per day. We isolated variants with more than fivefold increase in lycopene production within 3 days, a significant improvement over existing metabolic engineering techniques. Our multiplex approach embraces engineering in the context of evolution by expediting the design and evolution of organisms with new and improved properties.

  3. Automation of the second iron ore slurry pipeline from Samarco

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar, Juliana M.; Fonseca, Mario L.; Drumond, Pablo P.; Barbosa, Sylvio [IHM Engenharia, Belo Horizonte, MG (Brazil)

    2009-07-01

    The second iron ore slurry pipeline from Samarco was build to attend the Third Pellet Plant Project, which includes a new Concentration Plant at Germano-MG and a third Pellet Plant at Ubu-ES. It has 396km of extension and links the two plants by pulping the iron ore slurry prepared at Germano Unit. This works aims to present the iron ore slurry pipeline with emphasis on the automation architecture for the supervision and control system, interconnect throughout the pipe extension by fiber optics. The control system is composed of ControlLogix CLP's at the pulping and valve station and Micrologix CLP's at the pressure and cathodic protection monitoring points, totalizing 19 PLC's. The supervisory system was developed using the Wonderware IAS 3.0 suite, including the supervisory software InTouch 9.5 and the integrated ArchestrA IDE, and is composed of two data servers in redundancy and nine operation stations. The control and supervision system is interconnect through and Ethernet network using fiber optics and multiplexer modules (GE JungleMux) for voice, data and video. Among the expected results, it can be highlighted the sequence automation, greater process data availability (real and historical) and greater facility for the operation and detection of failures. (author)

  4. Home Automation

    OpenAIRE

    Ahmed, Zeeshan

    2010-01-01

    In this paper I briefly discuss the importance of home automation system. Going in to the details I briefly present a real time designed and implemented software and hardware oriented house automation research project, capable of automating house's electricity and providing a security system to detect the presence of unexpected behavior.

  5. Direct detection of hemophilia B F9 gene mutation using multiplex PCR and conformation sensitive gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Ki Young Yoo

    2010-03-01

    Full Text Available Purpose : The F9 gene is known to be the causative gene for hemophilia B, but unfortunately the detection rate for restriction fragment length polymorphism-based linkage analysis is only 55.6%. Direct DNA sequencing can detect 98% of mutations, but this alternative procedure is very costly. Here, we conducted multiplex polymerase chain reactions (PCRs and conformation sensitive gel electrophoresis (CSGE to perform a screened DNA sequencing for the F9 gene, and we compared the results with direct sequencing in terms of accuracy, cost, simplicity, and time consumption. Methods : A total of 27 unrelated hemophilia B patients were enrolled. Direct DNA sequencing was performed for 27 patients by a separate institute, and multiplex PCR-CSGE screened sequencing was done in our laboratory. Results of the direct DNA sequencing were used as a reference, to which the results of the multiplex PCR-CSGE screened sequencing were compared. For the patients whose mutation was not detected by the 2 methods, multiplex ligation-dependent probe amplification (MLPA was conducted. Results : With direct sequencing, the mutations could be identified from 26 patients (96.3%, whereas for multiplex PCR- CSGE screened sequencing, the mutations could be detected in 23 (85.2%. One patient’s mutation was identified by MLPA. A total of 21 different mutations were found among the 27 patients. Conclusion : Multiplex PCR-CSGE screened DNA sequencing detected 88.9% of mutations and reduced costs by 55.7% compared with direct DNA sequencing. However, it was more labor-intensive and time-consuming.

  6. Loss-of-Function Mutations in LGI4, a Secreted Ligand Involved in Schwann Cell Myelination, Are Responsible for Arthrogryposis Multiplex Congenita

    NARCIS (Netherlands)

    Xue, Shifeng; Maluenda, Jérôme; Marguet, Florent; Shboul, Mohammad; Quevarec, Loïc; Bonnard, Carine; Ng, Alvin Yu Jin; Tohari, Sumanty; Tan, Thong Teck; Kong, Mung Kei; Monaghan, Kristin G.; Cho, Megan T.; Siskind, Carly E.; Sampson, Jacinda B.; Rocha, Carolina Tesi; Alkazaleh, Fawaz; Gonzales, Marie; Rigonnot, Luc; Whalen, Sandra; Gut, Marta; Gut, Ivo; Bucourt, Martine; Venkatesh, Byrappa; Laquerrière, Annie; Reversade, Bruno; Melki, Judith

    2017-01-01

    Arthrogryposis multiplex congenita (AMC) is a developmental condition characterized by multiple joint contractures resulting from reduced or absent fetal movements. Through genetic mapping of disease loci and whole-exome sequencing in four unrelated multiplex families presenting with severe AMC, we

  7. Consideration for wavelength multiplexing versus time multiplexing in optical transport network

    DEFF Research Database (Denmark)

    Limal, Emmanuel; Stubkjær, Kristian Elmholdt

    1999-01-01

    We compare optical wavelength multiplexing and time multiplexing techniquesfor optical transport network by studying the space switch sizes of OXCs andtheir interfaces as a function of the fraction of add/drop traffic....

  8. Strain measurement using multiplexed fiber optic sensors

    International Nuclear Information System (INIS)

    Kwon, Il Bum; Kim, Chi Yeop; Yoon, Dong Jin; Lee, Seung Seok

    2003-01-01

    FBG(Fiber Bragg grating) sensor, which is one of the fiber optic sensors for the application of smart structures, can not only measure one specific point but also multiple points by multiplexing techniques. We have proposed a novel multiplexing technique of FBG sensor by the intensity modulation of light source. This technique is applicable to WDM(Wavelength Division Multiplexing) technique and number of sensors in this system can be increased by using this technique with WDM technique.

  9. Frequency multiplexing for readout of spin qubits

    Energy Technology Data Exchange (ETDEWEB)

    Hornibrook, J. M.; Colless, J. I.; Mahoney, A. C.; Croot, X. G.; Blanvillain, S.; Reilly, D. J., E-mail: david.reilly@sydney.edu.au [ARC Centre of Excellence for Engineered Quantum Systems, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Lu, H.; Gossard, A. C. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

    2014-03-10

    We demonstrate a low loss, chip-level frequency multiplexing scheme for readout of scaled-up spin qubit devices. By integrating separate bias tees and resonator circuits on-chip for each readout channel, we realise dispersive gate-sensing in combination with charge detection based on two radio frequency quantum point contacts. We apply this approach to perform multiplexed readout of a double quantum dot in the few-electron regime and further demonstrate operation of a 10-channel multiplexing device. Limitations for scaling spin qubit readout to large numbers of multiplexed channels are discussed.

  10. Combining target enrichment with barcode multiplexing for high throughput SNP discovery

    Directory of Open Access Journals (Sweden)

    Lunke Sebastian

    2010-11-01

    Full Text Available Abstract Background The primary goal of genetic linkage analysis is to identify genes affecting a phenotypic trait. After localisation of the linkage region, efficient genetic dissection of the disease linked loci requires that functional variants are identified across the loci. These functional variations are difficult to detect due to extent of genetic diversity and, to date, incomplete cataloguing of the large number of variants present both within and between populations. Massively parallel sequencing platforms offer unprecedented capacity for variant discovery, however the number of samples analysed are still limited by cost per sample. Some progress has been made in reducing the cost of resequencing using either multiplexing methodologies or through the utilisation of targeted enrichment technologies which provide the ability to resequence genomic areas of interest rather that full genome sequencing. Results We developed a method that combines current multiplexing methodologies with a solution-based target enrichment method to further reduce the cost of resequencing where region-specific sequencing is required. Our multiplex/enrichment strategy produced high quality data with nominal reduction of sequencing depth. We undertook a genotyping study and were successful in the discovery of novel SNP alleles in all samples at uniplex, duplex and pentaplex levels. Conclusion Our work describes the successful combination of a targeted enrichment method and index barcode multiplexing to reduce costs, time and labour associated with processing large sample sets. Furthermore, we have shown that the sequencing depth obtained is adequate for credible SNP genotyping analysis at uniplex, duplex and pentaplex levels.

  11. Automated high-throughput flow-through real-time diagnostic system

    Science.gov (United States)

    Regan, John Frederick

    2012-10-30

    An automated real-time flow-through system capable of processing multiple samples in an asynchronous, simultaneous, and parallel fashion for nucleic acid extraction and purification, followed by assay assembly, genetic amplification, multiplex detection, analysis, and decontamination. The system is able to hold and access an unlimited number of fluorescent reagents that may be used to screen samples for the presence of specific sequences. The apparatus works by associating extracted and purified sample with a series of reagent plugs that have been formed in a flow channel and delivered to a flow-through real-time amplification detector that has a multiplicity of optical windows, to which the sample-reagent plugs are placed in an operative position. The diagnostic apparatus includes sample multi-position valves, a master sample multi-position valve, a master reagent multi-position valve, reagent multi-position valves, and an optical amplification/detection system.

  12. Flow Cytometry Enables Multiplexed Measurements of Genetically Encoded Intramolecular FRET Sensors Suitable for Screening.

    Science.gov (United States)

    Doucette, Jaimee; Zhao, Ziyan; Geyer, Rory J; Barra, Melanie M; Balunas, Marcy J; Zweifach, Adam

    2016-07-01

    Genetically encoded sensors based on intramolecular FRET between CFP and YFP are used extensively in cell biology research. Flow cytometry has been shown to offer a means to measure CFP-YFP FRET; we suspected it would provide a unique way to conduct multiplexed measurements from cells expressing different FRET sensors, which is difficult to do with microscopy, and that this could be used for screening. We confirmed that flow cytometry accurately measures FRET signals using cells transiently transfected with an ERK activity reporter, comparing responses measured with imaging and cytometry. We created polyclonal long-term transfectant lines, each expressing a different intramolecular FRET sensor, and devised a way to bar-code four distinct populations of cells. We demonstrated the feasibility of multiplexed measurements and determined that robust multiplexed measurements can be conducted in plate format. To validate the suitability of the method for screening, we measured responses from a plate of bacterial extracts that in unrelated experiments we had determined contained the protein kinase C (PKC)-activating compound teleocidin A-1. The multiplexed assay correctly identifying the teleocidin A-1-containing well. We propose that multiplexed cytometric FRET measurements will be useful for analyzing cellular function and for screening compound collections. © 2016 Society for Laboratory Automation and Screening.

  13. Steatocystoma multiplex hos 39-årig kvinde

    DEFF Research Database (Denmark)

    Duffy, Jonas Raymond; Siersen, Hans Erik; Bonde, Christian T

    2011-01-01

    -coloured cystic lesions on the chest, abdomen, axillae and back. The patient's clinical presentations and history were compatible with steatocystoma multiplex. Various treatment options for steatocystoma multiplex and steatocystoma multiplex suppurativum have been published and include oral antibiotics...

  14. Spectroscopy of soft X-rays by multiplex procedure under UHV conditions

    International Nuclear Information System (INIS)

    Schulenburg, M.

    1979-01-01

    By vectorial treatment of the Johannson spectrometer on the basis of new calculations a complete vector model of the spectrometer can be constructed. The obtained fully automated multiplex system is superior for the spectroscopy of homogeneous samples (thin films) to all commercial devices as time-dependent errors are completely eliminated. The combined spectroscopy of the minerals brucite, talk and chlorite demonstrates the applicability to mineralogical problems. (DG) [de

  15. Targeted deposition of antibodies on a multiplex CMOS microarray and optimization of a sensitive immunoassay using electrochemical detection.

    Directory of Open Access Journals (Sweden)

    John Cooper

    2010-03-01

    Full Text Available The CombiMatrix ElectraSense microarray is a highly multiplex, complementary metal oxide semiconductor with 12,544 electrodes that are individually addressable. This platform is commercially available as a custom DNA microarray; and, in this configuration, it has also been used to tether antibodies (Abs specifically on electrodes using complementary DNA sequences conjugated to the Abs.An empirical method is described for developing and optimizing immunoassays on the CombiMatrix ElectraSense microarray based upon targeted deposition of polypyrrole (Ppy and capture Ab. This process was automated using instrumentation that can selectively apply a potential or current to individual electrodes and also measure current generated at the electrodes by an enzyme-enhanced electrochemical (ECD reaction. By designating groups of electrodes on the array for different Ppy deposition conditions, we determined that the sensitivity and specificity of a sandwich immunoassay for staphylococcal enterotoxin B (SEB is influenced by the application of different voltages or currents and the application time. The sandwich immunoassay used a capture Ab adsorbed to the Ppy and a reporter Ab labeled for fluorescence detection or ECD, and results from these methods of detection were different.Using Ppy deposition conditions for optimum results, the lower limit of detection for SEB using the ECD assay was between 0.003 and 0.01 pg/ml, which represents an order of magnitude improvement over a conventional enzyme-linked immunosorbant assay. In the absence of understanding the variables and complexities that affect assay performance, this highly multiplexed electrode array provided a rapid, high throughput, and empirical approach for developing a sensitive immunoassay.

  16. Development of multiplex polymerase chain reaction for detection of Ehrlichia canis, Babesia spp and Hepatozoon canis in canine blood.

    Science.gov (United States)

    Kledmanee, Kan; Suwanpakdee, Sarin; Krajangwong, Sakranmanee; Chatsiriwech, Jarin; Suksai, Parut; Suwannachat, Pongpun; Sariya, Ladawan; Buddhirongawatr, Ruangrat; Charoonrut, Phingphol; Chaichoun, Kridsada

    2009-01-01

    A multiplex polymerase chain reaction (PCR) has been developed for simultaneous detection of canine blood parasites, Ehrlichia canis, Babesia spp and Hepatozoon canis, from blood samples in a single reaction. The multiplex PCR primers were specific to E. canis VirB9, Babesia spp 16S rRNA and H. canis 16S rRNA genes. Specificity of the amplicons was confirmed by DNA sequencing. The assay was evaluated using normal canine and infected blood samples, which were detected by microscopic examination. This multiplex PCR offers scope for simultaneous detection of three important canine blood parasites and should be valuable in monitoring parasite infections in dogs and ticks.

  17. A Novel Multiplex HRM Assay to Detect Clopidogrel Resistance.

    Science.gov (United States)

    Zhang, Lichen; Ma, Xiaowei; You, Guoling; Zhang, Xiaoqing; Fu, Qihua

    2017-11-22

    Clopidogrel is an antiplatelet medicine used to prevent blood clots in patients who have had a heart attack, stroke, or other symptoms. Variability in the clinical response to clopidogrel treatment has been attributed to genetic factors. In particular, five SNPs of rs4244285, rs4986893, rs12248560, rs662 and rs1045642 have been associated with resistance to clopidogrel therapy in Chinese population. This work involves the development of a multiplex high-resolution melting (HRM) assay to genotype all five of these loci in 2 tubes. Amplicons corresponding to distinct SNPs in a common tube were designed with the aid of uMelt prediction software to have different melting temperatures Tm by addition of a GC-rich tail to the 5' end of the certain primers. Two kinds of commercial methods, Digital Fluorescence Molecular Hybridization (DFMH) and Sanger sequencing, were used as a control. Three hundred sixteen DFMH pretested samples from consecutive acute coronary syndrome patients were used for a blinded study of multiplex HRM. The sensitivity of HRM was 100% and the specificity was 99.93% reflecting detection of variants other than the known resistance SNPs. Multiplex HRM is an effective closed-tube, highly accurate, fast, and inexpensive method for genotyping the 5 clopidogrel resistance associated SNPs.

  18. Investigation of proposed process sequence for the array automated assembly task. Phase I and II. Final report, October 1, 1977-June 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Mardesich, N.; Garcia, A.; Eskenas, K.

    1980-08-01

    A selected process sequence for the low cost fabrication of photovoltaic modules was defined during this contract. Each part of the process sequence was looked at regarding its contribution to the overall dollars per watt cost. During the course of the research done, some of the initially included processes were dropped due to technological deficiencies. The printed dielectric diffusion mask, codiffusion of the n+ and p+ regions, wraparound front contacts and retention of the diffusion oxide for use as an AR coating were all the processes that were removed for this reason. Other process steps were retained to achieve the desired overall cost and efficiency. Square wafers, a polymeric spin-on PX-10 diffusion source, a p+ back surface field and silver front contacts are all processes that have been recommended for use in this program. The printed silver solderable pad for making contact to the aluminum back was replaced by an ultrasonically applied tin-zinc pad. Also, the texturized front surface was dropped as inappropriate for the sheet silicon likely to be available in 1986. Progress has also been made on the process sequence for module fabrication. A shift from bonding with a conformal coating to laminating with ethylene vinyl acetate and a glass superstrate is recommended for further module fabrication. The finalized process sequence is described.

  19. Automated analysis of high-throughput B-cell sequencing data reveals a high frequency of novel immunoglobulin V gene segment alleles.

    Science.gov (United States)

    Gadala-Maria, Daniel; Yaari, Gur; Uduman, Mohamed; Kleinstein, Steven H

    2015-02-24

    Individual variation in germline and expressed B-cell immunoglobulin (Ig) repertoires has been associated with aging, disease susceptibility, and differential response to infection and vaccination. Repertoire properties can now be studied at large-scale through next-generation sequencing of rearranged Ig genes. Accurate analysis of these repertoire-sequencing (Rep-Seq) data requires identifying the germline variable (V), diversity (D), and joining (J) gene segments used by each Ig sequence. Current V(D)J assignment methods work by aligning sequences to a database of known germline V(D)J segment alleles. However, existing databases are likely to be incomplete and novel polymorphisms are hard to differentiate from the frequent occurrence of somatic hypermutations in Ig sequences. Here we develop a Tool for Ig Genotype Elucidation via Rep-Seq (TIgGER). TIgGER analyzes mutation patterns in Rep-Seq data to identify novel V segment alleles, and also constructs a personalized germline database containing the specific set of alleles carried by a subject. This information is then used to improve the initial V segment assignments from existing tools, like IMGT/HighV-QUEST. The application of TIgGER to Rep-Seq data from seven subjects identified 11 novel V segment alleles, including at least one in every subject examined. These novel alleles constituted 13% of the total number of unique alleles in these subjects, and impacted 3% of V(D)J segment assignments. These results reinforce the highly polymorphic nature of human Ig V genes, and suggest that many novel alleles remain to be discovered. The integration of TIgGER into Rep-Seq processing pipelines will increase the accuracy of V segment assignments, thus improving B-cell repertoire analyses.

  20. An alarm multiplexer communication system

    International Nuclear Information System (INIS)

    Herrera, G.V.

    1986-01-01

    A low cost Alarm Multiplexer Communication System (AMCS) has been developed to perform the security sensor monitoring and control functions and to provide remote relay control capability for integrated security systems. AMCS has a distributed multiplexer/repeater architecture with up to four dual communication loops and dual control computers that guarantee total system operation under any single point failure condition. Each AMCS can control up to 4096 sensors and 2048 remote relays. AMCS reports alarm status information to and is controlled by either one or two Host computers. This allows for independent operation of primary and backup security command centers. AMCS communicates with the Host computers over an asynchronous serial communication link and has a message protocol which allows AMCS to fully recover from lost messages or large blocks of data communication errors. This paper describes the AMCS theory of operation, AMCS fault modes, and AMCS system design methodology. Also, cost and timing information is presented. AMCS is being used and considered for several DOE and DOD facilities

  1. A multiplex ligation detection assay for the characterization of Salmonella enterica strains

    DEFF Research Database (Denmark)

    Aarts, Henk J.M.; Vos, Pieter; Larsson, Jonas T.

    2011-01-01

    A proof of principle of a multi-target assay for genotyping Salmonella has been developed targeting 62 genomic marker sequences of Salmonella related to pathogenicity. The assay is based on multiplex ligation detection reaction (LDR) followed by customized ArrayTube® microarray detection. The fea...... assessors that support bio-traceability models....

  2. A multiplex ligation detection assay for the characterization of Salmonella enterica strains

    NARCIS (Netherlands)

    Aarts, H.J.M.; Vos, P.; Larsson, J.T.; Hoek, van A.H.A.M.; Huehn, S.; Weijers, T.; Gronlund, H.A.; Malorny, B.

    2011-01-01

    A proof of principle of a multi-target assay for genotyping Salmonella has been developed targeting 62 genomic marker sequences of Salmonella related to pathogenicity. The assay is based on multiplex ligation detection reaction (LDR) followed by customized ArrayTube (R) microarray detection. The

  3. Capillaries for use in a multiplexed capillary electrophoresis system

    Science.gov (United States)

    Yeung, E.S.; Chang, H.T.; Fung, E.N.

    1997-12-09

    The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification (``base calling``) is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations. 19 figs.

  4. Multiplex detection of tumor markers with photonic suspension array

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Yuanjin; Zhao Xiangwei [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Pei Xiaoping [Department of Hematology, Affiliated Zhongda Hospital, Southeast University, Nanjing 210009 (China); Hu Jing; Zhao Wenju [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Chen Baoan [Department of Hematology, Affiliated Zhongda Hospital, Southeast University, Nanjing 210009 (China); Gu Zhongze [State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096 (China); Laboratory of Environment and Biosafety, Research Institute of Southeast University in Suzhou, Dushu Lake Higher Education Town, Suzhou 215123 (China)], E-mail: gu@seu.edu.cn

    2009-02-02

    A novel photonic suspension array was developed for multiplex immunoassay. The carries of this array were silica colloidal crystal beads (SCCBs). The codes of these carriers are the characteristic reflection peak originated from their structural periodicity, and therefore they do not suffer from fading, bleaching, quenching, and chemical instability. In addition, because no dyes or materials related with fluorescence are included, the fluorescence background of SCCBs is very low. With a sandwich format, the proposed suspension array was used for simultaneous multiplex detection of tumor markers in one test tube. The results showed that the four tumor markers, {alpha}-fetoprotein (AFP), carcinoembryonic antigen (CEA), carcinoma antigen 125 (CA 125) and carcinoma antigen 19-9 (CA 19-9) could be assayed in the ranges of 1.0-500 ng mL{sup -1}, 1.0-500 ng mL{sup -1}, 1.0-500 U mL{sup -1} and 3.0-500 U mL{sup -1} with limits of detection of 0.68 ng mL{sup -1}, 0.95 ng mL{sup -1}, 0.99 U mL{sup -1} and 2.30 U mL{sup -1} at 3{sigma}, respectively. The proposed array showed acceptable accuracy, detection reproducibility, storage stability and the results obtained were in acceptable agreement with those from parallel single-analyte test of practical clinical sera. This technique provides a new strategy for low cost, automated, and simultaneous multiplex immunoassay.

  5. Ultra-High Capacity Silicon Photonic Interconnects through Spatial Multiplexing

    Science.gov (United States)

    Chen, Christine P.

    . Such a programmable mechanism will prove necessary in future implementations of optical subsystems embedded inside larger systems, like data centers. Beyond the specific control plane demonstrated, the idea of an intelligent photonic layer can be applied to alleviate many kinds of optical channel abnormalities or accommodate for switching based on different patterns in data transmission. Finally, the experimental demonstration of a coherent perfect absorption Si modulator is exhibited, showing a viable extinction ratio of 24.5 dB. Using this coherent perfect absorption mechanism to demodulate signals, there is the added benefit of differential reception. Currently, an automated process for data collection is employed at a faster time scale than instabilities present in fibers in the setup with future implementations eliminating the off-chip phase modulator for greater signal stability. The field of SiPh has developed to a stage where specific application domains can take off and compete according to industrial-level standards. The work in this dissertation contributes to experimental demonstration of a newly developing area of mode-division multiplexing for substantially increasing bandwidth on-chip. While implementing the discussed photonic devices in dynamic systems, various attributes of integrated photonics are leveraged with existing electronic technologies. Future generations of computing systems should then be designed by implementing both system and device level considerations. (Abstract shortened by ProQuest.).

  6. Toward fully automated genotyping: Allele assignment, pedigree construction, phase determination, and recombination detection in Duchenne muscular dystrophy

    Energy Technology Data Exchange (ETDEWEB)

    Perlin, M.W.; Burks, M.B. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Hoop, R.C.; Hoffman, E.P. [Univ. of Pittsburgh School of Medicine, PA (United States)

    1994-10-01

    Human genetic maps have made quantum leaps in the past few years, because of the characterization of >2,000 CA dinucleotide repeat loci: these PCR-based markers offer extraordinarily high PIC, and within the next year their density is expected to reach intervals of a few centimorgans per marker. These new genetic maps open new avenues for disease gene research, including large-scale genotyping for both simple and complex disease loci. However, the allele patterns of many dinucleotide repeat loci can be complex and difficult to interpret, with genotyping errors a recognized problem. Furthermore, the possibility of genotyping individuals at hundreds or thousands of polymorphic loci requires improvements in data handling and analysis. The automation of genotyping and analysis of computer-derived haplotypes would remove many of the barriers preventing optimal use of dense and informative dinucleotide genetic maps. Toward this end, we have automated the allele identification, genotyping, phase determinations, and inheritance consistency checks generated by four CA repeats within the 2.5-Mbp, 10-cM X-linked dystrophin gene, using fluorescein-labeled multiplexed PCR products analyzed on automated sequencers. The described algorithms can deconvolute and resolve closely spaced alleles, despite interfering stutter noise; set phase in females; propagate the phase through the family; and identify recombination events. We show the implementation of these algorithms for the completely automated interpretation of allele data and risk assessment for five Duchenne/Becker muscular dystrophy families. The described approach can be scaled up to perform genome-based analyses with hundreds or thousands of CA-repeat loci, using multiple fluorophors on automated sequencers. 16 refs., 5 figs., 1 tab.

  7. Multiplexed homogeneous proximity ligation assays for high throughput protein biomarker research in serological material

    DEFF Research Database (Denmark)

    Lundberg, Martin; Thorsen, Stine Buch; Assarsson, Erika

    2011-01-01

    A high throughput protein biomarker discovery tool has been developed based on multiplexed proximity ligation assays (PLA) in a homogeneous format in the sense of no washing steps. The platform consists of four 24-plex panels profiling 74 putative biomarkers with sub pM sensitivity each consuming...... sequences are united by DNA ligation upon simultaneous target binding forming a PCR amplicon. Multiplex PLA thereby converts multiple target analytes into real-time PCR amplicons that are individually quantificatied using microfluidic high capacity qPCR in nano liter volumes. The assay shows excellent...

  8. Cooperative epidemics on multiplex networks

    Science.gov (United States)

    Azimi-Tafreshi, N.

    2016-04-01

    The spread of one disease, in some cases, can stimulate the spreading of another infectious disease. Here, we treat analytically a symmetric coinfection model for spreading of two diseases on a two-layer multiplex network. We allow layer overlapping, but we assume that each layer is random and locally loopless. Infection with one of the diseases increases the probability of getting infected with the other. Using the generating function method, we calculate exactly the fraction of individuals infected with both diseases (so-called coinfected clusters) in the stationary state, as well as the epidemic spreading thresholds and the phase diagram of the model. With increasing cooperation, we observe a tricritical point and the type of transition changes from continuous to hybrid. Finally, we compare the coinfected clusters in the case of cooperating diseases with the so-called "viable" clusters in networks with dependencies.

  9. Process automation

    International Nuclear Information System (INIS)

    Moser, D.R.

    1986-01-01

    Process automation technology has been pursued in the chemical processing industries and to a very limited extent in nuclear fuel reprocessing. Its effective use has been restricted in the past by the lack of diverse and reliable process instrumentation and the unavailability of sophisticated software designed for process control. The Integrated Equipment Test (IET) facility was developed by the Consolidated Fuel Reprocessing Program (CFRP) in part to demonstrate new concepts for control of advanced nuclear fuel reprocessing plants. A demonstration of fuel reprocessing equipment automation using advanced instrumentation and a modern, microprocessor-based control system is nearing completion in the facility. This facility provides for the synergistic testing of all chemical process features of a prototypical fuel reprocessing plant that can be attained with unirradiated uranium-bearing feed materials. The unique equipment and mission of the IET facility make it an ideal test bed for automation studies. This effort will provide for the demonstration of the plant automation concept and for the development of techniques for similar applications in a full-scale plant. A set of preliminary recommendations for implementing process automation has been compiled. Some of these concepts are not generally recognized or accepted. The automation work now under way in the IET facility should be useful to others in helping avoid costly mistakes because of the underutilization or misapplication of process automation. 6 figs

  10. Fast reconstruction of off-axis digital holograms based on digital spatial multiplexing.

    Science.gov (United States)

    Sha, Bei; Liu, Xuan; Ge, Xiao-Lu; Guo, Cheng-Shan

    2014-09-22

    A method for fast reconstruction of off-axis digital holograms based on digital multiplexing algorithm is proposed. Instead of the existed angular multiplexing (AM), the new method utilizes a spatial multiplexing (SM) algorithm, in which four off-axis holograms recorded in sequence are synthesized into one SM function through multiplying each hologram with a tilted plane wave and then adding them up. In comparison with the conventional methods, the SM algorithm simplifies two-dimensional (2-D) Fourier transforms (FTs) of four N*N arrays into a 1.25-D FTs of one N*N arrays. Experimental results demonstrate that, using the SM algorithm, the computational efficiency can be improved and the reconstructed wavefronts keep the same quality as those retrieved based on the existed AM method. This algorithm may be useful in design of a fast preview system of dynamic wavefront imaging in digital holography.

  11. Inexpensive multiplexed library preparation for megabase-sized genomes.

    Directory of Open Access Journals (Sweden)

    Michael Baym

    Full Text Available Whole-genome sequencing has become an indispensible tool of modern biology. However, the cost of sample preparation relative to the cost of sequencing remains high, especially for small genomes where the former is dominant. Here we present a protocol for rapid and inexpensive preparation of hundreds of multiplexed genomic libraries for Illumina sequencing. By carrying out the Nextera tagmentation reaction in small volumes, replacing costly reagents with cheaper equivalents, and omitting unnecessary steps, we achieve a cost of library preparation of $8 per sample, approximately 6 times cheaper than the standard Nextera XT protocol. Furthermore, our procedure takes less than 5 hours for 96 samples. Several hundred samples can then be pooled on the same HiSeq lane via custom barcodes. Our method will be useful for re-sequencing of microbial or viral genomes, including those from evolution experiments, genetic screens, and environmental samples, as well as for other sequencing applications including large amplicon, open chromosome, artificial chromosomes, and RNA sequencing.

  12. Immunization of Epidemics in Multiplex Networks

    Science.gov (United States)

    Zhao, Dawei; Wang, Lianhai; Li, Shudong; Wang, Zhen; Wang, Lin; Gao, Bo

    2014-01-01

    Up to now, immunization of disease propagation has attracted great attention in both theoretical and experimental researches. However, vast majority of existing achievements are limited to the simple assumption of single layer networked population, which seems obviously inconsistent with recent development of complex network theory: each node could possess multiple roles in different topology connections. Inspired by this fact, we here propose the immunization strategies on multiplex networks, including multiplex node-based random (targeted) immunization and layer node-based random (targeted) immunization. With the theory of generating function, theoretical analysis is developed to calculate the immunization threshold, which is regarded as the most critical index for the effectiveness of addressed immunization strategies. Interestingly, both types of random immunization strategies show more efficiency in controlling disease spreading on multiplex Erdös-Rényi (ER) random networks; while targeted immunization strategies provide better protection on multiplex scale-free (SF) networks. PMID:25401755

  13. 16-channel analog store and multiplexer unit

    Energy Technology Data Exchange (ETDEWEB)

    Brossard, M; Kulka, Z [Clermont-Ferrand-2 Univ., 63 - Aubiere (France). Lab. de Physique Corpusculaire

    1979-03-15

    A 16-channel analog store and multiplexer unit is described. The unit enables storing and selection of analog information which is then digitally encoded by single ADC. This solution becomes economically attractive particularly in multidetector pulse height analysis systems.

  14. Packaged mode multiplexer based on silicon photonics

    NARCIS (Netherlands)

    Chen, H.; Koonen, A.M.J.; Snyder, B.; Raz, O.; Boom, van den H.P.A.; Chen, X.

    2012-01-01

    A silicon photonics based mode multiplexer is proposed. Four chirped grating couplers structure can support all 6 channels in a two-mode fiber and realize LP01 and LP11 mode selective exciting. The packaged device is tested.

  15. Immunization of epidemics in multiplex networks.

    Science.gov (United States)

    Zhao, Dawei; Wang, Lianhai; Li, Shudong; Wang, Zhen; Wang, Lin; Gao, Bo

    2014-01-01

    Up to now, immunization of disease propagation has attracted great attention in both theoretical and experimental researches. However, vast majority of existing achievements are limited to the simple assumption of single layer networked population, which seems obviously inconsistent with recent development of complex network theory: each node could possess multiple roles in different topology connections. Inspired by this fact, we here propose the immunization strategies on multiplex networks, including multiplex node-based random (targeted) immunization and layer node-based random (targeted) immunization. With the theory of generating function, theoretical analysis is developed to calculate the immunization threshold, which is regarded as the most critical index for the effectiveness of addressed immunization strategies. Interestingly, both types of random immunization strategies show more efficiency in controlling disease spreading on multiplex Erdös-Rényi (ER) random networks; while targeted immunization strategies provide better protection on multiplex scale-free (SF) networks.

  16. Immunization of epidemics in multiplex networks.

    Directory of Open Access Journals (Sweden)

    Dawei Zhao

    Full Text Available Up to now, immunization of disease propagation has attracted great attention in both theoretical and experimental researches. However, vast majority of existing achievements are limited to the simple assumption of single layer networked population, which seems obviously inconsistent with recent development of complex network theory: each node could possess multiple roles in different topology connections. Inspired by this fact, we here propose the immunization strategies on multiplex networks, including multiplex node-based random (targeted immunization and layer node-based random (targeted immunization. With the theory of generating function, theoretical analysis is developed to calculate the immunization threshold, which is regarded as the most critical index for the effectiveness of addressed immunization strategies. Interestingly, both types of random immunization strategies show more efficiency in controlling disease spreading on multiplex Erdös-Rényi (ER random networks; while targeted immunization strategies provide better protection on multiplex scale-free (SF networks.

  17. Distribution automation

    International Nuclear Information System (INIS)

    Gruenemeyer, D.

    1991-01-01

    This paper reports on a Distribution Automation (DA) System enhances the efficiency and productivity of a utility. It also provides intangible benefits such as improved public image and market advantages. A utility should evaluate the benefits and costs of such a system before committing funds. The expenditure for distribution automation is economical when justified by the deferral of a capacity increase, a decrease in peak power demand, or a reduction in O and M requirements

  18. Detection of sexually transmitted infection and human papillomavirus in negative cytology by multiplex-PCR

    Directory of Open Access Journals (Sweden)

    Chung Hyun-Jae

    2010-09-01

    Full Text Available Abstract Background The aim of this study was to determine the prevalence of human papillomavirus (HPV and 15 species that cause sexually transmitted infections (STIs in negative cytology. In addition, we compared the diagnostic performance of multiplex polymerase chain reaction (PCR with widely available techniques used to detect HPV. Methods We recruited 235 women of reproductive age who had negative cytology findings in a liquid-based cervical smear. STIs were identified by multiplex PCR, and HPV genotypes by multiplex PCR, hybrid capture 2, and DNA microaray; discordant results were analyzed by direct sequencing. Results Approximately 96.6% of patients with negative cytology results were positive for pathogens that cause STIs. The pathogens most frequently detected were Gardnerella vaginalis, Ureaplasma urealyticum. The incidence of HPV in negative cytology was 23.3%. Low-risk HPV infection was significantly correlated with Chalmaydia trachomatis, and high-risk HPV infection was significantly correlated with Group β streptococcus. The analytical sensitivities of the multiplex PCR and DNA microarray were higher than 80%, and the analytical specificity was nearly 100% for all tests. Conclusions Multiplex PCR yielded results that most of patients with negative cytology were positive for pathogens that cause STIs, and were more similar to that of DNA microarray, than that of hybrid capture 2 in terms of analytical sensitivity and prediction value of HPV infection.

  19. A fully sealed plastic chip for multiplex PCR and its application in bacteria identification.

    Science.gov (United States)

    Xu, Youchun; Yan, He; Zhang, Yan; Jiang, Kewei; Lu, Ying; Ren, Yonghong; Wang, Hui; Wang, Shan; Xing, Wanli

    2015-07-07

    Multiplex PCR is an effective tool for simultaneous multiple target detection but is limited by the intrinsic interference and competition among primer pairs when it is performed in one reaction tube. Dividing a multiplex PCR into many single PCRs is a simple strategy to overcome this issue. Here, we constructed a plastic, easy-to-use, fully sealed multiplex PCR chip based on reversible centrifugation for the simultaneous detection of 63 target DNA sequences. The structure of the chip is quite simple, which contains sine-shaped infusing channels and a number of reaction chambers connecting to one side of these channels. Primer pairs for multiplex PCR were sequentially preloaded in the different reaction chambers, and the chip was enclosed with PCR-compatible adhesive tape. For usage, the PCR master mix containing a DNA template is pipetted into the infusing channels and centrifuged into the reaction chambers, leaving the infusing channels filled with air to avoid cross-contamination of the different chambers. Then, the chip is sealed and placed on a flat thermal cycler for PCR. Finally, amplification products can be detected in situ using a fluorescence scanner or recovered by reverse centrifugation for further analyses. Therefore, our chip possesses two functions: 1) it can be used for multi-target detection based on end-point in situ fluorescence detection; and 2) it can work as a sample preparation unit for analyses that need multiplex PCR such as hybridization and target sequencing. The performance of this chip was carefully examined and further illustrated in the identification of 8 pathogenic bacterial genomic DNA samples and 13 drug-resistance genes. Due to simplicity of its structure and operation, accuracy and generality, high-throughput capacity, and versatile functions (i.e., for in situ detection and sample preparation), our multiplex PCR chip has great potential in clinical diagnostics and nucleic acid-based point-of-care testing.

  20. Diagnosis of Cutaneous Leishmaniasis by Multiplex PCR

    Directory of Open Access Journals (Sweden)

    M Heiat

    2010-07-01

    Full Text Available Introduction: Annually, more than 14 million people are reported to be infected with Leishmaniasis all over the world. In Iran, this disease is seen in the form of cutaneous and visceral leishmaniasis, of which the cutaneous form is more wide spread. In recent years, cutaneous leishmaniaisis is diagnosed by PCR utilizing specific primers in order to amplify different parasite genes including ribosomal RNA genes, kinetoplast DNA or tandem repeating sequences. The aim of this research was to detect early stage cutaneous leishmaniasis using Multiplex-PCR technique. Methods: In this study, 67 samples were prepared from patients with cutaneous leishmaniasis. DNA was extracted with phenolchloroform. Each specimen was analyzed using two different pairs of PCR primers. The sensitivity of each PCR was optimized on pure Leishmania DNA prior to use for diagnosis. Two standard parasites L. major and L. tropica were used as positive control. Results: DNA amplification fragments were two 115 bp and 683 bp for AB and UL primers, respectively. The sensitivity of two primers was not equal for detection of L. major and L. tropica. The sensivity of PCR with AB primer was 35 cells, while that for UL primer was 40 cells. Conclusion: The results of this study indicate that PCR is a sensitive diagnostic assay for cutaneous leishmaniasis and could be employed as the new standard for routine diagnosis when species identification is not required. However, the ability to identify species is especially important in prognosis of the disease and in deciding appropriate therapy, especially in regions where more than one type of species and disease are seen by clinicians.

  1. TagDust2: a generic method to extract reads from sequencing data.

    Science.gov (United States)

    Lassmann, Timo

    2015-01-28

    Arguably the most basic step in the analysis of next generation sequencing data (NGS) involves the extraction of mappable reads from the raw reads produced by sequencing instruments. The presence of barcodes, adaptors and artifacts subject to sequencing errors makes this step non-trivial. Here I present TagDust2, a generic approach utilizing a library of hidden Markov models (HMM) to accurately extract reads from a wide array of possible read architectures. TagDust2 extracts more reads of higher quality compared to other approaches. Processing of multiplexed single, paired end and libraries containing unique molecular identifiers is fully supported. Two additional post processing steps are included to exclude known contaminants and filter out low complexity sequences. Finally, TagDust2 can automatically detect the library type of sequenced data from a predefined selection. Taken together TagDust2 is a feature rich, flexible and adaptive solution to go from raw to mappable NGS reads in a single step. The ability to recognize and record the contents of raw reads will help to automate and demystify the initial, and often poorly documented, steps in NGS data analysis pipelines. TagDust2 is freely available at: http://tagdust.sourceforge.net .

  2. Multiplexed detection of mycotoxins in foods with a regenerable array.

    Science.gov (United States)

    Ngundi, Miriam M; Shriver-Lake, Lisa C; Moore, Martin H; Ligler, Frances S; Taitt, Chris R

    2006-12-01

    The occurrence of different mycotoxins in cereal products calls for the development of a rapid, sensitive, and reliable detection method that is capable of analyzing samples for multiple toxins simultaneously. In this study, we report the development and application of a multiplexed competitive assay for the simultaneous detection of ochratoxin A (OTA) and deoxynivalenol (DON) in spiked barley, cornmeal, and wheat, as well as in naturally contaminated maize samples. Fluoroimmunoassays were performed with the Naval Research Laboratory array biosensor, by both a manual and an automated version of the system. This system employs evanescent-wave fluorescence excitation to probe binding events as they occur on the surface of a waveguide. Methanolic extracts of the samples were diluted threefold with buffer containing a mixture of fluorescent antibodies and were then passed over the arrays of mycotoxins immobilized on a waveguide. Fluorescent signals of the surface-bound antibody-antigen complexes decreased with increasing concentrations of free mycotoxins in the extract. After sample analysis was completed, surfaces were regenerated with 6 M guanidine hydrochloride in 50 mM glycine, pH 2.0. The limits of detection determined by the manual biosensor system were as follows: 1, 180, and 65 ng/g for DON and 1, 60, and 85 ng/g for OTA in cornmeal, wheat, and barley, respectively. The limits of detection in cornmeal determined with the automated array biosensor were 15 and 150 ng/g for OTA and DON, respectively.

  3. Virtual automation.

    Science.gov (United States)

    Casis, E; Garrido, A; Uranga, B; Vives, A; Zufiaurre, C

    2001-01-01

    Total laboratory automation (TLA) can be substituted in mid-size laboratories by a computer sample workflow control (virtual automation). Such a solution has been implemented in our laboratory using PSM, software developed in cooperation with Roche Diagnostics (Barcelona, Spain), to this purpose. This software is connected to the online analyzers and to the laboratory information system and is able to control and direct the samples working as an intermediate station. The only difference with TLA is the replacement of transport belts by personnel of the laboratory. The implementation of this virtual automation system has allowed us the achievement of the main advantages of TLA: workload increase (64%) with reduction in the cost per test (43%), significant reduction in the number of biochemistry primary tubes (from 8 to 2), less aliquoting (from 600 to 100 samples/day), automation of functional testing, drastic reduction of preanalytical errors (from 11.7 to 0.4% of the tubes) and better total response time for both inpatients (from up to 48 hours to up to 4 hours) and outpatients (from up to 10 days to up to 48 hours). As an additional advantage, virtual automation could be implemented without hardware investment and significant headcount reduction (15% in our lab).

  4. Silicon Chip-to-Chip Mode-Division Multiplexing

    DEFF Research Database (Denmark)

    Baumann, Jan Markus; Porto da Silva, Edson; Ding, Yunhong

    2018-01-01

    A chip-to-chip mode-division multiplexing connection is demonstrated using a pair of multiplexers/demultiplexers fabricated on the silicon-on-insulator platform. Successful mode multiplexing and demultiplexing is experimentally demonstrated, using the LP01, LP11a and LP11b modes.......A chip-to-chip mode-division multiplexing connection is demonstrated using a pair of multiplexers/demultiplexers fabricated on the silicon-on-insulator platform. Successful mode multiplexing and demultiplexing is experimentally demonstrated, using the LP01, LP11a and LP11b modes....

  5. Automation of coal mining equipment

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Ryuji

    1986-12-25

    Major machines used in the working face include the shearer and the self-advancing frame. The shearer has been changed from the radio-controlled model to the microcomputer operated machine, while automating various functions. In addition, a system for comprehensively examining operating conditions and natural conditions in the working face for further automation. The selfadvancing frame has been modified from the sequence controlled model to the microcomputer aided electrohydraulic control system. In order to proceed further with automation and introduce robotics, detectors, control units and valves must be made smaller in higher reliability. The system will be controlled above the ground in the future, provided that the machines in the working face are remote controlled at the gate while transmitting relevant data above the ground from this system. Thus, automated working face will be realized. (2 figs, 1 photo)

  6. Multiplex quantification of four DNA targets in one reaction with Bio-Rad droplet digital PCR system for GMO detection

    Science.gov (United States)

    Dobnik, David; Štebih, Dejan; Blejec, Andrej; Morisset, Dany; Žel, Jana

    2016-10-01

    The advantages of the digital PCR technology are already well documented until now. One way to achieve better cost efficiency of the technique is to use it in a multiplexing strategy. Droplet digital PCR platforms, which include two fluorescence filters, support at least duplex reactions and with some developments and optimization higher multiplexing is possible. The present study not only shows a development of multiplex assays in droplet digital PCR, but also presents a first thorough evaluation of several parameters in such multiplex digital PCR. Two 4-plex assays were developed for quantification of 8 different DNA targets (7 genetically modified maize events and maize endogene). Per assay, two of the targets were labelled with one fluorophore and two with another. As current analysis software does not support analysis of more than duplex, a new R- and Shiny-based web application analysis tool (http://bit.ly/ddPCRmulti) was developed that automates the analysis of 4-plex results. In conclusion, the two developed multiplex assays are suitable for quantification of GMO maize events and the same approach can be used in any other field with a need for accurate and reliable quantification of multiple DNA targets.

  7. Super-multiplex vibrational imaging

    Science.gov (United States)

    Wei, Lu; Chen, Zhixing; Shi, Lixue; Long, Rong; Anzalone, Andrew V.; Zhang, Luyuan; Hu, Fanghao; Yuste, Rafael; Cornish, Virginia W.; Min, Wei

    2017-04-01

    potential of this 24-colour (super-multiplex) optical imaging approach for elucidating intricate interactions in complex biological systems.

  8. Detection of respiratory bacterial pathogens causing atypical pneumonia by multiplex Lightmix® RT-PCR.

    Science.gov (United States)

    Wagner, Karoline; Springer, Burkard; Imkamp, Frank; Opota, Onya; Greub, Gilbert; Keller, Peter M

    2018-04-01

    Pneumonia is a severe infectious disease. In addition to common viruses and bacterial pathogens (e.g. Streptococcus pneumoniae), fastidious respiratory pathogens like Chlamydia pneumoniae, Mycoplasma pneumoniae and Legionella spp. can cause severe atypical pneumonia. They do not respond to penicillin derivatives, which may cause failure of antibiotic empirical therapy. The same applies for infections with B. pertussis and B. parapertussis, the cause of pertussis disease, that may present atypically and need to be treated with macrolides. Moreover, these fastidious bacteria are difficult to identify by culture or serology, and therefore often remain undetected. Thus, rapid and accurate identification of bacterial pathogens causing atypical pneumonia is crucial. We performed a retrospective method evaluation study to evaluate the diagnostic performance of the new, commercially available Lightmix ® multiplex RT-PCR assay that detects these fastidious bacterial pathogens causing atypical pneumonia. In this retrospective study, 368 clinical respiratory specimens, obtained from patients suffering from atypical pneumonia that have been tested negative for the presence of common agents of pneumonia by culture and viral PCR, were investigated. These clinical specimens have been previously characterized by singleplex RT-PCR assays in our diagnostic laboratory and were used to evaluate the diagnostic performance of the respiratory multiplex Lightmix ® RT-PCR. The multiplex RT-PCR displayed a limit of detection between 5 and 10 DNA copies for different in-panel organisms and showed identical performance characteristics with respect to specificity and sensitivity as in-house singleplex RT-PCRs for pathogen detection. The Lightmix ® multiplex RT-PCR assay represents a low-cost, time-saving and accurate diagnostic tool with high throughput potential. The time-to-result using an automated DNA extraction device for respiratory specimens followed by multiplex RT-PCR detection was

  9. Automation of a thermogravimetric equipment

    International Nuclear Information System (INIS)

    Mussio, L.; Castiglioni, J.; Diano, W.

    1987-01-01

    A low cost automation of some instruments by means of simple electronic circuits and a microcomputer Apple IIe. type is discussed. The electronic circuits described are: a) a position detector including phototransistors connected as differential amplifier; b) a current source that, using the error signal of the position detector, changes the current through the coil of an electromagnetic balance to restore its zero position; c) a proportional temperature controller, zero volt switching to drive a furnace to a desired temperature; d) an interface temperature regulator-microcomputer to control the temperature regulator by software; e) a multiplexer for an analog input of a commercial interface. Those circuits are applied in a thermogravimetric equipment used also for vapours adsorption. A program in block diagram form is included and is able to record change of mass, time, furnace temperature and to drive the temperature regulator in order to have the heating rates or the temperature plateaux needed for the experiment. (author) [pt

  10. Human papillomavirus genotyping using an automated film-based chip array.

    Science.gov (United States)

    Erali, Maria; Pattison, David C; Wittwer, Carl T; Petti, Cathy A

    2009-09-01

    The INFINITI HPV-QUAD assay is a commercially available genotyping platform for human papillomavirus (HPV) that uses multiplex PCR, followed by automated processing for primer extension, hybridization, and detection. The analytical performance of the HPV-QUAD assay was evaluated using liquid cervical cytology specimens, and the results were compared with those results obtained using the digene High-Risk HPV hc2 Test (HC2). The specimen types included Surepath and PreservCyt transport media, as well as residual SurePath and HC2 transport media from the HC2 assay. The overall concordance of positive and negative results following the resolution of indeterminate and intermediate results was 83% among the 197 specimens tested. HC2 positive (+) and HPV-QUAD negative (-) results were noted in 24 specimens that were shown by real-time PCR and sequence analysis to contain no HPV, HPV types that were cross-reactive in the HC2 assay, or low virus levels. Conversely, HC2 (-) and HPV-QUAD (+) results were noted in four specimens and were subsequently attributed to cross-contamination. The most common HPV types to be identified in this study were HPV16, HPV18, HPV52/58, and HPV39/56. We show that the HPV-QUAD assay is a user friendly, automated system for the identification of distinct HPV genotypes. Based on its analytical performance, future studies with this platform are warranted to assess its clinical utility for HPV detection and genotyping.

  11. Multiplex real-time PCR assay for Legionella species.

    Science.gov (United States)

    Kim, Seung Min; Jeong, Yoojung; Sohn, Jang Wook; Kim, Min Ja

    2015-12-01

    Legionella pneumophila serogroup 1 (sg1) accounts for the majority of infections in humans, but other Legionella species are also associated with human disease. In this study, a new SYBR Green I-based multiplex real-time PCR assay in a single reaction was developed to allow the rapid detection and differentiation of Legionella species by targeting specific gene sequences. Candidate target genes were selected, and primer sets were designed by referring to comparative genomic hybridization data of Legionella species. The Legionella species-specific groES primer set successfully detected all 30 Legionella strains tested. The xcpX and rfbA primers specifically detected L. pneumophila sg1-15 and L. pneumophila sg1, respectively. In addition, this assay was validated by testing clinical samples and isolates. In conclusion, this novel multiplex real-time PCR assay might be a useful diagnostic tool for the rapid detection and differentiation of Legionella species in both clinical and epidemiological studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Multiplexing of ChIP-Seq Samples in an Optimized Experimental Condition Has Minimal Impact on Peak Detection.

    Directory of Open Access Journals (Sweden)

    Thadeous J Kacmarczyk

    Full Text Available Multiplexing samples in sequencing experiments is a common approach to maximize information yield while minimizing cost. In most cases the number of samples that are multiplexed is determined by financial consideration or experimental convenience, with limited understanding on the effects on the experimental results. Here we set to examine the impact of multiplexing ChIP-seq experiments on the ability to identify a specific epigenetic modification. We performed peak detection analyses to determine the effects of multiplexing. These include false discovery rates, size, position and statistical significance of peak detection, and changes in gene annotation. We found that, for histone marker H3K4me3, one can multiplex up to 8 samples (7 IP + 1 input at ~21 million single-end reads each and still detect over 90% of all peaks found when using a full lane for sample (~181 million reads. Furthermore, there are no variations introduced by indexing or lane batch effects and importantly there is no significant reduction in the number of genes with neighboring H3K4me3 peaks. We conclude that, for a well characterized antibody and, therefore, model IP condition, multiplexing 8 samples per lane is sufficient to capture most of the biological signal.

  13. Multiplexing of ChIP-Seq Samples in an Optimized Experimental Condition Has Minimal Impact on Peak Detection

    Science.gov (United States)

    Kacmarczyk, Thadeous J.; Bourque, Caitlin; Zhang, Xihui; Jiang, Yanwen; Houvras, Yariv; Alonso, Alicia; Betel, Doron

    2015-01-01

    Multiplexing samples in sequencing experiments is a common approach to maximize information yield while minimizing cost. In most cases the number of samples that are multiplexed is determined by financial consideration or experimental convenience, with limited understanding on the effects on the experimental results. Here we set to examine the impact of multiplexing ChIP-seq experiments on the ability to identify a specific epigenetic modification. We performed peak detection analyses to determine the effects of multiplexing. These include false discovery rates, size, position and statistical significance of peak detection, and changes in gene annotation. We found that, for histone marker H3K4me3, one can multiplex up to 8 samples (7 IP + 1 input) at ~21 million single-end reads each and still detect over 90% of all peaks found when using a full lane for sample (~181 million reads). Furthermore, there are no variations introduced by indexing or lane batch effects and importantly there is no significant reduction in the number of genes with neighboring H3K4me3 peaks. We conclude that, for a well characterized antibody and, therefore, model IP condition, multiplexing 8 samples per lane is sufficient to capture most of the biological signal. PMID:26066343

  14. Multiplexing of ChIP-Seq Samples in an Optimized Experimental Condition Has Minimal Impact on Peak Detection.

    Science.gov (United States)

    Kacmarczyk, Thadeous J; Bourque, Caitlin; Zhang, Xihui; Jiang, Yanwen; Houvras, Yariv; Alonso, Alicia; Betel, Doron

    2015-01-01

    Multiplexing samples in sequencing experiments is a common approach to maximize information yield while minimizing cost. In most cases the number of samples that are multiplexed is determined by financial consideration or experimental convenience, with limited understanding on the effects on the experimental results. Here we set to examine the impact of multiplexing ChIP-seq experiments on the ability to identify a specific epigenetic modification. We performed peak detection analyses to determine the effects of multiplexing. These include false discovery rates, size, position and statistical significance of peak detection, and changes in gene annotation. We found that, for histone marker H3K4me3, one can multiplex up to 8 samples (7 IP + 1 input) at ~21 million single-end reads each and still detect over 90% of all peaks found when using a full lane for sample (~181 million reads). Furthermore, there are no variations introduced by indexing or lane batch effects and importantly there is no significant reduction in the number of genes with neighboring H3K4me3 peaks. We conclude that, for a well characterized antibody and, therefore, model IP condition, multiplexing 8 samples per lane is sufficient to capture most of the biological signal.

  15. Laboratory Tests of Multiplex Detection of PCR Amplicons Using the Luminex 100 Flow Analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswaran, K.S.; Nasarabadi, S.; Langlois, R.G.

    2000-05-05

    Lawrence Livermore National Laboratory (LLNL) demonstrated the power of flow cytometry in detecting the biological agents simulants at JFT III. LLNL pioneered in the development of advanced nucleic acid analyzer (ANM) for portable real time identification. Recent advances in flow cytometry provide a means for multiplexed nucleic acid detection and immunoassay of pathogenic microorganisms. We are presently developing multiplexed immunoassays for the simultaneous detection of different simulants. Our goal is to build an integrated instrument for both nucleic acid analysis and immuno detection. In this study we evaluated the Luminex LX 100 for concurrent identification of more than one PCR amplified product. ANAA has real-time Taqman fluorescent detection capability for rapid identification of field samples. However, its multiplexing ability is limited by the combination of available fluorescent labels. Hence integration of ANAA with flow cytometry can give the rapidity of ANAA amplification and the multiplex capability of flow cytometry. Multiplexed flow cytometric analysis is made possible using a set of fluorescent latex microsphere that are individually identified by their red and infrared fluorescence. A green fluorochrome is used as the assay signal. Methods were developed for the identification of specific nucleic acid sequences from Bacillus globigii (Bg), Bacillus thuringensis (Bt) and Erwinia herbicola (Eh). Detection sensitivity using different reporter fluorochromes was tested with the LX 100, and also different assay formats were evaluated for their suitability for rapid testing. A blind laboratory trial was carried out December 22-27, 1999 to evaluate bead assays for multiplex identification of Bg and Bt PCR products. This report summarizes the assay development, fluorochrome comparisons, and the results of the blind trial conducted at LLNL for the laboratory evaluation of the LX 100 flow analyzer.

  16. Automating Finance

    Science.gov (United States)

    Moore, John

    2007-01-01

    In past years, higher education's financial management side has been riddled with manual processes and aging mainframe applications. This article discusses schools which had taken advantage of an array of technologies that automate billing, payment processing, and refund processing in the case of overpayment. The investments are well worth it:…

  17. Library Automation.

    Science.gov (United States)

    Husby, Ole

    1990-01-01

    The challenges and potential benefits of automating university libraries are reviewed, with special attention given to cooperative systems. Aspects discussed include database size, the role of the university computer center, storage modes, multi-institutional systems, resource sharing, cooperative system management, networking, and intelligent…

  18. Social contagions on correlated multiplex networks

    Science.gov (United States)

    Wang, Wei; Cai, Meng; Zheng, Muhua

    2018-06-01

    The existence of interlayer degree correlations has been disclosed by abundant multiplex network analysis. However, how they impose on the dynamics of social contagions are remain largely unknown. In this paper, we propose a non-Markovian social contagion model in multiplex networks with inter-layer degree correlations to delineate the behavior spreading, and develop an edge-based compartmental (EBC) theory to describe the model. We find that multiplex networks promote the final behavior adoption size. Remarkably, it can be observed that the growth pattern of the final behavior adoption size, versus the behavioral information transmission probability, changes from discontinuous to continuous once decreasing the behavior adoption threshold in one layer. We finally unravel that the inter-layer degree correlations play a role on the final behavior adoption size but have no effects on the growth pattern, which is coincidence with our prediction by using the suggested theory.

  19. Multiplexed image storage by electromagnetically induced transparency in a solid

    Science.gov (United States)

    Heinze, G.; Rentzsch, N.; Halfmann, T.

    2012-11-01

    We report on frequency- and angle-multiplexed image storage by electromagnetically induced transparency (EIT) in a Pr3+:Y2SiO5 crystal. Frequency multiplexing by EIT relies on simultaneous storage of light pulses in atomic coherences, driven in different frequency ensembles of the inhomogeneously broadened solid medium. Angular multiplexing by EIT relies on phase matching of the driving laser beams, which permits simultaneous storage of light pulses propagating under different angles into the crystal. We apply the multiplexing techniques to increase the storage capacity of the EIT-driven optical memory, in particular to implement multiplexed storage of larger two-dimensional amounts of data (images). We demonstrate selective storage and readout of images by frequency-multiplexed EIT and angular-multiplexed EIT, as well as the potential to combine both multiplexing approaches towards further enhanced storage capacities.

  20. Performance modeling, loss networks, and statistical multiplexing

    CERN Document Server

    Mazumdar, Ravi

    2009-01-01

    This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of understanding the phenomenon of statistical multiplexing. The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the important ideas of Palm distributions associated with traffic models and their role in performance measures. Also presented are recent ideas of large buffer, and many sources asymptotics that play an important role in understanding statistical multiplexing. I

  1. Digital holograms for laser mode multiplexing

    CSIR Research Space (South Africa)

    Mhlanga, T

    2014-10-02

    Full Text Available multiplexing Thandeka Mhlangaa, b, Abderrahmen Trichilic, Angela Dudleya, Darryl Naidooa, b, Mourad Zghalc and Andrew Forbesa, b aCSIR National Laser Centre, P.O. Box 395, Pretoria 0001, South Africa bSchool of Physics, University of KwaZulu-Natal, Private Bag... problems. In this context, we demonstrate a method of multiplexing laser modes using spatial light modulators (SLMs). In our proposed technique, we use Laguerre Gaussian (LG) modes, which form a complete basis set; hence multi-mode masks can be created...

  2. Simple Multiplexing Hand-Held Control Unit

    Science.gov (United States)

    Hannaford, Blake

    1989-01-01

    Multiplexer consists of series of resistors, each shunted by single-pole, single-throw switch. User operates switches by pressing buttons or squeezing triggers. Prototype includes three switches operated successfully in over 200 hours of system operations. Number of switches accommodated determined by signal-to-noise ratio of current source, noise induced in control unit and cable, and number of bits in output of analog-to-digital converter. Because many computer-contolled robots have extra analog-to-digital channels, such multiplexer added at little extra cost.

  3. Cooperative spreading processes in multiplex networks.

    Science.gov (United States)

    Wei, Xiang; Chen, Shihua; Wu, Xiaoqun; Ning, Di; Lu, Jun-An

    2016-06-01

    This study is concerned with the dynamic behaviors of epidemic spreading in multiplex networks. A model composed of two interacting complex networks is proposed to describe cooperative spreading processes, wherein the virus spreading in one layer can penetrate into the other to promote the spreading process. The global epidemic threshold of the model is smaller than the epidemic thresholds of the corresponding isolated networks. Thus, global epidemic onset arises in the interacting networks even though an epidemic onset does not arise in each isolated network. Simulations verify the analysis results and indicate that cooperative spreading processes in multiplex networks enhance the final infection fraction.

  4. SMITH: a LIMS for handling next-generation sequencing workflows.

    Science.gov (United States)

    Venco, Francesco; Vaskin, Yuriy; Ceol, Arnaud; Muller, Heiko

    2014-01-01

    through an API provided by the workflow management system. The parameters and input data are passed to the workflow engine that performs de-multiplexing, quality control, alignments, etc. SMITH standardizes, automates, and speeds up sequencing workflows. Annotation of data with key-value pairs facilitates meta-analysis.

  5. SMITH: a LIMS for handling next-generation sequencing workflows

    Science.gov (United States)

    2014-01-01

    workflows are available through an API provided by the workflow management system. The parameters and input data are passed to the workflow engine that performs de-multiplexing, quality control, alignments, etc. Conclusions SMITH standardizes, automates, and speeds up sequencing workflows. Annotation of data with key-value pairs facilitates meta-analysis. PMID:25471934

  6. Advanced combinational microfluidic multiplexer for fuel cell reactors

    International Nuclear Information System (INIS)

    Lee, D W; Kim, Y; Cho, Y-H; Doh, I

    2013-01-01

    An advanced combinational microfluidic multiplexer capable to address multiple fluidic channels for fuel cell reactors is proposed. Using only 4 control lines and two different levels of control pressures, the proposed multiplexer addresses up to 19 fluidic channels, at least two times larger than the previous microfluidic multiplexers. The present multiplexer providing high control efficiency and simple structure for channel addressing would be used in the application areas of the integrated microfluidic systems such as fuel cell reactors and dynamic pressure generators

  7. Automation Interfaces of the Orion GNC Executive Architecture

    Science.gov (United States)

    Hart, Jeremy

    2009-01-01

    This viewgraph presentation describes Orion mission's automation Guidance, Navigation and Control (GNC) architecture and interfaces. The contents include: 1) Orion Background; 2) Shuttle/Orion Automation Comparison; 3) Orion Mission Sequencing; 4) Orion Mission Sequencing Display Concept; and 5) Status and Forward Plans.

  8. Automation, consolidation, and integration in autoimmune diagnostics.

    Science.gov (United States)

    Tozzoli, Renato; D'Aurizio, Federica; Villalta, Danilo; Bizzaro, Nicola

    2015-08-01

    Over the past two decades, we have witnessed an extraordinary change in autoimmune diagnostics, characterized by the progressive evolution of analytical technologies, the availability of new tests, and the explosive growth of molecular biology and proteomics. Aside from these huge improvements, organizational changes have also occurred which brought about a more modern vision of the autoimmune laboratory. The introduction of automation (for harmonization of testing, reduction of human error, reduction of handling steps, increase of productivity, decrease of turnaround time, improvement of safety), consolidation (combining different analytical technologies or strategies on one instrument or on one group of connected instruments) and integration (linking analytical instruments or group of instruments with pre- and post-analytical devices) opened a new era in immunodiagnostics. In this article, we review the most important changes that have occurred in autoimmune diagnostics and present some models related to the introduction of automation in the autoimmunology laboratory, such as automated indirect immunofluorescence and changes in the two-step strategy for detection of autoantibodies; automated monoplex immunoassays and reduction of turnaround time; and automated multiplex immunoassays for autoantibody profiling.

  9. Automated Motivic Analysis

    DEFF Research Database (Denmark)

    Lartillot, Olivier

    2016-01-01

    Motivic analysis provides very detailed understanding of musical composi- tions, but is also particularly difficult to formalize and systematize. A computational automation of the discovery of motivic patterns cannot be reduced to a mere extraction of all possible sequences of descriptions...... for lossless compression. The structural complexity resulting from successive repetitions of patterns can be controlled through a simple modelling of cycles. Generally, motivic patterns cannot always be defined solely as sequences of descriptions in a fixed set of dimensions: throughout the descriptions...... of the successive notes and intervals, various sets of musical parameters may be invoked. In this chapter, a method is presented that allows for these heterogeneous patterns to be discovered. Motivic repetition with local ornamentation is detected by reconstructing, on top of “surface-level” monodic voices, longer...

  10. Prototype data terminal-multiplexer/demultiplexer

    Science.gov (United States)

    Leck, D. E.; Goodwin, J. E.

    1972-01-01

    The design and operation of a quad redundant data terminal and a multiplexer/demultiplexer (MDU) is described. The most unique feature is the design of the quad redundant data terminal. This is one of the few designs where the unit is fail/op, fail/op, fail/safe. Laboratory tests confirm that the unit will operate satisfactorily with the failure of three out of four channels. Although the design utilizes state-of-the-art technology, the waveform error checks, the voting techniques, and the parity bit checks are believed to be used in unique configurations. Correct word selection routines are also novel. The MDU design, while not redundant, utilizes, the latest state-of-the-art advantages of light coupler and interested amplifiers. Much of the technology employed was an evolution of prior NASA contracts related to the Addressable Time Division Data System. A good example of the earlier technology development was the development of a low level analog multiplexer, a high level analog multiplexer, and a digital multiplexer. A list of all drawings is included for reference and all schematic, block and timing diagrams are incorporated.

  11. Silicon Photonic Integrated Circuit Mode Multiplexer

    DEFF Research Database (Denmark)

    Ding, Yunhong; Ou, Haiyan; Xu, Jing

    2013-01-01

    We propose and demonstrate a novel silicon photonic integrated circuit enabling multiplexing of orthogonal modes in a few-mode fiber (FMF). By selectively launching light to four vertical grating couplers, all six orthogonal spatial and polarization modes supported by the FMF are successfully...

  12. Coherence-Multiplexed Optical RF Feeder Networks

    NARCIS (Netherlands)

    Meijerink, Arjan; Taniman, R.O.; van Etten, Wim

    2007-01-01

    An optical RF feeding system for wireless access is proposed, in which the radio access points are distinguished by means of coherence multiplexing (CM). CM is a rather unknown and potentially inexpensive optical code division multiple access technique, which is particularly suitable for relatively

  13. Multiple routes transmitted epidemics on multiplex networks

    International Nuclear Information System (INIS)

    Zhao, Dawei; Li, Lixiang; Peng, Haipeng; Luo, Qun; Yang, Yixian

    2014-01-01

    This letter investigates the multiple routes transmitted epidemic process on multiplex networks. We propose detailed theoretical analysis that allows us to accurately calculate the epidemic threshold and outbreak size. It is found that the epidemic can spread across the multiplex network even if all the network layers are well below their respective epidemic thresholds. Strong positive degree–degree correlation of nodes in multiplex network could lead to a much lower epidemic threshold and a relatively smaller outbreak size. However, the average similarity of neighbors from different layers of nodes has no obvious effect on the epidemic threshold and outbreak size. -- Highlights: •We studies multiple routes transmitted epidemic process on multiplex networks. •SIR model and bond percolation theory are used to analyze the epidemic processes. •We derive equations to accurately calculate the epidemic threshold and outbreak size. •ASN has no effect on the epidemic threshold and outbreak size. •Strong positive DDC leads to a lower epidemic threshold and a smaller outbreak size.

  14. Beyond Multiplexing Gain in Large MIMO Systems

    DEFF Research Database (Denmark)

    Cakmak, Burak; Müller, Ralf R.; Fleury, Bernard Henri

    growth (multiplexing gain). Even when the channel entries are i.i.d. the deviation from the linear growth is significant. We also find an additive property of the deviation for a concatenated MIMO system. Finally, we quantify the deviation of the large SNR capacity from the exact capacity and find...

  15. Multiple routes transmitted epidemics on multiplex networks

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Dawei [Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China); National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Shandong Provincial Key Laboratory of Computer Network, Shandong Computer Science Center, Jinan 250014 (China); Li, Lixiang [Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China); National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Peng, Haipeng, E-mail: penghaipeng@bupt.edu.cn [Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China); National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876 (China); Luo, Qun; Yang, Yixian [Information Security Center, State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, P.O. Box 145, Beijing 100876 (China); National Engineering Laboratory for Disaster Backup and Recovery, Beijing University of Posts and Telecommunications, Beijing 100876 (China)

    2014-02-01

    This letter investigates the multiple routes transmitted epidemic process on multiplex networks. We propose detailed theoretical analysis that allows us to accurately calculate the epidemic threshold and outbreak size. It is found that the epidemic can spread across the multiplex network even if all the network layers are well below their respective epidemic thresholds. Strong positive degree–degree correlation of nodes in multiplex network could lead to a much lower epidemic threshold and a relatively smaller outbreak size. However, the average similarity of neighbors from different layers of nodes has no obvious effect on the epidemic threshold and outbreak size. -- Highlights: •We studies multiple routes transmitted epidemic process on multiplex networks. •SIR model and bond percolation theory are used to analyze the epidemic processes. •We derive equations to accurately calculate the epidemic threshold and outbreak size. •ASN has no effect on the epidemic threshold and outbreak size. •Strong positive DDC leads to a lower epidemic threshold and a smaller outbreak size.

  16. Microwave multiplex readout for superconducting sensors

    Energy Technology Data Exchange (ETDEWEB)

    Ferri, E., E-mail: elena.ferri@mib.infn.it [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Becker, D.; Bennett, D. [NIST, Boulder, CO (United States); Faverzani, M. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Fowler, J.; Gard, J. [NIST, Boulder, CO (United States); Giachero, A. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Hays-Wehle, J.; Hilton, G. [NIST, Boulder, CO (United States); Maino, M. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Mates, J. [NIST, Boulder, CO (United States); Puiu, A.; Nucciotti, A. [Università Milano-Bicocca, Milan (Italy); INFN Sez. di Milano-Bicocca, Milan (Italy); Reintsema, C.; Schmidt, D.; Swetz, D.; Ullom, J.; Vale, L. [NIST, Boulder, CO (United States)

    2016-07-11

    The absolute neutrino mass scale is still an outstanding challenge in both particle physics and cosmology. The calorimetric measurement of the energy released in a nuclear beta decay is a powerful tool to determine the effective electron-neutrino mass. In the last years, the progress on low temperature detector technologies has allowed to design large scale experiments aiming at pushing down the sensitivity on the neutrino mass below 1 eV. Even with outstanding performances in both energy (~ eV on keV) and time resolution (~ 1 μs) on the single channel, a large number of detectors working in parallel is required to reach a sub-eV sensitivity. Microwave frequency domain readout is the best available technique to readout large array of low temperature detectors, such as Transition Edge Sensors (TESs) or Microwave Kinetic Inductance Detectors (MKIDs). In this way a multiplex factor of the order of thousands can be reached, limited only by the bandwidth of the available commercial fast digitizers. This microwave multiplexing system will be used to readout the HOLMES detectors, an array of 1000 microcalorimeters based on TES sensors in which the {sup 163}Ho will be implanted. HOLMES is a new experiment for measuring the electron neutrino mass by means of the electron capture (EC) decay of {sup 163}Ho. We present here the microwave frequency multiplex which will be used in the HOLMES experiment and the microwave frequency multiplex used to readout the MKID detectors developed in Milan as well.

  17. Determinants of public cooperation in multiplex networks

    Science.gov (United States)

    Battiston, Federico; Perc, Matjaž; Latora, Vito

    2017-07-01

    Synergies between evolutionary game theory and statistical physics have significantly improved our understanding of public cooperation in structured populations. Multiplex networks, in particular, provide the theoretical framework within network science that allows us to mathematically describe the rich structure of interactions characterizing human societies. While research has shown that multiplex networks may enhance the resilience of cooperation, the interplay between the overlap in the structure of the layers and the control parameters of the corresponding games has not yet been investigated. With this aim, we consider here the public goods game on a multiplex network, and we unveil the role of the number of layers and the overlap of links, as well as the impact of different synergy factors in different layers, on the onset of cooperation. We show that enhanced public cooperation emerges only when a significant edge overlap is combined with at least one layer being able to sustain some cooperation by means of a sufficiently high synergy factor. In the absence of either of these conditions, the evolution of cooperation in multiplex networks is determined by the bounds of traditional network reciprocity with no enhanced resilience. These results caution against overly optimistic predictions that the presence of multiple social domains may in itself promote cooperation, and they help us better understand the complexity behind prosocial behavior in layered social systems.

  18. Maneuver Automation Software

    Science.gov (United States)

    Uffelman, Hal; Goodson, Troy; Pellegrin, Michael; Stavert, Lynn; Burk, Thomas; Beach, David; Signorelli, Joel; Jones, Jeremy; Hahn, Yungsun; Attiyah, Ahlam; hide

    2009-01-01

    The Maneuver Automation Software (MAS) automates the process of generating commands for maneuvers to keep the spacecraft of the Cassini-Huygens mission on a predetermined prime mission trajectory. Before MAS became available, a team of approximately 10 members had to work about two weeks to design, test, and implement each maneuver in a process that involved running many maneuver-related application programs and then serially handing off data products to other parts of the team. MAS enables a three-member team to design, test, and implement a maneuver in about one-half hour after Navigation has process-tracking data. MAS accepts more than 60 parameters and 22 files as input directly from users. MAS consists of Practical Extraction and Reporting Language (PERL) scripts that link, sequence, and execute the maneuver- related application programs: "Pushing a single button" on a graphical user interface causes MAS to run navigation programs that design a maneuver; programs that create sequences of commands to execute the maneuver on the spacecraft; and a program that generates predictions about maneuver performance and generates reports and other files that enable users to quickly review and verify the maneuver design. MAS can also generate presentation materials, initiate electronic command request forms, and archive all data products for future reference.

  19. Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers.

    Science.gov (United States)

    Girardot, Charles; Scholtalbers, Jelle; Sauer, Sajoscha; Su, Shu-Yi; Furlong, Eileen E M

    2016-10-08

    The yield obtained from next generation sequencers has increased almost exponentially in recent years, making sample multiplexing common practice. While barcodes (known sequences of fixed length) primarily encode the sample identity of sequenced DNA fragments, barcodes made of random sequences (Unique Molecular Identifier or UMIs) are often used to distinguish between PCR duplicates and transcript abundance in, for example, single-cell RNA sequencing (scRNA-seq). In paired-end sequencing, different barcodes can be inserted at each fragment end to either increase the number of multiplexed samples in the library or to use one of the barcodes as UMI. Alternatively, UMIs can be combined with the sample barcodes into composite barcodes, or with standard Illumina® indexing. Subsequent analysis must take read duplicates and sample identity into account, by identifying UMIs. Existing tools do not support these complex barcoding configurations and custom code development is frequently required. Here, we present Je, a suite of tools that accommodates complex barcoding strategies, extracts UMIs and filters read duplicates taking UMIs into account. Using Je on publicly available scRNA-seq and iCLIP data containing UMIs, the number of unique reads increased by up to 36 %, compared to when UMIs are ignored. Je is implemented in JAVA and uses the Picard API. Code, executables and documentation are freely available at http://gbcs.embl.de/Je . Je can also be easily installed in Galaxy through the Galaxy toolshed.

  20. Automating CPM-GOMS

    Science.gov (United States)

    John, Bonnie; Vera, Alonso; Matessa, Michael; Freed, Michael; Remington, Roger

    2002-01-01

    CPM-GOMS is a modeling method that combines the task decomposition of a GOMS analysis with a model of human resource usage at the level of cognitive, perceptual, and motor operations. CPM-GOMS models have made accurate predictions about skilled user behavior in routine tasks, but developing such models is tedious and error-prone. We describe a process for automatically generating CPM-GOMS models from a hierarchical task decomposition expressed in a cognitive modeling tool called Apex. Resource scheduling in Apex automates the difficult task of interleaving the cognitive, perceptual, and motor resources underlying common task operators (e.g. mouse move-and-click). Apex's UI automatically generates PERT charts, which allow modelers to visualize a model's complex parallel behavior. Because interleaving and visualization is now automated, it is feasible to construct arbitrarily long sequences of behavior. To demonstrate the process, we present a model of automated teller interactions in Apex and discuss implications for user modeling. available to model human users, the Goals, Operators, Methods, and Selection (GOMS) method [6, 21] has been the most widely used, providing accurate, often zero-parameter, predictions of the routine performance of skilled users in a wide range of procedural tasks [6, 13, 15, 27, 28]. GOMS is meant to model routine behavior. The user is assumed to have methods that apply sequences of operators and to achieve a goal. Selection rules are applied when there is more than one method to achieve a goal. Many routine tasks lend themselves well to such decomposition. Decomposition produces a representation of the task as a set of nested goal states that include an initial state and a final state. The iterative decomposition into goals and nested subgoals can terminate in primitives of any desired granularity, the choice of level of detail dependent on the predictions required. Although GOMS has proven useful in HCI, tools to support the

  1. Development and standardization of multiplexed antibody microarrays for use in quantitative proteomics

    Directory of Open Access Journals (Sweden)

    Sorette M

    2004-12-01

    Full Text Available Abstract Background Quantitative proteomics is an emerging field that encompasses multiplexed measurement of many known proteins in groups of experimental samples in order to identify differences between groups. Antibody arrays are a novel technology that is increasingly being used for quantitative proteomics studies due to highly multiplexed content, scalability, matrix flexibility and economy of sample consumption. Key applications of antibody arrays in quantitative proteomics studies are identification of novel diagnostic assays, biomarker discovery in trials of new drugs, and validation of qualitative proteomics discoveries. These applications require performance benchmarking, standardization and specification. Results Six dual-antibody, sandwich immunoassay arrays that measure 170 serum or plasma proteins were developed and experimental procedures refined in more than thirty quantitative proteomics studies. This report provides detailed information and specification for manufacture, qualification, assay automation, performance, assay validation and data processing for antibody arrays in large scale quantitative proteomics studies. Conclusion The present report describes development of first generation standards for antibody arrays in quantitative proteomics. Specifically, it describes the requirements of a comprehensive validation program to identify and minimize antibody cross reaction under highly multiplexed conditions; provides the rationale for the application of standardized statistical approaches to manage the data output of highly replicated assays; defines design requirements for controls to normalize sample replicate measurements; emphasizes the importance of stringent quality control testing of reagents and antibody microarrays; recommends the use of real-time monitors to evaluate sensitivity, dynamic range and platform precision; and presents survey procedures to reveal the significance of biomarker findings.

  2. Preliminary Assessment of Microwave Readout Multiplexing Factor

    Energy Technology Data Exchange (ETDEWEB)

    Croce, Mark Philip [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Koehler, Katrina Elizabeth [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rabin, Michael W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bennett, D. A. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Mates, J. A. B. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Gard, J. D. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Becker, D. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Schmidt, D. R. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States); Ullom, J. N. [National Inst. of Standards and Technology (NIST), Boulder, CO (United States)

    2017-01-23

    Ultra-high resolution microcalorimeter gamma spectroscopy is a new non-destructive assay technology for measurement of plutonium isotopic composition, with the potential to reduce total measurement uncertainty to a level competitive with destructive analysis methods [1-4]. Achieving this level of performance in practical applications requires not only the energy resolution now routinely achieved with transition-edge sensor microcalorimeter arrays (an order of magnitude better than for germanium detectors) but also high throughput. Microcalorimeter gamma spectrometers have not yet achieved detection efficiency and count rate capability that is comparable to germanium detectors, largely because of limits from existing readout technology. Microcalorimeter detectors must be operated at low temperature to achieve their exceptional energy resolution. Although the typical 100 mK operating temperatures can be achieved with reliable, cryogen-free systems, the cryogenic complexity and heat load from individual readout channels for large sensor arrays is prohibitive. Multiplexing is required for practical systems. The most mature multiplexing technology at present is time-division multiplexing (TDM) [3, 5-6]. In TDM, the sensor outputs are switched by applying bias current to one SQUID amplifier at a time. Transition-edge sensor (TES) microcalorimeter arrays as large as 256 pixels have been developed for X-ray and gamma-ray spectroscopy using TDM technology. Due to bandwidth limits and noise scaling, TDM is limited to a maximum multiplexing factor of approximately 32-40 sensors on one readout line [8]. Increasing the size of microcalorimeter arrays above the kilopixel scale, required to match the throughput of germanium detectors, requires the development of a new readout technology with a much higher multiplexing factor.

  3. A novel IPTV program multiplex access system to EPON

    Science.gov (United States)

    Xu, Xian; Liu, Deming; He, Wei; Lu, Xi

    2007-11-01

    With the rapid development of high speed networks, such as Ethernet Passive Optical Network (EPON), traffic patterns in access networks have evolved from traditional text-oriented service to the mixed text-, voice- and video- based services, leading to so called "Triple Play". For supporting IPTV service in EPON access network infrastructure, in this article we propose a novel IPTV program multiplex access system to EPON, which enables multiple IPTV program source servers to seamlessly access to IPTV service access port of optical line terminal (OLT) in EPON. There are two multiplex schemes, namely static multiplex scheme and dynamic multiplex scheme, in implementing the program multiplexing. Static multiplex scheme is to multiplex all the IPTV programs and forward them to the OLT, regardless of the need of end-users. While dynamic multiplex scheme can dynamically multiplex and forward IPTV programs according to what the end-users actually demand and those watched by no end-user would not be multiplexed. By comparing these two schemes, a reduced traffic of EPON can be achieved by using dynamic multiplex scheme, especially when most end-users are watching the same few IPTV programs. Both schemes are implemented in our system, with their hardware and software designs described.

  4. Multiplex autoantibody detection for autoimmune liver diseases and autoimmune gastritis.

    Science.gov (United States)

    Vanderlocht, Joris; van der Cruys, Mart; Stals, Frans; Bakker-Jonges, Liesbeth; Damoiseaux, Jan

    2017-09-01

    Autoantibody detection for autoimmune hepatitis (AIH), primary biliary cirrhosis (PBC) and autoimmune gastritis (AIG) is traditionally performed by IIF on a combination of tissues. Multiplex line/dot blots (LIA/DIA) offer multiple advantages, i.e. automation, objective reading, no interfering reactivities, no coincidental findings. In the current study we evaluated automated DIA (D-Tek) for detecting autoantibodies related to autoimmune diseases of the gastrointestinal tract. We tested samples of the Dutch EQC program and compared the results with the consensus of the participating labs. For the autoimmune liver diseases and AIG, respectively, 64 and 36 samples were tested. For anti-mitochondrial and anti-smooth muscle antibodies a concordance rate of 97% and 88% was observed, respectively. The concordance rate for anti-parietal cell antibodies was 92% when samples without EQC consensus (n=15) were excluded. For antibodies against intrinsic factor a concordance of 96% was observed. For all these antibodies discrepancies were identified that relate to the different test characteristics and the preponderance of IIF utilizing labs in the EQC program. In conclusion, we observed good agreement of the tested DIA blots with the consensus results of the Dutch EQC program. Taken together with the logistic advantages these blots are a good alternative for autoantibody detection in the respective diseases. A large prospective multicenter study is warranted to position these novel tests further in the whole spectrum of assays for the detection of these antibodies in a routine autoimmune laboratory. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. MLPAinter for MLPA interpretation: an integrated approach for the analysis, visualisation and data management of Multiplex Ligation-dependent Probe Amplification

    Directory of Open Access Journals (Sweden)

    Morreau Hans

    2010-01-01

    Full Text Available Abstract Background Multiplex Ligation-Dependent Probe Amplification (MLPA is an application that can be used for the detection of multiple chromosomal aberrations in a single experiment. In one reaction, up to 50 different genomic sequences can be analysed. For a reliable work-flow, tools are needed for administrative support, data management, normalisation, visualisation, reporting and interpretation. Results Here, we developed a data management system, MLPAInter for MLPA interpretation, that is windows executable and has a stand-alone database for monitoring and interpreting the MLPA data stream that is generated from the experimental setup to analysis, quality control and visualisation. A statistical approach is applied for the normalisation and analysis of large series of MLPA traces, making use of multiple control samples and internal controls. Conclusions MLPAinter visualises MLPA data in plots with information about sample replicates, normalisation settings, and sample characteristics. This integrated approach helps in the automated handling of large series of MLPA data and guarantees a quick and streamlined dataflow from the beginning of an experiment to an authorised report.

  6. A Set of Plastid Loci for Use in Multiplex Fragment Length Genotyping for Intraspecific Variation in Pinus (Pinaceae

    Directory of Open Access Journals (Sweden)

    Austin M. Wofford

    2014-04-01

    Full Text Available Premise of the study: Recently released Pinus plastome sequences support characterization of 15 plastid simple sequence repeat (cpSSR loci originally published for P. contorta and P. thunbergii. This allows selection of loci for single-tube PCR multiplexed genotyping in any subsection of the genus. Methods: Unique placement of primers and primer conservation across the genus were investigated, and a set of six loci were selected for single-tube multiplexing. We compared interspecific variation between cpSSRs and nucleotide sequences ofycf1 and tested intraspecific variation for cpSSRs using 911 samples in the P. ponderosa species complex. Results: The cpSSR loci contain mononucleotide and complex repeats with additional length variation in flanking regions. They are not located in hypervariable regions, and most primers are conserved across the genus. A single PCR per sample multiplexed for six loci yielded 45 alleles in 911 samples. Discussion: The protocol allows efficient genotyping of many samples. The cpSSR loci are too variable for Pinus phylogenies but are useful for the study of genetic structure within and among populations. The multiplex method could easily be extended to other plant groups by choosing primers for cpSSR loci in a plastome alignment for the target group.

  7. A set of plastid loci for use in multiplex fragment length genotyping for intraspecific variation in Pinus (Pinaceae)1

    Science.gov (United States)

    Wofford, Austin M.; Finch, Kristen; Bigott, Adam; Willyard, Ann

    2014-01-01

    • Premise of the study: Recently released Pinus plastome sequences support characterization of 15 plastid simple sequence repeat (cpSSR) loci originally published for P. contorta and P. thunbergii. This allows selection of loci for single-tube PCR multiplexed genotyping in any subsection of the genus. • Methods: Unique placement of primers and primer conservation across the genus were investigated, and a set of six loci were selected for single-tube multiplexing. We compared interspecific variation between cpSSRs and nucleotide sequences of ycf1 and tested intraspecific variation for cpSSRs using 911 samples in the P. ponderosa species complex. • Results: The cpSSR loci contain mononucleotide and complex repeats with additional length variation in flanking regions. They are not located in hypervariable regions, and most primers are conserved across the genus. A single PCR per sample multiplexed for six loci yielded 45 alleles in 911 samples. • Discussion: The protocol allows efficient genotyping of many samples. The cpSSR loci are too variable for Pinus phylogenies but are useful for the study of genetic structure within and among populations. The multiplex method could easily be extended to other plant groups by choosing primers for cpSSR loci in a plastome alignment for the target group. PMID:25202625

  8. Plant automation

    International Nuclear Information System (INIS)

    Christensen, L.J.; Sackett, J.I.; Dayal, Y.; Wagner, W.K.

    1989-01-01

    This paper describes work at EBR-II in the development and demonstration of new control equipment and methods and associated schemes for plant prognosis, diagnosis, and automation. The development work has attracted the interest of other national laboratories, universities, and commercial companies. New initiatives include use of new control strategies, expert systems, advanced diagnostics, and operator displays. The unique opportunity offered by EBR-II is as a test bed where a total integrated approach to automatic reactor control can be directly tested under real power plant conditions

  9. Development of a One-Step Multiplex PCR Assay for Differential Detection of Major Mycobacterium Species.

    Science.gov (United States)

    Chae, Hansong; Han, Seung Jung; Kim, Su-Young; Ki, Chang-Seok; Huh, Hee Jae; Yong, Dongeun; Koh, Won-Jung; Shin, Sung Jae

    2017-09-01

    The prevalence of tuberculosis continues to be high, and nontuberculous mycobacterial (NTM) infection has also emerged worldwide. Moreover, differential and accurate identification of mycobacteria to the species or subspecies level is an unmet clinical need. Here, we developed a one-step multiplex PCR assay using whole-genome analysis and bioinformatics to identify novel molecular targets. The aims of this assay were to (i) discriminate between the Mycobacterium tuberculosis complex (MTBC) and NTM using rv0577 or RD750, (ii) differentiate M. tuberculosis ( M. tuberculosis ) from MTBC using RD9, (iii) selectively identify the widespread M. tuberculosis Beijing genotype by targeting mtbk_20680 , and (iv) simultaneously detect five clinically important NTM ( M. avium , M. intracellulare , M. abscessus , M. massiliense , and M. kansasii ) by targeting IS 1311 , DT1, mass_3210 , and mkan_rs12360 An initial evaluation of the multiplex PCR assay using reference strains demonstrated 100% specificity for the targeted Mycobacterium species. Analytical sensitivity ranged from 1 to 10 pg for extracted DNA and was 10 3 and 10 4 CFU for pure cultures and nonhomogenized artificial sputum cultures, respectively, of the targeted species. The accuracy of the multiplex PCR assay was further evaluated using 55 reference strains and 94 mycobacterial clinical isolates. Spoligotyping, multilocus sequence analysis, and a commercial real-time PCR assay were employed as standard assays to evaluate the multiplex PCR assay with clinical M. tuberculosis and NTM isolates. The PCR assay displayed 100% identification agreement with the standard assays. Our multiplex PCR assay is a simple, convenient, and reliable technique for differential identification of MTBC, M. tuberculosis , M. tuberculosis Beijing genotype, and major NTM species. Copyright © 2017 American Society for Microbiology.

  10. WIDAFELS flexible automation systems

    International Nuclear Information System (INIS)

    Shende, P.S.; Chander, K.P.; Ramadas, P.

    1990-01-01

    After discussing the various aspects of automation, some typical examples of various levels of automation are given. One of the examples is of automated production line for ceramic fuel pellets. (M.G.B.)

  11. An Automation Planning Primer.

    Science.gov (United States)

    Paynter, Marion

    1988-01-01

    This brief planning guide for library automation incorporates needs assessment and evaluation of options to meet those needs. A bibliography of materials on automation planning and software reviews, library software directories, and library automation journals is included. (CLB)

  12. Synovial fluid multiplex PCR is superior to culture for detection of low-virulent pathogens causing periprosthetic joint infection.

    Science.gov (United States)

    Morgenstern, Christian; Cabric, Sabrina; Perka, Carsten; Trampuz, Andrej; Renz, Nora

    2018-02-01

    Analysis of joint aspirate is the standard preoperative investigation for diagnosis of periprosthetic joint infection (PJI). We compared the diagnostic performance of culture and multiplex polymerase chain reaction (PCR) of synovial fluid for diagnosis of PJI. Patients in whom aspiration of the prosthetic hip or knee joint was performed before revision arthroplasty were prospectively included. The performance of synovial fluid culture and multiplex PCR was compared by McNemar's chi-squared test. A total of 142 patients were included, 82 with knee and 60 with hip prosthesis. PJI was diagnosed in 77 patients (54%) and aseptic failure in 65 patients (46%). The sensitivity of synovial fluid culture and PCR was 52% and 60%, respectively, showing concordant results in 116 patients (82%). In patients with PJI, PCR missed 6 high-virulent pathogens (S. aureus, streptococci, E. faecalis, E. coli) which grew in synovial fluid culture, whereas synovial fluid culture missed 12 pathogens detected by multiplex PCR, predominantly low-virulent pathogens (Cutibacterium acnes and coagulase-negative staphylococci). In patients with aseptic failure, PCR detected 6 low-virulent organisms (predominantly C. acnes). While the overall performance of synovial fluid PCR was comparable to culture, PCR was superior for detection of low-virulent bacteria such as Cutibacterium spp. and coagulase-negative staphylococci. In addition, synovial fluid culture required several days for growth, whereas multiplex PCR provided results within 5hours in an automated manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Simultaneous Detection of Genetically Modified Organisms in a Mixture by Multiplex PCR-Chip Capillary Electrophoresis.

    Science.gov (United States)

    Patwardhan, Supriya; Dasari, Srikanth; Bhagavatula, Krishna; Mueller, Steffen; Deepak, Saligrama Adavigowda; Ghosh, Sudip; Basak, Sanjay

    2015-01-01

    An efficient PCR-based method to trace genetically modified food and feed products is in demand due to regulatory requirements and contaminant issues in India. However, post-PCR detection with conventional methods has limited sensitivity in amplicon separation that is crucial in multiplexing. The study aimed to develop a sensitive post-PCR detection method by using PCR-chip capillary electrophoresis (PCR-CCE) to detect and identify specific genetically modified organisms in their genomic DNA mixture by targeting event-specific nucleotide sequences. Using the PCR-CCE approach, novel multiplex methods were developed to detect MON531 cotton, EH 92-527-1 potato, Bt176 maize, GT73 canola, or GA21 maize simultaneously when their genomic DNAs in mixtures were amplified using their primer mixture. The repeatability RSD (RSDr) of the peak migration time was 0.06 and 3.88% for the MON531 and Bt176, respectively. The RSD (RSDR) of the Cry1Ac peak ranged from 0.12 to 0.40% in multiplex methods. The method was sensitive in resolving amplicon of size difference up to 4 bp. The PCR-CCE method is suitable to detect multiple genetically modified events in a composite DNA sample by tagging their event specific sequences.

  14. Low cost automation

    International Nuclear Information System (INIS)

    1987-03-01

    This book indicates method of building of automation plan, design of automation facilities, automation and CHIP process like basics of cutting, NC processing machine and CHIP handling, automation unit, such as drilling unit, tapping unit, boring unit, milling unit and slide unit, application of oil pressure on characteristics and basic oil pressure circuit, application of pneumatic, automation kinds and application of process, assembly, transportation, automatic machine and factory automation.

  15. Aptamer-based multiplexed proteomic technology for biomarker discovery.

    Science.gov (United States)

    Gold, Larry; Ayers, Deborah; Bertino, Jennifer; Bock, Christopher; Bock, Ashley; Brody, Edward N; Carter, Jeff; Dalby, Andrew B; Eaton, Bruce E; Fitzwater, Tim; Flather, Dylan; Forbes, Ashley; Foreman, Trudi; Fowler, Cate; Gawande, Bharat; Goss, Meredith; Gunn, Magda; Gupta, Shashi; Halladay, Dennis; Heil, Jim; Heilig, Joe; Hicke, Brian; Husar, Gregory; Janjic, Nebojsa; Jarvis, Thale; Jennings, Susan; Katilius, Evaldas; Keeney, Tracy R; Kim, Nancy; Koch, Tad H; Kraemer, Stephan; Kroiss, Luke; Le, Ngan; Levine, Daniel; Lindsey, Wes; Lollo, Bridget; Mayfield, Wes; Mehan, Mike; Mehler, Robert; Nelson, Sally K; Nelson, Michele; Nieuwlandt, Dan; Nikrad, Malti; Ochsner, Urs; Ostroff, Rachel M; Otis, Matt; Parker, Thomas; Pietrasiewicz, Steve; Resnicow, Daniel I; Rohloff, John; Sanders, Glenn; Sattin, Sarah; Schneider, Daniel; Singer, Britta; Stanton, Martin; Sterkel, Alana; Stewart, Alex; Stratford, Suzanne; Vaught, Jonathan D; Vrkljan, Mike; Walker, Jeffrey J; Watrobka, Mike; Waugh, Sheela; Weiss, Allison; Wilcox, Sheri K; Wolfson, Alexey; Wolk, Steven K; Zhang, Chi; Zichi, Dom

    2010-12-07

    The interrogation of proteomes ("proteomics") in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma). Our current assay measures 813 proteins with low limits of detection (1 pM median), 7 logs of overall dynamic range (~100 fM-1 µM), and 5% median coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding signature of DNA aptamer concentrations, which is quantified on a DNA microarray. Our assay takes advantage of the dual nature of aptamers as both folded protein-binding entities with defined shapes and unique nucleotide sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to rapidly discover unique protein signatures characteristic of various disease states. We describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine.

  16. Multiplexed Quantitation of Intraphagocyte Mycobacterium tuberculosis Secreted Protein Effectors

    Directory of Open Access Journals (Sweden)

    Fadel Sayes

    2018-04-01

    Full Text Available Summary: The pathogenic potential of Mycobacterium tuberculosis largely depends on ESX secretion systems exporting members of the multigenic Esx, Esp, and PE/PPE protein families. To study the secretion and regulation patterns of these proteins while circumventing immune cross-reactions due to their extensive sequence homologies, we developed an approach that relies on the recognition of their MHC class II epitopes by highly discriminative T cell receptors (TCRs of a panel of T cell hybridomas. The latter were engineered so that each expresses a unique fluorescent reporter linked to specific antigen recognition. The resulting polychromatic and multiplexed imaging assay enabled us to measure the secretion of mycobacterial effectors inside infected host cells. We applied this novel technology to a large panel of mutants, clinical isolates, and host-cell types to explore the host-mycobacteria interplay and its impact on the intracellular bacterial secretome, which also revealed the unexpected capacity of phagocytes from lung granuloma to present mycobacterial antigens via MHC class II. : Sayes et al. develop an approach to express distinct fluorescent reporters that is based on the recognition of specific Mycobacterium tuberculosis MHC class II epitopes by highly discriminative T cell hybridomas. This multiplexed technology allows the study of secretion, subcellular location, and regulation patterns of these instrumental protein members. Keywords: mycobacterium tuberculosis, type VII secretion systems, intracellular bacteria, T-cell hybridomas, mycobacterial virulence factors, bacterial antigen presentation, lentiviral vectors, reporter T cells, in vivo antigen presentation, protein localization

  17. Aptamer-based multiplexed proteomic technology for biomarker discovery.

    Directory of Open Access Journals (Sweden)

    Larry Gold

    2010-12-01

    Full Text Available The interrogation of proteomes ("proteomics" in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology and medicine.We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 µL of serum or plasma. Our current assay measures 813 proteins with low limits of detection (1 pM median, 7 logs of overall dynamic range (~100 fM-1 µM, and 5% median coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding signature of DNA aptamer concentrations, which is quantified on a DNA microarray. Our assay takes advantage of the dual nature of aptamers as both folded protein-binding entities with defined shapes and unique nucleotide sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD. We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to rapidly discover unique protein signatures characteristic of various disease states.We describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine.

  18. Automation, parallelism, and robotics for proteomics.

    Science.gov (United States)

    Alterovitz, Gil; Liu, Jonathan; Chow, Jijun; Ramoni, Marco F

    2006-07-01

    The speed of the human genome project (Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C. et al., Nature 2001, 409, 860-921) was made possible, in part, by developments in automation of sequencing technologies. Before these technologies, sequencing was a laborious, expensive, and personnel-intensive task. Similarly, automation and robotics are changing the field of proteomics today. Proteomics is defined as the effort to understand and characterize proteins in the categories of structure, function and interaction (Englbrecht, C. C., Facius, A., Comb. Chem. High Throughput Screen. 2005, 8, 705-715). As such, this field nicely lends itself to automation technologies since these methods often require large economies of scale in order to achieve cost and time-saving benefits. This article describes some of the technologies and methods being applied in proteomics in order to facilitate automation within the field as well as in linking proteomics-based information with other related research areas.

  19. Spin and wavelength multiplexed nonlinear metasurface holography

    Science.gov (United States)

    Ye, Weimin; Zeuner, Franziska; Li, Xin; Reineke, Bernhard; He, Shan; Qiu, Cheng-Wei; Liu, Juan; Wang, Yongtian; Zhang, Shuang; Zentgraf, Thomas

    2016-06-01

    Metasurfaces, as the ultrathin version of metamaterials, have caught growing attention due to their superior capability in controlling the phase, amplitude and polarization states of light. Among various types of metasurfaces, geometric metasurface that encodes a geometric or Pancharatnam-Berry phase into the orientation angle of the constituent meta-atoms has shown great potential in controlling light in both linear and nonlinear optical regimes. The robust and dispersionless nature of the geometric phase simplifies the wave manipulation tremendously. Benefitting from the continuous phase control, metasurface holography has exhibited advantages over conventional depth controlled holography with discretized phase levels. Here we report on spin and wavelength multiplexed nonlinear metasurface holography, which allows construction of multiple target holographic images carried independently by the fundamental and harmonic generation waves of different spins. The nonlinear holograms provide independent, nondispersive and crosstalk-free post-selective channels for holographic multiplexing and multidimensional optical data storages, anti-counterfeiting, and optical encryption.

  20. Automated Budget System -

    Data.gov (United States)

    Department of Transportation — The Automated Budget System (ABS) automates management and planning of the Mike Monroney Aeronautical Center (MMAC) budget by providing enhanced capability to plan,...

  1. Impact of automation on mass spectrometry.

    Science.gov (United States)

    Zhang, Yan Victoria; Rockwood, Alan

    2015-10-23

    Mass spectrometry coupled to liquid chromatography (LC-MS and LC-MS/MS) is an analytical technique that has rapidly grown in popularity in clinical practice. In contrast to traditional technology, mass spectrometry is superior in many respects including resolution, specificity, multiplex capability and has the ability to measure analytes in various matrices. Despite these advantages, LC-MS/MS remains high cost, labor intensive and has limited throughput. This specialized technology requires highly trained personnel and therefore has largely been limited to large institutions, academic organizations and reference laboratories. Advances in automation will be paramount to break through this bottleneck and increase its appeal for routine use. This article reviews these challenges, shares perspectives on essential features for LC-MS/MS total automation and proposes a step-wise and incremental approach to achieve total automation through reducing human intervention, increasing throughput and eventually integrating the LC-MS/MS system into the automated clinical laboratory operations. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Wireless Multiplexed Surface Acoustic Wave Sensors Project

    Science.gov (United States)

    Youngquist, Robert C.

    2014-01-01

    Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).

  3. Novel Equalization Techniques for Space Division Multiplexing Based on Stokes Space Update Rule

    Directory of Open Access Journals (Sweden)

    Francisco Javier Vaquero Caballero

    2017-02-01

    Full Text Available Space division multiplexing (SDM is a promising technology that aims to overcome the capacity crunch of optical communications. In this paper, we introduce the multiple-input multiple-output (MIMO Stokes Space Algorithm (SSA implemented in frequency domain, a novel equalization technique for space division multiplexing (SDM. Although different papers have been published about the SSA and its MIMO implementation, we provide for the first time an analysis of the of the convergence speed and frequency offset of the SSA compared to the least mean square (LMS. SSA algorithm can deal with higher frequency offsets and linewidths than LMS, being suitable for optical communications with higher phase noise. SSA does not need pre-compensation of frequency offset, which can be compensated after equalization without penalties. On the other hand, due to reduced convergence speed, SSA requires longer training sequences than LMS.

  4. Detection of Lymnaea columella infection by Fasciola hepatica through Multiplex-PCR

    Directory of Open Access Journals (Sweden)

    Kelly Grace Magalhães

    2004-06-01

    Full Text Available From complete mitochondrial DNA sequence of Fasciola hepatica available in Genbank, specific primers were designed for a conserved and repetitive region of this trematode. A pair of primers was used for diagnosis of infected Lymnaea columella by F. hepatica during the pre-patent period simultaneously with another pair of primers which amplified the internal transcribed spacer (ITS region of rDNA from L. columella in a single Multiplex-PCR. The amplification generated a ladder band profile specific for F. hepatica. This profile was observed in positive molluscs at different times of infection, including adult worms from the trematode. The Multiplex-PCR technique showed to be a fast and safe tool for fascioliasis diagnosis, enabling the detection of F. hepatica miracidia in L. columella during the pre-patent period and identification of transmission areas.

  5. Multiplex congruence network of natural numbers.

    Science.gov (United States)

    Yan, Xiao-Yong; Wang, Wen-Xu; Chen, Guan-Rong; Shi, Ding-Hua

    2016-03-31

    Congruence theory has many applications in physical, social, biological and technological systems. Congruence arithmetic has been a fundamental tool for data security and computer algebra. However, much less attention was devoted to the topological features of congruence relations among natural numbers. Here, we explore the congruence relations in the setting of a multiplex network and unveil some unique and outstanding properties of the multiplex congruence network. Analytical results show that every layer therein is a sparse and heterogeneous subnetwork with a scale-free topology. Counterintuitively, every layer has an extremely strong controllability in spite of its scale-free structure that is usually difficult to control. Another amazing feature is that the controllability is robust against targeted attacks to critical nodes but vulnerable to random failures, which also differs from ordinary scale-free networks. The multi-chain structure with a small number of chain roots arising from each layer accounts for the strong controllability and the abnormal feature. The multiplex congruence network offers a graphical solution to the simultaneous congruences problem, which may have implication in cryptography based on simultaneous congruences. Our work also gains insight into the design of networks integrating advantages of both heterogeneous and homogeneous networks without inheriting their limitations.

  6. Epidemics in partially overlapped multiplex networks.

    Directory of Open Access Journals (Sweden)

    Camila Buono

    Full Text Available Many real networks exhibit a layered structure in which links in each layer reflect the function of nodes on different environments. These multiple types of links are usually represented by a multiplex network in which each layer has a different topology. In real-world networks, however, not all nodes are present on every layer. To generate a more realistic scenario, we use a generalized multiplex network and assume that only a fraction [Formula: see text] of the nodes are shared by the layers. We develop a theoretical framework for a branching process to describe the spread of an epidemic on these partially overlapped multiplex networks. This allows us to obtain the fraction of infected individuals as a function of the effective probability that the disease will be transmitted [Formula: see text]. We also theoretically determine the dependence of the epidemic threshold on the fraction [Formula: see text] of shared nodes in a system composed of two layers. We find that in the limit of [Formula: see text] the threshold is dominated by the layer with the smaller isolated threshold. Although a system of two completely isolated networks is nearly indistinguishable from a system of two networks that share just a few nodes, we find that the presence of these few shared nodes causes the epidemic threshold of the isolated network with the lower propagating capacity to change discontinuously and to acquire the threshold of the other network.

  7. Automation 2017

    CERN Document Server

    Zieliński, Cezary; Kaliczyńska, Małgorzata

    2017-01-01

    This book consists of papers presented at Automation 2017, an international conference held in Warsaw from March 15 to 17, 2017. It discusses research findings associated with the concepts behind INDUSTRY 4.0, with a focus on offering a better understanding of and promoting participation in the Fourth Industrial Revolution. Each chapter presents a detailed analysis of a specific technical problem, in most cases followed by a numerical analysis, simulation and description of the results of implementing the solution in a real-world context. The theoretical results, practical solutions and guidelines presented are valuable for both researchers working in the area of engineering sciences and practitioners looking for solutions to industrial problems. .

  8. Marketing automation

    Directory of Open Access Journals (Sweden)

    TODOR Raluca Dania

    2017-01-01

    Full Text Available The automation of the marketing process seems to be nowadays, the only solution to face the major changes brought by the fast evolution of technology and the continuous increase in supply and demand. In order to achieve the desired marketing results, businessis have to employ digital marketing and communication services. These services are efficient and measurable thanks to the marketing technology used to track, score and implement each campaign. Due to the technical progress, the marketing fragmentation, demand for customized products and services on one side and the need to achieve constructive dialogue with the customers, immediate and flexible response and the necessity to measure the investments and the results on the other side, the classical marketing approached had changed continue to improve substantially.

  9. High dynamic range image acquisition based on multiplex cameras

    Science.gov (United States)

    Zeng, Hairui; Sun, Huayan; Zhang, Tinghua

    2018-03-01

    High dynamic image is an important technology of photoelectric information acquisition, providing higher dynamic range and more image details, and it can better reflect the real environment, light and color information. Currently, the method of high dynamic range image synthesis based on different exposure image sequences cannot adapt to the dynamic scene. It fails to overcome the effects of moving targets, resulting in the phenomenon of ghost. Therefore, a new high dynamic range image acquisition method based on multiplex cameras system was proposed. Firstly, different exposure images sequences were captured with the camera array, using the method of derivative optical flow based on color gradient to get the deviation between images, and aligned the images. Then, the high dynamic range image fusion weighting function was established by combination of inverse camera response function and deviation between images, and was applied to generated a high dynamic range image. The experiments show that the proposed method can effectively obtain high dynamic images in dynamic scene, and achieves good results.

  10. Automated Planning and Scheduling for Planetary Rover Distributed Operations

    Science.gov (United States)

    Backes, Paul G.; Rabideau, Gregg; Tso, Kam S.; Chien, Steve

    1999-01-01

    Automated planning and Scheduling, including automated path planning, has been integrated with an Internet-based distributed operations system for planetary rover operations. The resulting prototype system enables faster generation of valid rover command sequences by a distributed planetary rover operations team. The Web Interface for Telescience (WITS) provides Internet-based distributed collaboration, the Automated Scheduling and Planning Environment (ASPEN) provides automated planning and scheduling, and an automated path planner provided path planning. The system was demonstrated on the Rocky 7 research rover at JPL.

  11. RAPID DETECTION OF -THALASSEMIA MUTATIONS IN THAILAND USING MULTIPLEX ARMS

    Directory of Open Access Journals (Sweden)

    D. Shimbhu

    2017-11-01

    Full Text Available The number of mutations underlining b-thalassemia generate a wide variety of different clinical phenotypes. An understanding of the genotype is important for medical personnel in order to provide proper counseling to patients and their families. Characterization of these mutations should aid the planning of a prenatal diagnosis program for bthalassemia. The heterogeneity of the mutations makes it difficult and time consuming to identify the mutation in some individuals. We developed a single-tube multiplex amplification refractory mutation system (multiplex ARMS to identify common ethnic- specific b-thalassemia mutations. Confirmation of multiplex ARMS results was carried out using direct sequencing. Three thousand three hundred twenty two people from Phitsanulok province were screened for the b-thalassemia trait by quantitation of HbA2 with microcolumn chromatography and the genotypes of mutations were characterized using multiplex ARMS and direct sequencing. We found that the deletion at codons 41/42 (-TCTT was the most frequent (48%, codon 17 (A®T (30%, -28 (A®G (6% and IVS-I-1(G®T (6% were the second and third in frequency respectively. A -87 (C®A mutation (4%, IVS II-654 (C®T (2%, codons 71/72 (+A (2% and codon 35 (C®A mutations (2% were also found. These techniques were found to be a valuable tool for analysis of b-thalassemia mutations because they are accurate, simple, and speedy in operation. The application for the diagnosis of severe thalassemia in high-risk pregnancies is promising.

  12. Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network.

    Science.gov (United States)

    Wang, Andong; Zhu, Long; Liu, Jun; Du, Cheng; Mo, Qi; Wang, Jian

    2015-11-16

    Mode-division multiplexing passive optical network (MDM-PON) is a promising scheme for next-generation access networks to further increase fiber transmission capacity. In this paper, we demonstrate the proof-of-concept experiment of hybrid mode-division multiplexing (MDM) and time-division multiplexing (TDM) PON architecture by exploiting orbital angular momentum (OAM) modes. Bidirectional transmissions with 2.5-Gbaud 4-level pulse amplitude modulation (PAM-4) downstream and 2-Gbaud on-off keying (OOK) upstream are demonstrated in the experiment. The observed optical signal-to-noise ratio (OSNR) penalties for downstream and upstream transmissions at a bit-error rate (BER) of 2 × 10(-3) are less than 2.0 dB and 3.0 dB, respectively.

  13. Millstone: software for multiplex microbial genome analysis and engineering.

    Science.gov (United States)

    Goodman, Daniel B; Kuznetsov, Gleb; Lajoie, Marc J; Ahern, Brian W; Napolitano, Michael G; Chen, Kevin Y; Chen, Changping; Church, George M

    2017-05-25

    Inexpensive DNA sequencing and advances in genome editing have made computational analysis a major rate-limiting step in adaptive laboratory evolution and microbial genome engineering. We describe Millstone, a web-based platform that automates genotype comparison and visualization for projects with up to hundreds of genomic samples. To enable iterative genome engineering, Millstone allows users to design oligonucleotide libraries and create successive versions of reference genomes. Millstone is open source and easily deployable to a cloud platform, local cluster, or desktop, making it a scalable solution for any lab.

  14. Next-Generation Sequencing Platforms

    Science.gov (United States)

    Mardis, Elaine R.

    2013-06-01

    Automated DNA sequencing instruments embody an elegant interplay among chemistry, engineering, software, and molecular biology and have built upon Sanger's founding discovery of dideoxynucleotide sequencing to perform once-unfathomable tasks. Combined with innovative physical mapping approaches that helped to establish long-range relationships between cloned stretches of genomic DNA, fluorescent DNA sequencers produced reference genome sequences for model organisms and for the reference human genome. New types of sequencing instruments that permit amazing acceleration of data-collection rates for DNA sequencing have been developed. The ability to generate genome-scale data sets is now transforming the nature of biological inquiry. Here, I provide an historical perspective of the field, focusing on the fundamental developments that predated the advent of next-generation sequencing instruments and providing information about how these instruments work, their application to biological research, and the newest types of sequencers that can extract data from single DNA molecules.

  15. Simultaneous quantitative assessment of circulating cell-free mitochondrial and nuclear DNA by multiplex real-time PCR

    Directory of Open Access Journals (Sweden)

    Peng Xia

    2009-01-01

    Full Text Available Quantification of circulating nucleic acids in plasma and serum could be used as a non-invasive diagnostic tool for monitoring a wide variety of diseases and conditions. We describe here a rapid, simple and accurate multiplex real-time PCR method for direct synchronized analysis of circulating cell-free (ccf mitochondrial (mtDNA and nuclear (nDNA DNA in plasma and serum samples. The method is based on one-step multiplex real-time PCR using a FAM-labeled MGB probe and primers to amplify the mtDNA sequence of the ATP 8 gene, and a VIC-labeled MGB probe and primers to amplify the nDNA sequence of the glycerinaldehyde-3-phosphate-dehydrogenase (GAPDH gene, in plasma and serum samples simultaneously. The efficiencies of the multiplex assays were measured in serial dilutions. Based on the simulation of the PCR reaction kinetics, the relative quantities of ccf mtDNA were calculated using a very simple equation. Using our optimised real-time PCR conditions, close to 100% efficiency was obtained from the two assays. The two assays performed in the dilution series showed very good and reproducible correlation to each other. This optimised multiplex real-time PCR protocol can be widely used for synchronized quantification of mtDNA and nDNA in different samples, with a very high rate of efficiency.

  16. Spatial-phase code-division multiple-access system with multiplexed Fourier holography switching for reconfigurable optical interconnection

    Science.gov (United States)

    Takasago, Kazuya; Takekawa, Makoto; Shirakawa, Atsushi; Kannari, Fumihiko

    2000-05-01

    A new, to our knowledge, space-variant optical interconnection system based on a spatial-phase code-division multiple-access technique with multiplexed Fourier holography is described. In this technique a signal beam is spread over wide spatial frequencies by an M -sequence pseudorandom phase code. At a receiver side a selected signal beam is properly decoded, and at the same time its spatial pattern is shaped with a Fourier hologram, which is recorded by light that is encoded with the same M -sequence phase mask as the desired signal beam and by light whose spatial beam pattern is shaped to a signal routing pattern. Using the multiplexed holography, we can simultaneously route multisignal flows into individually specified receiver elements. The routing pattern can also be varied by means of switching the encoding phase code or replacing the hologram. We demonstrated a proof-of-principle experiment with a doubly multiplexed hologram that enables simultaneous routing of two signal beams. Using a numerical model, we showed that the proposed scheme can manage more than 250 routing patterns for one signal flow with one multiplexed hologram at a signal-to-noise ratio of 5.

  17. Optimized and secure technique for multiplexing QR code images of single characters: application to noiseless messages retrieval

    International Nuclear Information System (INIS)

    Trejos, Sorayda; Barrera, John Fredy; Torroba, Roberto

    2015-01-01

    We present for the first time an optical encrypting–decrypting protocol for recovering messages without speckle noise. This is a digital holographic technique using a 2f scheme to process QR codes entries. In the procedure, letters used to compose eventual messages are individually converted into a QR code, and then each QR code is divided into portions. Through a holographic technique, we store each processed portion. After filtering and repositioning, we add all processed data to create a single pack, thus simplifying the handling and recovery of multiple QR code images, representing the first multiplexing procedure applied to processed QR codes. All QR codes are recovered in a single step and in the same plane, showing neither cross-talk nor noise problems as in other methods. Experiments have been conducted using an interferometric configuration and comparisons between unprocessed and recovered QR codes have been performed, showing differences between them due to the involved processing. Recovered QR codes can be successfully scanned, thanks to their noise tolerance. Finally, the appropriate sequence in the scanning of the recovered QR codes brings a noiseless retrieved message. Additionally, to procure maximum security, the multiplexed pack could be multiplied by a digital diffuser as to encrypt it. The encrypted pack is easily decoded by multiplying the multiplexing with the complex conjugate of the diffuser. As it is a digital operation, no noise is added. Therefore, this technique is threefold robust, involving multiplexing, encryption, and the need of a sequence to retrieve the outcome. (paper)

  18. Optimized and secure technique for multiplexing QR code images of single characters: application to noiseless messages retrieval

    Science.gov (United States)

    Trejos, Sorayda; Fredy Barrera, John; Torroba, Roberto

    2015-08-01

    We present for the first time an optical encrypting-decrypting protocol for recovering messages without speckle noise. This is a digital holographic technique using a 2f scheme to process QR codes entries. In the procedure, letters used to compose eventual messages are individually converted into a QR code, and then each QR code is divided into portions. Through a holographic technique, we store each processed portion. After filtering and repositioning, we add all processed data to create a single pack, thus simplifying the handling and recovery of multiple QR code images, representing the first multiplexing procedure applied to processed QR codes. All QR codes are recovered in a single step and in the same plane, showing neither cross-talk nor noise problems as in other methods. Experiments have been conducted using an interferometric configuration and comparisons between unprocessed and recovered QR codes have been performed, showing differences between them due to the involved processing. Recovered QR codes can be successfully scanned, thanks to their noise tolerance. Finally, the appropriate sequence in the scanning of the recovered QR codes brings a noiseless retrieved message. Additionally, to procure maximum security, the multiplexed pack could be multiplied by a digital diffuser as to encrypt it. The encrypted pack is easily decoded by multiplying the multiplexing with the complex conjugate of the diffuser. As it is a digital operation, no noise is added. Therefore, this technique is threefold robust, involving multiplexing, encryption, and the need of a sequence to retrieve the outcome.

  19. Comparison of multiplex reverse transcription-PCR-enzyme ...

    African Journals Online (AJOL)

    Comparison of multiplex reverse transcription-PCR-enzyme hybridization assay with immunofluorescence techniques for the detection of four viral respiratory pathogens in pediatric community acquired pneumonia.

  20. Both Automation and Paper.

    Science.gov (United States)

    Purcell, Royal

    1988-01-01

    Discusses the concept of a paperless society and the current situation in library automation. Various applications of automation and telecommunications are addressed, and future library automation is considered. Automation at the Monroe County Public Library in Bloomington, Indiana, is described as an example. (MES)

  1. 76 FR 71982 - Advancing Regulatory Science for Highly Multiplexed Microbiology/Medical Countermeasure Devices...

    Science.gov (United States)

    2011-11-21

    ... Multiplexed Microbiology Devices: Their clinical application and public health/clinical needs; inclusion of...] Advancing Regulatory Science for Highly Multiplexed Microbiology/ Medical Countermeasure Devices; Public... Multiplexed Microbiology/ Medical Countermeasure Devices'' that published in the Federal Register of August 8...

  2. Design of a Modular DNA Triangular-Prism Sensor Enabling Ratiometric and Multiplexed Biomolecule Detection on a Single Microbead.

    Science.gov (United States)

    Liu, Yu; Chen, Qiaoshu; Liu, Jianbo; Yang, Xiaohai; Guo, Qiuping; Li, Li; Liu, Wei; Wang, Kemin

    2017-03-21

    DNA nanostructures have emerged as powerful and versatile building blocks for the construction of programmable nanoscale structures and functional sensors for biomarker detection, disease diagnostics, and therapy. Here we integrated multiple sensing modules into a single DNA three-dimensional (3D) nanoarchitecture with a triangular-prism (TP) structure for ratiometric and multiplexed biomolecule detection on a single microbead. In our design, the complementary hybridization of three clip sequences formed TP nanoassemblies in which the six single-strand regions in the top and bottom faces act as binding sites for different sensing modules, including an anchor module, reference sequence module, and capture sequence module. The multifunctional modular TP nanostructures were thus exploited for ratiometric and multiplexed biomolecule detection on microbeads. Microbead imaging demonstrated that, after ratiometric self-calibration analysis, the imaging deviations resulting from uneven fluorescence intensity distribution and differing probe concentrations were greatly reduced. The rigid nanostructure also conferred the TP as a framework for geometric positioning of different capture sequences. The inclusion of multiple targets led to the formation of sandwich hybridization structures that gave a readily detectable optical response at different fluorescence channels and distinct fingerprint-like pattern arrays. This approach allowed us to discriminate multiplexed biomolecule targets in a simple and efficient fashion. In this module-designed strategy, the diversity of the controlled DNA assembly coupled with the geometrically well-defined rigid nanostructures of the TP assembly provides a flexible and reliable biosensing approach that shows great promise for biomedical applications.

  3. Development of nuclear power plant automated remote patrol system

    International Nuclear Information System (INIS)

    Nakayama, R.; Kubo, K.; Sato, K.; Taguchi, J.

    1984-01-01

    An Automated Remote Patrol System was developed for a remote inspection, observation and monitoring of nuclear power plant's components. This automated remote patrol system consists of; a vehicle moving along a monorail; three rails mounted in a monorail for data transmission and for power supply; an image fiber connected to a TV camera; an arm type mechanism (manipulator) for moving image fiber; a computer for control and data processing and operator's console. Special features of this Automated Remote Patrol System are as follows: The inspection vehicle runs along horizontal and vertical (up/down) monorails. The arm type mechanism (manipulator) on the vehicle is used to move image fiber. Slide type electric collectors are used for data transmission and power supply. Time-division multiplexing is adapted for data transmission. Voice communication is used for controlling mechanisms. Pattern recognition is used for data processing. The experience that has been obtained from a series of various tests is summarized. (author)

  4. [Application of multiplex PCR for the screening of genotyping system for the rare blood groups Fy(a-), s-,k-,Di(b-) and Js(b-)].

    Science.gov (United States)

    Jiao, Wei; Xie, Li; Li, Hailan; Lan, Jiao; Mo, Zhuning; Yang, Ziji; Liu, Fei; Xiao, Ruiping; He, Yunlei; Ye, Luyi; Zhu, Ziyan

    2014-04-01

    To screen rare blood groups Fy(a-), s-, k-, Di(b-) and Js(b-) in an ethnic Zhuang population. Sequence-specific primers were designed based on single nucleotide polymorphism (SNP) sites of blood group antigens Fy(b) and s. A specific multiplex PCR system I was established. Multiplex PCR system II was applied to detect alleles antigens Di(b), k, Js(b)1910 and Js(b) 2019 at the same time. The two systems was were used to screen for rare blood group antigens in 4490 randomly selected healthy donors of Guangxi Zhuang ethnic origin. We successfully made the multiplex PCR system I. We detected the rare blood group antigens using the two PCR system. There are five Fy(a-), three s(-), two Di(b-) in 4490 Guangxi zhuang random samples. The multiplex PCR system I has achieved good accuracy and stability. With multiplex PCR systems I and II, 4490 samples were screened. Five Fy(a-), three s(-) and two Di(b-) samples were discovered. Multiplex PCR is an effective methods, which can be used for high throughput screening of rare blood groups. The rare blood types of Guangxi Zhuang ethnic origin obtained through the screening can provide valuable information for compatible blood transfusion. Through screening we obtained precious rare blood type materials which can be used to improve the capability of compatible infusion and reduce the transfusion reactions.

  5. Multiplex serology of paraneoplastic antineuronal antibodies.

    Science.gov (United States)

    Maat, Peter; Brouwer, Eric; Hulsenboom, Esther; VanDuijn, Martijn; Schreurs, Marco W J; Hooijkaas, Herbert; Smitt, Peter A E Sillevis

    2013-05-31

    Paraneoplastic neurological syndromes (PNS) are devastating neurological disorders secondary to cancer, associated with onconeural autoantibodies. Such antibodies are directed against neuronal antigens aberrantly expressed by the tumor. The detection of onconeural antibodies in a patient is extremely important in diagnosing a neurological syndrome as paraneoplastic (70% is not yet known to have cancer) and in directing the search for the underlying neoplasm. At present six onconeural antibodies are considered 'well characterized' and recognize the antigens HuD, CDR62 (Yo), amphiphysin, CRMP-5 (CV2), NOVA-1 (Ri), and Ma2. The gold standard of detection is the characteristic immunohistochemical staining pattern on brain tissue sections combined with confirmation by immunoblotting using recombinant purified proteins. Since all six onconeural antibodies are usually analyzed simultaneously and objective cut-off values for these analyses are warranted, we developed a multiplex assay based on Luminex technology. Reaction of serial dilutions of six onconeural standard sera with microsphere-bound antigens showed lower limits of detection than with Western blotting. Using the six standard sera at a dilution of 1:200, the average within-run coefficient of variation (CV) was 4% (range 1.9-7.3%). The average between-run within-day CV was 5.1% (range 2.9-6.7%) while the average between-day CV was 8.1% (range 2.8-11.6%). The shelf-life of the antigen coupled microspheres was at least two months. The sensitivity of the multiplex assay ranged from 83% (Ri) to 100% (Yo, amphiphysin, CV2) and the specificity from 96% (CV2) to 100% (Ri). In conclusion, Luminex-based multiplex serology is highly reproducible with high sensitivity and specificity for the detection of onconeural antibodies. Conventional immunoblotting for diagnosis of onconeural antibodies in the setting of a routine laboratory may be replaced by this novel, robust technology. Copyright © 2013 Elsevier B.V. All rights

  6. Wavelength division multiplexing a practical engineering guide

    CERN Document Server

    Grobe, Klaus

    2013-01-01

    In this book, Optical Wavelength Division Multiplexing (WDM) is approached from a strictly practical and application-oriented point of view. Based on the characteristics and constraints of modern fiber-optic components, transport systems and fibers, the text provides relevant rules of thumb and practical hints for technology selection, WDM system and link dimensioning, and also for network-related aspects such as wavelength assignment and resilience mechanisms. Actual 10/40 Gb/s WDM systems are considered, and a preview of the upcoming 100 Gb/s systems and technologies for even higher bit rate

  7. Performance modeling, stochastic networks, and statistical multiplexing

    CERN Document Server

    Mazumdar, Ravi R

    2013-01-01

    This monograph presents a concise mathematical approach for modeling and analyzing the performance of communication networks with the aim of introducing an appropriate mathematical framework for modeling and analysis as well as understanding the phenomenon of statistical multiplexing. The models, techniques, and results presented form the core of traffic engineering methods used to design, control and allocate resources in communication networks.The novelty of the monograph is the fresh approach and insights provided by a sample-path methodology for queueing models that highlights the importan

  8. Subcarrier multiplexing optical quantum key distribution

    International Nuclear Information System (INIS)

    Ortigosa-Blanch, A.; Capmany, J.

    2006-01-01

    We present the physical principles of a quantum key distribution system that opens the possibility of parallel quantum key distribution and, therefore, of a substantial improvement in the bit rate of such systems. Quantum mechanics allows for multiple measurements at different frequencies and thus we exploit this concept by extending the concept of frequency coding to the case where more than one radio-frequency subcarrier is used for independently encoding the bits onto an optical carrier. Taking advantage of subcarrier multiplexing techniques we demonstrate that the bit rate can be greatly improved as parallel key distribution is enabled

  9. Improved Encrypted-Signals-Based Reversible Data Hiding Using Code Division Multiplexing and Value Expansion

    Directory of Open Access Journals (Sweden)

    Xianyi Chen

    2018-01-01

    Full Text Available Compared to the encrypted-image-based reversible data hiding (EIRDH method, the encrypted-signals-based reversible data hiding (ESRDH technique is a novel way to achieve a greater embedding rate and better quality of the decrypted signals. Motivated by ESRDH using signal energy transfer, we propose an improved ESRDH method using code division multiplexing and value expansion. At the beginning, each pixel of the original image is divided into several parts containing a little signal and multiple equal signals. Next, all signals are encrypted by Paillier encryption. And then a large number of secret bits are embedded into the encrypted signals using code division multiplexing and value expansion. Since the sum of elements in any spreading sequence is equal to 0, lossless quality of directly decrypted signals can be achieved using code division multiplexing on the encrypted equal signals. Although the visual quality is reduced, high-capacity data hiding can be accomplished by conducting value expansion on the encrypted little signal. The experimental results show that our method is better than other methods in terms of the embedding rate and average PSNR.

  10. New multiplex PCR methods for rapid screening of genetically modified organisms in foods

    Directory of Open Access Journals (Sweden)

    Nelly eDatukishvili

    2015-07-01

    Full Text Available We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs. New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products.

  11. Development of Multiplex Microsatellite PCR Panels for the Seagrass Thalassia hemprichii (Hydrocharitaceae

    Directory of Open Access Journals (Sweden)

    Kor-jent van Dijk

    2014-11-01

    Full Text Available Premise of the study: New microsatellites were developed for the seagrass Thalassia hemprichii (Hydrocharitaceae, a long-lived seagrass species that is found throughout the shallow waters of tropical and subtropical Indo-West Pacific. Three multiplex PCR panels were designed utilizing new and previously developed markers, resulting in a toolkit for generating a 16-locus genotype. Methods and Results: Through the use of microsatellite enrichment and next-generation sequencing, 16 new, validated, polymorphic microsatellite markers were isolated. Diversity was between two and four alleles per locus totaling 36 alleles. These markers, plus previously developed microsatellite markers for T. hemprichii and T. testudinum, were tested for suitability in multiplex PCR panels. Conclusions: The generation of an easily replicated suite of multiplex panels of codominant molecular markers will allow for high-resolution and detailed genetic structure analysis and clonality assessment with minimal genotyping costs. We suggest the establishment of a T. hemprichii primer convention for the unification of future data sets.

  12. New multiplex PCR methods for rapid screening of genetically modified organisms in foods.

    Science.gov (United States)

    Datukishvili, Nelly; Kutateladze, Tamara; Gabriadze, Inga; Bitskinashvili, Kakha; Vishnepolsky, Boris

    2015-01-01

    We present novel multiplex PCR methods for rapid and reliable screening of genetically modified organisms (GMOs). New designed PCR primers targeting four frequently used GMO specific sequences permitted identification of new DNA markers, in particular 141 bp fragment of cauliflower mosaic virus (CaMV) 35S promoter, 224 bp fragment of Agrobacterium tumefaciens nopaline synthase (NOS) terminator, 256 bp fragment of 5-enolppyruvylshikimate-phosphate synthase (epsps) gene and 258 bp fragment of Cry1Ab delta-endotoxin (cry1Ab) gene for GMO screening. The certified reference materials containing Roundup Ready soybean (RRS) and maize MON 810 were applied for the development and optimization of uniplex and multiplex PCR systems. Evaluation of amplification products by agarose gel electrophoresis using negative and positive controls confirmed high specificity and sensitivity at 0.1% GMO for both RRS and MON 810. The fourplex PCR was developed and optimized that allows simultaneous detection of three common transgenic elements, such as: CaMV 35S promoter, NOS terminator, epsps gene together with soybean-specific lectin gene. The triplex PCR developed enables simultaneous identification of transgenic elements, such as: 35S promoter and cry1Ab gene together with maize zein gene. The analysis of different processed foods demonstrated that multiplex PCR methods developed in this study are useful for accurate and fast screening of GM food products.

  13. Evaluation of multiplex polymerase chain reaction as an alternative to conventional antibiotic sensitivity test

    Directory of Open Access Journals (Sweden)

    K. Rathore

    2018-04-01

    Full Text Available Aim: This study was designed to evaluate the potential of the use of multiplex polymerase chain reaction (PCR as an alternative to conventional antibiotic sensitivity test. Materials and Methods: Isolates of Staphylococcus aureus (total = 36 from clinical cases presented to Teaching Veterinary Clinical Complex of College of Veterinary and Animal Sciences (CVAS, Navania, Udaipur, were characterized by morphological, cultural, and biochemical methods. Then, the isolates were further subjected to molecular characterization by PCR targeting S. aureus-specific sequence (107 bp. Phenotypic antibiotic sensitivity pattern was analyzed by Kirby Bauer disc diffusion method against 11 commonly used antibiotics in veterinary medicine in and around Udaipur region. The genotypic antibiotic sensitivity pattern was studied against methicillin, aminoglycosides, and tetracycline targeting the gene mecA, aacA-aphD, and tetK by multiplex PCR. Results: There was 100% correlation between the phenotype and genotype of aminoglycoside resistance, more than 90% correlation for methicillin resistance, and 58.3% in the case tetracycline resistance. Conclusion: As there is a good correlation between phenotype and genotype of antibiotic resistance, multiplex PCR can be used as an alternative to the conventional antibiotic susceptibility testing, as it can give a rapid and true prediction of antibiotic sensitivity pattern.

  14. A novel multiplex PCR assay for simultaneous detection of nine clinically significant bacterial pathogens associated with bovine mastitis.

    Science.gov (United States)

    Ashraf, Aqeela; Imran, Muhammad; Yaqub, Tahir; Tayyab, Muhammad; Shehzad, Wasim; Thomson, Peter C

    2017-06-01

    For rapid and simultaneous detection of nine bovine mastitic pathogens, a sensitive and specific multiplex PCR assay was developed. The assay was standardized using reference strains and validated on mastitic milk cultures which were identified to species level based on 16S rRNA sequencing. Multiplex PCR assay also efficiently detected the target bacterial strains directly from milk. The detection limit of the assay was up to 50 pg for DNA isolated from pure cultures and 10 4  CFU/ml for spiked milk samples. As estimated by latent class analysis, the assay was sensitive up to 88% and specific up to 98% for targeted mastitic pathogens, compared with the bacterial culture method and the 16S rRNA sequence analysis. This novel molecular assay could be useful for monitoring and maintaining the bovine udder health, ensuring the bacteriological safety of milk, and conducting epidemiological studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Preliminary study of visual effect of multiplex hologram

    Science.gov (United States)

    Fu, Huaiping; Xiong, Bingheng; Yang, Hong; Zhang, Xueguo

    2004-06-01

    The process of any movement of real object can be recorded and displayed by a multiplex holographic stereogram. An embossing multiplex holographic stereogram and a multiplex rainbow holographic stereogram have been made by us, the multiplex rainbow holographic stereogram reconstructs the dynamic 2D line drawing of speech organs, the embossing multiplex holographic stereogram reconstructs the process of an old man drinking water. In this paper, we studied the visual result of an embossing multiplex holographic stereogram made with 80 films of 2-D pictures. Forty-eight persons of aged from 13 to 67 were asked to see the hologram and then to answer some questions about the feeling of viewing. The results indicate that this kind of holograms could be accepted by human visual sense organ without any problem. This paper also discusses visual effect of the multiplex holography stereograms base on visual perceptual psychology. It is open out that the planar multiplex holograms can be recorded and present the movement of real animal and object. Not only have the human visual perceptual constancy for shape, just as that size, color, etc... but also have visual perceptual constancy for binocular parallax.

  16. Topology-optimized silicon photonic wire mode (de)multiplexer

    DEFF Research Database (Denmark)

    Frellsen, Louise Floor; Frandsen, Lars Hagedorn; Ding, Yunhong

    2015-01-01

    We have designed and for the first time experimentally verified a topology optimized mode (de)multiplexer, which demultiplexes the fundamental and the first order mode of a double mode photonic wire to two separate single mode waveguides (and multiplexes vice versa). The device has a footprint...

  17. Computerized multiplexing and processing of in-core signals

    International Nuclear Information System (INIS)

    Meyer, J.

    1982-09-01

    After a presentation of the in-core instrumentation the main objectives of electric connection multiplexing are given. The conclusion of a study led to choose the multiplexing solution for the reactor building/electric building connections and to associate an information order management system based on the utilization of microprocessors. Finally, the control system (processors, organization, communication, language) is presented [fr

  18. Multiplexing and data processing of in-core signals

    International Nuclear Information System (INIS)

    Meyer, M.

    1983-01-01

    The application of multiplexing and signal processing techniques used for reactor operation and utilisation of data from the in-core instrumentation system is described. After a brief recall about in-core instrumentation, the aims, the advantages of multiplexing are presented. One of the aims of this realization is to show the compatibity between the technologies used with a PWR environment [fr

  19. Explaining HIV Risk Multiplexity: A Social Network Analysis.

    Science.gov (United States)

    Felsher, Marisa; Koku, Emmanuel

    2018-04-21

    Risk multiplexity (i.e., overlap in drug-use, needle exchange and sexual relations) is a known risk factor for HIV. However, little is known about predictors of multiplexity. This study uses egocentric data from the Colorado Springs study to examine how individual, behavioral and social network factors influence engagement in multiplex risk behavior. Analyses revealed that compared to Whites, Hispanics were significantly more likely to engage in risk multiplexity and Blacks less so. Respondents who were similar to each other (e.g., in terms of race) had significantly higher odds of being in risk multiplex relationships, and respondents' risk perceptions and network size were significantly associated with engaging in multiplex risk behaviors. Findings from interaction analysis showed the effect of knowing someone with HIV on the odds of multiplexity depends partly on whether respondents' know their HIV status. Findings suggest that demographics, HIV behaviors and network factors impact engagement in multiplex risk behaviors, highlighting the need for multi-level interventions aimed at reducing HIV risk behavior.

  20. Automated Physico-Chemical Cell Model Development through Information Theory

    Energy Technology Data Exchange (ETDEWEB)

    Peter J. Ortoleva

    2005-11-29

    The objective of this project was to develop predictive models of the chemical responses of microbial cells to variations in their surroundings. The application of these models is optimization of environmental remediation and energy-producing biotechnical processes.The principles on which our project is based are as follows: chemical thermodynamics and kinetics; automation of calibration through information theory; integration of multiplex data (e.g. cDNA microarrays, NMR, proteomics), cell modeling, and bifurcation theory to overcome cellular complexity; and the use of multiplex data and information theory to calibrate and run an incomplete model. In this report we review four papers summarizing key findings and a web-enabled, multiple module workflow we have implemented that consists of a set of interoperable systems biology computational modules.

  1. Automated design of degenerate codon libraries.

    Science.gov (United States)

    Mena, Marco A; Daugherty, Patrick S

    2005-12-01

    Degenerate codon libraries are frequently used in protein engineering and evolution studies but are often limited to targeting a small number of positions to adequately limit the search space. To mitigate this, codon degeneracy can be limited using heuristics or previous knowledge of the targeted positions. To automate design of libraries given a set of amino acid sequences, an algorithm (LibDesign) was developed that generates a set of possible degenerate codon libraries, their resulting size, and their score relative to a user-defined scoring function. A gene library of a specified size can then be constructed that is representative of the given amino acid distribution or that includes specific sequences or combinations thereof. LibDesign provides a new tool for automated design of high-quality protein libraries that more effectively harness existing sequence-structure information derived from multiple sequence alignment or computational protein design data.

  2. Data multiplexing in radio interferometric calibration

    Science.gov (United States)

    Yatawatta, Sarod; Diblen, Faruk; Spreeuw, Hanno; Koopmans, L. V. E.

    2018-03-01

    New and upcoming radio interferometers will produce unprecedented amount of data that demand extremely powerful computers for processing. This is a limiting factor due to the large computational power and energy costs involved. Such limitations restrict several key data processing steps in radio interferometry. One such step is calibration where systematic errors in the data are determined and corrected. Accurate calibration is an essential component in reaching many scientific goals in radio astronomy and the use of consensus optimization that exploits the continuity of systematic errors across frequency significantly improves calibration accuracy. In order to reach full consensus, data at all frequencies need to be calibrated simultaneously. In the SKA regime, this can become intractable if the available compute agents do not have the resources to process data from all frequency channels simultaneously. In this paper, we propose a multiplexing scheme that is based on the alternating direction method of multipliers with cyclic updates. With this scheme, it is possible to simultaneously calibrate the full data set using far fewer compute agents than the number of frequencies at which data are available. We give simulation results to show the feasibility of the proposed multiplexing scheme in simultaneously calibrating a full data set when a limited number of compute agents are available.

  3. Multiplexed electrospray scaling for liquid fuel injection

    International Nuclear Information System (INIS)

    Waits, C Mike; Hanrahan, Brendan; Lee, Ivan

    2010-01-01

    Evaporation and space-charge requirements are evaluated to understand the effect of device scaling and fuel preheating for a liquid fuel injector using a multiplexed electrospray (MES) configuration in compact combustion applications. This work reveals the influence of the droplet diameter, droplet velocity and droplet surface temperature as well as the surrounding gas temperature on the size and performance of microfabricated MES. Measurements from MES devices are used in the model to accurately account for the droplet diameter versus flow rate relationship, the minimum droplet diameter and the relevant droplet velocities. A maximum extractor electrode to ground electrode distance of 3.1 mm required to overcome space-charge forces is found to be independent of voltage or droplet velocity for large levels of multiplexing. This maximum distance also becomes the required evaporation length scale which imposes minimum fuel pre-heating requirements for large flow densities. Required fuel preheating is therefore evaluated for both ethanol and 1-butanol with combustor parameters relevant to fuel reformation, thermoelectric conversion, thermophotovoltaic conversion and thermionic conversion

  4. Non-identical multiplexing promotes chimera states

    Science.gov (United States)

    Ghosh, Saptarshi; Zakharova, Anna; Jalan, Sarika

    2018-01-01

    We present the emergence of chimeras, a state referring to coexistence of partly coherent, partly incoherent dynamics in networks of identical oscillators, in a multiplex network consisting of two non-identical layers which are interconnected. We demonstrate that the parameter range displaying the chimera state in the homogeneous first layer of the multiplex networks can be tuned by changing the link density or connection architecture of the same nodes in the second layer. We focus on the impact of the interconnected second layer on the enlargement or shrinking of the coupling regime for which chimeras are displayed in the homogeneous first layer. We find that a denser homogeneous second layer promotes chimera in a sparse first layer, where chimeras do not occur in isolation. Furthermore, while a dense connection density is required for the second layer if it is homogeneous, this is not true if the second layer is inhomogeneous. We demonstrate that a sparse inhomogeneous second layer which is common in real-world complex systems can promote chimera states in a sparse homogeneous first layer.

  5. Multiplexed Colorimetric Solid-Phase Extraction

    Science.gov (United States)

    Gazda, Daniel B.; Fritz, James S.; Porter, Marc D.

    2009-01-01

    Multiplexed colorimetric solid-phase extraction (MC-SPE) is an extension of colorimetric solid-phase extraction (C-SPE) an analytical platform that combines colorimetric reagents, solid phase extraction, and diffuse reflectance spectroscopy to quantify trace analytes in water. In CSPE, analytes are extracted and complexed on the surface of an extraction membrane impregnated with a colorimetric reagent. The analytes are then quantified directly on the membrane surface using a handheld diffuse reflectance spectrophotometer. Importantly, the use of solid-phase extraction membranes as the matrix for impregnation of the colorimetric reagents creates a concentration factor that enables the detection of low concentrations of analytes in small sample volumes. In extending C-SPE to a multiplexed format, a filter holder that incorporates discrete analysis channels and a jig that facilitates the concurrent operation of multiple sample syringes have been designed, enabling the simultaneous determination of multiple analytes. Separate, single analyte membranes, placed in a readout cartridge create unique, analyte-specific addresses at the exit of each channel. Following sample exposure, the diffuse reflectance spectrum of each address is collected serially and the Kubelka-Munk function is used to quantify each water quality parameter via calibration curves. In a demonstration, MC-SPE was used to measure the pH of a sample and quantitate Ag(I) and Ni(II).

  6. Link prediction in multiplex online social networks

    Science.gov (United States)

    Jalili, Mahdi; Orouskhani, Yasin; Asgari, Milad; Alipourfard, Nazanin; Perc, Matjaž

    2017-02-01

    Online social networks play a major role in modern societies, and they have shaped the way social relationships evolve. Link prediction in social networks has many potential applications such as recommending new items to users, friendship suggestion and discovering spurious connections. Many real social networks evolve the connections in multiple layers (e.g. multiple social networking platforms). In this article, we study the link prediction problem in multiplex networks. As an example, we consider a multiplex network of Twitter (as a microblogging service) and Foursquare (as a location-based social network). We consider social networks of the same users in these two platforms and develop a meta-path-based algorithm for predicting the links. The connectivity information of the two layers is used to predict the links in Foursquare network. Three classical classifiers (naive Bayes, support vector machines (SVM) and K-nearest neighbour) are used for the classification task. Although the networks are not highly correlated in the layers, our experiments show that including the cross-layer information significantly improves the prediction performance. The SVM classifier results in the best performance with an average accuracy of 89%.

  7. A micro-controlled universal message multiplexer

    International Nuclear Information System (INIS)

    Fontaine, G.; Guglielmi, L.; Jaeger, J.J.; Szafran, S.

    1981-01-01

    Based on the Motorola 6800, this multiplexer is designed to provide a microprocessor development tool in the specific environment of a high energy physics laboratory. The basic philosophy of this device is to allow communication of a target (prototype) processor with a host computer under control of a human operator. The host can be an experimental on-line computer or any remote machine with a time-sharing network. It is thus possible to speed up design and debugging of a physics application program by taking advantage of the sophisticated resources usually available in a computer centre (powerful editor, large disk space, source management via ''Patchy'' etc...). In addition to the classical cross-macroassembler, a loader is available on the host for down-line loading binary code, via the multiplexer, into the prototype memory. Such a scheme is easiextended to the communication of any host interactive processing program with a data acquisition microprocessor, and provides the latter with a convenient and easily portable extension of its computing power. A typical application of this mode is described in a separate paper

  8. Detection of enteroviruses and hepatitis a virus in water by consensus primer multiplex RT-PCR

    Science.gov (United States)

    Li, Jun-Wen; Wang, Xin-Wei; Yuan, Chang-Qing; Zheng, Jin-Lai; Jin, Min; Song, Nong; Shi, Xiu-Quan; Chao, Fu-Huan

    2002-01-01

    AIM: To develop a rapid detection method of enteroviruses and Hepatitis A virus (HAV). METHODS: A one-step, single-tube consensus primers multiplex RT-PCR was developed to simultaneously detect Poliovirus, Coxsackie virus, Echovirus and HAV. A general upstream primer and a HAV primer and four different sets of primers (5 primers) specific for Poliovirus, Coxsacki evirus, Echovirus and HAV cDNA were mixed in the PCR mixture to reverse transcript and amplify the target DNA. Four distinct amplified DNA segments representing Poliovirus, Coxsackie virus, Echovirus and HAV were identified by gel electrophoresis as 589-, 671-, 1084-, and 1128 bp sequences, respectively. Semi-nested PCR was used to confirm the amplified products for each enterovirus and HAV. RESULTS: All four kinds of viral genome RNA were detected, and producing four bands which could be differentiated by the band size on the gel. To confirm the specificity of the multiplex PCR products, semi-nested PCR was performed. For all the four strains tested gave positive results. The detection sensitivity of multiplex PCR was similar to that of monoplex RT-PCR which was 24 PFU for Poliovrus, 21 PFU for Coxsackie virus, 60 PFU for Echovirus and 105 TCID50 for HAV. The minimum amount of enteric viral RNA detected by semi-nested PCR was equivalent to 2.4 PFU for Poliovrus, 2.1 PFU for Coxsackie virus, 6.0 PFU for Echovirus and 10.5 TCID50 for HAV. CONCLUSION: The consensus primers multiplex RT-PCR has more advantages over monoplex RT-PCR for enteric viruses detection, namely, the rapid turnaround time and cost effectiveness. PMID:12174381

  9. Novel multiplexed assay for identifying SH2 domain antagonists of STAT family proteins.

    Science.gov (United States)

    Takakuma, Kazuyuki; Ogo, Naohisa; Uehara, Yutaka; Takahashi, Susumu; Miyoshi, Nao; Asai, Akira

    2013-01-01

    Some of the signal transducer and activator of transcription (STAT) family members are constitutively activated in a wide variety of human tumors. The activity of STAT depends on their Src homology 2 (SH2) domain-mediated binding to sequences containing phosphorylated tyrosine. Thus, antagonizing this binding is a feasible approach to inhibiting STAT activation. We have developed a novel multiplexed assay for STAT3- and STAT5b-SH2 binding, based on amplified luminescent proximity homogeneous assay (Alpha) technology. AlphaLISA and AlphaScreen beads were combined in a single-well assay, which allowed the binding of STAT3- and STAT5b-SH2 to phosphotyrosine peptides to be simultaneously monitored. Biotin-labeled recombinant human STAT proteins were obtained as N- and C-terminal deletion mutants. The spacer length of the DIG-labeled peptide, the reaction time, and the concentration of sodium chloride were optimized to establish a HTS system with Z' values of greater than 0.6 for both STAT3- and STAT5b-SH2 binding. We performed a HTS campaign for chemical libraries using this multiplexed assay and identified hit compounds. A 2-chloro-1,4-naphthalenedione derivative, Compound 1, preferentially inhibited STAT3-SH2 binding in vitro, and the nuclear translocation of STAT3 in HeLa cells. Initial structure activity relationship (SAR) studies using the multiplexed assay showed the 3-substituent effect on both the activity and selectivity of STAT3 and STAT5b inhibition. Therefore, this multiplexed assay is useful for not only searching for potential lead compounds but also obtaining SAR data for developing new STAT3/STAT5b inhibitors.

  10. Simultaneous detection of peanut and hazelnut allergens in food matrices using multiplex PCR method

    Directory of Open Access Journals (Sweden)

    Eva Renčová

    2014-01-01

    Full Text Available Multiplex PCR analysis for the detection of two targeting segments of genes coding major food protein allergens as peanut (Arachis hypogaea Ara h 1 gene and hazelnut (Corylus avellana Cor a 1 gene was developed. Two sets of primers were designed and tested to their specificity on a broad range of ingredients. The identity of amplicons (Ara h 1- 180 bp, Cor a 1 – 258 bp by sequencing and alignment of sequences with sequences deposited in Genbank was confirmed. When testing the specificity of designed primer pairs on a spectrum of food ingredients, no cross reactions were detected. A potential inhibition of PCR reaction was eliminated using the universal plant primers of chloroplast gene 124 bp for the plant matrices confirmation. The intrinsic detection limit was 10 pg·ml-1 and the practical detection limit was 0.001% w/w (10 mg·kg-1 for both peanuts and hazelnuts. The method was applied to the investigation of 60 commercial food samples. The developed multiplex PCR method is cheap, specific and sensitive enough and can be used as a simple, one day procedure for the checking of undeclared peanut and hazelnut major allergens in food.

  11. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jakociunas, Tadas; Bonde, Ida; Herrgard, Markus

    2015-01-01

    CRISPR/Cas9 is a simple and efficient tool for targeted and marker-free genome engineering. Here, we report the development and successful application of a multiplex CRISPR/Cas9 system for genome engineering of up to 5 different genomic loci in one transformation step in baker's yeast Saccharomyces...... cerevisiae. To assess the specificity of the tool we employed genome re-sequencing to screen for off-target sites in all single knock-out strains targeted by different gRNAs. This extensive analysis identified no more genome variants in CRISPR/Cas9 engineered strains compared to wild-type reference strains...

  12. Functionalization of optical nanotip arrays with an electrochemical microcantilever for multiplexed DNA detection.

    Science.gov (United States)

    Descamps, Emeline; Duroure, Nathalie; Deiss, Frédérique; Leichlé, Thierry; Adam, Catherine; Mailley, Pascal; Aït-Ikhlef, Ali; Livache, Thierry; Nicu, Liviu; Sojic, Neso

    2013-08-07

    Optical nanotip arrays fabricated on etched fiber bundles were functionalized with DNA spots. Such unconventional substrates (3D and non-planar) are difficult to pattern with standard microfabrication techniques but, using an electrochemical cantilever, up to 400 spots were electrodeposited on the nanostructured optical surface in 5 min. This approach allows each spot to be addressed individually and multiplexed fluorescence detection is demonstrated. Finally, remote fluorescence detection was performed by imaging through the optical fiber bundle itself after hybridisation with the complementary sequence.

  13. Particle field diagnose using angular multiplexing volume holography

    Science.gov (United States)

    Zhao, Yu; Li, Zeren; Luo, Zhenxiong; Jun, Li; Zhong, Jie; Ye, Yan; Li, Shengfu; Zhu, Jianhua

    2017-08-01

    The problem of particle field diagnosing using holography can be met in many areas. But single frame hologram can only catch one moment of the fast event, which can't reveal the change process of an unrepeatable fast event. For events in different time-scale, different solution should be used. We did this work to record a laser induced particle field in the time-scale of tens of micron seconds. A laser of pulse sequence mode is applied to provide 10 pulses, the energy and time interval of whom is 150mJ and 1μs. Four pockels cells are employed to pick up the last four pulses for holographic recording, the other pulses are controlled to pre-expose the photopolymer based recording material, which can enhance photosensitivity of the photopolymer during the moment of holographic recording. The angular multiplexing technique and volume holography is accepted to avoid shifting the photopolymer between each shot. Another Q-switch YAG laser (pulse energy 100mJ, pulse width 10ns) is applied to produce the fast event. As a result, we successfully caught the motion process of the laser induced particle field. The time interval of each frame is 1μs, the angular range of the four references is 14°, and the diffraction efficiency of each hologram is less than 2%. After a basic analysis, this optical system could catch more holograms through a compact design.

  14. Multicolor fluorescent biosensor for multiplexed detection of DNA.

    Science.gov (United States)

    Hu, Rong; Liu, Tao; Zhang, Xiao-Bing; Huan, Shuang-Yan; Wu, Cuichen; Fu, Ting; Tan, Weihong

    2014-05-20

    Development of efficient methods for highly sensitive and rapid screening of specific oligonucleotide sequences is essential to the early diagnosis of serious diseases. In this work, an aggregated cationic perylene diimide (PDI) derivative was found to efficiently quench the fluorescence emission of a variety of anionic oligonucleotide-labeled fluorophores that emit at wavelengths from the visible to NIR region. This broad-spectrum quencher was then adopted to develop a multicolor biosensor via a label-free approach for multiplexed fluorescent detection of DNA. The aggregated perylene derivative exhibits a very high quenching efficiency on all ssDNA-labeled dyes associated with biosensor detection, having efficiency values of 98.3 ± 0.9%, 97 ± 1.1%, and 98.2 ± 0.6% for FAM, TAMRA, and Cy5, respectively. An exonuclease-assisted autocatalytic target recycling amplification was also integrated into the sensing system. High quenching efficiency combined with autocatalytic target recycling amplification afforded the biosensor with high sensitivity toward target DNA, resulting in a detection limit of 20 pM, which is about 50-fold lower than that of traditional unamplified homogeneous fluorescent assay methods. The quencher did not interfere with the catalytic activity of nuclease, and the biosensor could be manipulated in either preaddition or postaddition manner with similar sensitivity. Moreover, the proposed sensing system allows for simultaneous and multicolor analysis of several oligonucleotides in homogeneous solution, demonstrating its potential application in the rapid screening of multiple biotargets.

  15. Multi-client quantum key distribution using wavelength division multiplexing

    International Nuclear Information System (INIS)

    Grice, Warren P.; Bennink, Ryan S.; Earl, Dennis Duncan; Evans, Philip G.; Humble, Travis S.; Pooser, Raphael C.; Schaake, Jason; Williams, Brian P.

    2011-01-01

    Quantum Key Distribution (QKD) exploits the rules of quantum mechanics to generate and securely distribute a random sequence of bits to two spatially separated clients. Typically a QKD system can support only a single pair of clients at a time, and so a separate quantum link is required for every pair of users. We overcome this limitation with the design and characterization of a multi-client entangled-photon QKD system with the capacity for up to 100 clients simultaneously. The time-bin entangled QKD system includes a broadband down-conversion source with two unique features that enable the multi-user capability. First, the photons are emitted across a very large portion of the telecom spectrum. Second, and more importantly, the photons are strongly correlated in their energy degree of freedom. Using standard wavelength division multiplexing (WDM) hardware, the photons can be routed to different parties on a quantum communication network, while the strong spectral correlations ensure that each client is linked only to the client receiving the conjugate wavelength. In this way, a single down-conversion source can support dozens of channels simultaneously--and to the extent that the WDM hardware can send different spectral channels to different clients, the system can support multiple client pairings. We will describe the design and characterization of the down-conversion source, as well as the client stations, which must be tunable across the emission spectrum.

  16. A comprehensive platform for highly multiplexed mammalian functional genetic screens

    Directory of Open Access Journals (Sweden)

    Cheung-Ong Kahlin

    2011-05-01

    Full Text Available Abstract Background Genome-wide screening in human and mouse cells using RNA interference and open reading frame over-expression libraries is rapidly becoming a viable experimental approach for many research labs. There are a variety of gene expression modulation libraries commercially available, however, detailed and validated protocols as well as the reagents necessary for deconvolving genome-scale gene screens using these libraries are lacking. As a solution, we designed a comprehensive platform for highly multiplexed functional genetic screens in human, mouse and yeast cells using popular, commercially available gene modulation libraries. The Gene Modulation Array Platform (GMAP is a single microarray-based detection solution for deconvolution of loss and gain-of-function pooled screens. Results Experiments with specially constructed lentiviral-based plasmid pools containing ~78,000 shRNAs demonstrated that the GMAP is capable of deconvolving genome-wide shRNA "dropout" screens. Further experiments with a larger, ~90,000 shRNA pool demonstrate that equivalent results are obtained from plasmid pools and from genomic DNA derived from lentivirus infected cells. Parallel testing of large shRNA pools using GMAP and next-generation sequencing methods revealed that the two methods provide valid and complementary approaches to deconvolution of genome-wide shRNA screens. Additional experiments demonstrated that GMAP is equivalent to similar microarray-based products when used for deconvolution of open reading frame over-expression screens. Conclusion Herein, we demonstrate four major applications for the GMAP resource, including deconvolution of pooled RNAi screens in cells with at least 90,000 distinct shRNAs. We also provide detailed methodologies for pooled shRNA screen readout using GMAP and compare next-generation sequencing to GMAP (i.e. microarray based deconvolution methods.

  17. Data mining strategies to improve multiplex microbead immunoassay tolerance in a mouse model of infectious diseases.

    Directory of Open Access Journals (Sweden)

    Akshay Mani

    Full Text Available Multiplex methodologies, especially those with high-throughput capabilities generate large volumes of data. Accumulation of such data (e.g., genomics, proteomics, metabolomics etc. is fast becoming more common and thus requires the development and implementation of effective data mining strategies designed for biological and clinical applications. Multiplex microbead immunoassay (MMIA, on xMAP or MagPix platform (Luminex, which is amenable to automation, offers a major advantage over conventional methods such as Western blot or ELISA, for increasing the efficiencies in serodiagnosis of infectious diseases. MMIA allows detection of antibodies and/or antigens efficiently for a wide range of infectious agents simultaneously in host blood samples, in one reaction vessel. In the process, MMIA generates large volumes of data. In this report we demonstrate the application of data mining tools on how the inherent large volume data can improve the assay tolerance (measured in terms of sensitivity and specificity by analysis of experimental data accumulated over a span of two years. The combination of prior knowledge with machine learning tools provides an efficient approach to improve the diagnostic power of the assay in a continuous basis. Furthermore, this study provides an in-depth knowledge base to study pathological trends of infectious agents in mouse colonies on a multivariate scale. Data mining techniques using serodetection of infections in mice, developed in this study, can be used as a general model for more complex applications in epidemiology and clinical translational research.

  18. Evaluation of multiplex assay platforms for detection of influenza hemagglutinin subtype specific antibody responses.

    Science.gov (United States)

    Li, Zhu-Nan; Weber, Kimberly M; Limmer, Rebecca A; Horne, Bobbi J; Stevens, James; Schwerzmann, Joy; Wrammert, Jens; McCausland, Megan; Phipps, Andrew J; Hancock, Kathy; Jernigan, Daniel B; Levine, Min; Katz, Jacqueline M; Miller, Joseph D

    2017-05-01

    Influenza hemagglutination inhibition (HI) and virus microneutralization assays (MN) are widely used for seroprevalence studies. However, these assays have limited field portability and are difficult to fully automate for high throughput laboratory testing. To address these issues, three multiplex influenza subtype-specific antibody detection assays were developed using recombinant hemagglutinin antigens in combination with Chembio, Luminex ® , and ForteBio ® platforms. Assay sensitivity, specificity, and subtype cross-reactivity were evaluated using a panel of well characterized human sera. Compared to the traditional HI, assay sensitivity ranged from 87% to 92% and assay specificity in sera collected from unexposed persons ranged from 65% to 100% across the platforms. High assay specificity (86-100%) for A(H5N1) rHA was achieved for sera from exposed or unexposed to hetorosubtype influenza HAs. In contrast, assay specificity for A(H1N1)pdm09 rHA using sera collected from A/Vietnam/1204/2004 (H5N1) vaccinees in 2008 was low (22-30%) in all platforms. Although cross-reactivity against rHA subtype proteins was observed in each assay platform, the correct subtype specific responses were identified 78%-94% of the time when paired samples were available for analysis. These results show that high throughput and portable multiplex assays that incorporate rHA can be used to identify influenza subtype specific infections. Published by Elsevier B.V.

  19. An automated swimming respirometer

    DEFF Research Database (Denmark)

    STEFFENSEN, JF; JOHANSEN, K; BUSHNELL, PG

    1984-01-01

    An automated respirometer is described that can be used for computerized respirometry of trout and sharks.......An automated respirometer is described that can be used for computerized respirometry of trout and sharks....

  20. Autonomy and Automation

    Science.gov (United States)

    Shively, Jay

    2017-01-01

    A significant level of debate and confusion has surrounded the meaning of the terms autonomy and automation. Automation is a multi-dimensional concept, and we propose that Remotely Piloted Aircraft Systems (RPAS) automation should be described with reference to the specific system and task that has been automated, the context in which the automation functions, and other relevant dimensions. In this paper, we present definitions of automation, pilot in the loop, pilot on the loop and pilot out of the loop. We further propose that in future, the International Civil Aviation Organization (ICAO) RPAS Panel avoids the use of the terms autonomy and autonomous when referring to automated systems on board RPA. Work Group 7 proposes to develop, in consultation with other workgroups, a taxonomy of Levels of Automation for RPAS.

  1. Configuration Management Automation (CMA) -

    Data.gov (United States)

    Department of Transportation — Configuration Management Automation (CMA) will provide an automated, integrated enterprise solution to support CM of FAA NAS and Non-NAS assets and investments. CMA...

  2. Detection and Typing of Human Papilloma Viruses by Nested Multiplex Polymerase Chain Reaction Assay in Cervical Cancer

    Science.gov (United States)

    Jalal Kiani, Seyed; Shatizadeh Malekshahi, Somayeh; Yousefi Ghalejoogh, Zohreh; Ghavvami, Nastaran; Shafiei Jandaghi, Nazanin Zahra; Shahsiah, Reza; Jahanzad, Isa; Yavarian, Jila

    2015-01-01

    Background: Cervical cancer is the leading cause of death from cancer in under-developed countries. Human papilloma virus (HPV) 16 and 18 are the most prevalent types associated with carcinogenesis in the cervix. Conventional Polymerase Chain Reaction (PCR), type-specific and consensus primer-based PCR followed by sequencing, Restriction Fragment Length Polymorphism (RFLP) or hybridization by specific probes are common methods for HPV detection and typing. In addition, some researchers have developed a multiplex PCR for simultaneous detection and typing of different HPVs. Objectives: The aim of the present study was to investigate the prevalence of HPV infection and its types in cervical Squamous Cell Carcinoma (SCC) using the Nested Multiplex PCR (NMPCR) assay. Patients and Methods: Sixty-six samples with histologically confirmed SCC were evaluated. Total DNA was isolated by phenol–chloroform extraction and ethanol precipitation. Nested multiplex PCR was performed with first-round PCR by GP-E6/E7 consensus primers for amplification of the genomic DNA of all known mucosal HPV genotypes and second-round PCR by type-specific multiplex PCR primer cocktails. Results: Human papilloma virus infection was detected in 78.8% of samples, with the highest prevalence of HPV 16 (60.6%) while concurrent infections with two types was detected in 10.6%. Conclusions: The NMPCR assay is more convenient and easy for analysis of results, which is important for fast diagnosis and patient management, in a type-specific manner. PMID:26865940

  3. Investigation into constant envelope orthogonal frequency division multiplexing for polarization-division multiplexing coherent optical communication

    Science.gov (United States)

    Li, Yupeng; Ding, Ding

    2017-09-01

    Benefiting from the high spectral efficiency and low peak-to-average power ratio, constant envelope orthogonal frequency division multiplexing (OFDM) is a promising technique in coherent optical communication. Polarization-division multiplexing (PDM) has been employed as an effective way to double the transmission capacity in the commercial 100 Gb/s PDM-QPSK system. We investigated constant envelope OFDM together with PDM. Simulation results show that the acceptable maximum launch power into the fiber improves 10 and 6 dB for 80- and 320-km transmission, respectively (compared with the conventional PDM OFDM system). The maximum reachable distance of the constant envelope OFDM system is able to reach 800 km, and even 1200 km is reachable if an ideal erbium doped fiber amplifier is employed.

  4. Screening for genetically modified organisms sequences in food ...

    African Journals Online (AJOL)

    We used the Allin 2.0 GMO screening system from Biosmart, Switzerland to screen for the presence of genetically modified food sequences in maize meal samples, fresh fruit and vegetables from some retailers around Gaborone, Botswana. The Allin 2.0 is a multiplex PCR system for the detection of genetically modified ...

  5. Pyrochemical processing automation at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Dennison, D.K.; Domning, E.E.; Seivers, R.

    1991-01-01

    Lawrence Livermore National Laboratory (LLNL) is developing a fully automated system for pyrochemical processing of special nuclear materials (SNM). The system utilizes a glove box, an automated tilt-pour furnace (TPF), an IBM developed gantry robot, and specialized automation tooling. All material handling within the glove box (i.e., furnace loading, furnace unloading, product and slag separation, and product packaging) is performed automatically. The objectives of the effort are to increase process productivity, decrease operator radiation, reduce process wastes, and demonstrate system reliability and availability. This paper provides an overview of the automated system hardware, outlines the overall operations sequence, and discusses the current status

  6. Prototype data terminal: Multiplexer/demultiplexer

    Science.gov (United States)

    Leck, D. E.; Goodwin, J. E.

    1972-01-01

    The design and operation of a quad redundant data terminal and a multiplexer/demultiplexer (MDU) design are described. The most unique feature is the design of the quad redundant data terminal. This is one of the few designs where the unit is fail/op, fail/op, fail/safe. Laboratory tests confirm that the unit will operate satisfactorily with the failure of three out of four channels. Although the design utilizes state-of-the-art technology. The waveform error checks, the voting techniques, and the parity bit checks are believed to be used in unique configurations. Correct word selection routines are also novel, if not unique. The MDU design, while not redundant, utilizes, the latest state-of-the-art advantages of light couplers and integrated circuit amplifiers.

  7. Mode demultiplexer using angularly multiplexed volume holograms.

    Science.gov (United States)

    Wakayama, Yuta; Okamoto, Atsushi; Kawabata, Kento; Tomita, Akihisa; Sato, Kunihiro

    2013-05-20

    This study proposes a volume holographic demultiplexer (VHDM) for extracting the spatial modes excited in a multimode fiber. A unique feature of the demultiplexer is that it can separate a number of multiplexed modes output from a fiber in different directions by using multi-recorded holograms without beam splitters, which results in a simple configuration as compared with that using phase plates instead of holograms. In this study, an experiment is conducted to demonstrate the basic operations for three LP mode groups to confirm the performance of the proposed VHDM and to estimate the signal-to-crosstalk noise ratio (SNR). As a result, an SNR of greater than 20 dB is obtained.

  8. High-Throughput Block Optical DNA Sequence Identification.

    Science.gov (United States)

    Sagar, Dodderi Manjunatha; Korshoj, Lee Erik; Hanson, Katrina Bethany; Chowdhury, Partha Pratim; Otoupal, Peter Britton; Chatterjee, Anushree; Nagpal, Prashant

    2018-01-01

    Optical techniques for molecular diagnostics or DNA sequencing generally rely on small molecule fluorescent labels, which utilize light with a wavelength of several hundred nanometers for detection. Developing a label-free optical DNA sequencing technique will require nanoscale focusing of light, a high-throughput and multiplexed identification method, and a data compression technique to rapidly identify sequences and analyze genomic heterogeneity for big datasets. Such a method should identify characteristic molecular vibrations using optical spectroscopy, especially in the "fingerprinting region" from ≈400-1400 cm -1 . Here, surface-enhanced Raman spectroscopy is used to demonstrate label-free identification of DNA nucleobases with multiplexed 3D plasmonic nanofocusing. While nanometer-scale mode volumes prevent identification of single nucleobases within a DNA sequence, the block optical technique can identify A, T, G, and C content in DNA k-mers. The content of each nucleotide in a DNA block can be a unique and high-throughput method for identifying sequences, genes, and other biomarkers as an alternative to single-letter sequencing. Additionally, coupling two complementary vibrational spectroscopy techniques (infrared and Raman) can improve block characterization. These results pave the way for developing a novel, high-throughput block optical sequencing method with lossy genomic data compression using k-mer identification from multiplexed optical data acquisition. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Automated plant, production management system

    Science.gov (United States)

    Aksenova, V. I.; Belov, V. I.

    1984-12-01

    The development of a complex of tasks for the operational management of production (OUP) within the framework of an automated system for production management (ASUP) shows that it is impossible to have effective computations without reliable initial information. The influence of many factors involving the production and economic activity of the entire enterprise upon the plan and course of production are considered. It is suggested that an adequate model should be available which covers all levels of the hierarchical system: workplace, section (bridgade), shop, enterprise, and the model should be incorporated into the technological sequence of performance and there should be provisions for an adequate man machine system.

  10. Control of Angular Intervals for Angle-Multiplexed Holographic Memory

    Science.gov (United States)

    Kinoshita, Nobuhiro; Muroi, Tetsuhiko; Ishii, Norihiko; Kamijo, Koji; Shimidzu, Naoki

    2009-03-01

    In angle-multiplexed holographic memory, the full width at half maximum of the Bragg selectivity curves is dependent on the angle formed between the medium and incident laser beams. This indicates the possibility of high density and high multiplexing number by varying the angular intervals between adjacent holograms. We propose an angular interval scheduling for closely stacking holograms into medium even when the angle range is limited. We obtained bit error rates of the order of 10-4 under the following conditions: medium thickness of 1 mm, laser beam wavelength of 532 nm, and angular multiplexing number of 300.

  11. Multiplexing schemes for an achromatic programmable diffractive lens

    Energy Technology Data Exchange (ETDEWEB)

    Millan, M S; Perez-Cabre, E; Oton, J [Technical University of Catalonia, Dep. Optics and Optometry, Terrassa-Barcelona, 08222 (Spain)], E-mail: millan@oo.upc.edu

    2008-11-01

    A multiplexed programmable diffractive lens, displayed on a pixelated liquid crystal device under broadband illumination, is proposed to compensate for the severe chromatic aberration that affects diffractive elements. The proposed lens is based on multiplexing a set of sublenses with a common focal length for different wavelengths. We consider different types of integration of the optical information (spatial only, temporal only and hybrid spatial-temporal) combined with a proper selection of the spectral bandwidth. The properties and limits of the achromatic programmable multiplexed lens are described. Experimental results are presented and discussed.

  12. Multiplexing schemes for an achromatic programmable diffractive lens

    International Nuclear Information System (INIS)

    Millan, M S; Perez-Cabre, E; Oton, J

    2008-01-01

    A multiplexed programmable diffractive lens, displayed on a pixelated liquid crystal device under broadband illumination, is proposed to compensate for the severe chromatic aberration that affects diffractive elements. The proposed lens is based on multiplexing a set of sublenses with a common focal length for different wavelengths. We consider different types of integration of the optical information (spatial only, temporal only and hybrid spatial-temporal) combined with a proper selection of the spectral bandwidth. The properties and limits of the achromatic programmable multiplexed lens are described. Experimental results are presented and discussed.

  13. Opportunities and Challenges of Multiplex Assays: A Machine Learning Perspective.

    Science.gov (United States)

    Chen, Junfang; Schwarz, Emanuel

    2017-01-01

    Multiplex assays that allow the simultaneous measurement of multiple analytes in small sample quantities have developed into a widely used technology. Their implementation spans across multiple assay systems and can provide readouts of similar quality as the respective single-plex measures, albeit at far higher throughput. Multiplex assay systems are therefore an important element for biomarker discovery and development strategies but analysis of the derived data can face substantial challenges that may limit the possibility of identifying meaningful biological markers. This chapter gives an overview of opportunities and challenges of multiplexed biomarker analysis, in particular from the perspective of machine learning aimed at identification of predictive biological signatures.

  14. Experimental demonstration of subcarrier multiplexed quantum key distribution system.

    Science.gov (United States)

    Mora, José; Ruiz-Alba, Antonio; Amaya, Waldimar; Martínez, Alfonso; García-Muñoz, Víctor; Calvo, David; Capmany, José

    2012-06-01

    We provide, to our knowledge, the first experimental demonstration of the feasibility of sending several parallel keys by exploiting the technique of subcarrier multiplexing (SCM) widely employed in microwave photonics. This approach brings several advantages such as high spectral efficiency compatible with the actual secure key rates, the sharing of the optical fainted pulse by all the quantum multiplexed channels reducing the system complexity, and the possibility of upgrading with wavelength division multiplexing in a two-tier scheme, to increase the number of parallel keys. Two independent quantum SCM channels featuring a sifted key rate of 10 Kb/s/channel over a link with quantum bit error rate <2% is reported.

  15. Automated ultrasonic inspection system for nuclear power stations

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    The automated system of ultrasonic inspection which was used to conduct weld inspections of the complex primary system of the Borselle PWR station is described. It relies upon mechanically traversing purpose designed multi-crystal ultrasonic probes along the welds. A number of probes are switched sequentially to provide a continuous scan. A typical scan rate of 120 scan/sec is achieved by a multiplexer capable of switching transmitter and receiver individually. The system has wide applications in other industries. (U.K.)

  16. Automation in Clinical Microbiology

    Science.gov (United States)

    Ledeboer, Nathan A.

    2013-01-01

    Historically, the trend toward automation in clinical pathology laboratories has largely bypassed the clinical microbiology laboratory. In this article, we review the historical impediments to automation in the microbiology laboratory and offer insight into the reasons why we believe that we are on the cusp of a dramatic change that will sweep a wave of automation into clinical microbiology laboratories. We review the currently available specimen-processing instruments as well as the total laboratory automation solutions. Lastly, we outline the types of studies that will need to be performed to fully assess the benefits of automation in microbiology laboratories. PMID:23515547

  17. Cost-effective multiplexing before capture allows screening of 25 000 clinically relevant SNPs in childhood acute lymphoblastic leukemia

    DEFF Research Database (Denmark)

    Wesolowska, Agata; Dalgaard, M. D.; Borst, L.

    2011-01-01

    designed a cost-effective, high-throughput capture assay of â¼25â000 clinically relevant SNPs, and demonstrated that multiple samples can be tagged and pooled before genome capture in targeted enrichment with a sufficient sequencing depth for genotyping. This multiplexed, targeted sequencing method allows...... exploration of the impact of pharmacogenetics on efficacy and toxicity in childhood ALL treatment, which will be of importance for personalized chemotherapy.Leukemia advance online publication, 18 March 2011; doi:10.1038/leu.2011.32....

  18. Discrimination between E. granulosus sensu stricto, E. multilocularis and E. shiquicus Using a Multiplex PCR Assay

    Science.gov (United States)

    Li, Li; Yan, Hong-Bin; Blair, David; Lei, Meng-Tong; Cai, Jin-Zhong; Fan, Yan-Lei; Li, Jian-Qiu; Fu, Bao-Quan; Yang, Yu-Rong; McManus, Donald P.; Jia, Wan-Zhong

    2015-01-01

    Background Infections of Echinococcus granulosus sensu stricto (s.s), E. multilocularis and E. shiquicus are commonly found co-endemic on the Qinghai-Tibet plateau, China, and an efficient tool is needed to facilitate the detection of infected hosts and for species identification. Methodology/Principal Findings A single-tube multiplex PCR assay was established to differentiate the Echinococcus species responsible for infections in intermediate and definitive hosts. Primers specific for E. granulosus, E. multilocularis and E. shiquicus were designed based on sequences of the mitochondrial NADH dehydrogenase subunit 1 (nad1), NADH dehydrogenase subunit 5 (nad5) and cytochrome c oxidase subunit 1 (cox1) genes, respectively. This multiplex PCR accurately detected Echinococcus DNA without generating nonspecific reaction products. PCR products were of the expected sizes of 219 (nad1), 584 (nad5) and 471 (cox1) bp. Furthermore, the multiplex PCR enabled diagnosis of multiple infections using DNA of protoscoleces and copro-DNA extracted from fecal samples of canine hosts. Specificity of the multiplex PCR was 100% when evaluated using DNA isolated from other cestodes. Sensitivity thresholds were determined for DNA from protoscoleces and from worm eggs, and were calculated as 20 pg of DNA for E. granulosus and E. shiquicus, 10 pg of DNA for E. multilocularis, 2 eggs for E. granulosus, and 1 egg for E. multilocularis. Positive results with copro-DNA could be obtained at day 17 and day 26 after experimental infection of dogs with larval E. multilocularis and E. granulosus, respectively. Conclusions/Significance The multiplex PCR developed in this study is an efficient tool for discriminating E. granulosus, E. multilocularis and E. shiquicus from each other and from other taeniid cestodes. It can be used for the detection of canids infected with E. granulosus s.s. and E. multilocularis using feces collected from these definitive hosts. It can also be used for the identification

  19. Highly multiplexed and quantitative cell-surface protein profiling using genetically barcoded antibodies.

    Science.gov (United States)

    Pollock, Samuel B; Hu, Amy; Mou, Yun; Martinko, Alexander J; Julien, Olivier; Hornsby, Michael; Ploder, Lynda; Adams, Jarrett J; Geng, Huimin; Müschen, Markus; Sidhu, Sachdev S; Moffat, Jason; Wells, James A

    2018-03-13

    Human cells express thousands of different surface proteins that can be used for cell classification, or to distinguish healthy and disease conditions. A method capable of profiling a substantial fraction of the surface proteome simultaneously and inexpensively would enable more accurate and complete classification of cell states. We present a highly multiplexed and quantitative surface proteomic method using genetically barcoded antibodies called phage-antibody next-generation sequencing (PhaNGS). Using 144 preselected antibodies displayed on filamentous phage (Fab-phage) against 44 receptor targets, we assess changes in B cell surface proteins after the development of drug resistance in a patient with acute lymphoblastic leukemia (ALL) and in adaptation to oncogene expression in a Myc-inducible Burkitt lymphoma model. We further show PhaNGS can be applied at the single-cell level. Our results reveal that a common set of proteins including FLT3, NCR3LG1, and ROR1 dominate the response to similar oncogenic perturbations in B cells. Linking high-affinity, selective, genetically encoded binders to NGS enables direct and highly multiplexed protein detection, comparable to RNA-sequencing for mRNA. PhaNGS has the potential to profile a substantial fraction of the surface proteome simultaneously and inexpensively to enable more accurate and complete classification of cell states. Copyright © 2018 the Author(s). Published by PNAS.

  20. Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection.

    Science.gov (United States)

    Kurt, Hasan; Yüce, Meral; Hussain, Babar; Budak, Hikmet

    2016-07-15

    In this report, a dual-excitation sensing method was developed using aptamer-functionalized quantum dots and upconverting nanoparticles, exhibiting Stokes and anti-Stokes type excitation profiles, respectively. Conjugation of the aptamer-functionalized luminescent nanoparticles with the magnetic beads, comprising short DNA sequences that were partially complementary to the aptamer sequences, enabled facile separation of the analyte-free conjugates for fluorescent measurement. UV-Visible spectroscopy, Circular Dichroism spectroscopy, Dynamic Light Scattering and Polyacrylamide Gel Electrophoresis techniques were used to characterize the aptamer probes developed. The target-specific luminescent conjugates were applied for multiplex detection of model food pathogens, Salmonella typhimurium, and Staphylococcus aureus, in which the fluorescent emission spectra were obtained under UV excitation at 325nm for quantum dots and NIR excitation at 980nm for upconverting nanoparticles, respectively. The dual-excitation strategy was aimed to minimize cross-talk between the luminescent signals for multiplexed detection, and yielded limit of detection values of 16 and 28cfumL(-1) for Staphylococcus aureus, and Salmonella typhimurium, respectively. By employing a greater number of quantum dots and upconverting nanoparticles with non-overlapping fluorescent emissions, the proposed methodology might be exploited further to detect several analytes, simultaneously. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Multiplex Detection and Genotyping of Point Mutations Involved in Charcot-Marie-Tooth Disease Using a Hairpin Microarray-Based Assay

    Directory of Open Access Journals (Sweden)

    Yasser Baaj

    2009-01-01

    Full Text Available We previously developed a highly specific method for detecting SNPs with a microarray-based system using stem-loop probes. In this paper we demonstrate that coupling a multiplexing procedure with our microarray method is possible for the simultaneous detection and genotyping of four point mutations, in three different genes, involved in Charcot-Marie-Tooth disease. DNA from healthy individuals and patients was amplified, labeled with Cy3 by multiplex PCR; and hybridized to microarrays. Spot signal intensities were 18 to 74 times greater for perfect matches than for mismatched target sequences differing by a single nucleotide (discrimination ratio for “homozygous” DNA from healthy individuals. “Heterozygous” mutant DNA samples gave signal intensity ratios close to 1 at the positions of the mutations as expected. Genotyping by this method was therefore reliable. This system now combines the principle of highly specific genotyping based on stem-loop structure probes with the advantages of multiplex analysis.

  2. On-chip multiplexed solid-phase nucleic acid hybridization assay using spatial profiles of immobilized quantum dots and fluorescence resonance energy transfer.

    Science.gov (United States)

    Noor, M Omair; Tavares, Anthony J; Krull, Ulrich J

    2013-07-25

    A microfluidic based solid-phase assay for the multiplexed detection of nucleic acid hybridization using quantum dot (QD) mediated fluorescence resonance energy transfer (FRET) is described herein. The glass surface of hybrid glass-polydimethylsiloxane (PDMS) microfluidic channels was chemically modified to assemble the biorecognition interface. Multiplexing was demonstrated using a detection system that was comprised of two colors of immobilized semi-conductor QDs and two different oligonucleotide probe sequences. Green-emitting and red-emitting QDs were paired with Cy3 and Alexa Fluor 647 (A647) labeled oligonucleotides, respectively. The QDs served as energy donors for the transduction of dye labeled oligonucleotide targets. The in-channel assembly of the biorecognition interface and the subsequent introduction of oligonucleotide targets was accomplished within minutes using a combination of electroosmotic flow and electrophoretic force. The concurrent quantification of femtomole quantities of two target sequences was possible by measuring the spatial coverage of FRET sensitized emission along the length of the channel. In previous reports, multiplexed QD-FRET hybridization assays that employed a ratiometric method for quantification had challenges associated with lower analytical sensitivity arising from both donor and acceptor dilution that resulted in reduced energy transfer pathways as compared to single-color hybridization assays. Herein, a spatial method for quantification that is based on in-channel QD-FRET profiles provided higher analytical sensitivity in the multiplexed assay format as compared to single-color hybridization assays. The selectivity of the multiplexed hybridization assays was demonstrated by discrimination between a fully-complementary sequence and a 3 base pair sequence at a contrast ratio of 8 to 1. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Eigenmode multiplexing with SLM for volume holographic data storage

    Science.gov (United States)

    Chen, Guanghao; Miller, Bo E.; Takashima, Yuzuru

    2017-08-01

    The cavity supports the orthogonal reference beam families as its eigenmodes while enhancing the reference beam power. Such orthogonal eigenmodes are used as additional degree of freedom to multiplex data pages, consequently increase storage densities for volume Holographic Data Storage Systems (HDSS) when the maximum number of multiplexed data page is limited by geometrical factor. Image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at multiple Bragg angles by using Liquid Crystal on Silicon (LCOS) spatial light modulators (SLMs) in reference arms. Total of nine holograms are recorded with three angular and three eigenmode.

  4. Multiplexing of spatial modes in the mid-IR region

    CSIR Research Space (South Africa)

    Gailele, Lucas M

    2017-02-01

    Full Text Available ceiling in the near future. Communications using orbital angular momentum (OAM) carrying modes offers in finite dimensional states, providing means to increase link capacity by multiplexing spatially overlapping modes in both the azimuthal and radial...

  5. Recent Progress in Space-Division Multiplexed Transmission Technologies

    DEFF Research Database (Denmark)

    Morioka, Toshio

    2013-01-01

    Recent development of transmission technologies based on space-division multiplexing is described with future perspectives including a recent achievement of one Pb/s transmission in a single strand of fiber....

  6. Capacity analysis of spectrum sharing spatial multiplexing MIMO systems

    KAUST Repository

    Yang, Liang; Qaraqe, Khalid A.; Serpedin, Erchin; Alouini, Mohamed-Slim

    2014-01-01

    This paper considers a spectrum sharing (SS) multiple-input multiple-output (MIMO) system operating in a Rayleigh fading environment. First the capacity of a single-user SS spatial multiplexing system is investigated in two scenarios that assume

  7. User Multiplexing in Relay Enhanced LTE-Advanced Networks

    DEFF Research Database (Denmark)

    Teyeb, Oumer Mohammed; Frederiksen, Frank; Redana, Simone

    2010-01-01

    is radio relaying. This uses relay nodes that act as surrogate base stations for mobile users whose radio links with the base stations are not experiencing good enough conditions. In the downlink, the data that is destined for the relayed users may first have to be multiplexed by the base station, sent...... over the wireless backhaul link towards the relay node, and de-multiplexed and forwarded to the individual users by the relay node. The reverse process also has to be undertaken in the uplink. In this paper, we present a novel multiplexing scheme which is able to adapt the addressing and bitmapping...... of user identification to the actual number of users being served by the relay nodes, and thus greatly reduce the multiplexing overhead....

  8. Characteristics of Multiplexed Grooved Nozzles for High Flow Rate Electrospray

    International Nuclear Information System (INIS)

    Kim, Kyoung Tae; Kim, Woo Jin; Kim, Sang Soo

    2007-01-01

    The electrospray operated in the cone-jet mode can generate highly charged micro droplets in an almost uniform size at flow rates. Therefore, the multiplexing system which can retain the characteristics of the cone-jet mode is inevitable for the electrospray application. This experiment reports the multiplexed grooved nozzle system with the extractor. The effects of the grooves and the extractor on the performance of the electrospray were evaluated through experiments. Using the grooved nozzle, the stable cone-jet mode can be achieved at the each groove in the grooved mode. Furthermore, the number of nozzles per unit area is increased by the extractor. The multiplexing density is 12 jets per cm 2 at 30 mm distance from the nozzle tip to the ground plate. The multiplexing system for the high flow rate electrospray is realized with the extractor which can diminish the space charge effect without sacrificing characteristics of the cone-jet mode

  9. Shift-Peristrophic Multiplexing for High Density Holographic Data Storage

    Directory of Open Access Journals (Sweden)

    Zenta Ushiyama

    2014-03-01

    Full Text Available Holographic data storage is a promising technology that provides very large data storage capacity, and the multiplexing method plays a significant role in increasing this capacity. Various multiplexing methods have been previously researched. In the present study, we propose a shift-peristrophic multiplexing technique that uses spherical reference waves, and experimentally verify that this method efficiently increases the data capacity. In the proposed method, a series of holograms is recorded with shift multiplexing, in which the recording material is rotated with its axis perpendicular to the material’s surface. By iterating this procedure, multiplicity is shown to improve. This method achieves more than 1 Tbits/inch2 data density recording. Furthermore, a capacity increase of several TB per disk is expected by maximizing the recording medium performance.

  10. Nanoscale Test Strips for Multiplexed Blood Analysis, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of our nanoscale test strips, or nanostrips, is to provide rapid, low-cost, powerful multiplexed analyses in a diminutive form so that whole body health...

  11. Multiplexed Dosing Assays by Digitally Definable Hydrogel Volumes

    DEFF Research Database (Denmark)

    Faralli, Adele; Melander, Fredrik; Larsen, Esben Kjær Unmack

    2016-01-01

    Stable and low-cost multiplexed drug sensitivity assays using small volumes of cells or tissue are in demand for personalized medicine, including patientspecific combination chemotherapy. Spatially defined projected light photopolymerization of hydrogels with embedded active compounds is introduc...

  12. Detection of Mycobacterium chelonae, Mycobacterium abscessus Group, and Mycobacterium fortuitum Complex by a Multiplex Real-Time PCR Directly from Clinical Samples Using the BD MAX System.

    Science.gov (United States)

    Rocchetti, Talita T; Silbert, Suzane; Gostnell, Alicia; Kubasek, Carly; Campos Pignatari, Antonio C; Widen, Raymond

    2017-03-01

    A new multiplex PCR test was designed to detect Mycobacterium chelonae, Mycobacterium abscessus group, and Mycobacterium fortuitum complex on the BD MAX System. A total of 197 clinical samples previously submitted for mycobacterial culture were tested using the new protocol. Samples were first treated with proteinase K, and then each sample was inoculated into the BD MAX Sample Buffer Tube. Extraction and multiplex PCR were performed by the BD MAX System, using the BD MAX ExK TNA-3 extraction kit and BD TNA Master Mix, along with specific in-house designed primers and probes for each target. The limit of detection of each target, as well as specificity, was evaluated. Of 197 clinical samples included in this study, 133 were positive and 60 were negative for mycobacteria by culture, and another 4 negative samples were spiked with M. chelonae ATCC 35752. The new multiplex PCR on the BD MAX had 97% concordant results with culture for M. abscessus group detection, 99% for M. chelonae, and 100% for M. fortuitum complex. The new multiplex PCR test performed on the BD MAX System proved to be a sensitive and specific test to detect M. chelonae, M. abscessus group, and M. fortuitum complex by real-time PCR on an automated sample-in results-out platform. Copyright © 2017 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  13. Gold-silver-alloy nanoprobes for one-pot multiplex DNA detection

    International Nuclear Information System (INIS)

    Doria, G; Larguinho, M; Dias, J T; Baptista, P V; Pereira, E; Franco, R

    2010-01-01

    A specific colorimetric DNA detection method based on oligonucleotide functionalized gold-silver-alloy nanoparticles (AuAg-alloy-nanoprobes) is presented. The AuAg-alloy-nanoprobes were then used for the specific detection of a DNA sequence from TP53-a gene involved in cancer development. The AuAg-alloy-nanoprobes were then used in combination with Au-nanoprobes for a one-pot dual-colour detection strategy that allowed for the simultaneous differential detection of two distinct target sequences. This system poses an unprecedented opportunity to explore the combined use of metal nanoparticles with different composition towards the development of a multiplex one-pot colorimetric assay for DNA detection.

  14. A multiplexable TALE-based binary expression system for in vivo cellular interaction studies.

    Science.gov (United States)

    Toegel, Markus; Azzam, Ghows; Lee, Eunice Y; Knapp, David J H F; Tan, Ying; Fa, Ming; Fulga, Tudor A

    2017-11-21

    Binary expression systems have revolutionised genetic research by enabling delivery of loss-of-function and gain-of-function transgenes with precise spatial-temporal resolution in vivo. However, at present, each existing platform relies on a defined exogenous transcription activator capable of binding a unique recognition sequence. Consequently, none of these technologies alone can be used to simultaneously target different tissues or cell types in the same organism. Here, we report a modular system based on programmable transcription activator-like effector (TALE) proteins, which enables parallel expression of multiple transgenes in spatially distinct tissues in vivo. Using endogenous enhancers coupled to TALE drivers, we demonstrate multiplexed orthogonal activation of several transgenes carrying cognate variable activating sequences (VAS) in distinct neighbouring cell types of the Drosophila central nervous system. Since the number of combinatorial TALE-VAS pairs is virtually unlimited, this platform provides an experimental framework for highly complex genetic manipulation studies in vivo.

  15. Gold-silver-alloy nanoprobes for one-pot multiplex DNA detection

    Energy Technology Data Exchange (ETDEWEB)

    Doria, G; Larguinho, M; Dias, J T; Baptista, P V [Centro de Investigacao em Genetica Molecular Humana (CIGMH), Departamento de Ciencias da Vida, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Pereira, E [Rede de Quimica e Tecnologia (REQUIMTE), Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, 4169-007 Porto (Portugal); Franco, R, E-mail: pmvb@fct.unl.pt [Rede de Quimica e Tecnologia (REQUIMTE), Departamento de Quimica, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2010-06-25

    A specific colorimetric DNA detection method based on oligonucleotide functionalized gold-silver-alloy nanoparticles (AuAg-alloy-nanoprobes) is presented. The AuAg-alloy-nanoprobes were then used for the specific detection of a DNA sequence from TP53-a gene involved in cancer development. The AuAg-alloy-nanoprobes were then used in combination with Au-nanoprobes for a one-pot dual-colour detection strategy that allowed for the simultaneous differential detection of two distinct target sequences. This system poses an unprecedented opportunity to explore the combined use of metal nanoparticles with different composition towards the development of a multiplex one-pot colorimetric assay for DNA detection.

  16. Development of melting temperature-based SYBR Green I polymerase chain reaction methods for multiplex genetically modified organism detection.

    Science.gov (United States)

    Hernández, Marta; Rodríguez-Lázaro, David; Esteve, Teresa; Prat, Salomé; Pla, Maria

    2003-12-15

    Commercialization of several genetically modified crops has been approved worldwide to date. Uniplex polymerase chain reaction (PCR)-based methods to identify these different insertion events have been developed, but their use in the analysis of all commercially available genetically modified organisms (GMOs) is becoming progressively insufficient. These methods require a large number of assays to detect all possible GMOs present in the sample and thereby the development of multiplex PCR systems using combined probes and primers targeted to sequences specific to various GMOs is needed for detection of this increasing number of GMOs. Here we report on the development of a multiplex real-time PCR suitable for multiple GMO identification, based on the intercalating dye SYBR Green I and the analysis of the melting curves of the amplified products. Using this method, different amplification products specific for Maximizer 176, Bt11, MON810, and GA21 maize and for GTS 40-3-2 soybean were obtained and identified by their specific Tm. We have combined amplification of these products in a number of multiplex reactions and show the suitability of the methods for identification of GMOs with a sensitivity of 0.1% in duplex reactions. The described methods offer an economic and simple alternative to real-time PCR systems based on sequence-specific probes (i.e., TaqMan chemistry). These methods can be used as selection tests and further optimized for uniplex GMO quantification.

  17. Development of a GeXP-multiplex PCR assay for the simultaneous detection and differentiation of six cattle viruses.

    Directory of Open Access Journals (Sweden)

    Qing Fan

    Full Text Available Foot-and-mouth disease virus (FMDV, Bluetongue virus (BTV, Vesicular stomatitis Virus (VSV, Bovine viral diarrheal (BVDV, Bovine rotavirus (BRV, and Bovine herpesvirus 1 (IBRV are common cattle infectious viruses that cause a great economic loss every year in many parts of the world. A rapid and high-throughput GenomeLab Gene Expression Profiler (GeXP analyzer-based multiplex PCR assay was developed for the simultaneous detection and differentiation of these six cattle viruses. Six pairs of chimeric primers consisting of both the gene-specific primer and a universal primer were designed and used for amplification. Then capillary electrophoresis was used to separate the fluorescent labeled PCR products according to the amplicons size. The specificity of GeXP-multiplex PCR assay was examined with samples of the single template and mixed template of six viruses. The sensitivity was evaluated using the GeXP-multiplex PCR assay on serial 10-fold dilutions of ssRNAs obtained via in vitro transcription. To further evaluate the reliability, 305 clinical samples were tested by the GeXP-multiplex PCR assay. The results showed that the corresponding virus specific fragments of genes were amplified. The detection limit of the GeXP-multiplex PCR assay was 100 copies/μL in a mixed sample of ssRNAs containing target genes of six different cattle viruses, whereas the detection limit for the Gexp-mono PCR assay for a single target gene was 10 copies/μL. In detection of viruses in 305 clinical samples, the results of GeXP were consistent with simplex real-time PCR. Analysis of positive samples by sequencing demonstrated that the GeXP-multiplex PCR assay had no false positive samples of nonspecific amplification. In conclusion, this GeXP-multiplex PCR assay is a high throughput, specific, sensitive, rapid and simple method for the detection and differentiation of six cattle viruses. It is an effective tool that can be applied for the rapid differential diagnosis

  18. Dynamical interplay between awareness and epidemic spreading in multiplex networks

    OpenAIRE

    Granell, Clara; Gomez, Sergio; Arenas, Alex

    2013-01-01

    We present the analysis of the interrelation between two processes accounting for the spreading of an epidemics, and the information awareness to prevent its infection, on top of multiplex networks. This scenario is representative of an epidemic process spreading on a network of persistent real contacts, and a cyclic information awareness process diffusing in the network of virtual social contacts between the same individuals. The topology corresponds to a multiplex network where two diffusiv...

  19. Interferometric crosstalk suppression using polarization multiplexing technique and an SOA

    DEFF Research Database (Denmark)

    Liu, Fenghai; Xueyan, Zheng; Pedersen, Rune Johan Skullerud

    2000-01-01

    Interferometric crosstalk can be greatly suppressed at 10Gb/s and 20Gb/s by using a gain saturated SOA and a polarization multiplexing technique that eliminates impairments like waveform and extinction ratio degradation from the SOA.......Interferometric crosstalk can be greatly suppressed at 10Gb/s and 20Gb/s by using a gain saturated SOA and a polarization multiplexing technique that eliminates impairments like waveform and extinction ratio degradation from the SOA....

  20. Characterization of highly multiplexed monolithic PET / gamma camera detector modules

    Science.gov (United States)

    Pierce, L. A.; Pedemonte, S.; DeWitt, D.; MacDonald, L.; Hunter, W. C. J.; Van Leemput, K.; Miyaoka, R.

    2018-04-01

    PET detectors use signal multiplexing to reduce the total number of electronics channels needed to cover a given area. Using measured thin-beam calibration data, we tested a principal component based multiplexing scheme for scintillation detectors. The highly-multiplexed detector signal is no longer amenable to standard calibration methodologies. In this study we report results of a prototype multiplexing circuit, and present a new method for calibrating the detector module with multiplexed data. A 50 × 50 × 10 mm3 LYSO scintillation crystal was affixed to a position-sensitive photomultiplier tube with 8 × 8 position-outputs and one channel that is the sum of the other 64. The 65-channel signal was multiplexed in a resistive circuit, with 65:5 or 65:7 multiplexing. A 0.9 mm beam of 511 keV photons was scanned across the face of the crystal in a 1.52 mm grid pattern in order to characterize the detector response. New methods are developed to reject scattered events and perform depth-estimation to characterize the detector response of the calibration data. Photon interaction position estimation of the testing data was performed using a Gaussian Maximum Likelihood estimator and the resolution and scatter-rejection capabilities of the detector were analyzed. We found that using a 7-channel multiplexing scheme (65:7 compression ratio) with 1.67 mm depth bins had the best performance with a beam-contour of 1.2 mm FWHM (from the 0.9 mm beam) near the center of the crystal and 1.9 mm FWHM near the edge of the crystal. The positioned events followed the expected Beer–Lambert depth distribution. The proposed calibration and positioning method exhibited a scattered photon rejection rate that was a 55% improvement over the summed signal energy-windowing method.

  1. Computer automation of a dilution cryogenic system

    International Nuclear Information System (INIS)

    Nogues, C.

    1992-09-01

    This study has been realized in the framework of studies on developing new technic for low temperature detectors for neutrinos and dark matter. The principles of low temperature physics and helium 4 and dilution cryostats, are first reviewed. The cryogenic system used and the technic for low temperature thermometry and regulation systems are then described. The computer automation of the dilution cryogenic system involves: numerical measurement of the parameter set (pressure, temperature, flow rate); computer assisted operating of the cryostat and the pump bench; numerical regulation of pressure and temperature; operation sequence full automation allowing the system to evolve from a state to another (temperature descent for example)

  2. Coupled high-throughput functional screening and next generation sequencing for identification of plant polymer decomposing enzymes in metagenomic libraries

    Directory of Open Access Journals (Sweden)

    Mari eNyyssönen

    2013-09-01

    Full Text Available Recent advances in sequencing technologies generate new predictions and hypotheses about the functional roles of environmental microorganisms. Yet, until we can test these predictions at a scale that matches our ability to generate them, most of them will remain as hypotheses. Function-based mining of metagenomic libraries can provide direct linkages between genes, metabolic traits and microbial taxa and thus bridge this gap between sequence data generation and functional predictions. Here we developed high-throughput screening assays for function-based characterization of activities involved in plant polymer decomposition from environmental metagenomic libraries. The multiplexed assays use fluorogenic and chromogenic substrates, combine automated liquid handling and use a genetically modified expression host to enable simultaneous screening of 12,160 clones for 14 activities in a total of 170,240 reactions. Using this platform we identified 374 (0.26 % cellulose, hemicellulose, chitin, starch, phosphate and protein hydrolyzing clones from fosmid libraries prepared from decomposing leaf litter. Sequencing on the Illumina MiSeq platform, followed by assembly and gene prediction of a subset of 95 fosmid clones, identified a broad range of bacterial phyla, including Actinobacteria, Bacteroidetes, multiple Proteobacteria sub-phyla in addition to some Fungi. Carbohydrate-active enzyme genes from 20 different glycoside hydrolase families were detected. Using tetranucleotide frequency binning of fosmid sequences, multiple enzyme activities from distinct fosmids were linked, demonstrating how biochemically-confirmed functional traits in environmental metagenomes may be attributed to groups of specific organisms. Overall, our results demonstrate how functional screening of metagenomic libraries can be used to connect microbial functionality to community composition and, as a result, complement large-scale metagenomic sequencing efforts.

  3. Advanced fighter technology integration (AFTI)/F-16 Automated Maneuvering Attack System final flight test results

    Science.gov (United States)

    Dowden, Donald J.; Bessette, Denis E.

    1987-01-01

    The AFTI F-16 Automated Maneuvering Attack System has undergone developmental and demonstration flight testing over a total of 347.3 flying hours in 237 sorties. The emphasis of this phase of the flight test program was on the development of automated guidance and control systems for air-to-air and air-to-ground weapons delivery, using a digital flight control system, dual avionics multiplex buses, an advanced FLIR sensor with laser ranger, integrated flight/fire-control software, advanced cockpit display and controls, and modified core Multinational Stage Improvement Program avionics.

  4. Cavity enhanced eigenmode multiplexing for volume holographic data storage

    Science.gov (United States)

    Miller, Bo E.; Takashima, Yuzuru

    2017-08-01

    Previously, we proposed and experimentally demonstrated enhanced recording speeds by using a resonant optical cavity to semi-passively increase the reference beam power while recording image bearing holograms. In addition to enhancing the reference beam power the cavity supports the orthogonal reference beam families of its eigenmodes, which can be used as a degree of freedom to multiplex data pages and increase storage densities for volume Holographic Data Storage Systems (HDSS). While keeping the increased recording speed of a cavity enhanced reference arm, image bearing holograms are multiplexed by orthogonal phase code multiplexing via Hermite-Gaussian eigenmodes in a Fe:LiNbO3 medium with a 532 nm laser at two Bragg angles for expedited recording of four multiplexed holograms. We experimentally confirmed write rates are enhanced by an average factor of 1.1, and page crosstalk is about 2.5%. This hybrid multiplexing opens up a pathway to increase storage density while minimizing modifications to current angular multiplexing HDSS.

  5. Optimizing diffusion in multiplexes by maximizing layer dissimilarity

    Science.gov (United States)

    Serrano, Alfredo B.; Gómez-Gardeñes, Jesús; Andrade, Roberto F. S.

    2017-05-01

    Diffusion in a multiplex depends on the specific link distribution between the nodes in each layer, but also on the set of the intralayer and interlayer diffusion coefficients. In this work we investigate, in a quantitative way, the efficiency of multiplex diffusion as a function of the topological similarity among multiplex layers. This similarity is measured by the distance between layers, taken among the pairs of layers. Results are presented for a simple two-layer multiplex, where one of the layers is held fixed, while the other one can be rewired in a controlled way in order to increase or decrease the interlayer distance. The results indicate that, for fixed values of all intra- and interlayer diffusion coefficients, a large interlayer distance generally enhances the global multiplex diffusion, providing a topological mechanism to control the global diffusive process. For some sets of networks, we develop an algorithm to identify the most sensitive nodes in the rewirable layer, so that changes in a small set of connections produce a drastic enhancement of the global diffusion of the whole multiplex system.

  6. Link overlap, viability, and mutual percolation in multiplex networks

    International Nuclear Information System (INIS)

    Min, Byungjoon; Lee, Sangchul; Lee, Kyu-Min; Goh, K.-I.

    2015-01-01

    Many real-world complex systems are best modeled by multiplex networks. The multiplexity has proved to have broad impact on the system’s structure and function. Most theoretical studies on multiplex networks to date, however, have largely ignored the effect of the link overlap across layers despite strong empirical evidences for its significance. In this article, we investigate the effect of the link overlap in the viability of multiplex networks, both analytically and numerically. After a short recap of the original multiplex viability study, the distinctive role of overlapping links in viability and mutual connectivity is emphasized and exploited for setting up a proper analytic framework. A rich phase diagram for viability is obtained and greatly diversified patterns of hysteretic behavior in viability are observed in the presence of link overlap. Mutual percolation with link overlap is revisited as a limit of multiplex viability problem, and the controversy between existing results is clarified. The distinctive role of overlapping links is further demonstrated by the different responses of networks under random removals of overlapping and non-overlapping links, respectively, as well as under several link-removal strategies. Our results show that the link overlap facilitates the viability and mutual percolation; at the same time, the presence of link overlap poses a challenge in analytical approaches to the problem

  7. Demonstration of Time Domain Multiplexed Readout for Magnetically Coupled Calorimeters

    Science.gov (United States)

    Porst, J.-P.; Adams, J. S.; Balvin, M.; Bandler, S.; Beyer, J.; Busch, S. E.; Drung, D.; Seidel, G. M.; Smith, S. J.; Stevenson, T. R.

    2012-01-01

    Magnetically coupled calorimeters (MCC) have extremely high potential for x-ray applications due to the inherent high energy resolution capability and being non-dissipative. Although very high energy-resolution has been demonstrated, until now there has been no demonstration of multiplexed read-out. We report on the first realization of a time domain multiplexed (TDM) read-out. While this has many similarities with TDM of transition-edge-sensors (TES), for MGGs the energy resolution is limited by the SQUID read-out noise and requires the well established scheme to be altered in order to minimize degradation due to noise aliasing effects. In cur approach, each pixel is read out by a single first stage SQUID (SQ1) that is operated in open loop. The outputs of the SQ1 s are low-pass filtered with an array of low cross-talk inductors, then fed into a single-stage SQUID TD multiplexer. The multiplexer is addressed from room temperature and read out through a single amplifier channel. We present results achieved with a new detector platform. Noise performance is presented and compared to expectations. We have demonstrated multiplexed X-ray spectroscopy at 5.9keV with delta_FWHM=10eV. In an optimized setup, we show it is possible to multiplex 32 detectors without significantly degrading the Intrinsic detector resolution.

  8. Miniaturized high-temperature superconducting multiplexer with cascaded quadruplet structure

    Science.gov (United States)

    Xu, Zhang; Jingping, Liu; Shaolin, Yan; Lan, Fang; Bo, Zhang; Xinjie, Zhao

    2015-06-01

    In this paper, compact high temperature superconducting (HTS) multiplexers are presented for satellite communication applications. The first multiplexer consists of an input coupling node and three high-order bandpass filters, which is named triplexer. The node is realized by a loop microstrip line instead of conventional T-junction to eliminate the redundant susceptance due to combination of three filters. There are two eight-pole band-pass filters and one ten-pole band-pass filter with cascaded quadruplet structure for realizing high isolation. Moreover, the triplexer is extended to a multiplexer with six channels so as to verify the expansibility of the suggested approach. The triplexer is fabricated using double-sided YBa2Cu3O7 thin films on a 38 × 25 mm2 LaAlO3 substrate. The experimental results, when compared with those ones from the T-junction multiplexer, show that our multiplexer has lower insertion loss, smaller sizes and higher isolation between any two channels. Also, good agreement has been achieved between simulations and measurements, which illustrate the effectiveness of our methods for the design of high performance HTS multiplexers.

  9. Molecular beacon probes-base multiplex NASBA Real-time for detection of HIV-1 and HCV.

    Science.gov (United States)

    Mohammadi-Yeganeh, S; Paryan, M; Mirab Samiee, S; Kia, V; Rezvan, H

    2012-06-01

    Developed in 1991, nucleic acid sequence-based amplification (NASBA) has been introduced as a rapid molecular diagnostic technique, where it has been shown to give quicker results than PCR, and it can also be more sensitive. This paper describes the development of a molecular beacon-based multiplex NASBA assay for simultaneous detection of HIV-1 and HCV in plasma samples. A well-conserved region in the HIV-1 pol gene and 5'-NCR of HCV genome were used for primers and molecular beacon design. The performance features of HCV/HIV-1 multiplex NASBA assay including analytical sensitivity and specificity, clinical sensitivity and clinical specificity were evaluated. The analysis of scalar concentrations of the samples indicated that the limit of quantification of the assay was beacon probes detected all HCV genotypes and all major variants of HIV-1. This method may represent a relatively inexpensive isothermal method for detection of HIV-1/HCV co-infection in monitoring of patients.

  10. Automation systems for radioimmunoassay

    International Nuclear Information System (INIS)

    Yamasaki, Paul

    1974-01-01

    The application of automation systems for radioimmunoassay (RIA) was discussed. Automated systems could be useful in the second step, of the four basic processes in the course of RIA, i.e., preparation of sample for reaction. There were two types of instrumentation, a semi-automatic pipete, and a fully automated pipete station, both providing for fast and accurate dispensing of the reagent or for the diluting of sample with reagent. Illustrations of the instruments were shown. (Mukohata, S.)

  11. Clostridium perfringens isolate typing by multiplex PCR

    Directory of Open Access Journals (Sweden)

    MR Ahsani

    2010-01-01

    Full Text Available Clostridium perfringens is an important pathogen that provokes numerous different diseases. This bacterium is classified into five different types, each of which capable of causing a different disease. There are various methods for the bacterial identification, many are labor-intensive, time-consuming, expensive and also present low sensitivity and specificity. The aim of this research was to identify the different types of C. perfringens using PCR molecular method. In this study, 130 sheep-dung samples were randomly collected from areas around the city of Kerman, southeastern Iran. After processing and culturing of samples, the produced colonies were morphologically studied, gram stain test was also carried out and the genera of these bacteria were identified through biochemical tests. DNA extracted from isolated bacteria for genotyping was tested by multiplex PCR with specific primers. Based on length of synthesized fragments by PCR, toxin types and bacterial strains were detected. C. perfringens isolated types were divided as follows: 17.39% type A, 21.74% type B, 34.78% type C and 26.09% type D. It should be emphasized that, up to the present moment, C. perfringens type A has not been reported in Iran.

  12. Opinion competition dynamics on multiplex networks

    Science.gov (United States)

    Amato, R.; Kouvaris, N. E.; San Miguel, M.; Díaz-Guilera, A.

    2017-12-01

    Multilayer and multiplex networks represent a good proxy for the description of social phenomena where social structure is important and can have different origins. Here, we propose a model of opinion competition where individuals are organized according to two different structures in two layers. Agents exchange opinions according to the Abrams-Strogatz model in each layer separately and opinions can be copied across layers by the same individual. In each layer a different opinion is dominant, so each layer has a different absorbing state. Consensus in one opinion is not the only possible stable solution because of the interaction between the two layers. A new mean field solution has been found where both opinions coexist. In a finite system there is a long transient time for the dynamical coexistence of both opinions. However, the system ends in a consensus state due to finite size effects. We analyze sparse topologies in the two layers and the existence of positive correlations between them, which enables the coexistence of inter-layer groups of agents sharing the same opinion.

  13. Multiplexed coding in the human basal ganglia

    Science.gov (United States)

    Andres, D. S.; Cerquetti, D.; Merello, M.

    2016-04-01

    A classic controversy in neuroscience is whether information carried by spike trains is encoded by a time averaged measure (e.g. a rate code), or by complex time patterns (i.e. a time code). Here we apply a tool to quantitatively analyze the neural code. We make use of an algorithm based on the calculation of the temporal structure function, which permits to distinguish what scales of a signal are dominated by a complex temporal organization or a randomly generated process. In terms of the neural code, this kind of analysis makes it possible to detect temporal scales at which a time patterns coding scheme or alternatively a rate code are present. Additionally, finding the temporal scale at which the correlation between interspike intervals fades, the length of the basic information unit of the code can be established, and hence the word length of the code can be found. We apply this algorithm to neuronal recordings obtained from the Globus Pallidus pars interna from a human patient with Parkinson’s disease, and show that a time pattern coding and a rate coding scheme co-exist at different temporal scales, offering a new example of multiplexed neuronal coding.

  14. The Multiplex Network of EU Lobby Organizations.

    Science.gov (United States)

    Zeng, An; Battiston, Stefano

    2016-01-01

    The practice of lobbying in the interest of economic or social groups plays an important role in the policy making process of most economies. While no data is available at this stage to examine the success of lobbies in exerting influence on specific policy issues, we perform a first systematic multi-layer network analysis of a large lobby registry. Here we focus on the domains of finance and climate and we combine information on affiliation and client relations from the EU transparency register with information about shareholding and interlocking directorates of firms. We find that the network centrality of lobby organizations has no simple relation with their lobbying budget. Moreover, different layers of the multiplex network provide complementary information to characterize organizations' potential influence. At the aggregate level, it appears that while the domains of finance and climate are separated on the layer of affiliation relations, they become intertwined when economic relations are considered. Because groups of interest differ not only in their budget and network centrality but also in terms of their internal cohesiveness, drawing a map of both connections across and within groups is a precondition to better understand the dynamics of influence on policy making and the forces at play.

  15. Nanoscale Test Strips for Multiplexed Blood Analysis

    Science.gov (United States)

    Chan, Eugene

    2015-01-01

    A critical component of the DNA Medicine Institute's Reusable Handheld Electrolyte and Lab Technology for Humans (rHEALTH) sensor are nanoscale test strips, or nanostrips, that enable multiplexed blood analysis. Nanostrips are conceptually similar to the standard urinalysis test strip, but the strips are shrunk down a billionfold to the microscale. Each nanostrip can have several sensor pads that fluoresce in response to different targets in a sample. The strips carry identification tags that permit differentiation of a specific panel from hundreds of other nanostrip panels during a single measurement session. In Phase I of the project, the company fabricated, tested, and demonstrated functional parathyroid hormone and vitamin D nanostrips for bone metabolism, and thrombin aptamer and immunoglobulin G antibody nanostrips. In Phase II, numerous nanostrips were developed to address key space flight-based medical needs: assessment of bone metabolism, immune response, cardiac status, liver metabolism, and lipid profiles. This unique approach holds genuine promise for space-based portable biodiagnostics and for point-of-care (POC) health monitoring and diagnostics here on Earth.

  16. Laboratory Automation and Middleware.

    Science.gov (United States)

    Riben, Michael

    2015-06-01

    The practice of surgical pathology is under constant pressure to deliver the highest quality of service, reduce errors, increase throughput, and decrease turnaround time while at the same time dealing with an aging workforce, increasing financial constraints, and economic uncertainty. Although not able to implement total laboratory automation, great progress continues to be made in workstation automation in all areas of the pathology laboratory. This report highlights the benefits and challenges of pathology automation, reviews middleware and its use to facilitate automation, and reviews the progress so far in the anatomic pathology laboratory. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Automated cloning methods.; TOPICAL

    International Nuclear Information System (INIS)

    Collart, F.

    2001-01-01

    Argonne has developed a series of automated protocols to generate bacterial expression clones by using a robotic system designed to be used in procedures associated with molecular biology. The system provides plate storage, temperature control from 4 to 37 C at various locations, and Biomek and Multimek pipetting stations. The automated system consists of a robot that transports sources from the active station on the automation system. Protocols for the automated generation of bacterial expression clones can be grouped into three categories (Figure 1). Fragment generation protocols are initiated on day one of the expression cloning procedure and encompass those protocols involved in generating purified coding region (PCR)

  18. Complacency and Automation Bias in the Use of Imperfect Automation.

    Science.gov (United States)

    Wickens, Christopher D; Clegg, Benjamin A; Vieane, Alex Z; Sebok, Angelia L

    2015-08-01

    We examine the effects of two different kinds of decision-aiding automation errors on human-automation interaction (HAI), occurring at the first failure following repeated exposure to correctly functioning automation. The two errors are incorrect advice, triggering the automation bias, and missing advice, reflecting complacency. Contrasts between analogous automation errors in alerting systems, rather than decision aiding, have revealed that alerting false alarms are more problematic to HAI than alerting misses are. Prior research in decision aiding, although contrasting the two aiding errors (incorrect vs. missing), has confounded error expectancy. Participants performed an environmental process control simulation with and without decision aiding. For those with the aid, automation dependence was created through several trials of perfect aiding performance, and an unexpected automation error was then imposed in which automation was either gone (one group) or wrong (a second group). A control group received no automation support. The correct aid supported faster and more accurate diagnosis and lower workload. The aid failure degraded all three variables, but "automation wrong" had a much greater effect on accuracy, reflecting the automation bias, than did "automation gone," reflecting the impact of complacency. Some complacency was manifested for automation gone, by a longer latency and more modest reduction in accuracy. Automation wrong, creating the automation bias, appears to be a more problematic form of automation error than automation gone, reflecting complacency. Decision-aiding automation should indicate its lower degree of confidence in uncertain environments to avoid the automation bias. © 2015, Human Factors and Ergonomics Society.

  19. Hi-Plex for Simple, Accurate, and Cost-Effective Amplicon-based Targeted DNA Sequencing.

    Science.gov (United States)

    Pope, Bernard J; Hammet, Fleur; Nguyen-Dumont, Tu; Park, Daniel J

    2018-01-01

    Hi-Plex is a suite of methods to enable simple, accurate, and cost-effective highly multiplex PCR-based targeted sequencing (Nguyen-Dumont et al., Biotechniques 58:33-36, 2015). At its core is the principle of using gene-specific primers (GSPs) to "seed" (or target) the reaction and universal primers to "drive" the majority of the reaction. In this manner, effects on amplification efficiencies across the target amplicons can, to a large extent, be restricted to early seeding cycles. Product sizes are defined within a relatively narrow range to enable high-specificity size selection, replication uniformity across target sites (including in the context of fragmented input DNA such as that derived from fixed tumor specimens (Nguyen-Dumont et al., Biotechniques 55:69-74, 2013; Nguyen-Dumont et al., Anal Biochem 470:48-51, 2015), and application of high-specificity genetic variant calling algorithms (Pope et al., Source Code Biol Med 9:3, 2014; Park et al., BMC Bioinformatics 17:165, 2016). Hi-Plex offers a streamlined workflow that is suitable for testing large numbers of specimens without the need for automation.

  20. Classification and characterization of species within the genus lens using genotyping-by-sequencing (GBS.

    Directory of Open Access Journals (Sweden)

    Melissa M L Wong

    Full Text Available Lentil (Lens culinaris ssp. culinaris is a nutritious and affordable pulse with an ancient crop domestication history. The genus Lens consists of seven taxa, however, there are many discrepancies in the taxon and gene pool classification of lentil and its wild relatives. Due to the narrow genetic basis of cultivated lentil, there is a need towards better understanding of the relationships amongst wild germplasm to assist introgression of favourable genes into lentil breeding programs. Genotyping-by-sequencing (GBS is an easy and affordable method that allows multiplexing of up to 384 samples or more per library to generate genome-wide single nucleotide Polymorphism (SNP markers. In this study, we aimed to characterize our lentil germplasm collection using a two-enzyme GBS approach. We constructed two 96-plex GBS libraries with a total of 60 accessions where some accessions had several samples and each sample was sequenced in two technical replicates. We developed an automated GBS pipeline and detected a total of 266,356 genome-wide SNPs. After filtering low quality and redundant SNPs based on haplotype information, we constructed a maximum-likelihood tree using 5,389 SNPs. The phylogenetic tree grouped the germplasm collection into their respective taxa with strong support. Based on phylogenetic tree and STRUCTURE analysis, we identified four gene pools, namely L. culinaris/L. orientalis/L. tomentosus, L. lamottei/L. odemensis, L. ervoides and L. nigricans which form primary, secondary, tertiary and quaternary gene pools, respectively. We discovered sequencing bias problems likely due to DNA quality and observed severe run-to-run variation in the wild lentils. We examined the authenticity of the germplasm collection and identified 17% misclassified samples. Our study demonstrated that GBS is a promising and affordable tool for screening by plant breeders interested in crop wild relatives.

  1. Automated Testing of Event-Driven Applications

    DEFF Research Database (Denmark)

    Jensen, Casper Svenning

    may be tested by selecting an interesting input (i.e. a sequence of events), and deciding if a failure occurs when the selected input is applied to the event-driven application under test. Automated testing promises to reduce the workload for developers by automatically selecting interesting inputs...... and detect failures. However, it is non-trivial to conduct automated testing of event-driven applications because of, for example, infinite input spaces and the absence of specifications of correct application behavior. In this PhD dissertation, we identify a number of specific challenges when conducting...... automated testing of event-driven applications, and we present novel techniques for solving these challenges. First, we present an algorithm for stateless model-checking of event-driven applications with partial-order reduction, and we show how this algorithm may be used to systematically test web...

  2. Electrochemistry-based approaches to low cost, high sensitivity, automated, multiplexed protein immunoassays for cancer diagnostics.

    Science.gov (United States)

    Dixit, Chandra K; Kadimisetty, Karteek; Otieno, Brunah A; Tang, Chi; Malla, Spundana; Krause, Colleen E; Rusling, James F

    2016-01-21

    Early detection and reliable diagnostics are keys to effectively design cancer therapies with better prognoses. The simultaneous detection of panels of biomarker proteins holds great promise as a general tool for reliable cancer diagnostics. A major challenge in designing such a panel is to decide upon a coherent group of biomarkers which have higher specificity for a given type of cancer. The second big challenge is to develop test devices to measure these biomarkers quantitatively with high sensitivity and specificity, such that there are no interferences from the complex serum or tissue matrices. Lastly, integrating all these tests into a technology that does not require exclusive training to operate, and can be used at point-of-care (POC) is another potential bottleneck in futuristic cancer diagnostics. In this article, we review electrochemistry-based tools and technologies developed and/or used in our laboratories to construct low-cost microfluidic protein arrays for the highly sensitive detection of a panel of cancer-specific biomarkers with high specificity which at the same time has the potential to be translated into POC applications.

  3. Sequence assembly

    DEFF Research Database (Denmark)

    Scheibye-Alsing, Karsten; Hoffmann, S.; Frankel, Annett Maria

    2009-01-01

    Despite the rapidly increasing number of sequenced and re-sequenced genomes, many issues regarding the computational assembly of large-scale sequencing data have remain unresolved. Computational assembly is crucial in large genome projects as well for the evolving high-throughput technologies and...... in genomic DNA, highly expressed genes and alternative transcripts in EST sequences. We summarize existing comparisons of different assemblers and provide a detailed descriptions and directions for download of assembly programs at: http://genome.ku.dk/resources/assembly/methods.html....

  4. Genome Sequencing

    DEFF Research Database (Denmark)

    Sato, Shusei; Andersen, Stig Uggerhøj

    2014-01-01

    The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based on transcr......The current Lotus japonicus reference genome sequence is based on a hybrid assembly of Sanger TAC/BAC, Sanger shotgun and Illumina shotgun sequencing data generated from the Miyakojima-MG20 accession. It covers nearly all expressed L. japonicus genes and has been annotated mainly based...

  5. Detection of Shiga toxins genes by Multiplex PCR in clinical samples

    Directory of Open Access Journals (Sweden)

    2013-09-01

    Full Text Available Background: Different methods have been used for detection of shiga toxins; such as,  cell culture, ELISA, and RFPLA. However, all of these methods suffer from high cost, time-consumption and relatively low sensitivity. In this study we used Multiplex PCR method for detection of genes encoding shiga toxins. Material and Methods: In this study, 63 clinical samples were obtained from positive cultures of Shigella and E. coli O157, from Bahman 1391 until Ordibehesht 1392 in Mazandaran province. Initial confirmation of shiga toxins producing bacteria was performed by biochemical and serological methods. After DNA extraction, detection of stx1 and stx2 genes was accomplished by multiplex PCR.  For confirmation of the PCR amplicon, DNA sequencing was used. Antibiotic sensitivity tests were performed by disk diffusion method. Results:  Among the positive strains, 13 strains contained stx2 genes, 4 strains contained Stx/Stx1 genes and 4 strains harbored both Stx/Stx1 and Stx2. The DNA extracted from other Gram-negative bacteria was not protected by the relevant parts of these toxins. Sequencing of the amplified fragments indicated the correct toxin sequences.  The sensitivity for identification of Stx/Stx1 gene was 1.56 pg/ µl and for Stx2 was 1.08 pg/µl. The toxin positive strains were all sensitive to Cefixime, Gentamicin, Amikacin, Ceftriaxone, and Nitrofurantoin. Conclusion: This method is fast and accurate for detection of bacteria producing shiga toxin and can be used to identify different types of shiga toxin.

  6. Automated System Marketplace 1994.

    Science.gov (United States)

    Griffiths, Jose-Marie; Kertis, Kimberly

    1994-01-01

    Reports results of the 1994 Automated System Marketplace survey based on responses from 60 vendors. Highlights include changes in the library automation marketplace; estimated library systems revenues; minicomputer and microcomputer-based systems; marketplace trends; global markets and mergers; research needs; new purchase processes; and profiles…

  7. Automation in Warehouse Development

    NARCIS (Netherlands)

    Hamberg, R.; Verriet, J.

    2012-01-01

    The warehouses of the future will come in a variety of forms, but with a few common ingredients. Firstly, human operational handling of items in warehouses is increasingly being replaced by automated item handling. Extended warehouse automation counteracts the scarcity of human operators and

  8. Order Division Automated System.

    Science.gov (United States)

    Kniemeyer, Justin M.; And Others

    This publication was prepared by the Order Division Automation Project staff to fulfill the Library of Congress' requirement to document all automation efforts. The report was originally intended for internal use only and not for distribution outside the Library. It is now felt that the library community at-large may have an interest in the…

  9. Automate functional testing

    Directory of Open Access Journals (Sweden)

    Ramesh Kalindri

    2014-06-01

    Full Text Available Currently, software engineers are increasingly turning to the option of automating functional tests, but not always have successful in this endeavor. Reasons range from low planning until over cost in the process. Some principles that can guide teams in automating these tests are described in this article.

  10. Automating the Small Library.

    Science.gov (United States)

    Skapura, Robert

    1987-01-01

    Discusses the use of microcomputers for automating school libraries, both for entire systems and for specific library tasks. Highlights include available library management software, newsletters that evaluate software, constructing an evaluation matrix, steps to consider in library automation, and a brief discussion of computerized card catalogs.…

  11. Rapid identification of probiotic Lactobacillus species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA.

    Science.gov (United States)

    Kwon, Hyuk-Sang; Yang, Eun-Hee; Yeon, Seung-Woo; Kang, Byoung-Hwa; Kim, Tae-Yong

    2004-10-15

    This study aimed to develop a novel multiplex polymerase chain reaction (PCR) primer set for the identification of seven probiotic Lactobacillus species such as Lactobacillus acidophilus, Lactobacillus delbrueckii, Lactobacillus casei, Lactobacillus gasseri, Lactobacillus plantarum, Lactobacillus reuteri and Lactobacillus rhamnosus. The primer set, comprising of seven specific and two conserved primers, was derived from the integrated sequences of 16S and 23S rRNA genes and their rRNA intergenic spacer region of each species. It was able to identify the seven target species with 93.6% accuracy, which exceeds that of the general biochemical methods. The phylogenetic analyses, using 16S rDNA sequences of the probiotic isolates, also provided further support that the results from the multiplex PCR assay were trustworthy. Taken together, we suggest that the multiplex primer set is an efficient tool for simple, rapid and reliable identification of seven Lactobacillus species.

  12. Quantitative phenotyping via deep barcode sequencing.

    Science.gov (United States)

    Smith, Andrew M; Heisler, Lawrence E; Mellor, Joseph; Kaper, Fiona; Thompson, Michael J; Chee, Mark; Roth, Frederick P; Giaever, Guri; Nislow, Corey

    2009-10-01

    Next-generation DNA sequencing technologies have revolutionized diverse genomics applications, including de novo genome sequencing, SNP detection, chromatin immunoprecipitation, and transcriptome analysis. Here we apply deep sequencing to genome-scale fitness profiling to evaluate yeast strain collections in parallel. This method, Barcode analysis by Sequencing, or "Bar-seq," outperforms the current benchmark barcode microarray assay in terms of both dynamic range and throughput. When applied to a complex chemogenomic assay, Bar-seq quantitatively identifies drug targets, with performance superior to the benchmark microarray assay. We also show that Bar-seq is well-suited for a multiplex format. We completely re-sequenced and re-annotated the yeast deletion collection using deep sequencing, found that approximately 20% of the barcodes and common priming sequences varied from expectation, and used this revised list of barcode sequences to improve data quality. Together, this new assay and analysis routine provide a deep-sequencing-based toolkit for identifying gene-environment interactions on a genome-wide scale.

  13. SQUID readout multiplexers for transition-edge sensor arrays

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Adrian T. [Physics Department, University of California, Berkeley, CA 94720 (United States) and Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)]. E-mail: atl@physics.berkeley.edu

    2006-04-15

    Two classes of SQUID multiplexer are being developed for large arrays of cryogenic sensors, distinguished by their operation in either the time domain or frequency domain. Several systems optimized for use with Transition-Edge Sensors (TES) are reaching a high level of maturity, and will be deployed on funded astrophysics experiments in the next several years. A useful technical figure of merit is the product of the number of detectors multplexed multipled by the bandwidth of the detectors, which can be termed the 'total signal bandwidth' of a multiplexer system. This figure of merit is comparable within a factor of two for the mature systems. Several new concepts for increasing the total bandwidth are being developed in the broad class of frequency domain multiplexers. Another notable area of progress is in the level of integration of muliplexer and detector array. The time domain system for SCUBA-II is a sophisticated bump-bonded sandwich structure, and the Jena/MPI group is integrating detectors and a time domain multiplexer on one substrate. Finally, the Kinetic Inductance Detectors (KID)/HEMT (non-SQUID) detector/multiplexer system, will be discussed briefly.

  14. The new challenges of multiplex networks: Measures and models

    Science.gov (United States)

    Battiston, Federico; Nicosia, Vincenzo; Latora, Vito

    2017-02-01

    What do societies, the Internet, and the human brain have in common? They are all examples of complex relational systems, whose emerging behaviours are largely determined by the non-trivial networks of interactions among their constituents, namely individuals, computers, or neurons, rather than only by the properties of the units themselves. In the last two decades, network scientists have proposed models of increasing complexity to better understand real-world systems. Only recently we have realised that multiplexity, i.e. the coexistence of several types of interactions among the constituents of a complex system, is responsible for substantial qualitative and quantitative differences in the type and variety of behaviours that a complex system can exhibit. As a consequence, multilayer and multiplex networks have become a hot topic in complexity science. Here we provide an overview of some of the measures proposed so far to characterise the structure of multiplex networks, and a selection of models aiming at reproducing those structural properties and quantifying their statistical significance. Focusing on a subset of relevant topics, this brief review is a quite comprehensive introduction to the most basic tools for the analysis of multiplex networks observed in the real-world. The wide applicability of multiplex networks as a framework to model complex systems in different fields, from biology to social sciences, and the colloquial tone of the paper will make it an interesting read for researchers working on both theoretical and experimental analysis of networked systems.

  15. Multiplexed Neurochemical Signaling by Neurons of the Ventral Tegmental Area

    Science.gov (United States)

    Barker, David J.; Root, David H.; Zhang, Shiliang; Morales, Marisela

    2016-01-01

    The ventral tegmental area (VTA) is an evolutionarily conserved structure that has roles in reward-seeking, safety-seeking, learning, motivation, and neuropsychiatric disorders such as addiction and depression. The involvement of the VTA in these various behaviors and disorders is paralleled by its diverse signaling mechanisms. Here we review recent advances in our understanding of neuronal diversity in the VTA with a focus on cell phenotypes that participate in ‘multiplexed’ neurotransmission involving distinct signaling mechanisms. First, we describe the cellular diversity within the VTA, including neurons capable of transmitting dopamine, glutamate or GABA as well as neurons capable of multiplexing combinations of these neurotransmitters. Next, we describe the complex synaptic architecture used by VTA neurons in order to accommodate the transmission of multiple transmitters. We specifically cover recent findings showing that VTA multiplexed neurotransmission may be mediated by either the segregation of dopamine and glutamate into distinct microdomains within a single axon or by the integration of glutamate and GABA into a single axon terminal. In addition, we discuss our current understanding of the functional role that these multiplexed signaling pathways have in the lateral habenula and the nucleus accumbens. Finally, we consider the putative roles of VTA multiplexed neurotransmission in synaptic plasticity and discuss how changes in VTA multiplexed neurons may relate to various psychopathologies including drug addiction and depression. PMID:26763116

  16. DNA Differential Diagnosis of Taeniasis and Cysticercosis by Multiplex PCR

    Science.gov (United States)

    Yamasaki, Hiroshi; Allan, James C.; Sato, Marcello Otake; Nakao, Minoru; Sako, Yasuhito; Nakaya, Kazuhiro; Qiu, Dongchuan; Mamuti, Wulamu; Craig, Philip S.; Ito, Akira

    2004-01-01

    Multiplex PCR was established for differential diagnosis of taeniasis and cysticercosis, including their causative agents. For identification of the parasites, multiplex PCR with cytochrome c oxidase subunit 1 gene yielded evident differential products unique for Taenia saginata and Taenia asiatica and for American/African and Asian genotypes of Taenia solium with molecular sizes of 827, 269, 720, and 984 bp, respectively. In the PCR-based detection of tapeworm carriers using fecal samples, the diagnostic markers were detected from 7 of 14 and 4 of 9 T. solium carriers from Guatemala and Indonesia, respectively. Test sensitivity may have been reduced by the length of time (up to 12 years) that samples were stored and/or small sample volumes (ca. 30 to 50 mg). However, the diagnostic markers were detected by nested PCR in five worm carriers from Guatemalan cases that were found to be negative by multiplex PCR. It was noteworthy that a 720 bp-diagnostic marker was detected from a T. solium carrier who was egg-free, implying that it is possible to detect worm carriers and treat before mature gravid proglottids are discharged. In contrast to T. solium carriers, 827-bp markers were detected by multiplex PCR in all T. saginata carriers. The application of the multiplex PCR would be useful not only for surveillance of taeniasis and cysticercosis control but also for the molecular epidemiological survey of these cestode infections. PMID:14766815

  17. Automated model building

    CERN Document Server

    Caferra, Ricardo; Peltier, Nicholas

    2004-01-01

    This is the first book on automated model building, a discipline of automated deduction that is of growing importance Although models and their construction are important per se, automated model building has appeared as a natural enrichment of automated deduction, especially in the attempt to capture the human way of reasoning The book provides an historical overview of the field of automated deduction, and presents the foundations of different existing approaches to model construction, in particular those developed by the authors Finite and infinite model building techniques are presented The main emphasis is on calculi-based methods, and relevant practical results are provided The book is of interest to researchers and graduate students in computer science, computational logic and artificial intelligence It can also be used as a textbook in advanced undergraduate courses

  18. Automation in Immunohematology

    Directory of Open Access Journals (Sweden)

    Meenu Bajpai

    2012-01-01

    Full Text Available There have been rapid technological advances in blood banking in South Asian region over the past decade with an increasing emphasis on quality and safety of blood products. The conventional test tube technique has given way to newer techniques such as column agglutination technique, solid phase red cell adherence assay, and erythrocyte-magnetized technique. These new technologies are adaptable to automation and major manufacturers in this field have come up with semi and fully automated equipments for immunohematology tests in the blood bank. Automation improves the objectivity and reproducibility of tests. It reduces human errors in patient identification and transcription errors. Documentation and traceability of tests, reagents and processes and archiving of results is another major advantage of automation. Shifting from manual methods to automation is a major undertaking for any transfusion service to provide quality patient care with lesser turnaround time for their ever increasing workload. This article discusses the various issues involved in the process.

  19. Automation in Warehouse Development

    CERN Document Server

    Verriet, Jacques

    2012-01-01

    The warehouses of the future will come in a variety of forms, but with a few common ingredients. Firstly, human operational handling of items in warehouses is increasingly being replaced by automated item handling. Extended warehouse automation counteracts the scarcity of human operators and supports the quality of picking processes. Secondly, the development of models to simulate and analyse warehouse designs and their components facilitates the challenging task of developing warehouses that take into account each customer’s individual requirements and logistic processes. Automation in Warehouse Development addresses both types of automation from the innovative perspective of applied science. In particular, it describes the outcomes of the Falcon project, a joint endeavour by a consortium of industrial and academic partners. The results include a model-based approach to automate warehouse control design, analysis models for warehouse design, concepts for robotic item handling and computer vision, and auton...

  20. Surface-enhanced Raman scattering based nonfluorescent probe for multiplex DNA detection.

    Science.gov (United States)

    Sun, Lan; Yu, Chenxu; Irudayaraj, Joseph

    2007-06-01

    To provide rapid and accurate detection of DNA markers in a straightforward, inexpensive, and multiplex format, an alternative surface-enhanced Raman scattering based probe was designed and fabricated to covalently attach both DNA probing sequence and nonfluorescent Raman tags to the surface of gold nanoparticles (DNA-AuP-RTag). The intensity of Raman signal of the probes could be controlled through the surface coverage of the nonfluorescent Raman tags (RTags). Detection sensitivity of these probes could be optimized by fine-tuning the amount of DNA molecules and RTags on the probes. Long-term stability of the DNA-AuP-RTag probes was found to be good (over 3 months). Excellent multiplexing capability of the DNA-AuP-RTag scheme was demonstrated by simultaneous identification of up to eight probes in a mixture. Detection of hybridization of single-stranded DNA to its complementary targets was successfully accomplished with a long-term goal to use nonfluorescent RTags in a Raman-based DNA microarray platform.

  1. Detection of four important Eimeria species by multiplex PCR in a single assay.

    Science.gov (United States)

    You, Myung-Jo

    2014-06-01

    The oocysts of some of the recognized species of chicken coccidiosis are difficult to distinguish morphologically. Diagnostic laboratories are increasingly utilizing DNA-based technologies for the specific identification of Eimeria species. This study reports a multiplex polymerase chain reaction (PCR) assay based on internal transcribed spacer-1 (ITS-1) for the simultaneous diagnosis of the Eimeria tenella, Eimeria acervulina, Eimeria maxima, and Eimeria necatrix species, which infect domestic fowl. Primer pairs specific to each species were designed in order to generate a ladder of amplification products ranging from 20 to 25 bp, and a common optimum annealing temperature for these species was determined to be 52.5 °C. Sensitivity tests were performed for each species, showing a detection threshold of 1-5 pg. All the species were amplified homogeneously, and a homogenous band ladder was observed, indicating that the assay permitted the simultaneous detection of all the species in a single-tube reaction. In the phylogenic study, there was a clear species clustering, which was irrespective of geographical location, for all the ITS-1 sequences used. This multiplex PCR assay represents a rapid and potential cost-effective diagnostic method for the detection of some key Eimeria species that infect domestic fowl. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Evaluation of a 13-loci STR multiplex system for Cannabis sativa genetic identification.

    Science.gov (United States)

    Houston, Rachel; Birck, Matthew; Hughes-Stamm, Sheree; Gangitano, David

    2016-05-01

    Marijuana (Cannabis sativa) is the most commonly used illicit substance in the USA. The development of a validated method using Cannabis short tandem repeats (STRs) could aid in the individualization of samples as well as serve as an intelligence tool to link multiple cases. For this purpose, a modified 13-loci STR multiplex method was optimized and evaluated according to ISFG and SWGDAM guidelines. A real-time PCR quantification method for C. sativa was developed and validated, and a sequenced allelic ladder was also designed to accurately genotype 199 C. sativa samples from 11 U.S. Customs and Border Protection seizures. Distinguishable DNA profiles were generated from 127 samples that yielded full STR profiles. Four duplicate genotypes within seizures were found. The combined power of discrimination of this multilocus system is 1 in 70 million. The sensitivity of the multiplex STR system is 0.25 ng of template DNA. None of the 13 STR markers cross-reacted with any of the studied species, except for Humulus lupulus (hops) which generated unspecific peaks. Phylogenetic analysis and case-to-case pairwise comparison of 11 cases using F st as genetic distance revealed the genetic association of four groups of cases. Moreover, due to their genetic similarity, a subset of samples (N = 97) was found to form a homogeneous population in Hardy-Weinberg and linkage equilibrium. The results of this research demonstrate the applicability of this 13-loci STR system in associating Cannabis cases for intelligence purposes.

  3. Detection and Identification of Probiotic Lactobacillus plantarum Strains by Multiplex PCR Using RAPD-Derived Primers.

    Science.gov (United States)

    Galanis, Alex; Kourkoutas, Yiannis; Tassou, Chrysoula C; Chorianopoulos, Nikos

    2015-10-22

    Lactobacillus plantarum 2035 and Lactobacillus plantarum ACA-DC 2640 are two lactic acid bacteria (LAB) strains that have been isolated from Feta cheese. Both display significant potential for the production of novel probiotic food products. The aim of the present study was the development of an accurate and efficient method for the molecular detection and identification of the above strains in a single reaction. A multiplex PCR assay was designed for each strain, based on specific primers derived from Random Amplified Polymorphic DNA (RAPD) Sequenced Characterized Amplified Region (SCAR) analysis. The specificity of the assay was tested with a total of 23 different LAB strains, for L. plantarum 2035 and L. plantarum ACA-DC 2640. The multiplex PCR assay was also successfully applied for the detection of the above cultures in yogurt samples prepared in our lab. The proposed methodology may be applied for monitoring the presence of these strains in food products, thus evaluating their probiotic character. Moreover, our strategy may be adapted for other novel LAB strains with probiotic potential, thus providing a powerful tool for molecular discrimination that could be invaluable to the food industry.

  4. Detection and Identification of Probiotic Lactobacillus plantarum Strains by Multiplex PCR Using RAPD-Derived Primers

    Directory of Open Access Journals (Sweden)

    Alex Galanis

    2015-10-01

    Full Text Available Lactobacillus plantarum 2035 and Lactobacillus plantarum ACA-DC 2640 are two lactic acid bacteria (LAB strains that have been isolated from Feta cheese. Both display significant potential for the production of novel probiotic food products. The aim of the present study was the development of an accurate and efficient method for the molecular detection and identification of the above strains in a single reaction. A multiplex PCR assay was designed for each strain, based on specific primers derived from Random Amplified Polymorphic DNA (RAPD Sequenced Characterized Amplified Region (SCAR analysis. The specificity of the assay was tested with a total of 23 different LAB strains, for L. plantarum 2035 and L. plantarum ACA-DC 2640. The multiplex PCR assay was also successfully applied for the detection of the above cultures in yogurt samples prepared in our lab. The proposed methodology may be applied for monitoring the presence of these strains in food products, thus evaluating their probiotic character. Moreover, our strategy may be adapted for other novel LAB strains with probiotic potential, thus providing a powerful tool for molecular discrimination that could be invaluable to the food industry.

  5. Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels.

    Science.gov (United States)

    Wu, Shijia; Duan, Nuo; Shi, Zhao; Fang, Congcong; Wang, Zhouping

    2014-03-18

    A highly sensitive and specific multiplex method for the simultaneous detection of three pathogenic bacteria was fabricated using multicolor upconversion nanoparticles (UCNPs) as luminescence labels coupled with aptamers as the molecular recognition elements. Multicolor UCNPs were synthesized via doping with various rare-earth ions to obtain well-separated emission peaks. The aptamer sequences were selected using the systematic evolution of ligands by exponential enrichment (SELEX) strategy for Staphylococcus aureus, Vibrio parahemolyticus, and Salmonella typhimurium. When applied in this method, aptamers can be used for the specific recognition of the bacteria from complex mixtures, including those found in real food matrixes. Aptamers and multicolor UCNPs were employed to selectively capture and simultaneously quantify the three target bacteria on the basis of the independent peaks. Under optimal conditions, the correlation between the concentration of three bacteria and the luminescence signal was found to be linear from 50-10(6) cfu mL(-1). Improved by the magnetic separation and concentration effect of Fe3O4 magnetic nanoparticles, the limits of detection of the developed method were found to be 25, 10, and 15 cfu mL(-1) for S. aureus, V. parahemolyticus, and S. typhimurium, respectively. The capability of the bioassay in real food samples was also investigated, and the results were consistent with experimental results obtained from plate-counting methods. This proposed method for the detection of various pathogenic bacteria based on multicolor UCNPs has great potential in the application of food safety and multiplex nanosensors.

  6. The contaminant analysis automation robot implementation for the automated laboratory

    International Nuclear Information System (INIS)

    Younkin, J.R.; Igou, R.E.; Urenda, T.D.

    1995-01-01

    The Contaminant Analysis Automation (CAA) project defines the automated laboratory as a series of standard laboratory modules (SLM) serviced by a robotic standard support module (SSM). These SLMs are designed to allow plug-and-play integration into automated systems that perform standard analysis methods (SAM). While the SLMs are autonomous in the execution of their particular chemical processing task, the SAM concept relies on a high-level task sequence controller (TSC) to coordinate the robotic delivery of materials requisite for SLM operations, initiate an SLM operation with the chemical method dependent operating parameters, and coordinate the robotic removal of materials from the SLM when its commands and events has been established to allow ready them for transport operations as well as performing the Supervisor and Subsystems (GENISAS) software governs events from the SLMs and robot. The Intelligent System Operating Environment (ISOE) enables the inter-process communications used by GENISAS. CAA selected the Hewlett-Packard Optimized Robot for Chemical Analysis (ORCA) and its associated Windows based Methods Development Software (MDS) as the robot SSM. The MDS software is used to teach the robot each SLM position and required material port motions. To allow the TSC to command these SLM motions, a hardware and software implementation was required that allowed message passing between different operating systems. This implementation involved the use of a Virtual Memory Extended (VME) rack with a Force CPU-30 computer running VxWorks; a real-time multitasking operating system, and a Radiuses PC compatible VME computer running MDS. A GENISAS server on The Force computer accepts a transport command from the TSC, a GENISAS supervisor, over Ethernet and notifies software on the RadiSys PC of the pending command through VMEbus shared memory. The command is then delivered to the MDS robot control software using a Windows Dynamic Data Exchange conversation

  7. Metal Stable Isotope Tagging: Renaissance of Radioimmunoassay for Multiplex and Absolute Quantification of Biomolecules.

    Science.gov (United States)

    Liu, Rui; Zhang, Shixi; Wei, Chao; Xing, Zhi; Zhang, Sichun; Zhang, Xinrong

    2016-05-17

    The unambiguous quantification of biomolecules is of great significance in fundamental biological research as well as practical clinical diagnosis. Due to the lack of a detectable moiety, the direct and highly sensitive quantification of biomolecules is often a "mission impossible". Consequently, tagging strategies to introduce detectable moieties for labeling target biomolecules were invented, which had a long and significant impact on studies of biomolecules in the past decades. For instance, immunoassays have been developed with radioisotope tagging by Yalow and Berson in the late 1950s. The later languishment of this technology can be almost exclusively ascribed to the use of radioactive isotopes, which led to the development of nonradioactive tagging strategy-based assays such as enzyme-linked immunosorbent assay, fluorescent immunoassay, and chemiluminescent and electrochemiluminescent immunoassay. Despite great success, these strategies suffered from drawbacks such as limited spectral window capacity for multiplex detection and inability to provide absolute quantification of biomolecules. After recalling the sequences of tagging strategies, an apparent question is why not use stable isotopes from the start? A reasonable explanation is the lack of reliable means for accurate and precise quantification of stable isotopes at that time. The situation has changed greatly at present, since several atomic mass spectrometric measures for metal stable isotopes have been developed. Among the newly developed techniques, inductively coupled plasma mass spectrometry is an ideal technique to determine metal stable isotope-tagged biomolecules, for its high sensitivity, wide dynamic linear range, and more importantly multiplex and absolute quantification ability. Since the first published report by our group, metal stable isotope tagging has become a revolutionary technique and gained great success in biomolecule quantification. An exciting research highlight in this area

  8. DNA Sequencing by Capillary Electrophoresis

    Science.gov (United States)

    Karger, Barry L.; Guttman, Andras

    2009-01-01

    Sequencing of human and other genomes has been at the center of interest in the biomedical field over the past several decades and is now leading toward an era of personalized medicine. During this time, DNA sequencing methods have evolved from the labor intensive slab gel electrophoresis, through automated multicapillary electrophoresis systems using fluorophore labeling with multispectral imaging, to the “next generation” technologies of cyclic array, hybridization based, nanopore and single molecule sequencing. Deciphering the genetic blueprint and follow-up confirmatory sequencing of Homo sapiens and other genomes was only possible by the advent of modern sequencing technologies that was a result of step by step advances with a contribution of academics, medical personnel and instrument companies. While next generation sequencing is moving ahead at break-neck speed, the multicapillary electrophoretic systems played an essential role in the sequencing of the Human Genome, the foundation of the field of genomics. In this prospective, we wish to overview the role of capillary electrophoresis in DNA sequencing based in part of several of our articles in this journal. PMID:19517496

  9. Minimum variance optimal rate allocation for multiplexed H.264/AVC bitstreams.

    Science.gov (United States)

    Tagliasacchi, Marco; Valenzise, Giuseppe; Tubaro, Stefano

    2008-07-01

    Consider the problem of transmitting multiple video streams to fulfill a constant bandwidth constraint. The available bit budget needs to be distributed across the sequences in order to meet some optimality criteria. For example, one might want to minimize the average distortion or, alternatively, minimize the distortion variance, in order to keep almost constant quality among the encoded sequences. By working in the rho-domain, we propose a low-delay rate allocation scheme that, at each time instant, provides a closed form solution for either the aforementioned problems. We show that minimizing the distortion variance instead of the average distortion leads, for each of the multiplexed sequences, to a coding penalty less than 0.5 dB, in terms of average PSNR. In addition, our analysis provides an explicit relationship between model parameters and this loss. In order to smooth the distortion also along time, we accommodate a shared encoder buffer to compensate for rate fluctuations. Although the proposed scheme is general, and it can be adopted for any video and image coding standard, we provide experimental evidence by transcoding bitstreams encoded using the state-of-the-art H.264/AVC standard. The results of our simulations reveal that is it possible to achieve distortion smoothing both in time and across the sequences, without sacrificing coding efficiency.

  10. Automated Single Cell Data Decontamination Pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Tennessen, Kristin [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Pati, Amrita [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.

    2014-03-21

    Recent technological advancements in single-cell genomics have encouraged the classification and functional assessment of microorganisms from a wide span of the biospheres phylogeny.1,2 Environmental processes of interest to the DOE, such as bioremediation and carbon cycling, can be elucidated through the genomic lens of these unculturable microbes. However, contamination can occur at various stages of the single-cell sequencing process. Contaminated data can lead to wasted time and effort on meaningless analyses, inaccurate or erroneous conclusions, and pollution of public databases. A fully automated decontamination tool is necessary to prevent these instances and increase the throughput of the single-cell sequencing process

  11. A novel enterovirus and parechovirus multiplex one-step real-time PCR-validation and clinical experience.

    Science.gov (United States)

    Nielsen, Alex Christian Yde; Böttiger, Blenda; Midgley, Sofie Elisabeth; Nielsen, Lars Peter

    2013-11-01

    As the number of new enteroviruses and human parechoviruses seems ever growing, the necessity for updated diagnostics is relevant. We have updated an enterovirus assay and combined it with a previously published assay for human parechovirus resulting in a multiplex one-step RT-PCR assay. The multiplex assay was validated by analysing the sensitivity and specificity of the assay compared to the respective monoplex assays, and a good concordance was found. Furthermore, the enterovirus assay was able to detect 42 reference strains from all 4 species, and an additional 9 genotypes during panel testing and routine usage. During 15 months of routine use, from October 2008 to December 2009, we received and analysed 2187 samples (stool samples, cerebrospinal fluids, blood samples, respiratory samples and autopsy samples) were tested, from 1546 patients and detected enteroviruses and parechoviruses in 171 (8%) and 66 (3%) of the samples, respectively. 180 of the positive samples could be genotyped by PCR and sequencing and the most common genotypes found were human parechovirus type 3, echovirus 9, enterovirus 71, Coxsackievirus A16, and echovirus 25. During 2009 in Denmark, both enterovirus and human parechovirus type 3 had a similar seasonal pattern with a peak during the summer and autumn. Human parechovirus type 3 was almost invariably found in children less than 4 months of age. In conclusion, a multiplex assay was developed allowing simultaneous detection of 2 viruses, which can cause similar clinical symptoms. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. A Multiplex PCR for Simultaneous Detection of Three Zoonotic Parasites Ancylostoma ceylanicum, A. caninum, and Giardia lamblia Assemblage A

    Directory of Open Access Journals (Sweden)

    Wei Hu

    2015-01-01

    Full Text Available Ancylostoma ceylanicum, A. caninum, and Giardia lamblia assemblage A are common intestinal parasites of dogs and cats; they can also infect humans, causing parasitic zoonoses. In this study, a multiplex PCR method was developed for simultaneous identification and detection of those three zoonotic parasites. Three pairs of specific primers were designed based on ITS sequence of A. ceylanicum and A. caninum and TPI gene of G. lamblia available in the GenBank. The multiplex PCR reaction system was established by optimizing the reaction condition, and a series of tests on the sensitivity, specificity, and clinical application were also conducted. Results showed that three target fragments were amplified specifically; the detection limit was 10 eggs for both A. ceylanicum and A. caninum, 72 pg DNA for G. lamblia. Of 112 clinical fecal samples, 34.8% and 17.8% samples were positive for A. caninum and A. ceylanicum, respectively, while only 2.7% samples were positive for G. lamblia assemblage A. It is concluded that the established multiplex PCR assay is a convenient, rapid, cost-effective, and high-efficiency method for molecular detection and epidemiological investigation of three zoonotic parasites.

  13. More ethical and more efficient clinical research: multiplex trial design.

    Science.gov (United States)

    Keus, Frederik; van der Horst, Iwan C C; Nijsten, Maarten W

    2014-08-14

    Today's clinical research faces challenges such as a lack of clinical equipoise between treatment arms, reluctance in randomizing for multiple treatments simultaneously, inability to address interactions and increasingly restricted resources. Furthermore, many trials are biased by extensive exclusion criteria, relatively small sample size and less appropriate outcome measures. We propose a 'Multiplex' trial design that preserves clinical equipoise with a continuous and factorial trial design that will also result in more efficient use of resources. This multiplex design accommodates subtrials with appropriate choice of treatment arms within each subtrial. Clinical equipoise should increase consent rates while the factorial design is the best way to identify interactions. The multiplex design may evolve naturally from today's research limitations and challenges, while principal objections seem absent. However this new design poses important infrastructural, organisational and psychological challenges that need in depth consideration.

  14. Dynamical Interplay between Awareness and Epidemic Spreading in Multiplex Networks

    Science.gov (United States)

    Granell, Clara; Gómez, Sergio; Arenas, Alex

    2013-09-01

    We present the analysis of the interrelation between two processes accounting for the spreading of an epidemic, and the information awareness to prevent its infection, on top of multiplex networks. This scenario is representative of an epidemic process spreading on a network of persistent real contacts, and a cyclic information awareness process diffusing in the network of virtual social contacts between the same individuals. The topology corresponds to a multiplex network where two diffusive processes are interacting affecting each other. The analysis using a microscopic Markov chain approach reveals the phase diagram of the incidence of the epidemics and allows us to capture the evolution of the epidemic threshold depending on the topological structure of the multiplex and the interrelation with the awareness process. Interestingly, the critical point for the onset of the epidemics has a critical value (metacritical point) defined by the awareness dynamics and the topology of the virtual network, from which the onset increases and the epidemics incidence decreases.

  15. Dynamical interplay between awareness and epidemic spreading in multiplex networks.

    Science.gov (United States)

    Granell, Clara; Gómez, Sergio; Arenas, Alex

    2013-09-20

    We present the analysis of the interrelation between two processes accounting for the spreading of an epidemic, and the information awareness to prevent its infection, on top of multiplex networks. This scenario is representative of an epidemic process spreading on a network of persistent real contacts, and a cyclic information awareness process diffusing in the network of virtual social contacts between the same individuals. The topology corresponds to a multiplex network where two diffusive processes are interacting affecting each other. The analysis using a microscopic Markov chain approach reveals the phase diagram of the incidence of the epidemics and allows us to capture the evolution of the epidemic threshold depending on the topological structure of the multiplex and the interrelation with the awareness process. Interestingly, the critical point for the onset of the epidemics has a critical value (metacritical point) defined by the awareness dynamics and the topology of the virtual network, from which the onset increases and the epidemics incidence decreases.

  16. Orbital Angular Momentum Multiplexing over Visible Light Communication Systems

    Science.gov (United States)

    Tripathi, Hardik Rameshchandra

    This thesis proposes and explores the possibility of using Orbital Angular Momentum multiplexing in Visible Light Communication system. Orbital Angular Momentum is mainly applied for laser and optical fiber transmissions, while Visible Light Communication is a technology using the light as a carrier for wireless communication. In this research, the study of the state of art and experiments showing some results on multiplexing based on Orbital Angular Momentum over Visible Light Communication system were done. After completion of the initial stage; research work and simulations were performed on spatial multiplexing over Li-Fi channel modeling. Simulation scenarios which allowed to evaluate the Signal-to-Noise Ratio, Received Power Distribution, Intensity and Illuminance were defined and developed.

  17. Triadic closure dynamics drives scaling laws in social multiplex networks

    International Nuclear Information System (INIS)

    Klimek, Peter; Thurner, Stefan

    2013-01-01

    Social networks exhibit scaling laws for several structural characteristics, such as degree distribution, scaling of the attachment kernel and clustering coefficients as a function of node degree. A detailed understanding if and how these scaling laws are inter-related is missing so far, let alone whether they can be understood through a common, dynamical principle. We propose a simple model for stationary network formation and show that the three mentioned scaling relations follow as natural consequences of triadic closure. The validity of the model is tested on multiplex data from a well-studied massive multiplayer online game. We find that the three scaling exponents observed in the multiplex data for the friendship, communication and trading networks can simultaneously be explained by the model. These results suggest that triadic closure could be identified as one of the fundamental dynamical principles in social multiplex network formation. (paper)

  18. Multiplexed Holograms by Surface Plasmon Propagation and Polarized Scattering.

    Science.gov (United States)

    Chen, Ji; Li, Tao; Wang, Shuming; Zhu, Shining

    2017-08-09

    Thanks to the superiority in controlling the optical wave fronts, plasmonic nanostructures have led to various striking applications, among which metasurface holograms have been well developed and endowed with strong multiplexing capability. Here, we report a new design of multiplexed plasmonic hologram, which allows for reconstruction of multiple holographic images in free space by scatterings of surface plasmon polariton (SPP) waves in different propagation directions. Besides, the scattered polarization states can be further modulated by arranging the orientations of nanoscatterers. By incorporation of the SPP propagation and polarized scattering, a 4-fold hologram with low crosstalk is successfully demonstrated, which breaks the limitation of only two orthogonal states in conventional polarization multiplexers. Moreover, our design using the near-field SPP as reference wave holds the advantage for compact integration. This holographic approach is expected to inspire new photonic designs with enhanced information capacity and integratability.

  19. Human papillomavirus genotyping by multiplex pyrosequencing in ...

    Indian Academy of Sciences (India)

    PRAKASH KUMAR G

    malignant cervical samples ... low- and high-risk HPV genotypes without identifying ... Since these samples were not from “healthy .... major capsid protein, any variation in its coding sequence is .... worldwide: a meta-analysis; Br. J. Cancer 88 63–73.

  20. Multiplexed microsatellite markers for seven Metarhizium species

    Science.gov (United States)

    Cross-species transferability of 41 previously published simple sequence repeat (SSR) markers was assessed for 11 species of the entomopathogenic fungus Metarhizium. A collection of 65 Metarhizium isolates including all 54 used in a recent phylogenetic revision of the genus were characterized. Betwe...

  1. Study and realisation of a programmable generator of pulse sequences, for nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Lambert, Daniel

    1974-01-01

    After having recalled the operation of pulse-based nuclear magnetic resonance and the use of pulse sequences in NMR-based measurements, and outlined the need for a pulse sequence generator, the author reports the design and realisation of such a device. He describes its general organisation with its base sequence, base clock, sequence start, duration, displays, data transfers, data processing, and signal distribution. He presents the chosen technology (ECL logics), the sequence base set, time bases, multiplexers, comparison sets, the distribution set, the sequence programming, the sampling and output set. He reports tests and the use of the so-designed generator [fr

  2. Fully Integrated, Multiport, Planar-Waveguide, Spectral Comparators and Multiplexers Based on Lithographic Holography

    National Research Council Canada - National Science Library

    Mossberg, Thomas; Greiner, Christoph

    2005-01-01

    .... for the first time the successful application of HBRs to wavelength division multiplexing. Measured device performance indicates that the photolithographic fabrication process has reduced multiplexer designs to practice essentially perfectly...

  3. MPprimer: a program for reliable multiplex PCR primer design

    Directory of Open Access Journals (Sweden)

    Wang Xiaolei

    2010-03-01

    Full Text Available Abstract Background Multiplex PCR, defined as the simultaneous amplification of multiple regions of a DNA template or multiple DNA templates using more than one primer set (comprising a forward primer and a reverse primer in one tube, has been widely used in diagnostic applications of clinical and environmental microbiology studies. However, primer design for multiplex PCR is still a challenging problem and several factors need to be considered. These problems include mis-priming due to nonspecific binding to non-target DNA templates, primer dimerization, and the inability to separate and purify DNA amplicons with similar electrophoretic mobility. Results A program named MPprimer was developed to help users for reliable multiplex PCR primer design. It employs the widely used primer design program Primer3 and the primer specificity evaluation program MFEprimer to design and evaluate the candidate primers based on genomic or transcript DNA database, followed by careful examination to avoid primer dimerization. The graph-expanding algorithm derived from the greedy algorithm was used to determine the optimal primer set combinations (PSCs for multiplex PCR assay. In addition, MPprimer provides a virtual electrophotogram to help users choose the best PSC. The experimental validation from 2× to 5× plex PCR demonstrates the reliability of MPprimer. As another example, MPprimer is able to design the multiplex PCR primers for DMD (dystrophin gene which caused Duchenne Muscular Dystrophy, which has 79 exons, for 20×, 20×, 20×, 14×, and 5× plex PCR reactions in five tubes to detect underlying exon deletions. Conclusions MPprimer is a valuable tool for designing specific, non-dimerizing primer set combinations with constrained amplicons size for multiplex PCR assays.

  4. Systematic review automation technologies

    Science.gov (United States)

    2014-01-01

    Systematic reviews, a cornerstone of evidence-based medicine, are not produced quickly enough to support clinical practice. The cost of production, availability of the requisite expertise and timeliness are often quoted as major contributors for the delay. This detailed survey of the state of the art of information systems designed to support or automate individual tasks in the systematic review, and in particular systematic reviews of randomized controlled clinical trials, reveals trends that see the convergence of several parallel research projects. We surveyed literature describing informatics systems that support or automate the processes of systematic review or each of the tasks of the systematic review. Several projects focus on automating, simplifying and/or streamlining specific tasks of the systematic review. Some tasks are already fully automated while others are still largely manual. In this review, we describe each task and the effect that its automation would have on the entire systematic review process, summarize the existing information system support for each task, and highlight where further research is needed for realizing automation for the task. Integration of the systems that automate systematic review tasks may lead to a revised systematic review workflow. We envisage the optimized workflow will lead to system in which each systematic review is described as a computer program that automatically retrieves relevant trials, appraises them, extracts and synthesizes data, evaluates the risk of bias, performs meta-analysis calculations, and produces a report in real time. PMID:25005128

  5. Shot Automation for the National Ignition Facility

    International Nuclear Information System (INIS)

    Lagin, L J; Bettenhausen, R C; Beeler, R G; Bowers, G A; Carey, R.; Casavant, D.D.; Cline, B.D.; Demaret, R.D.; Domyancic, D.M.; Elko, S.D.; Fisher, J.M.; Hermann, M.R.; Krammen, J.E.; Kohut, T.R.; Marshall, C.D.; Mathisen, D.G.; Ludwigsen, A.P.; Patterson, Jr. R.W.; Sanchez, R.J.; Stout, E.A.; Van Arsdall, P.J.; Van Wonterghem, B.M.

    2005-01-01

    A shot automation framework has been developed and deployed during the past year to automate shots performed on the National Ignition Facility (NIF) using the Integrated Computer Control System This framework automates a 4-8 hour shot sequence, that includes inputting shot goals from a physics model, set up of the laser and diagnostics, automatic alignment of laser beams and verification of status. This sequence consists of set of preparatory verification shots, leading to amplified system shots using a 4-minute countdown, triggering during the last 2 seconds using a high-precision timing system, followed by post-shot analysis and archiving. The framework provides for a flexible, model-based execution driven of scriptable automation called macro steps. The framework is driven by high-level shot director software that provides a restricted set of shot life cycle state transitions to 25 collaboration supervisors that automate 8-laser beams (bundles) and a common set of shared resources. Each collaboration supervisor commands approximately 10 subsystem shot supervisors that perform automated control and status verification. Collaboration supervisors translate shot life cycle state commands from the shot director into sequences of ''macro steps'' to be distributed to each of its shot supervisors. Each Shot supervisor maintains order of macro steps for each subsystem and supports collaboration between macro steps. They also manage failure, restarts and rejoining into the shot cycle (if necessary) and manage auto/manual macro step execution and collaborations between other collaboration supervisors. Shot supervisors execute macro step shot functions commanded by collaboration supervisors. Each macro step has database-driven verification phases and a scripted perform phase. This provides for a highly flexible methodology for performing a variety of NIF shot types. Database tables define the order of work and dependencies (workflow) of macro steps to be performed for a

  6. Ultra-high resolution HLA genotyping and allele discovery by highly multiplexed cDNA amplicon pyrosequencing

    Directory of Open Access Journals (Sweden)

    Lank Simon M

    2012-08-01

    Full Text Available Abstract Background High-resolution HLA genotyping is a critical diagnostic and research assay. Current methods rarely achieve unambiguous high-resolution typing without making population-specific frequency inferences due to a lack of locus coverage and difficulty in exon-phase matching. Achieving high-resolution typing is also becoming more challenging with traditional methods as the database of known HLA alleles increases. Results We designed a cDNA amplicon-based pyrosequencing method to capture 94% of the HLA class I open-reading-frame with only two amplicons per sample, and an analogous method for class II HLA genes, with a primary focus on sequencing the DRB loci. We present a novel Galaxy server-based analysis workflow for determining genotype. During assay validation, we performed two GS Junior sequencing runs to determine the accuracy of the HLA class I amplicons and DRB amplicon at different levels of multiplexing. When 116 amplicons were multiplexed, we unambiguously resolved 99%of class I alleles to four- or six-digit resolution, as well as 100% unambiguous DRB calls. The second experiment, with 271 multiplexed amplicons, missed some alleles, but generated high-resolution, concordant typing for 93% of class I alleles, and 96% for DRB1 alleles. In a third, preliminary experiment we attempted to sequence novel amplicons for other class II loci with mixed success. Conclusions The presented assay is higher-throughput and higher-resolution than existing HLA genotyping methods, and suitable for allele discovery or large cohort sampling. The validated class I and DRB primers successfully generated unambiguously high-resolution genotypes, while further work is needed to validate additional class II genotyping amplicons.

  7. Time-division multiplexing vs network calculus: A comparison

    DEFF Research Database (Denmark)

    Puffitsch, Wolfgang; Sørensen, Rasmus Bo; Schoeberl, Martin

    2015-01-01

    that time-division multiplexing leads to better worst-case latencies, while network calculus supports higher bandwidths. Furthermore, time-division multiplexing leads to a simpler hardware implementation, while dynamically scheduled networks-on-chip allow the integration of best-effort traffic in the on......Networks-on-chip are increasingly common in modern multicore architectures. However, general-purpose networks-on-chip are not always well suited for real-time applications that require bandwidth and latency guarantees. Two approaches to provide real-time guarantees have emerged: time......-chip network in a more natural way....

  8. Tumor specific lung cancer diagnostics with multiplexed FRET immunoassays

    Science.gov (United States)

    Geißler, D.; Hill, D.; Löhmannsröben, H.-G.; Thomas, E.; Lavigne, A.; Darbouret, B.; Bois, E.; Charbonnière, L. J.; Ziessel, R. F.; Hildebrandt, N.

    2010-02-01

    An optical multiplexed homogeneous (liquid phase) immunoassay based on FRET from a terbium complex to eight different fluorescent dyes is presented. We achieved highly sensitive parallel detection of four different lung cancer specific tumor markers (CEA, NSE, SCC and CYFRA21-1) within a single assay and show a proof-of-principle for 5- fold multiplexing. The method is well suited for fast and low-cost miniaturized point-of-care testing as well as for highthroughput screening in a broad range of in-vitro diagnostic applications.

  9. Typing of Y chromosome SNPs with multiplex PCR methods

    DEFF Research Database (Denmark)

    Sanchez Sanchez, Juan Jose; Børsting, Claus; Morling, Niels

    2005-01-01

    We describe a method for the simultaneous typing of Y-chromosome single nucleotide polymorphism (SNP) markers by means of multiplex polymerase chain reaction (PCR) strategies that allow the detection of 35 Y chromosome SNPs on 25 amplicons from 100 to 200 pg of chromosomal deoxyribonucleic acid...... factors for the creation of larger SNP typing PCR multiplexes include careful selection of primers for the primary amplification and the SBE reaction, use of DNA primers with homogenous composition, and balancing the primer concentrations for both the amplification and the SBE reactions....

  10. Mode Division Multiplexing Exploring Hollow-Core Photonic Bandgap Fibers

    DEFF Research Database (Denmark)

    Xu, Jing; Lyngso, Jens Kristian; Leick, Lasse

    2013-01-01

    We review our recent exploratory investigations on mode division multiplexing using hollow-core photonic bandgap fibers (HC-PBGFs). Compared with traditional multimode fibers, HC-PBGFs have several attractive features such as ultra-low nonlinearities, low-loss transmission window around 2 µm etc....... After having discussed the potential and challenges of using HC-PBGFs as transmission fibers for mode multiplexing applications, we will report a number of recent proof-of-concept results obtained in our group using direct detection receivers. The first one is the transmission of two 10.7 Gbit/s non...

  11. Multiplexing of adjacent vortex modes with the forked grating coupler

    Science.gov (United States)

    Nadovich, Christopher T.; Kosciolek, Derek J.; Crouse, David T.; Jemison, William D.

    2017-08-01

    For vortex fiber multiplexing to reach practical commercial viability, simple silicon photonic interfaces with vortex fiber will be required. These interfaces must support multiplexing. Toward this goal, an efficient singlefed multimode Forked Grating Coupler (FGC) for coupling two different optical vortex OAM charges to or from the TE0 and TE1 rectangular waveguide modes has been developed. A simple, apodized device implemented with e-beam lithography and a conventional dual-etch processing on SOI wafer exhibits low crosstalk and reasonable mode match. Advanced designs using this concept are expected to further improve performance.

  12. Color multiplexing using directional holographic gratings and linear polarization

    International Nuclear Information System (INIS)

    Lugo, L I; Rodriguez, A; Ramirez, G; Guel, S; Nunez, O F

    2011-01-01

    We propose a system of multiplexing and de-multiplexing, which uses a holographic diffraction grating to compel modulated light of different colors to be sent through an optical fiber. Diffraction gratings were fabricated specifically to pick the desired direction in which we wanted the light of different wavelengths to impinge the optic fiber, and also to be separated at the output. It was been found that the system preserves the polarization of light, which give us a one more freedom degree, allowing us to process twice the original information amount.

  13. Radiometric and signal-to-noise ratio properties of multiplex dispersive spectrometry

    International Nuclear Information System (INIS)

    Barducci, Alessandro; Guzzi, Donatella; Lastri, Cinzia; Nardino, Vanni; Marcoionni, Paolo; Pippi, Ivan

    2010-01-01

    Recent theoretical investigations have shown important radiometric disadvantages of interferential multiplexing in Fourier transform spectrometry that apparently can be applied even to coded aperture spectrometers. We have reexamined the methods of noninterferential multiplexing in order to assess their signal-to-noise ratio (SNR) performance, relying on a theoretical modeling of the multiplexed signals. We are able to show that quite similar SNR and radiometric disadvantages affect multiplex dispersive spectrometry. The effect of noise on spectral estimations is discussed.

  14. Operational proof of automation

    International Nuclear Information System (INIS)

    Jaerschky, R.; Reifenhaeuser, R.; Schlicht, K.

    1976-01-01

    Automation of the power plant process may imply quite a number of problems. The automation of dynamic operations requires complicated programmes often interfering in several branched areas. This reduces clarity for the operating and maintenance staff, whilst increasing the possibilities of errors. The synthesis and the organization of standardized equipment have proved very successful. The possibilities offered by this kind of automation for improving the operation of power plants will only sufficiently and correctly be turned to profit, however, if the application of these technics of equipment is further improved and if its volume is tallied with a definite etc. (orig.) [de

  15. Automation of radioimmunoassay

    International Nuclear Information System (INIS)

    Yamaguchi, Chisato; Yamada, Hideo; Iio, Masahiro

    1974-01-01

    Automation systems for measuring Australian antigen by radioimmunoassay under development were discussed. Samples were processed as follows: blood serum being dispensed by automated sampler to the test tube, and then incubated under controlled time and temperature; first counting being omitted; labelled antibody being dispensed to the serum after washing; samples being incubated and then centrifuged; radioactivities in the precipitate being counted by auto-well counter; measurements being tabulated by automated typewriter. Not only well-type counter but also position counter was studied. (Kanao, N.)

  16. Automated electron microprobe

    International Nuclear Information System (INIS)

    Thompson, K.A.; Walker, L.R.

    1986-01-01

    The Plant Laboratory at the Oak Ridge Y-12 Plant has recently obtained a Cameca MBX electron microprobe with a Tracor Northern TN5500 automation system. This allows full stage and spectrometer automation and digital beam control. The capabilities of the system include qualitative and quantitative elemental microanalysis for all elements above and including boron in atomic number, high- and low-magnification imaging and processing, elemental mapping and enhancement, and particle size, shape, and composition analyses. Very low magnification, quantitative elemental mapping using stage control (which is of particular interest) has been accomplished along with automated size, shape, and composition analysis over a large relative area

  17. Chef infrastructure automation cookbook

    CERN Document Server

    Marschall, Matthias

    2013-01-01

    Chef Infrastructure Automation Cookbook contains practical recipes on everything you will need to automate your infrastructure using Chef. The book is packed with illustrated code examples to automate your server and cloud infrastructure.The book first shows you the simplest way to achieve a certain task. Then it explains every step in detail, so that you can build your knowledge about how things work. Eventually, the book shows you additional things to consider for each approach. That way, you can learn step-by-step and build profound knowledge on how to go about your configuration management

  18. Managing laboratory automation.

    Science.gov (United States)

    Saboe, T J

    1995-01-01

    This paper discusses the process of managing automated systems through their life cycles within the quality-control (QC) laboratory environment. The focus is on the process of directing and managing the evolving automation of a laboratory; system examples are given. The author shows how both task and data systems have evolved, and how they interrelate. A BIG picture, or continuum view, is presented and some of the reasons for success or failure of the various examples cited are explored. Finally, some comments on future automation need are discussed.

  19. Automated PCB Inspection System

    Directory of Open Access Journals (Sweden)

    Syed Usama BUKHARI

    2017-05-01

    Full Text Available Development of an automated PCB inspection system as per the need of industry is a challenging task. In this paper a case study is presented, to exhibit, a proposed system for an immigration process of a manual PCB inspection system to an automated PCB inspection system, with a minimal intervention on the existing production flow, for a leading automotive manufacturing company. A detailed design of the system, based on computer vision followed by testing and analysis was proposed, in order to aid the manufacturer in the process of automation.

  20. Operational proof of automation

    International Nuclear Information System (INIS)

    Jaerschky, R.; Schlicht, K.

    1977-01-01

    Automation of the power plant process may imply quite a number of problems. The automation of dynamic operations requires complicated programmes often interfering in several branched areas. This reduces clarity for the operating and maintenance staff, whilst increasing the possibilities of errors. The synthesis and the organization of standardized equipment have proved very successful. The possibilities offered by this kind of automation for improving the operation of power plants will only sufficiently and correctly be turned to profit, however, if the application of these equipment techniques is further improved and if it stands in a certain ratio with a definite efficiency. (orig.) [de

  1. Improved multiplex ligation-dependent probe amplification analysis identifies a deleterious PMS2 allele generated by recombination with crossover between PMS2 and PMS2CL

    OpenAIRE

    Wernstedt, Annekatrin; Valtorta, Emanuele; Armelao, Franco; Togni, Roberto; Girlando, Salvatore; Baudis, Michael; Heinimann, Karl; Messiaen, Ludwine; Staehli, Noemie; Zschocke, Johannes; Marra, Giancarlo; Wimmer, Katharina

    2012-01-01

    Heterozygous PMS2 germline mutations are associated with Lynch syndrome. Up to one third of these mutations are genomic deletions. Their detection is complicated by a pseudogene (PMS2CL), which – owing to extensive interparalog sequence exchange – closely resembles PMS2 downstream of exon 12. A recently redesigned multiplex ligation-dependent probe amplification (MLPA) assay identifies PMS2 copy number alterations with improved reliability when used with reference DNAs containing equal number...

  2. High throughput, multiplexed pathogen detection authenticates plague waves in medieval Venice, Italy.

    Science.gov (United States)

    Tran, Thi-Nguyen-Ny; Signoli, Michel; Fozzati, Luigi; Aboudharam, Gérard; Raoult, Didier; Drancourt, Michel

    2011-03-10

    Historical records suggest that multiple burial sites from the 14th-16th centuries in Venice, Italy, were used during the Black Death and subsequent plague epidemics. High throughput, multiplexed real-time PCR detected DNA of seven highly transmissible pathogens in 173 dental pulp specimens collected from 46 graves. Bartonella quintana DNA was identified in five (2.9%) samples, including three from the 16th century and two from the 15th century, and Yersinia pestis DNA was detected in three (1.7%) samples, including two from the 14th century and one from the 16th century. Partial glpD gene sequencing indicated that the detected Y. pestis was the Orientalis biotype. These data document for the first time successive plague epidemics in the medieval European city where quarantine was first instituted in the 14th century.

  3. High Throughput, Multiplexed Pathogen Detection Authenticates Plague Waves in Medieval Venice, Italy

    Science.gov (United States)

    Tran, Thi-Nguyen-Ny; Signoli, Michel; Fozzati, Luigi; Aboudharam, Gérard; Raoult, Didier; Drancourt, Michel

    2011-01-01

    Background Historical records suggest that multiple burial sites from the 14th–16th centuries in Venice, Italy, were used during the Black Death and subsequent plague epidemics. Methodology/Principal Findings High throughput, multiplexed real-time PCR detected DNA of seven highly transmissible pathogens in 173 dental pulp specimens collected from 46 graves. Bartonella quintana DNA was identified in five (2.9%) samples, including three from the 16th century and two from the 15th century, and Yersinia pestis DNA was detected in three (1.7%) samples, including two from the 14th century and one from the 16th century. Partial glpD gene sequencing indicated that the detected Y. pestis was the Orientalis biotype. Conclusions These data document for the first time successive plague epidemics in the medieval European city where quarantine was first instituted in the 14th century. PMID:21423736

  4. Genomic Characterization of Flavobacterium psychrophilum Serotypes and Development of a Multiplex PCR-Based Serotyping Scheme

    Directory of Open Access Journals (Sweden)

    Tatiana Rochat

    2017-09-01

    Full Text Available Flavobacterium psychrophilum is a devastating bacterial pathogen of salmonids reared in freshwater worldwide. So far, serological diversity between isolates has been described but the underlying molecular factors remain unknown. By combining complete genome sequence analysis and the serotyping method proposed by Lorenzen and Olesen (1997 for a set of 34 strains, we identified key molecular determinants of the serotypes. This knowledge allowed us to develop a robust multiplex PCR-based serotyping scheme, which was applied to 244 bacterial isolates. The results revealed a striking association between PCR-serotype and fish host species and illustrate the use of this approach as a simple and cost-effective method for the determination of F. psychrophilum serogroups. PCR-based serotyping could be a useful tool in a range of applications such as disease surveillance, selection of salmonids for bacterial coldwater disease resistance and future vaccine formulation.

  5. Application of High-Throughput Next-Generation Sequencing for HLA Typing on Buccal Extracted DNA: Results from over 10,000 Donor Recruitment Samples.

    Directory of Open Access Journals (Sweden)

    Yuxin Yin

    Full Text Available Unambiguous HLA typing is important in hematopoietic stem cell transplantation (HSCT, HLA disease association studies, and solid organ transplantation. However, current molecular typing methods only interrogate the antigen recognition site (ARS of HLA genes, resulting in many cis-trans ambiguities that require additional typing methods to resolve. Here we report high-resolution HLA typing of 10,063 National Marrow Donor Program (NMDP registry donors using long-range PCR by next generation sequencing (NGS approach on buccal swab DNA.Multiplex long-range PCR primers amplified the full-length of HLA class I genes (A, B, C from promotor to 3' UTR. Class II genes (DRB1, DQB1 were amplified from exon 2 through part of exon 4. PCR amplicons were pooled and sheared using Covaris fragmentation. Library preparation was performed using the Illumina TruSeq Nano kit on the Beckman FX automated platform. Each sample was tagged with a unique barcode, followed by 2×250 bp paired-end sequencing on the Illumina MiSeq. HLA typing was assigned using Omixon Twin software that combines two independent computational algorithms to ensure high confidence in allele calling. Consensus sequence and typing results were reported in Histoimmunogenetics Markup Language (HML format. All homozygous alleles were confirmed by Luminex SSO typing and exon novelties were confirmed by Sanger sequencing.Using this automated workflow, over 10,063 NMDP registry donors were successfully typed under high-resolution by NGS. Despite known challenges of nucleic acid degradation and low DNA concentration commonly associated with buccal-based specimens, 97.8% of samples were successfully amplified using long-range PCR. Among these, 98.2% were successfully reported by NGS, with an accuracy rate of 99.84% in an independent blind Quality Control audit performed by the NDMP. In this study, NGS-HLA typing identified 23 null alleles (0.023%, 92 rare alleles (0.091% and 42 exon novelties (0.042%.Long

  6. Application of High-Throughput Next-Generation Sequencing for HLA Typing on Buccal Extracted DNA: Results from over 10,000 Donor Recruitment Samples.

    Science.gov (United States)

    Yin, Yuxin; Lan, James H; Nguyen, David; Valenzuela, Nicole; Takemura, Ping; Bolon, Yung-Tsi; Springer, Brianna; Saito, Katsuyuki; Zheng, Ying; Hague, Tim; Pasztor, Agnes; Horvath, Gyorgy; Rigo, Krisztina; Reed, Elaine F; Zhang, Qiuheng

    2016-01-01

    Unambiguous HLA typing is important in hematopoietic stem cell transplantation (HSCT), HLA disease association studies, and solid organ transplantation. However, current molecular typing methods only interrogate the antigen recognition site (ARS) of HLA genes, resulting in many cis-trans ambiguities that require additional typing methods to resolve. Here we report high-resolution HLA typing of 10,063 National Marrow Donor Program (NMDP) registry donors using long-range PCR by next generation sequencing (NGS) approach on buccal swab DNA. Multiplex long-range PCR primers amplified the full-length of HLA class I genes (A, B, C) from promotor to 3' UTR. Class II genes (DRB1, DQB1) were amplified from exon 2 through part of exon 4. PCR amplicons were pooled and sheared using Covaris fragmentation. Library preparation was performed using the Illumina TruSeq Nano kit on the Beckman FX automated platform. Each sample was tagged with a unique barcode, followed by 2×250 bp paired-end sequencing on the Illumina MiSeq. HLA typing was assigned using Omixon Twin software that combines two independent computational algorithms to ensure high confidence in allele calling. Consensus sequence and typing results were reported in Histoimmunogenetics Markup Language (HML) format. All homozygous alleles were confirmed by Luminex SSO typing and exon novelties were confirmed by Sanger sequencing. Using this automated workflow, over 10,063 NMDP registry donors were successfully typed under high-resolution by NGS. Despite known challenges of nucleic acid degradation and low DNA concentration commonly associated with buccal-based specimens, 97.8% of samples were successfully amplified using long-range PCR. Among these, 98.2% were successfully reported by NGS, with an accuracy rate of 99.84% in an independent blind Quality Control audit performed by the NDMP. In this study, NGS-HLA typing identified 23 null alleles (0.023%), 92 rare alleles (0.091%) and 42 exon novelties (0.042%). Long

  7. Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq)-A Method for High-Throughput Analysis of Differentially Methylated CCGG Sites in Plants with Large Genomes.

    Science.gov (United States)

    Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw

    2017-01-01

    Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare . However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop

  8. Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq—A Method for High-Throughput Analysis of Differentially Methylated CCGG Sites in Plants with Large Genomes

    Directory of Open Access Journals (Sweden)

    Karolina Chwialkowska

    2017-11-01

    Full Text Available Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq. We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare. However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation

  9. Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq)—A Method for High-Throughput Analysis of Differentially Methylated CCGG Sites in Plants with Large Genomes

    Science.gov (United States)

    Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw

    2017-01-01

    Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare. However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop

  10. Multiplex polymerase chain reaction for identification of Escherichia coli, Escherichia albertii and Escherichia fergusonii.

    Science.gov (United States)

    Lindsey, Rebecca L; Garcia-Toledo, L; Fasulo, D; Gladney, L M; Strockbine, N

    2017-09-01

    Escherichia coli, Escherichia albertii, and Escherichia fergusonii are closely related bacteria that can cause illness in humans, such as bacteremia, urinary tract infections and diarrhea. Current identification strategies for these three species vary in complexity and typically rely on the use of multiple phenotypic and genetic tests. To facilitate their rapid identification, we developed a multiplex PCR assay targeting conserved, species-specific genes. We used the Daydreamer™ (Pattern Genomics, USA) software platform to concurrently analyze whole genome sequence assemblies (WGS) from 150 Enterobacteriaceae genomes (107 E. coli, 5 Shigella spp., 21 E. albertii, 12 E. fergusonii and 5 other species) and design primers for the following species-specific regions: a 212bp region of the cyclic di-GMP regulator gene (cdgR, AW869_22935 from genome K-12 MG1655, CP014225) for E. coli/Shigella; a 393bp region of the DNA-binding transcriptional activator of cysteine biosynthesis gene (EAKF1_ch4033 from genome KF1, CP007025) for E. albertii; and a 575bp region of the palmitoleoyl-acyl carrier protein (ACP)-dependent acyltransferase (EFER_0790 from genome ATCC 35469, CU928158) for E. fergusonii. We incorporated the species-specific primers into a conventional multiplex PCR assay and assessed its performance with a collection of 97 Enterobacteriaceae strains. The assay was 100% sensitive and specific for detecting the expected species and offers a quick and accurate strategy for identifying E. coli, E. albertii, and E. fergusonii in either a single reaction or by in silico PCR with sequence assemblies. Published by Elsevier B.V.

  11. Automated Vehicles Symposium 2015

    CERN Document Server

    Beiker, Sven

    2016-01-01

    This edited book comprises papers about the impacts, benefits and challenges of connected and automated cars. It is the third volume of the LNMOB series dealing with Road Vehicle Automation. The book comprises contributions from researchers, industry practitioners and policy makers, covering perspectives from the U.S., Europe and Japan. It is based on the Automated Vehicles Symposium 2015 which was jointly organized by the Association of Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Ann Arbor, Michigan, in July 2015. The topical spectrum includes, but is not limited to, public sector activities, human factors, ethical and business aspects, energy and technological perspectives, vehicle systems and transportation infrastructure. This book is an indispensable source of information for academic researchers, industrial engineers and policy makers interested in the topic of road vehicle automation.

  12. Hydrometeorological Automated Data System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Office of Hydrologic Development of the National Weather Service operates HADS, the Hydrometeorological Automated Data System. This data set contains the last 48...

  13. Automated External Defibrillator

    Science.gov (United States)

    ... leads to a 10 percent reduction in survival. Training To Use an Automated External Defibrillator Learning how to use an AED and taking a CPR (cardiopulmonary resuscitation) course are helpful. However, if trained ...

  14. Planning for Office Automation.

    Science.gov (United States)

    Mick, Colin K.

    1983-01-01

    Outlines a practical approach to planning for office automation termed the "Focused Process Approach" (the "what" phase, "how" phase, "doing" phase) which is a synthesis of the problem-solving and participatory planning approaches. Thirteen references are provided. (EJS)

  15. Fixed automated spray technology.

    Science.gov (United States)

    2011-04-19

    This research project evaluated the construction and performance of Boschungs Fixed Automated : Spray Technology (FAST) system. The FAST system automatically sprays de-icing material on : the bridge when icing conditions are about to occur. The FA...

  16. Automated Vehicles Symposium 2014

    CERN Document Server

    Beiker, Sven; Road Vehicle Automation 2

    2015-01-01

    This paper collection is the second volume of the LNMOB series on Road Vehicle Automation. The book contains a comprehensive review of current technical, socio-economic, and legal perspectives written by experts coming from public authorities, companies and universities in the U.S., Europe and Japan. It originates from the Automated Vehicle Symposium 2014, which was jointly organized by the Association for Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Burlingame, CA, in July 2014. The contributions discuss the challenges arising from the integration of highly automated and self-driving vehicles into the transportation system, with a focus on human factors and different deployment scenarios. This book is an indispensable source of information for academic researchers, industrial engineers, and policy makers interested in the topic of road vehicle automation.

  17. Automation Interface Design Development

    Data.gov (United States)

    National Aeronautics and Space Administration — Our research makes its contributions at two levels. At one level, we addressed the problems of interaction between humans and computers/automation in a particular...

  18. I-94 Automation FAQs

    Data.gov (United States)

    Department of Homeland Security — In order to increase efficiency, reduce operating costs and streamline the admissions process, U.S. Customs and Border Protection has automated Form I-94 at air and...

  19. Automation synthesis modules review

    International Nuclear Information System (INIS)

    Boschi, S.; Lodi, F.; Malizia, C.; Cicoria, G.; Marengo, M.

    2013-01-01

    The introduction of 68 Ga labelled tracers has changed the diagnostic approach to neuroendocrine tumours and the availability of a reliable, long-lived 68 Ge/ 68 Ga generator has been at the bases of the development of 68 Ga radiopharmacy. The huge increase in clinical demand, the impact of regulatory issues and a careful radioprotection of the operators have boosted for extensive automation of the production process. The development of automated systems for 68 Ga radiochemistry, different engineering and software strategies and post-processing of the eluate were discussed along with impact of automation with regulations. - Highlights: ► Generators availability and robust chemistry boosted for the huge diffusion of 68Ga radiopharmaceuticals. ► Different technological approaches for 68Ga radiopharmaceuticals will be discussed. ► Generator eluate post processing and evolution to cassette based systems were the major issues in automation. ► Impact of regulations on the technological development will be also considered

  20. An Intelligent Automation Platform for Rapid Bioprocess Design.

    Science.gov (United States)

    Wu, Tianyi; Zhou, Yuhong

    2014-08-01

    Bioprocess development is very labor intensive, requiring many experiments to characterize each unit operation in the process sequence to achieve product safety and process efficiency. Recent advances in microscale biochemical engineering have led to automated experimentation. A process design workflow is implemented sequentially in which (1) a liquid-handling system performs high-throughput wet lab experiments, (2) standalone analysis devices detect the data, and (3) specific software is used for data analysis and experiment design given the user's inputs. We report an intelligent automation platform that integrates these three activities to enhance the efficiency of such a workflow. A multiagent intelligent architecture has been developed incorporating agent communication to perform the tasks automatically. The key contribution of this work is the automation of data analysis and experiment design and also the ability to generate scripts to run the experiments automatically, allowing the elimination of human involvement. A first-generation prototype has been established and demonstrated through lysozyme precipitation process design. All procedures in the case study have been fully automated through an intelligent automation platform. The realization of automated data analysis and experiment design, and automated script programming for experimental procedures has the potential to increase lab productivity. © 2013 Society for Laboratory Automation and Screening.