WorldWideScience

Sample records for automated microfluidic reactor

  1. RNA-protein binding kinetics in an automated microfluidic reactor.

    Science.gov (United States)

    Ridgeway, William K; Seitaridou, Effrosyni; Phillips, Rob; Williamson, James R

    2009-11-01

    Microfluidic chips can automate biochemical assays on the nanoliter scale, which is of considerable utility for RNA-protein binding reactions that would otherwise require large quantities of proteins. Unfortunately, complex reactions involving multiple reactants cannot be prepared in current microfluidic mixer designs, nor is investigation of long-time scale reactions possible. Here, a microfluidic 'Riboreactor' has been designed and constructed to facilitate the study of kinetics of RNA-protein complex formation over long time scales. With computer automation, the reactor can prepare binding reactions from any combination of eight reagents, and is optimized to monitor long reaction times. By integrating a two-photon microscope into the microfluidic platform, 5-nl reactions can be observed for longer than 1000 s with single-molecule sensitivity and negligible photobleaching. Using the Riboreactor, RNA-protein binding reactions with a fragment of the bacterial 30S ribosome were prepared in a fully automated fashion and binding rates were consistent with rates obtained from conventional assays. The microfluidic chip successfully combines automation, low sample consumption, ultra-sensitive fluorescence detection and a high degree of reproducibility. The chip should be able to probe complex reaction networks describing the assembly of large multicomponent RNPs such as the ribosome.

  2. Microfluidic electrochemical reactors

    Science.gov (United States)

    Nuzzo, Ralph G [Champaign, IL; Mitrovski, Svetlana M [Urbana, IL

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  3. 3D-printed microfluidic automation.

    Science.gov (United States)

    Au, Anthony K; Bhattacharjee, Nirveek; Horowitz, Lisa F; Chang, Tim C; Folch, Albert

    2015-04-21

    Microfluidic automation - the automated routing, dispensing, mixing, and/or separation of fluids through microchannels - generally remains a slowly-spreading technology because device fabrication requires sophisticated facilities and the technology's use demands expert operators. Integrating microfluidic automation in devices has involved specialized multi-layering and bonding approaches. Stereolithography is an assembly-free, 3D-printing technique that is emerging as an efficient alternative for rapid prototyping of biomedical devices. Here we describe fluidic valves and pumps that can be stereolithographically printed in optically-clear, biocompatible plastic and integrated within microfluidic devices at low cost. User-friendly fluid automation devices can be printed and used by non-engineers as replacement for costly robotic pipettors or tedious manual pipetting. Engineers can manipulate the designs as digital modules into new devices of expanded functionality. Printing these devices only requires the digital file and electronic access to a printer.

  4. 3D-Printed Microfluidic Automation

    Science.gov (United States)

    Au, Anthony K.; Bhattacharjee, Nirveek; Horowitz, Lisa F.; Chang, Tim C.; Folch, Albert

    2015-01-01

    Microfluidic automation – the automated routing, dispensing, mixing, and/or separation of fluids through microchannels – generally remains a slowly-spreading technology because device fabrication requires sophisticated facilities and the technology’s use demands expert operators. Integrating microfluidic automation in devices has involved specialized multi-layering and bonding approaches. Stereolithography is an assembly-free, 3D-printing technique that is emerging as an efficient alternative for rapid prototyping of biomedical devices. Here we describe fluidic valves and pumps that can be stereolithographically printed in optically-clear, biocompatible plastic and integrated within microfluidic devices at low cost. User-friendly fluid automation devices can be printed and used by non-engineers as replacement for costly robotic pipettors or tedious manual pipetting. Engineers can manipulate the designs as digital modules into new devices of expanded functionality. Printing these devices only requires the digital file and electronic access to a printer. PMID:25738695

  5. An automated Teflon microfluidic peptide synthesizer.

    Science.gov (United States)

    Zheng, Hui; Wang, Weizhi; Li, Xiaojun; Wang, Zihua; Hood, Leroy; Lausted, Christopher; Hu, Zhiyuan

    2013-09-07

    We present a microfluidic synthesizer made entirely of Teflon material for solid phase peptide synthesis (SPPS). Solvent-resistant perfluoroalkoxy (PFA) was used to construct chip-sized devices featuring multiple tri-layer pneumatic microvalves. Using these devices, model peptides were automatically synthesized and cleaved in situ in a continuous-flow manner. The total coupling and cleavage time was significantly reduced compared to conventional bulk reactors. The synthesis of a decapeptide, for instance, took less than 6 h using our device while it usually takes more than three days using conventional reactors.

  6. Synthesis and Manipulation of Semiconductor Nanocrystals in Microfluidic Reactors

    OpenAIRE

    Chan, Emory Ming-Yue

    2006-01-01

    Microfluidic reactors are investigated as a mechanism to control the growth of semiconductor nanocrystals and characterize the structural evolution of colloidal quantum dots. Due to their short diffusion lengths, low thermal masses, and predictable fluid dynamics, microfluidic devices can be used to quickly and reproducibly alter reaction conditions such as concentration, temperature, and reaction time, while allowing for rapid reagent mixing and product characterization. These features ...

  7. Microfluidic multi-input reactor for biocatalytic synthesis using transketolase☆

    Science.gov (United States)

    Lawrence, James; O'Sullivan, Brian; Lye, Gary J.; Wohlgemuth, Roland; Szita, Nicolas

    2013-01-01

    Biocatalytic synthesis in continuous-flow microreactors is of increasing interest for the production of specialty chemicals. However, the yield of production achievable in these reactors can be limited by the adverse effects of high substrate concentration on the biocatalyst, including inhibition and denaturation. Fed-batch reactors have been developed in order to overcome this problem, but no continuous-flow solution exists. We present the design of a novel multi-input microfluidic reactor, capable of substrate feeding at multiple points, as a first step towards overcoming these problems in a continuous-flow setting. Using the transketolase-(TK) catalysed reaction of lithium hydroxypyruvate (HPA) and glycolaldehyde (GA) to l-erythrulose (ERY), we demonstrate the transposition of a fed-batch substrate feeding strategy to our microfluidic reactor. We obtained a 4.5-fold increase in output concentration and a 5-fold increase in throughput compared with a single input reactor. PMID:24187515

  8. Integrated multifunctional microfluidics for automated proteome analyses.

    Science.gov (United States)

    Osiri, John K; Shadpour, Hamed; Witek, Małgorzata A; Soper, Steven A

    2011-01-01

    Proteomics is a challenging field for realizing totally integrated microfluidic systems for complete proteome processing due to several considerations, including the sheer number of different protein types that exist within most proteomes, the large dynamic range associated with these various protein types, and the diverse chemical nature of the proteins comprising a typical proteome. For example, the human proteome is estimated to have >10(6) different components with a dynamic range of >10(10). The typical processing pipeline for proteomics involves the following steps: (1) selection and/or extraction of the particular proteins to be analyzed; (2) multidimensional separation; (3) proteolytic digestion of the protein sample; and (4) mass spectral identification of either intact proteins (top-down proteomics) or peptide fragments generated from proteolytic digestions (bottom-up proteomics). Although a number of intriguing microfluidic devices have been designed, fabricated and evaluated for carrying out the individual processing steps listed above, work toward building fully integrated microfluidic systems for protein analysis has yet to be realized. In this chapter, information will be provided on the nature of proteomic analysis in terms of the challenges associated with the sample type and the microfluidic devices that have been tested to carry out individual processing steps. These include devices such as those for multidimensional electrophoretic separations, solid-phase enzymatic digestions, and solid-phase extractions, all of which have used microfluidics as the functional platform for their implementation. This will be followed by an in-depth review of microfluidic systems, which are defined as units possessing two or more devices assembled into autonomous systems for proteome processing. In addition, information will be provided on the challenges involved in integrating processing steps into a functional system and the approaches adopted for device

  9. A Droplet Microfluidic Platform for Automating Genetic Engineering.

    Science.gov (United States)

    Gach, Philip C; Shih, Steve C C; Sustarich, Jess; Keasling, Jay D; Hillson, Nathan J; Adams, Paul D; Singh, Anup K

    2016-05-20

    We present a water-in-oil droplet microfluidic platform for transformation, culture and expression of recombinant proteins in multiple host organisms including bacteria, yeast and fungi. The platform consists of a hybrid digital microfluidic/channel-based droplet chip with integrated temperature control to allow complete automation and integration of plasmid addition, heat-shock transformation, addition of selection medium, culture, and protein expression. The microfluidic format permitted significant reduction in consumption (100-fold) of expensive reagents such as DNA and enzymes compared to the benchtop method. The chip contains a channel to continuously replenish oil to the culture chamber to provide a fresh supply of oxygen to the cells for long-term (∼5 days) cell culture. The flow channel also replenished oil lost to evaporation and increased the number of droplets that could be processed and cultured. The platform was validated by transforming several plasmids into Escherichia coli including plasmids containing genes for fluorescent proteins GFP, BFP and RFP; plasmids with selectable markers for ampicillin or kanamycin resistance; and a Golden Gate DNA assembly reaction. We also demonstrate the applicability of this platform for transformation in widely used eukaryotic organisms such as Saccharomyces cerevisiae and Aspergillus niger. Duration and temperatures of the microfluidic heat-shock procedures were optimized to yield transformation efficiencies comparable to those obtained by benchtop methods with a throughput up to 6 droplets/min. The proposed platform offers potential for automation of molecular biology experiments significantly reducing cost, time and variability while improving throughput.

  10. A Versatile Microfluidic Device for Automating Synthetic Biology.

    Science.gov (United States)

    Shih, Steve C C; Goyal, Garima; Kim, Peter W; Koutsoubelis, Nicolas; Keasling, Jay D; Adams, Paul D; Hillson, Nathan J; Singh, Anup K

    2015-10-16

    New microbes are being engineered that contain the genetic circuitry, metabolic pathways, and other cellular functions required for a wide range of applications such as producing biofuels, biobased chemicals, and pharmaceuticals. Although currently available tools are useful in improving the synthetic biology process, further improvements in physical automation would help to lower the barrier of entry into this field. We present an innovative microfluidic platform for assembling DNA fragments with 10× lower volumes (compared to that of current microfluidic platforms) and with integrated region-specific temperature control and on-chip transformation. Integration of these steps minimizes the loss of reagents and products compared to that with conventional methods, which require multiple pipetting steps. For assembling DNA fragments, we implemented three commonly used DNA assembly protocols on our microfluidic device: Golden Gate assembly, Gibson assembly, and yeast assembly (i.e., TAR cloning, DNA Assembler). We demonstrate the utility of these methods by assembling two combinatorial libraries of 16 plasmids each. Each DNA plasmid is transformed into Escherichia coli or Saccharomyces cerevisiae using on-chip electroporation and further sequenced to verify the assembly. We anticipate that this platform will enable new research that can integrate this automated microfluidic platform to generate large combinatorial libraries of plasmids and will help to expedite the overall synthetic biology process.

  11. Digital microfluidics for automated hanging drop cell spheroid culture.

    Science.gov (United States)

    Aijian, Andrew P; Garrell, Robin L

    2015-06-01

    Cell spheroids are multicellular aggregates, grown in vitro, that mimic the three-dimensional morphology of physiological tissues. Although there are numerous benefits to using spheroids in cell-based assays, the adoption of spheroids in routine biomedical research has been limited, in part, by the tedious workflow associated with spheroid formation and analysis. Here we describe a digital microfluidic platform that has been developed to automate liquid-handling protocols for the formation, maintenance, and analysis of multicellular spheroids in hanging drop culture. We show that droplets of liquid can be added to and extracted from through-holes, or "wells," and fabricated in the bottom plate of a digital microfluidic device, enabling the formation and assaying of hanging drops. Using this digital microfluidic platform, spheroids of mouse mesenchymal stem cells were formed and maintained in situ for 72 h, exhibiting good viability (>90%) and size uniformity (% coefficient of variation screen was performed on human colorectal adenocarcinoma spheroids to demonstrate the ability to recapitulate physiologically relevant phenomena such as insulin-induced drug resistance. With automatable and flexible liquid handling, and a wide range of in situ sample preparation and analysis capabilities, the digital microfluidic platform provides a viable tool for automating cell spheroid culture and analysis.

  12. Microfluidic system with integrated microinjector for automated Drosophila embryo injection.

    Science.gov (United States)

    Delubac, Daniel; Highley, Christopher B; Witzberger-Krajcovic, Melissa; Ayoob, Joseph C; Furbee, Emily C; Minden, Jonathan S; Zappe, Stefan

    2012-11-21

    Drosophila is one of the most important model organisms in biology. Knowledge derived from the recently sequenced 12 genomes of various Drosophila species can today be combined with the results of more than 100 years of research to systematically investigate Drosophila biology at the molecular level. In order to enable automated, high-throughput manipulation of Drosophila embryos, we have developed a microfluidic system based on a Pyrex-silicon-Pyrex sandwich structure with integrated, surface-micromachined silicon nitride injector for automated injection of reagents. Our system automatically retrieves embryos from an external reservoir, separates potentially clustered embryos through a sheath flow mechanisms, passively aligns an embryo with the integrated injector through geometric constraints, and pushes the embryo onto the injector through flow drag forces. Automated detection of an embryo at injection position through an external camera triggers injection of reagents and subsequent ejection of the embryo to an external reservoir. Our technology can support automated screens based on Drosophila embryos as well as creation of transgenic Drosophila lines. Apart from Drosophila embryos, the layout of our system can be easily modified to accommodate injection of oocytes, embryos, larvae, or adults of other species and fills an important technological gap with regard to automated manipulation of multicellular organisms.

  13. The past, present and potential for microfluidic reactor technology in chemical synthesis.

    Science.gov (United States)

    Elvira, Katherine S; Casadevall i Solvas, Xavier; Wootton, Robert C R; deMello, Andrew J

    2013-11-01

    The past two decades have seen far-reaching progress in the development of microfluidic systems for use in the chemical and biological sciences. Here we assess the utility of microfluidic reactor technology as a tool in chemical synthesis in both academic research and industrial applications. We highlight the successes and failures of past research in the field and provide a catalogue of chemistries performed in a microfluidic reactor. We then assess the current roadblocks hindering the widespread use of microfluidic reactors from the perspectives of both synthetic chemistry and industrial application. Finally, we set out seven challenges that we hope will inspire future research in this field.

  14. Synthesis and manipulation of semiconductor nanocrystals in microfluidic reactors

    Science.gov (United States)

    Chan, Emory Ming-Yue

    Microfluidic reactors are investigated as a mechanism to control the growth of semiconductor nanocrystals and characterize the structural evolution of colloidal quantum dots. Due to their short diffusion lengths, low thermal masses, and predictable fluid dynamics, microfluidic devices can be used to quickly and reproducibly alter reaction conditions such as concentration, temperature, and reaction time, while allowing for rapid reagent mixing and product characterization. These features are particularly useful for colloidal nanocrystal reactions, which scale poorly and are difficult to control and characterize in bulk fluids. To demonstrate the capabilities of nanoparticle microreactors, a size series of spherical CdSe nanocrystals was synthesized at high temperature in a continuous-flow, microfabricated glass reactor. Nanocrystal diameters are reproducibly controlled by systematically altering reaction parameters such as the temperature, concentration, and reaction time. Microreactors with finer control over temperature and reagent mixing were designed to synthesize nanoparticles of different shapes, such as rods, tetrapods, and hollow shells. The two major challenges observed with continuous flow reactors are the deposition of particles on channel walls and the broad distribution of residence times that result from laminar flow. To alleviate these problems, I designed and fabricated liquid-liquid segmented flow microreactors in which the reaction precursors are encapsulated in flowing droplets suspended in an immiscible carrier fluid. The synthesis of CdSe nanocrystals in such microreactors exhibited reduced deposition and residence time distributions while enabling the rapid screening a series of samples isolated in nL droplets. Microfluidic reactors were also designed to modify the composition of existing nanocrystals and characterize the kinetics of such reactions. The millisecond kinetics of the CdSe-to-Ag2Se nanocrystal cation exchange reaction are measured

  15. Synthesis and Manipulation of Semiconductor Nanocrystals inMicrofluidic Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Emory Ming-Yue [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    Microfluidic reactors are investigated as a mechanism tocontrol the growth of semiconductor nanocrystals and characterize thestructural evolution of colloidal quantum dots. Due to their shortdiffusion lengths, low thermal masses, and predictable fluid dynamics,microfluidic devices can be used to quickly and reproducibly alterreaction conditions such as concentration, temperature, and reactiontime, while allowing for rapid reagent mixing and productcharacterization. These features are particularly useful for colloidalnanocrystal reactions, which scale poorly and are difficult to controland characterize in bulk fluids. To demonstrate the capabilities ofnanoparticle microreactors, a size series of spherical CdSe nanocrystalswas synthesized at high temperature in a continuous-flow, microfabricatedglass reactor. Nanocrystal diameters are reproducibly controlled bysystematically altering reaction parameters such as the temperature,concentration, and reaction time. Microreactors with finer control overtemperature and reagent mixing were designed to synthesize nanoparticlesof different shapes, such as rods, tetrapods, and hollow shells. The twomajor challenges observed with continuous flow reactors are thedeposition of particles on channel walls and the broad distribution ofresidence times that result from laminar flow. To alleviate theseproblems, I designed and fabricated liquid-liquid segmented flowmicroreactors in which the reaction precursors are encapsulated inflowing droplets suspended in an immiscible carrier fluid. The synthesisof CdSe nanocrystals in such microreactors exhibited reduced depositionand residence time distributions while enabling the rapid screening aseries of samples isolated in nL droplets. Microfluidic reactors werealso designed to modify the composition of existing nanocrystals andcharacterize the kinetics of such reactions. The millisecond kinetics ofthe CdSe-to-Ag2Se nanocrystal cation exchange reaction are measured insitu with micro

  16. Integrating Electrochemical Detection with Centrifugal Microfluidics for Real-Time and Fully Automated Sample Testing

    DEFF Research Database (Denmark)

    Andreasen, Sune Zoëga; Kwasny, Dorota; Amato, Letizia

    2015-01-01

    experiments, even when the microfluidic disc is spinning at high velocities. Automated sample handling is achieved by designing a microfluidic system to release analyte sequentially, utilizing on-disc passive valving. In addition, the microfluidic system is designed to trap and keep the liquid sample...... electrochemical experiment, including all intermediate sample handling steps, is demonstrated by amperometric detection of on-disc mixing of analytes (PBS and ferricyanide)....

  17. Microeddies as microfluidic elements: Reactors and cell traps

    Science.gov (United States)

    Lutz, Barry R.

    2003-07-01

    Microfluidic applications generally seek to control fluids, reagents, and objects at the microscale, and the development of individual components to either mimic traditional processes or to realize novel processes remains important to development in the field. This work focuses on microscopic acoustic streaming eddies as hydrodynamic microreactors and traps for microscopic objects including motile cells. Four microeddies were created around a stationary cylinder (radius 406 mum) by oscillating the surrounding fluid (audible frequency). Concentration images measured using Raman spectroscopy show that eddies act as hydrodynamic "vessels" for reagents dosed from the cylinder (an electrode), and the oscillation amplitude and reagent dosing rate quantitatively controlled the eddy composition. These "vessels" were used to quantify the antioxidant properties of vitamin C against an electrogenerated oxidant. Material balances over the eddy yield a reactor model identical to a two-input CSTR (i.e., perfect backmixing model); and the mean reactor residence time, Damkohler number, and reagent feed ratio are quantitatively related to eddy properties. The CSTR model fit to data for a range of reactor conversions gives the homogeneous rate constant for vitamin C oxidation, showing that the composition of microeddy reactors can be controlled quantitatively. The cylinder and oscillating fluid were incorporated into microscale channels to provide a route to integration with more conventional microfluidic applications. Detailed flow measurements describe the three-dimensional acoustic streaming flow structure, and theory relates measured flow features to frequency and geometry through simple scaling. These channel-based microeddies show an impressive ability to trap microscopic objects at fixed positions in three-dimensions. Microeddies formed in a microchannel (425 mum depth) collect and trap motile phytoplankton (P. micans) and microspheres (˜20--0 mum diameter). The trap

  18. Microfluidic Reactors for the Controlled Synthesis of Nanoparticles

    Science.gov (United States)

    Erdem, Emine Yegan

    Nanoparticles have attracted a lot of attention in the past few decades due to their unique, size-dependent properties. In order to use these nanoparticles in devices or sensors effectively, it is important to maintain uniform properties throughout the system; therefore nanoparticles need to have uniform sizes -- or monodisperse. In order to achieve monodispersity, an extreme control over the reaction conditions is required during their synthesis. These reaction conditions such as temperature, concentration of reagents, residence times, etc. affect the structure of nanoparticles dramatically; therefore when the conditions vary locally in the reaction vessel, different sized nanoparticles form, causing polydispersity. In widely-used batch wise synthesis techniques, large sized reaction vessels are used to mix and heat reagents. In these types of systems, it is very hard to avoid thermal gradients and to achieve rapid mixing times as well as to control residence times. Also it is not possible to make rapid changes in the reaction parameters during the synthesis. The other drawback of conventional methods is that it is not possible to separate the nucleation of nanoparticles from their growth; this leads to combined nucleation and growth and subsequently results in polydisperse size distributions. Microfluidics is an alternative method by which the limitations of conventional techniques can be addressed. Due to the small size, it is possible to control temperature and concentration of reagents precisely as well as to make rapid changes in mixing ratios of reagents or temperature of the reaction zones. There have been several microfluidic reactors -- (microreactors) in literature that were designed to improve the size distribution of nanoparticles. In this work, two novel microfluidic systems were developed for achieving controlled synthesis of nanoparticles. The first microreactor was made out of a chemically robust polymer, polyurethane, and it was used for low

  19. Automated microfluidic screening assay platform based on DropLab.

    Science.gov (United States)

    Du, Wen-Bin; Sun, Meng; Gu, Shu-Qing; Zhu, Ying; Fang, Qun

    2010-12-01

    This paper describes DropLab, an automated microfluidic platform for programming droplet-based reactions and screening in the nanoliter range. DropLab can meter liquids with picoliter-scale precision, mix multiple components sequentially to assemble composite droplets, and perform screening reactions and assays in linear or two-dimensional droplet array with extremely low sample and reagent consumptions. A novel droplet generation approach based on the droplet assembling strategy was developed to produce multicomponent droplets in the nanoliter to picoliter range with high controllability on the size and composition of each droplet. The DropLab system was built using a short capillary with a tapered tip, a syringe pump with picoliter precision, and an automated liquid presenting system. The tapered capillary was used for precise liquid metering and mixing, droplet assembling, and droplet array storage. Two different liquid presenting systems were developed based on the slotted-vial array design and multiwell plate design to automatically present various samples, reagents, and oil to the capillary. Using the tapered-tip capillary and the picoliter-scale precision syringe pump, the minimum unit of the droplet volume in the present system reached ~20 pL. Without the need of complex microchannel networks, various droplets with different size (20 pL-25 nL), composition, and sequence were automatically assembled, aiming to multiple screening targets by simply adjusting the types, volumes, and mixing ratios of aspirated liquids on demand. The utility of DropLab was demonstrated in enzyme inhibition assays, protein crystallization screening, and identification of trace reducible carbohydrates.

  20. Rapid, automated, parallel quantitative immunoassays using highly integrated microfluidics and AlphaLISA

    Science.gov (United States)

    TakYu, Zeta; Guan, Huijiao; Ki Cheung, Mei; McHugh, Walker M.; Cornell, Timothy T.; Shanley, Thomas P.; Kurabayashi, Katsuo; Fu, Jianping

    2015-06-01

    Immunoassays represent one of the most popular analytical methods for detection and quantification of biomolecules. However, conventional immunoassays such as ELISA and flow cytometry, even though providing high sensitivity and specificity and multiplexing capability, can be labor-intensive and prone to human error, making them unsuitable for standardized clinical diagnoses. Using a commercialized no-wash, homogeneous immunoassay technology (‘AlphaLISA’) in conjunction with integrated microfluidics, herein we developed a microfluidic immunoassay chip capable of rapid, automated, parallel immunoassays of microliter quantities of samples. Operation of the microfluidic immunoassay chip entailed rapid mixing and conjugation of AlphaLISA components with target analytes before quantitative imaging for analyte detections in up to eight samples simultaneously. Aspects such as fluid handling and operation, surface passivation, imaging uniformity, and detection sensitivity of the microfluidic immunoassay chip using AlphaLISA were investigated. The microfluidic immunoassay chip could detect one target analyte simultaneously for up to eight samples in 45 min with a limit of detection down to 10 pg mL-1. The microfluidic immunoassay chip was further utilized for functional immunophenotyping to examine cytokine secretion from human immune cells stimulated ex vivo. Together, the microfluidic immunoassay chip provides a promising high-throughput, high-content platform for rapid, automated, parallel quantitative immunosensing applications.

  1. Fast and automated DNA assays on a compact disc (CD)-based microfluidic platform

    Science.gov (United States)

    Jia, Guangyao

    Nucleic acid-based molecular diagnostics offers enormous potential for the rapid and accurate diagnosis of infectious diseases. However, most of the existing commercial tests are time-consuming and technically complicated, and are thus incompatible with the need for rapid identification of infectious agents. We have successfully developed a CD-based microfluidic platform for fast and automated DNA array hybridization and a low cost, disposable plastic microfluidic platform for polymerase chain reaction (PCR). These platforms have proved to be a promising approach to meet the requirements in terms of detection speed and operational convenience in diagnosis of infectious diseases. In the CD-based microfluidic platform for DNA hybridization, convection is introduced to the system to enhance mass transport so as to accelerate the hybridization rate since DNA hybridization is a diffusion limited reaction. Centrifugal force is utilized for sample propulsion and surface force is used for liquid gating. Standard microscope glass slides are used as the substrates for capture probes owing to their compatibility with commercially available instrumentation (e.g. laser scanners) for detection. Microfabricated polydimethylsiloxane (PDMS) structures are used to accomplish the fluidic functions required by the protocols for DNA hybridization. The assembly of the PDMS structure and the glass slide forms a flow-through hybridization unit that can be accommodated onto the CD platform for reagent manipulation. The above scheme has been validated with oligonucleotides as the targets using commercially available enzyme-labeled fluorescence (ELF 97) for detection of the hybridization events, and tested with amplicons of genomic staphylococcus DNA labeled with Cy dye. In both experiments, significantly higher fluorescence intensities were observed in the flow-through hybridization unit compared to the passive assays. The CD fluidic scheme was also adapted to the immobilization of

  2. Automated microfluidic DNA/RNA extraction with both disposable and reusable components

    Science.gov (United States)

    Kim, Jungkyu; Johnson, Michael; Hill, Parker; Sonkul, Rahul S.; Kim, Jongwon; Gale, Bruce K.

    2012-01-01

    An automated microfluidic nucleic extraction system was fabricated with a multilayer polydimethylsiloxane (PDMS) structure that consists of sample wells, microvalves, a micropump and a disposable microfluidic silica cartridge. Both the microvalves and micropump structures were fabricated in a single layer and are operated pneumatically using a 100 µm PDMS membrane. To fabricate the disposable microfluidic silica cartridge, two-cavity structures were made in a PDMS replica to fit the stacked silica membranes. A handheld controller for the microvalves and pumps was developed to enable system automation. With purified ribonucleic acid (RNA), whole blood and E. coli samples, the automated microfluidic nucleic acid extraction system was validated with a guanidine-based solid phase extraction procedure. An extraction efficiency of ~90% for deoxyribonucleic acid (DNA) and ~54% for RNA was obtained in 12 min from whole blood and E. coli samples, respectively. In addition, the same quantity and quality of extracted DNA was confirmed by polymerase chain reaction (PCR) amplification. The PCR also presented the appropriate amplification and melting profiles. Automated, programmable fluid control and physical separation of the reusable components and the disposable components significantly decrease the assay time and manufacturing cost and increase the flexibility and compatibility of the system with downstream components.

  3. Control and automation of multilayered integrated microfluidic device fabrication.

    Science.gov (United States)

    Kipper, Sarit; Frolov, Ludmila; Guy, Ortal; Pellach, Michal; Glick, Yair; Malichi, Asaf; Knisbacher, Binyamin A; Barbiro-Michaely, Efrat; Avrahami, Dorit; Yavets-Chen, Yehuda; Levanon, Erez Y; Gerber, Doron

    2017-01-31

    Integrated microfluidics is a sophisticated three-dimensional (multi layer) solution for high complexity serial or parallel processes. Fabrication of integrated microfluidic devices requires soft lithography and the stacking of thin-patterned PDMS layers. Precise layer alignment and bonding is crucial. There are no previously reported standards for alignment of the layers, which is mostly performed using uncontrolled processes with very low alignment success. As a result, integrated microfluidics is mostly used in academia rather than in the many potential industrial applications. We have designed and manufactured a semiautomatic Microfluidic Device Assembly System (μDAS) for full device production. μDAS comprises an electrooptic mechanical system consisting of four main parts: optical system, smart media holder (for PDMS), a micropositioning xyzθ system and a macropositioning XY mechanism. The use of the μDAS yielded valuable information regarding PDMS as the material for device fabrication, revealed previously unidentified errors, and enabled optimization of a robust fabrication process. In addition, we have demonstrated the utilization of the μDAS technology for fabrication of a complex 3 layered device with over 12 000 micromechanical valves and an array of 64 × 64 DNA spots on a glass substrate with high yield and high accuracy. We increased fabrication yield from 25% to about 85% with an average layer alignment error of just ∼4 μm. It also increased our protein expression yields from 80% to over 90%, allowing us to investigate more proteins per experiment. The μDAS has great potential to become a valuable tool for both advancing integrated microfluidics in academia and producing and applying microfluidic devices in the industry.

  4. In situ molecular imaging of hydrated biofilm in a microfluidic reactor by ToF-SIMS

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Xin; Yu, Xiao-Ying; Wang, Zhaoying; Yang, Li; Liu, Bingwen; Zhu, Zihua; Tucker, Abigail E.; Chrisler, William B.; Hill, Eric A.; Thevuthasan, Suntharampillai; Lin, Yuehe; Liu, Songqin; Marshall, Matthew J.

    2014-02-26

    The first results of using a novel single channel microfluidic reactor to enable Shewanella biofilm growth and in situ characterization using time-of-flight secondary ion mass spectrometry (ToF-SIMS) in the hydrated environment are presented. The new microfluidic interface allows direct probing of the liquid surface using ToF-SIMS, a vacuum surface technique. The detection window is an aperture of 2 m in diameter on a thin silicon nitride (SiN) membrane and it allows direct detection of the liquid surface. Surface tension of the liquid flowing inside the microchannel holds the liquid within the aperture. ToF-SIMS depth profiling was used to drill through the SiN membrane and the biofilm grown on the substrate. In situ 2D imaging of the biofilm in hydrated state was acquired, providing spatial distribution of the chemical compounds in the biofilm system. This data was compared with a medium filled microfluidic reactor devoid of biofilm and dried biofilm samples deposited on clean silicon wafers. Principle Component Analysis (PCA) was used to investigate these observations. Our results show that imaging biofilms in the hydrated environment using ToF-SIMS is possible using the unique microfluidic reactor. Moreover, characteristic biofilm fatty acids fragments were observed in the hydrated biofilm grown in the microfluidic channel, illustrating the advantage of imaging biofilm in its native environment.

  5. High sensitivity automated multiplexed immunoassays using photonic crystal enhanced fluorescence microfluidic system.

    Science.gov (United States)

    Tan, Yafang; Tang, Tiantian; Xu, Haisheng; Zhu, Chenqi; Cunningham, Brian T

    2015-11-15

    We demonstrate a platform that integrates photonic crystal enhanced fluorescence (PCEF) detection of a surface-based microspot fluorescent assay with a microfluidic cartridge to achieve simultaneous goals of high analytic sensitivity (single digit pg/mL), high selectivity, low sample volume, and assay automation. The PC surface, designed to provide optical resonances for the excitation wavelength and emission wavelength of Cyanines 5 (Cy5), was used to amplify the fluorescence signal intensity measured from a multiplexed biomarker microarray. The assay system is comprised of a plastic microfluidic cartridge for holding the PC and an assay automation system that provides a leak-free fluid interface during introduction of a sequence of fluids under computer control. Through the use of the assay automation system and the PC embedded within the microfluidic cartridge, we demonstrate pg/mL-level limits of detection by performing representative biomarker assays for interleukin 3 (IL3) and Tumor Necrosis Factor (TNF-α). The results are consistent with limits of detection achieved without the use of the microfluidic device with the exception that coefficients of variability from spot-to-spot are substantially lower than those obtained by performing assays with manual manipulation of assay liquids. The system's capabilities are compatible with the goal of diagnostic instruments for point-of-care settings.

  6. Enhancement of proteolysis through the silica-gel-derived microfluidic reactor.

    Science.gov (United States)

    Liu, Yun; Qu, Haiyun; Xue, Yan; Wu, Zhonglin; Yang, Pengyuan; Liu, Baohong

    2007-05-01

    An on-chip enzymatic reactor providing rapid protein digestion is presented. Trypsin-embedding stationary phase within the microchannel has been prepared by the sol-gel method. Such a microfluidic reactor has been used for low-level protein digestion at 16 fmol per analysis. The analytical potential of the microreactor combined with the strong cation exchange and RPLC ESI-MS/MS for the identification of real samples from the cytoplasma of the human liver tissue has been demonstrated.

  7. Student-Fabricated Microfluidic Devices as Flow Reactors for Organic and Inorganic Synthesis

    Science.gov (United States)

    Feng, Z. Vivian; Edelman, Kate R.; Swanson, Benjamin P.

    2015-01-01

    Flow synthesis in microfluidic devices has been rapidly adapted in the pharmaceutical industry and in many research laboratories. Yet, the cost of commercial flow reactors is a major factor limiting the dissemination of this technology in the undergraduate curriculum. Here, we present a laboratory activity where students design and fabricate…

  8. Microfluidic reactor for the radiosynthesis of PET radiotracers

    Energy Technology Data Exchange (ETDEWEB)

    Gillies, J.M. [Cancer Research-UK/UMIST Radiochemical Targeting and Imaging Group, Paterson Institute for Cancer Research, Manchester M20 4BX (United Kingdom)]. E-mail: jgillies@picr.man.ac.uk; Prenant, C. [Cancer Research-UK/UMIST Radiochemical Targeting and Imaging Group, Paterson Institute for Cancer Research, Manchester M20 4BX (United Kingdom); School of Chemical Engineering and Analytical Sciences, University of Manchester, PO Box 88, Manchester M60 1QD (United Kingdom); Chimon, G.N. [Cancer Research-UK/UMIST Radiochemical Targeting and Imaging Group, Paterson Institute for Cancer Research, Manchester M20 4BX (United Kingdom); School of Chemical Engineering and Analytical Sciences, University of Manchester, PO Box 88, Manchester M60 1QD (United Kingdom); Smethurst, G.J. [Cancer Research-UK/UMIST Radiochemical Targeting and Imaging Group, Paterson Institute for Cancer Research, Manchester M20 4BX (United Kingdom); Perrie, W. [Department of Engineering, University of Liverpool, Liverpool L69 3GH (United Kingdom); Hamblett, I. [Cancer Research-UK/UMIST Radiochemical Targeting and Imaging Group, Paterson Institute for Cancer Research, Manchester M20 4BX (United Kingdom); Dekker, B. [Cancer Research-UK/UMIST Radiochemical Targeting and Imaging Group, Paterson Institute for Cancer Research, Manchester M20 4BX (United Kingdom); Zweit, J. [Cancer Research-UK/UMIST Radiochemical Targeting and Imaging Group, Paterson Institute for Cancer Research, Manchester M20 4BX (United Kingdom); School of Chemical Engineering and Analytical Sciences, University of Manchester, PO Box 88, Manchester M60 1QD (United Kingdom)

    2006-03-15

    Here we show the first application of a microfabricated reaction system to PET radiochemistry, we term 'microfluidic PET'. The short half-life of the positron emitting isotopes and the trace chemical quantities used in radiolabelling make PET radiochemistry amenable to miniaturisation. Microfluidic technologies are capable of controlling and transferring tiny quantities of liquids which allow chemical and biochemical assays to be integrated and carried out on a small scale. Such technologies provide distinct advantages over current methods of PET radiochemical synthesis. To demonstrate 'proof of principle' we have investigated the radiohalogenation of small and large molecular weight molecules using the microfluidic device. These reactions involved the direct radioiodination of the apoptosis marker Annexin V using iodine-124, the indirect radioiodination of the anti-cancer drug doxorubicin from a tin-butyl precursor and the radiosynthesis of 2-[{sup 18}F]FDG from a mannose triflate precursor and fluorine-18 and hence provide a test bed for microfluidic reactions. We demonstrate the rapid radioiodination of the protein Annexin V (40% radiochemical yield within 1 min) and the rapid radiofluorination of 2-[{sup 18}F]FDG (60% radiochemical yield within 4 s) using a polymer microreactor chip. Chromatographic analysis showed that the labelling efficiency of the unoptimised microfluidic chip is comparable to conventional PET radiolabelling reactions.

  9. Automated centrifugal-microfluidic platform for DNA purification using laser burst valve and coriolis effect.

    Science.gov (United States)

    Choi, Min-Seong; Yoo, Jae-Chern

    2015-04-01

    We report a fully automated DNA purification platform with a micropored membrane in the channel utilizing centrifugal microfluidics on a lab-on-a-disc (LOD). The microfluidic flow in the LOD, into which the reagents are injected for DNA purification, is controlled by a single motor and laser burst valve. The sample and reagents pass successively through the micropored membrane in the channel when each laser burst valve is opened. The Coriolis effect is used by rotating the LOD bi-directionally to increase the purity of the DNA, thereby preventing the mixing of the waste and elution solutions. The total process from the lysed sample injection into the LOD to obtaining the purified DNA was finished within 7 min with only one manual step. The experimental result for Salmonella shows that the proposed microfluidic platform is comparable to the existing devices in terms of the purity and yield of DNA.

  10. Integrated Microfluidic Devices for Automated Microarray-Based Gene Expression and Genotyping Analysis

    Science.gov (United States)

    Liu, Robin H.; Lodes, Mike; Fuji, H. Sho; Danley, David; McShea, Andrew

    Microarray assays typically involve multistage sample processing and fluidic handling, which are generally labor-intensive and time-consuming. Automation of these processes would improve robustness, reduce run-to-run and operator-to-operator variation, and reduce costs. In this chapter, a fully integrated and self-contained microfluidic biochip device that has been developed to automate the fluidic handling steps for microarray-based gene expression or genotyping analysis is presented. The device consists of a semiconductor-based CustomArray® chip with 12,000 features and a microfluidic cartridge. The CustomArray was manufactured using a semiconductor-based in situ synthesis technology. The micro-fluidic cartridge consists of microfluidic pumps, mixers, valves, fluid channels, and reagent storage chambers. Microarray hybridization and subsequent fluidic handling and reactions (including a number of washing and labeling steps) were performed in this fully automated and miniature device before fluorescent image scanning of the microarray chip. Electrochemical micropumps were integrated in the cartridge to provide pumping of liquid solutions. A micromixing technique based on gas bubbling generated by electrochemical micropumps was developed. Low-cost check valves were implemented in the cartridge to prevent cross-talk of the stored reagents. Gene expression study of the human leukemia cell line (K562) and genotyping detection and sequencing of influenza A subtypes have been demonstrated using this integrated biochip platform. For gene expression assays, the microfluidic CustomArray device detected sample RNAs with a concentration as low as 0.375 pM. Detection was quantitative over more than three orders of magnitude. Experiment also showed that chip-to-chip variability was low indicating that the integrated microfluidic devices eliminate manual fluidic handling steps that can be a significant source of variability in genomic analysis. The genotyping results showed

  11. Optimal Homogenization of Perfusion Flows in Microfluidic Bio-Reactors: A Numerical Study

    DEFF Research Database (Denmark)

    Okkels, Fridolin; Dufva, Martin; Bruus, Henrik

    2011-01-01

    In recent years, the interest in small-scale bio-reactors has increased dramatically. To ensure homogeneous conditions within the complete area of perfused microfluidic bio-reactors, we develop a general design of a continually feed bio-reactor with uniform perfusion flow. This is achieved...... by introducing a specific type of perfusion inlet to the reaction area. The geometry of these inlets are found using the methods of topology optimization and shape optimization. The results are compared with two different analytic models, from which a general parametric description of the design is obtained...... and tested numerically. Such a parametric description will generally be beneficial for the design of a broad range of microfluidic bioreactors used for, e. g., cell culturing and analysis and in feeding bio-arrays....

  12. Sol-gel-derived Poly(dimethylsiloxane) Enzymatic Reactor for Microfluidic Peptide Mapping

    Institute of Scientific and Technical Information of China (English)

    WU, Hui-Ling; YANG, Peng-Yuan; FAN, Guo-Rong; TIAN, Yu-Ping; LU, Hao-Jie; JIN, Hong

    2006-01-01

    The silica-based poly(dimethylsiloxane) (PDMS) microfluidic enzymatic reactor was reported along with its analytical features in coupling with MALDI TOF and ESI MS. Microfluidic chip was fabricated using PDMS casting and O2-plasma techniques, and used for the preparation of enzymatic reactor. Plasma oxidation for PDMS enabled the channel wall of microfluidics to present a layer of silanol (SiOH) groups. These SiOH groups as anchors onto the microchannel wall were linked covalently with the hydroxy groups of trypsin-encapsulated sol matrix. As a result, the leakage of sol-gel matrix from the microchannel was effectively prevented. On-line protein analysis was performed with the microfluidic enzymatic reactor by attachment of stainless steel tubing electrode and replaceable tip. The success of trypsin encapsulation was investigated by capillary electrophoresis (CE) detection, and MALDI TOF and ESI MS analysis. The lab-made device provided excellent extent of digestion even at the fast flow rate of 7.0 μL/min with very short residence time of ca. 2 s. In addition, the encapsulated trypsin exhibits increased stability even after continuous use. These features are the most requisite for high-throughput protein identification.

  13. Development of a multiplexed microfluidic proteomic reactor and its application for studying protein-protein interactions.

    Science.gov (United States)

    Tian, Ruijun; Hoa, Xuyen Dai; Lambert, Jean-Philippe; Pezacki, John Paul; Veres, Teodor; Figeys, Daniel

    2011-06-01

    Mass spectrometry-based proteomics techniques have been very successful for the identification and study of protein-protein interactions. Typically, immunopurification of protein complexes is conducted, followed by protein separation by gel electrophoresis and in-gel protein digestion, and finally, mass spectrometry is performed to identify the interacting partners. However, the manual processing of the samples is time-consuming and error-prone. Here, we developed a polymer-based microfluidic proteomic reactor aimed at the parallel analysis of minute amounts of protein samples obtained from immunoprecipitation. The design of the proteomic reactor allows for the simultaneous processing of multiple samples on the same devices. Each proteomic reactor on the device consists of SCX beads packed and restricted into a 1 cm microchannel by two integrated pillar frits. The device is fabricated using a combination of low-cost hard cyclic olefin copolymer thermoplastic and elastomeric thermoplastic materials (styrene/(ethylene/butylenes)/styrene) using rapid hot-embossing replication techniques with a polymer-based stamp. Three immunopurified protein samples are simultaneously captured, reduced, alkylated, and digested on the device within 2-3 h instead of the days required for the conventional protein-protein interaction studies. The limit of detection of the microfluidic proteomic reactor was shown to be lower than 2 ng of protein. Furthermore, the application of the microfluidic proteomic reactor was demonstrated for the simultaneous processing of the interactome of the histone variant Htz1 in wild-type yeast and in a swr1Δ yeast strain compared to an untagged control using a novel three-channel microfluidic proteomic reactor.

  14. Fabrication of a microfluidic enzyme reactor utilizing magnetic beads.

    Science.gov (United States)

    Liu, Xiaojun; Lo, Roger C; Gomez, Frank A

    2009-06-01

    An enzyme-catalyzed microfluidic assay using magnetic micro-beads is described. Here, diaphorase (DI) (E.C. 1.6.99) is covalently attached to the magnetic micro-beads (2.7 mum) and integrated into a short section of a microchip fabricated from PDMS. DI converts non-fluorescent resazurin to fluorescent resorufin in the presence of nicotinamide adenine dinucleotide phosphate (NADH). In this work, an embedded magnet holds the micro-beads in place within the microchannel while a solution of resazurin and NADH in buffer is flowed through the beads. Incorporation of the micro-beads into the microchannel requires only a few minutes and offers well-defined spatial resolution and reproducibility. At a flow rate of 41.2 microL/h, a stable state for the enzyme reaction in the microfluidic format was achieved within 50 s. The maximum conversion of the reaction was obtained at a concentration of 1.25 mM NADH. The reaction yield is affected by ZnCl(2) and at concentrations in excess of 90.0 mM, the activity of DI was almost double without ZnCl(2). At 5.2 mM potassium chloride, the activity of DI reached its maximum value. Overall, the conversion of resazurin in microfluidic format was more than twice than that in a batch assay.

  15. Preparation of hydrocortisone nanosuspension through a bottom-up nanoprecipitation technique using microfluidic reactors.

    Science.gov (United States)

    Ali, Hany S M; York, Peter; Blagden, Nicholas

    2009-06-22

    In this work, the possibility of bottom-up creation of a relatively stable aqueous hydrocortisone nanosuspension using microfluidic reactors was examined. The first part of the work involved a study of the parameters of the microfluidic precipitation process that affect the size of generated drug particles. These parameters included flow rates of drug solution and antisolvent, microfluidic channel diameters, microreactors inlet angles and drug concentrations. The experimental results revealed that hydrocortisone nano-sized dispersions in the range of 80-450 nm were obtained and the mean particle size could be changed by modifying the experimental parameters and design of microreactors. The second part of the work studied the possibility of preparing a hydrocortisone nanosuspension using microfluidic reactors. The nano-sized particles generated from a microreactor were rapidly introduced into an aqueous solution of stabilizers stirred at high speed with a propeller mixer. A tangential flow filtration system was then used to concentrate the prepared nanosuspension. The nanosuspension produced was then characterized using photon correlation spectroscopy (PCS), Zeta potential measurement, transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and X-ray analysis. Results showed that a narrow sized nanosuspension composed of amorphous spherical particles with a mean particle size of 500+/-64 nm, a polydispersity index of 0.21+/-0.026 and a zeta potential of -18+/-2.84 mV was obtained. Physical stability studies showed that the hydrocortisone nanosuspension remained homogeneous with slight increase in mean particle size and polydispersity index over a 3-month period.

  16. Optimal homogenization of perfusion flows in microfluidic bio-reactors; a numerical study

    CERN Document Server

    Okkels, Fridolin; Bruus, Henrik

    2009-01-01

    To ensure homogeneous conditions within the complete area of perfused microfluidic bio-reactors, we develop a general design of a continuously feed bio-reactor with uniform perfusion flow. This is achieved by introducing a specific type of perfusion inlet to the reaction area. The geometry of these inlets are found using the methods of topology optimization and shape optimization. The results are compared with two different analytic models, from which a general parametric description of the design is obtained and tested numerically. Such a parametric description will generally be beneficial for the design of a broad range of microfluidic bioreactors used for e.g. cell culturing and analysis, and in feeding bio-arrays.

  17. Development of an automated core model for nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mosteller, R.D.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to develop an automated package of computer codes that can model the steady-state behavior of nuclear-reactor cores of various designs. As an added benefit, data produced for steady-state analysis also can be used as input to the TRAC transient-analysis code for subsequent safety analysis of the reactor at any point in its operating lifetime. The basic capability to perform steady-state reactor-core analysis already existed in the combination of the HELIOS lattice-physics code and the NESTLE advanced nodal code. In this project, the automated package was completed by (1) obtaining cross-section libraries for HELIOS, (2) validating HELIOS by comparing its predictions to results from critical experiments and from the MCNP Monte Carlo code, (3) validating NESTLE by comparing its predictions to results from numerical benchmarks and to measured data from operating reactors, and (4) developing a linkage code to transform HELIOS output into NESTLE input.

  18. Programmable and automated bead-based microfluidics for versatile DNA microarrays under isothermal conditions.

    Science.gov (United States)

    Penchovsky, Robert

    2013-06-21

    Advances in modern genomic research depend heavily on applications of various devices for automated high- or ultra-throughput arrays. Micro- and nanofluidics offer possibilities for miniaturization and integration of many different arrays onto a single device. Therefore, such devices are becoming a platform of choice for developing analytical instruments for modern biotechnology. This paper presents an implementation of a bead-based microfluidic platform for fully automated and programmable DNA microarrays. The devices are designed to work under isothermal conditions as DNA immobilization and hybridization transfer are performed under steady temperature using reversible pH alterations of reaction solutions. This offers the possibility for integration of more selection modules onto a single chip compared to maintaining a temperature gradient. This novel technology allows integration of many modules on a single reusable chip reducing the application cost. The method takes advantage of demonstrated high-speed DNA hybridization kinetics and denaturation on beads under flow conditions, high-fidelity of DNA hybridization, and small sample volumes are needed. The microfluidic devices are applied for a single nucleotide polymorphism analysis and DNA sequencing by synthesis without the need for fluorescent removal step. Apart from that, the microfluidic platform presented is applicable to many areas of modern biotechnology, including biosensor devices, DNA hybridization microarrays, molecular computation, on-chip nucleic acid selection, high-throughput screening of chemical libraries for drug discovery.

  19. Fluorimetric urease inhibition assay on a multilayer microfluidic chip with immunoaffinity immobilized enzyme reactors.

    Science.gov (United States)

    Zhang, Qin; Tang, Xiuwen; Hou, Fenghua; Yang, Jianping; Xie, Zhiyong; Cheng, Zhiyi

    2013-10-01

    We fabricated a three-layer polydimethylsiloxane (PDMS)-based microfluidic chip for realizing urease inhibition assay with sensitive fluorescence detection. Procedures such as sample prehandling, enzyme reaction, reagent mixing, fluorescence derivatization, and detection can be readily carried out. Urease reactors were prepared by adsorption of rabbit immunoglobulin G (IgG) and immunoreaction with urease-conjugated goat anti-rabbit IgG. Acetohydroxamic acid (AHA) as a competitive inhibitor of urease was tested on the chip. Microfluidically generated gradient concentrations of AHA with substrate (urea) were loaded into urease reactors. After incubation, the produced ammonia was transported out of reactors and then reacted with o-phthalaldehyde (OPA) to generate fluorescent products. Urease inhibition was indicated by a decrease in fluorescence signal detected by microplate reader. The IC50 value of AHA was determined and showed good agreement with that obtained in microplate. The presented device combines several steps of the analytical process with advantages of low reagent consumption, reduced analysis time, and ease of manipulation. This microfluidic approach can be extended to the screening of inhibitory compounds in drug discovery.

  20. A microfluidics-based technique for automated and rapid labeling of cells for flow cytometry

    Science.gov (United States)

    Patibandla, Phani K.; Estrada, Rosendo; Kannan, Manasaa; Sethu, Palaniappan

    2014-03-01

    Flow cytometry is a powerful technique capable of simultaneous multi-parametric analysis of heterogeneous cell populations for research and clinical applications. In recent years, the flow cytometer has been miniaturized and made portable for application in clinical- and resource-limited settings. The sample preparation procedure, i.e. labeling of cells with antibodies conjugated to fluorescent labels, is a time consuming (˜45 min) and labor-intensive procedure. Microfluidics provides enabling technologies to accomplish rapid and automated sample preparation. Using an integrated microfluidic device consisting of a labeling and washing module, we demonstrate a new protocol that can eliminate sample handling and accomplish sample and reagent metering, high-efficiency mixing, labeling and washing in rapid automated fashion. The labeling module consists of a long microfluidic channel with an integrated chaotic mixer. Samples and reagents are precisely metered into this device to accomplish rapid and high-efficiency mixing. The mixed sample and reagents are collected in a holding syringe and held for up to 8 min following which the mixture is introduced into an inertial washing module to obtain ‘analysis-ready’ samples. The washing module consists of a high aspect ratio channel capable of focusing cells to equilibrium positions close to the channel walls. By introducing the cells and labeling reagents in a narrow stream at the center of the channel flanked on both sides by a wash buffer, the elution of cells into the wash buffer away from the free unbound antibodies is accomplished. After initial calibration experiments to determine appropriate ‘holding time’ to allow antibody binding, both modules were used in conjunction to label MOLT-3 cells (T lymphoblast cell line) with three different antibodies simultaneously. Results confirm no significant difference in mean fluorescence intensity values for all three antibodies labels (p < 0.01) between the

  1. Automated liquid operation method for microfluidic heterogeneous immunoassay.

    Science.gov (United States)

    Yi, Hui; Pan, Jian-Zhang; Shi, Xiao-Tong; Fang, Qun

    2013-02-15

    In this work, an automated liquid operation method for multistep heterogeneous immunoassay toward point of care testing (POCT) was proposed. A miniaturized peristaltic pump was developed to control the flow direction, flow time and flow rate in the microliter range according to a program. The peristaltic pump has the advantages of simple structure, small size, low cost, and easy to build and use. By coupling the peristaltic pump with an antibody-coated capillary and a reagent-preloaded cartridge, the complicated liquid handling operation for heterogeneous immunoassay, including sample metering and introduction, multistep reagent introduction and rinsing, could be triggered by an action and accomplished automatically in 12 min. The analytical performance of the present immunoassay system was demonstrated in the measurement of human IgG with fluorescence detection. A detection limit of 0.68 μg/mL IgG and a dynamic range of 2-300 μg/mL were obtained.

  2. Selective distribution of enzymes in a microfluidic reactor

    DEFF Research Database (Denmark)

    Daugaard, Anders Egede; Pereira Rosinha Grundtvig, Ines; Krühne, Ulrich;

    enables the selective immobilization on either top-side or bottom-side or both sides of the reactor. Thereafter horseradish peroxidase was immobilized on the surface and activity tests illustrated how this distribution of the enzyme on the surface could be used to optimize the activity of the enzyme...

  3. Development of automated high throughput single molecular microfluidic detection platform for signal transduction analysis

    Science.gov (United States)

    Huang, Po-Jung; Baghbani Kordmahale, Sina; Chou, Chao-Kai; Yamaguchi, Hirohito; Hung, Mien-Chie; Kameoka, Jun

    2016-03-01

    Signal transductions including multiple protein post-translational modifications (PTM), protein-protein interactions (PPI), and protein-nucleic acid interaction (PNI) play critical roles for cell proliferation and differentiation that are directly related to the cancer biology. Traditional methods, like mass spectrometry, immunoprecipitation, fluorescence resonance energy transfer, and fluorescence correlation spectroscopy require a large amount of sample and long processing time. "microchannel for multiple-parameter analysis of proteins in single-complex (mMAPS)"we proposed can reduce the process time and sample volume because this system is composed by microfluidic channels, fluorescence microscopy, and computerized data analysis. In this paper, we will present an automated mMAPS including integrated microfluidic device, automated stage and electrical relay for high-throughput clinical screening. Based on this result, we estimated that this automated detection system will be able to screen approximately 150 patient samples in a 24-hour period, providing a practical application to analyze tissue samples in a clinical setting.

  4. Automated scoping methodology for liquid metal natural circulation small reactor

    Energy Technology Data Exchange (ETDEWEB)

    Son, Hyung M.; Suh, Kune Y., E-mail: kysuh@snu.ac.kr

    2014-07-01

    Highlights: • Automated scoping methodology for natural circulation small modular reactor is developed. • In-house code is developed to carry out system analysis and core geometry generation during scoping. • Adjustment relations are obtained to correct the critical core geometry out of diffusion theory. • Optimized design specification is found using objective function value. • Convex hull volume is utilized to quantify the impact of different constraints on the scope range. - Abstract: A novel scoping method is proposed that can automatically generate design variable range of the natural circulation driven liquid metal cooled small reactor. From performance requirements based upon Generation IV system roadmap, appropriate structure materials are selected and engineering constraints are compiled based upon literature. Utilizing ASME codes and standards, appropriate geometric sizing criteria on constituting components are developed to ensure integrity of the system during its lifetime. In-house one dimensional thermo-hydraulic system analysis code is developed based upon momentum integral model and finite element methods to deal with non-uniform descritization of temperature nodes for convection and thermal diffusion equation of liquid metal coolant. In order to quickly generate critical core dimensions out of given unit cell information, an adjustment relation that relates the critical geometry estimated from one-group diffusion and that from MCNP code is constructed and utilized throughout the process. For the selected unit cell dimension ranges, burnup calculations are carried out to check the cores can generate energy over the reactor lifetime. Utilizing random method, sizing criteria, and in-house analysis codes, an automated scoping methodology is developed. The methodology is applied to nitride fueled integral type lead cooled natural circulation reactor concept to generate design scopes which satisfies given constraints. Three dimensional convex

  5. On-demand droplet loading for automated organic chemistry on digital microfluidics.

    Science.gov (United States)

    Shah, Gaurav J; Ding, Huijiang; Sadeghi, Saman; Chen, Supin; Kim, Chang-Jin C J; van Dam, R Michael

    2013-07-21

    Organic chemistry applications on digital microfluidic devices often involve reagents that are volatile or sensitive and must be introduced to the chip immediately before use. We present a new technique for automated, on-demand loading of ~1 μL droplets from large (~1 mL), sealed, off-chip reservoirs to a digital microfluidic chip in order to address this challenge. Unlike aqueous liquids which generally are non-wetting to the hydrophobic surface and must be actively drawn into the electrowetting-on-dielectric (EWOD) chip by electrode activation, organic liquids tend to be wetting and can spontaneously flood the chip, and hence require a retracting force for controlled liquid delivery. Using a combination of compressed inert gas and gravity to exert driving and retracting forces on the liquid, the simple loading technique enables precise loading of droplets of both wetting and non-wetting liquids in a reliable manner. A key feature from a practical point of view is that all of the wetted parts are inexpensive and potentially disposable, thus avoiding cross-contamination in chemical and biochemical applications. We provide a theoretical treatment of the underlying physics, discuss the effect of geometry and liquid properties on its performance, and show repeatable reagent loading using the technique. Its versatility is demonstrated with the loading of several aqueous and non-aqueous liquids on an EWOD digital microfluidic device.

  6. Design Features Of Microfluidic Reactor For [18F]FDG Radiopharmaceutical Synthesis

    Science.gov (United States)

    Oh, J. H.; Lee, B. N.; Nam, K. R.; Attla, G. A.; Lee, K. C.; Cjai, J. S.

    2011-06-01

    Microfluidic reactor exhibits advantages for radiopharmaceutical synthesis. Microfluidic chips can reduce the time for radiosynthesis using tiny quantities of chemical compounds. It also has a good heat transfer, performance and provides an integrated system including synthesis, separation, and purification. These advantages make FDG production. So we have designed a microreactor chip which included the whole chemical processing; water evaporation, solvent exchange, radiofluorination and so on. It was designed by using a commercial 3D CAD modeling program CATIA V5, heat transfer performance was analyzed by ANSYS, and CFX was used for analyzing fluid performance. This paper described the design of FDG synthesis system on a microchip, the relevant locations of its parts, both heat and fluid performance efficiency analysis.

  7. A High-Throughput Automated Microfluidic Platform for Calcium Imaging of Taste Sensing

    Directory of Open Access Journals (Sweden)

    Yi-Hsing Hsiao

    2016-07-01

    Full Text Available The human enteroendocrine L cell line NCI-H716, expressing taste receptors and taste signaling elements, constitutes a unique model for the studies of cellular responses to glucose, appetite regulation, gastrointestinal motility, and insulin secretion. Targeting these gut taste receptors may provide novel treatments for diabetes and obesity. However, NCI-H716 cells are cultured in suspension and tend to form multicellular aggregates, preventing high-throughput calcium imaging due to interferences caused by laborious immobilization and stimulus delivery procedures. Here, we have developed an automated microfluidic platform that is capable of trapping more than 500 single cells into microwells with a loading efficiency of 77% within two minutes, delivering multiple chemical stimuli and performing calcium imaging with enhanced spatial and temporal resolutions when compared to bath perfusion systems. Results revealed the presence of heterogeneity in cellular responses to the type, concentration, and order of applied sweet and bitter stimuli. Sucralose and denatonium benzoate elicited robust increases in the intracellular Ca2+ concentration. However, glucose evoked a rapid elevation of intracellular Ca2+ followed by reduced responses to subsequent glucose stimulation. Using Gymnema sylvestre as a blocking agent for the sweet taste receptor confirmed that different taste receptors were utilized for sweet and bitter tastes. This automated microfluidic platform is cost-effective, easy to fabricate and operate, and may be generally applicable for high-throughput and high-content single-cell analysis and drug screening.

  8. A microfluidic device for the automated electrical readout of low-density glass-slide microarrays.

    Science.gov (United States)

    Díaz-González, María; Salvador, J Pablo; Bonilla, Diana; Marco, M Pilar; Fernández-Sánchez, César; Baldi, Antoni

    2015-12-15

    Microarrays are a powerful platform for rapid and multiplexed analysis in a wide range of research fields. Electrical readout systems have emerged as an alternative to conventional optical methods for microarray analysis thanks to its potential advantages like low-cost, low-power and easy miniaturization of the required instrumentation. In this work an automated electrical readout system for low-cost glass-slide microarrays is described. The system enables the simultaneous conductimetric detection of up to 36 biorecognition events by incorporating an array of interdigitated electrode transducers. A polydimethylsiloxane microfluidic structure has been designed that creates microwells over the transducers and incorporates the microfluidic channels required for filling and draining them with readout and cleaning solutions, thus making the readout process fully automated. Since the capture biomolecules are not immobilized on the transducer surface this readout system is reusable, in contrast to previously reported electrochemical microarrays. A low-density microarray based on a competitive enzymatic immunoassay for atrazine detection was used to test the performance of the readout system. The electrical assay shows a detection limit of 0.22±0.03 μg L(-1) similar to that obtained with fluorescent detection and allows the direct determination of the pesticide in polluted water samples. These results proved that an electrical readout system such as the one presented in this work is a reliable and cost-effective alternative to fluorescence scanners for the analysis of low-density microarrays.

  9. Nanoengineering a library of metallic nanostructures using a single microfluidic reactor.

    Science.gov (United States)

    Sebastián, Víctor; Jensen, Klavs F

    2016-08-18

    Microfluidic synthesis in a microfabricated reactor enables fast and facile synthesis of a wide library of metallic nanostructures: monometallic, bimetallic, anisotropic growth and heterostructures. Specific nanostructures are realized by selection of flow pattern and synthesis parameters. The technique is shown to have advantages over conventional batch technologies. Not only does it allow faster scalable synthesis, but also realization of nanostructures hitherto not reported such as Pt-Ru, Pt-Ni and Pt-Co nanodendrites, Pt-Pd heterostructures, Ag-Pd core-shell NPs, Au-Pd nanodumbbells and Au-Pd nanosheets.

  10. Synthesis of worm and chain-like nanoparticles by a microfluidic reactor process

    Science.gov (United States)

    Song, Yujun; Sun, Qiangqiang; Zhang, Tao; Jin, Pengyun; Han, Li

    2010-09-01

    We demonstrate a room temperature microfluidic reactor (MFR) process for the synthesis of worm-like and chain-like shaped metallic nanoparticles (NPs). These high aspect ratio NPs are in geometrically metastable states, which can be further transformed into ellipsoidal, spherical, or short rod-like species with enhanced crystallinity after their solutions are stirred for several hours and/or undergo sonication for more than half an hour, evidenced by their transmission electron microscope (TEM) images, selected area electron diffraction (SAED), and X-ray Diffraction (XRD). Analysis on the relative stronger shape control ability by the microfluidic process than by the batch process suggests that the attachment and merging of pre-formed nanoclusters along the flow orientation in the microchannel slits may be the main reason for the formation of non-spherical shaped NPs. The result indicates that the room temperature microfluidic process has the potential to assemble primary nanoclusters into two-dimension architectures (i.e., chain-like networks).

  11. Microfluidic reactor synthesis and photocatalytic behavior of Cu@Cu{sub 2}O nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lei, E-mail: xulei_kmust@aliyun.com [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Mechanical Engineering, University of Washington, Seattle, WA 98195 (United States); Srinivasakannan, C. [Chemical Engineering Program, The Petroleum Institute, PO Box 253, Abu Dhabi (United Arab Emirates); Peng, Jinhui, E-mail: jhpeng@kmust.edu.cn [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Yan, Mi [Faculty of Mathematical and Physical Sciences, University College London, London WC1E 6BT (United Kingdom); Zhang, Di [Mechanical Engineering, University of Washington, Seattle, WA 98195 (United States); Zhang, Libo [National Local Joint Laboratory of Engineering Application of Microwave Energy and Equipment Technology, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093 (China)

    2015-03-15

    Highlights: • The Cu@Cu{sub 2}O nanocomposites were synthesized in microfluidic reactor followed by oxidation process. • The Cu@Cu{sub 2}O composite particle is on nanoscale exhibiting an open bicontinuous structure. • The amount of Cu{sub 2}O can be controlled by varying drying temperature. • The binary Cu@Cu{sub 2}O–H{sub 2}O{sub 2} systems exhibit an excellent photocatalyst for degradation methylene blue under UV irradiation. - Abstract: The Cu@Cu{sub 2}O nanocomposites were synthesized by solution-phase synthesis of Cu nanoparticles in microfluidic reactor at room temperature, followed by controlling the oxidation process. The size, morphology, elemental compositions, and the chemical composition on the surface of Cu@Cu{sub 2}O nanocomposite were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Experimental results demonstrated that the surface of the Cu nanoparticles was oxidized to Cu{sub 2}O which serves as the shell of nanoparticle. The amount of Cu{sub 2}O can be controlled by varying the drying temperature. Additionally the binary Cu@Cu{sub 2}O nanocomposite along with H{sub 2}O{sub 2} exhibited its potential as an excellent photocatalyst for degradation of methylene blue (MB) under UV irradiation.

  12. The synthesis of a copper/multi-walled carbon nanotube hybrid nanowire in a microfluidic reactor

    Science.gov (United States)

    Peng, Yitian; Chen, Quanfang

    2009-06-01

    Metallic nanowires are promising as components in nanoscale systems including nanoelectronics. However, the application of nanowires made of a single material is limited by the properties of the material used. We report here an effort to fabricate a hybrid copper-coated carbon nanotube (CNT)—Cu/CNT nanowire, using a microfluidic reactor. The fabrication of copper/multi-walled carbon nanotube (MWCNT) hybrid nanowires was realized by an electroless copper deposition technique in which MWCNT templates and an electrolyte were introduced separately into the microfluidic reactor. The morphology and structure of the Cu/MWCNT hybrid nanowire were studied by means of transmission electron microscopy (TEM), selected-area electron diffraction (SAED), scanning electron microscopy (SEM) and energy-dispersive x-ray spectroscopy (EDX), as well as XRD. Results reveal that the fabricated Cu/MWCNT hybrid nanowires are continuously covered by crystallized copper with a preferred crystal orientation along the (111) planes in the radial direction of the MWCNTs. These structural properties are attributed to the unique reaction environment including laminar flow and diffusion-controlled reaction.

  13. Reagent-loaded cartridges for valveless and automated fluid delivery in microfluidic devices.

    Science.gov (United States)

    Linder, Vincent; Sia, Samuel K; Whitesides, George M

    2005-01-01

    An important problem in the life sciences and in health care is simple and rapid detection of biomarkers. Although microfluidic devices are potentially useful in addressing this problem, current techniques for automating fluid delivery--which include valves and electroosmosis--require sophisticated microfabrication of the chip, bulky instrumentation, or both. In this paper, we describe a simple and reliable technique for storing and delivering a sequence of reagents to a microfluidic device. The technique is low-cost, requires minimal user intervention, and can be performed in resource-poor settings (e.g., outside of a laboratory) in the absence of electricity and computer-controlled equipment. In this method, cartridges made of commercially available tubing are filled by sequentially injecting plugs of reagents separated by air spacers. The air spacers prevent the reagents from mixing with each other during cartridge preparation, storage, and usage. As an example, we used this "plug-in cartridge" technology to complete a solid-phase immunoassay in a microchannel in 2 min with low-nanomolar sensitivity and demonstrate the diagnosis of HIV in 13 min.

  14. CRDIAC: Coupled Reactor Depletion Instrument with Automated Control

    Energy Technology Data Exchange (ETDEWEB)

    Steven K. Logan

    2012-08-01

    When modeling the behavior of a nuclear reactor over time, it is important to understand how the isotopes in the reactor will change, or transmute, over that time. This is especially important in the reactor fuel itself. Many nuclear physics modeling codes model how particles interact in the system, but do not model this over time. Thus, another code is used in conjunction with the nuclear physics code to accomplish this. In our code, Monte Carlo N-Particle (MCNP) codes and the Multi Reactor Transmutation Analysis Utility (MRTAU) were chosen as the codes to use. In this way, MCNP would produce the reaction rates in the different isotopes present and MRTAU would use cross sections generated from these reaction rates to determine how the mass of each isotope is lost or gained. Between these two codes, the information must be altered and edited for use. For this, a Python 2.7 script was developed to aid the user in getting the information in the correct forms. This newly developed methodology was called the Coupled Reactor Depletion Instrument with Automated Controls (CRDIAC). As is the case in any newly developed methodology for modeling of physical phenomena, CRDIAC needed to be verified against similar methodology and validated against data taken from an experiment, in our case AFIP-3. AFIP-3 was a reduced enrichment plate type fuel tested in the ATR. We verified our methodology against the MCNP Coupled with ORIGEN2 (MCWO) method and validated our work against the Post Irradiation Examination (PIE) data. When compared to MCWO, the difference in concentration of U-235 throughout Cycle 144A was about 1%. When compared to the PIE data, the average bias for end of life U-235 concentration was about 2%. These results from CRDIAC therefore agree with the MCWO and PIE data, validating and verifying CRDIAC. CRDIAC provides an alternative to using ORIGEN-based methodology, which is useful because CRDIAC's depletion code, MRTAU, uses every available isotope in its

  15. Automated Chemotactic Sorting and Single-cell Cultivation of Microbes using Droplet Microfluidics

    Science.gov (United States)

    Dong, Libing; Chen, Dong-Wei; Liu, Shuang-Jiang; Du, Wenbin

    2016-04-01

    We report a microfluidic device for automated sorting and cultivation of chemotactic microbes from pure cultures or mixtures. The device consists of two parts: in the first part, a concentration gradient of the chemoeffector was built across the channel for inducing chemotaxis of motile cells; in the second part, chemotactic cells from the sample were separated, and mixed with culture media to form nanoliter droplets for encapsulation, cultivation, enumeration, and recovery of single cells. Chemotactic responses were assessed by imaging and statistical analysis of droplets based on Poisson distribution. An automated procedure was developed for rapid enumeration of droplets with cell growth, following with scale-up cultivation on agar plates. The performance of the device was evaluated by the chemotaxis assays of Escherichia coli (E. coli) RP437 and E. coli RP1616. Moreover, enrichment and isolation of non-labelled Comamonas testosteroni CNB-1 from its 1:10 mixture with E. coli RP437 was demonstrated. The enrichment factor reached 36.7 for CNB-1, based on its distinctive chemotaxis toward 4-hydroxybenzoic acid. We believe that this device can be widely used in chemotaxis studies without necessarily relying on fluorescent labelling, and isolation of functional microbial species from various environments.

  16. Microprocessor-based integration of microfluidic control for the implementation of automated sensor monitoring and multithreaded optimization algorithms.

    Science.gov (United States)

    Ezra, Elishai; Maor, Idan; Bavli, Danny; Shalom, Itai; Levy, Gahl; Prill, Sebastian; Jaeger, Magnus S; Nahmias, Yaakov

    2015-08-01

    Microfluidic applications range from combinatorial synthesis to high throughput screening, with platforms integrating analog perfusion components, digitally controlled micro-valves and a range of sensors that demand a variety of communication protocols. Currently, discrete control units are used to regulate and monitor each component, resulting in scattered control interfaces that limit data integration and synchronization. Here, we present a microprocessor-based control unit, utilizing the MS Gadgeteer open framework that integrates all aspects of microfluidics through a high-current electronic circuit that supports and synchronizes digital and analog signals for perfusion components, pressure elements, and arbitrary sensor communication protocols using a plug-and-play interface. The control unit supports an integrated touch screen and TCP/IP interface that provides local and remote control of flow and data acquisition. To establish the ability of our control unit to integrate and synchronize complex microfluidic circuits we developed an equi-pressure combinatorial mixer. We demonstrate the generation of complex perfusion sequences, allowing the automated sampling, washing, and calibrating of an electrochemical lactate sensor continuously monitoring hepatocyte viability following exposure to the pesticide rotenone. Importantly, integration of an optical sensor allowed us to implement automated optimization protocols that require different computational challenges including: prioritized data structures in a genetic algorithm, distributed computational efforts in multiple-hill climbing searches and real-time realization of probabilistic models in simulated annealing. Our system offers a comprehensive solution for establishing optimization protocols and perfusion sequences in complex microfluidic circuits.

  17. Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers

    Science.gov (United States)

    Riahi, Reza; Shaegh, Seyed Ali Mousavi; Ghaderi, Masoumeh; Zhang, Yu Shrike; Shin, Su Ryon; Aleman, Julio; Massa, Solange; Kim, Duckjin; Dokmeci, Mehmet Remzi; Khademhosseini, Ali

    2016-04-01

    There is an increasing interest in developing microfluidic bioreactors and organs-on-a-chip platforms combined with sensing capabilities for continual monitoring of cell-secreted biomarkers. Conventional approaches such as ELISA and mass spectroscopy cannot satisfy the needs of continual monitoring as they are labor-intensive and not easily integrable with low-volume bioreactors. This paper reports on the development of an automated microfluidic bead-based electrochemical immunosensor for in-line measurement of cell-secreted biomarkers. For the operation of the multi-use immunosensor, disposable magnetic microbeads were used to immobilize biomarker-recognition molecules. Microvalves were further integrated in the microfluidic immunosensor chip to achieve programmable operations of the immunoassay including bead loading and unloading, binding, washing, and electrochemical sensing. The platform allowed convenient integration of the immunosensor with liver-on-chips to carry out continual quantification of biomarkers secreted from hepatocytes. Transferrin and albumin productions were monitored during a 5-day hepatotoxicity assessment in which human primary hepatocytes cultured in the bioreactor were treated with acetaminophen. Taken together, our unique microfluidic immunosensor provides a new platform for in-line detection of biomarkers in low volumes and long-term in vitro assessments of cellular functions in microfluidic bioreactors and organs-on-chips.

  18. Automated microfluidic platform of bead-based electrochemical immunosensor integrated with bioreactor for continual monitoring of cell secreted biomarkers.

    Science.gov (United States)

    Riahi, Reza; Shaegh, Seyed Ali Mousavi; Ghaderi, Masoumeh; Zhang, Yu Shrike; Shin, Su Ryon; Aleman, Julio; Massa, Solange; Kim, Duckjin; Dokmeci, Mehmet Remzi; Khademhosseini, Ali

    2016-04-21

    There is an increasing interest in developing microfluidic bioreactors and organs-on-a-chip platforms combined with sensing capabilities for continual monitoring of cell-secreted biomarkers. Conventional approaches such as ELISA and mass spectroscopy cannot satisfy the needs of continual monitoring as they are labor-intensive and not easily integrable with low-volume bioreactors. This paper reports on the development of an automated microfluidic bead-based electrochemical immunosensor for in-line measurement of cell-secreted biomarkers. For the operation of the multi-use immunosensor, disposable magnetic microbeads were used to immobilize biomarker-recognition molecules. Microvalves were further integrated in the microfluidic immunosensor chip to achieve programmable operations of the immunoassay including bead loading and unloading, binding, washing, and electrochemical sensing. The platform allowed convenient integration of the immunosensor with liver-on-chips to carry out continual quantification of biomarkers secreted from hepatocytes. Transferrin and albumin productions were monitored during a 5-day hepatotoxicity assessment in which human primary hepatocytes cultured in the bioreactor were treated with acetaminophen. Taken together, our unique microfluidic immunosensor provides a new platform for in-line detection of biomarkers in low volumes and long-term in vitro assessments of cellular functions in microfluidic bioreactors and organs-on-chips.

  19. An automated microfluidic multiplexer for fast delivery of C. elegans populations from multiwells.

    Directory of Open Access Journals (Sweden)

    Navid Ghorashian

    Full Text Available Automated biosorter platforms, including recently developed microfluidic devices, enable and accelerate high-throughput and/or high-resolution bioassays on small animal models. However, time-consuming delivery of different organism populations to these systems introduces a major bottleneck to executing large-scale screens. Current population delivery strategies rely on suction from conventional well plates through tubing periodically exposed to air, leading to certain disadvantages: 1 bubble introduction to the sample, interfering with analysis in the downstream system, 2 substantial time drain from added bubble-cleaning steps, and 3 the need for complex mechanical systems to manipulate well plate position. To address these concerns, we developed a multiwell-format microfluidic platform that can deliver multiple distinct animal populations from on-chip wells using multiplexed valve control. This Population Delivery Chip could operate autonomously as part of a relatively simple setup that did not require any of the major mechanical moving parts typical of plate-handling systems to address a given well. We demonstrated automatic serial delivery of 16 distinct C. elegans worm populations to a single outlet without introducing any bubbles to the samples, causing cross-contamination, or damaging the animals. The device achieved delivery of more than 90% of the population preloaded into a given well in 4.7 seconds; an order of magnitude faster than delivery modalities in current use. This platform could potentially handle other similarly sized model organisms, such as zebrafish and drosophila larvae or cellular micro-colonies. The device's architecture and microchannel dimensions allow simple expansion for processing larger numbers of populations.

  20. Mass Spectrometry-Based Monitoring of Millisecond Protein-Ligand Binding Dynamics Using an Automated Microfluidic Platform

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Yongzheng; Katipamula, Shanta; Trader, Cameron D.; Orton, Daniel J.; Geng, Tao; Baker, Erin Shammel; Kelly, Ryan T.

    2016-03-24

    Characterizing protein-ligand binding dynamics is crucial for understanding protein function and developing new therapeutic agents. We have developed a novel microfluidic platform that features rapid mixing of protein and ligand solutions, variable incubation times, and on-chip electrospray ionization to perform label-free, solution-based monitoring of protein-ligand binding dynamics. This platform offers many advantages including automated processing, rapid mixing, and low sample consumption.

  1. Titania and alumina sol-gel-derived microfluidics enzymatic-reactors for peptide mapping: design, characterization, and performance.

    Science.gov (United States)

    Wu, Huiling; Tian, Yuping; Liu, Baohong; Lu, Haojie; Wang, Xiaoyan; Zhai, Jianjun; Jin, Hong; Yang, Pengyuang; Xu, Yunmin; Wang, Honghai

    2004-01-01

    The design and characterization of titania-based and alumina-based Poly(dimethylsiloxane) (PDMS) microfluidics enzymatic-reactors along with their analytical features in coupling with MALDI-TOF and ESI-MS were reported. Microfluidics with microchannel and stainless steel tubing (SST) were fabricated using PDMS casting and O(2)-plasma techniques, and were used for the preparation of an enzymatic-reactor. Plasma oxidation for the PDMS microfluidic system enabled the channel wall of the microfluidics to present a layer of silanol (SiOH) groups. These SiOH groups act as anchors onto the microchannel wall linked covalently with the hydroxyl groups of trypsin-encapsulated sol matrix. As a result, the trypsin-encapsulated gel matrix was anchored onto the wall of the microchannel, and the leakage of gel matrix from the microchannel was effectively prevented. A feature of the microfluidic enzymatic-reactors is the feasibility of performing on-line protein analysis by attached SST electrode and replaceable tip. The success of trypsin encapsulation was investigated by AFM imaging, assay of enzymatic activity, CE detection, and MALDI-TOF and ESI-MS analysis. The lab-made devices provide an excellent extent of digestion even at a fast flow rate of 7.0 microL/min, which affords the very short residence time of ca. 2 s. With the present device, the digestion time was significantly shortened compared to conventional tryptic reaction schemes. In addition, the encapsulated trypsin exhibits increased stability even after continuous use. These features are required for high-throughput protein identification.

  2. Automation of daphtoxkit-F biotest using a microfluidic lab-on-a-chip technology

    Science.gov (United States)

    Huang, Yushi; Nugegoda, Dayanthi; Wlodkowic, Donald

    2015-12-01

    An increased rigor in water quality monitoring is not only a legal requirement, but is also critical to ensure timely chemical hazard emergency responses and protection of human and animal health. Bioindication is a method that applies very sensitive living organisms to detect environmental changes using their natural responses. Although bioindicators do not deliver information on an exact type or intensity of toxicants present in water samples, they do provide an overall snapshot and early-warning information about presence of harmful and dangerous parameters. Despite the advantages of biotests performed on sentinel organisms, their wider application is limited by the nonexistence of high-throughput laboratory automation systems. As a result majority of biotests used in ecotoxicology require time-consuming and laborious manual procedures. In this work, we present development of a miniaturized Lab-on-a-Chip (LOC) platform for automation and enhancement of acute ecotoxicity test based on immobilization of a freshwater crustacean Daphnia magna (Daphtoxkit-FTM). Daphnids' immobilization in response to sudden changes in environment parameters is fast, unambiguous, and easy to record optically. We also for the first time demonstrate that LOC system enables studies of sub-lethal ecotoxic effects using behavioral responses of Daphnia magna as sentinels of water pollution. The system working principle incorporated a high definition (HD) time-resolved video data analysis to dynamically assess impact of the reference toxicant on swimming behavior of D. magna. Our system design combined: (i) microfluidic device for caging of Daphnia sp.; (ii) mechatronic interface for fluidic actuation; (iii) video data acquisition; and (iv) algorithms for animal movement tracking and analysis.

  3. Understanding the isothermal growth kinetics of cdse quantum dots through microfluidic reactor assisted combinatorial synthesis

    Science.gov (United States)

    Swain, Basudev; Hong, Myung Hwan; Kang, Lee-Seung; Lee, Chan Gi

    2016-11-01

    With the use of a microfluidic-assisted combinatorial reactor, the synthesis of CdSe quantum dots was optimized by varying one parameter at a time, and the isothermal growth kinetics of CdSe quantum dots using various models was analyzed. To understand precisely the nucleation and growth characteristics of CdSe quantum dots (QDs), we synthesized the CdSe QDs using various experimental conditions. Different model equations, like acceleratory growth-time curves, sigmoidal growth-time curves or Johnson-Mehl-Avrami-Kolmogorov (JMAK), acceleratory growthtime curves based on diffusion, geometric model growth-time curves, and nth order growth-time curves were fitted. Among all growth models, the JMAK model with α = 1 - {e^{ - {{(kt)}^n}}}, and n = 1 was the best fitting model with the MATLAB interactive curve-fitting procedure were used. Errors associated with the best-fitting model and statistics for the goodness of fit were analyzed. Most of the models were not as good as the other than the proposed model. The errors associated with the proposed model were minimal, and the growth kinetics and other associated statistical factors are very similar, for all the variables investigated. The minimal error associated with the reproducibility and the similar data for growth kinetics for all studied parameters indicated that microfluidic-assisted combinatorial synthesis can be used in the industrial production of QDs. By using the proposed model to obtain an understanding of growth of QDs, their size and properties can be managed and simulated.

  4. Novel budesonide particles for dry powder inhalation (DPI) prepared using a microfluidic reactor coupled with ultrasonic spray freeze drying.

    Science.gov (United States)

    Saboti, Denis; Maver, Uroš; Chan, Hak-Kim; Planinšek, Odon

    2017-03-09

    Budesonide is a potent active pharmaceutical ingredient, often administered using respiratory devices such as metered dose inhalers (MDI), nebulizers and dry powder inhalers (DPI). Inhalable drug particles are conventionally produced by crystallization followed by milling. This approach tends to generate partially amorphous materials that require post-processing to improve the formulations' stability. Other methods involve homogenization or precipitation and often require the use of stabilizers, mostly surfactants. The purpose of this study was therefore to develop a novel method for preparation of fine budesonide particles using a microfluidic reactor coupled with ultrasonic spray freeze drying, and hence avoiding the need of additional homogenization or stabilizer use. A T-junction microfluidic reactor was employed to produce particle suspension (using an ethanol-water, methanol-water and an acetone-water system), which was directly fed into an ultrasonic atomization probe, followed by direct feeding to liquid nitrogen. Freeze drying was the final preparation step. The result were fine crystalline budesonide powders which, when blended with lactose and dispersed in an Aerolizer at 100 L/min, generated fine particle fraction in the range 47.6±2.8% to 54.9±1.8%, thus exhibiting a good aerosol performance. Subsequent sample analysis confirmed the suitability of the developed method to produce inhalable drug particles without additional homogenization or stabilizers. The developed method provides a viable solution for particle isolation in microfluidics in general.

  5. Integrating Electrochemical Detection with Centrifugal Microfluidics for Real-Time and Fully Automated Sample Testing

    DEFF Research Database (Denmark)

    Andreasen, Sune Zoëga; Kwasny, Dorota; Amato, Letizia;

    2015-01-01

    Here we present a robust, stable and low-noise experimental set-up for performing electrochemical detection on a centrifugal microfluidic platform. By using a low-noise electronic component (electrical slip-ring) it is possible to achieve continuous, on-line monitoring of electrochemical experime......Here we present a robust, stable and low-noise experimental set-up for performing electrochemical detection on a centrifugal microfluidic platform. By using a low-noise electronic component (electrical slip-ring) it is possible to achieve continuous, on-line monitoring of electrochemical...

  6. Automated Forensic Animal Family Identification by Nested PCR and Melt Curve Analysis on an Off-the-Shelf Thermocycler Augmented with a Centrifugal Microfluidic Disk Segment.

    Science.gov (United States)

    Keller, Mark; Naue, Jana; Zengerle, Roland; von Stetten, Felix; Schmidt, Ulrike

    2015-01-01

    Nested PCR remains a labor-intensive and error-prone biomolecular analysis. Laboratory workflow automation by precise control of minute liquid volumes in centrifugal microfluidic Lab-on-a-Chip systems holds great potential for such applications. However, the majority of these systems require costly custom-made processing devices. Our idea is to augment a standard laboratory device, here a centrifugal real-time PCR thermocycler, with inbuilt liquid handling capabilities for automation. We have developed a microfluidic disk segment enabling an automated nested real-time PCR assay for identification of common European animal groups adapted to forensic standards. For the first time we utilize a novel combination of fluidic elements, including pre-storage of reagents, to automate the assay at constant rotational frequency of an off-the-shelf thermocycler. It provides a universal duplex pre-amplification of short fragments of the mitochondrial 12S rRNA and cytochrome b genes, animal-group-specific main-amplifications, and melting curve analysis for differentiation. The system was characterized with respect to assay sensitivity, specificity, risk of cross-contamination, and detection of minor components in mixtures. 92.2% of the performed tests were recognized as fluidically failure-free sample handling and used for evaluation. Altogether, augmentation of the standard real-time thermocycler with a self-contained centrifugal microfluidic disk segment resulted in an accelerated and automated analysis reducing hands-on time, and circumventing the risk of contamination associated with regular nested PCR protocols.

  7. Bioreactor process monitoring using an automated microfluidic platform for cell-based assays

    DEFF Research Database (Denmark)

    Rodrigues de Sousa Nunes, Pedro André; Kjaerulff, S.; Dufva, Martin

    2015-01-01

    We report on a novel microfluidic system designed to monitor in real-time the concentration of live and dead cells in industrial cell production. Custom-made stepper motor actuated peristaltic pumps and valves, fluidic interconnections, sample-to-waste liquid management and image cytometry...

  8. Sequential operation droplet array: an automated microfluidic platform for picoliter-scale liquid handling, analysis, and screening.

    Science.gov (United States)

    Zhu, Ying; Zhang, Yun-Xia; Cai, Long-Fei; Fang, Qun

    2013-07-16

    This contribution describes a sequential operation droplet array (SODA) system, a fully automated droplet-based microfluidic system capable of performing picoliter-scale liquid manipulation, analysis, and screening. The SODA system was built using a tapered capillary-syringe pump module and a two-dimensional (2D) oil-covered droplet array installed on an x-y-z translation stage. With the system, we developed a novel picoliter-scale droplet depositing technique for forming a 2D picoliter-droplet array. On this basis, an automated droplet manipulation method with picoliter precision was established using the programmable combination of the capillary-based liquid aspirating-depositing and the moving of the oil-covered droplet array, the so-called "aspirating-depositing-moving" (ADM) method. Differing from the previously reported droplet systems based on microchips, microcapillaries, or digital microfluidics, this method can achieve complete and flexible droplet manipulations, including droplet assembling, generation, indexing, transferring, splitting, and fusion in the picoliter range, endowing the present system with ultralow sample/reagent consumptions and substantial versatility in analysis and screening for multiple different samples. To demonstrate its feasibility and versatility, we applied the SODA system in multiple experiments required in drug screening, including the screening of inhibitors for capases-1 from a chemical library, the measurement of IC50 values for the identified inhibitors, and the screening of the synergistic effect of multiple inhibitors. In the experiments, the consumptions of samples and reagents are only 60-180 pL for each droplet microreactor, which are commonly 3-5 orders of magnitude lower than those of conventional multiwell plate systems, and 1-2 orders of magnitude lower than other droplet-based microfluidic systems for multiple sample screening. The ability of the SODA system in performing complicated and multistep droplet

  9. Microfluidic reactors for the morphology controlled synthesis and photocatalytic study of ZnO nanostructures

    Science.gov (United States)

    Baruah, Arabinda; Jindal, Amandeep; Acharya, Chhayakanta; Prakash, Bhanu; Basu, Suddhasatwa; Ganguli, Ashok Kumar

    2017-03-01

    Facile surfactant-free microfluidic synthesis of zinc oxide (ZnO) nanostructures with varying morphology (spindles, sheets and spheres) has been achieved using polydimethylsiloxane microreactors having different channel geometry. Synthesized ZnO nanostructures show excellent photocatalytic dye degradation efficiency (>80%) when investigated using fixed bed photocatalytic microreactors under UV radiation.

  10. INITIATORS AND TRIGGERING CONDITIONS FOR ADAPTIVE AUTOMATION IN ADVANCED SMALL MODULAR REACTORS

    Energy Technology Data Exchange (ETDEWEB)

    Katya L Le Blanc; Johanna h Oxstrand

    2014-04-01

    It is anticipated that Advanced Small Modular Reactors (AdvSMRs) will employ high degrees of automation. High levels of automation can enhance system performance, but often at the cost of reduced human performance. Automation can lead to human out-of the loop issues, unbalanced workload, complacency, and other problems if it is not designed properly. Researchers have proposed adaptive automation (defined as dynamic or flexible allocation of functions) as a way to get the benefits of higher levels of automation without the human performance costs. Adaptive automation has the potential to balance operator workload and enhance operator situation awareness by allocating functions to the operators in a way that is sensitive to overall workload and capabilities at the time of operation. However, there still a number of questions regarding how to effectively design adaptive automation to achieve that potential. One of those questions is related to how to initiate (or trigger) a shift in automation in order to provide maximal sensitivity to operator needs without introducing undesirable consequences (such as unpredictable mode changes). Several triggering mechanisms for shifts in adaptive automation have been proposed including: operator initiated, critical events, performance-based, physiological measurement, model-based, and hybrid methods. As part of a larger project to develop design guidance for human-automation collaboration in AdvSMRs, researchers at Idaho National Laboratory have investigated the effectiveness and applicability of each of these triggering mechanisms in the context of AdvSMR. Researchers reviewed the empirical literature on adaptive automation and assessed each triggering mechanism based on the human-system performance consequences of employing that mechanism. Researchers also assessed the practicality and feasibility of using the mechanism in the context of an AdvSMR control room. Results indicate that there are tradeoffs associated with each

  11. Development of an enzymatic reactor applying spontaneously adsorbed trypsin on the surface of a PDMS microfluidic device.

    Science.gov (United States)

    Kecskemeti, Adam; Bako, Jozsef; Csarnovics, Istvan; Csosz, Eva; Gaspar, Attila

    2017-03-15

    Herein, a microfluidic device (MD) containing immobilized trypsin for rapid and efficient proteolysis was described. Trypsin was immobilized via non-specific protein adsorption onto the hydrophobic poly(dimethylsiloxane) (PDMS) channel wall of the MD. Peptide mapping of bovine serum albumin (BSA) samples was carried out to estimate the stability of trypsin adsorbed on PDMS surface. Peptide maps of BSA samples were obtained by capillary zone electrophoresis (CZE), the RSD% for migration times were under 1%. Several proteins (hemoglobin, myoglobin, lysozyme, and BSA) in a wide molecular size range (15-70 kDa) were digested efficiently with ∼50 s contact time. The number of separated peaks correlated well with the expected number of peptides formed in the complete tryptic digestion of the proteins. Peptide mass fingerprinting of BSA and human serum was carried out. Trypsin retained its activity for 2 h; within this period, the MD can be used for multiple digestions. The main properties of this device are simple channel pattern, simple immobilization procedure, regenerability, and disposability; all these features make this MD one of the simplest yet applicable enzymatic microreactors. Graphical abstract Development of microfluidic device including a serpentine channel as an enzyme reactor for protein digestion.

  12. Microfluidic Flow-Through Reactor with Electrochemical Sensor Array for Real-Time Pcr

    Science.gov (United States)

    Teh, Huey-Fang; Ramalingam, Naveen; Gong, Hai-Qing; Tan, Swee-Ngin

    We developed an integrated microfluidic flow-through EC-PCR (EC-PCR) microdevice for the concurrent DNA amplification, PCR products EC detection and PCR products quantification instead of the current available fluorescence detection scheme. The microfluidic flow-through EC-PCR microdevice was fabricated with the state-of-the-art microfabrication technology, by bonding a bottom glass substrate having a microelectrode array to a top glass cover having the microchannels made of PDMS material. Both the amplification of the target DNA sequence and the subsequent EC detection of the PCR products were carried out concurrently on the integrated device by real-time monitoring. The underlying principle of the microfluidic flow-through EC-PCR method was based on the changes of current signal of methylene blue (MB), which worked as an electrochemically active species DNA intercalator in the PCR mixture, during the amplification process at the extension phase. The results shown in this work indicated that the nucleic acid analysis could be performed in a fast thermal cycling and true real-time quantitative electrochemical detection. The signal variation trends of the EC detection and the fluorescence detection were the same in our verification measurements for both methods, which suggested that the EC detection method was feasible for this application.

  13. Automated Forensic Animal Family Identification by Nested PCR and Melt Curve Analysis on an Off-the-Shelf Thermocycler Augmented with a Centrifugal Microfluidic Disk Segment.

    Directory of Open Access Journals (Sweden)

    Mark Keller

    Full Text Available Nested PCR remains a labor-intensive and error-prone biomolecular analysis. Laboratory workflow automation by precise control of minute liquid volumes in centrifugal microfluidic Lab-on-a-Chip systems holds great potential for such applications. However, the majority of these systems require costly custom-made processing devices. Our idea is to augment a standard laboratory device, here a centrifugal real-time PCR thermocycler, with inbuilt liquid handling capabilities for automation. We have developed a microfluidic disk segment enabling an automated nested real-time PCR assay for identification of common European animal groups adapted to forensic standards. For the first time we utilize a novel combination of fluidic elements, including pre-storage of reagents, to automate the assay at constant rotational frequency of an off-the-shelf thermocycler. It provides a universal duplex pre-amplification of short fragments of the mitochondrial 12S rRNA and cytochrome b genes, animal-group-specific main-amplifications, and melting curve analysis for differentiation. The system was characterized with respect to assay sensitivity, specificity, risk of cross-contamination, and detection of minor components in mixtures. 92.2% of the performed tests were recognized as fluidically failure-free sample handling and used for evaluation. Altogether, augmentation of the standard real-time thermocycler with a self-contained centrifugal microfluidic disk segment resulted in an accelerated and automated analysis reducing hands-on time, and circumventing the risk of contamination associated with regular nested PCR protocols.

  14. Microfluidic Manufacturing of Polymeric Nanoparticles: Comparing Flow Control of Multiscale Structure in Single-Phase Staggered Herringbone and Two-Phase Reactors.

    Science.gov (United States)

    Xu, Zheqi; Lu, Changhai; Riordon, Jason; Sinton, David; Moffitt, Matthew G

    2016-12-06

    We compare the microfluidic manufacturing of polycaprolactone-block-poly(ethylene oxide) (PCL-b-PEO) nanoparticles (NPs) in a single-phase staggered herringbone (SHB) mixer and in a two-phase gas-liquid segmented mixer. NPs generated from two different copolymer compositions in both reactors and at three different flow rates, along with NPs generated using a conventional bulk method, are compared with respect to morphologies, dimensions, and internal crystallinities. Our work, the first direct comparison between alternate microfluidic NP synthesis methods, shows three key findings: (i) NP morphologies and dimensions produced in the bulk are different from those produced in a microfluidic mixer, whereas NP crystallinities produced in the bulk and in the SHB mixer are similar; (ii) NP morphologies, dimensions, and crystallinities produced in the single-phase SHB and two-phase mixers at the lowest flow rate are similar; and (iii) NP morphologies, dimensions, and crystallinities change with flow rate in the two-phase mixer but not in the single-phase SHB mixer. These findings provide new insights into the relative roles of mixing and shear in the formation and flow-directed processing of polymeric NPs in microfluidics, informing future reactor designs for manufacturing NPs of low polydispersity and controlled multiscale structure and function.

  15. Elimination of water pathogens with solar radiation using an automated sequential batch CPC reactor

    Energy Technology Data Exchange (ETDEWEB)

    Polo-Lopez, M.I., E-mail: mpolo@psa.es [Plataforma Solar de Almeria - CIEMAT, PO Box 22, 04200 Tabernas, Almeria (Spain); Fernandez-Ibanez, P., E-mail: pilar.fernandez@psa.es [Plataforma Solar de Almeria - CIEMAT, PO Box 22, 04200 Tabernas, Almeria (Spain); Ubomba-Jaswa, E., E-mail: euniceubombajaswa@yahoo.com [Natural Resources and the Environment, CSIR, PO Box 395, Pretoria (South Africa); Navntoft, C., E-mail: christian.navntoft@solarmate.com.ar [Instituto de Investigacion e Ingenieria Ambiental, Universidad Nacional de San Martin (3iA-UNSAM), Peatonal Belgrano 3563, B1650ANQ San Martin (Argentina); Universidad Tecnologica Nacional - Facultad Regional Buenos Aires - Departamento de Ingenieria Civil - Laboratorio de Estudios sobre Energia Solar, (UTN-FRBA-LESES), Mozart 2300, (1407) Ciudad Autonoma de Buenos Aires, Republica Argentina (Argentina); Garcia-Fernandez, I., E-mail: irene.garcia@psa.es [Plataforma Solar de Almeria - CIEMAT, PO Box 22, 04200 Tabernas, Almeria (Spain); Dunlop, P.S.M., E-mail: psm.dunlop@ulster.ac.uk [Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2 (Ireland); Schmid, M. [Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2 (Ireland); Byrne, J.A., E-mail: j.byrne@ulster.ac.uk [Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2 (Ireland); and others

    2011-11-30

    Solar disinfection (SODIS) of water is a well-known, effective treatment process which is practiced at household level in many developing countries. However, this process is limited by the small volume treated and there is no indication of treatment efficacy for the user. Low cost glass tube reactors, together with compound parabolic collector (CPC) technology, have been shown to significantly increase the efficiency of solar disinfection. However, these reactors still require user input to control each batch SODIS process and there is no feedback that the process is complete. Automatic operation of the batch SODIS process, controlled by UVA-radiation sensors, can provide information on the status of the process, can ensure the required UVA dose to achieve complete disinfection is received and reduces user work-load through automatic sequential batch processing. In this work, an enhanced CPC photo-reactor with a concentration factor of 1.89 was developed. The apparatus was automated to achieve exposure to a pre-determined UVA dose. Treated water was automatically dispensed into a reservoir tank. The reactor was tested using Escherichia coli as a model pathogen in natural well water. A 6-log inactivation of E. coli was achieved following exposure to the minimum uninterrupted lethal UVA dose. The enhanced reactor decreased the exposure time required to achieve the lethal UVA dose, in comparison to a CPC system with a concentration factor of 1.0. Doubling the lethal UVA dose prevented the need for a period of post-exposure dark inactivation and reduced the overall treatment time. Using this reactor, SODIS can be automatically carried out at an affordable cost, with reduced exposure time and minimal user input.

  16. Elimination of water pathogens with solar radiation using an automated sequential batch CPC reactor.

    Science.gov (United States)

    Polo-López, M I; Fernández-Ibáñez, P; Ubomba-Jaswa, E; Navntoft, C; García-Fernández, I; Dunlop, P S M; Schmid, M; Byrne, J A; McGuigan, K G

    2011-11-30

    Solar disinfection (SODIS) of water is a well-known, effective treatment process which is practiced at household level in many developing countries. However, this process is limited by the small volume treated and there is no indication of treatment efficacy for the user. Low cost glass tube reactors, together with compound parabolic collector (CPC) technology, have been shown to significantly increase the efficiency of solar disinfection. However, these reactors still require user input to control each batch SODIS process and there is no feedback that the process is complete. Automatic operation of the batch SODIS process, controlled by UVA-radiation sensors, can provide information on the status of the process, can ensure the required UVA dose to achieve complete disinfection is received and reduces user work-load through automatic sequential batch processing. In this work, an enhanced CPC photo-reactor with a concentration factor of 1.89 was developed. The apparatus was automated to achieve exposure to a pre-determined UVA dose. Treated water was automatically dispensed into a reservoir tank. The reactor was tested using Escherichia coli as a model pathogen in natural well water. A 6-log inactivation of E. coli was achieved following exposure to the minimum uninterrupted lethal UVA dose. The enhanced reactor decreased the exposure time required to achieve the lethal UVA dose, in comparison to a CPC system with a concentration factor of 1.0. Doubling the lethal UVA dose prevented the need for a period of post-exposure dark inactivation and reduced the overall treatment time. Using this reactor, SODIS can be automatically carried out at an affordable cost, with reduced exposure time and minimal user input.

  17. Development of an Automated and Sensitive Microfluidic Device for Capturing and Characterizing Circulating Tumor Cells (CTCs from Clinical Blood Samples.

    Directory of Open Access Journals (Sweden)

    Priya Gogoi

    Full Text Available Current analysis of circulating tumor cells (CTCs is hindered by sub-optimal sensitivity and specificity of devices or assays as well as lack of capability of characterization of CTCs with clinical biomarkers. Here, we validate a novel technology to enrich and characterize CTCs from blood samples of patients with metastatic breast, prostate and colorectal cancers using a microfluidic chip which is processed by using an automated staining and scanning system from sample preparation to image processing. The Celsee system allowed for the detection of CTCs with apparent high sensitivity and specificity (94% sensitivity and 100% specificity. Moreover, the system facilitated rapid capture of CTCs from blood samples and also allowed for downstream characterization of the captured cells by immunohistochemistry, DNA and mRNA fluorescence in-situ hybridization (FISH. In a subset of patients with prostate cancer we compared the technology with a FDA-approved CTC device, CellSearch and found a higher degree of sensitivity with the Celsee instrument. In conclusion, the integrated Celsee system represents a promising CTC technology for enumeration and molecular characterization.

  18. Selective synthesis of human milk fat-style structured triglycerides from microalgal oil in a microfluidic reactor packed with immobilized lipase.

    Science.gov (United States)

    Wang, Jun; Liu, Xi; Wang, Xu-Dong; Dong, Tao; Zhao, Xing-Yu; Zhu, Dan; Mei, Yi-Yuan; Wu, Guo-Hua

    2016-11-01

    Human milk fat-style structured triacylglycerols were produced from microalgal oil in a continuous microfluidic reactor packed with immobilized lipase for the first time. A remarkably high conversion efficiency was demonstrated in the microreactor with reaction time being reduced by 8 times, Michaelis constant decreased 10 times, the lipase reuse times increased 2.25-fold compared to those in a batch reactor. In addition, the content of palmitic acid at sn-2 position (89.0%) and polyunsaturated fatty acids at sn-1, 3 positions (81.3%) are slightly improved compared to the product in a batch reactor. The increase of melting points (1.7°C) and decrease of crystallizing point (3°C) implied higher quality product was produced using the microfluidic technology. The main cost can be reduced from $212.3 to $14.6 per batch with the microreactor. Overall, the microfluidic bioconversion technology is promising for modified functional lipids production allowing for cost-effective approach to produce high-value microalgal coproducts.

  19. High-throughput automated microfluidic sample preparation for accurate microbial genomics

    Science.gov (United States)

    Kim, Soohong; De Jonghe, Joachim; Kulesa, Anthony B.; Feldman, David; Vatanen, Tommi; Bhattacharyya, Roby P.; Berdy, Brittany; Gomez, James; Nolan, Jill; Epstein, Slava; Blainey, Paul C.

    2017-01-01

    Low-cost shotgun DNA sequencing is transforming the microbial sciences. Sequencing instruments are so effective that sample preparation is now the key limiting factor. Here, we introduce a microfluidic sample preparation platform that integrates the key steps in cells to sequence library sample preparation for up to 96 samples and reduces DNA input requirements 100-fold while maintaining or improving data quality. The general-purpose microarchitecture we demonstrate supports workflows with arbitrary numbers of reaction and clean-up or capture steps. By reducing the sample quantity requirements, we enabled low-input (∼10,000 cells) whole-genome shotgun (WGS) sequencing of Mycobacterium tuberculosis and soil micro-colonies with superior results. We also leveraged the enhanced throughput to sequence ∼400 clinical Pseudomonas aeruginosa libraries and demonstrate excellent single-nucleotide polymorphism detection performance that explained phenotypically observed antibiotic resistance. Fully-integrated lab-on-chip sample preparation overcomes technical barriers to enable broader deployment of genomics across many basic research and translational applications. PMID:28128213

  20. A robotics platform for automated batch fabrication of high density, microfluidics-based DNA microarrays, with applications to single cell, multiplex assays of secreted proteins.

    Science.gov (United States)

    Ahmad, Habib; Sutherland, Alex; Shin, Young Shik; Hwang, Kiwook; Qin, Lidong; Krom, Russell-John; Heath, James R

    2011-09-01

    Microfluidics flow-patterning has been utilized for the construction of chip-scale miniaturized DNA and protein barcode arrays. Such arrays have been used for specific clinical and fundamental investigations in which many proteins are assayed from single cells or other small sample sizes. However, flow-patterned arrays are hand-prepared, and so are impractical for broad applications. We describe an integrated robotics/microfluidics platform for the automated preparation of such arrays, and we apply it to the batch fabrication of up to eighteen chips of flow-patterned DNA barcodes. The resulting substrates are comparable in quality with hand-made arrays and exhibit excellent substrate-to-substrate consistency. We demonstrate the utility and reproducibility of robotics-patterned barcodes by utilizing two flow-patterned chips for highly parallel assays of a panel of secreted proteins from single macrophage cells.

  1. Computational Fluid Dynamics at work - Design and Optimization of Microfluidic Applications

    DEFF Research Database (Denmark)

    Krühne, Ulrich; Bodla, Vijaya Krishna; Møllenbach, Jacob

    2012-01-01

    Computational Fluid Dynamics (CFD) is presented as a powerful tool to support design and optimization of microfluidic reactors. This is demonstrated by means of three case studies. First a three-dimensional scaffold for tissue engineering purposes is investigated using a combination of CFD...... and a simple biological model. The result is a suggestion of an improved geometry design. In the second case study a microfluidic cartridge of a novel automated in vitro fertilization device is presented, where the CFD model has supported the fluidic design of the microfluidic network in which the stem cells...... are grown. In the last case study a biocatalytic microfluidic reactor design is presented in which the material characteristics of substrates and products of the catalytic reaction can be investigated. As model system the transaminase catalyzed formation of methylbenzylamine (MBA) from acetophenone...

  2. A cyclic-olefin-copolymer microfluidic immobilized-enzyme reactor for rapid digestion of proteins from dried blood spots.

    Science.gov (United States)

    Wouters, Bert; Dapic, Irena; Valkenburg, Thalassa S E; Wouters, Sam; Niezen, Leon; Eeltink, Sebastiaan; Corthals, Garry L; Schoenmakers, Peter J

    2017-03-31

    A critical step in the bottom-up characterization of proteomes is the conversion of proteins to peptides, by means of endoprotease digestion. Nowadays this method typically uses overnight digestion and as such represents a considerable bottleneck for high-throughput analysis. This report describes protein digestion using an immobilized-enzyme reactor (IMER), which enables accelerated digestion times that are completed within seconds to minutes. For rapid digestion to occur, a cyclic-olefin-copolymer microfluidic reactor was constructed containing trypsin immobilized on a polymer monolithic material through a 2-vinyl-4,4-dimethylazlactone linker. The IMER was applied for the rapid offline digestion of both singular protein standards and a complex protein mixture prior to liquid chromatography-electrospray ionisation-tandem mass spectrometry (LC-ESI-MS/MS) analysis. The effects of protein concentration and residence time in the IMER were assessed for protein standards of varying molecular weight between 11 and 240kDa. Compared to traditional in-solution digestion, IMER-facilitated protein digestion at room temperature for 5min yielded similar results in terms of sequence coverage and number of identified peptides. Good repeatability was demonstrated with a relative standard deviation of 6% for protein-sequence coverage. The potential of the IMER was also demonstrated for a complex protein mixture in the analysis of dried blood spots. Compared to a traditional workflow a similar number of proteins could be identified, while reducing the total analysis time from 22.5h to 4h and importantly omitting the sample-pre-treatment steps (denaturation, reduction, and alkylation). The identified proteins from two workflows showed similar distributions in terms of molecular weight and hydrophobic character.

  3. Reactors

    CERN Document Server

    International Electrotechnical Commission. Geneva

    1988-01-01

    This standard applies to the following types of reactors: shunt reactors, current-limiting reactors including neutral-earthing reactors, damping reactors, tuning (filter) reactors, earthing transformers (neutral couplers), arc-suppression reactors, smoothing reactors, with the exception of the following reactors: small reactors with a rating generally less than 2 kvar single-phase and 10 kvar three-phase, reactors for special purposes such as high-frequency line traps or reactors mounted on rolling stock.

  4. Effects of Levels of Automation for Advanced Small Modular Reactors: Impacts on Performance, Workload, and Situation Awareness

    Energy Technology Data Exchange (ETDEWEB)

    Johanna Oxstrand; Katya Le Blanc

    2014-07-01

    The Human-Automation Collaboration (HAC) research effort is a part of the Department of Energy (DOE) sponsored Advanced Small Modular Reactor (AdvSMR) program conducted at Idaho National Laboratory (INL). The DOE AdvSMR program focuses on plant design and management, reduction of capital costs as well as plant operations and maintenance costs (O&M), and factory production costs benefits.

  5. Automated microfluidic sample-preparation platform for high-throughput structural investigation of proteins by small-angle X-ray scattering

    DEFF Research Database (Denmark)

    Lafleur, Josiane P.; Snakenborg, Detlef; Nielsen, Søren Skou

    2011-01-01

    A new microfluidic sample-preparation system is presented for the structural investigation of proteins using small-angle X-ray scattering (SAXS) at synchrotrons. The system includes hardware and software features for precise fluidic control, sample mixing by diffusion, automated X-ray exposure...... control, UV absorbance measurements and automated data analysis. As little as 15 l of sample is required to perform a complete analysis cycle, including sample mixing, SAXS measurement, continuous UV absorbance measurements, and cleaning of the channels and X-ray cell with buffer. The complete analysis...... cycle can be performed in less than 3 min. Bovine serum albumin was used as a model protein to characterize the mixing efficiency and sample consumption of the system. The N2 fragment of an adaptor protein (p120-RasGAP) was used to demonstrate how the device can be used to survey the structural space...

  6. Automated thermochemolysis reactor for detection of Bacillus anthracis endospores by gas chromatography–mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dan [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Rands, Anthony D.; Losee, Scott C. [Torion Technologies, American Fork, UT 84003 (United States); Holt, Brian C. [Department of Statistics, Brigham Young University, Provo, UT 84602 (United States); Williams, John R. [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States); Lammert, Stephen A. [Torion Technologies, American Fork, UT 84003 (United States); Robison, Richard A. [Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602 (United States); Tolley, H. Dennis [Department of Statistics, Brigham Young University, Provo, UT 84602 (United States); Lee, Milton L., E-mail: milton_lee@byu.edu [Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602 (United States)

    2013-05-02

    Graphical abstract: -- Highlights: •An automated sample preparation system for Bacillus anthracis endospores was developed. •A thermochemolysis method was applied to produce and derivatize biomarkers for Bacillus anthracis detection. •The autoreactor controlled the precise delivery of reagents, and TCM reaction times and temperatures. •Solid phase microextraction was used to extract biomarkers, and GC–MS was used for final identification. •This autoreactor was successfully applied to the identification of Bacillus anthracis endospores. -- Abstract: An automated sample preparation system was developed and tested for the rapid detection of Bacillus anthracis endospores by gas chromatography–mass spectrometry (GC–MS) for eventual use in the field. This reactor is capable of automatically processing suspected bio-threat agents to release and derivatize unique chemical biomarkers by thermochemolysis (TCM). The system automatically controls the movement of sample vials from one position to another, crimping of septum caps onto the vials, precise delivery of reagents, and TCM reaction times and temperatures. The specific operations of introduction of sample vials, solid phase microextraction (SPME) sampling, injection into the GC–MS system, and ejection of used vials from the system were performed manually in this study, although they can be integrated into the automated system. Manual SPME sampling is performed by following visual and audible signal prompts for inserting the fiber into and retracting it from the sampling port. A rotating carousel design allows for simultaneous sample collection, reaction, biomarker extraction and analysis of sequential samples. Dipicolinic acid methyl ester (DPAME), 3-methyl-2-butenoic acid methyl ester (a fragment of anthrose) and two methylated sugars were used to compare the performance of the autoreactor with manual TCM. Statistical algorithms were used to construct reliable bacterial endospore signatures, and 24

  7. Evaluation of microfluidics reactor technology on the kinetics of virus inactivation.

    Science.gov (United States)

    Bailey, Mark R; Chen, Dayue; Emery, Warren R; Lambooy, Peter K; Nolting, Juliana; Quertinmont, Michelle T; Shamlou, Parviz A

    2008-04-15

    Mammalian cell lines constitute an important part in the manufacture of therapeutic proteins. However, their susceptibility to virus contamination is a potential risk to patient safety and productivity, and has led to the development of a repertoire of virus inactivation techniques. From a process development viewpoint, the challenge is to demonstrate the required log reduction in virus content without a significant loss in product titer or quality. The balance between the two is dictated by the kinetics of virus inactivation and protein degradation, both of which are critically affected by process parameters. In this study we describe a commercially available microchannel reactor (MCR) and demonstrate how it can be used to evaluate the impact of temperature on the kinetics of virus inactivation and protein product degradation. Virus spiking experiments are reported using Xenotropic Murine Leukemia Virus and REOvirus, into buffers in the absence and presence of a therapeutic protein currently under development at Lilly. The results demonstrate that the MCR is an ideal platform for evaluation of fast reactive systems and reactions that are particularly sensitive to small changes to process conditions. These conditions include heat inactivation of a virus in a mammalian cell culture process stream used in the manufacture of therapeutic proteins and antibodies.

  8. Microfluidic photoelectrocatalytic reactors for water purification with an integrated visible-light source.

    Science.gov (United States)

    Wang, Ning; Zhang, Xuming; Chen, Bolei; Song, Wuzhou; Chan, Ngai Yui; Chan, Helen L W

    2012-10-21

    This paper reports experimental studies using the photoelectrocatalytic effect to eliminate a fundamental limit of photocatalysis - the recombination of photo-excited electrons and holes. The fabricated reactor has a planar reaction chamber (10 × 10 × 0.1 mm(3)), formed by a blank indium tin oxide glass slide, an epoxy spacer and a BiVO(4)-coated indium tin oxide glass substrate. A blue light-emitting diode panel (emission area 10 × 10 mm(2)) is mounted on the cover for uniform illumination of the reaction chamber. In the experiment, positive and negative bias potentials were applied across the reaction chamber to suppress the electron/hole recombination and to select either the hole-driven or electron-driven oxidation pathway. The negative bias always exhibits higher performance. It is observed that under -1.8 V the degradation rate is independent of the residence time, showing that the accompanying electrolysis can solve the oxygen deficiency problem. The synergistic effect of photocatalysis and electrocatalysis is observed to reach its maximum under the bias potential of ± 1.5 V. The photoelectrocatalytic microreactor shows high stability and may be scaled up for high-performance water purification.

  9. The on-line synthesis of enzyme functionalized silica nanoparticles in a microfluidic reactor using polyethylenimine polymer and R5 peptide

    Energy Technology Data Exchange (ETDEWEB)

    He Ping; Greenway, Gillian; Haswell, Stephen J [Department of Chemistry, University of Hull, Hull HU6 7RX (United Kingdom)], E-mail: s.j.haswell@hull.ac.uk

    2008-08-06

    A simple microfluidic reactor system is described for the effective synthesis of enzyme functionalized nanoparticles which offers many advantages over batch reactions, including excellent enzyme efficiencies. Better control of the process parameters in the microfluidic reactor system over batch based methodology enables the production of silica nanoparticles with the optimum size for efficient enzyme immobilization with long-term stability. The synthetic approach is demonstrated with glucose oxidase (GOD) and two different nucleation catalysts of similar molecular mass: the natural R5 peptide, and polyethylenimine (PEI) polymer. Near-quantitative immobilization of GOD in the nanoparticles is obtained using PEI; the immobilization is attributed to electrostatic interaction between PEI and GOD. This interaction, however, limits the mobility of the immobilized enzyme, producing orientation hindrance of the enzyme's active sites as compared to free GOD in solution. In contrast, when the GOD is immobilized inside the silica nanoparticles using R5, lower enzyme immobilization efficiencies are obtained compared to using PEI polymers; however, similar Michaelis-Menten kinetic parameters (i.e. Michaelis constant and turnover number) to those of free GOD are observed. Reactions were monitored in situ using simple, rapid, separation-free amperometric detection.

  10. The on-line synthesis of enzyme functionalized silica nanoparticles in a microfluidic reactor using polyethylenimine polymer and R5 peptide.

    Science.gov (United States)

    He, Ping; Greenway, Gillian; Haswell, Stephen J

    2008-08-06

    A simple microfluidic reactor system is described for the effective synthesis of enzyme functionalized nanoparticles which offers many advantages over batch reactions, including excellent enzyme efficiencies. Better control of the process parameters in the microfluidic reactor system over batch based methodology enables the production of silica nanoparticles with the optimum size for efficient enzyme immobilization with long-term stability. The synthetic approach is demonstrated with glucose oxidase (GOD) and two different nucleation catalysts of similar molecular mass: the natural R5 peptide, and polyethylenimine (PEI) polymer. Near-quantitative immobilization of GOD in the nanoparticles is obtained using PEI; the immobilization is attributed to electrostatic interaction between PEI and GOD. This interaction, however, limits the mobility of the immobilized enzyme, producing orientation hindrance of the enzyme's active sites as compared to free GOD in solution. In contrast, when the GOD is immobilized inside the silica nanoparticles using R5, lower enzyme immobilization efficiencies are obtained compared to using PEI polymers; however, similar Michaelis-Menten kinetic parameters (i.e. Michaelis constant and turnover number) to those of free GOD are observed. Reactions were monitored in situ using simple, rapid, separation-free amperometric detection.

  11. Semi-automated bacterial spore detection system with micro-fluidic chips for aerosol collection, spore treatment and ICAN DNA detection.

    Science.gov (United States)

    Inami, Hisao; Tsuge, Kouichiro; Matsuzawa, Mitsuhiro; Sasaki, Yasuhiko; Togashi, Shigenori; Komano, Asuka; Seto, Yasuo

    2009-07-15

    A semi-automated bacterial spore detection system (BSDS) was developed to detect biological threat agents (e.g., Bacillus anthracis) on-site. The system comprised an aerosol sampler, micro-fluidic chip-A (for spore germination and cell lysis), micro-fluidic chip-B (for extraction and detection of genomic DNA) and an analyzer. An aerosol with bacterial spores was first collected in the collection chamber of chip-A with a velocity of 300 l/min, and the chip-A was taken off from the aerosol sampler and loaded into the analyzer. Reagents packaged in the chip-A were sequentially applied into the chamber. The genomic DNA extract from spore lyzate was manually transferred from chip-A to chip-B and loaded into the analyzer. Genomic DNA in chip-B was first trapped on a glass bead column, washed with various reagents, and eluted to the detection chamber by sequential auto-dispensing. Isothermal and chimeric primer-initiated amplification of nucleic acids (ICAN) with fluorescent measurement was adopted to amplify and detect target DNA. Bacillus subtilis was the stimulant of biological warfare agent in this experiment. Pretreatment conditions were optimized by examining bacterial target DNA recovery in the respective steps (aerosol collection, spore germination, cell lysis, and DNA extraction), by an off-chip experiment using a real-time polymerase chain reaction quantification method. Without the germination step, B. subtilis spores did not demonstrate amplification of target DNA. The detection of 10(4) spores was achieved within 2h throughout the micro-fluidic process.

  12. Enzyme Kinetics by Directly Imaging a Porous Silicon Microfluidic Reactor Using Desorption/Ionization on Silicon Mass Spectrometry

    NARCIS (Netherlands)

    Nichols, Kevin P.; Azoz, Seyla; Gardeniers, Han J.G.E.

    2008-01-01

    Enzyme kinetics were obtained in a porous silicon microfluidic channel by combining an enzyme and substrate droplet, allowing them to react and deposit a small amount of residue on the channel walls, and then analyzing this residue by directly ionizing the channel walls using a matrix assisted laser

  13. Microfluidics in inorganic chemistry.

    Science.gov (United States)

    Abou-Hassan, Ali; Sandre, Olivier; Cabuil, Valérie

    2010-08-23

    The application of microfluidics in chemistry has gained significant importance in the recent years. Miniaturized chemistry platforms provide controlled fluid transport, rapid chemical reactions, and cost-saving advantages over conventional reactors. The advantages of microfluidics have been clearly established in the field of analytical and bioanalytical sciences and in the field of organic synthesis. It is less true in the field of inorganic chemistry and materials science; however in inorganic chemistry it has mostly been used for the separation and selective extraction of metal ions. Microfluidics has been used in materials science mainly for the improvement of nanoparticle synthesis, namely metal, metal oxide, and semiconductor nanoparticles. Microfluidic devices can also be used for the formulation of more advanced and sophisticated inorganic materials or hybrids.

  14. Microfluidics for Positron Emission Tomography Probe Development

    Directory of Open Access Journals (Sweden)

    Ming-Wei Wang

    2010-07-01

    Full Text Available Owing to increased needs for positron emission tomography (PET, high demands for a wide variety of radiolabeled compounds will have to be met by exploiting novel radiochemistry and engineering technologies to improve the production and development of PET probes. The application of microfluidic reactors to perform radiosyntheses is currently attracting a great deal of interest because of their potential to deliver many advantages over conventional labeling systems. Microfluidics-based radiochemistry can lead to the use of smaller quantities of precursors, accelerated reaction rates, and easier purification processes with greater yield and higher specific activity of desired probes. Several proof-of-principle examples along with the basics of device architecture and operation and the potential limitations of each design are discussed. Along with the concept of radioisotope distribution from centralized cyclotron facilities to individual imaging centers and laboratories (“decentralized model”, an easy-to-use, stand-alone, flexible, fully automated, radiochemical microfluidic platform can provide simpler and more cost-effective procedures for molecular imaging using PET.

  15. Real time observation and automated measurement of red blood cells agglutination inside a passive microfluidic biochip containing embedded reagents.

    Science.gov (United States)

    Huet, Maxime; Cubizolles, Myriam; Buhot, Arnaud

    2016-09-20

    The process of agglutination is commonly used for the detection of biomarkers like proteins or viruses. The multiple bindings between micrometer sized particles, either latex beads or red blood cells (RBCs), create aggregates that are easily detectable and give qualitative information about the presence of the biomarkers. In most cases, the detection is made by simple naked-eye observation of agglutinates without any access to the kinetics of agglutination. In this study, we address the development of a real-time time observation of RBCs agglutination. Using ABO blood typing as a proof-of-concept, we developed i) an integrated biological protocol suitable for further use as point-of-care (POC) analysis and ii) two dedicated image processing algorithms for the real-time and quantitative measurement of agglutination. Anti-A or anti-B typing reagents were dried inside the microchannel of a passive microfluidic chip designed to enhance capillary flow. A blood drop deposit at the tip of the biochip established a simple biological protocol. In situ agglutination of autologous RBCs was achieved by means of embedded reagents and real time agglutination process was monitored by video recording. Using a training set of 24 experiments, two real-time indicators based on correlation and variance of gray levels were optimized and then further confirmed on a validation set. 100% correct discrimination between positive and negative agglutinations was performed within less than 2min by measuring real-time evolution of both correlation and variance indicators.

  16. Enzyme kinetics by directly imaging a porous silicon microfluidic reactor using desorption/ionization on silicon mass spectrometry.

    Science.gov (United States)

    Nichols, Kevin P; Azoz, Seyla; Gardeniers, Han J G E

    2008-11-01

    Enzyme kinetics were obtained in a porous silicon microfluidic channel by combining an enzyme and substrate droplet, allowing them to react and deposit a small amount of residue on the channel walls, and then analyzing this residue by directly ionizing the channel walls using a matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) laser source. The porous silicon of the channel walls functions in a manner analogous to the matrix in MALDI-MS, and is referred to as a desorption/ionization on silicon mass spectrometry (DIOS-MS) target when used in this configuration. Mass spectrometry signal intensity of substrate residue correlates with relative concentration, and position in the microchannel correlates with time, thus allowing determination of kinetic parameters. The system is especially suitable for initial reaction velocity determination. This microreactor is broadly applicable to time-resolved kinetic assays as long as at least one substrate or product of the reaction is ionizable by DIOS-MS.

  17. Proteolysis in microfluidic droplets: an approach to interface protein separation and peptide mass spectrometry.

    Science.gov (United States)

    Ji, Ji; Nie, Lei; Qiao, Liang; Li, Yixin; Guo, Liping; Liu, Baohong; Yang, Pengyuan; Girault, Hubert H

    2012-08-07

    A versatile microreactor protocol based on microfluidic droplets has been developed for on-line protein digestion. Proteins separated by liquid chromatography are fractionated in water-in-oil droplets and digested in sequence. The microfluidic reactor acts also as an electrospray ionization emitter for mass spectrometry analysis of the peptides produced in the individual droplets. Each droplet is an enzymatic micro-reaction unit with efficient proteolysis due to rapid mixing, enhanced mass transfer and automated handling. This droplet approach eliminates sample loss, cross-contamination, non-specific absorption and memory effect. A protein mixture was successfully identified using the droplet-based micro-reactor as interface between reverse phase liquid chromatography and mass spectrometry.

  18. Fuel lattice design in a boiling water reactor using a knowledge-based automation system

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Wu-Hsiung, E-mail: wstong@iner.gov.tw; Lee, Tien-Tso; Kuo, Weng-Sheng; Yaur, Shung-Jung

    2015-11-15

    Highlights: • An automation system was developed for the fuel lattice radial design of BWRs. • An enrichment group peaking equalizing method is applied to optimize the design. • Several heuristic rules and restrictions are incorporated to facilitate the design. • The CPU time for the system to design a 10x10 lattice was less than 1.2 h. • The beginning-of-life LPF was improved from 1.319 to 1.272 for one of the cases. - Abstract: A knowledge-based fuel lattice design automation system for BWRs is developed and applied to the design of 10 × 10 fuel lattices. The knowledge implemented in this fuel lattice design automation system includes the determination of gadolinium fuel pin location, the determination of fuel pin enrichment and enrichment distribution. The optimization process starts by determining the gadolinium distribution based on the pin power distribution of a flat enrichment lattice and some heuristic rules. Next, a pin power distribution flattening and an enrichment grouping process are introduced to determine the enrichment of each fuel pin enrichment type and the initial enrichment distribution of a fuel lattice design. Finally, enrichment group peaking equalizing processes are performed to achieve lower lattice peaking. Several fuel lattice design constraints are also incorporated in the automation system such that the system can accomplish a design which meets the requirements of practical use. Depending on the axial position of the lattice, a different method is applied in the design of the fuel lattice. Two typical fuel lattices with U{sup 235} enrichment of 4.471% and 4.386% were taken as references. Application of the method demonstrates that improved lattice designs can be achieved through the enrichment grouping and the enrichment group peaking equalizing method. It takes about 11 min and 1 h 11 min of CPU time for the automation system to accomplish two design cases on an HP-8000 workstation, including the execution of CASMO-4

  19. Automated operator procedure prompting for startup of Experimental Breeder Reactor-2

    Energy Technology Data Exchange (ETDEWEB)

    Renshaw, A.W.; Ball, S.J.; Ford, C.E.

    1990-11-01

    This report describes the development of an operator procedure prompting aid for startup of a nuclear reactor. This operator aid is a preliminary design for a similar aid that eventually will be used with the Advanced Liquid Metal Reactor (ALMR) presently in the design stage. Two approaches were used to develop this operator procedure prompting aid. One method uses an expert system software shell, and the other method uses database software. The preliminary requirements strongly pointed toward features traditionally associated with both database and expert systems software. Database software usually provides data manipulation flexibility and user interface tools, and expert systems tools offer sophisticated data representation and reasoning capabilities. Both methods, including software and associated hardware, are described in this report. Proposals for future enhancements to improve the expert system approach to procedure prompting and for developing other operator aids are also offered. 25 refs., 14 figs.

  20. Dynamics of Microvalve Operations in Integrated Microfluidics

    OpenAIRE

    Alan T. H. Lau; Hon Ming Yip; Kathy C. C. Ng; Xin Cui; Lam, Raymond H. W.

    2014-01-01

    Pneumatic microvalves are widely used key components for automating liquid manipulation and flow control in microfluidics for more than one decade. Due to their robust operations and the ease of fabrication, tremendous microfluidic systems have been developed with the multiple microvalves for higher throughput and extended functionalities. Therefore, operation performance of the microvalves in the integrated microfluidic devices is crucial to the related applications, in fields such as micro-...

  1. Automated Work Packages Prototype: Initial Design, Development, and Evaluation. Light Water Reactor Sustainability Program

    Energy Technology Data Exchange (ETDEWEB)

    Oxstrand, Johanna Helene [Idaho National Lab. (INL), Idaho Falls, ID (United States); Al Rashdan, Ahmad [Idaho National Lab. (INL), Idaho Falls, ID (United States); Le Blanc, Katya Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bly, Aaron Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Agarwal, Vivek [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-07-01

    The goal of the Automated Work Packages (AWP) project is to demonstrate how to enhance work quality, cost management, and nuclear safety through the use of advanced technology. The work described in this report is part of the digital architecture for a highly automated plant project of the technical program plan for advanced instrumentation, information, and control (II&C) systems technologies. This report addresses the DOE Milestone M2LW-15IN0603112: Describe the outcomes of field evaluations/demonstrations of the AWP prototype system and plant surveillance and communication framework requirements at host utilities. A brief background to the need for AWP research is provided, then two human factors field evaluation studies are described. These studies focus on the user experience of conducting a task (in this case a preventive maintenance and a surveillance test) while using an AWP system. The remaining part of the report describes an II&C effort to provide real time status updates to the technician by wireless transfer of equipment indications and a dynamic user interface.

  2. Microfluidic electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2012-08-21

    Microfluidics, a field that has been well-established for several decades, has seen extensive applications in the areas of biology, chemistry, and medicine. However, it might be very hard to imagine how such soft microfluidic devices would be used in other areas, such as electronics, in which stiff, solid metals, insulators, and semiconductors have previously dominated. Very recently, things have radically changed. Taking advantage of native properties of microfluidics, advances in microfluidics-based electronics have shown great potential in numerous new appealing applications, e.g. bio-inspired devices, body-worn healthcare and medical sensing systems, and ergonomic units, in which conventional rigid, bulky electronics are facing insurmountable obstacles to fulfil the demand on comfortable user experience. Not only would the birth of microfluidic electronics contribute to both the microfluidics and electronics fields, but it may also shape the future of our daily life. Nevertheless, microfluidic electronics are still at a very early stage, and significant efforts in research and development are needed to advance this emerging field. The intention of this article is to review recent research outcomes in the field of microfluidic electronics, and address current technical challenges and issues. The outlook of future development in microfluidic electronic devices and systems, as well as new fabrication techniques, is also discussed. Moreover, the authors would like to inspire both the microfluidics and electronics communities to further exploit this newly-established field.

  3. Digital microfluidic processing of mammalian embryos for vitrification.

    Directory of Open Access Journals (Sweden)

    Derek G Pyne

    Full Text Available Cryopreservation is a key technology in biology and clinical practice. This paper presents a digital microfluidic device that automates sample preparation for mammalian embryo vitrification. Individual micro droplets manipulated on the microfluidic device were used as micro-vessels to transport a single mouse embryo through a complete vitrification procedure. Advantages of this approach, compared to manual operation and channel-based microfluidic vitrification, include automated operation, cryoprotectant concentration gradient generation, and feasibility of loading and retrieval of embryos.

  4. Microfluidic Radiometal Labeling Systems for Biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, D E; Kenis, P J. A.

    2011-12-29

    In a typical labeling procedure with radiometals, such as Cu-64 and Ga-68; a very large (~ 100-fold) excess of the non-radioactive reactant (precursor) is used to promote rapid and efficient incorporation of the radioisotope into the PET imaging agent. In order to achieve high specific activities, careful control of reaction conditions and extensive chromatographic purifications are required in order to separate the labeled compounds from the cold precursors. Here we propose a microfluidic approach to overcome these problems, and achieve high specific activities in a more convenient, semi-automated fashion and faster time frame. Microfluidic reactors, consisting of a network of micron-sized channels (typical dimensions in the range 10 - 300¼m), filters, separation columns, electrodes and reaction loops/chambers etched onto a solid substrate, are now emerging as an extremely useful technology for the intensification and miniaturization of chemical processes. The ability to manipulate, process and analyze reagent concentrations and reaction interfaces in both space and time within the channel network of a microreactor provides the fine level of reaction control that is desirable in PET radiochemistry practice. These factors can bring radiometal labeling, specifically the preparation of radio-labeled biomolecules such as antibodies, much closer to their theoretical maximum specific activities.

  5. New design targets and new automated technology for the production of radionuclides with high specificity radioactivity in nuclear research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimov, A.S.; Kiselev, G.V. [State Russian Center of the Russian Federation, Moscow (Russian Federation). Institute of Theoretical and Experimental Physics

    1997-10-01

    Current demands of industry require the application of radionuclides with high specific radioactivity under low consumption of neutrons. To provide this aim staff of ITEP Reactor Department investigated the different type AEs of start targets for the production of the main radionuclides; Co-60, Ir-192 and others. In first turn the targets of Co and Ir without the block-effect of neutron flux (with low absorption of neutrons) were investigated. The following principal results were received for example for Ir-192: block effect is equal 0.086 for diameter of Ir target mm and is equal 0.615 for diameter Ir target 0.5mm. It means average neutron flux for Ir target diameter 0.5mm and therefore the production of Ir-192 will be at 10 times more than for diameter 6.0mm. To provide the automated technology of the manufacture of radioactive sources with radionuclides with high specific radioactivity it was proposed that the compound targets for the irradiation of ones and for the management with the irradiated targets. Different types of compound targets were analyzed. (authors)

  6. Reactor

    Science.gov (United States)

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  7. Automation of the radiation protection monitoring system in the RP-10 reactor; Automatizacion del sistema de monitoraje de radioproteccion en el reactor RP-10

    Energy Technology Data Exchange (ETDEWEB)

    Anaya G, Olgger; Castillo Y, Walter; Ovalle S, Edgar [Instituto Peruano de Energia Nuclear, Lima (Peru)

    2002-07-01

    During the reactor operation, it is necessary to carry out the radiological control in the different places of the reactor, in periodic form and to take a registration of these values. For it the radioprotection official, makes every certain periods, settled down in the procedures, to verify and to carry out the registration of those values in manual form of each one of the radiation monitors. For this reason it was carried out the design and implementation of an automatic monitoring system of radioprotection in the reactor. In the development it has been considered the installation of a acquisition data system for 27 radiation gamma monitors of the type Geiger Mueller, installed inside the different places of the reactor and in the laboratories where they are manipulated radioactive material, using as hardware the FieldPoint for the possessing and digitalization of the signs which are correspondents using the communication protocol RS-232 to a PC in which has settled a program in graphic environment that has been developed using the tools of the programming software LabWindows/CVI. Then, these same signs are sent 'on line' to another PC that is in the Emergency Center of Coordination to 500 m of the reactor, by means of a system of radiofrequency communication. (author)

  8. Microfluidics: a new cosset for neurobiology.

    Science.gov (United States)

    Wang, Jinyi; Ren, Li; Li, Li; Liu, Wenming; Zhou, Jing; Yu, Wenhao; Tong, Denwen; Chen, Shulin

    2009-03-07

    Recently, microfluidic systems have shown great potential in the study of molecular and cellular biology. With its excellent properties, such as miniaturization, integration and automation, to name just a few, microfluidics creates new opportunities for the spatial and temporal control of cell growth and environmental stimuli in vitro. In the field of neuroscience, microfluidic devices offer precise control of the microenvironment surrounding individual cells, and the delivery of biochemical or physical cues to neural networks or single neurons. The intent of this review is to outline recent advances in microfluidic-based applications in neurobiology, with emphasis on neuron culture, neuron manipulation, neural stem cell differentiation, neuropharmacology, neuroelectrophysiology, and neuron biosensors. It also aims to stimulate development of microfluidic-based applications in neurobiology by involving scientists from various disciplines, especially neurobiology and microtechnology.

  9. Nanoliter-scale protein crystallization and screening with a microfluidic droplet robot.

    Science.gov (United States)

    Zhu, Ying; Zhu, Li-Na; Guo, Rui; Cui, Heng-Jun; Ye, Sheng; Fang, Qun

    2014-05-23

    Large-scale screening of hundreds or even thousands of crystallization conditions while with low sample consumption is in urgent need, in current structural biology research. Here we describe a fully-automated droplet robot for nanoliter-scale crystallization screening that combines the advantages of both automated robotics technique for protein crystallization screening and the droplet-based microfluidic technique. A semi-contact dispensing method was developed to achieve flexible, programmable and reliable liquid-handling operations for nanoliter-scale protein crystallization experiments. We applied the droplet robot in large-scale screening of crystallization conditions of five soluble proteins and one membrane protein with 35-96 different crystallization conditions, study of volume effects on protein crystallization, and determination of phase diagrams of two proteins. The volume for each droplet reactor is only ca. 4-8 nL. The protein consumption significantly reduces 50-500 fold compared with current crystallization stations.

  10. Theoretical microfluidics

    DEFF Research Database (Denmark)

    Bruus, Henrik

    , complex flow patterns and acousto-fluidics, as well as the new fields of opto- and nano-fluidics. Throughout the book simple models with analytical solutions are presented to provide the student with a thorough physical understanding of order of magnitudes and various selected microfluidic phenomena...

  11. Micro-flow-injection analysis (μFIA) immunoassay of herbicide residue 2,6-dichlorobenzamide – towards automated at-line monitoring using modular microfluidics.

    Science.gov (United States)

    Uthuppu, Basil; Heiskanen, Arto; Kofoed, Dan; Aamand, Jens; Jørgensen, Claus; Dufva, Martin; Jakobsen, Mogens Havsteen

    2015-03-07

    As a part of developing new systems for continuously monitoring the presence of pesticides in groundwater, a microfluidic amperometric immunosensor was developed for detecting the herbicide residue 2,6-dichlorobenzamide (BAM) in water. A competitive immunosorbent assay served as the sensing mechanism and amperometry was applied for detection. Both the immunoreaction chip (IRC) and detection (D) unit are integrated on a modular microfluidic platform with in-built micro-flow-injection analysis (μFIA) function. The immunosorbent, immobilized in the channel of the IRC, was found to have high long-term stability and withstand many regeneration cycles, both of which are key requirements for systems utilized in continuous monitoring. The IRC was regenerated during 51 cycles in a heterogeneous competitive assay out of which 27 were without the analyte (the highest possible signal level) in order to assess the regeneration capability of the immunosorbent. Detection of BAM standard solutions was performed in the concentration range from 62.5 μg L(-1) to 0.0008 μg L(-1). Non-linear regression of the data using the four-parameter logistic equation generated a sigmoidal standard curve showing an IC50 value (concentration that reduces the signal by 50%) of 0.25 μg L(-1). The strongest signal variation is observed in the concentration range between 0.02 and 2.5 μg L(-1), which includes the 0.1 μg L(-1) threshold limit set by the European Commission for BAM in drinking water. The presented results demonstrate the potential of the constructed μFIA immunosensor as an at-line monitoring system for controlling the quality of ground water supply.

  12. Contact method or automated immersion technique: possible application and limitations of ultrasonic testing in the fusion reactor; Kontakttechnik oder automatisierte Tauchtechnik. Einsatzmoeglichkeiten und Beschraenkungen der Ultraschallpruefung im Fusionsreaktor

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Tatiana; Knaak, Stefan; Aktaa, Jarir [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Angewandte Materialien Werkstoff- und Biomechanik (IAM-WBM); Rey, Joerg; Neuberger, Heiko [Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany). Inst. fuer Neutronenphysik und Reaktortechnik (INR); Krueger, Friedhelm [Krueger Erodiertechnik GmbH und Co.KG, Biedenkopf (Germany); Karlsruher Institut fuer Technologie (KIT), Eggenstein-Leopoldshafen (Germany)

    2014-11-01

    The tritium breeding blanket is the most important component of a thermonuclear reactor combining the protective function against plasma impact and heat exchange. The breeding blanket concept is based on the use of helium as coolant and beryllium pebbles as neutron multiplier. As structural material the low-activation ferritic-martensitic steel EUROFER (9Cr-W-V-T) is used. For quality assurance the components of the breeding blankets are tested using different non-destructive testing methods. The contact methodology applies the testing equipment VEO in combination of the 10 MHz array-wheel sensor of the ultrasonic phased array series. Immersion testing is performed using the automated facility KC 200 from GE Inspection technologies.

  13. Kinetics of Reduction Reaction in Micro-Fluidized Bed

    Institute of Scientific and Technical Information of China (English)

    LINYin-he; GUOZhan—cheng; TANGHui—qing; REN Shan; LIJing—wei

    2012-01-01

    Micro-fluidized bed reactor is a new research method for the reduction of iron ore fines. The reactor is op- erated as a differential reactor to ensure a constant gas concentration and temperature within the reactor volume. In order to understand the dynamic process of the reduction reaction in micro-fluidized bed, a series of kinetic experi- ments were designed. In the micro fluidized bed, the use of shrinking core model describes the dynamic behavior of reduction of iron ore. And the apparent activation energy is calculated in the range of 700--850 ~C while the initial atmosphere is 100% content of CO.

  14. Overview of the microfluidic diagnostics commercial landscape.

    Science.gov (United States)

    Kim, Lily

    2013-01-01

    Since its birth in the late 1980s, the field of microfluidics has continued to mature, with a growing number of companies pursuing diagnostic applications. In 2009 the worldwide in vitro diagnostics market was estimated at >$40 billion USD, and microfluidic diagnostics are poised to reap a significant part of this market across a range of areas including laboratory diagnostics, point-of-care diagnostics, cancer diagnostics, and others. The potential economic advantages of microfluidics are numerous and compelling: lower reagent and/or sample volumes, lower equipment costs, improved portability, increased automation, and increased measurement speed. All of these factors may help put more information in the hands of doctors and patients sooner, enabling earlier disease detection and more tailored, effective treatments. This chapter reviews the microfluidic diagnostics commercial landscape and discusses potential commercialization challenges and opportunities.

  15. Microfluidic Device

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Zheng, Siyang (Inventor); Lin, Jeffrey Chun-Hui (Inventor); Kasdan, Harvey L. (Inventor)

    2017-01-01

    Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.

  16. Design and Testing of Digital Microfluidic Biochips

    CERN Document Server

    Zhao, Yang

    2013-01-01

    This book provides a comprehensive methodology for automated design, test and diagnosis, and use of robust, low-cost, and manufacturable digital microfluidic systems. It focuses on the development of a comprehensive CAD optimization framework for digital microfluidic biochips that unifies different design problems. With the increase in system complexity and integration levels, biochip designers can utilize the design methods described in this book to evaluate different design alternatives, and carry out design-space exploration to obtain the best design point. Describes practical design automation tools that address different design problems (e.g., synthesis, droplet routing, control-pin mapping, testing and diagnosis, and error recovery) in a unified manner; Applies test pattern generation and error-recovery techniques for digital microfluidics-based biochips; Uses real bioassays as evaluation examples, e.g., multiplexed in vitro human physiological fluids diagnostics, PCR, protein crystallization.  

  17. Design of microfluidic bioreactors using topology optimization

    DEFF Research Database (Denmark)

    Okkels, Fridolin; Bruus, Henrik

    2007-01-01

    We address the design of optimal reactors for supporting biological cultures using the method of topology optimization. For some years this method have been used to design various optimal microfluidic devices.1-4 We apply this method to distribute optimally biologic cultures within a flow of nutr...

  18. Screening of aptamers on microfluidic systems for clinical applications.

    Science.gov (United States)

    Weng, Chen-Hsun; Huang, Chao-Jyun; Lee, Gwo-Bin

    2012-01-01

    The use of microfluidic systems for screening of aptamers and their biomedical applications are reviewed in this paper. Aptamers with different nucleic acid sequences have been extensively studied and the results demonstrated a strong binding affinity to target molecules such that they can be used as promising candidate biomarkers for diagnosis and therapeutics. Recently, the aptamer screening protocol has been conducted with microfluidic-based devices. Furthermore, aptamer affinity screening by a microfluidic-based method has demonstrated remarkable advantages over competing traditional methods. In this paper, we first reviewed microfluidic systems which demonstrated efficient and rapid screening of a specific aptamer. Then, the clinical applications of screened aptamers, also performed by microfluidic systems, are further reviewed. These automated microfluidic systems can provide advantages over their conventional counterparts including more compactness, faster analysis, less sample/reagent consumption and automation. An aptamer-based compact microfluidic system for diagnosis may even lead to a point-of-care device. The use of microfluidic systems for aptamer screening and diagnosis is expected to continue growing in the near future and may make a substantial impact on biomedical applications.

  19. Screening of Aptamers on Microfluidic Systems for Clinical Applications

    Directory of Open Access Journals (Sweden)

    Gwo-Bin Lee

    2012-07-01

    Full Text Available The use of microfluidic systems for screening of aptamers and their biomedical applications are reviewed in this paper. Aptamers with different nucleic acid sequences have been extensively studied and the results demonstrated a strong binding affinity to target molecules such that they can be used as promising candidate biomarkers for diagnosis and therapeutics. Recently, the aptamer screening protocol has been conducted with microfluidic-based devices. Furthermore, aptamer affinity screening by a microfluidic-based method has demonstrated remarkable advantages over competing traditional methods. In this paper, we first reviewed microfluidic systems which demonstrated efficient and rapid screening of a specific aptamer. Then, the clinical applications of screened aptamers, also performed by microfluidic systems, are further reviewed. These automated microfluidic systems can provide advantages over their conventional counterparts including more compactness, faster analysis, less sample/reagent consumption and automation. An aptamer-based compact microfluidic system for diagnosis may even lead to a point-of-care device. The use of microfluidic systems for aptamer screening and diagnosis is expected to continue growing in the near future and may make a substantial impact on biomedical applications.

  20. Dynamics of Microvalve Operations in Integrated Microfluidics

    Directory of Open Access Journals (Sweden)

    Alan T. H. Lau

    2014-02-01

    Full Text Available Pneumatic microvalves are widely used key components for automating liquid manipulation and flow control in microfluidics for more than one decade. Due to their robust operations and the ease of fabrication, tremendous microfluidic systems have been developed with the multiple microvalves for higher throughput and extended functionalities. Therefore, operation performance of the microvalves in the integrated microfluidic devices is crucial to the related applications, in fields such as micro-flows, cell analyses, drug discovery, and physical/chemical detections. It has been reported that operation performance of the microvalves are highly sensitive to the device configuration and pressurization scheme. This implies the further development of integrated microfluidics with a larger number of the valves may suffer the problems of undetermined microvalve behaviors during operations, which can become an unavoidable hurdle in the device design and optimization processes. Herein, we characterize responses of the individual microvalves for different operation configurations, e.g., membrane thicknesses and driving pressures. We investigate also the effects in microfluidics integrated with the more valves, through experiments, modeling and simulations. We show that dynamics of the microvalves is indeed influenced by the configurations, levels of design complexity and positions in the devices. Overall, taken dynamics of the microvalve responses into considerations, this work provides insights and guidelines for better designs of integrated microfluidics for the future applications requiring higher throughput and improved operation performance.

  1. Recent Advances in Applications of Droplet Microfluidics

    Directory of Open Access Journals (Sweden)

    Wei-Lung Chou

    2015-09-01

    Full Text Available Droplet-based microfluidics is a colloidal and interfacial system that has rapidly progressed in the past decade because of the advantages of low fabrication costs, small sample volumes, reduced analysis durations, high-throughput analysis with exceptional sensitivity, enhanced operational flexibility, and facile automation. This technology has emerged as a new tool for many recently used applications in molecular detection, imaging, drug delivery, diagnostics, cell biology and other fields. Herein, we review recent applications of droplet microfluidics proposed since 2013.

  2. Detection methods for centrifugal microfluidic platforms

    DEFF Research Database (Denmark)

    Burger, Robert; Amato, Letizia; Boisen, Anja

    2016-01-01

    Centrifugal microfluidics has attracted much interest from academia as well as industry, since it potentially offers solutions for affordable, user-friendly and portable biosensing. A wide range of so-called fluidic unit operations, e.g. mixing, metering, liquid routing, and particle separation......, have been developed and allow automation and integration of complex assay protocols in lab-on-a-disc systems. Besides liquid handling, the detection strategy for reading out the assay is crucial for developing a fully integrated system. In this review, we focus on biosensors and readout methods...... for the centrifugal microfluidics platform and cover optical as well as mechanical and electrical detection principles....

  3. Digital Microfluidics Sample Analyzer

    Science.gov (United States)

    Pollack, Michael G.; Srinivasan, Vijay; Eckhardt, Allen; Paik, Philip Y.; Sudarsan, Arjun; Shenderov, Alex; Hua, Zhishan; Pamula, Vamsee K.

    2010-01-01

    Three innovations address the needs of the medical world with regard to microfluidic manipulation and testing of physiological samples in ways that can benefit point-of-care needs for patients such as premature infants, for which drawing of blood for continuous tests can be life-threatening in their own right, and for expedited results. A chip with sample injection elements, reservoirs (and waste), droplet formation structures, fluidic pathways, mixing areas, and optical detection sites, was fabricated to test the various components of the microfluidic platform, both individually and in integrated fashion. The droplet control system permits a user to control droplet microactuator system functions, such as droplet operations and detector operations. Also, the programming system allows a user to develop software routines for controlling droplet microactuator system functions, such as droplet operations and detector operations. A chip is incorporated into the system with a controller, a detector, input and output devices, and software. A novel filler fluid formulation is used for the transport of droplets with high protein concentrations. Novel assemblies for detection of photons from an on-chip droplet are present, as well as novel systems for conducting various assays, such as immunoassays and PCR (polymerase chain reaction). The lab-on-a-chip (a.k.a., lab-on-a-printed-circuit board) processes physiological samples and comprises a system for automated, multi-analyte measurements using sub-microliter samples of human serum. The invention also relates to a diagnostic chip and system including the chip that performs many of the routine operations of a central labbased chemistry analyzer, integrating, for example, colorimetric assays (e.g., for proteins), chemiluminescence/fluorescence assays (e.g., for enzymes, electrolytes, and gases), and/or conductometric assays (e.g., for hematocrit on plasma and whole blood) on a single chip platform.

  4. Microfluidic Diffusion Viscometer for Rapid Analysis of Complex Solutions.

    Science.gov (United States)

    Arosio, Paolo; Hu, Kevin; Aprile, Francesco A; Müller, Thomas; Knowles, Tuomas P J

    2016-04-05

    The viscosity of complex solutions is a physical property of central relevance for a large number of applications in material, biological, and biotechnological sciences. Here we demonstrate a microfluidic technology to measure the viscosity of solutions by following the advection and diffusion of tracer particles under steady-state flow. We validate our method with standard water-glycerol mixtures, and then we apply this microfluidic diffusion viscometer to measure the viscosity of protein solutions at high concentrations as well as of a crude cell lysate. Our approach exhibits a series of attractive features, including analysis time on the order of seconds and the consumption of a few μL of sample, as well as the possibility to readily integrate the microfluidic viscometer in other instrument platforms or modular microfluidic devices. These characteristics make microfluidic diffusion viscometry an attractive approach in automated processes in biotechnology and health-care sciences where fast measurements with limited amount of sample consumption are required.

  5. Microfluidics-Based PCR for Fusion Transcript Detection.

    Science.gov (United States)

    Chen, Hui

    2016-01-01

    The microfluidic technology allows the production of network of submillimeter-size fluidic channels and reservoirs in a variety of material systems. The microfluidic-based polymerase chain reaction (PCR) allows automated multiplexing of multiple samples and multiple assays simultaneously within a network of microfluidic channels and chambers that are co-ordinated in controlled fashion by the valves. The individual PCR reaction is performed in nanoliter volume, which allows testing on samples with limited DNA and RNA. The microfluidics devices are used in various types of PCR such as digital PCR and single molecular emulsion PCR for genotyping, gene expression, and miRNA expression. In this chapter, the use of a microfluidics-based PCR for simultaneous screening of 14 known fusion transcripts in patients with leukemia is described.

  6. A self-triggered picoinjector in microfluidics

    Science.gov (United States)

    Yang, Yiming; Liu, Songsheng; Jia, Chunping; Mao, Hongju; Jin, Qinghui; Zhao, Jianlong; Zhou, Hongbo

    2016-12-01

    Droplet-based microfluidics has recently emerged as a potential platform for studies of single-cell, directed evolution, and genetic sequencing. In droplet-based microfluidics, adding reagents into drops is one of the most important functions. In this paper, we develop a new self-triggered picoinjector to add controlled volumes of reagent into droplets at kilohertz rates. In the picoinjector, the reagent injecting is triggered by the coming droplet itself, without needing a droplet detection module. Meanwhile, the dosing volume can be precisely controlled. These features make the system more practical and reliable. We expect the new picoinjector will find important applications of droplet-based microfluidics in automated biological assay, directed evolution, enzyme assay, and so on.

  7. Microfluidic single sperm analysis

    NARCIS (Netherlands)

    Wagenaar, de Bjorn

    2016-01-01

    Microfluidic technology has been occasionally used for in vitro analysis and separation of cells. The small dimensions of microfluidic chips are very suitable to study cells on the single cell level rather than in whole populations. Also sperm cells have been studied and manipulated using microfluid

  8. Microfluidic sieve valves

    Science.gov (United States)

    Quake, Stephen R; Marcus, Joshua S; Hansen, Carl L

    2015-01-13

    Sieve valves for use in microfluidic device are provided. The valves are useful for impeding the flow of particles, such as chromatography beads or cells, in a microfluidic channel while allowing liquid solution to pass through the valve. The valves find particular use in making microfluidic chromatography modules.

  9. Microfluidic Dye Lasers

    DEFF Research Database (Denmark)

    Kristensen, Anders; Balslev, Søren; Gersborg-Hansen, Morten

    2006-01-01

    A technology for miniaturized, polymer based lasers, suitable for integration with planar waveguides and microfluidic networks is presented. The microfluidic dye laser device consists of a microfluidic channel with an embedded optical resonator. The devices are fabricated in a thin polymer film...

  10. An enzyme reactor based on aptamer modified microfluidic chip for protein analysis%基于核酸适配体的微流控芯片酶反应器用于蛋白质的分析

    Institute of Scientific and Technical Information of China (English)

    肖鹏; 李大雷; 满燕; 耿利娜; 吕雪飞; 邓玉林

    2012-01-01

    As a kind of recognition molecule, aptamer has been studied and applied widely in numerous science fields in recent years. Immobilized enzymatic reactor has drawn much attention because of its striking advantages, such as high digestion efficiency and ease in coupling with the separation and detection systems. In this study, a novel microfluidic enzymatic chip, which immobilized trypsin based on aptamer, was prepared and proposed. An online analysis platform, which consisted of an aptamer-based chip and high performance liquid chromatogra-phy tandem mass spectrometry, was established by using a 6-port valve and applied to protein analysis. The enzymatic capacity and stability performance of chip reactor were characterized by using mixed protein sample, which consisted of bovine serum albumin (BSA), myoglobin ( Mb) and cytochrome c (Cyt. c). The sample digestion time of the chip reactor was about 5. 76 s while 1 fi,L/min of flow rate was adopted; and moreover, 5 ng of Mb was identified successfully with the sequence coverage of 37%. Furthermore, the sequence coverages and the relative standard deviations were 44.3% and 6.5% for BSA, 65.0% and 2.7% for Mb, 62.0% and 5. 6% for Cyt. c respectively when 500 ng digest of mixed proteins were analyzed in three runs. According to experimental results, the online analysis platform possesses the ability of high sensitivity and good stability, which can provide a promising tool for rapid and high-throughput proteomics study in the near future.%将核酸适配体作为胰蛋白酶固定化介质,制备了一种新型的微流控芯片酶反应器,并与高效液相色谱-串联质谱联用,搭建了在线分析平台;分别使用标准蛋白及混合蛋白样品对芯片的酶解效率及联用平台的分析能力进行了初步评价.结果表明,5 ng肌红蛋白经该平台分析后肽段覆盖率可达到37%;对500 ng混合蛋白进行3次平行分析,肽段覆盖率及相对标准偏差分别为44.3%、6.5

  11. In situ microfluidic dialysis for biological small-angle X-ray scattering

    DEFF Research Database (Denmark)

    Skou, Magda; Skou, Soren; Jensen, Thomas Glasdam;

    2014-01-01

    Owing to the demand for low sample consumption and automated sample changing capabilities at synchrotron small-angle X-ray (solution) scattering (SAXS) beamlines, X-ray microfluidics is receiving continuously increasing attention. Here, a remote-controlled microfluidic device is presented for sim...

  12. Plasmonic nanoshell synthesis in microfluidic composite foams.

    Science.gov (United States)

    Duraiswamy, Suhanya; Khan, Saif A

    2010-09-01

    The availability of robust, scalable, and automated nanoparticle manufacturing processes is crucial for the viability of emerging nanotechnologies. Metallic nanoparticles of diverse shape and composition are commonly manufactured by solution-phase colloidal chemistry methods, where rapid reaction kinetics and physical processes such as mixing are inextricably coupled, and scale-up often poses insurmountable problems. Here we present the first continuous flow process to synthesize thin gold "nanoshells" and "nanoislands" on colloidal silica surfaces, which are nanoparticle motifs of considerable interest in plasmonics-based applications. We assemble an ordered, flowing composite foam lattice in a simple microfluidic device, where the lattice cells are alternately aqueous drops containing reagents for nanoparticle synthesis or gas bubbles. Microfluidic foam generation enables precisely controlled reagent dispensing and mixing, and the ordered foam structure facilitates compartmentalized nanoparticle growth. This is a general method for aqueous colloidal synthesis, enabling continuous, inherently digital, scalable, and automated production processes for plasmonic nanomaterials.

  13. Research highlights: microfluidics meets big data.

    Science.gov (United States)

    Tseng, Peter; Weaver, Westbrook M; Masaeli, Mahdokht; Owsley, Keegan; Di Carlo, Dino

    2014-03-07

    In this issue we highlight a collection of recent work in which microfluidic parallelization and automation have been employed to address the increasing need for large amounts of quantitative data concerning cellular function--from correlating microRNA levels to protein expression, increasing the throughput and reducing the noise when studying protein dynamics in single-cells, and understanding how signal dynamics encodes information. The painstaking dissection of cellular pathways one protein at a time appears to be coming to an end, leading to more rapid discoveries which will inevitably translate to better cellular control--in producing useful gene products and treating disease at the individual cell level. From these studies it is also clear that development of large scale mutant or fusion libraries, automation of microscopy, image analysis, and data extraction will be key components as microfluidics contributes its strengths to aid systems biology moving forward.

  14. Universal microfluidic automaton for autonomous sample processing: application to the Mars Organic Analyzer.

    Science.gov (United States)

    Kim, Jungkyu; Jensen, Erik C; Stockton, Amanda M; Mathies, Richard A

    2013-08-20

    A fully integrated multilayer microfluidic chemical analyzer for automated sample processing and labeling, as well as analysis using capillary zone electrophoresis is developed and characterized. Using lifting gate microfluidic control valve technology, a microfluidic automaton consisting of a two-dimensional microvalve cellular array is fabricated with soft lithography in a format that enables facile integration with a microfluidic capillary electrophoresis device. The programmable sample processor performs precise mixing, metering, and routing operations that can be combined to achieve automation of complex and diverse assay protocols. Sample labeling protocols for amino acid, aldehyde/ketone and carboxylic acid analysis are performed automatically followed by automated transfer and analysis by the integrated microfluidic capillary electrophoresis chip. Equivalent performance to off-chip sample processing is demonstrated for each compound class; the automated analysis resulted in a limit of detection of ~16 nM for amino acids. Our microfluidic automaton provides a fully automated, portable microfluidic analysis system capable of autonomous analysis of diverse compound classes in challenging environments.

  15. Towards automation in protein digestion: Development of a monolithic trypsin immobilized reactor for highly efficient on-line digestion and analysis.

    Science.gov (United States)

    Naldi, Marina; Černigoj, Urh; Štrancar, Ales; Bartolini, Manuela

    2017-05-15

    Reducing experimental variability, limiting contamination and increasing automation are essential goals in the development of reliable analytical platforms for mass spectrometry (MS)-based proteomics. In this work novel trypsin-based monolithic immobilized enzyme reactors (tryp-IMERs), obtained by covalent immobilization on convective interaction media (CIMac™) analytical columns (5mm×5.2mm I.D.), were developed. Notwithstanding the small dimensions, column format allowed the insertion in common high performance liquid chromatography (HPLC) systems, thus avoiding the use of expensive micro- or nano-platforms. Monolith pore diameter and surface chemistry were optimized to achieve high digestion efficiency even with high molecular weight proteins and to avoid protein/peptide adsorption, peak broadening and sample loss. A full characterization of the tryp-IMERs was undertaken to select the best protocol for preparation and type of trypsin. Optimization of the operational and storage conditions was carried out by an off-line approach. On-line studies were performed by setting a multidimensional analytical platform, which included the tryp-IMER, a trapping column, an analytical C4 column and a high resolution hybrid mass spectrometer (ESI-Q-TOF). In the optimized conditions rapid protein digestion (90±9s), high protein coverage (≥60%) and high score values were achieved for five selected sample proteins (cytochrome c, myoglobin and albumins from different sources) differing in molecular size, isoelectric point and accessibility to cleavage sites as well as for a protein mixture of 200ng. The best performing tryp-IMERs showed high sensitivity down to the pmole level. The platform also resulted suitable for the analysis of high-molecular weight proteins such as a pool of human immunoglobulins G (hIgG) and for the high molecular weight fraction of human plasma proteins, which were digested in less than two minutes to an extent similar to that achieved by overnight

  16. Monitoring programmed cell death of living plant tissues in microfluidics using electrochemical and optical techniques

    DEFF Research Database (Denmark)

    Mark, Christina; Heiskanen, Arto; Svensson, Birte

    sensors and detection systems is that they can be miniaturized, multiplexed and automated without losing their performance making them suitable for integration with microfluidic devices1,2. Combining microfluidics with electrochemical and optical detection allows implementation of a wide range of assays......, and it is planned to integrate this system in the microfluidic device.......Programmed cell death (PCD) in plants can influence the outcome of yield and quality of crops through its important role in seed germination and the defence process against pathogens. The main scope of the project is to apply microfluidic cell culture for the measurement of electrochemically...

  17. A review on continuous-flow microfluidic PCR in droplets: Advances, challenges and future.

    Science.gov (United States)

    Zhang, Yonghao; Jiang, Hui-Rong

    2016-03-31

    Significant advances have been made in developing microfluidic polymerase chain reaction (PCR) devices in the last two decades. More recently, microfluidic microdroplet technology has been exploited to perform PCR in droplets because of its unique features. For example, it can prevent crossover contamination and PCR inhibition, is suitable for single-cell and single-molecule analyses, and has the potential for system integration and automation. This review will therefore focus on recent developments on droplet-based continuous-flow microfluidic PCR, and the major research challenges. This paper will also discuss a new way of on-chip flow control and a rational design simulation tool, which are required to underpin fully integrated and automated droplet-based microfluidic systems. We will conclude with a scientific speculation of future autonomous scientific discoveries enabled by microfluidic microdroplet technologies.

  18. Tunable Microfluidic Dye Laser

    DEFF Research Database (Denmark)

    Olsen, Brian Bilenberg; Helbo, Bjarne; Kutter, Jörg Peter

    2003-01-01

    We present a tunable microfluidic dye laser fabricated in SU-8. The tunability is enabled by integrating a microfluidic diffusion mixer with an existing microfluidic dye laser design by Helbo et al. By controlling the relative flows in the mixer between a dye solution and a solvent......, the concentration of dye in the laser cavity can be adjusted, allowing the wavelength to be tuned. Wavelength tuning controlled by the dye concentration was demonstrated with macroscopic dye lasers already in 1971, but this principle only becomes practically applicable by the use of microfluidic mixing...

  19. K-Channel: A Multifunctional Architecture for Dynamically Reconfigurable Sample Processing in Droplet Microfluidics.

    Science.gov (United States)

    Doonan, Steven R; Bailey, Ryan C

    2017-03-13

    By rapidly creating libraries of thousands of unique, miniaturized reactors, droplet microfluidics provides a powerful method for automating high-throughput chemical analysis. In order to engineer in-droplet assays, microfluidic devices must add reagents into droplets, remove fluid from droplets, and perform other necessary operations, each typically provided by a unique, specialized geometry. Unfortunately, modifying device performance or changing operations usually requires re-engineering the device among these specialized geometries, a time-consuming and costly process when optimizing in-droplet assays. To address this challenge in implementing droplet chemistry, we have developed the "K-channel," which couples a cross-channel flow to the segmented droplet flow to enable a range of operations on passing droplets. K-channels perform reagent injection (0-100% of droplet volume), fluid extraction (0-50% of droplet volume), and droplet splitting (1:1-1:5 daughter droplet ratio). Instead of modifying device dimensions or channel configuration, adjusting external conditions, such as applied pressure and electric field, selects the K-channel process and tunes its magnitude. Finally, interfacing a device-embedded magnet allows selective capture of 96% of droplet-encapsulated superparamagnetic beads during 1:1 droplet splitting events at ∼400 Hz. Addition of a second K-channel for injection (after the droplet splitting K-channel) enables integrated washing of magnetic beads within rapidly moving droplets. Ultimately, the K-channel provides an exciting opportunity to perform many useful droplet operations across a range of magnitudes without requiring architectural modifications. Therefore, we envision the K-channel as a versatile, easy to use microfluidic component enabling diverse, in-droplet (bio)chemical manipulations.

  20. Integration of microfluidics into the synthetic biology design flow.

    Science.gov (United States)

    Huang, Haiyao; Densmore, Douglas

    2014-09-21

    One goal of synthetic biology is to design and build genetic circuits in living cells for a range of applications. Major challenges in these efforts include increasing the scalability and robustness of engineered biological systems and streamlining and automating the synthetic biology workflow of specification-design-assembly-verification. We present here a summary of the advances in microfluidic technology, particularly microfluidic large scale integration, that can be used to address the challenges facing each step of the synthetic biology workflow. Microfluidic technologies allow precise control over the flow of biological content within microscale devices, and thus may provide more reliable and scalable construction of synthetic biological systems. The integration of microfluidics and synthetic biology has the capability to produce rapid prototyping platforms for characterization of genetic devices, testing of biotherapeutics, and development of biosensors.

  1. Opto-Microfluidic Immunosensors: From Colorimetric to Plasmonic

    Directory of Open Access Journals (Sweden)

    Jie-Long He

    2016-02-01

    Full Text Available Optical detection has long been the most popular technique in immunosensing. Recent developments in the synthesis of luminescent probes and the fabrication of novel nanostructures enable more sensitive and efficient optical detection, which can be miniaturized and integrated with microfluidics to realize compact lab-on-a-chip immunosensors. These immunosensors are portable, economical and automated, but their sensitivity is not compromised. This review focuses on the incorporation and implementation of optical detection and microfluidics in immunosensors; it introduces the working principles of each optical detection technique and how it can be exploited in immunosensing. The recent progress in various opto-microfluidic immunosensor designs is described. Instead of being comprehensive to include all opto-microfluidic platforms, the report centers on the designs that are promising for point-of-care immunosensing diagnostics, in which ease of use, stability and cost-effective fabrication are emphasized.

  2. Centrifugal microfluidic platforms: advanced unit operations and applications.

    Science.gov (United States)

    Strohmeier, O; Keller, M; Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-10-01

    Centrifugal microfluidics has evolved into a mature technology. Several major diagnostic companies either have products on the market or are currently evaluating centrifugal microfluidics for product development. The fields of application are widespread and include clinical chemistry, immunodiagnostics and protein analysis, cell handling, molecular diagnostics, as well as food, water, and soil analysis. Nevertheless, new fluidic functions and applications that expand the possibilities of centrifugal microfluidics are being introduced at a high pace. In this review, we first present an up-to-date comprehensive overview of centrifugal microfluidic unit operations. Then, we introduce the term "process chain" to review how these unit operations can be combined for the automation of laboratory workflows. Such aggregation of basic functionalities enables efficient fluidic design at a higher level of integration. Furthermore, we analyze how novel, ground-breaking unit operations may foster the integration of more complex applications. Among these are the storage of pneumatic energy to realize complex switching sequences or to pump liquids radially inward, as well as the complete pre-storage and release of reagents. In this context, centrifugal microfluidics provides major advantages over other microfluidic actuation principles: the pulse-free inertial liquid propulsion provided by centrifugal microfluidics allows for closed fluidic systems that are free of any interfaces to external pumps. Processed volumes are easily scalable from nanoliters to milliliters. Volume forces can be adjusted by rotation and thus, even for very small volumes, surface forces may easily be overcome in the centrifugal gravity field which enables the efficient separation of nanoliter volumes from channels, chambers or sensor matrixes as well as the removal of any disturbing bubbles. In summary, centrifugal microfluidics takes advantage of a comprehensive set of fluidic unit operations such as

  3. Enzyme-immobilized microfluidic process reactors.

    Science.gov (United States)

    Asanomi, Yuya; Yamaguchi, Hiroshi; Miyazaki, Masaya; Maeda, Hideaki

    2011-07-19

    Microreaction technology, which is an interdisciplinary science and engineering area, has been the focus of different fields of research in the past few years. Several microreactors have been developed. Enzymes are a type of catalyst, which are useful in the production of substance in an environmentally friendly way, and they also have high potential for analytical applications. However, not many enzymatic processes have been commercialized, because of problems in stability of the enzymes, cost, and efficiency of the reactions. Thus, there have been demands for innovation in process engineering, particularly for enzymatic reactions, and microreaction devices represent important tools for the development of enzyme processes. In this review, we summarize the recent advances of microchannel reaction technologies especially for enzyme immobilized microreactors. We discuss the manufacturing process of microreaction devices and the advantages of microreactors compared to conventional reaction devices. Fundamental techniques for enzyme immobilized microreactors and important applications of this multidisciplinary technology are also included in our topics.

  4. Enzyme-Immobilized Microfluidic Process Reactors

    Directory of Open Access Journals (Sweden)

    Hideaki Maeda

    2011-07-01

    Full Text Available Microreaction technology, which is an interdisciplinary science and engineering area, has been the focus of different fields of research in the past few years. Several microreactors have been developed. Enzymes are a type of catalyst, which are useful in the production of substance in an environmentally friendly way, and they also have high potential for analytical applications. However, not many enzymatic processes have been commercialized, because of problems in stability of the enzymes, cost, and efficiency of the reactions. Thus, there have been demands for innovation in process engineering, particularly for enzymatic reactions, and microreaction devices represent important tools for the development of enzyme processes. In this review, we summarize the recent advances of microchannel reaction technologies especially for enzyme immobilized microreactors. We discuss the manufacturing process of microreaction devices and the advantages of microreactors compared to conventional reaction devices. Fundamental techniques for enzyme immobilized microreactors and important applications of this multidisciplinary technology are also included in our topics.

  5. Design of Fault-Tolerant and Dynamically-Reconfigurable Microfluidic Biochips

    CERN Document Server

    Su, Fei

    2011-01-01

    Microfluidics-based biochips are soon expected to revolutionize clinical diagnosis, DNA sequencing, and other laboratory procedures involving molecular biology. Most microfluidic biochips are based on the principle of continuous fluid flow and they rely on permanently-etched microchannels, micropumps, and microvalves. We focus here on the automated design of "digital" droplet-based microfluidic biochips. In contrast to continuous-flow systems, digital microfluidics offers dynamic reconfigurability; groups of cells in a microfluidics array can be reconfigured to change their functionality during the concurrent execution of a set of bioassays. We present a simulated annealing-based technique for module placement in such biochips. The placement procedure not only addresses chip area, but it also considers fault tolerance, which allows a microfluidic module to be relocated elsewhere in the system when a single cell is detected to be faulty. Simulation results are presented for a case study involving the polymeras...

  6. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  7. High content screening in microfluidic devices

    Science.gov (United States)

    Cheong, Raymond; Paliwal, Saurabh; Levchenko, Andre

    2011-01-01

    Importance of the field Miniaturization is key to advancing the state-of-the-art in high content screening (HCS), in order to enable dramatic cost savings through reduced usage of expensive biochemical reagents and to enable large-scale screening on primary cells. Microfluidic technology offers the potential to enable HCS to be performed with an unprecedented degree of miniaturization. Areas covered in this review This perspective highlights a real-world example from the authors’ work of HCS assays implemented in a highly miniaturized microfluidic format. Advantages of this technology are discussed, including cost savings, high throughput screening on primary cells, improved accuracy, the ability to study complex time-varying stimuli, and ease of automation, integration, and scaling. What the reader will gain The reader will understand the capabilities of a new microfluidics-based platform for HCS, and the advantages it provides over conventional plate-based HCS. Take home message Microfluidics technology will drive significant advancements and broader usage and applicability of HCS in drug discovery. PMID:21852997

  8. Microfluidic enzymatic biosensing systems: A review.

    Science.gov (United States)

    Mross, Stefan; Pierrat, Sebastien; Zimmermann, Tom; Kraft, Michael

    2015-08-15

    Microfluidic biosensing systems with enzyme-based detection have been extensively studied in the last years owing to features such as high specificity, a broad range of analytes and a high degree of automation. This review gives an overview of the most important factors associated with these systems. In the first part, frequently used immobilization protocols such as physisorption and covalent bonding and detection techniques such as amperometry and fluorescence measurements are discussed with respect to effort, lifetime and measurement range. The Michaelis-Menten model describing the kinetics of enzymatic reactions, the role of redox mediators and the limitations of the linear measurement range of enzymatic sensors are introduced. Several possibilities of extending the linear measurement range in microfluidic systems such as diffusion-limiting membranes and the flow injection setup are presented. Regarding the integration of enzymes into microfluidic systems during the fabrication process, the constraints imposed by the biomolecules due to the limited usage of high temperatures and solvents are addressed. In the second part, the most common forms of enzyme integration into microfluidic systems, i.e. in channels and on electrodes, on microparticles, on paper and thread and as injected enzyme solutions, are reviewed, focusing on fabrication, applications and performance.

  9. Advances in inspection automation

    Science.gov (United States)

    Weber, Walter H.; Mair, H. Douglas; Jansen, Dion; Lombardi, Luciano

    2013-01-01

    This new session at QNDE reflects the growing interest in inspection automation. Our paper describes a newly developed platform that makes the complex NDE automation possible without the need for software programmers. Inspection tasks that are tedious, error-prone or impossible for humans to perform can now be automated using a form of drag and drop visual scripting. Our work attempts to rectify the problem that NDE is not keeping pace with the rest of factory automation. Outside of NDE, robots routinely and autonomously machine parts, assemble components, weld structures and report progress to corporate databases. By contrast, components arriving in the NDT department typically require manual part handling, calibrations and analysis. The automation examples in this paper cover the development of robotic thickness gauging and the use of adaptive contour following on the NRU reactor inspection at Chalk River.

  10. A self-contained, programmable microfluidic cell culture system with real-time microscopy access

    DEFF Research Database (Denmark)

    Skafte-Pedersen, Peder; Hemmingsen, Mette; Sabourin, David

    2011-01-01

    Utilizing microfluidics is a promising way for increasing the throughput and automation of cell biology research. We present a complete self-contained system for automated cell culture and experiments with real-time optical read-out. The system offers a high degree of user-friendliness, stability...

  11. An end-to-end microfluidic platform for engineering life supporting microbes in space exploration missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — HJ Science & Technology proposes a programmable, low-cost, and compact microfluidic platform capable of running automated end-to-end processes and optimization...

  12. 3D Printed Multimaterial Microfluidic Valve

    Science.gov (United States)

    Patrick, William G.; Sharma, Sunanda; Kong, David S.; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  13. Design and Development of a Microfluidic Amperometric Immunosensor for the Quantitative Detection of 2,6-dichlorobenzamide (BAM) Herbicide Residue in Ground Water

    DEFF Research Database (Denmark)

    Uthuppu, Basil

    and it is a novel characteristic of the microfluidic device prototype. The microfluidic device was automated using Lego® Mindstorms® servomotors to control its micro pumps and valves. By confirming (amperometrically) the regeneration capability of the optimized immunosurface and generating a standard curve for BAM...... the optimized BAM immunoassay and the electrochemical detection method. A modular approach was adopted for the fabrication of the microfluidic platform in order to make the device simple to integrate, automate and maintain. The microfluidic platform has an in-built micro flow-injection analysis (µFIA) system...

  14. Microfluidics and microbial engineering.

    Science.gov (United States)

    Kou, Songzi; Cheng, Danhui; Sun, Fei; Hsing, I-Ming

    2016-02-01

    The combination of microbial engineering and microfluidics is synergistic in nature. For example, microfluidics is benefiting from the outcome of microbial engineering and many reported point-of-care microfluidic devices employ engineered microbes as functional parts for the microsystems. In addition, microbial engineering is facilitated by various microfluidic techniques, due to their inherent strength in high-throughput screening and miniaturization. In this review article, we firstly examine the applications of engineered microbes for toxicity detection, biosensing, and motion generation in microfluidic platforms. Secondly, we look into how microfluidic technologies facilitate the upstream and downstream processes of microbial engineering, including DNA recombination, transformation, target microbe selection, mutant characterization, and microbial function analysis. Thirdly, we highlight an emerging concept in microbial engineering, namely, microbial consortium engineering, where the behavior of a multicultural microbial community rather than that of a single cell/species is delineated. Integrating the disciplines of microfluidics and microbial engineering opens up many new opportunities, for example in diagnostics, engineering of microbial motors, development of portable devices for genetics, high throughput characterization of genetic mutants, isolation and identification of rare/unculturable microbial species, single-cell analysis with high spatio-temporal resolution, and exploration of natural microbial communities.

  15. Nanomaterials meet microfluidics.

    Science.gov (United States)

    Pumera, Martin

    2011-05-28

    Nanomaterials and lab-on-a-chip platforms have undergone enormous development during the past decade. Here, we present an overview of how microfluidics benefited from the use of nanomaterials for the enhanced separation and detection of analytes. We also discuss how nanomaterials benefit from microfluidics in terms of synthesis and in terms of the simulation of environments for nanomotors and nanorobots. In our opinion, the "marriage" of nanomaterials and microfluidics is highly beneficial and is expected to solve vital challenges in related fields.

  16. Visual interface for the automation of the instrumented pendulum of Charpy tests used in the surveillance program of reactors vessel of nuclear power plants; Interfase visual para la automatizacion del pendulo instrumentado de pruebas Charpy utilizado en el programa de vigilancia de la vasija de reactores de centrales nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Rojas S, A.S.; Sainz M, E.; Ruiz E, J.A. [ININ, Carretera Mexico-Toluca Km.36.5, Mpio. de Ocoyoacac, Estado de Mexico (Mexico)]. E-mail: asrs@nuclear.inin.mx; esm@nuclear.inin.mx; jare@nuclear.inin.mx

    2004-07-01

    Inside the Programs of Surveillance of the nuclear power stations periodic information is required on the state that keep the materials with those that builds the vessel of the reactor. This information is obtained through some samples or test tubes that are introduced inside the core of the reactor and it is observed if its physical characteristics remain after having been subjected to the radiation changes and temperature. The rehearsal with the instrumented Charpy pendulum offers information on the behavior of fracture dynamics of a material. In the National Institute of Nuclear Research (ININ) it has an instrumented Charpy pendulum. The operation of this instrument is manual, having inconveniences to carry out rehearsals with radioactive material, handling of high and low temperatures, to fulfill the normative ones for the realization of the rehearsals, etc. In this work the development of a computational program is presented (virtual instrument), for the automation of the instrumented pendulum. The system has modules like: Card of data acquisition, signal processing, positioning system, tempered system, pneumatic system, compute programs like it is the visual interface for the operation of the instrumented Charpy pendulum and the acquisition of impact signals. This system shows that given the characteristics of the nuclear industry with radioactive environments, the virtual instrumentation and the automation of processes can contribute to diminish the risks to the personnel occupationally exposed. (Author)

  17. Microfluidics: A Groundbreaking Technology for PET Tracer Production?

    Directory of Open Access Journals (Sweden)

    Björn Wängler

    2013-07-01

    Full Text Available Application of microfluidics to Positron Emission Tomography (PET tracer synthesis has attracted increasing interest within the last decade. The technical advantages of microfluidics, in particular the high surface to volume ratio and resulting fast thermal heating and cooling rates of reagents can lead to reduced reaction times, increased synthesis yields and reduced by-products. In addition automated reaction optimization, reduced consumption of expensive reagents and a path towards a reduced system footprint have been successfully demonstrated. The processing of radioactivity levels required for routine production, use of microfluidic-produced PET tracer doses in preclinical and clinical imaging as well as feasibility studies on autoradiolytic decomposition have all given promising results. However, the number of microfluidic synthesizers utilized for commercial routine production of PET tracers is very limited. This study reviews the state of the art in microfluidic PET tracer synthesis, highlighting critical design aspects, strengths, weaknesses and presenting several characteristics of the diverse PET market space which are thought to have a significant impact on research, development and engineering of microfluidic devices in this field. Furthermore, the topics of batch- and single-dose production, cyclotron to quality control integration as well as centralized versus de-centralized market distribution models are addressed.

  18. Microfluidic chemical reaction circuits

    Science.gov (United States)

    Lee, Chung-cheng; Sui, Guodong; Elizarov, Arkadij; Kolb, Hartmuth C.; Huang, Jiang; Heath, James R.; Phelps, Michael E.; Quake, Stephen R.; Tseng, Hsian-rong; Wyatt, Paul; Daridon, Antoine

    2012-06-26

    New microfluidic devices, useful for carrying out chemical reactions, are provided. The devices are adapted for on-chip solvent exchange, chemical processes requiring multiple chemical reactions, and rapid concentration of reagents.

  19. Punch Card Programmable Microfluidics

    CERN Document Server

    Korir, George

    2014-01-01

    Small volume fluid handling in single and multiphase microfluidics provides a promising strategy for efficient bio-chemical assays, low-cost point-of-care diagnostics and new approaches to scientific discoveries. However multiple barriers exist towards low-cost field deployment of programmable microfluidics. Incorporating multiple pumps, mixers and discrete valve based control of nanoliter fluids and droplets in an integrated, programmable manner without additional required external components has remained elusive. Combining the idea of punch card programming with arbitrary fluid control, here we describe a self-contained, hand-crank powered, multiplex and robust programmable microfluidic platform. A paper tape encodes information as a series of punched holes. A mechanical reader/actuator reads these paper tapes and correspondingly executes a series of operations onto a microfluidic chip coupled to the platform in a plug-and-play fashion. Enabled by the complexity of codes that can be represented by a series ...

  20. Microfluidic Bead Suspension Hopper

    OpenAIRE

    Price, Alexander K.; MacConnell, Andrew B.; Paegel, Brian M.

    2014-01-01

    Many high-throughput analytical platforms, from next-generation DNA sequencing to drug discovery, rely on beads as carriers of molecular diversity. Microfluidic systems are ideally suited to handle and analyze such bead libraries with high precision and at minute volume scales; however, the challenge of introducing bead suspensions into devices before they sediment usually confounds microfluidic handling and analysis. We developed a bead suspension hopper that exploits sedimentation to load b...

  1. Punch Card Programmable Microfluidics

    OpenAIRE

    George Korir; Manu Prakash

    2014-01-01

    Small volume fluid handling in single and multiphase microfluidics provides a promising strategy for efficient bio-chemical assays, low-cost point-of-care diagnostics and new approaches to scientific discoveries. However multiple barriers exist towards low-cost field deployment of programmable microfluidics. Incorporating multiple pumps, mixers and discrete valve based control of nanoliter fluids and droplets in an integrated, programmable manner without additional required external component...

  2. MEMS in microfluidic channels.

    Energy Technology Data Exchange (ETDEWEB)

    Ashby, Carol Iris Hill; Okandan, Murat; Michalske, Terry A.; Sounart, Thomas L.; Matzke, Carolyn M.

    2004-03-01

    Microelectromechanical systems (MEMS) comprise a new class of devices that include various forms of sensors and actuators. Recent studies have shown that microscale cantilever structures are able to detect a wide range of chemicals, biomolecules or even single bacterial cells. In this approach, cantilever deflection replaces optical fluorescence detection thereby eliminating complex chemical tagging steps that are difficult to achieve with chip-based architectures. A key challenge to utilizing this new detection scheme is the incorporation of functionalized MEMS structures within complex microfluidic channel architectures. The ability to accomplish this integration is currently limited by the processing approaches used to seal lids on pre-etched microfluidic channels. This report describes Sandia's first construction of MEMS instrumented microfluidic chips, which were fabricated by combining our leading capabilities in MEMS processing with our low-temperature photolithographic method for fabricating microfluidic channels. We have explored in-situ cantilevers and other similar passive MEMS devices as a new approach to directly sense fluid transport, and have successfully monitored local flow rates and viscosities within microfluidic channels. Actuated MEMS structures have also been incorporated into microfluidic channels, and the electrical requirements for actuation in liquids have been quantified with an elegant theory. Electrostatic actuation in water has been accomplished, and a novel technique for monitoring local electrical conductivities has been invented.

  3. Active pneumatic control of centrifugal microfluidic flows for lab-on-a-chip applications.

    Science.gov (United States)

    Clime, Liviu; Brassard, Daniel; Geissler, Matthias; Veres, Teodor

    2015-06-01

    This paper reports a novel method of controlling liquid motion on a centrifugal microfluidic platform based on the integration of a regulated pressure pump and a programmable electromechanical valving system. We demonstrate accurate control over the displacement of liquids within the system by pressurizing simultaneously multiple ports of the microfluidic device while the platform is rotating at high speed. Compared to classical centrifugal microfluidic platforms where liquids are solely driven by centrifugal and capillary forces, the method presented herein adds a new degree of freedom for fluidic manipulation, which represents a paradigm change in centrifugal microfluidics. We first demonstrate how various core microfluidic functions such as valving, switching, and reverse pumping (i.e., against the centrifugal field) can be easily achieved by programming the pressures applied at dedicated access ports of the microfluidic device. We then show, for the first time, that the combination of centrifugal force and active pneumatic pumping offers the possibility of mixing fluids rapidly (~0.1 s) and efficiently based on the creation of air bubbles at the bottom of a microfluidic reservoir. Finally, the suitability of the developed platform for performing complex bioanalytical assays in an automated fashion is demonstrated in a DNA harvesting experiment where recovery rates of about 70% were systematically achieved. The proposed concept offers the interesting prospect to decouple basic microfluidic functions from specific material properties, channel dimensions and fabrication tolerances, surface treatments, or on-chip active components, thus promoting integration of complex assays on simple and low-cost microfluidic cartridges.

  4. A microfluidic timer for timed valving and pumping in centrifugal microfluidics.

    Science.gov (United States)

    Schwemmer, F; Zehnle, S; Mark, D; von Stetten, F; Zengerle, R; Paust, N

    2015-03-21

    Accurate timing of microfluidic operations is essential for the automation of complex laboratory workflows, in particular for the supply of sample and reagents. Here we present a new unit operation for timed valving and pumping in centrifugal microfluidics. It is based on temporary storage of pneumatic energy and time delayed sudden release of said energy. The timer is loaded at a relatively higher spinning frequency. The countdown is started by reducing to a relatively lower release frequency, at which the timer is released after a pre-defined delay time. We demonstrate timing for 1) the sequential release of 4 liquids at times of 2.7 s ± 0.2 s, 14.0 s ± 0.5 s, 43.4 s ± 1.0 s and 133.8 s ± 2.3 s, 2) timed valving of typical assay reagents (contact angles 36-78°, viscosities 0.9-5.6 mPa s) and 3) on demand valving of liquids from 4 inlet chambers in any user defined sequence controlled by the spinning protocol. The microfluidic timer is compatible to all wetting properties and viscosities of common assay reagents and does neither require assistive equipment, nor coatings. It can be monolithically integrated into a microfluidic test carrier and is compatible to scalable fabrication technologies such as thermoforming or injection molding.

  5. Microfluidic microwell and microcapillary biochips

    Science.gov (United States)

    Minot, Michael J.; Stowe, David W.; Detarando, Michael A.; Krans, Joseph A.; Kass, Jason L.

    2006-02-01

    Utilizing nanotechnology, proprietary chemistry, and microfluidics, innovative firms are developing biochips and instrument systems that enable high-speed automated biomedical sequencing. Incom Inc. presents development results on five novel biochip technologies based on FiberOptic MicroSlide and microcapillary technology. FiberOptic MicroSlides are fiber optic interrogated (FOI) biochips made up of millions of fused optical fibers, and are uniquely suited as a platform for microarray applications. FiberOptic MicroSlides (henceforth referred to as "MicroSlides" or "slides" in this paper) act as a 'zero thickness substrate' transmitting optical signals from top to bottom without spreading, so that fluorescent or luminescent activity on the surface or within a well can be directly coupled to a CCD device without additional optics. In contrast to bulk optics, the slides are compact and have excellent light-gathering power. They are an alternative to conventional microscope slides for applications involving moderate-resolution bottom viewing (inverted microscopy). The surface of the MicroSlides can be etched or patterned with a permanent polymer to form microwell arrays, or microfluidic structures suitable for genomic and proteomic analysis, cell migration studies and other applications. Low-cost microcapillary array plates have also been developed. These plates act as microscopic test tubes, which enable picoliter reactions to be detected, counted and analyzed. Progress in developing large area (300 mm X 300 mm) arrays with up to 100 million capillaries, and diameter / length aspect ratios up to 10,000: 1 is presented. Results demonstrate negligible optical cross talk between capillaries, resulting in improved signal-to-noise ratios while minimizing false hits.

  6. Punch card programmable microfluidics.

    Science.gov (United States)

    Korir, George; Prakash, Manu

    2015-01-01

    Small volume fluid handling in single and multiphase microfluidics provides a promising strategy for efficient bio-chemical assays, low-cost point-of-care diagnostics and new approaches to scientific discoveries. However multiple barriers exist towards low-cost field deployment of programmable microfluidics. Incorporating multiple pumps, mixers and discrete valve based control of nanoliter fluids and droplets in an integrated, programmable manner without additional required external components has remained elusive. Combining the idea of punch card programming with arbitrary fluid control, here we describe a self-contained, hand-crank powered, multiplex and robust programmable microfluidic platform. A paper tape encodes information as a series of punched holes. A mechanical reader/actuator reads these paper tapes and correspondingly executes operations onto a microfluidic chip coupled to the platform in a plug-and-play fashion. Enabled by the complexity of codes that can be represented by a series of holes in punched paper tapes, we demonstrate independent control of 15 on-chip pumps with enhanced mixing, normally-closed valves and a novel on-demand impact-based droplet generator. We demonstrate robustness of operation by encoding a string of characters representing the word "PUNCHCARD MICROFLUIDICS" using the droplet generator. Multiplexing is demonstrated by implementing an example colorimetric water quality assays for pH, ammonia, nitrite and nitrate content in different water samples. With its portable and robust design, low cost and ease-of-use, we envision punch card programmable microfluidics will bring complex control of microfluidic chips into field-based applications in low-resource settings and in the hands of children around the world.

  7. Punch card programmable microfluidics.

    Directory of Open Access Journals (Sweden)

    George Korir

    Full Text Available Small volume fluid handling in single and multiphase microfluidics provides a promising strategy for efficient bio-chemical assays, low-cost point-of-care diagnostics and new approaches to scientific discoveries. However multiple barriers exist towards low-cost field deployment of programmable microfluidics. Incorporating multiple pumps, mixers and discrete valve based control of nanoliter fluids and droplets in an integrated, programmable manner without additional required external components has remained elusive. Combining the idea of punch card programming with arbitrary fluid control, here we describe a self-contained, hand-crank powered, multiplex and robust programmable microfluidic platform. A paper tape encodes information as a series of punched holes. A mechanical reader/actuator reads these paper tapes and correspondingly executes operations onto a microfluidic chip coupled to the platform in a plug-and-play fashion. Enabled by the complexity of codes that can be represented by a series of holes in punched paper tapes, we demonstrate independent control of 15 on-chip pumps with enhanced mixing, normally-closed valves and a novel on-demand impact-based droplet generator. We demonstrate robustness of operation by encoding a string of characters representing the word "PUNCHCARD MICROFLUIDICS" using the droplet generator. Multiplexing is demonstrated by implementing an example colorimetric water quality assays for pH, ammonia, nitrite and nitrate content in different water samples. With its portable and robust design, low cost and ease-of-use, we envision punch card programmable microfluidics will bring complex control of microfluidic chips into field-based applications in low-resource settings and in the hands of children around the world.

  8. Digital Microfluidics for Manipulation and Analysis of a Single Cell

    Directory of Open Access Journals (Sweden)

    Jie-Long He

    2015-09-01

    Full Text Available The basic structural and functional unit of a living organism is a single cell. To understand the variability and to improve the biomedical requirement of a single cell, its analysis has become a key technique in biological and biomedical research. With a physical boundary of microchannels and microstructures, single cells are efficiently captured and analyzed, whereas electric forces sort and position single cells. Various microfluidic techniques have been exploited to manipulate single cells through hydrodynamic and electric forces. Digital microfluidics (DMF, the manipulation of individual droplets holding minute reagents and cells of interest by electric forces, has received more attention recently. Because of ease of fabrication, compactness and prospective automation, DMF has become a powerful approach for biological application. We review recent developments of various microfluidic chips for analysis of a single cell and for efficient genetic screening. In addition, perspectives to develop analysis of single cells based on DMF and emerging functionality with high throughput are discussed.

  9. Droplet-based microfluidics: enabling impact on drug discovery.

    Science.gov (United States)

    Dressler, Oliver J; Maceiczyk, Richard M; Chang, Soo-Ik; deMello, Andrew J

    2014-04-01

    Over the past two decades, the application of microengineered systems in the chemical and biological sciences has transformed the way in which high-throughput experimentation is performed. The ability to fabricate complex microfluidic architectures has allowed scientists to create new experimental formats for processing ultra-small analytical volumes in short periods and with high efficiency. The development of such microfluidic systems has been driven by a range of fundamental features that accompany miniaturization. These include the ability to handle small sample volumes, ultra-low fabrication costs, reduced analysis times, enhanced operational flexibility, facile automation, and the ability to integrate functional components within complex analytical schemes. Herein we discuss the impact of microfluidics in the area of high-throughput screening and drug discovery and highlight some of the most pertinent studies in the recent literature.

  10. Development of a fully automated online mixing system for SAXS protein structure analysis

    DEFF Research Database (Denmark)

    Nielsen, Søren Skou; Arleth, Lise

    2010-01-01

    This thesis presents the development of an automated high-throughput mixing and exposure system for Small-Angle Scattering analysis on a synchrotron using polymer microfluidics. Software and hardware for both automated mixing, exposure control on a beamline and automated data reduction and prelim......This thesis presents the development of an automated high-throughput mixing and exposure system for Small-Angle Scattering analysis on a synchrotron using polymer microfluidics. Software and hardware for both automated mixing, exposure control on a beamline and automated data reduction...... and preliminary analysis is presented. Three mixing systems that have been the corner stones of the development process are presented including a fully functioning high-throughput microfluidic system that is able to produce and expose 36 mixed samples per hour using 30 μL of sample volume. The system is tested...

  11. Proteolysis in microfluidic droplets: an approach to interface protein separation and peptide mass spectrometry

    OpenAIRE

    Ji, Ji; Nie, Lei; Qiao, Liang; Li, Yixin; Guo, Liping; Liu, Baohong; Yang, Pengyuan; Girault, Hubert H.

    2012-01-01

    A versatile microreactor protocol based on microfluidic droplets has been developed for on-line protein digestion. Proteins separated by liquid chromatography are fractionated in water-in-oil droplets and digested in sequence. The microfluidic reactor acts also as an electrospray ionization emitter for mass spectrometry analysis of the peptides produced in the individual droplets. Each droplet is an enzymatic micro-reaction unit with efficient proteolysis due to rapid mixing, enhanced mass tr...

  12. Liquid metal enabled microfluidics.

    Science.gov (United States)

    Khoshmanesh, Khashayar; Tang, Shi-Yang; Zhu, Jiu Yang; Schaefer, Samira; Mitchell, Arnan; Kalantar-Zadeh, Kourosh; Dickey, Michael D

    2017-03-14

    Several gallium-based liquid metal alloys are liquid at room temperature. As 'liquid', such alloys have a low viscosity and a high surface tension while as 'metal', they have high thermal and electrical conductivities, similar to mercury. However, unlike mercury, these liquid metal alloys have low toxicity and a negligible vapor pressure, rendering them much safer. In comparison to mercury, the distinguishing feature of these alloys is the rapid formation of a self-limiting atomically thin layer of gallium oxide over their surface when exposed to oxygen. This oxide layer changes many physical and chemical properties of gallium alloys, including their interfacial and rheological properties, which can be employed and modulated for various applications in microfluidics. Injecting liquid metal into microfluidic structures has been extensively used to pattern and encapsulate highly deformable and reconfigurable electronic devices including electrodes, sensors, antennas, and interconnects. Likewise, the unique features of liquid metals have been employed for fabricating miniaturized microfluidic components including pumps, valves, heaters, and electrodes. In this review, we discuss liquid metal enabled microfluidic components, and highlight their desirable attributes including simple fabrication, facile integration, stretchability, reconfigurability, and low power consumption, with promising applications for highly integrated microfluidic systems.

  13. A Smartphone Controlled Handheld Microfluidic Liquid Handling System

    CERN Document Server

    Li, Baichen; Guan, Allan; Dong, Quan; Ruan, Kangcheng; Hu, Ronggui; Li, Zhenyu

    2014-01-01

    Microfluidics and lab-on-a-chip technologies have made it possible to manipulate small volume liquids with unprecedented resolution, automation and integration. However, most current microfluidic systems still rely on bulky off-chip infrastructures such as compressed pressure sources, syringe pumps and computers to achieve complex liquid manipulation functions. Here, we present a handheld automated microfluidic liquid handling system controlled by a smartphone, which is enabled by combining elastomeric on-chip valves and a compact pneumatic system. As a demonstration, we show that the system can automatically perform all the liquid handling steps of a bead-based sandwich immunoassay on a multi-layer PDMS chip without any human intervention. The footprint of the system is 6 by 10.5 by 16.5cm, and the total weight is 829g including battery. Powered by a 12.8V 1500mAh Li battery, the system consumed 2.2W on average during the immunoassay and lasted for 8.7 hrs. This handheld microfluidic liquid handling platform...

  14. Microfluidic Flame Barrier

    Science.gov (United States)

    Mungas, Gregory S. (Inventor); Fisher, David J. (Inventor); Mungas, Christopher (Inventor)

    2013-01-01

    Propellants flow through specialized mechanical hardware that is designed for effective and safe ignition and sustained combustion of the propellants. By integrating a micro-fluidic porous media element between a propellant feed source and the combustion chamber, an effective and reliable propellant injector head may be implemented that is capable of withstanding transient combustion and detonation waves that commonly occur during an ignition event. The micro-fluidic porous media element is of specified porosity or porosity gradient selected to be appropriate for a given propellant. Additionally the propellant injector head design integrates a spark ignition mechanism that withstands extremely hot running conditions without noticeable spark mechanism degradation.

  15. [Application of microfluidics in sperm isolation and in vitro fertilization].

    Science.gov (United States)

    Li, Fang-Fang; Wang, Xiao-Ying; Zhou, Shu-Min; You, Fan

    2014-05-01

    Due to the low effectiveness of traditional assisted reproductive technology (ART), new technological possibilities are constantly explored. Lots of studies have demonstrated the potential of microfluidics to revolutionize the fundamental processes of in vitro fertilization (IVF). With the advantages of high efficiency, short time, harmless collection, real-time observation of separation, similar microenvironment, and automation, the application of microfluidics in sperm isolation and IVF has shown an evident superiority over the conventional approaches and provided a new platform for ART. This review highlights the application of various microfluidic techniques in sperm motility assessment and isolation, sperm chemotaxis assay, IVF, sperm concentration, and sperm separation and enrichment in recent years. It also briefly introduces the basic principles, structural design, and operation processes of the microfluidic platform, focusing on the advantages and disadvantages of each method and the potential of their clinical application. Obviously, there are still some challenges to the application of microfluidics in ART. However, it is believed that the development of this new technology would be toward a highly integrated application of several steps in one single device, known as IVF-lab-on-a-chip.

  16. Warehouse automation

    OpenAIRE

    Pogačnik, Jure

    2017-01-01

    An automated high bay warehouse is commonly used for storing large number of material with a high throughput. In an automated warehouse pallet movements are mainly performed by a number of automated devices like conveyors systems, trolleys, and stacker cranes. From the introduction of the material to the automated warehouse system to its dispatch the system requires no operator input or intervention since all material movements are done automatically. This allows the automated warehouse to op...

  17. Chemistry in Microfluidic Channels

    Science.gov (United States)

    Chia, Matthew C.; Sweeney, Christina M.; Odom, Teri W.

    2011-01-01

    General chemistry introduces principles such as acid-base chemistry, mixing, and precipitation that are usually demonstrated in bulk solutions. In this laboratory experiment, we describe how chemical reactions can be performed in a microfluidic channel to show advanced concepts such as laminar fluid flow and controlled precipitation. Three sets of…

  18. Surfactants in microfluidics

    NARCIS (Netherlands)

    Michler, D.

    2015-01-01

    The rapid development of microfluidic techniques in the last two decades has revolutionized chemical and biological research. This technology has enabled scientists in a manifold of research fields to analyze and synthesize specimens with hither to unreached speed and precision. The number of applic

  19. Basic Microfluidics Theory

    DEFF Research Database (Denmark)

    Svendsen, Winnie Edith

    2015-01-01

    ,000 m−1, which is a huge difference and has a large impact on flow behavior. In this chapter the basic microfluidic theory will be presented, enabling the reader to gain a comprehensive understanding of how liquids behave at the microscale, enough to be able to engage in design of micro systems...

  20. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  1. Automation of nonlinear calculations in the theory of fusion reactor; Automatisation des calculs non lineaires dans la theorie des reacteurs a fusion

    Energy Technology Data Exchange (ETDEWEB)

    Braffort, P.; Chaigne, M. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    1) Introduction: The difficulties of the formulation of the equations of phenomena occurring during the operation of a fusion reactor are underlined. 2) The possibilities presented by analog computation of the solution of nonlinear differential equations are enumerated. The accuracy and limitations of this method are discussed. 3) The analog solution in the stationary problem of the measurement of the discharge confinement is given and comparison with experimental results. 4) The analog solution of the dynamic problem of the evolution of the discharge current in a simple case is given and it is compared with experimental data. 5) The analog solution of the motion of an isolated ion in the electromagnetic field is given. A spatial field simulator used for this problem (bidimensional problem) is described. 6) The analog solution of the preceding problem for a tridimensional case for particular geometrical configurations using simultaneously 2 field simulators is given. 7) A method of computation derived from Monte Carlo method for the study of dynamic of plasma is described. 8) Conclusion: the essential differences between the analog computation of fission reactors and fusion reactors are analysed. In particular the theory of control of a fusion reactor as described by SCHULTZ is discussed and the results of linearized formulations are compared with those of nonlinear simulation. (author)Fren. [French] 1) Introduction. On souligne les difficultes que presente la mise en equation des phenomenes mis en jeu lors du fonctionnement d'un reacteur a fusion. On selectionne un certain nombre d'equations generalement utilisees et on montre les impossibilites analytiques auxquelles on se heurte alors. 2) On rappelle les possibilites du calcul analogique pour la resolution des systemes differentiels non lineaires et on indique la precision de la methode ainsi que ses limitations. 3) On decrit esolution analogique du probleme statique de la mesure du confinement de la

  2. MATLAB-based automated patch-clamp system for awake behaving mice

    OpenAIRE

    Desai, Niraj S.; Siegel, Jennifer J.; Taylor, William; Chitwood, Raymond A.; Johnston, Daniel

    2015-01-01

    Automation has been an important part of biomedical research for decades, and the use of automated and robotic systems is now standard for such tasks as DNA sequencing, microfluidics, and high-throughput screening. Recently, Kodandaramaiah and colleagues (Nat Methods 9: 585–587, 2012) demonstrated, using anesthetized animals, the feasibility of automating blind patch-clamp recordings in vivo. Blind patch is a good target for automation because it is a complex yet highly stereotyped process th...

  3. Magnetic digital microfluidics - a review.

    Science.gov (United States)

    Zhang, Yi; Nguyen, Nam-Trung

    2017-03-14

    A digital microfluidic platform manipulates droplets on an open surface. Magnetic digital microfluidics utilizes magnetic forces for actuation and offers unique advantages compared to other digital microfluidic platforms. First, the magnetic particles used in magnetic digital microfluidics have multiple functions. In addition to serving as actuators, they also provide a functional solid substrate for molecule binding, which enables a wide range of applications in molecular diagnostics and immunodiagnostics. Second, magnetic digital microfluidics can be manually operated in a "power-free" manner, which allows for operation in low-resource environments for point-of-care diagnostics where even batteries are considered a luxury item. This review covers research areas related to magnetic digital microfluidics. This paper first summarizes the current development of magnetic digital microfluidics. Various methods of droplet manipulation using magnetic forces are discussed, ranging from conventional magnetic particle-based actuation to the recent development of ferrofluids and magnetic liquid marbles. This paper also discusses several new approaches that use magnetically controlled flexible substrates for droplet manipulation. In addition, we emphasize applications of magnetic digital microfluidics in biosensing and medical diagnostics, and identify the current limitations of magnetic digital microfluidics. We provide a perspective on possible solutions to close these gaps. Finally, the paper discusses the future improvement of magnetic digital microfluidics to explore potential new research directions.

  4. Microfluidic Device for Automated High-Throughput Protein Crystallization Screening by Osmotic Dewatering%基于渗透脱水的自动化蛋白质结晶高通量筛选芯片

    Institute of Scientific and Technical Information of China (English)

    罗娅慧; 李刚; 陈强; 赵建龙

    2012-01-01

    构建了一种基于渗透脱水模式的自动进样微流控结晶芯片.该芯片通过真空预脱气将包含蛋白质和结晶剂的液滴自动分配至结晶微腔阵列中,然后利用集成的一排包含不同浓度盐溶液的透析管道,通过渗透脱水方式经一层聚二甲基硅氧烷(PDMS)膜实现液滴的逐渐浓缩,使之趋于过饱和状态,进而形成结晶.此芯片可一次筛选较宽范围的过饱和状态,实现蛋白质结晶的快速优化.利用模式蛋白溶菌酶的结晶实验验证了该芯片的性能.%A self-dispensing and osmosis-based microfluidic crystallization device was reported. This device automatically dispenses droplets containing protein and precipitant into an array of crystallization chambers by pre-degassing, and then gradually concentrates these droplets at different rates by osmotic dewatering through a polydimethylsiboxane(PDMS) membrane using a row of integrated dialysis channels filled with different concentration of salt solution. This concentration process drives the protein/precipitant mixture into supersaturated , thus tending toward the crystallization state. This device allows for screening a wide range of supersatura-tion in one trial for rapid optimization of protein crystallization. The feasibility of this crystallization device is demonstrated using the model proteins of lysozyme.

  5. PREFACE: Nano- and microfluidics Nano- and microfluidics

    Science.gov (United States)

    Jacobs, Karin

    2011-05-01

    The field of nano- and microfluidics emerged at the end of the 1990s parallel to the demand for smaller and smaller containers and channels for chemical, biochemical and medical applications such as blood and DNS analysis [1], gene sequencing or proteomics [2, 3]. Since then, new journals and conferences have been launched and meanwhile, about two decades later, a variety of microfluidic applications are on the market. Briefly, 'the small flow becomes mainstream' [4]. Nevertheless, research in nano- and microfluidics is more than downsizing the spatial dimensions. For liquids on the nanoscale, surface and interface phenomena grow in importance and may even dominate the behavior in some systems. The studies collected in this special issue all concentrate on these type of systems and were part ot the priority programme SPP1164 'Nano- and Microfluidics' of the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG). The priority programme was initiated in 2002 by Hendrik Kuhlmann and myself and was launched in 2004. Friction between a moving liquid and a solid wall may, for instance, play an important role so that the usual assumption of a no-slip boundary condition is no longer valid. Likewise, the dynamic deformations of soft objects like polymers, vesicles or capsules in flow arise from the subtle interplay between the (visco-)elasticity of the object and the viscous stresses in the surrounding fluid and, potentially, the presence of structures confining the flow like channels. Consequently, new theories were developed ( see articles in this issue by Münch and Wagner, Falk and Mecke, Bonthuis et al, Finken et al, Almenar and Rauscher, Straube) and experiments were set up to unambiguously demonstrate deviations from bulk, or 'macro', behavior (see articles in this issue by Wolff et al, Vinogradova and Belyaev, Hahn et al, Seemann et al, Grüner and Huber, Müller-Buschbaum et al, Gutsche et al, Braunmüller et al, Laube et al, Brücker, Nottebrock et al

  6. Droplet microfluidics based microseparation systems.

    Science.gov (United States)

    Xiao, Zhiliang; Niu, Menglei; Zhang, Bo

    2012-06-01

    Lab on a chip (LOC) technology is a promising miniaturization approach. The feature that it significantly reduced sample consumption makes great sense in analytical and bioanalytical chemistry. Since the start of LOC technology, much attention has been focused on continuous flow microfluidic systems. At the turn of the century, droplet microfluidics, which was also termed segmented flow microfluidics, was introduced. Droplet microfluidics employs two immiscible phases to form discrete droplets, which are ideal vessels with confined volume, restricted dispersion, limited cross-contamination, and high surface area. Due to these unique features, droplet microfluidics proves to be a versatile tool in microscale sample handling. This article reviews the utility of droplet microfluidics in microanalytical systems with an emphasize on separation science, including sample encapsulation at ultra-small volume, compartmentalization of separation bands, isolation of droplet contents, and related detection techniques.

  7. Accounting Automation

    OpenAIRE

    Laynebaril1

    2017-01-01

    Accounting Automation   Click Link Below To Buy:   http://hwcampus.com/shop/accounting-automation/  Or Visit www.hwcampus.com Accounting Automation” Please respond to the following: Imagine you are a consultant hired to convert a manual accounting system to an automated system. Suggest the key advantages and disadvantages of automating a manual accounting system. Identify the most important step in the conversion process. Provide a rationale for your response. ...

  8. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  9. Home Automation

    OpenAIRE

    Ahmed, Zeeshan

    2010-01-01

    In this paper I briefly discuss the importance of home automation system. Going in to the details I briefly present a real time designed and implemented software and hardware oriented house automation research project, capable of automating house's electricity and providing a security system to detect the presence of unexpected behavior.

  10. Nanoliter-Scale Protein Crystallization and Screening with a Microfluidic Droplet Robot

    OpenAIRE

    Ying Zhu; Li-Na Zhu; Rui Guo; Heng-Jun Cui; Sheng Ye; Qun Fang

    2014-01-01

    Large-scale screening of hundreds or even thousands of crystallization conditions while with low sample consumption is in urgent need, in current structural biology research. Here we describe a fully-automated droplet robot for nanoliter-scale crystallization screening that combines the advantages of both automated robotics technique for protein crystallization screening and the droplet-based microfluidic technique. A semi-contact dispensing method was developed to achieve flexible, programma...

  11. Microfluidic Production of Multiple Emulsions

    Directory of Open Access Journals (Sweden)

    Goran T. Vladisavljević

    2017-03-01

    Full Text Available Microfluidic devices are promising tools for the production of monodispersed tuneable complex emulsions. This review highlights the advantages of microfluidics for the fabrication of emulsions and presents an overview of the microfluidic emulsification methods including two-step and single-step methods for the fabrication of high-order multiple emulsions (double, triple, quadruple and quintuple and emulsions with multiple and/or multi-distinct inner cores. The microfluidic methods for the formation of multiple emulsion drops with ultra-thin middle phase, multi-compartment jets, and Janus and ternary drops composed of two or three distinct surface regions are also presented. Different configurations of microfluidic drop makers are covered, such as co-flow, T-junctions and flow focusing (both planar and three-dimensional (3D. Furthermore, surface modifications of microfluidic channels and different modes of droplet generation are summarized. Non-confined microfluidic geometries used for buoyancy-driven drop generation and membrane integrated microfluidics are also discussed. The review includes parallelization and drop splitting strategies for scaling up microfluidic emulsification. The productivity of a single drop maker is typically <1 mL/h; thus, more than 1000 drop makers are needed to achieve commercially relevant droplet throughputs of >1 L/h, which requires combining drop makers into twodimensional (2D and 3D assemblies fed from a single set of inlet ports through a network of distribution and collection channels.

  12. The Microfluidic Jukebox

    Science.gov (United States)

    Tan, Say Hwa; Maes, Florine; Semin, Benoît; Vrignon, Jérémy; Baret, Jean-Christophe

    2014-04-01

    Music is a form of art interweaving people of all walks of life. Through subtle changes in frequencies, a succession of musical notes forms a melody which is capable of mesmerizing the minds of people. With the advances in technology, we are now able to generate music electronically without relying solely on physical instruments. Here, we demonstrate a musical interpretation of droplet-based microfluidics as a form of novel electronic musical instruments. Using the interplay of electric field and hydrodynamics in microfluidic devices, well controlled frequency patterns corresponding to musical tracks are generated in real time. This high-speed modulation of droplet frequency (and therefore of droplet sizes) may also provide solutions that reconciles high-throughput droplet production and the control of individual droplet at production which is needed for many biochemical or material synthesis applications.

  13. Microfluidic colloid filtration

    Science.gov (United States)

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-03-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level.

  14. Microfluidic redox battery.

    Science.gov (United States)

    Lee, Jin Wook; Goulet, Marc-Antoni; Kjeang, Erik

    2013-07-01

    A miniaturized microfluidic battery is proposed, which is the first membraneless redox battery demonstrated to date. This unique concept capitalizes on dual-pass flow-through porous electrodes combined with stratified, co-laminar flow to generate electrical power on-chip. The fluidic design is symmetric to allow for both charging and discharging operations in forward, reverse, and recirculation modes. The proof-of-concept device fabricated using low-cost materials integrated in a microfluidic chip is shown to produce competitive power levels when operated on a vanadium redox electrolyte. A complete charge/discharge cycle is performed to demonstrate its operation as a rechargeable battery, which is an important step towards providing sustainable power to lab-on-a-chip and microelectronic applications.

  15. Droplet based microfluidics

    Science.gov (United States)

    Seemann, Ralf; Brinkmann, Martin; Pfohl, Thomas; Herminghaus, Stephan

    2012-01-01

    Droplet based microfluidics is a rapidly growing interdisciplinary field of research combining soft matter physics, biochemistry and microsystems engineering. Its applications range from fast analytical systems or the synthesis of advanced materials to protein crystallization and biological assays for living cells. Precise control of droplet volumes and reliable manipulation of individual droplets such as coalescence, mixing of their contents, and sorting in combination with fast analysis tools allow us to perform chemical reactions inside the droplets under defined conditions. In this paper, we will review available drop generation and manipulation techniques. The main focus of this review is not to be comprehensive and explain all techniques in great detail but to identify and shed light on similarities and underlying physical principles. Since geometry and wetting properties of the microfluidic channels are crucial factors for droplet generation, we also briefly describe typical device fabrication methods in droplet based microfluidics. Examples of applications and reaction schemes which rely on the discussed manipulation techniques are also presented, such as the fabrication of special materials and biophysical experiments.

  16. Droplet based microfluidics.

    Science.gov (United States)

    Seemann, Ralf; Brinkmann, Martin; Pfohl, Thomas; Herminghaus, Stephan

    2012-01-01

    Droplet based microfluidics is a rapidly growing interdisciplinary field of research combining soft matter physics, biochemistry and microsystems engineering. Its applications range from fast analytical systems or the synthesis of advanced materials to protein crystallization and biological assays for living cells. Precise control of droplet volumes and reliable manipulation of individual droplets such as coalescence, mixing of their contents, and sorting in combination with fast analysis tools allow us to perform chemical reactions inside the droplets under defined conditions. In this paper, we will review available drop generation and manipulation techniques. The main focus of this review is not to be comprehensive and explain all techniques in great detail but to identify and shed light on similarities and underlying physical principles. Since geometry and wetting properties of the microfluidic channels are crucial factors for droplet generation, we also briefly describe typical device fabrication methods in droplet based microfluidics. Examples of applications and reaction schemes which rely on the discussed manipulation techniques are also presented, such as the fabrication of special materials and biophysical experiments.

  17. Microfluidic platform with four orthogonal and overlapping gradients for soluble compound screening in regenerative medicine research

    NARCIS (Netherlands)

    Harink, Björn; Le Gac, Séverine; Barata, David; Blitterswijk, van Clemens; Habibovic, Pamela

    2015-01-01

    We present here a screening method based on a microfluidic platform, which can generate four orthogonal and overlapping concentration gradients of soluble compounds over a monolayer of cells, in combination with automated and in situ image analysis, for use in regenerative medicine research. The dev

  18. Rapid prototyping of microfluidic systems using a PDMS/polymer tape composite.

    Science.gov (United States)

    Kim, Jungkyu; Surapaneni, Rajesh; Gale, Bruce K

    2009-05-01

    Rapid prototyping of microfluidic systems using a combination of double-sided tape and PDMS (polydimethylsiloxane) is introduced. PDMS is typically difficult to bond using adhesive tapes due to its hydrophobic nature and low surface energy. For this reason, PDMS is not compatible with the xurography method, which uses a knife plotter and various adhesive coated polymer tapes. To solve these problems, a PDMS/tape composite was developed and demonstrated in microfluidic applications. The PDMS/tape composite was created by spinning it to make a thin layer of PDMS over double-sided tape. Then the PDMS/tape composite was patterned to create channels using xurography, and bonded to a PDMS slab. After removing the backing paper from the tape, a complete microfluidic system could be created by placing the construct onto nearly any substrate; including glass, plastic or metal-coated glass/silicon substrates. The bond strength was shown to be sufficient for the pressures that occur in typical microfluidic channels used for chemical or biological analysis. This method was demonstrated in three applications: standard microfluidic channels and reactors, a microfluidic system with an integrated membrane, and an electrochemical biosensor. The PDMS/tape composite rapid prototyping technique provides a fast and cost effective fabrication method and can provide easy integration of microfluidic channels with sensors and other components without the need for a cleanroom facility.

  19. Digital Microfluidic System with Vertical Functionality

    Directory of Open Access Journals (Sweden)

    Brian F. Bender

    2015-11-01

    Full Text Available Digital (droplet microfluidics (DµF is a powerful platform for automated lab-on-a-chip procedures, ranging from quantitative bioassays such as RT-qPCR to complete mammalian cell culturing. The simple MEMS processing protocols typically employed to fabricate DµF devices limit their functionality to two dimensions, and hence constrain the applications for which these devices can be used. This paper describes the integration of vertical functionality into a DµF platform by stacking two planar digital microfluidic devices, altering the electrode fabrication process, and incorporating channels for reversibly translating droplets between layers. Vertical droplet movement was modeled to advance the device design, and three applications that were previously unachievable using a conventional format are demonstrated: (1 solutions of calcium dichloride and sodium alginate were vertically mixed to produce a hydrogel with a radially symmetric gradient in crosslink density; (2 a calcium alginate hydrogel was formed within the through-well to create a particle sieve for filtering suspensions passed from one layer to the next; and (3 a cell spheroid formed using an on-chip hanging-drop was retrieved for use in downstream processing. The general capability of vertically delivering droplets between multiple stacked levels represents a processing innovation that increases DµF functionality and has many potential applications.

  20. A microfluidic toolbox for the development of in-situ product removal strategies in biocatalysis

    DEFF Research Database (Denmark)

    Heintz, Søren; Mitic, Aleksandar; Ringborg, Rolf Hoffmeyer;

    2016-01-01

    A microfluidic toolbox for accelerated development of biocatalytic processes has great potential. This is especially the case for the development of advanced biocatalytic process concepts, where reactors and product separation methods are closely linked together to intensify the process performan...... biocatalytic processes, which in many cases have proven too difficult in conventional batch equipment.......A microfluidic toolbox for accelerated development of biocatalytic processes has great potential. This is especially the case for the development of advanced biocatalytic process concepts, where reactors and product separation methods are closely linked together to intensify the process performance......, e.g., by the use of in-situ product removal (ISPR).This review provides a general overview of currently available tools in a microfluidic toolbox and how this toolbox can be applied to the development of advanced biocatalytic process concepts. Emphasis is placed on describing the possibilities...

  1. The upcoming 3D-printing revolution in microfluidics.

    Science.gov (United States)

    Bhattacharjee, Nirveek; Urrios, Arturo; Kang, Shawn; Folch, Albert

    2016-05-21

    In the last two decades, the vast majority of microfluidic systems have been built in poly(dimethylsiloxane) (PDMS) by soft lithography, a technique based on PDMS micromolding. A long list of key PDMS properties have contributed to the success of soft lithography: PDMS is biocompatible, elastomeric, transparent, gas-permeable, water-impermeable, fairly inexpensive, copyright-free, and rapidly prototyped with high precision using simple procedures. However, the fabrication process typically involves substantial human labor, which tends to make PDMS devices difficult to disseminate outside of research labs, and the layered molding limits the 3D complexity of the devices that can be produced. 3D-printing has recently attracted attention as a way to fabricate microfluidic systems due to its automated, assembly-free 3D fabrication, rapidly decreasing costs, and fast-improving resolution and throughput. Resins with properties approaching those of PDMS are being developed. Here we review past and recent efforts in 3D-printing of microfluidic systems. We compare the salient features of PDMS molding with those of 3D-printing and we give an overview of the critical barriers that have prevented the adoption of 3D-printing by microfluidic developers, namely resolution, throughput, and resin biocompatibility. We also evaluate the various forces that are persuading researchers to abandon PDMS molding in favor of 3D-printing in growing numbers.

  2. Path to Low Cost Microfluidics

    CERN Document Server

    Govyadinov, Alexander N; Kornilovitch, Pavel; Markel, David

    2016-01-01

    The paper describes a novel concept for a low cost microfluidic platform utilizing materials and processes used in low cost thermal inkjet printing. The concept re-purposes the jetting elements to create pumps, mixers, and valves all necessary components for the transport of fluids in a broad range of microfluidic applications.

  3. Centrifugal microfluidics for biomedical applications.

    Science.gov (United States)

    Gorkin, Robert; Park, Jiwoon; Siegrist, Jonathan; Amasia, Mary; Lee, Beom Seok; Park, Jong-Myeon; Kim, Jintae; Kim, Hanshin; Madou, Marc; Cho, Yoon-Kyoung

    2010-07-21

    The centrifugal microfluidic platform has been a focus of academic and industrial research efforts for almost 40 years. Primarily targeting biomedical applications, a range of assays have been adapted on the system; however, the platform has found limited commercial success as a research or clinical tool. Nonetheless, new developments in centrifugal microfluidic technologies have the potential to establish wide-spread utilization of the platform. This paper presents an in-depth review of the centrifugal microfluidic platform, while highlighting recent progress in the field and outlining the potential for future applications. An overview of centrifugal microfluidic technologies is presented, including descriptions of advantages of the platform as a microfluidic handling system and the principles behind centrifugal fluidic manipulation. The paper also discusses a history of significant centrifugal microfluidic platform developments with an explanation of the evolution of the platform as it pertains to academia and industry. Lastly, we review the few centrifugal microfluidic-based sample-to-answer analysis systems shown to date and examine the challenges to be tackled before the centrifugal platform can be more broadly accepted as a new diagnostic platform. In particular, fully integrated, easy to operate, inexpensive and accurate microfluidic tools in the area of in vitro nucleic acid diagnostics are discussed.

  4. Surface micromachined PDMS microfluidic devices fabricated using a sacrificial photoresist

    Science.gov (United States)

    Ganapathy Subramani, Balasubramanian; Selvaganapathy, Ponnambalam Ravi

    2009-01-01

    PDMS is a widely used material for construction of microfluidic devices. The traditional PDMS microfabrication process, although versatile, cannot be used to form microfluidic devices with embedded tall topological features, such as thick-film electrodes and porous reactor beds. This paper presents an elegant surface micromachining process for microfluidic devices that allows complete leak-proof sealing and a conformal contact of the PDMS with tall pre-existing topographical features and demonstrates this approach by embedding 6 µm thick Ag/AgCl (high capacity 1680 µA s) electrodes inside the microchannels. In this process, thin spin-cast films of the PDMS are used as the structural material and a photoresist is used as the sacrificial material. A crucial parameter, namely adhesion of the spun-cast structural layer to the substrate, was characterized for different pre-polymer ratios using a standard tensile test, and a 1:3 (curing agent:base) combination was found to be the best with a maximum adhesion strength of 7.2 MPa. The elastic property of the PDMS allowed extremely fast release times of ~1 min of the fabricated microchannels. The versatility of this process was demonstrated by the fabrication of a pneumatic microvalve with multi-layered microchannel geometry. The valve closure occurred at 6.37 kPa. Preliminary results of this paper have been presented at the Canadian Workshop on MEMS and Microfluidics, Montréal, Canada, August 2007.

  5. Automated digital magnetofluidics

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, J; Garcia, A A; Marquez, M [Harrington Department of Bioengineering Arizona State University, Tempe AZ 85287-9709 (United States)], E-mail: tony.garcia@asu.edu

    2008-08-15

    Drops can be moved in complex patterns on superhydrophobic surfaces using a reconfigured computer-controlled x-y metrology stage with a high degree of accuracy, flexibility, and reconfigurability. The stage employs a DMC-4030 controller which has a RISC-based, clock multiplying processor with DSP functions, accepting encoder inputs up to 22 MHz, provides servo update rates as high as 32 kHz, and processes commands at rates as fast as 40 milliseconds. A 6.35 mm diameter cylindrical NdFeB magnet is translated by the stage causing water drops to move by the action of induced magnetization of coated iron microspheres that remain in the drop and are attracted to the rare earth magnet through digital magnetofluidics. Water drops are easily moved in complex patterns in automated digital magnetofluidics at an average speed of 2.8 cm/s over a superhydrophobic polyethylene surface created by solvent casting. With additional components, some potential uses for this automated microfluidic system include characterization of superhydrophobic surfaces, water quality analysis, and medical diagnostics.

  6. Microfluidic Cell Culture Device

    Science.gov (United States)

    Takayama, Shuichi (Inventor); Cabrera, Lourdes Marcella (Inventor); Heo, Yun Seok (Inventor); Smith, Gary Daniel (Inventor)

    2014-01-01

    Microfluidic devices for cell culturing and methods for using the same are disclosed. One device includes a substrate and membrane. The substrate includes a reservoir in fluid communication with a passage. A bio-compatible fluid may be added to the reservoir and passage. The reservoir is configured to receive and retain at least a portion of a cell mass. The membrane acts as a barrier to evaporation of the bio-compatible fluid from the passage. A cover fluid may be added to cover the bio-compatible fluid to prevent evaporation of the bio-compatible fluid.

  7. Microfluidic Scintillation Detectors

    CERN Multimedia

    Microfluidic scintillation detectors are devices of recent introduction for the detection of high energy particles, developed within the EP-DT group at CERN. Most of the interest for such technology comes from the use of liquid scintillators, which entails the possibility of changing the active material in the detector, leading to an increased radiation resistance. This feature, together with the high spatial resolution and low thickness deriving from the microfabrication techniques used to manufacture such devices, is desirable not only in instrumentation for high energy physics experiments but also in medical detectors such as beam monitors for hadron therapy.

  8. Continuous flow synthesis of nanoparticles using ceramic microfluidic devices.

    Science.gov (United States)

    Gómez-de Pedro, S; Puyol, M; Alonso-Chamarro, J

    2010-10-15

    A microfluidic system based on the low-temperature co-fired ceramics technology (LTCC) is proposed to reproducibly carry out a simple one-phase synthesis and functionalization of monodispersed gold nanoparticles. It takes advantage of the LTCC technology, offering a fast prototyping without the need to use sophisticated facilities, reducing significantly the cost and production time of microfluidic systems. Some other interesting advantages of the ceramic materials compared to glass, silicon or polymers are their versatility and chemical resistivity. The technology enables the construction of multilayered systems, which can integrate other mechanical, electronic and fluidic components in a single substrate. This approach allows rapid, easy, low cost and automated synthesis of the gold colloidal, thus it becomes a useful approach in the progression from laboratory scale to pilot-line scale processes, which is currently demanded.

  9. Image-based analysis of droplets in microfluidics.

    Science.gov (United States)

    Zantow, Miné; Dendere, Ronald; Douglas, Tania S

    2013-01-01

    In order to design a microfluidic device that can produce monodispersed encapsulated enzymes as droplets, it is essential to be able to evaluate the system during its development. An automated method to determine the size of the droplets as well as a method to tag and track droplets as they move in the system is desirable for system evaluation. We apply the Hough transform for circles to determine droplet size. Most of the droplets in the images are detected, and the best results are obtained at 20x magnification. We also test the ability of the ImageJ 'particle tracker' plugin to determine the behaviour of the droplets as they move in microfluidic systems. It is effective in tracking droplets that travel less than 50 pixels between frames.

  10. Usability and Applicability of Microfluidic Cell Culture Systems

    DEFF Research Database (Denmark)

    Hemmingsen, Mette

    Microfluidic cell culture has been a research area with great attention the last decade due to its potential to mimic the in vivo cellular environment more closely compared to what is possible by conventional cell culture methods. Many exciting and complex devices have been presented providing...... possibilities for, for example, precise control of the chemical environment, 3D cultures, controlled co-culture of different cell types or automated, individual control of up to 96 cell culture chambers in one integrated system. Despite the great new opportunities to perform novel experimental designs......, these devices still lack general implementation into biological research laboratories. In this project, the usability and applicability of microfluidic cell culture systems have been investigated. The tested systems display good properties regarding optics and compatibility with standard laboratory equipment...

  11. Microfluidics: applications for analytical purposes in chemistry and biochemistry.

    Science.gov (United States)

    Ohno, Ken-ichi; Tachikawa, Kaoru; Manz, Andreas

    2008-11-01

    In this review, we present recent advancements and novel developments in fluidic systems for applied analytical purposes in chemistry, biochemistry, and life science in general that employ and reflect the full benefits of microfluidics. A staggering rise in publications related to integrated, all-in-one microfluidic chips capable of separation, reaction, and detection have been observed, all of which realise the principal of micro total analysis systems or lab-on-a-chip. These integrated chips actively adopt the scaling law concepts, utilising the highly developed fabrication techniques. Their aim is to multi-functionalise and fully automate devices believed to assist the future advancements of point-of-care, clinical, and medical diagnostics.

  12. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  13. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  14. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  15. Library Automation

    OpenAIRE

    Dhakne, B. N.; Giri, V. V.; Waghmode, S. S.

    2010-01-01

    New technologies library provides several new materials, media and mode of storing and communicating the information. Library Automation reduces the drudgery of repeated manual efforts in library routine. By use of library automation collection, Storage, Administration, Processing, Preservation and communication etc.

  16. Electro-Microfluidic Packaging

    Science.gov (United States)

    Benavides, G. L.; Galambos, P. C.

    2002-06-01

    There are many examples of electro-microfluidic products that require cost effective packaging solutions. Industry has responded to a demand for products such as drop ejectors, chemical sensors, and biological sensors. Drop ejectors have consumer applications such as ink jet printing and scientific applications such as patterning self-assembled monolayers or ejecting picoliters of expensive analytes/reagents for chemical analysis. Drop ejectors can be used to perform chemical analysis, combinatorial chemistry, drug manufacture, drug discovery, drug delivery, and DNA sequencing. Chemical and biological micro-sensors can sniff the ambient environment for traces of dangerous materials such as explosives, toxins, or pathogens. Other biological sensors can be used to improve world health by providing timely diagnostics and applying corrective measures to the human body. Electro-microfluidic packaging can easily represent over fifty percent of the product cost and, as with Integrated Circuits (IC), the industry should evolve to standard packaging solutions. Standard packaging schemes will minimize cost and bring products to market sooner.

  17. Microfluidic fuel cells and batteries

    CERN Document Server

    Kjeang, Erik

    2014-01-01

    Microfluidic fuel cells and batteries represent a special type of electrochemical power generators that can be miniaturized and integrated in a microfluidic chip. Summarizing the initial ten years of research and development in this emerging field, this SpringerBrief is the first book dedicated to microfluidic fuel cell and battery technology for electrochemical energy conversion and storage. Written at a critical juncture, where strategically applied research is urgently required to seize impending technology opportunities for commercial, analytical, and educational utility, the intention is

  18. Integrated electrofluidic circuits: pressure sensing with analog and digital operation functionalities for microfluidics.

    Science.gov (United States)

    Wu, Chueh-Yu; Lu, Jau-Ching; Liu, Man-Chi; Tung, Yi-Chung

    2012-10-21

    Microfluidic technology plays an essential role in various lab on a chip devices due to its desired advantages. An automated microfluidic system integrated with actuators and sensors can further achieve better controllability. A number of microfluidic actuation schemes have been well developed. In contrast, most of the existing sensing methods still heavily rely on optical observations and external transducers, which have drawbacks including: costly instrumentation, professional operation, tedious interfacing, and difficulties of scaling up and further signal processing. This paper reports the concept of electrofluidic circuits - electrical circuits which are constructed using ionic liquid (IL)-filled fluidic channels. The developed electrofluidic circuits can be fabricated using a well-developed multi-layer soft lithography (MSL) process with polydimethylsiloxane (PDMS) microfluidic channels. Electrofluidic circuits allow seamless integration of pressure sensors with analog and digital operation functions into microfluidic systems and provide electrical readouts for further signal processing. In the experiments, the analog operation device is constructed based on electrofluidic Wheatstone bridge circuits with electrical outputs of the addition and subtraction results of the applied pressures. The digital operation (AND, OR, and XOR) devices are constructed using the electrofluidic pressure controlled switches, and output electrical signals of digital operations of the applied pressures. The experimental results demonstrate the designed functions for analog and digital operations of applied pressures are successfully achieved using the developed electrofluidic circuits, making them promising to develop integrated microfluidic systems with capabilities of precise pressure monitoring and further feedback control for advanced lab on a chip applications.

  19. Application of microfluidics for the development of intensified aminotransferase (ATA) processes

    DEFF Research Database (Denmark)

    Heintz, Søren

    Development of biocatalytic processes is greatly dominated by well-established batch process based screening technologies, e.g. glass vials (mL) and microtiter plates (μL). However, there is still a need for improvement of currently available technologies and for new technologies enabling...... to biocatalytic processes where it is found beneficial/necessary to implement in-situ co-product/product removal (IScPR/ISPR). For example, through combined operation of reactor and separation modules, as such applications require selective separation and sufficient driving force to influence the process...... of biocatalytic processes. Within this thesis, microfluidic modules are applied as tools to screen, characterize, and test reactor and separation process options. Furthermore, multiple microfluidic modules are combined in order to test complex process configurations, i.e. reactor modules combined with separation...

  20. Highly controlled synthesis of nanometric gold particles by citrate reduction using the short mixing, heating and quenching times achievable in a microfluidic device

    Science.gov (United States)

    Ftouni, Jamal; Penhoat, Maël; Addad, Ahmed; Payen, Edmond; Rolando, Christian; Girardon, Jean-Sébastien

    2012-07-01

    Homodispersed 1.8 nm gold nanoparticles were obtained reproducibly in high yields using the classical Turkevich protocol at a high concentration in a continuous flow capillary reactor. The microfluidic reactor made from commercially available items permitted short mixing, heating and quenching times which are the key parameters of this synthesis.Homodispersed 1.8 nm gold nanoparticles were obtained reproducibly in high yields using the classical Turkevich protocol at a high concentration in a continuous flow capillary reactor. The microfluidic reactor made from commercially available items permitted short mixing, heating and quenching times which are the key parameters of this synthesis. Electronic supplementary information (ESI) available: Description of the microfluidic device, protocol for gold nanoparticle synthesis in batch and in the microsystem, and gold nanoparticle size distribution raw data. See DOI: 10.1039/c2nr11666a

  1. Automation or De-automation

    Science.gov (United States)

    Gorlach, Igor; Wessel, Oliver

    2008-09-01

    In the global automotive industry, for decades, vehicle manufacturers have continually increased the level of automation of production systems in order to be competitive. However, there is a new trend to decrease the level of automation, especially in final car assembly, for reasons of economy and flexibility. In this research, the final car assembly lines at three production sites of Volkswagen are analysed in order to determine the best level of automation for each, in terms of manufacturing costs, productivity, quality and flexibility. The case study is based on the methodology proposed by the Fraunhofer Institute. The results of the analysis indicate that fully automated assembly systems are not necessarily the best option in terms of cost, productivity and quality combined, which is attributed to high complexity of final car assembly systems; some de-automation is therefore recommended. On the other hand, the analysis shows that low automation can result in poor product quality due to reasons related to plant location, such as inadequate workers' skills, motivation, etc. Hence, the automation strategy should be formulated on the basis of analysis of all relevant aspects of the manufacturing process, such as costs, quality, productivity and flexibility in relation to the local context. A more balanced combination of automated and manual assembly operations provides better utilisation of equipment, reduces production costs and improves throughput.

  2. Reactor Neutrinos

    OpenAIRE

    Soo-Bong Kim; Thierry Lasserre; Yifang Wang

    2013-01-01

    We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very ...

  3. Hardware/software co-design and optimization for cyberphysical integration in digital microfluidic biochips

    CERN Document Server

    Luo, Yan; Ho, Tsung-Yi

    2015-01-01

    This book describes a comprehensive framework for hardware/software co-design, optimization, and use of robust, low-cost, and cyberphysical digital microfluidic systems. Readers with a background in electronic design automation will find this book to be a valuable reference for leveraging conventional VLSI CAD techniques for emerging technologies, e.g., biochips or bioMEMS. Readers from the circuit/system design community will benefit from methods presented to extend design and testing techniques from microelectronics to mixed-technology microsystems. For readers from the microfluidics domain,

  4. Microfluidic Multichannel Flow Cytometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a "Microfluidic Multichannel Flow Cytometer." Several novel concepts are integrated to produce the final design, which is compatible with...

  5. Microfluidics - Sorting particles with light

    DEFF Research Database (Denmark)

    Glückstad, J.

    2004-01-01

    Microfluidic systems have great potential to perform complex chemical and biological processing and analysis on a single disposable chip. That goal is now a step closer with the demonstration of an efficient all-optical particle sorter.......Microfluidic systems have great potential to perform complex chemical and biological processing and analysis on a single disposable chip. That goal is now a step closer with the demonstration of an efficient all-optical particle sorter....

  6. Perspective: microfluidic applications in microbiology.

    Science.gov (United States)

    Saleh-Lakha, Saleema; Trevors, Jack T

    2010-07-01

    The application of microfluidics technology to microbiology research is an excellent platform for the analysis of microorganisms and their nucleic acids. This technology combines engineering, physics, chemistry, biology and computing to control the devices. In this perspective we discuss how microfluidics can be applied to microbiological research and used in diagnostic applications. We also summarize advantages and limitations of this technology, as well as highlight some recent microbiological applications.

  7. A microfluidic microprocessor: controlling biomimetic containers and cells using hybrid integrated circuit/microfluidic chips.

    Science.gov (United States)

    Issadore, David; Franke, Thomas; Brown, Keith A; Westervelt, Robert M

    2010-11-01

    We present an integrated platform for performing biological and chemical experiments on a chip based on standard CMOS technology. We have developed a hybrid integrated circuit (IC)/microfluidic chip that can simultaneously control thousands of living cells and pL volumes of fluid, enabling a wide variety of chemical and biological tasks. Taking inspiration from cellular biology, phospholipid bilayer vesicles are used as robust picolitre containers for reagents on the chip. The hybrid chip can be programmed to trap, move, and porate individual living cells and vesicles and fuse and deform vesicles using electric fields. The IC spatially patterns electric fields in a microfluidic chamber using 128 × 256 (32,768) 11 × 11 μm(2) metal pixels, each of which can be individually driven with a radio frequency (RF) voltage. The chip's basic functions can be combined in series to perform complex biological and chemical tasks and can be performed in parallel on the chip's many pixels for high-throughput operations. The hybrid chip operates in two distinct modes, defined by the frequency of the RF voltage applied to the pixels: Voltages at MHz frequencies are used to trap, move, and deform objects using dielectrophoresis and voltages at frequencies below 1 kHz are used for electroporation and electrofusion. This work represents an important step towards miniaturizing the complex chemical and biological experiments used for diagnostics and research onto automated and inexpensive chips.

  8. Microfluidic Mechanics and Applications: a Review

    Directory of Open Access Journals (Sweden)

    Sandeep Arya

    2014-01-01

    Full Text Available Microfluidics involves the transportation, splitting and mixing of minute fluids to perform several chemical and biological reactions including drug screening, heating, cooling or dissolution of reagents. Efforts have been made to develop different microfluidic devices, droplets and valves that can stop and resume flow of liquids inside a microchannel. This paper provides the review related to the theory and mechanics of microfluidic devices and fluid flow. Different materials and techniques for fabricating microfluidic devices are discussed. Subsequently, the microfluidic components that are responsible for successful micrfluidic device formation are presented. Finally, recent applications related to the microfluidics are highlighted.

  9. Spiral microfluidic nanoparticle separators

    Science.gov (United States)

    Bhagat, Ali Asgar S.; Kuntaegowdanahalli, Sathyakumar S.; Dionysiou, Dionysios D.; Papautsky, Ian

    2008-02-01

    Nanoparticles have potential applications in many areas such as consumer products, health care, electronics, energy and other industries. As the use of nanoparticles in manufacturing increases, we anticipate a growing need to detect and measure particles of nanometer scale dimensions in fluids to control emissions of possible toxic nanoparticles. At present most particle separation techniques are based on membrane assisted filtering schemes. Unfortunately their efficiency is limited by the membrane pore size, making them inefficient for separating a wide range of sizes. In this paper, we propose a passive spiral microfluidic geometry for momentum-based particle separations. The proposed design is versatile and is capable of separating particulate mixtures over a wide dynamic range and we expect it will enable a variety of environmental, medical, or manufacturing applications that involve rapid separation of nanoparticles in real-world samples with a wide range of particle components.

  10. Parallel imaging microfluidic cytometer.

    Science.gov (United States)

    Ehrlich, Daniel J; McKenna, Brian K; Evans, James G; Belkina, Anna C; Denis, Gerald V; Sherr, David H; Cheung, Man Ching

    2011-01-01

    By adding an additional degree of freedom from multichannel flow, the parallel microfluidic cytometer (PMC) combines some of the best features of fluorescence-activated flow cytometry (FCM) and microscope-based high-content screening (HCS). The PMC (i) lends itself to fast processing of large numbers of samples, (ii) adds a 1D imaging capability for intracellular localization assays (HCS), (iii) has a high rare-cell sensitivity, and (iv) has an unusual capability for time-synchronized sampling. An inability to practically handle large sample numbers has restricted applications of conventional flow cytometers and microscopes in combinatorial cell assays, network biology, and drug discovery. The PMC promises to relieve a bottleneck in these previously constrained applications. The PMC may also be a powerful tool for finding rare primary cells in the clinic. The multichannel architecture of current PMC prototypes allows 384 unique samples for a cell-based screen to be read out in ∼6-10 min, about 30 times the speed of most current FCM systems. In 1D intracellular imaging, the PMC can obtain protein localization using HCS marker strategies at many times for the sample throughput of charge-coupled device (CCD)-based microscopes or CCD-based single-channel flow cytometers. The PMC also permits the signal integration time to be varied over a larger range than is practical in conventional flow cytometers. The signal-to-noise advantages are useful, for example, in counting rare positive cells in the most difficult early stages of genome-wide screening. We review the status of parallel microfluidic cytometry and discuss some of the directions the new technology may take.

  11. Microfluidic and lab-on-a-chip preparation routes for organic nanoparticles and vesicular systems for nanomedicine applications.

    Science.gov (United States)

    Capretto, Lorenzo; Carugo, Dario; Mazzitelli, Stefania; Nastruzzi, Claudio; Zhang, Xunli

    2013-11-01

    In recent years, advancements in the fields of microfluidic and lab-on-a-chip technologies have provided unique opportunities for the implementation of nanomaterial production processes owing to the miniaturisation of the fluidic environment. It has been demonstrated that microfluidic reactors offer a range of advantages compared to conventional batch reactors, including improved controllability and uniformity of nanomaterial characteristics. In addition, the fast mixing achieved within microchannels, and the predictability of the laminar flow conditions, can be leveraged to investigate the nanomaterial formation dynamics. In this article recent developments in the field of microfluidic production of nanomaterials for drug delivery applications are reviewed. The features that make microfluidic reactors a suitable technological platform are discussed in terms of controllability of nanomaterials production. An overview of the various strategies developed for the production of organic nanoparticles and colloidal assemblies is presented, focusing on those nanomaterials that could have an impact on nanomedicine field such as drug nanoparticles, polymeric micelles, liposomes, polymersomes, polyplexes and hybrid nanoparticles. The effect of microfluidic environment on nanomaterials formation dynamics, as well as the use of microdevices as tools for nanomaterial investigation is also discussed.

  12. Recent Results of the Investigation of a Microfluidic Sampling Chip and Sampling System for Hot Cell Aqueous Processing Streams

    Energy Technology Data Exchange (ETDEWEB)

    Julia Tripp; Jack Law; Tara Smith

    2013-10-01

    A Fuel Cycle Research and Development project has investigated an innovative sampling method that could evolve into the next generation sampling and analysis system for metallic elements present in aqueous processing streams. Initially sampling technologies were evaluated and microfluidics sampling chip technology was selected and tested. A conceptual design for a fully automated microcapillary-based system was completed and a robotic automated sampling system was fabricated. The mechanical and sampling operation of the completed sampling system was investigated. In addition, the production of a less expensive, mass produced sampling chip was investigated to avoid chip reuse thus increasing sampling reproducibility/accuracy. The microfluidic-based robotic sampling system’s mechanical elements were tested to ensure analytical reproducibility and the optimum robotic handling of microfluidic sampling chips.

  13. Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics.

    Science.gov (United States)

    Lee, Chung-Cheng; Sui, Guodong; Elizarov, Arkadij; Shu, Chengyi Jenny; Shin, Young-Shik; Dooley, Alek N; Huang, Jiang; Daridon, Antoine; Wyatt, Paul; Stout, David; Kolb, Hartmuth C; Witte, Owen N; Satyamurthy, Nagichettiar; Heath, James R; Phelps, Michael E; Quake, Stephen R; Tseng, Hsian-Rong

    2005-12-16

    Microreactor technology has shown potential for optimizing synthetic efficiency, particularly in preparing sensitive compounds. We achieved the synthesis of an [(18)F]fluoride-radiolabeled molecular imaging probe, 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG), in an integrated microfluidic device. Five sequential processes-[18F]fluoride concentration, water evaporation, radiofluorination, solvent exchange, and hydrolytic deprotection-proceeded with high radio-chemical yield and purity and with shorter synthesis time relative to conventional automated synthesis. Multiple doses of [18F]FDG for positron emission tomography imaging studies in mice were prepared. These results, which constitute a proof of principle for automated multistep syntheses at the nanogram to microgram scale, could be generalized to a range of radiolabeled substrates.

  14. Rapid laser prototyping of valves for microfluidic autonomous systems

    Science.gov (United States)

    Mohammed, M. I.; Abraham, E.; Y Desmulliez, M. P.

    2013-03-01

    Capillary forces in microfluidics provide a simple yet elegant means to direct liquids through flow channel networks. The ability to manipulate the flow in a truly automated manner has proven more problematic. The majority of valves require some form of flow control devices, which are manually, mechanically or electrically driven. Most demonstrated capillary systems have been manufactured by photolithography, which, despite its high precision and repeatability, can be labour intensive, requires a clean room environment and the use of fixed photomasks, limiting thereby the agility of the manufacturing process to readily examine alternative designs. In this paper, we describe a robust and rapid CO2 laser manufacturing process and demonstrate a range of capillary-driven microfluidic valve structures embedded within a microfluidic network. The manufacturing process described allows for advanced control and manipulation of fluids such that flow can be halted, triggered and delayed based on simple geometrical alterations to a given microchannel. The rapid prototyping methodology has been employed with PMMA substrates and a complete device has been created, ready for use, within 2-3 h. We believe that this agile manufacturing process can be applied to produce a range of complex autonomous fluidic platforms and allows subsequent designs to be rapidly explored.

  15. Microfluidic partitioning of the extracellular space around single cardiac myocytes.

    Science.gov (United States)

    Klauke, Norbert; Smith, Godfrey L; Cooper, Jonathan M

    2007-02-01

    This paper describes the partitioning of the extracellular space around an electrically activated single cardiac myocyte, constrained within a microfluidic device. Central to this new method is the production of a hydrophobic gap-structure, which divides the extracellular space into two distinct microfluidic pools. The content of these pools was controlled using a pair of concentric automated pipets (subsequently called "dual superfusion pipet"), each providing the ability to dispense (i.e., the source, inner pipet) and aspirate (the sink, outer pipet) a buffer solution (perfusate) into each of the two pools. For rapid solution switching around the cell, additional dual superfusion pipets were inserted into the microchannel for defined time periods using a piezostepper, enabling us to add a test solution, such as a drug. Three distinct areas of the cell were manipulated, namely, the microfluidic environment, the cellular membrane, and the intracellular space. Planar integrated microelectrodes enabled the electrical stimulation of the cardiomyocyte and the recording of the evoked action potential. The device was mounted on an inverted microscope to allow simultaneous sarcomere length and epifluorescence measurements during evoked electrical activity, including, for example, the response of the stimulated end of the cardiac myocyte in comparison with the untreated cell end.

  16. Microfluidics for synthetic biology: from design to execution.

    Science.gov (United States)

    Ferry, M S; Razinkov, I A; Hasty, J

    2011-01-01

    With the expanding interest in cellular responses to dynamic environments, microfluidic devices have become important experimental platforms for biological research. Microfluidic "microchemostat" devices enable precise environmental control while capturing high quality, single-cell gene expression data. For studies of population heterogeneity and gene expression noise, these abilities are crucial. Here, we describe the necessary steps for experimental microfluidics using devices created in our lab as examples. First, we discuss the rational design of microchemostats and the tools available to predict their performance. We carefully analyze the critical parts of an example device, focusing on the most important part of any microchemostat: the cell trap. Next, we present a method for generating on-chip dynamic environments using an integrated fluidic junction coupled to linear actuators. Our system relies on the simple modulation of hydrostatic pressure to alter the mixing ratio between two source reservoirs and we detail the software and hardware behind it. To expand the throughput of microchemostat experiments, we describe how to build larger, parallel versions of simpler devices. To analyze the large amounts of data, we discuss methods for automated cell tracking, focusing on the special problems presented by Saccharomyces cerevisiae cells. The manufacturing of microchemostats is described in complete detail: from the photolithographic processing of the wafer to the final bonding of the PDMS chip to glass coverslip. Finally, the procedures for conducting Escherichia coli and S. cerevisiae microchemostat experiments are addressed.

  17. A novel approach to determine the efficacy of patterned surfaces for biofouling control in relation to its microfluidic environment.

    Science.gov (United States)

    Halder, Partha; Nasabi, Mahyar; Lopez, Francisco Javier Tovar; Jayasuriya, Niranjali; Bhattacharya, Satinath; Deighton, Margaret; Mitchell, Arnan; Bhuiyan, Muhammed Ali

    2013-01-01

    Biofouling, the unwanted growth of sessile microorganisms on submerged surfaces, presents a serious problem for underwater structures. While biofouling can be controlled to various degrees with different microstructure-based patterned surfaces, understanding of the underlying mechanism is still imprecise. Researchers have long speculated that microtopographies might influence near-surface microfluidic conditions, thus microhydrodynamically preventing the settlement of microorganisms. It is therefore very important to identify the microfluidic environment developed on patterned surfaces and its relation with the antifouling behaviour of those surfaces. This study considered the wall shear stress distribution pattern as a significant aspect of this microfluidic environment. In this study, patterned surfaces with microwell arrays were assessed experimentally with a real-time biofilm development monitoring system using a novel microchannel-based flow cell reactor. Finally, computational fluid dynamics simulations were carried out to show how the microfluidic conditions were affecting the initial settlement of microorganisms.

  18. Electrorheological fluid-actuated microfluidic pump

    Science.gov (United States)

    Liu, Liyu; Chen, Xiaoqing; Niu, Xize; Wen, Weijia; Sheng, Ping

    2006-08-01

    The authors report the design and implementation of an electrorheological (ER) fluid-actuated microfluidic pump, with programmable digital control. Our microfluidic pump has a multilayered structure fabricated on polydimethylsiloxane by soft-lithographic technique. The ER microfluidic pump exhibits good performance at high pumping frequencies and uniform liquid flow characteristics. It can be easily integrated with other microfluidic components. The programmable control also gives the device flexibility in its operations.

  19. Microfluidic devices for cell cultivation and proliferation

    OpenAIRE

    Tehranirokh, Masoomeh; Kouzani, Abbas Z.; Francis, Paul S.; Kanwar, Jagat R.

    2013-01-01

    Microfluidic technology provides precise, controlled-environment, cost-effective, compact, integrated, and high-throughput microsystems that are promising substitutes for conventional biological laboratory methods. In recent years, microfluidic cell culture devices have been used for applications such as tissue engineering, diagnostics, drug screening, immunology, cancer studies, stem cell proliferation and differentiation, and neurite guidance. Microfluidic technology allows dynamic cell cul...

  20. Spintronic microfluidic platform for biomedical and environmental applications

    Science.gov (United States)

    Cardoso, F. A.; Martins, V. C.; Fonseca, L. P.; Germano, J.; Sousa, L. A.; Piedade, M. S.; Freitas, P. P.

    2010-09-01

    Faster, more sensitive and easy to operate biosensing devices still are a need at important areas such as biomedical diagnostics, food control and environmental monitoring. Recently, spintronic-devices have emerged as a promising alternative to the existent technologies [1-3]. A number of advantages, namely high sensitivity, easy integration, miniaturization, scalability, robustness and low cost make these devices potentially capable of responding to the existent technological need. In parallel, the field of microfluidics has shown great advances [4]. Microfluidic systems allow the analysis of small sample volumes (from micro- down to pico-liters), often by automate sample processing with the ability to integrate several steps into a single device (analyte amplification, concentration, separation and/or labeling), all in a reduced assay time (minutes to hours) and affordable cost. The merging of these two technologies, magnetoresistive biochips and microfluidics, will enable the development of highly competitive devices. This work reports the integration of a magnetoresistive biochip with a microfluidic system inside a portable and autonomous electronic platform aiming for a fully integrated device. A microfluidic structure fabricated in polydimethylsiloxane with dimensions of W: 0.5mm, H: 0.1mm, L: 10mm, associated to a mechanical system to align and seal the channel by pressure is presented (Fig. 1) [5]. The goal is to perform sample loading and transportation over the chip and simultaneously control the stringency and uniformity of the wash-out process. The biochip output is acquired by an electronic microsystem incorporating the circuitry to control, address and read-out the 30 spin-valve sensors sequentially (Fig. 1) [2]. This platform is being applied to the detection of water-borne microbial pathogens (e.g. Salmonella and Escherichia coli) and genetic diseases diagnosis (e.g. cystic fibrosis) through DNA hybridization assays. Open chamber measurements were

  1. Vibration Induced Microfluidic Atomization

    Science.gov (United States)

    Yeo, Leslie; Qi, Aisha; Friend, James

    2008-11-01

    We demonstrate rapid generation of micron aerosol droplets in a microfluidic device in which a fluid drop is exposed to surface vibration as it sits atop a piezoelectric substrate. Little, however, is understood about the processes by which these droplets form due to the complex hydrodynamic processes that occur across widely varying length and time scales. Through experiments, scaling theory and numerical modelling, we elucidate the interfacial destabilization mechanisms that lead to droplet formation. Droplets form due to the axisymmetric break-up of cylindrical liquid jets ejected as a consequence of interfacial destabilization. Their 10 μm size correlates with the jet radius and the instability wavelength, both determined from a viscous-capillary dominant force balance and confirmed through a numerical solution. With the exception of drops that spread into thin films with thicknesses on the order of the boundary layer dimension, the free surface is always observed to vibrate at the capillary-viscous resonance frequency despite the surface vibration frequency being several orders larger. This is contrary to common assumptions used in deriving subharmonic models resulting in a Mathieu equation, which has commonly led to spurious predictions in the droplet size.

  2. Microfluidic stretchable RF electronics.

    Science.gov (United States)

    Cheng, Shi; Wu, Zhigang

    2010-12-07

    Stretchable electronics is a revolutionary technology that will potentially create a world of radically different electronic devices and systems that open up an entirely new spectrum of possibilities. This article proposes a microfluidic based solution for stretchable radio frequency (RF) electronics, using hybrid integration of active circuits assembled on flex foils and liquid alloy passive structures embedded in elastic substrates, e.g. polydimethylsiloxane (PDMS). This concept was employed to implement a 900 MHz stretchable RF radiation sensor, consisting of a large area elastic antenna and a cluster of conventional rigid components for RF power detection. The integrated radiation sensor except the power supply was fully embedded in a thin elastomeric substrate. Good electrical performance of the standalone stretchable antenna as well as the RF power detection sub-module was verified by experiments. The sensor successfully detected the RF radiation over 5 m distance in the system demonstration. Experiments on two-dimensional (2D) stretching up to 15%, folding and twisting of the demonstrated sensor were also carried out. Despite the integrated device was severely deformed, no failure in RF radiation sensing was observed in the tests. This technique illuminates a promising route of realizing stretchable and foldable large area integrated RF electronics that are of great interest to a variety of applications like wearable computing, health monitoring, medical diagnostics, and curvilinear electronics.

  3. A brief review on microfluidic platforms for hormones detection.

    Science.gov (United States)

    Ozhikandathil, Jayan; Badilescu, Simona; Packirisamy, Muthukumaran

    2017-01-01

    Lab-on-chip technology is attracting great interest due to its potential as miniaturized devices that can automate and integrate many sample-handling steps, minimize consumption of reagent and samples, have short processing time and enable multiplexed analysis. Microfluidic devices have demonstrated their potential for a broad range of applications in life sciences, including point-of-care diagnostics and personalized medicine, based on the routine diagnosis of levels of hormones, cancer markers, and various metabolic products in blood, serum, etc. Microfluidics offers an adaptable platform that can facilitate cell culture as well as monitor their activity and control the cellular environment. Signaling molecules released from cells such as neurotransmitters and hormones are important in assessing the health of cells and the effect of drugs on their functions. In this review, we provide an insight into the state-of-art applications of microfluidics for monitoring of hormones released by cells. In our works, we have demonstrated efficient detection methods for bovine growth hormones using nano and microphotonics integrated microfluidics devices. The bovine growth hormone can be used as a growth promoter in dairy farming to enhance the milk and meat production. In the recent years, a few attempts have been reported on developing very sensitive, fast and low-cost methods of detection of bovine growth hormone using micro devices. This paper reviews the current state-of-art of detection and analysis of hormone using integrated optical micro and nanofluidics systems. In addition, the paper also focuses on various lab-on-a-chip technologies reported recently, and their benefits for screening growth hormones in milk.

  4. An integratable microfluidic cartridge for forensic swab samples lysis.

    Science.gov (United States)

    Yang, Jianing; Brooks, Carla; Estes, Matthew D; Hurth, Cedric M; Zenhausern, Frederic

    2014-01-01

    Fully automated rapid forensic DNA analysis requires integrating several multistep processes onto a single microfluidic platform, including substrate lysis, extraction of DNA from the released lysate solution, multiplexed PCR amplification of STR loci, separation of PCR products by capillary electrophoresis, and analysis for allelic peak calling. Over the past several years, most of the rapid DNA analysis systems developed started with the reference swab sample lysate and involved an off-chip lysis of collected substrates. As a result of advancement in technology and chemistry, addition of a microfluidic module for swab sample lysis has been achieved in a few of the rapid DNA analysis systems. However, recent reports on integrated rapid DNA analysis systems with swab-in and answer-out capability lack any quantitative and qualitative characterization of the swab-in sample lysis module, which is important for downstream forensic sample processing. Maximal collection and subsequent recovery of the biological material from the crime scene is one of the first and critical steps in forensic DNA technology. Herein we present the design, fabrication and characterization of an integratable swab lysis cartridge module and the test results obtained from different types of commonly used forensic swab samples, including buccal, saliva, and blood swab samples, demonstrating the compatibility with different downstream DNA extraction chemistries. This swab lysis cartridge module is easy to operate, compatible with both forensic and microfluidic requirements, and ready to be integrated with our existing automated rapid forensic DNA analysis system. Following the characterization of the swab lysis module, an integrated run from buccal swab sample-in to the microchip CE electropherogram-out was demonstrated on the integrated prototype instrument. Therefore, in this study, we demonstrate that this swab lysis cartridge module is: (1) functionally, comparable with routine benchtop lysis

  5. Microvalve Enabled Digital Microfluidic Systems for High Performance Biochemical and Genetic Analysis.

    Science.gov (United States)

    Jensen, Erik C; Zeng, Yong; Kim, Jungkyu; Mathies, Richard A

    2010-12-01

    Microfluidic devices offer unparalleled capability for digital microfluidic automation of sample processing and complex assay protocols in medical diagnostic and research applications. In our own work, monolithic membrane valves have enabled the creation of two platforms that precisely manipulate discrete, nanoliter-scale volumes of sample. The digital microfluidic Automaton uses two-dimensional microvalve arrays to combinatorially process nanoliter-scale sample volumes. This programmable system enables rapid integration of diverse assay protocols using a universal processing architecture. Microfabricated emulsion generator array (MEGA) devices integrate actively controlled 3-microvalve pumps to enable on-demand generation of uniform droplets for statistical encapsulation of microbeads and cells. A MEGA device containing 96 channels confers the capability of generating up to 3.4 × 10(6) nanoliter-volume droplets per hour for ultrahigh-throughput detection of rare mutations in a vast background of normal genotypes. These novel digital microfluidic platforms offer significant enhancements in throughput, sensitivity, and programmability for automated sample processing and analysis.

  6. Biomedical microdevices synthesis of iron oxide nanoparticles using a microfluidic system.

    Science.gov (United States)

    Lee, Wen-Bin; Weng, Chen-Hsun; Cheng, Fong-Yu; Yeh, Chen-Sheng; Lei, Huan-Yao; Lee, Gwo-Bin

    2009-02-01

    The preparation of nanoparticles is essential in the application of many nanotechnologies and various preparation methods have been explored in the previous decades. Among them, iron oxide nanoparticles have been widely investigated in applications ranging from bio-imaging to bio-sensing due to their unique magnetic properties. Recently, microfluidic systems have been utilized for synthesis of nanoparticles, which have the advantages of automation, well-controlled reactions, and a high particle uniformity. In this study, a new microfluidic system capable of mixing, transporting and reacting was developed for the synthesis of iron oxide nanoparticles. It allowed for a rapid and efficient approach to accelerate and automate the synthesis of the iron oxide nanoparticles as compared with traditional methods. The microfluidic system uses micro-electro-mechanical-system technologies to integrate a new double-loop micromixer, two micropumps, and a microvalve on a single chip. When compared with large-scale synthesis systems with commonly-observed particle aggregation issues, successful synthesis of dispersed and uniform iron oxide nanoparticles has been observed within a shorter period of time (15 min). It was found that the size distribution of these iron oxide nanoparticles is superior to that of the large-scale systems without requiring any extra additives or heating. The size distribution had a variation of 16%. This is much lower than a comparable large-scale system (34%). The development of this microfluidic system is promising for the synthesis of nanoparticles for many future biomedical applications.

  7. Microfluidic Technologies for Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Sung Kuk Lee

    2011-06-01

    Full Text Available Microfluidic technologies have shown powerful abilities for reducing cost, time, and labor, and at the same time, for increasing accuracy, throughput, and performance in the analysis of biological and biochemical samples compared with the conventional, macroscale instruments. Synthetic biology is an emerging field of biology and has drawn much attraction due to its potential to create novel, functional biological parts and systems for special purposes. Since it is believed that the development of synthetic biology can be accelerated through the use of microfluidic technology, in this review work we focus our discussion on the latest microfluidic technologies that can provide unprecedented means in synthetic biology for dynamic profiling of gene expression/regulation with high resolution, highly sensitive on-chip and off-chip detection of metabolites, and whole-cell analysis.

  8. Magnetic separation in microfluidic systems

    DEFF Research Database (Denmark)

    Smistrup, Kristian

    2007-01-01

    This Ph.D. thesis presents theory, modeling, design, fabrication, experiments and results for microfluidic magnetic separators. A model for magnetic bead movement in a microfluidic channel is presented, and the limits of the model are discussed. The effective magnetic field gradient is defined...... for fabrication of silicon based systems. This fabrication scheme is explained, and it is shown how, it is applied with variations for several designs of magnetic separators. An experimental setup for magnetic separation experiments has been developed. It has been coupled with an image analysis program....... It is shown conceptually how such a system can be applied for parallel biochemical processing in a microfluidic system. ’Passive’ magnetic separators are presented, where on-chip soft magnetic elements are magnetized by an external magnetic field and create strong magnetic fields and gradients inside...

  9. Microfluidic 3D Helix Mixers

    Directory of Open Access Journals (Sweden)

    Georgette B. Salieb-Beugelaar

    2016-10-01

    Full Text Available Polymeric microfluidic systems are well suited for miniaturized devices with complex functionality, and rapid prototyping methods for 3D microfluidic structures are increasingly used. Mixing at the microscale and performing chemical reactions at the microscale are important applications of such systems and we therefore explored feasibility, mixing characteristics and the ability to control a chemical reaction in helical 3D channels produced by the emerging thread template method. Mixing at the microscale is challenging because channel size reduction for improving solute diffusion comes at the price of a reduced Reynolds number that induces a strictly laminar flow regime and abolishes turbulence that would be desired for improved mixing. Microfluidic 3D helix mixers were rapidly prototyped in polydimethylsiloxane (PDMS using low-surface energy polymeric threads, twisted to form 2-channel and 3-channel helices. Structure and flow characteristics were assessed experimentally by microscopy, hydraulic measurements and chromogenic reaction, and were modeled by computational fluid dynamics. We found that helical 3D microfluidic systems produced by thread templating allow rapid prototyping, can be used for mixing and for controlled chemical reaction with two or three reaction partners at the microscale. Compared to the conventional T-shaped microfluidic system used as a control device, enhanced mixing and faster chemical reaction was found to occur due to the combination of diffusive mixing in small channels and flow folding due to the 3D helix shape. Thus, microfluidic 3D helix mixers can be rapidly prototyped using the thread template method and are an attractive and competitive method for fluid mixing and chemical reactions at the microscale.

  10. Microfluidic Droplet Dehydration for Concentrating Processes in Biomolecules

    Science.gov (United States)

    Anna, Shelley

    2014-03-01

    Droplets in microfluidic devices have proven useful as picoliter reactors for biochemical processing operations such as polymerase chain reaction, protein crystallization, and the study of enzyme kinetics. Although droplets are typically considered to be self-contained, constant volume reactors, there can be significant transport between the dispersed and continuous phases depending on solubility and other factors. In the present talk, we show that water droplets trapped within a microfluidic device for tens of hours slowly dehydrate, concentrating the contents encapsulated within. We use this slow dehydration along with control of the initial droplet composition to influence gellation, crystallization, and phase separation processes. By examining these concentrating processes in many trapped drops at once we gain insight into the stochastic nature of the events. In one example, we show that dehydration rate impacts the probability of forming a specific crystal habit in a crystallizing amino acid. In another example, we phase separate a common aqueous two-phase system within droplets and use the ensuing two phases to separate DNA from an initial mixture. We further influence wetting conditions between the two aqueous polymer phases and the continuous oil, promoting complete de-wetting and physical separation of the polymer phases. Thus, controlled dehydration of droplets allows for concentration, separation, and purification of important biomolecules on a chip.

  11. Fluid control in microfluidic devices using a fluid conveyance extension and an absorbent microfluidic flow modulator.

    Science.gov (United States)

    Yuen, Po Ki

    2013-05-07

    This article presents a simple method for controlling fluid in microfluidic devices without the need for valves or pumps. A fluid conveyance extension is fluidly coupled to the enclosed outlet chamber of a microfluidic device. After a fluid is introduced into the microfluidic device and saturates the fluid conveyance extension, a fluid flow in the microfluidic device is generated by contacting an absorbent microfluidic flow modulator with the fluid conveyance extension to absorb the fluid from the fluid conveyance extension through capillary action. Since the fluid in the microfluidic device is fluidly coupled with the fluid conveyance extension and the fluid conveyance extension is fluidly coupled with the absorbent microfluidic flow modulator, the absorption rate of the absorbent microfluidic flow modulator, which is the rate at which the absorbent microfluidic flow modulator absorbs fluid, matches the fluid flow rate in the microfluidic device. Thus, the fluid flow rate in the microfluidic device is set by the absorption rate of the absorbent microfluidic flow modulator. Sheath flow and fluid switching applications are demonstrated using this simple fluid control method without the need for valves or pumps. Also, the ability to control the fluid flow rate in the microfluidic device is demonstrated using absorbent microfluidic flow modulators with various absorbent characteristics and dimensions.

  12. Multifunctional reactors

    NARCIS (Netherlands)

    Westerterp, K.R.

    1992-01-01

    Multifunctional reactors are single pieces of equipment in which, besides the reaction, other functions are carried out simultaneously. The other functions can be a heat, mass or momentum transfer operation and even another reaction. Multifunctional reactors are not new, but they have received much

  13. Microfluidic device for drug delivery

    Science.gov (United States)

    Beebe, David J. (Inventor); MacDonald, Michael J. (Inventor); Eddington, David T. (Inventor); Mensing, Glennys A. (Inventor)

    2010-01-01

    A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual.

  14. Microfluidic devices for droplet injection

    Science.gov (United States)

    Aubrecht, Donald; Akartuna, Ilke; Weitz, David

    2012-02-01

    As picoliter-scale reaction vessels, microfluidic water-in-oil emulsions have found application for high-throughput, large-sample number analyses. Often, the biological or chemical system under investigation needs to be encapsulated into droplets to prevent cross contamination prior to the introduction of reaction reagents. Previous techniques of picoinjection or droplet synchronization and merging enable the addition of reagents to individual droplets, but present limitations on what can be added to each droplet. We present microfluidic devices that couple the strengths of picoinjection and droplet merging, allowing us to selectively add precise volume to our droplet reactions.

  15. Automating Finance

    Science.gov (United States)

    Moore, John

    2007-01-01

    In past years, higher education's financial management side has been riddled with manual processes and aging mainframe applications. This article discusses schools which had taken advantage of an array of technologies that automate billing, payment processing, and refund processing in the case of overpayment. The investments are well worth it:…

  16. Autonomous and 3D real-time multi-beam manipulation in a microfluidic environment

    OpenAIRE

    Perch-Nielsen, I.; Rodrigo, P.J.; Alonzo, C.A.; Glückstad, J

    2006-01-01

    The Generalized Phase Contrast (GPC) method of optical 3D manipulation has previously been used for controlled spatial manipulation of live biological specimen in real-time. These biological experiments were carried out over a time-span of several hours while an operator intermittently optimized the optical system. Here we present GPC-based optical micromanipulation in a microfluidic system where trapping experiments are computer-automated and thereby capable of running with only limited supe...

  17. Continuous synthesis of zinc oxide nanoparticles in a microfluidic system for photovoltaic application.

    Science.gov (United States)

    Kang, Hyun Wook; Leem, Juyoung; Yoon, Sang Youl; Sung, Hyung Jin

    2014-03-07

    This study describes the synthesis of zinc oxide nanoparticles (ZnO NPs) using a microfluidic system. A continuous and efficient synthetic process was developed based on a microfluidic reactor in which was implemented a time pulsed mixing method that had been optimized using numerical simulations and experimental methods. Numerical simulations revealed that efficient mixing conditions could be obtained over the frequency range 5-15 Hz. This system used ethanol solutions containing 30 mM sodium hydroxide (NaOH) or 10 mM dehydrated zinc acetate (Zn(OAc)2) under 5 Hz pulsed conditions, which provided the optimal mixing performance conditions. The ZnO NPs prepared using the microfluidic synthetic system or batch-processed system were validated by several analytical methods, including transmission electron microscopy (TEM), energy dispersive X-ray spectrometry (EDS), X-ray diffraction (XRD), UV/VIS NIR and zeta (ζ) potential analysis. Bulk-heterojunction organic photovoltaic cells were fabricated with the synthesized ZnO NPs to investigate the practicability and compared with batch-process synthesized ZnO NPs. The results showed that microfluidic synthesized ZnO NPs had good preservability and stability in working solution and the synthetic microfluidic system provided a low-cost, environmentally friendly approach to the continuous production of ZnO NPs.

  18. [Micro-droplet characterization and its application for amino acid detection in droplet microfluidic system].

    Science.gov (United States)

    Yuan, Huiling; Dong, Libing; Tu, Ran; Du, Wenbin; Ji, Shiru; Wang, Qinhong

    2014-01-01

    Recently, the droplet microfluidic system attracts interests due to its high throughput and low cost to detect and screen. The picoliter micro-droplets from droplet microfluidics are uniform with respect to the size and shape, and could be used as monodispensed micro-reactors for encapsulation and detection of single cell or its metabolites. Therefore, it is indispensable to characterize micro-droplet and its application from droplet microfluidic system. We first constructed the custom-designed droplet microfluidic system for generating micro-droplets, and then used the micro-droplets to encapsulate important amino acids such as glutamic acid, phenylalanine, tryptophan or tyrosine to test the droplets' properties, including the stability, diffusivity and bio-compatibility for investigating its application for amino acid detection and sorting. The custom-designed droplet microfluidic system could generate the uniformed micro-droplets with a controllable size between 20 to 50 microm. The micro-droplets could be stable for more than 20 h without cross-contamination or fusion each other. The throughput of detection and sorting of the system is about 600 micro-droplets per minute. This study provides a high-throughput platform for the analysis and screening of amino acid-producing microorganisms.

  19. Microfluidic continuous-flow radiosynthesis of [18F]FPEB suitable for human PET imaging

    Science.gov (United States)

    Liang, Steven H.; Yokell, Daniel L.; Jackson, Raul N.; Rice, Peter A.; Callahan, Ronald; Johnson, Keith A.; Alagille, David; Tamagnan, Gilles; Collier, Thomas Lee; Vasdev, Neil

    2014-01-01

    The synthesis of fluorine-18 labeled 3-fluoro-5-[(pyridin-3-yl)ethynyl] benzonitrile ([18F]FPEB) for imaging metabotropic glutamate receptor subtype type 5 (mGluR5) was achieved with a commercial continuous-flow microfluidics device. This work represents the first positron emission tomography (PET) radiopharmaceutical that is suitable for human use with this technology. We also describe a validated synthesis of [18F]FPEB with a commercial reactor-based system. PMID:25431646

  20. Mixing in a Microfluid Device

    DEFF Research Database (Denmark)

    Hjorth, Poul G.; Deryabin, Mikhail

    Mixing of fluids in microchannels cannot rely on turbulence since the flow takes place at extremly low Reynolds numbers. Various active and passive devices have been developed to induce mixing in microfluid flow devices. We describe here a model of an active mixer where a transverse periodic flow...

  1. Microfluidic fabrication of plasmonic microcapsules

    NARCIS (Netherlands)

    Wang, J.; Jin, M.L.; Eijkel, J.C.T.; Berg, van den A.; Zhou, G.F.; Shui, L.L.

    2016-01-01

    This paper presents the plasmonic microcapsules with well-ordered nanoparticles embedded in polymer network fabricated by using a microfluidic device. The well-ordered nanoparticle arrays on the microcapsule form high-density uniform “hot-spots” with a deposited metal film, on which the localized su

  2. Microfluidic technology for PET radiochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Gillies, J.M. [Cancer Research-UK/University of Manchester Radiochemical Targeting and Imaging Group, Paterson Institute for Cancer Research, Manchester, M20 4BX (United Kingdom)]. E-mail: jgillies@picr.man.ac.uk; Prenant, C. [Cancer Research-UK/University of Manchester Radiochemical Targeting and Imaging Group, Paterson Institute for Cancer Research, Manchester, M20 4BX (United Kingdom); School of Chemical Engineering and Analytical Sciences, University of Manchester, P.O. Box 88, Manchester, M60 1QD (United Kingdom); Chimon, G.N. [Cancer Research-UK/University of Manchester Radiochemical Targeting and Imaging Group, Paterson Institute for Cancer Research, Manchester, M20 4BX (United Kingdom); School of Chemical Engineering and Analytical Sciences, University of Manchester, P.O. Box 88, Manchester, M60 1QD (United Kingdom); Smethurst, G.J. [Cancer Research-UK/University of Manchester Radiochemical Targeting and Imaging Group, Paterson Institute for Cancer Research, Manchester, M20 4BX (United Kingdom); Dekker, B.A. [Cancer Research-UK/University of Manchester Radiochemical Targeting and Imaging Group, Paterson Institute for Cancer Research, Manchester, M20 4BX (United Kingdom); Zweit, J. [Cancer Research-UK/University of Manchester Radiochemical Targeting and Imaging Group, Paterson Institute for Cancer Research, Manchester, M20 4BX (United Kingdom); School of Chemical Engineering and Analytical Sciences, University of Manchester, P.O. Box 88, Manchester, M60 1QD (United Kingdom)

    2006-03-15

    This paper describes the first application of a microfabricated reaction system to positron emission tomography (PET) radiochemistry. We have applied microfluidic technology to synthesise PET radiopharmaceuticals using {sup 18}F and {sup 124}I as labels for fluorodeoxyglucose (FDG) and Annexin-V, respectively. These reactions involved established methods of nucleophilic substitution on a mannose triflate precursor and direct iodination of the protein using iodogen as an oxidant. This has demonstrated a proof of principle of using microfluidic technology to radiochemical reactions involving low and high molecular weight compounds. Using microfluidic reactions, [{sup 18}F]FDG was synthesised with a 50% incorporation of the available F-18 radioactivity in a very short time of 4 s. The radiolabelling efficiency of {sup 124}I Annexin-V was 40% after 1 min reaction time. Chromatographic analysis showed that such reaction yields are comparable to conventional methods, but in a much shorter time. The yields can be further improved with more optimisation of the microfluidic device itself and its fluid mixing profiles. This demonstrates the potential for this technology to have an impact on rapid and simpler radiopharmaceutical synthesis using short and medium half-life radionuclides.

  3. Topology optimization of microfluidic mixers

    DEFF Research Database (Denmark)

    Andreasen, Casper Schousboe; Gersborg, Allan Roulund; Sigmund, Ole

    2009-01-01

    This paper demonstrates the application of the topology optimization method as a general and systematic approach for microfluidic mixer design. The mixing process is modeled as convection dominated transport in low Reynolds number incompressible flow. The mixer performance is maximized by altering...

  4. Reactor vessel

    OpenAIRE

    Makkee, M.; Kapteijn, F.; Moulijn, J.A

    1999-01-01

    A reactor vessel (1) comprises a reactor body (2) through which channels (3) are provided whose surface comprises longitudinal inwardly directed parts (4) and is provided with a catalyst (6), as well as buffer bodies (8, 12) connected to the channels (3) on both sides of the reactor body (2) and comprising connections for supplying (9, 10, 11) and discharging (13, 14, 15) via the channels (3) gases and/or liquids entering into a reaction with each other and substances formed upon this reactio...

  5. Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices.

    Science.gov (United States)

    Au, Anthony K; Lee, Wonjae; Folch, Albert

    2014-04-01

    The vast majority of microfluidic devices are developed in PDMS by molding ("soft lithography") because PDMS is an inexpensive material, has physicochemical properties that are well suited for biomedical and physical sciences applications, and design cycle lengths are generally adequate for prototype development. However, PDMS molding is tediously slow and thus cannot provide the high- or medium-volume production required for the commercialization of devices. While high-throughput plastic molding techniques (e.g. injection molding) exist, the exorbitant cost of the molds and/or the equipment can be a serious obstacle for device commercialization, especially for small startups. High-volume production is not required to reach niche markets such as clinical trials, biomedical research supplies, customized research equipment, and classroom projects. Crucially, both PDMS and plastic molding are layer-by-layer techniques where each layer is produced as a result of physicochemical processes not specified in the initial photomask(s) and where the final device requires assembly by bonding, all resulting in a cost that is very hard to predict at the start of the project. By contrast, stereolithography (SL) is an automated fabrication technique that allows for the production of quasi-arbitrary 3D shapes in a single polymeric material at medium-volume throughputs (ranging from a single part to hundreds of parts). Importantly, SL devices can be designed between several groups using CAD tools, conveniently ordered by mail, and their cost precisely predicted via a web interface. Here we evaluate the resolution of an SL mail-order service and the main causes of resolution loss; the optical clarity of the devices and how to address the lack of clarity for imaging in the channels; and the future role that SL could play in the commercialization of microfluidic devices.

  6. Heating automation

    OpenAIRE

    Tomažič, Tomaž

    2013-01-01

    This degree paper presents usage and operation of peripheral devices with microcontroller for heating automation. The main goal is to make a quality system control for heating three house floors and with that, increase efficiency of heating devices and lower heating expenses. Heat pump, furnace, boiler pump, two floor-heating pumps and two radiator pumps need to be controlled by this system. For work, we have chosen a development kit stm32f4 - discovery with five temperature sensors, LCD disp...

  7. Automation Security

    OpenAIRE

    Mirzoev, Dr. Timur

    2014-01-01

    Web-based Automated Process Control systems are a new type of applications that use the Internet to control industrial processes with the access to the real-time data. Supervisory control and data acquisition (SCADA) networks contain computers and applications that perform key functions in providing essential services and commodities (e.g., electricity, natural gas, gasoline, water, waste treatment, transportation) to all Americans. As such, they are part of the nation s critical infrastructu...

  8. Marketing automation

    OpenAIRE

    Raluca Dania TODOR

    2017-01-01

    The automation of the marketing process seems to be nowadays, the only solution to face the major changes brought by the fast evolution of technology and the continuous increase in supply and demand. In order to achieve the desired marketing results, businessis have to employ digital marketing and communication services. These services are efficient and measurable thanks to the marketing technology used to track, score and implement each campaign. Due to the...

  9. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  10. Reactor Neutrinos

    Directory of Open Access Journals (Sweden)

    Soo-Bong Kim

    2013-01-01

    Full Text Available We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very recently the most precise determination of the neutrino mixing angle θ13. This paper provides an overview of the upcoming experiments and of the projects under development, including the determination of the neutrino mass hierarchy and the possible use of neutrinos for society, for nonproliferation of nuclear materials, and geophysics.

  11. Chemical Reactors.

    Science.gov (United States)

    Kenney, C. N.

    1980-01-01

    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  12. A network-flow based valve-switching aware binding algorithm for flow-based microfluidic biochips

    DEFF Research Database (Denmark)

    Tseng, Kai-Han; You, Sheng-Chi; Minhass, Wajid Hassan;

    2013-01-01

    Designs of flow-based microfluidic biochips are receiving much attention recently because they replace conventional biological automation paradigm and are able to integrate different biochemical analysis functions on a chip. However, as the design complexity increases, a flow-based microfluidic......-flow based resource binding algorithm based on breadth-first search (BFS) and minimum cost maximum flow (MCMF) in architectural-level synthesis. The experimental results show that our methodology not only makes significant reduction of valve-switching activities but also diminishes the application completion...

  13. Reactor Neutrinos

    OpenAIRE

    Lasserre, T.; Sobel, H.W.

    2005-01-01

    We review the status and the results of reactor neutrino experiments, that toe the cutting edge of neutrino research. Short baseline experiments have provided the measurement of the reactor neutrino spectrum, and are still searching for important phenomena such as the neutrino magnetic moment. They could open the door to the measurement of coherent neutrino scattering in a near future. Middle and long baseline oscillation experiments at Chooz and KamLAND have played a relevant role in neutrin...

  14. A nanoliter-scale open chemical reactor.

    Science.gov (United States)

    Galas, Jean-Christophe; Haghiri-Gosnet, Anne-Marie; Estévez-Torres, André

    2013-02-01

    An open chemical reactor is a container that exchanges matter with the exterior. Well-mixed open chemical reactors, called continuous stirred tank reactors (CSTR), have been instrumental for investigating the dynamics of out-of-equilibrium chemical processes, such as oscillations, bistability, and chaos. Here, we introduce a microfluidic CSTR, called μCSTR, that reduces reagent consumption by six orders of magnitude. It consists of an annular reactor with four inlets and one outlet fabricated in PDMS using multi-layer soft lithography. A monolithic peristaltic pump feeds fresh reagents into the reactor through the inlets. After each injection the content of the reactor is continuously mixed with a second peristaltic pump. The efficiency of the μCSTR is experimentally characterized using a bromate, sulfite, ferrocyanide pH oscillator. Simulations accounting for the digital injection process are in agreement with experimental results. The low consumption of the μCSTR will be advantageous for investigating out-of-equilibrium dynamics of chemical processes involving biomolecules. These studies have been scarce so far because a miniaturized version of a CSTR was not available.

  15. A microfluidic D-subminiature connector.

    Science.gov (United States)

    Scott, Adina; Au, Anthony K; Vinckenbosch, Elise; Folch, Albert

    2013-06-07

    Standardized, affordable, user-friendly world-to-chip interfaces represent one of the major barriers to the adoption of microfluidics. We present a connector system for plug-and-play interfacing of microfluidic devices to multiple input and output lines. The male connectors are based on existing standardized housings from electronics that are inexpensive and widely available. The female connectors are fabricated using familiar replica molding techniques that can easily be adopted by microfluidic developers.

  16. Microfluidics for optics and quantitative cell biology

    OpenAIRE

    Campbell, James Kyle

    2008-01-01

    Microfluidics is a quickly expanding field with numerous applications. The advent of rapid-prototyping and soft- lithography allow for easy and inexpensive fabrication of microfluidic devices. Fluid manipulation on the microscale allows for new functionalities of devices and components not available on the macroscale. Fluid flows on the microscale are laminar with chemical mixing defined strictly by diffusion allowing us to design microfluidic devices with precise control of fluid flow and ch...

  17. [Recent development of microfluidic diagnostic technologies].

    Science.gov (United States)

    Li, Haifang; Zhang, Qianyun; Lin, Jin-Ming

    2011-04-01

    Microfluidic devices exhibit a great promising development in clinical diagnosis and disease screening due to their advantages of precise controlling of fluid flow, requirement of miniamount sample, rapid reaction speed and convenient integration. In this paper, the improvements of microfluidic diagnostic technologies in recent years are reviewed. The applications and developments of on-chip disease marker detection, microfluidic cell selection and cell drug metabolism, and diagnostic micro-devices are discussed.

  18. Bio-microfluidics: biomaterials and biomimetic designs.

    Science.gov (United States)

    Domachuk, Peter; Tsioris, Konstantinos; Omenetto, Fiorenzo G; Kaplan, David L

    2010-01-12

    Bio-microfluidics applies biomaterials and biologically inspired structural designs (biomimetics) to microfluidic devices. Microfluidics, the techniques for constraining fluids on the micrometer and sub-micrometer scale, offer applications ranging from lab-on-a-chip to optofluidics. Despite this wealth of applications, the design of typical microfluidic devices imparts relatively simple, laminar behavior on fluids and is realized using materials and techniques from silicon planar fabrication. On the other hand, highly complex microfluidic behavior is commonplace in nature, where fluids with nonlinear rheology flow through chaotic vasculature composed from a range of biopolymers. In this Review, the current state of bio-microfluidic materials, designs and applications are examined. Biopolymers enable bio-microfluidic devices with versatile functionalization chemistries, flexibility in fabrication, and biocompatibility in vitro and in vivo. Polymeric materials such as alginate, collagen, chitosan, and silk are being explored as bulk and film materials for bio-microfluidics. Hydrogels offer options for mechanically functional devices for microfluidic systems such as self-regulating valves, microlens arrays and drug release systems, vital for integrated bio-microfluidic devices. These devices including growth factor gradients to study cell responses, blood analysis, biomimetic capillary designs, and blood vessel tissue culture systems, as some recent examples of inroads in the field that should lead the way in a new generation of microfluidic devices for bio-related needs and applications. Perhaps one of the most intriguing directions for the future will be fully implantable microfluidic devices that will also integrate with existing vasculature and slowly degrade to fully recapitulate native tissue structure and function, yet serve critical interim functions, such as tissue maintenance, drug release, mechanical support, and cell delivery.

  19. Integrated lenses in polystyrene microfluidic devices

    KAUST Repository

    Fan, Yiqiang

    2013-04-01

    This paper reports a new method for integrating microlenses into microfluidic devices for improved observation. Two demonstration microfluidic devices were provided which were fabricated using this new technique. The integrated microlenses were fabricated using a free-surface thermo-compression molding method on a polystyrene (PS) sheet which was then bonded on top of microfluidic channels as a cover plate, with the convex microlenses providing a magnified image of the channel for the easier observation of the flow in the microchannels. This approach for fabricating the integrated microlens in microfluidic devices is rapid, low cost and without the requirement of cleanroom facilities. © 2013 IEEE.

  20. Advances in microfluidics for environmental analysis.

    Science.gov (United States)

    Jokerst, Jana C; Emory, Jason M; Henry, Charles S

    2012-01-07

    During the past few years, a growing number of groups have recognized the utility of microfluidic devices for environmental analysis. Microfluidic devices offer a number of advantages and in many respects are ideally suited to environmental analyses. Challenges faced in environmental monitoring, including the ability to handle complex and highly variable sample matrices, lead to continued growth and research. Additionally, the need to operate for days to months in the field requires further development of robust, integrated microfluidic systems. This review examines recently published literature on the applications of microfluidic systems for environmental analysis and provides insight in the future direction of the field.

  1. The microfluidic Kelvin water dropper

    CERN Document Server

    Marin, Alvaro G; García-Sánchez, Pablo; Shui, Lingling; Xie, Yanbo; Fontelos, Marco A; Eijkel, Jan C T; Berg, Albert van den; Lohse, Detlef

    2013-01-01

    The so-called "Kelvin water dropper" is a simple experiment demonstrating the spontaneous appearance of induced free charge in droplets emitted through a tube. As Lord Kelvin explained, water droplets spontaneously acquire a net charge during detachment from a faucet due to the presence of electrical fields in their surrounding created by any metallic object. In his experiment, two streams of droplets are allowed to drip from separated nozzles into separated buckets, which are at the same time interconnected through the dripping needles. In this paper we build a microfluidic water dropper and demonstrate that the droplets get charged and break-up due to electrohydrodynamic instabilities. A comparison with recent simulations shows the dependence of the acquired charge in the droplets on different parameters of the system. The phenomenon opens a door to cheap and accessible transformation of pneumatic pressure into electrical energy and to an enhanced control in microfluidic and biophysical manipulation of caps...

  2. Acoustically-driven microfluidic systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, A W; Benett, W J; Tarte, L R

    2000-06-23

    We have demonstrated a non-contact method of concentrating and mixing particles in a plastic microfluidic chamber employing acoustic radiation pressure. A flaw cell package has also been designed that integrates liquid sample interconnects, electrical contacts and a removable sample chamber. Experiments were performed on 1, 3, 6, and 10 {micro}m polystyrene beads. Increased antibody binding to a solid-phase substrate was observed in the presence of acoustic mixing due to improve mass transport.

  3. Microfluidic fabrication of plasmonic microcapsules

    OpenAIRE

    Wang, J.; Jin, M. L.; Eijkel, J.C.T.; Berg, van den, A.E.; Zhou, G.F.; Shui, L.L.

    2016-01-01

    This paper presents the plasmonic microcapsules with well-ordered nanoparticles embedded in polymer network fabricated by using a microfluidic device. The well-ordered nanoparticle arrays on the microcapsule form high-density uniform “hot-spots” with a deposited metal film, on which the localized surface plasmon resonance effect is obtained. These plasmonic microcapsules can be engineered and modified by nanoparticle size and the metal film thickness. Repeatable Surfaced-Enhanced Raman Scatte...

  4. Optical detection in microfluidic systems

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Kutter, Jörg Peter

    2009-01-01

    Optical detection schemes continue to be favoured for measurements in microfluidic systems. A selection of the latest progress mainly within the last two years is critically reviewed. Emphasis is on integrated solutions, such as planar waveguides, coupling schemes to the outside world, evanescent...... to ease commercialisation of the devices. This work will hopefully result in more commercial products that benefit from integrated optics, because the impact on commercial devices so far has been modest....

  5. Whole-Teflon microfluidic chips.

    Science.gov (United States)

    Ren, Kangning; Dai, Wen; Zhou, Jianhua; Su, Jing; Wu, Hongkai

    2011-05-17

    Although microfluidics has shown exciting potential, its broad applications are significantly limited by drawbacks of the materials used to make them. In this work, we present a convenient strategy for fabricating whole-Teflon microfluidic chips with integrated valves that show outstanding inertness to various chemicals and extreme resistance against all solvents. Compared with other microfluidic materials [e.g., poly(dimethylsiloxane) (PDMS)] the whole-Teflon chip has a few more advantages, such as no absorption of small molecules, little adsorption of biomolecules onto channel walls, and no leaching of residue molecules from the material bulk into the solution in the channel. Various biological cells have been cultured in the whole-Teflon channel. Adherent cells can attach to the channel bottom, spread, and proliferate well in the channels (with similar proliferation rate to the cells in PDMS channels with the same dimensions). The moderately good gas permeability of the Teflon materials makes it suitable to culture cells inside the microchannels for a long time.

  6. Microfluidic Devices for Blood Fractionation

    Directory of Open Access Journals (Sweden)

    Chwee Teck Lim

    2011-07-01

    Full Text Available Blood, a complex biological fluid, comprises 45% cellular components suspended in protein rich plasma. These different hematologic components perform distinct functions in vivo and thus the ability to efficiently fractionate blood into its individual components has innumerable applications in both clinical diagnosis and biological research. Yet, processing blood is not trivial. In the past decade, a flurry of new microfluidic based technologies has emerged to address this compelling problem. Microfluidics is an attractive solution for this application leveraging its numerous advantages to process clinical blood samples. This paper reviews the various microfluidic approaches realized to successfully fractionate one or more blood components. Techniques to separate plasma from hematologic cellular components as well as isolating blood cells of interest including certain rare cells are discussed. Comparisons based on common separation metrics including efficiency (sensitivity, purity (selectivity, and throughput will be presented. Finally, we will provide insights into the challenges associated with blood-based separation systems towards realizing true point-of-care (POC devices and provide future perspectives.

  7. Microfluidics for mammalian embryo culture and selection: where do we stand now?

    Science.gov (United States)

    Le Gac, Séverine; Nordhoff, Verena

    2016-09-27

    The optimization of in-vitro culture conditions and the selection of the embryo(s) with the highest developmental competence are essential components in an ART program. Culture conditions are manifold and they underlie not always evidence-based research but also trends entering the IVF laboratory. At the moment, the idea of using sequential media according to the embryo requirements has been given up in favor of the use of single step media in an uninterrupted manner due to practical issues such as time-lapse incubators. The selection of the best embryo is performed using morphological and, recently, also morphokinetic criteria. In this review, we aim to demonstrate how the ART field may benefit from the use of microfluidic technology, with a particular focus on specific steps, namely the embryo in-vitro culture, embryo scoring and selection, and embryo cryopreservation. We first provide an overview of microfluidic and microfabricated devices, which have been developed for embryo culture, characterization of pre-implantation embryos (or in some instances a combination of both steps) and embryo cryopreservation. Building upon these existing platforms and the various capabilities offered by microfluidics, we discuss how this technology could provide integrated and automated systems, not only for real-time and multi-parametric monitoring of embryo development, but also for performing the entire ART procedure. Although microfluidic technology has been around for a couple of decades already, it has still not made its way into the clinics and IVF laboratories, which we discuss in terms of: (i) a lack of user-friendliness and automation of the microfluidic platforms, (ii) a lack of robust and convincing validation using human embryos and (iii) some psychological threshold for embryologists and practitioners to test and use microfluidic technology. In spite of these limitations, we envision that microfluidics is likely to have a significant impact in the field of ART, for

  8. A feedback control system for high-fidelity digital microfluidics.

    Science.gov (United States)

    Shih, Steve C C; Fobel, Ryan; Kumar, Paresh; Wheeler, Aaron R

    2011-02-07

    Digital microfluidics (DMF) is a technique in which discrete droplets are manipulated by applying electrical fields to an array of electrodes. In an ideal DMF system, each application of driving potential would cause a targeted droplet to move onto an energized electrode (i.e., perfect fidelity between driving voltage and actuation); however, in real systems, droplets are sometimes observed to resist movement onto particular electrodes. Here, we implement a sensing and feedback control system in which all droplet movements are monitored, such that when a movement failure is observed, additional driving voltages can be applied until the droplet completes the desired operation. The new system was evaluated for a series of liquids including water, methanol, and cell culture medium containing fetal bovine serum, and feedback control was observed to result in dramatic improvements in droplet actuation fidelity and velocity. The utility of the new system was validated by implementing an enzyme kinetics assay with continuous mixing. The new platform for digital microfluidics is simple and inexpensive and thus should be useful for scientists and engineers who are developing automated analysis platforms.

  9. A microBio reactor for hydrogen production.

    Energy Technology Data Exchange (ETDEWEB)

    Volponi, Joanne V.; Walker, Andrew William

    2003-12-01

    The purpose of this work was to explore the potential of developing a microfluidic reactor capable of enzymatically converting glucose and other carbohydrates to hydrogen. This aggressive project was motivated by work in enzymatic hydrogen production done by Woodward et al. at OWL. The work reported here demonstrated that hydrogen could be produced from the enzymatic oxidation of glucose. Attempts at immobilizing the enzymes resulted in reduced hydrogen production rates, probably due to buffer compatibility issues. A novel in-line sensor was also developed to monitor hydrogen production in real time at levels below 1 ppm. Finally, a theoretical design for the microfluidic reactor was developed but never produced due to the low production rates of hydrogen from the immobilized enzymes. However, this work demonstrated the potential of mimicking biological systems to create energy on the microscale.

  10. Macromolecular Crystallization with Microfluidic Free-Interface Diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Segelke, B

    2005-02-24

    Fluidigm released the Topaz 1.96 and 4.96 crystallization chips in the fall of 2004. Topaz 1.96 and 4.96 are the latest evolution of Fluidigm's microfluidics crystallization technologies that enable ultra low volume rapid screening for macromolecular crystallization. Topaz 1.96 and 4.96 are similar to each other but represent a major redesign of the Topaz system and have of substantially improved ease of automation and ease of use, improved efficiency and even further reduced amount of material needed. With the release of the new Topaz system, Fluidigm continues to set the standard in low volume crystallization screening which is having an increasing impact in the field of structural genomics, and structural biology more generally. In to the future we are likely to see further optimization and increased utility of the Topaz crystallization system, but we are also likely to see further innovation and the emergence of competing technologies.

  11. Automated Budget System

    Data.gov (United States)

    Department of Transportation — The Automated Budget System (ABS) automates management and planning of the Mike Monroney Aeronautical Center (MMAC) budget by providing enhanced capability to plan,...

  12. Materials for microfluidic chip fabrication.

    Science.gov (United States)

    Ren, Kangning; Zhou, Jianhua; Wu, Hongkai

    2013-11-19

    Through manipulating fluids using microfabricated channel and chamber structures, microfluidics is a powerful tool to realize high sensitive, high speed, high throughput, and low cost analysis. In addition, the method can establish a well-controlled microenivroment for manipulating fluids and particles. It also has rapid growing implementations in both sophisticated chemical/biological analysis and low-cost point-of-care assays. Some unique phenomena emerge at the micrometer scale. For example, reactions are completed in a shorter amount of time as the travel distances of mass and heat are relatively small; the flows are usually laminar; and the capillary effect becomes dominant owing to large surface-to-volume ratios. In the meantime, the surface properties of the device material are greatly amplified, which can lead to either unique functions or problems that we would not encounter at the macroscale. Also, each material inherently corresponds with specific microfabrication strategies and certain native properties of the device. Therefore, the material for making the device plays a dominating role in microfluidic technologies. In this Account, we address the evolution of materials used for fabricating microfluidic chips, and discuss the application-oriented pros and cons of different materials. This Account generally follows the order of the materials introduced to microfluidics. Glass and silicon, the first generation microfluidic device materials, are perfect for capillary electrophoresis and solvent-involved applications but expensive for microfabriaction. Elastomers enable low-cost rapid prototyping and high density integration of valves on chip, allowing complicated and parallel fluid manipulation and in-channel cell culture. Plastics, as competitive alternatives to elastomers, are also rapid and inexpensive to microfabricate. Their broad variety provides flexible choices for different needs. For example, some thermosets support in-situ fabrication of

  13. Centrifugal microfluidic platform for radiochemistry: potentialities for the chemical analysis of nuclear spent fuels.

    Science.gov (United States)

    Bruchet, Anthony; Taniga, Vélan; Descroix, Stéphanie; Malaquin, Laurent; Goutelard, Florence; Mariet, Clarisse

    2013-11-15

    The use of a centrifugal microfluidic platform is for the first time reported as an alternative to classical chromatographic procedures for radiochemistry. The original design of the microfluidic platform has been thought to fasten and simplify the prototyping process with the use of a circular platform integrating four rectangular microchips made of thermoplastic. The microchips, dedicated to anion-exchange chromatographic separations, integrate a localized monolithic stationary phase as well as injection and collection reservoirs. The results presented here were obtained with a simplified simulated nuclear spent fuel sample composed of non-radioactive isotopes of Europium and Uranium, in proportion usually found for uranium oxide nuclear spent fuel. While keeping the analytical results consistent with the conventional procedure (extraction yield for Europium of ≈97%), the use of the centrifugal microfluidic platform allowed to reduce the volume of liquid needed by a factor of ≈250. Thanks to their unique "easy-to-use" features, centrifugal microfluidic platforms are potential successful candidates for the downscaling of chromatographic separation of radioactive samples (automation, multiplexing, easy integration in glove-boxes environment and low cost of maintenance).

  14. On-chip integration of droplet microfluidics and nanostructure-initiator mass spectrometry for enzyme screening.

    Science.gov (United States)

    Heinemann, Joshua; Deng, Kai; Shih, Steve C C; Gao, Jian; Adams, Paul D; Singh, Anup K; Northen, Trent R

    2017-01-17

    Biological assays often require expensive reagents and tedious manipulations. These shortcomings can be overcome using digitally operated microfluidic devices that require reduced sample volumes to automate assays. One particular challenge is integrating bioassays with mass spectrometry based analysis. Towards this goal we have developed μNIMS, a highly sensitive and high throughput technique that integrates droplet microfluidics with nanostructure-initiator mass spectrometry (NIMS). Enzyme reactions are carried out in droplets that can be arrayed on discrete NIMS elements at defined time intervals for subsequent mass spectrometry analysis, enabling time resolved enzyme activity assay. We apply the μNIMS platform for kinetic characterization of a glycoside hydrolase enzyme (CelE-CMB3A), a chimeric enzyme capable of deconstructing plant hemicellulose into monosaccharides for subsequent conversion to biofuel. This study reveals NIMS nanostructures can be fabricated into arrays for microfluidic droplet deposition, NIMS is compatible with droplet and digital microfluidics, and can be used on-chip to assay glycoside hydrolase enzyme in vitro.

  15. Automation 2017

    CERN Document Server

    Zieliński, Cezary; Kaliczyńska, Małgorzata

    2017-01-01

    This book consists of papers presented at Automation 2017, an international conference held in Warsaw from March 15 to 17, 2017. It discusses research findings associated with the concepts behind INDUSTRY 4.0, with a focus on offering a better understanding of and promoting participation in the Fourth Industrial Revolution. Each chapter presents a detailed analysis of a specific technical problem, in most cases followed by a numerical analysis, simulation and description of the results of implementing the solution in a real-world context. The theoretical results, practical solutions and guidelines presented are valuable for both researchers working in the area of engineering sciences and practitioners looking for solutions to industrial problems. .

  16. Marketing automation

    Directory of Open Access Journals (Sweden)

    TODOR Raluca Dania

    2017-01-01

    Full Text Available The automation of the marketing process seems to be nowadays, the only solution to face the major changes brought by the fast evolution of technology and the continuous increase in supply and demand. In order to achieve the desired marketing results, businessis have to employ digital marketing and communication services. These services are efficient and measurable thanks to the marketing technology used to track, score and implement each campaign. Due to the technical progress, the marketing fragmentation, demand for customized products and services on one side and the need to achieve constructive dialogue with the customers, immediate and flexible response and the necessity to measure the investments and the results on the other side, the classical marketing approached had changed continue to improve substantially.

  17. High-viscosity fluid threads in weakly diffusive microfluidic systems

    Science.gov (United States)

    Cubaud, T.; Mason, T. G.

    2009-07-01

    We provide an overview of the flow dynamics of highly viscous miscible liquids in microfluidic geometries. We focus on the lubricated transport of high-viscosity fluids interacting with less viscous fluids, and we review methods for producing and manipulating single and multiple core-annular flows, i.e. viscous threads, in compact and plane microgeometries. In diverging slit microchannels, a thread's buckling instabilities can be employed for generating ordered and disordered miscible microstructures, as well as for partially blending low- and high-viscosity materials. The shear-induced destabilization of a thread that flows off-center in a square microchannel is examined as a means for continuously producing miscible dispersions. We show original compound threads and viscous dendrites that are generated using three fluids, each of which has a large viscosity contrast with the others. Thread motions in zones of microchannel extensions are examined in both miscible and immiscible environments. We demonstrate that high-viscosity fluid threads in weakly diffusive microfluidic systems correspond to the viscous primary flow and can be used as a starting point for studying and understanding the destabilizing effects of interfacial tension as well as diffusion. Characteristic of lubricated transport, threads facilitate the transport of very viscous materials in small fluidic passages, while mitigating dissipation. Threads are also potentially promising for soft material synthesis and diagnostics with independent control of the thread specific surface and residence time in micro-flow reactors.

  18. Droplets formation and merging in two-phase flow microfluidics.

    Science.gov (United States)

    Gu, Hao; Duits, Michel H G; Mugele, Frieder

    2011-01-01

    Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i) the emulsification step should lead to a very well controlled drop size (distribution); and (ii) the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.

  19. Droplets Formation and Merging in Two-Phase Flow Microfluidics

    Directory of Open Access Journals (Sweden)

    Hao Gu

    2011-04-01

    Full Text Available Two-phase flow microfluidics is emerging as a popular technology for a wide range of applications involving high throughput such as encapsulation, chemical synthesis and biochemical assays. Within this platform, the formation and merging of droplets inside an immiscible carrier fluid are two key procedures: (i the emulsification step should lead to a very well controlled drop size (distribution; and (ii the use of droplet as micro-reactors requires a reliable merging. A novel trend within this field is the use of additional active means of control besides the commonly used hydrodynamic manipulation. Electric fields are especially suitable for this, due to quantitative control over the amplitude and time dependence of the signals, and the flexibility in designing micro-electrode geometries. With this, the formation and merging of droplets can be achieved on-demand and with high precision. In this review on two-phase flow microfluidics, particular emphasis is given on these aspects. Also recent innovations in microfabrication technologies used for this purpose will be discussed.

  20. Preliminary Framework for Human-Automation Collaboration

    Energy Technology Data Exchange (ETDEWEB)

    Oxstrand, Johanna Helene [Idaho National Lab. (INL), Idaho Falls, ID (United States); Le Blanc, Katya Lee [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spielman, Zachary Alexander [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    The Department of Energy’s Advanced Reactor Technologies Program sponsors research, development and deployment activities through its Next Generation Nuclear Plant, Advanced Reactor Concepts, and Advanced Small Modular Reactor (aSMR) Programs to promote safety, technical, economical, and environmental advancements of innovative Generation IV nuclear energy technologies. The Human Automation Collaboration (HAC) Research Project is located under the aSMR Program, which identifies developing advanced instrumentation and controls and human-machine interfaces as one of four key research areas. It is expected that the new nuclear power plant designs will employ technology significantly more advanced than the analog systems in the existing reactor fleet as well as utilizing automation to a greater extent. Moving towards more advanced technology and more automation does not necessary imply more efficient and safer operation of the plant. Instead, a number of concerns about how these technologies will affect human performance and the overall safety of the plant need to be addressed. More specifically, it is important to investigate how the operator and the automation work as a team to ensure effective and safe plant operation, also known as the human-automation collaboration (HAC). The focus of the HAC research is to understand how various characteristics of automation (such as its reliability, processes, and modes) effect an operator’s use and awareness of plant conditions. In other words, the research team investigates how to best design the collaboration between the operators and the automated systems in a manner that has the greatest positive impact on overall plant performance and reliability. This report addresses the Department of Energy milestone M4AT-15IN2302054, Complete Preliminary Framework for Human-Automation Collaboration, by discussing the two phased development of a preliminary HAC framework. The framework developed in the first phase was used as the

  1. Integrating Electronics and Microfluidics on Paper.

    Science.gov (United States)

    Hamedi, Mahiar M; Ainla, Alar; Güder, Firat; Christodouleas, Dionysios C; Fernández-Abedul, M Teresa; Whitesides, George M

    2016-07-01

    Paper microfluidics and printed electronics have developed independently, and are incompatible in many aspects. Monolithic integration of microfluidics and electronics on paper is demonstrated. This integration makes it possible to print 2D and 3D fluidic, electrofluidic, and electrical components on paper, and to fabricate devices using them.

  2. A microfluidic method to study demulsification kinetics

    NARCIS (Netherlands)

    Krebs, T.; Schroën, C.G.P.H.; Boom, R.M.

    2012-01-01

    We present the results of experiments studying droplet coalescence in a dense layer of emulsion droplets using microfluidic circuits. The microfluidic structure allows direct observation of collisions and coalescence events between oil droplets dispersed in water. The coalescence rate of a flowing h

  3. Principles, Techniques, and Applications of Tissue Microfluidics

    Science.gov (United States)

    Wade, Lawrence A.; Kartalov, Emil P.; Shibata, Darryl; Taylor, Clive

    2011-01-01

    The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called "tissue microfluidics" because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets.

  4. Cell Culture Microfluidic Biochips: Experimental Throughput Maximization

    DEFF Research Database (Denmark)

    Minhass, Wajid Hassan; Pop, Paul; Madsen, Jan

    2011-01-01

    Microfluidic biochips offer a promising alternative to a conventional biochemical laboratory, integrating all necessary functionalities on-chip in order to perform biochemical applications. Researchers have started to propose computer-aided design tools for the synthesis of such biochips. Our focus...... metaheuristic for experimental design generation for the cell culture microfluidic biochips, and we have evaluated our approach using multiple experimental setups....

  5. Sonochemical Reactors.

    Science.gov (United States)

    Gogate, Parag R; Patil, Pankaj N

    2016-10-01

    Sonochemical reactors are based on the generation of cavitational events using ultrasound and offer immense potential for the intensification of physical and chemical processing applications. The present work presents a critical analysis of the underlying mechanisms for intensification, available reactor configurations and overview of the different applications exploited successfully, though mostly at laboratory scales. Guidelines have also been presented for optimum selection of the important operating parameters (frequency and intensity of irradiation, temperature and liquid physicochemical properties) as well as the geometric parameters (type of reactor configuration and the number/position of the transducers) so as to maximize the process intensification benefits. The key areas for future work so as to transform the successful technique at laboratory/pilot scale into commercial technology have also been discussed. Overall, it has been established that there is immense potential for sonochemical reactors for process intensification leading to greener processing and economic benefits. Combined efforts from a wide range of disciplines such as material science, physics, chemistry and chemical engineers are required to harness the benefits at commercial scale operation.

  6. Principles, Techniques, and Applications of Tissue Microfluidics

    Science.gov (United States)

    Wade, Lawrence A.; Kartalov, Emil P.; Shibata, Darryl; Taylor, Clive

    2011-01-01

    The principle of tissue microfluidics and its resultant techniques has been applied to cell analysis. Building microfluidics to suit a particular tissue sample would allow the rapid, reliable, inexpensive, highly parallelized, selective extraction of chosen regions of tissue for purposes of further biochemical analysis. Furthermore, the applicability of the techniques ranges beyond the described pathology application. For example, they would also allow the posing and successful answering of new sets of questions in many areas of fundamental research. The proposed integration of microfluidic techniques and tissue slice samples is called tissue microfluidics because it molds the microfluidic architectures in accordance with each particular structure of each specific tissue sample. Thus, microfluidics can be built around the tissues, following the tissue structure, or alternatively, the microfluidics can be adapted to the specific geometry of particular tissues. By contrast, the traditional approach is that microfluidic devices are structured in accordance with engineering considerations, while the biological components in applied devices are forced to comply with these engineering presets. The proposed principles represent a paradigm shift in microfluidic technology in three important ways: Microfluidic devices are to be directly integrated with, onto, or around tissue samples, in contrast to the conventional method of off-chip sample extraction followed by sample insertion in microfluidic devices. Architectural and operational principles of microfluidic devices are to be subordinated to suit specific tissue structure and needs, in contrast to the conventional method of building devices according to fluidic function alone and without regard to tissue structure. Sample acquisition from tissue is to be performed on-chip and is to be integrated with the diagnostic measurement within the same device, in contrast to the conventional method of off-chip sample prep and

  7. Manipulation of microfluidic droplets by electrorheological fluid

    KAUST Repository

    Zhang, Menying

    2009-09-01

    Microfluidics, especially droplet microfluidics, attracts more and more researchers from diverse fields, because it requires fewer materials and less time, produces less waste and has the potential of highly integrated and computer-controlled reaction processes for chemistry and biology. Electrorheological fluid, especially giant electrorheological fluid (GERF), which is considered as a kind of smart material, has been applied to the microfluidic systems to achieve active and precise control of fluid by electrical signal. In this review article, we will introduce recent results of microfluidic droplet manipulation, GERF and some pertinent achievements by introducing GERF into microfluidic system: digital generation, manipulation of "smart droplets" and droplet manipulation by GERF. Once it is combined with real-time detection, integrated chip with multiple functions can be realized. © 2009 Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Microfluidic desalination techniques and their potential applications.

    Science.gov (United States)

    Roelofs, S H; van den Berg, A; Odijk, M

    2015-09-07

    In this review we discuss recent developments in the emerging research field of miniaturized desalination. Traditionally desalination is performed to convert salt water into potable water and research is focused on improving performance of large-scale desalination plants. Microfluidic desalination offers several new opportunities in comparison to macro-scale desalination, such as providing a platform to increase fundamental knowledge of ion transport on the nano- and microfluidic scale and new microfluidic sample preparation methods. This approach has also lead to the development of new desalination techniques, based on micro/nanofluidic ion-transport phenomena, which are potential candidates for up-scaling to (portable) drinking water devices. This review assesses microfluidic desalination techniques on their applications and is meant to contribute to further implementation of microfluidic desalination techniques in the lab-on-chip community.

  9. Manipulation of microfluidic droplets by electrorheological fluid.

    Science.gov (United States)

    Zhang, Menying; Gong, Xiuqing; Wen, Weijia

    2009-09-01

    Microfluidics, especially droplet microfluidics, attracts more and more researchers from diverse fields, because it requires fewer materials and less time, produces less waste and has the potential of highly integrated and computer-controlled reaction processes for chemistry and biology. Electrorheological fluid, especially giant electrorheological fluid (GERF), which is considered as a kind of smart material, has been applied to the microfluidic systems to achieve active and precise control of fluid by electrical signal. In this review article, we will introduce recent results of microfluidic droplet manipulation, GERF and some pertinent achievements by introducing GERF into microfluidic system: digital generation, manipulation of "smart droplets" and droplet manipulation by GERF. Once it is combined with real-time detection, integrated chip with multiple functions can be realized.

  10. Electrorheological fluid and its applications in microfluidics.

    Science.gov (United States)

    Wang, Limu; Gong, Xiuqing; Wen, Weijia

    2011-01-01

    Microfluidics is a low-cost technique for fast-diagnosis and microsynthesis. Within a decade it might become the foundation of point-of-care and lab-on-a-chip applications. With microfluidic chips, high-throughput sample screening and information processing are made possible. The picoliter droplet runs in microfluidic chips are ideal miniaturized vessels for microdetection and microsynthesis. Meanwhile, individual manipulation of microdroplets remains a challenge: the shortcomings in automatic, reliable, and scalable methods for logic control prevent further integration of microfluidic applications. The giant electrorheological fluid (GERF), which is a kind of "smart" colloid, has tunable viscosity under the influence of external electric field. Therefore, GERF is introduced as the active controlling medium, with real-time response in on-chip fluid control. This review article introduces the working principles and fabrication methods of different types of electrorheological fluid, and extensively describes the strategies of GERF-assisted microfluidic controlling schemes.

  11. Microfluidic platforms employing integrated fluorescent or luminescent chemical sensors: a review of methods, scope and applications

    Science.gov (United States)

    Pfeiffer, Simon A.; Nagl, Stefan

    2015-09-01

    Herein we critically review microfluidic platforms that contain integrated fluorescent or luminescent chemical sensor assemblies. These were employed in particular for miniaturized oxygen and pH sensing. Microchips with optical temperature sensing capability are also covered since these share many concepts and applications. Other analytes and derived parameters from the above analytes are found in some sensing approaches in microfluidics. After an introduction, the work is structured into three main chapters dealing with the fabrication and microintegration of these sensors, readout and detection strategies, and applications of these microsystems. The fabrication is discussed with a focus on soft lithography-based approaches in polydimethylsiloxane (PDMS) or PDMS and glass hybrid devices that form the majority of work so far. Alternative approaches, particularly using glass or quartz as the main chip material are also covered. Detection techniques employed to date are the subject of the next chapter, where simple intensity as well as lifetime- or wavelength-referenced schemes are presented and the utility of image-based sensing on the microscale is discussed. Lastly, exciting applications of these microfluidic chips are highlighted. Luminescent oxygen and pH sensing has been of particular interest in the field of microbioreactors but other areas are also of interest, particularly chemical reactors and electrophoresis. Optical temperature sensing is discussed and its use in fundamental studies as well as in enzyme reactors. Integrated microsystems with biosensing capabilities and some for monitoring of metal ions and other analytes are also presented.

  12. Microfluidic platform for studying the electrochemical reduction of carbon dioxide

    Science.gov (United States)

    Whipple, Devin Talmage

    Diminishing supplies of conventional energy sources and growing concern over greenhouse gas emissions present significant challenges to supplying the world's rapidly increasing demand for energy. The electrochemical reduction of carbon dioxide has the potential to address many of these issues by providing a means of storing electricity in chemical form. Storing electrical energy as chemicals is beneficial for leveling the output of clean, but intermittent renewable energy sources such as wind and solar. Electrical energy stored as chemicals can also be used as carbon neutral fuels for portable applications allowing petroleum derived fuels in the transportation sector to be replaced by more environmentally friendly energy sources. However, to be a viable technology, the electrochemical reduction of carbon dioxide needs to have both high current densities and energetic efficiencies (Chapter 1). Although many researchers have studied the electrochemical reduction of CO2 including parameters such as catalysts, electrolytes and temperature, further investigation is needed to improve the understanding of this process and optimize the performance (Chapter 2). This dissertation reports the development and validation of a microfluidic reactor for the electrochemical reduction of CO2 (Chapter 3). The design uses a flowing liquid electrolyte instead of the typical polymer electrolyte membrane. In addition to other benefits, this flowing electrolyte gives the reactor great flexibility, allowing independent analysis of each electrode and the testing of a wide variety of conditions. In this work, the microfluidic reactor has been used in the following areas: • Comparison of different metal catalysts for the reduction of CO2 to formic acid and carbon monoxide (Chapter 4). • Investigation of the effects of the electrolyte pH on the reduction of CO2 to formic acid and carbon monoxide (Chapter 5). • Study of amine based electrolytes for lowering the overpotentials for CO2

  13. Hydrogenation reactions using scCO2 as a solvent in microchannel reactors.

    Science.gov (United States)

    Kobayashi, Juta; Mori, Yuichiro; Kobayashi, Shū

    2005-05-28

    We have developed an effective microfluidic system for hydrogenation reactions in scCO(2); the reactions proceeded very rapidly (within 1 second), by making the best use of scCO(2) and utilizing the large specific interfacial area of the microchannel reactor, and high reaction productivity was attained in each channel.

  14. A lab-on-a-chip system for the development of complex assays using modular microfluidic components

    Science.gov (United States)

    Hlawatsch, Nadine; Klemm, Richard; Carstens, Cornelia; Brandst"tter, Thomas; Becker, Holger; Elbracht, Rudi; Gärtner, Claudia

    2012-03-01

    For complex biological or diagnostic assays, the development of an integrated microfluidic device can be difficult and error-prone. For this reason, a modular approach, using individual microfluidic functional modules for the different process steps, can be advantageous. However often the interconnection of the modules proves to be tedious and the peripheral instrumentation to drive the various modules is cumbersome and of large size. For this reason, we have developed an integrated instrument platform which has generic functionalities such as valves and pumps, heating zones for continuous-flow PCR, moveable magnets for bead-based assays and an optical detection unit build into the instrument. The instrument holds a titerplate-sized carrier in which up to four microscopy-slide sized microfluidic modules can be clipped in. This allows for developing and optimizing individual assay steps without the need to modify the instrument or generate a completely new microfluidic cartridge. As a proof-of-concept, the automated sample processing of liquor or blood culture in microfluidic structures for detection of currently occuring Neisseria meningitidis strains was carried out. This assay involves the extraction of bacterial DNA, the fluorescent labeling, amplification using PCR as well as the hybridization of the DNA molecules in three-dimensional capture sites spotted into a microchannel. To define the assay sensitivity, chip modules were tested with bacteria spiked samples of different origins and results were controlled by conventional techniques. For liquor or blood culture, the presence of 200 bacteria was detected within 1 hour.

  15. Kinetic ELISA in Microfluidic Channels

    Directory of Open Access Journals (Sweden)

    Debashis Dutta

    2011-06-01

    Full Text Available In this article, we describe the kinetic ELISA of Blue Tongue and Epizootic Hemorrhagic Disease viral antibodies in microfluidic channels by monitoring the rate of generation of the enzyme reaction product under static conditions. It has been shown that this format of the immunoassay allows very reliable quantitation of the target species using inexpensive glass microchips and a standard epifluorescence microscope system coupled to a CCD camera. For the viral antibodies assayed here, the limit of detection (LOD for the analyte concentration in our microchips was established to be 3–5 times lower than that obtained on commercial microwell plates using a fiftieth of the sample volume and less than a third of the incubation time. Our analyses further show that when compared to the end-point ELISA format, the kinetic mode of this assay yields an improvement in the LOD by over an order of magnitude in microfluidic devices. This benefit is primarily realized as the observed variation in the background fluorescence (signal at the start of the enzyme reaction period was significantly larger than that in the rate of signal generation upon repeating these assays in different microchannels/microchips. Because the kinetic ELISA results depend only on the latter quantity, the noise level in them was substantially lower compared to that in its end-point counterpart in which the absolute fluorescence measurements are of greater significance. While a similar benefit was also recorded through implementation of kinetic ELISAs on the microwell platform, the improvement in LOD registered in that system was not as significant as was observed in the case of microfluidic assays.

  16. Microfluidics and the life sciences.

    Science.gov (United States)

    Becker, Holger; Gärtner, Claudia

    2012-01-01

    The field of microfluidics, often also referred to as "Lab-on-a-Chip" has made significant progress in the last 15 years and is an essential tool in the development of new products and protocols in the life sciences. This article provides a broad overview on the developments on the academic as well as the commercial side. Fabrication technologies for polymer-based devices are presented and a strategy for the development of complex integrated devices is discussed, together with an example on the use of these devices in pathogen detection.

  17. Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms

    Directory of Open Access Journals (Sweden)

    Piyush Dak

    2016-04-01

    Full Text Available Low cost, portable sensors can transform health care by bringing easily available diagnostic devices to low and middle income population, particularly in developing countries. Sample preparation, analyte handling and labeling are primary cost concerns for traditional lab-based diagnostic systems. Lab-on-a-chip (LoC platforms based on droplet-based microfluidics promise to integrate and automate these complex and expensive laboratory procedures onto a single chip; the cost will be further reduced if label-free biosensors could be integrated onto the LoC platforms. Here, we review some recent developments of label-free, droplet-based biosensors, compatible with “open” digital microfluidic systems. These low-cost droplet-based biosensors overcome some of the fundamental limitations of the classical sensors, enabling timely diagnosis. We identify the key challenges that must be addressed to make these sensors commercially viable and summarize a number of promising research directions.

  18. Microfluidic isolation of leukocytes from whole blood for phenotype and gene expression analysis.

    Science.gov (United States)

    Sethu, Palaniappan; Moldawer, Lyle L; Mindrinos, Michael N; Scumpia, Philip O; Tannahill, Cynthia L; Wilhelmy, Julie; Efron, Philip A; Brownstein, Bernard H; Tompkins, Ronald G; Toner, Mehmet

    2006-08-01

    Technologies that enable the isolation of cell subtypes from small samples of complex populations will greatly facilitate the implementation of proteomics and genomics to human diseases. Transcriptome analysis of blood requires the depletion of contaminating erythrocytes. We report an automated microfluidic device to rapidly deplete erythrocytes from whole blood via deionized water lysis and to collect enriched leukocytes for phenotype and genomic analyses. Starting with blood from healthy subjects, we demonstrate the utility of this microfluidic cassette and lysis protocol to prepare unstimulated leukocytes, and leukocytes stimulated ex vivo with Staphylococcal enterotoxin B, which mimics some of the cellular effects seen in patients with severe bacterial infections. Microarrays are used to assess the global gene expression response to enterotoxin B. The results demonstrate that this system can isolate unactivated leukocytes from small blood samples without any significant loss, which permits more information to be obtained from subsequent analysis, and will be readily applicable to clinical settings.

  19. Modular microfluidic cartridge-based universal diagnostic system for global health applications

    Science.gov (United States)

    Becker, Holger; Klemm, Richard; Dietze, William; White, Wallace; Hlawatsch, Nadine; Freyberg, Susanne; Moche, Christian; Dailey, Peter; Gärtner, Claudia

    2016-03-01

    Current microfluidics-enabled point-of-care diagnostic systems are typically designed specifically for one assay type, e.g. a molecular diagnostic assay for a single disease of a class of diseases. This approach often leads to high development cost and a significant training requirement for users of different instruments. We have developed an open platform diagnostic system which allows to run molecular, immunological and clinical assays on a single instrument platform with a standardized microfluidic cartridge architecture in an automated sample-in answer-out fashion. As examples, a molecular diagnostic assay for tuberculosis, an immunoassay for HIV p24 and a clinical chemistry assay for ALT liver function have been developed and results of their pre-clinical validation are presented.

  20. Microfluidic in-channel multi-electrode platform for neurotransmitter sensing

    Science.gov (United States)

    Kara, A.; Mathault, J.; Reitz, A.; Boisvert, M.; Tessier, F.; Greener, J.; Miled, A.

    2016-03-01

    In this project we present a microfluidic platform with in-channel micro-electrodes for in situ screening of bio/chemical samples through a lab-on-chip system. We used a novel method to incorporate electrochemical sensors array (16x20) connected to a PCB, which opens the way for imaging applications. A 200 μm height microfluidic channel was bonded to electrochemical sensors. The micro-channel contains 3 inlets used to introduce phosphate buffer saline (PBS), ferrocynide and neurotransmitters. The flow rate was controlled through automated micro-pumps. A multiplexer was used to scan electrodes and perform individual cyclic voltammograms by a custom potentiostat. The behavior of the system was linear in terms of variation of current versus concentration. It was used to detect the neurotransmitters serotonin, dopamine and glutamate.

  1. Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms.

    Science.gov (United States)

    Dak, Piyush; Ebrahimi, Aida; Swaminathan, Vikhram; Duarte-Guevara, Carlos; Bashir, Rashid; Alam, Muhammad A

    2016-04-14

    Low cost, portable sensors can transform health care by bringing easily available diagnostic devices to low and middle income population, particularly in developing countries. Sample preparation, analyte handling and labeling are primary cost concerns for traditional lab-based diagnostic systems. Lab-on-a-chip (LoC) platforms based on droplet-based microfluidics promise to integrate and automate these complex and expensive laboratory procedures onto a single chip; the cost will be further reduced if label-free biosensors could be integrated onto the LoC platforms. Here, we review some recent developments of label-free, droplet-based biosensors, compatible with "open" digital microfluidic systems. These low-cost droplet-based biosensors overcome some of the fundamental limitations of the classical sensors, enabling timely diagnosis. We identify the key challenges that must be addressed to make these sensors commercially viable and summarize a number of promising research directions.

  2. A low-cost microfluidic chip for rapid genotyping of malaria-transmitting mosquitoes.

    Directory of Open Access Journals (Sweden)

    Changchun Liu

    Full Text Available BACKGROUND: Vector control is one of the most effective measures to prevent the transmission of malaria, a disease that causes over 600,000 deaths annually. Around 30-40 Anopheles mosquito species are natural vectors of malaria parasites. Some of these species cannot be morphologically distinguished, but have behavioral and ecological differences. Emblematic of this is the Anopheles gambiae species complex. The correct identification of vector species is fundamental to the development of control strategies and epidemiological studies of disease transmission. METHODOLOGY/PRINCIPAL FINDINGS: An inexpensive, disposable, field-deployable, sample-to-answer, microfluidic chip was designed, constructed, and tested for rapid molecular identification of Anopheles gambiae and Anopheles arabiensis. The chip contains three isothermal amplification reactors. One test reactor operates with specific primers to amplify Anopheles gambiae DNA, another with specific primers for Anopheles arabiensis DNA, and the third serves as a negative control. A mosquito leg was crushed on an isolation membrane. Two discs, laden with mosquito tissue, were punched out of the membrane and inserted into the two test chambers. The isolated, disc-bound DNA served as a template in the amplification processes. The amplification products were detected with intercalating fluorescent dye that was excited with a blue light-emitting diode. The emitted light was observed by eye and recorded with a cell-phone camera. When the target consisted of Anopheles gambiae, the reactor containing primers specific to An. gambiae lit up while the other two reactors remained dark. When the target consisted of Anopheles arabiensis, the reactor containing primers specific to An. arabiensis lit up while the other two reactors remained dark. CONCLUSIONS/SIGNIFICANCE: The microfluidic chip provides a means to identify mosquito type through molecular analysis. It is suitable for field work, allowing one to

  3. PR-PR: cross-platform laboratory automation system.

    Science.gov (United States)

    Linshiz, Gregory; Stawski, Nina; Goyal, Garima; Bi, Changhao; Poust, Sean; Sharma, Monica; Mutalik, Vivek; Keasling, Jay D; Hillson, Nathan J

    2014-08-15

    To enable protocol standardization, sharing, and efficient implementation across laboratory automation platforms, we have further developed the PR-PR open-source high-level biology-friendly robot programming language as a cross-platform laboratory automation system. Beyond liquid-handling robotics, PR-PR now supports microfluidic and microscopy platforms, as well as protocol translation into human languages, such as English. While the same set of basic PR-PR commands and features are available for each supported platform, the underlying optimization and translation modules vary from platform to platform. Here, we describe these further developments to PR-PR, and demonstrate the experimental implementation and validation of PR-PR protocols for combinatorial modified Golden Gate DNA assembly across liquid-handling robotic, microfluidic, and manual platforms. To further test PR-PR cross-platform performance, we then implement and assess PR-PR protocols for Kunkel DNA mutagenesis and hierarchical Gibson DNA assembly for microfluidic and manual platforms.

  4. PR-PR: Cross-Platform Laboratory Automation System

    Energy Technology Data Exchange (ETDEWEB)

    Linshiz, G; Stawski, N; Goyal, G; Bi, CH; Poust, S; Sharma, M; Mutalik, V; Keasling, JD; Hillson, NJ

    2014-08-01

    To enable protocol standardization, sharing, and efficient implementation across laboratory automation platforms, we have further developed the PR-PR open-source high-level biology-friendly robot programming language as a cross-platform laboratory automation system. Beyond liquid-handling robotics, PR-PR now supports microfluidic and microscopy platforms, as well as protocol translation into human languages, such as English. While the same set of basic PR-PR commands and features are available for each supported platform, the underlying optimization and translation modules vary from platform to platform. Here, we describe these further developments to PR-PR, and demonstrate the experimental implementation and validation of PR-PR protocols for combinatorial modified Golden Gate DNA assembly across liquid-handling robotic, microfluidic, and manual platforms. To further test PR-PR cross-platform performance, we then implement and assess PR-PR protocols for Kunkel DNA mutagenesis and hierarchical Gibson DNA assembly for microfluidic and manual platforms.

  5. Simplified prototyping of perfusable polystyrene microfluidics

    Science.gov (United States)

    Tran, Reginald; Ahn, Byungwook; R. Myers, David; Qiu, Yongzhi; Sakurai, Yumiko; Moot, Robert; Mihevc, Emma; Trent Spencer, H.; Doering, Christopher; A. Lam, Wilbur

    2014-01-01

    Cell culture in microfluidic systems has primarily been conducted in devices comprised of polydimethylsiloxane (PDMS) or other elastomers. As polystyrene (PS) is the most characterized and commonly used substrate material for cell culture, microfluidic cell culture would ideally be conducted in PS-based microsystems that also enable tight control of perfusion and hydrodynamic conditions, which are especially important for culture of vascular cell types. Here, we report a simple method to prototype perfusable PS microfluidics for endothelial cell culture under flow that can be fabricated using standard lithography and wet laboratory equipment to enable stable perfusion at shear stresses up to 300 dyn/cm2 and pumping pressures up to 26 kPa for at least 100 h. This technique can also be extended to fabricate perfusable hybrid PS-PDMS microfluidics of which one application is for increased efficiency of viral transduction in non-adherent suspension cells by leveraging the high surface area to volume ratio of microfluidics and adhesion molecules that are optimized for PS substrates. These biologically compatible microfluidic devices can be made more accessible to biological-based laboratories through the outsourcing of lithography to various available microfluidic foundries. PMID:25379106

  6. Enzymatic Reactions in Microfluidic Devices

    Science.gov (United States)

    Ristenpart, W. D.; Wan, J.; Stone, H. A.

    2008-11-01

    We establish simple scaling laws for enzymatic reactions in microfluidic devices, and we demonstrate that kinetic parameters obtained conventionally using multiple stop-flow experiments may instead be extracted from a single microfluidic experiment. Introduction of an enzyme and substrate species in different arms of a Y-shaped channel allows the two species to diffuse across the parallel streamlines and to begin reacting. Measurements of the product concentration versus distance down the channel provide information about the kinetics of the reaction. In the limit where the enzyme is much larger (and thus less diffusive) than the substrate, we show that near the entrance the total amount of product (P) formed varies as a power law in the distance x down the channel. For reactions that follow standard Michaelis-Menten kinetics, the power law takes the form P˜(Vmax/Km) x^5/2, where Vmax and Km are the maximum reaction rate and Michaelis constant respectively. If a large excess of substrate is used, then Km is identified by measuring Vmax far downstream where the different species are completely mixed by diffusion. Numerical simulations and experiments using the bioluminescent reaction between luciferase and ATP as a model system are both shown to accord with the model. We discuss the implications for significant savings in the amount of time and enzyme required for determination of kinetic parameters.

  7. The microfluidic Kelvin water dropper.

    Science.gov (United States)

    Marín, Álvaro G; van Hoeve, Wim; García-Sánchez, Pablo; Shui, Lingling; Xie, Yanbo; Fontelos, Marco A; Eijkel, Jan C T; van den Berg, Albert; Lohse, Detlef

    2013-12-07

    The so-called "Kelvin water dropper" is a simple experiment demonstrating the spontaneous appearance of induced free charge in droplets emitted through a tube. As Lord Kelvin explained, water droplets spontaneously acquire a net charge during detachment from a faucet due to the presence of electrical fields in their surroundings created by any metallic object. In his experiment, two streams of droplets are allowed to drip from separate nozzles into separate buckets, which are, at the same time, interconnected through the dripping needles. In this paper, we build a microfluidic water dropper and demonstrate that the droplets get charged and break up due to electrohydrodynamic instabilities. A comparison with recent simulations shows the dependence of the acquired charge in the droplets on different parameters of the system. The phenomenon opens a door to cheap and accessible transformation of pneumatic pressure into electrical energy and to an enhanced control in microfluidic and biophysical manipulation of capsules, cells and droplets via self-induced charging of the elements.

  8. PDMS based microfluidic chips and their application in material synthesis

    Science.gov (United States)

    Gong, Xiuqing

    Microfluidics is a highly interdisciplinary science which is to deal with the behavior, control and manipulation of fluids that are constrained to sub-milimeter scale. It incorporates the knowledge and technique intersecting physics, chemistry, mechanics, nanoscience and biotechnology, with practical applications to the design of systems in which small volumes of fluids will be used. In this thesis, we started our research from GER fluid synthesis which then is applied to designing different functions of microfluidic devices, valve, pump, and mixer. We built a way to correlate mechanical signal with electric signal by soft matter. The mechanical devices based GER fluid had good operating stability and mechanical performance. We studied how to improve the performance of GER fluid by increasing the yield stress while avoiding the sendimentation of nanoparticles in GER suspension. The meaning of this work is to enhance the stability and mechanical strength of GER fluid when it is applyed to the microfluidc channels. We tried different oils and studied the particle size for the GER effect. The largest yield stress which amounts to 300 kPa is achievable compared to previous GER fluid with 100 kPa. Microfluidic reactor, directing the flow of microliter volumes along microscale channels, offers the advantages of precise control of reagent loading, fast mixing and an enhanced reaction rate, cessation of the reaction at specific stages, and more. Basically, there are two microfluidic flow regimes, continuous flow and segmented flow (suspended droplets, channel-spanning slug, and wall-wetting films). Both flow regimes offer chemical reaction applications, e.g., continuous flow formation of polymer nanospheres and inorganic nanoparticles, size- and shape-control synthesis by segmented flow, and precipitate-forming reactions in droplets, wherein the segmented flow has gained more popularity in that area. The compartmentalization of segmented flow offers advantages to chemical

  9. Single cell analysis of yeast replicative aging using a new generation of microfluidic device.

    Directory of Open Access Journals (Sweden)

    Yi Zhang

    Full Text Available A major limitation to yeast aging study has been the inability to track mother cells and observe molecular markers during the aging process. The traditional lifespan assay relies on manual micro-manipulation to remove daughter cells from the mother, which is laborious, time consuming, and does not allow long term tracking with high resolution microscopy. Recently, we have developed a microfluidic system capable of retaining mother cells in the microfluidic chambers while removing daughter cells automatically, making it possible to observe fluorescent reporters in single cells throughout their lifespan. Here we report the development of a new generation of microfluidic device that overcomes several limitations of the previous system, making it easier to fabricate and operate, and allowing functions not possible with the previous design. The basic unit of the device consists of microfluidic channels with pensile columns that can physically trap the mother cells while allowing the removal of daughter cells automatically by the flow of the fresh media. The whole microfluidic device contains multiple independent units operating in parallel, allowing simultaneous analysis of multiple strains. Using this system, we have reproduced the lifespan curves for the known long and short-lived mutants, demonstrating the power of the device for automated lifespan measurement. Following fluorescent reporters in single mother cells throughout their lifespan, we discovered a surprising change of expression of the translation elongation factor TEF2 during aging, suggesting altered translational control in aged mother cells. Utilizing the capability of the new device to trap mother-daughter pairs, we analyzed mother-daughter inheritance and found age dependent asymmetric partitioning of a general stress response reporter between mother and daughter cells.

  10. Microfluidic delivery of small molecules into mammalian cells based on hydrodynamic focusing.

    Science.gov (United States)

    Wang, Fen; Wang, Hao; Wang, Jun; Wang, Hsiang-Yu; Rummel, Peter L; Garimella, Suresh V; Lu, Chang

    2008-05-01

    Microfluidics-based cell assays offer high levels of automation and integration, and allow multiple assays to be run in parallel, based on reduced sample volumes. These characteristics make them attractive for studies associated with drug discovery. Controlled delivery of drug molecules or other exogenous materials into cells is a critical issue that needs to be addressed before microfluidics can serve as a viable platform for drug screening and studies. In this study, we report the application of hydrodynamic focusing for controlled delivery of small molecules into cells immobilized on the substrate of a microfluidic device. We delivered calcein AM which was permeant to the cell membrane into cells, and monitored its enzymatic conversion into fluorescent calcein during and after the delivery. Different ratios of the sample flow to the side flow were tested to determine how the conditions of hydrodynamic focusing affected the delivery. A 3D numerical model was developed to help understand the fluid flow, molecular diffusion due to hydrodynamic focusing in the microfluidic channel. The results from the simulation indicated that the calcein AM concentration on the outer surface of a cell was determined by the conditions of hydrodynamic focusing. By comparing the results from the simulation with those from the experiment, we found that the calcein AM concentration on the cell outer surface correlated very well with the amount of the molecules delivered into the cell. This suggests that hydrodynamic focusing provides an effective way for potentially quantitative delivery of exogenous molecules into cells at the single cell or subcellular level. We expect that our technique will pave the way to high-throughput drug screening and delivery on a microfluidic platform.

  11. Microfluidic systems for pathogen sensing: a review.

    Science.gov (United States)

    Mairhofer, Jürgen; Roppert, Kriemhilt; Ertl, Peter

    2009-01-01

    Rapid pathogen sensing remains a pressing issue today since conventional identification methodsare tedious, cost intensive and time consuming, typically requiring from 48 to 72 h. In turn, chip based technologies, such as microarrays and microfluidic biochips, offer real alternatives capable of filling this technological gap. In particular microfluidic biochips make the development of fast, sensitive and portable diagnostic tools possible, thus promising rapid and accurate detection of a variety of pathogens. This paper will provide a broad overview of the novel achievements in the field of pathogen sensing by focusing on methods and devices that compliment microfluidics.

  12. Microfluidic Systems for Pathogen Sensing: A Review

    Directory of Open Access Journals (Sweden)

    Peter Ertl

    2009-06-01

    Full Text Available Rapid pathogen sensing remains a pressing issue today since conventional identification methodsare tedious, cost intensive and time consuming, typically requiring from 48 to 72 h. In turn, chip based technologies, such as microarrays and microfluidic biochips, offer real alternatives capable of filling this technological gap. In particular microfluidic biochips make the development of fast, sensitive and portable diagnostic tools possible, thus promising rapid and accurate detection of a variety of pathogens. This paper will provide a broad overview of the novel achievements in the field of pathogen sensing by focusing on methods and devices that compliment microfluidics.

  13. Analogy among microfluidics, micromechanics, and microelectronics.

    Science.gov (United States)

    Li, Sheng-Shian; Cheng, Chao-Min

    2013-10-07

    We wish to illuminate the analogous link between microfluidic-based devices, and the already established pairing of micromechanics and microelectronics to create a triangular/three-way scientific relationship as a means of interlinking familial disciplines and accomplishing two primary goals: (1) to facilitate the modeling of multidisciplinary domains; and, (2) to enable us to co-simulate the entire system within a compact circuit simulator (e.g., Cadence or SPICE). A microfluidic channel-like structure embedded in a micro-electro-mechanical resonator via our proposed CMOS-MEMS technology is used to illustrate the connections among microfluidics, micromechanics, and microelectronics.

  14. Assessing Pretreatment Reactor Scaling Through Empirical Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lischeske, James J.; Crawford, Nathan C.; Kuhn, Erik; Nagle, Nicholas J.; Schell, Daniel J.; Tucker, Melvin P.; McMillan, James D.; Wolfrum, Edward J.

    2016-12-01

    Pretreatment is a critical step in the biochemical conversion of lignocellulosic biomass to fuels and chemicals. Due to the complexity of the physicochemical transformations involved, predictively scaling up technology from bench- to pilot-scale is difficult. This study examines how pretreatment effectiveness under nominally similar reaction conditions is influenced by pretreatment reactor design and scale using four different pretreatment reaction systems ranging from a 3 g batch reactor to a 10 dry-ton/d continuous reactor. The reactor systems examined were an Automated Solvent Extractor (ASE), Steam Explosion Reactor (SER), ZipperClave(R) reactor (ZCR), and Large Continuous Horizontal-Screw Reactor (LHR). To our knowledge, this is the first such study performed on pretreatment reactors across a range of reaction conditions (time and temperature) and at different reactor scales. The comparative pretreatment performance results obtained for each reactor system were used to develop response surface models for total xylose yield after pretreatment and total sugar yield after pretreatment followed by enzymatic hydrolysis. Near- and very-near-optimal regions were defined as the set of conditions that the model identified as producing yields within one and two standard deviations of the optimum yield. Optimal conditions identified in the smallest-scale system (the ASE) were within the near-optimal region of the largest scale reactor system evaluated. A reaction severity factor modeling approach was shown to inadequately describe the optimal conditions in the ASE, incorrectly identifying a large set of sub-optimal conditions (as defined by the RSM) as optimal. The maximum total sugar yields for the ASE and LHR were 95%, while 89% was the optimum observed in the ZipperClave. The optimum condition identified using the automated and less costly to operate ASE system was within the very-near-optimal space for the total xylose yield of both the ZCR and the LHR, and was

  15. Fluidic automation of nitrate and nitrite bioassays in whole blood by dissolvable-film based centrifugo-pneumatic actuation

    DEFF Research Database (Denmark)

    Nwankire, Charles E.; Chan, Di-Sien S.; Gaughran, Jennifer

    2013-01-01

    This paper demonstrates the full centrifugal microfluidic integration and automation of all liquid handling steps of a 7-step fluorescence-linked immunosorbent assay (FLISA) for quantifying nitrate and nitrite levels in whole blood within about 15 min. The assay protocol encompasses the extraction...

  16. Manufacturing and automation

    Directory of Open Access Journals (Sweden)

    Ernesto Córdoba Nieto

    2010-04-01

    Full Text Available The article presents concepts and definitions from different sources concerning automation. The work approaches automation by virtue of the author’s experience in manufacturing production; why and how automation prolects are embarked upon is considered. Technological reflection regarding the progressive advances or stages of automation in the production area is stressed. Coriat and Freyssenet’s thoughts about and approaches to the problem of automation and its current state are taken and examined, especially that referring to the problem’s relationship with reconciling the level of automation with the flexibility and productivity demanded by competitive, worldwide manufacturing.

  17. Microfluidic Tools for Protein Crystallography

    Science.gov (United States)

    Abdallah, Bahige G.

    X-ray crystallography is the most widely used method to determine the structure of proteins, providing an understanding of their functions in all aspects of life to advance applications in fields such as drug development and renewable energy. New techniques, namely serial femtosecond crystallography (SFX), have unlocked the ability to unravel the structures of complex proteins with vital biological functions. A key step and major bottleneck of structure determination is protein crystallization, which is very arduous due to the complexity of proteins and their natural environments. Furthermore, crystal characteristics govern data quality, thus need to be optimized to attain the most accurate reconstruction of the protein structure. Crystal size is one such characteristic in which narrowed distributions with a small modal size can significantly reduce the amount of protein needed for SFX. A novel microfluidic sorting platform was developed to isolate viable ~200 nm -- ~600 nm photosystem I (PSI) membrane protein crystals from ~200 nm -- ~20 ?m crystal samples using dielectrophoresis, as confirmed by fluorescence microscopy, second-order nonlinear imaging of chiral crystals (SONICC), and dynamic light scattering. The platform was scaled-up to rapidly provide 100s of microliters of sorted crystals necessary for SFX, in which similar crystal size distributions were attained. Transmission electron microscopy was used to view the PSI crystal lattice, which remained well-ordered postsorting, and SFX diffraction data was obtained, confirming a high-quality, viable crystal sample. Simulations indicated sorted samples provided accurate, complete SFX datasets with 3500-fold less protein than unsorted samples. Microfluidic devices were also developed for versatile, rapid protein crystallization screening using nanovolumes of sample. Concentration gradients of protein and precipitant were generated to crystallize PSI, phycocyanin, and lysozyme using modified counterdiffusion

  18. Microfluidic Analytical Separator for Proteomics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a microfluidic device designed to effect a 2-dimensional resolution of a mixture of proteins based on isoelectric point (pI) and molecular...

  19. Microfluidic Analytical Separator for Proteomics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SHOT proposes an innovative microfluidic device designed to effect a 2-dimensional resolution of a mixture of proteins based on isoelectric point (pI) and molecular...

  20. Multiplex single particle analysis in microfluidics.

    Science.gov (United States)

    Dannhauser, D; Romeo, G; Causa, F; De Santo, I; Netti, P A

    2014-10-21

    A straightforward way to measure separated micrometric sized particles in microfluidic flow is reported. The light scattering profile (LSP) of each single particle is fully characterized by using a CMOS-camera based small angle light scattering (SALS) apparatus, ranging from 2° up to 30°. To ensure controlled particle passage through the incident laser, a viscoelastic 3D alignment effect by viscoelastic induced particle migration has been implemented in a simple and cost-effective microfluidic device. Different polystyrene particle sizes are measured in microfluidic flows and the obtained scattering signatures are matched with the Lorenz-Mie based scattering theory. The results confirm the possibility of using this apparatus for real multiplex particle analyses in microfluidic particle flows.

  1. 3D-printed microfluidic devices.

    Science.gov (United States)

    Amin, Reza; Knowlton, Stephanie; Hart, Alexander; Yenilmez, Bekir; Ghaderinezhad, Fariba; Katebifar, Sara; Messina, Michael; Khademhosseini, Ali; Tasoglu, Savas

    2016-06-20

    Microfluidics is a flourishing field, enabling a wide range of biochemical and clinical applications such as cancer screening, micro-physiological system engineering, high-throughput drug testing, and point-of-care diagnostics. However, fabrication of microfluidic devices is often complicated, time consuming, and requires expensive equipment and sophisticated cleanroom facilities. Three-dimensional (3D) printing presents a promising alternative to traditional techniques such as lithography and PDMS-glass bonding, not only by enabling rapid design iterations in the development stage, but also by reducing the costs associated with institutional infrastructure, equipment installation, maintenance, and physical space. With the recent advancements in 3D printing technologies, highly complex microfluidic devices can be fabricated via single-step, rapid, and cost-effective protocols, making microfluidics more accessible to users. In this review, we discuss a broad range of approaches for the application of 3D printing technology to fabrication of micro-scale lab-on-a-chip devices.

  2. Autonomous and 3D real-time multi-beam manipulation in a microfluidic environment

    DEFF Research Database (Denmark)

    Perch-Nielsen, I.; Rodrigo, P.J.; Alonzo, C.A.

    2006-01-01

    The Generalized Phase Contrast (GPC) method of optical 3D manipulation has previously been used for controlled spatial manipulation of live biological specimen in real-time. These biological experiments were carried out over a time-span of several hours while an operator intermittently optimized...... the optical system. Here we present GPC-based optical micromanipulation in a microfluidic system where trapping experiments are computer-automated and thereby capable of running with only limited supervision. The system is able to dynamically detect living yeast cells using a computer-interfaced CCD camera...... lateral stiffness of GPC-based optical traps. (c) 2006 Optical Society of America...

  3. Fast acoustic tweezers for the two-dimensional manipulation of individual particles in microfluidic channels

    CERN Document Server

    Tran, S B Q; Thibault, Pierre; 10.1063/1.4751348

    2012-01-01

    This paper presents a microfluidic device that implements standing surface acoustic waves in order to handle single cells, droplets, and generally particles. The particles are moved in a very controlled manner by the two-dimensional drifting of a standing wave array, using a slight frequency modulation of two ultrasound emitters around their resonance. These acoustic tweezers allow any type of motion at velocities up to few 10mm/s, while the device transparency is adapted for optical studies. The possibility of automation provides a critical step in the development of lab-on-a-chip cell sorters and it should find applications in biology, chemistry, and engineering domains.

  4. Nucleic Acid-based Detection of Bacterial Pathogens Using Integrated Microfluidic Platform Systems

    Directory of Open Access Journals (Sweden)

    Carl A. Batt

    2009-05-01

    Full Text Available The advent of nucleic acid-based pathogen detection methods offers increased sensitivity and specificity over traditional microbiological techniques, driving the development of portable, integrated biosensors. The miniaturization and automation of integrated detection systems presents a significant advantage for rapid, portable field-based testing. In this review, we highlight current developments and directions in nucleic acid-based micro total analysis systems for the detection of bacterial pathogens. Recent progress in the miniaturization of microfluidic processing steps for cell capture, DNA extraction and purification, polymerase chain reaction, and product detection are detailed. Discussions include strategies and challenges for implementation of an integrated portable platform.

  5. Natural discharge after pulse and cooperative electrodes to enhance droplet velocity in digital microfluidics

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Tianlan; Dong, Cheng; Gao, Jie; Jia, Yanwei; Mak, Pui-In, E-mail: pimak@umac.mo; Vai, Mang-I; Martins, Rui P. [State Key Laboratory of Analog and Mixed-Signal VLSI and FST-ECE, University of Macau, Macao (China)

    2014-04-15

    Digital Microfluidics (DMF) is a promising technology for biological/chemical micro-reactions due to its distinct droplet manageability via electronic automation, but the limited velocity of droplet transportation has hindered DMF from utilization in high throughput applications. In this paper, by adaptively fitting the actuation voltages to the dynamic motions of droplet movement under real-time feedback monitoring, two control-engaged electrode-driving techniques: Natural Discharge after Pulse (NDAP) and Cooperative Electrodes (CE) are proposed. They together lead to, for the first time, enhanced droplet velocity with lower root mean square voltage value.

  6. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  7. D and DR Reactors

    Data.gov (United States)

    Federal Laboratory Consortium — The world's second full-scale nuclear reactor was the D Reactor at Hanford which was built in the early 1940's and went operational in December of 1944.D Reactor ran...

  8. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  9. Sampling by Fluidics and Microfluidics

    Directory of Open Access Journals (Sweden)

    V. Tesař

    2002-01-01

    Full Text Available Selecting one from several available fluid samples is a procedure often performed especially in chemical engineering. It is usually done by an array of valves sequentially opened and closed. Not generally known is an advantageous alternative: fluidic sampling units without moving parts. In the absence of complete pipe closure, cross-contamination between samples cannot be ruled out. This is eliminated by arranging for small protective flows that clear the cavities and remove any contaminated fluid. Although this complicates the overall circuit layout, fluidic sampling units with these "guard" flows were successfully built and tested. Recent interest in microchemistry leads to additional problems due very low operating Reynolds numbers. This necessitated the design of microfluidic sampling units based on new operating principles.

  10. Surface Sensitive Microfluidic Optomechanical Sensors

    CERN Document Server

    Kim, Kyu Hyun

    2014-01-01

    The microfluidic optomechanical resonator (uFOMR) based on a thin-walled glass capillary supports high Q-factor (>1000) mechanical modes in the presence of liquids. In this Letter, the sensitivity of the uFOMR to the surface change is studied by layer-by-layer removal of SiO2 molecules from the uFOMR inner surface using various concentrations of hydrofluoric acid solutions. A frequency downshift is observed with a sensitivity of 1.2 Hz/(pg/mm2), which translates to a surface density detection limit of 83 pg/mm2. This work opens a door to using the optomechanical mode for detection and characterization of molecules present near the resonator surface.

  11. Microfluidic Sample Preparation for Immunoassays

    Energy Technology Data Exchange (ETDEWEB)

    Visuri, S; Benett, W; Bettencourt, K; Chang, J; Fisher, K; Hamilton, J; Krulevitch, P; Park, C; Stockton, C; Tarte, L; Wang, A; Wilson, T

    2001-08-09

    Researchers at Lawrence Livermore National Laboratory are developing means to collect and identify fluid-based biological pathogens in the forms of proteins, viruses, and bacteria. to support detection instruments, they are developing a flexible fluidic sample preparation unit. The overall goal of this Microfluidic Module is to input a fluid sample, containing background particulates and potentially target compounds, and deliver a processed sample for detection. They are developing techniques for sample purification, mixing, and filtration that would be useful to many applications including immunologic and nucleic acid assays. Many of these fluidic functions are accomplished with acoustic radiation pressure or dielectrophoresis. They are integrating these technologies into packaged systems with pumps and valves to control fluid flow through the fluidic circuit.

  12. Predicting Droplet Formation on Centrifugal Microfluidic Platforms

    Science.gov (United States)

    Moebius, Jacob Alfred

    Centrifugal microfluidics is a widely known research tool for biological sample and water quality analysis. Currently, the standard equipment used for such diagnostic applications include slow, bulky machines controlled by multiple operators. These machines can be condensed into a smaller, faster benchtop sample-to-answer system. Sample processing is an important step taken to extract, isolate, and convert biological factors, such as nucleic acids or proteins, from a raw sample to an analyzable solution. Volume definition is one such step. The focus of this thesis is the development of a model predicting monodispersed droplet formation and the application of droplets as a technique for volume definition. First, a background of droplet microfluidic platforms is presented, along with current biological analysis technologies and the advantages of integrating such technologies onto microfluidic platforms. Second, background and theories of centrifugal microfluidics is given, followed by theories relevant to droplet emulsions. Third, fabrication techniques for centrifugal microfluidic designs are discussed. Finally, the development of a model for predicting droplet formation on the centrifugal microfluidic platform are presented for the rest of the thesis. Predicting droplet formation analytically based on the volumetric flow rates of the continuous and dispersed phases, the ratios of these two flow rates, and the interfacial tension between the continuous and dispersed phases presented many challenges, which will be discussed in this work. Experimental validation was completed using continuous phase solutions of different interfacial tensions. To conclude, prospective applications are discussed with expected challenges.

  13. Microfluidic Devices in Advanced Caenorhabditis elegans Research

    Directory of Open Access Journals (Sweden)

    Muniesh Muthaiyan Shanmugam

    2016-08-01

    Full Text Available The study of model organisms is very important in view of their potential for application to human therapeutic uses. One such model organism is the nematode worm, Caenorhabditis elegans. As a nematode, C. elegans have ~65% similarity with human disease genes and, therefore, studies on C. elegans can be translated to human, as well as, C. elegans can be used in the study of different types of parasitic worms that infect other living organisms. In the past decade, many efforts have been undertaken to establish interdisciplinary research collaborations between biologists, physicists and engineers in order to develop microfluidic devices to study the biology of C. elegans. Microfluidic devices with the power to manipulate and detect bio-samples, regents or biomolecules in micro-scale environments can well fulfill the requirement to handle worms under proper laboratory conditions, thereby significantly increasing research productivity and knowledge. The recent development of different kinds of microfluidic devices with ultra-high throughput platforms has enabled researchers to carry out worm population studies. Microfluidic devices primarily comprises of chambers, channels and valves, wherein worms can be cultured, immobilized, imaged, etc. Microfluidic devices have been adapted to study various worm behaviors, including that deepen our understanding of neuromuscular connectivity and functions. This review will provide a clear account of the vital involvement of microfluidic devices in worm biology.

  14. A Review of Biomedical Centrifugal Microfluidic Platforms

    Directory of Open Access Journals (Sweden)

    Minghui Tang

    2016-02-01

    Full Text Available Centrifugal microfluidic or lab-on-a-disc platforms have many advantages over other microfluidic systems. These advantages include a minimal amount of instrumentation, the efficient removal of any disturbing bubbles or residual volumes, and inherently available density-based sample transportation and separation. Centrifugal microfluidic devices applied to biomedical analysis and point-of-care diagnostics have been extensively promoted recently. This paper presents an up-to-date overview of these devices. The development of biomedical centrifugal microfluidic platforms essentially covers two categories: (i unit operations that perform specific functionalities, and (ii systems that aim to address certain biomedical applications. With the aim to provide a comprehensive representation of current development in this field, this review summarizes progress in both categories. The advanced unit operations implemented for biological processing include mixing, valving, switching, metering and sequential loading. Depending on the type of sample to be used in the system, biomedical applications are classified into four groups: nucleic acid analysis, blood analysis, immunoassays, and other biomedical applications. Our overview of advanced unit operations also includes the basic concepts and mechanisms involved in centrifugal microfluidics, while on the other hand an outline on reported applications clarifies how an assembly of unit operations enables efficient implementation of various types of complex assays. Lastly, challenges and potential for future development of biomedical centrifugal microfluidic devices are discussed.

  15. Optofluidic planar reactors for photocatalytic water treatment using solar energy

    Science.gov (United States)

    Lei, Lei; Wang, Ning; Zhang, X. M.; Tai, Qidong; Tsai, Din Ping; Chan, Helen L. W.

    2010-01-01

    Optofluidics may hold the key to greater success of photocatalytic water treatment. This is evidenced by our findings in this paper that the planar microfluidic reactor can overcome the limitations of mass transfer and photon transfer in the previous photocatalytic reactors and improve the photoreaction efficiency by more than 100 times. The microreactor has a planar chamber (5 cm×1.8 cm×100 μm) enclosed by two TiO2-coated glass slides as the top cover and bottom substrate and a microstructured UV-cured NOA81 layer as the sealant and flow input∕output. In experiment, the microreactor achieves 30% degradation of 3 ml 3×10−5M methylene blue within 5 min and shows a reaction rate constant two orders higher than the bulk reactor. Under optimized conditions, a reaction rate of 8% s−1 is achieved under solar irradiation. The average apparent quantum efficiency is found to be only 0.25%, but the effective apparent quantum efficiency reaches as high as 25%. Optofluidic reactors inherit the merits of microfluidics, such as large surface∕volume ratio, easy flow control, and rapid fabrication and offer a promising prospect for large-volume photocatalytic water treatment. PMID:21267436

  16. An automated swimming respirometer

    DEFF Research Database (Denmark)

    STEFFENSEN, JF; JOHANSEN, K; BUSHNELL, PG

    1984-01-01

    An automated respirometer is described that can be used for computerized respirometry of trout and sharks.......An automated respirometer is described that can be used for computerized respirometry of trout and sharks....

  17. Configuration Management Automation (CMA) -

    Data.gov (United States)

    Department of Transportation — Configuration Management Automation (CMA) will provide an automated, integrated enterprise solution to support CM of FAA NAS and Non-NAS assets and investments. CMA...

  18. Autonomy and Automation

    Science.gov (United States)

    Shively, Jay

    2017-01-01

    A significant level of debate and confusion has surrounded the meaning of the terms autonomy and automation. Automation is a multi-dimensional concept, and we propose that Remotely Piloted Aircraft Systems (RPAS) automation should be described with reference to the specific system and task that has been automated, the context in which the automation functions, and other relevant dimensions. In this paper, we present definitions of automation, pilot in the loop, pilot on the loop and pilot out of the loop. We further propose that in future, the International Civil Aviation Organization (ICAO) RPAS Panel avoids the use of the terms autonomy and autonomous when referring to automated systems on board RPA. Work Group 7 proposes to develop, in consultation with other workgroups, a taxonomy of Levels of Automation for RPAS.

  19. Application of A Microfluidic Tool for the Determination of Enzyme Kinetics

    DEFF Research Database (Denmark)

    Ringborg, Rolf H.

    the limitations surround the reactor of a process,and with the performance of this being unknown, it is almost impossible to direct development. A focal point must therefore lie in the determination of kinetic models and howkinetic data can be obtained in a robust and generic way. Models for many enzymes...... in the collected retention time wavelength data. A major improvement over traditional techniques is the quantification of enzyme concentration and this makes it possible to use specific activities for model fitting. The setup takes advantage of microfluidic featuresand delivers semi‐automatic experimentation...

  20. Superhydrophobic Surface Coatings for Microfluidics and MEMs.

    Energy Technology Data Exchange (ETDEWEB)

    Branson, Eric D.; Singh, Seema [Sandia National Laboratories, Livermore, CA; Houston, Jack E.; van Swol, Frank B.; Brinker, C. Jeffrey

    2006-11-01

    Low solid interfacial energy and fractally rough surface topography confer to Lotus plants superhydrophobic (SH) properties like high contact angles, rolling and bouncing of liquid droplets, and self-cleaning of particle contaminants. This project exploits the porous fractal structure of a novel, synthetic SH surface for aerosol collection, its self-cleaning properties for particle concentration, and its slippery nature 3 to enhance the performance of fluidic and MEMS devices. We propose to understand fundamentally the conditions needed to cause liquid droplets to roll rather than flow/slide on a surface and how this %22rolling transition%22 influences the boundary condition describing fluid flow in a pipe or micro-channel. Rolling of droplets is important for aerosol collection strategies because it allows trapped particles to be concentrated and transported in liquid droplets with no need for a pre-defined/micromachined fluidic architecture. The fluid/solid boundary condition is important because it governs flow resistance and rheology and establishes the fluid velocity profile. Although many research groups are exploring SH surfaces, our team is the first to unambiguously determine their effects on fluid flow and rheology. SH surfaces could impact all future SNL designs of collectors, fluidic devices, MEMS, and NEMS. Interfaced with inertial focusing aerosol collectors, SH surfaces would allow size-specific particle populations to be collected, concentrated, and transported to a fluidic interface without loss. In microfluidic systems, we expect to reduce the energy/power required to pump fluids and actuate MEMS. Plug-like (rather than parabolic) velocity profiles can greatly improve resolution of chip-based separations and enable unprecedented control of concentration profiles and residence times in fluidic-based micro-reactors. Patterned SH/hydrophilic channels could induce mixing in microchannels and enable development of microflow control elements

  1. Workflow automation architecture standard

    Energy Technology Data Exchange (ETDEWEB)

    Moshofsky, R.P.; Rohen, W.T. [Boeing Computer Services Co., Richland, WA (United States)

    1994-11-14

    This document presents an architectural standard for application of workflow automation technology. The standard includes a functional architecture, process for developing an automated workflow system for a work group, functional and collateral specifications for workflow automation, and results of a proof of concept prototype.

  2. Reactor and method of operation

    Science.gov (United States)

    Wheeler, John A.

    1976-08-10

    A nuclear reactor having a flattened reactor activity curve across the reactor includes fuel extending over a lesser portion of the fuel channels in the central portion of the reactor than in the remainder of the reactor.

  3. Rapid microfluidic thermal cycler for nucleic acid amplification

    Energy Technology Data Exchange (ETDEWEB)

    Beer, Neil Reginald; Vafai, Kambiz

    2015-10-27

    A system for thermal cycling a material to be thermal cycled including a microfluidic heat exchanger; a porous medium in the microfluidic heat exchanger; a microfluidic thermal cycling chamber containing the material to be thermal cycled, the microfluidic thermal cycling chamber operatively connected to the microfluidic heat exchanger; a working fluid at first temperature; a first system for transmitting the working fluid at first temperature to the microfluidic heat exchanger; a working fluid at a second temperature, a second system for transmitting the working fluid at second temperature to the microfluidic heat exchanger; a pump for flowing the working fluid at the first temperature from the first system to the microfluidic heat exchanger and through the porous medium; and flowing the working fluid at the second temperature from the second system to the heat exchanger and through the porous medium.

  4. A review of digital microfluidics as portable platforms for lab-on a-chip applications.

    Science.gov (United States)

    Samiei, Ehsan; Tabrizian, Maryam; Hoorfar, Mina

    2016-07-07

    Following the development of microfluidic systems, there has been a high tendency towards developing lab-on-a-chip devices for biochemical applications. A great deal of effort has been devoted to improve and advance these devices with the goal of performing complete sets of biochemical assays on the device and possibly developing portable platforms for point of care applications. Among the different microfluidic systems used for such a purpose, digital microfluidics (DMF) shows high flexibility and capability of performing multiplex and parallel biochemical operations, and hence, has been considered as a suitable candidate for lab-on-a-chip applications. In this review, we discuss the most recent advances in the DMF platforms, and evaluate the feasibility of developing multifunctional packages for performing complete sets of processes of biochemical assays, particularly for point-of-care applications. The progress in the development of DMF systems is reviewed from eight different aspects, including device fabrication, basic fluidic operations, automation, manipulation of biological samples, advanced operations, detection, biological applications, and finally, packaging and portability of the DMF devices. Success in developing the lab-on-a-chip DMF devices will be concluded based on the advances achieved in each of these aspects.

  5. Microfluidic Arrayed Lab-On-A-Chip for Electrochemical Capacitive Detection of DNA Hybridization Events.

    Science.gov (United States)

    Ben-Yoav, Hadar; Dykstra, Peter H; Bentley, William E; Ghodssi, Reza

    2017-01-01

    A microfluidic electrochemical lab-on-a-chip (LOC) device for DNA hybridization detection has been developed. The device comprises a 3 × 3 array of microelectrodes integrated with a dual layer microfluidic valved manipulation system that provides controlled and automated capabilities for high throughput analysis of microliter volume samples. The surface of the microelectrodes is functionalized with single-stranded DNA (ssDNA) probes which enable specific detection of complementary ssDNA targets. These targets are detected by a capacitive technique which measures dielectric variation at the microelectrode-electrolyte interface due to DNA hybridization events. A quantitative analysis of the hybridization events is carried out based on a sensing modeling that includes detailed analysis of energy storage and dissipation components. By calculating these components during hybridization events the device is able to demonstrate specific and dose response sensing characteristics. The developed microfluidic LOC for DNA hybridization detection offers a technology for real-time and label-free assessment of genetic markers outside of laboratory settings, such as at the point-of-care or in-field environmental monitoring.

  6. Slanted channel microfluidic chip for 3D fluorescence imaging of cells in flow.

    Science.gov (United States)

    Jagannadh, Veerendra Kalyan; Mackenzie, Mark D; Pal, Parama; Kar, Ajoy K; Gorthi, Sai Siva

    2016-09-19

    Three-dimensional cellular imaging techniques have become indispensable tools in biological research and medical diagnostics. Conventional 3D imaging approaches employ focal stack collection to image different planes of the cell. In this work, we present the design and fabrication of a slanted channel microfluidic chip for 3D fluorescence imaging of cells in flow. The approach employs slanted microfluidic channels fabricated in glass using ultrafast laser inscription. The slanted nature of the microfluidic channels ensures that samples come into and go out of focus, as they pass through the microscope imaging field of view. This novel approach enables the collection of focal stacks in a straight-forward and automated manner, even with off-the-shelf microscopes that are not equipped with any motorized translation/rotation sample stages. The presented approach not only simplifies conventional focal stack collection, but also enhances the capabilities of a regular widefield fluorescence microscope to match the features of a sophisticated confocal microscope. We demonstrate the retrieval of sectioned slices of microspheres and cells, with the use of computational algorithms to enhance the signal-to-noise ratio (SNR) in the collected raw images. The retrieved sectioned images have been used to visualize fluorescent microspheres and bovine sperm cell nucleus in 3D while using a regular widefield fluorescence microscope. We have been able to achieve sectioning of approximately 200 slices per cell, which corresponds to a spatial translation of ∼ 15 nm per slice along the optical axis of the microscope.

  7. Investigating the fluid dynamics of rapid processes within microfluidic devices using bright-field microscopy.

    Science.gov (United States)

    Pirbodaghi, Tohid; Vigolo, Daniele; Akbari, Samin; deMello, Andrew

    2015-05-07

    The widespread application of microfluidic devices in the biological and chemical sciences requires the implementation of complex designs and geometries, which in turn leads to atypical fluid dynamic phenomena. Accordingly, a complete understanding of fluid dynamics in such systems is key in the facile engineering of novel and efficient analytical tools. Herein, we present an accurate approach for studying the fluid dynamics of rapid processes within microfluidic devices using bright-field microscopy with white light illumination and a standard high-speed camera. Specifically, we combine Ghost Particle Velocimetry and the detection of moving objects in automated video surveillance to track submicron size tracing particles via cross correlation between the speckle patterns of successive images. The efficacy of the presented technique is demonstrated by measuring the flow field over a square pillar (80 μm × 80 μm) in a 200 μm wide microchannel at high volumetric flow rates. Experimental results are in excellent agreement with those obtained via computational fluid dynamics simulations. The method is subsequently used to study the dynamics of droplet generation at a flow focusing microfluidic geometry. A unique feature of the presented technique is the ability to perform velocimetry analysis of high-speed phenomena, which is not possible using micron-resolution particle image velocimetry (μPIV) approaches based on confocal or fluorescence microscopy.

  8. Automation in Clinical Microbiology

    Science.gov (United States)

    Ledeboer, Nathan A.

    2013-01-01

    Historically, the trend toward automation in clinical pathology laboratories has largely bypassed the clinical microbiology laboratory. In this article, we review the historical impediments to automation in the microbiology laboratory and offer insight into the reasons why we believe that we are on the cusp of a dramatic change that will sweep a wave of automation into clinical microbiology laboratories. We review the currently available specimen-processing instruments as well as the total laboratory automation solutions. Lastly, we outline the types of studies that will need to be performed to fully assess the benefits of automation in microbiology laboratories. PMID:23515547

  9. Microfluidics: an enabling technology for the life sciences

    OpenAIRE

    Zengerle, Roland; Koltay, P.; Ducrée, Jens

    2004-01-01

    During the last year we have investigated existing and future markets, products and technologies for microfluidics in the life sciences. Within this paper we present some of the findings and discuss a major trend identified within this project: the development of microfluidic platforms for flexible design of application specific integrated microfluidic systems. We discuss two platforms in detail which are currently under development in our lab: microfluidics on a rotating CD ("Lab-CD") as wel...

  10. Vacuum pressure generation via microfabricated converging-diverging nozzles for operation of automated pneumatic logic.

    Science.gov (United States)

    Christoforidis, Theodore; Werner, Erik M; Hui, Elliot E; Eddington, David T

    2016-08-01

    Microfluidic devices with integrated pneumatic logic enable automated fluid handling without requiring external control instruments. These chips offer the additional advantage that they may be powered by vacuum and do not require an electricity source. This work describes a microfluidic converging-diverging (CD) nozzle optimized to generate vacuum at low input pressures, making it suitable for microfluidic applications including powering integrated pneumatic logic. It was found that efficient vacuum pressure was generated for high aspect ratios of the CD nozzle constriction (or throat) width to height and diverging angle of 3.6(o). In specific, for an inlet pressure of 42.2 psia (290.8 kPa) and a volumetric flow rate of approximately 1700 sccm, a vacuum pressure of 8.03 psia (55.3 kPa) was generated. To demonstrate the capabilities of our converging - diverging nozzle device, we connected it to a vacuum powered peristaltic pump driven by integrated pneumatic logic and obtained tunable flow rates from 0 to 130 μL/min. Finally, we demonstrate a proof of concept system for use where electricity and vacuum pressure are not readily available by powering a CD nozzle with a bicycle tire pump and pressure regulator. This system is able to produce a stable vacuum sufficient to drive pneumatic logic, and could be applied to power automated microfluidics in limited resource settings.

  11. Dynamics of magnetic modulation of ferrofluid droplets for digital microfluidic applications

    Science.gov (United States)

    Sen, Uddalok; Chatterjee, Souvick; Sen, Swarnendu; Tiwari, Manish K.; Mukhopadhyay, Achintya; Ganguly, Ranjan

    2017-01-01

    Active control of droplet generation in a microfluidic platform attracts interest for development of digital microfluidic devices ranging from biosensors to micro-reactors to point-of-care diagnostic devices. The present paper characterizes, through an unsteady three-dimensional Volume of Fluid (VOF) simulation, the active control of ferrofluid droplet generation in a microfluidic T-junction in presence of a non-uniform magnetic field created by an external magnetic dipole. Two distinctly different positions of the dipole were considered - one upstream of the junction and one downstream. While keeping the ferrofluid flow rate fixed, a parametric variation of the continuous phase capillary number, dipole strength, and dipole position was carried out. Differences in the flow behaviour in terms of dripping or jetting and the droplet characteristics in terms of droplet formation time period and droplet size were studied. The existence of a threshold dipole strength, below which the magnetic force was not able to influence the flow behaviour, was identified. It was also observed that, for dipoles placed upstream of the junction, droplet formation was suppressed at some higher dipole strengths, and this value was found to increase with increasing capillary number. Droplet time period was also found to increase with increasing dipole strength, along with droplet size, i.e. an increase in droplet volume.

  12. Optical manipulation with two beam traps in microfluidic polymer systems

    DEFF Research Database (Denmark)

    Khoury Arvelo, Maria; Matteucci, Marco; Sørensen, Kristian Tølbøl;

    2015-01-01

    An optical trapping system with two opposing laser beams, also known as the optical stretcher, are naturally constructed inside a microfluidic lab-on-chip system. We present and compare two approaches to combine a simple microfluidic system with either waveguides directly written...... in the microfluidic chip or with optical fibers mounted in the chip....

  13. Material Biocompatibility for PCR Microfluidic Chips

    KAUST Repository

    Kodzius, Rimantas

    2010-04-23

    As part of the current miniaturization trend, biological reactions and processes are being adapted to microfluidics devices. PCR is the primary method employed in DNA amplification, its miniaturization is central to efforts to develop portable devices for diagnostics and testing purposes. A problem is the PCR-inhibitory effect due to interaction between PCR reagents and the surrounding environment, which effect is increased in high-surface-are-to-volume ration microfluidics. In this study, we evaluated the biocompatibility of various common materials employed in the fabrication of microfluidic chips, including silicon, several kinds of silicon oxide, glasses, plastics, wax, and adhesives. Two-temperature PCR was performed with these materials to determine their PCR-inhibitory effect. In most of the cases, addition of bovine serum albumin effectively improved the reaction yield. We also studied the individual PCR components from the standpoint of adsorption. Most of the materials did not inhibit the DNA, whereas they did show noticeable interaction with the DNA polymerase. Our test, instead of using microfluidic devices, can be easily conducted in common PCR tubes using a standard bench thermocycler. Our data supports an overview of the means by which the materials most bio-friendly to microfluidics can be selected.

  14. Mechanically activated artificial cell by using microfluidics.

    Science.gov (United States)

    Ho, Kenneth K Y; Lee, Lap Man; Liu, Allen P

    2016-01-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology.

  15. Mechanically activated artificial cell by using microfluidics

    Science.gov (United States)

    Ho, Kenneth K. Y.; Lee, Lap Man; Liu, Allen P.

    2016-01-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology. PMID:27610921

  16. Valve Concepts for Microfluidic Cell Handling

    Directory of Open Access Journals (Sweden)

    M. Grabowski

    2010-01-01

    Full Text Available In this paper we present various pneumatically actuated microfluidic valves to enable user-defined fluid management within a microfluidic chip. To identify a feasible valve design, certain valve concepts are simulated in ANSYS to investigate the pressure dependent opening and closing characteristics of each design. The results are verified in a series of tests. Both the microfluidic layer and the pneumatic layer are realized by means of soft-lithographic techniques. In this way, a network of channels is fabricated in photoresist as a molding master. By casting these masters with PDMS (polydimethylsiloxane we get polymeric replicas containing the channel network. After a plasma-enhanced bonding process, the two layers are irreversibly bonded to each other. The bonding is tight for pressures up to 2 bar. The valves are integrated into a microfluidic cell handling system that is designed to manipulate cells in the presence of a liquid reagent (e.g. PEG – polyethylene glycol, for cell fusion. For this purpose a user-defined fluid management system is developed. The first test series with human cell lines show that the microfluidic chip is suitable for accumulating cells within a reaction chamber, where they can be flushed by a liquid medium.

  17. Mechanically activated artificial cell by using microfluidics

    Science.gov (United States)

    Ho, Kenneth K. Y.; Lee, Lap Man; Liu, Allen P.

    2016-09-01

    All living organisms sense mechanical forces. Engineering mechanosensitive artificial cell through bottom-up in vitro reconstitution offers a way to understand how mixtures of macromolecules assemble and organize into a complex system that responds to forces. We use stable double emulsion droplets (aqueous/oil/aqueous) to prototype mechanosensitive artificial cells. In order to demonstrate mechanosensation in artificial cells, we develop a novel microfluidic device that is capable of trapping double emulsions into designated chambers, followed by compression and aspiration in a parallel manner. The microfluidic device is fabricated using multilayer soft lithography technology, and consists of a control layer and a deformable flow channel. Deflections of the PDMS membrane above the main microfluidic flow channels and trapping chamber array are independently regulated pneumatically by two sets of integrated microfluidic valves. We successfully compress and aspirate the double emulsions, which result in transient increase and permanent decrease in oil thickness, respectively. Finally, we demonstrate the influx of calcium ions as a response of our mechanically activated artificial cell through thinning of oil. The development of a microfluidic device to mechanically activate artificial cells creates new opportunities in force-activated synthetic biology.

  18. Microfluidic CODES: a scalable multiplexed electronic sensor for orthogonal detection of particles in microfluidic channels.

    Science.gov (United States)

    Liu, Ruxiu; Wang, Ningquan; Kamili, Farhan; Sarioglu, A Fatih

    2016-04-21

    Numerous biophysical and biochemical assays rely on spatial manipulation of particles/cells as they are processed on lab-on-a-chip devices. Analysis of spatially distributed particles on these devices typically requires microscopy negating the cost and size advantages of microfluidic assays. In this paper, we introduce a scalable electronic sensor technology, called microfluidic CODES, that utilizes resistive pulse sensing to orthogonally detect particles in multiple microfluidic channels from a single electrical output. Combining the techniques from telecommunications and microfluidics, we route three coplanar electrodes on a glass substrate to create multiple Coulter counters producing distinct orthogonal digital codes when they detect particles. We specifically design a digital code set using the mathematical principles of Code Division Multiple Access (CDMA) telecommunication networks and can decode signals from different microfluidic channels with >90% accuracy through computation even if these signals overlap. As a proof of principle, we use this technology to detect human ovarian cancer cells in four different microfluidic channels fabricated using soft lithography. Microfluidic CODES offers a simple, all-electronic interface that is well suited to create integrated, low-cost lab-on-a-chip devices for cell- or particle-based assays in resource-limited settings.

  19. Rapid wasted-free microfluidic fabrication based on ink-jet approach for microfluidic sensing applications

    Science.gov (United States)

    Jarujareet, Ungkarn; Amarit, Rattasart; Sumriddetchkajorn, Sarun

    2016-11-01

    Realizing that current microfluidic chip fabrication techniques are time consuming and labor intensive as well as always have material leftover after chip fabrication, this research work proposes an innovative approach for rapid microfluidic chip production. The key idea relies on a combination of a widely-used inkjet printing method and a heat-based polymer curing technique with an electronic-mechanical control, thus eliminating the need of masking and molds compared to typical microfluidic fabrication processes. In addition, as the appropriate amount of polymer is utilized during printing, there is much less amount of material wasted. Our inkjet-based microfluidic printer can print out the desired microfluidic chip pattern directly onto a heated glass surface, where the printed polymer is suddenly cured. Our proof-of-concept demonstration for widely-used single-flow channel, Y-junction, and T-junction microfluidic chips shows that the whole microfluidic chip fabrication process requires only 3 steps with a fabrication time of 6 minutes.

  20. Surfactant adsorption kinetics in microfluidics

    Science.gov (United States)

    Riechers, Birte; Maes, Florine; Akoury, Elias; Semin, Benoît; Gruner, Philipp; Baret, Jean-Christophe

    2016-10-01

    Emulsions are metastable dispersions. Their lifetimes are directly related to the dynamics of surfactants. We design a microfluidic method to measure the kinetics of adsorption of surfactants to the droplet interface, a key process involved in foaming, emulsification, and droplet coarsening. The method is based on the pH decay in the droplet as a direct measurement of the adsorption of a carboxylic acid surfactant to the interface. From the kinetic measurement of the bulk equilibration of the pH, we fully determine the adsorption process of the surfactant. The small droplet size and the convection during the droplet flow ensure that the transport of surfactant through the bulk is not limiting the kinetics of adsorption. To validate our measurements, we show that the adsorption process determines the timescale required to stabilize droplets against coalescence, and we show that the interface should be covered at more than 90% to prevent coalescence. We therefore quantitatively link the process of adsorption/desorption, the stabilization of emulsions, and the kinetics of solute partitioning—here through ion exchange—unraveling the timescales governing these processes. Our method can be further generalized to other surfactants, including nonionic surfactants, by making use of fluorophore-surfactant interactions.

  1. Microfluidic mixing using contactless dielectrophoresis.

    Science.gov (United States)

    Salmanzadeh, Alireza; Shafiee, Hadi; Davalos, Rafael V; Stremler, Mark A

    2011-09-01

    The first experimental evidence of mixing enhancement in a microfluidic system using contactless dielectrophoresis (cDEP) is presented in this work. Pressure-driven flow of deionized water containing 0.5 μm beads was mixed in various chamber geometries by imposing a dielectrophoresis (DEP) force on the beads. In cDEP the electrodes are not in direct contact with the fluid sample but are instead capacitively coupled to the mixing chamber through thin dielectric barriers, which eliminates many of the problems encountered with standard DEP. Four system designs with rectangular and circular mixing chambers were fabricated in PDMS. Mixing tests were conducted for flow rates from 0.005 to 1 mL/h subject to an alternating current signal range of 0-300 V at 100-600 kHz. When the time scales of the bulk fluid motion and the DEP motion were commensurate, rapid mixing was observed. The rectangular mixing chambers were found to be more efficient than the circular chambers. This approach shows potential for mixing low diffusivity biological samples, which is a very challenging problem in laminar flows at small scales.

  2. An integrated microfluidic platform for rapid tumor cell isolation, counting and molecular diagnosis.

    Science.gov (United States)

    Hung, Lien-Yu; Chuang, Ying-Hsin; Kuo, Hsin-Tzu; Wang, Chih-Hung; Hsu, Keng-Fu; Chou, Cheng-Yang; Lee, Gwo-Bin

    2013-04-01

    Ovarian cancer is the second most common of the gynecological cancers in Taiwan. It is challenging to diagnose at an early stage when proper treatment is the most effective. It is well recognized that the detection of tumor cells (TCs) is critical for determining cancer growth stages and may provide important information for accurate diagnosis and even prognosis. In this study, a new microfluidic platform integrated with a moving-wall micro-incubator, a micro flow cytometer and a molecular diagnosis module performed automated identification of ovarian cancer cells. By efficiently mixing the cells and immunomagnetic beads coated with specific antibodies, the target TCs were successfully isolated from the clinical samples. Then counting of the target cells was achieved by a combination of the micro flow cytometer and an optical detection module and showed a counting accuracy as high as 92.5 %. Finally, cancer-associated genes were amplified and detected by the downstream molecular diagnosis module. The fluorescence intensity of specific genes (CD24 and HE4) associated with ovarian cancer was amplified by the molecular diagnosis module and the results were comparable to traditional slab-gel electrophoresis analysis, with a limit of detection around 10 TCs. This integrated microfluidic platform realized the concept of a "lab-on-a-chip" and had advantages which included automation, disposability, lower cost and rapid diagnosis and, therefore, may provide a promising approach for the fast and accurate detection of cancer cells.

  3. A microfluidic platform for correlative live-cell and super-resolution microscopy.

    Directory of Open Access Journals (Sweden)

    Johnny Tam

    Full Text Available Recently, super-resolution microscopy methods such as stochastic optical reconstruction microscopy (STORM have enabled visualization of subcellular structures below the optical resolution limit. Due to the poor temporal resolution, however, these methods have mostly been used to image fixed cells or dynamic processes that evolve on slow time-scales. In particular, fast dynamic processes and their relationship to the underlying ultrastructure or nanoscale protein organization cannot be discerned. To overcome this limitation, we have recently developed a correlative and sequential imaging method that combines live-cell and super-resolution microscopy. This approach adds dynamic background to ultrastructural images providing a new dimension to the interpretation of super-resolution data. However, currently, it suffers from the need to carry out tedious steps of sample preparation manually. To alleviate this problem, we implemented a simple and versatile microfluidic platform that streamlines the sample preparation steps in between live-cell and super-resolution imaging. The platform is based on a microfluidic chip with parallel, miniaturized imaging chambers and an automated fluid-injection device, which delivers a precise amount of a specified reagent to the selected imaging chamber at a specific time within the experiment. We demonstrate that this system can be used for live-cell imaging, automated fixation, and immunostaining of adherent mammalian cells in situ followed by STORM imaging. We further demonstrate an application by correlating mitochondrial dynamics, morphology, and nanoscale mitochondrial protein distribution in live and super-resolution images.

  4. A microfluidic platform for correlative live-cell and super-resolution microscopy.

    Science.gov (United States)

    Tam, Johnny; Cordier, Guillaume Alan; Bálint, Štefan; Sandoval Álvarez, Ángel; Borbely, Joseph Steven; Lakadamyali, Melike

    2014-01-01

    Recently, super-resolution microscopy methods such as stochastic optical reconstruction microscopy (STORM) have enabled visualization of subcellular structures below the optical resolution limit. Due to the poor temporal resolution, however, these methods have mostly been used to image fixed cells or dynamic processes that evolve on slow time-scales. In particular, fast dynamic processes and their relationship to the underlying ultrastructure or nanoscale protein organization cannot be discerned. To overcome this limitation, we have recently developed a correlative and sequential imaging method that combines live-cell and super-resolution microscopy. This approach adds dynamic background to ultrastructural images providing a new dimension to the interpretation of super-resolution data. However, currently, it suffers from the need to carry out tedious steps of sample preparation manually. To alleviate this problem, we implemented a simple and versatile microfluidic platform that streamlines the sample preparation steps in between live-cell and super-resolution imaging. The platform is based on a microfluidic chip with parallel, miniaturized imaging chambers and an automated fluid-injection device, which delivers a precise amount of a specified reagent to the selected imaging chamber at a specific time within the experiment. We demonstrate that this system can be used for live-cell imaging, automated fixation, and immunostaining of adherent mammalian cells in situ followed by STORM imaging. We further demonstrate an application by correlating mitochondrial dynamics, morphology, and nanoscale mitochondrial protein distribution in live and super-resolution images.

  5. An Integrated Microfluidic Processor for DNA-Encoded Combinatorial Library Functional Screening

    Science.gov (United States)

    2017-01-01

    DNA-encoded synthesis is rekindling interest in combinatorial compound libraries for drug discovery and in technology for automated and quantitative library screening. Here, we disclose a microfluidic circuit that enables functional screens of DNA-encoded compound beads. The device carries out library bead distribution into picoliter-scale assay reagent droplets, photochemical cleavage of compound from the bead, assay incubation, laser-induced fluorescence-based assay detection, and fluorescence-activated droplet sorting to isolate hits. DNA-encoded compound beads (10-μm diameter) displaying a photocleavable positive control inhibitor pepstatin A were mixed (1920 beads, 729 encoding sequences) with negative control beads (58 000 beads, 1728 encoding sequences) and screened for cathepsin D inhibition using a biochemical enzyme activity assay. The circuit sorted 1518 hit droplets for collection following 18 min incubation over a 240 min analysis. Visual inspection of a subset of droplets (1188 droplets) yielded a 24% false discovery rate (1166 pepstatin A beads; 366 negative control beads). Using template barcoding strategies, it was possible to count hit collection beads (1863) using next-generation sequencing data. Bead-specific barcodes enabled replicate counting, and the false discovery rate was reduced to 2.6% by only considering hit-encoding sequences that were observed on >2 beads. This work represents a complete distributable small molecule discovery platform, from microfluidic miniaturized automation to ultrahigh-throughput hit deconvolution by sequencing. PMID:28199790

  6. An electric stimulation system for electrokinetic particle manipulation in microfluidic devices

    Science.gov (United States)

    Lopez-de la Fuente, M. S.; Moncada-Hernandez, H.; Perez-Gonzalez, V. H.; Lapizco-Encinas, B. H.; Martinez-Chapa, S. O.

    2013-03-01

    Microfluidic devices have grown significantly in the number of applications. Microfabrication techniques have evolved considerably; however, electric stimulation systems for microdevices have not advanced at the same pace. Electric stimulation of micro-fluidic devices is an important element in particle manipulation research. A flexible stimulation instrument is desired to perform configurable, repeatable, automated, and reliable experiments by allowing users to select the stimulation parameters. The instrument presented here is a configurable and programmable stimulation system for electrokinetic-driven microfluidic devices; it consists of a processor, a memory system, and a user interface to deliver several types of waveforms and stimulation patterns. It has been designed to be a flexible, highly configurable, low power instrument capable of delivering sine, triangle, and sawtooth waveforms with one single frequency or two superimposed frequencies ranging from 0.01 Hz to 40 kHz, and an output voltage of up to 30 Vpp. A specific stimulation pattern can be delivered over a single time period or as a sequence of different signals for different time periods. This stimulation system can be applied as a research tool where manipulation of particles suspended in liquid media is involved, such as biology, medicine, environment, embryology, and genetics. This system has the potential to lead to new schemes for laboratory procedures by allowing application specific and user defined electric stimulation. The development of this device is a step towards portable and programmable instrumentation for electric stimulation on electrokinetic-based microfluidic devices, which are meant to be integrated with lab-on-a-chip devices.

  7. Automated DNA Sequencing System

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, G.A.; Ekkebus, C.P.; Hauser, L.J.; Kress, R.L.; Mural, R.J.

    1999-04-25

    Oak Ridge National Laboratory (ORNL) is developing a core DNA sequencing facility to support biological research endeavors at ORNL and to conduct basic sequencing automation research. This facility is novel because its development is based on existing standard biology laboratory equipment; thus, the development process is of interest to the many small laboratories trying to use automation to control costs and increase throughput. Before automation, biology Laboratory personnel purified DNA, completed cycle sequencing, and prepared 96-well sample plates with commercially available hardware designed specifically for each step in the process. Following purification and thermal cycling, an automated sequencing machine was used for the sequencing. A technician handled all movement of the 96-well sample plates between machines. To automate the process, ORNL is adding a CRS Robotics A- 465 arm, ABI 377 sequencing machine, automated centrifuge, automated refrigerator, and possibly an automated SpeedVac. The entire system will be integrated with one central controller that will direct each machine and the robot. The goal of this system is to completely automate the sequencing procedure from bacterial cell samples through ready-to-be-sequenced DNA and ultimately to completed sequence. The system will be flexible and will accommodate different chemistries than existing automated sequencing lines. The system will be expanded in the future to include colony picking and/or actual sequencing. This discrete event, DNA sequencing system will demonstrate that smaller sequencing labs can achieve cost-effective the laboratory grow.

  8. Microfluidic serpentine antennas with designed mechanical tunability.

    Science.gov (United States)

    Huang, YongAn; Wang, Yezhou; Xiao, Lin; Liu, Huimin; Dong, Wentao; Yin, Zhouping

    2014-11-07

    This paper describes the design and characterization of microfluidic serpentine antennas with reversible stretchability and designed mechanical frequency modulation (FM). The microfluidic antennas are designed based on the Poisson's ratio of the elastomer in which the liquid alloy antenna is embedded, to controllably decrease, stabilize or increase its resonance frequency when being stretched. Finite element modelling was used in combination with experimental verification to investigate the effects of substrate dimensions and antenna aspect ratios on the FM sensitivity to uniaxial stretching. It could be designed within the range of -1.2 to 0.6 GHz per 100% stretch. When the aspect ratio of the serpentine antenna is between 1.0 and 1.5, the resonance frequency is stable under stretching, bending, and twisting. The presented microfluidic serpentine antenna design could be utilized in the field of wireless mobile communication for the design of wearable electronics, with a stable resonance frequency under dynamic applied strain up to 50%.

  9. Bridging Flows: Microfluidic End‐User Solutions

    DEFF Research Database (Denmark)

    Sabourin, David

    . A second practical challenge users face stems from the peripheral equipment, e.g. pumps, required to drive microfluidic devices. This equipment is often costly and bulky and results in limitations and restrictions on microfluidic device operation, such as the number of channels or devices which can...... be actuated or microscopic observation. To address the above issues interconnection and pumping solutions were developed. Methods for creating multiple, aligned, parallel and planar interconnections well suited to microscopy are described. Both reusable, non‐integrated, and permanent, integrated...... interconnection solutions are presented. The construction of twelve and eight channel miniaturized, mechanically actuated peristaltic pumps is also described. The small footprint of the pumps allows their placement adjacent to microfluidic devices and on microscope stages. The reusable, non...

  10. Planar microfluidics - liquid handling without walls

    CERN Document Server

    Rathgeber, A; Kutschera, H J; Wixforth, A

    2001-01-01

    The miniaturization and integration of electronic circuitry has not only made the enormous increase in performance of semiconductor devices possible but also spawned a myriad of new products and applications ranging from a cellular phone to a personal computer. Similarly, the miniaturization and integration of chemical and biological processes will revolutionize life sciences. Drug design and diagnostics in the genomic era require reliable and cost effective high throughput technologies which can be integrated and allow for a massive parallelization. Microfluidics is the core technology to realize such miniaturized laboratories with feature sizes on a submillimeter scale. Here, we report on a novel microfluidic technology meeting the basic requirements for a microfluidic processor analogous to those of its electronic counterpart: Cost effective production, modular design, high speed, scalability and programmability.

  11. Electroporation of cells in microfluidic droplets.

    Science.gov (United States)

    Zhan, Yihong; Wang, Jun; Bao, Ning; Lu, Chang

    2009-03-01

    Droplet-based microfluidics has raised a lot of interest recently due to its wide applications to screening biological/chemical assays with high throughput. Despite the advances on droplet-based assays involving cells, gene delivery methods that are compatible with the droplet platform have been lacking. In this report, we demonstrate a simple microfluidic device that encapsulates cells into aqueous droplets and then electroporates the encapsulated cells. The electroporation occurs when the cell-containing droplets (in oil) flow through a pair of microelectrodes with a constant voltage established in between. We investigate the parameters and characteristics of the electroporation. We demonstrate delivering enhanced green fluorescent protein (EGFP) plasmid into Chinese hamster ovary (CHO) cells. We envision the application of this technique to high-throughput functional genomics studies based on droplet microfluidics.

  12. Thermophoresis of DNA determined by microfluidic fluorescence.

    Science.gov (United States)

    Duhr, S; Arduini, S; Braun, D

    2004-11-01

    We describe a microfluidic all-optical technique to measure the thermophoresis of molecules. Within micrometer-thick chambers, we heat aqueous solutions with a micrometer-sized focus of infrared light. The temperature increase of about 1 K is monitored with temperature-sensitive fluorescent dyes. We test the approach in measuring the thermophoresis of DNA. We image the concentration of DNA in a second fluorescence-color channel. DNA is depleted away from the heated spot. The profile of depletion is fitted by the thermophoretic theory to reveal the Soret coefficient. We evaluate the method with numerical 3D calculations of temperature profiles, drift, convection and thermophoretic depletion using finite element methods. The approach opens new ways to monitor thermophoresis at the single molecule level, near boundaries and in complex mixtures. The flexible microfluidic setting is a good step towards microfluidic applications of thermophoresis in biotechnology.

  13. Microfluidics for research and applications in oncology.

    Science.gov (United States)

    Chaudhuri, Parthiv Kant; Ebrahimi Warkiani, Majid; Jing, Tengyang; Kenry; Lim, Chwee Teck

    2016-01-21

    Cancer is currently one of the top non-communicable human diseases, and continual research and developmental efforts are being made to better understand and manage this disease. More recently, with the improved understanding in cancer biology as well as the advancements made in microtechnology and rapid prototyping, microfluidics is increasingly being explored and even validated for use in the detection, diagnosis and treatment of cancer. With inherent advantages such as small sample volume, high sensitivity and fast processing time, microfluidics is well-positioned to serve as a promising platform for applications in oncology. In this review, we look at the recent advances in the use of microfluidics, from basic research such as understanding cancer cell phenotypes as well as metastatic behaviors to applications such as the detection, diagnosis, prognosis and drug screening. We then conclude with a future outlook on this promising technology.

  14. Microfluidic Pumps Containing Teflon [Trademark] AF Diaphragms

    Science.gov (United States)

    Willis, Peter; White, Victor; Grunthaner, Frank; Ikeda, Mike; Mathies, Richard A.

    2009-01-01

    Microfluidic pumps and valves based on pneumatically actuated diaphragms made of Teflon AF polymers are being developed for incorporation into laboratory-on-a-chip devices that must perform well over temperature ranges wider than those of prior diaphragm-based microfluidic pumps and valves. Other potential applications include implanted biomedical microfluidic devices, wherein the biocompatability of Teflon AF polymers would be highly advantageous. These pumps and valves have been demonstrated to function stably after cycling through temperatures from -125 to 120 C. These pumps and valves are intended to be successors to similar prior pumps and valves containing diaphragms made of polydimethylsiloxane (PDMS) [commonly known as silicone rubber]. The PDMS-containing valves ae designed to function stably only within the temperature range from 5 to 80 C. Undesirably, PDMS membranes are somwehat porous and retain water. PDMS is especially unsuitable for use at temperatures below 0 C because the formation of ice crystals increases porosity and introduces microshear.

  15. Temperature Sensing in Modular Microfluidic Architectures

    Directory of Open Access Journals (Sweden)

    Krisna C. Bhargava

    2016-01-01

    Full Text Available A discrete microfluidic element with integrated thermal sensor was fabricated and demonstrated as an effective probe for process monitoring and prototyping. Elements were constructed using stereolithography and market-available glass-bodied thermistors within the modular, standardized framework of previous discrete microfluidic elements demonstrated in the literature. Flow rate-dependent response due to sensor self-heating and microchannel heating and cooling was characterized and shown to be linear in typical laboratory conditions. An acid-base neutralization reaction was performed in a continuous flow setting to demonstrate applicability in process management: the ratio of solution flow rates was varied to locate the equivalence point in a titration, closely matching expected results. This element potentially enables complex, three-dimensional microfluidic architectures with real-time temperature feedback and flow rate sensing, without application specificity or restriction to planar channel routing formats.

  16. MEMS and microfluidics for diagnostics devices.

    Science.gov (United States)

    Rosen, Y; Gurman, P

    2010-06-01

    There are conditions in clinical medicine demanding critical therapeutic decisions. These conditions necessitate accuracy, rapidity, accessibility, cost-effectiveness and mobility. New technologies have been developed in order to address these challenges. Microfluidics and Micro Electro-Mechanical Systems are two of such technologies. Microfluidics, a discipline that involves processing fluids at the microscale in etched microchannels, is being used to build lab- on-a-chip systems to run chemical and biological assays. These systems are being transformed into handheld devices designed to be used at remote settings or at the bedside. MEMS are microscale electromechanical elements integrated in lab chip systems or used as individual components. MEMS based sensors represents a highly developed field with successful commercialized products currently being incorporated into vitro,ex vivo and in vivo devices. In the present paper several examples of microfluidic devices and MEMS sensors are introduced together with some current examples of commercialized products. Future challenges and trends will be discussed.

  17. A microfluidic toolbox approach to CBRNE sensing

    Science.gov (United States)

    Gärtner, Claudia; Klemm, Richard; Hlawatsch, Nadine; Becker, Holger

    2012-06-01

    Microfluidics has proven to be a very effective technology for the identification of biological and chemical analytes in a CBRNE scenario. As it will be shown in the following, the required steps of those analytical processes are manifold making the development of an integrated microfluidic device a complicated project with a high level of technological risk, because all necessary analytical processes have to be implemented into a single device. The implementation is initiated by a dissection of the biochemical workflow into mandatory bio-analytical steps and the resulting protocol for each of those steps is translated into an appropriate design of a chip-based unit. In this report, examples for such chipbased functional modules are given. In addition, examples for a merging of positively tested modules into an integrated chip are shown and, finally, representatives for a smooth interaction between outer world, microfluidic chip, and chip driving instrument are presented.

  18. Towards an integrated optofluidic system for highly sensitive detection of antibiotics in seawater incorporating bimodal waveguide photonic biosensors and complex, active microfluidics

    Science.gov (United States)

    Szydzik, C.; Gavela, A. F.; Roccisano, J.; Herranz de Andrés, S.; Mitchell, A.; Lechuga, L. M.

    2016-12-01

    We present recent results on the realisation and demonstration of an integrated optofluidic lab-on-a-chip measurement system. The system consists of an integrated on-chip automated microfluidic fluid handling subsystem, coupled with bimodal nano-interferometer waveguide technology, and is applied in the context of detection of antibiotics in seawater. The bimodal waveguide (BMWG) is a highly sensitive label-free biosensor. Integration of complex microfluidic systems with bimodal waveguide technology enables on-chip sample handling and fluid processing capabilities and allows for significant automation of experimental processes. The on-chip fluid-handling subsystem is realised through the integration of pneumatically actuated elastomer pumps and valves, enabling high temporal resolution sample and reagent delivery and facilitating multiplexed detection processes.

  19. Operation placement for application-specific digital microfluidic biochips

    DEFF Research Database (Denmark)

    Alistar, Mirela; Pop, Paul; Madsen, Jan

    2013-01-01

    , but as discrete droplets on an array of electrodes. Microfluidic operations, such as transport, mixing, split, are performed on this array by routing the corresponding droplets on a series of electrodes. Researchers have proposed several approaches for the synthesis of digital microfluidic biochips. All previous......Microfluidic-based biochips are replacing the conventional biochemical analyzers, and are able to integrate onchip all the necessary functions for biochemical analysis using microfluidics. The digital microfluidic biochips are based on the manipulation of liquids not as a continuous flow...

  20. Microfluidic platforms for plant cells studies.

    Science.gov (United States)

    Sanati Nezhad, A

    2014-09-07

    Conventional methods of plant cell analysis rely on growing plant cells in soil pots or agarose plates, followed by screening the plant phenotypes in traditional greenhouses and growth chambers. These methods are usually costly, need a large number of experiments, suffer from low spatial resolution and disorderly growth behavior of plant cells, with lack of ability to locally and accurately manipulate the plant cells. Microfluidic platforms take advantage of miniaturization for handling small volume of liquids and providing a closed environment, with the purpose of in vitro single cell analysis and characterizing cell response to external cues. These platforms have shown their ability for high-throughput cellular analysis with increased accuracy of experiments, reduced cost and experimental times, versatility in design, ability for large-scale and combinatorial screening, and integration with other miniaturized sensors. Despite extensive research on animal cells within microfluidic environments for high-throughput sorting, manipulation and phenotyping studies, the application of microfluidics for plant cells studies has not been accomplished yet. Novel devices such as RootChip, RootArray, TipChip, and PlantChip developed for plant cells analysis, with high spatial resolution on a micrometer scale mimicking the internal microenvironment of plant cells, offering preliminary results on the capability of microfluidics to conquer the constraints of conventional methods. These devices have been used to study different aspects of plant cell biology such as gene expression, cell biomechanics, cellular mechanism of growth, cell division, and cells fusion. This review emphasizes the advantages of current microfluidic systems for plant science studies, and discusses future prospects of microfluidic platforms for characterizing plant cells response to diverse external cues.

  1. A new microfluidic concept for parallel operated milliliter-scale stirred tank bioreactors.

    Science.gov (United States)

    Gebhardt, Gabi; Hortsch, Ralf; Kaufmann, Klaus; Arnold, Matthias; Weuster-Botz, Dirk

    2011-01-01

    Parallel miniaturized stirred tank bioreactors are an efficient tool for "high-throughput bioprocess design." As most industrial bioprocesses are pH-controlled and/or are operated in a fed-batch mode, an exact scale-down of these reactions with continuous dosing of fluids into the miniaturized bioreactors is highly desirable. Here, we present the development, characterization, and application of a novel concept for a highly integrated microfluidic device for a bioreaction block with 48 parallel milliliter-scale stirred tank reactors (V = 12 mL). The device consists of an autoclavable fluidic section to dispense up to three liquids individually per reactor. The fluidic section contains 144 membrane pumps, which are magnetically driven by a clamped-on actuator section. The micropumps are designed to dose 1.6 μL per pump lift. Each micropump enables a continuous addition of liquid with a flow rate of up to 3 mL h(-1) . Viscous liquids up to a viscosity of 8.2 mPa s (corresponds to a 60% v/v glycerine solution) can be pumped without changes in the flow rates. Thus, nearly all feeding solutions can be delivered, which are commonly used in bioprocesses. The functionality of the first prototype of this microfluidic device was demonstrated by double-sided pH-controlled cultivations of Saccharomyces cerevisiae based on signals of fluorimetric sensors embedded at the bottom of the bioreactors. Furthermore, fed-batch cultivations with constant and exponential feeding profiles were successfully performed. Thus, the presented novel microfluidic device will be a useful tool for parallel and, thus, efficient optimization of controlled fed-batch bioprocesses in small-scale stirred tank bioreactors. This can help to reduce bioprocess development times drastically.

  2. Microfluidic chip-capillary electrophoresis devices

    CERN Document Server

    Fung, Ying Sing; Du, Fuying; Guo, Wenpeng; Ma, Tongmei; Nie, Zhou; Sun, Hui; Wu, Ruige; Zhao, Wenfeng

    2015-01-01

    Capillary electrophoresis (CE) and microfluidic chip (MC) devices are relatively mature technologies, but this book demonstrates how they can be integrated into a single, revolutionary device that can provide on-site analysis of samples when laboratory services are unavailable. By introducing the combination of CE and MC technology, Microfluidic Chip-Capillary Electrophoresis Devices broadens the scope of chemical analysis, particularly in the biomedical, food, and environmental sciences.The book gives an overview of the development of MC and CE technology as well as technology that now allows

  3. Integrated Microfluidic Sensor System with Magnetostrictive Resonators

    KAUST Repository

    Liang, Cai

    2011-12-08

    The present embodiments describe a method that integrates a magnetostrictive sensor with driving and detecting elements into a microfluidic chip to detect a chemical, biochemical or biomedical species. These embodiments may also measure the properties of a fluid such as viscosity, pH values. The whole system can be referred to lab-on-a-chip (LOC) or micro-total-analysis-systems (.mu.TAS). In particular, this present embodiments include three units, including a microfluidics unit, a magnetostrictive sensor, and driving/detecting elements. An analyzer may also be provided to analyze an electrical signal associated with a feature of a target specimen.

  4. Microfluidic fuel cells for energy generation.

    Science.gov (United States)

    Safdar, M; Jänis, J; Sánchez, S

    2016-08-07

    Sustainable energy generation is of recent interest due to a growing energy demand across the globe and increasing environmental issues caused by conventional non-renewable means of power generation. In the context of microsystems, portable electronics and lab-on-a-chip based (bio)chemical sensors would essentially require fully integrated, reliable means of power generation. Microfluidic-based fuel cells can offer unique advantages compared to conventional fuel cells such as high surface area-to-volume ratio, ease of integration, cost effectiveness and portability. Here, we summarize recent developments which utilize the potential of microfluidic devices for energy generation.

  5. Micro-Fluidic Device for Drug Delivery

    Science.gov (United States)

    Beebe, David J. (Inventor); MacDonald, Michael J. (Inventor); Eddington, David T. (Inventor); Mensing, Glennys A. (Inventor)

    2014-01-01

    A microfluidic device is provided for delivering a drug to an individual. The microfluidic device includes a body that defines a reservoir for receiving the drug therein. A valve interconnects the reservoir to an output needle that is insertable into the skin of an individual. A pressure source urges the drug from the reservoir toward the needle. The valve is movable between a closed position preventing the flow of the drug from the reservoir to the output needle and an open position allowing for the flow of the drug from the reservoir to the output needle in response to a predetermined condition in the physiological fluids of the individual.

  6. Diffusion dynamics in microfluidic dye lasers

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Balslev, Søren; Mortensen, Niels Asger

    2007-01-01

    We have investigated the bleaching dynamics that occur in opto-fluidic dye lasers, where the liquid laser dye in a channel is locally bleached due to optical pumping. Our studies suggest that for micro-fluidic devices, the dye bleaching may be compensated through diffusion of dye molecules alone....... By relying on diffusion rather than convection to generate the necessary dye replenishment, our observation potentially allows for a significant simplification of opto-fluidic dye laser device layouts, omitting the need for cumbersome and costly external fluidic handling or on-chip micro-fluidic pumping...

  7. Microfluidic Assessment of Frying Oil Degradation

    Science.gov (United States)

    Liu, Mei; Xie, Shaorong; Ge, Ji; Xu, Zhensong; Wu, Zhizheng; Ru, Changhai; Luo, Jun; Sun, Yu

    2016-06-01

    Monitoring the quality of frying oil is important for the health of consumers. This paper reports a microfluidic technique for rapidly quantifying the degradation of frying oil. The microfluidic device generates monodispersed water-in-oil droplets and exploits viscosity and interfacial tension changes of frying oil samples over their frying/degradation process. The measured parameters were correlated to the total polar material percentage that is widely used in the food industry. The results reveal that the steady-state length of droplets can be used for unambiguously assessing frying oil quality degradation.

  8. Physics and applications of microfluidics in biology.

    Science.gov (United States)

    Beebe, David J; Mensing, Glennys A; Walker, Glenn M

    2002-01-01

    Fluid flow at the microscale exhibits unique phenomena that can be leveraged to fabricate devices and components capable of performing functions useful for biological studies. The physics of importance to microfluidics are reviewed. Common methods of fabricating microfluidic devices and systems are described. Components, including valves, mixers, and pumps, capable of controlling fluid flow by utilizing the physics of the microscale are presented. Techniques for sensing flow characteristics are described and examples of devices and systems that perform bioanalysis are presented. The focus of this review is microscale phenomena and the use of the physics of the scale to create devices and systems that provide functionality useful to the life sciences.

  9. Recent developments in microfluidics-based chemotaxis studies.

    Science.gov (United States)

    Wu, Jiandong; Wu, Xun; Lin, Francis

    2013-07-07

    Microfluidic devices can better control cellular microenvironments compared to conventional cell migration assays. Over the past few years, microfluidics-based chemotaxis studies showed a rapid growth. New strategies were developed to explore cell migration in manipulated chemical gradients. In addition to expanding the use of microfluidic devices for a broader range of cell types, microfluidic devices were used to study cell migration and chemotaxis in complex environments. Furthermore, high-throughput microfluidic chemotaxis devices and integrated microfluidic chemotaxis systems were developed for medical and commercial applications. In this article, we review recent developments in microfluidics-based chemotaxis studies and discuss the new trends in this field observed over the past few years.

  10. Microfluidics and Raman microscopy: current applications and future challenges.

    Science.gov (United States)

    Chrimes, Adam F; Khoshmanesh, Khashayar; Stoddart, Paul R; Mitchell, Arnan; Kalantar-Zadeh, Kourosh

    2013-07-07

    Raman microscopy systems are becoming increasingly widespread and accessible for characterising chemical species. Microfluidic systems are also progressively finding their way into real world applications. Therefore, it is anticipated that the integration of Raman systems with microfluidics will become increasingly attractive and practical. This review aims to provide an overview of Raman microscopy-microfluidics integrated systems for researchers who are actively interested in utilising these tools. The fundamental principles and application strengths of Raman microscopy are discussed in the context of microfluidics. Various configurations of microfluidics that incorporate Raman microscopy methods are presented, with applications highlighted. Data analysis methods are discussed, with a focus on assisting the interpretation of Raman-microfluidics data from complex samples. Finally, possible future directions of Raman-microfluidic systems are presented.

  11. Microfluidics' great promise for Biology - Microfluidics as a new engine for the molecular sciences

    KAUST Repository

    Kodzius, Rimantas

    2010-06-04

    History of the Life Sciences Origins of life Discoveries and instrumentation The power of genetic variation Diagnostics based on DNA/ protein variation Genomic scanning providers DNA sequencing companies Microfluidics story Commercial products available P

  12. Laboratory Automation and Middleware.

    Science.gov (United States)

    Riben, Michael

    2015-06-01

    The practice of surgical pathology is under constant pressure to deliver the highest quality of service, reduce errors, increase throughput, and decrease turnaround time while at the same time dealing with an aging workforce, increasing financial constraints, and economic uncertainty. Although not able to implement total laboratory automation, great progress continues to be made in workstation automation in all areas of the pathology laboratory. This report highlights the benefits and challenges of pathology automation, reviews middleware and its use to facilitate automation, and reviews the progress so far in the anatomic pathology laboratory.

  13. Fault-tolerant digital microfluidic biochips compilation and synthesis

    CERN Document Server

    Pop, Paul; Stuart, Elena; Madsen, Jan

    2016-01-01

    This book describes for researchers in the fields of compiler technology, design and test, and electronic design automation the new area of digital microfluidic biochips (DMBs), and thus offers a new application area for their methods.  The authors present a routing-based model of operation execution, along with several associated compilation approaches, which progressively relax the assumption that operations execute inside fixed rectangular modules.  Since operations can experience transient faults during the execution of a bioassay, the authors show how to use both offline (design time) and online (runtime) recovery strategies. The book also presents methods for the synthesis of fault-tolerant application-specific DMB architectures. ·         Presents the current models used for the research on compilation and synthesis techniques of DMBs in a tutorial fashion; ·         Includes a set of “benchmarks”, which are presented in great detail and includes the source code of most of the t...

  14. Lifting gate polydimethylsiloxane microvalves and pumps for microfluidic control.

    Science.gov (United States)

    Kim, Jungkyu; Kang, Minjee; Jensen, Erik C; Mathies, Richard A

    2012-02-21

    We describe the development and characterization of pneumatically actuated "lifting gate" microvalves and pumps. A fluidic layer containing the gate structure and a pneumatic layer are fabricated by soft-lithography in PDMS and bonded permanently with an oxygen plasma treatment. The microvalve structures are then reversibly bonded to a featureless glass or plastic substrate to form hybrid glass-PDMS and plastic-PDMS microchannel structures. The break-through pressures of the microvalve increase linearly up to 65 kPa as the closing pressure increases. The pumping capability of these structures ranges from the nanoliter to microliter scale depending on the number of cycles and closing pressure employed. The micropump structures exhibit up to 86.2% pumping efficiency from flow rate measurements. The utility of these structures for integrated sample processing is demonstrated by performing an automated immunoassay. These lifting gate valve and pump structures enable facile integration of complex microfluidic control systems with a wide range of lab-on-a-chip substrates.

  15. Intelligent control and automation technology for nuclear application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Hee; Eom, Heung Sub; Kim, Ko Ryu; Lee, Jae Cheol; Choi, You Rak; Lee, Soo Cheol [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    Using recent technologies on a mobile robot and computer science, we developed an automatic inspection system for weld lines of the reactor pressure vessel. The ultrasonic inspection of the reactor pressure vessel is currently performed by commercialized robot manipulators. Since, however, the conventional fixed type robot manipulator is very huge, heavy and expensive, it needs long inspection time and is hard to handle and maintain. In order to resolve these problems, we developed a new inspection automation system using a small mobile robot crawling on the vertical wall. According to the conceptual design studied in the first year, we developed the inspection automation system including an underwater inspection robot, a laser position control subsystem and a main control subsystem. And we carried out underwater experiments on the reactor vessel mockup. After finishing this project successfully, we have a plan to commercialize our inspection system. Using this system, we can expect much reduction of the inspection time, performance enhancement, automatic management of inspection history, etc. In the economic point of view, we can also expect import substitution more than 5 million dollars. The established essential technologies for intelligent control and automation are expected to be synthetically applied to the automation of similar systems in nuclear power plants. 4 tabs., 37 figs., 6 refs. (Author).

  16. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  17. Improving automated load flexibility of nuclear power plants with ALFC

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Andreas [AREVA GmbH, Karlstein (Germany). Plant Control/Training; Klaus, Peter [E.ON NPP Isar 2, Essenbach (Germany). Plant Operation/Production Engineering

    2016-07-01

    In several German and Swiss Nuclear Power Plants with Pressurized Water Reactor (PWR) the control of the reactor power was and will be improved in order to be able to support the energy transition with increasing volatile renewable energy in the grid by flexible load operation according to the need of the load dispatcher (power system stability). Especially regarding the mentioned German NPPs with a nominal electric power of approx. 1,500 MW, the general objectives are the main automated grid relevant operation modes. The new possibilities of digital I and C (as TELEPERM {sup registered} XS) enable the automation of the operating modes provided that manual support is no longer necessary. These possibilities were and will be implemented by AREVA within the ALFC-projects. Manifold adaption algorithms to the reactor physical variations during the nuclear load cycle enable a precise control of the axial power density distribution and of the reactivity management in the reactor core. Finally this is the basis for a highly automated load flexibility with the parallel respect and surveillance of the operational limits of a PWR.

  18. Microfluidic distillation chip for methanol concentration detection.

    Science.gov (United States)

    Wang, Yao-Nan; Liu, Chan-Chiung; Yang, Ruey-Jen; Ju, Wei-Jhong; Fu, Lung-Ming

    2016-03-17

    An integrated microfluidic distillation system is proposed for separating a mixed ethanol-methanol-water solution into its constituent components. The microfluidic chip is fabricated using a CO2 laser system and comprises a serpentine channel, a boiling zone, a heating zone, and a cooled collection chamber filled with de-ionized (DI) water. In the proposed device, the ethanol-methanol-water solution is injected into the microfluidic chip and driven through the serpentine channel and into the collection chamber by means of a nitrogen carrier gas. Following the distillation process, the ethanol-methanol vapor flows into the collection chamber and condenses into the DI water. The resulting solution is removed from the collection tank and reacted with a mixed indicator. Finally, the methanol concentration is inversely derived from the absorbance measurements obtained using a spectrophotometer. The experimental results show the proposed microfluidic system achieves an average methanol distillation efficiency of 97%. The practicality of the proposed device is demonstrated by detecting the methanol concentrations of two commercial fruit wines. It is shown that the measured concentration values deviate by no more than 3% from those obtained using a conventional bench top system.

  19. A microfluidic based optical particle detection method

    Science.gov (United States)

    Dou, James; Chen, Lu; Nayyar, Rakesh; Aitchison, Stewart

    2012-03-01

    An optical particle detection and analysis method is presented. This method combines the capillary microfluidics, integrated optics and novel image acquisition and analysis algorithms to form the basis of a portable or handheld cytometer instrument. Experimental results provided shows the testing results are closely matched with conventional flow cytometer data.

  20. Microfluidic desalination techniques and their potential applications

    NARCIS (Netherlands)

    Roelofs, S.H.; Berg, van den A.; Odijk, M.

    2015-01-01

    In this review we discuss recent developments in the emerging research field of miniaturized desalination. Traditionally desalination is performed to convert salt water into potable water and research is focused on improving performance of large-scale desalination plants. Microfluidic desalination o

  1. Microfluidics for Antibiotic Susceptibility and Toxicity Testing

    Directory of Open Access Journals (Sweden)

    Jing Dai

    2016-10-01

    Full Text Available The recent emergence of antimicrobial resistance has become a major concern for worldwide policy makers as very few new antibiotics have been developed in the last twenty-five years. To prevent the death of millions of people worldwide, there is an urgent need for a cheap, fast and accurate set of tools and techniques that can help to discover and develop new antimicrobial drugs. In the past decade, microfluidic platforms have emerged as potential systems for conducting pharmacological studies. Recent studies have demonstrated that microfluidic platforms can perform rapid antibiotic susceptibility tests to evaluate antimicrobial drugs’ efficacy. In addition, the development of cell-on-a-chip and organ-on-a-chip platforms have enabled the early drug testing, providing more accurate insights into conventional cell cultures on the drug pharmacokinetics and toxicity, at the early and cheaper stage of drug development, i.e., prior to animal and human testing. In this review, we focus on the recent developments of microfluidic platforms for rapid antibiotics susceptibility testing, investigating bacterial persistence and non-growing but metabolically active (NGMA bacteria, evaluating antibiotic effectiveness on biofilms and combinatorial effect of antibiotics, as well as microfluidic platforms that can be used for in vitro antibiotic toxicity testing.

  2. Wax-bonding 3D microfluidic chips

    KAUST Repository

    Gong, Xiuqing

    2013-10-10

    We report a simple, low-cost and detachable microfluidic chip incorporating easily accessible paper, glass slides or other polymer films as the chip materials along with adhesive wax as the recycling bonding material. We use a laser to cut through the paper or film to form patterns and then sandwich the paper and film between glass sheets or polymer membranes . The hot-melt adhesive wax can realize bridge bonding between various materials, for example, paper, polymethylmethacrylate (PMMA) film, glass sheets, or metal plate. The bonding process is reversible and the wax is reusable through a melting and cooling process. With this process, a three-dimensional (3D) microfluidic chip is achievable by vacuating and venting the chip in a hot-water bath. To study the biocompatibility and applicability of the wax-based microfluidic chip, we tested the PCR compatibility with the chip materials first. Then we applied the wax-paper based microfluidic chip to HeLa cell electroporation (EP ). Subsequently, a prototype of a 5-layer 3D chip was fabricated by multilayer wax bonding. To check the sealing ability and the durability of the chip, green fluorescence protein (GFP) recombinant Escherichia coli (E. coli) bacteria were cultured, with which the chemotaxis of E. coli was studied in order to determine the influence of antibiotic ciprofloxacin concentration on the E. coli migration.

  3. Microfluidic manipulation with artificial/bioinspired cilia

    NARCIS (Netherlands)

    den Toonder, Jaap M. J.; Onck, Patrick R.

    2013-01-01

    A recent development, inspired by nature, is the use of 'artificial cilia' to create pumping and/or mixing in microfluidic devices. Cilia are small hairs that can be found in biology and are used for (fluid) actuation and sensing. Microscopic actuators resembling cilia, actuated to move under the in

  4. Reaction and separation opportunities with microfluidic devices

    NARCIS (Netherlands)

    Kolfschoten, R.C.

    2011-01-01

    Microfluidic devices make precisely controlled processing of substances possible on a microliter level. The advantage is that, due to the small sizes, the driving forces for mass and heat transfer are high. The surface to volume ratios are also high, which can benefit many surface oriented processes

  5. Inventions Utilizing Microfluidics and Colloidal Particles

    Science.gov (United States)

    Marr, David W.; Gong, Tieying; Oakey, John; Terray, Alexander V.; Wu, David T.

    2009-01-01

    Several related inventions pertain to families of devices that utilize microfluidics and/or colloidal particles to obtain useful physical effects. The families of devices can be summarized as follows: (1) Microfluidic pumps and/or valves wherein colloidal-size particles driven by electrical, magnetic, or optical fields serve as the principal moving parts that propel and/or direct the affected flows. (2) Devices that are similar to the aforementioned pumps and/or valves except that they are used to manipulate light instead of fluids. The colloidal particles in these devices are substantially constrained to move in a plane and are driven to spatially order them into arrays that function, variously, as waveguides, filters, or switches for optical signals. (3) Devices wherein the ultra-laminar nature of microfluidic flows is exploited to effect separation, sorting, or filtering of colloidal particles or biological cells in suspension. (4) Devices wherein a combination of confinement and applied electrical and/or optical fields forces the colloidal particles to become arranged into three-dimensional crystal lattices. Control of the colloidal crystalline structures could be exploited to control diffraction of light. (5) Microfluidic devices, incorporating fluid waveguides, wherein switching of flows among different paths would be accompanied by switching of optical signals.

  6. Discrete elements for 3D microfluidics.

    Science.gov (United States)

    Bhargava, Krisna C; Thompson, Bryant; Malmstadt, Noah

    2014-10-21

    Microfluidic systems are rapidly becoming commonplace tools for high-precision materials synthesis, biochemical sample preparation, and biophysical analysis. Typically, microfluidic systems are constructed in monolithic form by means of microfabrication and, increasingly, by additive techniques. These methods restrict the design and assembly of truly complex systems by placing unnecessary emphasis on complete functional integration of operational elements in a planar environment. Here, we present a solution based on discrete elements that liberates designers to build large-scale microfluidic systems in three dimensions that are modular, diverse, and predictable by simple network analysis techniques. We develop a sample library of standardized components and connectors manufactured using stereolithography. We predict and validate the flow characteristics of these individual components to design and construct a tunable concentration gradient generator with a scalable number of parallel outputs. We show that these systems are rapidly reconfigurable by constructing three variations of a device for generating monodisperse microdroplets in two distinct size regimes and in a high-throughput mode by simple replacement of emulsifier subcircuits. Finally, we demonstrate the capability for active process monitoring by constructing an optical sensing element for detecting water droplets in a fluorocarbon stream and quantifying their size and frequency. By moving away from large-scale integration toward standardized discrete elements, we demonstrate the potential to reduce the practice of designing and assembling complex 3D microfluidic circuits to a methodology comparable to that found in the electronics industry.

  7. Designing Polymeric Microfluidic Platforms for Biomedical Applications

    DEFF Research Database (Denmark)

    Vedarethinam, Indumathi

    Micro- and Nanotechnology have the potential to offer a smart solution for diagnostics and academia research with rapid, low cost, robust analysis systems to facilitate biological analyses. New, high throughput microfluidic platforms have the potential to surpass in performance the conventional a...

  8. Planar microcoil-based microfluidic NMR probes.

    NARCIS (Netherlands)

    Massin, C.; Vincent, F.; Homsy, A.; Ehrmann, K.; Boero, G.; Besse, P-A; Daridon, A.; Verpoorte, E.; de Rooij, N.F.; Popovic, R.S.

    2003-01-01

    Microfabricated small-volume NMR probes consisting of electroplated planar microcoils integrated on a glass substrate with etched microfluidic channels are fabricated and tested. 1H NMR spectra are acquired at 300 MHz with three different probes having observed sample volumes of respectively 30, 120

  9. Automating checks of plan check automation.

    Science.gov (United States)

    Halabi, Tarek; Lu, Hsiao-Ming

    2014-07-08

    While a few physicists have designed new plan check automation solutions for their clinics, fewer, if any, managed to adapt existing solutions. As complex and varied as the systems they check, these programs must gain the full confidence of those who would run them on countless patient plans. The present automation effort, planCheck, therefore focuses on versatility and ease of implementation and verification. To demonstrate this, we apply planCheck to proton gantry, stereotactic proton gantry, stereotactic proton fixed beam (STAR), and IMRT treatments.

  10. Automation in Warehouse Development

    NARCIS (Netherlands)

    Hamberg, R.; Verriet, J.

    2012-01-01

    The warehouses of the future will come in a variety of forms, but with a few common ingredients. Firstly, human operational handling of items in warehouses is increasingly being replaced by automated item handling. Extended warehouse automation counteracts the scarcity of human operators and support

  11. Automate functional testing

    Directory of Open Access Journals (Sweden)

    Ramesh Kalindri

    2014-06-01

    Full Text Available Currently, software engineers are increasingly turning to the option of automating functional tests, but not always have successful in this endeavor. Reasons range from low planning until over cost in the process. Some principles that can guide teams in automating these tests are described in this article.

  12. More Benefits of Automation.

    Science.gov (United States)

    Getz, Malcolm

    1988-01-01

    Describes a study that measured the benefits of an automated catalog and automated circulation system from the library user's point of view in terms of the value of time saved. Topics discussed include patterns of use, access time, availability of information, search behaviors, and the effectiveness of the measures used. (seven references)…

  13. Automation in immunohematology.

    Science.gov (United States)

    Bajpai, Meenu; Kaur, Ravneet; Gupta, Ekta

    2012-07-01

    There have been rapid technological advances in blood banking in South Asian region over the past decade with an increasing emphasis on quality and safety of blood products. The conventional test tube technique has given way to newer techniques such as column agglutination technique, solid phase red cell adherence assay, and erythrocyte-magnetized technique. These new technologies are adaptable to automation and major manufacturers in this field have come up with semi and fully automated equipments for immunohematology tests in the blood bank. Automation improves the objectivity and reproducibility of tests. It reduces human errors in patient identification and transcription errors. Documentation and traceability of tests, reagents and processes and archiving of results is another major advantage of automation. Shifting from manual methods to automation is a major undertaking for any transfusion service to provide quality patient care with lesser turnaround time for their ever increasing workload. This article discusses the various issues involved in the process.

  14. Automated model building

    CERN Document Server

    Caferra, Ricardo; Peltier, Nicholas

    2004-01-01

    This is the first book on automated model building, a discipline of automated deduction that is of growing importance Although models and their construction are important per se, automated model building has appeared as a natural enrichment of automated deduction, especially in the attempt to capture the human way of reasoning The book provides an historical overview of the field of automated deduction, and presents the foundations of different existing approaches to model construction, in particular those developed by the authors Finite and infinite model building techniques are presented The main emphasis is on calculi-based methods, and relevant practical results are provided The book is of interest to researchers and graduate students in computer science, computational logic and artificial intelligence It can also be used as a textbook in advanced undergraduate courses

  15. Automation in Warehouse Development

    CERN Document Server

    Verriet, Jacques

    2012-01-01

    The warehouses of the future will come in a variety of forms, but with a few common ingredients. Firstly, human operational handling of items in warehouses is increasingly being replaced by automated item handling. Extended warehouse automation counteracts the scarcity of human operators and supports the quality of picking processes. Secondly, the development of models to simulate and analyse warehouse designs and their components facilitates the challenging task of developing warehouses that take into account each customer’s individual requirements and logistic processes. Automation in Warehouse Development addresses both types of automation from the innovative perspective of applied science. In particular, it describes the outcomes of the Falcon project, a joint endeavour by a consortium of industrial and academic partners. The results include a model-based approach to automate warehouse control design, analysis models for warehouse design, concepts for robotic item handling and computer vision, and auton...

  16. Automation in Immunohematology

    Directory of Open Access Journals (Sweden)

    Meenu Bajpai

    2012-01-01

    Full Text Available There have been rapid technological advances in blood banking in South Asian region over the past decade with an increasing emphasis on quality and safety of blood products. The conventional test tube technique has given way to newer techniques such as column agglutination technique, solid phase red cell adherence assay, and erythrocyte-magnetized technique. These new technologies are adaptable to automation and major manufacturers in this field have come up with semi and fully automated equipments for immunohematology tests in the blood bank. Automation improves the objectivity and reproducibility of tests. It reduces human errors in patient identification and transcription errors. Documentation and traceability of tests, reagents and processes and archiving of results is another major advantage of automation. Shifting from manual methods to automation is a major undertaking for any transfusion service to provide quality patient care with lesser turnaround time for their ever increasing workload. This article discusses the various issues involved in the process.

  17. Mixing in polymeric microfluidic devices.

    Energy Technology Data Exchange (ETDEWEB)

    Schunk, Peter Randall; Sun, Amy Cha-Tien; Davis, Robert H. (University of Colorado at Boulder, Boulder, CO); Brotherton, Christopher M. (University of Colorado at Boulder, Boulder, CO)

    2006-04-01

    This SAND report describes progress made during a Sandia National Laboratories sponsored graduate fellowship. The fellowship was funded through an LDRD proposal. The goal of this project is development and characterization of mixing strategies for polymeric microfluidic devices. The mixing strategies under investigation include electroosmotic flow focusing, hydrodynamic focusing, physical constrictions and porous polymer monoliths. For electroosmotic flow focusing, simulations were performed to determine the effect of electroosmotic flow in a microchannel with heterogeneous surface potential. The heterogeneous surface potential caused recirculations to form within the microchannel. These recirculations could then be used to restrict two mixing streams and reduce the characteristic diffusion length. Maximum mixing occurred when the ratio of the mixing region surface potential to the average channel surface potential was made large in magnitude and negative in sign, and when the ratio of the characteristic convection time to the characteristic diffusion time was minimized. Based on these results, experiments were performed to evaluate the manipulation of surface potential using living-radical photopolymerization. The material chosen to manipulate typically exhibits a negative surface potential. Using living-radical surface grafting, a positive surface potential was produced using 2-(Dimethylamino)ethyl methacrylate and a neutral surface was produced using a poly(ethylene glycol) surface graft. Simulations investigating hydrodynamic focusing were also performed. For this technique, mixing is enhanced by using a tertiary fluid stream to constrict the two mixing streams and reduce the characteristic diffusion length. Maximum mixing occurred when the ratio of the tertiary flow stream flow-rate to the mixing streams flow-rate was maximized. Also, like the electroosmotic focusing mixer, mixing was also maximized when the ratio of the characteristic convection time to the

  18. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Hiroto

    1995-02-07

    A reactor container of the present invention has a structure that the reactor container is entirely at the same temperature as that at the inlet of the reactor and, a hot pool is incorporated therein, and the reactor container has is entirely at the same temperature and has substantially uniform temperature follow-up property transiently. Namely, if the temperature at the inlet of the reactor core changes, the temperature of the entire reactor container changes following this change, but no great temperature gradient is caused in the axial direction and no great heat stresses due to axial temperature distribution is caused. Occurrence of thermal stresses caused by the axial temperature distribution can be suppressed to improve the reliability of the reactor container. In addition, since the laying of the reactor inlet pipelines over the inside of the reactor is eliminated, the reactor container is made compact and the heat shielding structures above the reactor and a protection structure of container walls are simplified. Further, secondary coolants are filled to the outside of the reactor container to simplify the shieldings. The combined effects described above can improve economical property and reliability. (N.H.).

  19. Interconnection blocks: a method for providing reusable, rapid, multiple, aligned and planar microfluidic interconnections

    DEFF Research Database (Denmark)

    Sabourin, David; Snakenborg, Detlef; Dufva, Hans Martin

    2009-01-01

    In this paper a method is presented for creating 'interconnection blocks' that are re-usable and provide multiple, aligned and planar microfluidic interconnections. Interconnection blocks made from polydimethylsiloxane allow rapid testing of microfluidic chips and unobstructed microfluidic...

  20. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  1. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  2. Systematic review automation technologies

    Science.gov (United States)

    2014-01-01

    Systematic reviews, a cornerstone of evidence-based medicine, are not produced quickly enough to support clinical practice. The cost of production, availability of the requisite expertise and timeliness are often quoted as major contributors for the delay. This detailed survey of the state of the art of information systems designed to support or automate individual tasks in the systematic review, and in particular systematic reviews of randomized controlled clinical trials, reveals trends that see the convergence of several parallel research projects. We surveyed literature describing informatics systems that support or automate the processes of systematic review or each of the tasks of the systematic review. Several projects focus on automating, simplifying and/or streamlining specific tasks of the systematic review. Some tasks are already fully automated while others are still largely manual. In this review, we describe each task and the effect that its automation would have on the entire systematic review process, summarize the existing information system support for each task, and highlight where further research is needed for realizing automation for the task. Integration of the systems that automate systematic review tasks may lead to a revised systematic review workflow. We envisage the optimized workflow will lead to system in which each systematic review is described as a computer program that automatically retrieves relevant trials, appraises them, extracts and synthesizes data, evaluates the risk of bias, performs meta-analysis calculations, and produces a report in real time. PMID:25005128

  3. Spinning fluids reactor

    Science.gov (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  4. Integrated microfluidic platforms for investigating neuronal networks

    Science.gov (United States)

    Kim, Hyung Joon

    This dissertation describes the development and application of integrated microfluidics-based assay platforms to study neuronal activities in the nervous system in-vitro. The assay platforms were fabricated using soft lithography and micro/nano fabrication including microfluidics, surface patterning, and nanomaterial synthesis. The use of integrated microfluidics-based assay platform allows culturing and manipulating many types of neuronal tissues in precisely controlled microenvironment. Furthermore, they provide organized multi-cellular in-vitro model, long-term monitoring with live cell imaging, and compatibility with molecular biology techniques and electrophysiology experiment. In this dissertation, the integrated microfluidics-based assay platforms are developed for investigation of neuronal activities such as local protein synthesis, impairment of axonal transport by chemical/physical variants, growth cone path finding under chemical/physical cues, and synaptic transmission in neuronal circuit. Chapter 1 describes the motivation, objectives, and scope for developing in-vitro platform to study various neuronal activities. Chapter 2 introduces microfluidic culture platform for biochemical assay with large-scale neuronal tissues that are utilized as model system in neuroscience research. Chapter 3 focuses on the investigation of impaired axonal transport by beta-Amyloid and oxidative stress. The platform allows to control neuronal processes and to quantify mitochondrial movement in various regions of axons away from applied drugs. Chapter 4 demonstrates the development of microfluidics-based growth cone turning assay to elucidate the mechanism underlying axon guidance under soluble factors and shear flow. Using this platform, the behaviors of growth cone of mammalian neurons are verified under the gradient of inhibitory molecules and also shear flow in well-controlled manner. In Chapter 5, I combine in-vitro multicellular model with microfabricated MEA

  5. Chef infrastructure automation cookbook

    CERN Document Server

    Marschall, Matthias

    2013-01-01

    Chef Infrastructure Automation Cookbook contains practical recipes on everything you will need to automate your infrastructure using Chef. The book is packed with illustrated code examples to automate your server and cloud infrastructure.The book first shows you the simplest way to achieve a certain task. Then it explains every step in detail, so that you can build your knowledge about how things work. Eventually, the book shows you additional things to consider for each approach. That way, you can learn step-by-step and build profound knowledge on how to go about your configuration management

  6. Polymerization in emulsion microdroplet reactors

    Science.gov (United States)

    Carroll, Nick J.

    The goal of this research project is to utilize emulsion droplets as chemical reactors for execution of complex polymerization chemistries to develop unique and functional particle materials. Emulsions are dispersions of immiscible fluids where one fluid usually exists in the form of drops. Not surprisingly, if a liquid-to-solid chemical reaction proceeds to completion within these drops, the resultant solid particles will possess the shape and relative size distribution of the drops. The two immiscible liquid phases required for emulsion polymerization provide unique and complex chemical and physical environments suitable for the engineering of novel materials. The development of novel non-ionic fluorosurfactants allows fluorocarbon oils to be used as the continuous phase in a water-free emulsion. Such emulsions enable the encapsulation of almost any hydrocarbon compound in droplets that may be used as separate compartments for water-sensitive syntheses. Here, we exemplify the promise of this approach by suspension polymerization of polyurethanes (PU), in which the liquid precursor is emulsified into droplets that are then converted 1:1 into polymer particles. The stability of the droplets against coalescence upon removal of the continuous phase by evaporation confirms the formation of solid PU particles. These results prove that the water-free environment of fluorocarbon based emulsions enables high conversion. We produce monodisperse, cross-linked, and fluorescently labeled PU-latexes with controllable mesh size through microfluidic emulsification in a simple one-step process. A novel method for the fabrication of monodisperse mesoporous silica particles is presented. It is based on the formation of well-defined equally sized emulsion droplets using a microfluidic approach. The droplets contain the silica precursor/surfactant solution and are suspended in hexadecane as the continuous oil phase. The solvent is then expelled from the droplets, leading to

  7. Microprocessor tester for the treat upgrade reactor trip system

    Energy Technology Data Exchange (ETDEWEB)

    Lenkszus, F.R.; Bucher, R.G.

    1984-01-01

    The upgrading of the Transient Reactor Test (TREAT) Facility at ANL-Idaho has been designed to provide additional experimental capabilities for the study of core disruptive accident (CDA) phenomena. In addition, a programmable Automated Reactor Control System (ARCS) will permit high-power transients up to 11,000 MW having a controlled reactor period of from 15 to 0.1 sec. These modifications to the core neutronics will improve simulation of LMFBR accident conditions. Finally, a sophisticated, multiply-redundant safety system, the Reactor Trip System (RTS), will provide safe operation for both steady state and transient production operating modes. To insure that this complex safety system is functioning properly, a Dedicated Microprocessor Tester (DMT) has been implemented to perform a thorough checkout of the RTS prior to all TREAT operations.

  8. Fundamentals of microfluidic cell culture in controlled microenvironments.

    Science.gov (United States)

    Young, Edmond W K; Beebe, David J

    2010-03-01

    Microfluidics has the potential to revolutionize the way we approach cell biology research. The dimensions of microfluidic channels are well suited to the physical scale of biological cells, and the many advantages of microfluidics make it an attractive platform for new techniques in biology. One of the key benefits of microfluidics for basic biology is the ability to control parameters of the cell microenvironment at relevant length and time scales. Considerable progress has been made in the design and use of novel microfluidic devices for culturing cells and for subsequent treatment and analysis. With the recent pace of scientific discovery, it is becoming increasingly important to evaluate existing tools and techniques, and to synthesize fundamental concepts that would further improve the efficiency of biological research at the microscale. This tutorial review integrates fundamental principles from cell biology and local microenvironments with cell culture techniques and concepts in microfluidics. Culturing cells in microscale environments requires knowledge of multiple disciplines including physics, biochemistry, and engineering. We discuss basic concepts related to the physical and biochemical microenvironments of the cell, physicochemical properties of that microenvironment, cell culture techniques, and practical knowledge of microfluidic device design and operation. We also discuss the most recent advances in microfluidic cell culture and their implications on the future of the field. The goal is to guide new and interested researchers to the important areas and challenges facing the scientific community as we strive toward full integration of microfluidics with biology.

  9. Novel Polymer Microfluidics Technology for In Situ Planetary Exploration Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Los Gatos Research proposes to develop a novel microfluidic device that combines rigid monolithic porous polymer based micro-capillary electrochromatography...

  10. Structure and fabrication details of an integrated modularized microfluidic system

    Directory of Open Access Journals (Sweden)

    Qingchang Tian

    2015-12-01

    Full Text Available This article contains schemes, original experimental data and figures for an integrated modularized microfluidic system described in “An integrated microfluidic system for bovine DNA purification and digital PCR detection [1]”. In this data article, we described the structure and fabrication of the integrated modularized microfluidic system. This microfluidic system was applied to isolate DNA from ovine tissue lysate and detect the bovine DNA with digital PCR (dPCR. The DNA extraction efficiency of the microdevice was compared with the efficiency of benchtop protocol.

  11. Microfluidic methods for non-viral gene delivery.

    Science.gov (United States)

    Lai, Wing-Fu

    2015-01-01

    Microfluidics is a compelling technology that shows considerable promise in applications ranging from gene expression profiling to cell-based assays. Owing to its capacity to enable generation of single droplets and multiple droplet arrays with precisely controlled composition and a narrow size distribution, recently microfluidics has been exploited for delivery of genes. This article provides an overview of recent advances in microfluidic gene delivery, and speculates the prospects for further research. The objectives of this article are to illustrate the potential roles played by microfluidics in gene delivery research, and to shed new light on strategies to enhance the efficiency of gene therapy.

  12. Microfabrication and Applications of Opto-Microfluidic Sensors

    Directory of Open Access Journals (Sweden)

    Daiying Zhang

    2011-05-01

    Full Text Available A review of research activities on opto-microfluidic sensors carried out by the research groups in Canada is presented. After a brief introduction of this exciting research field, detailed discussion is focused on different techniques for the fabrication of opto-microfluidic sensors, and various applications of these devices for bioanalysis, chemical detection, and optical measurement. Our current research on femtosecond laser microfabrication of optofluidic devices is introduced and some experimental results are elaborated. The research on opto-microfluidics provides highly sensitive opto-microfluidic sensors for practical applications with significant advantages of portability, efficiency, sensitivity, versatility, and low cost.

  13. Reactor Vessel Surveillance Program for Advanced Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyeong-Hoon; Kim, Tae-Wan; Lee, Gyu-Mahn; Kim, Jong-Wook; Park, Keun-Bae; Kim, Keung-Koo

    2008-10-15

    This report provides the design requirements of an integral type reactor vessel surveillance program for an integral type reactor in accordance with the requirements of Korean MEST (Ministry of Education, Science and Technology Development) Notice 2008-18. This report covers the requirements for the design of surveillance capsule assemblies including their test specimens, test block materials, handling tools, and monitors of the surveillance capsule neutron fluence and temperature. In addition, this report provides design requirements for the program for irradiation surveillance of reactor vessel materials, a layout of specimens and monitors in the surveillance capsule, procedures of installation and retrieval of the surveillance capsule assemblies, and the layout of the surveillance capsule assemblies in the reactor.

  14. Automated Vehicles Symposium 2015

    CERN Document Server

    Beiker, Sven

    2016-01-01

    This edited book comprises papers about the impacts, benefits and challenges of connected and automated cars. It is the third volume of the LNMOB series dealing with Road Vehicle Automation. The book comprises contributions from researchers, industry practitioners and policy makers, covering perspectives from the U.S., Europe and Japan. It is based on the Automated Vehicles Symposium 2015 which was jointly organized by the Association of Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Ann Arbor, Michigan, in July 2015. The topical spectrum includes, but is not limited to, public sector activities, human factors, ethical and business aspects, energy and technological perspectives, vehicle systems and transportation infrastructure. This book is an indispensable source of information for academic researchers, industrial engineers and policy makers interested in the topic of road vehicle automation.

  15. I-94 Automation FAQs

    Data.gov (United States)

    Department of Homeland Security — In order to increase efficiency, reduce operating costs and streamline the admissions process, U.S. Customs and Border Protection has automated Form I-94 at air and...

  16. Automated Vehicles Symposium 2014

    CERN Document Server

    Beiker, Sven; Road Vehicle Automation 2

    2015-01-01

    This paper collection is the second volume of the LNMOB series on Road Vehicle Automation. The book contains a comprehensive review of current technical, socio-economic, and legal perspectives written by experts coming from public authorities, companies and universities in the U.S., Europe and Japan. It originates from the Automated Vehicle Symposium 2014, which was jointly organized by the Association for Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Burlingame, CA, in July 2014. The contributions discuss the challenges arising from the integration of highly automated and self-driving vehicles into the transportation system, with a focus on human factors and different deployment scenarios. This book is an indispensable source of information for academic researchers, industrial engineers, and policy makers interested in the topic of road vehicle automation.

  17. Hydrometeorological Automated Data System

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Office of Hydrologic Development of the National Weather Service operates HADS, the Hydrometeorological Automated Data System. This data set contains the last 48...

  18. Automating the Media Center.

    Science.gov (United States)

    Holloway, Mary A.

    1988-01-01

    Discusses the need to develop more efficient information retrieval skills by the use of new technology. Lists four stages used in automating the media center. Describes North Carolina's pilot programs. Proposes benefits and looks at the media center's future. (MVL)

  19. Microfluidic technologies for studying synthetic circuits.

    Science.gov (United States)

    Lin, Benjamin; Levchenko, Andre

    2012-08-01

    Advances in synthetic biology have augmented the available toolkit of biomolecular modules, allowing engineering and manipulation of signaling in a variety of organisms, ranging in complexity from single bacteria and eukaryotic cells to multi-cellular systems. The richness of synthetic circuit outputs can be dramatically enhanced by sophisticated environmental control systems designed to precisely pattern spatial-temporally heterogeneous environmental stimuli controlling these circuits. Moreover, the performance of the synthetic modules and 'blocks' needed to assemble more complicated networks requires more complete characterization as a function of arbitrarily complex environmental inputs. Microfluidic technologies are poised to meet these needs through a variety of innovative designs capitalizing on the unique benefits of manipulating fluids on the micro-scales and nano-scales. This review discusses the utility of microfluidics for the study of synthetic circuits and highlights recent work in the area.

  20. Bonding PMMA microfluidics using commercial microwave ovens

    Science.gov (United States)

    Toossi, A.; Moghadas, H.; Daneshmand, M.; Sameoto, D.

    2015-08-01

    In this paper, a novel low-cost, rapid substrate-bonding technique is successfully applied to polymethyl methacrylate (PMMA) microfluidics bonding for the first time. This technique uses a thin intermediate metallic microwave susceptor layer at the interface of the bonding site (microchannels) which produces localized heating required for bonding during microwave irradiation. The metallic susceptor pattern is designed using a multiphysics simulation model developed in ANSYS Multiphysics software (high-frequency structural simulation (HFSS) coupled with ANSYS-Thermal). In our experiments, the required microwave energy for bonding is delivered using a relatively inexpensive, widely accessible commercial microwave oven. Using this technique, simple PMMA microfluidics prototypes are successfully bonded and sealed in less than 35 seconds with a minimum measured bond strength of 1.375 MPa.

  1. Microfluidic Pumping by Micromolar Salt Concentrations

    CERN Document Server

    Niu, Ran; Brown, Aidan T; Rempfer, Georg; Botin, Denis; Holm, Christian; Palberg, Thomas; de Graaf, Joost

    2016-01-01

    A colloidal ion-exchange-resin-based microfluidic pump is introduced and experimentally characterized. It operates in almost deionized water for periods exceeding 24h and effects fluid flows of um/s over hundreds of um. This fluid flow displays a far-field, power-law decay which is characteristic of two-dimensional (2D) flow when the system is strongly confined in the vertical direction, and of three-dimensional (3D) flow when the system is less confined. Using theory and numerical calculations we show that our observations are consistent with electroosmotic pumping driven by umol/L ionic impurities in the sample cell, revealing the surprising impact of trace amounts of charge carriers. In addition, we explain how the power-law decay of the fluid flow can be understood on the basis of the confinement imposed by the sample cell. These two insights should benefit the design of a new class of microfluidic pumps.

  2. Cavity optomechanics on a microfluidic resonator

    CERN Document Server

    Kim, Kyu Hyun; Lee, Wonsuk; Liu, Jing; Tomes, Matthew; Fan, Xudong; Carmon, Tal

    2012-01-01

    Light pressure is known to excite or cool vibrations in microresonators for sensing quantum-optomechanical effects and we now show that it can be explored for investigations with liquids. Currently, optical resonances are utilized to detect analytes in liquids. However, optomechanical oscillations have never been excited when devices were immersed in liquid. This is because replacing the surrounding air with water inherently increases the acoustical impedance and the associated acoustical-radiation losses. Here we fabricate a hollow optomechanical bubble resonator with water inside, and use light pressure to excite 8 MHz - 140 MHz vibrations with 1 mW optical-threshold power and >2000 mechanical Q, constituting the first time that any microfluidic system is optomechanically actuated. Bridging between optomechanics and microfluidics will enable recently developed capillaries and on-chip bubbles to vibrate via optical excitation; and allow optomechanics with non-solid material phases including bio-analytes, sup...

  3. Nanoplasmonic and Microfluidic Devices for Biological Sensing

    KAUST Repository

    Perozziello, G.

    2017-02-16

    In this chapter we report about recent advances on the development and application of 2D and 3D plasmonic nanostructures used for sensing of biological samples by Raman spectroscopy at unprecedented resolution of analysis. Besides, we explain how the integration of these nanodevices in a microfluidic apparatus can simplify the analysis of biological samples. In the first part we introduce and motivate the convenience of using nanoplasmonic enhancers and Raman spectroscopy for biological sensing, describing the phenomena and the current approaches to fabricate nanoplasmonic structures. In the second part, we explain how specific multi-element devices produce the optimal enhancement of the Raman scattering. We report cases where biological sensing of DNA was performed at few molecules level with nanometer spatial resolutions. Finally, we show an example of microfluidic device integrating plasmonic nanodevices to sort and drive biological samples, like living cells, towards the optical probe in order to obtain optimal conditions of analysis.

  4. Droplet Manipulations in Two Phase Flow Microfluidics

    Directory of Open Access Journals (Sweden)

    Arjen M. Pit

    2015-11-01

    Full Text Available Even though droplet microfluidics has been developed since the early 1980s, the number of applications that have resulted in commercial products is still relatively small. This is partly due to an ongoing maturation and integration of existing methods, but possibly also because of the emergence of new techniques, whose potential has not been fully realized. This review summarizes the currently existing techniques for manipulating droplets in two-phase flow microfluidics. Specifically, very recent developments like the use of acoustic waves, magnetic fields, surface energy wells, and electrostatic traps and rails are discussed. The physical principles are explained, and (potential advantages and drawbacks of different methods in the sense of versatility, flexibility, tunability and durability are discussed, where possible, per technique and per droplet operation: generation, transport, sorting, coalescence and splitting.

  5. Dry-Mass Sensing for Microfluidics

    CERN Document Server

    Müller, T; Knowles, T P J

    2014-01-01

    We present an approach for interfacing an electromechanical sensor with a microfluidic device for the accurate quantification of the dry mass of analytes within microchannels. We show that depositing solutes onto the active surface of a quartz crystal microbalance by means of an on-chip microfluidic spray nozzle and subsequent solvent removal provides the basis for the real-time determination of dry solute mass. Moreover, this detection scheme does not suffer from the decrease in the sensor quality factor and the viscous drag present if the measurement is performed in a liquid environment, yet allows solutions to be analysed. We demonstrate the sensitivity and reliability of our approach by controlled deposition of nanogram levels of salt and protein from a micrometer-sized channel.

  6. Tuning particle focusing in inertial microfluidic devices

    Science.gov (United States)

    Hood, Kaitlyn; Kahkeshani, Soroush; di Carlo, Dino; Roper, Marcus

    2014-11-01

    Particles in microfluidic devices at finite Reynolds number are subject to two forces: (i) inertial focusing and (ii) particle-particle interactions. Although microfluidic chips exploit these forces to manipulate particles for particle/cell sorting and high throughput flow cytometry, the forces are not understood well enough to allow rational design of devices that can tune and attenuate particle focusing. We present a mathematical model addressing both inertial focusing and particle interactions, and we apply our model to various channel geometries to determine the balance of forces. In addition, we present experimental data that illustrate the accuracy of our model. We will address the following questions: Why do high aspect ratio channels favor two equilibrium positions? Why do particle chains form?

  7. A microfluidic chip for ICPMS sample introduction.

    Science.gov (United States)

    Verboket, Pascal E; Borovinskaya, Olga; Meyer, Nicole; Günther, Detlef; Dittrich, Petra S

    2015-03-05

    This protocol discusses the fabrication and usage of a disposable low cost microfluidic chip as sample introduction system for inductively coupled plasma mass spectrometry (ICPMS). The chip produces monodisperse aqueous sample droplets in perfluorohexane (PFH). Size and frequency of the aqueous droplets can be varied in the range of 40 to 60 µm and from 90 to 7,000 Hz, respectively. The droplets are ejected from the chip with a second flow of PFH and remain intact during the ejection. A custom-built desolvation system removes the PFH and transports the droplets into the ICPMS. Here, very stable signals with a narrow intensity distribution can be measured, showing the monodispersity of the droplets. We show that the introduction system can be used to quantitatively determine iron in single bovine red blood cells. In the future, the capabilities of the introduction device can easily be extended by the integration of additional microfluidic modules.

  8. Chemical control of Vorticella bioactuator using microfluidics.

    Science.gov (United States)

    Nagai, Moeto; Ryu, Sangjin; Thorsen, Todd; Matsudaira, Paul; Fujita, Hiroyuki

    2010-06-21

    In this report, we demonstrate a microfluidic platform to control the stalk contraction and extension of Vorticella convallaria by changing concentration of Ca2+ with pneumatically-actuated elastomeric microvalves. Habitation, extraction and control of V. convallaria were carried out in a PDMS-based microfluidic device. By treating the cells with the permeant saponin, external actuation of cell-anchoring stalk between an extended and contracted state was achieved by cyclic exposure of the cells to a Ca2+ buffer (10(-6) M) and a rinse buffer containing EGTA as a chelation agent. When solutions were switched, the stalk contracted and extended responding to the ambient Ca2+ concentration change. The length of the stalk changed between 20 and 60 microm, resulting in a working distance of about 40 microm.

  9. Cell-based bioassays in microfluidic systems

    Science.gov (United States)

    Itle, Laura J.; Zguris, Jeanna C.; Pishko, Michael V.

    2004-12-01

    The development of cell-based bioassays for high throughput drug screening or the sensing of biotoxins is contingent on the development of whole cell sensors for specific changes in intracellular conditions and the integration of those systems into sample delivery devices. Here we show the feasibility of using a 5-(and-6)-carboxy SNARF-1, acetoxymethyl ester, acetate, a fluorescent dye capable of responding to changes in intracellular pH, as a detection method for the bacterial endotoxin, lipopolysaccharide. We used photolithography to entrap cells with this dye within poly(ethylene) glyocol diacrylate hydrogels in microfluidic channels. After 18 hours of exposure to lipopolysaccharide, we were able to see visible changes in the fluorescent pattern. This work shows the feasibility of using whole cell based biosensors within microfluidic networks to detect cellular changes in response to exogenous agents.

  10. Microfluidic Scintillation Detectors for High Energy Physics

    CERN Document Server

    Maoddi, Pietro; Mapelli, Alessandro

    This thesis deals with the development and study of microfluidic scintillation detectors, a technology of recent introduction for the detection of high energy particles. Most of the interest for such devices comes from the use of a liquid scintillator, which entails the possibility of changing the active material in the detector, leading to increased radiation resistance. A first part of the thesis focuses on the work performed in terms of design and modelling studies of novel prototype devices, hinting to new possibilities and applications. In this framework, the simulations performed to validate selected designs and the main technological choices made in view of their fabrication are addressed. The second part of this thesis deals with the microfabrication of several prototype devices. Two different materials were studied for the manufacturing of microfluidic scintillation detectors, namely the SU-8 photosensitive epoxy and monocrystalline silicon. For what concerns the former, an original fabrication appro...

  11. Microfluidic electroporation for cellular analysis and delivery.

    Science.gov (United States)

    Geng, Tao; Lu, Chang

    2013-10-01

    Electroporation is a simple yet powerful technique for breaching the cell membrane barrier. The applications of electroporation can be generally divided into two categories: the release of intracellular proteins, nucleic acids and other metabolites for analysis and the delivery of exogenous reagents such as genes, drugs and nanoparticles with therapeutic purposes or for cellular manipulation. In this review, we go over the basic physics associated with cell electroporation and highlight recent technological advances on microfluidic platforms for conducting electroporation. Within the context of its working mechanism, we summarize the accumulated knowledge on how the parameters of electroporation affect its performance for various tasks. We discuss various strategies and designs for conducting electroporation at the microscale and then focus on analysis of intracellular contents and delivery of exogenous agents as two major applications of the technique. Finally, an outlook for future applications of microfluidic electroporation in increasingly diverse utilities is presented.

  12. An easy-to-use microfluidic interconnection system to create quick and reversibly interfaced simple microfluidic devices

    DEFF Research Database (Denmark)

    Pfreundt, Andrea; Andersen, Karsten Brandt; Dimaki, Maria;

    2015-01-01

    The presented microfluidic interconnection system provides an alternative for the individual interfacing of simple microfluidic devices fabricated in polymers such as polymethylmethacrylate, polycarbonate and cyclic olefin polymer. A modification of the device inlet enables the direct attachment...... pressures above 250 psi and therefore supports applications with high flow rates or highly viscous fluids. The ease of incorporation, configuration, fabrication and use make this interconnection system ideal for the rapid prototyping of simple microfluidic devices or other integrated systems that require...

  13. Disassembly automation automated systems with cognitive abilities

    CERN Document Server

    Vongbunyong, Supachai

    2015-01-01

    This book presents a number of aspects to be considered in the development of disassembly automation, including the mechanical system, vision system and intelligent planner. The implementation of cognitive robotics increases the flexibility and degree of autonomy of the disassembly system. Disassembly, as a step in the treatment of end-of-life products, can allow the recovery of embodied value left within disposed products, as well as the appropriate separation of potentially-hazardous components. In the end-of-life treatment industry, disassembly has largely been limited to manual labor, which is expensive in developed countries. Automation is one possible solution for economic feasibility. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  14. ACCOUNTING AUTOMATIONS RISKS

    OpenAIRE

    Муравський, В. В.; Хома, Н. Г.

    2015-01-01

    Accountant accepts active voice in organization of the automated account in the conditions of the informative systems introduction in enterprise activity. Effective accounting automation needs identification and warning of organizational risks. Authors researched, classified and generalized the risks of introduction of the informative accounting systems. The ways of liquidation of the organizational risks sources andminimization of their consequences are gives. The method of the effective con...

  15. Instant Sikuli test automation

    CERN Document Server

    Lau, Ben

    2013-01-01

    Get to grips with a new technology, understand what it is and what it can do for you, and then get to work with the most important features and tasks. A concise guide written in an easy-to follow style using the Starter guide approach.This book is aimed at automation and testing professionals who want to use Sikuli to automate GUI. Some Python programming experience is assumed.

  16. Automated security management

    CERN Document Server

    Al-Shaer, Ehab; Xie, Geoffrey

    2013-01-01

    In this contributed volume, leading international researchers explore configuration modeling and checking, vulnerability and risk assessment, configuration analysis, and diagnostics and discovery. The authors equip readers to understand automated security management systems and techniques that increase overall network assurability and usability. These constantly changing networks defend against cyber attacks by integrating hundreds of security devices such as firewalls, IPSec gateways, IDS/IPS, authentication servers, authorization/RBAC servers, and crypto systems. Automated Security Managemen

  17. Automation of Diagrammatic Reasoning

    OpenAIRE

    Jamnik, Mateja; Bundy, Alan; Green, Ian

    1997-01-01

    Theorems in automated theorem proving are usually proved by logical formal proofs. However, there is a subset of problems which humans can prove in a different way by the use of geometric operations on diagrams, so called diagrammatic proofs. Insight is more clearly perceived in these than in the corresponding algebraic proofs: they capture an intuitive notion of truthfulness that humans find easy to see and understand. We are identifying and automating this diagrammatic reasoning on mathemat...

  18. Automated Lattice Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Monahan, Christopher

    2014-11-01

    I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.

  19. Marketing automation supporting sales

    OpenAIRE

    Sandell, Niko

    2016-01-01

    The past couple of decades has been a time of major changes in marketing. Digitalization has become a permanent part of marketing and at the same time enabled efficient collection of data. Personalization and customization of content are playing a crucial role in marketing when new customers are acquired. This has also created a need for automation to facilitate the distribution of targeted content. As a result of successful marketing automation more information of the customers is gathered ...

  20. Note: Professional grade microfluidics fabricated simply

    Science.gov (United States)

    Mohammad, Anna; Davis, Mark; Aprelev, Alexey; Ferrone, Frank A.

    2016-10-01

    Microfluidics has found increasingly wide usage in the research and teaching laboratory, but setting up a facility for its production has typically required either significant capital expense or sacrifice of quality. We present an approach to produce devices, without a clean room, using LEDs and spin-coaters, and plasma bonded using a commercial microwave oven. Submicron features can be readily reproduced with good fidelity.

  1. Predicting Droplet Formation on Centrifugal Microfluidic Platforms

    OpenAIRE

    Moebius, Jacob Alfred

    2015-01-01

    Centrifugal microfluidics is a widely known research tool for biological sample and water quality analysis. Currently, the standard equipment used for such diagnostic applications include slow, bulky machines controlled by multiple operators. These machines can be condensed into a smaller, faster benchtop sample-to-answer system.Sample processing is an important step taken to extract, isolate, and convert biological factors, such as nucleic acids or proteins, from a raw sample to an analyzabl...

  2. Micromechanical photothermal analyser of microfluidic samples

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a micromechanical photothermal analyser of microfluidic samples comprising an oblong micro-channel extending longitudinally from a support element, the micro-channel is made from at least two materials with different thermal expansion coefficients, wherein......, or infrared light, the specific light radiates into the channel through said light transparent material, the second material has a second thermal expansion coefficient being different from the first thermal expansion coefficient. The micromechanical photothermal analyser also comprises an irradiation source...

  3. Membrane-less microfiltration using inertial microfluidics

    OpenAIRE

    Majid Ebrahimi Warkiani; Andy Kah Ping Tay; Guofeng Guan; Jongyoon Han

    2015-01-01

    Microfiltration is a ubiquitous and often crucial part of many industrial processes, including biopharmaceutical manufacturing. Yet, all existing filtration systems suffer from the issue of membrane clogging, which fundamentally limits the efficiency and reliability of the filtration process. Herein, we report the development of a membrane-less microfiltration system by massively parallelizing inertial microfluidics to achieve a macroscopic volume processing rates (~ 500 mL/min). We demonstra...

  4. Fluid delivery manifolds and microfluidic systems

    Energy Technology Data Exchange (ETDEWEB)

    Renzi, Ronald F.; Sommer, Gregory J.; Singh, Anup K.; Hatch, Anson V.; Claudnic, Mark R.; Wang, Ying-Chih; Van de Vreugde, James L.

    2017-02-28

    Embodiments of fluid distribution manifolds, cartridges, and microfluidic systems are described herein. Fluid distribution manifolds may include an insert member and a manifold base and may define a substantially closed channel within the manifold when the insert member is press-fit into the base. Cartridges described herein may allow for simultaneous electrical and fluidic interconnection with an electrical multiplex board and may be held in place using magnetic attraction.

  5. Microfluidic Sensing Platforms for Medicine and Diagnostics

    DEFF Research Database (Denmark)

    Kiilerich-Pedersen, Katrine

    the specialized laboratory. Microfluidic cell migration devices, imitating in vivo conditions were developed with success, improving the in vitro experimental setup for basic research and drug discovery. Polymer biosensors have reached a new level of maturity, and pathogen detection could benefit from...... the integration of electrical sensors into low cost plastic microdevices pioneering point of care testing. The presented biosensing platforms have potential for scaling up towards high throughput screening, and are adaptable to other applications in medicine and diagnostics, and other fields....

  6. Multiplexed microfluidic approach for nucleic acid enrichment

    Energy Technology Data Exchange (ETDEWEB)

    VanderNoot, Victoria A.; Langevin, Stanley Alan; Bent, Zachary; Renzi, Ronald F.; Ferko, Scott M.; Van De Vreugde, James L.; Lane, Todd; Patel, Kamlesh; Branda, Steven

    2016-04-26

    A system for enhancing a nucleic acid sample may include a one pump, a denaturing chamber; a microfluidic hydroxyapatite chromatography device configured for performing hydroxyapatite chromatography on the nucleic acid sample, a sample collector, and tubing connecting the pump with the denaturing chamber, the hydroxyapatite chromatography device and the sample collector such that the pump may be used to move the nucleic acid sample from the denaturing chamber to the hydroxyapatite chromatography device and then to the sample collector.

  7. Elements of EAF automation processes

    Science.gov (United States)

    Ioana, A.; Constantin, N.; Dragna, E. C.

    2017-01-01

    Our article presents elements of Electric Arc Furnace (EAF) automation. So, we present and analyze detailed two automation schemes: the scheme of electrical EAF automation system; the scheme of thermic EAF automation system. The application results of these scheme of automation consists in: the sensitive reduction of specific consummation of electrical energy of Electric Arc Furnace, increasing the productivity of Electric Arc Furnace, increase the quality of the developed steel, increasing the durability of the building elements of Electric Arc Furnace.

  8. Microfluidic biosensing systems using magnetic nanoparticles.

    Science.gov (United States)

    Giouroudi, Ioanna; Keplinger, Franz

    2013-09-09

    In recent years, there has been rapidly growing interest in developing hand held, sensitive and cost-effective on-chip biosensing systems that directly translate the presence of certain bioanalytes (e.g., biomolecules, cells and viruses) into an electronic signal. The impressive and rapid progress in micro- and nanotechnology as well as in biotechnology enables the integration of a variety of analytical functions in a single chip. All necessary sample handling and analysis steps are then performed within the chip. Microfluidic systems for biomedical analysis usually consist of a set of units, which guarantees the manipulation, detection and recognition of bioanalytes in a reliable and flexible manner. Additionally, the use of magnetic fields for performing the aforementioned tasks has been steadily gaining interest. This is because magnetic fields can be well tuned and applied either externally or from a directly integrated solution in the biosensing system. In combination with these applied magnetic fields, magnetic nanoparticles are utilized. Some of the merits of magnetic nanoparticles are the possibility of manipulating them inside microfluidic channels by utilizing high gradient magnetic fields, their detection by integrated magnetic microsensors, and their flexibility due to functionalization by means of surface modification and specific binding. Their multi-functionality is what makes them ideal candidates as the active component in miniaturized on-chip biosensing systems. In this review, focus will be given to the type of biosening systems that use microfluidics in combination with magnetoresistive sensors and detect the presence of bioanalyte tagged with magnetic nanoparticles.

  9. A Microfluidic Platform for Interfacial Electrophoretic Deposition

    Science.gov (United States)

    Joung, Young Soo; Moran, Jeffrey; Jones, Andrew; Bailey, Eric; Buie, Cullen

    2014-11-01

    Composite membranes of hydrogel and carbon nanotubes (CNTs) are fabricated using electrophoretic deposition (EPD) at the interface of two immiscible liquids in microfluidic channels. Microfluidic channels, which have two parallel electrodes at the walls, are used to create electric fields across the interface of oil and water continuously supplied into the channels. Depending on the Reynolds (Re) and Weber (We) numbers of oil and water, we observe different formations of the interface. Once we find the optimal Re and We to create a planar interface in the channel, we apply an electric field across the interface for EPD of CNTs and/or silver (Ag) nanorods dispersed in water. During EPD, particles migrate to the oil/water interface, where cross-linking of polymers is induced to form composite hydrogel membranes. Properties of the composite hydrogel films are controlled by electric fields, CNT concentrations, and both Re and We numbers, allowing for continuous production. This fabrication method is effective to create composite polymer membranes placed in microfluidic devices with tunable electrical, mechanical, and biological properties. Potential applications include fabrication of doped hydrogels for drug delivery, conductive hydrogels for biological sensing, and electron permeable membranes for water splitting and osmotic power generation.

  10. Logic control of microfluidics with smart colloid

    KAUST Repository

    Wang, Limu

    2010-01-01

    We report the successful realization of a microfluidic chip with switching and corresponding inverting functionalities. The chips are identical logic control components incorporating a type of smart colloid, giant electrorheological fluid (GERF), which possesses reversible characteristics via a liquid-solid phase transition under external electric field. Two pairs of electrodes embedded on the sides of two microfluidic channels serve as signal input and output, respectively. One, located in the GERF micro-channel is used to control the flow status of GERF, while another one in the ither micro-fluidic channel is used to detect the signal generated with a passing-by droplet (defined as a signal droplet). Switching of the GERF from the suspended state (off-state) to the flowing state (on-state) or vice versa in the micro-channel is controlled by the appearance of signal droplets whenever they pass through the detection electrode. The output on-off signals can be easily demonstrated, clearly matching with GERF flow status. Our results show that such a logic switch is also a logic IF gate, while its inverter functions as a NOT gate. © The Royal Society of Chemistry 2010.

  11. Microfluidic Biosensing Systems Using Magnetic Nanoparticles

    Directory of Open Access Journals (Sweden)

    Franz Keplinger

    2013-09-01

    Full Text Available In recent years, there has been rapidly growing interest in developing hand held, sensitive and cost-effective on-chip biosensing systems that directly translate the presence of certain bioanalytes (e.g., biomolecules, cells and viruses into an electronic signal. The impressive and rapid progress in micro- and nanotechnology as well as in biotechnology enables the integration of a variety of analytical functions in a single chip. All necessary sample handling and analysis steps are then performed within the chip. Microfluidic systems for biomedical analysis usually consist of a set of units, which guarantees the manipulation, detection and recognition of bioanalytes in a reliable and flexible manner. Additionally, the use of magnetic fields for performing the aforementioned tasks has been steadily gaining interest. This is because magnetic fields can be well tuned and applied either externally or from a directly integrated solution in the biosensing system. In combination with these applied magnetic fields, magnetic nanoparticles are utilized. Some of the merits of magnetic nanoparticles are the possibility of manipulating them inside microfluidic channels by utilizing high gradient magnetic fields, their detection by integrated magnetic microsensors, and their flexibility due to functionalization by means of surface modification and specific binding. Their multi-functionality is what makes them ideal candidates as the active component in miniaturized on-chip biosensing systems. In this review, focus will be given to the type of biosening systems that use microfluidics in combination with magnetoresistive sensors and detect the presence of bioanalyte tagged with magnetic nanoparticles.

  12. Wearable tactile sensor based on flexible microfluidics.

    Science.gov (United States)

    Yeo, Joo Chuan; Yu, Jiahao; Koh, Zhao Ming; Wang, Zhiping; Lim, Chwee Teck

    2016-08-16

    In this work, we develop a liquid-based thin film microfluidic tactile sensor of high flexibility, robustness and sensitivity. The microfluidic elastomeric structure comprises a pressure sensitive region and parallel arcs that interface with screen-printed electrodes. The microfluidic sensor is functionalized with a highly conductive metallic liquid, eutectic gallium indium (eGaIn). Microdeformation on the pressure sensor results in fluid displacement which corresponds to a change in electrical resistance. By emulating parallel electrical circuitry in our microchannel design, we reduced the overall electrical resistance of the sensor, therefore enhancing its device sensitivity. Correspondingly, we report a device workable within a range of 4 to 100 kPa and sensitivity of up to 0.05 kPa(-1). We further demonstrate its robustness in withstanding >2500 repeated loading and unloading cycles. Finally, as a proof of concept, we demonstrate that the sensors may be multiplexed to detect forces at multiple regions of the hand. In particular, our sensors registered unique electronic signatures in object grasping, which could provide better assessment of finger dexterity.

  13. A metering rotary nanopump for microfluidic systems.

    Science.gov (United States)

    Darby, Scott G; Moore, Matthew R; Friedlander, Troy A; Schaffer, David K; Reiserer, Ron S; Wikswo, John P; Seale, Kevin T

    2010-12-07

    We describe the design, fabrication, and testing of a microfabricated metering rotary nanopump for the purpose of driving fluid flow in microfluidic devices. The miniature peristaltic pump is composed of a set of microfluidic channels wrapped in a helix around a central camshaft in which a non-cylindrical cam rotates. The cam compresses the helical channels to induce peristaltic flow as it is rotated. The polydimethylsiloxane (PDMS) nanopump design is able to produce intermittent delivery or removal of several nanolitres of fluid per revolution as well as consistent continuous flow rates ranging from as low as 15 nL min(-1) to above 1.0 µL min(-1). At back pressures encountered in typical microfluidic devices, the pump acts as a high impedance flow source. The durability, biocompatibility, ease of integration with soft-lithographic fabrication, the use of a simple rotary motor instead of multiple synchronized pneumatic or mechanical actuators, and the absence of power consumption or fluidic conductance in the resting state all contribute to a compact pump with a low cost of fabrication and versatile implementation. This suggests that the pump design may be useful for a wide variety of biological experiments and point of care devices.

  14. Electrostatic protein immobilization using charged polyacrylamide gels and cationic detergent microfluidic Western blotting.

    Science.gov (United States)

    Kim, Dohyun; Karns, Kelly; Tia, Samuel Q; He, Mei; Herr, Amy E

    2012-03-06

    We report a novel protein immobilization matrix for fully integrated microfluidic Western blotting (WB). The electrostatic immobilization gel (EIG) enables immobilization of all proteins sized using cetyl trimethylammonium bromide polyacrylamide gel electrophoresis (CTAB-PAGE), for subsequent electrophoretic probing with detection affinity reagents (e.g., labeled antibodies). The "pan-analyte" capture strategy introduced here uses polyacrylamide gel grafted with concentrated point charges (zwitterionic macromolecules), in contrast to existing microfluidic WB strategies that rely on a sandwich immunoassay format for analyte immobilization and detection. Sandwich approaches limit analyte immobilization to capture of only a priori known targets. A charge interaction mechanism study supports the hypothesis that electrostatic interaction plays a major role in analyte immobilization on the EIG. We note that protein capture efficiency depends on both the concentration of copolymerized charges and ionic strength of the gel buffer. We demonstrate pan-analyte immobilization of sized CTAB-laden model proteins (protein G, ovalbumin, bovine serum albumin, β-galactosidase, lactoferrin) on the EIG with initial capture efficiencies ranging from 21 to 100%. Target proteins fixed on the EIG (protein G, lactoferrin) are detected using antibody probes with signal-to-noise ratios of 34 to 275. The approach advances protein immunoblotting performance through 200× reduction on sample consumption, 12× reduction in assay duration, and automated assay operation, compared to slab-gel WB. Using the microfluidic WB assay, assessment of lactoferrin in human tear fluid is demonstrated with a goal of advancing toward nonbiopsy-based diagnosis of Sjögren's Syndrome, an autoimmune disease.

  15. Novel microfluidic system for online monitoring of biofilm dynamics by electrical impedance spectroscopy and amperometry

    Science.gov (United States)

    Bruchmann, Julia; Sachsenheimer, Kai; Schwartz, Thomas; Rapp, Bastian E.

    2016-03-01

    Biofilm formation is ubiquitous in nature where microorganisms attach to surfaces and form highly adapted and protected communities. In technical and industrial systems like drinking water supply, food production or shipping industry biofilms are a major cause of product contamination, biofouling, and biocorrosion. Therefore, understanding of biofilm formation and means of preventing biofilm formation is important to develop novel biofilm treatment strategies. A system allowing directly online detection and monitoring biofilm formation is necessary. However, until today, there are little to none technical systems featuring a non-destructive real-time characterization of biofilm formation in a highthroughput manner. This paper presents such a microfluidic system based on electrical impedance spectroscopy (EIS) and amperomertic current measurement. The sensor consists of four modules, each housing 24 independent electrodes within 12 microfluidic channels. Attached biomass on the electrodes is monitored as increased inhibition in charge transfer by EIS and a change in metabolic activity is measured as change in produced electric current by amperometry. This modular sensor system is highly adaptable and suitable for a broad range of microbiological applications. Among others, biofilm formation processes can be characterized online, biofilm manipulation like inactivation or destabilization can be monitored in real-time and gene expression can be analyzed in parallel. The use of different electrode designs allows effective biofilm studies during all biofilm phases. The whole system was recently extended by an integrated pneumatic microfluidic pump which enables easy handling procedures. Further developments of this pumping module will allow a fully- automated computer-controlled valving and pumping.

  16. Implementation of microfluidic sandwich ELISA for superior detection of plant pathogens.

    Directory of Open Access Journals (Sweden)

    Numrin Thaitrong

    Full Text Available Rapid and economical screening of plant pathogens is a high-priority need in the seed industry. Crop quality control and disease surveillance demand early and accurate detection in addition to robustness, scalability, and cost efficiency typically required for selective breeding and certification programs. Compared to conventional bench-top detection techniques routinely employed, a microfluidic-based approach offers unique benefits to address these needs simultaneously. To our knowledge, this work reports the first attempt to perform microfluidic sandwich ELISA for Acidovorax citrulli (Ac, watermelon silver mottle virus (WSMoV, and melon yellow spot virus (MYSV screening. The immunoassay occurs on the surface of a reaction chamber represented by a microfluidic channel. The capillary force within the microchannel draws a reagent into the reaction chamber as well as facilitates assay incubation. Because the underlying pad automatically absorbs excess fluid, the only operation required is sequential loading of buffers/reagents. Buffer selection, antibody concentrations, and sample loading scheme were optimized for each pathogen. Assay optimization reveals that the 20-folds lower sample volume demanded by the microchannel structure outweighs the 2- to 4-folds higher antibody concentrations required, resulting in overall 5-10 folds of reagent savings. In addition to cutting the assay time by more than 50%, the new platform offers 65% cost savings from less reagent consumption and labor cost. Our study also shows 12.5-, 2-, and 4-fold improvement in assay sensitivity for Ac, WSMoV, and MYSV, respectively. Practical feasibility is demonstrated using 19 real plant samples. Given a standard 96-well plate format, the developed assay is compatible with commercial fluorescent plate readers and readily amendable to robotic liquid handling systems for completely hand-free assay automation.

  17. Biologically Inspired Electronic, Photovoltaic and Microfluidic Devices Based on Aqueous Soft Matter

    Science.gov (United States)

    Koo, Hyung Jun

    molecules. To reduce the fabrication cost without efficiency loss, we found an inexpensive replacement of the expensive Pt counter-electrode with copper coated with carbon materials. Biologically derived photoactive molecules, such as Chlorophyll and Photosystem II, were successfully operated in the aqueous gel of such HGPVs. As a proof of demonstration of biomimetic structures, a light driven biomimetic reactor was developed by using hydrogel media with embedded photocatalytic TiO2 nanoparticles. Uniform supply of the reactants and extraction of the products was accomplished via a microfluidic channel network, broadly similar to the vein structure of live leaves. The dyes were transported in the gel between the microchannels and degraded by photocatalytic oxidation by the illuminated TiO2 particles. Quantitative analysis of the photocatalytic degradation rate of the injected dyes revealed that the microvascular reactor has high quantum efficiency per catalyst mass. Numerical modeling was performed to explore how a soluble reagent could be supplied rapidly and efficiently through microfluidic channel networks embedded in hydrogels. The computational model takes into account the fluid transport in porous media and the solute convection and diffusion, to simulate the solute distribution and outflux with time in microfluidic hydrogel media. The effect of the channel dimensions and shapes on mass transport rapidity and efficiency was quantitatively evaluated. Experimental data proved the validity of the time dependent concentration profile calculated by the simulation. Lastly, a microfluidic hydrogel solar cell with biomimetic regeneration functionality was demonstrated as a result of the above experimental and modeling studies. A new concept of open and replenishable photovoltaics was constructed on the basis of dye-sensitized solar cells. Photovoltaic reagents, dyes and redox electrolytes, were uniformly delivered via microfluidic networks embedded in a hydrogel, resulting in

  18. Microfluidic Platform versus Conventional Real-time PCR for the Detection of Mycoplasma pneumoniae in Respiratory Specimens

    Science.gov (United States)

    Wulff-Burchfield, Elizabeth; Schell, Wiley A.; Eckhardt, Allen E.; Pollack, Michael G.; Hua, Zhishan; Rouse, Jeremy L.; Pamula, Vamsee K.; Srinivasan, Vijay; Benton, Jonathan L.; Alexander, Barbara D.; Wilfret, David A.; Kraft, Monica; Cairns, Charles; Perfect, John R.; Mitchell, Thomas G.

    2010-01-01

    Rapid, accurate diagnosis of community-acquired pneumonia (CAP) due to Mycoplasma pneumoniae is compromised by low sensitivity of culture and serology. PCR has emerged as a sensitive method to detect M. pneumoniae DNA in clinical specimens. However, conventional real-time PCR is not cost-effective for routine out-patient or implementation. Here, we evaluate a novel microfluidic real-time PCR platform (Advanced Liquid Logic, Inc.) that is rapid, portable, and fully automated. We enrolled patients with CAP and extracted DNA from nasopharyngeal wash (NPW) specimens using a biotinylated capture probe and streptavidin-coupled magnetic beads. Each extract was tested for M. pneumoniae-specific DNA by real-time PCR on both conventional and microfluidic platforms using Taqman probe and primers. Three of 59 (5.0%) NPWs were positive, and agreement between the methods was 98%. The microfluidic platform was equally sensitive but three times faster and offers an inexpensive and convenient diagnostic test for microbial DNA. PMID:20227222

  19. A controlled microfluidic electrochemical lab-on-a-chip for label-free diffusion-restricted DNA hybridization analysis.

    Science.gov (United States)

    Ben-Yoav, Hadar; Dykstra, Peter H; Bentley, William E; Ghodssi, Reza

    2015-02-15

    Lab-on-a-chip (LOC) devices for electrochemical analysis of DNA hybridization events offer a technology for real-time and label-free assessment of biomarkers at the point-of-care. Here, we present a microfluidic LOC, with 3 × 3 arrayed electrochemical sensors for the analysis of DNA hybridization events. A new dual layer microfluidic valved manipulation system is integrated providing controlled and automated capabilities for high throughput analysis. This feature improves the repeatability, accuracy, and overall sensing performance (Fig. 1). The electrochemical activity of the fabricated microfluidic device is validated and demonstrated repeatable and reversible Nernstian characteristics. System design required detailed analysis of energy storage and dissipation as our sensing modeling involves diffusion-related electrochemical impedance spectroscopy. The effect of DNA hybridization on the calculated charge transfer resistance and the diffusional resistance components is evaluated. We demonstrate a specific device with an average cross-reactivity value of 27.5%. The device yields semilogarithmic dose response and enables a theoretical detection limit of 1 nM of complementary ssDNA target. This limit is lower than our previously reported non-valved device by 74% due to on-chip valve integration providing controlled and accurate assay capabilities.

  20. Pulsatile microfluidics as an analytical tool for determining the dynamic characteristics of microfluidic systems

    DEFF Research Database (Denmark)

    Vedel, Søren; Olesen, Laurits Højgaard; Bruus, Henrik

    2010-01-01

    An understanding of all fluid dynamic time scales is needed to fully understand and hence exploit the capabilities of fluid flow in microfluidic systems. We propose the use of harmonically oscillating microfluidics as an analytical tool for the deduction of these time scales. Furthermore, we...... suggest the use of system-level equivalent circuit theory as an adequate theory of the behavior of the system. A novel pressure source capable of operation in the desired frequency range is presented for this generic analysis. As a proof of concept, we study the fairly complex system of water...