WorldWideScience

Sample records for automated molecular mechanics

  1. Molecular Mechanics

    OpenAIRE

    Vanommeslaeghe, Kenno; Guvench, Olgun; Alexander D MacKerell

    2014-01-01

    Molecular Mechanics (MM) force fields are the methods of choice for protein simulations, which are essential in the study of conformational flexibility. Given the importance of protein flexibility in drug binding, MM is involved in most if not all Computational Structure-Based Drug Discovery (CSBDD) projects. This section introduces the reader to the fundamentals of MM, with a special emphasis on how the target data used in the parametrization of force fields determine their strengths and wea...

  2. DG-AMMOS: A New tool to generate 3D conformation of small molecules using Distance Geometry and Automated Molecular Mechanics Optimization for in silico Screening

    Directory of Open Access Journals (Sweden)

    Villoutreix Bruno O

    2009-11-01

    Full Text Available Abstract Background Discovery of new bioactive molecules that could enter drug discovery programs or that could serve as chemical probes is a very complex and costly endeavor. Structure-based and ligand-based in silico screening approaches are nowadays extensively used to complement experimental screening approaches in order to increase the effectiveness of the process and facilitating the screening of thousands or millions of small molecules against a biomolecular target. Both in silico screening methods require as input a suitable chemical compound collection and most often the 3D structure of the small molecules has to be generated since compounds are usually delivered in 1D SMILES, CANSMILES or in 2D SDF formats. Results Here, we describe the new open source program DG-AMMOS which allows the generation of the 3D conformation of small molecules using Distance Geometry and their energy minimization via Automated Molecular Mechanics Optimization. The program is validated on the Astex dataset, the ChemBridge Diversity database and on a number of small molecules with known crystal structures extracted from the Cambridge Structural Database. A comparison with the free program Balloon and the well-known commercial program Omega generating the 3D of small molecules is carried out. The results show that the new free program DG-AMMOS is a very efficient 3D structure generator engine. Conclusion DG-AMMOS provides fast, automated and reliable access to the generation of 3D conformation of small molecules and facilitates the preparation of a compound collection prior to high-throughput virtual screening computations. The validation of DG-AMMOS on several different datasets proves that generated structures are generally of equal quality or sometimes better than structures obtained by other tested methods.

  3. Toward fully automated high performance computing drug discovery: a massively parallel virtual screening pipeline for docking and molecular mechanics/generalized Born surface area rescoring to improve enrichment.

    Science.gov (United States)

    Zhang, Xiaohua; Wong, Sergio E; Lightstone, Felice C

    2014-01-27

    In this work we announce and evaluate a high throughput virtual screening pipeline for in-silico screening of virtual compound databases using high performance computing (HPC). Notable features of this pipeline are an automated receptor preparation scheme with unsupervised binding site identification. The pipeline includes receptor/target preparation, ligand preparation, VinaLC docking calculation, and molecular mechanics/generalized Born surface area (MM/GBSA) rescoring using the GB model by Onufriev and co-workers [J. Chem. Theory Comput. 2007, 3, 156-169]. Furthermore, we leverage HPC resources to perform an unprecedented, comprehensive evaluation of MM/GBSA rescoring when applied to the DUD-E data set (Directory of Useful Decoys: Enhanced), in which we selected 38 protein targets and a total of ∼0.7 million actives and decoys. The computer wall time for virtual screening has been reduced drastically on HPC machines, which increases the feasibility of extremely large ligand database screening with more accurate methods. HPC resources allowed us to rescore 20 poses per compound and evaluate the optimal number of poses to rescore. We find that keeping 5-10 poses is a good compromise between accuracy and computational expense. Overall the results demonstrate that MM/GBSA rescoring has higher average receiver operating characteristic (ROC) area under curve (AUC) values and consistently better early recovery of actives than Vina docking alone. Specifically, the enrichment performance is target-dependent. MM/GBSA rescoring significantly out performs Vina docking for the folate enzymes, kinases, and several other enzymes. The more accurate energy function and solvation terms of the MM/GBSA method allow MM/GBSA to achieve better enrichment, but the rescoring is still limited by the docking method to generate the poses with the correct binding modes.

  4. A Simple Method for Automated Equilibration Detection in Molecular Simulations.

    Science.gov (United States)

    Chodera, John D

    2016-04-12

    Molecular simulations intended to compute equilibrium properties are often initiated from configurations that are highly atypical of equilibrium samples, a practice which can generate a distinct initial transient in mechanical observables computed from the simulation trajectory. Traditional practice in simulation data analysis recommends this initial portion be discarded to equilibration, but no simple, general, and automated procedure for this process exists. Here, we suggest a conceptually simple automated procedure that does not make strict assumptions about the distribution of the observable of interest in which the equilibration time is chosen to maximize the number of effectively uncorrelated samples in the production timespan used to compute equilibrium averages. We present a simple Python reference implementation of this procedure and demonstrate its utility on typical molecular simulation data. PMID:26771390

  5. Molecular Mechanisms of Preeclampsia

    OpenAIRE

    Vitoratos, N.; Hassiakos, D.; C. Iavazzo

    2012-01-01

    Preeclampsia is one of the leading causes of maternal morbidity/mortality. The pathogenesis of preeclampsia is still under investigation. The aim of this paper is to present the molecular mechanisms implicating in the pathway leading to preeclampsia.

  6. Molecular mechanisms in gliomagenesis

    DEFF Research Database (Denmark)

    Hulleman, Esther; Helin, Kristian

    2005-01-01

    , in order to design novel therapies and treatments for GBM, research has recently intensified to identify the cellular and molecular mechanisms leading to GBM formation. Modeling of astrocytomas by genetic manipulation of mice suggests that deregulation of the pathways that control gliogenesis during normal......-scale genomics and proteomics in combination with relevant mouse models will most likely provide novel insights into the molecular mechanisms underlying glioma formation and will hopefully lead to development of treatment modalities for GBM....

  7. Fully Mechanically Controlled Automated Electron Microscopic Tomography

    Science.gov (United States)

    Liu, Jinxin; Li, Hongchang; Zhang, Lei; Rames, Matthew; Zhang, Meng; Yu, Yadong; Peng, Bo; Celis, César Díaz; Xu, April; Zou, Qin; Yang, Xu; Chen, Xuefeng; Ren, Gang

    2016-07-01

    Knowledge of three-dimensional (3D) structures of each individual particles of asymmetric and flexible proteins is essential in understanding those proteins’ functions; but their structures are difficult to determine. Electron tomography (ET) provides a tool for imaging a single and unique biological object from a series of tilted angles, but it is challenging to image a single protein for three-dimensional (3D) reconstruction due to the imperfect mechanical control capability of the specimen goniometer under both a medium to high magnification (approximately 50,000–160,000×) and an optimized beam coherence condition. Here, we report a fully mechanical control method for automating ET data acquisition without using beam tilt/shift processes. This method could reduce the accumulation of beam tilt/shift that used to compensate the error from the mechanical control, but downgraded the beam coherence. Our method was developed by minimizing the error of the target object center during the tilting process through a closed-loop proportional-integral (PI) control algorithm. The validations by both negative staining (NS) and cryo-electron microscopy (cryo-EM) suggest that this method has a comparable capability to other ET methods in tracking target proteins while maintaining optimized beam coherence conditions for imaging.

  8. Molecular mechanisms of meditation.

    Science.gov (United States)

    Jindal, Vishal; Gupta, Sorab; Das, Ritwik

    2013-12-01

    Meditation is a complex process involving change in cognition, memory, and social and emotional control, and causes improvement in various cardiovascular, neurological, autoimmune, and renal pathologies. Meditation also become widely used in medical and psychological treatment therapies for stress-related physical and mental disorders. But still, biological mechanisms in terms of effect on brain and body are poorly understood. This paper explains the basic changes due to meditation in cerebral cortex, prefrontal area, cingulate gyrus, neurotransmitters, white matter, autonomic nervous system, limbic system, cytokines, endorphins, hormones, etc. The following is a review of the current literature regarding the various neurophysiological mechanisms, neuro-endocrine mechanisms, neurochemical substrates, etc. that underlies the complex processes of meditation. PMID:23737355

  9. Molecular mechanisms of meditation.

    Science.gov (United States)

    Jindal, Vishal; Gupta, Sorab; Das, Ritwik

    2013-12-01

    Meditation is a complex process involving change in cognition, memory, and social and emotional control, and causes improvement in various cardiovascular, neurological, autoimmune, and renal pathologies. Meditation also become widely used in medical and psychological treatment therapies for stress-related physical and mental disorders. But still, biological mechanisms in terms of effect on brain and body are poorly understood. This paper explains the basic changes due to meditation in cerebral cortex, prefrontal area, cingulate gyrus, neurotransmitters, white matter, autonomic nervous system, limbic system, cytokines, endorphins, hormones, etc. The following is a review of the current literature regarding the various neurophysiological mechanisms, neuro-endocrine mechanisms, neurochemical substrates, etc. that underlies the complex processes of meditation.

  10. Molecular mechanisms of rosacea pathogenesis

    Directory of Open Access Journals (Sweden)

    Davydova A.M.

    2013-09-01

    Full Text Available The article presents possible molecular mechanisms for rosacea pathogenesis from current domestic and foreign clinical observations and laboratory research: regulation and expression defects of antimicrobial peptides, vascular endothelial growth factor, the effect of serine proteases, oxidative stress, reactive oxygen species and ferritin on the occurrence and course of rosacea. New developments in molecular biology and genetics are advanced for researching the interaction of multiple factors involved in rosacea pathogenesis, as well as providing the bases for potentially new therapies.

  11. Industrial Automation Mechanic Model Curriculum Project. Final Report.

    Science.gov (United States)

    Toledo Public Schools, OH.

    This document describes a demonstration program that developed secondary level competency-based instructional materials for industrial automation mechanics. Program activities included task list compilation, instructional materials research, learning activity packet (LAP) development, construction of lab elements, system implementation,…

  12. STATINS AND MYOPATHY: MOLECULAR MECHANISMS

    Directory of Open Access Journals (Sweden)

    O. M. Drapkina

    2012-01-01

    Full Text Available The safety of statin therapy is considered. In particular the reasons of a complication such as myopathy are discussed in detail. The molecular mechanisms of statin myopathy , as well as its risk factors are presented. The role of coenzyme Q10 in the myopathy development and coenzyme Q10 application for the prevention of this complication are considered. 

  13. Hyperinsulinaemic Hypoglycaemia - The Molecular Mechanisms

    Directory of Open Access Journals (Sweden)

    Azizun eNessa

    2016-03-01

    Full Text Available Under normal physiological conditions pancreatic β-cells secrete insulin to maintain fasting blood glucose levels in the range 3.5-5.5mmol/L. In hyperinsulinaemic hypoglycaemia (HH this precise regulation of insulin secretion is perturbed so that insulin continues to be secreted in the presence of hypoglycaemia. HH may be due to genetic causes (congenital or secondary to certain risk factors. The molecular mechanisms leading to HH involve defects in the key genes regulating insulin secretion from the β-cells. At this moment in time genetic abnormalities in 9 genes (ABCC8, KCNJ11, GCK, SCHAD, GLUD1, SLC16A1, HNF1A, HNF4A and UCP2 have been described that lead to the congenital forms of HH. Perinatal stress, intrauterine growth retardation, maternal diabetes mellitus and a large number of developmental syndromes are also associated with HH in the neonatal period. In older children and adult’s insulinoma, Noninsulinoma pancreatogenous hypoglycaemia syndrome and post bariatric surgery are recognised causes of HH. This review article will focus mainly on describing the molecular mechanisms that lead to unregulated insulin secretion.

  14. Molecular Mechanism of Somite Development

    Directory of Open Access Journals (Sweden)

    Gulfidan Coskun

    2013-06-01

    Full Text Available From third week of gestation, notochord and the neural folds begin to gather at the center of the embryo to form the paraxial mesoderm. Paraxial mesoderm separates into blocks of cells called somitomers at the lateral sides of the neural tube of the head region. At the beginning of the third week somitomeres take ring shapes and form blocks of somites from occipital region to caudal region. Although somites are transient structures, they are extremely important in organizing the segmental pattern of vertebrate embryos. Somites give rise to the cells that form the vertebrae and ribs, the dermis of the dorsal skin, the skeletal muscles of the back, and the skeletal muscles of the body wall and limbs. Somitogenesis are formed by a genetic mechanism that is regulated by cyclical expression of genes in the Notch, Wnt and fibroblast growth factor signaling pathways. The prevailing model of the mechanism governing somitogenesis is the “clock and wave front”. Somitogenesis has components of periodicity, separation, epithelialization and axial specification. According to this model, the clock causes cells to undergo repeated oscillations, with a particular phase of each oscillation defining the competency of cells in the presomitic mesoderm to form a somite. Any disruption in this mechanism can be cause of severe segmentation defects of the vertebrae and congenital anomalies. In this review, we discuss the molecular mechanisms underlying the somitogenesis which is an important part of morphogenesis. [Archives Medical Review Journal 2013; 22(3.000: 362-376

  15. Molecular Mechanisms of Cardiovascular Aging

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2013-12-01

    Full Text Available BACKGROUND: The average lifespan of humans is increasing, and with it the percentage of people entering the 65 and older age group is growing rapidly and will continue to do so in the next 20 years. Within this age group, cardiovascular disease will remain the leading cause of death, and the cost associated with treatment will continue to increase. Aging is an inevitable part of life and unfortunately poses the largest risk factor for cardiovascular disease. CONTENT: We provide an overview of some of the molecular mechanisms involved in regulating lifespan and health, including mitochondria, telomeres, stem cells, sirtuins, Adenosine Monophosphate-activated Protein Kinase, Mammalian Target of Rapamycin and Insulin-like Growth Factor 1. We also provide future perspectives of lifespan and health, which are intimately linked fields. SUMMARY: Aging remains the biggest non-modifiable risk factor for cardiovascular disease. The biological, structural and mechanical changes in senescent cardiovascular system are thought to contribute in increasing incidence of cardiovascular disease in aging. Understanding the mechanisms contributing to such changes is therefore crucial for both prevention and development of treatment for cardiovascular diseases. KEYWORDS: cardiovascular aging, mitochondria, telomeres, sirtuin, stem cells.

  16. Molecular Mechanisms of Bacterial Pathogenicity

    Science.gov (United States)

    Fuchs, Thilo Martin

    Cautious optimism has arisen over recent decades with respect to the long struggle against bacteria, viruses, and parasites. This has been offset, however, by a fatal complacency stemming from previous successes such as the development of antimicrobial drugs, the eradication of smallpox, and global immunization programs. Infectious diseases nevertheless remain the world's leading cause of death, killing at least 17 million persons annually [61]. Diarrheal diseases caused by Vibrio cholerae or Shigella dysenteriae kill about 3 million persons every year, most of them young children: Another 4 million die of tuberculosis or tetanus. Outbreaks of diphtheria in Eastern Europe threatens the population with a disease that had previously seemed to be overcome. Efforts to control infectious diseases more comprehensively are undermined not only by socioeconomic conditions but also by the nature of the pathogenic organisms itself; some isolates of Staphylococcus aureus and Enterobacter have become so resistant to drugs by horizontal gene transfer that they are almost untreatable. In addition, the mechanism of genetic variability helps pathogens to evade the human immune system, thus compromising the development of powerful vaccines. Therefore detailed knowledge of the molecular mechanisms of microbial pathogenicity is absolutely necessary to develop new strategies against infectious diseases and thus to lower their impact on human health and social development.

  17. Exploration and Practice of Personnel Cultivation for Agricultural Mechanization and Automation Specialities

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Firstly, based on significance of developing agricultural mechanization and automation and current situations of agricultural mechanization and automation specialities in colleges and universities, we put forward objectives of personnel cultivation for agricultural mechanization and automation specialities. Then, we analyze the exploration and practice of personnel cultivation for agricultural mechanization and automation specialities from four aspects, including course system setting, teaching materials construction, laboratory construction, and construction of practical teaching link. Finally, it is expected to provide references for running schools and cultivating excellent professional personnel.

  18. AFNMR: automated fragmentation quantum mechanical calculation of NMR chemical shifts for biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Swails, Jason [Rutgers University, Department of Chemistry and Chemical Biology and BioMaPS Institute (United States); Zhu, Tong; He, Xiao, E-mail: xiaohe@phy.ecnu.edu.cn [East China Normal University, State Key Laboratory of Precision Spectroscopy, Institute of Theoretical and Computational Science (China); Case, David A., E-mail: case@biomaps.rutgers.edu [Rutgers University, Department of Chemistry and Chemical Biology and BioMaPS Institute (United States)

    2015-10-15

    We evaluate the performance of the automated fragmentation quantum mechanics/molecular mechanics approach (AF-QM/MM) on the calculation of protein and nucleic acid NMR chemical shifts. The AF-QM/MM approach models solvent effects implicitly through a set of surface charges computed using the Poisson–Boltzmann equation, and it can also be combined with an explicit solvent model through the placement of water molecules in the first solvation shell around the solute; the latter substantially improves the accuracy of chemical shift prediction of protons involved in hydrogen bonding with solvent. We also compare the performance of AF-QM/MM on proteins and nucleic acids with two leading empirical chemical shift prediction programs SHIFTS and SHIFTX2. Although the empirical programs outperform AF-QM/MM in predicting chemical shifts, the differences are in some cases small, and the latter can be applied to chemical shifts on biomolecules which are outside the training set employed by the empirical programs, such as structures containing ligands, metal centers, and non-standard residues. The AF-QM/MM described here is implemented in version 5 of the SHIFTS software, and is fully automated, so that only a structure in PDB format is required as input.

  19. Automated assembly of micro mechanical parts in a Microfactory setup

    DEFF Research Database (Denmark)

    Eriksson, Torbjörn Gerhard; Hansen, Hans Nørgaard; Gegeckaite, Asta;

    2006-01-01

    Many micro products in use today are manufactured using semi-automatic assembly. Handling, assembly and transport of the parts are especially labour intense processes. Automation of these processes holds a large potential, especially if flexible, modular microfactories can be developed. This paper...... focuses on the issues that have to be taken into consideration in order to go from a semi-automatic production into an automated microfactory. The application in this study is a switch consisting of 7 parts. The development of a microfactory setup to take care of the automated assembly of the switch...

  20. Molecular deformation mechanisms in polyethylene

    CERN Document Server

    Coutry, S

    2001-01-01

    adjacent labelled stems is significantly larger when the DPE guest is a copolymer molecule. Our comparative studies on various types of polyethylene lead to the conclusion that their deformation behaviour under drawing has the same basis, with additional effects imputed to the presence of tie-molecules and branches. Three major points were identified in this thesis. The changes produced by drawing imply (1) the crystallisation of some of the amorphous polymer and the subsequent orientation of the newly formed crystals, (2) the re-orientation of the crystalline ribbons and (3) the beginning of crystallite break-up. However, additional effects were observed for the high molecular weight linear sample and the copolymer sample and were attributed, respectively, to the presence of tie-molecules and of branches. It was concluded that both the tie-molecules and the branches are restricting the molecular movement during deformation, and that the branches may be acting as 'anchors'. This work is concerned with details...

  1. Harmful molecular mechanisms in sepsis

    OpenAIRE

    Rittirsch, Daniel; Flierl, Michael A; Ward, Peter A.

    2008-01-01

    Sepsis and sepsis-associated multi-organ failure are major challenges for scientists and clinicians and are a tremendous burden for health-care systems. Despite extensive basic research and clinical studies, the pathophysiology of sepsis is still poorly understood. We are now beginning to understand that sepsis is a heterogeneous, dynamic syndrome caused by imbalances in the ‘inflammatory network’. In this Review, we highlight recent insights into the molecular interactions that occur during ...

  2. Molecular biological mechanism II. Molecular mechanisms of cell cycle regulation

    International Nuclear Information System (INIS)

    The cell cycle in eukaryotes is regulated by central cell cycle controlling protein kinase complexes. These protein kinase complexes consist of a catalytic subunit from the cyclin-dependent protein kinase family (CDK), and a regulatory subunit from the cyclin family. Cyclins are characterised by their periodic cell cycle related synthesis and destruction. Each cell cycle phase is characterised by a specific set of CDKs and cyclins. The activity of CDK/cyclin complexes is mainly regulated on four levels. It is controlled by specific phosphorylation steps, the synthesis and destruction of cyclins, the binding of specific inhibitor proteins, and by active control of their intracellular localisation. At several critical points within the cell cycle, named checkpoints, the integrity of the cellular genome is monitored. If damage to the genome or an unfinished prior cell cycle phase is detected, the cell cycle progression is stopped. These cell cycle blocks are of great importance to secure survival of cells. Their primary importance is to prevent the manifestation and heritable passage of a mutated genome to daughter cells. Damage sensing, DNA repair, cell cycle control and apoptosis are closely linked cellular defence mechanisms to secure genome integrity. Disregulation in one of these defence mechanisms are potentially correlated with an increased cancer risk and therefore in at least some cases with an increased radiation sensitivity. (orig.)

  3. Molecular mechanism of insulin resistance

    Indian Academy of Sciences (India)

    Samir Bhattacharya; Debleena Dey; Sib Sankar Roy

    2007-03-01

    Free fatty acids are known to play a key role in promoting loss of insulin sensitivity, thereby causing insulin resistance and type 2 diabetes. However, the underlying mechanism involved is still unclear. In searching for the cause of the mechanism, it has been found that palmitate inhibits insulin receptor (IR) gene expression, leading to a reduced amount of IR protein in insulin target cells. PDK1-independent phosphorylation of PKCε causes this reduction in insulin receptor gene expression. One of the pathways through which fatty acid can induce insulin resistance in insulin target cells is suggested by these studies. We provide an overview of this important area, emphasizing the current status.

  4. Molecular Mechanisms Underlying Pituitary Pathogenesis.

    Science.gov (United States)

    Sapochnik, Melanie; Nieto, Leandro Eduardo; Fuertes, Mariana; Arzt, Eduardo

    2016-04-01

    During the last years, progress has been made on the identification of mechanisms involved in anterior pituitary cell transformation and tumorigenesis. Oncogene activation, tumor suppressor gene inactivation, epigenetic changes, and microRNAs deregulation contribute to the initiation of pituitary tumors. Despite the high prevalence of pituitary adenomas, they are mostly benign, indicating that intrinsic mechanisms may regulate pituitary cell expansion. Senescence is characterized by an irreversible cell cycle arrest and represents an important protective mechanism against malignancy. Pituitary tumor transforming gene (PTTG) is an oncogene involved in early stages of pituitary tumor development, and also triggers a senescence response by activating DNA-damage signaling pathway. Cytokines, as well as many other factors, play an important role in pituitary physiology, affecting not only cell proliferation but also hormone secretion. Special interest is focused on interleukin-6 (IL-6) because its dual function of stimulating pituitary tumor cell growth but inhibiting normal pituitary cells proliferation. It has been demonstrated that IL-6 has a key role in promoting and maintenance of the senescence program in tumors. Senescence, triggered by PTTG activation and mediated by IL-6, may be a mechanism for explaining the benign nature of pituitary tumors. PMID:26718581

  5. Cellular and molecular mechanisms in kidney fibrosis

    Science.gov (United States)

    Duffield, Jeremy S.

    2014-01-01

    Fibrosis is a characteristic feature of all forms of chronic kidney disease. Deposition of pathological matrix in the interstitial space and within the walls of glomerular capillaries as well as the cellular processes resulting in this deposition are increasingly recognized as important factors amplifying kidney injury and accelerating nephron demise. Recent insights into the cellular and molecular mechanisms of fibrogenesis herald the promise of new therapies to slow kidney disease progression. This review focuses on new findings that enhance understanding of cellular and molecular mechanisms of fibrosis, the characteristics of myofibroblasts, their progenitors, and molecular pathways regulating both fibrogenesis and its resolution. PMID:24892703

  6. Molecular mechanisms of cryptococcal meningitis

    OpenAIRE

    Liu, Tong-Bao; Perlin, David; Xue, Chaoyang

    2012-01-01

    Fungal meningitis is a serious disease caused by a fungal infection of the central nervous system (CNS) mostly in individuals with immune system deficiencies. Fungal meningitis is often fatal without proper treatment, and the mortality rate remains unacceptably high even with antifungal drug interventions. Currently, cryptococcal meningitis is the most common fungal meningitis in HIV-1/AIDS, and its disease mechanism has been extensively studied. The key steps for fungi to infect brain and ca...

  7. Molecular mechanism of sweetness sensation.

    Science.gov (United States)

    DuBois, Grant E

    2016-10-01

    The current understanding of peripheral molecular events involved in sweet taste sensation in humans is reviewed. Included are discussions of the sweetener receptor T1R2/T1R3, its agonists, antagonists, positive allosteric modulators, the transduction of its activation in taste bud cells and the coding of its signaling to the CNS. Areas of incomplete understanding include 1) signal communication with afferent nerve fibers, 2) contrasting concentration/response (C/R) functions for high-potency (HP) sweeteners (hyperbolic) and carbohydrate (CHO) sweeteners (linear), 3) contrasting temporal profiles for HP sweeteners (delayed onset and extinction) and CHO sweeteners (rapid onset and extinction) and 4) contrasting adaptation behaviors for HP sweeteners (moderate to strong adaptation) and CHO sweeteners (low adaptation). Evidence based on the sweet water aftertastes of several novel sweetness inhibitors is presented providing new support for constitutive activity in T1R2/T1R3. And a model is developed to rationalize the linear C/R functions of CHO sweeteners and hyperbolic C/R functions of HP sweeteners, where the former may activate T1R2/T1R3 by both binding and constitutive activity modulation (i.e., without binding) and the latter activate T1R2/T1R3 only by binding. PMID:26992959

  8. Molecular mechanism of cholangiocarcinoma carcinogenesis.

    Science.gov (United States)

    Maemura, Kosei; Natsugoe, Shoji; Takao, Sonshin

    2014-10-01

    Cholangiocarcinoma (CCA) is a highly malignant cancer of the biliary tract with a poor prognosis, which often arises from conditions causing long-term inflammation, injury, and reparative biliary epithelial cell proliferation. Several conditions are known to be major risk factors for cancer in the biliary tract or gallbladder, including primary sclerosing cholangitis, liver fluke infection, pancreaticobiliary maljunction, and chemical exposure in proof-printing workers. Abnormalities in various signaling cascades, molecules, and genetic mutations are involved in the pathogenesis of CCA. CCA is characterized by a series of highly recurrent mutations in genes, including KRAS, BRF, TP53, Smad, and p16(INK4a) . Cytokines that are affected by inflammatory environmental conditions, such as interleukin-6 (IL-6), transforming growth factor-β (TGF-β), tumor necrosis factor-α (TNF-α), and platelet-derived growth factor (PDGF), play an important role in cancer pathogenesis. Prominent signaling pathways important in carcinogenesis include TGF-β/Smad, IL-6/STAT-3, PI3K/AKT, Wnt, RAF/MEK/MAPK, and Notch. Additionally, some microRNAs regulate targets in critical pathways of CCA development and progression. This review article provides the understanding of the genetic and epigenetic mechanism(s) of carcinogenesis in CCA, which leads to the development of new therapeutic targets for the prevention and treatment of this devastating cancer. PMID:24895231

  9. Molecular mechanisms of induced mutagenesis

    International Nuclear Information System (INIS)

    Genetic analysis has revealed that radiation and many chemical mutagens induce in bacteria an error-prone DNA repair process which is responsible for their mutagenic effect. The biochemical mechanism of this inducible error-prone repair has been studied by analysis of the first round of DNA synthesis on ultraviolet light-irradiated phiX174 DNA in both intact and ultraviolet light-irradiated host cells. Intracellular phiX174 DNA was extracted, subjected to isopycnic CsCl density-gradient analysis, hydroxylapatite chromatography and digestion by single-strand-specific endonuclease S1. Ultraviolet light-induced photolesions in viral DNA cause a permanent blockage of DNA synthesis in intact Escherichia coli cells. However, when host cells were irradiated and incubated to induce fully the error-prone repair system, a significant fraction of irradiated phiX174 DNA molecules can be fully replicated. Thus, inducible error-prone repair in E.coli is manifested by an increased capacity for DNA synthesis on damaged phiX174 DNA. Chloramphenicol (100 μ g/ml), which is an inhibitor of the inducible error-prone DNA repair, is also an inhibitor of this particular inducible DNA synthesis. (author)

  10. Molecular Mechanisms Underlying Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Christian Trepo

    2009-11-01

    Full Text Available Hepatocarcinogenesis is a complex process that remains still partly understood. That might be explained by the multiplicity of etiologic factors, the genetic/epigenetic heterogeneity of tumors bulks and the ignorance of the liver cell types that give rise to tumorigenic cells that have stem cell-like properties. The DNA stress induced by hepatocyte turnover, inflammation and maybe early oncogenic pathway activation and sometimes viral factors, leads to DNA damage response which activates the key tumor suppressive checkpoints p53/p21Cip1 and p16INK4a/pRb responsible of cell cycle arrest and cellular senescence as reflected by the cirrhosis stage. Still obscure mechanisms, but maybe involving the Wnt signaling and Twist proteins, would allow pre-senescent hepatocytes to bypass senescence, acquire immortality by telomerase reactivation and get the last genetic/epigenetic hits necessary for cancerous transformation. Among some of the oncogenic pathways that might play key driving roles in hepatocarcinogenesis, c-myc and the Wnt/β-catenin signaling seem of particular interest. Finally, antiproliferative and apoptosis deficiencies involving TGF-β, Akt/PTEN, IGF2 pathways for instance are prerequisite for cancerous transformation. Of evidence, not only the transformed liver cell per se but the facilitating microenvironment is of fundamental importance for tumor bulk growth and metastasis.

  11. Molecular mechanisms of DNA photodamage

    Energy Technology Data Exchange (ETDEWEB)

    Starrs, S.M

    2000-05-01

    Photodamage in DNA, caused by ultraviolet (UV) light, can occur by direct excitation of the nucleobases or indirectly via the action of photosensitisers. Such, DNA photodamage can be potentially mutagenic or lethal. Among the methods available for detecting UV-induced DNA damage, gel sequencing protocols, utilising synthetic oligodeoxyribonucleotides as targets for UV radiation, allow photolesions to be mapped at nucleotide resolution. This approach has been applied to investigate both DNA damage mechanisms. Following a general overview of DNA photoreactivity, and a description of the main experimental procedures, Chapter 3 identifies the origin of an anomalous mobility shift observed in purine chemical sequence ladders that can confuse the interpretation of DNA cleavage results; measures to abolish this shift are also described. Chapters 4 and 5 examine the alkali-labile DNA damage photosensitised by representative nonsteroidal antiinflammatory drugs (NSAIDs) and the fluoroquinolone antibiotics. Suprofen was the most photoactive NSAID studied, producing different patterns of guanine-specific damage in single-stranded and duplex DNA. Uniform modification of guanine bases, typifying attack by singlet oxygen, was observed in single-stranded oligodeoxyribonucleotides. In duplex molecules, modification was limited to the 5'-G of GG doublets, which is indicative of an electron transfer. The effect of quenchers and photoproduct analysis substantiated these findings. The quinolone, nalidixic acid, behaves similarly. The random base cleavage photosensitised by the fluoroquinolones, has been attributed to free radicals produced during their photodecomposition. Chapter 6 addresses the photoreactivity of purines within unusual DNA structures formed by the repeat sequences (GGA){sub n} and (GA){sub n}, and a minihairpin. There was no definitive evidence for enhanced purine reactivity caused by direct excitation. Finally, Chapter 7 investigates the mutagenic potential of a

  12. Molecular mechanism of the sweet taste enhancers

    OpenAIRE

    Feng ZHANG; Klebansky, Boris; Fine, Richard M.; Liu, Haitian; Xu, Hong; Servant, Guy; Zoller, Mark; Tachdjian, Catherine; Li, Xiaodong

    2010-01-01

    Positive allosteric modulators of the human sweet taste receptor have been developed as a new way of reducing dietary sugar intake. Besides their potential health benefit, the sweet taste enhancers are also valuable tool molecules to study the general mechanism of positive allosteric modulations of T1R taste receptors. Using chimeric receptors, mutagenesis, and molecular modeling, we reveal how these sweet enhancers work at the molecular level. Our data argue that the sweet enhancers follow a...

  13. Automated forward mechanical modeling of wrinkle ridges on Mars

    Science.gov (United States)

    Nahm, Amanda; Peterson, Samuel

    2016-04-01

    One of the main goals of the InSight mission to Mars is to understand the internal structure of Mars [1], in part through passive seismology. Understanding the shallow surface structure of the landing site is critical to the robust interpretation of recorded seismic signals. Faults, such as the wrinkle ridges abundant in the proposed landing site in Elysium Planitia, can be used to determine the subsurface structure of the regions they deform. Here, we test a new automated method for modeling of the topography of a wrinkle ridge (WR) in Elysium Planitia, allowing for faster and more robust determination of subsurface fault geometry for interpretation of the local subsurface structure. We perform forward mechanical modeling of fault-related topography [e.g., 2, 3], utilizing the modeling program Coulomb [4, 5] to model surface displacements surface induced by blind thrust faulting. Fault lengths are difficult to determine for WR; we initially assume a fault length of 30 km, but also test the effects of different fault lengths on model results. At present, we model the wrinkle ridge as a single blind thrust fault with a constant fault dip, though WR are likely to have more complicated fault geometry [e.g., 6-8]. Typically, the modeling is performed using the Coulomb GUI. This approach can be time consuming, requiring user inputs to change model parameters and to calculate the associated displacements for each model, which limits the number of models and parameter space that can be tested. To reduce active user computation time, we have developed a method in which the Coulomb GUI is bypassed. The general modeling procedure remains unchanged, and a set of input files is generated before modeling with ranges of pre-defined parameter values. The displacement calculations are divided into two suites. For Suite 1, a total of 3770 input files were generated in which the fault displacement (D), dip angle (δ), depth to upper fault tip (t), and depth to lower fault tip (B

  14. An Efficient Automated English to Bengali Script Conversion Mechanism

    OpenAIRE

    Enakshi Mukhopadhyay; Priyanka Mazumder; Saberi Goswami; Romit S Beed

    2014-01-01

    The authors aim at developing an efficient, unequivocal and automated method of generating Bengali language using English alphabets and simple English punctuation notes. Such art of writing Bengali language using English scripts shall be of immense help for those Bengali-speaking persons who cannot write in Bengali, yet can speak well and would require written communication in Bengali for official and personal conversation. Currently, Bengali keyboards are not available in the market, and acc...

  15. Automated extraction improves multiplex molecular detection of infection in septic patients.

    Directory of Open Access Journals (Sweden)

    Benito J Regueiro

    Full Text Available Sepsis is one of the leading causes of morbidity and mortality in hospitalized patients worldwide. Molecular technologies for rapid detection of microorganisms in patients with sepsis have only recently become available. LightCycler SeptiFast test M(grade (Roche Diagnostics GmbH is a multiplex PCR analysis able to detect DNA of the 25 most frequent pathogens in bloodstream infections. The time and labor saved while avoiding excessive laboratory manipulation is the rationale for selecting the automated MagNA Pure compact nucleic acid isolation kit-I (Roche Applied Science, GmbH as an alternative to conventional SeptiFast extraction. For the purposes of this study, we evaluate extraction in order to demonstrate the feasibility of automation. Finally, a prospective observational study was done using 106 clinical samples obtained from 76 patients in our ICU. Both extraction methods were used in parallel to test the samples. When molecular detection test results using both manual and automated extraction were compared with the data from blood cultures obtained at the same time, the results show that SeptiFast with the alternative MagNA Pure compact extraction not only shortens the complete workflow to 3.57 hrs., but also increases sensitivity of the molecular assay for detecting infection as defined by positive blood culture confirmation.

  16. Intelligent Control Mechanism of Part Picking Operations of Automated Warehouse

    Institute of Scientific and Technical Information of China (English)

    Chwen-Tzeng; Su

    2002-01-01

    This paper studies the part picking operations of a ut omated warehouse. It assumed the demand of picking orders of automated warehouse are dynamic generated. Once the picking orders of certain period of time are kn own, it is necessary to decide an efficient order picking sequence and routing t o minimize the total travel distance to complete those orders. Assumed there are n i items to be picked in order O i. Each item in the picking ord er is located in different locations in the warehouse. Since i...

  17. Molecular mechanism for the umami taste synergism

    OpenAIRE

    Feng ZHANG; Klebansky, Boris; Fine, Richard M.; Xu, Hong; Pronin, Alexey; Liu, Haitian; Tachdjian, Catherine; Li, Xiaodong

    2008-01-01

    Umami is one of the 5 basic taste qualities. The umami taste of L-glutamate can be drastically enhanced by 5′ ribonucleotides and the synergy is a hallmark of this taste quality. The umami taste receptor is a heteromeric complex of 2 class C G-protein-coupled receptors, T1R1 and T1R3. Here we elucidate the molecular mechanism of the synergy using chimeric T1R receptors, site-directed mutagenesis, and molecular modeling. We propose a cooperative ligand-binding model involving the Venus flytrap...

  18. Molecular mechanism for the umami taste synergism.

    Science.gov (United States)

    Zhang, Feng; Klebansky, Boris; Fine, Richard M; Xu, Hong; Pronin, Alexey; Liu, Haitian; Tachdjian, Catherine; Li, Xiaodong

    2008-12-30

    Umami is one of the 5 basic taste qualities. The umami taste of L-glutamate can be drastically enhanced by 5' ribonucleotides and the synergy is a hallmark of this taste quality. The umami taste receptor is a heteromeric complex of 2 class C G-protein-coupled receptors, T1R1 and T1R3. Here we elucidate the molecular mechanism of the synergy using chimeric T1R receptors, site-directed mutagenesis, and molecular modeling. We propose a cooperative ligand-binding model involving the Venus flytrap domain of T1R1, where L-glutamate binds close to the hinge region, and 5' ribonucleotides bind to an adjacent site close to the opening of the flytrap to further stabilize the closed conformation. This unique mechanism may apply to other class C G-protein-coupled receptors.

  19. Molecular mechanism of the sweet taste enhancers.

    Science.gov (United States)

    Zhang, Feng; Klebansky, Boris; Fine, Richard M; Liu, Haitian; Xu, Hong; Servant, Guy; Zoller, Mark; Tachdjian, Catherine; Li, Xiaodong

    2010-03-01

    Positive allosteric modulators of the human sweet taste receptor have been developed as a new way of reducing dietary sugar intake. Besides their potential health benefit, the sweet taste enhancers are also valuable tool molecules to study the general mechanism of positive allosteric modulations of T1R taste receptors. Using chimeric receptors, mutagenesis, and molecular modeling, we reveal how these sweet enhancers work at the molecular level. Our data argue that the sweet enhancers follow a similar mechanism as the natural umami taste enhancer molecules. Whereas the sweeteners bind to the hinge region and induce the closure of the Venus flytrap domain of T1R2, the enhancers bind close to the opening and further stabilize the closed and active conformation of the receptor.

  20. Molecular mechanism and regulation of autophagy

    Institute of Scientific and Technical Information of China (English)

    Ya-ping YANG; Zhong-qin LIANG; Zhen-lun GU; Zheng-hong QIN

    2005-01-01

    Autophagy is a major cellular pathway for the degradation of long-lived proteins and cytoplasmic organelles in eukaryotic cells. A large number of intracellular/extracellular stimuli, including amino acid starvation and invasion of microorganisms, are able to induce the autophagic response in cells. The discovery of the ATG genes in yeast has greatly advanced our understanding of the molecular mechanisms participating in autophagy and the genes involved in regulating the autophagic pathway. Many yeast genes have mammalian homologs,suggesting that the basic machinery for autophagy has been evolutionarily conserved along the eukaryotic phylum. The regulation of autophagy is a very complex process. Many signaling pathways, including target of rapamycin (TOR) or mammalian target of rapamycin (mTOR), phosphatidylinositol 3-kinase-I (PI3K-I)/PKB, GTPases, calcium and protein synthesis all play important roles in regulating autophagy. The molecular mechanisms and regulation of autophagy are discussed in this review.

  1. Molecular mechanisms of amyloid self-regulation

    OpenAIRE

    Landreh, Michael

    2012-01-01

    Amyloid is associated with both pathological protein deposits and the formation of functional protein structures. Therefore, several strategies have evolved to control the formation or inhibition of amyloid in vivo. In this thesis, three separate systems were investigated in which amyloidogenic protein segments are coupled to regulatory elements that prevent or promote fibrillation. We describe the molecular mechanism for how (a) a propeptide segment prevents the uncontrolled a...

  2. Cellular and molecular mechanisms in kidney fibrosis

    OpenAIRE

    Duffield, Jeremy S.

    2014-01-01

    Fibrosis is a characteristic feature of all forms of chronic kidney disease. Deposition of pathological matrix in the interstitial space and within the walls of glomerular capillaries as well as the cellular processes resulting in this deposition are increasingly recognized as important factors amplifying kidney injury and accelerating nephron demise. Recent insights into the cellular and molecular mechanisms of fibrogenesis herald the promise of new therapies to slow kidney disease progressi...

  3. Molecular Mechanism of Biological Proton Transport

    Energy Technology Data Exchange (ETDEWEB)

    Pomes, R.

    1998-09-01

    Proton transport across lipid membranes is a fundamental aspect of biological energy transduction (metabolism). This function is mediated by a Grotthuss mechanism involving proton hopping along hydrogen-bonded networks embedded in membrane-spanning proteins. Using molecular simulations, the authors have explored the structural, dynamic, and thermodynamic properties giving rise to long-range proton translocation in hydrogen-bonded networks involving water molecules, or water wires, which are emerging as ubiquitous H{sup +}-transport devices in biological systems.

  4. Molecular mechanisms of metastasis in prostate cancer

    Institute of Scientific and Technical Information of China (English)

    Noel W.Clarke; Claire A.Hart; Mick D.Brown

    2009-01-01

    Prostate cancer (PCa) preferentially metastasizes to the bone marrow stroma of the axial skeleton.This activity is the principal cause of PCa morbidity and mortality.The exact mechanism of PCa metastasis is currently unknown,although considerable progress has been made in determining the key players in this process.In this review,we present the current understanding of the molecular processes driving PCa metastasis to the bone.

  5. Molecular mechanism of magnet formation in bacteria.

    Science.gov (United States)

    Matsunaga, T; Sakaguchi, T

    2000-01-01

    Magnetic bacteria have an ability to synthesize intracellular ferromagnetic crystalline particles consisting of magnetite (Fe3O4) or greigite (Fe3S4) which occur within a specific size range (50-100 nm). Bacterial magnetic particles (BMPs) can be distinguished by the regular morphology and the presence of an thin organic membrane enveloping crystals from abiologically formed magnetite. The particle is the smallest magnetic crystal that has a regular morphology within the single domain size. Therefore, BMPs have an unfathomable amount of potential value for various technological applications not only scientific interests. However, the molecular and genetic mechanism of magnetite biomineralization is hardly understood although iron oxide formation occurs widely in many higher animals as well as microorganisms. In order to elucidate the molecular and genetic mechanisms of magnetite biomineralization, a magnetic bacterium Magnetospirillum sp. AMB-1, for which gene transfer and transposon mutagenesis techniques had been recently developed, has been used as a model organism. Several findings and information on the BMPs formation process have been obtained within this decade by means of studies with this model organism and its related one. Biomineralization mechanism and potential availability in biotechnology of bacterial magnets have been elucidated through molecular and genetic approach. PMID:16232810

  6. Automated Analysis and Classification of Histological Tissue Features by Multi-Dimensional Microscopic Molecular Profiling.

    Directory of Open Access Journals (Sweden)

    Daniel P Riordan

    Full Text Available Characterization of the molecular attributes and spatial arrangements of cells and features within complex human tissues provides a critical basis for understanding processes involved in development and disease. Moreover, the ability to automate steps in the analysis and interpretation of histological images that currently require manual inspection by pathologists could revolutionize medical diagnostics. Toward this end, we developed a new imaging approach called multidimensional microscopic molecular profiling (MMMP that can measure several independent molecular properties in situ at subcellular resolution for the same tissue specimen. MMMP involves repeated cycles of antibody or histochemical staining, imaging, and signal removal, which ultimately can generate information analogous to a multidimensional flow cytometry analysis on intact tissue sections. We performed a MMMP analysis on a tissue microarray containing a diverse set of 102 human tissues using a panel of 15 informative antibody and 5 histochemical stains plus DAPI. Large-scale unsupervised analysis of MMMP data, and visualization of the resulting classifications, identified molecular profiles that were associated with functional tissue features. We then directly annotated H&E images from this MMMP series such that canonical histological features of interest (e.g. blood vessels, epithelium, red blood cells were individually labeled. By integrating image annotation data, we identified molecular signatures that were associated with specific histological annotations and we developed statistical models for automatically classifying these features. The classification accuracy for automated histology labeling was objectively evaluated using a cross-validation strategy, and significant accuracy (with a median per-pixel rate of 77% per feature from 15 annotated samples for de novo feature prediction was obtained. These results suggest that high-dimensional profiling may advance the

  7. Molecular mechanics of mussel adhesion proteins

    Science.gov (United States)

    Qin, Zhao; Buehler, Markus J.

    2014-01-01

    Mussel foot protein (mfp), a natural glue produced by marine mussel, is an intriguing material because of its superior ability for adhesion in various environments. For example, a very small amount of this material is sufficient to affix a mussel to a substrate in water, providing structural support under extreme forces caused by the dynamic effects of waves. Towards a more complete understanding of its strength and underwater workability, it is necessary to understand the microscropic mechanisms by which the protein structure interacts with various substrates. However, none of the mussel proteins' structure is known, preventing us from directly using atomistic modeling to probe their structural and mechanical properties. Here we use an advanced molecular sampling technique to identify the molecular structures of two mussel foot proteins (mfp-3 and mfp-5) and use those structures to study their mechanics of adhesion, which is then incorporated into a continuum model. We calculate the adhesion energy of the mussel foot protein on a silica substrate, compute the adhesion strength based on results obtained from molecular modeling, and compare with experimental data. Our results show good agreement with experimental measurements, which validates the multiscale model. We find that the molecular structure of the folded mussel foot protein (ultimately defined by its genetic sequence) favors strong adhesion to substrates, where L-3,4-dihydroxyphenylalanine (or DOPA) protein subunits work in a cooperative manner to enhance adhesion. Our experimental data suggests a peak attachment force of 0.4±0.1 N, which compares favorably with the prediction from the multiscale model of Fc=0.21-0.33 N. The principles learnt from those results could guide the fabrication of new interfacial materials (e.g. composites) to integrate organic with inorganic surfaces in an effective manner.

  8. INTELLIGENT MECHANISM TO SUPPORT DFX-ABILITIESIN AUTOMATED DESIGNER'S ENVIRONMENT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    From the information integration point of view, design activities are the processes of the information handling. Mechanism module in DesignerSpace, like an operator, operates on the information (which can be thought as the input or output) being processed during certain design activity, as shown in Fig.3. Therefore, Mechanism is a comprehensive framework which intends to integrate more computational technologies along the whole product design process.  Because of different engineering application domains involved in solving a design problem, Mechanism offers generaloperator and specialoperator. The former is proposed for general mechanical product design, such as DFX; and the latter has definite application scope and needs special design technologies, for example, blankdisc design in aircraft. Any mechanism operator is giving the constraints on design, but CAD system is needed to help construct PDMD under the constraints. Generaloperator or specialoperator is made up of three basic components: knowledgebase, algorithmbase and monitoring/debugging. The components of DFX mechanism with Process module and Resource module in DesignerSpace are described in EXPRESS-G in Fig.4.2.1 Product models and operated product model data  The DFX intelligent mechanism operates on the product model data for obtaining the optimized product model data which are of DFX abilities. The product models used in DesignerSpace are structured into two levels: geometricmodel and featuremodel[11].

  9. Automated Mechanical Characterization of 2-D Materials using SEM based Visual Servoing

    Science.gov (United States)

    Zimmermann, Sören; Tiemerding, Tobias; Li, Tie; Wang, Wenrong; Wang, Yuelin; Fatikow, Sergej

    2013-10-01

    Nanorobotic techniques are well-known for characterization and processing of two-dimensional materials. However, until now, most of the proposed handling procedures required manual feedback. This article presents an automated handling approach of two-dimensional nanomaterials using a robotic setup inside a high-resolution scanning electron microscope. Applying image processing of the visual feedback provided by the electron microscope, a fully automated sequence is developed to align a robotic driven force sensor with sub-micrometer accuracy and to conduct nanoindentation measurements on a periodically perforated substrate. As an example, this automated sequence is utilized to examine the mechanical properties of a few-layer graphene membrane. The results of the mechanical characterization are compared to Raman spectroscopy data. The article discusses the advantages and restrictions of this technique and responds to further application scenarios.

  10. Molecular Mechanisms in Exercise-Induced Cardioprotection

    Directory of Open Access Journals (Sweden)

    Saeid Golbidi

    2011-01-01

    Full Text Available Physical inactivity is increasingly recognized as modifiable behavioral risk factor for cardiovascular diseases. A partial list of proposed mechanisms for exercise-induced cardioprotection include induction of heat shock proteins, increase in cardiac antioxidant capacity, expression of endoplasmic reticulum stress proteins, anatomical and physiological changes in the coronary arteries, changes in nitric oxide production, adaptational changes in cardiac mitochondria, increased autophagy, and improved function of sarcolemmal and/or mitochondrial ATP-sensitive potassium channels. It is currently unclear which of these protective mechanisms are essential for exercise-induced cardioprotection. However, most investigations focus on sarcolemmal KATP channels, NO production, and mitochondrial changes although it is very likely that other mechanisms may also exist. This paper discusses current information about these aforementioned topics and does not consider potentially important adaptations within blood or the autonomic nervous system. A better understanding of the molecular basis of exercise-induced cardioprotection will help to develop better therapeutic strategies.

  11. Molecular mechanisms for protein-encoded inheritance

    Energy Technology Data Exchange (ETDEWEB)

    Wiltzius, Jed J.W.; Landau, Meytal; Nelson, Rebecca; Sawaya, Michael R.; Apostol, Marcin I.; Goldschmidt, Lukasz; Soriaga, Angela B.; Cascio, Duilio; Rajashankar, Kanagalaghatta; Eisenberg, David; (Cornell); (HHMI)

    2009-12-01

    In prion inheritance and transmission, strains are phenotypic variants encoded by protein 'conformations'. However, it is unclear how a protein conformation can be stable enough to endure transmission between cells or organisms. Here we describe new polymorphic crystal structures of segments of prion and other amyloid proteins, which offer two structural mechanisms for the encoding of prion strains. In packing polymorphism, prion strains are encoded by alternative packing arrangements (polymorphs) of {beta}-sheets formed by the same segment of a protein; in segmental polymorphism, prion strains are encoded by distinct {beta}-sheets built from different segments of a protein. Both forms of polymorphism can produce enduring conformations capable of encoding strains. These molecular mechanisms for transfer of protein-encoded information into prion strains share features with the familiar mechanism for transfer of nucleic acid-encoded information into microbial strains, including sequence specificity and recognition by noncovalent bonds.

  12. Molecular Mechanisms of Renal Ischemic Conditioning Strategies.

    Science.gov (United States)

    Kierulf-Lassen, Casper; Nieuwenhuijs-Moeke, Gertrude J; Krogstrup, Nicoline V; Oltean, Mihai; Jespersen, Bente; Dor, Frank J M F

    2015-01-01

    Ischemia-reperfusion injury is the leading cause of acute kidney injury in a variety of clinical settings such as renal transplantation and hypovolemic and/or septic shock. Strategies to reduce ischemia-reperfusion injury are obviously clinically relevant. Ischemic conditioning is an inherent part of the renal defense mechanism against ischemia and can be triggered by short periods of intermittent ischemia and reperfusion. Understanding the signaling transduction pathways of renal ischemic conditioning can promote further clinical translation and pharmacological advancements in this era. This review summarizes research on the molecular mechanisms underlying both local and remote ischemic pre-, per- and postconditioning of the kidney. The different types of conditioning strategies in the kidney recruit similar powerful pro-survival mechanisms. Likewise, renal ischemic conditioning mobilizes many of the same protective signaling pathways as in other organs, but differences are recognized. PMID:26330099

  13. Biological Applications of Hybrid Quantum Mechanics/Molecular Mechanics Calculation

    Directory of Open Access Journals (Sweden)

    Jiyoung Kang

    2012-01-01

    Full Text Available Since in most cases biological macromolecular systems including solvent water molecules are remarkably large, the computational costs of performing ab initio calculations for the entire structures are prohibitive. Accordingly, QM calculations that are jointed with MM calculations are crucial to evaluate the long-range electrostatic interactions, which significantly affect the electronic structures of biological macromolecules. A UNIX-shell-based interface program connecting the quantum mechanics (QMs and molecular mechanics (MMs calculation engines, GAMESS and AMBER, was developed in our lab. The system was applied to a metalloenzyme, azurin, and PU.1-DNA complex; thereby, the significance of the environmental effects on the electronic structures of the site of interest was elucidated. Subsequently, hybrid QM/MM molecular dynamics (MD simulation using the calculation system was employed for investigation of mechanisms of hydrolysis (editing reaction in leucyl-tRNA synthetase complexed with the misaminoacylated tRNALeu, and a novel mechanism of the enzymatic reaction was revealed. Thus, our interface program can play a critical role as a powerful tool for state-of-the-art sophisticated hybrid ab initio QM/MM MD simulations of large systems, such as biological macromolecules.

  14. Cellular and Molecular Mechanisms of AKI.

    Science.gov (United States)

    Agarwal, Anupam; Dong, Zheng; Harris, Raymond; Murray, Patrick; Parikh, Samir M; Rosner, Mitchell H; Kellum, John A; Ronco, Claudio

    2016-05-01

    In this article, we review the current evidence for the cellular and molecular mechanisms of AKI, focusing on epithelial cell pathobiology and related cell-cell interactions, using ischemic AKI as a model. Highlighted are the clinical relevance of cellular and molecular targets that have been investigated in experimental models of ischemic AKI and how such models might be improved to optimize translation into successful clinical trials. In particular, development of more context-specific animal models with greater relevance to human AKI is urgently needed. Comorbidities that could alter patient susceptibility to AKI, such as underlying diabetes, aging, obesity, cancer, and CKD, should also be considered in developing these models. Finally, harmonization between academia and industry for more clinically relevant preclinical testing of potential therapeutic targets and better translational clinical trial design is also needed to achieve the goal of developing effective interventions for AKI. PMID:26860342

  15. Thymic Output: Influence Factors and Molecular Mechanism

    Institute of Scientific and Technical Information of China (English)

    Rong Jin; Jun Zhang; Weifeng Chen

    2006-01-01

    Thymus is a primary lymphoid organ, able to generate mature T cells that eventually colonize secondary lymphoid organs, and is therefore essential for peripheral T cell renewal. Recent data showed that normal thymocyte export can be altered by several influence factors including several chemokines,sphingosinel-phosphate (S1P),transcription factors such as Foxjl, Kruppel-like transcription factor 2 (KLF2) and antigen stimulation, etc. In this review, we summarized the recent reports about study strategies, influence factors and possible molecular mechanisms in thymic output.

  16. Molecular mechanisms of glucocorticoid receptor signaling

    Directory of Open Access Journals (Sweden)

    Marta Labeur

    2010-10-01

    Full Text Available This review highlights the most recent findings on the molecular mechanisms of the glucocorticoid receptor (GR. Most effects of glucocorticoids are mediated by the intracellular GR which is present in almost every tissue and controls transcriptional activation via direct and indirect mechanisms. Nevertheless the glucocorticoid responses are tissue -and gene- specific. GR associates selectively with corticosteroid ligands produced in the adrenal gland in response to changes of humoral homeostasis. Ligand interaction with GR promotes either GR binding to genomic glucocorticoid response elements, in turn modulating gene transcription, or interaction of GR monomers with other transcription factors activated by other signalling pathways leading to transrepression. The GR regulates a broad spectrum of physiological functions, including cell differentiation, metabolism and inflammatory responses. Thus, disruption or dysregulation of GR function will result in severe impairments in the maintenance of homeostasis and the control of adaptation to stress.

  17. Statistical mechanics and dynamics of molecular fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Quack, M. (Goettingen Univ. (Germany, F.R.). Inst. fuer Physikalische Chemie)

    1981-05-11

    The foundations of the use of statistical-mechanical equations of motion, in particular the Pauli equation, for the description of intramolecular processes and molecular fragmentation are discussed briefly. Quantum-mechanical trajectories for model systems illustrate how the statistical behaviour may emerge from the dynamical equations of motion. Product state distributions resulting from the fragmentation of strongly coupled, metastable intermediates in chemical-activation experiments can be calculated by using restricted equipartition, which applies as the long-time limit of the Pauli equation. A simple Pauli-equation model is proposed to calculate lifetimes of metastable intermediates. The consequences of the finite rate of intramolecular relaxation processes for the specific rate constants for fragmentation and possible deviations from microcanonical equilibrium are explored.

  18. Statistical mechanics and dynamics of molecular fragmentation

    International Nuclear Information System (INIS)

    The foundations of the use of statistical-mechanical equations of motion, in particular the Pauli equation, for the description of intramolecular processes and molecular fragmentation are discussed briefly. Quantum-mechanical trajectories for model systems illustrate how the statistical behaviour may emerge from the dynamical equations of motion. Product state distributions resulting from the fragmentation of strongly coupled, metastable intermediates in chemical-activation experiments can be calculated by using restricted equipartition, which applies as the long-time limit of the Pauli equation. A simple Pauli-equation model is proposed to calculate lifetimes of metastable intermediates. The consequences of the finite rate of intramolecular relaxation processes for the specific rate constants for fragmentation and possible deviations from microcanonical equilibrium are explored. (author)

  19. [Molecular mechanisms regulating the activity of macrophages].

    Science.gov (United States)

    Onoprienko, L V

    2011-01-01

    This article reviews modern concepts of the most common types of macrophage activation: classical, alternative, and type II. Molecular mechanisms of induction and regulation of these three types of activation are discussed. Any population of macrophages was shown to change its properties depending on its microenvironment and concrete biological situation (the "functional plasticity of macrophages"). Many intermediate states of macrophages were described along with the most pronounced and well-known activation types (classical activation, alternative activation, and type II activation). These intermediate states are characterized by a variety of combinations of their biological properties, including elements of the three afore mentioned types of activation. Macrophage activity is regulated by a complex network of interrelated cascade mechanisms.

  20. Mechanisms for Automated Negotiation in State Oriented Domains

    OpenAIRE

    Zlotkin, G.; Rosenschein, J. S.

    1996-01-01

    This paper lays part of the groundwork for a domain theory of negotiation, that is, a way of classifying interactions so that it is clear, given a domain, which negotiation mechanisms and strategies are appropriate. We define State Oriented Domains, a general category of interaction. Necessary and sufficient conditions for cooperation are outlined. We use the notion of worth in an altered definition of utility, thus enabling agreements in a wider class of joint-goal reachable situations. An a...

  1. Molecular inhibitory mechanism of tricin on tyrosinase

    Science.gov (United States)

    Mu, Yan; Li, Lin; Hu, Song-Qing

    2013-04-01

    Tricin was evaluated as a type of tyrosinase inhibitor with good efficacy compared to arbutin. Tricin functioned as a non-competitive inhibitor of tyrosinase, with an equilibrium constant of 2.30 mmol/L. The molecular mechanisms underlying the inhibition of tyrosinase by tricin were investigated by means of circular dichroism spectra, fluorescence quenching and molecular docking. These assays demonstrated that the interactions between tricin and tyrosinase did not change the secondary structure. The interaction of tricin with residues in the hydrophobic pocket of tyrosinase was revealed by fluorescence quenching; the complex was stabilized by hydrophobic associations and hydrogen bonding (with residues Asn80 and Arg267). Docking results implied that the possible inhibitory mechanisms may be attributed to the stereospecific blockade effects of tricin on substrates or products and flexible conformation alterations in the tyrosinase active center caused by weak interactions between tyrosinase and tricin. The application of this type of flavonoid as a tyrosinase inhibitor will lead to significant advances in the field of depigmentation.

  2. Molecular Mechanisms Regulating Macrophage Response to Hypoxia

    Directory of Open Access Journals (Sweden)

    Michal Amit Rahat

    2011-09-01

    Full Text Available Monocytes and Macrophages (Mo/Mϕ exhibit great plasticity, as they can shift between different modes of activation and, driven by their immediate microenvironment, perform divergent functions. These include, among others, patrolling their surroundings and maintaining homeostasis (resident Mo/Mϕ, combating invading pathogens and tumor cells (classically activated or M1 Mo/Mϕ, orchestrating wound healing (alternatively activated or M2 Mo/Mϕ, and restoring homeostasis after an inflammatory response (resolution Mϕ. Hypoxia is an important factor in the Mϕ microenvironment, is prevalent in many physiological and pathological conditions, and is interdependent with the inflammatory response. Although Mo/Mϕ have been studied in hypoxia, the mechanisms by which hypoxia influences the different modes of their activation, and how it regulates the shift between them, remain unclear. Here we review the current knowledge about the molecular mechanisms that mediate this hypoxic regulation of Mϕ activation. Much is known about the hypoxic transcriptional regulatory network, which includes the master regulators HIF-1 and NF-κB, as well as other transcription factors (e.g. AP-1, Erg-1, but we also highlight the role of post-transcriptional and post-translational mechanisms. These mechanisms mediate hypoxic induction of Mϕ pro-angiogenic mediators, suppress M1 Mϕ by post-transcriptionally inhibiting pro-inflammatory mediators, and help shift the classically activated Mϕ into an activation state which approximate the alternatively activated or resolution Mϕ.

  3. Screened Electrostatic Interactions in Molecular Mechanics.

    Science.gov (United States)

    Wang, Bo; Truhlar, Donald G

    2014-10-14

    In a typical application of molecular mechanics (MM), the electrostatic interactions are calculated from parametrized partial atomic charges treated as point charges interacting by radial Coulomb potentials. This does not usually yield accurate electrostatic interactions at van der Waals distances, but this is compensated by additional parametrized terms, for example Lennard-Jones potentials. In the present work, we present a scheme involving radial screened Coulomb potentials that reproduces the accurate electrostatics much more accurately. The screening accounts for charge penetration of one subsystem's charge cloud into that of another subsystem, and it is incorporated into the interaction potential in a way similar to what we proposed in a previous article (J. Chem. Theory Comput. 2010, 6, 3330) for combined quantum mechanical and molecular mechanical (QM/MM) simulations, but the screening parameters are reoptimized for MM. The optimization is carried out with electrostatic-potential-fitted partial atomic charges, but the optimized parameters should be useful with any realistic charge model. In the model we employ, the charge density of an atom is approximated as the sum of a point charge representing the nucleus and inner electrons and a smeared charge representing the outermost electrons; in particular, for all atoms except hydrogens, the smeared charge represents the two outermost electrons in the present model. We find that the charge penetration effect can cause very significant deviations from the popular point-charge model, and by comparison to electrostatic interactions calculated by symmetry-adapted perturbation theory, we find that the present results are considerably more accurate than point-charge electrostatic interactions. The mean unsigned error in electrostatics for a large and diverse data set (192 interaction energies) decreases from 9.2 to 3.3 kcal/mol, and the error in the electrostatics for 10 water dimers decreases from 1.7 to 0.5 kcal

  4. Mechanisms for Automated Negotiation in State Oriented Domains

    CERN Document Server

    Rosenschein, J S; 10.1613/jair.72

    2011-01-01

    This paper lays part of the groundwork for a domain theory of negotiation, that is, a way of classifying interactions so that it is clear, given a domain, which negotiation mechanisms and strategies are appropriate. We define State Oriented Domains, a general category of interaction. Necessary and sufficient conditions for cooperation are outlined. We use the notion of worth in an altered definition of utility, thus enabling agreements in a wider class of joint-goal reachable situations. An approach is offered for conflict resolution, and it is shown that even in a conflict situation, partial cooperative steps can be taken by interacting agents (that is, agents in fundamental conflict might still agree to cooperate up to a certain point). A Unified Negotiation Protocol (UNP) is developed that can be used in all types of encounters. It is shown that in certain borderline cooperative situations, a partial cooperative agreement (i.e., one that does not achieve all agents' goals) might be preferred by all agents,...

  5. Molecular mechanisms of HIV-1 associated neurodegeneration

    Indian Academy of Sciences (India)

    Hakan Ozdener

    2005-06-01

    Since identification of the human immunodeficiency virus-1 (HIV-1), numerous studies suggest a link between neurological impairments, in particular dementia, with acquired immunodeficiency syndrome (AIDS) with alarming occurrence worldwide. Approximately, 60% of HIV-infected people show some form of neurological impairment, and neuropathological changes are found in 90% of autopsied cases. Approximately 30% of untreated HIV-infected persons may develop dementia. The mechanisms behind these pathological changes are still not understood. Mounting data obtained by in vivo and in vitro experiments suggest that neuronal apoptosis is a major feature of HIV associated dementia (HAD), which can occur in the absence of direct infection of neurons. The major pathway of neuronal apoptosis occurs indirectly through release of neurotoxins by activated cells in the central nervous system (CNS) involving the induction of excitotoxicity and oxidative stress. In addition a direct mechanism induced by viral proteins in the pathogenesis of HAD may also play a role. This review focuses on the molecular mechanisms of HIV-associated dementia and possible therapeutic strategies.

  6. Molecular Mechanisms of DNA Replication Checkpoint Activation

    Directory of Open Access Journals (Sweden)

    Bénédicte Recolin

    2014-03-01

    Full Text Available The major challenge of the cell cycle is to deliver an intact, and fully duplicated, genetic material to the daughter cells. To this end, progression of DNA synthesis is monitored by a feedback mechanism known as replication checkpoint that is untimely linked to DNA replication. This signaling pathway ensures coordination of DNA synthesis with cell cycle progression. Failure to activate this checkpoint in response to perturbation of DNA synthesis (replication stress results in forced cell division leading to chromosome fragmentation, aneuploidy, and genomic instability. In this review, we will describe current knowledge of the molecular determinants of the DNA replication checkpoint in eukaryotic cells and discuss a model of activation of this signaling pathway crucial for maintenance of genomic stability.

  7. Molecular mechanism of TNF signaling and beyond

    Institute of Scientific and Technical Information of China (English)

    Zheng-gang LIU

    2005-01-01

    Tumor necrosis factor (TNF) is a proinflammatory cytokine that plays a critical role in diverse cellular events,including cell proliferation, differentiation and apoptosis. TNF is also involved in many types of diseases. In recent years, the molecular mechanisms of TNF functions have been intensively investigated. Studies from many laboratories have demonstrated that the TNF-mediated diverse biological responses are achieved through activating multiple signaling pathways. Especially the activation of transcription factors NF-κB and AP-1 plays a critical role in mediating these cellular responses. Several proteins, including FADD, the death domain kinase RIP and the TNF receptor associated factor TRAF2 have been identified as the key effectors of TNF signaling. Recently, we found that the effector molecules of TNF signaling, such as RIP and TRAF2, are also involved in other cellular responses. These finding suggests that RIP and TRAF2 serve a broader role than as just an effector of TNF signaling.

  8. Molecular mechanisms involved in intestinal iron absorption

    Institute of Scientific and Technical Information of China (English)

    Paul Sharp; Surjit Kaila Srai

    2007-01-01

    Iron is an essential trace metal in the human diet due to its obligate role in a number of metabolic processes.In the diet, iron is present in a number of different forms, generally described as haem (from haemoglobin and myoglobin in animal tissue) and non-haem iron (including ferric oxides and salts, ferritin and lactoferrin).This review describes the molecular mechanisms that co-ordinate the absorption of iron from the diet and its release into the circulation. While many components of the iron transport pathway have been elucidated, a number of key issues still remain to be resolved. Future work in this area will provide a clearer picture regarding the transcellular flux of iron and its regulation by dietary and humoral factors.

  9. Two Automated Mechanisms to Create Electures and to Videotape Regular Lectures

    Directory of Open Access Journals (Sweden)

    Nael Hirzallah

    2012-01-01

    Full Text Available Many institutes are offering lectures that students may watch online. These lectures vary in type from true multimedia sophisticated documents to eLectures to videotaped regular lectures that may include auto generated closed caption. This paper studies some formats that can be easily composed by instructors. Whether adopting the eLectures format or videotaped lecture format, the paper proposes two automated mechanisms to create such lectures without the intervention of a camera or video mixer operator. The first mechanism depends on the absence of mouse motion events; while the second mechanism depends on the instructors facial and hand detections.

  10. Application of fluorescence-based semi-automated allelotyping to the molecular characterization of tumors

    Energy Technology Data Exchange (ETDEWEB)

    Jedlicka, A.E.; DiSilvestre, D.; Holroyd, K.J. [Johns Hopkins Medical Institutions, Baltimore, MD (United States)] [and others

    1994-09-01

    In cancer genetics, identifying loss of heterozygosity (LOH) defines candidate regions which warrant further analyses to determine the presence of tumor suppressor genes. In addition, demonstrating LOH has potential utility for improving the pathologic classification of tumors. Molecular methods that improve the efficiency and accuracy of LOH studies will be helpful in both clinical and research applications. Here we demonstrate a fluorescence-based semi-automated alleotyping method for studies of LOH in cancer, using gliomas as an example. Gliomas are tumors arising from neuroglia, the supporting tissue intermingled with essential elements of the brain and spinal cord. Since this method utilizes PCR-based highly polymorphic simple sequence repeat markers, it is suitable for small and archival tumor specimens. We collected tumor tissue from a variety of gliomas, and DNA was extracted. White blood cells from the same individuals served as a source of {open_quotes}control{close_quotes} DNA. We PCR amplified markers from tumor and genomic DNA to detect molecular alterations in six people. Simultaneous analysis of 14 loci near gene candidates on chromosomes 5, 7, 9, 10, 11, and 22, were evaluated. Strikingly, in most cases there was allelic loss in brain tumor compared to genomic DNA for at least one of these loci. In addition, alleles of lesser intensity were also shown at a few loci of the tumor DNA, suggesting possible genetic instability. We conclude from these data that fluorescent semi-automated allelotyping is a quantitative and efficient process for determining and analyzing LOH in gliomas, and possibly other tumors. These methods will facilitate the identification of candidate loci critical in the development and progression of tumors.

  11. Molecular Mechanisms of Insulin Resistance Development

    Directory of Open Access Journals (Sweden)

    Vsevolod Arsen'evich Tkachuk

    2014-05-01

    Full Text Available Insulin resistance (IR is a phenomenon associated with an impaired ability of insulin to stimulate glucose uptake by target cells and to reduce the blood glucose level. A response increase in insulin secretion by the pancreas and hyperinsulinemia are compensatory reactions of the body. The development of IR leads to the inability of target cells to respond to insulin that results in developing type 2 diabetes mellitus (T2DM and metabolic syndrome. For this reason, the metabolic syndrome is defined in practice as a combination of IR with one or more pathologies such as T2DM, arterial hypertension, dyslipidemia, abdominal obesity, non-alcoholic fatty liver disease, and some others. However, a combination of high blood glucose and insulin levels always serves as its physiological criterion.IR should be considered as a systemic failure of the endocrine regulation in the body. Physiological causes of IR are diverse. The main ones are nutritional overload and accumulation of certain lipids and their metabolites in cells, low physical activity, chronic inflammation and stress of various nature, including oxidative and endoplasmic reticulum stress (impairment of damaged protein degradation in the cell. Recent studies have demonstrated that these physiological mechanisms likely act through a single intracellular scenario. This is the impairment of signal transduction from the insulin receptor to its targets via the negative feedback mechanism in intracellular insulin-dependent signaling cascades.This review describes the physiological and intracellular mechanisms of insulin action and focuses on their abnormalities upon IR development. Finally, feasible trends in early molecular diagnosis and therapy of IR are discussed.

  12. Molecular and cellular mechanisms of adipogenesis

    Directory of Open Access Journals (Sweden)

    Aleksander Dmitrievich Egorov

    2015-03-01

    Full Text Available The main components of metabolic syndrome include insulin resistance, hypertriglyceridemia and arterial hypertension. Obesity is the cause of metabolic syndrome, mainly as a consequence of the endocrine function of adipose tissue. The volume of adipose tissue depends on the size of individual adipocytes and on their number. The number of adipocytes increases as a result of enhanced adipocyte differentiation. The transcriptional cascade that regulates this differentiation has been well studied. The major adipogenic transcription factor peroxisome proliferator-activated receptor gamma is a ligand-activated nuclear receptor with essential roles in adipogenesis. Its ligands are used to treat metabolic syndrome and type 2 diabetes mellitus. The present article describes the basic molecular and cellular mechanisms of adipogenesis and discusses the impact of insulin, glucocorticoids, cyclic adenosine monophosphate-activating agents, nuclear receptors and transcription factors on the process of adipogenesis. New regulatory regions of the genome that are capable of binding multiple transcription factors are described, and the most promising drug targets for the treatment of metabolic syndrome and obesity, including the homeodomain proteins Pbx1 and Prep1, are discussed.

  13. Molecular Mechanisms Underlying Psychological Stress and Cancer.

    Science.gov (United States)

    Shin, Kyeong Jin; Lee, Yu Jin; Yang, Yong Ryoul; Park, Seorim; Suh, Pann-Ghill; Follo, Matilde Yung; Cocco, Lucio; Ryu, Sung Ho

    2016-01-01

    Psychological stress is an emotion experienced when people are under mental pressure or encounter unexpected problems. Extreme or repetitive stress increases the risk of developing human disease, including cardiovascular disease (CVD), immune diseases, mental disorders, and cancer. Several studies have shown an association between psychological stress and cancer growth and metastasis in animal models and case studies of cancer patients. Stress induces the secretion of stress-related mediators, such as catecholamine, cortisol, and oxytocin, via the activation of the hypothalamic-pituitary-adrenocortical (HPA) axis or the sympathetic nervous system (SNS). These stress-related hormones and neurotransmitters adversely affect stress-induced tumor progression and cancer therapy. Catecholamine is the primary factor that influences tumor progression. It can regulate diverse cellular signaling pathways through adrenergic receptors (ADRs), which are expressed by several types of cancer cells. Activated ADRs enhance the proliferation and invasion abilities of cancer cells, alter cell activity in the tumor microenvironment, and regulate the interaction between cancer and its microenvironment to promote tumor progression. Additionally, other stress mediators, such as glucocorticoids and oxytocin, and their cognate receptors are involved in stress-induced cancer growth and metastasis. Here, we will review how each receptor-mediated signal cascade contributes to tumor initiation and progression and discuss how we can use these molecular mechanisms for cancer therapy.

  14. Molecular and genetic mechanisms of environmental mutagens

    International Nuclear Information System (INIS)

    This program is primarily concerned with elucidation of the nature of DNA lesions produced by environmental and energy related mutagens, their mechanisms of action, and their repair. The main focus is on actions of chemical mutagens and electromagnetic radiations. Synergistic interactions between mutagens and the mutational processes that lead to synergism are being investigated. Mutagens are chosen for study on the basis of their potential for analysis of mutation (as genetic probes), for development of procedures for reducing mutational damage, for their potential importance to risk assessment, and for development of improved mutagen testing systems. Bacterial cells are used because of the rapidity and clarity of scientific results that can be obtained, the detailed genetic maps, and the many well-defined mutand strains available. The conventional tools of microbial and molecular genetics are used, along with intercomparison of genetically related strains. Advantage is taken of tcollective dose commitment will result in more attention being paid to potential releases of radionuclides at relatively short times after disposal

  15. Mechanics at the molecular scale: Insight into the physical mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Neucheva, Olga A.; Temirov, Ruslan; Tautz, Stefan [Institut fuer Bio- und Nanosysteme (IBN-3) and JARA - Fundamental of Future Information Technology, Forschungszentrum Juelich, 52425 Juelich (Germany)

    2010-07-01

    The manipulation of atoms and molecules is one of the problems under investigation in a surface science. The first successful attempt to transfer an atom from a surface with use of a scanning tunneling microscope has been realized by Eigler et al. An interest to understand the underlying physical mechanism from both experimental and theoretical points of view has led to investigations of many systems which can be used as atomic and molecular switches. In our work the behaviour of a single PTCDA molecule on Ag(111) has been investigated with a LT-STM. Two level fluctuations of the conductance of the junction have been observed within a narrow range of the tip heights and bias voltages. The bistability is related to reversible switching of one of the carboxylic oxygen atoms between the surface and the STM-tip. The current passing through the junction induces vibrations of the molecule leading to weakening and breaking of a chemical bond with the surface and establishing a new one with the tip and vice versa. The switching frequency strongly depends on the bias voltages and tip heights, following a non-linear dependence on the current.

  16. Physiology and molecular mechanism of glucocorticoid action

    Directory of Open Access Journals (Sweden)

    Andrzej Nagalski

    2010-03-01

    Full Text Available Endogenous glucocorticoids (GCs are secreted into the systemic circulation from the adrenal cortex. This release is under the control of the circadian clock and can be enhanced at any time in response to a stressor. The levels of circulating GC are regulated systemically by the hypothalamo-pituitary-adrenal axis and locally by access to target cells and pre-receptor metabolism by 11β-hydroxysteroids dehydrogenase enzymes. GCs mediate their genomic action by binding to two different ligand-inducible transcription factors: high-affinity mineralocorticoid receptor (MR and 10-fold lower affinity glucocorticoid receptors (GRs. Responses to GCs vary among individuals, cells, and tissues. The diversity and specificity in the steroid hormone’s response in the cell is controlled at different levels, including receptor translocation, interaction with specific transcription factors and coregulators, and the regulation of receptor protein levels by microRNA. Moreover, multiple GR isoforms are generated from one single GR gene by alternative splicing and alternative translation initiation. These isoforms all have unique tissue distribution patterns and transcriptional regulatory profiles. Furthermore, each is subjected to various post-translational modifications that affect receptor function. Deciphering the molecular mechanisms of GC action is further complicated by the realization that GCs can induce rapid, non-genomic effects within the cytoplasm. A tight regulation of GC secretion and their cell-specific activity is essential for proper organism function. This is particularly seen under conditions of GC deficiency or excess, as in Addison’s disease and Cushing’s syndrome, respectively.

  17. Molecular mechanisms in radiation carcinogenesis: introduction

    International Nuclear Information System (INIS)

    Molecular studies of radiation carcinogenesis are discussed in relation to theories for extrapolating from cellular and animal models to man. Skin cancer is emphasized because of sunlight-induced photochemical damage to DNA. It is emphasized that cellular and animal models are needed as well as molecular theories for quantitative evaluation of hazardous environmental agents. (U.S.)

  18. Open-Source Automated Parahydrogen Hyperpolarizer for Molecular Imaging Using (13)C Metabolic Contrast Agents.

    Science.gov (United States)

    Coffey, Aaron M; Shchepin, Roman V; Truong, Milton L; Wilkens, Ken; Pham, Wellington; Chekmenev, Eduard Y

    2016-08-16

    An open-source hyperpolarizer producing (13)C hyperpolarized contrast agents using parahydrogen induced polarization (PHIP) for biomedical and other applications is presented. This PHIP hyperpolarizer utilizes an Arduino microcontroller in conjunction with a readily modified graphical user interface written in the open-source processing software environment to completely control the PHIP hyperpolarization process including remotely triggering an NMR spectrometer for efficient production of payloads of hyperpolarized contrast agent and in situ quality assurance of the produced hyperpolarization. Key advantages of this hyperpolarizer include: (i) use of open-source software and hardware seamlessly allowing for replication and further improvement as well as readily customizable integration with other NMR spectrometers or MRI scanners (i.e., this is a multiplatform design), (ii) relatively low cost and robustness, and (iii) in situ detection capability and complete automation. The device performance is demonstrated by production of a dose (∼2-3 mL) of hyperpolarized (13)C-succinate with %P13C ∼ 28% and 30 mM concentration and (13)C-phospholactate at %P13C ∼ 15% and 25 mM concentration in aqueous medium. These contrast agents are used for ultrafast molecular imaging and spectroscopy at 4.7 and 0.0475 T. In particular, the conversion of hyperpolarized (13)C-phospholactate to (13)C-lactate in vivo is used here to demonstrate the feasibility of ultrafast multislice (13)C MRI after tail vein injection of hyperpolarized (13)C-phospholactate in mice. PMID:27478927

  19. The cognitive life of mechanical molecular models.

    Science.gov (United States)

    Charbonneau, Mathieu

    2013-12-01

    The use of physical models of molecular structures as research tools has been central to the development of biochemistry and molecular biology. Intriguingly, it has received little attention from scholars of science. In this paper, I argue that these physical models are not mere three-dimensional representations but that they are in fact very special research tools: they are cognitive augmentations. Despite the fact that they are external props, these models serve as cognitive tools that augment and extend the modeler's cognitive capacities and performance in molecular modeling tasks. This cognitive enhancement is obtained because of the way the modeler interacts with these models, the models' materiality contributing to the solving of the molecule's structure. Furthermore, I argue that these material models and their component parts were designed, built and used specifically to serve as cognitive facilitators and cognitive augmentations.

  20. A novel fully automated molecular diagnostic system (AMDS for colorectal cancer mutation detection.

    Directory of Open Access Journals (Sweden)

    Shiro Kitano

    Full Text Available BACKGROUND: KRAS, BRAF and PIK3CA mutations are frequently observed in colorectal cancer (CRC. In particular, KRAS mutations are strong predictors for clinical outcomes of EGFR-targeted treatments such as cetuximab and panitumumab in metastatic colorectal cancer (mCRC. For mutation analysis, the current methods are time-consuming, and not readily available to all oncologists and pathologists. We have developed a novel, simple, sensitive and fully automated molecular diagnostic system (AMDS for point of care testing (POCT. Here we report the results of a comparison study between AMDS and direct sequencing (DS in the detection of KRAS, BRAF and PI3KCA somatic mutations. METHODOLOGY/PRINCIPAL FINDING: DNA was extracted from a slice of either frozen (n = 89 or formalin-fixed and paraffin-embedded (FFPE CRC tissue (n = 70, and then used for mutation analysis by AMDS and DS. All mutations (n = 41 among frozen and 27 among FFPE samples detected by DS were also successfully (100% detected by the AMDS. However, 8 frozen and 6 FFPE samples detected as wild-type in the DS analysis were shown as mutants in the AMDS analysis. By cloning-sequencing assays, these discordant samples were confirmed as true mutants. One sample had simultaneous "hot spot" mutations of KRAS and PIK3CA, and cloning assay comfirmed that E542K and E545K were not on the same allele. Genotyping call rates for DS were 100.0% (89/89 and 74.3% (52/70 in frozen and FFPE samples, respectively, for the first attempt; whereas that of AMDS was 100.0% for both sample sets. For automated DNA extraction and mutation detection by AMDS, frozen tissues (n = 41 were successfully detected all mutations within 70 minutes. CONCLUSIONS/SIGNIFICANCE: AMDS has superior sensitivity and accuracy over DS, and is much easier to execute than conventional labor intensive manual mutation analysis. AMDS has great potential for POCT equipment for mutation analysis.

  1. Quantum mechanics of molecular rate processes

    CERN Document Server

    Levine, Raphael D

    1999-01-01

    This survey of applications of the theory of collisions and rate processes to molecular problems explores collisions of molecules with internal structure, generalized Ehrenfest theorem, theory of reactive collisions, and role of symmetry. It also reviews partitioning technique, equivalent potentials and quasibound states, theory of direct reactions, more. 1969 edition.

  2. Automated thermal treatment of metals with a mechanically fluidized vacuum machine. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, W.E.

    1997-09-05

    The ERIP project {open_quotes}Automated Thermal Treatment of Metals with a Mechanically Fluidized Vacuum Machine{close_quotes} produced more benefits in unintended areas than in the original intent of the program. The first project was directed to heat treating of solid parts using a retort half filled with fine powder. The treatment of metal powders was not originally envisioned at the time of proposal preparation. This second application, where the powder itself is being treated, has turned out to be multi-billion dollar market in which the Mechanical Fluidized Vacuum machine can create revolutionary changes. Consequently most efforts in recent years have been dedicated to further growth of the powder markets. These efforts procured a second ERIP grant titled {open_quotes}Thermal Heat and Diffusion Treatment of Bulk Powders.{close_quotes}

  3. Molecular mechanisms involved in convergent crop domestication.

    Science.gov (United States)

    Lenser, Teresa; Theißen, Günter

    2013-12-01

    Domestication has helped to understand evolution. We argue that, vice versa, novel insights into evolutionary principles could provide deeper insights into domestication. Molecular analyses have demonstrated that convergent phenotypic evolution is often based on molecular changes in orthologous genes or pathways. Recent studies have revealed that during plant domestication the causal mutations for convergent changes in key traits are likely to be located in particular genes. These insights may contribute to defining candidate genes for genetic improvement during the domestication of new plant species. Such efforts may help to increase the range of arable crops available, thus increasing crop biodiversity and food security to help meet the predicted demands of the continually growing global population under rapidly changing environmental conditions.

  4. Cellular and molecular mechanisms underlying muscular dystrophy

    OpenAIRE

    Rahimov, Fedik; Kunkel, Louis M

    2013-01-01

    The muscular dystrophies are a group of heterogeneous genetic diseases characterized by progressive degeneration and weakness of skeletal muscle. Since the discovery of the first muscular dystrophy gene encoding dystrophin, a large number of genes have been identified that are involved in various muscle-wasting and neuromuscular disorders. Human genetic studies complemented by animal model systems have substantially contributed to our understanding of the molecular pathomechanisms underlying ...

  5. Molecular and trophic mechanisms of tumorigenesis.

    Science.gov (United States)

    Levy, Andy

    2008-03-01

    A significant proportion of pituitary macroadenomas, and by definition all microadenomas, regain trophic stability after an initial period of deregulated growth. Classical proto-oncogene activation and tumor suppressor mutation are rarely responsible, and no histologic or molecular markers reliably predict behavior. GNAS1 activation and the mutations associated with multiple endocrine neoplasia type 1 and Carney complex, aryl hydrocarbon receptor interacting protein gene mutations, and a narrowing region of chromosome 11q13 in familial isolated acromegaly together account for such a small proportion of pituitary adenomas that the pituitary adenoma pathogenic epiphany is surely yet to come. PMID:18226729

  6. Molecular and cellular mechanisms of pulmonary fibrosis

    Directory of Open Access Journals (Sweden)

    Todd Nevins W

    2012-07-01

    Full Text Available Abstract Pulmonary fibrosis is a chronic lung disease characterized by excessive accumulation of extracellular matrix (ECM and remodeling of the lung architecture. Idiopathic pulmonary fibrosis is considered the most common and severe form of the disease, with a median survival of approximately three years and no proven effective therapy. Despite the fact that effective treatments are absent and the precise mechanisms that drive fibrosis in most patients remain incompletely understood, an extensive body of scientific literature regarding pulmonary fibrosis has accumulated over the past 35 years. In this review, we discuss three broad areas which have been explored that may be responsible for the combination of altered lung fibroblasts, loss of alveolar epithelial cells, and excessive accumulation of ECM: inflammation and immune mechanisms, oxidative stress and oxidative signaling, and procoagulant mechanisms. We discuss each of these processes separately to facilitate clarity, but certainly significant interplay will occur amongst these pathways in patients with this disease.

  7. Molecular Mechanisms of Action of BPA.

    Science.gov (United States)

    Acconcia, Filippo; Pallottini, Valentina; Marino, Maria

    2015-01-01

    Bisphenol A (BPA) exposure has been associated with serious endocrine-disrupting effects in humans and wildlife. Toxicological and epidemiological studies evidenced that BPA increases body mass index and disrupts normal cardiovascular physiology by interfering with endogenous hormones in rodents, nonhuman primates, and cell culture test systems. The BPA concentration derived from these experiments were used by government regulatory agencies to determine the safe exposure levels of BPA in humans. However, accumulating literature in vivo and in vitro indicate that at concentrations lower than that reported in toxicological studies, BPA could elicit a different endocrine-disrupting capacity. To further complicate this picture, BPA effects rely on several and diverse mechanisms that converge upon endocrine and reproductive systems. If all or just few of these mechanisms concur to the endocrine-disrupting potential of low doses of BPA is at present still unclear. Thus, taking into account that the incidence and/or prevalence of health problems associated with endocrine disruption have increased worldwide, the goal of the present review is to give an overview of the many mechanisms of BPA action in order to decipher whether different mechanisms are at the root of the effect of low dose of BPA on endocrine system. PMID:26740804

  8. Molecular Mechanisms of Action of BPA

    Directory of Open Access Journals (Sweden)

    Filippo Acconcia

    2015-10-01

    Full Text Available Bisphenol A (BPA exposure has been associated with serious endocrine-disrupting effects in humans and wildlife. Toxicological and epidemiological studies evidenced that BPA increases body mass index and disrupts normal cardiovascular physiology by interfering with endogenous hormones in rodents, nonhuman primates, and cell culture test systems. The BPA concentration derived from these experiments were used by government regulatory agencies to determine the safe exposure levels of BPA in humans. However, accumulating literature in vivo and in vitro indicate that at concentrations lower than that reported in toxicological studies, BPA could elicit a different endocrine-disrupting capacity. To further complicate this picture, BPA effects rely on several and diverse mechanisms that converge upon endocrine and reproductive systems. If all or just few of these mechanisms concur to the endocrine-disrupting potential of low doses of BPA is at present still unclear. Thus, taking into account that the incidence and/or prevalence of health problems associated with endocrine disruption have increased worldwide, the goal of the present review is to give an overview of the many mechanisms of BPA action in order to decipher whether different mechanisms are at the root of the effect of low dose of BPA on endocrine system.

  9. Mechanism of Molecular Exchange in Copolymer Micelles

    Science.gov (United States)

    Choi, Soo-Hyung; Lodge, Timothy; Bates, Frank

    2010-03-01

    Compared to thermodynamic structure, much less has been known about the kinetics of block copolymer micelles which should underlay the attainment of thermodynamic equilibrium. In this presentation, molecular exchange between spherical micelles formed by isotopically labeled diblock copolymers was investigated using time-resolved small-angle neutron scattering. Two pairs of structurally matched poly(styrene-b-ethylene-alt-propylene) (PS-PEP) were synthesized and dispersed in isotopic mixture of squalane, highly selective to PEP block. Each pair includes polymers with fully deuterated (dPS-PEP) and a normal (hPS-PEP) PS blocks. Temperature dependence of the micelle exchange rate R(t) is consistent with melt dynamics for the core polymer. Furthermore, R(t) is significantly sensitive to the core block length N due to the thermodynamic penalty associated with ejecting a core block into the solvent. This hypersensitivity, combined with modest polydispersity in N, leads to an approximately logarithmic decay in R(t).

  10. Male sex determination: insights into molecular mechanisms

    Institute of Scientific and Technical Information of China (English)

    Kathryn McClelland; Josephine Bowles; Peter Koopman

    2012-01-01

    Disorders of sex development often arise from anomalies in the molecular or cellular networks that guide the differentiation of the embryonic gonad into either a testis or an ovary,two functionally distinct organs.The activation of the Y-linked gene Sry(sexdetermining region Y) and its downstream target Sox9 (Sry box-containinggene 9) triggers testis differentiation by stimulating the differentiation of Sertoli cells,which then direct testis morphogenesis.Once engaged,a genetic pathway promotes the testis development while actively suppressing genes involved in ovarian development.This review focuses on the events of testis determination and the struggle to maintain male fate in the face of antagonistic pressure from the underlying female programme.

  11. Mechanical characterization of two thermoplastic composites fabricated by automated tow placement

    Science.gov (United States)

    Dickinson, Larry C.; Deaton, Jerry W.

    1993-01-01

    AS4/PEEK towpreg and IM7/Radel 8320 slit tape were used to make flat panels by automated tow placement. The panels were tested in notched and un-notched tension, notched and un-notched compression and compression after impact (CAI) at room temperature and under hot/wet conditions (notched and un-notched compression and CAI only). The properties were compared with AS4/PEEK tape laminate properties found in the literature. The tow placed AS4/PEEK material was stronger in tension but weaker in compression than the AS4/PEEK tape laminates. The tow placed AS4/PEEK was stronger but less stiff than the tow placed IM7/Radel 8320 in all compression tests. The IM7/Radel performed better in all other mechanical tests. The IM7/Radel outperformed the AS4/PEEK in all CAI tests.

  12. Molecular Mechanisms of Lymphocyte-Mediated Cytotoxicity

    Institute of Scientific and Technical Information of China (English)

    Zusen Fan; Qixiang Zhang

    2005-01-01

    Granule-mediated cytotoxicity is the major mechanism for lymphocytes to kill viruses, intracellular bacteria and tumors. The cytotoxic granules move to the immunological synapse by exocytosis after recognition of a killer cell.The contents of the granules are delivered into target cells with the help of perforin by endocytosis. A group of serine protease granzymes cleave their critical substrates to initiate DNA damage and cell death. The most abundant granzymes are granzyme A and B. They induce cell death through alternate and nonoverlapping pathways. The substrates and functions of the majority of the orphan granzymes have not yet been identified. It is possible that the diversity of granzymes provides fail-safe mechanisms for killing viruses and tumor cells.

  13. Xenon preconditioning: molecular mechanisms and biological effects

    Directory of Open Access Journals (Sweden)

    Liu Wenwu

    2013-01-01

    Full Text Available Abstract Xenon is one of noble gases and has been recognized as an anesthetic for more than 50 years. Xenon possesses many of the characteristics of an ideal anesthetic, but it is not widely applied in clinical practice mainly because of its high cost. In recent years, numerous studies have demonstrated that xenon as an anesthetic can exert neuroprotective and cardioprotective effects in different models. Moreover, xenon has been applied in the preconditioning, and the neuroprotective and cardioprotective effects of xenon preconditioning have been investigated in a lot of studies in which some mechanisms related to these protections are proposed. In this review, we summarized these mechanisms and the biological effects of xenon preconditioning.

  14. Vancomycin Molecular Interactions: Antibiotic and Enantioselective Mechanisms

    Science.gov (United States)

    Ward, Timothy J.; Gilmore, Aprile; Ward, Karen; Vowell, Courtney

    Medical studies established that vancomycin and other related macrocyclic antibiotics have an enhanced antimicrobial activity when they are associated as dimers. The carbohydrate units attached to the vancomycin basket have an essential role in the dimerization reaction. Covalently synthesized dimers were found active against vancomycin-resistant bacterial strains. A great similarity between antibiotic potential and enantioselectivity was established. A covalent vancomycin dimer was studied in capillary electrophoresis producing excellent chiral separation of dansyl amino acids. Balhimycin is a macrocyclic glycopeptide structurally similar to vancomycin. The small differences are, however, responsible for drastic differences in enantioselectivity in the same experimental conditions. Contributions from studies examining vancomycin's mechanism for antimicrobial activity have substantially aided our understanding of its mechanism in chiral recognition.

  15. Molecular Mechanisms of Green Tea Polyphenols

    OpenAIRE

    Dou, Q. Ping

    2009-01-01

    Tea, next to water, is the most popular beverage in the world. It has been suggested that tea consumption has the cancer-preventive effects. Epidemiological studies have indicated decreased cancer occurrence in people who regularly drink green tea. Research has also discovered numerous mechanisms of action to explain the biological effects of tea. The most abundant and popular compound studied in tea research is (−)-epigallocatechin-3-gallate or (−)-EGCG, which is a powerful antioxidant and c...

  16. Molecular Mechanisms of Sleep and Mood

    OpenAIRE

    Lagus, Markus

    2013-01-01

    BACKGROUND Sleep disturbances and mood alterations are highly interrelated. The majority of patients suffering from depression report a reduced sleep quality. Inversely, people with sleep complaints are at elevated risk to develop depression. The complex regulation of these phenomena involves several brain areas and mechanisms. The susceptibility to change in this system is influenced by several factors, such as age and stressful lifestyle that are considered in this study. HYPOTHESIS The hyp...

  17. Molecular mechanisms of bone formation in spondyloarthritis.

    Science.gov (United States)

    González-Chávez, Susana Aideé; Quiñonez-Flores, Celia María; Pacheco-Tena, César

    2016-07-01

    Spondyloarthritis comprise a group of inflammatory rheumatic diseases characterized by its association to HLA-B27 and the presence of arthritis and enthesitis. The pathogenesis involves both an inflammatory process and new bone formation, which eventually lead to ankylosis of the spine. To date, the intrinsic mechanisms of the pathogenic process have not been fully elucidated, and our progress is remarkable in the identification of therapeutic targets to achieve the control of the inflammatory process, yet our ability to inhibit the excessive bone formation is still insufficient. The study of new bone formation in spondyloarthritis has been mostly conducted in animal models of the disease and only few experiments have been done using human biopsies. The deregulation and overexpression of molecules involved in the osteogenesis process have been observed in bone cells, mesenchymal cells, and fibroblasts. The signaling associated to the excessive bone formation is congruent with those involved in the physiological processes of bone remodeling. Bone morphogenetic proteins and Wnt pathways have been found deregulated in this disease; however, the cause for uncontrolled stimulation remains unknown. Mechanical stress appears to play an important role in the pathological osteogenesis process; nevertheless, the association of other important factors, such as the presence of HLA-B27 and environmental factors, remains uncertain. The present review summarizes the experimental findings that describe the signaling pathways involved in the new bone formation process in spondyloarthritis in animal models and in human biopsies. The role of mechanical stress as the trigger of these pathways is also reviewed. PMID:26838262

  18. Molecular mechanisms for tumour resistance to chemotherapy.

    Science.gov (United States)

    Pan, Shu-Ting; Li, Zhi-Ling; He, Zhi-Xu; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2016-08-01

    Chemotherapy is one of the prevailing methods used to treat malignant tumours, but the outcome and prognosis of tumour patients are not optimistic. Cancer cells gradually generate resistance to almost all chemotherapeutic drugs via a variety of distinct mechanisms and pathways. Chemotherapeutic resistance, either intrinsic or acquired, is caused and sustained by reduced drug accumulation and increased drug export, alterations in drug targets and signalling transduction molecules, increased repair of drug-induced DNA damage, and evasion of apoptosis. In order to better understand the mechanisms of chemoresistance, this review highlights our current knowledge of the role of altered drug metabolism and transport and deregulation of apoptosis and autophagy in the development of tumour chemoresistance. Reduced intracellular activation of prodrugs (e.g. thiotepa and tegafur) or enhanced drug inactivation by Phase I and II enzymes contributes to the development of chemoresistance. Both primary and acquired resistance can be caused by alterations in the transport of anticancer drugs which is mediated by a variety of drug transporters such as P-glycoprotein (P-gp), multidrug resistance associated proteins, and breast cancer resistance protein. Presently there is a line of evidence indicating that deregulation of programmed cell death including apoptosis and autophagy is also an important mechanism for tumour resistance to anticancer drugs. Reversal of chemoresistance is likely via pharmacological and biological approaches. Further studies are warranted to grasp the full picture of how each type of cancer cells develop resistance to anticancer drugs and to identify novel strategies to overcome it.

  19. Molecular mechanisms for tumour resistance to chemotherapy.

    Science.gov (United States)

    Pan, Shu-Ting; Li, Zhi-Ling; He, Zhi-Xu; Qiu, Jia-Xuan; Zhou, Shu-Feng

    2016-08-01

    Chemotherapy is one of the prevailing methods used to treat malignant tumours, but the outcome and prognosis of tumour patients are not optimistic. Cancer cells gradually generate resistance to almost all chemotherapeutic drugs via a variety of distinct mechanisms and pathways. Chemotherapeutic resistance, either intrinsic or acquired, is caused and sustained by reduced drug accumulation and increased drug export, alterations in drug targets and signalling transduction molecules, increased repair of drug-induced DNA damage, and evasion of apoptosis. In order to better understand the mechanisms of chemoresistance, this review highlights our current knowledge of the role of altered drug metabolism and transport and deregulation of apoptosis and autophagy in the development of tumour chemoresistance. Reduced intracellular activation of prodrugs (e.g. thiotepa and tegafur) or enhanced drug inactivation by Phase I and II enzymes contributes to the development of chemoresistance. Both primary and acquired resistance can be caused by alterations in the transport of anticancer drugs which is mediated by a variety of drug transporters such as P-glycoprotein (P-gp), multidrug resistance associated proteins, and breast cancer resistance protein. Presently there is a line of evidence indicating that deregulation of programmed cell death including apoptosis and autophagy is also an important mechanism for tumour resistance to anticancer drugs. Reversal of chemoresistance is likely via pharmacological and biological approaches. Further studies are warranted to grasp the full picture of how each type of cancer cells develop resistance to anticancer drugs and to identify novel strategies to overcome it. PMID:27097837

  20. Cellular and molecular mechanisms of muscle atrophy

    Directory of Open Access Journals (Sweden)

    Paolo Bonaldo

    2013-01-01

    Full Text Available Skeletal muscle is a plastic organ that is maintained by multiple pathways regulating cell and protein turnover. During muscle atrophy, proteolytic systems are activated, and contractile proteins and organelles are removed, resulting in the shrinkage of muscle fibers. Excessive loss of muscle mass is associated with poor prognosis in several diseases, including myopathies and muscular dystrophies, as well as in systemic disorders such as cancer, diabetes, sepsis and heart failure. Muscle loss also occurs during aging. In this paper, we review the key mechanisms that regulate the turnover of contractile proteins and organelles in muscle tissue, and discuss how impairments in these mechanisms can contribute to muscle atrophy. We also discuss how protein synthesis and degradation are coordinately regulated by signaling pathways that are influenced by mechanical stress, physical activity, and the availability of nutrients and growth factors. Understanding how these pathways regulate muscle mass will provide new therapeutic targets for the prevention and treatment of muscle atrophy in metabolic and neuromuscular diseases.

  1. Membrane curvature in cell biology: An integration of molecular mechanisms.

    Science.gov (United States)

    Jarsch, Iris K; Daste, Frederic; Gallop, Jennifer L

    2016-08-15

    Curving biological membranes establishes the complex architecture of the cell and mediates membrane traffic to control flux through subcellular compartments. Common molecular mechanisms for bending membranes are evident in different cell biological contexts across eukaryotic phyla. These mechanisms can be intrinsic to the membrane bilayer (either the lipid or protein components) or can be brought about by extrinsic factors, including the cytoskeleton. Here, we review examples of membrane curvature generation in animals, fungi, and plants. We showcase the molecular mechanisms involved and how they collaborate and go on to highlight contexts of curvature that are exciting areas of future research. Lessons from how membranes are bent in yeast and mammals give hints as to the molecular mechanisms we expect to see used by plants and protists.

  2. Molecular Mechanisms of Circadian Regulation During Spaceflight

    Science.gov (United States)

    Zanello, S. B.; Boyle, R.

    2012-01-01

    The physiology of both vertebrates and invertebrates follows internal rhythms coordinated in phase with the 24-hour daily light cycle. This circadian clock is governed by a central pacemaker, the suprachiasmatic nucleus (SCN) in the brain. However, peripheral circadian clocks or oscillators have been identified in most tissues. How the central and peripheral oscillators are synchronized is still being elucidated. Light is the main environmental cue that entrains the circadian clock. Under the absence of a light stimulus, the clock continues its oscillation in a free-running condition. In general, three functional compartments of the circadian clock are defined. The vertebrate retina contains endogenous clocks that control many aspects of retinal physiology, including retinal sensitivity to light, neurohormone synthesis (melatonin and dopamine), rod disk shedding, signalling pathways and gene expression. Neurons with putative local circadian rhythm generation are found among all the major neuron populations in the mammalian retina. In the mouse, clock genes and function are more localized to the inner retinal and ganglion cell layers. The photoreceptor, however, secrete melatonin which may still serve a an important circadian signal. The reception and transmission of the non-visual photic stimulus resides in a small subpopulation (1-3%) or retinal ganglion cells (RGC) that express the pigment melanopsin (Opn4) and are called intrisically photoreceptive RGC (ipRGC). Melanopsin peak absorption is at 420 nm and all the axons of the ipRGC reach the SCN. A common countermeasure for circadian re-entrainment utilizes blue-green light to entrain the circadian clock and mitigate the risk of fatigue and health and performance decrement due to circadian rhythm disruption. However, an effective countermeasure targeting the photoreceptor system requires that the basic circadian molecular machinery remains intact during spaceflight. We hypothesize that spaceflight may affect ip

  3. Photodynamic therapy: Biophysical mechanisms and molecular responses

    Science.gov (United States)

    Mitra, Soumya

    In photodynamic therapy (PDT), photochemical reactions induced by optical activation of sensitizer molecules cause destruction of the target tissue. In this thesis we present results of several related studies, which investigated the influence of photophysical properties and photobleaching mechanisms of sensitizers and oxygen-dependent tissue optical properties on PDT treatment efficacy. The bleaching mechanism of the sensitizer meso-tetra hydroxyphenyl chlorin (mTHPC) is examined indirectly using measurements of photochemical oxygen consumption during PDT irradiation of multicell tumor spheroids. Analysis of the results with a theoretical model of oxygen diffusion that incorporates the effects of sensitizer photobleaching shows that mTHPC is degraded via a singlet-oxygen (1O2)-mediated bleaching process. The analysis allows us to extract photophysical parameters of mTHPC which are used to account for its enhanced clinical photodynamic potency in comparison to that of Photofrin. Evaluation of the spatially-resolved fluorescence in confocal optical sections of intact spheroids during PDT irradiation allows for the direct experimental verification of mTHPC's 1O2-mediated bleaching mechanism. The technique is also used to investigate the complex bleaching kinetics of Photofrin. The results allow us to successfully reconcile apparently contradictory experimental observations and to confirm the predictions of a new theoretical model in which both 1O2 and excited triplet sensitizer molecules are allowed to contribute to photobleaching. Based on studies performed in tissue-simulating erythrocyte phantoms and in a murine tumor model in vivo, we present clinically relevant results which indicate that a shift toward increased hemoglobin-oxygen saturation due to improved tissue oxygenation reduces PDT treatment beam attenuation and may allow for more effective treatment of deeper lesions. Finally, we investigate the induction of the stress protein, heat shock protein 70 (HSP

  4. Research on the molecular scale material removal mechanism in chemical mechanical polishing

    Institute of Scientific and Technical Information of China (English)

    WANG YongGuang; ZHAO YongWu

    2008-01-01

    This paper investigates a novel molecular scale material removal mechanism in chemical mechanical polishing (CMP) by incorporating the order-of-magnitude calculations,particle adhesion force,defect of wafer,thickness of newly formed oxidizedlayer,and large deformation of pad/particle not discussed by previous analysis.The theoretical analysis and experimental data show that the indentation depth,scratching depth and polishing surface roughness are on the order of molecular scale or less.There.fore,this novel mechanism has gained the support from wide order-of- magnitude calculations and experimental data.In addition,with the decrease in the particle size,the molecular scale removal mechanism is plausibly one of the most promising removal mechanisms to clarify the CMP polishing process.The results are useful to substantiating the molecular-scale mechanism of the CMP material removal in addition to its underlying theoretical foundation.

  5. Molecular imaging in neuroendocrine tumors : Molecular uptake mechanisms and clinical results

    NARCIS (Netherlands)

    Koopmans, Klaas P.; Neels, Oliver N.; Kema, Ido P.; Elsinga, Philip H.; Links, Thera P.; de Vries, Elisabeth G. E.; Jager, Pieter L.

    2009-01-01

    Neuroendocrine tumors can originate almost everywhere in the body and consist of a great variety of subtypes. This paper focuses on molecular imaging methods using nuclear medicine techniques in neuroendocrine tumors, coupling molecular uptake mechanisms of radiotracers with clinical results. A non-

  6. Molecular mechanisms of LRRK2 regulation

    Science.gov (United States)

    Webber, Philip Jeffrey

    Non-synonymous mutations in LRRK2 are the most common known cause of familial and sporadic Parkinson's disease (PD). The dominant inheritance of these mutations in familial PD suggests a gain-of-function mechanism. Increased kinase activity observed in the most common PD associated LRRK2 mutation G2019S suggests that kinase activity is central to disease. However, not all mutations associated with disease are reported to alter kinase activity and controversy exists in the literature about the effects of mutations appearing in the GTPase domain on kinase activity. The studies conducted as a part of this work aim to characterize the mechanisms that regulate LRRK2 kinase activity and the effects of mutations on enzymatic activity of LRRK2 protein. LRRK2 is a large protein with multiple predicted functional domains including two enzymatic domains in the same protein, the small ras-like GTPase domain and a serine-threonine protein kinase domain. Previous studies indicate that LRRK2 kinase is dependent on a functional GTPase domain and binding to GTP is required for kinase activity. Recent work detailed in this dissertation indicates a complex and reciprocal relationship between kinase and GTPase domains. LRRK2 kinase activity is dependent on adapting a homo-dimer that is augmented by PD mutations that increase LRRK2 kinase activity. Activated LRRK2 autophosphorylates the GTPase and c-terminus of Ras (COR) domains robustly. Phosphorylation of these domains is required for normal activity, as preventing autophosphorylation of these sites drastically lowers kinase activity and GTP binding while phosphorylation maintains baseline activity while still reducing GTP binding. Furthermore, we have developed antibodies specific to autophosphorylation residues that track with LRRK2 kinase activity in vitro. While no measurable activity was detected from treated LRRK2 in vivo, LRRK2 protein purified from brain tissue treated with inflammatory stimuli such as LPS, which increases

  7. Molecular mechanisms of alcohol associated pancreatitis

    Institute of Scientific and Technical Information of China (English)

    Dahn; L; Clemens; Mark; A; Wells; Katrina; J; Schneider; Shailender; Singh

    2014-01-01

    Alcohol abuse is commonly associated with the development of both acute and chronic pancreatitis. Despite this close association, the fact that only a small percentage of human beings who abuse alcohol develop pancreatitis indicates that alcohol abuse alone is not sufficient to initiate clinical pancreatitis. This contention is further supported by the fact that administration of ethanol to experimental animals does not cause pancreatitis. Because of these findings, it is widely believed that ethanol sensitizes the pancreas to injury and additional factors trigger the development of overt pancreatitis. How ethanol sensitizes the pancreas to pancreatitis is not entirely known. Numerous studies have demonstrated that ethanol and its metabolites have a number of deleterious effects on acinar cells. Important acinar cells properties that are affected by ethanol include: calcium signaling, secretion of zymogens, autophagy, cellular regeneration, the unfolded protein response, and mitochondrial membrane integrity. In addition to the actions of ethanol on acinar cells, it is apparent that ethanol also affects pancreatic stellatecells. Pancreatic stellate cells have a critical role in normal tissue repair and the pathologic fibrotic response. Given that ethanol and its metabolites affect so many pancreatic functions, and that all of these effects occur simultaneously, it is likely that none of these effects is "THE" effect. Instead, it is most likely that the cumulative effect of ethanol on the pancreas predisposes the organ to pancreatitis. The focus of this article is to highlight some of the important mechanisms by which ethanol alters pancreatic functions and may predispose the pancreas to disease.

  8. Substrate binding and catalytic mechanism in phospholipase C from Bacillus cereus. a molecular mechanics and molecular dynamics study

    DEFF Research Database (Denmark)

    da Graça Thrige, D; Buur, J R; Jørgensen, Flemming Steen

    1997-01-01

    For the first time a consistent catalytic mechanism of phospholipase C from Bacillus cereus is reported based on molecular mechanics calculations. We have identified the position of the nucleophilic water molecule, which is directly involved in the hydrolysis of the natural substrate phosphatidyl...

  9. Lactobacilli as multifaceted probiotics with poorly disclosed molecular mechanisms

    OpenAIRE

    Turpin, Williams; Humblot, Christèle; M. Thomas; Guyot, Jean-Pierre

    2010-01-01

    Lactic acid bacteria and more particularly lactobacilli have been used for the production of fermented foods for centuries. Several lactobacilli have been recognized as probiotics due to their wide range of health-promoting effects in humans. However, little is known about the molecular mechanisms underpinning their probiotic functions. Here we reviewed the main beneficial effects of lactobacilli and discussed, when the information is available, the molecular machinery involved in their probi...

  10. Molecular Theory of the Living Cell Concepts, Molecular Mechanisms, and Biomedical Applications

    CERN Document Server

    Ji, Sungchul

    2012-01-01

    This book presents a comprehensive molecular theory of the living cell based on over thirty concepts, principles and laws imported from thermodynamics, statistical mechanics, quantum mechanics, chemical kinetics, informatics, computer science, linguistics, semiotics, and philosophy. The author formulates physically, chemically and enzymologically realistic molecular mechanisms to account for the basic living processes such as ligand-receptor interactions, protein folding, single-molecule enzymic catalysis, force-generating mechanisms in molecular motors, signal transduction, regulation of the genome-wide RNA metabolism, morphogenesis, the micro-macro coupling in coordination dynamics, the origin of life, and the mechanisms of biological evolution itself. Possible solutions to basic and practical problems facing contemporary biology and biomedical sciences have been suggested, including pharmacotheragnostics and personalized medicine.

  11. Mini-review: Molecular mechanisms of antifouling compounds

    KAUST Repository

    Qian, Pei-Yuan

    2013-04-01

    Various antifouling (AF) coatings have been developed to protect submerged surfaces by deterring the settlement of the colonizing stages of fouling organisms. A review of the literature shows that effective AF compounds with specific targets are ones often considered non-toxic. Such compounds act variously on ion channels, quorum sensing systems, neurotransmitters, production/release of adhesive, and specific enzymes that regulate energy production or primary metabolism. In contrast, AF compounds with general targets may or may not act through toxic mechanisms. These compounds affect a variety of biological activities including algal photosynthesis, energy production, stress responses, genotoxic damage, immunosuppressed protein expression, oxidation, neurotransmission, surface chemistry, the formation of biofilms, and adhesive production/release. Among all the targets, adhesive production/release is the most common, possibly due to a more extensive research effort in this area. Overall, the specific molecular targets and the molecular mechanisms of most AF compounds have not been identified. Thus, the information available is insufficient to draw firm conclusions about the types of molecular targets to be used as sensitive biomarkers for future design and screening of compounds with AF potential. In this review, the relevant advantages and disadvantages of the molecular tools available for studying the molecular targets of AF compounds are highlighted briefly and the molecular mechanisms of the AF compounds, which are largely a source of speculation in the literature, are discussed. © 2013 Copyright Taylor and Francis Group, LLC.

  12. Reaction Mechanism of Mycobacterium Tuberculosis Glutamine Synthetase Using Quantum Mechanics/Molecular Mechanics Calculations.

    Science.gov (United States)

    Moreira, Cátia; Ramos, Maria J; Fernandes, Pedro Alexandrino

    2016-06-27

    This paper is devoted to the understanding of the reaction mechanism of mycobacterium tuberculosis glutamine synthetase (mtGS) with atomic detail, using computational quantum mechanics/molecular mechanics (QM/MM) methods at the ONIOM M06-D3/6-311++G(2d,2p):ff99SB//B3LYP/6-31G(d):ff99SB level of theory. The complete reaction undergoes a three-step mechanism: the spontaneous transfer of phosphate from ATP to glutamate upon ammonium binding (ammonium quickly loses a proton to Asp54), the attack of ammonia on phosphorylated glutamate (yielding protonated glutamine), and the deprotonation of glutamine by the leaving phosphate. This exothermic reaction has an activation free energy of 21.5 kcal mol(-1) , which is consistent with that described for Escherichia coli glutamine synthetase (15-17 kcal mol(-1) ). The participating active site residues have been identified and their role and energy contributions clarified. This study provides an insightful atomic description of the biosynthetic reaction that takes place in this enzyme, opening doors for more accurate studies for developing new anti-tuberculosis therapies.

  13. Reaction Mechanism of Mycobacterium Tuberculosis Glutamine Synthetase Using Quantum Mechanics/Molecular Mechanics Calculations.

    Science.gov (United States)

    Moreira, Cátia; Ramos, Maria J; Fernandes, Pedro Alexandrino

    2016-06-27

    This paper is devoted to the understanding of the reaction mechanism of mycobacterium tuberculosis glutamine synthetase (mtGS) with atomic detail, using computational quantum mechanics/molecular mechanics (QM/MM) methods at the ONIOM M06-D3/6-311++G(2d,2p):ff99SB//B3LYP/6-31G(d):ff99SB level of theory. The complete reaction undergoes a three-step mechanism: the spontaneous transfer of phosphate from ATP to glutamate upon ammonium binding (ammonium quickly loses a proton to Asp54), the attack of ammonia on phosphorylated glutamate (yielding protonated glutamine), and the deprotonation of glutamine by the leaving phosphate. This exothermic reaction has an activation free energy of 21.5 kcal mol(-1) , which is consistent with that described for Escherichia coli glutamine synthetase (15-17 kcal mol(-1) ). The participating active site residues have been identified and their role and energy contributions clarified. This study provides an insightful atomic description of the biosynthetic reaction that takes place in this enzyme, opening doors for more accurate studies for developing new anti-tuberculosis therapies. PMID:27225077

  14. RBioplot: an easy-to-use R pipeline for automated statistical analysis and data visualization in molecular biology and biochemistry

    Science.gov (United States)

    Zhang, Jing

    2016-01-01

    Background Statistical analysis and data visualization are two crucial aspects in molecular biology and biology. For analyses that compare one dependent variable between standard (e.g., control) and one or multiple independent variables, a comprehensive yet highly streamlined solution is valuable. The computer programming language R is a popular platform for researchers to develop tools that are tailored specifically for their research needs. Here we present an R package RBioplot that takes raw input data for automated statistical analysis and plotting, highly compatible with various molecular biology and biochemistry lab techniques, such as, but not limited to, western blotting, PCR, and enzyme activity assays. Method The package is built based on workflows operating on a simple raw data layout, with minimum user input or data manipulation required. The package is distributed through GitHub, which can be easily installed through one single-line R command. A detailed installation guide is available at http://kenstoreylab.com/?page_id=2448. Users can also download demo datasets from the same website. Results and Discussion By integrating selected functions from existing statistical and data visualization packages with extensive customization, RBioplot features both statistical analysis and data visualization functionalities. Key properties of RBioplot include: -Fully automated and comprehensive statistical analysis, including normality test, equal variance test, Student’s t-test and ANOVA (with post-hoc tests);-Fully automated histogram, heatmap and joint-point curve plotting modules;-Detailed output files for statistical analysis, data manipulation and high quality graphs;-Axis range finding and user customizable tick settings;-High user-customizability. PMID:27703842

  15. Resveratrol and calcium signaling: molecular mechanisms and clinical relevance.

    Science.gov (United States)

    McCalley, Audrey E; Kaja, Simon; Payne, Andrew J; Koulen, Peter

    2014-06-05

    Resveratrol is a naturally occurring compound contributing to cellular defense mechanisms in plants. Its use as a nutritional component and/or supplement in a number of diseases, disorders, and syndromes such as chronic diseases of the central nervous system, cancer, inflammatory diseases, diabetes, and cardiovascular diseases has prompted great interest in the underlying molecular mechanisms of action. The present review focuses on resveratrol, specifically its isomer trans-resveratrol, and its effects on intracellular calcium signaling mechanisms. As resveratrol's mechanisms of action are likely pleiotropic, its effects and interactions with key signaling proteins controlling cellular calcium homeostasis are reviewed and discussed. The clinical relevance of resveratrol's actions on excitable cells, transformed or cancer cells, immune cells and retinal pigment epithelial cells are contrasted with a review of the molecular mechanisms affecting calcium signaling proteins on the plasma membrane, cytoplasm, endoplasmic reticulum, and mitochondria. The present review emphasizes the correlation between molecular mechanisms of action that have recently been identified for resveratrol and their clinical implications.

  16. Resveratrol and Calcium Signaling: Molecular Mechanisms and Clinical Relevance

    Directory of Open Access Journals (Sweden)

    Audrey E. McCalley

    2014-06-01

    Full Text Available Resveratrol is a naturally occurring compound contributing to cellular defense mechanisms in plants. Its use as a nutritional component and/or supplement in a number of diseases, disorders, and syndromes such as chronic diseases of the central nervous system, cancer, inflammatory diseases, diabetes, and cardiovascular diseases has prompted great interest in the underlying molecular mechanisms of action. The present review focuses on resveratrol, specifically its isomer trans-resveratrol, and its effects on intracellular calcium signaling mechanisms. As resveratrol’s mechanisms of action are likely pleiotropic, its effects and interactions with key signaling proteins controlling cellular calcium homeostasis are reviewed and discussed. The clinical relevance of resveratrol’s actions on excitable cells, transformed or cancer cells, immune cells and retinal pigment epithelial cells are contrasted with a review of the molecular mechanisms affecting calcium signaling proteins on the plasma membrane, cytoplasm, endoplasmic reticulum, and mitochondria. The present review emphasizes the correlation between molecular mechanisms of action that have recently been identified for resveratrol and their clinical implications.

  17. Automation and mechanization of in-service inspection of selected equipment in FRG's nuclear power plants

    International Nuclear Information System (INIS)

    The procedures and equipment are described for the automation and mechanization of in-service inspection in nuclear power plants in the FRG, used by the KWU company. Checks of the pressure vessel are done by visual means using a colour tv camera, the method of eddy currents and the ultrasonic method. An analysis is made of the time schedule of ultrasonic inspections, and the central column manipulator is described which allows to check all internal regions of the pressure vessel. Attention is also devoted to other devices, e.g., those for prestressing shanks, cleaning shanks, cleaning thread apertures, etc. A combined probe using the ultrasonic method and the eddy current method serves the inspection of heat exchange tubes in the steam generator. For inspecting the primary circuit the KWU company uses devices for checking and working the inner surface of pipes. Briefly described are examples of using KWU equipment in nuclear power plants in CMEA countries. (Z.M.). 11 figs., 6 refs

  18. Wilson's disease: a comprehensive review of the molecular mechanisms.

    Science.gov (United States)

    Wu, Fei; Wang, Jing; Pu, Chunwen; Qiao, Liang; Jiang, Chunmeng

    2015-01-01

    Wilson's disease (WD), also known as hepatolenticular degeneration, is an autosomal recessive inherited disorder resulting from abnormal copper metabolism. Reduced copper excretion causes an excessive deposition of the copper in many organs such as the liver, central nervous system (CNS), cornea, kidney, joints, and cardiac muscle where the physiological functions of the affected organs are impaired. The underlying molecular mechanisms for WD have been extensively studied. It is now believed that a defect in P-type adenosine triphosphatase (ATP7B), the gene encoding the copper transporting P-type ATPase, is responsible for hepatic copper accumulation. Deposited copper in the liver produces toxic effects via modulating several molecular pathways. WD can be a lethal disease if left untreated. A better understanding of the molecular mechanisms causing the aberrant copper deposition and organ damage is the key to developing effective management approaches.

  19. Development of automated high throughput single molecular microfluidic detection platform for signal transduction analysis

    Science.gov (United States)

    Huang, Po-Jung; Baghbani Kordmahale, Sina; Chou, Chao-Kai; Yamaguchi, Hirohito; Hung, Mien-Chie; Kameoka, Jun

    2016-03-01

    Signal transductions including multiple protein post-translational modifications (PTM), protein-protein interactions (PPI), and protein-nucleic acid interaction (PNI) play critical roles for cell proliferation and differentiation that are directly related to the cancer biology. Traditional methods, like mass spectrometry, immunoprecipitation, fluorescence resonance energy transfer, and fluorescence correlation spectroscopy require a large amount of sample and long processing time. "microchannel for multiple-parameter analysis of proteins in single-complex (mMAPS)"we proposed can reduce the process time and sample volume because this system is composed by microfluidic channels, fluorescence microscopy, and computerized data analysis. In this paper, we will present an automated mMAPS including integrated microfluidic device, automated stage and electrical relay for high-throughput clinical screening. Based on this result, we estimated that this automated detection system will be able to screen approximately 150 patient samples in a 24-hour period, providing a practical application to analyze tissue samples in a clinical setting.

  20. Molecular Detection of Bladder Cancer by Fluorescence Microsatellite Analysis and an Automated Genetic Analyzing System

    Directory of Open Access Journals (Sweden)

    Sarel Halachmi

    2007-01-01

    Full Text Available To investigate the ability of an automated fluorescent analyzing system to detect microsatellite alterations, in patients with bladder cancer. We investigated 11 with pathology proven bladder Transitional Cell Carcinoma (TCC for microsatellite alterations in blood, urine, and tumor biopsies. DNA was prepared by standard methods from blood, urine and resected tumor specimens, and was used for microsatellite analysis. After the primers were fluorescent labeled, amplification of the DNA was performed with PCR. The PCR products were placed into the automated genetic analyser (ABI Prism 310, Perkin Elmer, USA and were subjected to fluorescent scanning with argon ion laser beams. The fluorescent signal intensity measured by the genetic analyzer measured the product size in terms of base pairs. We found loss of heterozygocity (LOH or microsatellite alterations (a loss or gain of nucleotides, which alter the original normal locus size in all the patients by using fluorescent microsatellite analysis and an automated analyzing system. In each case the genetic changes found in urine samples were identical to those found in the resected tumor sample. The studies demonstrated the ability to detect bladder tumor non-invasively by fluorescent microsatellite analysis of urine samples. Our study supports the worldwide trend for the search of non-invasive methods to detect bladder cancer. We have overcome major obstacles that prevented the clinical use of an experimental system. With our new tested system microsatellite analysis can be done cheaper, faster, easier and with higher scientific accuracy.

  1. Investigation of deformation mechanisms of staggered nanocomposites using molecular dynamics

    Science.gov (United States)

    Mathiazhagan, S.; Anup, S.

    2016-08-01

    Biological materials with nanostructure of regularly or stair-wise staggered arrangements of hard platelets reinforced in a soft protein matrix have superior mechanical properties. Applications of these nanostructures to ceramic matrix composites could enhance their toughness. Using molecular dynamics simulations, mechanical behaviour of the bio-inspired nanocomposites is studied. Regularly staggered model shows better flow behaviour compared to stair-wise staggered model due to the symmetrical crack propagation along the interface. Though higher stiffness and strength are obtained for stair-wise staggered models, rapid crack propagation reduces the toughness. Arresting this crack propagation could lead to superior mechanical properties in stair-wise staggered models.

  2. A Modiifed Molecular Structure Mechanics Method for Analysis of Graphene

    Institute of Scientific and Technical Information of China (English)

    HUA Jun; LI Dongbo; ZHAO Dong; LIANG Shengwei; LIU Qinlong; JIA Ruiyan

    2015-01-01

    Based on molecular mechanics and the deformation characteristics of the atomic lattice structure of graphene, a modiifed molecular structure mechanics method was developed to improve the original one, that is, the semi-rigid connections were used to model the bond angle variations between the C-C bonds in graphene. The simulated results show that the equivalent space frame model with semi-rigid connections for graphene proposed in this article is a simple, efifcient, and accurate model to evaluate the equivalent elastic properties of graphene. Though the present computational model of the semi-rigid connected space frame is only applied to characterize the mechanical behaviors of the space lattices of graphene, it has more potential applications in the static and dynamic analyses of graphene and other nanomaterials.

  3. Normal Mode Analysis with Molecular Geometry Restraints: Bridging Molecular Mechanics and Elastic Models

    OpenAIRE

    Lu, Mingyang; Ma, Jianpeng

    2011-01-01

    A new method for normal mode analysis is reported for all-atom structures using molecular geometry restraints (MGR). Similar to common molecular mechanics force fields, the MGR potential contains short- and long-range terms. The short-range terms are defined by molecular geometry, i.e. bond lengths, angles and dihedrals; the long-range term is similar to that in elastic network models. Each interaction term uses a single force constant parameter, and is determined by fitting against a set of ...

  4. Molecular dynamics simulations of diffusion mechanisms in NiAl

    Energy Technology Data Exchange (ETDEWEB)

    Soule De Bas, B.; Farkas, D

    2003-03-14

    Molecular dynamics simulations of the diffusion process in ordered B2 NiAl at high temperature were performed using an embedded atom interatomic potential. Diffusion occurs through a variety of cyclic mechanisms that accomplish the motion of the vacancy through nearest neighbor jumps restoring order to the alloy at the end of the cycle. The traditionally postulated six-jump cycle is only one of the various cycles observed and some of these are quite complex. A detailed sequential analysis of the observed six-jump cycles was performed and the results are analyzed in terms of the activation energies for individual jumps calculated using molecular statics simulations.

  5. Genetic classification and molecular mechanisms of primary dystonia

    Institute of Scientific and Technical Information of China (English)

    Xueping Chen; Huifang Shang; Zuming Luo

    2008-01-01

    BACKGROUND: Primary dystonia is a heterogeneous disease, with a complex genetic basis. In previous studies, primary dystonia was classified according to age of onset, involved regions, and other clinical characteristics. With the development of molecular genetics, new virulence genes and sites have been discovered. Therefore, there is a gradual understanding of the various forms of dystonia, based on new viewpoints. There are 15 subtypes of dystonia, based on the molecular level, i.e., DYT1 to DYT15. OBJECTIVE: To analyze the genetic development of dystonia in detail, and to further investigate molecular mechanisms of dystonia. RETRIEVAL STRATEGY: A computer-based online search was conducted in PubMed for English language publications containing the keywords "dystonia and genetic" from January 1980 to March 2007. There were 105 articles in total. Inclusion criteria: ① the contents of the articles should closely address genetic classification and molecular mechanisms of primary dystonia; ② the articles published in recent years or in high-impact journals took preference. Exclusion criteria: duplicated articles. LITERATURE EVALUATION: The selected articles were on genetic classification and molecular genetics mechanism of primary dystonia. Of those, 27 were basic or clinical studies. DATA SYNTHESIS: ① Dystonia is a heterogeneous disease, with a complex genetic basis. According to the classification of the Human Genome Organization, there are 15 dystonia subtypes, based on genetics, i.e., DYT1-DYT15,including primary dystonia, dystonia plus syndrome, degeneration plus dystonia, and paroxysmal dyskinesia plus dystonia. ② To date, the chromosomes of 13 subtypes have been localized; however, DYT2 and DYT4 remain unclear. Six subtypes have been located within virulence genes. Specifically, torsinA gene expression results in the DYT1 genotype; autosomal dominant GTP cyclohydrolase I gene expression and recessive tyrosine hydroxylase expression result in the DYT5

  6. Dynamic Coordinated Shifting Control of Automated Mechanical Transmissions without a Clutch in a Plug-In Hybrid Electric Vehicle

    OpenAIRE

    Xinlei Liu; Zhentong Liu; Liming Zhu; Hongwen He

    2012-01-01

    On the basis of the shifting process of automated mechanical transmissions (AMTs) for traditional hybrid electric vehicles (HEVs), and by combining the features of electric machines with fast response speed, the dynamic model of the hybrid electric AMT vehicle powertrain is built up, the dynamic characteristics of each phase of shifting process are analyzed, and a control strategy in which torque and speed of the engine and electric ma...

  7. Molecular Mechanisms Behind the Chemopreventive Effects of Anthocyanidins

    Directory of Open Access Journals (Sweden)

    De-Xing Hou

    2004-01-01

    Full Text Available Anthocyanins are polyphenolic ring-based flavonoids, and are widespread in fruits and vegetables of red-blue color. Epidemiological investigations and animal experiments have indicated that anthocyanins may contribute to cancer chemoprevention. The studies on the mechanism have been done recently at molecular level. This review summarizes current molecular bases for anthocyanidins on several key steps involved in cancer chemoprevention: (i inhibition of anthocyanidins in cell transformation through targeting mitogen-activated protein kinase (MAPK pathway and activator protein 1 (AP-1 factor; (ii suppression of anthocyanidins in inflammation and carcinogenesis through targeting nuclear factor kappa B (NF-κB pathway and cyclooxygenase 2 (COX-2 gene; (iii apoptotic induction of cancer cells by anthocyanidins through reactive oxygen species (ROS / c-Jun NH2-terminal kinase (JNK-mediated caspase activation. These data provide a first molecular view of anthocyanidins contributing to cancer chemoprevention.

  8. Low-Cost 3D Printers Enable High-Quality and Automated Sample Preparation and Molecular Detection.

    Directory of Open Access Journals (Sweden)

    Kamfai Chan

    Full Text Available Most molecular diagnostic assays require upfront sample preparation steps to isolate the target's nucleic acids, followed by its amplification and detection using various nucleic acid amplification techniques. Because molecular diagnostic methods are generally rather difficult to perform manually without highly trained users, automated and integrated systems are highly desirable but too costly for use at point-of-care or low-resource settings. Here, we showcase the development of a low-cost and rapid nucleic acid isolation and amplification platform by modifying entry-level 3D printers that cost between $400 and $750. Our modifications consisted of replacing the extruder with a tip-comb attachment that houses magnets to conduct magnetic particle-based nucleic acid extraction. We then programmed the 3D printer to conduct motions that can perform high-quality extraction protocols. Up to 12 samples can be processed simultaneously in under 13 minutes and the efficiency of nucleic acid isolation matches well against gold-standard spin-column-based extraction technology. Additionally, we used the 3D printer's heated bed to supply heat to perform water bath-based polymerase chain reactions (PCRs. Using another attachment to hold PCR tubes, the 3D printer was programmed to automate the process of shuttling PCR tubes between water baths. By eliminating the temperature ramping needed in most commercial thermal cyclers, the run time of a 35-cycle PCR protocol was shortened by 33%. This article demonstrates that for applications in resource-limited settings, expensive nucleic acid extraction devices and thermal cyclers that are used in many central laboratories can be potentially replaced by a device modified from inexpensive entry-level 3D printers.

  9. Low-Cost 3D Printers Enable High-Quality and Automated Sample Preparation and Molecular Detection.

    Science.gov (United States)

    Chan, Kamfai; Coen, Mauricio; Hardick, Justin; Gaydos, Charlotte A; Wong, Kah-Yat; Smith, Clayton; Wilson, Scott A; Vayugundla, Siva Praneeth; Wong, Season

    2016-01-01

    Most molecular diagnostic assays require upfront sample preparation steps to isolate the target's nucleic acids, followed by its amplification and detection using various nucleic acid amplification techniques. Because molecular diagnostic methods are generally rather difficult to perform manually without highly trained users, automated and integrated systems are highly desirable but too costly for use at point-of-care or low-resource settings. Here, we showcase the development of a low-cost and rapid nucleic acid isolation and amplification platform by modifying entry-level 3D printers that cost between $400 and $750. Our modifications consisted of replacing the extruder with a tip-comb attachment that houses magnets to conduct magnetic particle-based nucleic acid extraction. We then programmed the 3D printer to conduct motions that can perform high-quality extraction protocols. Up to 12 samples can be processed simultaneously in under 13 minutes and the efficiency of nucleic acid isolation matches well against gold-standard spin-column-based extraction technology. Additionally, we used the 3D printer's heated bed to supply heat to perform water bath-based polymerase chain reactions (PCRs). Using another attachment to hold PCR tubes, the 3D printer was programmed to automate the process of shuttling PCR tubes between water baths. By eliminating the temperature ramping needed in most commercial thermal cyclers, the run time of a 35-cycle PCR protocol was shortened by 33%. This article demonstrates that for applications in resource-limited settings, expensive nucleic acid extraction devices and thermal cyclers that are used in many central laboratories can be potentially replaced by a device modified from inexpensive entry-level 3D printers. PMID:27362424

  10. Low-Cost 3D Printers Enable High-Quality and Automated Sample Preparation and Molecular Detection

    Science.gov (United States)

    Chan, Kamfai; Coen, Mauricio; Hardick, Justin; Gaydos, Charlotte A.; Wong, Kah-Yat; Smith, Clayton; Wilson, Scott A.; Vayugundla, Siva Praneeth; Wong, Season

    2016-01-01

    Most molecular diagnostic assays require upfront sample preparation steps to isolate the target’s nucleic acids, followed by its amplification and detection using various nucleic acid amplification techniques. Because molecular diagnostic methods are generally rather difficult to perform manually without highly trained users, automated and integrated systems are highly desirable but too costly for use at point-of-care or low-resource settings. Here, we showcase the development of a low-cost and rapid nucleic acid isolation and amplification platform by modifying entry-level 3D printers that cost between $400 and $750. Our modifications consisted of replacing the extruder with a tip-comb attachment that houses magnets to conduct magnetic particle-based nucleic acid extraction. We then programmed the 3D printer to conduct motions that can perform high-quality extraction protocols. Up to 12 samples can be processed simultaneously in under 13 minutes and the efficiency of nucleic acid isolation matches well against gold-standard spin-column-based extraction technology. Additionally, we used the 3D printer’s heated bed to supply heat to perform water bath-based polymerase chain reactions (PCRs). Using another attachment to hold PCR tubes, the 3D printer was programmed to automate the process of shuttling PCR tubes between water baths. By eliminating the temperature ramping needed in most commercial thermal cyclers, the run time of a 35-cycle PCR protocol was shortened by 33%. This article demonstrates that for applications in resource-limited settings, expensive nucleic acid extraction devices and thermal cyclers that are used in many central laboratories can be potentially replaced by a device modified from inexpensive entry-level 3D printers. PMID:27362424

  11. Polycystic liver diseases: advanced insights into the molecular mechanisms.

    Science.gov (United States)

    Perugorria, Maria J; Masyuk, Tatyana V; Marin, Jose J; Marzioni, Marco; Bujanda, Luis; LaRusso, Nicholas F; Banales, Jesus M

    2014-12-01

    Polycystic liver diseases are genetic disorders characterized by progressive bile duct dilatation and/or cyst development. The large volume of hepatic cysts causes different symptoms and complications such as abdominal distension, local pressure with back pain, hypertension, gastro-oesophageal reflux and dyspnea as well as bleeding, infection and rupture of the cysts. Current therapeutic strategies are based on surgical procedures and pharmacological management, which partially prevent or ameliorate the disease. However, as these treatments only show short-term and/or modest beneficial effects, liver transplantation is the only definitive therapy. Therefore, interest in understanding the molecular mechanisms involved in disease pathogenesis is increasing so that new targets for therapy can be identified. In this Review, the genetic mechanisms underlying polycystic liver diseases and the most relevant molecular pathways of hepatic cystogenesis are discussed. Moreover, the main clinical and preclinical studies are highlighted and future directions in basic as well as clinical research are indicated.

  12. [Molecular mechanisms of the plague pathogenic agent interaction with invertebrates].

    Science.gov (United States)

    Kutyrev, V V; Eroshenko, G A; Popov, N V; Vidiaeva, N A; Konnov, N P

    2009-01-01

    Microbe Russian Anti-Plague Research Institute, Saratov, Russia The literature data and experimental results of the authors on the molecular basis of plague agent interaction with invertebrates are discussed. The details of the plague agent life cycle, its genome organization, and molecular genetic mechanisms of its survival in flea vector and on the nematode cuticule are discussed. The experimental data about the ability to form biofilms at abiotic and biotic surfaces in the Yersinia pestis strains of the main and non-main subspecies are presented. Mechanisms of horizontal and vertical transmission of plague agent are considered. The suggestion about participation of the new member in the complex parasitic biocenosis (nematode, vector parasite) is put forward. PMID:20050160

  13. Molecular mechanisms of insulin resistance in chronic hepatitis C

    Institute of Scientific and Technical Information of China (English)

    Mark W Douglas; Jacob George

    2009-01-01

    It is now widely recognized that chronic hepatitis C (CHC) is associated with insulin resistance (IR) and type 2 diabetes, so can be considered a metabolic disease. IR is most strongly associated with hepatitis C virus (HCV) genotype 1, in contrast to hepatic steatosis, which is associated with genotype 3 infection. Apart from the well-described complications of diabetes, IR in CHC predicts faster progression to fibrosis and cirrhosis that may culminate in liver failure and hepatocellular carcinoma. More recently, it has been recognized that IR in CHC predicts a poor response to antiviral therapy. The molecular mechanisms for the association between IR and HCV infection are not well defined. This review will elaborate on the clinical associations between CHC and IR and summarize current knowledge regarding the molecular mechanisms that potentially mediate HCV-associated IR.

  14. Engineering molecular mechanics: an efficient static high temperature molecular simulation technique.

    Science.gov (United States)

    Subramaniyan, Arun K; Sun, C T

    2008-07-16

    Inspired by the need for an efficient molecular simulation technique, we have developed engineering molecular mechanics (EMM) as an alternative molecular simulation technique to model high temperature (T>0 K) phenomena. EMM simulations are significantly more computationally efficient than conventional techniques such as molecular dynamics simulations. The advantage of EMM is achieved by converting the dynamic atomistic system at high temperature (T>0 K) into an equivalent static system. Fundamentals of the EMM methodology are derived using thermal expansion to modify the interatomic potential. Temperature dependent interatomic potentials are developed to account for the temperature effect. The efficiency of EMM simulations is demonstrated by simulating the temperature dependence of elastic constants of copper and nickel and the thermal stress developed in a confined copper system.

  15. The value of the dynamic mechanical spinal test in the management of automated percutaneous lumbar discectomy

    International Nuclear Information System (INIS)

    Objective: To prospectively assess the predictive power of centralization phenomenon in the curative effect of automated PLD. Methods: The survey population was consisted of 109 patients with inclusion heraiation demonstrated by CT/MRI, 74 men and 35 women with average age of 43.1 years(17-75 years). All were complained of low back pain, with varying degrees of lower extremity pain and altered sensation, lasting for more than 2 months; including one symptomatic disc in 99 patients and two symptomatic discs in 10 patients. Patients were undergone dynamic mechanical spinal test and reported whether the test would aggravate their pain. The assessment included forward flexion, extension, rotation of the trunk to the right and left, rotation to the left with right extension, rotation to the right with left extension, and whether straight leg raising in the supine position would aggravate back pain or leg pain. Symptom resposes were categorized into three groups: centralization group (CG), partial-centralization group (PCG) and noncentralization group (NCG). Centralization of pain is the progressive retreat of the most distal extent of the referred or radicular pain toward or to the lumbar midline. Noncentralization of pain is the peripheralization of pain in one or more directions, and no change in the distal-most pain location or intensity. All patients received a single therapy with PLD. Results: A follow-up of 109 patients for 3 to 6 months, including 46 cases with 24 as exellent and 22 as good reaching 100% of excellent good rate in CG by MacNab standards; 43 cases with 5 as exellent, 29 as good, 9 as fair and poor, with total effective rate of 79.1% in PCG. Twenty cases of NCG symptoms showed no improvement and therefore surgery was considered. Conclusions: Centralization phenomenon occurrence during initial mechanical evaluation is a very accurate predictor for successful PLD outcome. Nonoccurrence of centralization would accurately predict poor PLD outcome and

  16. Molecular mechanisms of tamoxifen-associated endometrial cancer (Review)

    OpenAIRE

    Hu, Rong; Hilakivi-Clarke, Leena; Clarke, Robert

    2015-01-01

    Tamoxifen has been prescribed to millions of females for breast cancer prevention or treatment. However, tamoxifen is known to significantly enhance the risk of developing endometrial lesions, including hyperplasia, polyps, carcinomas, and sarcoma. Notably, tamoxifen-associated endometrial cancer often has a poor clinical outcome. Understanding the molecular mechanism of tamoxifen-induced endometrial cancer is essential for developing strategies that minimize tamoxifen’s effects on the endome...

  17. Molecular dynamics simulation of nanocrystalline nickel: structure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Swygenhoven, H. van [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Caro, A. [Comision Nacional de Energia Atomica, San Carlos de Bariloche (Argentina). Centro Atomico Bariloche

    1997-09-01

    Molecular dynamics computer simulations of low temperature elastic and plastic deformation of Ni nanophase samples (3-7 nm) are performed. The samples are polycrystals nucleated from different seeds, with random locations and orientations. Bulk and Young`s modulus, onset of plastic deformation and mechanism responsible for the plastic behaviour are studied and compared with the behaviour of coarse grained samples. (author) 1 fig., 3 refs.

  18. Molecular mechanism of fluoroquinolones resistance in Mycoplasma hominis clinical isolates

    OpenAIRE

    Meng Dong-Ya; Sun Chang-Jian; Yu Jing-Bo; Ma Jun; Xue Wen-Cheng

    2014-01-01

    To evaluate the molecular mechanism of fluoroquinolones resistance in Mycoplasma hominis (MH) clinical strains isolated from urogenital specimens. 15 MH clinical isolates with different phenotypes of resistance to fluoroquinolones antibiotics were screened for mutations in the quinolone resistance-determining regions (QRDRs) of DNA gyrase (gyrA and gyrB) and topoisomerase IV (parC and parE) in comparison with the reference strain PG21, which is susceptible to fluoroquinolones antibiotics. 15 ...

  19. Molecular mechanism of signaling by tumor necrosis factor

    Institute of Scientific and Technical Information of China (English)

    ZHA; Jikun(查纪坤); SHU; Hongbing(舒红兵)

    2002-01-01

    Tumor necrosis factor (TNF) is an important cytokine with multiple biological effects,including cell growth,differentiation,apoptosis,immune regulation and induction of inflammation. The effects of TNF are mediated by two receptors,TNF-R1 and TNF-R2. The major signal transduction pathways triggered by TNF include those that lead to apoptosis,activation of transcription factor NF-??B and protein kinase JNK. This review will discuss the molecular mechanisms of these signaling pathways.

  20. Molecular mechanisms of TRAIL-induced apoptosis of cancer cells

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL) is a recently identified member of the tumor necrosis factor (TNF) family[1]. Numerous studies indicate that TRAIL can induce apoptosis of cancer cells but not of normal cells, pointing to the possibility of de-veloping TRAIL into a cancer drug[2-4]. This review will summary the molecular mechanisms of TRAIL-induced apoptosis and discuss the questions to be resolved in this field.

  1. Molecular mechanisms in muscular dystrophy: a gene expression profiling study.

    OpenAIRE

    Turk, Rolf

    2006-01-01

    The muscular dystrophies are a group of neuromuscular disorders characterized by progres¬sive muscle weakness and wasting. Although the underlying genetic defects of a large number of muscular dystrophies are now know, the molecular mechanisms resulting in the devastating effects of the disease are not yet clear. Furthermore, the muscular dystrophies differ in clinical presentation and severity. The processes responsible for this di¬vergence are largely unknown as well. In this thesis, gene e...

  2. Molecular mechanisms and treatment options for muscle wasting eiseases

    OpenAIRE

    Rüegg, Markus A.; Glass, David J.

    2010-01-01

    Loss of muscle mass can be the consequence of pathological changes, as observed in muscular dystrophies; or it can be secondary to cachexia-inducing diseases that cause muscle atrophy, such as cancer, heart disease, or chronic obstructive pulmonary disease; or it can be a consequence of aging or simple disuse. Although muscular dystrophies are rare, muscle loss affects millions of people worldwide.Wediscuss the molecular mechanisms involved in muscular dystrophy and in muscle atrophy and pres...

  3. Molecular mechanism of abnormal aggregation of α-synuclein

    Institute of Scientific and Technical Information of China (English)

    HU HongYua; LIN XiaoJing

    2007-01-01

    The abnormal aggregation of α-synuclein (α-Syn) is thought to be closely associated with Parkinson's disease, but the pathogenesis is still unclear. In this review, we survey the latest development in the molecular mechanism of abnormal α-Syn aggregation, especially in the aspects of the core sequences, aggregation inhibitors, structural transformation and filament morphologies. By exploring the mechanism of α-Syn aggregation, we will have a better understanding of the disease pathogenesis, and develop strategies for preventing and treating this severe disease.

  4. Underlying molecular and cellular mechanisms in childhood irritable bowel syndrome.

    Science.gov (United States)

    Chumpitazi, Bruno P; Shulman, Robert J

    2016-12-01

    Irritable bowel syndrome (IBS) affects a large number of children throughout the world. The symptom expression of IBS is heterogeneous, and several factors which may be interrelated within the IBS biopsychosocial model play a role. These factors include visceral hyperalgesia, intestinal permeability, gut microbiota, psychosocial distress, gut inflammation, bile acids, food intolerance, colonic bacterial fermentation, and genetics. The molecular and cellular mechanisms of these factors are being actively investigated. In this mini-review, we present updates of these mechanisms and, where possible, relate the findings to childhood IBS. Mechanistic elucidation may lead to the identification of biomarkers as well as personalized childhood IBS therapies. PMID:26883355

  5. Mechanisms of ventricular arrhythmias: from molecular fluctuations to electrical turbulence.

    Science.gov (United States)

    Qu, Zhilin; Weiss, James N

    2015-01-01

    Ventricular arrhythmias have complex causes and mechanisms. Despite extensive investigation involving many clinical, experimental, and computational studies, effective biological therapeutics are still very limited. In this article, we review our current understanding of the mechanisms of ventricular arrhythmias by summarizing the state of knowledge spanning from the molecular scale to electrical wave behavior at the tissue and organ scales and how the complex nonlinear interactions integrate into the dynamics of arrhythmias in the heart. We discuss the challenges that we face in synthesizing these dynamics to develop safe and effective novel therapeutic approaches. PMID:25340965

  6. Molecular simulation of the reversible mechanical unfolding of proteins.

    Science.gov (United States)

    Rathore, Nitin; Yan, Qiliang; de Pablo, Juan J

    2004-03-22

    In this work we have combined a Wang-Landau sampling scheme [F. Wang and D. Landau, Phys. Rev. Lett. 86, 2050 (2001)] with an expanded ensemble formalism to yield a simple and powerful method for computing potentials of mean force. The new method is implemented to investigate the mechanical deformation of proteins. Comparisons are made with analytical results for simple model systems such as harmonic springs and Rouse chains. The method is then illustrated on a model 15-residue alanine molecule in an implicit solvent. Results for mechanical unfolding of this oligopeptide are compared to those of steered molecular dynamics calculations.

  7. Simulated scaling method for localized enhanced sampling and simultaneous "alchemical" free energy simulations: a general method for molecular mechanical, quantum mechanical, and quantum mechanical/molecular mechanical simulations.

    Science.gov (United States)

    Li, Hongzhi; Fajer, Mikolai; Yang, Wei

    2007-01-14

    A potential scaling version of simulated tempering is presented to efficiently sample configuration space in a localized region. The present "simulated scaling" method is developed with a Wang-Landau type of updating scheme in order to quickly flatten the distributions in the scaling parameter lambdam space. This proposal is meaningful for a broad range of biophysical problems, in which localized sampling is required. Besides its superior capability and robustness in localized conformational sampling, this simulated scaling method can also naturally lead to efficient "alchemical" free energy predictions when dual-topology alchemical hybrid potential is applied; thereby simultaneously, both of the chemically and conformationally distinct portions of two end point chemical states can be efficiently sampled. As demonstrated in this work, the present method is also feasible for the quantum mechanical and quantum mechanical/molecular mechanical simulations.

  8. Cardiovascular effects of cocaine: cellular, ionic and molecular mechanisms.

    Science.gov (United States)

    Turillazzi, E; Bello, S; Neri, M; Pomara, C; Riezzo, I; Fineschi, V

    2012-01-01

    Cocaine is a widely abused drug responsible for the majority of deaths ascribed to drug overdose. Many mechanisms have been proposed in order to explain the various cocaine associated cardiovascular complications. Conventionally, cocaine cardiotoxicity has been thought to be mediated indirectly through its sympathomimetic effect, i.e., by inhibiting the reuptake and thus increasing the levels of neuronal catecholamines at work on adrenoceptors. Increased oxidative stress, reactive oxygen species, and cocaine-induced apoptosis in the heart muscle have suggested a new way to understand the cardiotoxic effects of cocaine. More recent studies have led the attention to the interaction of cocaine and some metabolites with cardiac sodium, calcium and potassium channels. The current paper is aimed to investigate the molecular mechanisms of cocaine cardiotoxicity which have a specific clinical and forensic interest. From a clinical point of view the full knowledge of the exact mechanisms by which cocaine exerts cardio - vascular damage is essential to identify potential therapeutic targets and improve novel strategies for cocaine related cardiovascular diseases. From a forensic point of view, it is to be underlined that cocaine use is often associated to sudden death in young, otherwise healthy individuals. While such events are widely reported, the relationship between cardiac morphological alterations and molecular/cellular mechanisms is still controversial. In conclusion, the study of cocaine cardiovascular toxicity needs a strict collaboration between clinicians and pathologists which may be very effective in further dissecting the mechanisms underlying cocaine cardiotoxicity and understanding the cardiac cocaine connection. PMID:22856657

  9. Genomic and molecular mechanisms for efficient biodegradation of aromatic dye.

    Science.gov (United States)

    Sun, Su; Xie, Shangxian; Chen, Hu; Cheng, Yanbing; Shi, Yan; Qin, Xing; Dai, Susie Y; Zhang, Xiaoyu; Yuan, Joshua S

    2016-01-25

    Understanding the molecular mechanisms for aromatic compound degradation is crucial for the development of effective bioremediation strategies. We report the discovery of a novel phenomenon for improved degradation of Direct Red 5B azo dye by Irpex lacteus CD2 with lignin as a co-substrate. Transcriptomics analysis was performed to elucidate the molecular mechanisms of aromatic degradation in white rot fungus by comparing dye, lignin, and dye/lignin combined treatments. A full spectrum of lignin degradation peroxidases, oxidases, radical producing enzymes, and other relevant components were up-regulated under DR5B and lignin treatments. Lignin induced genes complemented the DR5B induced genes to provide essential enzymes and redox conditions for aromatic compound degradation. The transcriptomics analysis was further verified by manganese peroxidase (MnP) protein over-expression, as revealed by proteomics, dye decolorization assay by purified MnP and increased hydroxyl radical levels, as indicated by an iron reducing activity assay. Overall, the molecular and genomic mechanisms indicated that effective aromatic polymer degradation requires synergistic enzymes and radical-mediated oxidative reactions to form an effective network of chemical processes. This study will help to guide the development of effective bioremediation and biomass degradation strategies. PMID:26476316

  10. Genomic and molecular mechanisms for efficient biodegradation of aromatic dye.

    Science.gov (United States)

    Sun, Su; Xie, Shangxian; Chen, Hu; Cheng, Yanbing; Shi, Yan; Qin, Xing; Dai, Susie Y; Zhang, Xiaoyu; Yuan, Joshua S

    2016-01-25

    Understanding the molecular mechanisms for aromatic compound degradation is crucial for the development of effective bioremediation strategies. We report the discovery of a novel phenomenon for improved degradation of Direct Red 5B azo dye by Irpex lacteus CD2 with lignin as a co-substrate. Transcriptomics analysis was performed to elucidate the molecular mechanisms of aromatic degradation in white rot fungus by comparing dye, lignin, and dye/lignin combined treatments. A full spectrum of lignin degradation peroxidases, oxidases, radical producing enzymes, and other relevant components were up-regulated under DR5B and lignin treatments. Lignin induced genes complemented the DR5B induced genes to provide essential enzymes and redox conditions for aromatic compound degradation. The transcriptomics analysis was further verified by manganese peroxidase (MnP) protein over-expression, as revealed by proteomics, dye decolorization assay by purified MnP and increased hydroxyl radical levels, as indicated by an iron reducing activity assay. Overall, the molecular and genomic mechanisms indicated that effective aromatic polymer degradation requires synergistic enzymes and radical-mediated oxidative reactions to form an effective network of chemical processes. This study will help to guide the development of effective bioremediation and biomass degradation strategies.

  11. Molecular structure and elastic properties of thermotropic liquid crystals: Integrated molecular dynamics—Statistical mechanical theory vs molecular field approach

    Science.gov (United States)

    Capar, M. Ilk; Nar, A.; Ferrarini, A.; Frezza, E.; Greco, C.; Zakharov, A. V.; Vakulenko, A. A.

    2013-03-01

    The connection between the molecular structure of liquid crystals and their elastic properties, which control the director deformations relevant for electro-optic applications, remains a challenging objective for theories and computations. Here, we compare two methods that have been proposed to this purpose, both characterized by a detailed molecular level description. One is an integrated molecular dynamics-statistical mechanical approach, where the bulk elastic constants of nematics are calculated from the direct correlation function (DCFs) and the single molecule orientational distribution function [D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1973)]. The latter is obtained from atomistic molecular dynamics trajectories, together with the radial distribution function, from which the DCF is then determined by solving the Ornstein-Zernike equation. The other approach is based on a molecular field theory, where the potential of mean torque experienced by a mesogen in the liquid crystal phase is parameterized according to its molecular surface. In this case, the calculation of elastic constants is combined with the Monte Carlo sampling of single molecule conformations. Using these different approaches, but the same description, at the level of molecular geometry and torsional potentials, we have investigated the elastic properties of the nematic phase of two typical mesogens, 4'-n-pentyloxy-4-cyanobiphenyl and 4'-n-heptyloxy-4-cyanobiphenyl. Both methods yield K3(bend) >K1 (splay) >K2 (twist), although there are some discrepancies in the average elastic constants and in their anisotropy. These are interpreted in terms of the different approximations and the different ways of accounting for the structural properties of molecules in the two approaches. In general, the results point to the role of the molecular shape, which is modulated by the conformational freedom and cannot be fully accounted for by a single descriptor such as the aspect ratio.

  12. Molecular structure and elastic properties of thermotropic liquid crystals: integrated molecular dynamics--statistical mechanical theory vs molecular field approach.

    Science.gov (United States)

    Ilk Capar, M; Nar, A; Ferrarini, A; Frezza, E; Greco, C; Zakharov, A V; Vakulenko, A A

    2013-03-21

    The connection between the molecular structure of liquid crystals and their elastic properties, which control the director deformations relevant for electro-optic applications, remains a challenging objective for theories and computations. Here, we compare two methods that have been proposed to this purpose, both characterized by a detailed molecular level description. One is an integrated molecular dynamics-statistical mechanical approach, where the bulk elastic constants of nematics are calculated from the direct correlation function (DCFs) and the single molecule orientational distribution function [D. A. McQuarrie, Statistical Mechanics (Harper & Row, New York, 1973)]. The latter is obtained from atomistic molecular dynamics trajectories, together with the radial distribution function, from which the DCF is then determined by solving the Ornstein-Zernike equation. The other approach is based on a molecular field theory, where the potential of mean torque experienced by a mesogen in the liquid crystal phase is parameterized according to its molecular surface. In this case, the calculation of elastic constants is combined with the Monte Carlo sampling of single molecule conformations. Using these different approaches, but the same description, at the level of molecular geometry and torsional potentials, we have investigated the elastic properties of the nematic phase of two typical mesogens, 4'-n-pentyloxy-4-cyanobiphenyl and 4'-n-heptyloxy-4-cyanobiphenyl. Both methods yield K3(bend) >K1 (splay) >K2 (twist), although there are some discrepancies in the average elastic constants and in their anisotropy. These are interpreted in terms of the different approximations and the different ways of accounting for the structural properties of molecules in the two approaches. In general, the results point to the role of the molecular shape, which is modulated by the conformational freedom and cannot be fully accounted for by a single descriptor such as the aspect ratio

  13. Physiological, Molecular and Genetic Mechanisms of Long-Term Habituation

    Energy Technology Data Exchange (ETDEWEB)

    Calin-Jageman, Robert J

    2009-09-12

    Work funded on this grant has explored the mechanisms of long-term habituation, a ubiquitous form of learning that plays a key role in basic cognitive functioning. Specifically, behavioral, physiological, and molecular mechanisms of habituation have been explored using a simple model system, the tail-elicited siphon-withdrawal reflex (T-SWR) in the marine mollusk Aplysia californica. Substantial progress has been made on the first and third aims, providing some fundamental insights into the mechanisms by which memories are stored. We have characterized the physiological correlates of short- and long-term habituation. We found that short-term habituation is accompanied by a robust sensory adaptation, whereas long-term habituation is accompanied by alterations in sensory and interneuron synaptic efficacy. Thus, our data indicates memories can be shifted between different sites in a neural network as they are consolidated from short to long term. At the molecular level, we have accomplished microarray analysis comparing gene expression in both habituated and control ganglia. We have identified a network of putatively regulated transcripts that seems particularly targeted towards synaptic changes (e.g. SNAP25, calmodulin) . We are now beginning additional work to confirm regulation of these transcripts and build a more detailed understanding of the cascade of molecular events leading to the permanent storage of long-term memories. On the third aim, we have fostered a nascent neuroscience program via a variety of successful initiatives. We have funded over 11 undergraduate neuroscience scholars, several of whom have been recognized at national and regional levels for their research. We have also conducted a pioneering summer research program for community college students which is helping enhance access of underrepresented groups to life science careers. Despite minimal progress on the second aim, this project has provided a) novel insight into the network mechanisms by

  14. Molecular mechanisms of foliar water uptake in a desert tree.

    Science.gov (United States)

    Yan, Xia; Zhou, Maoxian; Dong, Xicun; Zou, Songbing; Xiao, Honglang; Ma, Xiao-Fei

    2015-01-01

    Water deficits severely affect growth, particularly for the plants in arid and semiarid regions of the world. In addition to precipitation, other subsidiary water, such as dew, fog, clouds and small rain showers, may also be absorbed by leaves in a process known as foliar water uptake. With the severe scarcity of water in desert regions, this process is increasingly becoming a necessity. Studies have reported on physical and physiological processes of foliar water uptake. However, the molecular mechanisms remain less understood. As major channels for water regulation and transport, aquaporins (AQPs) are involved in this process. However, due to the regulatory complexity and functional diversity of AQPs, their molecular mechanism for foliar water uptake remains unclear. In this study, Tamarix ramosissima, a tree species widely distributed in desert regions, was investigated for gene expression patterns of AQPs and for sap flow velocity. Our results suggest that the foliar water uptake of T. ramosissima occurs in natural fields at night when the humidity is over a threshold of 85 %. The diurnal gene expression pattern of AQPs suggests that most AQP gene expressions display a circadian rhythm, and this could affect both photosynthesis and transpiration. At night, the PIP2-1 gene is also upregulated with increased relative air humidity. This gene expression pattern may allow desert plants to regulate foliar water uptake to adapt to extreme drought. This study suggests a molecular basis of foliar water uptake in desert plants. PMID:26567212

  15. Molecular mechanisms of IgE mediated food allergy.

    Science.gov (United States)

    Kumar, Sandeep; Verma, Alok Kumar; Das, Mukul; Dwivedi, Premendra D

    2012-08-01

    The purpose of this review is to collate current knowledge and recent advances in molecular mechanism behind the immediate type hypersensitivity of foods. Food allergy is a growing concern of human health in developed as well as developing countries now days. Food allergic reactions are mostly IgE mediated and also known as immediate type hypersensitivity or type I reaction. This review encompasses a wide range of molecular events during IgE mediated reactions like primary exposure of allergens, processing of allergens by antigen presenting cells, role of transcription factors like GATA-3, STAT-6, NF-AT, c-maf, c-kit and NF-κB, Treg cells, toll like receptors, cytokines and chemokines, class switch to IgE, FcεR1 receptor, priming of IgE on mast cells or basophils, signaling events followed by secondary exposure of allergens, degranulation and release of mediators like leukotrienes, histamines, prostaglandins, β-hexosaminidase and ultimately anaphylaxis. This review may be helpful to beginners as well as experts working in the field of allergy and immunology because of the stepwise explanations of molecular mechanisms involved in IgE mediated reactions. PMID:22668720

  16. Studies on the molecular mechanisms of seed germination.

    Science.gov (United States)

    Han, Chao; Yang, Pingfang

    2015-05-01

    Seed germination that begins with imbibition and ends with radicle emergence is the first step for plant growth. Successful germination is not only crucial for seedling establishment but also important for crop yield. After being dispersed from mother plant, seed undergoes continuous desiccation in ecosystem and selects proper environment to trigger germination. Owing to the contribution of transcriptomic, proteomic, and molecular biological studies, molecular aspect of seed germination is elucidated well in Arabidopsis. Recently, more and more proteomic and genetic studies concerning cereal seed germination were performed on rice (Oryza sativa) and barley (Hordeum vulgare), which possess completely different seed structure and domestication background with Arabidopsis. In this review, both the common features and the distinct mechanisms of seed germination are compared among different plant species including Arabidopsis, rice, and maize. These features include morphological changes, cell and its related structure recovery, metabolic activation, hormone behavior, and transcription and translation activation. This review will provide more comprehensive insights into the molecular mechanisms of seed germination. PMID:25597791

  17. Studies on the molecular mechanisms of seed germination.

    Science.gov (United States)

    Han, Chao; Yang, Pingfang

    2015-05-01

    Seed germination that begins with imbibition and ends with radicle emergence is the first step for plant growth. Successful germination is not only crucial for seedling establishment but also important for crop yield. After being dispersed from mother plant, seed undergoes continuous desiccation in ecosystem and selects proper environment to trigger germination. Owing to the contribution of transcriptomic, proteomic, and molecular biological studies, molecular aspect of seed germination is elucidated well in Arabidopsis. Recently, more and more proteomic and genetic studies concerning cereal seed germination were performed on rice (Oryza sativa) and barley (Hordeum vulgare), which possess completely different seed structure and domestication background with Arabidopsis. In this review, both the common features and the distinct mechanisms of seed germination are compared among different plant species including Arabidopsis, rice, and maize. These features include morphological changes, cell and its related structure recovery, metabolic activation, hormone behavior, and transcription and translation activation. This review will provide more comprehensive insights into the molecular mechanisms of seed germination.

  18. Molecular cytotoxicity mechanisms of allyl alcohol (acrolein) in budding yeast.

    Science.gov (United States)

    Golla, Upendarrao; Bandi, Goutham; Tomar, Raghuvir S

    2015-06-15

    Allyl alcohol (AA) is one of the environmental pollutants used as a herbicide and industrial chemical. AA undergoes enzymatic oxidation in vivo to form Acrolein (Acr), a highly reactive and ubiquitous environmental toxicant. The exposure to AA/Acr has detrimental effects on cells and is highly fatal. In corroboration to the current literature describing AA/Acr toxicity, this study aimed to investigate the molecular cytotoxicity mechanisms of AA/Acr using budding yeast as a eukaryotic model organism. Genome-wide transcriptome analysis of cells treated with a sublethal dose of AA (0.4 mM) showed differential regulation of approximately 30% of the yeast genome. Functional enrichment analysis of the AA transcriptome revealed that genes belong to diverse cellular processes including the cell cycle, DNA damage repair, metal homeostasis, stress response genes, ribosomal biogenesis, metabolism, meiosis, ubiquitination, cell morphogenesis, and transport. Moreover, we have identified novel molecular targets of AA/Acr through genetic screening, which belongs to oxidative stress, DNA damage repair, iron homeostasis, and cell wall integrity. This study also demonstrated the epigenetic basis of AA/Acr toxicity mediated through histone tails and chromatin modifiers. Interestingly, our study disclosed the use of pyrazole and ethanol as probable antidotes for AA intoxication. For the first time, this study also demonstrated the reproductive toxicity of AA/Acr using the yeast gametogenesis (spermatogenesis) model. Altogether, this study unravels the molecular mechanisms of AA/Acr cytotoxicity and facilitates the prediction of biomarkers for toxicity assessment and therapeutic approaches. PMID:25919230

  19. Deciphering molecular mechanism underlying hypolipidemic activity of echinocystic Acid.

    Science.gov (United States)

    Han, Li; Lai, Peng; Du, Jun-Rong

    2014-01-01

    Our previous study showed that a triterpene mixture, consisting of echinocystic acid (EA) and oleanolic acid (OA) at a ratio of 4 : 1, dose-dependently ameliorated the hyperlipidemia and atherosclerosis in rabbits fed with high fat/high cholesterol diets. This study was aimed at exploring the mechanisms underlying antihyperlipidemic effect of EA. Molecular docking simulation of EA was performed using Molegro Virtual Docker (version: 4.3.0) to investigate the potential targets related to lipid metabolism. Based on the molecular docking information, isotope labeling method or spectrophotometry was applied to examine the effect of EA on the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, acyl-CoA:cholesterol acyltransferase (ACAT), and diacylglycerol acyltransferase (DGAT) in rat liver microsomes. Our results revealed a strong affinity of EA towards ACAT and DGAT in molecular docking analysis, while low binding affinity existed between EA and HMG-CoA reductase as well as between EA and cholesteryl ester transfer protein. Consistent with the results of molecular docking, in vitro enzyme activity assays showed that EA inhibited ACAT and DGAT, with IC50 values of 103 and 139  μ M, respectively, and exhibited no significant effect on HMG-CoA reductase activity. The present findings suggest that EA may exert hypolipidemic effect by inhibiting the activity of ACAT and DGAT. PMID:24669228

  20. Deciphering Molecular Mechanism Underlying Hypolipidemic Activity of Echinocystic Acid

    Directory of Open Access Journals (Sweden)

    Li Han

    2014-01-01

    Full Text Available Our previous study showed that a triterpene mixture, consisting of echinocystic acid (EA and oleanolic acid (OA at a ratio of 4 : 1, dose-dependently ameliorated the hyperlipidemia and atherosclerosis in rabbits fed with high fat/high cholesterol diets. This study was aimed at exploring the mechanisms underlying antihyperlipidemic effect of EA. Molecular docking simulation of EA was performed using Molegro Virtual Docker (version: 4.3.0 to investigate the potential targets related to lipid metabolism. Based on the molecular docking information, isotope labeling method or spectrophotometry was applied to examine the effect of EA on the activity of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA reductase, acyl-CoA:cholesterol acyltransferase (ACAT, and diacylglycerol acyltransferase (DGAT in rat liver microsomes. Our results revealed a strong affinity of EA towards ACAT and DGAT in molecular docking analysis, while low binding affinity existed between EA and HMG-CoA reductase as well as between EA and cholesteryl ester transfer protein. Consistent with the results of molecular docking, in vitro enzyme activity assays showed that EA inhibited ACAT and DGAT, with IC50 values of 103 and 139 μM, respectively, and exhibited no significant effect on HMG-CoA reductase activity. The present findings suggest that EA may exert hypolipidemic effect by inhibiting the activity of ACAT and DGAT.

  1. Molecular Mechanisms of Cognitive Dysfunction following Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Kendall Rae Walker

    2013-07-01

    Full Text Available Traumatic brain injury (TBI results in significant disability due to cognitive deficits particularly in attention, learning and memory and higher-order executive functions. The role of TBI in chronic neurodegeneration and the development of neurodegenerative diseases including Alzheimer’s disease (AD, Parkinson’s disease (PD, Amyotrophic Lateral Sclerosis (ALS and most recently chronic traumatic encephalopathy (CTE is of particular importance. However, despite significant effort very few therapeutic options exist to prevent or reverse cognitive impairment following TBI. In this review we present experimental evidence of the known secondary injury mechanisms which contribute to neuronal cell loss, axonal injury and synaptic dysfunction and hence cognitive impairment both acutely and chronically following TBI. In particular we focus on the mechanisms linking TBI to the development of two forms of dementia: AD and CTE. We provide evidence of potential molecular mechanisms involved in modulating Aβ and Tau following TBI and provide evidence of the role of these mechanisms in AD pathology. Additionally we propose a mechanism by which Aβ generated as a direct result of TBI is capable of exacerbating secondary injury mechanisms thereby establishing a neurotoxic cascade that leads to chronic neurodegeneration.

  2. The molecular mechanism and physiological role of cytoplasmic streaming.

    Science.gov (United States)

    Tominaga, Motoki; Ito, Kohji

    2015-10-01

    Cytoplasmic streaming occurs widely in plants ranging from algae to angiosperms. However, the molecular mechanism and physiological role of cytoplasmic streaming have long remained unelucidated. Recent molecular genetic approaches have identified specific myosin members (XI-2 and XI-K as major and XI-1, XI-B, and XI-I as minor motive forces) for the generation of cytoplasmic streaming among 13 myosin XIs in Arabidopsis thaliana. Simultaneous knockout of these myosin XI members led to a reduced velocity of cytoplasmic streaming and marked defects of plant development. Furthermore, the artificial modifications of myosin XI-2 velocity changed plant and cell sizes along with the velocity of cytoplasmic streaming. Therefore, we assume that cytoplasmic streaming is one of the key regulators in determining plant size.

  3. Quantum Interactomics and Cancer Molecular Mechanisms: I. Report Outline

    CERN Document Server

    Baianu, I C

    2004-01-01

    Single cell interactomics in simpler organisms, as well as somatic cell interactomics in multicellular organisms, involve biomolecular interactions in complex signalling pathways that were recently represented in modular terms by quantum automata with ‘reversible behavior’ representing normal cell cycling and division. Other implications of such quantum automata, modular modeling of signaling pathways and cell differentiation during development are in the fields of neural plasticity and brain development leading to quantum-weave dynamic patterns and specific molecular processes underlying extensive memory, learning, anticipation mechanisms and the emergence of human consciousness during the early brain development in children. Cell interactomics is here represented for the first time as a mixture of ‘classical’ states that determine molecular dynamics subject to Boltzmann statistics and ‘steady-state’, metabolic (multi-stable) manifolds, together with ‘configuration’ spaces of metastable quant...

  4. Mechanisms of Helicobacter pylori antibiotic resistance and molecular testing

    Directory of Open Access Journals (Sweden)

    Toshihiro eNishizawa

    2014-10-01

    Full Text Available Antibiotic resistance in Helicobacter pylori (H. pylori is the main factor affecting the efficacy of current treatment methods against infection caused by this organism. The traditional culture methods for testing bacterial susceptibility to antibiotics are expensive and require 10 to 14 days. Since resistance to clarithromycin, fluoroquinolone, and tetracycline seems to be exclusively caused by specific mutations in a small region of the responsible gene, molecular methods offer an attractive alternative to the above-mentioned techniques. The technique of polymerase chain reaction (PCR is an accurate and rapid method for the detection of mutations that confer antibiotic resistance. This review highlights the mechanisms of antibiotic resistance in H. pylori and the molecular methods for antibiotic susceptibility testing.

  5. Complement system part I - molecular mechanisms of activation and regulation

    Directory of Open Access Journals (Sweden)

    Nicolas eMerle

    2015-06-01

    Full Text Available Complement is a complex innate immune surveillance system, playing a key role in defense against pathogens and in host homeostasis. The complement system is initiated by conformational changes in recognition molecular complexes upon sensing danger signals. The subsequent cascade of enzymatic reactions is tightly regulated to assure that complement is activated only at specific locations requiring defense against pathogens, thus avoiding host tissue damage. Here we discuss the recent advances describing the molecular and structural basis of activation and regulation of the complement pathways and their implication on physiology and pathology. This article will review the mechanisms of activation of alternative, classical and lectin pathways, the formation of C3 and C5 convertases, the action of anaphylatoxins and the membrane attack complex. We will also discuss the importance of structure-function relationships using the example of atypical hemolytic uremic syndrome. Lastly we will discuss the development and benefits of therapies using complement inhibitors.

  6. Steered Molecular Dynamics Methods Applied to Enzyme Mechanism and Energetics.

    Science.gov (United States)

    Ramírez, C L; Martí, M A; Roitberg, A E

    2016-01-01

    One of the main goals of chemistry is to understand the underlying principles of chemical reactions, in terms of both its reaction mechanism and the thermodynamics that govern it. Using hybrid quantum mechanics/molecular mechanics (QM/MM)-based methods in combination with a biased sampling scheme, it is possible to simulate chemical reactions occurring inside complex environments such as an enzyme, or aqueous solution, and determining the corresponding free energy profile, which provides direct comparison with experimental determined kinetic and equilibrium parameters. Among the most promising biasing schemes is the multiple steered molecular dynamics method, which in combination with Jarzynski's Relationship (JR) allows obtaining the equilibrium free energy profile, from a finite set of nonequilibrium reactive trajectories by exponentially averaging the individual work profiles. However, obtaining statistically converged and accurate profiles is far from easy and may result in increased computational cost if the selected steering speed and number of trajectories are inappropriately chosen. In this small review, using the extensively studied chorismate to prephenate conversion reaction, we first present a systematic study of how key parameters such as pulling speed, number of trajectories, and reaction progress are related to the resulting work distributions and in turn the accuracy of the free energy obtained with JR. Second, and in the context of QM/MM strategies, we introduce the Hybrid Differential Relaxation Algorithm, and show how it allows obtaining more accurate free energy profiles using faster pulling speeds and smaller number of trajectories and thus smaller computational cost. PMID:27497165

  7. Molecular and Mechanical Causes of Microtubule Catastrophe and Aging.

    Science.gov (United States)

    Zakharov, Pavel; Gudimchuk, Nikita; Voevodin, Vladimir; Tikhonravov, Alexander; Ataullakhanov, Fazoil I; Grishchuk, Ekaterina L

    2015-12-15

    Tubulin polymers, microtubules, can switch abruptly from the assembly to shortening. These infrequent transitions, termed "catastrophes", affect numerous cellular processes but the underlying mechanisms are elusive. We approached this complex stochastic system using advanced coarse-grained molecular dynamics modeling of tubulin-tubulin interactions. Unlike in previous simplified models of dynamic microtubules, the catastrophes in this model arise owing to fluctuations in the composition and conformation of a growing microtubule tip, most notably in the number of protofilament curls. In our model, dynamic evolution of the stochastic microtubule tip configurations over a long timescale, known as the system's "aging", gives rise to the nonexponential distribution of microtubule lifetimes, consistent with experiment. We show that aging takes place in the absence of visible changes in the microtubule wall or tip, as this complex molecular-mechanical system evolves slowly and asymptotically toward the steady-state level of the catastrophe-promoting configurations. This new, to our knowledge, theoretical basis will assist detailed mechanistic investigations of the mechanisms of action of different microtubule-binding proteins and drugs, thereby enabling accurate control over the microtubule dynamics to treat various pathologies. PMID:26682815

  8. 机械制造与自动化应用的探究%An Exploration into Mechanical Manufacturing Automation Application

    Institute of Scientific and Technical Information of China (English)

    张振涛

    2015-01-01

    In order to study the mechanical manufacturing and automation application, this paper first introduced pre-sent status of mechanical manufacturing and automation applications from aspects of management, design, automation technology and processing . Finally, it introduced the application of mechanical automation technology .%为了研究机械制造与自动化应用,文章首先从管理、设计、自动化技术以及制造工艺四个方面介绍了我国机械制造与自动化应用的现状。最后介绍了机械自动化技术的应用。

  9. United polarizable multipole water model for molecular mechanics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Rui; Wang, Qiantao; Ren, Pengyu, E-mail: pren@mail.utexas.edu [Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States); Wang, Lee-Ping; Pande, Vijay S. [Department of Chemistry, Stanford University, Stanford, California 94305 (United States)

    2015-07-07

    We report the development of a united AMOEBA (uAMOEBA) polarizable water model, which is computationally 3–5 times more efficient than the three-site AMOEBA03 model in molecular dynamics simulations while providing comparable accuracy for gas-phase and liquid properties. In this coarse-grained polarizable water model, both electrostatic (permanent and induced) and van der Waals representations have been reduced to a single site located at the oxygen atom. The permanent charge distribution is described via the molecular dipole and quadrupole moments and the many-body polarization via an isotropic molecular polarizability, all located at the oxygen center. Similarly, a single van der Waals interaction site is used for each water molecule. Hydrogen atoms are retained only for the purpose of defining local frames for the molecular multipole moments and intramolecular vibrational modes. The parameters have been derived based on a combination of ab initio quantum mechanical and experimental data set containing gas-phase cluster structures and energies, and liquid thermodynamic properties. For validation, additional properties including dimer interaction energy, liquid structures, self-diffusion coefficient, and shear viscosity have been evaluated. The results demonstrate good transferability from the gas to the liquid phase over a wide range of temperatures, and from nonpolar to polar environments, due to the presence of molecular polarizability. The water coordination, hydrogen-bonding structure, and dynamic properties given by uAMOEBA are similar to those derived from the all-atom AMOEBA03 model and experiments. Thus, the current model is an accurate and efficient alternative for modeling water.

  10. Molecular mechanisms in autoimmune type 1 diabetes: a critical review.

    Science.gov (United States)

    Xie, Zhiguo; Chang, Christopher; Zhou, Zhiguang

    2014-10-01

    Autoimmune type 1 diabetes is characterized by selective destruction of insulin-secreting beta cells in the pancreas of genetically susceptible individuals. The mechanisms underlying the development of type 1 diabetes are not fully understood. However, a widely accepted point is that type 1 diabetes is caused by a combination of genetic and environmental factors. Although most type 1 diabetes patients do not have a family history, genetic susceptibility does play a vital role in beta cell autoimmunity and destruction. Human leukocyte antigen (HLA) regions are the strongest genetic determinants, which can contribute 40-50 % of the genetic risk to type 1 diabetes. Other genes, including INS also contribute to disease risk. The mechanisms of the susceptible genes in type 1 diabetes may relate to their respective roles in antigen presentation, beta cell autoimmunity, immune tolerance, and autoreactive T cell response. Environmental susceptibility factors also contribute to the risk of developing type 1 diabetes. From an epigenetic standpoint, the pathologic mechanisms involved in the development of type 1 diabetes may include DNA methylation, histone modification, microRNA, and molecular mimicry. These mechanisms may act through regulating of gene expression, thereby affecting the immune system response toward islet beta cells. One of the characteristics of type 1 diabetes is the recognition of islet autoantigens by autoreactive CD4(+) and CD8(+) T cells and autoantibodies. Autoantibodies against islet autoantigens are involved in autoantigen processing and presentation by HLA molecules. This review will mainly focus on the molecular mechanism by which genetic, epigenetic, and environmental factors contribute to the risk of type 1 diabetes. PMID:24752371

  11. Molecular mechanisms in autoimmune type 1 diabetes: a critical review.

    Science.gov (United States)

    Xie, Zhiguo; Chang, Christopher; Zhou, Zhiguang

    2014-10-01

    Autoimmune type 1 diabetes is characterized by selective destruction of insulin-secreting beta cells in the pancreas of genetically susceptible individuals. The mechanisms underlying the development of type 1 diabetes are not fully understood. However, a widely accepted point is that type 1 diabetes is caused by a combination of genetic and environmental factors. Although most type 1 diabetes patients do not have a family history, genetic susceptibility does play a vital role in beta cell autoimmunity and destruction. Human leukocyte antigen (HLA) regions are the strongest genetic determinants, which can contribute 40-50 % of the genetic risk to type 1 diabetes. Other genes, including INS also contribute to disease risk. The mechanisms of the susceptible genes in type 1 diabetes may relate to their respective roles in antigen presentation, beta cell autoimmunity, immune tolerance, and autoreactive T cell response. Environmental susceptibility factors also contribute to the risk of developing type 1 diabetes. From an epigenetic standpoint, the pathologic mechanisms involved in the development of type 1 diabetes may include DNA methylation, histone modification, microRNA, and molecular mimicry. These mechanisms may act through regulating of gene expression, thereby affecting the immune system response toward islet beta cells. One of the characteristics of type 1 diabetes is the recognition of islet autoantigens by autoreactive CD4(+) and CD8(+) T cells and autoantibodies. Autoantibodies against islet autoantigens are involved in autoantigen processing and presentation by HLA molecules. This review will mainly focus on the molecular mechanism by which genetic, epigenetic, and environmental factors contribute to the risk of type 1 diabetes.

  12. Mechanical Properties of Gelatin Gels; Effect of Molecular Weight and Molecular Weight Distribution

    OpenAIRE

    Jonhard, Eysturskarð

    2010-01-01

    The goal of the gelatin manufacturer is to partial hydrolyze the covalent cross-linkages that organize the collagen molecules into a quarter staggered arrangement found in connective tissue, to minimize the hydrolysis of the peptide bonds and to obtain the appropriate molecular weigh distribution (MWD) for a specific application.The mechanical properties of the resulting gelatin are known to be influenced by the tissues and species from which it is produced as well as the pretreatment and ext...

  13. Molecular Mechanism of Allosteric Communication in Hsp70 Revealed by Molecular Dynamics Simulations

    OpenAIRE

    Chiappori, Federica; Merelli, Ivan; Colombo, Giorgio; Milanesi, Luciano; Morra, Giulia

    2012-01-01

    Author Summary Allostery, or the capability of proteins to respond to ligand binding events with a variation in structure or dynamics at a distant site, is a common feature for biomolecular function and regulation in a large number of proteins. Intra-protein connections and inter-residue coordinations underlie allosteric mechanisms and react to binding primarily through a finely tuned modulation of motions and structures at the microscopic scale. Hence, all-atom molecular dynamics simulations...

  14. Molecular and Electrophysiological Mechanisms Underlying Cardiac Arrhythmogenesis in Diabetes Mellitus.

    Science.gov (United States)

    Tse, Gary; Lai, Eric Tsz Him; Tse, Vivian; Yeo, Jie Ming

    2016-01-01

    Diabetes is a common endocrine disorder with an ever increasing prevalence globally, placing significant burdens on our healthcare systems. It is associated with significant cardiovascular morbidities. One of the mechanisms by which it causes death is increasing the risk of cardiac arrhythmias. The aim of this article is to review the cardiac (ion channel abnormalities, electrophysiological and structural remodelling) and extracardiac factors (neural pathway remodelling) responsible for cardiac arrhythmogenesis in diabetes. It is concluded by an outline of molecular targets for future antiarrhythmic therapy for the diabetic population. PMID:27642609

  15. Molecular mechanisms of methicillin resistance in Staphylococcus aureus.

    Science.gov (United States)

    Domínguez, M A; Liñares, J; Martín, R

    1997-09-01

    Methicillin-resistant Staphylococcus aureus (MRSA) strains are among the most common nosocomial pathogens. The most significant mechanism of resistance to methicillin in this-species is the acquisition of a genetic determinant (mecA gene). However, resistance seems to have a more complex molecular basis, since additional chromosomal material is involved in such resistance. Besides, overproduction of penicillinase and/or alterations in the PBPs can contribute to the formation of resistance phenotypes. Genetic and environmental factors leading to MRSA are reviewed.

  16. The mechanism of selective molecular capture in carbon nanotube networks.

    Science.gov (United States)

    Wan, Yu; Guan, Jun; Yang, Xudong; Zheng, Quanshui; Xu, Zhiping

    2014-07-28

    Recently, air pollution issues have drawn significant attention to the development of efficient air filters, and one of the most promising materials for this purpose is nanofibers. We explore here the mechanism of selective molecular capture of volatile organic compounds in carbon nanotube networks by performing atomistic simulations. The results are discussed with respect to the two key parameters that define the performance of nanofiltration, i.e. the capture efficiency and flow resistance, which demonstrate the advantages of carbon nanotube networks with high surface-to-volume ratio and atomistically smooth surfaces. We also reveal the important roles of interfacial adhesion and diffusion that govern selective gas transport through the network.

  17. Molecular and biochemical mechanisms of drug resistance in fungi.

    Science.gov (United States)

    Yamaguchi, H

    1999-01-01

    This paper reviews the current status of our understanding of resistance mechanisms of three major classes of antifungal drugs for systemic use, amphotericin B (AMPH), flucytosine (5-FC) and several azole antifungals, in particular fluconazole (FLCZ), at the molecular and cellular levels. Although the number of reports of AMPH- or 5-FC-resistant fungal species and strains is limited, several mechanisms of resistance have been described. AMPH-resistant Candida have a marked decrease in ergosterol content compared with AMPH-susceptible control isolates. A lesion in the UMP-pyrophosphorylase is the most frequent determinant of 5-FC resistance in C. albicans. Recently resistance of C. albicans to azoles has become an increasing problem. Extensive biochemical studies have highlighted a significant diversity in mechanisms conferring resistance to FLCZ and other azoles, which include alterations in sterol biosynthesis, target site, uptake and efflux. Among them, the most important mechanism clinically is reduced access of the drug to the intracellular P450 14 DM target, probably because of the action of a multidrug resistance efflux pump, and overproduction of that target. However, other possible resistance mechanisms for azoles remain to be identified.

  18. A knowledge- and model-based system for automated weaning from mechanical ventilation: technical description and first clinical application.

    Science.gov (United States)

    Schädler, Dirk; Mersmann, Stefan; Frerichs, Inéz; Elke, Gunnar; Semmel-Griebeler, Thomas; Noll, Oliver; Pulletz, Sven; Zick, Günther; David, Matthias; Heinrichs, Wolfgang; Scholz, Jens; Weiler, Norbert

    2014-10-01

    To describe the principles and the first clinical application of a novel prototype automated weaning system called Evita Weaning System (EWS). EWS allows an automated control of all ventilator settings in pressure controlled and pressure support mode with the aim of decreasing the respiratory load of mechanical ventilation. Respiratory load takes inspired fraction of oxygen, positive end-expiratory pressure, pressure amplitude and spontaneous breathing activity into account. Spontaneous breathing activity is assessed by the number of controlled breaths needed to maintain a predefined respiratory rate. EWS was implemented as a knowledge- and model-based system that autonomously and remotely controlled a mechanical ventilator (Evita 4, Dräger Medical, Lübeck, Germany). In a selected case study (n = 19 patients), ventilator settings chosen by the responsible physician were compared with the settings 10 min after the start of EWS and at the end of the study session. Neither unsafe ventilator settings nor failure of the system occurred. All patients were successfully transferred from controlled ventilation to assisted spontaneous breathing in a mean time of 37 ± 17 min (± SD). Early settings applied by the EWS did not significantly differ from the initial settings, except for the fraction of oxygen in inspired gas. During the later course, EWS significantly modified most of the ventilator settings and reduced the imposed respiratory load. A novel prototype automated weaning system was successfully developed. The first clinical application of EWS revealed that its operation was stable, safe ventilator settings were defined and the respiratory load of mechanical ventilation was decreased.

  19. Molecular View of Protein Crystal Growth: Molecular Interactions, Surface Reconstruction and Growth Mechanism

    Science.gov (United States)

    Nadarajah, Arunan; Li, Huayu; Konnert, John H.; Pusey, Marc L.

    2000-01-01

    Studies of the growth and molecular packing of tetragonal lysozyme crystals suggest that there is an underlying molecular growth mechanism, in addition to the classical one involving screw dislocation/2D) nucleation growth. These crystals are constructed by strongly bonded molecular chains forming helices about the 43 axes. The helices are connected to each other by weaker bonds. Crystal growth proceeds by the formation of these 4(sub 3) helices, which would explain some unexpected observations by earlier investigators, such as bimolecular growth steps on the (110) face. Another consequence of these molecular considerations is that only one of two possible packing arrangements could occur on the crystal faces and that their growth unit was at least a tetramer corresponding to the 4(sub 3) helix. Two new high resolution atomic force microscopy (AFM) techniques were developed to directly confirm these predictions on tetragonal lysozyme crystals. Most earlier investigations of protein crystal growth with AFM were in the low resolution mode which is adequate to investigate the classical growth mechanisms, but cannot resolve molecular features and mechanisms. Employing the first of the newly developed techniques, high resolution AFM images of the (110) face were compared with the theoretically constructed images for the two possible packing arrangements on this face. The prediction that the molecular packing arrangement of these faces corresponded to that for complete 4(sub 3) helices was confirmed in this manner. This investigation also showed the occurrence of surface reconstruction on protein crystals. The molecules on the surface of the (110) face were found to pack closer along the 4(sub 3) axes than those in the interior. The second new AFM technique was used to follow the growth process by measuring the dimensions of individual growth units on the (110) face. Linescans across a growth step, performed near the saturation limit of the crystals, allowed the growth

  20. Automated Broad-Range Molecular Detection of Bacteria in Clinical Samples.

    Science.gov (United States)

    Budding, Andries E; Hoogewerf, Martine; Vandenbroucke-Grauls, Christina M J E; Savelkoul, Paul H M

    2016-04-01

    Molecular detection methods, such as quantitative PCR (qPCR), have found their way into clinical microbiology laboratories for the detection of an array of pathogens. Most routinely used methods, however, are directed at specific species. Thus, anything that is not explicitly searched for will be missed. This greatly limits the flexibility and universal application of these techniques. We investigated the application of a rapid universal bacterial molecular identification method, IS-pro, to routine patient samples received in a clinical microbiology laboratory. IS-pro is a eubacterial technique based on the detection and categorization of 16S-23S rRNA gene interspace regions with lengths that are specific for each microbial species. As this is an open technique, clinicians do not need to decide in advance what to look for. We compared routine culture to IS-pro using 66 samples sent in for routine bacterial diagnostic testing. The samples were obtained from patients with infections in normally sterile sites (without a resident microbiota). The results were identical in 20 (30%) samples, IS-pro detected more bacterial species than culture in 31 (47%) samples, and five of the 10 culture-negative samples were positive with IS-pro. The case histories of the five patients from whom these culture-negative/IS-pro-positive samples were obtained suggest that the IS-pro findings are highly clinically relevant. Our findings indicate that an open molecular approach, such as IS-pro, may have a high added value for clinical practice. PMID:26763956

  1. Estimation of mechanical properties of single wall carbon nanotubes using molecular mechanics approach

    Indian Academy of Sciences (India)

    P Subba Rao; Sunil Anandatheertha; G Narayana Naik; G Gopalakrishnan

    2015-06-01

    Molecular mechanics based finite element analysis is adopted in the current work to evaluate the mechanical properties of Zigzag, Armchair and Chiral Single wall Carbon Nanotubes (SWCNT) of different diameters and chiralities. Three different types of atomic bonds, that is Carbon–Carbon covalent bond and two types of Carbon–Carbon van der Waals bonds are considered in the carbon nanotube system. The stiffness values of these bonds are calculated using the molecular potentials, namely Morse potential function and Lennard-Jones interaction potential function respectively and these stiffness’s are assigned to spring elements in the finite element model of the CNT. The geometry of CNT is built using a macro that is developed for the finite element analysis software. The finite element model of the CNT is constructed, appropriate boundary conditions are applied and the behavior of mechanical properties of CNT is studied.

  2. Molecular Mechanisms of Two-Component Signal Transduction.

    Science.gov (United States)

    Zschiedrich, Christopher P; Keidel, Victoria; Szurmant, Hendrik

    2016-09-25

    Two-component systems (TCS) comprising sensor histidine kinases and response regulator proteins are among the most important players in bacterial and archaeal signal transduction and also occur in reduced numbers in some eukaryotic organisms. Given their importance to cellular survival, virulence, and cellular development, these systems are among the most scrutinized bacterial proteins. In the recent years, a flurry of bioinformatics, genetic, biochemical, and structural studies have provided detailed insights into many molecular mechanisms that underlie the detection of signals and the generation of the appropriate response by TCS. Importantly, it has become clear that there is significant diversity in the mechanisms employed by individual systems. This review discusses the current knowledge on common themes and divergences from the paradigm of TCS signaling. An emphasis is on the information gained by a flurry of recent structural and bioinformatics studies.

  3. RNA processing-associated molecular mechanisms of neurodegenerative diseases.

    Science.gov (United States)

    Tang, Anna Y

    2016-08-01

    Dysfunctions of RNA processing and mutations of RNA binding proteins (RBPs) play a fundamental role in the pathogenesis of many neurodegenerative diseases. To elucidate the function of RNA processing and RBPs mutations in neuronal cells and to increase our understanding on the pathogenic mechanisms of neurodegeneration, I have reviewed recent advances on RNA processing-associated molecular mechanisms of neurodegenerative diseases, including RBPs-mediated dysfunction of RNA processing, dysfunctional microRNA (miRNA)-based regulation of gene expression, and oxidative RNA modification. I have focused on neurodegeneration induced by RBPs mutations, by dysfunction of miRNA regulation, and by the oxidized RNAs within neurons, and discuss how these dysfunctions have pathologically contributed to neurodegenerative diseases. The advances overviewed above will be valuable to basic investigation and clinical application of target diagnostic tests and therapies.

  4. Molecular Mechanism Underlying Lymphatic Metastasis in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Zhiwen Xiao

    2014-01-01

    Full Text Available As the most challenging human malignancies, pancreatic cancer is characterized by its insidious symptoms, low rate of surgical resection, high risk of local invasion, metastasis and recurrence, and overall dismal prognosis. Lymphatic metastasis, above all, is recognized as an early adverse event in progression of pancreatic cancer and has been described to be an independent poor prognostic factor. It should be noted that the occurrence of lymphatic metastasis is not a casual or stochastic but an ineluctable and designed event. Increasing evidences suggest that metastasis-initiating cells (MICs and the microenvironments may act as a double-reed style in this crime. However, the exact mechanisms on how they function synergistically for this dismal clinical course remain largely elusive. Therefore, a better understanding of its molecular and cellular mechanisms involved in pancreatic lymphatic metastasis is urgently required. In this review, we will summarize the latest advances on lymphatic metastasis in pancreatic cancer.

  5. Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release.

    Science.gov (United States)

    Kaeser, Pascal S; Regehr, Wade G

    2014-01-01

    Most neuronal communication relies upon the synchronous release of neurotransmitters, which occurs through synaptic vesicle exocytosis triggered by action potential invasion of a presynaptic bouton. However, neurotransmitters are also released asynchronously with a longer, variable delay following an action potential or spontaneously in the absence of action potentials. A compelling body of research has identified roles and mechanisms for synchronous release, but asynchronous release and spontaneous release are less well understood. In this review, we analyze how the mechanisms of the three release modes overlap and what molecular pathways underlie asynchronous and spontaneous release. We conclude that the modes of release have key fusion processes in common but may differ in the source of and necessity for Ca(2+) to trigger release and in the identity of the Ca(2+) sensor for release. PMID:24274737

  6. Molecular mechanism of size control in development and human diseases

    Institute of Scientific and Technical Information of China (English)

    Xiaolong Yang; Tian Xu

    2011-01-01

    How multicellular organisms control their size is a fundamental question that fascinated generations of biologists.In the past 10 years, tremendous progress has been made toward our understanding of the molecular mechanism underlying size control. Original studies from Drosophila showed that in addition to extrinsic nutritional and hormonal cues, intrinsic mechanisms also play important roles in the control of organ size during development. Several novel signaling pathways such as insulin and Hippo-LATS signaling pathways have been identified that control organ size by regulating cell size and/or cell number through modulation of cell growth, cell division, and cell death. Later studies using mammalian cell and mouse models also demonstrated that the signaling pathways identified in flies are also conserved in mammals. Significantly, recent studies showed that dysregulation of size control plays important roles in the development of many human diseases sucha as cancer,diabetes,and hypertrophy.

  7. Molecular Mechanisms of Survival Strategies in Extreme Conditions

    Directory of Open Access Journals (Sweden)

    Federica Migliardo

    2012-12-01

    Full Text Available Today, one of the major challenges in biophysics is to disclose the molecular mechanisms underlying biological processes. In such a frame, the understanding of the survival strategies in extreme conditions received a lot of attention both from the scientific and applicative points of view. Since nature provides precious suggestions to be applied for improving the quality of life, extremophiles are considered as useful model-systems. The main goal of this review is to present an overview of some systems, with a particular emphasis on trehalose playing a key role in several extremophile organisms. The attention is focused on the relation among the structural and dynamic properties of biomolecules and bioprotective mechanisms, as investigated by complementary spectroscopic techniques at low- and high-temperature values.

  8. Targeted therapies in epithelial ovarian cancer: Molecular mechanisms of action

    Institute of Scientific and Technical Information of China (English)

    Hiroaki; Itamochi

    2010-01-01

    Ovarian cancer is the leading cause of death in women with gynecological cancer. Most patients are diagnosed at an advanced stage and have a poor prognosis.Currently, surgical tumor debulking, followed by platinum- and taxane-based chemotherapy is the standard treatment for advanced ovarian cancer. However, these patients are at great risk of recurrence and emerging drug resistance. Therefore, novel treatment strategies are required to improve outcomes for women with advanced ovarian cancer. A variety of molecular targeted agents, the majority of which are monoclonal antibodies and small-molecule protein-kinase inhibitors, have been explored in the management of ovarian cancer. The targets of these agents include angiogenesis, the human epidermal growth factor receptor family, ubiquitinproteasome pathway, epigenetic modulators, poly(ADPribose) polymerase (PARP), and mammalian target of rapamycin (mTOR) signaling pathway, which are aberrant in tumor tissue. The antiangiogenic agent, bevacizumab, has been reported as the most effective targeted agent and should be included in the standard chemotherapeutic regimen for advanced ovarian cancer. PARP inhibitors, which are mainly used in breast and ovarian cancer susceptibility gene-mutated patients, and mTOR inhibitors are also attractive treatment strategies, either alone or combination with chemotherapy, for ovarian cancer. Understanding the tumor molecular biology and identification of predictive biomarkers are essential steps for selection of the best treatment strategies. This article reviews the molecular mechanisms of the most promising targeted agents that are under early phase clinical evaluation for ovarian cancer.

  9. A molecular understanding of the dynamic mechanism of aquaporin osmosis

    CERN Document Server

    Shua, Liangsuo; Qian, Xin; Wanga, Xiyun; Lin, Yixin; Tan, Kai; Shu, Chaohui; Jin, Shiping

    2014-01-01

    AQPs (aquaporins), the rapid water channels of cells, play a key role in maintaining osmotic equilibrium of cells. In this paper, we reported the dynamic mechanism of AQP osmosis at the molecular level. A theoretical model based on molecular dynamics was carried out and verified by the published experimental data. The reflection coefficients ({\\sigma}) of neutral molecules are mainly decided by their relative size with AQPs, and increase with a third power up to a constant value 1. This model also indicated that the reflection coefficient of a complete impermeable solute can be smaller than 1. The H+ concentration of solution can influence the driving force of the AQPs by changing the equivalent diameters of vestibules surrounded by loops with abundant polar amino acids. In this way, pH of solution can regulate water permeability of AQPs. Therefore, an AQP may not only work as a switch to open or close, but as a rapid response molecular valve to control its water flow. The vestibules can prevent the channel b...

  10. Molecular Mechanisms of Phosphorus Metabolism and Transport during Leaf Senescence

    Directory of Open Access Journals (Sweden)

    Kyla A. Stigter

    2015-12-01

    Full Text Available Leaf senescence, being the final developmental stage of the leaf, signifies the transition from a mature, photosynthetically active organ to the attenuation of said function and eventual death of the leaf. During senescence, essential nutrients sequestered in the leaf, such as phosphorus (P, are mobilized and transported to sink tissues, particularly expanding leaves and developing seeds. Phosphorus recycling is crucial, as it helps to ensure that previously acquired P is not lost to the environment, particularly under the naturally occurring condition where most unfertilized soils contain low levels of soluble orthophosphate (Pi, the only form of P that roots can directly assimilate from the soil. Piecing together the molecular mechanisms that underpin the highly variable efficiencies of P remobilization from senescing leaves by different plant species may be critical for devising effective strategies for improving overall crop P-use efficiency. Maximizing Pi remobilization from senescing leaves using selective breeding and/or biotechnological strategies will help to generate P-efficient crops that would minimize the use of unsustainable and polluting Pi-containing fertilizers in agriculture. This review focuses on the molecular mechanisms whereby P is remobilized from senescing leaves and transported to sink tissues, which encompasses the action of hormones, transcription factors, Pi-scavenging enzymes, and Pi transporters.

  11. Molecular mechanism of fluoroquinolones resistance in Mycoplasma hominis clinical isolates

    Directory of Open Access Journals (Sweden)

    Meng Dong-Ya

    2014-01-01

    Full Text Available To evaluate the molecular mechanism of fluoroquinolones resistance in Mycoplasma hominis (MH clinical strains isolated from urogenital specimens. 15 MH clinical isolates with different phenotypes of resistance to fluoroquinolones antibiotics were screened for mutations in the quinolone resistance-determining regions (QRDRs of DNA gyrase (gyrA and gyrB and topoisomerase IV (parC and parE in comparison with the reference strain PG21, which is susceptible to fluoroquinolones antibiotics. 15 MH isolates with three kinds of quinolone resistance phenotypes were obtained. Thirteen out of these quinolone-resistant isolates were found to carry nucleotide substitutions in either gyrA or parC. There were no alterations in gyrB and no mutations were found in the isolates with a phenotype of resistance to Ofloxacin (OFX, intermediate resistant to Levofloxacin (LVX and Sparfloxacin (SFX, and those susceptible to all three tested antibiotics. The molecular mechanism of fluoroquinolone resistance in clinical isolates of MH was reported in this study. The single amino acid mutation in ParC of MH may relate to the resistance to OFX and LVX and the high-level resistance to fluoroquinolones for MH is likely associated with mutations in both DNA gyrase and the ParC subunit of topoisomerase IV.

  12. Obstructive renal injury: from fluid mechanics to molecular cell biology

    Directory of Open Access Journals (Sweden)

    Alvaro C Ucero

    2010-04-01

    Full Text Available Alvaro C Ucero1,*, Sara Gonçalves2,*, Alberto Benito-Martin1, Beatriz Santamaría1, Adrian M Ramos1, Sergio Berzal1, Marta Ruiz-Ortega1, Jesus Egido1, Alberto Ortiz11Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Fundación Renal Iñigo Alvarez de Toledo, Madrid, Spain; 2Nefrologia e Transplantação Renal, Hospital de Santa Maria EPE, Lisbon, Portugal *Both authors contributed equally to the manuscriptAbstract: Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1 and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.Keywords: urinary tract obstruction, renal injury, fluid mechanics, molecular cell biology

  13. Hemolytic mechanism of dioscin proposed by molecular dynamics simulations.

    Science.gov (United States)

    Lin, Fu; Wang, Renxiao

    2010-01-01

    Saponins are a class of compounds containing a triterpenoid or steroid core with some attached carbohydrate modules. Many saponins cause hemolysis. However, the hemolytic mechanism of saponins at the molecular level is not yet fully understood. In an attempt to explore this issue, we have studied dioscin-a saponin with high hemolytic activity-through extensive molecular dynamics (MD) simulations. Firstly, all-atom MD simulations of 8 ns duration were conducted to study the stability of the dioscin-cholesterol complex and the cholesterol-cholesterol complex in water and in decane, respectively. MM-GB/SA computations indicate that the dioscin-cholesterol complex is energetically more favorable than the cholesterol-cholesterol complex in a non-polar environment. Next, several coarse-grained MD simulations of 400 ns duration were conducted to directly observe the distribution of multiple dioscin molecules on a DPPC-POPC-PSM-CHOL lipid bilayer. Our results indicate that dioscin can penetrate into the lipid bilayer, accumulate in the lipid raft micro-domain, and then bind cholesterol. This leads to the destabilization of lipid raft and consequent membrane curvature, which may eventually result in the hemolysis of red cells. This possible mechanism of hemolysis can well explain some experimental observations on hemolysis. PMID:19513766

  14. Molecular Mechanisms of Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    Jane A. Leopold

    2016-05-01

    Full Text Available Pulmonary arterial hypertension (PAH is a devastating disease that is precipitated by hypertrophic pulmonary vascular remodeling of distal arterioles to increase pulmonary artery pressure and pulmonary vascular resistance in the absence of left heart, lung parenchymal, or thromboembolic disease. Despite available medical therapy, pulmonary artery remodeling and its attendant hemodynamic consequences result in right ventricular dysfunction, failure, and early death. To limit morbidity and mortality, attention has focused on identifying the cellular and molecular mechanisms underlying aberrant pulmonary artery remodeling to identify pathways for intervention. While there is a well-recognized heritable genetic component to PAH, there is also evidence of other genetic perturbations, including pulmonary vascular cell DNA damage, activation of the DNA damage response, and variations in microRNA expression. These findings likely contribute, in part, to dysregulation of proliferation and apoptosis signaling pathways akin to what is observed in cancer; changes in cellular metabolism, metabolic flux, and mitochondrial function; and endothelial-to-mesenchymal transition as key signaling pathways that promote pulmonary vascular remodeling. This review will highlight recent advances in the field with an emphasis on the aforementioned molecular mechanisms as contributors to the pulmonary vascular disease pathophenotype.

  15. Molecular mechanisms of the plant heat stress response

    Energy Technology Data Exchange (ETDEWEB)

    Qu, Ai-Li; Ding, Yan-Fei; Jiang, Qiong [China Jiliang University, Xueyuan Road 258, Hangzhou 310018 (China); Zhu, Cheng, E-mail: pzhch@cjlu.edu.cn [China Jiliang University, Xueyuan Road 258, Hangzhou 310018 (China)

    2013-03-08

    Highlights: ► This review elaborates the response networks of heat stress in plants. ► It elaborates proteins responding to heat stress in special physiological period. ► The proteins and pathways have formed a basic network of the heat stress response. ► Achievements of the various technologies are also combined. -- Abstract: High temperature has become a global concern, which seriously affects the growth and production of plants, particularly crops. Thus, the molecular mechanism of the heat stress response and breeding of heat-tolerant plants is necessary to protect food production and ensure crop safety. This review elaborates on the response networks of heat stress in plants, including the Hsf and Hsp response pathways, the response of ROS and the network of the hormones. In addition, the production of heat stress response elements during particular physiological periods of the plant is described. We also discuss the existing problems and future prospects concerning the molecular mechanisms of the heat stress response in plants.

  16. Molecular Fundaments of Mechanical Properties of Spider Silk

    Institute of Scientific and Technical Information of China (English)

    潘志娟; 刘敏; 李春萍; 李栋高; 盛家镛

    2003-01-01

    Dragline,framework and cocoon silk fibers of Araneus Ventricosus were used for this study.To investigate the microstructure mechanisms of stress-strain behavior of spider silk,firstly,amino acid compositions were analyzed and molecular conformations and crystallinity were measured with Raman spectra and X-ray diffraction respectively.The results showed that there were more amino acids with large side groups and polar ones in spider silk than those of Bombyx silk,and the amino acid distribution varied with different spider silk.The molecular structures were mainly α-helix and β-sheet,and random coil and β-turn existed as well.The proportions and arrangement of these conformations of dragline silk were different from framework and cocoon silk fibers.Microstructure was one of important factors of excellent mechanical properties of spider silk.Crystallinity of spider silk was very low,which implied that the roles of crystal on spider silk were not as great as other protein fibers.

  17. Towards identification of molecular mechanisms of short stature.

    Science.gov (United States)

    Waldman, Lindsey A; Chia, Dennis J

    2013-11-20

    Growth evaluations are among the most common referrals to pediatric endocrinologists. Although a number of pathologies, both primary endocrine and non-endocrine, can present with short stature, an estimated 80% of evaluations fail to identify a clear etiology, leaving a default designation of idiopathic short stature (ISS). As a group, several features among children with ISS are suggestive of pathophysiology of the GH-IGF-1 axis, including low serum levels of IGF-1 despite normal GH secretion. Candidate gene analysis of rare cases has demonstrated that severe mutations of genes of the GH-IGF-1 axis can present with a profound height phenotype, leading to speculation that a collection of mild mutations or polymorphisms of these genes can explain poor growth in a larger proportion of patients. Recent genome-wide association studies have identified ~180 genomic loci associated with height that together account for approximately 10% of height variation. With only modest representation of the GH-IGF-1 axis, there is little support for the long-held hypothesis that common genetic variants of the hormone pathway provide the molecular mechanism for poor growth in a substantial proportion of individuals. The height-associated common variants are not observed in the anticipated frequency in the shortest individuals, suggesting rare genetic factors with large effect are more plausible in this group. As we advance towards establishing a molecular mechanism for poor growth in a greater percentage of those currently labeled ISS, we highlight two strategies that will likely be offered with increasing frequency: (1) unbiased genetic technologies including array analysis for copy number variation and whole exome/genome sequencing and (2) epigenetic alterations of key genomic loci. Ultimately data from subsets with similar molecular etiologies may emerge that will allow tailored interventions to achieve the best clinical outcome.

  18. Characterization of molecular mechanisms of in vivo UVR induced cataract.

    Science.gov (United States)

    Galichanin, Konstantin; Talebizadeh, Nooshin; Söderberg, Per

    2012-01-01

    Cataract is the leading cause of blindness in the world (1). The World Health Organization defines cataract as a clouding of the lens of the eye which impedes the transfer of light. Cataract is a multi-factorial disease associated with diabetes, smoking, ultraviolet radiation (UVR), alcohol, ionizing radiation, steroids and hypertension. There is strong experimental (2-4) and epidemiological evidence (5,6) that UVR causes cataract. We developed an animal model for UVR B induced cataract in both anesthetized (7) and non-anesthetized animals (8). The only cure for cataract is surgery but this treatment is not accessible to all. It has been estimated that a delay of onset of cataract for 10 years could reduce the need for cataract surgery by 50% (9). To delay the incidence of cataract, it is needed to understand the mechanisms of cataract formation and find effective prevention strategies. Among the mechanisms for cataract development, apoptosis plays a crucial role in initiation of cataract in humans and animals (10). Our focus has recently been apoptosis in the lens as the mechanism for cataract development (8,11,12). It is anticipated that a better understanding of the effect of UVR on the apoptosis pathway will provide possibilities for discovery of new pharmaceuticals to prevent cataract. In this article, we describe how cataract can be experimentally induced by in vivo exposure to UVR-B. Further RT-PCR and immunohistochemistry are presented as tools to study molecular mechanisms of UVR-B induced cataract. PMID:23222480

  19. Automated angle-scanning photoemission end-station with molecular beam epitaxy at KEK-PF BL-1C

    CERN Document Server

    Ono, K; Horiba, K; Oh, J H; Nakazono, S; Kihara, T; Nakamura, K; Mano, T; Mizuguchi, M; Oshima, M; Aiura, Y; Kakizaki, A

    2001-01-01

    In order to satisfy demands to study the electronic structure of quantum nanostructures, a VUV beamline and a high-resolution and high-throughput photoemission end-station combined with a molecular beam epitaxy (MBE) system have been constructed at the BL-1C of the Photon Factory. An angle-resolved photoemission spectrometer, having high energy- and angular-resolutions; VG Microtech ARUPS10, was installed. The total energy resolution of 31 meV at the 60 eV of photon energy is achieved. For the automated angle-scanning photoemission, the electron spectrometer mounted on a two-axis goniometer can be rotated in vacuum by the computer-controlled stepping motors. Another distinctive feature of this end-station is a connection to a MBE chamber in ultahigh vacuum (UHV). In this system, MBE-grown samples can be transferred into the photoemission chamber without breaking UHV. Photoemission spectra of MBE-grown GaAs(0 0 1) surfaces were measured with high-resolution and bulk and surface components are clearly resolved.

  20. Molecular and Epigenetic Mechanisms of MLL in Human Leukemogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Ballabio, Erica; Milne, Thomas A., E-mail: thomas.milne@imm.ox.ac.uk [MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital Headington, Oxford OX3 9DS (United Kingdom)

    2012-09-10

    Epigenetics is often defined as the study of heritable changes in gene expression or chromosome stability that don’t alter the underlying DNA sequence. Epigenetic changes are established through multiple mechanisms that include DNA methylation, non-coding RNAs and the covalent modification of specific residues on histone proteins. It is becoming clear not only that aberrant epigenetic changes are common in many human diseases such as leukemia, but that these changes by their very nature are malleable, and thus are amenable to treatment. Epigenetic based therapies have so far focused on the use of histone deacetylase (HDAC) inhibitors and DNA methyltransferase inhibitors, which tend to have more general and widespread effects on gene regulation in the cell. However, if a unique molecular pathway can be identified, diseases caused by epigenetic mechanisms are excellent candidates for the development of more targeted therapies that focus on specific gene targets, individual binding domains, or specific enzymatic activities. Designing effective targeted therapies depends on a clear understanding of the role of epigenetic mutations during disease progression. The Mixed Lineage Leukemia (MLL) protein is an example of a developmentally important protein that controls the epigenetic activation of gene targets in part by methylating histone 3 on lysine 4. MLL is required for normal development, but is also mutated in a subset of aggressive human leukemias and thus provides a useful model for studying the link between epigenetic cell memory and human disease. The most common MLL mutations are chromosome translocations that fuse the MLL gene in frame with partner genes creating novel fusion proteins. In this review, we summarize recent work that argues MLL fusion proteins could function through a single molecular pathway, but we also highlight important data that suggests instead that multiple independent mechanisms underlie MLL mediated leukemogenesis.

  1. Molecular and Epigenetic Mechanisms of MLL in Human Leukemogenesis

    Directory of Open Access Journals (Sweden)

    Thomas A. Milne

    2012-09-01

    Full Text Available Epigenetics is often defined as the study of heritable changes in gene expression or chromosome stability that don’t alter the underlying DNA sequence. Epigenetic changes are established through multiple mechanisms that include DNA methylation, non-coding RNAs and the covalent modification of specific residues on histone proteins. It is becoming clear not only that aberrant epigenetic changes are common in many human diseases such as leukemia, but that these changes by their very nature are malleable, and thus are amenable to treatment. Epigenetic based therapies have so far focused on the use of histone deacetylase (HDAC inhibitors and DNA methyltransferase inhibitors, which tend to have more general and widespread effects on gene regulation in the cell. However, if a unique molecular pathway can be identified, diseases caused by epigenetic mechanisms are excellent candidates for the development of more targeted therapies that focus on specific gene targets, individual binding domains, or specific enzymatic activities. Designing effective targeted therapies depends on a clear understanding of the role of epigenetic mutations during disease progression. The Mixed Lineage Leukemia (MLL protein is an example of a developmentally important protein that controls the epigenetic activation of gene targets in part by methylating histone 3 on lysine 4. MLL is required for normal development, but is also mutated in a subset of aggressive human leukemias and thus provides a useful model for studying the link between epigenetic cell memory and human disease. The most common MLL mutations are chromosome translocations that fuse the MLL gene in frame with partner genes creating novel fusion proteins. In this review, we summarize recent work that argues MLL fusion proteins could function through a single molecular pathway, but we also highlight important data that suggests instead that multiple independent mechanisms underlie MLL mediated leukemogenesis.

  2. MOLECULAR MECHANISM OF MICROBIAL TECHNETIUM REDUCTION FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    DiChristina, Thomas J. [Georgia Tech

    2013-04-30

    Microbial Tc(VII) reduction is an attractive alternative strategy for bioremediation of technetium-contaminated subsurface environments. Traditional ex situ remediation processes (e.g., adsorption or ion exchange) are often limited by poor extraction efficiency, inhibition by competing ions and production of large volumes of produced waste. Microbial Tc(VII) reduction provides an attractive alternative in situ remediation strategy since the reduced end-product Tc(IV) precipitates as TcO2, a highly insoluble hydrous oxide. Despite its potential benefits, the molecular mechanism of microbial Tc(VII) reduction remains poorly understood. The main goal of the proposed DOENABIR research project is to determine the molecular mechanism of microbial Tc(VII) reduction. Random mutagenesis studies in our lab have resulted in generation of a set of six Tc(VII) reduction-deficient mutants of Shewanella oneidensis. The anaerobic respiratory deficiencies of each Tc(VII) reduction-deficient mutant was determined by anaerobic growth on various combinations of three electron donors and 14 terminal electron acceptors. Results indicated that the electron transport pathways to Tc(VII), NO3 -, Mn(III) and U(VI) share common structural or regulatory components. In addition, we have recently found that wild-type Shewanella are also able to reduce Tc(IV) as electron acceptor, producing Tc(III) as an end-product. The recent genome sequencing of a variety of technetium-reducing bacteria and the anticipated release of several additional genome sequences in the coming year, provides us with an unprecedented opportunity to determine the mechanism of microbial technetium reduction across species and genus lines.

  3. Molecular and Epigenetic Mechanisms of MLL in Human Leukemogenesis

    International Nuclear Information System (INIS)

    Epigenetics is often defined as the study of heritable changes in gene expression or chromosome stability that don’t alter the underlying DNA sequence. Epigenetic changes are established through multiple mechanisms that include DNA methylation, non-coding RNAs and the covalent modification of specific residues on histone proteins. It is becoming clear not only that aberrant epigenetic changes are common in many human diseases such as leukemia, but that these changes by their very nature are malleable, and thus are amenable to treatment. Epigenetic based therapies have so far focused on the use of histone deacetylase (HDAC) inhibitors and DNA methyltransferase inhibitors, which tend to have more general and widespread effects on gene regulation in the cell. However, if a unique molecular pathway can be identified, diseases caused by epigenetic mechanisms are excellent candidates for the development of more targeted therapies that focus on specific gene targets, individual binding domains, or specific enzymatic activities. Designing effective targeted therapies depends on a clear understanding of the role of epigenetic mutations during disease progression. The Mixed Lineage Leukemia (MLL) protein is an example of a developmentally important protein that controls the epigenetic activation of gene targets in part by methylating histone 3 on lysine 4. MLL is required for normal development, but is also mutated in a subset of aggressive human leukemias and thus provides a useful model for studying the link between epigenetic cell memory and human disease. The most common MLL mutations are chromosome translocations that fuse the MLL gene in frame with partner genes creating novel fusion proteins. In this review, we summarize recent work that argues MLL fusion proteins could function through a single molecular pathway, but we also highlight important data that suggests instead that multiple independent mechanisms underlie MLL mediated leukemogenesis

  4. CHEM-PATH-TRACKER: An automated tool to analyze chemical motifs in molecular structures.

    Science.gov (United States)

    Ribeiro, João V; Cerqueira, N M F S A; Fernandes, Pedro A; Ramos, Maria J

    2014-07-01

    In this article, we propose a method for locating functionally relevant chemical motifs in protein structures. The chemical motifs can be a small group of residues or structure protein fragments with highly conserved properties that have important biological functions. However, the detection of chemical motifs is rather difficult because they often consist of a set of amino acid residues separated by long, variable regions, and they only come together to form a functional group when the protein is folded into its three-dimensional structure. Furthermore, the assemblage of these residues is often dependent on non-covalent interactions among the constituent amino acids that are difficult to detect or visualize. To simplify the analysis of these chemical motifs and give access to a generalized use for all users, we developed chem-path-tracker. This software is a VMD plug-in that allows the user to highlight and reveal potential chemical motifs requiring only a few selections. The analysis is based on atoms/residues pair distances applying a modified version of Dijkstra's algorithm, and it makes possible to monitor the distances of a large pathway, even during a molecular dynamics simulation. This tool turned out to be very useful, fast, and user-friendly in the performed tests. The chem-path-tracker package is distributed as an independent platform and can be found at http://www.fc.up.pt/PortoBioComp/database/doku.php?id=chem-path-tracker. PMID:24775806

  5. Molecular mechanisms of protein aggregation from global fitting of kinetic models.

    Science.gov (United States)

    Meisl, Georg; Kirkegaard, Julius B; Arosio, Paolo; Michaels, Thomas C T; Vendruscolo, Michele; Dobson, Christopher M; Linse, Sara; Knowles, Tuomas P J

    2016-02-01

    The elucidation of the molecular mechanisms by which soluble proteins convert into their amyloid forms is a fundamental prerequisite for understanding and controlling disorders that are linked to protein aggregation, such as Alzheimer's and Parkinson's diseases. However, because of the complexity associated with aggregation reaction networks, the analysis of kinetic data of protein aggregation to obtain the underlying mechanisms represents a complex task. Here we describe a framework, using quantitative kinetic assays and global fitting, to determine and to verify a molecular mechanism for aggregation reactions that is compatible with experimental kinetic data. We implement this approach in a web-based software, AmyloFit. Our procedure starts from the results of kinetic experiments that measure the concentration of aggregate mass as a function of time. We illustrate the approach with results from the aggregation of the β-amyloid (Aβ) peptides measured using thioflavin T, but the method is suitable for data from any similar kinetic experiment measuring the accumulation of aggregate mass as a function of time; the input data are in the form of a tab-separated text file. We also outline general experimental strategies and practical considerations for obtaining kinetic data of sufficient quality to draw detailed mechanistic conclusions, and the procedure starts with instructions for extensive data quality control. For the core part of the analysis, we provide an online platform (http://www.amylofit.ch.cam.ac.uk) that enables robust global analysis of kinetic data without the need for extensive programming or detailed mathematical knowledge. The software automates repetitive tasks and guides users through the key steps of kinetic analysis: determination of constraints to be placed on the aggregation mechanism based on the concentration dependence of the aggregation reaction, choosing from several fundamental models describing assembly into linear aggregates and

  6. Mechanical properties of borophene films: a reactive molecular dynamics investigation.

    Science.gov (United States)

    Le, Minh Quy; Mortazavi, Bohayra; Rabczuk, Timon

    2016-11-01

    The most recent experimental advances could provide ways for the fabrication of several atomic thick and planar forms of boron atoms. For the first time, we explore the mechanical properties of five types of boron films with various vacancy ratios ranging from 0.1-0.15, using molecular dynamics simulations with ReaxFF force field. It is found that the Young's modulus and tensile strength decrease with increasing the temperature. We found that boron sheets exhibit an anisotropic mechanical response due to the different arrangement of atoms along the armchair and zigzag directions. At room temperature, 2D Young's modulus and fracture stress of these five sheets appear in the range 63-136 N m(-1) and 12-19 N m(-1), respectively. In addition, the strains at tensile strength are in the ranges of 9%-14%, 11%-19%, and 10%-16% at 1, 300, and 600 K, respectively. This investigation not only reveals the remarkable stiffness of 2D boron, but establishes relations between the mechanical properties of the boron sheets to the loading direction, temperature and atomic structures. PMID:27678335

  7. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    Science.gov (United States)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  8. Ethanol-Induced Cerebellar Ataxia: Cellular and Molecular Mechanisms.

    Science.gov (United States)

    Dar, M Saeed

    2015-08-01

    The cerebellum is an important target of ethanol toxicity given that cerebellar ataxia is the most consistent physical manifestation of acute ethanol consumption. Despite the significance of the cerebellum in ethanol-induced cerebellar ataxia (EICA), the cellular and molecular mechanisms underlying EICA are incompletely understood. However, two important findings have shed greater light on this phenomenon. First, ethanol-induced blockade of cerebellar adenosine uptake in rodent models points to a role for adenosinergic A1 modulation of EICA. Second, the consistent observation that intracerebellar administration of nicotine in mice leads to antagonism of EICA provides evidence for a critical role of cerebellar nitric oxide (NO) in EICA reversal. Based on these two important findings, this review discusses the potential molecular events at two key synaptic sites (mossy fiber-granule cell-Golgi cell (MGG synaptic site) and granule cell parallel fiber-Purkinje cell (GPP synaptic site) that lead to EICA. Specifically, ethanol-induced neuronal NOS inhibition at the MGG synaptic site acts as a critical trigger for Golgi cell activation which leads to granule cell deafferentation. Concurrently, ethanol-induced inhibition of adenosine uptake at the GPP synaptic site produces adenosine accumulation which decreases glutamate release and leads to the profound activation of Purkinje cells (PCs). These molecular events at the MGG and GPP synaptic sites are mutually reinforcing and lead to cerebellar dysfunction, decreased excitatory output of deep cerebellar nuclei, and EICA. The critical importance of PCs as the sole output of the cerebellar cortex suggests normalization of PC function could have important therapeutic implications.

  9. Cellular and molecular mechanisms of chemical synaptic transmission.

    Science.gov (United States)

    Millhorn, D E; Bayliss, D A; Erickson, J T; Gallman, E A; Szymeczek, C L; Czyzyk-Krzeska, M; Dean, J B

    1989-12-01

    During the last decade much progress has been made in understanding the cellular and molecular mechanisms by which nerve cells communicate with each other and nonneural (e.g., muscle) target tissue. This review is intended to provide the reader with an account of this work. We begin with an historical overview of research on cell-to-cell communication and then discuss recent developments that, in some instances, have led to dramatic changes in the concept of synaptic transmission. For instance, the finding that single neurons often contain multiple messengers (i.e., neurotransmitters) invalidated the long-held theory (i.e., Dale's Law) that individual neurons contain and release one and only one type of neurotransmitter. Moreover, the last decade witnessed the inclusion of an entire group of compounds, the neuropeptides, as messenger molecules. Enormous progress has also been made in elucidating postsynaptic receptor complexes and biochemical intermediaries involved in synaptic transmission. Here the development of recombinant DNA technology has made it possible to clone and determine the molecular structure for a number of receptors. This information has been used to gain insight into how these receptors function either as a ligand-gated channel or as a G protein-linked ligand recognition molecule. Perhaps the most progress made during this era was in understanding the molecular linkage of G protein-linked receptors to intramembranous and cytoplasmic macromolecules involved in signal amplification and transduction. We conclude with a brief discussion of how synaptic transmission leads to immediate alterations in the electrical activity and, in some cases, to a change in phenotype by altering gene expression. These alterations in cellular behavior are believed to be mediated by phosphoproteins, the final biochemical product of signal transduction. PMID:2575357

  10. A molecular mechanical model for N-heterocyclic carbenes.

    Science.gov (United States)

    Gehrke, Sascha; Hollóczki, Oldamur

    2016-08-10

    In this work we present a set of force fields for nine synthetically relevant and/or structurally interesting N-heterocyclic carbenes, including imidazol-, thiazol-, triazol-, imidazolidin-, and pyridine-ylidenes. The bonding parameters were calculated by using a series of geometry optimizations by ab initio methods. For fitting the non-bonding interactions, a water molecule was employed as a probe. The interaction energy between the carbene and the probe molecule was sampled along two coordinates for each carbene, representing the interaction through the lone pair, or the π system of the molecule. The corresponding reference interaction energies were obtained by CCSD(T)/CBS calculations. To describe the direction dependence of the intermolecular potential energy, an extra, massless Coulombic interaction site was included for all carbenes, which represents the lone pair of the divalent carbon atom. The resulting fitted carbene force field (CaFF) showed a robust behavior regarding probe molecule, as changing the molecular mechanical water model, or employing, instead, an OPLS methanol molecule did not introduce significant deviations in the potential energies. The obtained CaFF models are easy to merge with standard OPLS or AMBER force fields, therefore the molecular simulations of a large number of N-heterocyclic carbenes becomes available. PMID:27426687

  11. Integration of Ligand Field Molecular Mechanics in Tinker.

    Science.gov (United States)

    Foscato, Marco; Deeth, Robert J; Jensen, Vidar R

    2015-06-22

    The ligand field molecular mechanics (LFMM) method for transition-metal complexes has been integrated in Tinker, an easily available and popular molecular modeling software package. The capability to calculate LFMM potentials has been provided by extending the functional forms of the Tinker package as well as by integrating routines for calculating the ligand field stabilization energy (LFSE), which is central to LFMM. The capabilities of the implementation are illustrated by both static calculations on the two spin states of [Fe(NH3)6](2+) and on [Cu(NH3)m](2+) (m = 4, 5, 6) and dynamic (LFMD) simulations of an FeN6-type spin-crossover compound. In addition to showing that results obtained with the Tinker-LFMM implementation are consistent with those of experiment and other computational methods and programs, we note that whereas LFMM is able to handle the conventional tetragonal Jahn-Teller distortion of the bond distances in [Cu(NH3)6](2+), the LFSE term is also necessary in order to obtain even qualitatively correct coordination geometries for the two lower-coordinate copper complexes. PMID:25970002

  12. Neuroprotection and its molecular mechanism following spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Nai-Kui Liu; Xiao-Ming Xu

    2012-01-01

    Acute spinal cord injury initiates a complex cascade of molecular events termed 'secondary injury', which leads to progressive degeneration ranging from early neuronal apoptosis at the lesion site to delayed degeneration of intact white matter tracts, and, ultimately, expansion of the initial injury. These secondary injury processes include, but are not limited to, inflammation, free radical-induced cell death, glutamate excitotoxicity, phospholipase A2 activation, and induction of extrinsic and intrinsic apoptotic pathways, which are important targets in developing neuroprotective strategies for treatment of spinal cord injury. Recently, a number of studies have shown promising results on neuroprotection and recovery of function in rodent models of spinal cord injury using treatments that target secondary injury processes including inflammation, phospholipase A2 activation, and manipulation of the PTEN-Akt/mTOR signaling pathway. The present review outlines our ongoing research on the molecular mechanisms of neuroprotection in experimental spinal cord injury and briefly summarizes our earlier findings on the therapeutic potential of pharmacological treatments in spinal cord injury.

  13. Molecular mechanisms of deformation and failure in glassy materials

    Science.gov (United States)

    Rottler, Joerg

    2004-03-01

    Understanding the molecular origins of macroscopic mechanical properties is a fundamental scientific challenge. Fracture of both amorphous and crystalline materials involves many length scales reaching from the continuum to atomic level processes near a crack tip. Using molecular simulations of simple models for amorphous glassy materials, we first study elastoplastic deformation and discuss the nature of the shear yield stress and its dependence on loading conditions, strain rate and temperature. We then focus on the deformation of glassy polymeric systems into crazes at large strains. In the craze, polymers ( 0.5 nm diameter) are bundled into an intricate network of 10 nm diameter fibrils that extends 10 micrometers on either side of a mm crack tip. Analysis of local geometry and stresses provide insight into the real-space nature of the entanglements that control craze formation as well as melt dynamics. Crazes are also shown to share many features with jammed systems such as granular media and foams, but are unique in jamming under a tensile load. This allows explanations for the exponential force distribution in jammed systems to be tested. The force distribution strongly influences the ultimate breakdown of the craze fibrils either through disentanglement or chain scission. We conclude by quantifying the contribution of crazing to the unusually large fracture energy of glassy polymers.

  14. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants

    Institute of Scientific and Technical Information of China (English)

    Zhaoliang Zhang; Hong Liao; William J. Lucas

    2014-01-01

    As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition, remobiliza-tion and recycling of phosphate (Pi) to maintain P homeostasis. Spatio-temporal molecular, physiological, and biochemical Pi deficiency responses developed by plants are the consequence of local and systemic sensing and signaling pathways. Pi deficiency is sensed local y by the root system where hormones serve as important signaling components in terms of develop-mental reprogramming, leading to changes in root system architecture. Root-to-shoot and shoot-to-root signals, delivered through the xylem and phloem, respectively, involving Pi itself, hormones, miRNAs, mRNAs, and sucrose, serve to coordinate Pi deficiency responses at the whole-plant level. A combination of chromatin remodeling, transcriptional and posttranslational events contribute to global y regulating a wide range of Pi deficiency responses. In this review, recent advances are evaluated in terms of progress toward developing a comprehen-sive understanding of the molecular events underlying control over P homeostasis. Application of this knowledge, in terms of developing crop plants having enhanced attributes for P use efficiency, is discussed from the perspective of agricultural sustainability in the face of diminishing global P supplies.

  15. Molecular spectroscopic study for suggested mechanism of chrome tanned leather

    Science.gov (United States)

    Nashy, Elshahat H. A.; Osman, Osama; Mahmoud, Abdel Aziz; Ibrahim, Medhat

    2012-03-01

    Collagen represents the structural protein of the extracellular matrix, which gives strength of hides and/or skin under tanning process. Chrome tan is the most important tanning agent all over the world. The methods for production of leather evolved over several centuries as art and engineering with little understanding of the underlying science. The present work is devoted to suggest the most probable mechanistic action of chrome tan on hide proteins. First the affect of Cr upon hide protein is indicated by the studied mechanical properties. Then the spectroscopic characterization of the hide protein as well as chrome tanned leather was carried out with Horizontal Attenuated Total Reflection (HATR) FT-IR. The obtained results indicate how the chromium can attached with the active sites of collagen. Molecular modeling confirms that chromium can react with amino as well as carboxylate groups. Four schemes were obtained to describe the possible interactions of chrome tan with hide proteins.

  16. Recent Advances in Methamphetamine Neurotoxicity Mechanisms and Its Molecular Pathophysiology

    Directory of Open Access Journals (Sweden)

    Shaobin Yu

    2015-01-01

    Full Text Available Methamphetamine (METH is a sympathomimetic amine that belongs to phenethylamine and amphetamine class of psychoactive drugs, which are widely abused for their stimulant, euphoric, empathogenic, and hallucinogenic properties. Many of these effects result from acute increases in dopamine and serotonin neurotransmission. Subsequent to these acute effects, METH produces persistent damage to dopamine and serotonin release in nerve terminals, gliosis, and apoptosis. This review summarized the numerous interdependent mechanisms including excessive dopamine, ubiquitin-proteasome system dysfunction, protein nitration, endoplasmic reticulum stress, p53 expression, inflammatory molecular, D3 receptor, microtubule deacetylation, and HIV-1 Tat protein that have been demonstrated to contribute to this damage. In addition, the feasible therapeutic strategies according to recent studies were also summarized ranging from drug and protein to gene level.

  17. Conserved Molecular Mechanisms Underlying Homeostasis of the Golgi Complex

    Directory of Open Access Journals (Sweden)

    Cathal Wilson

    2010-01-01

    Full Text Available The Golgi complex performs a central function in the secretory pathway in the sorting and sequential processing of a large number of proteins destined for other endomembrane organelles, the plasma membrane, or secretion from the cell, in addition to lipid metabolism and signaling. The Golgi apparatus can be regarded as a self-organizing system that maintains a relatively stable morphofunctional organization in the face of an enormous flux of lipids and proteins. A large number of the molecular players that operate in these processes have been identified, their functions and interactions defined, but there is still debate about many aspects that regulate protein trafficking and, in particular, the maintenance of these highly dynamic structures and processes. Here, we consider how an evolutionarily conserved underlying mechanism based on retrograde trafficking that uses lipids, COPI, SNAREs, and tethers could maintain such a homeodynamic system.

  18. Mechanochromism, Shear Force Anisotropy, and Molecular Mechanics in Polydiacetylene Monolayers

    Energy Technology Data Exchange (ETDEWEB)

    BURNS,ALAN R.; CARPICK,R.W.; SASAKI,DARRYL Y.; SHELNUTT,JOHN A.; HADDAD,R.

    2000-08-14

    The authors use scanning probe microscopy to actuate and characterize the nanoscale mechanochromism of polydiacetylene monolayer on atomically-flat silicon oxide substrates. They find explicit evidence that the irreversible blue-to-red transformation is caused by shear forces exerted normal to the polydiacetylene polymer backbone. The anisotropic probe-induced transformation is characterized by a significant change in the tilt orientation of the side chains with respect to the surface normal. They also describe a new technique, based on shear force microscopy, that allows them to image friction anisotropy of polydiacetylene monolayer independent of scan direction. Finally, they discuss preliminary molecular mechanics modeling and electronic structure calculations that allow them to understand the correlation of mechanochromism with bond-angle changes in the conjugated polymer backbone.

  19. Quantum-Mechanical Calculations on Molecular Substructures Involved in Nanosystems

    Directory of Open Access Journals (Sweden)

    Beata Szefler

    2014-09-01

    Full Text Available In this review article, four ideas are discussed: (a aromaticity of fullerenes patched with flowers of 6-and 8-membered rings, optimized at the HF and DFT levels of theory, in terms of HOMA and NICS criteria; (b polybenzene networks, from construction to energetic and vibrational spectra computations; (c quantum-mechanical calculations on the repeat units of various P-type crystal networks and (d construction and stability evaluation, at DFTB level of theory, of some exotic allotropes of diamond D5, involved in hyper-graphenes. The overall conclusion was that several of the yet hypothetical molecular nanostructures herein described are serious candidates to the status of real molecules.

  20. The molecular mechanisms of offspring effects from obese pregnancy.

    LENUS (Irish Health Repository)

    Dowling, Daniel

    2013-01-01

    The incidence of obesity, increased weight gain and the popularity of high-fat \\/ high-sugar diets are seriously impacting upon the global population. Billions of individuals are affected, and although diet and lifestyle are of paramount importance to the development of adult obesity, compelling evidence is emerging which suggests that maternal obesity and related disorders may be passed on to the next generation by non-genetic means. The processes acting within the uteri of obese mothers may permanently predispose offspring to a diverse plethora of diseases ranging from obesity and diabetes to psychiatric disorders. This review aims to summarise some of the molecular mechanisms and active processes currently known about maternal obesity and its effect on foetal and neonatal physiology and metabolism. Complex and multifactorial networks of molecules are intertwined and culminate in a pathologically synergistic manner to cause disruption and disorganisation of foetal physiology. This altered phenotype may potentiate the cycle of intergenerational transmission of obesity and related disorders.

  1. Molecular mechanisms of water transport in the eye

    DEFF Research Database (Denmark)

    Hamann, Steffen; Hamann, Steffen Ellitsgaard

    2002-01-01

    general model for water transport in ocular epithelia. Some water-transporting membranes contain aquaporins, others do not. The ultrastructure is also variable among the cell layers and cannot be fitted into a general model. On the other hand, the direction of cotransport in symporters complies with the......The four major sites for ocular water transport, the corneal epithelium and endothelium, the ciliary epithelium, and the retinal pigment epithelium, are reviewed. The cornea has an inherent tendency to swell, which is counteracted by its two surface cell layers, the corneal epithelium and...... endothelium. The bilayered ciliary epithelium secretes the aqueous humor into the posterior chamber, and the retinal pigment epithelium transports water from the retinal to the choroidal site. For each epithelium, ion transport mechanisms are associated with fluid transport, but the exact molecular coupling...

  2. [Biodegradation mechanism of DDT and chlorpyrifos using molecular simulation].

    Science.gov (United States)

    Lin, Yu-Zhen; Zeng, Guang-Ming; Zhang, Yu; Chen, Ming; Jiang, Min; Zhang, Jia-Chao; Lu, Lun-Hui; Liu, Li-Feng

    2012-03-01

    In order to explore the microscopic degradation mechanism of organic pesticides degrading enzymes, we used molecular docking method to investigate the binding modes of DDT to laccase and chlorpyrifos to organophosphorus hydrolase, and obtained the corresponding complex structures. According to the principle of minimum scoring, the results showed that the MolDock scores were -103.134 and -111.626, re-rank scores were -72.858 and -80.261, respectively. And we used LPC/CSU server search the interactions between organic pesticides and their degrading enzymes. Our results showed that hydrophobic interaction was the strongest contacts in DDT-laccase complex, and both hydrogen bonds and hydrophobic interactions were the strongest contacts when chlorpyrifos-organophosphorus hydrolase complex. The amino acid residues Tyr224 in laccase and Arg254 in organophosphorus hydrolase were detected to play significant roles in catalytic processes.

  3. Molecular mechanism for cavitation in water under tension

    CERN Document Server

    Menzl, Georg; Geiger, Philipp; Caupin, Frédéric; Abascal, Jose L F; Valeriani, Chantal; Dellago, Christoph

    2016-01-01

    Despite its relevance in biology and engineering, the molecular mechanism driving cavitation in water remains unknown. Using computer simulations, we investigate the structure and dynamics of vapor bubbles emerging from metastable water at negative pressures. We find that in the early stages of cavitation, bubbles are irregularly shaped and become more spherical as they grow. Nevertheless, the free energy of bubble formation can be perfectly reproduced in the framework of classical nucleation theory (CNT) if the curvature dependence of the surface tension is taken into account. Comparison of the observed bubble dynamics to the predictions of the macroscopic Rayleigh--Plesset (RP) equation, augmented with thermal fluctuations, demonstrates that the growth of nanoscale bubbles is governed by viscous forces. Combining the dynamical prefactor determined from the RP equation with the free energy of CNT yields an analytical expression for the cavitation rate that reproduces the simulation results very well over a w...

  4. Drug-DNA intercalation: from discovery to the molecular mechanism.

    Science.gov (United States)

    Mukherjee, Arnab; Sasikala, Wilbee D

    2013-01-01

    The ability of small molecules to perturb the natural structure and dynamics of nucleic acids is intriguing and has potential applications in cancer therapeutics. Intercalation is a special binding mode where the planar aromatic moiety of a small molecule is inserted between a pair of base pairs, causing structural changes in the DNA and leading to its functional arrest. Enormous progress has been made to understand the nature of the intercalation process since its idealistic conception five decades ago. However, the biological functions were detected even earlier. In this review, we focus mainly on the acridine and anthracycline types of drugs and provide a brief overview of the development in the field through various experimental methods that led to our present understanding of the subject. Subsequently, we discuss the molecular mechanism of the intercalation process, free-energy landscapes, and kinetics that was revealed recently through detailed and rigorous computational studies.

  5. Molecular mechanisms underlying progesterone-enhanced breast cancer cell migration.

    Science.gov (United States)

    Wang, Hui-Chen; Lee, Wen-Sen

    2016-01-01

    Progesterone (P4) was demonstrated to inhibit migration in vascular smooth muscle cells (VSMCs), but to enhance migration in T47D breast cancer cells. To investigate the mechanism responsible for this switch in P4 action, we examined the signaling pathway responsible for the P4-induced migration enhancement in breast cancer cell lines, T47D and MCF-7. Here, we demonstrated that P4 activated the cSrc/AKT signaling pathway, subsequently inducing RSK1 activation, which in turn increased phosphorylation of p27 at T198 and formation of the p27pT198-RhoA complex in the cytosol, thereby preventing RhoA degradation, and eventually enhanced migration in T47D cells. These findings were confirmed in the P4-treated MCF-7. Comparing the P4-induced molecular events in between breast cancer cells and VSMCs, we found that P4 increased p27 phosphorylation at T198 in breast cancer cells through RSK1 activation, while P4 increased p27 phosphorlation at Ser10 in VSMCs through KIS activation. P27pT198 formed the complex with RhoA and prevented RhoA degradation in T47D cells, whereas p-p27Ser10 formed the complex with RhoA and caused RhoA degradation in VSMCs. The results of this study highlight the molecular mechanism underlying P4-enhanced breast cancer cell migration, and suggest that RSK1 activation is responsible for the P4-induced migration enhancement in breast cancer cells. PMID:27510838

  6. The molecular mechanisms of hazardous metals for carcinogenesis

    Institute of Scientific and Technical Information of China (English)

    ChenJK; LeiYX

    2002-01-01

    The available experimental and epidemiological data have shown that nickel (Ni) and cadmium (Dd) and their compounds are carcinogenic to experimental animals and human.These two metals have been classified as human carcinogens bythe International Agency for Research on Cancer (IARC).However,Their underlying molecular mechanisms remain unknown.The objective of this research was to investigate the molecular mechanisms responsible for Ni and Cd carcinogenesis through epidemiological study in human exposure,transformation expreiments in human epithelial cells (16HBE) and BALB/c-3T3 cell lines in vitro,DNA damage detections (comet,DNA-protein crosslinks) as well as telomerase activity and apoptosis assay,and analysis of oncogens,tumor suppressor genes and their mutation (including genomic instability,k-ras,p15,p16,p53,FHIT) in transformed cell lines or tumor cells/tissue.Furthermore,we also detected and analyses the methylation,related novel genes and encoded protein in Cd transformed cells.The results and conclusion are as follows:(1)There is significant relationship between some hazardous metals and lung cancer (OR=8.76),especially for nickel(OR=11.25).(2)Ni and Cd and their compounds could induce malignant transformation in mammalian cell lines and human epithelial cells,and induce tumorigenesis in nude mice.(3)There is obvious DNA damage during cell transformation and tumorigenesis induced by Ni.(4) Significant genomic instability has been shown during cell transformation and tumorigenesis induced by Ni.(5)Detection of k-ras,p15,p16 genes in point mutation have demonstrated no changes during cell transformation and tumorigenesis induced by hazardous medals,suggesting that gene mutation is not the main way to metal carcinogenesis.(6)There are some aberrant DNA methylation in Cdtransformed cell lines.(7)We found two novel Cd-responsive proto-oncogenes and their encoded proteins in Cd-transformed cell lines.

  7. Molecular Mechanism for LAMP1 Recognition by Lassa Virus

    Science.gov (United States)

    Cohen-Dvashi, Hadas; Cohen, Nadav; Israeli, Hadar

    2015-01-01

    ABSTRACT Lassa virus is a notorious human pathogen that infects many thousands of people each year in West Africa, causing severe viral hemorrhagic fevers and significant mortality. The surface glycoprotein of Lassa virus mediates receptor recognition through its GP1 subunit. Here we report the crystal structure of GP1 from Lassa virus, which is the first representative GP1 structure for Old World arenaviruses. We identify a unique triad of histidines that forms a binding site for LAMP1, a known lysosomal protein recently discovered to be a critical receptor for internalized Lassa virus at acidic pH. We demonstrate that mutation of this histidine triad, which is highly conserved among Old World arenaviruses, impairs LAMP1 recognition. Our biochemical and structural data further suggest that GP1 from Lassa virus may undergo irreversible conformational changes that could serve as an immunological decoy mechanism. Together with a variable region that we identify on the surface of GP1, those could be two distinct mechanisms that Lassa virus utilizes to avoid antibody-based immune response. IMPORTANCE Structural data at atomic resolution for viral proteins is key for understanding their function at the molecular level and can facilitate novel avenues for combating viral infections. Here we used X-ray protein crystallography to decipher the crystal structure of the receptor-binding domain (GP1) from Lassa virus. This is a pathogenic virus that causes significant illness and mortality in West Africa. This structure reveals the overall architecture of GP1 domains from the group of viruses known as the Old World arenaviruses. Using this structural information, we elucidated the mechanisms for pH switch and binding of Lassa virus to LAMP1, a recently identified host receptor that is critical for successful infection. Lastly, our structural analysis suggests two novel immune evasion mechanisms that Lassa virus may utilize to escape antibody-based immune response. PMID

  8. Molecular Mechanisms Regulating Muscle Fiber Composition Under Microgravity

    Science.gov (United States)

    Rosenthal, Nadia A.

    1999-01-01

    The overall goal of this project is to reveal the molecular mechanisms underlying the selective and debilitating atrophy of specific skeletal muscle fiber types that accompanies sustained conditions of microgravity. Since little is currently known about the regulation of fiber-specific gene expression programs in mammalian muscle, elucidation of the basic mechanisms of fiber diversification is a necessary prerequisite to the generation of therapeutic strategies for attenuation of muscle atrophy on earth or in space. Vertebrate skeletal muscle development involves the fusion of undifferentiated mononucleated myoblasts to form multinucleated myofibers, with a concomitant activation of muscle-specific genes encoding proteins that form the force-generating contractile apparatus. The regulatory circuitry controlling skeletal muscle gene expression has been well studied in a number of vertebrate animal systems. The goal of this project has been to achieve a similar level of understanding of the mechanisms underlying the further specification of muscles into different fiber types, and the role played by innervation and physical activity in the maintenance and adaptation of different fiber phenotypes into adulthood. Our recent research on the genetic basis of fiber specificity has focused on the emergence of mature fiber types and have implicated a group of transcriptional regulatory proteins, known as E proteins, in the control of fiber specificity. The restriction of E proteins to selected muscle fiber types is an attractive hypothetical mechanism for the generation of muscle fiber-specific patterns of gene expression. To date our results support a model wherein different E proteins are selectively expressed in muscle cells to determine fiber-restricted gene expression. These studies are a first step to define the molecular mechanisms responsible for the shifts in fiber type under conditions of microgravity, and to determine the potential importance of E proteins as

  9. DMPD: Molecular mechanisms of the anti-inflammatory functions of interferons. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18086388 Molecular mechanisms of the anti-inflammatory functions of interferons. Ko...varik P, Sauer I, Schaljo B. Immunobiology. 2007;212(9-10):895-901. Epub 2007 Nov 8. (.png) (.svg) (.html) (.csml) Show Molecular... mechanisms of the anti-inflammatory functions of interferons. PubmedID 18086388 Title Molecular

  10. Molecular mechanisms for interaction of glycine betaine with supra-molecular phycobiliprotein complexes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Glycine betaine(GB) is a biologically important small molecule protecting cells,proteins and enzymes in vivo and in vitro under environmental stresses.Recently,it was found that GB could also relax the structure and inactivate the function of phycobiliproteins and phycobilisome(PBS),a kind of supramolecular complexes,in cyanobacterial cells.The molecular mechanisms for the opposite phenomena are quite ambiguous.Taking PBS and a trimeric or monomeric C-phycocyanin(C-PC) as models,the molecular mechanism for the interaction of GB with supra-molecular complexes or nuclear proteins was investigated.The energetic decoupling of PBS components induced by GB suggests that the PBS core-membrane linking polypeptide was the most sensitive site while the rod-core linker was the next.Biochemistry analysis proves that PBS structure was loosened but not dissociated into the components.On the basis of the results and structure knowledge,it was proposed that GB screened the electrostatic attraction of the opposite charges on a linker and a protein leading to a much looser structure.It was observed that GB induced a spectral blue shift for trimeric C-PC but a red shift for a monomeric C-PC(a nuclear protein),which were ascribed to GB’s screening of the electrostatic attraction of a linker to a protein and strengthening of the hydrophobic interaction between C-PC monomers.The trimers and monomers’ forming of the same products under high concentration of GB was ascribed to a compromise of the opposite interaction forces.

  11. Molecular mechanisms for interaction of glycine betaine with supra-molecular phycobiliprotein complexes

    Institute of Scientific and Technical Information of China (English)

    XU XiuLing; LI Heng; XIE Jie; ZHAO JingQuan

    2009-01-01

    Glycine betaine (GB) is a biologically important small molecule protecting cells,proteins and enzymes in vivo and in vitro under environmental stresses.Recently,it was found that GB could also relax the structure and inactivate the function of phycobiliproteins and phycobilisome (PBS),a kind of supramolecular complexes,in cyanobacterial cells.The molecular mechanisms for the opposite phenomena are quite ambiguous.Taking PBS and a trimeric or monomeric C-phycocyanin (C-PC) as models,the molecular mechanism for the interaction of GB with supra-molecular complexes or nuclear proteins was investigated.The energetic decoupling of PBS components induced by GB suggests that the PBS core-membrane linking polypeptide was the most sensitive site while the rod-core linker was the next.Biochemistry analysis proves that PBS structure was loosened but not dissociated into the components.On the basis of the results and structure knowledge,it was proposed that GB screened the electrostatic attraction of the opposite charges on a linker and a protein leading to a much looser structure.It was observed that GB induced a spectral blue shift for trimeric C-PC but a red shift for s monomeric C-PC (a nuclear protein),which were ascribed to GB's screening of the electrostatic attraction of a linker to a protein and strengthening of the hydrophobic interaction between C-PC monomers.The trimers and monomers' forming of the same products under high concentration of GB was ascribed to a compromise of the opposite interaction forces.

  12. Molecular mechanisms of Tetranychus urticae chemical adaptation in hop fields.

    Science.gov (United States)

    Piraneo, Tara G; Bull, Jon; Morales, Mariany A; Lavine, Laura C; Walsh, Douglas B; Zhu, Fang

    2015-01-01

    The two-spotted spider mite, Tetranychus urticae Koch is a major pest that feeds on >1,100 plant species. Many perennial crops including hop (Humulus lupulus) are routinely plagued by T. urticae infestations. Hop is a specialty crop in Pacific Northwest states, where 99% of all U.S. hops are produced. To suppress T. urticae, growers often apply various acaricides. Unfortunately T. urticae has been documented to quickly develop resistance to these acaricides which directly cause control failures. Here, we investigated resistance ratios and distribution of multiple resistance-associated mutations in field collected T. urticae samples compared with a susceptible population. Our research revealed that a mutation in the cytochrome b gene (G126S) in 35% tested T. urticae populations and a mutation in the voltage-gated sodium channel gene (F1538I) in 66.7% populations may contribute resistance to bifenazate and bifenthrin, respectively. No mutations were detected in Glutamate-gated chloride channel subunits tested, suggesting target site insensitivity may not be important in our hop T. urticae resistance to abamectin. However, P450-mediated detoxification was observed and is a putative mechanism for abamectin resistance. Molecular mechanisms of T. urticae chemical adaptation in hopyards is imperative new information that will help growers develop effective and sustainable management strategies. PMID:26621458

  13. Categorical prototyping: incorporating molecular mechanisms into 3D printing

    Science.gov (United States)

    Brommer, Dieter B.; Giesa, Tristan; Spivak, David I.; Buehler, Markus J.

    2016-01-01

    We apply the mathematical framework of category theory to articulate the precise relation between the structure and mechanics of a nanoscale system in a macroscopic domain. We maintain the chosen molecular mechanical properties from the nanoscale to the continuum scale. Therein we demonstrate a procedure to ‘protoype a model’, as category theory enables us to maintain certain information across disparate fields of study, distinct scales, or physical realizations. This process fits naturally with prototyping, as a prototype is not a complete product but rather a reduction to test a subset of properties. To illustrate this point, we use large-scale multi-material printing to examine the scaling of the elastic modulus of 2D carbon allotropes at the macroscale and validate our printed model using experimental testing. The resulting hand-held materials can be examined more readily, and yield insights beyond those available in the original digital representations. We demonstrate this concept by twisting the material, a test beyond the scope of the original model. The method developed can be extended to other methods of additive manufacturing.

  14. Emerging Anticancer Potentials of Goniothalamin and Its Molecular Mechanisms

    Directory of Open Access Journals (Sweden)

    Mohamed Ali Seyed

    2014-01-01

    Full Text Available The treatment of most cancers is still inadequate, despite tremendous steady progress in drug discovery and effective prevention. Nature is an attractive source of new therapeutics. Several medicinal plants and their biomarkers have been widely used for the treatment of cancer with less known scientific basis of their functioning. Although a wide array of plant derived active metabolites play a role in the prevention and treatment of cancer, more extensive scientific evaluation of their mechanisms is still required. Styryl-lactones are a group of secondary metabolites ubiquitous in the genus Goniothalamus that have demonstrated to possess antiproliferative activity against cancer cells. A large body of evidence suggests that this activity is associated with the induction of apoptosis in target cells. In an effort to promote further research on the genus Goniothalamus, this review offers a broad analysis of the current knowledge on Goniothalamin (GTN or 5, 6, dihydro-6-styryl-2-pyronone (C13H12O2, a natural occurring styryl-lactone. Therefore, it includes (i the source of GTN and other metabolites; (ii isolation, purification, and (iii the molecular mechanisms of actions of GTN, especially the anticancer properties, and summarizes the role of GTN which is crucial for drug design, development, and application in future for well-being of humans.

  15. Molecular mechanisms of CRISPR-mediated microbial immunity.

    Science.gov (United States)

    Gasiunas, Giedrius; Sinkunas, Tomas; Siksnys, Virginijus

    2014-02-01

    Bacteriophages (phages) infect bacteria in order to replicate and burst out of the host, killing the cell, when reproduction is completed. Thus, from a bacterial perspective, phages pose a persistent lethal threat to bacterial populations. Not surprisingly, bacteria evolved multiple defense barriers to interfere with nearly every step of phage life cycles. Phages respond to this selection pressure by counter-evolving their genomes to evade bacterial resistance. The antagonistic interaction between bacteria and rapidly diversifying viruses promotes the evolution and dissemination of bacteriophage-resistance mechanisms in bacteria. Recently, an adaptive microbial immune system, named clustered regularly interspaced short palindromic repeats (CRISPR) and which provides acquired immunity against viruses and plasmids, has been identified. Unlike the restriction–modification anti-phage barrier that subjects to cleavage any foreign DNA lacking a protective methyl-tag in the target site, the CRISPR–Cas systems are invader-specific, adaptive, and heritable. In this review, we focus on the molecular mechanisms of interference/immunity provided by different CRISPR–Cas systems.

  16. Molecular mechanisms of antibody-mediated neutralisation of flavivirus infection.

    Science.gov (United States)

    Pierson, Theodore C; Diamond, Michael S

    2008-01-01

    Flaviviruses are a group of positive-stranded RNA viruses that cause a spectrum of severe illnesses globally in more than 50 million individuals each year. While effective vaccines exist for three members of this group (yellow fever, Japanese encephalitis, and tick-borne encephalitis viruses), safe and effective vaccines for several other flaviviruses of clinical importance, including West Nile and dengue viruses, remain in development. An effective humoral immune response is critical for protection against flaviviruses and an essential goal of vaccine development. The effectiveness of virus-specific antibodies in vivo reflects their capacity to inhibit virus entry and spread through several mechanisms, including the direct neutralisation of virus infection. Recent advances in our understanding of the structural biology of flaviviruses, coupled with the use of small-animal models of flavivirus infection, have promoted significant advances in our appreciation of the factors that govern antibody recognition and inhibition of flaviviruses in vitro and in vivo. In this review, we discuss the properties that define the potency of neutralising antibodies and the molecular mechanisms by which they inhibit virus infection. How recent advances in this area have the potential to improve the development of safe and effective vaccines and immunotherapeutics is also addressed. PMID:18471342

  17. Molecular mechanisms of CRISPR-mediated microbial immunity.

    Science.gov (United States)

    Gasiunas, Giedrius; Sinkunas, Tomas; Siksnys, Virginijus

    2014-02-01

    Bacteriophages (phages) infect bacteria in order to replicate and burst out of the host, killing the cell, when reproduction is completed. Thus, from a bacterial perspective, phages pose a persistent lethal threat to bacterial populations. Not surprisingly, bacteria evolved multiple defense barriers to interfere with nearly every step of phage life cycles. Phages respond to this selection pressure by counter-evolving their genomes to evade bacterial resistance. The antagonistic interaction between bacteria and rapidly diversifying viruses promotes the evolution and dissemination of bacteriophage-resistance mechanisms in bacteria. Recently, an adaptive microbial immune system, named clustered regularly interspaced short palindromic repeats (CRISPR) and which provides acquired immunity against viruses and plasmids, has been identified. Unlike the restriction–modification anti-phage barrier that subjects to cleavage any foreign DNA lacking a protective methyl-tag in the target site, the CRISPR–Cas systems are invader-specific, adaptive, and heritable. In this review, we focus on the molecular mechanisms of interference/immunity provided by different CRISPR–Cas systems. PMID:23959171

  18. Automated Rotational Percussion Bed and Bronchoscopy Improves Respiratory Mechanics and Oxygenation in ARDS Patients Supported with Extracorporeal Membrane Oxygenation.

    Science.gov (United States)

    Sharma, Nirmal S; Wille, Keith M; Bellot, S Christopher; Diaz-Guzman, Enrique

    2016-01-01

    Extracorporeal membrane oxygenation (ECMO) has been used to provide "lung rest" through the use of low tidal volume (6 ml/kg) and ultralow tidal volume (respiratory distress syndrome (ARDS). Low and ultralow tidal volume ventilation can result in low dynamic respiratory compliance and potentially increased retention of airway secretions. We present our experience using automated rotational percussion beds (ARPBs) and bronchoscopy in four ARDS patients to manage increased pulmonary secretions. These beds performed automated side-to-side tilt maneuver and intermittent chest wall percussion. Their use resulted in substantial reduction in peak and plateau pressures in two patients on volume control ventilation, while the driving pressures (inspiratory pressure) to attain the desired tidal volumes in patients on pressure control ventilation also decreased. In addition, mean partial pressure of oxygen in arterial blood (PaO2)/fraction of inspired oxygen (FiO2) ratio (109 pre-ARPB vs. 157 post-ARPB), positive end-expiratory pressure (10 cm H2O vs. 8 cm H2O), and FiO2 (0.88 vs. 0.52) improved after initiation of ARPB. The improvements in the respiratory mechanics and oxygenation helped us to initiate early ECMO weaning. Based on our experience, the use of chest physiotherapy, frequent body repositioning, and bronchoscopy may be helpful in the management of pulmonary secretions in patients supported with ECMO. PMID:26771392

  19. Protein adduct formation as a molecular mechanism in neurotoxicity.

    Science.gov (United States)

    Lopachin, Richard M; Decaprio, Anthony P

    2005-08-01

    Chemicals that cause nerve injury and neurological deficits are a structurally diverse group. For the majority, the corresponding molecular mechanisms of neurotoxicity are poorly understood. Many toxicants (e.g., hepatotoxicants) of other organ systems and/or their oxidative metabolites have been identified as electrophiles and will react with cellular proteins by covalently binding nucleophilic amino acid residues. Cellular toxicity occurs when adduct formation disrupts protein structure and/or function, which secondarily causes damage to submembrane organelles, metabolic pathways, or cytological processes. Since many neurotoxicants are also electrophiles, the corresponding pathophysiological mechanism might involve protein adduction. In this review, we will summarize the principles of covalent bond formation that govern reactions between xenobiotic electrophiles and biological nucleophiles. Because a neurotoxicant can form adducts with multiple nucleophilic residues on proteins, the challenge is to identify the mechanistically important adduct. In this regard, it is now recognized that despite widespread chemical adduction of tissue proteins, neurotoxicity can be mediated through binding of specific target nucleophiles in key neuronal proteins. Acrylamide and 2,5-hexanedione are prototypical neurotoxicants that presumably act through the formation of protein adducts. To illustrate both the promise and the difficulty of adduct research, these electrophilic chemicals will be discussed with respect to covalent bond formation, suspected protein sites of adduction, and proposed mechanisms of neurotoxicity. The goals of future investigations are to identify and quantify specific protein adducts that play a causal role in the generation of neurotoxicity induced by electrophilic neurotoxicants. This is a challenging but critical objective that will be facilitated by recent advances in proteomic methodologies. PMID:15901921

  20. Molecular and cellular mechanisms of aldosterone producing adenoma development

    Directory of Open Access Journals (Sweden)

    Sheerazed eBoulkroun

    2015-06-01

    Full Text Available Primary aldosteronism (PA is the most common form of secondary hypertension with an estimated prevalence of ~10% in referred patients. PA occurs as a result of a dysregulation of the normal mechanisms controlling adrenal aldosterone production. It is characterized by hypertension with low plasma renin and elevated aldosterone and often associated with hypokalemia. The two major causes of PA are unilateral aldosterone producing adenoma (APA and bilateral adrenal hyperplasia, accounting together for ~95% of cases. In addition to the well-characterized effect of excess mineralocorticoids on blood pressure, high levels of aldosterone also have cardiovascular, renal and metabolic consequences. Hence, long-term consequences of PA include increased risk of coronary artery disease, myocardial infarction, heart failure and atrial fibrillation. Despite recent progress in the management of patients with PA, critical issues related to diagnosis, subtype differentiation and treatment of non-surgically correctable forms still persist. A better understanding of the pathogenic mechanisms of the disease should lead to the identification of more reliable diagnostic and prognostic biomarkers for a more sensitive and specific screening and new therapeutic options. In this review we will summarize our current knowledge on the molecular and cellular mechanisms of APA development. On one hand, we will discuss how various animal models have improved our understanding of the pathophysiology of excess aldosterone production. On the other hand, we will summarize the major advances made during the last few years in the genetics of APA due to transcriptomic studies and whole exome sequencing. The identification of recurrent and somatic mutations in genes coding for ion channels (KCNJ5 and CACNA1D and ATPases (ATP1A1 and ATP2B3 allowed highlighting the central role of calcium signaling in autonomous aldosterone production by the adrenal.

  1. Molecular modifiers reveal a mechanism of pathological crystal growth inhibition

    Science.gov (United States)

    Chung, Jihae; Granja, Ignacio; Taylor, Michael G.; Mpourmpakis, Giannis; Asplin, John R.; Rimer, Jeffrey D.

    2016-08-01

    Crystalline materials are crucial to the function of living organisms, in the shells of molluscs, the matrix of bone, the teeth of sea urchins, and the exoskeletons of coccoliths. However, pathological biomineralization can be an undesirable crystallization process associated with human diseases. The crystal growth of biogenic, natural and synthetic materials may be regulated by the action of modifiers, most commonly inhibitors, which range from small ions and molecules to large macromolecules. Inhibitors adsorb on crystal surfaces and impede the addition of solute, thereby reducing the rate of growth. Complex inhibitor-crystal interactions in biomineralization are often not well elucidated. Here we show that two molecular inhibitors of calcium oxalate monohydrate crystallization—citrate and hydroxycitrate—exhibit a mechanism that differs from classical theory in that inhibitor adsorption on crystal surfaces induces dissolution of the crystal under specific conditions rather than a reduced rate of crystal growth. This phenomenon occurs even in supersaturated solutions where inhibitor concentration is three orders of magnitude less than that of the solute. The results of bulk crystallization, in situ atomic force microscopy, and density functional theory studies are qualitatively consistent with a hypothesis that inhibitor-crystal interactions impart localized strain to the crystal lattice and that oxalate and calcium ions are released into solution to alleviate this strain. Calcium oxalate monohydrate is the principal component of human kidney stones and citrate is an often-used therapy, but hydroxycitrate is not. For hydroxycitrate to function as a kidney stone treatment, it must be excreted in urine. We report that hydroxycitrate ingested by non-stone-forming humans at an often-recommended dose leads to substantial urinary excretion. In vitro assays using human urine reveal that the molecular modifier hydroxycitrate is as effective an inhibitor of nucleation

  2. Survivin-T34A: molecular mechanism and therapeutic potential

    Directory of Open Access Journals (Sweden)

    Jonathan R Aspe

    2010-12-01

    Full Text Available Jonathan R Aspe, Nathan R WallCenter for Health Disparities Research and Molecular Medicine, Division of Biochemistry and Microbiology, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USAAbstract: The inhibitor of apoptosis protein survivin's threonine 34 to alanine (T34A mutation abolishes a phosphorylation site for p34(cdc2–cyclin B1, resulting in initiation of the mitochondrial apoptotic pathway in cancer cells; however, it has little known direct effects on normal cells. The possibility that targeting survivin in this way may provide a novel approach for selective cancer gene therapy has yet to be fully evaluated. Although a flurry of work was undertaken in the late 1990s and early 2000s, only minor advances on this mutant have recently taken place. We recently described that cells generated to express a stable form of the mutant protein released this survivin-T34A to the conditioned medium. When this conditioned medium was collected and deposited on naive tumor cells, conditioned medium T34A was as effective as some chemotherapeutics in the induction of tumor cell apoptosis, and when combined with other forms of genotoxic stressors potentiated their killing effects. We hope with this review to revitalize the T34A field, as there is still much that needs to be investigated. In addition to determining the therapeutic dose and the duration of drug therapy required at the disease site, a better understanding of other key factors is also important. These include knowledge of target cell populations, cell-surface receptors, changes that occur in the target tissue at the molecular and cellular level with progression of the disease, and the mechanism and site of therapeutic action.Keywords: survivin, T34A, apoptosis, proliferation, therapy

  3. Molecular modifiers reveal a mechanism of pathological crystal growth inhibition

    Science.gov (United States)

    Chung, Jihae; Granja, Ignacio; Taylor, Michael G.; Mpourmpakis, Giannis; Asplin, John R.; Rimer, Jeffrey D.

    2016-08-01

    Crystalline materials are crucial to the function of living organisms, in the shells of molluscs, the matrix of bone, the teeth of sea urchins, and the exoskeletons of coccoliths. However, pathological biomineralization can be an undesirable crystallization process associated with human diseases. The crystal growth of biogenic, natural and synthetic materials may be regulated by the action of modifiers, most commonly inhibitors, which range from small ions and molecules to large macromolecules. Inhibitors adsorb on crystal surfaces and impede the addition of solute, thereby reducing the rate of growth. Complex inhibitor–crystal interactions in biomineralization are often not well elucidated. Here we show that two molecular inhibitors of calcium oxalate monohydrate crystallization—citrate and hydroxycitrate—exhibit a mechanism that differs from classical theory in that inhibitor adsorption on crystal surfaces induces dissolution of the crystal under specific conditions rather than a reduced rate of crystal growth. This phenomenon occurs even in supersaturated solutions where inhibitor concentration is three orders of magnitude less than that of the solute. The results of bulk crystallization, in situ atomic force microscopy, and density functional theory studies are qualitatively consistent with a hypothesis that inhibitor–crystal interactions impart localized strain to the crystal lattice and that oxalate and calcium ions are released into solution to alleviate this strain. Calcium oxalate monohydrate is the principal component of human kidney stones and citrate is an often-used therapy, but hydroxycitrate is not. For hydroxycitrate to function as a kidney stone treatment, it must be excreted in urine. We report that hydroxycitrate ingested by non-stone-forming humans at an often-recommended dose leads to substantial urinary excretion. In vitro assays using human urine reveal that the molecular modifier hydroxycitrate is as effective an inhibitor of

  4. Quantum mechanical/molecular mechanical (QM/MM) docking: an evaluation for known test systems

    Science.gov (United States)

    Beierlein, Frank; Lanig, Harald; Schürer, Gudrun; Horn, Anselm H. C.; Clark, Timothy

    A combined quantum mechanical/molecular mechanical (QM/MM) docking approach for the investigation of protein-inhibitor complexes is presented. Starting points for QM/MM optimizations are generated with AutoDock. The subsequent semiempirical AM1 QM/MM optimization of the complex obtained by the docking procedure gives a more detailed description of the binding mode and the electronic properties of the ligand. As we use a flexible protein environment in the QM/MM optimizations, we are able to simulate limited structural changes of the enzyme upon binding a ligand, even within a simple geometry optimization. The method was validated using a set of structurally known protein-inhibitor complexes, whose crystallographic data were taken from the Protein Data Bank. In addition to protein structures taken directly from complexes with the inhibitors, structures of uncomplexed HIV-1-protease and thrombin were also used successfully for QM/MM docking experiments. By comparing the resulting structures with those obtained using protein structures from protein-inhibitor complexes, we find that the method is able to simulate the effect of the induced fit when a simple optimization is adequate to reproduce the protein movement. Describing the ligand quantum mechanically gives a detailed view of its electronic properties, for example its polarization within the active site of the enzyme. This study suggests strongly that a QM/MM molecular dynamics approach will be able to simulate the induced fit in general cases.

  5. Conformational analysis of methylphenidate: comparison of molecular orbital and molecular mechanics methods.

    Science.gov (United States)

    Gilbert, Kathleen M; Skawinski, William J; Misra, Milind; Paris, Kristina A; Naik, Neelam H; Buono, Ronald A; Deutsch, Howard M; Venanzi, Carol A

    2004-11-01

    Methylphenidate (MP) binds to the cocaine binding site on the dopamine transporter and inhibits reuptake of dopamine, but does not appear to have the same abuse potential as cocaine. This study, part of a comprehensive effort to identify a drug treatment for cocaine abuse, investigates the effect of choice of calculation technique and of solvent model on the conformational potential energy surface (PES) of MP and a rigid methylphenidate (RMP) analogue which exhibits the same dopamine transporter binding affinity as MP. Conformational analysis was carried out by the AM1 and AM1/SM5.4 semiempirical molecular orbital methods, a molecular mechanics method (Tripos force field with the dielectric set equal to that of vacuum or water) and the HF/6-31G* molecular orbital method in vacuum phase. Although all three methods differ somewhat in the local details of the PES, the general trends are the same for neutral and protonated MP. In vacuum phase, protonation has a distinctive effect in decreasing the regions of space available to the local conformational minima. Solvent has little effect on the PES of the neutral molecule and tends to stabilize the protonated species. The random search (RS) conformational analysis technique using the Tripos force field was found to be capable of locating the minima found by the molecular orbital methods using systematic grid search. This suggests that the RS/Tripos force field/vacuum phase protocol is a reasonable choice for locating the local minima of MP. However, the Tripos force field gave significantly larger phenyl ring rotational barriers than the molecular orbital methods for MP and RMP. For both the neutral and protonated cases, all three methods found the phenyl ring rotational barriers for the RMP conformers/invertamers (denoted as cte, tte, and cta) to be: cte, tte > MP > cta. Solvation has negligible effect on the phenyl ring rotational barrier of RMP. The B3LYP/6-31G* density functional method was used to calculate the

  6. Dynamic Coordinated Shifting Control of Automated Mechanical Transmissions without a Clutch in a Plug-In Hybrid Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Xinlei Liu

    2012-08-01

    Full Text Available On the basis of the shifting process of automated mechanical transmissions (AMTs for traditional hybrid electric vehicles (HEVs, and by combining the features of electric machines with fast response speed, the dynamic model of the hybrid electric AMT vehicle powertrain is built up, the dynamic characteristics of each phase of shifting process are analyzed, and a control strategy in which torque and speed of the engine and electric machine are coordinatively controlled to achieve AMT shifting control for a plug-in hybrid electric vehicle (PHEV without clutch is proposed. In the shifting process, the engine and electric machine are well controlled, and the shift jerk and power interruption and restoration time are reduced. Simulation and real car test results show that the proposed control strategy can more efficiently improve the shift quality for PHEVs equipped with AMTs.

  7. Molecular mechanism of APC/C activation by mitotic phosphorylation.

    Science.gov (United States)

    Zhang, Suyang; Chang, Leifu; Alfieri, Claudio; Zhang, Ziguo; Yang, Jing; Maslen, Sarah; Skehel, Mark; Barford, David

    2016-04-27

    In eukaryotes, the anaphase-promoting complex (APC/C, also known as the cyclosome) regulates the ubiquitin-dependent proteolysis of specific cell-cycle proteins to coordinate chromosome segregation in mitosis and entry into the G1 phase. The catalytic activity of the APC/C and its ability to specify the destruction of particular proteins at different phases of the cell cycle are controlled by its interaction with two structurally related coactivator subunits, Cdc20 and Cdh1. Coactivators recognize substrate degrons, and enhance the affinity of the APC/C for its cognate E2 (refs 4-6). During mitosis, cyclin-dependent kinase (Cdk) and polo-like kinase (Plk) control Cdc20- and Cdh1-mediated activation of the APC/C. Hyperphosphorylation of APC/C subunits, notably Apc1 and Apc3, is required for Cdc20 to activate the APC/C, whereas phosphorylation of Cdh1 prevents its association with the APC/C. Since both coactivators associate with the APC/C through their common C-box and Ile-Arg tail motifs, the mechanism underlying this differential regulation is unclear, as is the role of specific APC/C phosphorylation sites. Here, using cryo-electron microscopy and biochemical analysis, we define the molecular basis of how phosphorylation of human APC/C allows for its control by Cdc20. An auto-inhibitory segment of Apc1 acts as a molecular switch that in apo unphosphorylated APC/C interacts with the C-box binding site and obstructs engagement of Cdc20. Phosphorylation of the auto-inhibitory segment displaces it from the C-box-binding site. Efficient phosphorylation of the auto-inhibitory segment, and thus relief of auto-inhibition, requires the recruitment of Cdk-cyclin in complex with a Cdk regulatory subunit (Cks) to a hyperphosphorylated loop of Apc3. We also find that the small-molecule inhibitor, tosyl-l-arginine methyl ester, preferentially suppresses APC/C(Cdc20) rather than APC/C(Cdh1), and interacts with the binding sites of both the C-box and Ile-Arg tail motifs. Our

  8. In silico analysis of the molecular mechanism of postmenopausal osteoporosis.

    Science.gov (United States)

    Liu, Yanqing; Wang, Yueqiu; Yang, Nailong; Wu, Suning; Lv, Yanhua; Xu, Lili

    2015-11-01

    Postmenopausal osteoporosis (PO) is a common disease in females >50 years of age worldwide and is becoming an increasing burden to society. The present study aimed to assess the molecular mechanism of PO using bioinformatic methods. The gene expression data from patients with PO and normal controls were downloaded from the ArrayExpress database provided by European Bioinformatics Institute. Following the screening of the differentially expressed genes (DEGs) using the Limma package in R language, Kyoto Encyclopedia of Genes and Genomes pathways enrichment analysis was performed using the Database for Annotation, Visualization and Integrated Discovery online tools. Sequentially, modulators of the DEGs, including transcription factors (TFs) and microRNAs, were predicted by the ChIP Enrichment Analysis databases and WEB‑based GEne SeT AnaLysis Toolkit system, respectively. In addition, the protein‑protein interaction network of DEGs was constructed via the search tool for the retrieval of interacting genes and then the functional modules were further analyzed via the clusterMaker package and The Biological Networks Gene Ontology package within the Cytoscape software. A total of 482 DEGs, including 279 upregulated and 203 downregulated DEGs, were screened out. DEGs were predominantly enriched in the pathways of fatty acid metabolism, cardiac muscle contraction and DNA replication. TFs, including SMAD4, in addition to microRNAs, including the microRNA‑125 (miR‑125) family, miR‑331 and miR‑24, may be the modulators of the DEGs in PO. In addition, the five largest modules were identified with TTN, L1G1, ACADM, UQCRC2 and TRIM63 as the hub proteins, and they were associated with the biological processes of muscle contraction, DNA replication initiation, lipid modification, generation of precursor metabolites and energy, and regulation of acetyl‑CoA biosynthetic process, respectively. SMAD4, CACNG1 and TRIM63 are suggested to be important factors in the

  9. Instant Update: Considering the Molecular Mechanisms of Mutation & Natural Selection

    Science.gov (United States)

    Hubler, Tina; Adams, Patti; Scammell, Jonathan

    2015-01-01

    The molecular basis of evolution is an important concept to understand but one that students and teachers often find challenging. This article provides training and guidance for teachers on how to present molecular evolution concepts so that students will associate molecular changes with the evolution of form and function in organisms. Included…

  10. Retinoic acid receptors: from molecular mechanisms to cancer therapy.

    Science.gov (United States)

    di Masi, Alessandra; Leboffe, Loris; De Marinis, Elisabetta; Pagano, Francesca; Cicconi, Laura; Rochette-Egly, Cécile; Lo-Coco, Francesco; Ascenzi, Paolo; Nervi, Clara

    2015-02-01

    Retinoic acid (RA), the major bioactive metabolite of retinol or vitamin A, induces a spectrum of pleiotropic effects in cell growth and differentiation that are relevant for embryonic development and adult physiology. The RA activity is mediated primarily by members of the retinoic acid receptor (RAR) subfamily, namely RARα, RARβ and RARγ, which belong to the nuclear receptor (NR) superfamily of transcription factors. RARs form heterodimers with members of the retinoid X receptor (RXR) subfamily and act as ligand-regulated transcription factors through binding specific RA response elements (RAREs) located in target genes promoters. RARs also have non-genomic effects and activate kinase signaling pathways, which fine-tune the transcription of the RA target genes. The disruption of RA signaling pathways is thought to underlie the etiology of a number of hematological and non-hematological malignancies, including leukemias, skin cancer, head/neck cancer, lung cancer, breast cancer, ovarian cancer, prostate cancer, renal cell carcinoma, pancreatic cancer, liver cancer, glioblastoma and neuroblastoma. Of note, RA and its derivatives (retinoids) are employed as potential chemotherapeutic or chemopreventive agents because of their differentiation, anti-proliferative, pro-apoptotic, and anti-oxidant effects. In humans, retinoids reverse premalignant epithelial lesions, induce the differentiation of myeloid normal and leukemic cells, and prevent lung, liver, and breast cancer. Here, we provide an overview of the biochemical and molecular mechanisms that regulate the RA and retinoid signaling pathways. Moreover, mechanisms through which deregulation of RA signaling pathways ultimately impact on cancer are examined. Finally, the therapeutic effects of retinoids are reported. PMID:25543955

  11. Molecular Mechanisms of Microcystin Toxicity in Animal Cells

    Directory of Open Access Journals (Sweden)

    Alexandre Campos

    2010-01-01

    Full Text Available Microcystins (MC are potent hepatotoxins produced by the cyanobacteria of the genera Planktothrix, Microcystis, Aphanizomenon, Nostoc and Anabaena. These cyclic heptapeptides have strong affinity to serine/threonine protein phosphatases (PPs thereby acting as an inhibitor of this group of enzymes. Through this interaction a cascade of events responsible for the MC cytotoxic and genotoxic effects in animal cells may take place. Moreover MC induces oxidative stress in animal cells and together with the inhibition of PPs, this pathway is considered to be one of the main mechanisms of MC toxicity. In recent years new insights on the key enzymes involved in the signal-transduction and toxicity have been reported demonstrating the complexity of the interaction of these toxins with animal cells. Key proteins involved in MC up-take, biotransformation and excretion have been identified, demonstrating the ability of aquatic animals to metabolize and excrete the toxin. MC have shown to interact with the mitochondria. The consequences are the dysfunction of the organelle, induction of reactive oxygen species (ROS and cell apoptosis. MC activity leads to the differential expression/activity of transcriptional factors and protein kinases involved in the pathways of cellular differentiation, proliferation and tumor promotion activity. This activity may result from the direct inhibition of the protein phosphatases PP1 and PP2A. This review aims to summarize the increasing data regarding the molecular mechanisms of MC toxicity in animal systems, reporting for direct MC interacting proteins and key enzymes in the process of toxicity biotransformation/excretion of these cyclic peptides.

  12. Molecular mechanisms of heavy metal tolerance and evolution n invertebrates

    Institute of Scientific and Technical Information of China (English)

    Thierry K.S.Janssens; Dick Roelofs; Nico M.van Straalen

    2009-01-01

    Following the genomics revolution,our knowledge of the molecular mechanisms underlying defenses against stress has been greatly expanded.Under strong selective pressure many animals may evolve an enhanced stress tolerance.This can be achieved by altering the structure of proteins(through mutations in the coding regions of genes)or by altering the amount of protein(through changes in transcriptional regulation).The latter type of evolution Can be achieved by substitutions in the promoter of the gene of interest(cis-regulatory change)or by altering the structure or anaount of transcriptional regulator proteins (trans-regulatory change).The metallothionein system is one of the best studied stress response systems in the context of heavy metals.Metallothionein expression is assumed to be regulated by metal transcription factor 1(MTF-1);however,up to now the involvement of MTF-1 has only been proven for some vertebrates and Drosophila.Data on invertebrates such as nematodes and earthworms suggest that other mechanisms of metallothionein induction may be present.A detailed study of Cd tolerance was done for a species of soilliving springtail,Orchesella cincta.The metallothionein gene of this species is overexpressed in metal-exposed field populations.Analysis of the metallothionein promoter has demonstrated extensive polymorphisills that have a functional significance,as shown in bioreporter assays.In a study comparing 20 different populations,the frequency of a high-expresser promoter allele Was positively correlated with the concentration of metals in soil,especially Cd.The springtail study shows that cis-regulatory change of genes involved in the cellular stress response may contribute to evolution of metal tolerance.

  13. Molecular Mechanism of Acrylamide Neurotoxicity: Lessons Learned from Organic Chemistry

    Science.gov (United States)

    Gavin, Terrence

    2012-01-01

    Background: Acrylamide (ACR) produces cumulative neurotoxicity in exposed humans and laboratory animals through a direct inhibitory effect on presynaptic function. Objectives: In this review, we delineate how knowledge of chemistry provided an unprecedented understanding of the ACR neurotoxic mechanism. We also show how application of the hard and soft, acids and bases (HSAB) theory led to the recognition that the α,β-unsaturated carbonyl structure of ACR is a soft electrophile that preferentially forms covalent bonds with soft nucleophiles. Methods: In vivo proteomic and in chemico studies demonstrated that ACR formed covalent adducts with highly nucleophilic cysteine thiolate groups located within active sites of presynaptic proteins. Additional research showed that resulting protein inactivation disrupted nerve terminal processes and impaired neurotransmission. Discussion: ACR is a type-2 alkene, a chemical class that includes structurally related electrophilic environmental pollutants (e.g., acrolein) and endogenous mediators of cellular oxidative stress (e.g., 4-hydroxy-2-nonenal). Members of this chemical family produce toxicity via a common molecular mechanism. Although individual environmental concentrations might not be toxicologically relevant, exposure to an ambient mixture of type-2 alkene pollutants could pose a significant risk to human health. Furthermore, environmentally derived type-2 alkenes might act synergistically with endogenously generated unsaturated aldehydes to amplify cellular damage and thereby accelerate human disease/injury processes that involve oxidative stress. Conclusions: These possibilities have substantial implications for environmental risk assessment and were realized through an understanding of ACR adduct chemistry. The approach delineated here can be broadly applied because many toxicants of different chemical classes are electrophiles that produce toxicity by interacting with cellular proteins. PMID:23060388

  14. Parkinson disease: from pathology to molecular disease mechanisms.

    Science.gov (United States)

    Dexter, David T; Jenner, Peter

    2013-09-01

    Parkinson disease (PD) is a complex neurodegenerative disorder with both motor and nonmotor symptoms owing to a spreading process of neuronal loss in the brain. At present, only symptomatic treatment exists and nothing can be done to halt the degenerative process, as its cause remains unclear. Risk factors such as aging, genetic susceptibility, and environmental factors all play a role in the onset of the pathogenic process but how these interlink to cause neuronal loss is not known. There have been major advances in the understanding of mechanisms that contribute to nigral dopaminergic cell death, including mitochondrial dysfunction, oxidative stress, altered protein handling, and inflammation. However, it is not known if the same processes are responsible for neuronal loss in nondopaminergic brain regions. Many of the known mechanisms of cell death are mirrored in toxin-based models of PD, but neuronal loss is rapid and not progressive and limited to dopaminergic cells, and drugs that protect against toxin-induced cell death have not translated into neuroprotective therapies in humans. Gene mutations identified in rare familial forms of PD encode proteins whose functions overlap widely with the known molecular pathways in sporadic disease and these have again expanded our knowledge of the neurodegenerative process but again have so far failed to yield effective models of sporadic disease when translated into animals. We seem to be missing some key parts of the jigsaw, the trigger event starting many years earlier in the disease process, and what we are looking at now is merely part of a downstream process that is the end stage of neuronal death.

  15. Molecular mechanisms of pharmacological doses of ascorbate on cancer cells.

    Science.gov (United States)

    Venturelli, Sascha; Sinnberg, Tobias W; Niessner, Heike; Busch, Christian

    2015-06-01

    Intravenous application of high-dose ascorbate (vitamin C) has been used in complementary medicine since the 1970s to treat cancer patients. In recent years it became evident that high-dose ascorbate in the millimolar range bears selective cytotoxic effects on cancer cells in vitro and in vivo. This anticancer effect is dose dependent, catalyzed by serum components and mediated by reactive oxygen species and ascorbyl radicals, making ascorbate a pro-oxidative pro-drug that catalyzes hydrogen peroxide production in tissues instead of acting as a radical scavenger. It further depends on HIF-1 signaling and oxygen pressure, and shows a strong epigenetic signature (alteration of DNA-methylation and induction of tumor-suppressing microRNAs in cancer cells). The detailed understanding of ascorbate-induced antiproliferative molecular mechanisms warrants in-depth preclinical evaluation in cancer-bearing animal models for the optimization of an efficacious therapy regimen (e.g., combination with hyperbaric oxygen or O2-sensitizers) that subsequently need to be evaluated in clinical trials. PMID:26065536

  16. Final Report - Molecular Mechanisms of Bacterial Mercury Transformation - UCSF

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Susan M. [UCSF

    2014-04-24

    The bacterial mercury resistance (mer) operon functions in Hg biogeochemistry and bioremediation by converting reactive inorganic Hg(II) and organic [RHg(II)]1+ mercurials to relatively inert monoatomic mercury vapor, Hg(0). Its genes regulate operon expression (MerR, MerD, MerOP), import Hg(II) (MerT, MerP, and MerC), and demethylate (MerB) and reduce (MerA) mercurials. We focus on how these components interact with each other and with the host cell to allow cells to survive and detoxify Hg compounds. Understanding how this ubiquitous detoxification system fits into the biology and ecology of its bacterial host is essential to guide interventions that support and enhance Hg remediation. In the current overall project we focused on two aspects of this system: (1) investigations of the energetics of Hg(II)-ligand binding interactions, and (2) both experimental and computational approaches to investigating the molecular mechanisms of Hg(II) acquisition by MerA and intramolecular transfer of Hg(II) prior to reduction within the MerA enzyme active site. Computational work was led by Prof. Jeremy Smith and took place at the University of Tennessee, while experimental work on MerA was led by Prof. Susan Miller and took place at the University of California San Francisco.

  17. Molecular mechanisms of pancreatic stone formation in chronic pancreatitis.

    Directory of Open Access Journals (Sweden)

    Shigeru B.H. Ko

    2012-11-01

    Full Text Available Chronic pancreatitis (CP is a progressive inflammatory disease in which the pancreatic secretory parenchyma is destroyed and replaced by fibrosis. The presence of intraductal pancreatic stone(s is important for the diagnosis of CP; however, the precise molecular mechanisms of pancreatic stone formation in CP were left largely unknown. CFTR is a chloride channel expressed in the apical plasma membrane of pancreatic duct cells and plays a central role in HCO3- secretion. In previous studies, we have found that CFTR is largely mislocalized to the cytoplasm of pancreatic duct cells in all forms of CP and corticosteroids normalizes the localization of CFTR to the proper apical membrane at least in autoimmune pancreatitis. From these observations, we could conclude that the mislocalization of CFTR is a cause of protein plug formation in CP, subsequently resulting in pancreatic stone formation.Considering our observation that the mislocalization of CFTR also occurs in alcoholic or idiopathic CP, it is very likely that these pathological conditions can also be treated by corticosteroids, thereby preventing pancreatic stone formation in these patients. Further studies are definitely required to clarify these fundamental issues.

  18. Adriamycin increases podocyte permeability: evidence and molecular mechanism

    Institute of Scientific and Technical Information of China (English)

    李晓忠; 袁海涛; 张学光

    2003-01-01

    Objective To investigate the increased podocyte permeability by evidence of adriamycin (AD) and its molecular mechanism.Methods In this study, we explored the direct effects of AD on cultured mouse podocytes and the potential protection effects of Dexamethasome (Dex).Results After 24-hour AD (5×10-7 mol/L) treatment, albumin passage through podocyte monolayers was increased by 2.27-fold (P<0.01). AD caused a 62% decrease in Zonula Occluden -1 (ZO-1) protein (P<0.05), suggesting that AD might increase podocyte permeability by disrupting tight junctions. Dex (1×10-6 mol/L), co-administered with AD, protected podocytes from AD-induced increased albumin passage. This may be linked with an increased P-cadherin protein level to 1.93 fold of control (P<0.01).Conclusions AD has a direct, detrimental effect on podocyte permeability, probably through disrupting tight junctions; Dex could protect against AD-induced high podocyte permeability by upregulating adherent protein P-cadherin.

  19. Molecular mechanics study on conformation of perylene-quinonoid photosensitizers

    Institute of Scientific and Technical Information of China (English)

    张红雨; 张志义

    1997-01-01

    Using molecular mechanics method,values of the heat of formation (HF) of different conformations,of perylenequinonoid photosensitizes hypocrellin A (HA) and hypocrellin B (HB) were calculated and the variance of HF after phenolic protons’ dissociation were calculated as well The following was found:(i) The HF values of lour conformational isomers of HA and HB are similar to each other,so the four isomcrs can transform to each other room temperature,(ii) There exists the difference between the ability of dissociation of phenolic protons of HA and that of HB,the former is higher than the latter (iii) There exist two intramolecular hydrogen bonds in HA and HB The bond energy is approximately 8 kJ/mol and the energy of conformation Ⅰ is lower than that of conformationⅡ The bond energy of HA is lower than that of HB.(iv) There exists a low energy snot when phenolic hydroxyl bond twists 180° from the position where hydrogen bond is formed,which suggests that this kind of conformation probably exists,(v) Th

  20. The molecular mechanisms, diagnosis and management of congenital hyperinsulinism

    Directory of Open Access Journals (Sweden)

    Senthil Senniappan

    2013-01-01

    Full Text Available Congenital hyperinsulinism (CHI is the result of unregulated insulin secretion from the pancreatic β-cells leading to severe hypoglycaemia. In these patients it is important to make an accurate diagnosis and initiate the appropriate management so as to avoid hypoglycemic episodes and prevent the potentially associated complications like epilepsy, neurological impairment and cerebral palsy. At a genetic level abnormalities in eight different genes (ABCC8, KCNJ11, GLUD1, GCK, HADH, SLC16A1, HNF4A and UCP2 have been reported with CHI. Loss of function mutations in ABCC8/KCNJ11 lead to the most severe forms of CHI which are usually medically unresponsive. At a histological level there are two major subgroups, diffuse and focal, each with a different genetic etiology. The focal form is sporadic in inheritance and is localized to a small region of the pancreas whereas the diffuse form is inherited in an autosomal recessive (or dominant manner. Imaging using a specialized positron emission tomography scan with the isotope fluroine-18 L-3, 4-dihydroxyphenyalanine (18F-DOPA-PET-CT is used to accurately locate the focal lesion pre-operatively and if removed can cure the patient from hypoglycemia. Understanding the molecular mechanisms, the histological basis, improvements in imaging modalities and surgical techniques have all improved the management of patients with CHI.

  1. [Molecular mechanisms underlying the formation of neuromuscular junction].

    Science.gov (United States)

    Higuchi, Osamu; Yamanashi, Yuji

    2011-07-01

    The neuromuscular junction (NMJ) is a synapse between a motor neuron and skeletal muscle. The contraction of skeletal muscle is controlled by the neurotransmitter acetylcholine (ACh), which is released from the motor nerve terminal. To achieve efficient neuromuscular transmission, acetylcholine receptors (AChRs) must be densely clustered on the muscle membrane of the NMJ. Failure of AChR clustering is associated with disorders of neuromuscular transmission such as congenital myasthenic syndromes (CMS) and myasthenia gravis (MG). Motoneuronal agrin and muscle-specific receptor tyrosine kinase (MuSK) are known to play essential roles in the formation and maintenance of NMJs in the central region of each muscle. However, it had been unclear how agrin activates MuSK. Recent studies have elucidated the roles of several key molecules, including the cytoplasmic adaptor protein Dok-7 and LDL receptor-related protein 4 (Lrp4), in agrin-induced MuSK activation. Moreover, new evidence indicates that cyclin-dependent kinase 5 (Cdk5) regulates postsynaptic differentiation. In this review, we summarize the latest developments in molecular mechanisms underlying NMJ formation in vertebrates. PMID:21747134

  2. Molecular mechanism of resistance of Fusarium fujikuroi to benzimidazole fungicides.

    Science.gov (United States)

    Chen, Zihao; Gao, Tao; Liang, Shuping; Liu, Kexue; Zhou, Mingguo; Chen, Changjun

    2014-08-01

    Although carbendazim (MBC) and other benzimidazole fungicides have effectively controlled bakanae disease of rice (which is caused by Fusarium fujikuroi, F. proliferatum, and F. verticillioides) in the past, MBC resistance has become common. Previous research has shown that MBC resistance results from a mutation in the β1 -tubulin (β1 tub) gene in F. verticillioides. However, MBC resistance in F. fujikuroi, a predominant species in China, does not result from a mutation in the β1 tub. The molecular mechanism of F. fujikuroi resistance against benzimidazole fungicides is poorly understood. In this study, we determined that although β1 tub and β2 -tubulin (β2 tub) in F. fujikuroi have high homology with β1 tub and β2 tub in F. verticillioides, MBC resistance in F. fujikuroi results from mutations in β2 tub [GAG(Glu)→GTG(Val) at codon 198, TTC(Phe)→TAC(Tyr) at codon 200, and GGC(Gly)→GGT(Gly) at codon 235] but not in β1 tub. Δβ2 tub (β2 tub deletion) mutants were highly sensitive to MBC, produced fewer conidia and were less virulent than parental strains. Complementation of the Δβ2 tub mutants with a copy of the whole β2 tub locus from their parental strains restored the level of MBC resistance (or sensitivity) to that of the parental strain.

  3. Molecular Mechanisms of Disease Pathogenesis Differ in Krabbe Disease Variants.

    Science.gov (United States)

    Spratley, Samantha J; Hill, Chris H; Viuff, Agnete H; Edgar, James R; Skjødt, Karsten; Deane, Janet E

    2016-08-01

    Krabbe disease is a severe, fatal neurodegenerative disorder caused by defects in the lysosomal enzyme galactocerebrosidase (GALC). The correct targeting of GALC to the lysosome is essential for the degradation of glycosphingolipids including the primary lipid component of myelin. Over 100 different mutations have been identified in GALC that cause Krabbe disease but the mechanisms by which they cause disease remain unclear. We have generated monoclonal antibodies against full-length human GALC and used these to monitor the trafficking and processing of GALC variants in cell-based assays and by immunofluorescence microscopy. Striking differences in the secretion, processing and endosomal targeting of GALC variants allows the classification of these into distinct categories. A subset of GALC variants are not secreted by cells, not proteolytically processed, and remain trapped in the ER; these are likely to cause disease due to protein misfolding and should be targeted for pharmacological chaperone therapies. Other GALC variants can be correctly secreted by cells and cause disease due to catalytic defects in the enzyme active site, inappropriate post-translational modification or a potential inability to bind essential cofactors. The classification of disease pathogenesis presented here provides a molecular framework for appropriate targeting of future Krabbe disease therapies. PMID:27126738

  4. Artificial Bee Colony Optimization of Capping Potentials for Hybrid Quantum Mechanical/Molecular Mechanical Calculations.

    Science.gov (United States)

    Schiffmann, Christoph; Sebastiani, Daniel

    2011-05-10

    We present an algorithmic extension of a numerical optimization scheme for analytic capping potentials for use in mixed quantum-classical (quantum mechanical/molecular mechanical, QM/MM) ab initio calculations. Our goal is to minimize bond-cleavage-induced perturbations in the electronic structure, measured by means of a suitable penalty functional. The optimization algorithm-a variant of the artificial bee colony (ABC) algorithm, which relies on swarm intelligence-couples deterministic (downhill gradient) and stochastic elements to avoid local minimum trapping. The ABC algorithm outperforms the conventional downhill gradient approach, if the penalty hypersurface exhibits wiggles that prevent a straight minimization pathway. We characterize the optimized capping potentials by computing NMR chemical shifts. This approach will increase the accuracy of QM/MM calculations of complex biomolecules. PMID:26610125

  5. Evaluation of carbohydrate molecular mechanical force fields by quantum mechanical calculations

    DEFF Research Database (Denmark)

    Hemmingsen, Lars Bo Stegeager; Madsen, D.E.; Esbensen, A.L.;

    2004-01-01

    of the (gg, gt and tg) rotamers of methyl alpha-D-glucopyranoside and methyl alpha-D-galactopyranoside are (0.13, 0.00, 0.15) and (0.64, 0.00, 0.77) kcal/mol. respectively. The results of the quantum mechanical calculations are compared with the results of calculations using the 20 second...... for monosaccharide carbohydrate benchmark systems. Selected results are: (i) The interaction energy of the alpha-D-alucopyranose-H2O heterodimer is estimated to be 4.9 kcal/mol, using a composite method including terms at highly correlated (CCSD(T)) level. Most molecular mechanics force fields are in error...

  6. Comparative Molecular Mechanics and Quantum Mechanics Study of Microhydration of Nucleic Acid Bases

    CERN Document Server

    Lino, J; Deriabina, A; Velasco, M; Poltev, V

    2013-01-01

    DNA is the most important biological molecule, and its hydration contributes essentially to the structure and functions of the double helix. We analyze the microhydration of the individual bases of nucleic acids and their methyl derivatives using methods of molecular mechanics (MM) with the Poltev-Malenkov (PM), AMBER and OPLS force fields, as well as ab initio Quantum Mechanics (QM) calculations at MP2/6-31G(d,p) level of theory. A comparison is made between the calculated interaction energies and the experimental enthalpies of microhydration of bases, obtained from mass spectrometry at low temperatures. Each local water-base interaction energy minimum obtained with MM corresponds to the minimum obtained with QM. General qualitative agreement was observed in the geometrical characteristics of the local minima obtained via the two groups of methods. MM minima correspond to slightly more coplanar structures than those obtained via QM methods, and the absolute MM energy values overestimate corresponding values ...

  7. Trends in nanoscale mechanics mechanics of carbon nanotubes, graphene, nanocomposites and molecular dynamics

    CERN Document Server

    2014-01-01

    This book contains a collection of the state-of-the-art reviews written by the leading researchers in the areas of nanoscale mechanics, molecular dynamics, nanoscale modeling of nanocomposites and mechanics of carbon nanotubes. No other book has reviews of the recent discoveries such as a nanoscale analog of the Pauli’s principle, i.e., effect of the spatial exclusion of electrons or the SEE effect, a new Registry Matrix Analysis for the nanoscale interfacial sliding and new data on the effective viscosity of interfacial electrons in nanoscale stiction at the interfaces. This volume is also an exceptional resource on the well tested nanoscale modeling of carbon nanotubes and nanocomposites, new nanoscale effects, unique evaluations of the effective thickness of carbon nanotubes under different loads, new data on which size of carbon nanotubes is safer and many other topics. Extensive bibliography concerning all these topics is included along with the lucid short reviews. Numerous illustrations are provided...

  8. A Quantum-Mechanics Molecular-Mechanics scheme for extended systems

    CERN Document Server

    Hunt, Diego; Scherlis, Damian A

    2016-01-01

    We introduce and discuss a hybrid quantum-mechanics molecular-mechanics (QM-MM) approach for Car-Parrinello DFT simulations with pseudopotentials and planewaves basis, designed for the treatment of periodic systems. In this implementation the MM atoms are considered as additional QM ions having fractional charges of either sign, which provides conceptual and computational simplicity by exploiting the machinery already existing in planewave codes to deal with electrostatics in periodic boundary conditions. With this strategy, both the QM and MM regions are contained in the same supercell, which determines the periodicity for the whole system. Thus, while this method is not meant to compete with non-periodic QM-MM schemes able to handle extremely large but finite MM regions, it is shown that for periodic systems of a few hundred atoms, our approach provides substantial savings in computational times by treating classically a fraction of the particles. The performance and accuracy of the method is assessed throu...

  9. The Human Factor - Introducing Game Mechanics to Computerized Home Automation Systems: User experience as a method for reducing consumption in domestic buildings

    NARCIS (Netherlands)

    Cohen, I.; Turrin, M.; Heinzelmann, F.; Welzner, I.

    2013-01-01

    A method of integration of game mechanics and game dynamics into a user interface for a home automation system as means of reducing the inhabitant’s environmental footprint is described and detailed up to the point of proof of concept. In detail, the paper describes the game framework and the method

  10. Neurobiological mechanisms of treatment resistant depression: Functional, structural and molecular imaging studies

    NARCIS (Netherlands)

    B.P. de Kwaasteniet

    2015-01-01

    This thesis investigated the neurobiological mechanisms of TRD using functional, structural and molecular imaging studies. First the neurobiological mechanisms of MDD were investigated and revealed decreased functional connectivity between the ventral and dorsal network. Thereafter, structural conne

  11. Molecular mechanisms of extensive mitochondrial gene rearrangementin plethodontid salamanders

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Rachel Lockridge; Boore, Jeffrey L.

    2005-06-01

    Extensive gene rearrangement is reported in the mitochondrial genomes of lungless salamanders (Plethodontidae). In each genome with a novel gene order, there is evidence that the rearrangement was mediated by duplication of part of the mitochondrial genome, including the presence of both pseudogenes and additional, presumably functional, copies of duplicated genes. All rearrangement-mediating duplications include either the origin of light strand replication and the nearby tRNA genes or the regions flanking the origin of heavy strand replication. The latter regions comprise nad6, trnE, cob, trnT, an intergenic spacer between trnT and trnP and, in some genomes, trnP, the control region, trnF, rrnS, trnV, rrnL, trnL1, and nad1. In some cases, two copies of duplicated genes, presumptive regulatory regions, and/or sequences with no assignable function have been retained in the genome following the initial duplication; in other genomes, only one of the duplicated copies has been retained. Both tandem and non-tandem duplications are present in these genomes, suggesting different duplication mechanisms. In some of these mtDNAs, up to 25 percent of the total length is composed of tandem duplications of non-coding sequence that includes putative regulatory regions and/or pseudogenes of tRNAs and protein-coding genes along with otherwise unassignable sequences. These data indicate that imprecise initiation and termination of replication, slipped-strand mispairing, and intra-molecular recombination may all have played a role in generating repeats during the evolutionary history of plethodontid mitochondrial genomes.

  12. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure.

    Science.gov (United States)

    de Steenhuijsen Piters, Wouter A A; Bogaert, Debby

    2016-01-01

    The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem-also called "microbiome"-is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1):e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting. PMID:26838716

  13. Unraveling the Molecular Mechanisms Underlying the Nasopharyngeal Bacterial Community Structure

    Directory of Open Access Journals (Sweden)

    Wouter A. A. de Steenhuijsen Piters

    2016-03-01

    Full Text Available The upper respiratory tract is colonized by a diverse array of commensal bacteria that harbor potential pathogens, such as Streptococcus pneumoniae. As long as the local microbial ecosystem—also called “microbiome”—is in balance, these potentially pathogenic bacterial residents cause no harm to the host. However, similar to macrobiological ecosystems, when the bacterial community structure gets perturbed, potential pathogens can overtake the niche and cause mild to severe infections. Recent studies using next-generation sequencing show that S. pneumoniae, as well as other potential pathogens, might be kept at bay by certain commensal bacteria, including Corynebacterium and Dolosigranulum spp. Bomar and colleagues are the first to explore a specific biological mechanism contributing to the antagonistic interaction between Corynebacterium accolens and S. pneumoniae in vitro [L. Bomar, S. D. Brugger, B. H. Yost, S. S. Davies, K. P. Lemon, mBio 7(1:e01725-15, 2016, doi:10.1128/mBio.01725-15]. The authors comprehensively show that C. accolens is capable of hydrolyzing host triacylglycerols into free fatty acids, which display antipneumococcal properties, suggesting that these bacteria might contribute to the containment of pneumococcus. This work exemplifies how molecular epidemiological findings can lay the foundation for mechanistic studies to elucidate the host-microbe and microbial interspecies interactions underlying the bacterial community structure. Next, translation of these results to an in vivo setting seems necessary to unveil the magnitude and importance of the observed effect in its natural, polymicrobial setting.

  14. Molecular mechanism of reduction in pregnenolone synthesis by cigarette smoke

    International Nuclear Information System (INIS)

    Steroidogenic acute regulatory protein (StAR) facilitates the movement of cholesterol from the outer to inner mitochondrial membrane for the synthesis of pregnenolone. Here, we investigated the molecular mechanism of the reduction of pregnenolone synthesis by cigarette smoke condensate (CSC). Pre-exposure or post-exposure of cells with CSC led to reduced pregnenolone synthesis, in a fashion similar to its effect on isolated mitochondria. However, there was no difference in the expression of 30 kDa StAR in cells treated with moderately concentrated CSC by either regimen. The active form of 37 kDa StAR is degraded easily suggesting that the continuous presence of CSC reduces StAR expression. Mitochondrial import of 35S-methionine-labeled StAR followed by extraction of the StAR-mitochondrial complex with 1% digitonin showed similarly sized complexes in the CSC-treated and untreated mitochondria. Further analysis by sucrose density gradient centrifugation showed a specific complex, 'complex 2', in the untreated mitochondria but absent in the CSC-treated mitochondria. Mass spectrometric analysis revealed that complex 2 is the outer mitochondrial protein, VDAC1. Knockdown of VDAC1 expression by siRNA followed by co-transfection with StAR resulted in a lack of pregnenolone synthesis and 37 kDa StAR expression with reduced expression of the intermediate, 32 kDa StAR. Taken together, these results suggest that in the absence of VDAC1, active StAR expression is reduced indicating that VDAC1 expression is essential for StAR activity. In the absence of VDAC1-StAR interaction, cholesterol cannot be transported into mitochondria; thus the interaction with VDAC1 is a mandatory step for initiating steroidogenesis

  15. Angular momentum in molecular quantum mechanical integral evaluation

    Science.gov (United States)

    Dunlap, Brett I.

    2005-01-01

    Solid-harmonic derivatives of quantum-mechanical integrals over Gaussian transforms of scalar, or radial, atomic basis functions create angular momentum about each center. Generalized Gaunt coefficients limit the amount of cross differentiation for multi-center integrals to ensure that cross differentiation does not affect the total angular momentum. The generalized Gaunt coefficients satisfy a number of other selection rules, which are exploited in a new computer code for computing forces in analytic density-functional theory based on robust and variational fitting of the Kohn-Sham potential. Two-center exponents are defined for four or more solid-harmonic differentiations of matrix elements. Those differentiations can either build up angular momentum about the centers or give forces on molecular potential-energy surfaces, thus generalized Gaunt coefficients of order greater than the number of centers are considered. These 4- j generalized Gaunt coefficients and two-center exponents are used to compute the first derivatives of all integrals involving all the Gaussian exponents on a triplet of centers at once. First all angular factors are contracted with the corresponding part of the linear-combination-of-atomic-orbitals density matrix. This intermediate quantity is then reused for the nuclear attraction integral and the integrals corresponding to each basis function in the analytic fit of the Kohn-Sham potential in the muffin-tin-like, but analytic, Slater-Roothaan method that allows molecules to dissociate into atoms having any desired energy, including the experimental electronic energy. The energy is stationary in all respects and all forces precisely agree with a previous code in tests on small molecules. During geometry optimization of an icosahedral C 720 fullerene computing these angular factors and transforming them via the 4- j generalized Gaunt coefficient takes more than sixty percent of the total computer time. These same angular factors could be used

  16. The molecular mechanism of embryonic stem cell pluripotency maintenance

    Institute of Scientific and Technical Information of China (English)

    WANG Qingzhong; LIU Yixun; HAN Chunsheng

    2005-01-01

    In vitro cultured embryonic stem (ES) cells are derived from the inner cell mass (ICM) of pre-implantation embryos, and are capable of giving rise to all cell and tissue types of the three germ layers upon being injected back into blastocysts. These cells are therefore said to possess pluripotency that can be maintained infinitely in culture under optimal conditions. Such pluripotency maintenance is believed to be due to the symmetrical cleavage of the cells in an undifferentiated state. The pluripotency of ES cells is the basis for their various practical and potential applications. ES cells can be used as donor cells to generate knockout or transgenic animals, as in vitro models of mammalian development, and as cell resources for cell therapy in regenerative medicine. The further success in these applications, particularly in the last two, is dependent on the establishment of a culture system with components in the medium clearly defined and the subsequent procedures for controlled differentiation of the cells into specific lineages. In turn, elucidating the molecular mechanism for pluripotency maintenance of ES cells is the prerequisite. This paper summarizes the recent progresses in this area, focusing mainly on the LIF/STAT3, BMPs/Smads, canonical Wnt, TGFβ/activin/nodal, PI3K and FGF signaling pathways and the genes such as oct4, nanog that are crucial in ES cell pluripotency maintenance. The regulatory systems of pluripotency maintenance in both mouse and human ES cells are also discussed. We believe that the cross-talkings between these signaling pathways, as well as the regulatory system underlying pluripotency maintenance will be the main focus in the area of ES cell researches in the future.

  17. Molecular mechanism of glucocorticoid resistance in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Sara De Iudicibus; Raffaella Franca; Stefano Martelossi; Alessandro Ventura; Giuliana Decorti

    2011-01-01

    Natural and synthetic glucocorticoids (GCs) are widely employed in a number of inflammatory, autoimmune and neoplastic diseases, and, despite the introduction of novel therapies, remain the first-line treatment for inducing remission in moderate to severe active Crohn’s disease and ulcerative colitis. Despite their extensive therapeutic use and the proven effectiveness, consider-able clinical evidence of wide inter-individual differences in GC efficacy among patients has been reported, in particular when these agents are used in inflammatory diseases. In recent years, a detailed knowledge of the GC mechanism of action and of the genetic variants affecting GC activity at the molecular level has arisen from several studies. GCs interact with their cytoplasmic receptor, and are able to repress inflammatory gene expression through several distinct mechanisms. The glucocorticoid receptor (GR) is therefore crucial for the effects of these agents: mutations in the GR gene (NR3C1, nuclear re-ceptor subfamily 3, group C, member 1) are the primary cause of a rare, inherited form of GC resistance; in ad-dition, several polymorphisms of this gene have been described and associated with GC response and toxicity. However, the GR is not self-standing in the cell and the receptor-mediated functions are the result of a complex interplay of GR and many other cellular partners. The latter comprise several chaperonins of the large coopera-tive hetero-oligomeric complex that binds the hormone-free GR in the cytosol, and several factors involved in the transcriptional machinery and chromatin remodeling, that are critical for the hormonal control of target genes transcription in the nucleus. Furthermore, variants in the principal effectors of GCs (e.g. cytokines and their regulators) have also to be taken into account for a com-prehensive evaluation of the variability in GC response. Polymorphisms in genes involved in the transport and/or metabolism of these hormones have also been

  18. Radiation toxins: molecular mechanisms of action and radiomimetic properties .

    Science.gov (United States)

    Popov, Dmitri; Maliev, Vecheslav

    Introduction: Acute Radiation Disease (ARD) or Acute Radiation Syndromes (ARS) were defined as a toxic poisonous with development of the acute pathological processes in irradi-ated animals: systemic inflammatory response syndrome(SIRS), toxic multiple organ injury (TMOI), toxic multiple organ dysfunction syndromes (TMOD), toxic multiple organ failure (TMOF). However, the nature of radiation toxins, their mechanisms of formation, molecular structure, and mechanism of actions remain uncertain. Moderate and high doses of radiation induce apoptotic necrosis of radiosensitive cells with formation of Radiation Toxins and in-flammation development. Mild doses of radiation induce apoptosis or controlled programmed death of radiosensitive cells without Radiation Toxins formation and development of inflam-mation processes. Only radiation induced apoptotic necrosis initiates formation of Radiation Toxins(RT). Radiation Toxins are playing an important role as the trigger mechanisms for in-flammation development and cell lysis. The systemic inflammatory response syndrome after radiation involves an influence of various endogenous agents and mediators of inflammation such as bradykinin, histamine, serotonin and phospholipases activation, prostaglandins biosyn-thesis. Although, formation of non-specific toxins such as Reactive Oxygen Species (ROS) is an important pathological process at mild or high doses of radiation. Reactive Oxygen Species play an important role in molecules damage and development of peroxidation of lipids and pro-teins which are the structural parts of cell and mitochondrial membranes. ROS and bio-radicals induce damage of DNA and RNA and peroxidation of their molecules. But high doses of radia-tion, severe and extremely severe physiological stress, result in cells death by apoptotic necrosis and could be defined as the neuroimmune acute disease. Excitotoxicity is an important patho-logical mechanism which damages the central nervous system. We postulate that

  19. A Closed-Loop Proportional-Integral (PI) Control Software for Fully Mechanically Controlled Automated Electron Microscopic Tomography

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-23

    A closed-loop proportional-integral (PI) control software is provided for fully mechanically controlled automated electron microscopic tomography. The software is developed based on Gatan DigitalMicrograph�, and is compatible with Zeiss LIBRA� 120 transmission electron microscope. However, it can be expanded to other TEM instrument with modification. The software consists of a graphical user interface, a digital PI controller, an image analyzing unit, and other drive units (i.e.: image acquire unit and goniometer drive unit). During a tomography data collection process, the image analyzing unit analyzes both the accumulated shift and defocus value of the latest acquired image, and provides the results to the digital PI controller. The digital PI control compares the results with the preset values and determines the optimum adjustments of the goniometer. The goniometer drive unit adjusts the spatial position of the specimen according to the instructions given by the digital PI controller for the next tilt angle and image acquisition. The goniometer drive unit achieves high precision positioning by using a backlash elimination method. The major benefits of the software are: 1) the goniometer drive unit keeps pre-aligned/optimized beam conditions unchanged and achieves position tracking solely through mechanical control; 2) the image analyzing unit relies on only historical data and therefore does not require additional images/exposures; 3) the PI controller enables the system to dynamically track the imaging target with extremely low system error.

  20. Computing pKa Values with a Mixing Hamiltonian Quantum Mechanical/Molecular Mechanical Approach.

    Science.gov (United States)

    Liu, Yang; Fan, Xiaoli; Jin, Yingdi; Hu, Xiangqian; Hu, Hao

    2013-09-10

    Accurate computation of the pKa value of a compound in solution is important but challenging. Here, a new mixing quantum mechanical/molecular mechanical (QM/MM) Hamiltonian method is developed to simulate the free-energy change associated with the protonation/deprotonation processes in solution. The mixing Hamiltonian method is designed for efficient quantum mechanical free-energy simulations by alchemically varying the nuclear potential, i.e., the nuclear charge of the transforming nucleus. In pKa calculation, the charge on the proton is varied in fraction between 0 and 1, corresponding to the fully deprotonated and protonated states, respectively. Inspired by the mixing potential QM/MM free energy simulation method developed previously [H. Hu and W. T. Yang, J. Chem. Phys. 2005, 123, 041102], this method succeeds many advantages of a large class of λ-coupled free-energy simulation methods and the linear combination of atomic potential approach. Theory and technique details of this method, along with the calculation results of the pKa of methanol and methanethiol molecules in aqueous solution, are reported. The results show satisfactory agreement with the experimental data. PMID:26592414

  1. Computing pKa Values with a Mixing Hamiltonian Quantum Mechanical/Molecular Mechanical Approach.

    Science.gov (United States)

    Liu, Yang; Fan, Xiaoli; Jin, Yingdi; Hu, Xiangqian; Hu, Hao

    2013-09-10

    Accurate computation of the pKa value of a compound in solution is important but challenging. Here, a new mixing quantum mechanical/molecular mechanical (QM/MM) Hamiltonian method is developed to simulate the free-energy change associated with the protonation/deprotonation processes in solution. The mixing Hamiltonian method is designed for efficient quantum mechanical free-energy simulations by alchemically varying the nuclear potential, i.e., the nuclear charge of the transforming nucleus. In pKa calculation, the charge on the proton is varied in fraction between 0 and 1, corresponding to the fully deprotonated and protonated states, respectively. Inspired by the mixing potential QM/MM free energy simulation method developed previously [H. Hu and W. T. Yang, J. Chem. Phys. 2005, 123, 041102], this method succeeds many advantages of a large class of λ-coupled free-energy simulation methods and the linear combination of atomic potential approach. Theory and technique details of this method, along with the calculation results of the pKa of methanol and methanethiol molecules in aqueous solution, are reported. The results show satisfactory agreement with the experimental data.

  2. An Automated High-throughput Array Microscope for Cancer Cell Mechanics

    OpenAIRE

    Cribb, Jeremy A.; Osborne, Lukas D.; Kellie Beicker; Matthew Psioda; Jian Chen; E. Timothy O’Brien; Taylor II, Russell M.; Leandra Vicci; Joe Ping-Lin Hsiao; Chong Shao; Michael Falvo; Ibrahim, Joseph G.; Wood, Kris C.; Blobe, Gerard C.; Richard Superfine

    2016-01-01

    Changes in cellular mechanical properties correlate with the progression of metastatic cancer along the epithelial-to-mesenchymal transition (EMT). Few high-throughput methodologies exist that measure cell compliance, which can be used to understand the impact of genetic alterations or to screen the efficacy of chemotherapeutic agents. We have developed a novel array high-throughput microscope (AHTM) system that combines the convenience of the standard 96-well plate with the ability to image ...

  3. Study of effect of gamma radiation on molecular weight and mechanical properties of PHB and PHNV

    International Nuclear Information System (INIS)

    The effect of gamma radiation on molecular weight and mechanical properties (tensile and flexural) of PHB and PHBV samples was investigated. The values of stress and strain at the break point for both mechanical properties indicated that scission molecular reactions were predominant in PHB and PHBV samples submitted to gamma radiation. These results were confirmed by Size Exclusion Chromatography (SEC) analysis. (author)

  4. Forcefields based molecular modeling on the mechanical and physical properties of emeraldine base polyaniline

    NARCIS (Netherlands)

    Chen, X.; Yuan, C.A.; Wong, C.K.Y.; Zhang, G.Q.

    2010-01-01

    Molecular dynamics (MD) and molecular mechanical (MM) analysis are carried out to provide reliable and accurate model for emeraldine base polyaniline. This study validate the forcefields and model with the physical and mechanical properties of the polyaniline. The temperature effects on non-bond ene

  5. Epigenetics: Behavioral Influences on Gene Function, Part II--Molecular Mechanisms

    Science.gov (United States)

    Ogren, Marilee P.; Lombroso, Paul J.

    2008-01-01

    A study presented on the effect of parenting on stress response and other behaviors show that animals exposed to a high degree of nurturing show a blunted response to stress. Molecular mechanisms responsible for these differences in the adult offspring as well as the molecular mechanisms by which epigenetic effects are propagated from one…

  6. A quantum-mechanics molecular-mechanics scheme for extended systems

    Science.gov (United States)

    Hunt, Diego; Sanchez, Veronica M.; Scherlis, Damián A.

    2016-08-01

    We introduce and discuss a hybrid quantum-mechanics molecular-mechanics (QM-MM) approach for Car–Parrinello DFT simulations with pseudopotentials and planewaves basis, designed for the treatment of periodic systems. In this implementation the MM atoms are considered as additional QM ions having fractional charges of either sign, which provides conceptual and computational simplicity by exploiting the machinery already existing in planewave codes to deal with electrostatics in periodic boundary conditions. With this strategy, both the QM and MM regions are contained in the same supercell, which determines the periodicity for the whole system. Thus, while this method is not meant to compete with non-periodic QM-MM schemes able to handle extremely large but finite MM regions, it is shown that for periodic systems of a few hundred atoms, our approach provides substantial savings in computational times by treating classically a fraction of the particles. The performance and accuracy of the method is assessed through the study of energetic, structural, and dynamical aspects of the water dimer and of the aqueous bulk phase. Finally, the QM-MM scheme is applied to the computation of the vibrational spectra of water layers adsorbed at the TiO2 anatase (1 0 1) solid–liquid interface. This investigation suggests that the inclusion of a second monolayer of H2O molecules is sufficient to induce on the first adsorbed layer, a vibrational dynamics similar to that taking place in the presence of an aqueous environment. The present QM-MM scheme appears as a very interesting tool to efficiently perform molecular dynamics simulations of complex condensed matter systems, from solutions to nanoconfined fluids to different kind of interfaces.

  7. A quantum-mechanics molecular-mechanics scheme for extended systems.

    Science.gov (United States)

    Hunt, Diego; Sanchez, Veronica M; Scherlis, Damián A

    2016-08-24

    We introduce and discuss a hybrid quantum-mechanics molecular-mechanics (QM-MM) approach for Car-Parrinello DFT simulations with pseudopotentials and planewaves basis, designed for the treatment of periodic systems. In this implementation the MM atoms are considered as additional QM ions having fractional charges of either sign, which provides conceptual and computational simplicity by exploiting the machinery already existing in planewave codes to deal with electrostatics in periodic boundary conditions. With this strategy, both the QM and MM regions are contained in the same supercell, which determines the periodicity for the whole system. Thus, while this method is not meant to compete with non-periodic QM-MM schemes able to handle extremely large but finite MM regions, it is shown that for periodic systems of a few hundred atoms, our approach provides substantial savings in computational times by treating classically a fraction of the particles. The performance and accuracy of the method is assessed through the study of energetic, structural, and dynamical aspects of the water dimer and of the aqueous bulk phase. Finally, the QM-MM scheme is applied to the computation of the vibrational spectra of water layers adsorbed at the TiO2 anatase (1 0 1) solid-liquid interface. This investigation suggests that the inclusion of a second monolayer of H2O molecules is sufficient to induce on the first adsorbed layer, a vibrational dynamics similar to that taking place in the presence of an aqueous environment. The present QM-MM scheme appears as a very interesting tool to efficiently perform molecular dynamics simulations of complex condensed matter systems, from solutions to nanoconfined fluids to different kind of interfaces. PMID:27352028

  8. Heparan sulfate regulates ADAM12 through a molecular switch mechanism

    DEFF Research Database (Denmark)

    Sørensen, Hans P; Vives, Romain R; Manetopoulos, Christina;

    2008-01-01

    tumor progression and chondrocyte proliferation in osteoarthritic cartilage, is shown to possess a pro/catalytic domain cationic molecular switch, regulated by exogenous heparan sulfate and heparin but also endogenous cell surface proteoglycans and the polyanion, calcium pentosan polysulfate. Sheddase...

  9. INTELLIGENT MECHANISM TO SUPPORT DFX-ABILITIES IN AUTOMATED DESIGNER'S ENVIRONMENT

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The paper aims at providing a computerized design environment to support product design practically. The authors solved this problem by taking the product life-cycle issues into consideration as more as possible during the design process from the designer-oriented perspective of view. Design for X-abilities (DFX) is an effective approach to this philosophy. So the paper mainly presents the infrastructure of an intelligent DFX mechanism which is the essential part of the developed product design environment. At first the designer-oriented computer environment DesignerSpace is introduced for understanding the designer how to implement design activities and DFX method better. In order to integrate design knowledge from downstream aspects for the optimization and the design decision-making, an intelligent DFX mechanism is developed to incorporate knowledge base, algorithm-base and monitoring/debugging tools. DesignerSpace is implemented with DFX abilities and applied to the blisk design of aircraft engine and the further development is strongly intended.

  10. Molecular Mechanisms Regulating LPS-Induced Inflammation in the Brain

    Science.gov (United States)

    Lykhmus, Olena; Mishra, Nibha; Koval, Lyudmyla; Kalashnyk, Olena; Gergalova, Galyna; Uspenska, Kateryna; Komisarenko, Serghiy; Soreq, Hermona; Skok, Maryna

    2016-01-01

    Neuro-inflammation, one of the pathogenic causes of neurodegenerative diseases, is regulated through the cholinergic anti-inflammatory pathway via the α7 nicotinic acetylcholine receptor (α7 nAChR). We previously showed that either bacterial lipopolysaccharide (LPS) or immunization with the α7(1–208) nAChR fragment decrease α7 nAChRs density in the mouse brain, exacerbating chronic inflammation, beta-amyloid accumulation and episodic memory decline, which mimic the early stages of Alzheimer’s disease (AD). To study the molecular mechanisms underlying the LPS and antibody effects in the brain, we employed an in vivo model of acute LPS-induced inflammation and an in vitro model of cultured glioblastoma U373 cells. Here, we report that LPS challenge decreased the levels of α7 nAChR RNA and protein and of acetylcholinesterase (AChE) RNA and activity in distinct mouse brain regions, sensitized brain mitochondria to the apoptogenic effect of Ca2+ and modified brain microRNA profiles, including the cholinergic-regulatory CholinomiRs-132/212, in favor of anti-inflammatory and pro-apoptotic ones. Adding α7(1–208)-specific antibodies to the LPS challenge prevented elevation of both the anti-inflammatory and pro-apoptotic miRNAs while supporting the resistance of brain mitochondria to Ca2+ and maintaining α7 nAChR/AChE decreases. In U373 cells, α7-specific antibodies and LPS both stimulated interleukin-6 production through the p38/Src-dependent pathway. Our findings demonstrate that acute LPS-induced inflammation induces the cholinergic anti-inflammatory pathway in the brain, that α7 nAChR down-regulation limits this pathway, and that α7-specific antibodies aggravate neuroinflammation by inducing the pro-inflammatory interleukin-6 and dampening anti-inflammatory miRNAs; however, these antibodies may protect brain mitochondria and decrease the levels of pro-apoptotic miRNAs, preventing LPS-induced neurodegeneration. PMID:27013966

  11. MOLECULAR MECHANISMS REGULATING LPS-INDUCED INFLAMMATION IN THE BRAIN

    Directory of Open Access Journals (Sweden)

    Olena eLykhmus

    2016-03-01

    Full Text Available Neuro-inflammation, one of the pathogenic causes of neurodegenerative diseases, is regulated through the cholinergic anti-inflammatory pathway via the 7 nicotinic acetylcholine receptor (7 nAChR. We previously showed that either bacterial lipopolysaccharide (LPS or immunization with the 7(1-208 nAChR fragment decrease 7 nAChRs density in the mouse brain, exacerbating chronic inflammation, beta-amyloid accumulation and episodic memory decline, which mimic the early stages of Alzheimer’s disease. To study the molecular mechanisms underlying the LPS and antibody effects in the brain, we employed an in vivo model of acute LPS-induced inflammation and an in vitro model of cultured glioblastoma U373 cells. Here, we report that LPS challenge decreased the levels of 7 nAChR RNA and protein and of acetylcholinesterase (AChE RNA and activity in distinct mouse brain regions, sensitized brain mitochondria to the apoptogenic effect of Ca2+ and modified brain microRNA profiles, including the cholinergic-regulatory CholinomiRs-132/212, in favor of anti-inflammatory and pro-apoptotic ones. Adding 7(1-208-specific antibodies to the LPS challenge prevented elevation of both the anti-inflammatory and pro-apoptotic miRNAs while supporting the resistance of brain mitochondria to Ca2+ and maintaining 7 nAChR/AChE decreases. In U373 cells, 7-specific antibodies and LPS both stimulated interleukin-6 production through the p38/Src-dependent pathway. Our findings demonstrate that acute LPS-induced inflammation induces the cholinergic anti-inflammatory pathway in the brain, that 7 nAChR down-regulation limits this pathway, and that 7-specific antibodies aggravate neuroinflammation by inducing the pro-inflammatory interleukin-6 and dampening anti-inflammatory miRNAs; however, these antibodies may protect brain mitochondria and decrease the levels of pro-apoptotic miRNAs, preventing LPS-induced neurodegeneration.

  12. Molecular and Physiological Mechanisms of Membrane Receptor Systems Functioning

    OpenAIRE

    Severin, E.; Savvateeva, M.

    2011-01-01

    Molecular physiology is a new interdisciplinary field of knowledge that looks into how complicated biological systems function. The living cell is a relatively simple, but at the same time very sophisticated biological system. After the sequencing of the human genome, molecular physiology has endeavored to investigate the systems of cellular interactions at a completely new level based on knowledge of the spatial organization and functions of receptors, their ligands, and protein-protein inte...

  13. Calculations of Solvation Free Energy through Energy Reweighting from Molecular Mechanics to Quantum Mechanics.

    Science.gov (United States)

    Jia, Xiangyu; Wang, Meiting; Shao, Yihan; König, Gerhard; Brooks, Bernard R; Zhang, John Z H; Mei, Ye

    2016-02-01

    In this work, the solvation free energies of 20 organic molecules from the 4th Statistical Assessment of the Modeling of Proteins and Ligands (SAMPL4) have been calculated. The sampling of phase space is carried out at a molecular mechanical level, and the associated free energy changes are estimated using the Bennett Acceptance Ratio (BAR). Then the quantum mechanical (QM) corrections are computed through the indirect Non-Boltzmann Bennett's acceptance ratio (NBB) or the thermodynamics perturbation (TP) method. We show that BAR+TP gives a minimum analytic variance for the calculated solvation free energy at the Gaussian limit and performs slightly better than NBB in practice. Furthermore, the expense of the QM calculations in TP is only half of that in NBB. We also show that defining the biasing potential as the difference of the solute-solvent interaction energy, instead of the total energy, can converge the calculated solvation free energies much faster but possibly to different values. Based on the experimental solvation free energies which have been published before, it is discovered in this study that BLYP yields better results than MP2 and some other later functionals such as B3LYP, M06-2X, and ωB97X-D.

  14. Calculations of Solvation Free Energy through Energy Reweighting from Molecular Mechanics to Quantum Mechanics.

    Science.gov (United States)

    Jia, Xiangyu; Wang, Meiting; Shao, Yihan; König, Gerhard; Brooks, Bernard R; Zhang, John Z H; Mei, Ye

    2016-02-01

    In this work, the solvation free energies of 20 organic molecules from the 4th Statistical Assessment of the Modeling of Proteins and Ligands (SAMPL4) have been calculated. The sampling of phase space is carried out at a molecular mechanical level, and the associated free energy changes are estimated using the Bennett Acceptance Ratio (BAR). Then the quantum mechanical (QM) corrections are computed through the indirect Non-Boltzmann Bennett's acceptance ratio (NBB) or the thermodynamics perturbation (TP) method. We show that BAR+TP gives a minimum analytic variance for the calculated solvation free energy at the Gaussian limit and performs slightly better than NBB in practice. Furthermore, the expense of the QM calculations in TP is only half of that in NBB. We also show that defining the biasing potential as the difference of the solute-solvent interaction energy, instead of the total energy, can converge the calculated solvation free energies much faster but possibly to different values. Based on the experimental solvation free energies which have been published before, it is discovered in this study that BLYP yields better results than MP2 and some other later functionals such as B3LYP, M06-2X, and ωB97X-D. PMID:26731197

  15. Radiation toxins: molecular mechanisms of action and radiomimetic properties .

    Science.gov (United States)

    Popov, Dmitri; Maliev, Vecheslav

    Introduction: Acute Radiation Disease (ARD) or Acute Radiation Syndromes (ARS) were defined as a toxic poisonous with development of the acute pathological processes in irradi-ated animals: systemic inflammatory response syndrome(SIRS), toxic multiple organ injury (TMOI), toxic multiple organ dysfunction syndromes (TMOD), toxic multiple organ failure (TMOF). However, the nature of radiation toxins, their mechanisms of formation, molecular structure, and mechanism of actions remain uncertain. Moderate and high doses of radiation induce apoptotic necrosis of radiosensitive cells with formation of Radiation Toxins and in-flammation development. Mild doses of radiation induce apoptosis or controlled programmed death of radiosensitive cells without Radiation Toxins formation and development of inflam-mation processes. Only radiation induced apoptotic necrosis initiates formation of Radiation Toxins(RT). Radiation Toxins are playing an important role as the trigger mechanisms for in-flammation development and cell lysis. The systemic inflammatory response syndrome after radiation involves an influence of various endogenous agents and mediators of inflammation such as bradykinin, histamine, serotonin and phospholipases activation, prostaglandins biosyn-thesis. Although, formation of non-specific toxins such as Reactive Oxygen Species (ROS) is an important pathological process at mild or high doses of radiation. Reactive Oxygen Species play an important role in molecules damage and development of peroxidation of lipids and pro-teins which are the structural parts of cell and mitochondrial membranes. ROS and bio-radicals induce damage of DNA and RNA and peroxidation of their molecules. But high doses of radia-tion, severe and extremely severe physiological stress, result in cells death by apoptotic necrosis and could be defined as the neuroimmune acute disease. Excitotoxicity is an important patho-logical mechanism which damages the central nervous system. We postulate that

  16. The Parkinsonian Gait Spatiotemporal Parameters Quantified by a Single Inertial Sensor before and after Automated Mechanical Peripheral Stimulation Treatment

    Directory of Open Access Journals (Sweden)

    Ana Kleiner

    2015-01-01

    Full Text Available This study aims to evaluate the change in gait spatiotemporal parameters in subjects with Parkinson’s disease (PD before and after Automated Mechanical Peripheral Stimulation (AMPS treatment. Thirty-five subjects with PD and 35 healthy age-matched subjects took part in this study. A dedicated medical device (Gondola was used to administer the AMPS. All patients with PD were treated in off levodopa phase and their gait performances were evaluated by an inertial measurement system before and after the intervention. The one-way ANOVA for repeated measures was performed to assess the differences between pre- and post-AMPS and the one-way ANOVA to assess the differences between PD patients and the control group. Spearman’s correlations assessed the associations between patients with PD clinical status (H&Y and the percentage of improvement of the gait variables after AMPS (α<0.05 for all tests. The PD group had an improvement of 14.85% in the stride length; 14.77% in the gait velocity; and 29.91% in the gait propulsion. The correlation results showed that the higher the H&Y classification, the higher the stride length percentage of improvement. The treatment based on AMPS intervention seems to induce a better performance in the gait pattern of PD patients, mainly in intermediate and advanced stages of the condition.

  17. Cone-beam computed tomography analysis of the apical third of curved roots after mechanical preparation with different automated systems

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Cesar Augusto Pereira; Pascoalato, Cristina [University of Southern Santa Catarina (UNISUL), Tubarao, SC (Brazil); Meurer, Maria Ines [Federal University of Santa Catarina (UFSC), Florianopolis, SC (Brazil); Silva, Silvio Rocha Correa, E-mail: silvio@foar.unesp.b [Sao Paulo State University (UNESP), Araraquara, SP (Brazil)

    2009-07-01

    The present study evaluated by cone-beam computed tomography (CBCT) the apical canal transportation and centralizing ability of different automated systems after root canal preparation. The mesiobuccal canals of maxillary first molars (n=10 per group) were prepared with: GI - reciprocating system with K-Flexofile; GII - reciprocating system with NiTiFlex files; GIII - rotary system with K3 instruments; GIV - rotary system with RaCe instruments. CBCT scans were taken before and after biomechanical preparation up to a 40.02 diameter. Canal transportation was determined by measuring the smallest distance between the inner canal walls and the mesial and distal sides of the root. The centralization ability corresponded to the difference between the measurements from transportation evaluation, using the linear voxel to voxel method of analysis. The mean transportation was 0.06 +- 0.14 mm, with a tendency to deviate to the mesial side of the root (n=22), with no statistically significant difference among the groups (p=0.4153). The mean centralization index was 0.15 +- 0.65 also without statistically significant difference among the groups (p=0.0881). It may be concluded that apical canal transportation and centralization ability were not influenced by the type of mechanical movement and instruments used. (author)

  18. Nuclear Magnetic Shielding Constants from Quantum Mechanical/Molecular Mechanical Calculations Using Polarizable Embedding: Role of the Embedding Potential

    DEFF Research Database (Denmark)

    Steinmann, Casper; Olsen, Jógvan Magnus Haugaard; Kongsted, Jacob

    2014-01-01

    We present NMR shielding constants obtained through quantum mechanical/molecular mechanical (QM/MM) embedding calculations. Contrary to previous reports, we show that a relatively small QM region is sufficient, provided that a high-quality embedding potential is used. The calculated averaged NMR...

  19. Technology Development of Automated Rendezvous and Docking/Capture Sensors and Docking Mechanism for the Asteroid Redirect Crewed Mission

    Science.gov (United States)

    Hinkel, Heather; Strube, Matthew; Zipay, John J.; Cryan, Scott

    2016-01-01

    This paper will describe the technology development efforts NASA has underway for Automated Rendezvous and Docking/Capture (AR&D/C) sensors and a docking mechanism and the challenges involved. The paper will additionally address how these technologies will be extended to other missions requiring AR&D/C whether robotic or manned. NASA needs AR&D/C sensors for both the robotic and crewed segments of the Asteroid Redirect Mission (ARM). NASA recently conducted a commonality assessment of the concept of operations for the robotic Asteroid Redirect Vehicle (ARV) and the crewed mission segment using the Orion spacecraft. The commonality assessment also considered several future exploration and science missions requiring an AR&D/C capability. Missions considered were asteroid sample return, satellite servicing, and planetary entry, descent, and landing. This assessment determined that a common sensor suite consisting of one or more visible wavelength cameras, a three-dimensional LIDAR along with long-wavelength infrared cameras for robustness and situational awareness could be used on each mission to eliminate the cost of multiple sensor developments and qualifications. By choosing sensor parameters at build-time instead of at design-time and, without having to requalify flight hardware, a specific mission can design overlapping bearing, range, relative attitude, and position measurement availability to suit their mission requirements with minimal non-recurring engineering costs. The resulting common sensor specification provides the union of all performance requirements for each mission and represents an improvement over the current systems used for AR&D/C today. These sensor specifications are tightly coupled to the docking system capabilities and requirements for final docking conditions. The paper will describe NASA's efforts to develop a standard docking system for use across NASA human spaceflight missions to multiple destinations. It will describe the current

  20. Application of Automation Technology in Mechanical Manufacturing%自动化技术在机械制造方面的应用

    Institute of Scientific and Technical Information of China (English)

    周正

    2016-01-01

    自动化技术在机械制造方面应用十分广泛,已经成为工学机械类的一门学科,自动化技术对于提高机械制造的加工质量和生产效率具有重要作用。文章介绍了机械制造自动化的应用特征以及自动化技术应用的价值意义,重点介绍了现代化机械制造业中自动化技术的应用,包括:柔性自动化、集成化、虚拟化、智能化等。自动化技术将推动制造业和整个社会生产效率的提高,促进现代化加工和科学技术进步。%The automation technology is widely used in machinery manufacturing and has become a discipline of engineering machinery,which plays an important role in the improvement of machinery manufacturing processing quality and production effi-ciency.The article introduces the application of mechanical manufacturing automation features and application value of automation technology,the application of automation technology in modern machinery manufacturing industry,including:flexible automation, integration,virtualization,intelligent,etc.Automation technology will drive the manufacturing industry and production efficiency, and promote the modernization process and the progress of science and technology.

  1. Studies on Molecular Mechanisms Underlying Spinocerebellar Ataxia Type 3

    DEFF Research Database (Denmark)

    Kristensen, Line Vildbrad

    in protein quality control. In SCA3 patients polyQ expanded ataxin-3 forms intranuclear inclusions in various brain areas, but why the polyQ expansion of ataxin-3 leads to neuronal dysfunction is still not well understood. This thesis describes molecular biological investigations of ataxin-3 biology, aimed...

  2. Treating electrostatics with Wolf summation in combined quantum mechanical and molecular mechanical simulations

    Science.gov (United States)

    Ojeda-May, Pedro; Pu, Jingzhi

    2015-11-01

    The Wolf summation approach [D. Wolf et al., J. Chem. Phys. 110, 8254 (1999)], in the damped shifted force (DSF) formalism [C. J. Fennell and J. D. Gezelter, J. Chem. Phys. 124, 234104 (2006)], is extended for treating electrostatics in combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulations. In this development, we split the QM/MM electrostatic potential energy function into the conventional Coulomb r-1 term and a term that contains the DSF contribution. The former is handled by the standard machinery of cutoff-based QM/MM simulations whereas the latter is incorporated into the QM/MM interaction Hamiltonian as a Fock matrix correction. We tested the resulting QM/MM-DSF method for two solution-phase reactions, i.e., the association of ammonium and chloride ions and a symmetric SN2 reaction in which a methyl group is exchanged between two chloride ions. The performance of the QM/MM-DSF method was assessed by comparing the potential of mean force (PMF) profiles with those from the QM/MM-Ewald and QM/MM-isotropic periodic sum (IPS) methods, both of which include long-range electrostatics explicitly. For ion association, the QM/MM-DSF method successfully eliminates the artificial free energy drift observed in the QM/MM-Cutoff simulations, in a remarkable agreement with the two long-range-containing methods. For the SN2 reaction, the free energy of activation obtained by the QM/MM-DSF method agrees well with both the QM/MM-Ewald and QM/MM-IPS results. The latter, however, requires a greater cutoff distance than QM/MM-DSF for a proper convergence of the PMF. Avoiding time-consuming lattice summation, the QM/MM-DSF method yields a 55% reduction in computational cost compared with the QM/MM-Ewald method. These results suggest that, in addition to QM/MM-IPS, the QM/MM-DSF method may serve as another efficient and accurate alternative to QM/MM-Ewald for treating electrostatics in condensed-phase simulations of chemical reactions.

  3. Treating electrostatics with Wolf summation in combined quantum mechanical and molecular mechanical simulations

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda-May, Pedro; Pu, Jingzhi, E-mail: jpu@iupui.edu [Department of Chemistry and Chemical Biology, Indiana University–Purdue University Indianapolis, 402 N. Blackford Street, Indianapolis, Indiana 46202 (United States)

    2015-11-07

    The Wolf summation approach [D. Wolf et al., J. Chem. Phys. 110, 8254 (1999)], in the damped shifted force (DSF) formalism [C. J. Fennell and J. D. Gezelter, J. Chem. Phys. 124, 234104 (2006)], is extended for treating electrostatics in combined quantum mechanical and molecular mechanical (QM/MM) molecular dynamics simulations. In this development, we split the QM/MM electrostatic potential energy function into the conventional Coulomb r{sup −1} term and a term that contains the DSF contribution. The former is handled by the standard machinery of cutoff-based QM/MM simulations whereas the latter is incorporated into the QM/MM interaction Hamiltonian as a Fock matrix correction. We tested the resulting QM/MM-DSF method for two solution-phase reactions, i.e., the association of ammonium and chloride ions and a symmetric SN{sub 2} reaction in which a methyl group is exchanged between two chloride ions. The performance of the QM/MM-DSF method was assessed by comparing the potential of mean force (PMF) profiles with those from the QM/MM-Ewald and QM/MM-isotropic periodic sum (IPS) methods, both of which include long-range electrostatics explicitly. For ion association, the QM/MM-DSF method successfully eliminates the artificial free energy drift observed in the QM/MM-Cutoff simulations, in a remarkable agreement with the two long-range-containing methods. For the SN{sub 2} reaction, the free energy of activation obtained by the QM/MM-DSF method agrees well with both the QM/MM-Ewald and QM/MM-IPS results. The latter, however, requires a greater cutoff distance than QM/MM-DSF for a proper convergence of the PMF. Avoiding time-consuming lattice summation, the QM/MM-DSF method yields a 55% reduction in computational cost compared with the QM/MM-Ewald method. These results suggest that, in addition to QM/MM-IPS, the QM/MM-DSF method may serve as another efficient and accurate alternative to QM/MM-Ewald for treating electrostatics in condensed-phase simulations of chemical

  4. MOLECULAR MECHANISMS OF ACTION OF MAGNESIUM OROTATE ON CARDIOVASCULAR SYSTEM

    Directory of Open Access Journals (Sweden)

    I. Yu. Torshin

    2016-01-01

    Full Text Available Orotic acid is one of the intermediates in the pyrimidine biosynthesis. Mechanisms of physiological effects of orotic acid are poorly known. Analysis of data about these mechanisms is presented. Effects of orotic acid and magnesium orotate on cardiovascular system as well as therapeutic implementation of magnesium orotate in cardiology are discussed.

  5. Semiempirical Predictions of Chemical Degradation Reaction Mechanisms of CL-20 as Related to Molecular Structure

    Energy Technology Data Exchange (ETDEWEB)

    Qasim, Mohammad M.; Furey, John; Fredrickson, Herbert L.; Szecsody, Jim E.; Mcgrath, Chris J.; Bajpai, Rakesh

    2004-10-01

    Quantum mechanical methods and force field molecular mechanics were used to characterize cage cyclic nitramines and to predict environmental degradation mechanisms. Due to structural similarities it is predicted that, under homologous circumstances, the major environmental RDX degradation pathways should also be effective for CL-20 and similar cyclic nitramines.

  6. Rapid Molecular Cloud and Star Formation: Mechanisms and Movies

    CERN Document Server

    Heitsch, Fabian

    2008-01-01

    We demonstrate that the observationally inferred rapid onset of star formation after parental molecular clouds have assembled can be achieved by flow-driven cloud formation of atomic gas, using our previous three-dimensional numerical simulations. We post-process these simulations to approximate CO formation, which allows us to investigate the times at which CO becomes abundant relative to the onset of cloud collapse. We find that global gravity in a finite cloud has two crucial effects on cloud evolution. (a) Lateral collapse (perpendicular to the flows sweeping up the cloud) leads to rapidly increasing column densities above the accumulation from the one-dimensional flow. This in turn allows fast formation of CO, allowing the molecular cloud to ``appear'' rapidly. (b) Global gravity is required to drive the dense gas to the high pressures necessary to form solar-mass cores, in support of recent analytical models of cloud fragmentation. While the clouds still appear ``supersonically turbulent'', this turbule...

  7. The Molecular Mechanism of Iron(III) Oxide Nucleation.

    Science.gov (United States)

    Scheck, Johanna; Wu, Baohu; Drechsler, Markus; Rosenberg, Rose; Van Driessche, Alexander E S; Stawski, Tomasz M; Gebauer, Denis

    2016-08-18

    A molecular understanding of the formation of solid phases from solution would be beneficial for various scientific fields. However, nucleation pathways are still not fully understood, whereby the case of iron (oxyhydr)oxides poses a prime example. We show that in the prenucleation regime, thermodynamically stable solute species up to a few nanometers in size are observed, which meet the definition of prenucleation clusters. Nucleation then is not governed by a critical size, but rather by the dynamics of the clusters that are forming at the distinct nucleation stages, based on the chemistry of the linkages within the clusters. This resolves a longstanding debate in the field of iron oxide nucleation, and the results may generally apply to oxides forming via hydrolysis and condensation. The (molecular) understanding of the chemical basis of phase separation is paramount for, e.g., tailoring size, shape and structure of novel nanocrystalline materials. PMID:27466739

  8. Plant Responses to Simultaneous Biotic and Abiotic Stress: Molecular Mechanisms

    Directory of Open Access Journals (Sweden)

    Ines Ben Rejeb

    2014-10-01

    Full Text Available Plants are constantly confronted to both abiotic and biotic stresses that seriously reduce their productivity. Plant responses to these stresses are complex and involve numerous physiological, molecular, and cellular adaptations. Recent evidence shows that a combination of abiotic and biotic stress can have a positive effect on plant performance by reducing the susceptibility to biotic stress. Such an interaction between both types of stress points to a crosstalk between their respective signaling pathways. This crosstalk may be synergistic and/or antagonistic and include among others the involvement of phytohormones, transcription factors, kinase cascades, and reactive oxygen species (ROS. In certain cases, such crosstalk can lead to a cross-tolerance and enhancement of a plant’s resistance against pathogens. This review aims at giving an insight into cross-tolerance between abiotic and biotic stress, focusing on the molecular level and regulatory pathways.

  9. Molecular and Metabolic Mechanisms of Carbon Sequestration in Marine Thrombolites

    Science.gov (United States)

    Mobberley, Jennifer

    2013-01-01

    The overall goal of my dissertation project has been to examine the molecular processes underlying carbon sequestration in lithifying microbial ecosystems, known as thrombolitic mats, and assess their feasibility for use in bioregenerative life support systems. The results of my research and education efforts funded by the Graduate Student Researchers Program can be summarized in four peer-reviewed research publication, one educational publication, two papers in preparation, and six research presentations at local and national science meetings (see below for specific details).

  10. 煤矿综采工作面自动化技术探究%Automation Technology of Coal Mine Fully Mechanized Working Face

    Institute of Scientific and Technical Information of China (English)

    田成立

    2015-01-01

    我国煤炭资源丰富,煤矿企业居多。由于煤矿开采作业环境恶劣,运用自动化技术即可提高产量,又能降低劳动强度。发展自动化开采技术有利于促进煤矿企业安全高效生产。研究和应用自动化采煤技术是煤炭行业的重点任务。从综采工作面自动化技术的构成、功能、控制等方面进行阐述。%My country is rich in coal resources, coal mining enterprises in the majority. Because of the bad coal mining operation environment, use of automation technology can increase production, and can reduce labor intensity. Development of automated production technology is helpful to promote the safe and efficient production of coal mining enterprises. Coal mining research and application of automation technology is the focus of the coal industry. This article from the automation technology of fully mechanized working face of structure, function, control, etc.

  11. Molecular and cellular mechanisms of vomeronasal signaling in mammals

    OpenAIRE

    Cichy, Annika

    2013-01-01

    The mouse vomeronasal organ plays a critical role in chemosensory communication and regulates diverse social and sexual behaviors. However, many physiological mechanisms underlying vomeronasal chemosensory signaling remain elusive. Therefore, the overall aim of my thesis was to gain a deeper understanding of the basic mechanisms that control VNO physiology. Specifically, my research focused on HCN channel-mediated vomeronasal proton-sensing and its potential role in sensory gain control of so...

  12. Examining the mechanical equilibrium of microscopic stresses in molecular simulations

    OpenAIRE

    Torres Sánchez, Alejandro; Vanegas, Juan Manuel; Arroyo Balaguer, Marino

    2015-01-01

    The microscopic stress field provides a unique connection between atomistic simulations and mechanics at the nanoscale. However, its definition remains ambiguous. Rather than a mere theoretical preoccupation, we show that this fact acutely manifests itself in local stress calculations of defective graphene, lipid bilayers, and fibrous proteins. We find that popular definitions of the microscopic stress violate the continuum statements of mechanical equilibrium, and we propose an unambiguous a...

  13. DMPD: Molecular mechanisms of macrophage activation and deactivation bylipopolysaccharide: roles of the receptor complex. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 14609719 Molecular mechanisms of macrophage activation and deactivation bylipopolysaccharide: role...ivation and deactivation bylipopolysaccharide: roles of the receptor complex. Pub...medID 14609719 Title Molecular mechanisms of macrophage activation and deactivation bylipopolysaccharide: role

  14. Aquaporin water channels: molecular mechanisms for human diseases.

    Science.gov (United States)

    Agre, Peter; Kozono, David

    2003-11-27

    Although water is the major component of all biological fluids, the molecular pathways for water transport across cell membranes eluded identification until the discovery of the aquaporin family of water channels. The atomic structure of mammalian AQP1 illustrates how this family of proteins is freely permeated by water but not protons (hydronium ions, H3O+). Definition of the subcellular sites of expression predicted their physiological functions and potential clinical disorders. Analysis of several human disease states has confirmed that aquaporins are involved in multiple different illnesses including abnormalities of kidney function, loss of vision, onset of brain edema, starvation, and arsenic toxicity.

  15. Molecular regulatory mechanisms of osteoclastogenesis through cytoprotective enzymes

    Directory of Open Access Journals (Sweden)

    Hiroyuki Kanzaki

    2016-08-01

    Full Text Available It has been reported that reactive oxygen species (ROS, such as hydrogen peroxide and superoxide, take part in osteoclast differentiation as intra-cellular signaling molecules. The current assumed signaling cascade from RANK to ROS production is RANK, TRAF6, Rac1, and then Nox. The target molecules of ROS in RANKL signaling remain unclear; however, several reports support the theory that NF-κB signaling could be the crucial downstream signaling molecule of RANKL-mediated ROS signaling. Furthermore, ROS exert cytotoxic effects such as peroxidation of lipids and phospholipids and oxidative damage to proteins and DNA. Therefore, cells have several protective mechanisms against oxidative stressors that mainly induce cytoprotective enzymes and ROS scavenging. Three well-known mechanisms regulate cytoprotective enzymes including Nrf2-, FOXO-, and sirtuin-dependent mechanisms. Several reports have indicated a crosslink between FOXO- and sirtuin-dependent regulatory mechanisms. The agonists against the regulatory mechanisms are reported to induce these cytoprotective enzymes successfully. Some of them inhibit osteoclast differentiation and bone destruction via attenuation of intracellular ROS signaling. In this review article, we discuss the above topics and summarize the current information available on the relationship between cytoprotective enzymes and osteoclastogenesis.

  16. Mechanism study and molecular design in controlled/“living” radical polymerization

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This tutorial review summarizes recent progress in the research field of controlled/"living" radical polymerization (CLRP) from Soochow University.The present paper gives a broad overview of the mechanism study and molecular design in CLRP.The mechanism study in CLRP aided by microwave,initiated by γ-radiation at low temperature,mediated by iron,in reversible addition-fragmentation chain transfer (RAFT) polymerization and the mechanism transfer between different CLRP processes are reviewed and summarized.The molecular design in CLRP,especially in RAFT polymerization for mechanism study,and in achieving tailor-made functional polymers is studied and discussed in the later part.

  17. Molecular mechanisms of gravity perception and signal transduction in plants.

    Science.gov (United States)

    Kolesnikov, Yaroslav S; Kretynin, Serhiy V; Volotovsky, Igor D; Kordyum, Elizabeth L; Ruelland, Eric; Kravets, Volodymyr S

    2016-07-01

    Gravity is one of the environmental cues that direct plant growth and development. Recent investigations of different gravity signalling pathways have added complexity to how we think gravity is perceived. Particular cells within specific organs or tissues perceive gravity stimulus. Many downstream signalling events transmit the perceived information into subcellular, biochemical, and genomic responses. They are rapid, non-genomic, regulatory, and cell-specific. The chain of events may pass by signalling lipids, the cytoskeleton, intracellular calcium levels, protein phosphorylation-dependent pathways, proteome changes, membrane transport, vacuolar biogenesis mechanisms, or nuclear events. These events culminate in changes in gene expression and auxin lateral redistribution in gravity response sites. The possible integration of these signalling events with amyloplast movements or with other perception mechanisms is discussed. Further investigation is needed to understand how plants coordinate mechanisms and signals to sense this important physical factor. PMID:26215561

  18. Molecular mechanics work station for protein conformational studies

    Energy Technology Data Exchange (ETDEWEB)

    Fine, R.; Levinthal, C.; Schoenborn, B.; Dimmier, G.; Rankowitz, C.

    1984-01-01

    Interest in computational problems in Biology has intensified over the last few years, partly due to the development of techniques for the rapid cloning, sequencing, and mutagenesis of genes from organisims ranging from E. coli to Man. The central dogma of molecular biology; that DNA codes for mRNA which codes for protein, has been understood in a linear programming sense since the genetic code was cracked. But what is not understood at present is how a protein, once assembled as a long sequence of amino acids, folds back on itself to produce a three-dimensional structure which is unique to that protein and which dictates its chemical and biological activity. This folding process is purely physics, and involves the time evolution of a system of several thousand atoms which interact with each other and with atoms from the surrounding solvent. Molecular dynamics simulations on smaller molecules suggest that approaches which treat the protein as a classical ensemble of atoms interacting with each other via an empirical Hamiltonian can yield the kind of predictive results one would like when applied to proteins.

  19. Molecular Mechanism: ERK Signaling, Drug Addiction, and Behavioral Effects.

    Science.gov (United States)

    Sun, Wei-Lun; Quizon, Pamela M; Zhu, Jun

    2016-01-01

    Addiction to psychostimulants has been considered as a chronic psychiatric disorder characterized by craving and compulsive drug seeking and use. Over the past two decades, accumulating evidence has demonstrated that repeated drug exposure causes long-lasting neurochemical and cellular changes that result in enduring neuroadaptation in brain circuitry and underlie compulsive drug consumption and relapse. Through intercellular signaling cascades, drugs of abuse induce remodeling in the rewarding circuitry that contributes to the neuroplasticity of learning and memory associated with addiction. Here, we review the role of the extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase, and its related intracellular signaling pathways in drug-induced neuroadaptive changes that are associated with drug-mediated psychomotor activity, rewarding properties and relapse of drug seeking behaviors. We also discuss the neurobiological and behavioral effects of pharmacological and genetic interferences with ERK-associated molecular cascades in response to abused substances. Understanding the dynamic modulation of ERK signaling in response to drugs may provide novel molecular targets for therapeutic strategies to drug addiction. PMID:26809997

  20. Automated insertion of sequences into a ribosomal RNA alignment: An application of computational linguistics in molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.C.

    1991-11-01

    This thesis involved the construction of (1) a grammar that incorporates knowledge on base invariancy and secondary structure in a molecule and (2) a parser engine that uses the grammar to position bases into the structural subunits of the molecule. These concepts were combined with a novel pinning technique to form a tool that semi-automates insertion of a new species into the alignment for the 16S rRNA molecule (a component of the ribosome) maintained by Dr. Carl Woese`s group at the University of Illinois at Urbana. The tool was tested on species extracted from the alignment and on a group of entirely new species. The results were very encouraging, and the tool should be substantial aid to the curators of the 16S alignment. The construction of the grammar was itself automated, allowing application of the tool to alignments for other molecules. The logic programming language Prolog was used to construct all programs involved. The computational linguistics approach used here was found to be a useful way to attach the problem of insertion into an alignment.

  1. Automated insertion of sequences into a ribosomal RNA alignment: An application of computational linguistics in molecular biology

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, R.C.

    1991-11-01

    This thesis involved the construction of (1) a grammar that incorporates knowledge on base invariancy and secondary structure in a molecule and (2) a parser engine that uses the grammar to position bases into the structural subunits of the molecule. These concepts were combined with a novel pinning technique to form a tool that semi-automates insertion of a new species into the alignment for the 16S rRNA molecule (a component of the ribosome) maintained by Dr. Carl Woese's group at the University of Illinois at Urbana. The tool was tested on species extracted from the alignment and on a group of entirely new species. The results were very encouraging, and the tool should be substantial aid to the curators of the 16S alignment. The construction of the grammar was itself automated, allowing application of the tool to alignments for other molecules. The logic programming language Prolog was used to construct all programs involved. The computational linguistics approach used here was found to be a useful way to attach the problem of insertion into an alignment.

  2. Molecular mechanics of DNA bricks: in situ structure, mechanical properties and ionic conductivity

    Science.gov (United States)

    Slone, Scott Michael; Li, Chen-Yu; Yoo, Jejoong; Aksimentiev, Aleksei

    2016-05-01

    The DNA bricks method exploits self-assembly of short DNA fragments to produce custom three-dimensional objects with subnanometer precision. In contrast to DNA origami, the DNA brick method permits a variety of different structures to be realized using the same library of DNA strands. As a consequence of their design, however, assembled DNA brick structures have fewer interhelical connections in comparison to equivalent DNA origami structures. Although the overall shape of the DNA brick objects has been characterized and found to conform to the features of the target designs, the microscopic properties of DNA brick objects remain yet to be determined. Here, we use the all-atom molecular dynamics method to directly compare the structure, mechanical properties and ionic conductivity of DNA brick and DNA origami structures different only by internal connectivity of their consistituent DNA strands. In comparison to equivalent DNA origami structures, the DNA brick structures are found to be less rigid and less dense and have a larger cross-section area normal to the DNA helix direction. At the microscopic level, the junction in the DNA brick structures are found to be right-handed, similar to the structure of individual Holliday junctions (HJ) in solution, which contrasts with the left-handed structure of HJ in DNA origami. Subject to external electric field, a DNA brick plate is more leaky to ions than an equivalent DNA origami plate because of its lower density and larger cross-section area. Overall, our results indicate that the structures produced by the DNA brick method are fairly similar in their overall appearance to those created by the DNA origami method but are more compliant when subject to external forces, which likely is a consequence of their single crossover design.

  3. Mechanisms of two-color laser-induced field-free molecular orientation

    OpenAIRE

    Spanner, Michael; Patchkovskii, Serguei; Frumker, Eugene; Corkum, Paul

    2012-01-01

    Two mechanisms of two-color (\\omega + 2\\omega) laser-induced field-free molecular orientation, based on the hyperpolarizability and ionization depletion, are explored and compared. The CO molecule is used as a computational example. While the hyperpolarizability mechanism generates small amounts of orientation at intensities below the ionization threshold, ionization depletion quickly becomes the dominant mechanism as soon as ionizing intensities are reached. Only the ionization mechanism lea...

  4. Dissecting the molecular mechanisms of intraflagellar transport in Chlamydomonas

    DEFF Research Database (Denmark)

    Pedersen, L. B.; Geimer, S.; Rosenbaum, J. L.

    2006-01-01

    the IFT system have been identified and characterized, but the mechanisms by which these different components are coordinated and regulated at the flagellar base and tip are unclear. Results Using a variety of Chlamydomonas mutants, we confirm that cDynein1b requires kinesin-2 for transport toward the...

  5. Molecular mechanisms of toxicity of important food-borne phytotoxins

    NARCIS (Netherlands)

    Rietjens, I.M.C.M.; Martena, M.J.; Boersma, M.G.; Spiegelenberg, W.; Alink, G.M.

    2005-01-01

    At present, there is an increasing interest for plant ingredients and their use in drugs, for teas, or in food supplements. The present review describes the nature and mechanism of action of the phytochemicals presently receiving increased attention in the field of food toxicology. This relates to c

  6. Molecular mechanisms of plant competition: neighbour detection and response strategies

    NARCIS (Netherlands)

    Pierik, R.; Mommer, L.; Voesenek, L.A.C.J.

    2013-01-01

    Plant competition determines the diversity and species abundance of natural communities as well as potential yields in agricultural systems. Understanding the mechanisms of plant competition is instrumental to understanding plant performance in true vegetations. In this review, we will address vario

  7. Exploring host-guest complexation mechanisms by a molecular dynamics/quantum mechanics/continuum solvent model approach

    Science.gov (United States)

    Ye, Renlong; Nie, Xuemei; Zhou, Yumei; Wong, Chung F.; Gong, Xuedong; Jiang, Wei; Tang, Weihua; Wang, Yan A.; Heine, Thomas; Zhou, Baojing

    2016-03-01

    We introduce a molecular dynamics/quantum mechanics/continuum solvent model (MD/QM/CSM) approach to investigate binding mechanisms of host-guest systems. The representative conformations of host, guest, and their complex generated from MD simulations at the molecular-mechanics level are used for binding free energy calculations based on a QM/CSM model. We use this approach to explore the binding mechanisms of β-cyclodextrin (β-CD) and 2, 6-di-methyl-β-CD (DM-β-CD) with various guest molecules. Our results suggest that solvent effects play a more important role in determining the relative binding affinities of DM-β-CD than those of β-CD mainly because the former is more flexible than the latter.

  8. The epidemiology and molecular mechanisms linking obesity, diabetes, and cancer.

    Science.gov (United States)

    Ferguson, Rosalyn D; Gallagher, Emily J; Scheinman, Eyal J; Damouni, Rawan; LeRoith, Derek

    2013-01-01

    The worldwide epidemic of obesity is associated with increasing rates of the metabolic syndrome and type 2 diabetes. Epidemiological studies have reported that these conditions are linked to increased rates of cancer incidence and mortality. Obesity, particularly abdominal obesity, is associated with insulin resistance and the development of dyslipidemia, hyperglycemia, and ultimately type 2 diabetes. Although many metabolic abnormalities occur with obesity and type 2 diabetes, insulin resistance and hyperinsulinemia appear to be central to these conditions and may contribute to dyslipidemia and altered levels of circulating estrogens and androgens. In this review, we will discuss the epidemiological and molecular links between obesity, type 2 diabetes, and cancer, and how hyperinsulinemia and dyslipidemia may contribute to cancer development. We will discuss how these metabolic abnormalities may interact with estrogen signaling in breast cancer growth. Finally, we will discuss the effects of type 2 diabetes medications on cancer risk. PMID:23810003

  9. Molecular mechanisms of DNA recombination: testing mitotic and meiotic models

    International Nuclear Information System (INIS)

    A hyperhaploid n + 1 strain of Saccharomyces cerevisiae (LBL1) disomic for chromosome VII was employed to isolate hyper-rec and hypo-rec mutations affecting spontaneous mitotic gene conversion and intergenic recombination. The genotype of LBL1 permits simultaneous and independent identification of rec mutations that enhance or diminish gene conversion and those that enhance or diminish intergenic recombination. Five phenotypic groups of rec mutants were isolated following ultraviolet light mutagenesis. Rec mutations that simultaneously abolish or enhance both classes of recombinational events were detected. These results demonstrate that gene conversion and intergenic recombination are under joint genetic control in mitotic cells. Conversion-specific and intergenic recombination-specific rec mutants were also recovered. Their properties indicate that conversion and intergenic recombination are separable pheonomena dependent upon discrete REC genes. The rec mutants isolated in LBL1 provide a method to test molecular models of mitotic and meiotic recombination

  10. Stability mechanisms of a thermophilic laccase probed by molecular dynamics

    DEFF Research Database (Denmark)

    Christensen, Niels Johan; Kepp, Kasper Planeta

    2013-01-01

    Laccases are highly stable, industrially important enzymes capable of oxidizing a large range of substrates. Causes for their stability are, as for other proteins, poorly understood. In this work, multiple-seed molecular dynamics (MD) was applied to a Trametes versicolor laccase in response...... of structural response to environment, whereas solvent-accessibility, radius of gyration, and fluctuations were only locally relevant. Backbone hydrogen bonds decreased systematically with temperature in all simulations (∼9 per 50 K), probing structural changes associated with enthalpy-entropy compensation...... integrity by increasing persistent backbone hydrogen bonds by ∼4 across simulations, mainly via prevention of F(-) intrusion. Hydrogen-bond loss in distinct loop regions and ends of critical β-sheets suggest potential strategies for laboratory optimization of these industrially important enzymes....

  11. Home Automation

    OpenAIRE

    Ahmed, Zeeshan

    2010-01-01

    In this paper I briefly discuss the importance of home automation system. Going in to the details I briefly present a real time designed and implemented software and hardware oriented house automation research project, capable of automating house's electricity and providing a security system to detect the presence of unexpected behavior.

  12. Coupling of temperature with pressure induced initial decomposition mechanisms of two molecular crystals: An ab initio molecular dynamics study

    Indian Academy of Sciences (India)

    QIONG WU; DONG XIANG; GUOLIN XIONG; WEIHUA ZHU; HEMING XIAO

    2016-05-01

    Ab initio molecular dynamics simulations were performed to study the initiation of decompositionand formation of first products of two molecular crystals pentaerythritol tetranitrate (PETN) and 5-nitro-2,4-dihydro-1,2,4-triazole-3-one (NTO) under thermal decomposition temperature (475 K for PETN and 531 Kfor NTO) coupled with different pressures (1-5 GPa). The pressure effects on the initial decomposition stepsand initially generated products on PETN and NTO were very different. PETN was triggered by C-H... O intermolecular hydrogen transfer. The initial decomposition mechanism was independent of the pressure. ForNTO, two different initial decomposition mechanisms were found. At 1, 2, and 3 GPa, it was triggered by NH....O intermolecular hydrogen transfer, while at 4 and 5 GPa, it was triggered by N-H.....N intermolecularhydrogen transfer. This indicates that the initial decomposition mechanism was dependent on the pressure.Our study may provide new insights into initial mechanisms and decomposition reactions of molecular crystalexplosives under thermal decomposition temperature coupled with different pressures with details at atomiclevel.

  13. Anisotropic mechanical properties of graphene sheets from molecular dynamics

    International Nuclear Information System (INIS)

    Anisotropic mechanical properties are observed for a sheet of graphene along different load directions. The anisotropic mechanical properties are attributed to the hexagonal structure of the unit cells of the graphene. Under the same tensile loads, the edge bonds bear larger load in the longitudinal mode (LM) than in the transverse mode (TM), which causes fracture sooner in LM than in TM. The Young's modulus and the third order elastic modulus for the LM are slightly larger than that for the TM. Simulation also demonstrates that, for both LM and TM, the loading and unloading stress-strain response curves overlap as long as the graphene is unloaded before the fracture point. This confirms that graphene sustains complete elastic and reversible deformation in the elongation process.

  14. Molecular mechanisms in the initiation phase of Wallerian degeneration.

    Science.gov (United States)

    Chang, Biao; Quan, Qi; Lu, Shibi; Wang, Yu; Peng, Jiang

    2016-08-01

    Axonal degeneration is an early hallmark of nerve injury and many neurodegenerative diseases. The discovery of the Wallerian degeneration slow mutant mouse, in which axonal degeneration is delayed, revealed that Wallerian degeneration is an active progress and thereby illuminated the mechanisms underlying axonal degeneration. Nicotinamide mononucleotide adenylyltransferase 2 and sterile alpha and armadillo motif-containing protein 1 play essential roles in the maintenance of axon integrity by regulating the level of nicotinamide adenine dinucleotide, which seems to be the key molecule involved in the maintenance of axonal health. However, the function of nicotinamide mononucleotide remains debatable, and we discuss two apparently conflicting roles of nicotinamide mononucleotide in Wallerian degeneration. In this article, we focus on the roles of these molecules in the initiation phase of Wallerian degeneration to improve our understanding of the mechanisms underpinning this phenomenon. PMID:27062141

  15. Aging and Immune Function: Molecular Mechanisms to Interventions

    OpenAIRE

    Ponnappan, Subramaniam; Ponnappan, Usha

    2011-01-01

    The immune system of an organism is an essential component of the defense mechanism aimed at combating pathogenic stress. Age-associated immune dysfunction, also dubbed “immune senescence,” manifests as increased susceptibility to infections, increased onset and progression of autoimmune diseases, and onset of neoplasia. Over the years, extensive research has generated consensus in terms of the phenotypic and functional defects within the immune system in various organisms, including humans. ...

  16. Biochemical and molecular mechanisms of acaricide resistance in Tetranychus urticae

    OpenAIRE

    Khajehali, Jahangir

    2010-01-01

    The two-spotted spider mite Tetranychus urticae is an economically important pest in many agricultural crops worldwide. Its high reproductive potential and extremely short life cycle, combined with the frequent acaricide applications usually required to maintain the population below economic threshold, facilitates rapid resistance build-up. This has led to the development of resistance against almost all commercially used compounds. In this study we tried to unravel the mechanisms behind the ...

  17. Proteases in cardiometabolic diseases: Pathophysiology, molecular mechanisms and clinical applications

    OpenAIRE

    Hua, Yinan; Nair, Sreejayan

    2014-01-01

    Cardiovascular disease is the leading cause of death in the U.S. and other developed country. Metabolic syndrome, including obesity, diabetes/insulin resistance, hypertension and dyslipidemia is major threat for public health in the modern society. It is well established that metabolic syndrome contributes to the development of cardiovascular disease collective called as cardiometabolic disease. Despite documented studies in the research field of cardiometabolic disease, the underlying mechan...

  18. Molecular mechanisms promoting the pathogenesis of Schwann cell neoplasms

    OpenAIRE

    Carroll, Steven L.

    2011-01-01

    Neurofibromas, schwannomas and malignant peripheral nerve sheath tumors (MPNSTs) all arise from the Schwann cell lineage. Despite their common origin, these tumor types have distinct pathologies and clinical behaviors; a growing body of evidence indicates that they also arise via distinct pathogenic mechanisms. Identification of the genes that are mutated in genetic diseases characterized by the development of either neurofibromas and MPNSTs [neurofibromatosis type 1 (NF1)] or schwannomas [ne...

  19. Molecular mechanisms of clinical concentrating and diluting disorders

    OpenAIRE

    Schrier, Robert W.

    2008-01-01

    Impaired urinary dilution leading to water retention and hyponatremia may occur in patients with cardiac failure, cirrhosis, pregnancy, hypothyroidism, glucocorticoid and mineralocorticoid deficiency. The mechanisms for these defects predominantly involve the non-osmotic stimulation of arginine vasopressin release with upregulation of aquaporin 2 water channel expression and trafficking to the apical membrane of the principal cells of the collecting duct. These perturbations are reversed by V...

  20. Molecular insights into RBR E3 ligase ubiquitin transfer mechanisms.

    Science.gov (United States)

    Dove, Katja K; Stieglitz, Benjamin; Duncan, Emily D; Rittinger, Katrin; Klevit, Rachel E

    2016-08-01

    RING-in-between-RING (RBR) ubiquitin (Ub) ligases are a distinct class of E3s, defined by a RING1 domain that binds E2 Ub-conjugating enzyme and a RING2 domain that contains an active site cysteine similar to HECT-type E3s. Proposed to function as RING/HECT hybrids, details regarding the Ub transfer mechanism used by RBRs have yet to be defined. When paired with RING-type E3s, E2s perform the final step of Ub ligation to a substrate. In contrast, when paired with RBR E3s, E2s must transfer Ub onto the E3 to generate a E3~Ub intermediate. We show that RBRs utilize two strategies to ensure transfer of Ub from the E2 onto the E3 active site. First, RING1 domains of HHARI and RNF144 promote open E2~Ubs. Second, we identify a Ub-binding site on HHARI RING2 important for its recruitment to RING1-bound E2~Ub. Mutations that ablate Ub binding to HHARI RING2 also decrease RBR ligase activity, consistent with RING2 recruitment being a critical step for the RBR Ub transfer mechanism. Finally, we demonstrate that the mechanism defined here is utilized by a variety of RBRs.

  1. Molecular cytotoxic mechanisms of chlorpromazine in isolated rat hepatocytes.

    Science.gov (United States)

    MacAllister, Stephanie L; Young, Cheryl; Guzdek, Anna; Zhidkov, Nickholas; O'Brien, Peter J

    2013-01-01

    Chlorpromazine (CPZ), a member of the largest class of first-generation antipsychotic agents, is known to cause hepatotoxicity in the form of cholestasis and hepatocellular necrosis in some patients. The mechanism of CPZ hepatotoxicity is unclear, but is thought to result from reactive metabolite formation. The goal of this research was to assess potential cytotoxic mechanisms of CPZ using the accelerated cytotoxicity mechanism screening (ACMS) technique with freshly isolated rat hepatocytes. This study identified CPZ cytotoxicity and inhibition of mitochondrial membrane potential (MMP) to be concentration-dependent. Furthermore, inhibition of cytochrome P450s (CYPs), including CYP2D1 and 1A2, delayed CPZ cytotoxicity, suggesting a role for CYP activation of CPZ to a toxic metabolite(s) in this model. Metabolism studies also demonstrated glucuronide and glutathione (GSH) requirement for CPZ detoxification in hepatocytes. Inactivating the 2-electron reduction pathway, NAD(P)H quinone oxidoreductase (NQO1), caused a significant increase in hepatocyte susceptibility to CPZ, indicating quinoneimine contribution to CPZ cytotoxicity. Nontoxic concentrations of peroxidase/H(2)O(2) (inflammatory model) increased cytotoxicity in CPZ-treated hepatocytes and caused additional mitochondrial toxicity. Inflammation further depleted GSH and increased oxidized glutathione (GSSG) levels. Results suggest activation of CPZ to reactive metabolites by 2 pathways in hepatocytes: (i) a CYP-catalyzed quinoneimine pathway, and (ii) a peroxidase-catalyzed oxidation of CPZ to CPZ radicals.

  2. Carboplatin: molecular mechanisms of action associated with chemoresistance

    Directory of Open Access Journals (Sweden)

    Graziele Fonseca de Sousa

    2014-12-01

    Full Text Available Carboplatin is a derivative of cisplatin; it has a similar mechanism of action, but differs in terms of structure and toxicity. It was approved by the FDA in the 1980s and since then it has been widely used in the treatment of several tumor types. This agent is characterized by its ability to generate lesions in DNA through the formation of adducts with platinum, thereby inhibiting replication and transcription and leading to cell death. However, its use can lead to serious inconvenience arising from the development of resistance that some patients acquire during treatment, limiting the scope of its full potential. Currently, the biochemical mechanisms related to resistance are not precisely known. Therefore, knowledge of pathways associated with resistance caused by carboplatin exposure may provide valuable clues for more efficient rational drug design in platinum-based therapy and the development of new therapeutic strategies. In this narrative review, we discuss some of the known mechanisms of resistance to platinum-based drugs, especially carboplatin.

  3. Report of National Cancer Institute symposium: comparison of mechanisms of carcinogenesis by radiation and chemical agents. I. Common molecular mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Borg, D.C.

    1984-01-01

    Some aspects of molecular mechanisms common to radiation and chemical carcinogenesis are discussed, particularly the DNA damage done by these agents. Emphasis is placed on epidemiological considerations and on dose-response models used in risk assessment to extrapolate from experimental data obtained at high doses to the effects from long-term, low-level exposures. 3 references, 6 figures. (ACR)

  4. Insights of asphaltene aggregation mechanism from molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Jennifer De León

    2015-01-01

    Full Text Available Se estudió el proceso de agregación de asfaltenos utilizando té cnicas de dinámica molecular. Se utilizaron cuatro estructuras diferentes. Las primeras tres moléculas tienen una estructura continental, con núcleos aromáticos condensador, mientras que la cuarta pose e una estructura tipo archipiélago, con pequeños grupos de anillos ar omáticos conectados con cadenas saturadas. Las moléculas fueron construidas de manera atomística, en la cual cada átomo se desc ribe individualmente. Se calcula ron las fuerzas de interacción a 300 K y 200 atm; las fuerzas de Van der W aals y las interacciones elect rostáticas fueron evaluadas separadamente. Se calculó el paráme tro de solubilidad para las cuatro molécu las. Se encontró que las inte racciones de Van der Waals asoc iadas a los anillos aromáticos y las fuerzas electrostáticas ocasionadas princ ipalmente por la presencia de heteroátomos como oxígeno, azufr e y nitrógeno, son igualmente r elevantes en la agregación de moléculas de asfalteno. Para todas las molé culas se encontró que los sistemas de asfaltenos tienen menor e nergía en estado de agregación que en estado monomérico. Para las estruct uras continentales, la presencia de largas cadenas obstruye el proceso de formación de agregados. Para las estructuras tipo archipiélago, la flexibilidad de las moléculas facilita la agregación con ot ras estructuras. La presencia de heteroátomos ocasiona una fuerza repulsiva que dificulta la agregación. El volumen molecular y la energía de c ohesión también son sensibles a la confi guración geométrica y la compos ición de las especies, lo cual afecta el parámetro de solubilidad.

  5. Molecular mechanisms of photochemically induced posterior vitreous detachment.

    Science.gov (United States)

    Kakehashi, A; Ueno, N; Chakrabarti, B

    1994-01-01

    Vitreous gel contraction and syneresis, commonly associated with age- and disease-related posterior vitreous detachment (PVD), were induced by a hematoporphyrin (HP)-photosensitized reaction. Calf vitreous gel was irradiated by white light in the presence of HP. Gel weights of the vitreous samples after 24 h of irradiation decreased by 14%, the irradiated control without HP by 8% and the control with HP stored in the dark by 8%. No significant difference in vitreous gel compressibility was found between the irradiated controls and the irradiated samples. In separate experiments, collagen gel in a glass capillary and hyaluronic acid (HA) were irradiated with white light in the presence of HP. The control collagen gel (irradiated without HP and stored in the dark with HP) decreased in length by 0.6% after 96 h, the experimental gel with HP decreased in length by 1.3 and 1.9% after 24- and 96-hour irradiation by visible light, respectively. The irradiated HA monitored by high-performance liquid chromatography showed a molecular weight decrease in the HP-treated polymer. Because the HP-sensitized reaction predominantly produces singlet oxygen, collagen gel contraction and HA degradation, in this case, are likely caused by this active oxygen species.

  6. The Molecular Genetics and Cellular Mechanisms Underlying Pulmonary Arterial Hypertension

    Directory of Open Access Journals (Sweden)

    Rajiv D. Machado

    2012-01-01

    Full Text Available Pulmonary arterial hypertension (PAH is an incurable disorder clinically characterised by a sustained elevation of mean arterial pressure in the absence of systemic involvement. As the adult circulation is a low pressure, low resistance system, PAH represents a reversal to a foetal state. The small pulmonary arteries of patients exhibit luminal occlusion resultant from the uncontrolled growth of endothelial and smooth muscle cells. This vascular remodelling is comprised of hallmark defects, most notably the plexiform lesion. PAH may be familial in nature but the majority of patients present with spontaneous disease or PAH associated with other complications. In this paper, the molecular genetic basis of the disorder is discussed in detail ranging from the original identification of the major genetic contributant to PAH and moving on to current next-generation technologies that have led to the rapid identification of additional genetic risk factors. The impact of identified mutations on the cell is examined, particularly, the determination of pathways disrupted in disease and critical to pulmonary vascular maintenance. Finally, the application of research in this area to the design and development of novel treatment options for patients is addressed along with the future directions PAH research is progressing towards.

  7. Lipoprotein(a: Cellular Effects and Molecular Mechanisms

    Directory of Open Access Journals (Sweden)

    Kirsten Riches

    2012-01-01

    Full Text Available Lipoprotein(a (Lp(a is an independent risk factor for the development of cardiovascular disease (CVD. Indeed, individuals with plasma concentrations >20 mg/dL carry a 2-fold increased risk of developing CVD, accounting for ~25% of the population. Circulating levels of Lp(a are remarkably resistant to common lipid lowering therapies, and there are currently no robust treatments available for reduction of Lp(a apart from plasma apheresis, which is costly and labour intensive. The Lp(a molecule is composed of two parts, an LDL/apoB-100 core and a unique glycoprotein, apolipoprotein(a (apo(a, both of which can interact with components of the coagulation cascade, inflammatory pathways, and cells of the blood vessel wall (smooth muscle cells (SMC and endothelial cells (EC. Therefore, it is of key importance to determine the molecular pathways by which Lp(a exerts its influence on the vascular system in order to design therapeutics to target its cellular effects. This paper will summarise the role of Lp(a in modulating cell behaviour in all aspects of the vascular system including platelets, monocytes, SMC, and EC.

  8. Metabolic actions of FGF21: molecular mechanisms and therapeutic implications

    Directory of Open Access Journals (Sweden)

    Xuan Ge

    2012-08-01

    Full Text Available Fibroblast growth factor 21 (FGF21 is an atypical member of the FGF family that functions as an endocrine factor. In obese animals, elevation of plasma FGF21 levels by either pharmacological or genetic approaches reduces body weight, decreases hyperglycemia and hyperlipidemia, alleviates fatty liver and increases insulin sensitivity. FGF21 exerts its pleiotropic metabolic effects through its actions on multiple targets, including adipose tissue, liver, brain and pancreas. The expression of FGF21 is under the control of both peroxisome proliferator-activated receptor gamma (PPARγ and peroxisome proliferator-activated receptor alpha (PPARα. A growing body of evidence suggests that the metabolic benefits of these two nuclear receptors are mediated in part by induction of FGF21. In humans, plasma levels of FGF21 are elevated in obese subjects and patients with type 2 diabetes, but are reduced in patients with autoimmune diabetes. This review summarizes recent advances in understanding the physiological roles of FGF21 and the molecular pathways underlying its actions, and also discusses the future prospective of developing FGF21 or its agonists as therapeutic agents for obesity-related medical complications.

  9. Molecular Mechanisms of Pharmaceutical Drug Binding into Calsequestrin

    Directory of Open Access Journals (Sweden)

    ChulHee Kang

    2012-11-01

    Full Text Available Calsequestrin (CASQ is a major Ca2+-storage/buffer protein present in the sarcoplasmic reticulum of both skeletal (CASQ1 and cardiac (CASQ2 muscles. CASQ has significant affinity for a number of pharmaceutical drugs with known muscular toxicities. Our approach, with in silico molecular docking, single crystal X-ray diffraction, and isothermal titration calorimetry (ITC, identified three distinct binding pockets on the surface of CASQ2, which overlap with 2-methyl-2,4-pentanediol (MPD binding sites observed in the crystal structure. Those three receptor sites based on canine CASQ1 crystal structure gave a high correlation (R2 = 0.80 to our ITC data. Daunomycin, doxorubicin, thioridazine, and trifluoperazine showed strong affinity to the S1 site, which is a central cavity formed between three domains of CASQ2. Some of the moderate-affinity drugs and some high-affinity drugs like amlodipine and verapamil displayed their binding into S2 sites, which are the thioredoxin-like fold present in each CASQ domain. Docking predictions combined with dissociation constants imply that presence of large aromatic cores and less flexible functional groups determines the strength of binding affinity to CASQ. In addition, the predicted binding pockets for both caffeine and epigallocatechin overlapped with the S1 and S2 sites, suggesting competitive inhibition by these natural compounds as a plausible explanation for their antagonistic effects on cardiotoxic side effects.

  10. Molecular mechanism of extrinsic factors affecting antiagingof stem cells

    Institute of Scientific and Technical Information of China (English)

    Tzyy Yue Wong; Mairim Alexandra Solis; Ying-Hui Chen; Lynn Ling-Huei Huang

    2015-01-01

    Scientific evidence suggests that stem cells possessthe anti-aging ability to self-renew and maintaindifferentiation potentials, and quiescent state. Theobjective of this review is to discuss the microenvironmentwhere stem cells reside in vivo , thesecreted factors to which stem cells are exposed, thehypoxic environment, and intracellular factors includinggenome stability, mitochondria integrity, epigeneticregulators, calorie restrictions, nutrients, and vitaminD. Secreted tumor growth factor-β and fibroblastgrowth factor-2 are reported to play a role in stem cellquiescence. Extracellular matrices may interact withcaveolin-1, the lipid raft on cell membrane to regulatequiescence. N-cadherin, the adhesive protein on nichecells provides support for stem cells. The hypoxicmicro-environment turns on hypoxia-inducible factor-1to prevent mesenchymal stem cells aging throughp16 and p21 down-regulation. Mitochondria expressglucosephosphate isomerase to undergo glycolysisand prevent cellular aging. Epigenetic regulators suchas p300, protein inhibitors of activated Stats and H19help maintain stem cell quiescence. In addition, calorierestriction may lead to secretion of paracrines cyclicADP-ribose by intestinal niche cells, which help maintainintestinal stem cells. In conclusion, it is crucial tounderstand the anti-aging phenomena of stem cells atthe molecular level so that the key to solving the agingmystery may be unlocked.

  11. [Review: plant polyphenols modulate lipid metabolism and related molecular mechanism].

    Science.gov (United States)

    Dai, Yan-li; Zou, Yu-xiao; Liu, Fan; Li, Hong-zhi

    2015-11-01

    Lipid metabolism disorder is an important risk factor to obesity, hyperlipidemia and type 2 diabetes as well as other chronic metabolic disease. It is also a key target in preventing metabolic syndrome, chronic disease prevention. Plant polyphenol plays an important role in maintaining or improving lipid profile in a variety of ways. including regulating cholesterol absorption, inhibiting synthesis and secretion of triglyceride, and lowering plasma low density lipoprotein oxidation, etc. The purpose of this article is to review the lipid regulation effects of plant polyphenols and its related mechanisms. PMID:27071245

  12. Molecular mechanisms in DM1 - a focus on foci

    DEFF Research Database (Denmark)

    Pettersson, Olof Joakim; Aagaard, Lars; Jensen, Thomas G.;

    2015-01-01

    -expanded RNA remains in the nuclear compartment, while in dividing cells such as fibroblasts a considerable fraction of the mutant RNA reaches the cytoplasm, consistent with findings that both nuclear and cytoplasmic events are mis-regulated in DM1. Recent evidence suggests that the nuclear aggregates......, or ribonuclear foci, are more dynamic than previously anticipated and regulated by several proteins, including RNA helicases. In this review, we focus on the homeostasis of DMPK mRNA foci and discuss how their dynamic regulation may affect disease-causing mechanisms in DM1...

  13. [Review: plant polyphenols modulate lipid metabolism and related molecular mechanism].

    Science.gov (United States)

    Dai, Yan-li; Zou, Yu-xiao; Liu, Fan; Li, Hong-zhi

    2015-11-01

    Lipid metabolism disorder is an important risk factor to obesity, hyperlipidemia and type 2 diabetes as well as other chronic metabolic disease. It is also a key target in preventing metabolic syndrome, chronic disease prevention. Plant polyphenol plays an important role in maintaining or improving lipid profile in a variety of ways. including regulating cholesterol absorption, inhibiting synthesis and secretion of triglyceride, and lowering plasma low density lipoprotein oxidation, etc. The purpose of this article is to review the lipid regulation effects of plant polyphenols and its related mechanisms.

  14. Exploiting large-pore metal-organic frameworks for separations through entropic molecular mechanisms

    NARCIS (Netherlands)

    A. Torres-Knoop; D. Dubbeldam

    2015-01-01

    We review the molecular mechanisms behind adsorption and the separations of mixtures in metal-organic frameworks and zeolites. Separation mechanisms can be based on differences in the affinity of the adsorbate with the framework and on entropic effects. To develop next-generation adsorbents, the sep

  15. Molecular mechanisms of recurrent acute obstructive bronchitis in infants

    Directory of Open Access Journals (Sweden)

    Abaturov A.E.

    2015-06-01

    Full Text Available The article discusses the clinical and immunological features and mechanisms of recurrent acute obstructive bronchitis in infants. We have examined 102 children aged from 6 months to 3 years with acute obstructive bronchitis and signs of respiratory insufficiency of the I-II degree. There were 28 children with recurrent acute obstructive bronchitis and 74 patients with acute obstructive bronchitis,developed for the first time. We determined the concentration of total IgE, content of IFN-і, IL-4, IL-12 and IL-13 in serum by ELISA and the expression of the transcription factor NF-єB in lymphocytes of peripheral blood by flow cytometry in all the children. High level of IL-12 as compared to physiological norms in the dynamics of the disease was the characteristic feature of the children of both groups. And it was the factor, which detected a voltage of cell-mediated immune response and inflammation. The second specific feature was the high concentration of IgE. It was shown that the transcription factor NF-єB determined the cytokine status at the beginning of the disease, and in the period of convalescence. That fact did not depend on the number of previous acute obstructive bronchitis. However, there were violations of the mechanisms of NF-єB-associated signaling pathways activation, which manifested itself in an advantageous enhancement of the chains, determining the production of Th2-associated cytokines in children with recurrent acute obstructive bronchitis.

  16. Molecular mechanisms underlying the effects of acupuncture on neuropathic pain**

    Institute of Scientific and Technical Information of China (English)

    Ziyong Ju; Huashun Cui; Xiaohui Guo; Huayuan Yang; Jinsen He; Ke Wang

    2013-01-01

    Acupuncture has been used to treat neuropathic pain for a long time, but its mechanisms of action remain unknown. In this study, we observed the effects of electroacupuncture and manual acu-puncture on neuropathic pain and on ephrin-B/EphB signaling in rats models of chronic constriction injury-induced neuropathic pain. The results showed that manual acupuncture and elec-puncture significantly reduced mechanical hypersensitivity fol owing chronic constriction injury, es-pecial y electroacupuncture treatment. Real-time PCR results revealed that ephrin-B1/B3 and EphB1/B2 mRNA expression levels were significantly increased in the spinal dorsal horns of chronic constriction injury rats. Electroacupuncture and manual acupuncture suppressed the high sion of ephrin-B1 mRNA, and elevated EphB3/B4 mRNA expression. Electroacupuncture signifi-cantly enhanced the mRNA expression of ephrin-B3 and EphB3/B6 in the dorsal horns of neuro-pathic pain rats. Western blot results revealed that electroacupuncture in particular, and manual acupuncture, significantly up-regulated ephrin-B3 protein levels in rat spinal dorsal horns. The re-sults of this study suggest that acupuncture could activate ephrin-B/EphB signaling in neuropathic pain rats and improve neurological function.

  17. An ab initio molecular dynamics study of the roaming mechanism of the H2+HOC+ reaction

    Science.gov (United States)

    Yu, Hua-Gen

    2011-08-01

    We report here a direct ab initio molecular dynamics study of the p-/o-H2+HOC+ reaction on the basis of the accurate SAC-MP2 potential energy surface. The quasi-classical trajectory method was employed. This work largely focuses on the study of reaction mechanisms. A roaming mechanism was identified for this molecular ion-molecule reaction. The driving forces behind the roaming mechanism were thoroughly investigated by using a trajectory dynamics approach. In addition, the thermal rate coefficients of the H2+HOC+ reaction were calculated in the temperature range [25, 300] K and are in good agreement with experiments.

  18. Comparative analysis of the molecular mechanisms of recombination in hepatitis C virus

    DEFF Research Database (Denmark)

    Galli, Andrea; Bukh, Jens

    2014-01-01

    Genetic recombination is an important evolutionary mechanism for RNA viruses. The significance of this phenomenon for hepatitis C virus (HCV) has recently become evident, with the identification of circulating recombinant forms in HCV-infected individuals and by novel data from studies permitted...... by advances in HCV cell culture systems and genotyping protocols. HCV is readily able to produce viable recombinants, using replicative and non-replicative molecular mechanisms. However, our knowledge of the required molecular mechanisms remains limited. Understanding how HCV recombines might be instrumental...... will focus on current data available on HCV recombination, also in relation to more detailed data from other RNA viruses....

  19. A molecular mechanics approach for analyzing tensile nonlinear deformation behavior of single-walled carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Yu Wang; Daining Fang; Ai Kah Soh; Bin Liu

    2007-01-01

    In this paper, by capturing the atomic informa-tion and reflecting the behaviour governed by the nonlin-ear potential function, an analytical molecular mechanics approach is proposed. A constitutive relation for single-walled carbon nanotubes (SWCNT's) is established to describe the nonlinear stress-strain curve of SWCNT's and to predict both the elastic properties and breaking strain of SWCNT's during tensile deformation. An analysis based on the virtual internal bond (VIB) model proposed by P. Zhang et al. is also presented for comparison. The results indicate that the proposed molecular mechanics approach is indeed an acceptable analytical method for analyzing the mechanical behavior of SWCNT's.

  20. Molecular mechanisms of thyroid tumorigenesis; Molekulare Mechanismen der Schilddruesentumorgenese

    Energy Technology Data Exchange (ETDEWEB)

    Krause, K.; Fuehrer, D. [Universitaetsklinikum Leipzig (Germany). Abt. fuer Endokrinolgoie, Diabetologie und Nephrologie

    2008-09-15

    Thyroid nodules are the most frequent endocrine disorder and occur in approximately 30% of the German population. Thyroid nodular disease constitutes a very heterogeneous entity. A striking diversity of possible functional and morphological features of a thyroid tumour derived from the same thyroid ancestor cell, is a hallmark of thyroid tumorigenesis and is due to specific genetic alterations. Defects in known candidate genes can be found in up to 70% of differentiated thyroid carcinomas and determine the respective cancer phenotype. Papillary thyroid cancers (PTC) harbour BRAF (or much less frequently RAS) mutations in sporadically occurring tumours, while radiation-induced PTC display chromosomal rearrangements such as RET, TRK, APR9 / BRAF. These genetic events results in constitutive MAPKinase activation. Follicular thyroid cancers (FTC) harbour RAS mutations or PAX8/ PPAR{gamma} rearrangements, both of which, however have also been identified in follicular adenoma. In addition, recent studies show, that activation of PI3K/AKT signalling occurs with high frequency in follicular thyroid tumours. Undifferentiated (anaplastic) thyroid cancers (ATC) display genetic features of FTC or PTC, in addition to aberant activation of multiple tyrosinkinase pathways (overexpression or mutations in PI3K and MAPK pathways). This underscores the concept of a sequential evolution of ATC from differentiated thyroid cancer, a process widely conceived to be triggered by p53 inactivation. In contrast, the molecular pathogenesis of benign thyroid tumours, in particular cold thyroid nodules is less known, except for toxic thyroid nodules, which arise from constitutive activation of cAMP signalling, predominantly through TSHR mutations. (orig.)

  1. Spatial memory in sedentary and trained diabetic rats: molecular mechanisms.

    Science.gov (United States)

    Diegues, João Carlos; Pauli, José Rodrigo; Luciano, Eliete; de Almeida Leme, José Alexandre Curiacos; de Moura, Leandro Pereira; Dalia, Rodrigo Augusto; de Araújo, Michel Barbosa; Sibuya, Clarice Yoshiko; de Mello, Maria Alice Rostom; Gomes, Ricardo José

    2014-06-01

    Diabetes mellitus is a chronic disease that has been associated with memory loss, neurological disorders, and Alzheimer's disease. Some studies show the importance of physical exercise to prevent and minimize various neurological disorders. It is believed that the positive effects of exercise on brain functions are mediated by brain insulin and insulin-like growth factor-1 (IGF-1) signaling. In this study, we investigate the role of swimming exercise training on hippocampus proteins related to insulin/IGF-1 signaling pathway in Type 1 diabetic rats and its effects on spatial memory. Wistar rats were divided into four groups namely sedentary control, trained control, sedentary diabetic (SD), and trained diabetic (TD). Diabetes was induced by Alloxan (ALX) (32 mg/kg b.w.). The training program consisted in swimming 5 days/week, 1 h/day, per 6 weeks, supporting an overload corresponding to 90% of the anaerobic threshold. We employed ALX-induced diabetic rats to explore learning and memory abilities using Morris water maze test. At the end of the training period, the rats were sacrificed 48 h after their last exercise bout when blood samples were collected for serum glucose, insulin, and IGF-1 determinations. Hippocampus was extracted to determinate protein expression (IR, IGF-1R, and APP) and phosphorylation (AKT-1, AKT-2, Tau, and β-amyloide proteins) by Western Blot analysis. All dependent variables were analyzed by two-way analysis of variance with significance level of 5%. Diabetes resulted in hyperglycemia and hypoinsulinemia in both SD and TD groups (P rats; however, exercise training improved this parameter in TD rats. Aerobic exercise decreased Tau phosphorylation and APP expression, and increased some proteins related to insulin/IGF-1 pathway in hippocampus of diabetic rats. Thus, these molecular adaptations from exercise training might contribute to improved spatial learning and memory in diabetic organisms. PMID:24916112

  2. Mechanisms of two-color laser-induced field-free molecular orientation

    CERN Document Server

    Spanner, Michael; Frumker, Eugene; Corkum, Paul

    2012-01-01

    Two mechanisms of two-color (\\omega + 2\\omega) laser-induced field-free molecular orientation, based on the hyperpolarizability and ionization depletion, are explored and compared. The CO molecule is used as a computational example. While the hyperpolarizability mechanism generates small amounts of orientation at intensities below the ionization threshold, ionization depletion quickly becomes the dominant mechanism as soon as ionizing intensities are reached. Only the ionization mechanism leads to substantial orientation (e.g. on the order of || > 0.1). For intensities typical of laser-induced molecular alignment and orientation experiments, the two mechanism lead to robust, characteristic timings of the field-free orientation wave-packet revivals relative to the the alignment revivals and the revival time. The revival timings can be used to detect the active orientation mechanism experimentally.

  3. Mechanisms of two-color laser-induced field-free molecular orientation.

    Science.gov (United States)

    Spanner, Michael; Patchkovskii, Serguei; Frumker, Eugene; Corkum, Paul

    2012-09-14

    Two mechanisms of two-color (ω+2ω) laser-induced field-free molecular orientation, based on the hyperpolarizability and ionization depletion, are explored and compared. The CO molecule is used as a computational example. While the hyperpolarizability mechanism generates small amounts of orientation at intensities below the ionization threshold, ionization depletion quickly becomes the dominant mechanism as soon as ionizing intensities are reached. Only the ionization mechanism leads to substantial orientation (e.g., on the order of ≳0.1). For intensities typical of laser-induced molecular alignment and orientation experiments, the two mechanisms lead to robust, characteristic timings of the field-free orientation wave-packet revivals relative to the alignment revivals and the revival time. The revival timings can be used to detect the active orientation mechanism experimentally. PMID:23005623

  4. Molecular mechanisms of canalization: Hsp90 and beyond

    Indian Academy of Sciences (India)

    Neeraj Salathia; Christine Queitsch

    2007-04-01

    The Hsp90 chaperone machine facilitates the maturation of a diverse set of ‘client’ proteins. Many of these Hsp90 clients are essential nodes in signal transduction pathways and regulatory circuits, accounting for the important role Hsp90 plays in organismal development and responses to the environment. Recent findings suggest a broader impact of the chaperone on phenotype: fully functional Hsp90 canalizes wild-type phenotypes by suppressing underlying genetic and epigenetic variation. This variation can be expressed upon challenging the Hsp90 machinery by environmental stress, genetic or pharmaceutical targeting of Hsp90. The existence of Hsp90-buffered genetic and epigenetic variation together with plausible release mechanisms has wide-ranging implication for phenotype and possibly evolutionary processes. Here, we discuss the role of Hsp90 in canalization and organismal plasticity, and highlight important questions for future experimental inquiry.

  5. Molecular mechanisms of long ncRNAs in neurological disorders

    Directory of Open Access Journals (Sweden)

    Dubravka eVučićević

    2014-03-01

    Full Text Available Long non-coding RNAs (ncRNAs have added an unexpected layer of complexity in the regulation of gene expression. Mounting evidence now links long ncRNAs to fundamental biological processes such as development and differentiation, and recent research shows important involvement of long ncRNAs in a variety of diseases including neurodegenerative disorders, such as Parkinson’s, Alzheimer’s, spinocerebellar ataxia and Huntington’s diseases. Furthermore, long ncRNAs are speculated to be implicated in development of psychiatric disorders such as schizophrenia and bipolar disorders. Long ncRNAs contribute to these disorders in diverse ways, from regulation of transcription to modulation of RNA processing and translation. In this review, we describe the diverse mechanisms reported for long ncRNAs, and discuss how they could mechanistically be involved in the development of neurological disorders.

  6. Mammalian life histories: their evolution and molecular-genetic mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Sacher, G.A.

    1978-01-01

    Survival curves for various species of mammals are discussed and a table is presented to show recorded maximum life spans of about 30 species of mammals. The range of longevities is from one year for shrews and moles up to more than 80 years for the fin whale. The constitutional correlates of longevity are discussed with regard to body size, brain weight,metabolic rates, and body temperature. It is concluded that longevity evolved as a positive trait, associated with the evolution of large body size and brain size. Life table data for man, the thorough-bred horse, beagle dogs, and the laboratory rodents, Mus musculus and Peromyscus leucopus are discussed. The data show a pattern of exponential increase of death rate with age. A laboratory model using Mus musculus and Peromyscus leucopus for the study of the longevity-assurance mechanisms is described. (HLW)

  7. Molecular mechanism of myoglobin autoxidation: insights from computer simulations.

    Science.gov (United States)

    Arcon, J P; Rosi, P; Petruk, A A; Marti, M A; Estrin, D A

    2015-02-01

    Myoglobin (Mb) and hemoglobin have the biological ability to carry/store oxygen (O2), a property which requires its heme iron atom to be in the ferrous--Fe(II)--state. However, the thermodynamically stable state in the presence of O2 is Fe(III) and thus the oxidation rate of a globin is a critical parameter related to its function. Mb has been extensively studied and many mutants have been characterized regarding its oxygen mediated oxidation (i.e., autoxidation) rates. Site directed mutants in residues 29 (B10), which shapes the distal cavity, and 64 (E7), the well-known histidine gate, have been shown to display a wide range of autoxidation rate constants. In this work, we have thoroughly studied the mechanism underlying the autoxidation process by means of state-of-the-art computer simulation methodologies, using Mb and site directed mutants as benchmark cases. Our results explain the observed autoxidation rate tendencies in different variants of Mb, L29F < wt < L29A = H64Q < H64F < H64A, and shed light on several aspects of the reaction at the atomic level. First, water access to the distal pocket is a key event and the observed acid catalysis relies on HisE7 protonation and opening of the His gate to allow water access, rather than protonation of the oxy heme itself. Our results also suggest that the basic mechanism, i.e., superoxide displacement by hydroxide anion, is energetically more feasible. Finally, we confirmed that distal hydrogen bonds protect the oxy complex from autoxidation. PMID:25578484

  8. Quantum Mechanics/Molecular Mechanics Modeling of Drug Metabolism: Mexiletine N-Hydroxylation by Cytochrome P450 1A2.

    Science.gov (United States)

    Lonsdale, Richard; Fort, Rachel M; Rydberg, Patrik; Harvey, Jeremy N; Mulholland, Adrian J

    2016-06-20

    The mechanism of cytochrome P450(CYP)-catalyzed hydroxylation of primary amines is currently unclear and is relevant to drug metabolism; previous small model calculations have suggested two possible mechanisms: direct N-oxidation and H-abstraction/rebound. We have modeled the N-hydroxylation of (R)-mexiletine in CYP1A2 with hybrid quantum mechanics/molecular mechanics (QM/MM) methods, providing a more detailed and realistic model. Multiple reaction barriers have been calculated at the QM(B3LYP-D)/MM(CHARMM27) level for the direct N-oxidation and H-abstraction/rebound mechanisms. Our calculated barriers indicate that the direct N-oxidation mechanism is preferred and proceeds via the doublet spin state of Compound I. Molecular dynamics simulations indicate that the presence of an ordered water molecule in the active site assists in the binding of mexiletine in the active site, but this is not a prerequisite for reaction via either mechanism. Several active site residues play a role in the binding of mexiletine in the active site, including Thr124 and Phe226. This work reveals key details of the N-hydroxylation of mexiletine and further demonstrates that mechanistic studies using QM/MM methods are useful for understanding drug metabolism. PMID:27064685

  9. The Application of Micropipette Aspiration in Molecular Mechanics of Single Cells

    OpenAIRE

    Lee, Lap Man; Liu, Allen P.

    2014-01-01

    Micropipette aspiration is arguably the most classical technique in mechanical measurements and manipulations of single cells. Despite its simplicity, micropipette aspiration has been applied to a variety of experimental systems that span different length scales to study cell mechanics, nanoscale molecular mechanisms in single cells, bleb growth, and nucleus dynamics, to name a few. Enabled by micro/nanotechnology, several novel microfluidic devices have been developed recently with better ac...

  10. Molecular mechanisms for surfactant-aided oil removal from a solid surface

    Science.gov (United States)

    Wang, Shumeng; Li, Zhi; Liu, Bei; Zhang, Xianren; Yang, Qingyuan

    2015-12-01

    In this work, the detachment mechanism of oil molecules from the hydrophobic solid surface in the aqueous surfactant solution is studied with lattice Monte Carlo simulations. Three different mechanisms for oil removal, including oil carrying microemulsion model, oil film stripping model, and surfactant-aided diffusion model are identified. The molecular mechanisms that agree with experimental observations are found to be dependent sensitively on surfactant structure.

  11. H++ 3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations.

    Science.gov (United States)

    Anandakrishnan, Ramu; Aguilar, Boris; Onufriev, Alexey V

    2012-07-01

    The accuracy of atomistic biomolecular modeling and simulation studies depend on the accuracy of the input structures. Preparing these structures for an atomistic modeling task, such as molecular dynamics (MD) simulation, can involve the use of a variety of different tools for: correcting errors, adding missing atoms, filling valences with hydrogens, predicting pK values for titratable amino acids, assigning predefined partial charges and radii to all atoms, and generating force field parameter/topology files for MD. Identifying, installing and effectively using the appropriate tools for each of these tasks can be difficult for novice and time-consuming for experienced users. H++ (http://biophysics.cs.vt.edu/) is a free open-source web server that automates the above key steps in the preparation of biomolecular structures for molecular modeling and simulations. H++ also performs extensive error and consistency checking, providing error/warning messages together with the suggested corrections. In addition to numerous minor improvements, the latest version of H++ includes several new capabilities and options: fix erroneous (flipped) side chain conformations for HIS, GLN and ASN, include a ligand in the input structure, process nucleic acid structures and generate a solvent box with specified number of common ions for explicit solvent MD.

  12. A Molecular Dynamics (MD and Quantum Mechanics/Molecular Mechanics (QM/MM Study on Ornithine Cyclodeaminase (OCD: A Tale of Two Iminiums

    Directory of Open Access Journals (Sweden)

    James W. Gauld

    2012-10-01

    Full Text Available Ornithine cyclodeaminase (OCD is an NAD+-dependent deaminase that is found in bacterial species such as Pseudomonas putida. Importantly, it catalyzes the direct conversion of the amino acid L-ornithine to L-proline. Using molecular dynamics (MD and a hybrid quantum mechanics/molecular mechanics (QM/MM method in the ONIOM formalism, the catalytic mechanism of OCD has been examined. The rate limiting step is calculated to be the initial step in the overall mechanism: hydride transfer from the L-ornithine’s Cα–H group to the NAD+ cofactor with concomitant formation of a Cα=NH2+ Schiff base with a barrier of 90.6 kJ mol−1. Importantly, no water is observed within the active site during the MD simulations suitably positioned to hydrolyze the Cα=NH2+ intermediate to form the corresponding carbonyl. Instead, the reaction proceeds via a non-hydrolytic mechanism involving direct nucleophilic attack of the δ-amine at the Cα-position. This is then followed by cleavage and loss of the α-NH2 group to give the Δ1-pyrroline-2-carboxylate that is subsequently reduced to L-proline.

  13. Molecular mechanisms involved in chemoresistance in paediatric acute lymphoblastic leukaemia

    Directory of Open Access Journals (Sweden)

    Stanković Tatjana

    2008-01-01

    Full Text Available Acute lymphoblastic leukaemia (ALL is the most common paediatric cancer. Despite cure rates approaching 80%, resistance to treatment and disease relapse remain a significant clinical problem. Identification of the genes and biological pathways responsible for chemoresistance is therefore crucial for the design of novel therapeutic approaches aiming to improve patient survival. Mutations in the membrane transporter P-glycoprotein genes, genetic variations in drug-metabolising enzymes and defects in apoptotic pathways are mechanisms of chemoresistance common to a wide spectrum of cancers and also play a role in paediatric ALL. In addition, several recent microarray studies have identified transcriptional profiles specifically associated with chemoresistance and pointed to a number of potentially novel therapeutic targets. These microarray studies have shown that genes discriminating between clinically responsive and resistant leukaemias tend to be involved in cellular processes such as regulation of cell cycle, proliferation, and DNA repair. Here we review the outcomes of these microarray studies and also present our own investigations into apoptotic resistance to DNA double strand breaks (DSBs in paediatric ALL. We present stratification of paediatric ALL by the profile of DNA damage response following ionising radiation (IR in vitro. This approach allows classification of ALL tumours at presentation into IR-apoptotic sensitive and IR-apoptotic resistant. Furthermore, apoptotic resistant leukaemias exhibit abnormal response of NFkB pathway following irradiation and inhibition of this pathway can sensitise leukaemic cells to IR-induced DSBs.

  14. Nutritional Systems Biology Modeling: From Molecular Mechanisms to Physiology

    Science.gov (United States)

    de Graaf, Albert A.; Freidig, Andreas P.; De Roos, Baukje; Jamshidi, Neema; Heinemann, Matthias; Rullmann, Johan A.C.; Hall, Kevin D.; Adiels, Martin; van Ommen, Ben

    2009-01-01

    The use of computational modeling and simulation has increased in many biological fields, but despite their potential these techniques are only marginally applied in nutritional sciences. Nevertheless, recent applications of modeling have been instrumental in answering important nutritional questions from the cellular up to the physiological levels. Capturing the complexity of today's important nutritional research questions poses a challenge for modeling to become truly integrative in the consideration and interpretation of experimental data at widely differing scales of space and time. In this review, we discuss a selection of available modeling approaches and applications relevant for nutrition. We then put these models into perspective by categorizing them according to their space and time domain. Through this categorization process, we identified a dearth of models that consider processes occurring between the microscopic and macroscopic scale. We propose a “middle-out” strategy to develop the required full-scale, multilevel computational models. Exhaustive and accurate phenotyping, the use of the virtual patient concept, and the development of biomarkers from “-omics” signatures are identified as key elements of a successful systems biology modeling approach in nutrition research—one that integrates physiological mechanisms and data at multiple space and time scales. PMID:19956660

  15. Nutritional systems biology modeling: from molecular mechanisms to physiology.

    Directory of Open Access Journals (Sweden)

    Albert A de Graaf

    2009-11-01

    Full Text Available The use of computational modeling and simulation has increased in many biological fields, but despite their potential these techniques are only marginally applied in nutritional sciences. Nevertheless, recent applications of modeling have been instrumental in answering important nutritional questions from the cellular up to the physiological levels. Capturing the complexity of today's important nutritional research questions poses a challenge for modeling to become truly integrative in the consideration and interpretation of experimental data at widely differing scales of space and time. In this review, we discuss a selection of available modeling approaches and applications relevant for nutrition. We then put these models into perspective by categorizing them according to their space and time domain. Through this categorization process, we identified a dearth of models that consider processes occurring between the microscopic and macroscopic scale. We propose a "middle-out" strategy to develop the required full-scale, multilevel computational models. Exhaustive and accurate phenotyping, the use of the virtual patient concept, and the development of biomarkers from "-omics" signatures are identified as key elements of a successful systems biology modeling approach in nutrition research--one that integrates physiological mechanisms and data at multiple space and time scales.

  16. Molecular mechanisms of long noncoding RNAs on gastric cancer.

    Science.gov (United States)

    Li, Tianwen; Mo, Xiaoyan; Fu, Liyun; Xiao, Bingxiu; Guo, Junming

    2016-02-23

    Long noncoding RNAs (lncRNAs) are non-protein coding transcripts longer than 200 nucleotides. Aberrant expression of lncRNAs has been found associated with gastric cancer, one of the most malignant tumors. By complementary base pairing with mRNAs or forming complexes with RNA binding proteins (RBPs), some lncRNAs including GHET1, MALAT1, and TINCR may mediate mRNA stability and splicing. Other lncRNAs, such as BC032469, GAPLINC, and HOTAIR, participate in the competing endogenous RNA (ceRNA) network. Under certain circumstances, ANRIL, GACAT3, H19, MEG3, and TUSC7 exhibit their biological roles by associating with microRNAs (miRNAs). By recruiting histone-modifying complexes, ANRIL, FENDRR, H19, HOTAIR, MALAT1, and PVT1 may inhibit the transcription of target genes in cis or trans. Through these mechanisms, lncRNAs form RNA-dsDNA triplex. CCAT1, GAPLINC, GAS5, H19, MEG3, and TUSC7 play oncogenic or tumor suppressor roles by correlated with tumor suppressor P53 or onco-protein c-Myc, respectively. In conclusion, interaction with DNA, RNA and proteins is involved in lncRNAs' participation in gastric tumorigenesis and development. PMID:26788991

  17. Integrated molecular mechanism directing nucleosome reorganization by human FACT.

    Science.gov (United States)

    Tsunaka, Yasuo; Fujiwara, Yoshie; Oyama, Takuji; Hirose, Susumu; Morikawa, Kosuke

    2016-03-15

    Facilitates chromatin transcription (FACT) plays essential roles in chromatin remodeling during DNA transcription, replication, and repair. Our structural and biochemical studies of human FACT-histone interactions present precise views of nucleosome reorganization, conducted by the FACT-SPT16 (suppressor of Ty 16) Mid domain and its adjacent acidic AID segment. AID accesses the H2B N-terminal basic region exposed by partial unwrapping of the nucleosomal DNA, thereby triggering the invasion of FACT into the nucleosome. The crystal structure of the Mid domain complexed with an H3-H4 tetramer exhibits two separate contact sites; the Mid domain forms a novel intermolecular β structure with H4. At the other site, the Mid-H2A steric collision on the H2A-docking surface of the H3-H4 tetramer within the nucleosome induces H2A-H2B displacement. This integrated mechanism results in disrupting the H3 αN helix, which is essential for retaining the nucleosomal DNA ends, and hence facilitates DNA stripping from histone. PMID:26966247

  18. Molecular mechanism underlying promiscuous polyamine recognition by spermidine acetyltransferase.

    Science.gov (United States)

    Sugiyama, Shigeru; Ishikawa, Sae; Tomitori, Hideyuki; Niiyama, Mayumi; Hirose, Mika; Miyazaki, Yuma; Higashi, Kyohei; Murata, Michio; Adachi, Hiroaki; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Kashiwagi, Keiko; Igarashi, Kazuei; Matsumura, Hiroyoshi

    2016-07-01

    Spermidine acetyltransferase (SAT) from Escherichia coli, which catalyses the transfer of acetyl groups from acetyl-CoA to spermidine, is a key enzyme in controlling polyamine levels in prokaryotic cells. In this study, we determined the crystal structure of SAT in complex with spermidine (SPD) and CoA at 2.5Å resolution. SAT is a dodecamer organized as a hexamer of dimers. The secondary structural element and folding topology of the SAT dimer resemble those of spermidine/spermine N(1)-acetyltransferase (SSAT), suggesting an evolutionary link between SAT and SSAT. However, the polyamine specificity of SAT is distinct from that of SSAT and is promiscuous. The SPD molecule is also located at the inter-dimer interface. The distance between SPD and CoA molecules is 13Å. A deep, highly acidic, water-filled cavity encompasses the SPD and CoA binding sites. Structure-based mutagenesis and in-vitro assays identified SPD-bound residues, and the acidic residues lining the walls of the cavity are mostly essential for enzymatic activities. Based on mutagenesis and structural data, we propose an acetylation mechanism underlying promiscuous polyamine recognition for SAT. PMID:27163532

  19. New molecular mechanisms of inter-organelle lipid transport.

    Science.gov (United States)

    Drin, Guillaume; von Filseck, Joachim Moser; Čopič, Alenka

    2016-04-15

    Lipids are precisely distributed in cell membranes, along with associated proteins defining organelle identity. Because the major cellular lipid factory is the endoplasmic reticulum (ER), a key issue is to understand how various lipids are subsequently delivered to other compartments by vesicular and non-vesicular transport pathways. Efforts are currently made to decipher how lipid transfer proteins (LTPs) work either across long distances or confined to membrane contact sites (MCSs) where two organelles are at close proximity. Recent findings reveal that proteins of the oxysterol-binding protein related-proteins (ORP)/oxysterol-binding homology (Osh) family are not all just sterol transporters/sensors: some can bind either phosphatidylinositol 4-phosphate (PtdIns(4)P) and sterol or PtdIns(4)P and phosphatidylserine (PS), exchange these lipids between membranes, and thereby use phosphoinositide metabolism to create cellular lipid gradients. Lipid exchange is likely a widespread mechanism also utilized by other LTPs to efficiently trade lipids between organelle membranes. Finally, the discovery of more proteins bearing a lipid-binding module (SMP or START-like domain) raises new questions on how lipids are conveyed in cells and how the activities of different LTPs are coordinated. PMID:27068959

  20. The Molecular Mechanisms of Vitamin A Deficiency in Multiple Sclerosis.

    Science.gov (United States)

    Reza Dorosty-Motlagh, Ahmad; Mohammadzadeh Honarvar, Niyaz; Sedighiyan, Mohsen; Abdolahi, Mina

    2016-09-01

    Vitamin A, considered to be an essential nutrient, has important actions in immunological responses and the central nervous system (CNS). Neuroimmunological functions of vitamin A are mediated through its active metabolite, retinoic acid (RA). In the CNS, RA contributes to regeneration and plasticity, while also playing a key role in enhancing tolerance and reducing inflammatory responses by regulating T cell, B cell and dendritic cell populations. However, evidence has indicated lower plasma levels of vitamin A in patients with multiple sclerosis (MS). Vitamin A deficiency leads to dysregulation of immune tolerance and pathogenic immune cell production in this disease. Vitamin A may ameliorate MS pathogenesis through numerous mechanisms including a reduction in inflammatory processes by re-establishing the balance between pathogenic (Th1, Th17, Th9) and immunoprotective cells (Th2, Tregs), modulating B cell and dendritic cell function as well as increasing tolerance of autoimmunity and regeneration in the CNS. Thus, the results from the current review suggest that vitamin A can be considered as a potential treatment in MS disease management. PMID:27356515

  1. [MOLECULAR MECHANISMS OF DRUG RESISTANCE NEISSERIA GONORRHOEAE HISTORY AND PROSPECTS].

    Science.gov (United States)

    Bodoev, I N; Il'ina, E N

    2015-01-01

    Neisseria gonorrhoeae (gonococcus) is a strict human pathogen, which causes gonorrhea--an infectious disease, whose origin dates back to more than two thousand years. Due to the unique plasticity of the genetic material, these bacteria have acquired the capacity to adapt to the host immune system, cause repeated infections, as well as withstand antimicrobials. Since the introduction of antibiotics in 1930s, gonococcus has displayed its propensity to develop resistance to all clinically useful antibiotics. It is important to note that the known resistance determinants of N. gonorrhoeae were acquired through horizontal gene transfer, recombination and spontaneous mutagenesis, and may be located both in the chromosome and on the plasmid. After introduction of a new antimicrobial drug, gonococcus becomes resistant within two decades and replaces sensitive bacterial population. Currently Ceftriaxone is the last remaining antibiotic for first-line treatment of gonorrhea. However, the first gonococcus displaying high-level resistance to Ceftriaxone was isolated in Japan a few years ago. Therefore, in the near future, gonorrhea may become untreatable. In the present review, we discuss the chronology of the anti-gonorrhea drugs (antibiotics) replacement, the evolution of resistance mechanisms emergence and future perspectives of N. gonorrhoeae treatment.

  2. Molecular mechanism of biophylaxis for adverse factor in working environment

    International Nuclear Information System (INIS)

    It has been known that there exist some specific proteins in the pathway by which adverse environmental components are transferred to genes mediating the biophylaxis mechanism. Therefore, it seemed that information exchange might be made through interaction between such proteins and unknown proteins, and this step would be the key step of biophylaxis. In this study, construction of a recombinant protein was attempted to develop a detection method for such protein-protein interaction using radioisotopes. First, vectors that can express ZRF protein with S-tag at the N-terminal end in E.coli were constructed (pZRF29, pZRF30) and E.coli transfected with the vector was cultured to collect the recombinant protein. Thus obtained recombinant ZRF protein was analyzed by polyacrylamide gel electrophoresis and detection was made by Coomassie staining. Using the two vectors, ZRF protein was produced. The protein could be obtained at much higher efficiency in the present system than the previous system. However, the expression level of β-galactosidase as the control was still higher than that of the ZRF protein. This would be due to the higher stability of β- galactosidase, suggesting that further improvement might be obtainable by stabilizing the ZRF protein at the time of expression. It was thought necessary to choose the optimum conditions of the system in respects of cell culture and induction of the recombinant protein as well as protein extraction. (M.N.)

  3. Molecular mechanism of interleukin-2-induced mucosal homeostasis.

    Science.gov (United States)

    Mishra, Jayshree; Waters, Christopher M; Kumar, Narendra

    2012-03-01

    Sustained damage to the mucosal lining in patients with inflammatory bowel disease (IBD) facilitates translocation of intestinal microbes to submucosal immune cells leading to chronic inflammation. Previously, we demonstrated the role of Jak3 in IL-2-induced intestinal epithelial cell (IEC) migration, one of the early events during intestinal wound repair. In this study, we demonstrate that IL-2 also plays a role in IEC homeostasis through concentration-dependent regulation of IEC proliferation and cell death. At lower concentrations (≤50 U/ml), IL-2 promoted proliferation, while at higher concentrations (100 U/ml), it promoted apoptosis. Activation by IL-2 led to tyrosine phosphorylation-dependent interactions between Jak3 and p52ShcA only at lower concentrations. Phosphatase SHP1 dephosphorylated IL-2-induced phosphorylated p52ShcA. Higher concentrations of IL-2 decreased the phosphorylation of Jak3 and p52ShcA, disrupted their interactions, redistributed Jak3 to the nucleus, and induced apoptosis in IEC. IL-2 also induced dose-dependent upregulation of p52shcA and downregulation of jak3-mRNA. Constitutive overexpression and mir-shRNA-mediated knockdown studies showed that expression of both Jak3 and p52ShcA were necessary for IL-2-induced proliferation of IEC. Doxycycline-regulated sh-RNA expression demonstrated that IL-2-induced downregulation of jak3-mRNA was responsible for higher IL-2-induced apoptosis in IEC. Collectively, these data demonstrate a novel mechanism of IL-2-induced mucosal homeostasis through posttranslational and transcriptional regulation of Jak3 and p52ShcA. PMID:22116305

  4. The molecular mechanism for interaction of ceruloplasmin and myeloperoxidase

    Science.gov (United States)

    Bakhautdin, Bakytzhan; Bakhautdin, Esen Göksöy

    2016-04-01

    Ceruloplasmin (Cp) is a copper-containing ferroxidase with potent antioxidant activity. Cp is expressed by hepatocytes and activated macrophages and has been known as physiologic inhibitor of myeloperoxidase (MPO). Enzymatic activity of MPO produces anti-microbial agents and strong prooxidants such as hypochlorous acid and has a potential to damage host tissue at the sites of inflammation and infection. Thus Cp-MPO interaction and inhibition of MPO has previously been suggested as an important control mechanism of excessive MPO activity. Our aim in this study was to identify minimal Cp domain or peptide that interacts with MPO. We first confirmed Cp-MPO interaction by ELISA and surface plasmon resonance (SPR). SPR analysis of the interaction yielded 30 nM affinity between Cp and MPO. We then designed and synthesized 87 overlapping peptides spanning the entire amino acid sequence of Cp. Each of the peptides was tested whether it binds to MPO by direct binding ELISA. Two of the 87 peptides, P18 and P76 strongly interacted with MPO. Amino acid sequence analysis of identified peptides revealed high sequence and structural homology between them. Further structural analysis of Cp's crystal structure by PyMOL software unfolded that both peptides represent surface-exposed sites of Cp and face nearly the same direction. To confirm our finding we raised anti-P18 antisera in rabbit and demonstrated that this antisera disrupts Cp-MPO binding and rescues MPO activity. Collectively, our results confirm Cp-MPO interaction and identify two nearly identical sites on Cp that specifically bind MPO. We propose that inhibition of MPO by Cp requires two nearly identical sites on Cp to bind homodimeric MPO simultaneously and at an angle of at least 120 degrees, which, in turn, exerts tension on MPO and results in conformational change.

  5. The molecular mechanisms of the analgesic action of melatonin

    Institute of Scientific and Technical Information of China (English)

    LI Shu-hui; LI Xiao-hui

    2008-01-01

    Objective To analyse the potential involvement of the opioid receptor gene expression in the mechanisms of the analgesic action of melatonin. Methods A trauma-pain model was established in Wistar rats by combining right-hind limb amputation with 50 ℃ tail-flick test. Antinoeiception was determined by tail-flick latency to hot waster at 50 ℃. RT-PCR was used to observe the the expression of the M1OR and KOR gene. Results Melatonin produced the antinociceptive effect in dose-dependent manner after i. p or i. c. v. administration. Injected i. c. v. to rats, naloxone (10 μg) obviously antagonized the antinoeiceptive effect induced by i. p. melatonin. The expression of the M1OR gene in the rat hypothalamus and the KOR gene in the hippocampus was both significantly reduced at day 3 after injury, which was parallel to the reduction of the rat pain thresholds. However, the expression of the M1OR gene in the hippocampus and the KOR gene in the hypothalamus was not changed. Treatment of trauma-pain rats with melatonin (30-120 mg·kg-1) i. p. administrated induced the up-regulation of M1OR mRNA in the hypothalamus and the KOR mRNA in the hippocampus in a concentration-dependent manner. Conclusions The present observations suggest that Melatonin-induced antinociceptive effect may partially contribute to the up-regulation of M1OR mRNA level in the hypothalamus and the KOR mRNA level in the hippocampus.

  6. A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria.

    Science.gov (United States)

    Mbengue, Alassane; Bhattacharjee, Souvik; Pandharkar, Trupti; Liu, Haining; Estiu, Guillermina; Stahelin, Robert V; Rizk, Shahir S; Njimoh, Dieudonne L; Ryan, Yana; Chotivanich, Kesinee; Nguon, Chea; Ghorbal, Mehdi; Lopez-Rubio, Jose-Juan; Pfrender, Michael; Emrich, Scott; Mohandas, Narla; Dondorp, Arjen M; Wiest, Olaf; Haldar, Kasturi

    2015-04-30

    Artemisinins are the cornerstone of anti-malarial drugs. Emergence and spread of resistance to them raises risk of wiping out recent gains achieved in reducing worldwide malaria burden and threatens future malaria control and elimination on a global level. Genome-wide association studies (GWAS) have revealed parasite genetic loci associated with artemisinin resistance. However, there is no consensus on biochemical targets of artemisinin. Whether and how these targets interact with genes identified by GWAS, remains unknown. Here we provide biochemical and cellular evidence that artemisinins are potent inhibitors of Plasmodium falciparum phosphatidylinositol-3-kinase (PfPI3K), revealing an unexpected mechanism of action. In resistant clinical strains, increased PfPI3K was associated with the C580Y mutation in P. falciparum Kelch13 (PfKelch13), a primary marker of artemisinin resistance. Polyubiquitination of PfPI3K and its binding to PfKelch13 were reduced by the PfKelch13 mutation, which limited proteolysis of PfPI3K and thus increased levels of the kinase, as well as its lipid product phosphatidylinositol-3-phosphate (PI3P). We find PI3P levels to be predictive of artemisinin resistance in both clinical and engineered laboratory parasites as well as across non-isogenic strains. Elevated PI3P induced artemisinin resistance in absence of PfKelch13 mutations, but remained responsive to regulation by PfKelch13. Evidence is presented for PI3P-dependent signalling in which transgenic expression of an additional kinase confers resistance. Together these data present PI3P as the key mediator of artemisinin resistance and the sole PfPI3K as an important target for malaria elimination.

  7. Molecular mechanisms of cocaine reward: Combined dopamine and serotonin transporter knockouts eliminate cocaine place preference

    OpenAIRE

    Sora,Ichiro; Hall, F. Scott; Andrews, Anne M.; Itokawa, Masanari; Li, Xiao-Fei; Wei, Hong-Bing; Wichems, Christine; Lesch, Klaus-Peter; Murphy, Dennis L.; Uhl, George R.

    2001-01-01

    Cocaine blocks uptake by neuronal plasma membrane transporters for dopamine (DAT), serotonin (SERT), and norepinephrine (NET). Cocaine reward/reinforcement has been linked to actions at DAT or to blockade of SERT. However, knockouts of neither DAT, SERT, or NET reduce cocaine reward/reinforcement, leaving substantial uncertainty about cocaine's molecular mechanisms for reward. Conceivably, the molecular bases of cocaine reward might display sufficient redundancy th...

  8. The folding mechanism of collagen-like model peptides explored through detailed molecular simulations

    OpenAIRE

    Stultz, Collin M.

    2006-01-01

    Collagen has a unique folding mechanism that begins with the formation of a triple-helical structure near its C terminus followed by propagation of this structure to the N terminus. To elucidate factors that affect the folding of collagen, we explored the folding pathway of collagen-like model peptides using detailed molecular simulations with explicit solvent. Using biased molecular dynamics we examined the latter stages of folding of a peptide model of native collagen, (Pro-Hyp-Gly)10, and ...

  9. Growth mechanism, electronic spectral investigation and molecular orbital studies of L-prolinium phosphate.

    Science.gov (United States)

    Liu, Xiaojing; Sun, Xin; Xu, Xijin; Sun, Ping

    2015-11-01

    By using atomic force microscopy, birth and spread has proved to be the primary growth mechanism for L-prolinium phosphate (LPP). The phenomenon of newly formed islands expanding to the edge of the preceding terrace was observed. The optimized molecular structure and the molecular properties were calculated by density functional theory method. Natural bond orbital analysis was carried out to demonstrate the various inter and intramolecular interactions that are responsible for the stabilization of LPP leading to high NLO activity. Molecular electrostatic potential, frontier molecular orbital analysis and thermodynamic properties were investigated to get a better insight of the molecular properties. Global and local reactivity descriptors were computed to predict the reactivity and reactive sites on the molecules. Non-linear optical (NLO) properties such as the total dipole moment (μ) and first order hyperopolarizability (β) were also calculated to predict NLO behavior. PMID:26067937

  10. Molecular Structures and Mechanical Properties of Microbe Rapid Coagulation Natural Rubber

    Institute of Scientific and Technical Information of China (English)

    LIANG Yue; HUANG Mao-Fang; ZENG Zong-Qiang

    2011-01-01

    In this work,molecular structures,dynamic mechanical properties and glass transition temperatures of microbe coagulated natural rubber(NR) samples were analyzed by using pyrolysis gas chromatography-mass spectrometry(py-GC/MS),rubber process analyzer(RPA) and dynamic mechanical thermal analysis(DMA).And the cross-linked network structures and mechanical properties of the corresponding NR vulcanizates were further determined by using nuclear magnetic resonance(NMR) crosslink density spectrometer(XLDS-15) and universal testing machines.The results show that NR raw rubber produced by rapidly coagulated with microorganism exhibits a simple molecular structure composition and good dynamic mechanical properties,and the corresponding NR vulcanizates possess the aggregation structure of high cross-linked density,a high glass transition temperature of-61.5 ℃ and high mechanical properties(tensile strength reaches 25.2 MPa),as compared with that coagulated with acetic acid.

  11. Molecular Alignment and Orientation From Laser-Induced Mechanisms to Optimal Control

    CERN Document Server

    Atabek, O

    2002-01-01

    Genetic algorithms, as implemented in optimal control strategies, are currently successfully exploited in a wide range of problems in molecular physics. In this context, laser control of molecular alignment and orientation remains a very promising issue with challenging applications extending from chemical reactivity to nanoscale design. We emphasize the complementarity between basic quantum mechanisms monitoring alignment/orientation processes and optimal control scenarios. More explicitly, if on one hand we can help the optimal control scheme to take advantage of such mechanisms by appropriately building the targets and delineating the parameter sampling space, on the other hand we expect to learn, from optimal control results, some robust and physically sound dynamical mechanisms. We present basic mechanisms for alignment and orientation, such as pendular states accommodated by the molecule-plus-field effective potential and the "kick" mechanism obtained by a sudden excitation. Very interestingly, an optim...

  12. Cold Denaturation Unveiled: Molecular Mechanism of the Asymmetric Unfolding of Yeast Frataxin.

    Science.gov (United States)

    Sanfelice, Domenico; Morandi, Edoardo; Pastore, Annalisa; Niccolai, Neri; Temussi, Piero Andrea

    2015-12-01

    What is the mechanism that determines the denaturation of proteins at low temperatures, which is, by now, recognized as a fundamental property of all proteins? We present experimental evidence that clarifies the role of specific interactions that favor the entrance of water into the hydrophobic core, a mechanism originally proposed by Privalov but never proved experimentally. By using a combination of molecular dynamics simulation, molecular biology, and biophysics, we identified a cluster of negatively charged residues that represents a preferential gate for the entrance of water molecules into the core. Even single-residue mutations in this cluster, from acidic to neutral residues, affect cold denaturation much more than heat denaturation, suppressing cold denaturation at temperatures above zero degrees. The molecular mechanism of the cold denaturation of yeast frataxin is intrinsically different from that of heat denaturation.

  13. Molecular mechanism of icariin on rat asthmatic model

    Institute of Scientific and Technical Information of China (English)

    XU Chang-qing; LE Jing-jing; DUAN Xiao-hong; DU Wei-jing; LIU Bao-jun; WU Jing-feng; CAO Yu-xue; DONG Jing-cheng

    2011-01-01

    Background Effects of icariin on airway inflammation in asthmatic rats and the intervention of LPS induced inflammation are interfered with the machanism of icariin. Our study aimed to observe the effect of icariin on ovalbumin-induced imbalance of Th1/Th2 cytokine expression and its mechanism.Methods Sixty male SD rats were randomly divided into control group (PBS), asthma group (ovalbumin (OVA)-induced),dexamethasone group, and OVA+icariin low, medium and high dose groups (5, 10, 20 mg/kg, respectively). Each group had ten rats. The model of OVA sensitization was a rat asthma model. Enzyme-linked immunosorbent assay (ELISA)method was used to observe the effects of icariin on interleukin-4 (IL-4) and inerferon Y (IFN-Y) in rats' lung tissue.Immunohistochemical staining was applied to detect the intervention effects of icariin on T cells (T-bet) and gatabinding protein 3 (GATA-3) in rat pulmonary tissue. Realtime RT-PCR was used to observe the intervention effects of icariin on T-bet and GATA-3 mRNA expression in rat pulmonary tissue and spleen lymphocytes. Western blotting was used to observe the icariin intervention effects on T-bet, GATA-3 and nuclear factor-Kappa B (NF-κB) p65 protein expressions in rat pulmonary tissue.Results The ELISA results from pulmonary tissue showed that IL-4 expression was significantly reduced (P <0.05),while the IFN-y expression increased but not significantly when we compared OVA+icariin medium and high dose groups with the asthma group. Immunohistochemical staining of pulmonary tissue showed that the GATA-3 decreased significantly while the T-bet staining did not change in the OVA+icariin high dose group. In pulmonary tissue and spleen lymphocytes T-bet and GATA-3 mRNA expressions were significantly reduced (P <0.05) in icariin treatment groups compared with the asthma model group. GATA-3 and T-bet mRNA in rat spleen lymphocytes in the asthma group were higher than in the control group. GATA-3 mRNA expression in pulmonary

  14. Molecular mechanism of crystallization impacting calcium phosphate cements

    Energy Technology Data Exchange (ETDEWEB)

    Giocondi, J L; El-Dasher, B S; Nancollas, G H; Orme, C A

    2009-05-31

    In summary, SPM data has shown that (1) Mg inhibits growth on all steps but relatively high Mg/Ca ratios are needed. Extracting the mechanism of interaction requires more modeling of the kinetic data, but step morphology is consistent with incorporation. (2) Citrate has several effects depending on the citrate/Ca ratio. At the lowest concentrations, citrate increases the step free energy without altering the step kinetics; at higher concentrations, the polar step is slowed. (3) Oxalate also slows the polar step but additionally stabilizes a new facet, with a [100]{sub Cc} step. (4) Etidronate has the greatest kinetic impact of the molecules studied. At 7{micro}M concentrations, the polar step slows by 60% and a new polar step appears. However, at the same time the [10-1]{sub Cc} increases by 67%. It should be noted that all of these molecules complex calcium and can effect kinetics by altering the solution supersaturation or the Ca to HPO{sub 4}{sup 2-} ratio. For the SPM data shown, this effect was corrected for to distinguish the effect of the molecule at the crystal surface from the effect of the molecule on the solution speciation. The goal of this paper is to draw connections between fundamental studies of atomic step motion and potential strategies for materials processing. It is not our intent to promote the utility of SPM for investigating processes in cement dynamics. The conditions are spectacularly different in many ways. The data shown in this paper are fairly close to equilibrium (S=1.6) whereas the nucleation of cements is initiated at supersaturation ratios in the thousands to millions. Of course, after the initial nucleation phase, the growth will occur at more modest supersaturations and as the cement evolves towards equilibrium certainly some of the growth will occur in regimes such as shown here. In addition to the difference in supersaturation, cements tend to have lower additive to calcium ratios. As an example, the additive to Ca ratio is

  15. Explaining the“Pulse of Protoplasm”:The search for molecular mechanisms of protoplasmic streaming

    Institute of Scientific and Technical Information of China (English)

    Michael R. Dietrich

    2015-01-01

    Explanations for protoplasmic streaming began with appeals to contraction in the eighteenth century and ended with appeals to contraction in the twentieth. During the intervening years, biologists proposed a diverse array of mechanisms for streaming motions. This paper focuses on the re-emergence of contraction among the molecular mecha-nisms proposed for protoplasmic streaming during the twentieth century. The revival of contraction is a result of a broader transition from1 colloidal chemistry to a macro-molecular approach to the chemistry of proteins, the recognition of the phenomena of shuttle streaming and the pulse of protoplasm, and the influential analogy between protoplasmic streaming and muscle contraction.

  16. Recent advances in biological effect and molecular mechanism of arabidopsis thaliana irradiated by ion beams

    International Nuclear Information System (INIS)

    Newly research progresses were summarized in effect of ion beams on seed surface, biological effect, growth, development, gravitropism and so on. Furthermore, mutation molecular mechanism of Arabidopsis thaliana was discussed, for example, alteration of DNA bases, DNA damage, chromosomal recombination, characteristics of mutant transmissibility, etc. Meanwhile, the achievements of transfer- ring extraneous gene to Arabidopsis thaliana by ion beams were reviewed in the paper. At last, the future prospective are also discussed here in mutation molecular mechanism and the potential application of biological effect of heavy ion beams. (authors)

  17. Comparison of molecular mechanics, semi-empirical quantum mechanical, and density functional theory methods for scoring protein-ligand interactions.

    Science.gov (United States)

    Yilmazer, Nusret Duygu; Korth, Martin

    2013-07-11

    Correctly ranking protein-ligand interactions with respect to overall free energy of binding is a grand challenge for virtual drug design. Here we compare the performance of various quantum chemical approaches for tackling this so-called "scoring" problem. Relying on systematically generated benchmark sets of large protein/ligand model complexes based on the PDBbind database, we show that the performance depends first of all on the general level of theory. Comparing classical molecular mechanics (MM), semiempirical quantum mechanical (SQM), and density functional theory (DFT) based methods, we find that enhanced SQM approaches perform very similar to DFT methods and substantially different from MM potentials. PMID:23758433

  18. Free Energies of Chemical Reactions in Solution and in Enzymes with Ab Initio Quantum Mechanics/Molecular Mechanics Methods

    Science.gov (United States)

    Hu, Hao; Yang, Weitao

    2008-05-01

    Combined quantum mechanics/molecular mechanics (QM/MM) methods provide an accurate and efficient energetic description of complex chemical and biological systems, leading to significant advances in the understanding of chemical reactions in solution and in enzymes. Here we review progress in QM/MM methodology and applications, focusing on ab initio QM-based approaches. Ab initio QM/MM methods capitalize on the accuracy and reliability of the associated quantum-mechanical approaches, however, at a much higher computational cost compared with semiempirical quantum-mechanical approaches. Thus reaction-path and activation free-energy calculations based on ab initio QM/MM methods encounter unique challenges in simulation timescales and phase-space sampling. This review features recent developments overcoming these challenges and enabling accurate free-energy determination for reaction processes in solution and in enzymes, along with applications.

  19. Molecular approaches unravel the mechanism of acid soil tolerance in plants

    Institute of Scientific and Technical Information of China (English)

    Miao; Bian; Meixue; Zhou; Dongfa; Sun; Chengdao; Li

    2013-01-01

    Acid soil is a worldwide problem to plant production. Acid toxicity is mainly caused by a lack of essential nutrients in the soil and excessive toxic metals in the plant root zone. Of the toxic metals, aluminum(Al) is the most prevalent and most toxic. Plant species have evolved to variable levels of tolerance to aluminum enabling breeding of high Al-tolerant cultivars.Physiological and molecular approaches have revealed some mechanisms of Al toxicity in higher plants. Mechanisms of plant tolerance to Al stress include: 1) exclusion of Al from the root tips, and 2) absorbance, but tolerance of Al in root cells. Organic acid exudation to chelate Al is a feature shared by many higher plants. The future challenge for Al tolerance studies is the identification of novel tolerance mechanisms and the combination of different mechanisms to achieve higher tolerance. Molecular approaches have led to significant progress in explaining mechanisms and detection of genes responsible for Al tolerance.Gene-specific molecular markers offer better options for marker-assisted selection in breeding programs than linked marker strategies. This paper mainly focuses on recent progress in the use of molecular approaches in Al tolerance research.

  20. Molecular pathology of mismatch repair deficient tumours with emphasis on immune escape mechanisms

    OpenAIRE

    Dierssen, Jan Willem Frederik

    2010-01-01

    This thesis describes molecular methods to distinguish separate colon tumour entities. Furthermore, it shows that distinct immune escape mechanisms, in particular distinct mechanisms of corrupting the HLA system, are operational in subsets of colon tumours. The apparent necessity of some colon tumours to circumvent the immune system might underscore the potential of immune based therapy approaches. Alternatively, it may suggest that such therapies will only lead to selection of tumour cells w...

  1. Cellular and molecular mechanisms of repair in acute and chronic wound healing

    OpenAIRE

    Martin, P.; Nunan, R

    2015-01-01

    Summary A considerable understanding of the fundamental cellular and molecular mechanisms underpinning healthy acute wound healing has been gleaned from studying various animal models, and we are now unravelling the mechanisms that lead to chronic wounds and pathological healing including fibrosis. A small cut will normally heal in days through tight orchestration of cell migration and appropriate levels of inflammation, innervation and angiogenesis. Major surgeries may take several weeks to ...

  2. Molecular mechanisms governing contraction-induced metabolic responses and skeletal muscle reprogramming

    OpenAIRE

    Glund, Stephan

    2007-01-01

    Physical exercise enhances skeletal muscle responsiveness to insulin and regulates metabolism by an insulin-independent mechanism. Elucidation of contraction-mediated molecular mechanisms is imperative for a better understanding of skeletal muscle metabolism and function, and may lead to the identification or validation of possible drug targets for the prevention or treatment of metabolic disorders. This thesis focuses on the role of AMPK and Interleukin (IL)-6 in skeletal m...

  3. Cellular and molecular mechanisms of osteoporosis: current concepts and future direction treatment

    OpenAIRE

    A. T. Dolzhenko; S. Sagalovsky

    2016-01-01

    The article presents review of literature dedicated to the contemporary view on the cellular-molecular mechanisms of the bone remodeling and pathogenesis of the osteoporosis. The discovery of the cytokine RANKL-RANK-OPG system and significant role of the cathepsin K in process bone remodeling has made progress in understanding the mechanisms development disease and possible to development drugs of the new generation – denosumab, a fully human RANKL monoclonal antibody and inhibitor cathepsin ...

  4. Library Automation

    OpenAIRE

    Dhakne, B. N.; Giri, V. V; Waghmode, S. S.

    2010-01-01

    New technologies library provides several new materials, media and mode of storing and communicating the information. Library Automation reduces the drudgery of repeated manual efforts in library routine. By use of library automation collection, Storage, Administration, Processing, Preservation and communication etc.

  5. Molecular mechanics and microcalorimetric investigations of the effects of molecular water on the aggregation of asphaltenes in solutions

    DEFF Research Database (Denmark)

    Murgich, J.; Lira-Galeana, C.; Garcia, Daniel Merino;

    2002-01-01

    by titration calorimetry. A simple dimer dissociation model was used to derive the information about the heat and the constant of dissociation from asphaltenes of Mexico and Alaska obtained from the calorimetric data. The association enthalpies calculated were found to be in excellent agreement with those......The interaction of two model asphaltene molecules from the Athabasca sand oil with a water molecule in a toluene solution was studied by means of molecular mechanics calculations. It was found that water forms bridging H bonds between the heteroatoms of asphaltenes with a considerable span...... in energies. The stronger H bond found has energies higher than those corresponding to the stacking of the aromatic areas of the same asphaltene molecules. This shows that the water molecule may generate additional mechanisms of aggregation of asphaltenes in toluene solution, as found experimentally. The H...

  6. Molecular scale buckling mechanics in individual aligned single-wall carbon nanotubes on elastomeric substrates.

    Science.gov (United States)

    Khang, Dahl-Young; Xiao, Jianliang; Kocabas, Coskun; MacLaren, Scott; Banks, Tony; Jiang, Hanqing; Huang, Yonggang Y; Rogers, John A

    2008-01-01

    We have studied the scaling of controlled nonlinear buckling processes in materials with dimensions in the molecular range (i.e., approximately 1 nm) through experimental and theoretical studies of buckling in individual single-wall carbon nanotubes on substrates of poly(dimethylsiloxane). The results show not only the ability to create and manipulate patterns of buckling at these molecular scales, but also, that analytical continuum mechanics theory can explain, quantitatively, all measurable aspects of this system. Inverse calculation applied to measurements of diameter-dependent buckling wavelengths yields accurate values of the Young's moduli of individual SWNTs. As an example of the value of this system beyond its use in this type of molecular scale metrology, we implement parallel arrays of buckled SWNTs as a class of mechanically stretchable conductor.

  7. Mechanical tuning of molecular machines for nucleotide recognition at the air-water interface

    Directory of Open Access Journals (Sweden)

    Shinoda Satoshi

    2011-01-01

    Full Text Available Abstract Molecular machines embedded in a Langmuir monolayer at the air-water interface can be operated by application of lateral pressure. As part of the challenge associated with versatile sensing of biologically important substances, we here demonstrate discrimination of nucleotides by applying a cholesterol-armed-triazacyclononane host molecule. This molecular machine can discriminate ribonucleotides based on a twofold to tenfold difference in binding constants under optimized conditions including accompanying ions in the subphase and lateral surface pressures of its Langmuir monolayer. The concept of mechanical tuning of the host structure for optimization of molecular recognition should become a novel methodology in bio-related nanotechnology as an alternative to traditional strategies based on increasingly complex and inconvenient molecular design strategies.

  8. Understanding the molecular mechanisms involved in the interfacial self-healing of supramolecular rubbers

    NARCIS (Netherlands)

    Bose, R.K.; Garcia Espallargas, S.J.; Van der Zwaag, S.

    2013-01-01

    Supramolecular rubbers based on 2-aminoethylimidazolidone and fatty acids with epoxy crosslinks have been shown to self-heal via multiple hydrogen bonding sites. In this work, several tools are used to investigate the molecular mechanisms taking place at the interface to understand cohesive healing

  9. Mechanisms of oxygen reduction reactions for carbon alloy catalysts via first principles molecular dynamics

    International Nuclear Information System (INIS)

    Carbon alloy catalysts (CACs) are one of promising candidates for platinum-substitute cathode catalysts for polymer electrolyte fuel cells. We have investigated possible mechanisms of oxygen reduction reactions (ORRs) for CACs via first-principles-based molecular dynamics simulations. In this contribution, we review possible ORRs at likely catalytic sites of CACs suggested from our simulations. (author)

  10. Dynamic Mechanism of Sustainable Molecular Orientation Generated From Cyclic Rotational States

    Institute of Scientific and Technical Information of China (English)

    CHI Fang-Ping; YANG Yu-Jun; HUANG Yu-Xin; ZHU Qi-Ren

    2006-01-01

    @@ Recently, two papers presented by Ortigoso et al. [Phys. Rev. Lett. 93 (2004) 073001 and Phys. Rev. A 72(2005) 053401] develop a novel strategy in which the best sustainable molecular alignment/orientation has been achieved. We intend to analyse the dynamic mechanisms, including those Ortigoso et al. have not clarified.

  11. Metal-amyloid-β peptide interactions: a preliminary investigation of molecular mechanisms for Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    JIAO Yong; YANG Pin

    2007-01-01

    Although humans have spent exactly 100 years combating Alzheimer's disease (AD), the molecular mechanisms of AD remain unclear. Owing to the rapid growth of the oldest age groups of the population and the continuous increase of the incidence of AD, it has become one of the crucial problems to modern sciences. It would be impossible to prevent or reverse AD at the root without elucidating its molecular mechanisms. From the point of view of metal-amyloid-β peptide (Aβ) interactions, we review the molecular mechanisms of AD, mainly including Cu2+ and Zn2+ inducing the aggregation of Aβ, catalysing the production of active oxygen species from Aβ, as well as interacting with the ion-channel-like structures of Aβ. Moreover, the development of therapeutic drugs on the basis of metal-Aβ interactions is also briefly introduced. With the increasingly rapid progress of the molecular mechanisms of AD, we are now entering a new dawn that promises the delivery of revolutionary developments for the control of dementias.

  12. Feline drug metabolism and disposition: pharmacokinetic evidence for species differences and molecular mechanisms

    OpenAIRE

    Court, Michael H.

    2013-01-01

    Although it is widely appreciated that cats respond differently to certain drugs when compared with other companion animal species, the causes of these differences are poorly understood. This review critically evaluates published evidence for altered drug effects in cats, focusing on pharmacokinetic differences between cats, dogs and humans, and the molecular mechanisms underlying these differences. Pharmacokinetic studies indicate that acetaminophen, propofol, carprofen, and acetylsalicylic ...

  13. Automating the CMS DAQ

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.; et al.

    2014-01-01

    We present the automation mechanisms that have been added to the Data Acquisition and Run Control systems of the Compact Muon Solenoid (CMS) experiment during Run 1 of the LHC, ranging from the automation of routine tasks to automatic error recovery and context-sensitive guidance to the operator. These mechanisms helped CMS to maintain a data taking efficiency above 90% and to even improve it to 95% towards the end of Run 1, despite an increase in the occurrence of single-event upsets in sub-detector electronics at high LHC luminosity.

  14. Process automation

    International Nuclear Information System (INIS)

    Process automation technology has been pursued in the chemical processing industries and to a very limited extent in nuclear fuel reprocessing. Its effective use has been restricted in the past by the lack of diverse and reliable process instrumentation and the unavailability of sophisticated software designed for process control. The Integrated Equipment Test (IET) facility was developed by the Consolidated Fuel Reprocessing Program (CFRP) in part to demonstrate new concepts for control of advanced nuclear fuel reprocessing plants. A demonstration of fuel reprocessing equipment automation using advanced instrumentation and a modern, microprocessor-based control system is nearing completion in the facility. This facility provides for the synergistic testing of all chemical process features of a prototypical fuel reprocessing plant that can be attained with unirradiated uranium-bearing feed materials. The unique equipment and mission of the IET facility make it an ideal test bed for automation studies. This effort will provide for the demonstration of the plant automation concept and for the development of techniques for similar applications in a full-scale plant. A set of preliminary recommendations for implementing process automation has been compiled. Some of these concepts are not generally recognized or accepted. The automation work now under way in the IET facility should be useful to others in helping avoid costly mistakes because of the underutilization or misapplication of process automation. 6 figs

  15. Molecular mechanisms of neurodegeneration mediated by dysfunctional subcellular organelles in transmissible spongiform encephalopathies

    Institute of Scientific and Technical Information of China (English)

    Zhiqi Song; Deming Zhao; Lifeng Yang

    2013-01-01

    Transmissible spongiform encephalopathies refer to a group of infectious neurodegenerative diseases with an entirely novel mechanism of transmission and pathophysiology including synaptic damage,dendritic atrophy,vacuolization,and microglial activation.Extensive neuronal loss is the main cause of chronic brain deterioration and fatal outcome of prion diseases.As the final outcome of pathological alterations,neuronal death is a prominent feature of all prion diseases.The mechanisms responsible for prion diseases are not well understood.A more comprehensive understanding of the molecular basis of neuronal damage is essential for the development of an effective therapy for transmissible spongiform encephalopathies and other neurodegenerative diseases sharing similar features.Here,we review the molecular mechanisms of mitochondrial dysfunction and endoplasmic reticulum stress-mediated neuronal death,which play crucial roles in the pathogenisis of prion diseases.

  16. Molecular Mechanisms and Genetic Basis of Heavy Metal Tolerance/Hyperaccumulation in Plants

    Institute of Scientific and Technical Information of China (English)

    Xiao-E YANG; Xiao-Fen JIN; Ying FENG; Ejazul ISLAM

    2005-01-01

    Phytoremediation has gained increased attention as a cost-effective method for the remediation of heavy metal-contaminated sites. Because some plants possess a range of potential mechanisms that may be involved in the detoxification of heavy metals, they manage to survive under metal stresses. High tolerance to heavy metal toxicity could rely either on reduced uptake or increased plant internal sequestration,which is manifested by an interaction between a genotype and its environment. The growing application of molecular genetic technologies has led to increased understanding of mechanisms of heavy metal tolerance/accumulation in plants and, subsequently, many transgenic plants with increased heavy metal resistance,as well as increased uptake of heavy metals, have been developed for the purpose of phytoremediation. In the present review, our major objective is to concisely evaluate the progress made so far in understanding the molecular/cellular mechanisms and genetic basis that control the uptake and detoxification of metals by plants.

  17. Epigenetic Effects and Molecular Mechanisms of Tumorigenesis Induced by Cigarette Smoke: An Overview

    Directory of Open Access Journals (Sweden)

    Rong-Jane Chen

    2011-01-01

    Full Text Available Cigarette smoking is one of the major causes of carcinogenesis. Direct genotoxicity induced by cigarette smoke leads to initiation of carcinogenesis. Nongenotoxic (epigenetic effects of cigarette smoke also act as modulators altering cellular functions. These two effects underlie the mechanisms of tumor promotion and progression. While there is no lack of general reviews on the genotoxic and carcinogenic potentials of cigarette smoke in lung carcinogenesis, updated review on the epigenetic effects and molecular mechanisms of cigarette smoke and carcinogenesis, not limited to lung, is lacking. We are presenting a comprehensive review of recent investigations on cigarette smoke, with special attentions to nicotine, NNK, and PAHs. The current understanding on their molecular mechanisms include (1 receptors, (2 cell cycle regulators, (3 signaling pathways, (4 apoptosis mediators, (5 angiogenic factors, and (6 invasive and metastasis mediators. This review highlighted the complexity biological responses to cigarette smoke components and their involvements in tumorigenesis.

  18. Computational exploration of single-protein mechanics by steered molecular dynamics

    International Nuclear Information System (INIS)

    Hair cell mechanotransduction happens in tens of microseconds, involves forces of a few picoNewtons, and is mediated by nanometer-scale molecular conformational changes. As proteins involved in this process become identified and their high resolution structures become available, multiple tools are being used to explore their “single-molecule responses” to force. Optical tweezers and atomic force microscopy offer exquisite force and extension resolution, but cannot reach the high loading rates expected for high frequency auditory stimuli. Molecular dynamics (MD) simulations can reach these fast time scales, and also provide a unique view of the molecular events underlying protein mechanics, but its predictions must be experimentally verified. Thus a combination of simulations and experiments might be appropriate to study the molecular mechanics of hearing. Here I review the basics of MD simulations and the different methods used to apply force and study protein mechanics in silico. Simulations of tip link proteins are used to illustrate the advantages and limitations of this method

  19. Computational exploration of single-protein mechanics by steered molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sotomayor, Marcos [Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio (United States)

    2015-12-31

    Hair cell mechanotransduction happens in tens of microseconds, involves forces of a few picoNewtons, and is mediated by nanometer-scale molecular conformational changes. As proteins involved in this process become identified and their high resolution structures become available, multiple tools are being used to explore their “single-molecule responses” to force. Optical tweezers and atomic force microscopy offer exquisite force and extension resolution, but cannot reach the high loading rates expected for high frequency auditory stimuli. Molecular dynamics (MD) simulations can reach these fast time scales, and also provide a unique view of the molecular events underlying protein mechanics, but its predictions must be experimentally verified. Thus a combination of simulations and experiments might be appropriate to study the molecular mechanics of hearing. Here I review the basics of MD simulations and the different methods used to apply force and study protein mechanics in silico. Simulations of tip link proteins are used to illustrate the advantages and limitations of this method.

  20. Computational exploration of single-protein mechanics by steered molecular dynamics

    Science.gov (United States)

    Sotomayor, Marcos

    2015-12-01

    Hair cell mechanotransduction happens in tens of microseconds, involves forces of a few picoNewtons, and is mediated by nanometer-scale molecular conformational changes. As proteins involved in this process become identified and their high resolution structures become available, multiple tools are being used to explore their "single-molecule responses" to force. Optical tweezers and atomic force microscopy offer exquisite force and extension resolution, but cannot reach the high loading rates expected for high frequency auditory stimuli. Molecular dynamics (MD) simulations can reach these fast time scales, and also provide a unique view of the molecular events underlying protein mechanics, but its predictions must be experimentally verified. Thus a combination of simulations and experiments might be appropriate to study the molecular mechanics of hearing. Here I review the basics of MD simulations and the different methods used to apply force and study protein mechanics in silico. Simulations of tip link proteins are used to illustrate the advantages and limitations of this method.

  1. Cellular and molecular investigations of the adhesion and mechanics of Listeria monocytogenes

    Science.gov (United States)

    Eskhan, Asma Omar

    Atomic force microscopy has been used to quantify the adherence and mechanical properties of an array of L. monocytogenes strains and their surface biopolymers. First, eight L. monocytogenes strains that represented the two major lineages of the species were compared for their adherence and mechanics at cellular and molecular levels. Our results indicated that strains of lineage' II were characterized by higher adhesion and Young's moduli, longer and more rigid surface biopolymers and lower specific and nonspecific forces when compared to lineage' I strains. Additionally, adherence and mechanical properties of eight L. monocytogenes epidemic and environmental strains were probed. Our results pointed to that environmental and epidemic strains representative of a given lineage were similar in their adherence and mechanical properties when investigated at a cellular level. However, when the molecular properties of the strains were considered, epidemic strains were characterized by higher specific and nonspecific forces, shorter, denser and more flexible biopolymers compared to environmental strains. Second, the role of environmental pH conditions of growth on the adhesion and mechanics of a pathogenic L. monocytogenes EGDe was investigated. Our results pointed to a transition in the adhesion energies for cells cultured at pH 7. In addition, when the types of molecular forces that govern the adhesion were quantified using Poisson statistical approach and using a new proposed method, specific hydrogen-bond energies dominated the bacterial adhesion process. Such a finding is instrumental to researchers designing methods to control bacterial adhesion. Similarly, bacterial cells underwent a transition in their mechanical properties. We have shown that cells cultured at pH 7 were the most rigid compared to those cultured in lower or higher pH conditions of growth. Due to transitions observed in adherence and mechanics when cells were cultured at pH 7, we hypothesized that

  2. Probing molecular mechanisms of the Hsp90 chaperone: biophysical modeling identifies key regulators of functional dynamics.

    Directory of Open Access Journals (Sweden)

    Anshuman Dixit

    Full Text Available Deciphering functional mechanisms of the Hsp90 chaperone machinery is an important objective in cancer biology aiming to facilitate discovery of targeted anti-cancer therapies. Despite significant advances in understanding structure and function of molecular chaperones, organizing molecular principles that control the relationship between conformational diversity and functional mechanisms of the Hsp90 activity lack a sufficient quantitative characterization. We combined molecular dynamics simulations, principal component analysis, the energy landscape model and structure-functional analysis of Hsp90 regulatory interactions to systematically investigate functional dynamics of the molecular chaperone. This approach has identified a network of conserved regions common to the Hsp90 chaperones that could play a universal role in coordinating functional dynamics, principal collective motions and allosteric signaling of Hsp90. We have found that these functional motifs may be utilized by the molecular chaperone machinery to act collectively as central regulators of Hsp90 dynamics and activity, including the inter-domain communications, control of ATP hydrolysis, and protein client binding. These findings have provided support to a long-standing assertion that allosteric regulation and catalysis may have emerged via common evolutionary routes. The interaction networks regulating functional motions of Hsp90 may be determined by the inherent structural architecture of the molecular chaperone. At the same time, the thermodynamics-based "conformational selection" of functional states is likely to be activated based on the nature of the binding partner. This mechanistic model of Hsp90 dynamics and function is consistent with the notion that allosteric networks orchestrating cooperative protein motions can be formed by evolutionary conserved and sparsely connected residue clusters. Hence, allosteric signaling through a small network of distantly connected

  3. Understanding flocculation mechanism of graphene oxide for organic dyes from water: Experimental and molecular dynamics simulation

    Science.gov (United States)

    Liu, Jun; Li, Peng; Xiao, Hang; Zhang, Yayun; Shi, Xiaoyang; Lü, Xiaomeng; Chen, Xi

    2015-11-01

    Flocculation treatment processes play an important role in water and wastewater pretreatment. Here we investigate experimentally and theoretically the possibility of using graphene oxide (GO) as a flocculant to remove methylene blue (MB) from water. Experimental results show that GO can remove almost all MB from aqueous solutions at its optimal dosages and molecular dynamics simulations indicate that MB cations quickly congregate around GO in water. Furthermore, PIXEL energy contribution analysis reveals that most of the strong interactions between GO and MB are of a van der Waals (London dispersion) character. These results offer new insights for shedding light on the molecular mechanism of interaction between GO and organic pollutants.

  4. Molecular Mechanism and Potential Targets for Blocking HPV-Induced Lesion Development

    Directory of Open Access Journals (Sweden)

    E. Guzmán-Olea

    2012-01-01

    Full Text Available Persistent infection with high-risk HPV is the etiologic agent associated with the development of cervical cancer (CC development. However, environmental, social, epidemiological, genetic, and host factors may have a joint influence on the risk of disease progression. Cervical lesions caused by HPV infection can be removed naturally by the host immune response and only a small percentage may progress to cancer; thus, the immune response is essential for the control of precursor lesions and CC. We present a review of recent research on the molecular mechanisms that allow HPV-infected cells to evade immune surveillance and potential targets of molecular therapy to inhibit tumor immune escape.

  5. Molecular Mechanism and Potential Targets for Blocking HPV-Induced Lesion Development.

    Science.gov (United States)

    Guzmán-Olea, E; Bermúdez-Morales, V H; Peralta-Zaragoza, O; Torres-Poveda, K; Madrid-Marina, V

    2012-01-01

    Persistent infection with high-risk HPV is the etiologic agent associated with the development of cervical cancer (CC) development. However, environmental, social, epidemiological, genetic, and host factors may have a joint influence on the risk of disease progression. Cervical lesions caused by HPV infection can be removed naturally by the host immune response and only a small percentage may progress to cancer; thus, the immune response is essential for the control of precursor lesions and CC. We present a review of recent research on the molecular mechanisms that allow HPV-infected cells to evade immune surveillance and potential targets of molecular therapy to inhibit tumor immune escape. PMID:22220169

  6. Mechanical model study of relationship of molecular configuration and multiphase in liquid crystal materials

    Institute of Scientific and Technical Information of China (English)

    Ma Heng; Sun Rui-Zhi; Li Zhen-Xin

    2006-01-01

    A mechanical model of liquid crystals (LCs) is applied to study the polymorphism of homologous series of terphenyl compounds. With a semi-experimental molecular orbit method, we calculate the moment of inertia which represents the rotation state to describe the phase transition temperature obtained from experimental data. We propose a novel explanation of the phase sequence or polymorphism of LC materials using the two key parameters, the moment of inertia and critical rotational velocity. The effect of molecular polarity on the appearance of liquid crystalline is also discussed.

  7. Molecular response functions for the polarizable continuum model physical basis and quantum mechanical formalism

    CERN Document Server

    Cammi, Roberto

    2013-01-01

    This Brief presents the main aspects of the response functions theory (RFT) for molecular solutes described within the framework of the Polarizable Continuum Model (PCM). PCM is a solvation model for a Quantum Mechanical molecular system in which the solvent is represented as a continuum distribution of matter. Particular attention is devoted to the description of the basic features of the PCM model, and to the problems characterizing the study of the response function theory for molecules in solution with respect to the analogous theory on isolated molecules.

  8. Understanding flocculation mechanism of graphene oxide for organic dyes from water: Experimental and molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Jun Liu

    2015-11-01

    Full Text Available Flocculation treatment processes play an important role in water and wastewater pretreatment. Here we investigate experimentally and theoretically the possibility of using graphene oxide (GO as a flocculant to remove methylene blue (MB from water. Experimental results show that GO can remove almost all MB from aqueous solutions at its optimal dosages and molecular dynamics simulations indicate that MB cations quickly congregate around GO in water. Furthermore, PIXEL energy contribution analysis reveals that most of the strong interactions between GO and MB are of a van der Waals (London dispersion character. These results offer new insights for shedding light on the molecular mechanism of interaction between GO and organic pollutants.

  9. Using molecular mechanics to predict bulk material properties of fibronectin fibers.

    Directory of Open Access Journals (Sweden)

    Mark J Bradshaw

    Full Text Available The structural proteins of the extracellular matrix (ECM form fibers with finely tuned mechanical properties matched to the time scales of cell traction forces. Several proteins such as fibronectin (Fn and fibrin undergo molecular conformational changes that extend the proteins and are believed to be a major contributor to the extensibility of bulk fibers. The dynamics of these conformational changes have been thoroughly explored since the advent of single molecule force spectroscopy and molecular dynamics simulations but remarkably, these data have not been rigorously applied to the understanding of the time dependent mechanics of bulk ECM fibers. Using measurements of protein density within fibers, we have examined the influence of dynamic molecular conformational changes and the intermolecular arrangement of Fn within fibers on the bulk mechanical properties of Fn fibers. Fibers were simulated as molecular strands with architectures that promote either equal or disparate molecular loading under conditions of constant extension rate. Measurements of protein concentration within micron scale fibers using deep ultraviolet transmission microscopy allowed the simulations to be scaled appropriately for comparison to in vitro measurements of fiber mechanics as well as providing estimates of fiber porosity and water content, suggesting Fn fibers are approximately 75% solute. Comparing the properties predicted by single molecule measurements to in vitro measurements of Fn fibers showed that domain unfolding is sufficient to predict the high extensibility and nonlinear stiffness of Fn fibers with surprising accuracy, with disparately loaded fibers providing the best fit to experiment. This work shows the promise of this microstructural modeling approach for understanding Fn fiber properties, which is generally applicable to other ECM fibers, and could be further expanded to tissue scale by incorporating these simulated fibers into three dimensional

  10. Is the microscopic stress computed from molecular simulations in mechanical equilibrium?

    Science.gov (United States)

    Torres-Sánchez, Alejandro; Vanegas, Juan M.; Arroyo, Marino

    The microscopic stress field connects atomistic simulations with the mechanics of materials at the nano-scale through statistical mechanics. However, its definition remains ambiguous. In a recent work we showed that this is not only a theoretical problem, but rather that it greatly affects local stress calculations from molecular simulations. We find that popular definitions of the local stress, which are continuously being employed to understand the mechanics of various systems at the nanoscale, violate the continuum statements of mechanical equilibrium. We exemplify these facts in local stress calculations of defective graphene, lipid bilayers, and fibrous proteins. Furthermore, we propose a new physical and sound definition of the microscopic stress that satisfies the continuum equations of balance, irrespective of the many-body nature of the inter-atomic potential. Thus, our proposal provides an unambiguous link between discrete-particle models and continuum mechanics at the nanoscale.

  11. BATMAN-TCM: a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine

    Science.gov (United States)

    Liu, Zhongyang; Guo, Feifei; Wang, Yong; Li, Chun; Zhang, Xinlei; Li, Honglei; Diao, Lihong; Gu, Jiangyong; Wang, Wei; Li, Dong; He, Fuchu

    2016-02-01

    Traditional Chinese Medicine (TCM), with a history of thousands of years of clinical practice, is gaining more and more attention and application worldwide. And TCM-based new drug development, especially for the treatment of complex diseases is promising. However, owing to the TCM’s diverse ingredients and their complex interaction with human body, it is still quite difficult to uncover its molecular mechanism, which greatly hinders the TCM modernization and internationalization. Here we developed the first online Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM). Its main functions include 1) TCM ingredients’ target prediction; 2) functional analyses of targets including biological pathway, Gene Ontology functional term and disease enrichment analyses; 3) the visualization of ingredient-target-pathway/disease association network and KEGG biological pathway with highlighted targets; 4) comparison analysis of multiple TCMs. Finally, we applied BATMAN-TCM to Qishen Yiqi dripping Pill (QSYQ) and combined with subsequent experimental validation to reveal the functions of renin-angiotensin system responsible for QSYQ’s cardioprotective effects for the first time. BATMAN-TCM will contribute to the understanding of the “multi-component, multi-target and multi-pathway” combinational therapeutic mechanism of TCM, and provide valuable clues for subsequent experimental validation, accelerating the elucidation of TCM’s molecular mechanism. BATMAN-TCM is available at http://bionet.ncpsb.org/batman-tcm.

  12. BATMAN-TCM: a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine.

    Science.gov (United States)

    Liu, Zhongyang; Guo, Feifei; Wang, Yong; Li, Chun; Zhang, Xinlei; Li, Honglei; Diao, Lihong; Gu, Jiangyong; Wang, Wei; Li, Dong; He, Fuchu

    2016-01-01

    Traditional Chinese Medicine (TCM), with a history of thousands of years of clinical practice, is gaining more and more attention and application worldwide. And TCM-based new drug development, especially for the treatment of complex diseases is promising. However, owing to the TCM's diverse ingredients and their complex interaction with human body, it is still quite difficult to uncover its molecular mechanism, which greatly hinders the TCM modernization and internationalization. Here we developed the first online Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM). Its main functions include 1) TCM ingredients' target prediction; 2) functional analyses of targets including biological pathway, Gene Ontology functional term and disease enrichment analyses; 3) the visualization of ingredient-target-pathway/disease association network and KEGG biological pathway with highlighted targets; 4) comparison analysis of multiple TCMs. Finally, we applied BATMAN-TCM to Qishen Yiqi dripping Pill (QSYQ) and combined with subsequent experimental validation to reveal the functions of renin-angiotensin system responsible for QSYQ's cardioprotective effects for the first time. BATMAN-TCM will contribute to the understanding of the "multi-component, multi-target and multi-pathway" combinational therapeutic mechanism of TCM, and provide valuable clues for subsequent experimental validation, accelerating the elucidation of TCM's molecular mechanism. BATMAN-TCM is available at http://bionet.ncpsb.org/batman-tcm. PMID:26879404

  13. BATMAN-TCM: a Bioinformatics Analysis Tool for Molecular mechANism of Traditional Chinese Medicine

    Science.gov (United States)

    Liu, Zhongyang; Guo, Feifei; Wang, Yong; Li, Chun; Zhang, Xinlei; Li, Honglei; Diao, Lihong; Gu, Jiangyong; Wang, Wei; Li, Dong; He, Fuchu

    2016-01-01

    Traditional Chinese Medicine (TCM), with a history of thousands of years of clinical practice, is gaining more and more attention and application worldwide. And TCM-based new drug development, especially for the treatment of complex diseases is promising. However, owing to the TCM’s diverse ingredients and their complex interaction with human body, it is still quite difficult to uncover its molecular mechanism, which greatly hinders the TCM modernization and internationalization. Here we developed the first online Bioinformatics Analysis Tool for Molecular mechANism of TCM (BATMAN-TCM). Its main functions include 1) TCM ingredients’ target prediction; 2) functional analyses of targets including biological pathway, Gene Ontology functional term and disease enrichment analyses; 3) the visualization of ingredient-target-pathway/disease association network and KEGG biological pathway with highlighted targets; 4) comparison analysis of multiple TCMs. Finally, we applied BATMAN-TCM to Qishen Yiqi dripping Pill (QSYQ) and combined with subsequent experimental validation to reveal the functions of renin-angiotensin system responsible for QSYQ’s cardioprotective effects for the first time. BATMAN-TCM will contribute to the understanding of the “multi-component, multi-target and multi-pathway” combinational therapeutic mechanism of TCM, and provide valuable clues for subsequent experimental validation, accelerating the elucidation of TCM’s molecular mechanism. BATMAN-TCM is available at http://bionet.ncpsb.org/batman-tcm. PMID:26879404

  14. Study of the Mechanical Properties and Vibration Isolation Performance of a Molecular Spring Isolator

    Directory of Open Access Journals (Sweden)

    Muchun Yu

    2016-01-01

    Full Text Available Molecular Spring Isolator (MSI is a novel passive vibration isolation technique, providing High-Static-Low-Dynamic (HSLD stiffness based on the use of molecular spring material. The molecular spring material is a solid-liquid mixture consisting of water and hydrophobic nanoporous materials. Under a certain level of external pressure, water molecules can intrude into the hydrophobic pores of nanoporous materials, developing an additional solid-liquid interface. Such interfaces are able to store, release, and transform mechanical energy, providing properties like mechanical spring. Having been only recently developed, the basic mechanic properties of a MSI have not been studied in depth. This paper focuses on the stiffness influence factors, the dynamic frequency response, and the vibration isolation performance of a MSI; these properties help engineers to design MSIs for different engineering applications. First, the working mechanism of a MSI is introduced from a three-dimensional general view of the water infiltration massive hydrophobic nanoporous pores. Next, a wide range of influence factors on the stiffness properties of MSI are studied. In addition, the frequency response functions (FRFs of the MSI vibration isolation system are studied utilizing the matching method based on equivalent piecewise linear (EPL system. Finally, the vibration isolation properties of MSI are evaluated by force transmissibility.

  15. Density functional theory and quantum mechanics/molecular mechanics study of cysteine protease inhibition by nitrile-based inhibitors.

    Science.gov (United States)

    De Visser, Sam; Quesne, Matthew; Ward, Richard

    2013-12-01

    Cysteine protease enzymes are important for human physiology and catalyze key protein degradation pathways. These enzymes react via a nucleophilic reaction mechanism that involves a cysteine residue and the proton of a proximal histidine. Particularly efficient inhibitors of these enzymes are nitrile-based, however, the details of the catalytic reaction mechanism currently are poorly understood. To gain further insight into the inhibition of these molecules, we have performed a combined density functional theory and quantum mechanics/molecular mechanics study on the reaction of a nitrile-based inhibitor with the enzyme active site amino acids. We show here that small perturbations to the inhibitor structure can have dramatic effects on the catalysis and inhibition processes. Thus, we investigated a range of inhibitor templates and show that specific structural changes reduce the inhibitory efficiency by several orders of magnitude. Moreover, as the reaction takes place on a polar surface, we find strong differences between the DFT and QM/MM calculated energetics. In particular, the DFT model led to dramatic distortions from the starting structure and the convergence to a structure that would not fit the enzyme active site. In the subsequent QM/MM study we investigated the use of mechanical versus electronic embedding on the kinetics, thermodynamics and geometries along the reaction mechanism. We find minor effects on the kinetics of the reaction but large geometric and thermodynamics differences as a result of inclusion of electronic embedding corrections. The work here highlights the importance of model choice in the investigation of this biochemical reaction mechanism.

  16. Rosacea: Molecular Mechanisms and Management of a Chronic Cutaneous Inflammatory Condition

    Directory of Open Access Journals (Sweden)

    Yu Ri Woo

    2016-09-01

    Full Text Available Rosacea is a chronic cutaneous inflammatory disease that affects the facial skin. Clinically, rosacea can be categorized into papulopustular, erythematotelangiectatic, ocular, and phymatous rosacea. However, the phenotypic presentations of rosacea are more heterogeneous. Although the pathophysiology of rosacea remains to be elucidated, immunologic alterations and neurovascular dysregulation are thought to have important roles in initiating and strengthening the clinical manifestations of rosacea. In this article, we present the possible molecular mechanisms of rosacea based on recent laboratory and clinical studies. We describe the genetic predisposition for rosacea along with its associated diseases, triggering factors, and suggested management options in detail based on the underlying molecular biology. Understanding the molecular pathomechanisms of rosacea will likely aid toward better comprehending its complex pathogenesis.

  17. A set of molecular models based on quantum mechanical ab initio calculations and thermodynamic data

    CERN Document Server

    Eckl, Bernhard; Hasse, Hans

    2009-01-01

    A parameterization strategy for molecular models on the basis of force fields is proposed, which allows a rapid development of models for small molecules by using results from quantum mechanical (QM) ab initio calculations and thermodynamic data. The geometry of the molecular models is specified according to the atom positions determined by QM energy minimization. The electrostatic interactions are modeled by reducing the electron density distribution to point dipoles and point quadrupoles located in the center of mass of the molecules. Dispersive and repulsive interactions are described by Lennard-Jones sites, for which the parameters are iteratively optimized to experimental vapor-liquid equilibrium (VLE) data, i.e. vapor pressure, saturated liquid density, and enthalpy of vaporization of the considered substance. The proposed modeling strategy was applied to a sample set of ten molecules from different substance classes. New molecular models are presented for iso-butane, cyclohexane, formaldehyde, dimethyl...

  18. Mechanism of Spectral Tuning Going from Retinal in Vacuo to Bovine Rhodopsin and its Mutants: Multireference ab initio Quantum Mechanics/Molecular Mechanics Studies

    OpenAIRE

    Altun, Ahmet; Yokoyama, Shozo; Morokuma, Keiji

    2008-01-01

    We have investigated photoabsorption spectra of bovine rhodopsin and its mutants (E122Q and E113Q) by hybrid quantum mechanical/molecular mechanical (QM/MM) calculations as well as retinal in vacuo by pure QM calculations, employing multireference (MR) ab initio and TD-B3LYP methods. The sophisticated MR-SORCI+Q and MRCISD+Q methods extrapolated with respect to adopted approximations can reproduce the experimental absorption maxima of retinal very well. The relatively inexpensive MR-DDCI2+Q m...

  19. Hybrid Quantum Mechanics/Molecular Mechanics Solvation Scheme for Computing Free Energies of Reactions at Metal-Water Interfaces.

    Science.gov (United States)

    Faheem, Muhammad; Heyden, Andreas

    2014-08-12

    We report the development of a quantum mechanics/molecular mechanics free energy perturbation (QM/MM-FEP) method for modeling chemical reactions at metal-water interfaces. This novel solvation scheme combines planewave density function theory (DFT), periodic electrostatic embedded cluster method (PEECM) calculations using Gaussian-type orbitals, and classical molecular dynamics (MD) simulations to obtain a free energy description of a complex metal-water system. We derive a potential of mean force (PMF) of the reaction system within the QM/MM framework. A fixed-size, finite ensemble of MM conformations is used to permit precise evaluation of the PMF of QM coordinates and its gradient defined within this ensemble. Local conformations of adsorbed reaction moieties are optimized using sequential MD-sampling and QM-optimization steps. An approximate reaction coordinate is constructed using a number of interpolated states and the free energy difference between adjacent states is calculated using the QM/MM-FEP method. By avoiding on-the-fly QM calculations and by circumventing the challenges associated with statistical averaging during MD sampling, a computational speedup of multiple orders of magnitude is realized. The method is systematically validated against the results of ab initio QM calculations and demonstrated for C-C cleavage in double-dehydrogenated ethylene glycol on a Pt (111) model surface.

  20. The molecular mechanism of zinc and cadmium stress response in plants.

    Science.gov (United States)

    Lin, Ya-Fen; Aarts, Mark G M

    2012-10-01

    When plants are subjected to high metal exposure, different plant species take different strategies in response to metal-induced stress. Largely, plants can be distinguished in four groups: metal-sensitive species, metal-resistant excluder species, metal-tolerant non-hyperaccumulator species, and metal-hypertolerant hyperaccumulator species, each having different molecular mechanisms to accomplish their resistance/tolerance to metal stress or reduce the negative consequences of metal toxicity. Plant responses to heavy metals are molecularly regulated in a process called metal homeostasis, which also includes regulation of the metal-induced reactive oxygen species (ROS) signaling pathway. ROS generation and signaling plays an important duel role in heavy metal detoxification and tolerance. In this review, we will compare the different molecular mechanisms of nutritional (Zn) and non-nutritional (Cd) metal homeostasis between metal-sensitive and metal-adapted species. We will also include the role of metal-induced ROS signal transduction in this comparison, with the aim to provide a comprehensive overview on how plants cope with Zn/Cd stress at the molecular level. PMID:22903262

  1. Antiproliferative and Molecular Mechanism of Eugenol-Induced Apoptosis in Cancer Cells

    Directory of Open Access Journals (Sweden)

    Eko Supriyanto

    2012-05-01

    Full Text Available Phenolic phytochemicals are a broad class of nutraceuticals found in plants which have been extensively researched by scientists for their health-promoting potential. One such a compound which has been comprehensively used is eugenol (4-allyl-2-methoxyphenol, which is the active component of Syzigium aromaticum (cloves. Aromatic plants like nutmeg, basil, cinnamon and bay leaves also contain eugenol. Eugenol has a wide range of applications like perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anesthetic. Increasing volumes of literature showed eugenol possesses antioxidant, antimutagenic, antigenotoxic, anti-inflammatory and anticancer properties. Molecular mechanism of eugenol-induced apoptosis in melanoma, skin tumors, osteosarcoma, leukemia, gastric and mast cells has been well documented. This review article will highlight the antiproliferative activity and molecular mechanism of the eugenol induced apoptosis against the cancer cells and animal models.

  2. Rolling Resistance and Mechanical Properties of Grinded Copper Surfaces Using Molecular Dynamics Simulation.

    Science.gov (United States)

    Liang, Shih-Wei; Wang, Chih-Hao; Fang, Te-Hua

    2016-12-01

    Mechanical properties of copper (Cu) film under grinding process were accomplished by molecular dynamics simulation. A numerical calculation was carried out to understand the distributions of atomic and slip vector inside the Cu films. In this study, the roller rotation velocity, temperature, and roller rotation direction change are investigated to clarify their effect on the deformation mechanism. The simulation results showed that the destruction of materials was increased proportionally to the roller rotation velocity. The machining process at higher temperature results in larger kinetic energy of atoms than lower temperature during the grinding process of the Cu films. The result also shows that the roller rotation in the counterclockwise direction had the better stability than the roller rotation in the clockwise direction due to significantly increased backfill atoms in the groove of the Cu film surface. Additionally, the effects of the rolling resistances on the Cu film surfaces during the grinding process are studied by the molecular dynamics simulation method. PMID:27637893

  3. Cellular and molecular mechanisms of sexual differentiation in the mammalian nervous system.

    Science.gov (United States)

    Forger, Nancy G; Strahan, J Alex; Castillo-Ruiz, Alexandra

    2016-01-01

    Neuroscientists are likely to discover new sex differences in the coming years, spurred by the National Institutes of Health initiative to include both sexes in preclinical studies. This review summarizes the current state of knowledge of the cellular and molecular mechanisms underlying sex differences in the mammalian nervous system, based primarily on work in rodents. Cellular mechanisms examined include neurogenesis, migration, the differentiation of neurochemical and morphological cell phenotype, and cell death. At the molecular level we discuss evolving roles for epigenetics, sex chromosome complement, the immune system, and newly identified cell signaling pathways. We review recent findings on the role of the environment, as well as genome-wide studies with some surprising results, causing us to re-think often-used models of sexual differentiation. We end by pointing to future directions, including an increased awareness of the important contributions of tissues outside of the nervous system to sexual differentiation of the brain. PMID:26790970

  4. The Role of Exercise in Cardiac Aging: From Physiology to Molecular Mechanisms.

    Science.gov (United States)

    Roh, Jason; Rhee, James; Chaudhari, Vinita; Rosenzweig, Anthony

    2016-01-22

    Aging induces structural and functional changes in the heart that are associated with increased risk of cardiovascular disease and impaired functional capacity in the elderly. Exercise is a diagnostic and therapeutic tool, with the potential to provide insights into clinical diagnosis and prognosis, as well as the molecular mechanisms by which aging influences cardiac physiology and function. In this review, we first provide an overview of how aging impacts the cardiac response to exercise, and the implications this has for functional capacity in older adults. We then review the underlying molecular mechanisms by which cardiac aging contributes to exercise intolerance, and conversely how exercise training can potentially modulate aging phenotypes in the heart. Finally, we highlight the potential use of these exercise models to complement models of disease in efforts to uncover new therapeutic targets to prevent or treat heart disease in the aging population. PMID:26838314

  5. Rolling Resistance and Mechanical Properties of Grinded Copper Surfaces Using Molecular Dynamics Simulation

    Science.gov (United States)

    Liang, Shih-Wei; Wang, Chih-Hao; Fang, Te-Hua

    2016-09-01

    Mechanical properties of copper (Cu) film under grinding process were accomplished by molecular dynamics simulation. A numerical calculation was carried out to understand the distributions of atomic and slip vector inside the Cu films. In this study, the roller rotation velocity, temperature, and roller rotation direction change are investigated to clarify their effect on the deformation mechanism. The simulation results showed that the destruction of materials was increased proportionally to the roller rotation velocity. The machining process at higher temperature results in larger kinetic energy of atoms than lower temperature during the grinding process of the Cu films. The result also shows that the roller rotation in the counterclockwise direction had the better stability than the roller rotation in the clockwise direction due to significantly increased backfill atoms in the groove of the Cu film surface. Additionally, the effects of the rolling resistances on the Cu film surfaces during the grinding process are studied by the molecular dynamics simulation method.

  6. Rolling Resistance and Mechanical Properties of Grinded Copper Surfaces Using Molecular Dynamics Simulation.

    Science.gov (United States)

    Liang, Shih-Wei; Wang, Chih-Hao; Fang, Te-Hua

    2016-12-01

    Mechanical properties of copper (Cu) film under grinding process were accomplished by molecular dynamics simulation. A numerical calculation was carried out to understand the distributions of atomic and slip vector inside the Cu films. In this study, the roller rotation velocity, temperature, and roller rotation direction change are investigated to clarify their effect on the deformation mechanism. The simulation results showed that the destruction of materials was increased proportionally to the roller rotation velocity. The machining process at higher temperature results in larger kinetic energy of atoms than lower temperature during the grinding process of the Cu films. The result also shows that the roller rotation in the counterclockwise direction had the better stability than the roller rotation in the clockwise direction due to significantly increased backfill atoms in the groove of the Cu film surface. Additionally, the effects of the rolling resistances on the Cu film surfaces during the grinding process are studied by the molecular dynamics simulation method.

  7. Fourier transform infrared difference spectroscopy for studying the molecular mechanism of photosynthetic water oxidation

    Directory of Open Access Journals (Sweden)

    Hsiu-An eChu

    2013-05-01

    Full Text Available The photosystem II reaction center mediates the light-induced transfer of electrons from water to plastoquinone, with concomitant production of O2. Water oxidation chemistry occurs in the oxygen-evolving complex (OEC, which consists of an inorganic Mn4CaO5 cluster and its surrounding protein matrix. Light-induced Fourier transform infrared (FTIR difference spectroscopy has been successfully used to study the molecular mechanism of photosynthetic water oxidation. This powerful technique has enabled the characterization of the dynamic structural changes in active water molecules, the Mn4CaO5 cluster, and its surrounding protein matrix during the catalytic cycle. This mini-review presents an overview of recent important progress in FTIR studies of the OEC and implications for revealing the molecular mechanism of photosynthetic water oxidation.

  8. An allosteric mechanism inferred from molecular dynamics simulations on phospholamban pentamer in lipid membranes.

    Directory of Open Access Journals (Sweden)

    Peng Lian

    Full Text Available Phospholamban functions as a regulator of Ca(2+ concentration of cardiac muscle cells by triggering the bioactivity of sarcoplasmic reticulum Ca(2+-ATPase. In order to understand its dynamic mechanism in the environment of bilayer surroundings, we performed long time-scale molecular dynamic simulations based on the high-resolution NMR structure of phospholamban pentamer. It was observed from the molecular dynamics trajectory analyses that the conformational transitions between the "bellflower" and "pinwheel" modes were detected for phospholamban. Particularly, the two modes became quite similar to each other after phospholamban was phosphorylated at Ser16. Based on these findings, an allosteric mechanism was proposed to elucidate the dynamic process of phospholamban interacting with Ca(2+-ATPase.

  9. Antiproliferative and molecular mechanism of eugenol-induced apoptosis in cancer cells.

    Science.gov (United States)

    Jaganathan, Saravana Kumar; Supriyanto, Eko

    2012-01-01

    Phenolic phytochemicals are a broad class of nutraceuticals found in plants which have been extensively researched by scientists for their health-promoting potential. One such a compound which has been comprehensively used is eugenol (4-allyl-2-methoxyphenol), which is the active component of Syzigium aromaticum (cloves). Aromatic plants like nutmeg, basil, cinnamon and bay leaves also contain eugenol. Eugenol has a wide range of applications like perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anesthetic. Increasing volumes of literature showed eugenol possesses antioxidant, antimutagenic, antigenotoxic, anti-inflammatory and anticancer properties. Molecular mechanism of eugenol-induced apoptosis in melanoma, skin tumors, osteosarcoma, leukemia, gastric and mast cells has been well documented. This review article will highlight the antiproliferative activity and molecular mechanism of the eugenol induced apoptosis against the cancer cells and animal models. PMID:22634840

  10. Methodologies for conformational studies of oligo- and poly-glucans: crystallography and molecular mechanics

    International Nuclear Information System (INIS)

    After some considerations on the conformational analysis of polysaccharides, this research thesis outlines the interest of molecular mechanics as a method to study these components. Technical aspects are presented. The author reports the prediction of the conformations of some specific cyclic oligomers (glucans, glucore), the use of X-ray diffraction to study glucides (and the limitations of this method). He reports the search for another investigation method: relationships between X rays and molecular mechanics, situation with respect to other crystallographic methods, presentation of principle of the 'Packing' method, and applications. He reports the study of regular conformations of polysaccharides, the study of the statistic configuration of polymer chains and the application to alpha-glucans

  11. Raman spectroscopy in investigations of mechanism of binding of human serum albumin to molecular probe fluorescein

    International Nuclear Information System (INIS)

    The mechanism of binding of molecular probe fluorescein to molecules of human serum albumin was studied by the Raman spectroscopy method. The position of binding Center on human serum albumin molecule for fluorescein is determined. The amino acid residues of albumin molecule, participating in binding of fluorescein at different pH values of solution, are established. The conformation rearrangements of globules of human serum albumin, taking place at binding of fluorescein at different pH values of solution, are registered

  12. Molecular Mechanisms of Age-Related Sleep Loss in the Fruit Fly

    OpenAIRE

    Robertson, Meagan; Keene, Alex. C.

    2013-01-01

    Across phyla, aging is associated with reduced sleep duration and efficiency. Both aging and sleep involve complex genetic architecture and diverse cell types and are heavily influenced by diet and environment. Therefore, understanding the molecular mechanisms of age-dependent changes in sleep will require integrative approaches that go beyond examining these two processes independently. The fruit fly, Drosophila melanogaster, provides a genetically amenable system for dissecting the molecula...

  13. Molecular Mechanisms and Genome-Wide Aspects of PPAR Subtype Specific Transactivation

    DEFF Research Database (Denmark)

    Bugge, Anne Skovsø; Mandrup, Susanne

    2010-01-01

    The peroxisome proliferator-activated receptors (PPARs) are central regulators of fat metabolism, energy homeostasis, proliferation, and inflammation. The three PPAR subtypes, PPARα, β/δ, and γ activate overlapping but also very different target gene programs. This review summarizes the insights...... into PPAR subtype-specific transactivation provided by genome-wide studies and discusses the recent advances in the understanding of the molecular mechanisms underlying PPAR subtype specificity with special focus on the regulatory role of AF-1....

  14. Investigating the molecular mechanisms of the interactions between Lactobacillus reuteri strains and intestinal mucus

    OpenAIRE

    Jeffers, Faye

    2012-01-01

    Mucus is the first point of contact between the gut microbiota and the host. Here we used the gut symbiont Lactobacillus reuteri to investigate the molecular mechanisms underlying the interactions between gut bacteria and mucus. Firstly, the mucus binding ability of a collection of L. reuteri strains from different vertebrate hosts was assessed in vitro against mucus extracted from mouse and porcine gastrointestinal tracts. The adhesion profile was strain-specific showing the highest bindi...

  15. The geometry of C_60: a rigorous approach via Molecular Mechanics

    OpenAIRE

    Friedrich, Manuel; Piovano, Paolo; Stefanelli, Ulisse

    2016-01-01

    Molecular Mechanics describes molecules as particle configurations interacting via classical potentials. These {\\it configurational energies} usually consist of the sum of different phenomenological terms which are tailored to the description of specific bonding geometries. This approach is followed here to model the fullerene $C_{60}$, an allotrope of carbon corresponding to a specific hollow spherical structure of sixty atoms. We rigorously address different modeling options and advance a s...

  16. Molecular Mechanics Study of Nickel(II) Octaethylporphyrin Adsorbed on Graphite(0001)

    OpenAIRE

    Gruden-Pavlović, Maja; Grubišić, Sonja; Zlatar, Matija; Niketić, Svetozar R.

    2007-01-01

    The effects of adsorption on the graphite(0001) surface on the nonplanar dis-tortions of nickel(II)octaethylporphyrin were studied by molecular mechanics (MM) ap-proach. Using the Consistent Force Field (CFF) program with previously developed pa-rameters for metalloporphyrins and supplemented to treat intermolecular interactions ge-ometry optimizations were carried out for 43 conformations of 28 distinct conformers ofnickel(II)octaethylporphyrin. The stable energy-minimized conformers were st...

  17. Cellular and Molecular Mechanisms of Novel Therapies to Ameliorate Liver Sinusoidal Dysfunction in Cirrhotic Portal Hypertension

    OpenAIRE

    Marrone, Giusi

    2014-01-01

    Increased intrahepatic vascular resistance (IHVR), mainly due to elevated vascular tone together with the maturation of hepatic fibrosis and the drop of the hepatic endothelial function, is the main factor in the development of portal hypertension (PH) in cirrhosis. This PhD thesis investigates the cellular and molecular mechanisms necessary for the identification of new therapeutic targets and evaluates the possible cross- talk between the hepatic cells in static and physiological conditions...

  18. Molecular Simulation of Hydrogen Adsorption Density in Single-Walled Carbon Nanotubes and Multilayer Adsorption Mechanism

    Institute of Scientific and Technical Information of China (English)

    Lianquan GUO; Changxiang MA; Shuai WANG; He MA; Xin LI

    2005-01-01

    The adsorption of hydrogen onto single-walled carbon nanotubes (SWCNTs) was studied by molecular dynamics (MD)sim.lation. It was found that the hydrogen molecules distribute regularly inside and outside of the tube. Density distribution was computed for H2 molecule. Theoretical analysis of the result showed the multilayer adsorption mechanism of SWCNTs. The storage of H2 in SWCNTs is computed, which provides essential theoretical reference for further study of hydrogen adsorption in SWCNTs.

  19. Molecular mechanisms of decreased smooth muscle differentiation marker expression after vascular injury

    OpenAIRE

    Regan, Christopher P.; Adam, Paul J.; Madsen, Cort S.; Owens, Gary K.

    2000-01-01

    While it is well established that phenotypic modulation of vascular smooth muscle cells (VSMCs) contributes to the development and progression of vascular lesions, little is known regarding the molecular mechanisms of phenotypic modulation in vivo. Here we show that vascular injury reduces transcription of VSMC differentiation marker genes, and we identify cis regulatory elements that may mediate this decrease. Using a carotid wire-injury model in mice carrying transgenes for smooth muscle α-...

  20. Molecular mechanisms of tirapazamine (SR 4233, Win 59075)-induced hepatocyte toxicity under low oxygen concentrations.

    OpenAIRE

    Khan, S.; O'Brien, P. J.

    1995-01-01

    Previously we showed that tirapazamine (SR 4233, Win 59075) is cytotoxic towards hepatocytes under conditions of hypoxia but not in 10% or 95% oxygen and that bioreduction by DT-diaphorase or cytochrome P450 is not a major pathway. In the present study, we report that tirapazamine is highly cytotoxic to isolated rat hepatocytes maintained under 1% oxygen and the molecular cytotoxic mechanism has been elucidated. Cytotoxicity was prevented by the cytochrome P450 2E1 inhibitors phenyl imidazole...

  1. The Molecular Mechanisms of Zinc Neurotoxicity and the Pathogenesis of Vascular Type Senile Dementia

    OpenAIRE

    Masahiro Kawahara; Dai Mizuno

    2013-01-01

    Zinc (Zn) is an essential trace element that is abundantly present in the brain. Despite its importance in normal brain functions, excess Zn is neurotoxic and causes neurodegeneration following transient global ischemia and plays a crucial role in the pathogenesis of vascular-type dementia (VD). We have investigated the molecular mechanisms of Zn-induced neurotoxicity using immortalized hypothalamic neurons (GT1–7 cells) and found that carnosine (β-alanyl histidine) and histidine (His) inhibi...

  2. Molecular Mechanisms of Fiber Differential Development between G. barbadense and G. hirsutum Revealed by Genetical Genomics

    OpenAIRE

    Chen, Xiangdong; Guo, Wangzhen; Liu, Bingliang; Zhang, Yuanming; Song, Xianliang; Cheng, Yu; Zhang, Lili; Zhang, Tianzhen

    2012-01-01

    Cotton fiber qualities including length, strength and fineness are known to be controlled by genes affecting cell elongation and secondary cell wall (SCW) biosynthesis, but the molecular mechanisms that govern development of fiber traits are largely unknown. Here, we evaluated an interspecific backcrossed population from G. barbadense cv. Hai7124 and G. hirsutum acc. TM-1 for fiber characteristics in four-year environments under field conditions, and detected 12 quantitative trait loci (QTL) ...

  3. Molecular Dynamics Simulation of Nanoindentation-induced Mechanical Deformation and Phase Transformation in Monocrystalline Silicon

    Directory of Open Access Journals (Sweden)

    Jian Sheng-Rui

    2008-01-01

    Full Text Available AbstractThis work presents the molecular dynamics approach toward mechanical deformation and phase transformation mechanisms of monocrystalline Si(100 subjected to nanoindentation. We demonstrate phase distributions during loading and unloading stages of both spherical and Berkovich nanoindentations. By searching the presence of the fifth neighboring atom within a non-bonding length, Si-III and Si-XII have been successfully distinguished from Si-I. Crystallinity of this mixed-phase was further identified by radial distribution functions.

  4. Explaining the "Pulse of Protoplasm": the search for molecular mechanisms of protoplasmic streaming.

    Science.gov (United States)

    Dietrich, Michael R

    2015-01-01

    Explanations for protoplasmic streaming began with appeals to contraction in the eighteenth century and ended with appeals to contraction in the twentieth. During the intervening years, biologists proposed a diverse array of mechanisms for streaming motions. This paper focuses on the re-emergence of contraction among the molecular mechanisms proposed for protoplasmic streaming during the twentieth century. The revival of contraction is a result of a broader transition from colloidal chemistry to a macromolecular approach to the chemistry of proteins, the recognition of the phenomena of shuttle streaming and the pulse of protoplasm, and the influential analogy between protoplasmic streaming and muscle contraction.

  5. QUANTUM-MECHANICAL PROPERTIES OF PROTON TRANSPORT IN THE HYDROGEN-BONDED MOLECULAR SYSTEMS

    Institute of Scientific and Technical Information of China (English)

    PANG XIAO-FENG; LI PING

    2000-01-01

    The dynamic equations of the proton transport along the hydrogen bonded molecular systems have been obtainedby using completely quantum-mechanical method to be based on new Hamiltonian and model we proposed. Somequantum-mechanical features of the proton-solitons have also been given in such a case. The alternate motion of twodefects resulting from proton transfer occurred in the systems can be explained by the results. The results obtainedshow that the proton-soliton has corpuscle feature and obey classical equations of motion, while the free soliton movesin uniform velocity along the hydrogen bonded chains.

  6. Facts and Fiction: The Impact of Hypothermia on Molecular Mechanisms following Major Challenge

    Directory of Open Access Journals (Sweden)

    Michael Frink

    2012-01-01

    Full Text Available Numerous multiple trauma and surgical patients suffer from accidental hypothermia. While induced hypothermia is commonly used in elective cardiac surgery due to its protective effects, accidental hypothermia is associated with increased posttraumatic complications and even mortality in severely injured patients. This paper focuses on protective molecular mechanisms of hypothermia on apoptosis and the posttraumatic immune response. Although information regarding severe trauma is limited, there is evidence that induced hypothermia may have beneficial effects on the posttraumatic immune response as well as apoptosis in animal studies and certain clinical situations. However, more profound knowledge of mechanisms is necessary before randomized clinical trials in trauma patients can be initiated.

  7. Advances on the Molecular Mechanism of the Interaction between Ralstonia solanacearum and Hosts

    Institute of Scientific and Technical Information of China (English)

    Dousheng WU; Gaofei JIANG; Yanmei YU; Ying LIU; Wei DING

    2013-01-01

    Ralstonia solanacearum is an important model phytopathogenic bacterium that causes bacterial wilt disease on many plant species and leads to serious eco-nomic losses. The interactions between R. solanacearum and host plants have be-come a model system for the study of plants and pathogens interactions. This pa-per reviews the advances on the molecular mechanisms between R. solanacearum and hosts interaction including the formation of plant innate immunity, the suppres-sion of plant innate immunity by this pathogen and the activation of effector-trig-gered immunity. Furthermore, we made a prospect on how to utilize the interaction mechanism between R. solanacearum and hosts to control the disease.

  8. Cellular and molecular mechanisms of osteoporosis: current concepts and future direction treatment

    Directory of Open Access Journals (Sweden)

    A. T. Dolzhenko

    2016-01-01

    Full Text Available The article presents review of literature dedicated to the contemporary view on the cellular-molecular mechanisms of the bone remodeling and pathogenesis of the osteoporosis. The discovery of the cytokine RANKL-RANK-OPG system and significant role of the cathepsin K in process bone remodeling has made progress in understanding the mechanisms development disease and possible to development drugs of the new generation – denosumab, a fully human RANKL monoclonal antibody and inhibitor cathepsin K odanacatib that inhibits of the bone resorption.

  9. Features of Knowledge Building in Biology: Understanding Undergraduate Students’ Ideas about Molecular Mechanisms

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S.

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning. PMID:26931398

  10. Salinity Tolerance Mechanism of Economic Halophytes From Physiological to Molecular Hierarchy for Improving Food Quality.

    Science.gov (United States)

    Xu, Chongzhi; Tang, Xiaoli; Shao, Hongbo; Wang, Hongyan

    2016-06-01

    Soil salinity is becoming the key constraints factor to agricultural production. Therefore, the plant especially the crops possessing capacities of salt tolerance will be of great economic significance. The adaptation or tolerance of plant to salinity stress involves a series of physiological, metabolic and molecular mechanisms. Halophytes are the kind of organisms which acquire special salt tolerance mechanisms to respond to the salt tress and ensure normal growth and development under saline conditions in their lengthy evolutionary adaptation, so understanding how halophytes respond to salinity stress will provide us with methods and tactics to foster and develop salt resistant varieties of crops. The strategies in physiological and molecular level adopted by halophytes are various including the changes in photosynthetic and transpiration rate, the sequestration of Na+ to extracellular or vacuole, the regulation of stomata aperture and stomatal density, the accumulation and synthesis of the phytohormones as well as the relevant gene expression underlying these physiological traits, such as the stress signal transduction, the regulation of the transcription factors, the activation and expression of the transporter genes, the activation or inhibition of the synthetases and so on. This review focuses on the research advances of the regulating mechanisms in halophytes from physiological to molecular, which render the halophytes tolerance and adaption to salinity stress. PMID:27252587

  11. Enhanced densification, strength and molecular mechanisms in shock compressed porous silicon

    Science.gov (United States)

    Lane, J. Matthew D.; Vogler, Tracy J.

    2015-06-01

    In most porous materials, void collapse during shock compression couples mechanical energy to thermal energy. Increased temperature drives up pressures and lowers densities in the final Hugoniot states as compared to full-density samples. Some materials, however, exhibit an anomalous enhanced densification in their Hugoniot states when porosity is introduced. We have recently shown that silicon is such a material, and demonstrated a molecular mechanism for the effect using molecular simulation. We will review results from large-scale non-equilibrium molecular dynamics (NEMD) and Hugoniotstat simulations of shock compressed porous silicon, highlighting the mechanism by which porosity produces local shear which nucleate partial phase transition and localized melting at shock pressures below typical thresholds in these materials. Further, we will characterize the stress states and strength of the material as a function of porosity from 5 to 50 percent and with various porosity microstructures. Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  12. Role of soluble guanylate cyclase in the molecular mechanism underlying the physiological effects of nitric oxide.

    Science.gov (United States)

    Severina, I S

    1998-07-01

    In this review the molecular mechanisms underlying the antihypertensive and antiaggregatory actions of nitric oxide (NO) are discussed. It has been shown that these effects are directly connected with the activation of soluble guanylate cyclase and the accumulation of cyclic 3;,5;-guanosine monophosphate (cGMP). The mechanism of guanylate cyclase activation by NO is analyzed, especially the role and biological significance of the nitrosyl--heme complex formed as a result of interaction of guanylate cyclase heme with NO and the role of sulfhydryl groups of the enzyme in this process. Using new approaches for studying the antihypertensive and antiaggregatory actions of nitric oxide in combination with the newly obtained data on the regulatory role of guanylate cyclase in the platelet aggregation process, the most important results were obtained regarding the molecular bases providing for a directed search for and creation of new effective antihypertensive and antiaggregatory preparations. In studying the molecular mechanism for directed activation of soluble guanylate cyclase by new NO donors, a series of hitherto unknown enzyme activators generating NO and involved in the regulation of hemostasis and vascular tone were revealed. PMID:9721331

  13. Features of Knowledge Building in Biology: Understanding Undergraduate Students' Ideas about Molecular Mechanisms.

    Science.gov (United States)

    Southard, Katelyn; Wince, Tyler; Meddleton, Shanice; Bolger, Molly S

    2016-01-01

    Research has suggested that teaching and learning in molecular and cellular biology (MCB) is difficult. We used a new lens to understand undergraduate reasoning about molecular mechanisms: the knowledge-integration approach to conceptual change. Knowledge integration is the dynamic process by which learners acquire new ideas, develop connections between ideas, and reorganize and restructure prior knowledge. Semistructured, clinical think-aloud interviews were conducted with introductory and upper-division MCB students. Interviews included a written conceptual assessment, a concept-mapping activity, and an opportunity to explain the biomechanisms of DNA replication, transcription, and translation. Student reasoning patterns were explored through mixed-method analyses. Results suggested that students must sort mechanistic entities into appropriate mental categories that reflect the nature of MCB mechanisms and that conflation between these categories is common. We also showed how connections between molecular mechanisms and their biological roles are part of building an integrated knowledge network as students develop expertise. We observed differences in the nature of connections between ideas related to different forms of reasoning. Finally, we provide a tentative model for MCB knowledge integration and suggest its implications for undergraduate learning.

  14. Recent progress in understanding the molecular mechanisms of radioresistance in Deinococcus bacteria.

    Science.gov (United States)

    Munteanu, Alexandra- Cristina; Uivarosi, Valentina; Andries, Adrian

    2015-07-01

    The deleterious effects of ionizing radiation are a major concern of the modern world. In the last decades, outstanding interest has been given to developing new therapeutic tools designed for protection against the toxic effects of ionizing radiation. Deinococcus spp. are among the most radioresistant organisms on Earth, being able to survive extreme doses of radiation, 1000-fold higher than most vertebrates. The molecular mechanisms underlying DNA repair and biomolecular protection, which are responsible for the remarkable radioresistance of Deinococcus bacteria, have been a debatable subject for the last 60 years. This paper is focused on the most recent findings regarding the molecular background of radioresistance and on Deinococcus bacteria response to oxidative stress. Novel proteins and genes involved in the highly regulated DNA repair processes, and enzymatic and non- enzymatic antioxidant systems are presented. In addition, a recently proposed mechanism that may contribute to oxidative damage protection in Deinococcus bacteria is discussed. A better understanding of these molecular mechanisms may draw future perspectives for counteracting radiation-related toxicity.

  15. An integrative genomic approach to uncover molecular mechanisms of prokaryotic traits.

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2006-11-01

    Full Text Available With mounting availability of genomic and phenotypic databases, data integration and mining become increasingly challenging. While efforts have been put forward to analyze prokaryotic phenotypes, current computational technologies either lack high throughput capacity for genomic scale analysis, or are limited in their capability to integrate and mine data across different scales of biology. Consequently, simultaneous analysis of associations among genomes, phenotypes, and gene functions is prohibited. Here, we developed a high throughput computational approach, and demonstrated for the first time the feasibility of integrating large quantities of prokaryotic phenotypes along with genomic datasets for mining across multiple scales of biology (protein domains, pathways, molecular functions, and cellular processes. Applying this method over 59 fully sequenced prokaryotic species, we identified genetic basis and molecular mechanisms underlying the phenotypes in bacteria. We identified 3,711 significant correlations between 1,499 distinct Pfam and 63 phenotypes, with 2,650 correlations and 1,061 anti-correlations. Manual evaluation of a random sample of these significant correlations showed a minimal precision of 30% (95% confidence interval: 20%-42%; n = 50. We stratified the most significant 478 predictions and subjected 100 to manual evaluation, of which 60 were corroborated in the literature. We furthermore unveiled 10 significant correlations between phenotypes and KEGG pathways, eight of which were corroborated in the evaluation, and 309 significant correlations between phenotypes and 166 GO concepts evaluated using a random sample (minimal precision = 72%; 95% confidence interval: 60%-80%; n = 50. Additionally, we conducted a novel large-scale phenomic visualization analysis to provide insight into the modular nature of common molecular mechanisms spanning multiple biological scales and reused by related phenotypes (metaphenotypes. We propose

  16. Anisotropy induced Kondo splitting in a mechanically stretched molecular junction: A first-principles based study

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiaoli; Hou, Dong, E-mail: houdong@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zheng, Xiao, E-mail: xz58@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Normal College, Guiyang, Guizhou 550018 (China); Yan, YiJing [Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026 (China); Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong (China)

    2016-01-21

    The magnetic anisotropy and Kondo phenomena in a mechanically stretched magnetic molecular junction are investigated by combining the density functional theory (DFT) and hierarchical equations of motion (HEOM) approach. The system is comprised of a magnetic complex Co(tpy–SH){sub 2} sandwiched between adjacent gold electrodes, which is mechanically stretched in experiments done by Parks et al. [Science 328, 1370 (2010)]. The electronic structure and mechanical property of the stretched system are investigated via the DFT calculations. The HEOM approach is then employed to characterize the Kondo resonance features, based on the Anderson impurity model parameterized from the DFT results. It is confirmed that the ground state prefers the S = 1 local spin state. The structural properties, the magnetic anisotropy, and corresponding Kondo peak splitting in the axial stretching process are systematically evaluated. The results reveal that the strong electron correlations and the local magnetic properties of the molecule magnet are very sensitive to structural distortion. This work demonstrates that the combined DFT+HEOM approach could be useful in understanding and designing mechanically controlled molecular junctions.

  17. Anisotropy induced Kondo splitting in a mechanically stretched molecular junction: A first-principles based study

    International Nuclear Information System (INIS)

    The magnetic anisotropy and Kondo phenomena in a mechanically stretched magnetic molecular junction are investigated by combining the density functional theory (DFT) and hierarchical equations of motion (HEOM) approach. The system is comprised of a magnetic complex Co(tpy–SH)2 sandwiched between adjacent gold electrodes, which is mechanically stretched in experiments done by Parks et al. [Science 328, 1370 (2010)]. The electronic structure and mechanical property of the stretched system are investigated via the DFT calculations. The HEOM approach is then employed to characterize the Kondo resonance features, based on the Anderson impurity model parameterized from the DFT results. It is confirmed that the ground state prefers the S = 1 local spin state. The structural properties, the magnetic anisotropy, and corresponding Kondo peak splitting in the axial stretching process are systematically evaluated. The results reveal that the strong electron correlations and the local magnetic properties of the molecule magnet are very sensitive to structural distortion. This work demonstrates that the combined DFT+HEOM approach could be useful in understanding and designing mechanically controlled molecular junctions

  18. Disassembly automation automated systems with cognitive abilities

    CERN Document Server

    Vongbunyong, Supachai

    2015-01-01

    This book presents a number of aspects to be considered in the development of disassembly automation, including the mechanical system, vision system and intelligent planner. The implementation of cognitive robotics increases the flexibility and degree of autonomy of the disassembly system. Disassembly, as a step in the treatment of end-of-life products, can allow the recovery of embodied value left within disposed products, as well as the appropriate separation of potentially-hazardous components. In the end-of-life treatment industry, disassembly has largely been limited to manual labor, which is expensive in developed countries. Automation is one possible solution for economic feasibility. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  19. Investigation of molecular mechanisms and regulatory pathways of pro-angiogenic nanorods

    Science.gov (United States)

    Nethi, Susheel Kumar; Veeriah, Vimal; Barui, Ayan Kumar; Rajendran, Saranya; Mattapally, Saidulu; Misra, Sanjay; Chatterjee, Suvro; Patra, Chitta Ranjan

    2015-05-01

    Angiogenesis, a process involving the growth of new blood vessels from the pre-existing vasculature, plays a crucial role in various pathophysiological conditions. We have previously demonstrated that europium hydroxide [EuIII(OH)3] nanorods (EHNs) exhibit pro-angiogenic properties through the generation of reactive oxygen species (ROS) and mitogen activated protein kinase (MAPK) activation. Considering the enormous implication of angiogenesis in cardiovascular diseases (CVDs) and cancer, it is essential to understand in-depth molecular mechanisms and signaling pathways in order to develop the most efficient and effective alternative treatment strategy for CVDs. However, the exact underlying mechanism and cascade signaling pathways behind the pro-angiogenic properties exhibited by EHNs still remain unclear. Herein, we report for the first time that the hydrogen peroxide (H2O2), a redox signaling molecule, generated by these EHNs activates the endothelial nitric oxide synthase (eNOS) that promotes the nitric oxide (NO) production in a PI3K (phosphoinositide 3-kinase)/Akt dependent manner, eventually triggering angiogenesis. We intensely believe that the investigation and understanding of the in-depth molecular mechanism and signaling pathways of EHNs induced angiogenesis will help us in developing an effective alternative treatment strategy for cardiovascular related and ischemic diseases where angiogenesis plays an important role.Angiogenesis, a process involving the growth of new blood vessels from the pre-existing vasculature, plays a crucial role in various pathophysiological conditions. We have previously demonstrated that europium hydroxide [EuIII(OH)3] nanorods (EHNs) exhibit pro-angiogenic properties through the generation of reactive oxygen species (ROS) and mitogen activated protein kinase (MAPK) activation. Considering the enormous implication of angiogenesis in cardiovascular diseases (CVDs) and cancer, it is essential to understand in-depth molecular

  20. Structural distributions from single-molecule measurements as a tool for molecular mechanics

    International Nuclear Information System (INIS)

    Graphical abstract: Chain-length-dependent flexural rigidity revealed by molecular conformation distributions. The open circles are experimental data of poly-proline and the solid lines are fits to the full-width half-maximum of the semi-flexible chain model, from which the effective persistence lengths (lp) and apparent contour lengths (Leff) were estimated. Highlights: ► A mechanical view is an attractive alternative for predicting the behavior of complex molecules. ► We propose using structural distribution from smFRET to extract molecular mechanical properties. ► Short poly-L-proline peptides were used to experimentally illustrate this new approach. ► The effective persistence lengths were found to be size-dependent. ► This is the first experimental evidence of such behavior on the molecular level. - Abstract: A mechanical view provides an attractive alternative for predicting the behavior of complex systems since it circumvents the resource-intensive requirements of atomistic models; however, it remains extremely challenging to characterize the mechanical responses of a system at the molecular level. Here, the structural distribution is proposed to be an effective means to extracting the molecular mechanical properties. End-to-end distance distributions for a series of short poly-L-proline peptides with the sequence PnCG3K-biotin (n = 8, 12, 15 and 24) were used to experimentally illustrate this new approach. High-resolution single-molecule Förster-type resonance energy transfer (FRET) experiments were carried out and the conformation-resolving power was characterized and discussed in the context of the conventional constant-time binning procedure for FRET data analysis. It was shown that the commonly adopted theoretical polymer models—including the worm-like chain, the freely jointed chain, and the self-avoiding chain—could not be distinguished by the averaged end-to-end distances, but could be ruled out using the molecular details gained by

  1. Molecular mechanisms of glucocorticoid receptor signaling Mecanismos moleculares de señalización del receptor de glucocorticoides

    Directory of Open Access Journals (Sweden)

    Marta Labeur

    2010-10-01

    Full Text Available This review highlights the most recent findings on the molecular mechanisms of the glucocorticoid receptor (GR. Most effects of glucocorticoids are mediated by the intracellular GR which is present in almost every tissue and controls transcriptional activation via direct and indirect mechanisms. Nevertheless the glucocorticoid responses are tissue -and gene- specific. GR associates selectively with corticosteroid ligands produced in the adrenal gland in response to changes of humoral homeostasis. Ligand interaction with GR promotes either GR binding to genomic glucocorticoid response elements, in turn modulating gene transcription, or interaction of GR monomers with other transcription factors activated by other signalling pathways leading to transrepression. The GR regulates a broad spectrum of physiological functions, including cell differentiation, metabolism and inflammatory responses. Thus, disruption or dysregulation of GR function will result in severe impairments in the maintenance of homeostasis and the control of adaptation to stress.Esta revisión destaca los más recientes hallazgos sobre los mecanismos moleculares del receptor de glucocorticoides (GR. La mayoría de los efectos de los glucocorticoides son mediados por los GR intracelulares presentes en casi todos los tejidos y controlan la activación transcripcional por mecanismos directos e indirectos. Las respuestas a los glucocorticoides son específicas para cada gen y tejido. Los GR se asocian en forma selectiva con ligandos producidos en la glándula adrenal, corticosteroides, en respuesta a cambios neuroendocrinos. La interacción del ligando con el GR promueve: a la unión del GR a elementos genómicos de respuesta a glucocorticoides, modulando la transcripción; b la interacción de monómeros del GR con otros factores de transcripción activados por otras vías, llevando a la transrepresión. El GR regula un amplio espectro de funciones fisiológicas, incluyendo la

  2. Mechanical properties of stanene under uniaxial and biaxial loading: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Mojumder, Satyajit [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh); Amin, Abdullah Al [Department of Mechanical and Aerospace Engineering, Case western Reverse University, Cleveland, Ohio 44106 (United States); Islam, Md Mahbubul, E-mail: mmi122@psu.edu [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-09-28

    Stanene, a graphene like two dimensional honeycomb structure of tin has attractive features in electronics application. In this study, we performed molecular dynamics simulations using modified embedded atom method potential to investigate mechanical properties of stanene. We studied the effect of temperature and strain rate on mechanical properties of α-stanene for both uniaxial and biaxial loading conditions. Our study suggests that with the increasing temperature, both the fracture strength and strain of the stanene decrease. Uniaxial loading in zigzag direction shows higher fracture strength and strain compared to the armchair direction, while no noticeable variation in the mechanical properties is observed for biaxial loading. We also found at a higher loading rate, material exhibits higher fracture strength and strain. These results will aid further investigation of stanene as a potential nano-electronics substitute.

  3. Elucidating the Molecular Deformation Mechanism of Entangled Polymers in Fast Flow by Small Angle Neutron Scattering

    Science.gov (United States)

    Wang, Yangyang; Sanchez-Diaz, Luis; Cheng, Shiwang; Hong, Kunlun; Chen, Wei-Ren; Liu, Jianning; Lin, Panpan; Wang, Shi-Qing

    Understanding the viscoelastic properties of polymers is of fundamental and practical importance because of the vast and ever expanding demand of polymeric materials in daily life. Our current theoretical framework for describing the nonlinear flow behavior of entangled polymers is built upon the tube model pioneered by de Gennes, Doi, and Edwards. In this work, we critically examine the central hypothesis of the tube model for nonlinear rheology using small angle neutron scattering (SANS). While the tube model envisions a unique non-affine elastic deformation mechanism for entangled polymers, our SANS measurements show that the evolution of chain conformation of a well-entangled polystyrene melt closely follows the affine deformation mechanism in uniaxial extension, even when the Rouse Weissenberg number is much smaller than unity. This result provides a key clue for understanding the molecular deformation mechanism of entangled polymers in fast flow. Several implications from our analysis will be discussed in this talk.

  4. Effect of hydrogen on degradation mechanism of zirconium: A molecular dynamics study

    Science.gov (United States)

    Chakraborty, Poulami; Moitra, Amitava; Saha-Dasgupta, Tanusri

    2015-11-01

    Using large scale molecular dynamics simulation, we investigate the deleterious effect of hydrogen in Zr. We consider both dilute and concentrated limit of H. In the dilute and concentrated H limits, we study the effect of 1-5 atomic percentage of hydrogen, and that of ε-ZrH2 precipitate having 5-10 nm diameters, respectively. From the stress-strain curves and micro-structure analysis at different strain values, we characterize the deformation behavior and correlate our result with previously reported mechanisms. We show hydrogen atoms in dilute limit help in dislocation multiplication, following the hydrogen-enhanced localized plasticity mechanism. In the concentrated limit, on the other hand, dislocations and cracks nucleate from precipitate-matrix interface, indicating the decohesion mechanism as primary method for Zr degradation. These findings are corroborated with a nucleation and growth model as expressed in Kolmogorov-Johnson-Mehl-Avrami equation.

  5. Origin of microbial life: Nano- and molecular events, thermodynamics/entropy, quantum mechanisms and genetic instructions.

    Science.gov (United States)

    Trevors, J T

    2011-03-01

    Currently, there are no agreed upon mechanisms and supporting evidence for the origin of the first microbial cells on the Earth. However, some hypotheses have been proposed with minimal supporting evidence and experimentation/observations. The approach taken in this article is that life originated at the nano- and molecular levels of biological organization, using quantum mechanic principles that became manifested as classical microbial cell(s), allowing the origin of microbial life on the Earth with a core or minimal, organic, genetic code containing the correct instructions for cell(s) for growth and division, in a micron dimension environment, with a local entropy range conducive to life (present about 4 billion years ago), and obeying the laws of thermodynamics. An integrated approach that explores all encompassing factors necessary for the origin of life, may bring forth plausible hypotheses (and mechanisms) with much needed supporting experimentation and observations for an origin of life theory.

  6. BCR-ABL negative myeloproliferative neoplasia: a review of involved molecular mechanisms.

    Science.gov (United States)

    Koopmans, Suzanne M; Schouten, Harry C; van Marion, Ariënne M W

    2015-02-01

    The clonal bone marrow stem cell disorders essential thrombocythemia (ET), polycythemia vera (PV) and primary myelofibrosis (PMF) belong to the group of Philadelphia chromosome negative myeloproliferative neoplasia (Ph- MPN). In 2005 the JAK2(V617F) mutation was discovered which has generated more insight in the pathogenetic mechanism of the MPNs. More mutations have been detected in MPN patients since. However, the underlying cause of MPN has not been discovered so far. The mechanism of increased angiogenesis in MPNs and the development of fibrosis in the bone marrow in PMF patients and in some ET and PV patients is still not known. This review will focus on the most important molecular pathogenetic mechanisms in MPN patients. PMID:25196073

  7. Physiological and molecular mechanisms associated with cross tolerance between hypoxia and low temperature in Thaumatotibia leucotreta

    DEFF Research Database (Denmark)

    Boardman, Leigh; Sørensen, Jesper Givskov; Terblanche, John S

    2015-01-01

    correlated with increased membrane fluidity (increased UFA:SFA) and/or alterations in heat shock protein 70 (HSP70); while general mechanical stress (shaking) and heat (2 h at 35 C) do not elicit cross tolerance (no change in survival or molecular responses). We therefore found support for some limited cold......Biochemical adaptations allow insects to withstand exposures to hypoxia and/or hypothermia. Exposure to hypoxia may interact either synergistically or antagonistically with standard low temperature stress responses yet this has not been systematically researched and no clear mechanism has been...... hardening and cross tolerance responses. Given that combined exposure to hypoxia and low temperature is used to sterilize commodities in post-harvest pest management programs, researchers can now exploit these mechanisms involved in cross tolerance to develop more targeted control methods....

  8. EFFECT OF MOLECULAR WEIGHT OF PDMS ON MORPHOLOGY AND MECHANICAL PROPERTIES OF PP/PDMS BLENDS

    Institute of Scientific and Technical Information of China (English)

    Ze-yong Zhao; Wei-wei Yap; Rong-ni Du; Qin Zhang; Qiang Fu; Ze-hao Qiu; Su-lan Yuan

    2009-01-01

    A series of polydimethylsiloxane (PDMS) with varied molecular weights (Mw = 3x106,1x106 and 0.5x106)were melt blended with PP to investigate the effect of PDMS molecular weight (MW) on the morphology and mechanical properties of PP/PDMS blends.Scanning electron microscopic (SEM) examination showed that the size of PDMS domains was dependent on the MW of PDMS.It was found that the lower the value of PDMS MW,the better dispersion of the PDMS domains in the PP matrix.Tensile and Izod impact tests revealed that the addition of PDMS with lower MW would lead to a more significant increase in impact strength of the blends compared with the blends with higher MW ones,while the influence of the molecular weight on tensile strengths of the blends was relatively small in the MW range studied.Differential scanning calorimetry (DSC) results also showed that the crystallization temperature of PP was increased with decreasing PDMS MW,indicating a better nucleation capability of lower MW of PDMS.Melting flow rate (MFR)measurements indicated that the processibility of PP could be enhanced by adding PDMS,and again the lower MW PDMS resulted in better data.Our work demonstrates that not only the processibility but also the mechanical properties of PP could be enhanced to a more significant degree by using low MW PDMS than the higher ones.

  9. Role of Molecular Weight on the Mechanical Device Properties of Organic Polymer Solar Cells

    KAUST Repository

    Bruner, Christopher

    2014-02-11

    For semiconducting polymers, such as regioregular poly(3-hexylthiophene-2, 5-diyl) (rr-P3HT), the molecular weight has been correlated to charge carrier field-effect mobilities, surface morphology, and gelation rates in solution and therefore has important implications for long-Term reliability, manufacturing, and future applications of electronic organic thin films. In this work, we show that the molecular weight rr-P3HT in organic solar cells can also significantly change the internal cohesion of the photoactive layer using micromechanical testing techniques. Cohesive values ranged from ∼0.5 to ∼17 J m -2, following the general trend of greater cohesion with increasing molecular weight. Using nanodynamic mechanical analysis, we attribute the increase in cohesion to increased plasticity which helps dissipate the applied energy. Finally, we correlate photovoltaic efficiency with cohesion to assess the device physics pertinent to optimizing device reliability. This research elucidates the fundamental parameters which affect both the mechanical stability and efficiency of polymer solar cells. © 2014 American Chemical Society.

  10. Coumarins as Potential Antioxidant Agents Complemented with Suggested Mechanisms and Approved by Molecular Modeling Studies

    Directory of Open Access Journals (Sweden)

    Yasameen K. Al-Majedy

    2016-01-01

    Full Text Available Syntheses of coumarins, which are a structurally interesting antioxidant activity, was done in this article. The modification of 7-hydroxycoumarin by different reaction steps was done to yield target compounds. Molecular structures were characterized by different spectroscopical techniques (Fourier transformation infrared and nuclear magnetic resonance. Antioxidant activities were performed by using various in vitro spectrophometric assays against 1,1-diphenyl-2-picrylhydrazyl (DPPH radical and hydrogen peroxide (H2O2. All compounds exhibited high efficiency as antioxidants compared to ascorbic acid. The highest efficiency scavenging activity was found for compound 3 (91.0 ± 5.0, followed by compounds 2 and 4 (88.0 ± 2.00; and 87.0 ± 3.00. Ascorbic acid C was used as a standard drug with a percentage inhibition of 91.00 ± 1.5. The mechanism of the synthesized compounds as antioxidants was also studied. Hartree–Fock–based quantum chemical studies have been carried out with the basis set to 3-21G, in order to obtain information about the three-dimensional (3D geometries, electronic structure, molecular modeling, and electronic levels, namely HOMO (highest occupied molecular orbital and LUMO (lowest unoccupied molecular orbital, to understand the antioxidant activity for the synthesized compounds.

  11. Amino acid analogues bind to carbon nanotube via π-π interactions: Comparison of molecular mechanical and quantum mechanical calculations

    Science.gov (United States)

    Yang, Zaixing; Wang, Zhigang; Tian, Xingling; Xiu, Peng; Zhou, Ruhong

    2012-01-01

    Understanding the interaction between carbon nanotubes (CNTs) and biomolecules is essential to the CNT-based nanotechnology and biotechnology. Some recent experiments have suggested that the π-π stacking interactions between protein's aromatic residues and CNTs might play a key role in their binding, which raises interest in large scale modeling of protein-CNT complexes and associated π-π interactions at atomic detail. However, there is concern on the accuracy of classical fixed-charge molecular force fields due to their classical treatments and lack of polarizability. Here, we study the binding of three aromatic residue analogues (mimicking phenylalanine, tyrosine, and tryptophan) and benzene to a single-walled CNT, and compare the molecular mechanical (MM) calculations using three popular fixed-charge force fields (OPLSAA, AMBER, and CHARMM), with quantum mechanical (QM) calculations using the density-functional tight-binding method with the inclusion of dispersion correction (DFTB-D). Two typical configurations commonly found in π-π interactions are used, one with the aromatic rings parallel to the CNT surface (flat), and the other perpendicular (edge). Our calculations reveal that compared to the QM results the MM approaches can appropriately reproduce the strength of π-π interactions for both configurations, and more importantly, the energy difference between them, indicating that the various contributions to π-π interactions have been implicitly included in the van der Waals parameters of the standard MM force fields. Meanwhile, these MM models are less accurate in predicting the exact structural binding patterns (matching surface), meaning there are still rooms to be improved. In addition, we have provided a comprehensive and reliable QM picture for the π-π interactions of aromatic molecules with CNTs in gas phase, which might be used as a benchmark for future force field developments.

  12. Attractive mechanical properties of a lightweight highly sensitive bi layer thermistor: polycarbonate/organic molecular conductor

    Science.gov (United States)

    Laukhina, E.; Lebedev, V.; Rovira, C.; Laukhin, V.; Veciana, J.

    2016-03-01

    The paper covers some of the basic mechanical characteristics of a recently developed bi layer thermistor: polycarbonate/(001) oriented layer of organic molecular conductor α’-(BEDT-TTF)2IxBr3-x, were BEDT-TTF=bis(ethylenedithio)tetrathiafulvalen. The nano and macro mechanical properties have been studied in order to use this flexible, low cost thermistor in sensing applications by proper way. The nano-mechanical properties of the temperature sensitive semiconducting layer of α’-(BEDT-TTF)2IxBr3-x were tested using nanoindentation method. The value of Young's modulus in direction being perpendicular to the layer plan was found as 9.0 ±1.4 GPa. The macro mechanical properties of the thermistor were studied using a 5848 MicroTester. The tensile tests showed that basic mechanical characteristics of the thermistor are close to those of polycarbonate films. This indicates a good mechanical strength of the developed sensor. Therefore, the thermistor can be used in technologies that need to be instrumented with highly robustness lightweight low cost temperature sensors. The paper also reports synthetic details on fabricating temperature sensing e-textile. As the temperature control is becoming more and more important in biomedical technologies like healthcare monitoring, this work strongly contributes on the ongoing research on engineering sensitive conducting materials for biomedical applications.

  13. Automated Determination of the Power Required and Selection of Electric Motors for Forging Fly-Press Mechanisms

    Directory of Open Access Journals (Sweden)

    K. Karakoulidis

    2015-06-01

    Full Text Available The current work deals with appropriate selection of electric motors for forging fly-press machines. To solve the equation of motion of the electric drive of these mechanisms characterized by impact (pulsating load and presence of flywheel, numerical methods (calculus have been used.

  14. Caenorhabditis elegans as a Model to Study the Molecular and Genetic Mechanisms of Drug Addiction.

    Science.gov (United States)

    Engleman, Eric A; Katner, Simon N; Neal-Beliveau, Bethany S

    2016-01-01

    Drug addiction takes a massive toll on society. Novel animal models are needed to test new treatments and understand the basic mechanisms underlying addiction. Rodent models have identified the neurocircuitry involved in addictive behavior and indicate that rodents possess some of the same neurobiologic mechanisms that mediate addiction in humans. Recent studies indicate that addiction is mechanistically and phylogenetically ancient and many mechanisms that underlie human addiction are also present in invertebrates. The nematode Caenorhabditis elegans has conserved neurobiologic systems with powerful molecular and genetic tools and a rapid rate of development that enables cost-effective translational discovery. Emerging evidence suggests that C. elegans is an excellent model to identify molecular mechanisms that mediate drug-induced behavior and potential targets for medications development for various addictive compounds. C. elegans emit many behaviors that can be easily quantitated including some that involve interactions with the environment. Ethanol (EtOH) is the best-studied drug-of-abuse in C. elegans and at least 50 different genes/targets have been identified as mediating EtOH's effects and polymorphisms in some orthologs in humans are associated with alcohol use disorders. C. elegans has also been shown to display dopamine and cholinergic system-dependent attraction to nicotine and demonstrate preference for cues previously associated with nicotine. Cocaine and methamphetamine have been found to produce dopamine-dependent reward-like behaviors in C. elegans. These behavioral tests in combination with genetic/molecular manipulations have led to the identification of dozens of target genes/systems in C. elegans that mediate drug effects. The one target/gene identified as essential for drug-induced behavioral responses across all drugs of abuse was the cat-2 gene coding for tyrosine hydroxylase, which is consistent with the role of dopamine neurotransmission

  15. Effect of physical and mechanical properties of cassava tubers on the performance of an automated peeling machine

    Directory of Open Access Journals (Sweden)

    O.C. Ademosun

    2012-12-01

    Full Text Available Peeling of cassava tuber at all levels is still largely carried out manually; however, this work is presented with a view to investigate the effect of physical and mechanical properties of cassava tubers on mechanical peeling and hence provides a basis for cassava peeling mechanization. These properties include size of the tuber, tl, proportion by weight of peel, wp, average moisture content of the peel, map, peel thickness, tp, tuber diameter, td, tuber surface taper angle, α, peel penetration force, F, and peel shearing stress, ts. The results showed that for Slmhf; tl ranged from 140-460mm, wp ranged from 13.12-20.06%, map was 76.27%, tp ranged from 1.62-4.34mm, td ranged from 31.08-136.63mm, α ranged from 9.03-23.130, F ranged from 0.17-1.85N/mm, ts ranged from 0.85-9.25N/mm2 and quality performance of the machine, QPE, for this tuber ranged from 70.82-96.21%. Similarly, for Ssmlf; tl ranged from 125-362mm, wp ranged from 10.52-16.66%, map was 70.97%, tp ranged from 1.22-4.12mm, td ranged from 18.86-99.29mm, α ranged from 5.20-12.290, F ranged from 0.13-1.54N/mm, ts ranged from 0.65-7.70N/mm2 and quality performance of the machine, QPE, for this tuber ranged from 67.27-92.25 %. The results confirm influence of physico-mechanical properties of cassava tuber on mechanical peeling.

  16. Automating Finance

    Science.gov (United States)

    Moore, John

    2007-01-01

    In past years, higher education's financial management side has been riddled with manual processes and aging mainframe applications. This article discusses schools which had taken advantage of an array of technologies that automate billing, payment processing, and refund processing in the case of overpayment. The investments are well worth it:…

  17. Molecular Mechanism of Salinity Stress and Biotechnological Strategies for Engineering Salt Tolerance in Plants

    Institute of Scientific and Technical Information of China (English)

    Wei Tang; Latoya Harris; Ronald J. Newton

    2003-01-01

    Molecular mechanisms of plant responses to salinity stress and the physiological consequences of altered gene expression are reviewed. Extensive use of comparisons with halophytic plants and glycophytos provide a paradigm for many responses to salinity exhibited by stress sensitive plants. Osmolyte biosynthesis, water flux control, and membrane transport of ions are important for maintenance and re-establishment of homeostasis. Transgenic plant and mutant analyses in Arabidopsis improve the understanding of stress responses and elements of stress signal transduction pathways. The genomic DNA sequences and cell-specific transcript expression data, combined with determinant identification based on molecular genetics, will provide the infrastructure for functional physiological dissection of salt tolerance determinants in plants. Protein interaction analysis, genetic activation and suppression screens will lead inevitably to an understanding of the interrelationships of the multiple signaling systems that control stress-adaptive responses and provide more opportunity to engineer salt tolerance in plants.

  18. The molecular mechanism for overcoming the rate-limiting step in monoamine neurotransmitter transport

    DEFF Research Database (Denmark)

    Sinning, Steffen; Said, Saida; Malinauskaite, Lina;

    structures of the bacterial homolog, LeuT, captured in a new conformation without substrate or sodium bound shows a dramatic rotation of an absolutely conserved leucine into the substrate site. Molecular dynamics simulations combined with functional studies on SERT support that this leucine must act...... membrane. The rate-limiting step in monoamine reuptake is the return of the empty transporter from an inward-facing to an outward-facing conformation without neurotransmitter and sodium bound. The molecular mechanism underlying this important conformational transition has not been described. Crystal...... as an endogenous substrate mimic in the empty transporter in order for it to overcome the transition from the inward-facing to the outward-facing conformation. We also show that the local conformational changes associated with the rotation of this conserved leucine explains how cation sites are perturbed...

  19. Oxidized low-density lipoprotein (Ox-LDL) impacts on erythrocyte viscoelasticity and its molecular mechanism.

    Science.gov (United States)

    Wang, Xiang; Yang, Li; Liu, Yao; Gao, Wei; Peng, Weiyan; Sung, K-L Paul; Sung, Lanping Amy

    2009-10-16

    The oxidized low-density lipoprotein (Ox-LDL) plays an important role in atherosclerosis, yet it remains unclear if it damages circulating erythrocytes. In this study, erythrocyte deformability and its membrane proteins after Ox-LDL incubations are investigated by micropipette aspiration, thiol radical measurement, and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Results show that Ox-LDL incubation reduces the erythrocyte deformability, decreases free thiol radical contents in erythrocytes, and induces the cross-linking among membrane proteins. SDS-PAGE analysis reveals a high molecular weight (HMW) complex as well as new bands between spectrins and band 3 and reduced ratios between band 3 and other major membrane skeletal proteins. Analyses indicate that Ox-LDL makes erythrocytes harder to deform through a molecular mechanism by which the oxidation of free thiol radicals forms disulfide bonds among membrane skeletal proteins.

  20. Structure and mechanical characterization of DNA i-motif nanowires by molecular dynamics simulation

    CERN Document Server

    Singh, Raghvendra Pratap; Cleri, Fabrizio

    2013-01-01

    We studied the structure and mechanical properties of DNA i-motif nanowires by means of molecular dynamics computer simulations. We built up to 230 nm long nanowires, based on a repeated TC5 sequence from crystallographic data, fully relaxed and equilibrated in water. The unusual stacked C*C+ stacked structure, formed by four ssDNA strands arranged in an intercalated tetramer, is here fully characterized both statically and dynamically. By applying stretching, compression and bending deformation with the steered molecular dynamics and umbrella sampling methods, we extract the apparent Young's and bending moduli of the nanowire, as wel as estimates for the tensile strength and persistence length. According to our results, the i-motif nanowire shares similarities with structural proteins, as far as its tensile stiffness, but is closer to nucleic acids and flexible proteins, as far as its bending rigidity is concerned. Furthermore, thanks to its very thin cross section, the apparent tensile toughness is close to...