WorldWideScience

Sample records for automated high-throughput cultivations

  1. High-throughput cultivation and screening platform for unicellular phototrophs

    OpenAIRE

    Tillich, Ulrich M; Wolter, Nick; Schulze, Katja; Kramer, Dan; Brödel, Oliver; Frohme, Marcus

    2014-01-01

    Background High-throughput cultivation and screening methods allow a parallel, miniaturized and cost efficient processing of many samples. These methods however, have not been generally established for phototrophic organisms such as microalgae or cyanobacteria. Results In this work we describe and test high-throughput methods with the model organism Synechocystis sp. PCC6803. The required technical automation for these processes was achieved with a Tecan Freedom Evo 200 pipetting robot. The c...

  2. High throughput Single-cell Cultivation on Microfluidic Streak Plates

    OpenAIRE

    Jiang, Cheng-Ying; Dong, Libing; Zhao, Jian-Kang; Hu, Xiaofang; Shen, Chaohua; Qiao, Yuxin; Zhang, Xinyue; Wang, Yapei; Ismagilov, Rustem F.; Liu, Shuang-Jiang; Du, Wenbin

    2016-01-01

    This paper describes the microfluidic streak plate (MSP), a facile method for high-throughput microbial cell separation and cultivation in nanoliter sessile droplets. The MSP method builds upon the conventional streak plate technique by using microfluidic devices to generate nanoliter droplets that can be streaked manually or robotically onto petri dishes prefilled with carrier oil for cultivation of single cells. In addition, chemical gradients could be encoded in the droplet array for compr...

  3. A fully automated high-throughput training system for rodents.

    Directory of Open Access Journals (Sweden)

    Rajesh Poddar

    Full Text Available Addressing the neural mechanisms underlying complex learned behaviors requires training animals in well-controlled tasks, an often time-consuming and labor-intensive process that can severely limit the feasibility of such studies. To overcome this constraint, we developed a fully computer-controlled general purpose system for high-throughput training of rodents. By standardizing and automating the implementation of predefined training protocols within the animal's home-cage our system dramatically reduces the efforts involved in animal training while also removing human errors and biases from the process. We deployed this system to train rats in a variety of sensorimotor tasks, achieving learning rates comparable to existing, but more laborious, methods. By incrementally and systematically increasing the difficulty of the task over weeks of training, rats were able to master motor tasks that, in complexity and structure, resemble ones used in primate studies of motor sequence learning. By enabling fully automated training of rodents in a home-cage setting this low-cost and modular system increases the utility of rodents for studying the neural underpinnings of a variety of complex behaviors.

  4. Photobioreactor Technologies for High-throughput Microalgae Cultivation

    OpenAIRE

    Ojo, E. O.

    2015-01-01

    The evaluation and optimisation of microalgae cultivation process for biomass, lipid and high value chemicals production requires experimental investigation of several interacting variables. This thesis addresses the development of a range of small-scale photobioreactor technologies and shows how they can be applied for rapid, early stage evaluation and scale-up of microalgae cultivation processes. In particular, the work focuses on the engineering evaluation of a novel shaken miniature photo...

  5. Automated system for combinatorial synthesis and high-throughput characterization of polymeric sensor materials

    OpenAIRE

    Kulikov, Valentin

    2007-01-01

    In this thesis, an automated system for combinatorial synthesis and high throughput investigation of electrical properties of conductive polymers is described. The equipment provides a polymerization of defined mixtures of monomers into a thin layer on the addressed work electrodes of a direct electrode array. It is followed by high-throughput screening of current voltage characteristics according to the developed measurement protocol. The electrodes with an interdigital configuration were sp...

  6. An industrial engineering approach to laboratory automation for high throughput screening

    OpenAIRE

    Karl C. Menke

    2000-01-01

    Across the pharmaceutical industry, there are a variety of approaches to laboratory automation for high throughput screening. At Sphinx Pharmaceuticals, the principles of industrial engineering have been applied to systematically identify and develop those automated solutions that provide the greatest value to the scientists engaged in lead generation.

  7. High-Throughput Single-Cell Cultivation on Microfluidic Streak Plates.

    Science.gov (United States)

    Jiang, Cheng-Ying; Dong, Libing; Zhao, Jian-Kang; Hu, Xiaofang; Shen, Chaohua; Qiao, Yuxin; Zhang, Xinyue; Wang, Yapei; Ismagilov, Rustem F; Liu, Shuang-Jiang; Du, Wenbin

    2016-04-01

    This paper describes the microfluidic streak plate (MSP), a facile method for high-throughput microbial cell separation and cultivation in nanoliter sessile droplets. The MSP method builds upon the conventional streak plate technique by using microfluidic devices to generate nanoliter droplets that can be streaked manually or robotically onto petri dishes prefilled with carrier oil for cultivation of single cells. In addition, chemical gradients could be encoded in the droplet array for comprehensive dose-response analysis. The MSP method was validated by using single-cell isolation of Escherichia coli and antimicrobial susceptibility testing of Pseudomonas aeruginosa PAO1. The robustness of the MSP work flow was demonstrated by cultivating a soil community that degrades polycyclic aromatic hydrocarbons. Cultivation in droplets enabled detection of the richest species diversity with better coverage of rare species. Moreover, isolation and cultivation of bacterial strains by MSP led to the discovery of several species with high degradation efficiency, including four Mycobacterium isolates and a previously unknown fluoranthene-degrading Blastococcus species. PMID:26850294

  8. Automated High Throughput Protein Crystallization Screening at Nanoliter Scale and Protein Structural Study on Lactate Dehydrogenase

    Energy Technology Data Exchange (ETDEWEB)

    Fenglei Li

    2006-08-09

    The purposes of our research were: (1) To develop an economical, easy to use, automated, high throughput system for large scale protein crystallization screening. (2) To develop a new protein crystallization method with high screening efficiency, low protein consumption and complete compatibility with high throughput screening system. (3) To determine the structure of lactate dehydrogenase complexed with NADH by x-ray protein crystallography to study its inherent structural properties. Firstly, we demonstrated large scale protein crystallization screening can be performed in a high throughput manner with low cost, easy operation. The overall system integrates liquid dispensing, crystallization and detection and serves as a whole solution to protein crystallization screening. The system can dispense protein and multiple different precipitants in nanoliter scale and in parallel. A new detection scheme, native fluorescence, has been developed in this system to form a two-detector system with a visible light detector for detecting protein crystallization screening results. This detection scheme has capability of eliminating common false positives by distinguishing protein crystals from inorganic crystals in a high throughput and non-destructive manner. The entire system from liquid dispensing, crystallization to crystal detection is essentially parallel, high throughput and compatible with automation. The system was successfully demonstrated by lysozyme crystallization screening. Secondly, we developed a new crystallization method with high screening efficiency, low protein consumption and compatibility with automation and high throughput. In this crystallization method, a gas permeable membrane is employed to achieve the gentle evaporation required by protein crystallization. Protein consumption is significantly reduced to nanoliter scale for each condition and thus permits exploring more conditions in a phase diagram for given amount of protein. In addition

  9. Automated system for high-throughput protein production using the dialysis cell-free method.

    Science.gov (United States)

    Aoki, Masaaki; Matsuda, Takayoshi; Tomo, Yasuko; Miyata, Yukako; Inoue, Makoto; Kigawa, Takanori; Yokoyama, Shigeyuki

    2009-12-01

    High-throughput protein production systems have become an important issue, because protein production is one of the bottleneck steps in large-scale structural and functional analyses of proteins. We have developed a dialysis reactor and a fully automated system for protein production using the dialysis cell-free synthesis method, which we previously established to produce protein samples on a milligram scale in a high-throughput manner. The dialysis reactor was designed to be suitable for an automated system and has six dialysis cups attached to a flat dialysis membrane. The automated system is based on a Tecan Freedom EVO 200 workstation in a three-arm configuration, and is equipped with shaking incubators, a vacuum module, a robotic centrifuge, a plate heat sealer, and a custom-made tilting carrier for collection of reaction solutions from the flat-bottom cups with dialysis membranes. The consecutive process, from the dialysis cell-free protein synthesis to the partial purification by immobilized metal affinity chromatography on a 96-well filtration plate, was performed within ca. 14h, including 8h of cell-free protein synthesis. The proteins were eluted stepwise in a high concentration using EDTA by centrifugation, while the resin in the filtration plate was washed on the vacuum manifold. The system was validated to be able to simultaneously and automatically produce up to 96 proteins in yields of several milligrams with high well-to-well reliability, sufficient for structural and functional analyses of proteins. The protein samples produced by the automated system have been utilized for NMR screening to judge the protein foldedness and for structure determinations using heteronuclear multi-dimensional NMR spectroscopy. The automated high-throughput protein production system represents an important breakthrough in the structural and functional studies of proteins and has already contributed a massive amount of results in the structural genomics project at the

  10. OptoDyCE: Automated system for high-throughput all-optical dynamic cardiac electrophysiology

    Science.gov (United States)

    Klimas, Aleksandra; Yu, Jinzhu; Ambrosi, Christina M.; Williams, John C.; Bien, Harold; Entcheva, Emilia

    2016-02-01

    In the last two decades, technologies employing stem-cell derived cardiomyocytes (e.g. induced pluripotent stem-cell-derived cardiomyocytes, iPSC-CMs) require better screening methods to become practical. However, a high-throughput, cost-effective approach for cellular cardiac electrophysiology has not been feasible. Optical techniques for manipulation and recording provide a contactless means of dynamic, high-throughput testing of cells and tissues. Here, we consider the requirements for all-optical electrophysiology for drug testing, and we implement and validate OptoDyCE, a fully automated system for all-optical cardiac electrophysiology. We demonstrate the high-throughput capabilities using multicellular samples in 96-well format by combining optogenetic actuation with simultaneous fast high-resolution optical sensing of voltage or intracellular calcium. The system can also be implemented using iPSC-CMs and other cell-types by delivery of optogenetic drivers, or through the modular use of dedicated light-sensitive somatic cells in conjunction with non-modified cells. OptoDyCE provides a truly modular and dynamic screening system, capable of fully-automated acquisition of high-content information integral for improved discovery and development of new drugs and biologics, as well as providing a means of better understanding of electrical disturbances in the heart.

  11. An Automated High Throughput Proteolysis and Desalting Platform for Quantitative Proteomic Analysis

    Directory of Open Access Journals (Sweden)

    Albert-Baskar Arul

    2013-06-01

    Full Text Available Proteomics for biomarker validation needs high throughput instrumentation to analyze huge set of clinical samples for quantitative and reproducible analysis at a minimum time without manual experimental errors. Sample preparation, a vital step in proteomics plays a major role in identification and quantification of proteins from biological samples. Tryptic digestion a major check point in sample preparation for mass spectrometry based proteomics needs to be more accurate with rapid processing time. The present study focuses on establishing a high throughput automated online system for proteolytic digestion and desalting of proteins from biological samples quantitatively and qualitatively in a reproducible manner. The present study compares online protein digestion and desalting of BSA with conventional off-line (in-solution method and validated for real time sample for reproducibility. Proteins were identified using SEQUEST data base search engine and the data were quantified using IDEALQ software. The present study shows that the online system capable of handling high throughput samples in 96 well formats carries out protein digestion and peptide desalting efficiently in a reproducible and quantitative manner. Label free quantification showed clear increase of peptide quantities with increase in concentration with much linearity compared to off line method. Hence we would like to suggest that inclusion of this online system in proteomic pipeline will be effective in quantification of proteins in comparative proteomics were the quantification is really very crucial.

  12. A cell-based high-throughput screening assay for radiation susceptibility using automated cell counting

    International Nuclear Information System (INIS)

    Radiotherapy is one of the mainstays in the treatment for cancer, but its success can be limited due to inherent or acquired resistance. Mechanisms underlying radioresistance in various cancers are poorly understood and available radiosensitizers have shown only modest clinical benefit. There is thus a need to identify new targets and drugs for more effective sensitization of cancer cells to irradiation. Compound and RNA interference high-throughput screening technologies allow comprehensive enterprises to identify new agents and targets for radiosensitization. However, the gold standard assay to investigate radiosensitivity of cancer cells in vitro, the colony formation assay (CFA), is unsuitable for high-throughput screening. We developed a new high-throughput screening method for determining radiation susceptibility. Fast and uniform irradiation of batches up to 30 microplates was achieved using a Perspex container and a clinically employed linear accelerator. The readout was done by automated counting of fluorescently stained nuclei using the Acumen eX3 laser scanning cytometer. Assay performance was compared to that of the CFA and the CellTiter-Blue homogeneous uniform-well cell viability assay. The assay was validated in a whole-genome siRNA library screening setting using PC-3 prostate cancer cells. On 4 different cancer cell lines, the automated cell counting assay produced radiation dose response curves that followed a linear-quadratic equation and that exhibited a better correlation to the results of the CFA than did the cell viability assay. Moreover, the cell counting assay could be used to detect radiosensitization by silencing DNA-PKcs or by adding caffeine. In a high-throughput screening setting, using 4 Gy irradiated and control PC-3 cells, the effects of DNA-PKcs siRNA and non-targeting control siRNA could be clearly discriminated. We developed a simple assay for radiation susceptibility that can be used for high-throughput screening. This will aid

  13. Twenty-four-well plate miniature bioreactor high-throughput system: assessment for microbial cultivations.

    Science.gov (United States)

    Isett, Kevin; George, Hugh; Herber, Wayne; Amanullah, Ashraf

    2007-12-01

    High-throughput (HT) miniature bioreactor (MBR) systems are becoming increasingly important to rapidly perform clonal selection, strain improvement screening, and culture media and process optimization. This study documents the initial assessment of a 24-well plate MBR system, Micro (micro)-24, for Saccharomyces cerevisiae, Escherichia coli, and Pichia pastoris cultivations. MBR batch cultivations for S. cerevisiae demonstrated comparable growth to a 20-L stirred tank bioreactor fermentation by off-line metabolite and biomass analyses. High inter-well reproducibility was observed for process parameters such as on-line temperature, pH and dissolved oxygen. E. coli and P. pastoris strains were also tested in this MBR system under conditions of rapidly increasing oxygen uptake rates (OUR) and at high cell densities, thus requiring the utilization of gas blending for dissolved oxygen and pH control. The E. coli batch fermentations challenged the dissolved oxygen and pH control loop as demonstrated by process excursions below the control set-point during the exponential growth phase on dextrose. For P. pastoris fermentations, the micro-24 was capable of controlling dissolved oxygen, pH, and temperature under batch and fed-batch conditions with subsequent substrate shot feeds and supported biomass levels of 278 g/L wet cell weight (wcw). The average oxygen mass transfer coefficient per non-sparged well were measured at 32.6 +/- 2.4, 46.5 +/- 4.6, 51.6 +/- 3.7, and 56.1 +/- 1.6 h(-1) at the operating conditions of 500, 600, 700, and 800 rpm shaking speed, respectively. The mixing times measured for the agitation settings 500 and 800 rpm were below 5 and 1 s, respectively. PMID:17486656

  14. The Protein Maker: an automated system for high-throughput parallel purification

    International Nuclear Information System (INIS)

    The Protein Maker instrument addresses a critical bottleneck in structural genomics by allowing automated purification and buffer testing of multiple protein targets in parallel with a single instrument. Here, the use of this instrument to (i) purify multiple influenza-virus proteins in parallel for crystallization trials and (ii) identify optimal lysis-buffer conditions prior to large-scale protein purification is described. The Protein Maker is an automated purification system developed by Emerald BioSystems for high-throughput parallel purification of proteins and antibodies. This instrument allows multiple load, wash and elution buffers to be used in parallel along independent lines for up to 24 individual samples. To demonstrate its utility, its use in the purification of five recombinant PB2 C-terminal domains from various subtypes of the influenza A virus is described. Three of these constructs crystallized and one diffracted X-rays to sufficient resolution for structure determination and deposition in the Protein Data Bank. Methods for screening lysis buffers for a cytochrome P450 from a pathogenic fungus prior to upscaling expression and purification are also described. The Protein Maker has become a valuable asset within the Seattle Structural Genomics Center for Infectious Disease (SSGCID) and hence is a potentially valuable tool for a variety of high-throughput protein-purification applications

  15. The Stanford Automated Mounter: Enabling High-Throughput Protein Crystal Screening at SSRL

    International Nuclear Information System (INIS)

    The macromolecular crystallography experiment lends itself perfectly to high-throughput technologies. The initial steps including the expression, purification, and crystallization of protein crystals, along with some of the later steps involving data processing and structure determination have all been automated to the point where some of the last remaining bottlenecks in the process have been crystal mounting, crystal screening, and data collection. At the Stanford Synchrotron Radiation Laboratory, a National User Facility that provides extremely brilliant X-ray photon beams for use in materials science, environmental science, and structural biology research, the incorporation of advanced robotics has enabled crystals to be screened in a true high-throughput fashion, thus dramatically accelerating the final steps. Up to 288 frozen crystals can be mounted by the beamline robot (the Stanford Auto-Mounting System) and screened for diffraction quality in a matter of hours without intervention. The best quality crystals can then be remounted for the collection of complete X-ray diffraction data sets. Furthermore, the entire screening and data collection experiment can be controlled from the experimenter's home laboratory by means of advanced software tools that enable network-based control of the highly automated beamlines.

  16. An Automated, High-Throughput System for GISAXS and GIWAXS measurements of thin films

    Science.gov (United States)

    Schaible, Eric; Jimenez, Jessica; Church, Matthew; Lim, Eunhee; Stewart, Polite; Hexemer, Alexander

    Grazing incidence small-angle X-ray scattering (GISAXS) and grazing incidence wide-angle X-ray scattering (GIWAXS) are important techniques for characterizing thin films. In order to meet rapidly increasing demand, the SAXSWAXS beamline at the Advanced Light Source (beamline 7.3.3) has implemented a fully automated, high-throughput system to conduct SAXS, GISAXS and GIWAXS measurements. An automated robot arm transfers samples from a holding tray to a measurement stage. Intelligent software aligns each sample in turn, and measures each according to user-defined specifications. Users mail in trays of samples on individually barcoded pucks, and can download and view their data remotely. Data will be pipelined to the NERSC supercomputing facility, and will be available to users via a web portal that facilitates highly parallelized analysis. Support provided by the Joint Center for Artificial Photosynthesis (JCAP).

  17. An Automated, High-Throughput System for GISAXS and GIWAXS Measurements

    Science.gov (United States)

    Schaible, Eric; Jimenez, Jessica; Lim, Eun Hee; Church, Matthew; Yee, Christina; Stewart, Polite; MacDowell, Alastair; Parkinson, Dula; Domning, Ed; Yang, Lee; Alvarez, Steven; Hexemer, Alexander

    2014-03-01

    Grazing incidence small-angle X-ray scattering (GISAXS) and grazing incidence wide-angle X-ray scattering (GIWAXS) are important techniques for characterizing thin films. In order to meet rapidly increasing demand, the SAXSWAXS beamline at the Advanced Light Source (beamline 7.3.3) is implementing a fully automated, high-throughput system to conduct SAXS, GISAXS and GIWAXS measurements. An automated robot arm will transfer samples from a holding tray to a measurement stage. Intelligent software will align each sample in turn, and measure each according to user-defined specifications. Users will be able to mail in trays of samples, and will be able to monitor and control their experiments remotely. Data will be pipelined to the NERSC supercomputing facility, and will be available to users via a web portal that facilitates highly parallelized analysis. Support provided by the Joint Center for Artificial Photosynthesis (JCAP).

  18. Replication methods and tools in high-throughput cultivation processes - recognizing potential variations of growth and product formation by on-line monitoring

    Directory of Open Access Journals (Sweden)

    Luft Karina

    2010-03-01

    Full Text Available Abstract Background High-throughput cultivations in microtiter plates are the method of choice to express proteins from recombinant clone libraries. Such processes typically include several steps, whereby some of them are linked by replication steps: transformation, plating, colony picking, preculture, main culture and induction. In this study, the effects of conventional replication methods and replication tools (8-channel pipette, 96-pin replicators: steel replicator with fixed or spring-loaded pins, plastic replicator with fixed pins on growth kinetics of Escherichia coli SCS1 pQE-30 pSE111 were observed. Growth was monitored with the BioLector, an on-line monitoring technique for microtiter plates. Furthermore, the influence of these effects on product formation of Escherichia coli pRhotHi-2-EcFbFP was investigated. Finally, a high-throughput cultivation process was simulated with Corynebacterium glutamicum pEKEx2-phoD-GFP, beginning at the colony picking step. Results Applying different replication tools and methods for one single strain resulted in high time differences of growth of the slowest and fastest growing culture. The shortest time difference (0.3 h was evaluated for the 96 cultures that were transferred with an 8-channel pipette from a thawed and mixed cryoculture and the longest time difference (6.9 h for cultures that were transferred with a steel replicator with fixed pins from a frozen cryoculture. The on-line monitoring of a simulated high-throughput cultivation process revealed strong variances in growth kinetics and a twofold difference in product formation. Another experiment showed that varying growth kinetics, caused by varying initial biomass concentrations (OD600 of 0.0125 to 0.2 led to strongly varying product formation upon induction at a defined point of time. Conclusions To improve the reproducibility of high-throughput cultivation processes and the comparability between different applied cultures, it is strongly

  19. High-throughput automated dissolution method applicable for a wide dose range of controlled release pellets.

    Science.gov (United States)

    Petruševska, Marija; Horvat, Matej; Peternel, Luka; Kristan, Katja

    2016-07-01

    The aim of the present study was to demonstrate the application of an automated high-throughput (HT) dissolution method as a useful screening tool for characterization of controlled release pellets in the formulation development phase. Five controlled release pellet formulations with drug substances exhibiting high or low solubility were chosen to investigate the correlation of the automated HT dissolution method with the conventional dissolution testing. Overall, excellent correlations (R(2 )>( )0.96) between the HT and the conventional dissolution method were obtained. In one case the initial unsatisfactory correlation (R(2 )=( )0.84) and poor method agreement (SD = 12.5) was improved by optimizing the HT dissolution method with design of experiment approach. Here in comparison to initial experimental HT dissolution settings, increased amount of pellets (25% of the capsule filling mass), lower temperature (22 °C) and no shaking resulted in significantly better correlation (R(2 )=( )0.97) and method agreement (SD = 5.3). These results show that such optimization is valuable for the development of HT dissolution methods. In conclusion, the high correlation of dissolution profiles obtained from the conventional and the automated HT dissolution method combined with low within-sample and measurement system variability, justifies the utilization of the automated HT dissolution method during development phase of controlled release pellets. PMID:26552838

  20. High Throughput Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s high throughput facility provides highly automated and parallel approaches to material and materials chemistry development. The facility allows scientists...

  1. Improvement of an automated protein crystal exchange system PAM for high-throughput data collection

    International Nuclear Information System (INIS)

    A special liquid-nitrogen Dewar with double capacity for the sample-exchange robot has been created at AR-NE3A at the Photon Factory, allowing continuous fully automated data collection. In this work, this new system is described and the stability of its calibration is discussed. Photon Factory Automated Mounting system (PAM) protein crystal exchange systems are available at the following Photon Factory macromolecular beamlines: BL-1A, BL-5A, BL-17A, AR-NW12A and AR-NE3A. The beamline AR-NE3A has been constructed for high-throughput macromolecular crystallography and is dedicated to structure-based drug design. The PAM liquid-nitrogen Dewar can store a maximum of three SSRL cassettes. Therefore, users have to interrupt their experiments and replace the cassettes when using four or more of them during their beam time. As a result of investigation, four or more cassettes were used in AR-NE3A alone. For continuous automated data collection, the size of the liquid-nitrogen Dewar for the AR-NE3A PAM was increased, doubling the capacity. In order to check the calibration with the new Dewar and the cassette stand, calibration experiments were repeatedly performed. Compared with the current system, the parameters of the novel system are shown to be stable

  2. Development of automated high throughput single molecular microfluidic detection platform for signal transduction analysis

    Science.gov (United States)

    Huang, Po-Jung; Baghbani Kordmahale, Sina; Chou, Chao-Kai; Yamaguchi, Hirohito; Hung, Mien-Chie; Kameoka, Jun

    2016-03-01

    Signal transductions including multiple protein post-translational modifications (PTM), protein-protein interactions (PPI), and protein-nucleic acid interaction (PNI) play critical roles for cell proliferation and differentiation that are directly related to the cancer biology. Traditional methods, like mass spectrometry, immunoprecipitation, fluorescence resonance energy transfer, and fluorescence correlation spectroscopy require a large amount of sample and long processing time. "microchannel for multiple-parameter analysis of proteins in single-complex (mMAPS)"we proposed can reduce the process time and sample volume because this system is composed by microfluidic channels, fluorescence microscopy, and computerized data analysis. In this paper, we will present an automated mMAPS including integrated microfluidic device, automated stage and electrical relay for high-throughput clinical screening. Based on this result, we estimated that this automated detection system will be able to screen approximately 150 patient samples in a 24-hour period, providing a practical application to analyze tissue samples in a clinical setting.

  3. Spatiotemporal microbial single-cell analysis using a high-throughput microfluidics cultivation platform.

    Science.gov (United States)

    Grünberger, Alexander; Probst, Christopher; Helfrich, Stefan; Nanda, Arun; Stute, Birgit; Wiechert, Wolfgang; von Lieres, Eric; Nöh, Katharina; Frunzke, Julia; Kohlheyer, Dietrich

    2015-12-01

    Cell-to-cell heterogeneity typically evolves due to a manifold of biological and environmental factors and special phenotypes are often relevant for the fate of the whole population but challenging to detect during conventional analysis. We demonstrate a microfluidic single-cell cultivation platform that incorporates several hundred growth chambers, in which isogenic bacteria microcolonies growing in cell monolayers are tracked by automated time-lapse microscopy with spatiotemporal resolution. The device was not explicitly developed for a specific organism, but has a very generic configuration suitable for various different microbial organisms. In the present study, we analyzed Corynebacterium glutamicum microcolonies, thereby generating complete lineage trees and detailed single-cell data on division behavior and morphology in order to demonstrate the platform's overall capabilities. Furthermore, the occurrence of spontaneously induced stress in individual C. glutamicum cells was investigated by analyzing strains with genetically encoded reporter systems and optically visualizing SOS response. The experiments revealed spontaneous SOS induction in the absence of any external trigger comparable to results obtained by flow cytometry (FC) analyzing cell samples from conventional shake flask cultivation. Our microfluidic setup delivers detailed single-cell data with spatial and temporal resolution; complementary information to conventional FC results. PMID:26348020

  4. Automated degenerate PCR primer design for high-throughput sequencing improves efficiency of viral sequencing

    Directory of Open Access Journals (Sweden)

    Li Kelvin

    2012-11-01

    Full Text Available Abstract Background In a high-throughput environment, to PCR amplify and sequence a large set of viral isolates from populations that are potentially heterogeneous and continuously evolving, the use of degenerate PCR primers is an important strategy. Degenerate primers allow for the PCR amplification of a wider range of viral isolates with only one set of pre-mixed primers, thus increasing amplification success rates and minimizing the necessity for genome finishing activities. To successfully select a large set of degenerate PCR primers necessary to tile across an entire viral genome and maximize their success, this process is best performed computationally. Results We have developed a fully automated degenerate PCR primer design system that plays a key role in the J. Craig Venter Institute’s (JCVI high-throughput viral sequencing pipeline. A consensus viral genome, or a set of consensus segment sequences in the case of a segmented virus, is specified using IUPAC ambiguity codes in the consensus template sequence to represent the allelic diversity of the target population. PCR primer pairs are then selected computationally to produce a minimal amplicon set capable of tiling across the full length of the specified target region. As part of the tiling process, primer pairs are computationally screened to meet the criteria for successful PCR with one of two described amplification protocols. The actual sequencing success rates for designed primers for measles virus, mumps virus, human parainfluenza virus 1 and 3, human respiratory syncytial virus A and B and human metapneumovirus are described, where >90% of designed primer pairs were able to consistently successfully amplify >75% of the isolates. Conclusions Augmenting our previously developed and published JCVI Primer Design Pipeline, we achieved similarly high sequencing success rates with only minor software modifications. The recommended methodology for the construction of the consensus

  5. A high-throughput automated platform for the development of manufacturing cell lines for protein therapeutics.

    Science.gov (United States)

    Shi, Shuangping; Condon, Russ G G; Deng, Liang; Saunders, Jason; Hung, Finn; Tsao, Yung-Shyeng; Liu, Zhong

    2011-01-01

    The fast-growing biopharmaceutical industry demands speedy development of highly efficient and reliable production systems to meet the increasing requirement for drug supplies. The generation of production cell lines has traditionally involved manual operations that are labor-intensive, low-throughput and vulnerable to human errors. We report here an integrated high-throughput and automated platform for development of manufacturing cell lines for the production of protein therapeutics. The combination of BD FACS Aria Cell Sorter, CloneSelect Imager and TECAN Freedom EVO liquid handling system has enabled a high-throughput and more efficient cell line development process. In this operation, production host cells are first transfected with an expression vector carrying the gene of interest (1), followed by the treatment with a selection agent. The stably-transfected cells are then stained with fluorescence-labeled anti-human IgG antibody, and are subsequently subject to flow cytometry analysis (2-4). Highly productive cells are selected based on fluorescence intensity and are isolated by single-cell sorting on a BD FACSAria. Colony formation from single-cell stage was detected microscopically and a series of time-laps digital images are taken by CloneSelect Imager for the documentation of cell line history. After single clones have formed, these clones were screened for productivity by ELISA performed on a TECAN Freedom EVO liquid handling system. Approximately 2,000 - 10,000 clones can be screened per operation cycle with the current system setup. This integrated approach has been used to generate high producing Chinese hamster ovary (CHO) cell lines for the production of therapeutic monoclonal antibody (mAb) as well as their fusion proteins. With the aid of different types of detecting probes, the method can be used for developing other protein therapeutics or be applied to other production host systems. Comparing to the traditional manual procedure, this automated

  6. Automated Counting of Airborne Asbestos Fibers by a High-Throughput Microscopy (HTM Method

    Directory of Open Access Journals (Sweden)

    Hwataik Han

    2011-07-01

    Full Text Available Inhalation of airborne asbestos causes serious health problems such as lung cancer and malignant mesothelioma. The phase-contrast microscopy (PCM method has been widely used for estimating airborne asbestos concentrations because it does not require complicated processes or high-priced equipment. However, the PCM method is time-consuming and laborious as it is manually performed off-site by an expert. We have developed a high-throughput microscopy (HTM method that can detect fibers distinguishable from other spherical particles in a sample slide by image processing both automatically and quantitatively. A set of parameters for processing and analysis of asbestos fiber images was adjusted for standard asbestos samples with known concentrations. We analyzed sample slides containing airborne asbestos fibers collected at 11 different workplaces following PCM and HTM methods, and found a reasonably good agreement in the asbestos concentration. Image acquisition synchronized with the movement of the robotic sample stages followed by an automated batch processing of a stack of sample images enabled us to count asbestos fibers with greatly reduced time and labors. HTM should be a potential alternative to conventional PCM, moving a step closer to realization of on-site monitoring of asbestos fibers in air.

  7. Automated Modular High Throughput Exopolysaccharide Screening Platform Coupled with Highly Sensitive Carbohydrate Fingerprint Analysis.

    Science.gov (United States)

    Rühmann, Broder; Schmid, Jochen; Sieber, Volker

    2016-01-01

    Many microorganisms are capable of producing and secreting exopolysaccharides (EPS), which have important implications in medical fields, food applications or in the replacement of petro-based chemicals. We describe an analytical platform to be automated on a liquid handling system that allows the fast and reliable analysis of the type and the amount of EPS produced by microorganisms. It enables the user to identify novel natural microbial exopolysaccharide producers and to analyze the carbohydrate fingerprint of the corresponding polymers within one day in high-throughput (HT). Using this platform, strain collections as well as libraries of strain variants that might be obtained in engineering approaches can be screened. The platform has a modular setup, which allows a separation of the protocol into two major parts. First, there is an automated screening system, which combines different polysaccharide detection modules: a semi-quantitative analysis of viscosity formation via a centrifugation step, an analysis of polymer formation via alcohol precipitation and the determination of the total carbohydrate content via a phenol-sulfuric-acid transformation. Here, it is possible to screen up to 384 strains per run. The second part provides a detailed monosaccharide analysis for all the selected EPS producers identified in the first part by combining two essential modules: the analysis of the complete monomer composition via ultra-high performance liquid chromatography coupled with ultra violet and electrospray ionization ion trap detection (UHPLC-UV-ESI-MS) and the determination of pyruvate as a polymer substituent (presence of pyruvate ketal) via enzymatic oxidation that is coupled to a color formation. All the analytical modules of this screening platform can be combined in different ways and adjusted to individual requirements. Additionally, they can all be handled manually or performed with a liquid handling system. Thereby, the screening platform enables a huge

  8. Automated high-throughput quantification of mitotic spindle positioning from DIC movies of Caenorhabditis embryos.

    Directory of Open Access Journals (Sweden)

    David Cluet

    Full Text Available The mitotic spindle is a microtubule-based structure that elongates to accurately segregate chromosomes during anaphase. Its position within the cell also dictates the future cell cleavage plan, thereby determining daughter cell orientation within a tissue or cell fate adoption for polarized cells. Therefore, the mitotic spindle ensures at the same time proper cell division and developmental precision. Consequently, spindle dynamics is the matter of intensive research. Among the different cellular models that have been explored, the one-cell stage C. elegans embryo has been an essential and powerful system to dissect the molecular and biophysical basis of spindle elongation and positioning. Indeed, in this large and transparent cell, spindle poles (or centrosomes can be easily detected from simple DIC microscopy by human eyes. To perform quantitative and high-throughput analysis of spindle motion, we developed a computer program ACT for Automated-Centrosome-Tracking from DIC movies of C. elegans embryos. We therefore offer an alternative to the image acquisition and processing of transgenic lines expressing fluorescent spindle markers. Consequently, experiments on large sets of cells can be performed with a simple setup using inexpensive microscopes. Moreover, analysis of any mutant or wild-type backgrounds is accessible because laborious rounds of crosses with transgenic lines become unnecessary. Last, our program allows spindle detection in other nematode species, offering the same quality of DIC images but for which techniques of transgenesis are not accessible. Thus, our program also opens the way towards a quantitative evolutionary approach of spindle dynamics. Overall, our computer program is a unique macro for the image- and movie-processing platform ImageJ. It is user-friendly and freely available under an open-source licence. ACT allows batch-wise analysis of large sets of mitosis events. Within 2 minutes, a single movie is processed

  9. Using Tomoauto: A Protocol for High-throughput Automated Cryo-electron Tomography.

    Science.gov (United States)

    Morado, Dustin R; Hu, Bo; Liu, Jun

    2016-01-01

    Cryo-electron tomography (Cryo-ET) is a powerful three-dimensional (3-D) imaging technique for visualizing macromolecular complexes in their native context at a molecular level. The technique involves initially preserving the sample in its native state by rapidly freezing the specimen in vitreous ice, then collecting a series of micrographs from different angles at high magnification, and finally computationally reconstructing a 3-D density map. The frozen-hydrated specimen is extremely sensitive to the electron beam and so micrographs are collected at very low electron doses to limit the radiation damage. As a result, the raw cryo-tomogram has a very low signal to noise ratio characterized by an intrinsically noisy image. To better visualize subjects of interest, conventional imaging analysis and sub-tomogram averaging in which sub-tomograms of the subject are extracted from the initial tomogram and aligned and averaged are utilized to improve both contrast and resolution. Large datasets of tilt-series are essential to understanding and resolving the complexes at different states, conditions, or mutations as well as obtaining a large enough collection of sub-tomograms for averaging and classification. Collecting and processing this data can be a major obstacle preventing further analysis. Here we describe a high-throughput cryo-ET protocol based on a computer-controlled 300kV cryo-electron microscope, a direct detection device (DDD) camera and a highly effective, semi-automated image-processing pipeline software wrapper library tomoauto developed in-house. This protocol has been effectively utilized to visualize the intact type III secretion system (T3SS) in Shigella flexneri minicells. It can be applicable to any project suitable for cryo-ET. PMID:26863591

  10. An Automated High-throughput Array Microscope for Cancer Cell Mechanics

    OpenAIRE

    Cribb, Jeremy A.; Osborne, Lukas D.; Kellie Beicker; Matthew Psioda; Jian Chen; E. Timothy O’Brien; Taylor II, Russell M.; Leandra Vicci; Joe Ping-Lin Hsiao; Chong Shao; Michael Falvo; Ibrahim, Joseph G.; Wood, Kris C.; Blobe, Gerard C.; Richard Superfine

    2016-01-01

    Changes in cellular mechanical properties correlate with the progression of metastatic cancer along the epithelial-to-mesenchymal transition (EMT). Few high-throughput methodologies exist that measure cell compliance, which can be used to understand the impact of genetic alterations or to screen the efficacy of chemotherapeutic agents. We have developed a novel array high-throughput microscope (AHTM) system that combines the convenience of the standard 96-well plate with the ability to image ...

  11. Automated SNP Genotype Clustering Algorithm to Improve Data Completeness in High-Throughput SNP Genotyping Datasets from Custom Arrays

    OpenAIRE

    Smith, Edward M.; Littrell, Jack; Olivier, Michael

    2007-01-01

    High-throughput SNP genotyping platforms use automated genotype calling algorithms to assign genotypes. While these algorithms work efficiently for individual platforms, they are not compatible with other platforms, and have individual biases that result in missed genotype calls. Here we present data on the use of a second complementary SNP genotype clustering algorithm. The algorithm was originally designed for individual fluorescent SNP genotyping assays, and has been optimized to permit th...

  12. Automated SNP Genotype Clustering Algorithm to Improve Data Completeness in High-Throughput SNP Genotyping Datasets from Custom Arrays

    Institute of Scientific and Technical Information of China (English)

    Edward; M.; Smith; Jack; Littrell; Michael; Olivier

    2007-01-01

    High-throughput SNP genotyping platforms use automated genotype calling algo- rithms to assign genotypes. While these algorithms work efficiently for individual platforms, they are not compatible with other platforms, and have individual biases that result in missed genotype calls. Here we present data on the use of a second complementary SNP genotype clustering algorithm. The algorithm was originally designed for individual fluorescent SNP genotyping assays, and has been opti- mized to permit the clustering of large datasets generated from custom-designed Affymetrix SNP panels. In an analysis of data from a 3K array genotyped on 1,560 samples, the additional analysis increased the overall number of genotypes by over 45,000, significantly improving the completeness of the experimental data. This analysis suggests that the use of multiple genotype calling algorithms may be ad- visable in high-throughput SNP genotyping experiments. The software is written in Perl and is available from the corresponding author.

  13. High-Throughput Isolation of Giant Viruses in Liquid Medium Using Automated Flow Cytometry and Fluorescence Staining.

    Science.gov (United States)

    Khalil, Jacques Y B; Robert, Stephane; Reteno, Dorine G; Andreani, Julien; Raoult, Didier; La Scola, Bernard

    2016-01-01

    The isolation of giant viruses using amoeba co-culture is tedious and fastidious. Recently, the procedure was successfully associated with a method that detects amoebal lysis on agar plates. However, the procedure remains time-consuming and is limited to protozoa growing on agar. We present here advances for the isolation of giant viruses. A high-throughput automated method based on flow cytometry and fluorescent staining was used to detect the presence of giant viruses in liquid medium. Development was carried out with the Acanthamoeba polyphaga strain widely used in past and current co-culture experiments. The proof of concept was validated with virus suspensions: artificially contaminated samples but also environmental samples from which viruses were previously isolated. After validating the technique, and fortuitously isolating a new Mimivirus, we automated the technique on 96-well plates and tested it on clinical and environmental samples using other protozoa. This allowed us to detect more than 10 strains of previously known species of giant viruses and seven new strains of a new virus lineage. This automated high-throughput method demonstrated significant time saving, and higher sensitivity than older techniques. It thus creates the means to isolate giant viruses at high speed. PMID:26858703

  14. Automated high-throughput in vitro screening of the acetylcholine esterase inhibiting potential of environmental samples, mixtures and single compounds.

    Science.gov (United States)

    Froment, Jean; Thomas, Kevin V; Tollefsen, Knut Erik

    2016-08-01

    A high-throughput and automated assay for testing the presence of acetylcholine esterase (AChE) inhibiting compounds was developed, validated and applied to screen different types of environmental samples. Automation involved using the assay in 96-well plates and adapting it for the use with an automated workstation. Validation was performed by comparing the results of the automated assay with that of a previously validated and standardised assay for two known AChE inhibitors (paraoxon and dichlorvos). The results show that the assay provides similar concentration-response curves (CRCs) when run according to the manual and automated protocol. Automation of the assay resulted in a reduction in assay run time as well as in intra- and inter-assay variations. High-quality CRCs were obtained for both of the model AChE inhibitors (dichlorvos IC50=120µM and paraoxon IC50=0.56µM) when tested alone. The effect of co-exposure of an equipotent binary mixture of the two chemicals were consistent with predictions of additivity and best described by the concentration addition model for combined toxicity. Extracts of different environmental samples (landfill leachate, wastewater treatment plant effluent, and road tunnel construction run-off) were then screened for AChE inhibiting activity using the automated bioassay, with only landfill leachate shown to contain potential AChE inhibitors. Potential uses and limitations of the assay were discussed based on the present results. PMID:27085000

  15. High-throughput sample processing and sample management; the functional evolution of classical cytogenetic assay towards automation.

    Science.gov (United States)

    Ramakumar, Adarsh; Subramanian, Uma; Prasanna, Pataje G S

    2015-11-01

    High-throughput individual diagnostic dose assessment is essential for medical management of radiation-exposed subjects after a mass casualty. Cytogenetic assays such as the Dicentric Chromosome Assay (DCA) are recognized as the gold standard by international regulatory authorities. DCA is a multi-step and multi-day bioassay. DCA, as described in the IAEA manual, can be used to assess dose up to 4-6 weeks post-exposure quite accurately but throughput is still a major issue and automation is very essential. The throughput is limited, both in terms of sample preparation as well as analysis of chromosome aberrations. Thus, there is a need to design and develop novel solutions that could utilize extensive laboratory automation for sample preparation, and bioinformatics approaches for chromosome-aberration analysis to overcome throughput issues. We have transitioned the bench-based cytogenetic DCA to a coherent process performing high-throughput automated biodosimetry for individual dose assessment ensuring quality control (QC) and quality assurance (QA) aspects in accordance with international harmonized protocols. A Laboratory Information Management System (LIMS) is designed, implemented and adapted to manage increased sample processing capacity, develop and maintain standard operating procedures (SOP) for robotic instruments, avoid data transcription errors during processing, and automate analysis of chromosome-aberrations using an image analysis platform. Our efforts described in this paper intend to bridge the current technological gaps and enhance the potential application of DCA for a dose-based stratification of subjects following a mass casualty. This paper describes one such potential integrated automated laboratory system and functional evolution of the classical DCA towards increasing critically needed throughput. PMID:26520383

  16. Fully Automated Electro Membrane Extraction Autosampler for LC-MS Systems Allowing Soft Extractions for High-Throughput Applications.

    Science.gov (United States)

    Fuchs, David; Pedersen-Bjergaard, Stig; Jensen, Henrik; Rand, Kasper D; Honoré Hansen, Steen; Petersen, Nickolaj Jacob

    2016-07-01

    The current work describes the implementation of electro membrane extraction (EME) into an autosampler for high-throughput analysis of samples by EME-LC-MS. The extraction probe was built into a luer lock adapter connected to a HTC PAL autosampler syringe. As the autosampler drew sample solution, analytes were extracted into the lumen of the extraction probe and transferred to a LC-MS system for further analysis. Various parameters affecting extraction efficacy were investigated including syringe fill strokes, syringe pull up volume, pull up delay and volume in the sample vial. The system was optimized for soft extraction of analytes and high sample throughput. Further, it was demonstrated that by flushing the EME-syringe with acidic wash buffer and reverting the applied electric potential, carry-over between samples can be reduced to below 1%. Performance of the system was characterized (RSD, high extraction speed of EME, a complete analytical workflow of purification, separation, and analysis of sample could be achieved within only 5.5 min. With the developed system large sequences of samples could be analyzed in a completely automated manner. This high degree of automation makes the developed EME-autosampler a powerful tool for a wide range of applications where high-throughput extractions are required before sample analysis. PMID:27237618

  17. Automated cleaning and pre-processing of immunoglobulin gene sequences from high-throughput sequencing

    Directory of Open Access Journals (Sweden)

    Miri eMichaeli

    2012-12-01

    Full Text Available High throughput sequencing (HTS yields tens of thousands to millions of sequences that require a large amount of pre-processing work to clean various artifacts. Such cleaning cannot be performed manually. Existing programs are not suitable for immunoglobulin (Ig genes, which are variable and often highly mutated. This paper describes Ig-HTS-Cleaner (Ig High Throughput Sequencing Cleaner, a program containing a simple cleaning procedure that successfully deals with pre-processing of Ig sequences derived from HTS, and Ig-Indel-Identifier (Ig Insertion – Deletion Identifier, a program for identifying legitimate and artifact insertions and/or deletions (indels. Our programs were designed for analyzing Ig gene sequences obtained by 454 sequencing, but they are applicable to all types of sequences and sequencing platforms. Ig-HTS-Cleaner and Ig-Indel-Identifier have been implemented in Java and saved as executable JAR files, supported on Linux and MS Windows. No special requirements are needed in order to run the programs, except for correctly constructing the input files as explained in the text. The programs' performance has been tested and validated on real and simulated data sets.

  18. An Automated High-throughput Array Microscope for Cancer Cell Mechanics

    Science.gov (United States)

    Cribb, Jeremy A.; Osborne, Lukas D.; Beicker, Kellie; Psioda, Matthew; Chen, Jian; O’Brien, E. Timothy; Taylor, Russell M., II; Vicci, Leandra; Hsiao, Joe Ping-Lin; Shao, Chong; Falvo, Michael; Ibrahim, Joseph G.; Wood, Kris C.; Blobe, Gerard C.; Superfine, Richard

    2016-06-01

    Changes in cellular mechanical properties correlate with the progression of metastatic cancer along the epithelial-to-mesenchymal transition (EMT). Few high-throughput methodologies exist that measure cell compliance, which can be used to understand the impact of genetic alterations or to screen the efficacy of chemotherapeutic agents. We have developed a novel array high-throughput microscope (AHTM) system that combines the convenience of the standard 96-well plate with the ability to image cultured cells and membrane-bound microbeads in twelve independently-focusing channels simultaneously, visiting all wells in eight steps. We use the AHTM and passive bead rheology techniques to determine the relative compliance of human pancreatic ductal epithelial (HPDE) cells, h-TERT transformed HPDE cells (HPNE), and four gain-of-function constructs related to EMT. The AHTM found HPNE, H-ras, Myr-AKT, and Bcl2 transfected cells more compliant relative to controls, consistent with parallel tests using atomic force microscopy and invasion assays, proving the AHTM capable of screening for changes in mechanical phenotype.

  19. Application of Hadamard spectroscopy to automated structure verification in high-throughput NMR.

    Science.gov (United States)

    Ruan, Ke; Yang, Shengtian; Van Sant, Karey A; Likos, John J

    2009-08-01

    Combined verification using 1-D proton and HSQC has been proved to be quite successful; the acquisition time of HSQC spectra, however, can be limiting in its high-throughput applications. The replacement with Hadamard HSQC can significantly enhance the throughput. We hereby propose a protocol to optimize the grouping of the predicted carbon chemical shifts from the proposed structure and the associated Hadamard frequencies and bandwidths. The resulting Hadamard HSQC spectra compare favorably with their Fourier-transformed counterparts, and have demonstrated to perform equivalently in terms of combined verification, but with several fold enhancement in throughput, as illustrated for 21 commercial available molecules and 16 prototypical drug compounds. Further improvement of the verification accuracy can be achieved by the cross validation from Hadamard TOCSY, which can be acquired without much sacrifice in throughput. PMID:19496061

  20. High throughput detection of Coxiella burnetii by real-time PCR with internal control system and automated DNA preparation

    Directory of Open Access Journals (Sweden)

    Kramme Stefanie

    2008-05-01

    Full Text Available Abstract Background Coxiella burnetii is the causative agent of Q-fever, a widespread zoonosis. Due to its high environmental stability and infectivity it is regarded as a category B biological weapon agent. In domestic animals infection remains either asymptomatic or presents as infertility or abortion. Clinical presentation in humans can range from mild flu-like illness to acute pneumonia and hepatitis. Endocarditis represents the most common form of chronic Q-fever. In humans serology is the gold standard for diagnosis but is inadequate for early case detection. In order to serve as a diagnostic tool in an eventual biological weapon attack or in local epidemics we developed a real-time 5'nuclease based PCR assay with an internal control system. To facilitate high-throughput an automated extraction procedure was evaluated. Results To determine the minimum number of copies that are detectable at 95% chance probit analysis was used. Limit of detection in blood was 2,881 copies/ml [95%CI, 2,188–4,745 copies/ml] with a manual extraction procedure and 4,235 copies/ml [95%CI, 3,143–7,428 copies/ml] with a fully automated extraction procedure, respectively. To demonstrate clinical application a total of 72 specimens of animal origin were compared with respect to manual and automated extraction. A strong correlation between both methods was observed rendering both methods suitable. Testing of 247 follow up specimens of animal origin from a local Q-fever epidemic rendered real-time PCR more sensitive than conventional PCR. Conclusion A sensitive and thoroughly evaluated real-time PCR was established. Its high-throughput mode may show a useful approach to rapidly screen samples in local outbreaks for other organisms relevant for humans or animals. Compared to a conventional PCR assay sensitivity of real-time PCR was higher after testing samples from a local Q-fever outbreak.

  1. PLAN: a web platform for automating high-throughput BLAST searches and for managing and mining results

    Directory of Open Access Journals (Sweden)

    Zhao Xuechun

    2007-02-01

    Full Text Available Abstract Background BLAST searches are widely used for sequence alignment. The search results are commonly adopted for various functional and comparative genomics tasks such as annotating unknown sequences, investigating gene models and comparing two sequence sets. Advances in sequencing technologies pose challenges for high-throughput analysis of large-scale sequence data. A number of programs and hardware solutions exist for efficient BLAST searching, but there is a lack of generic software solutions for mining and personalized management of the results. Systematically reviewing the results and identifying information of interest remains tedious and time-consuming. Results Personal BLAST Navigator (PLAN is a versatile web platform that helps users to carry out various personalized pre- and post-BLAST tasks, including: (1 query and target sequence database management, (2 automated high-throughput BLAST searching, (3 indexing and searching of results, (4 filtering results online, (5 managing results of personal interest in favorite categories, (6 automated sequence annotation (such as NCBI NR and ontology-based annotation. PLAN integrates, by default, the Decypher hardware-based BLAST solution provided by Active Motif Inc. with a greatly improved efficiency over conventional BLAST software. BLAST results are visualized by spreadsheets and graphs and are full-text searchable. BLAST results and sequence annotations can be exported, in part or in full, in various formats including Microsoft Excel and FASTA. Sequences and BLAST results are organized in projects, the data publication levels of which are controlled by the registered project owners. In addition, all analytical functions are provided to public users without registration. Conclusion PLAN has proved a valuable addition to the community for automated high-throughput BLAST searches, and, more importantly, for knowledge discovery, management and sharing based on sequence alignment results

  2. An Automated High Performance Capillary Liquid Chromatography Fourier Transform Ion Cyclotron Resonance Mass Spectrometer for High-Throughput Proteomics

    International Nuclear Information System (INIS)

    We report on a fully automated 9.4 tesla Fourier transform ion resonance cyclotron (FTICR) mass spectrometer coupled to reverse-phase chromatography for high-throughput proteomic studies. Modifications made to the front-end of a commercial FTICR instrument--a dual-ESI-emitter ion source; dual-channel electrodynamic ion funnel; and collisional-cooling, selection and accumulation quadrupoles--significantly improved the sensitivity, dynamic range and mass measurement accuracy of the mass spectrometer. A high-pressure capillary liquid chromatography (LC) system was incorporated with an autosampler that enabled 24 h/day operation. A novel method for accumulating ions in the ICR cell was also developed. Unattended operation of the instrument revealed the exceptional reproducibility (1-5% deviation in elution times for peptides from a bacterial proteome), repeatability (10-20% deviation in detected abundances for peptides from the same aliquot analyzed a few weeks apart) and robustness (high-throughput operation for 5 months without downtime) of the LC/FTICR system. When combined with modulated-ion-energy gated trapping, the internal calibration of FTICR mass spectra decreased dispersion of mass measurement errors for peptide identifications in conjunction with high resolution capillary LC separations to < 5 ppm over a dynamic range for each spectrum of 10 3

  3. Towards high-throughput automated targeted femtosecond laser-based transfection of adherent cells

    Science.gov (United States)

    Antkowiak, Maciej; Torres-Mapa, Maria Leilani; Gunn-Moore, Frank; Dholakia, Kishan

    2011-03-01

    Femtosecond laser induced cell membrane poration has proven to be an attractive alternative to the classical methods of drug and gene delivery. It is a selective, sterile, non-contact technique that offers a highly localized operation, low toxicity and consistent performance. However, its broader application still requires the development of robust, high-throughput and user-friendly systems. We present a system capable of unassisted enhanced targeted optoinjection and phototransfection of adherent mammalian cells with a femtosecond laser. We demonstrate the advantages of a dynamic diffractive optical element, namely a spatial light modulator (SLM) for precise three dimensional positioning of the beam. It enables the implementation of a "point-and-shoot" system in which using the software interface a user simply points at the cell and a predefined sequence of precisely positioned doses can be applied. We show that irradiation in three axial positions alleviates the problem of exact beam positioning on the cell membrane and doubles the number of viably optoinjected cells when compared with a single dose. The presented system enables untargeted raster scan irradiation which provides transfection of adherent cells at the throughput of 1 cell per second.

  4. A high sensitivity, high throughput, automated single-cell gel electrophoresis ('Comet') DNA damage assay

    International Nuclear Information System (INIS)

    A fully automated microscopy machine vision image capture and analysis system for the collection of data from slides of 'comets' has been developed. The novel image processing algorithms employed in delineating the 'comet head' from the 'comet tail' allow us to determine accurately very low levels of damage. In conjunction with calibrated and automated image capture methods, we are able to eliminate operator subjectivity and analyse large numbers of cells (>2500) in a short time (<1 hour). The image processing algorithm is designed to handle particularly difficult nuclei containing a high degree of structure, due to DNA clumping. We also present techniques used to extend the assay's dynamic range by removing interfering background fluorescence and to define a region of interest. If subtle biological variations are to be quantified (e.g. cell cycle dependant damage), then the use of large cell populations is dictated. Under those circumstances, the use of a fully automated system is particularly advantageous providing that the manner in which data is extracted does not introduce any inadvertent bias. In practice, it is essential that the image processing steps are geared towards the correct recognition of an acceptable cell nucleus, i.e. comet 'head'. We acknowledge the financial support of CRUK, Programme Grant C133/A1812 - SP 2195-01/02 and the US Department of Energy Low Dose Radiation Research Program grant DE-FG07-99ER62878

  5. OptoDyCE as an automated system for high-throughput all-optical dynamic cardiac electrophysiology

    Science.gov (United States)

    Klimas, Aleksandra; Ambrosi, Christina M.; Yu, Jinzhu; Williams, John C.; Bien, Harold; Entcheva, Emilia

    2016-01-01

    The improvement of preclinical cardiotoxicity testing, discovery of new ion-channel-targeted drugs, and phenotyping and use of stem cell-derived cardiomyocytes and other biologics all necessitate high-throughput (HT), cellular-level electrophysiological interrogation tools. Optical techniques for actuation and sensing provide instant parallelism, enabling contactless dynamic HT testing of cells and small-tissue constructs, not affordable by other means. Here we show, computationally and experimentally, the limits of all-optical electrophysiology when applied to drug testing, then implement and validate OptoDyCE, a fully automated system for all-optical cardiac electrophysiology. We validate optical actuation by virally introducing optogenetic drivers in rat and human cardiomyocytes or through the modular use of dedicated light-sensitive somatic ‘spark' cells. We show that this automated all-optical approach provides HT means of cellular interrogation, that is, allows for dynamic testing of >600 multicellular samples or compounds per hour, and yields high-content information about the action of a drug over time, space and doses. PMID:27161419

  6. Automation of High-Throughput Crystal Screening and Data Collection at SSRL

    International Nuclear Information System (INIS)

    A robotic system for auto-mounting crystals from liquid nitrogen is now operational on SSRL beamlines (Cohen et al., J. Appl. Cryst. (2002). 35, 720-726). The system uses a small industrial 4-axis robot with a custom built actuator. Once mounted, automated alignment of the sample loop to the X-ray beam readies the crystal for data collection. After data collection, samples are returned to the cassette. The beamline Dewar accommodates three compact sample cassettes (holding up to 96 samples each). During the past 4 months, the system on beamline 11-1 has been used to screen over 1000 crystals. The system has reduced both screening time and manpower. Integration of the hardware components is accomplished in the Distributed Control System architecture developed at SSRL (McPhillips et al., J. Synchrotron Rad. (2002) 9, 401-406). A crystal-screening interface has been implemented in Blu-Ice. Sample details can be uploaded from an Excel spreadsheet. The JCSG generates these spreadsheets automatically from their tracking database using standard database tools (http://www.jcsg.org). New diffraction image analysis tools are being employed to aid in extracting results. Automation also permits tele-presence. For example, samples have been changed during the night without leaving home and scientists have screened crystals 1600 miles from the beamline. The system developed on beamline 11-1 has been replicated onto 1-5, 9-1, 9-2, and 11-3 and is used by both general users and the JCSG

  7. High-throughput automated home-cage mesoscopic functional imaging of mouse cortex

    Science.gov (United States)

    Murphy, Timothy H.; Boyd, Jamie D.; Bolaños, Federico; Vanni, Matthieu P.; Silasi, Gergely; Haupt, Dirk; LeDue, Jeff M.

    2016-01-01

    Mouse head-fixed behaviour coupled with functional imaging has become a powerful technique in rodent systems neuroscience. However, training mice can be time consuming and is potentially stressful for animals. Here we report a fully automated, open source, self-initiated head-fixation system for mesoscopic functional imaging in mice. The system supports five mice at a time and requires minimal investigator intervention. Using genetically encoded calcium indicator transgenic mice, we longitudinally monitor cortical functional connectivity up to 24 h per day in >7,000 self-initiated and unsupervised imaging sessions up to 90 days. The procedure provides robust assessment of functional cortical maps on the basis of both spontaneous activity and brief sensory stimuli such as light flashes. The approach is scalable to a number of remotely controlled cages that can be assessed within the controlled conditions of dedicated animal facilities. We anticipate that home-cage brain imaging will permit flexible and chronic assessment of mesoscale cortical function. PMID:27291514

  8. High-throughput automated home-cage mesoscopic functional imaging of mouse cortex.

    Science.gov (United States)

    Murphy, Timothy H; Boyd, Jamie D; Bolaños, Federico; Vanni, Matthieu P; Silasi, Gergely; Haupt, Dirk; LeDue, Jeff M

    2016-01-01

    Mouse head-fixed behaviour coupled with functional imaging has become a powerful technique in rodent systems neuroscience. However, training mice can be time consuming and is potentially stressful for animals. Here we report a fully automated, open source, self-initiated head-fixation system for mesoscopic functional imaging in mice. The system supports five mice at a time and requires minimal investigator intervention. Using genetically encoded calcium indicator transgenic mice, we longitudinally monitor cortical functional connectivity up to 24 h per day in >7,000 self-initiated and unsupervised imaging sessions up to 90 days. The procedure provides robust assessment of functional cortical maps on the basis of both spontaneous activity and brief sensory stimuli such as light flashes. The approach is scalable to a number of remotely controlled cages that can be assessed within the controlled conditions of dedicated animal facilities. We anticipate that home-cage brain imaging will permit flexible and chronic assessment of mesoscale cortical function. PMID:27291514

  9. High concentration (2500 suns), high throughput, automated flash tester with calibrated color balance and intensity control

    Science.gov (United States)

    Ludowise, Michael; Taylor, Sean; Lucow, Ewelina; Chan, Hing

    2008-08-01

    SolFocus has designed and built a flexible and adaptable solar flash tester capable of reaching in excess of 2500x suns flux using a commercially available Xenon flash and power supply. Using calibrated isotype cells and photodetectors, the intensity and color balance of the flash are controlled through software algorithms that compensate for tube aging and thermal drift. The data acquisition system dynamically normalizes each of the 1600 I-V data pairs to the lamp intensity during each flash. Up to 32 cells can be measured simultaneously, with a flash re-cycle time of 3 seconds. The dynamic current range is 100μA to 10A over 0 to 5V. Test ranges are limited by user input through a modern GUI screen. The system is mated to a commercially available probe station tester which allows automated testing of up to 150mm diameter wafers, and is capable of testing a 4000 cell wafer in less than 8 minutes. The core software and optical components are easily adaptable to receiver and full panel testing as well. Data on the calibration and performance of the flash tester, the dynamic range achieved in test, and throughputs obtained during operation are presented.

  10. Automated Analysis of Barley Organs Using 3D Laser Scanning: An Approach for High Throughput Phenotyping

    Directory of Open Access Journals (Sweden)

    Stefan Paulus

    2014-07-01

    Full Text Available Due to the rise of laser scanning the 3D geometry of plant architecture is easy to acquire. Nevertheless, an automated interpretation and, finally, the segmentation into functional groups are still difficult to achieve. Two barley plants were scanned in a time course, and the organs were separated by applying a histogram-based classification algorithm. The leaf organs were represented by meshing algorithms, while the stem organs were parameterized by a least-squares cylinder approximation. We introduced surface feature histograms with an accuracy of 96% for the separation of the barley organs, leaf and stem. This enables growth monitoring in a time course for barley plants. Its reliability was demonstrated by a comparison with manually fitted parameters with a correlation R2 = 0:99 for the leaf area and R2 = 0:98 for the cumulated stem height. A proof of concept has been given for its applicability for the detection of water stress in barley, where the extension growth of an irrigated and a non-irrigated plant has been monitored.

  11. Automated analysis of barley organs using 3D laser scanning: an approach for high throughput phenotyping.

    Science.gov (United States)

    Paulus, Stefan; Dupuis, Jan; Riedel, Sebastian; Kuhlmann, Heiner

    2014-01-01

    Due to the rise of laser scanning the 3D geometry of plant architecture is easy to acquire. Nevertheless, an automated interpretation and, finally, the segmentation into functional groups are still difficult to achieve. Two barley plants were scanned in a time course, and the organs were separated by applying a histogram-based classification algorithm. The leaf organs were represented by meshing algorithms, while the stem organs were parameterized by a least-squares cylinder approximation. We introduced surface feature histograms with an accuracy of 96% for the separation of the barley organs, leaf and stem. This enables growth monitoring in a time course for barley plants. Its reliability was demonstrated by a comparison with manually fitted parameters with a correlation R(2) = 0:99 for the leaf area and R(2) = 0:98 for the cumulated stem height. A proof of concept has been given for its applicability for the detection of water stress in barley, where the extension growth of an irrigated and a non-irrigated plant has been monitored. PMID:25029283

  12. Suitability of an open automated nucleic acid extractor for high-throughput plasma HIV-1 RNA quantitation in Gabon (Central Africa)

    OpenAIRE

    Liégeois, Florian; Boué, V.; Mouinga-Ondémé, A.; Lékané, D.K.; Mongo, D.; Sica, J.; Rouet, F.

    2012-01-01

    Nucleic acid extraction using the open automated EZ1 (Qiagen) instrument, in combination with the Generic HIV Viral Load assay, gave highly concordant HIV-1 RNA viral load results among 181 Gabonese subjects infected with HIV-1, compared to those obtained when performing a manual extraction. Since people living with HIV-1 are being treated with antiretrovirals in Gabon, this automated extraction technique represents an excellent technical method for high-throughput monitoring of HIV-1 RNA vir...

  13. Automated high-throughput assessment of prostate biopsy tissue using infrared spectroscopic chemical imaging

    Science.gov (United States)

    Bassan, Paul; Sachdeva, Ashwin; Shanks, Jonathan H.; Brown, Mick D.; Clarke, Noel W.; Gardner, Peter

    2014-03-01

    Fourier transform infrared (FT-IR) chemical imaging has been demonstrated as a promising technique to complement histopathological assessment of biomedical tissue samples. Current histopathology practice involves preparing thin tissue sections and staining them using hematoxylin and eosin (H&E) after which a histopathologist manually assess the tissue architecture under a visible microscope. Studies have shown that there is disagreement between operators viewing the same tissue suggesting that a complementary technique for verification could improve the robustness of the evaluation, and improve patient care. FT-IR chemical imaging allows the spatial distribution of chemistry to be rapidly imaged at a high (diffraction-limited) spatial resolution where each pixel represents an area of 5.5 × 5.5 μm2 and contains a full infrared spectrum providing a chemical fingerprint which studies have shown contains the diagnostic potential to discriminate between different cell-types, and even the benign or malignant state of prostatic epithelial cells. We report a label-free (i.e. no chemical de-waxing, or staining) method of imaging large pieces of prostate tissue (typically 1 cm × 2 cm) in tens of minutes (at a rate of 0.704 × 0.704 mm2 every 14.5 s) yielding images containing millions of spectra. Due to refractive index matching between sample and surrounding paraffin, minimal signal processing is required to recover spectra with their natural profile as opposed to harsh baseline correction methods, paving the way for future quantitative analysis of biochemical signatures. The quality of the spectral information is demonstrated by building and testing an automated cell-type classifier based upon spectral features.

  14. Automated high-throughput dense matrix protein folding screen using a liquid handling robot combined with microfluidic capillary electrophoresis.

    Science.gov (United States)

    An, Philip; Winters, Dwight; Walker, Kenneth W

    2016-04-01

    Modern molecular genetics technology has made it possible to swiftly sequence, clone and mass-produce recombinant DNA for the purpose of expressing heterologous genes of interest; however, recombinant protein production systems have struggled to keep pace. Mammalian expression systems are typically favored for their ability to produce and secrete proteins in their native state, but bacterial systems benefit from rapid cell line development and robust growth. The primary drawback to prokaryotic expression systems are that recombinant proteins are generally not secreted at high levels or correctly folded, and are often insoluble, necessitating post-expression protein folding to obtain the active product. In order to harness the advantages of prokaryotic expression, high-throughput methods for executing protein folding screens and the subsequent analytics to identify lead conditions are required. Both of these tasks can be accomplished using a Biomek 3000 liquid handling robot to prepare the folding screen and to subsequently prepare the reactions for assessment using Caliper microfluidic capillary electrophoresis. By augmenting a protein folding screen with automation, the primary disadvantage of Escherichia coli expression has been mitigated, namely the labor intensive identification of the required protein folding conditions. Furthermore, a rigorous, quantitative method for identifying optimal protein folding buffer aids in the rapid development of an optimal production process. PMID:26678961

  15. The HTS barcode checker pipeline, a tool for automated detection of illegally traded species from high-throughput sequencing data

    Science.gov (United States)

    2014-01-01

    Background Mixtures of internationally traded organic substances can contain parts of species protected by the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). These mixtures often raise the suspicion of border control and customs offices, which can lead to confiscation, for example in the case of Traditional Chinese medicines (TCMs). High-throughput sequencing of DNA barcoding markers obtained from such samples provides insight into species constituents of mixtures, but manual cross-referencing of results against the CITES appendices is labor intensive. Matching DNA barcodes against NCBI GenBank using BLAST may yield misleading results both as false positives, due to incorrectly annotated sequences, and false negatives, due to spurious taxonomic re-assignment. Incongruence between the taxonomies of CITES and NCBI GenBank can result in erroneous estimates of illegal trade. Results The HTS barcode checker pipeline is an application for automated processing of sets of 'next generation’ barcode sequences to determine whether these contain DNA barcodes obtained from species listed on the CITES appendices. This analytical pipeline builds upon and extends existing open-source applications for BLAST matching against the NCBI GenBank reference database and for taxonomic name reconciliation. In a single operation, reads are converted into taxonomic identifications matched with names on the CITES appendices. By inclusion of a blacklist and additional names databases, the HTS barcode checker pipeline prevents false positives and resolves taxonomic heterogeneity. Conclusions The HTS barcode checker pipeline can detect and correctly identify DNA barcodes of CITES-protected species from reads obtained from TCM samples in just a few minutes. The pipeline facilitates and improves molecular monitoring of trade in endangered species, and can aid in safeguarding these species from extinction in the wild. The HTS barcode checker pipeline is

  16. PLAN: a web platform for automating high-throughput BLAST searches and for managing and mining results

    OpenAIRE

    Zhao Xuechun; Dai Xinbin; He Ji

    2007-01-01

    Abstract Background BLAST searches are widely used for sequence alignment. The search results are commonly adopted for various functional and comparative genomics tasks such as annotating unknown sequences, investigating gene models and comparing two sequence sets. Advances in sequencing technologies pose challenges for high-throughput analysis of large-scale sequence data. A number of programs and hardware solutions exist for efficient BLAST searching, but there is a lack of generic software...

  17. The HTS barcode checker pipeline, a tool for automated detection of illegally traded species from high-throughput sequencing data

    OpenAIRE

    Lammers, Youri; Peelen, Tamara; Vos, Rutger A.; Gravendeel, Barbara

    2014-01-01

    Background Mixtures of internationally traded organic substances can contain parts of species protected by the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES). These mixtures often raise the suspicion of border control and customs offices, which can lead to confiscation, for example in the case of Traditional Chinese medicines (TCMs). High-throughput sequencing of DNA barcoding markers obtained from such samples provides insight into species constituent...

  18. Detection of Onchocerca volvulus in Latin American black flies for pool screening PCR using high-throughput automated DNA isolation for transmission surveillance.

    Science.gov (United States)

    Rodríguez-Pérez, Mario A; Gopal, Hemavathi; Adeleke, Monsuru Adebayo; De Luna-Santillana, Erick Jesús; Gurrola-Reyes, J Natividad; Guo, Xianwu

    2013-11-01

    The posttreatment entomological surveillance (ES) of onchocerciasis in Latin America requires quite large numbers of flies to be examined for parasite infection to prove that the control strategies have worked and that the infection is on the path of elimination. Here, we report a high-throughput automated DNA isolation of Onchocerca volvulus for PCR using a major Latin American black fly vector of onchocerciasis. The sensitivity and relative effectiveness of silica-coated paramagnetic beads was evaluated in comparison with phenol chloroform (PC) method which is known as the gold standard of DNA extraction for ES in Latin America. The automated method was optimized in the laboratory and validated in the field to detect parasite DNA in Simulium ochraceum sensu lato flies in comparison with PC. The optimization of the automated method showed that it is sensitive to detect O. volvulus with a pool size of 100 flies as compared with PC which utilizes 50 flies pool size. The validation of the automated method in comparison with PC in an endemic community showed that 5/67 and 3/134 heads pools were positive for the two methods, respectively. There was no statistical variation (P < 0.05) in the estimation of transmission indices generated by automated method when compared with PC method. The fact that the automated method is sensitive to pool size up to 100 confers advantage over PC method and can, therefore, be employed in large-scale ES of onchocerciasis transmission in endemic areas of Latin America. PMID:24030195

  19. Selection and development of representative simple sequence repeat primers and multiplex SSR sets for high throughput automated genotyping in maize

    Institute of Scientific and Technical Information of China (English)

    WANG FengGe; ZHAO JiuRan; DAI JingRui; YI HongMei; KUANG Meng; SUN YanMei; YU XinYan; GUO JingLun; WANG Lu

    2007-01-01

    In the current study, 1900 maize simple sequence repeat (SSR) primers published in MaizeGDB were screened utilizing reference literature, 15 representative Chinese maize inbred lines and 15 Chinese maize hybrids from national regional testing. In total, 500 highly polymorphic primers were identified and used to construct a genetic map. 100 evenly distributed primers, 10 primers per chromosome, were further selected as a set of universal SSR core primers, recommended as preferred primers for general studies. These core primers were then redesigned and used to construct a high throughput multiplex PCR system based on a five-color fluorescence capillary detection system. We report here that two sets of ten-plex PCR combinations have been constructed, each consisting of 10 primers, with one primer per chromosome.

  20. Fully Automated Electro Membrane Extraction Autosampler for LC-MS Systems Allowing Soft Extractions for High-Throughput Applications

    DEFF Research Database (Denmark)

    Fuchs, David; Pedersen-Bjergaard, Stig; Jensen, Henrik;

    2016-01-01

    , <10%; R(2), 0.994) and finally, the EME-autosampler was used to analyze in vitro conversion of methadone into its main metabolite by rat liver microsomes and for demonstrating the potential of known CYP3A4 inhibitors to prevent metabolism of methadone. By making use of the high extraction speed of EME......The current work describes the implementation of electro membrane extraction (EME) into an autosampler for high-throughput analysis of samples by EME-LC-MS. The extraction probe was built into a luer lock adapter connected to a HTC PAL autosampler syringe. As the autosampler drew sample solution......, analytes were extracted into the lumen of the extraction probe and transferred to a LC-MS system for further analysis. Various parameters affecting extraction efficacy were investigated including syringe fill strokes, syringe pull up volume, pull up delay and volume in the sample vial. The system was...

  1. Reduced dimensionality (3,2)D NMR experiments and their automated analysis: implications to high-throughput structural studies on proteins.

    Science.gov (United States)

    Reddy, Jithender G; Kumar, Dinesh; Hosur, Ramakrishna V

    2015-02-01

    Protein NMR spectroscopy has expanded dramatically over the last decade into a powerful tool for the study of their structure, dynamics, and interactions. The primary requirement for all such investigations is sequence-specific resonance assignment. The demand now is to obtain this information as rapidly as possible and in all types of protein systems, stable/unstable, soluble/insoluble, small/big, structured/unstructured, and so on. In this context, we introduce here two reduced dimensionality experiments – (3,2)D-hNCOcanH and (3,2)D-hNcoCAnH – which enhance the previously described 2D NMR-based assignment methods quite significantly. Both the experiments can be recorded in just about 2-3 h each and hence would be of immense value for high-throughput structural proteomics and drug discovery research. The applicability of the method has been demonstrated using alpha-helical bovine apo calbindin-D9k P43M mutant (75 aa) protein. Automated assignment of this data using AUTOBA has been presented, which enhances the utility of these experiments. The backbone resonance assignments so derived are utilized to estimate secondary structures and the backbone fold using Web-based algorithms. Taken together, we believe that the method and the protocol proposed here can be used for routine high-throughput structural studies of proteins. PMID:25178811

  2. Automated high-throughput RNAi screening in human cells combined with reporter mRNA transfection to identify novel regulators of translation.

    Directory of Open Access Journals (Sweden)

    Claudia M Casanova

    Full Text Available Proteins that promote angiogenesis, such as vascular endothelial growth factor (VEGF, are major targets for cancer therapy. Accordingly, proteins that specifically activate expression of factors like VEGF are potential alternative therapeutic targets and may help to combat evasive resistance to angiogenesis inhibitors. VEGF mRNA contains two internal ribosome entry sites (IRESs that enable selective activation of VEGF protein synthesis under hypoxic conditions that trigger angiogenesis. To identify novel regulators of VEGF IRES-driven translation in human cells, we have developed a high-throughput screening approach that combines siRNA treatment with transfection of a VEGF-IRES reporter mRNA. We identified the kinase MAPK3 as a novel positive regulator of VEGF IRES-driven translation and have validated its regulatory effect on endogenous VEGF. Our automated method is scalable and readily adapted for use with other mRNA regulatory elements. Consequently, it should be a generally useful approach for high-throughput identification of novel regulators of mRNA translation.

  3. Yeast Replicator: A High-Throughput Multiplexed Microfluidics Platform for Automated Measurements of Single-Cell Aging

    Directory of Open Access Journals (Sweden)

    Ping Liu

    2015-10-01

    Full Text Available The yeast Saccharomyces cerevisiae is a model organism for replicative aging studies; however, conventional lifespan measurement platforms have several limitations. Here, we present a microfluidics platform that facilitates simultaneous lifespan and gene expression measurements of aging yeast cells. Our multiplexed high-throughput platform offers the capability to perform independent lifespan experiments using different yeast strains or growth media. Using this platform in minimal media environments containing glucose, we measured the full lifespan of individual yeast cells in wild-type and canonical gene deletion backgrounds. Compared to glucose, in galactose we observed a 16.8% decrease in replicative lifespan accompanied by an ∼2-fold increase in single-cell oxidative stress levels reported by PSOD1-mCherry. Using PGAL1-YFP to measure the activity of the bistable galactose network, we saw that OFF and ON cells are similar in their lifespan. Our work shows that aging cells are committed to a single phenotypic state throughout their lifespan.

  4. Qgui: A high-throughput interface for automated setup and analysis of free energy calculations and empirical valence bond simulations in biological systems.

    Science.gov (United States)

    Isaksen, Geir Villy; Andberg, Tor Arne Heim; Åqvist, Johan; Brandsdal, Bjørn Olav

    2015-07-01

    Structural information and activity data has increased rapidly for many protein targets during the last decades. In this paper, we present a high-throughput interface (Qgui) for automated free energy and empirical valence bond (EVB) calculations that use molecular dynamics (MD) simulations for conformational sampling. Applications to ligand binding using both the linear interaction energy (LIE) method and the free energy perturbation (FEP) technique are given using the estrogen receptor (ERα) as a model system. Examples of free energy profiles obtained using the EVB method for the rate-limiting step of the enzymatic reaction catalyzed by trypsin are also shown. In addition, we present calculation of high-precision Arrhenius plots to obtain the thermodynamic activation enthalpy and entropy with Qgui from running a large number of EVB simulations. PMID:26080356

  5. Two Methods for High-Throughput NGS Template Preparation for Small and Degraded Clinical Samples Without Automation

    OpenAIRE

    Kamberov, E.; Tesmer, T.; Mastronardi, M.; Langmore, John

    2012-01-01

    Clinical samples are difficult to prepare for NGS, because of the small amounts or degraded states of formalin-fixed tissue, plasma, urine, and single-cell DNA. Conventional whole genome amplification methods are too biased for NGS applications, and the existing NGS preparation kits require intermediate purifications and excessive time to prepare hundreds of samples in a day without expensive automation. We have tested two 96-well manual methods to make NGS templates from FFPE tissue, plasma,...

  6. Robofurnace: A semi-automated laboratory chemical vapor deposition system for high-throughput nanomaterial synthesis and process discovery

    International Nuclear Information System (INIS)

    Laboratory research and development on new materials, such as nanostructured thin films, often utilizes manual equipment such as tube furnaces due to its relatively low cost and ease of setup. However, these systems can be prone to inconsistent outcomes due to variations in standard operating procedures and limitations in performance such as heating and cooling rates restrict the parameter space that can be explored. Perhaps more importantly, maximization of research throughput and the successful and efficient translation of materials processing knowledge to production-scale systems, relies on the attainment of consistent outcomes. In response to this need, we present a semi-automated lab-scale chemical vapor deposition (CVD) furnace system, called “Robofurnace.” Robofurnace is an automated CVD system built around a standard tube furnace, which automates sample insertion and removal and uses motion of the furnace to achieve rapid heating and cooling. The system has a 10-sample magazine and motorized transfer arm, which isolates the samples from the lab atmosphere and enables highly repeatable placement of the sample within the tube. The system is designed to enable continuous operation of the CVD reactor, with asynchronous loading/unloading of samples. To demonstrate its performance, Robofurnace is used to develop a rapid CVD recipe for carbon nanotube (CNT) forest growth, achieving a 10-fold improvement in CNT forest mass density compared to a benchmark recipe using a manual tube furnace. In the long run, multiple systems like Robofurnace may be linked to share data among laboratories by methods such as Twitter. Our hope is Robofurnace and like automation will enable machine learning to optimize and discover relationships in complex material synthesis processes

  7. High-throughput screening of cellulase F mutants from multiplexed plasmid sets using an automated plate assay on a functional proteomic robotic workcell

    Directory of Open Access Journals (Sweden)

    Qureshi Nasib

    2006-05-01

    Full Text Available Abstract Background The field of plasmid-based functional proteomics requires the rapid assay of proteins expressed from plasmid libraries. Automation is essential since large sets of mutant open reading frames are being cloned for evaluation. To date no integrated automated platform is available to carry out the entire process including production of plasmid libraries, expression of cloned genes, and functional testing of expressed proteins. Results We used a functional proteomic assay in a multiplexed setting on an integrated plasmid-based robotic workcell for high-throughput screening of mutants of cellulase F, an endoglucanase from the anaerobic fungus Orpinomyces PC-2. This allowed us to identify plasmids containing optimized clones expressing mutants with improved activity at lower pH. A plasmid library of mutagenized clones of the celF gene with targeted variations in the last four codons was constructed by site-directed PCR mutagenesis and transformed into Escherichia coli. A robotic picker integrated into the workcell was used to inoculate medium in a 96-well deep well plate, combining the transformants into a multiplexed set in each well, and the plate was incubated on the workcell. Plasmids were prepared from the multiplexed culture on the liquid handler component of the workcell and used for in vitro transcription/translation. The multiplexed expressed recombinant proteins were screened for improved activity and stability in an azo-carboxymethylcellulose plate assay. The multiplexed wells containing mutants with improved activity were identified and linked back to the corresponding multiplexed cultures stored in glycerol. Spread plates were prepared from the glycerol stocks and the workcell was used to pick single colonies from the spread plates, prepare plasmid, produce recombinant protein, and assay for activity. The screening assay and subsequent deconvolution of the multiplexed wells resulted in identification of improved Cel

  8. Note: An automated image analysis method for high-throughput classification of surface-bound bacterial cell motions.

    Science.gov (United States)

    Shen, Simon; Syal, Karan; Tao, Nongjian; Wang, Shaopeng

    2015-12-01

    We present a Single-Cell Motion Characterization System (SiCMoCS) to automatically extract bacterial cell morphological features from microscope images and use those features to automatically classify cell motion for rod shaped motile bacterial cells. In some imaging based studies, bacteria cells need to be attached to the surface for time-lapse observation of cellular processes such as cell membrane-protein interactions and membrane elasticity. These studies often generate large volumes of images. Extracting accurate bacterial cell morphology features from these images is critical for quantitative assessment. Using SiCMoCS, we demonstrated simultaneous and automated motion tracking and classification of hundreds of individual cells in an image sequence of several hundred frames. This is a significant improvement from traditional manual and semi-automated approaches to segmenting bacterial cells based on empirical thresholds, and a first attempt to automatically classify bacterial motion types for motile rod shaped bacterial cells, which enables rapid and quantitative analysis of various types of bacterial motion. PMID:26724085

  9. Note: An automated image analysis method for high-throughput classification of surface-bound bacterial cell motions

    Science.gov (United States)

    Shen, Simon; Syal, Karan; Tao, Nongjian; Wang, Shaopeng

    2015-12-01

    We present a Single-Cell Motion Characterization System (SiCMoCS) to automatically extract bacterial cell morphological features from microscope images and use those features to automatically classify cell motion for rod shaped motile bacterial cells. In some imaging based studies, bacteria cells need to be attached to the surface for time-lapse observation of cellular processes such as cell membrane-protein interactions and membrane elasticity. These studies often generate large volumes of images. Extracting accurate bacterial cell morphology features from these images is critical for quantitative assessment. Using SiCMoCS, we demonstrated simultaneous and automated motion tracking and classification of hundreds of individual cells in an image sequence of several hundred frames. This is a significant improvement from traditional manual and semi-automated approaches to segmenting bacterial cells based on empirical thresholds, and a first attempt to automatically classify bacterial motion types for motile rod shaped bacterial cells, which enables rapid and quantitative analysis of various types of bacterial motion.

  10. A high throughput MATLAB program for automated force-curve processing using the AdG polymer model.

    Science.gov (United States)

    O'Connor, Samantha; Gaddis, Rebecca; Anderson, Evan; Camesano, Terri A; Burnham, Nancy A

    2015-02-01

    Research in understanding biofilm formation is dependent on accurate and representative measurements of the steric forces related to brush on bacterial surfaces. A MATLAB program to analyze force curves from an AFM efficiently, accurately, and with minimal user bias has been developed. The analysis is based on a modified version of the Alexander and de Gennes (AdG) polymer model, which is a function of equilibrium polymer brush length, probe radius, temperature, separation distance, and a density variable. Automating the analysis reduces the amount of time required to process 100 force curves from several days to less than 2min. The use of this program to crop and fit force curves to the AdG model will allow researchers to ensure proper processing of large amounts of experimental data and reduce the time required for analysis and comparison of data, thereby enabling higher quality results in a shorter period of time. PMID:25448021

  11. Automated mini-column solid-phase extraction cleanup for high-throughput analysis of chemical contaminants in foods by low-pressure gas chromatography – tandem mass spectrometry

    Science.gov (United States)

    This study demonstrated the application of an automated high-throughput mini-cartridge solid-phase extraction (mini-SPE) cleanup for the rapid low-pressure gas chromatography – tandem mass spectrometry (LPGC-MS/MS) analysis of pesticides and environmental contaminants in QuEChERS extracts of foods. ...

  12. Automation and integration of polymerase chain reaction with capillary electrophoresis for high throughput genotyping and disease diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, N.

    1999-02-12

    Genotyping is to detect specific loci in the human genome. These loci provide important information for forensic testing, construction of genetic linkage maps, gene related disease diagnosis and pharmacogenetic research. Genotyping is becoming more and more popular after these loci can be easily amplified by polymerase chain reaction (PCR). Capillary electrophoresis has its unique advantages for DNA analysis due to its fast heat dissipation and ease of automation. Four projects are described in which genotyping is performed by capillary electrophoresis emphasizing different aspects. First, the author demonstrates a principle to determine the genotype based on capillary electrophoresis system. VNTR polymorphism in the human D1S80 locus was studied. Second, the separation of four short tandem repeat (STR) loci vWF, THO1, TPOX and CSF1PO (CTTv) by using poly(ethylene oxide) (PEO) was studied in achieving high resolution and preventing rehybridization of the DNA fragments. Separation under denaturing, non-denaturing conditions and at elevated temperature was discussed. Third, a 250 {micro}m i.d., 365 {micro}m o.d. fused silica capillary was used as the microreactor for PCR. Fourth, direct PCR from blood was studied to simplify the sample preparation for genotyping to minimum.

  13. Automation of High-Throughput Mass Spectrometry-Based Plasma N-Glycome Analysis with Linkage-Specific Sialic Acid Esterification.

    Science.gov (United States)

    Bladergroen, Marco R; Reiding, Karli R; Hipgrave Ederveen, Agnes L; Vreeker, Gerda C M; Clerc, Florent; Holst, Stephanie; Bondt, Albert; Wuhrer, Manfred; van der Burgt, Yuri E M

    2015-09-01

    Glycosylation is a post-translational modification of key importance with heterogeneous structural characteristics. Previously, we have developed a robust, high-throughput MALDI-TOF-MS method for the comprehensive profiling of human plasma N-glycans. In this approach, sialic acid residues are derivatized with linkage-specificity, namely the ethylation of α2,6-linked sialic acid residues with parallel lactone formation of α2,3-linked sialic acids. In the current study, this procedure was used as a starting point for the automation of all steps on a liquid-handling robot system. This resulted in a time-efficient and fully standardized procedure with throughput times of 2.5 h for a first set of 96 samples and approximately 1 h extra for each additional sample plate. The mass analysis of the thus-obtained glycans was highly reproducible in terms of relative quantification, with improved interday repeatability as compared to that of manual processing. PMID:26179816

  14. An automated method for high-throughput protein purification applied to a comparison of His-tag and GST-tag affinity chromatography

    Directory of Open Access Journals (Sweden)

    Büssow Konrad

    2003-07-01

    Full Text Available Abstract Background Functional Genomics, the systematic characterisation of the functions of an organism's genes, includes the study of the gene products, the proteins. Such studies require methods to express and purify these proteins in a parallel, time and cost effective manner. Results We developed a method for parallel expression and purification of recombinant proteins with a hexahistidine tag (His-tag or glutathione S-transferase (GST-tag from bacterial expression systems. Proteins are expressed in 96-well microplates and are purified by a fully automated procedure on a pipetting robot. Up to 90 microgram purified protein can be obtained from 1 ml microplate cultures. The procedure is readily reproducible and 96 proteins can be purified in approximately three hours. It avoids clearing of crude cellular lysates and the use of magnetic affinity beads and is therefore less expensive than comparable commercial systems. We have used this method to compare purification of a set of human proteins via His-tag or GST-tag. Proteins were expressed as fusions to an N-terminal tandem His- and GST-tag and were purified by metal chelating or glutathione affinity chromatography. The purity of the obtained protein samples was similar, yet His-tag purification resulted in higher yields for some proteins. Conclusion A fully automated, robust and cost effective method was developed for the purification of proteins that can be used to quickly characterise expression clones in high throughput and to produce large numbers of proteins for functional studies. His-tag affinity purification was found to be more efficient than purification via GST-tag for some proteins.

  15. Automated flow-based anion-exchange method for high-throughput isolation and real-time monitoring of RuBisCO in plant extracts.

    Science.gov (United States)

    Suárez, Ruth; Miró, Manuel; Cerdà, Víctor; Perdomo, Juan Alejandro; Galmés, Jeroni

    2011-06-15

    In this work, a miniaturized, completely enclosed multisyringe-flow system is proposed for high-throughput purification of RuBisCO from Triticum aestivum extracts. The automated method capitalizes on the uptake of the target protein at 4°C onto Q-Sepharose Fast Flow strong anion-exchanger packed in a cylindrical microcolumn (105 × 4 mm) followed by a stepwise ionic-strength gradient elution (0-0.8 mol/L NaCl) to eliminate concomitant extract components and retrieve highly purified RuBisCO. The manifold is furnished downstream with a flow-through diode-array UV/vis spectrophotometer for real-time monitoring of the column effluent at the protein-specific wavelength of 280 nm to detect the elution of RuBisCO. Quantitation of RuBisCO and total soluble proteins in the eluate fractions were undertaken using polyacrylamide gel electrophoresis (PAGE) and the spectrophotometric Bradford assay, respectively. A comprehensive investigation of the effect of distinct concentration gradients on the isolation of RuBisCO and experimental conditions (namely, type of resin, column dimensions and mobile-phase flow rate) upon column capacity and analyte breakthrough was effected. The assembled set-up was aimed to critically ascertain the efficiency of preliminary batchwise pre-treatments of crude plant extracts (viz., polyethylenglycol (PEG) precipitation, ammonium sulphate precipitation and sucrose gradient centrifugation) in terms of RuBisCO purification and absolute recovery prior to automated anion-exchange column separation. Under the optimum physical and chemical conditions, the flow-through column system is able to admit crude plant extracts and gives rise to RuBisCO purification yields better than 75%, which might be increased up to 96 ± 9% with a prior PEG fractionation followed by sucrose gradient step. PMID:21641435

  16. High throughput protein production screening

    Science.gov (United States)

    Beernink, Peter T.; Coleman, Matthew A.; Segelke, Brent W.

    2009-09-08

    Methods, compositions, and kits for the cell-free production and analysis of proteins are provided. The invention allows for the production of proteins from prokaryotic sequences or eukaryotic sequences, including human cDNAs using PCR and IVT methods and detecting the proteins through fluorescence or immunoblot techniques. This invention can be used to identify optimized PCR and WT conditions, codon usages and mutations. The methods are readily automated and can be used for high throughput analysis of protein expression levels, interactions, and functional states.

  17. Integrated automation for continuous high-throughput synthetic chromosome assembly and transformation to identify improved yeast strains for industrial production of peptide sweetener brazzein

    Science.gov (United States)

    Production and recycling of recombinant sweetener peptides in industrial biorefineries involves the evaluation of large numbers of genes and proteins. High-throughput integrated robotic molecular biology platforms that have the capacity to rapidly synthesize, clone, and express heterologous gene ope...

  18. High-Throughput Proteomics

    Science.gov (United States)

    Zhang, Zhaorui; Wu, Si; Stenoien, David L.; Paša-Tolić, Ljiljana

    2014-06-01

    Mass spectrometry (MS)-based high-throughput proteomics is the core technique for large-scale protein characterization. Due to the extreme complexity of proteomes, sophisticated separation techniques and advanced MS instrumentation have been developed to extend coverage and enhance dynamic range and sensitivity. In this review, we discuss the separation and prefractionation techniques applied for large-scale analysis in both bottom-up (i.e., peptide-level) and top-down (i.e., protein-level) proteomics. Different approaches for quantifying peptides or intact proteins, including label-free and stable-isotope-labeling strategies, are also discussed. In addition, we present a brief overview of different types of mass analyzers and fragmentation techniques as well as selected emerging techniques.

  19. High-throughput screening of cellulase F mutants from multiplexed plasmid sets using an automated plate assay on a functional proteomic robotic workcell

    OpenAIRE

    Qureshi Nasib; Bischoff Kenneth M; Li Xin-Liang; Riedmuller Steven B; Mertens Jeffrey A; Hughes Stephen R; Cotta Michael A; Farrelly Philip J

    2006-01-01

    Abstract Background The field of plasmid-based functional proteomics requires the rapid assay of proteins expressed from plasmid libraries. Automation is essential since large sets of mutant open reading frames are being cloned for evaluation. To date no integrated automated platform is available to carry out the entire process including production of plasmid libraries, expression of cloned genes, and functional testing of expressed proteins. Results We used a functional proteomic assay in a ...

  20. High-throughput heterogeneous catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Farrusseng, David [Universite Lyon 1, CNRS, UMR 5256, IRCELYON, Institut de recherches sur la catalyse et l' environnement de Lyon, 2 avenue Albert Einstein, F-69626 Villeurbanne (France)

    2008-11-30

    This comprehensive review of the literature (over 250 references) deals with high-throughput experimentation in heterogeneous catalysis. Approaches to library design for catalyst discovery and optimization are described and discussed. Special focus is placed on advanced methods for knowledge discovery such as high-throughput kinetic modeling and QSAR. An inventory of successful case studies in catalysis is reported. Finally, recent developments in relevant electronic data and knowledge management are described. (author)

  1. BioXTAS RAW, a software program for high-throughput automated small-angle X-ray scattering data reduction and preliminary analysis

    DEFF Research Database (Denmark)

    Nielsen, S.S.; Toft, K.N.; Snakenborg, Detlef;

    2009-01-01

    commercial software packages. BioXTAS RAW is a fully automated program that, via an online feature, reads raw two-dimensional SAXS detector output files and processes and plots data as the data files are created during measurement sessions. The software handles all steps in the data reduction. This includes...... mask creation, radial averaging, error bar calculation, artifact removal, normalization and q calibration. Further data reduction such as background subtraction and absolute intensity scaling is fast and easy via the graphical user interface. BioXTAS RAW also provides preliminary analysis of one...

  2. Automation of the BD GeneOhm Methicillin-Resistant Staphylococcus aureus Assay for High-Throughput Screening of Nasal Swab Specimens▿

    OpenAIRE

    Wang, Xue-Ping; Ginocchio, Christine C.

    2009-01-01

    This study demonstrated that an automated version of the BD-GeneOhm methicillin-resistant Staphylococcus aureus (MRSA) assay (BD-MRSA), using achromopeptidase sample lysis and PCR setup performed on the Hamilton MICROLAB STARlet (Auto-MRSA), gave results comparable to those obtained with BD-MRSA. The positive- and negative-result concordance rates and overall concordance of BD-MRSA and Auto-MRSA were 98.2, 97.7, and 97.6%, respectively. Auto-MRSA required 60% less technical time than BD-MRSA,...

  3. Use of an Automated Multiple-Locus, Variable-Number Tandem Repeat-Based Method for Rapid and High-Throughput Genotyping of Staphylococcus aureus Isolates

    Science.gov (United States)

    Francois, Patrice; Huyghe, Antoine; Charbonnier, Yvan; Bento, Manuela; Herzig, Sébastien; Topolski, Ivan; Fleury, Bénédicte; Lew, Daniel; Vaudaux, Pierre; Harbarth, Stephan; van Leeuwen, Willem; van Belkum, Alex; Blanc, Dominique S.; Pittet, Didier; Schrenzel, Jacques

    2005-01-01

    Fast and reliable genotyping methods that allow real-time epidemiological surveillance would be instrumental to monitoring of the spread of methicillin-resistant Staphylococcus aureus. We describe an automated variable-number tandem repeat-based method for the rapid genotyping of Staphylococcus aureus. Multiplex PCR amplifications with eight primer pairs that target gene regions with variable numbers of tandem repeats were resolved by microcapillary electrophoresis and automatically assessed by cluster analysis. This genotyping technique was evaluated for its discriminatory power and reproducibility with clinical isolates of various origins, including a panel of control strains previously characterized by several typing methods and collections from either long-term carriers or defined nosocomial outbreaks. All steps of this new procedure were developed to ensure a rapid turnaround time and moderate cost. The results obtained suggest that this rapid approach is a valuable tool for the genotyping of S. aureus isolates in real time. PMID:16000459

  4. The RABiT: High Throughput Technology for Assessing Global DSB Repair

    OpenAIRE

    Turner, H.C.; P.Sharma; Perrier, J.R.; Bertucci, A.; Smilenov, L.; Johnson, Gary; Taveras, M.; Brenner, D. J.; Garty, G.

    2014-01-01

    At the Center for High-Throughput Minimally Invasive Radiation Biodosimetry we have developed a Rapid Automated Biodosimetry Tool (RABiT); this is a completely automated, ultra-high throughput robotically-based biodosimetry workstation designed for use following a large scale radiological event, to perform radiation biodosimetry measurements based on a fingerstick blood sample. High throughput is achieved through purpose built robotics, sample handling in filter-bottomed multi-well plates and...

  5. Exploration and Practice of Personnel Cultivation for Agricultural Mechanization and Automation Specialities

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    Firstly, based on significance of developing agricultural mechanization and automation and current situations of agricultural mechanization and automation specialities in colleges and universities, we put forward objectives of personnel cultivation for agricultural mechanization and automation specialities. Then, we analyze the exploration and practice of personnel cultivation for agricultural mechanization and automation specialities from four aspects, including course system setting, teaching materials construction, laboratory construction, and construction of practical teaching link. Finally, it is expected to provide references for running schools and cultivating excellent professional personnel.

  6. High throughput production of mouse monoclonal antibodies using antigen microarrays

    DEFF Research Database (Denmark)

    De Masi, Federico; Chiarella, P.; Wilhelm, H.;

    2005-01-01

    Recent advances in proteomics research underscore the increasing need for high-affinity monoclonal antibodies, which are still generated with lengthy, low-throughput antibody production techniques. Here we present a semi-automated, high-throughput method of hybridoma generation and identification...

  7. High-Throughput, Large-Scale SNP Genotyping: Bioinformatics Considerations

    OpenAIRE

    Margetic, Nino

    2004-01-01

    In order to provide a high-throughput, large-scale genotyping facility at the national level we have developed a set of inter-dependent information systems. A combination of commercial, publicly-available and in-house developed tools links a series of data repositories based both on flat files and relational databases providing an almost complete semi-automated pipeline.

  8. High-throughput continuous cryopump

    International Nuclear Information System (INIS)

    A cryopump with a unique method of regeneration which allows continuous operation at high throughput has been constructed and tested. Deuterium was pumped continuously at a throughput of 30 Torr.L/s at a speed of 2000 L/s and a compression ratio of 200. Argon was pumped at a throughput of 60 Torr.L/s at a speed of 1275 L/s. To produce continuous operation of the pump, a method of regeneration that does not thermally cycle the pump is employed. A small chamber (the ''snail'') passes over the pumping surface and removes the frost from it either by mechanical action with a scraper or by local heating. The material removed is topologically in a secondary vacuum system with low conductance into the primary vacuum; thus, the exhaust can be pumped at pressures up to an effective compression ratio determined by the ratio of the pumping speed to the leakage conductance of the snail. The pump, which is all-metal-sealed and dry and which regenerates every 60 s, would be an ideal system for pumping tritium. Potential fusion applications are for mpmp limiters, for repeating pneumatic pellet injection lines, and for the centrifuge pellet injector spin tank, all of which will require pumping tritium at high throughput. Industrial applications requiring ultraclean pumping of corrosive gases at high throughput, such as the reactive ion etch semiconductor process, may also be feasible

  9. Perspective: Data infrastructure for high throughput materials discovery

    Science.gov (United States)

    Pfeif, E. A.; Kroenlein, K.

    2016-05-01

    Computational capability has enabled materials design to evolve from trial-and-error towards more informed methodologies that require large amounts of data. Expert-designed tools and their underlying databases facilitate modern-day high throughput computational methods. Standard data formats and communication standards increase the impact of traditional data, and applying these technologies to a high throughput experimental design provides dense, targeted materials data that are valuable for material discovery. Integrated computational materials engineering requires both experimentally and computationally derived data. Harvesting these comprehensively requires different methods of varying degrees of automation to accommodate variety and volume. Issues of data quality persist independent of type.

  10. High-Throughput Analysis of Enzyme Activities

    Energy Technology Data Exchange (ETDEWEB)

    Guoxin Lu

    2007-12-01

    High-throughput screening (HTS) techniques have been applied to many research fields nowadays. Robot microarray printing technique and automation microtiter handling technique allows HTS performing in both heterogeneous and homogeneous formats, with minimal sample required for each assay element. In this dissertation, new HTS techniques for enzyme activity analysis were developed. First, patterns of immobilized enzyme on nylon screen were detected by multiplexed capillary system. The imaging resolution is limited by the outer diameter of the capillaries. In order to get finer images, capillaries with smaller outer diameters can be used to form the imaging probe. Application of capillary electrophoresis allows separation of the product from the substrate in the reaction mixture, so that the product doesn't have to have different optical properties with the substrate. UV absorption detection allows almost universal detection for organic molecules. Thus, no modifications of either the substrate or the product molecules are necessary. This technique has the potential to be used in screening of local distribution variations of specific bio-molecules in a tissue or in screening of multiple immobilized catalysts. Another high-throughput screening technique is developed by directly monitoring the light intensity of the immobilized-catalyst surface using a scientific charge-coupled device (CCD). Briefly, the surface of enzyme microarray is focused onto a scientific CCD using an objective lens. By carefully choosing the detection wavelength, generation of product on an enzyme spot can be seen by the CCD. Analyzing the light intensity change over time on an enzyme spot can give information of reaction rate. The same microarray can be used for many times. Thus, high-throughput kinetic studies of hundreds of catalytic reactions are made possible. At last, we studied the fluorescence emission spectra of ADP and obtained the detection limits for ADP under three different

  11. Fluorescent Approaches to High Throughput Crystallography

    Science.gov (United States)

    Pusey, Marc L.; Forsythe, Elizabeth; Achari, Aniruddha

    2006-01-01

    We have shown that by covalently modifying a subpopulation, less than or equal to 1%, of a macromolecule with a fluorescent probe, the labeled material will add to a growing crystal as a microheterogeneous growth unit. Labeling procedures can be readily incorporated into the final stages of purification, and the presence of the probe at low concentrations does not affect the X-ray data quality or the crystallization behavior. The presence of the trace fluorescent label gives a number of advantages when used with high throughput crystallizations. The covalently attached probe will concentrate in the crystal relative to the solution, and under fluorescent illumination crystals show up as bright objects against a dark background. Non-protein structures, such as salt crystals, will not incorporate the probe and will not show up under fluorescent illumination. Brightly fluorescent crystals are readily found against less bright precipitated phases, which under white light illumination may obscure the crystals. Automated image analysis to find crystals should be greatly facilitated, without having to first define crystallization drop boundaries as the protein or protein structures is all that shows up. Fluorescence intensity is a faster search parameter, whether visually or by automated methods, than looking for crystalline features. We are now testing the use of high fluorescence intensity regions, in the absence of clear crystalline features or "hits", as a means for determining potential lead conditions. A working hypothesis is that kinetics leading to non-structured phases may overwhelm and trap more slowly formed ordered assemblies, which subsequently show up as regions of brighter fluorescence intensity. Preliminary experiments with test proteins have resulted in the extraction of a number of crystallization conditions from screening outcomes based solely on the presence of bright fluorescent regions. Subsequent experiments will test this approach using a wider

  12. High-Throughput ab-initio Dilute Solute Diffusion Database

    OpenAIRE

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-01-01

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighte...

  13. On the Cultivation of Automation Majors' Research Innovation Ability Based on Scientific Research Projects

    Science.gov (United States)

    Wang, Lipeng; Li, Mingqiu

    2012-01-01

    Currently, it has become a fundamental goal for the engineering major to cultivate high-quality engineering technicians with innovation ability in scientific research which is an important academic ability necessary for them. This paper mainly explores the development of comprehensive and designing experiments in automation based on scientific…

  14. Seasonal cultivated and fallow cropland mapping using MODIS-based automated cropland classification algorithm

    Science.gov (United States)

    Wu, Zhuoting; Thenkabail, Prasad S.; Mueller, Rick; Zakzeski, Audra; Melton, Forrest; Johnson, Lee; Rosevelt, Carolyn; Dwyer, John; Jones, Jeanine; Verdin, James P.

    2014-01-01

    Increasing drought occurrences and growing populations demand accurate, routine, and consistent cultivated and fallow cropland products to enable water and food security analysis. The overarching goal of this research was to develop and test automated cropland classification algorithm (ACCA) that provide accurate, consistent, and repeatable information on seasonal cultivated as well as seasonal fallow cropland extents and areas based on the Moderate Resolution Imaging Spectroradiometer remote sensing data. Seasonal ACCA development process involves writing series of iterative decision tree codes to separate cultivated and fallow croplands from noncroplands, aiming to accurately mirror reliable reference data sources. A pixel-by-pixel accuracy assessment when compared with the U.S. Department of Agriculture (USDA) cropland data showed, on average, a producer's accuracy of 93% and a user's accuracy of 85% across all months. Further, ACCA-derived cropland maps agreed well with the USDA Farm Service Agency crop acreage-reported data for both cultivated and fallow croplands with R-square values over 0.7 and field surveys with an accuracy of ≥95% for cultivated croplands and ≥76% for fallow croplands. Our results demonstrated the ability of ACCA to generate cropland products, such as cultivated and fallow cropland extents and areas, accurately, automatically, and repeatedly throughout the growing season.

  15. Seasonal cultivated and fallow cropland mapping using MODIS-based automated cropland classification algorithm

    Science.gov (United States)

    Wu, Zhuoting; Thenkabail, Prasad S.; Mueller, Rick; Zakzeski, Audra; Melton, Forrest; Johnson, Lee; Rosevelt, Carolyn; Dwyer, John; Jones, Jeanine; Verdin, James P.

    2013-01-01

    Increasing drought occurrences and growing populations demand accurate, routine, and consistent cultivated and fallow cropland products to enable water and food security analysis. The overarching goal of this research was to develop and test automated cropland classification algorithm (ACCA) that provide accurate, consistent, and repeatable information on seasonal cultivated as well as seasonal fallow cropland extents and areas based on the Moderate Resolution Imaging Spectroradiometer remote sensing data. Seasonal ACCA development process involves writing series of iterative decision tree codes to separate cultivated and fallow croplands from noncroplands, aiming to accurately mirror reliable reference data sources. A pixel-by-pixel accuracy assessment when compared with the U.S. Department of Agriculture (USDA) cropland data showed, on average, a producer’s accuracy of 93% and a user’s accuracy of 85% across all months. Further, ACCA-derived cropland maps agreed well with the USDA Farm Service Agency crop acreage-reported data for both cultivated and fallow croplands with R-square values over 0.7 and field surveys with an accuracy of ≥95% for cultivated croplands and ≥76% for fallow croplands. Our results demonstrated the ability of ACCA to generate cropland products, such as cultivated and fallow cropland extents and areas, accurately, automatically, and repeatedly throughout the growing season.

  16. High-throughput analysis of growth differences among phage strains.

    Science.gov (United States)

    Turner, Paul E; Draghi, Jeremy A; Wilpiszeski, Regina

    2012-01-01

    Although methods such as spectrophotometry are useful for identifying growth differences among bacterial strains, it is currently difficult to similarly determine whether bacteriophage strains differ in growth using high throughput methods. Here we use automated spectrophotometry to develop an in vitro method for indirectly distinguishing fitness (growth) differences among virus strains, based on direct measures of their infected bacterial hosts. We used computer simulations of a mathematical model for phage growth to predict which features of bacterial growth curves were best associated with differences in growth among phage strains. We then tested these predictions using the in vitro method to confirm which of the inferred viral growth traits best reflected known fitness differences among genotypes of the RNA phage phi-6, when infecting a Pseudomonas syringae host. Results showed that the inferred phage trait of time-to-extinction (time required to drive bacterial density below detectable optical density) reliably correlated with genotype rankings based on absolute fitness (phage titer per ml). These data suggested that the high-throughput analysis was valuable for identifying growth differences among virus strains, and that the method may be especially useful for high throughput analyses of fitness differences among phage strains cultured and/or evolved in liquid (unstructured) environments. PMID:22101310

  17. High-Throughput Intracellular Antimicrobial Susceptibility Testing of Legionella pneumophila.

    Science.gov (United States)

    Chiaraviglio, Lucius; Kirby, James E

    2015-12-01

    Legionella pneumophila is a Gram-negative opportunistic human pathogen that causes a severe pneumonia known as Legionnaires' disease. Notably, in the human host, the organism is believed to replicate solely within an intracellular compartment, predominantly within pulmonary macrophages. Consequently, successful therapy is predicated on antimicrobials penetrating into this intracellular growth niche. However, standard antimicrobial susceptibility testing methods test solely for extracellular growth inhibition. Here, we make use of a high-throughput assay to characterize intracellular growth inhibition activity of known antimicrobials. For select antimicrobials, high-resolution dose-response analysis was then performed to characterize and compare activity levels in both macrophage infection and axenic growth assays. Results support the superiority of several classes of nonpolar antimicrobials in abrogating intracellular growth. Importantly, our assay results show excellent correlations with prior clinical observations of antimicrobial efficacy. Furthermore, we also show the applicability of high-throughput automation to two- and three-dimensional synergy testing. High-resolution isocontour isobolograms provide in vitro support for specific combination antimicrobial therapy. Taken together, findings suggest that high-throughput screening technology may be successfully applied to identify and characterize antimicrobials that target bacterial pathogens that make use of an intracellular growth niche. PMID:26392509

  18. High-Throughput Intracellular Antimicrobial Susceptibility Testing of Legionella pneumophila

    Science.gov (United States)

    Chiaraviglio, Lucius

    2015-01-01

    Legionella pneumophila is a Gram-negative opportunistic human pathogen that causes a severe pneumonia known as Legionnaires' disease. Notably, in the human host, the organism is believed to replicate solely within an intracellular compartment, predominantly within pulmonary macrophages. Consequently, successful therapy is predicated on antimicrobials penetrating into this intracellular growth niche. However, standard antimicrobial susceptibility testing methods test solely for extracellular growth inhibition. Here, we make use of a high-throughput assay to characterize intracellular growth inhibition activity of known antimicrobials. For select antimicrobials, high-resolution dose-response analysis was then performed to characterize and compare activity levels in both macrophage infection and axenic growth assays. Results support the superiority of several classes of nonpolar antimicrobials in abrogating intracellular growth. Importantly, our assay results show excellent correlations with prior clinical observations of antimicrobial efficacy. Furthermore, we also show the applicability of high-throughput automation to two- and three-dimensional synergy testing. High-resolution isocontour isobolograms provide in vitro support for specific combination antimicrobial therapy. Taken together, findings suggest that high-throughput screening technology may be successfully applied to identify and characterize antimicrobials that target bacterial pathogens that make use of an intracellular growth niche. PMID:26392509

  19. A Colloidal Stability Assay Suitable for High-Throughput Screening.

    Science.gov (United States)

    Abarca, Carla; Ali, M Monsur; Yang, Songtao; Dong, Xiaofei; Pelton, Robert H

    2016-03-01

    A library of 32 polystyrene copolymer latexes, with diameters ranging between 53 and 387 nm, was used to develop and demonstrate a high-throughput assay using a 96-well microplate platform to measure critical coagulation concentrations, a measure of colloidal stability. The most robust assay involved an automated centrifugation-decantation step to remove latex aggregates before absorbance measurements, eliminating aggregate interference with optical measurements made through the base of the multiwell plates. For smaller nanoparticles (diameter aggregation; however, the results were less sensitive than the absorbance measurements. PMID:26857643

  20. Data Management for High-Throughput Genomics

    CERN Document Server

    Roehm, Uwe

    2009-01-01

    Today's sequencing technology allows sequencing an individual genome within a few weeks for a fraction of the costs of the original Human Genome project. Genomics labs are faced with dozens of TB of data per week that have to be automatically processed and made available to scientists for further analysis. This paper explores the potential and the limitations of using relational database systems as the data processing platform for high-throughput genomics. In particular, we are interested in the storage management for high-throughput sequence data and in leveraging SQL and user-defined functions for data analysis inside a database system. We give an overview of a database design for high-throughput genomics, how we used a SQL Server database in some unconventional ways to prototype this scenario, and we will discuss some initial findings about the scalability and performance of such a more database-centric approach.

  1. COMPUTER APPROACHES TO WHEAT HIGH-THROUGHPUT PHENOTYPING

    Directory of Open Access Journals (Sweden)

    Afonnikov D.

    2012-08-01

    Full Text Available The growing need for rapid and accurate approaches for large-scale assessment of phenotypic characters in plants becomes more and more obvious in the studies looking into relationships between genotype and phenotype. This need is due to the advent of high throughput methods for analysis of genomes. Nowadays, any genetic experiment involves data on thousands and dozens of thousands of plants. Traditional ways of assessing most phenotypic characteristics (those with reliance on the eye, the touch, the ruler are little effective on samples of such sizes. Modern approaches seek to take advantage of automated phenotyping, which warrants a much more rapid data acquisition, higher accuracy of the assessment of phenotypic features, measurement of new parameters of these features and exclusion of human subjectivity from the process. Additionally, automation allows measurement data to be rapidly loaded into computer databases, which reduces data processing time.In this work, we present the WheatPGE information system designed to solve the problem of integration of genotypic and phenotypic data and parameters of the environment, as well as to analyze the relationships between the genotype and phenotype in wheat. The system is used to consolidate miscellaneous data on a plant for storing and processing various morphological traits and genotypes of wheat plants as well as data on various environmental factors. The system is available at www.wheatdb.org. Its potential in genetic experiments has been demonstrated in high-throughput phenotyping of wheat leaf pubescence.

  2. Automated Chemotactic Sorting and Single-cell Cultivation of Microbes using Droplet Microfluidics

    Science.gov (United States)

    Dong, Libing; Chen, Dong-Wei; Liu, Shuang-Jiang; Du, Wenbin

    2016-04-01

    We report a microfluidic device for automated sorting and cultivation of chemotactic microbes from pure cultures or mixtures. The device consists of two parts: in the first part, a concentration gradient of the chemoeffector was built across the channel for inducing chemotaxis of motile cells; in the second part, chemotactic cells from the sample were separated, and mixed with culture media to form nanoliter droplets for encapsulation, cultivation, enumeration, and recovery of single cells. Chemotactic responses were assessed by imaging and statistical analysis of droplets based on Poisson distribution. An automated procedure was developed for rapid enumeration of droplets with cell growth, following with scale-up cultivation on agar plates. The performance of the device was evaluated by the chemotaxis assays of Escherichia coli (E. coli) RP437 and E. coli RP1616. Moreover, enrichment and isolation of non-labelled Comamonas testosteroni CNB-1 from its 1:10 mixture with E. coli RP437 was demonstrated. The enrichment factor reached 36.7 for CNB-1, based on its distinctive chemotaxis toward 4-hydroxybenzoic acid. We believe that this device can be widely used in chemotaxis studies without necessarily relying on fluorescent labelling, and isolation of functional microbial species from various environments.

  3. INTRODUCTION OF THE HIGH THROUGHPUT SCREENING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    李元

    2001-01-01

    In this article, we introduce the system of high throughput screening (HTS). Its role in new drug study and current development is described. The relationship between research achievements of genome study and new type screening model of new drugs is emphasized. The personal opinions of current problems about HTS study in China are raised.``

  4. INTRODUCTION OF THE HIGH THROUGHPUT SCREENING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    李元

    2001-01-01

    In this article, we introduce the system of high throughput screening (HTS). Its role in new drug study and current development is described. The relationship between research achievements of genome study and new type screening model of new drugs is emphasized. The personal opinions of current problems about HTS study in China are raised.

  5. High-Throughput Fully Automated Construction of a Multiplex Library of Mutagenized Open Reading Frames for an Insecticidal Peptide Using a Plasmid-Based Functional Proteomic Robotic Workcell with Improved Vacuum System

    Science.gov (United States)

    Robotic platforms are essential for the production and screening of large numbers of expression-ready plasmid sets used to develop optimized clones and improved microbial strains. Here we demonstrate a plasmid-based integrated workcell that was used to automate the molecular biology protocols inclu...

  6. A robust robotic high-throughput antibody purification platform.

    Science.gov (United States)

    Schmidt, Peter M; Abdo, Michael; Butcher, Rebecca E; Yap, Min-Yin; Scotney, Pierre D; Ramunno, Melanie L; Martin-Roussety, Genevieve; Owczarek, Catherine; Hardy, Matthew P; Chen, Chao-Guang; Fabri, Louis J

    2016-07-15

    Monoclonal antibodies (mAbs) have become the fastest growing segment in the drug market with annual sales of more than 40 billion US$ in 2013. The selection of lead candidate molecules involves the generation of large repertoires of antibodies from which to choose a final therapeutic candidate. Improvements in the ability to rapidly produce and purify many antibodies in sufficient quantities reduces the lead time for selection which ultimately impacts on the speed with which an antibody may transition through the research stage and into product development. Miniaturization and automation of chromatography using micro columns (RoboColumns(®) from Atoll GmbH) coupled to an automated liquid handling instrument (ALH; Freedom EVO(®) from Tecan) has been a successful approach to establish high throughput process development platforms. Recent advances in transient gene expression (TGE) using the high-titre Expi293F™ system have enabled recombinant mAb titres of greater than 500mg/L. These relatively high protein titres reduce the volume required to generate several milligrams of individual antibodies for initial biochemical and biological downstream assays, making TGE in the Expi293F™ system ideally suited to high throughput chromatography on an ALH. The present publication describes a novel platform for purifying Expi293F™-expressed recombinant mAbs directly from cell-free culture supernatant on a Perkin Elmer JANUS-VariSpan ALH equipped with a plate shuttle device. The purification platform allows automated 2-step purification (Protein A-desalting/size exclusion chromatography) of several hundred mAbs per week. The new robotic method can purify mAbs with high recovery (>90%) at sub-milligram level with yields of up to 2mg from 4mL of cell-free culture supernatant. PMID:27283099

  7. Bipolar electrochemistry for high throughput screening applications

    OpenAIRE

    Munktell, Sara

    2016-01-01

    Bipolar electrochemistry is an interesting concept for high throughput screening techniques due to the ability to induce gradients in a range of materials and their properties, such as composition, particle size, or dopant levels, among many others. One of the key advantages of the method is the ability to test, create or modify materials without the need for a direct electrical connection. In this thesis, the viability of this method has been explored for a range of possible applications, su...

  8. A click chemistry-based microRNA maturation assay optimized for high-throughput screening.

    Science.gov (United States)

    Lorenz, Daniel A; Garner, Amanda L

    2016-07-01

    Catalytic enzyme-linked click-chemistry assays (cat-ELCCA) are an emerging class of biochemical assay. Herein we report on expanding the toolkit of cat-ELCCA to include the kinetically superior inverse-electron demand Diels-Alder (IEDDA) reaction. The result is a technology with improved sensitivity and reproducibility, enabling automated high-throughput screening. PMID:27284591

  9. High-throughput neuro-imaging informatics.

    Science.gov (United States)

    Miller, Michael I; Faria, Andreia V; Oishi, Kenichi; Mori, Susumu

    2013-01-01

    This paper describes neuroinformatics technologies at 1 mm anatomical scale based on high-throughput 3D functional and structural imaging technologies of the human brain. The core is an abstract pipeline for converting functional and structural imagery into their high-dimensional neuroinformatic representation index containing O(1000-10,000) discriminating dimensions. The pipeline is based on advanced image analysis coupled to digital knowledge representations in the form of dense atlases of the human brain at gross anatomical scale. We demonstrate the integration of these high-dimensional representations with machine learning methods, which have become the mainstay of other fields of science including genomics as well as social networks. Such high-throughput facilities have the potential to alter the way medical images are stored and utilized in radiological workflows. The neuroinformatics pipeline is used to examine cross-sectional and personalized analyses of neuropsychiatric illnesses in clinical applications as well as longitudinal studies. We demonstrate the use of high-throughput machine learning methods for supporting (i) cross-sectional image analysis to evaluate the health status of individual subjects with respect to the population data, (ii) integration of image and personal medical record non-image information for diagnosis and prognosis. PMID:24381556

  10. High Throughput Neuro-Imaging Informatics

    Directory of Open Access Journals (Sweden)

    Michael I Miller

    2013-12-01

    Full Text Available This paper describes neuroinformatics technologies at 1 mm anatomical scale based on high throughput 3D functional and structural imaging technologies of the human brain. The core is an abstract pipeline for converting functional and structural imagery into their high dimensional neuroinformatic representations index containing O(E3-E4 discriminating dimensions. The pipeline is based on advanced image analysis coupled to digital knowledge representations in the form of dense atlases of the human brain at gross anatomical scale. We demonstrate the integration of these high-dimensional representations with machine learning methods, which have become the mainstay of other fields of science including genomics as well as social networks. Such high throughput facilities have the potential to alter the way medical images are stored and utilized in radiological workflows. The neuroinformatics pipeline is used to examine cross-sectional and personalized analyses of neuropsychiatric illnesses in clinical applications as well as longitudinal studies. We demonstrate the use of high throughput machine learning methods for supporting (i cross-sectional image analysis to evaluate the health status of individual subjects with respect to the population data, (ii integration of image and non-image information for diagnosis and prognosis.

  11. Reconfigurable microfluidic dilution for high-throughput quantitative assays.

    Science.gov (United States)

    Fan, Jinzhen; Li, Baoqing; Xing, Siyuan; Pan, Tingrui

    2015-06-21

    This paper reports a reconfigurable microfluidic dilution device for high-throughput quantitative assays, which can easily produce discrete logarithmic/binary concentration profiles ranging from 1 to 100-fold dilution in parallel from a fixed sample volume (e.g., 10 μL) without any assistance of continuous fluidic pump or robotic automation. The integrated dilution generation chip consists of switchable distribution and collection channels, metering reservoirs, reaction chambers, and pressure-activatable Laplace valves. Following the sequential loading of a sample, a diluent, and a detection reagent into their individual metering chambers, the top microfluidic layer can be reconfigured to collect the metered chemicals into the reaction chambers in parallel, where detection will be conducted. To facilitate mixing and reaction in the microchambers, two acoustic microstreaming actuation mechanisms have been investigated for easy integrability and accessibility. Furthermore, the microfluidic dilution generator has been characterized by both colorimetric and fluorescent means. A further demonstration of the generic usage of the quantitative dilution chip has utilized the commonly available bicinchoninic acid (BCA) assay to analyse the protein concentrations of human tissue extracts. In brief, the microfluidic dilution generator offers a high-throughput high-efficiency quantitative analytical alternative to conventional quantitative assay platforms, by simple manipulation of a minute amount of chemicals in a compact microfluidic device with minimal equipment requirement, which can serve as a facile tool for biochemical and biological analyses in regular laboratories, point-of-care settings and low-resource environments. PMID:25994379

  12. High-throughput ab-initio dilute solute diffusion database.

    Science.gov (United States)

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-01-01

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world. PMID:27434308

  13. Microfluidics for High-Throughput Quantitative Studies of Early Development.

    Science.gov (United States)

    Levario, Thomas J; Lim, Bomyi; Shvartsman, Stanislav Y; Lu, Hang

    2016-07-11

    Developmental biology has traditionally relied on qualitative analyses; recently, however, as in other fields of biology, researchers have become increasingly interested in acquiring quantitative knowledge about embryogenesis. Advances in fluorescence microscopy are enabling high-content imaging in live specimens. At the same time, microfluidics and automation technologies are increasing experimental throughput for studies of multicellular models of development. Furthermore, computer vision methods for processing and analyzing bioimage data are now leading the way toward quantitative biology. Here, we review advances in the areas of fluorescence microscopy, microfluidics, and data analysis that are instrumental to performing high-content, high-throughput studies in biology and specifically in development. We discuss a case study of how these techniques have allowed quantitative analysis and modeling of pattern formation in the Drosophila embryo. PMID:26928208

  14. Towards high throughput screening of nanoparticle flotation collectors.

    Science.gov (United States)

    Abarca, Carla; Yang, Songtao; Pelton, Robert H

    2015-12-15

    To function as flotation collectors for mineral processing, polymeric nanoparticles require a delicate balance of surface properties to give mineral-specific deposition and colloidal stability in high ionic strength alkaline media, while remaining sufficiently hydrophobic to promote flotation. Combinatorial nanoparticle surface modification, in conjunction with high throughput screening, is a promising approach for nanoparticle development. However, efficient automated screening assays are required to reject ineffective particles without having to undergo time consuming flotation testing. Herein we demonstrate that determining critical coagulation concentrations of sodium carbonate in combination with measuring the advancing water contact angle of nanoparticle-saturated glass surfaces can be used to screen ineffective nanoparticles. Finally, none of our first nanoparticle library based on poly(ethylene glycol) methyl ether methacrylate (PEG-methacrylate) were effective flotation collectors because the nanoparticles were too hydrophilic. PMID:26319325

  15. High-throughput operando Raman-quadrupole mass spectrometer (QMS) system to screen catalytic systems.

    Science.gov (United States)

    García-Casado, Manuel; Prieto, José; Vico-Ruiz, Emilio; Lozano-Diz, Enrique; Goberna-Selma, Consuelo; Bañares, Miguel A

    2014-01-01

    This paper describes the design and setup of a high-throughput Raman system for an array of eight parallel catalytic reactors during reaction conditions. The "operando" methodology combines in situ spectroscopy during catalytic reaction with a simultaneous activity measurement. The high-throughput operando Raman system, multi-operando, is a device that automates this operando methodology for several catalyst samples at the same time, all samples being in the same reaction conditions. We describe how the system is made, how Raman system positions and acquires spectra, and how each reactor outlet gas is selected and analyzed. PMID:24405956

  16. A high throughput screen for biomining cellulase activity from metagenomic libraries.

    Science.gov (United States)

    Mewis, Keith; Taupp, Marcus; Hallam, Steven J

    2011-01-01

    Cellulose, the most abundant source of organic carbon on the planet, has wide-ranging industrial applications with increasing emphasis on biofuel production (1). Chemical methods to modify or degrade cellulose typically require strong acids and high temperatures. As such, enzymatic methods have become prominent in the bioconversion process. While the identification of active cellulases from bacterial and fungal isolates has been somewhat effective, the vast majority of microbes in nature resist laboratory cultivation. Environmental genomic, also known as metagenomic, screening approaches have great promise in bridging the cultivation gap in the search for novel bioconversion enzymes. Metagenomic screening approaches have successfully recovered novel cellulases from environments as varied as soils (2), buffalo rumen (3) and the termite hind-gut (4) using carboxymethylcellulose (CMC) agar plates stained with congo red dye (based on the method of Teather and Wood (5)). However, the CMC method is limited in throughput, is not quantitative and manifests a low signal to noise ratio (6). Other methods have been reported (7,8) but each use an agar plate-based assay, which is undesirable for high-throughput screening of large insert genomic libraries. Here we present a solution-based screen for cellulase activity using a chromogenic dinitrophenol (DNP)-cellobioside substrate (9). Our library was cloned into the pCC1 copy control fosmid to increase assay sensitivity through copy number induction (10). The method uses one-pot chemistry in 384-well microplates with the final readout provided as an absorbance measurement. This readout is quantitative, sensitive and automated with a throughput of up to 100X 384-well plates per day using a liquid handler and plate reader with attached stacking system. PMID:21307835

  17. High throughput screening of physicochemical properties and in vitro ADME profiling in drug discovery.

    Science.gov (United States)

    Wan, Hong; Holmén, Anders G

    2009-03-01

    Current advances of new technologies with robotic automated assays combined with highly selective and sensitive LC-MS enable high-speed screening of lead series libraries in many in vitro assays. In this review, we summarize state of the art high throughput assays for screening of key physicochemical properties such as solubility, lipophilicity, pKa, drug-plasma protein binding and brain tissue binding as well as in vitro ADME profiling. We discuss two primary approaches for high throughput screening of solubility, i.e. an automated 96-well plate assay integrated with LC-MS and a rapid multi-wavelength UV plate reader. We address the advantages of newly developed miniaturized techniques for high throughput pKa screening by capillary electrophoresis combined with mass spectrometry (CE-MS) with automated data analysis flow. Several new lipophilicity approaches other than octanol-water partitioning are critically reviewed, including rapid liquid chromatographic retention based approach, immobilized artificial membrane (IAM) partitioning and liposome, and potential microemulsion electrokinetic chromatography (MEEKC) for accurate screening of LogP. We highlight the sample pooling (namely cassette dosing, all-in-one, cocktail) as an efficient approach for high throughput screening of physicochemical properties and in vitro ADME profiling with emphasis on the benefit of on-line quality control. This cassette dosing approach has been widely adapted in drug discovery for rapid screening of in vivo pharmacokinetic parameters with significantly increased capacity and dramatically reduced animal usage. PMID:19275537

  18. Applications of High Throughput Nucleotide Sequencing

    DEFF Research Database (Denmark)

    Waage, Johannes Eichler

    The recent advent of high throughput sequencing of nucleic acids (RNA and DNA) has vastly expanded research into the functional and structural biology of the genome of all living organisms (and even a few dead ones). With this enormous and exponential growth in biological data generation come......, focusing on oft encountered problems in data processing, such as quality assurance, mapping, normalization, visualization, and interpretation. Presented in the second part are scientific endeavors representing solutions to problems of two sub-genres of next generation sequencing. For the first flavor, RNA...

  19. High-Throughput Cell Toxicity Assays.

    Science.gov (United States)

    Murray, David; McWilliams, Lisa; Wigglesworth, Mark

    2016-01-01

    Understanding compound-driven cell toxicity is vitally important for all drug discovery approaches. With high-throughput screening (HTS) being the key strategy to find hit and lead compounds for drug discovery projects in the pharmaceutical industry [1], an understanding of the cell toxicity profile of hit molecules from HTS activities is fundamentally important. Recently, there has been a resurgence of interest in phenotypic drug discovery and these cell-based assays are now being run in HTS labs on ever increasing numbers of compounds. As the use of cell assays increases the ability to measure toxicity of compounds on a large scale becomes increasingly important to ensure that false hits are not progressed and that compounds do not carry forward a toxic liability that may cause them to fail at later stages of a project. Here we describe methods employed in the AstraZeneca HTS laboratory to carry out very large scale cell toxicity screening. PMID:27317000

  20. High throughput assays for analyzing transcription factors.

    Science.gov (United States)

    Li, Xianqiang; Jiang, Xin; Yaoi, Takuro

    2006-06-01

    Transcription factors are a group of proteins that modulate the expression of genes involved in many biological processes, such as cell growth and differentiation. Alterations in transcription factor function are associated with many human diseases, and therefore these proteins are attractive potential drug targets. A key issue in the development of such therapeutics is the generation of effective tools that can be used for high throughput discovery of the critical transcription factors involved in human diseases, and the measurement of their activities in a variety of disease or compound-treated samples. Here, a number of innovative arrays and 96-well format assays for profiling and measuring the activities of transcription factors will be discussed. PMID:16834538

  1. A high-throughput chemically induced inflammation assay in zebrafish

    Directory of Open Access Journals (Sweden)

    Liebel Urban

    2010-12-01

    Full Text Available Abstract Background Studies on innate immunity have benefited from the introduction of zebrafish as a model system. Transgenic fish expressing fluorescent proteins in leukocyte populations allow direct, quantitative visualization of an inflammatory response in vivo. It has been proposed that this animal model can be used for high-throughput screens aimed at the identification of novel immunomodulatory lead compounds. However, current assays require invasive manipulation of fish individually, thus preventing high-content screening. Results Here we show that specific, noninvasive damage to lateral line neuromast cells can induce a robust acute inflammatory response. Exposure of fish larvae to sublethal concentrations of copper sulfate selectively damages the sensory hair cell population inducing infiltration of leukocytes to neuromasts within 20 minutes. Inflammation can be assayed in real time using transgenic fish expressing fluorescent proteins in leukocytes or by histochemical assays in fixed larvae. We demonstrate the usefulness of this method for chemical and genetic screens to detect the effect of immunomodulatory compounds and mutations affecting the leukocyte response. Moreover, we transformed the assay into a high-throughput screening method by using a customized automated imaging and processing system that quantifies the magnitude of the inflammatory reaction. Conclusions This approach allows rapid screening of thousands of compounds or mutagenized zebrafish for effects on inflammation and enables the identification of novel players in the regulation of innate immunity and potential lead compounds toward new immunomodulatory therapies. We have called this method the chemically induced inflammation assay, or ChIn assay. See Commentary article: http://www.biomedcentral.com/1741-7007/8/148.

  2. High Throughput SNP Genotyping with Two Mini-sequencing Assays

    Institute of Scientific and Technical Information of China (English)

    Chunqing LUO; Libin DENG; Changqing ZENG

    2004-01-01

    Two mini-sequencing methods,FP-TDI (template-directed dye-terminator incorporation with fluorescence-polarization) and MassArray (matrix assisted laser desorption ionization time of flight detection mass spectrometry),were optimized.A numeric standard was introduced to evaluate the SNP scoring quality of FP-TDI assay,thus made the optimization work easier.At the same time,using multi-PCR technology,8-plex genotyping of MassArray assay was successfully carried out,some softwares were developed and the data process of MassArray was highly automated.Then these two methods were applied to high throughput SNP genotyping,the accuracy,efficiency and robustness were compared.The result shows FP-TDI is more sensitive to the concentration of SNPprimer and PCR product,as well as extension cycles,the SNPprimer length of FP-TDI should be 24-30 bp long,whereas MassArray assay prefers to be as short as only 16 bp.Altogether 6440 SNP sites of human chromosome 3 were genotyped in a sample of 90 individuals,4792 sites by FP-TDI assay and 1648 sites by MassArray assay,the success rates of FP-TDI and MassArray were 67.7% and 93.6% respectively.The throughput of MassArray was higher than FP-TDI,and the cost of MassArray was lower,MassArray was more suitable for high throughput SNP genotyping.

  3. Robust, high-throughput solution for blood group genotyping.

    Science.gov (United States)

    Le Goff, Gaelle C; Brès, Jean-Charles; Rigal, Dominique; Blum, Loïc J; Marquette, Christophe A

    2010-07-15

    With the concomitant increase of blood transfusions and safety rules, there is a growing need to integrate high-throughput and multiparametric assays within blood qualification centers. Using a robust and automated solution, we describe a new method for extended blood group genotyping (HiFi-Blood 96) bringing together the throughput possibilities of complete automation and the microarray multiplexed analysis potential. Our approach provides a useful resource for upgrading blood qualification center facilities. A set of six single-nucleotide polymorphisms (SNPs) associated with clinically important blood group antigens (Kell, Kidd, Duffy, and MNS systems) were selected and the corresponding genotyping assays developed. A panel of 293 blood samples was used to validate the approach. The resulting genotypes were compared to phenotypes previously determined by standard serologic techniques, and excellent correlations were found for five SNPs out of six. For the Kell, Kidd, Duffy, and MNS3/MNS4 systems, high matching percentages of 100%, 98.9%, 97.7%, and 97.4% were obtained, respectively, whereas a concordance percentage of 83.3% only was attained for the MNS1/MNS2 polymorphism. PMID:20560530

  4. Automated intelligent rotor tine cultivation and punch planting to improve the selectivity of mechanical intra-row weed control

    DEFF Research Database (Denmark)

    Rasmussen, Jesper; Griepentrog, Hans W.; Nielsen, Jon; Henriksen, Christian Bugge

    2012-01-01

    -GPS relative to geo-referenced sugar beets. Tines were moved into the row when there was enough space between crop plants to cultivate and kept outside when they were predicted to strike a crop plant. The selectivity of the cycloid hoe was tested against two machine variants without intelligent guidance: the...... sugar beet and carrot crops showed no synergistic effects between plant establishment procedures and selectivity of post-emergence weed harrowing. Even if punch planting and automated intelligent rotor tine cultivation were not combined, the results indicated that there was no reason to believe that a...

  5. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS)

    Energy Technology Data Exchange (ETDEWEB)

    Hura, Greg L.; Menon, Angeli L.; Hammel, Michal; Rambo, Robert P.; Poole II, Farris L.; Tsutakawa, Susan E.; Jenney Jr, Francis E.; Classen, Scott; Frankel, Kenneth A.; Hopkins, Robert C.; Yang, Sungjae; Scott, Joseph W.; Dillard, Bret D.; Adams, Michael W. W.; Tainer, John A.

    2009-07-20

    We present an efficient pipeline enabling high-throughput analysis of protein structure in solution with small angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling of microliter volumes, temperature and anaerobic control, rapid data collection and data analysis, and couples structural analysis with automated archiving. We subjected 50 representative proteins, mostly from Pyrococcus furiosus, to this pipeline and found that 30 were multimeric structures in solution. SAXS analysis allowed us to distinguish aggregated and unfolded proteins, define global structural parameters and oligomeric states for most samples, identify shapes and similar structures for 25 unknown structures, and determine envelopes for 41 proteins. We believe that high-throughput SAXS is an enabling technology that may change the way that structural genomics research is done.

  6. High Throughput Screening and Selection Methods for Directed Enzyme Evolution

    OpenAIRE

    Xiao, Han; Bao, Zehua; Zhao, Huimin

    2014-01-01

    Successful evolutionary enzyme engineering requires a high throughput screening or selection method, which considerably increases the chance of obtaining desired properties and reduces the time and cost. In this review, a series of high throughput screening and selection methods are illustrated with significant and recent examples. These high throughput strategies are also discussed with an emphasis on compatibility with phenotypic analysis during directed enzyme evolution. Lastly, certain li...

  7. Computational chemistry, data mining, high-throughput synthesis and screening - informatics and integration in drug discovery

    OpenAIRE

    Charles J. Manly

    2001-01-01

    Drug discovery today includes considerable focus of laboratory automation and other resources on both combinatorial chemistry and high-throughput screening, and computational chemistry has been a part of pharmaceutical research for many years. The real benefit of these technologies is beyond the exploitation of each individually. Only recently have significant efforts focused on effectively integrating these and other discovery disciplines to realize their larger potential. This technical not...

  8. A BSL-4 High-Throughput Screen Identifies Sulfonamide Inhibitors of Nipah Virus

    OpenAIRE

    Tigabu, Bersabeh; Rasmussen, Lynn; White, E. Lucile; Tower, Nichole; Saeed, Mohammad; Bukreyev, Alexander; Rockx, Barry; LeDuc, James W.; Noah, James W.

    2014-01-01

    Nipah virus is a biosafety level 4 (BSL-4) pathogen that causes severe respiratory illness and encephalitis in humans. To identify novel small molecules that target Nipah virus replication as potential therapeutics, Southern Research Institute and Galveston National Laboratory jointly developed an automated high-throughput screening platform that is capable of testing 10,000 compounds per day within BSL-4 biocontainment. Using this platform, we screened a 10,080-compound library using a cell-...

  9. Characterization of metalloproteins by high-throughput X-ray absorption spectroscopy

    OpenAIRE

    Shi, W.; Punta, M.; J. Bohon; J.M. Sauder; R D'Mello; Sullivan, M.; Toomey, J.; Abel, D; Lippi, M.; Passerini, A.; P. Frasconi; Burley, S K; B. Rost; Chance, M. R.

    2011-01-01

    High-throughput X-ray absorption spectroscopy was used to measure transition metal content based on quantitative detection of X-ray fluorescence signals for 3879 purified proteins from several hundred different protein families gen- erated by the New York SGX Research Center for Structural Genomics. Approximately 9% of the proteins analyzed showed the presence of transition metal atoms (Zn, Cu, Ni, Co, Fe, or Mn) in stoichiometric amounts. The method is highly automated and highly reliable ba...

  10. Bilevel architecture for high-throughput computing

    International Nuclear Information System (INIS)

    The authors have prototyped and analyzed design of a novel approach for the high throughput computing - a core element for the emerging HENP computational grid. Independent event processing in HENP is well suited for computing in parallel. The prototype facilitates use of inexpensive mass-market components by providing fault tolerant resilience (instead of the expensive total system reliability) via highly scalable management components. The ability to handle both hardware and software failures on a large dedicated HENP facility limits the need for user intervention. A robust data management is especially important in HENP computing since large data-flows occur before and/or after each processing task. The architecture of our active object coordination schema implements a multi-level hierarchical agent model. It provides fault tolerance by splitting a large overall task into independent atomic processes, performed by lower level agents, synchronizing each other via a local database. Necessary control functions performed by higher level agents interact with the same database thus managing distributed data production. The system has been tested in production environment for simulations in the STAR experiment at RHIC. Authors' architectural prototype controlled processes on more than a hundred processors at a time and has run for extended periods of time. Twenty terabytes of simulated data have been produced. The generic nature of their two level architectural solution for the fault tolerance in distributed environment has been demonstrated by its successful test for the grid file replication services between BNL and LBNL

  11. Orthogonal NGS for High Throughput Clinical Diagnostics.

    Science.gov (United States)

    Chennagiri, Niru; White, Eric J; Frieden, Alexander; Lopez, Edgardo; Lieber, Daniel S; Nikiforov, Anastasia; Ross, Tristen; Batorsky, Rebecca; Hansen, Sherry; Lip, Va; Luquette, Lovelace J; Mauceli, Evan; Margulies, David; Milos, Patrice M; Napolitano, Nichole; Nizzari, Marcia M; Yu, Timothy; Thompson, John F

    2016-01-01

    Next generation sequencing is a transformative technology for discovering and diagnosing genetic disorders. However, high-throughput sequencing remains error-prone, necessitating variant confirmation in order to meet the exacting demands of clinical diagnostic sequencing. To address this, we devised an orthogonal, dual platform approach employing complementary target capture and sequencing chemistries to improve speed and accuracy of variant calls at a genomic scale. We combined DNA selection by bait-based hybridization followed by Illumina NextSeq reversible terminator sequencing with DNA selection by amplification followed by Ion Proton semiconductor sequencing. This approach yields genomic scale orthogonal confirmation of ~95% of exome variants. Overall variant sensitivity improves as each method covers thousands of coding exons missed by the other. We conclude that orthogonal NGS offers improvements in variant calling sensitivity when two platforms are used, better specificity for variants identified on both platforms, and greatly reduces the time and expense of Sanger follow-up, thus enabling physicians to act on genomic results more quickly. PMID:27090146

  12. Validation of a high-throughput fermentation system based on online monitoring of biomass and fluorescence in continuously shaken microtiter plates

    Directory of Open Access Journals (Sweden)

    Kensy Frank

    2009-06-01

    -based cultivation systems. In particular, applications with strong demand on high-throughput such as clone and media screening and systems biology can benefit from its simple handling, the high quantitative information content and its capacity of automation.

  13. A novel high-throughput irradiator for in vitro radiation sensitivity bioassays

    Science.gov (United States)

    Fowler, Tyler L.

    Given the emphasis on more personalized radiation therapy there is an ongoing and compelling need to develop high-throughput screening tools to further examine the biological effects of ionizing radiation on cells, tissues and organ systems in either the research or clinical setting. Conventional x-ray irradiators are designed to provide maximum versatility to radiobiology researchers, typically accommodating small animals, tissue or blood samples, and cellular applications. This added versatility often impedes the overall sensitivity and specificity of an experiment resulting in a trade-off between the number of absorbed doses (or dose rates) and biological endpoints that can be investigated in vitro in a reasonable amount of time. Therefore, modern irradiator designs are incompatible with current high-throughput bioassay technologies. Furthermore, important dosimetry and calibration characteristics (i.e. dose build-up region, beam attenuation, and beam scatter) of these irradiators are typically unknown to the end user, which can lead to significant deviation between delivered dose and intended dose to cells that adversely impact experimental results. Therefore, the overarching goal of this research is to design and develop a robust and fully automated high-throughput irradiator for in vitro radiation sensitivity investigations. Additionally, in vitro biological validation of this system was performed by assessing intracellular reactive oxygen species production, physical DNA double strand breaks, and activation of cellular DNA repair mechanisms. Finally, the high-throughput irradiator was used to investigate autophagic flux, a cellular adaptive response, as a potential biomarker of radiation sensitivity.

  14. MAPPER: high-throughput maskless lithography

    Science.gov (United States)

    Wieland, M. J.; de Boer, G.; ten Berge, G. F.; Jager, R.; van de Peut, T.; Peijster, J. J. M.; Slot, E.; Steenbrink, S. W. H. K.; Teepen, T. F.; van Veen, A. H. V.; Kampherbeek, B. J.

    2009-03-01

    Maskless electron beam lithography, or electron beam direct write, has been around for a long time in the semiconductor industry and was pioneered from the mid-1960s onwards. This technique has been used for mask writing applications as well as device engineering and in some cases chip manufacturing. However because of its relatively low throughput compared to optical lithography, electron beam lithography has never been the mainstream lithography technology. To extend optical lithography double patterning, as a bridging technology, and EUV lithography are currently explored. Irrespective of the technical viability of both approaches, one thing seems clear. They will be expensive [1]. MAPPER Lithography is developing a maskless lithography technology based on massively-parallel electron-beam writing with high speed optical data transport for switching the electron beams. In this way optical columns can be made with a throughput of 10-20 wafers per hour. By clustering several of these columns together high throughputs can be realized in a small footprint. This enables a highly cost-competitive alternative to double patterning and EUV alternatives. In 2007 MAPPER obtained its Proof of Lithography milestone by exposing in its Demonstrator 45 nm half pitch structures with 110 electron beams in parallel, where all the beams where individually switched on and off [2]. In 2008 MAPPER has taken a next step in its development by building several tools. The objective of building these tools is to involve semiconductor companies to be able to verify tool performance in their own environment. To enable this, the tools will have a 300 mm wafer stage in addition to a 110-beam optics column. First exposures at 45 nm half pitch resolution have been performed and analyzed. On the same wafer it is observed that all beams print and based on analysis of 11 beams the CD for the different patterns is within 2.2 nm from target and the CD uniformity for the different patterns is better

  15. High-throughput single-cell manipulation in brain tissue.

    Directory of Open Access Journals (Sweden)

    Joseph D Steinmeyer

    Full Text Available The complexity of neurons and neuronal circuits in brain tissue requires the genetic manipulation, labeling, and tracking of single cells. However, current methods for manipulating cells in brain tissue are limited to either bulk techniques, lacking single-cell accuracy, or manual methods that provide single-cell accuracy but at significantly lower throughputs and repeatability. Here, we demonstrate high-throughput, efficient, reliable, and combinatorial delivery of multiple genetic vectors and reagents into targeted cells within the same tissue sample with single-cell accuracy. Our system automatically loads nanoliter-scale volumes of reagents into a micropipette from multiwell plates, targets and transfects single cells in brain tissues using a robust electroporation technique, and finally preps the micropipette by automated cleaning for repeating the transfection cycle. We demonstrate multi-colored labeling of adjacent cells, both in organotypic and acute slices, and transfection of plasmids encoding different protein isoforms into neurons within the same brain tissue for analysis of their effects on linear dendritic spine density. Our platform could also be used to rapidly deliver, both ex vivo and in vivo, a variety of genetic vectors, including optogenetic and cell-type specific agents, as well as fast-acting reagents such as labeling dyes, calcium sensors, and voltage sensors to manipulate and track neuronal circuit activity at single-cell resolution.

  16. High Throughput Multispectral Image Processing with Applications in Food Science.

    Directory of Open Access Journals (Sweden)

    Panagiotis Tsakanikas

    Full Text Available Recently, machine vision is gaining attention in food science as well as in food industry concerning food quality assessment and monitoring. Into the framework of implementation of Process Analytical Technology (PAT in the food industry, image processing can be used not only in estimation and even prediction of food quality but also in detection of adulteration. Towards these applications on food science, we present here a novel methodology for automated image analysis of several kinds of food products e.g. meat, vanilla crème and table olives, so as to increase objectivity, data reproducibility, low cost information extraction and faster quality assessment, without human intervention. Image processing's outcome will be propagated to the downstream analysis. The developed multispectral image processing method is based on unsupervised machine learning approach (Gaussian Mixture Models and a novel unsupervised scheme of spectral band selection for segmentation process optimization. Through the evaluation we prove its efficiency and robustness against the currently available semi-manual software, showing that the developed method is a high throughput approach appropriate for massive data extraction from food samples.

  17. High Throughput T Epitope Mapping and Vaccine Development

    Directory of Open Access Journals (Sweden)

    Giuseppina Li Pira

    2010-01-01

    Full Text Available Mapping of antigenic peptide sequences from proteins of relevant pathogens recognized by T helper (Th and by cytolytic T lymphocytes (CTL is crucial for vaccine development. In fact, mapping of T-cell epitopes provides useful information for the design of peptide-based vaccines and of peptide libraries to monitor specific cellular immunity in protected individuals, patients and vaccinees. Nevertheless, epitope mapping is a challenging task. In fact, large panels of overlapping peptides need to be tested with lymphocytes to identify the sequences that induce a T-cell response. Since numerous peptide panels from antigenic proteins are to be screened, lymphocytes available from human subjects are a limiting factor. To overcome this limitation, high throughput (HTP approaches based on miniaturization and automation of T-cell assays are needed. Here we consider the most recent applications of the HTP approach to T epitope mapping. The alternative or complementary use of in silico prediction and experimental epitope definition is discussed in the context of the recent literature. The currently used methods are described with special reference to the possibility of applying the HTP concept to make epitope mapping an easier procedure in terms of time, workload, reagents, cells and overall cost.

  18. High-Throughput Analysis of Subtelomeric Chromosome Rearrangements by Use of Array-Based Comparative Genomic Hybridization

    OpenAIRE

    Veltman, Joris A; Schoenmakers, Eric F.P.M.; Eussen, Bert H; Janssen, Irene; Merkx, Gerard; van Cleef, Brigitte; van Ravenswaaij, Conny M.; Brunner, Han G.; Smeets, Dominique; van Kessel, Ad Geurts

    2002-01-01

    Telomeric chromosome rearrangements may cause mental retardation, congenital anomalies, and miscarriages. Automated detection of subtle deletions or duplications involving telomeres is essential for high-throughput diagnosis, but impossible when conventional cytogenetic methods are used. Array-based comparative genomic hybridization (CGH) allows high-resolution screening of copy number abnormalities by hybridizing differentially labeled test and reference genomes to arrays of robotically spot...

  19. Protocol: A high-throughput DNA extraction system suitable for conifers

    Directory of Open Access Journals (Sweden)

    Rajora Om P

    2008-08-01

    Full Text Available Abstract Background High throughput DNA isolation from plants is a major bottleneck for most studies requiring large sample sizes. A variety of protocols have been developed for DNA isolation from plants. However, many species, including conifers, have high contents of secondary metabolites that interfere with the extraction process or the subsequent analysis steps. Here, we describe a procedure for high-throughput DNA isolation from conifers. Results We have developed a high-throughput DNA extraction protocol for conifers using an automated liquid handler and modifying the Qiagen MagAttract Plant Kit protocol. The modifications involve change to the buffer system and improving the protocol so that it almost doubles the number of samples processed per kit, which significantly reduces the overall costs. We describe two versions of the protocol: one for medium-throughput (MTP and another for high-throughput (HTP DNA isolation. The HTP version works from start to end in the industry-standard 96-well format, while the MTP version provides higher DNA yields per sample processed. We have successfully used the protocol for DNA extraction and genotyping of thousands of individuals of several spruce and a pine species. Conclusion A high-throughput system for DNA extraction from conifer needles and seeds has been developed and validated. The quality of the isolated DNA was comparable with that obtained from two commonly used methods: the silica-spin column and the classic CTAB protocol. Our protocol provides a fully automatable and cost effective solution for processing large numbers of conifer samples.

  20. A High-Throughput Biological Calorimetry Core: Steps to Startup, Run, and Maintain a Multiuser Facility.

    Science.gov (United States)

    Yennawar, Neela H; Fecko, Julia A; Showalter, Scott A; Bevilacqua, Philip C

    2016-01-01

    Many labs have conventional calorimeters where denaturation and binding experiments are setup and run one at a time. While these systems are highly informative to biopolymer folding and ligand interaction, they require considerable manual intervention for cleaning and setup. As such, the throughput for such setups is limited typically to a few runs a day. With a large number of experimental parameters to explore including different buffers, macromolecule concentrations, temperatures, ligands, mutants, controls, replicates, and instrument tests, the need for high-throughput automated calorimeters is on the rise. Lower sample volume requirements and reduced user intervention time compared to the manual instruments have improved turnover of calorimetry experiments in a high-throughput format where 25 or more runs can be conducted per day. The cost and efforts to maintain high-throughput equipment typically demands that these instruments be housed in a multiuser core facility. We describe here the steps taken to successfully start and run an automated biological calorimetry facility at Pennsylvania State University. Scientists from various departments at Penn State including Chemistry, Biochemistry and Molecular Biology, Bioengineering, Biology, Food Science, and Chemical Engineering are benefiting from this core facility. Samples studied include proteins, nucleic acids, sugars, lipids, synthetic polymers, small molecules, natural products, and virus capsids. This facility has led to higher throughput of data, which has been leveraged into grant support, attracting new faculty hire and has led to some exciting publications. PMID:26794364

  1. Miniature high-throughput chemosensing of yield, ee, and absolute configuration from crude reaction mixtures.

    Science.gov (United States)

    Bentley, Keith W; Zhang, Peng; Wolf, Christian

    2016-02-01

    High-throughput experimentation (HTE) has emerged as a widely used technology that accelerates discovery and optimization processes with parallel small-scale reaction setups. A high-throughput screening (HTS) method capable of comprehensive analysis of crude asymmetric reaction mixtures (eliminating product derivatization or isolation) would provide transformative impact by matching the pace of HTE. We report how spontaneous in situ construction of stereodynamic metal probes from readily available, inexpensive starting materials can be applied to chiroptical chemosensing of the total amount, enantiomeric excess (ee), and absolute configuration of a wide variety of amines, diamines, amino alcohols, amino acids, carboxylic acids, α-hydroxy acids, and diols. This advance and HTS potential are highlighted with the analysis of 1 mg of crude reaction mixtures of a catalytic asymmetric reaction. This operationally simple assay uses a robust mix-and-measure protocol, is amenable to microscale platforms and automation, and provides critical time efficiency and sustainability advantages over traditional serial methods. PMID:26933684

  2. An improved high throughput sequencing method for studying oomycete communities.

    Science.gov (United States)

    Sapkota, Rumakanta; Nicolaisen, Mogens

    2015-03-01

    Culture-independent studies using next generation sequencing have revolutionized microbial ecology, however, oomycete ecology in soils is severely lagging behind. The aim of this study was to improve and validate standard techniques for using high throughput sequencing as a tool for studying oomycete communities. The well-known primer sets ITS4, ITS6 and ITS7 were used in the study in a semi-nested PCR approach to target the internal transcribed spacer (ITS) 1 of ribosomal DNA in a next generation sequencing protocol. These primers have been used in similar studies before, but with limited success. We were able to increase the proportion of retrieved oomycete sequences dramatically mainly by increasing the annealing temperature during PCR. The optimized protocol was validated using three mock communities and the method was further evaluated using total DNA from 26 soil samples collected from different agricultural fields in Denmark, and 11 samples from carrot tissue with symptoms of Pythium infection. Sequence data from the Pythium and Phytophthora mock communities showed that our strategy successfully detected all included species. Taxonomic assignments of OTUs from 26 soil sample showed that 95% of the sequences could be assigned to oomycetes including Pythium, Aphanomyces, Peronospora, Saprolegnia and Phytophthora. A high proportion of oomycete reads was consistently present in all 26 soil samples showing the versatility of the strategy. A large diversity of Pythium species including pathogenic and saprophytic species were dominating in cultivated soil. Finally, we analyzed amplicons from carrots with symptoms of cavity spot. This resulted in 94% of the reads belonging to oomycetes with a dominance of species of Pythium that are known to be involved in causing cavity spot, thus demonstrating the usefulness of the method not only in soil DNA but also in a plant DNA background. In conclusion, we demonstrate a successful approach for pyrosequencing of oomycete

  3. High-throughput Saccharification assay for lignocellulosic materials.

    Science.gov (United States)

    Gomez, Leonardo D; Whitehead, Caragh; Roberts, Philip; McQueen-Mason, Simon J

    2011-01-01

    Polysaccharides that make up plant lignocellulosic biomass can be broken down to produce a range of sugars that subsequently can be used in establishing a biorefinery. These raw materials would constitute a new industrial platform, which is both sustainable and carbon neutral, to replace the current dependency on fossil fuel. The recalcitrance to deconstruction observed in lignocellulosic materials is produced by several intrinsic properties of plant cell walls. Crystalline cellulose is embedded in matrix polysaccharides such as xylans and arabinoxylans, and the whole structure is encased by the phenolic polymer lignin, that is also difficult to digest (1). In order to improve the digestibility of plant materials we need to discover the main bottlenecks for the saccharification of cell walls and also screen mutant and breeding populations to evaluate the variability in saccharification (2). These tasks require a high throughput approach and here we present an analytical platform that can perform saccharification analysis in a 96-well plate format. This platform has been developed to allow the screening of lignocellulose digestibility of large populations from varied plant species. We have scaled down the reaction volumes for gentle pretreatment, partial enzymatic hydrolysis and sugar determination, to allow large numbers to be assessed rapidly in an automated system. This automated platform works with milligram amounts of biomass, performing ball milling under controlled conditions to reduce the plant materials to a standardised particle size in a reproducible manner. Once the samples are ground, the automated formatting robot dispenses specified and recorded amounts of material into the corresponding wells of 96 deep well plate (Figure 1). Normally, we dispense the same material into 4 wells to have 4 replicates for analysis. Once the plates are filled with the plant material in the desired layout, they are manually moved to a liquid handling station (Figure 2

  4. The RABiT: high-throughput technology for assessing global DSB repair.

    Science.gov (United States)

    Turner, Helen C; Sharma, P; Perrier, J R; Bertucci, A; Smilenov, L; Johnson, G; Taveras, M; Brenner, D J; Garty, G

    2014-05-01

    At the Center for High-Throughput Minimally Invasive Radiation Biodosimetry, we have developed a rapid automated biodosimetry tool (RABiT); this is a completely automated, ultra-high-throughput robotically based biodosimetry workstation designed for use following a large-scale radiological event, to perform radiation biodosimetry measurements based on a fingerstick blood sample. High throughput is achieved through purpose built robotics, sample handling in filter-bottomed multi-well plates and innovations in high-speed imaging and analysis. Currently, we are adapting the RABiT technologies for use in laboratory settings, for applications in epidemiological and clinical studies. Our overall goal is to extend the RABiT system to directly measure the kinetics of DNA repair proteins. The design of the kinetic/time-dependent studies is based on repeated, automated sampling of lymphocytes from a central reservoir of cells housed in the RABiT incubator as a function of time after the irradiation challenge. In the present study, we have characterized the DNA repair kinetics of the following repair proteins: γ-H2AX, 53-BP1, ATM kinase, MDC1 at multiple times (0.5, 2, 4, 7 and 24 h) after irradiation with 4 Gy γ rays. In order to provide a consistent dose exposure at time zero, we have developed an automated capillary irradiator to introduce DNA DSBs into fingerstick-size blood samples within the RABiT. To demonstrate the scalability of the laboratory-based RABiT system, we have initiated a population study using γ-H2AX as a biomarker. PMID:24477408

  5. High Throughput Hall Thruster for Small Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek Co. Inc. proposes to develop a high throughput, nominal 100 W Hall Effect Thruster (HET). This HET will be sized for small spacecraft (< 180 kg), including...

  6. High Throughput Hall Thruster for Small Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Busek is developing a high throughput nominal 100-W Hall Effect Thruster. This device is well sized for spacecraft ranging in size from several tens of kilograms to...

  7. FLASH Assembly of TALENs Enables High-Throughput Genome Editing

    OpenAIRE

    Reyon, Deepak; Tsai, Shengdar Q.; Khayter, Cyd; Foden, Jennifer A.; Sander, Jeffry D.; Joung, J. Keith

    2012-01-01

    Engineered transcription activator-like effector nucleases (TALENs) have shown promise as facile and broadly applicable genome editing tools. However, no publicly available high-throughput method for constructing TALENs has been published and large-scale assessments of the success rate and targeting range of the technology remain lacking. Here we describe the Fast Ligation-based Automatable Solid-phase High-throughput (FLASH) platform, a rapid and cost-effective method we developed to enable ...

  8. A Novel High-Throughput Approach to Measure Hydroxyl Radicals Induced by Airborne Particulate Matter

    OpenAIRE

    Yeongkwon Son; Vladimir Mishin; William Welsh; Shou-En Lu; Laskin, Jeffrey D.; Howard Kipen; Qingyu Meng

    2015-01-01

    Oxidative stress is one of the key mechanisms linking ambient particulate matter (PM) exposure with various adverse health effects. The oxidative potential of PM has been used to characterize the ability of PM induced oxidative stress. Hydroxyl radical (•OH) is the most destructive radical produced by PM. However, there is currently no high-throughput approach which can rapidly measure PM-induced •OH for a large number of samples with an automated system. This study evaluated four existing mo...

  9. A Novel High-Throughput Approach to Measure Hydroxyl Radicals Induced by Airborne Particulate Matter

    Directory of Open Access Journals (Sweden)

    Yeongkwon Son

    2015-10-01

    Full Text Available Oxidative stress is one of the key mechanisms linking ambient particulate matter (PM exposure with various adverse health effects. The oxidative potential of PM has been used to characterize the ability of PM induced oxidative stress. Hydroxyl radical (•OH is the most destructive radical produced by PM. However, there is currently no high-throughput approach which can rapidly measure PM-induced •OH for a large number of samples with an automated system. This study evaluated four existing molecular probes (disodium terephthalate, 3′-p-(aminophenylfluorescein, coumarin-3-carboxylic acid, and sodium benzoate for their applicability to measure •OH induced by PM in a high-throughput cell-free system using fluorescence techniques, based on both our experiments and on an assessment of the physicochemical properties of the probes reported in the literature. Disodium terephthalate (TPT was the most applicable molecular probe to measure •OH induced by PM, due to its high solubility, high stability of the corresponding fluorescent product (i.e., 2-hydroxyterephthalic acid, high yield compared with the other molecular probes, and stable fluorescence intensity in a wide range of pH environments. TPT was applied in a high-throughput format to measure PM (NIST 1648a-induced •OH, in phosphate buffered saline. The formed fluorescent product was measured at designated time points up to 2 h. The fluorescent product of TPT had a detection limit of 17.59 nM. The soluble fraction of PM contributed approximately 76.9% of the •OH induced by total PM, and the soluble metal ions of PM contributed 57.4% of the overall •OH formation. This study provides a promising cost-effective high-throughput method to measure •OH induced by PM on a routine basis.

  10. Gold nanoparticle-mediated (GNOME) laser perforation: a new method for a high-throughput analysis of gap junction intercellular coupling.

    Science.gov (United States)

    Begandt, Daniela; Bader, Almke; Antonopoulos, Georgios C; Schomaker, Markus; Kalies, Stefan; Meyer, Heiko; Ripken, Tammo; Ngezahayo, Anaclet

    2015-10-01

    The present report evaluates the advantages of using the gold nanoparticle-mediated laser perforation (GNOME LP) technique as a computer-controlled cell optoperforation to introduce Lucifer yellow (LY) into cells in order to analyze the gap junction coupling in cell monolayers. To permeabilize GM-7373 endothelial cells grown in a 24 multiwell plate with GNOME LP, a laser beam of 88 μm in diameter was applied in the presence of gold nanoparticles and LY. After 10 min to allow dye uptake and diffusion through gap junctions, we observed a LY-positive cell band of 179 ± 8 μm width. The presence of the gap junction channel blocker carbenoxolone during the optoperforation reduced the LY-positive band to 95 ± 6 μm. Additionally, a forskolin-related enhancement of gap junction coupling, recently found using the scrape loading technique, was also observed using GNOME LP. Further, an automatic cell imaging and a subsequent semi-automatic quantification of the images using a java-based ImageJ-plugin were performed in a high-throughput sequence. Moreover, the GNOME LP was used on cells such as RBE4 rat brain endothelial cells, which cannot be mechanically scraped as well as on three-dimensionally cultivated cells, opening the possibility to implement the GNOME LP technique for analysis of gap junction coupling in tissues. We conclude that the GNOME LP technique allows a high-throughput automated analysis of gap junction coupling in cells. Moreover this non-invasive technique could be used on monolayers that do not support mechanical scraping as well as on cells in tissue allowing an in vivo/ex vivo analysis of gap junction coupling. PMID:26310434

  11. High throughput modular chambers for rapid evaluation of anesthetic sensitivity

    Directory of Open Access Journals (Sweden)

    Eckmann David M

    2006-11-01

    Full Text Available Abstract Background Anesthetic sensitivity is determined by the interaction of multiple genes. Hence, a dissection of genetic contributors would be aided by precise and high throughput behavioral screens. Traditionally, anesthetic phenotyping has addressed only induction of anesthesia, evaluated with dose-response curves, while ignoring potentially important data on emergence from anesthesia. Methods We designed and built a controlled environment apparatus to permit rapid phenotyping of twenty-four mice simultaneously. We used the loss of righting reflex to indicate anesthetic-induced unconsciousness. After fitting the data to a sigmoidal dose-response curve with variable slope, we calculated the MACLORR (EC50, the Hill coefficient, and the 95% confidence intervals bracketing these values. Upon termination of the anesthetic, Emergence timeRR was determined and expressed as the mean ± standard error for each inhaled anesthetic. Results In agreement with several previously published reports we find that the MACLORR of halothane, isoflurane, and sevoflurane in 8–12 week old C57BL/6J mice is 0.79% (95% confidence interval = 0.78 – 0.79%, 0.91% (95% confidence interval = 0.90 – 0.93%, and 1.96% (95% confidence interval = 1.94 – 1.97%, respectively. Hill coefficients for halothane, isoflurane, and sevoflurane are 24.7 (95% confidence interval = 19.8 – 29.7%, 19.2 (95% confidence interval = 14.0 – 24.3%, and 33.1 (95% confidence interval = 27.3 – 38.8%, respectively. After roughly 2.5 MACLORR • hr exposures, mice take 16.00 ± 1.07, 6.19 ± 0.32, and 2.15 ± 0.12 minutes to emerge from halothane, isoflurane, and sevoflurane, respectively. Conclusion This system enabled assessment of inhaled anesthetic responsiveness with a higher precision than that previously reported. It is broadly adaptable for delivering an inhaled therapeutic (or toxin to a population while monitoring its vital signs, motor reflexes, and providing precise control

  12. High throughput modular chambers for rapid evaluation of anesthetic sensitivity

    Science.gov (United States)

    Sun, Yi; Chen, Jingqiu; Pruckmayr, Gregory; Baumgardner, James E; Eckmann, David M; Eckenhoff, Roderic G; Kelz, Max B

    2006-01-01

    Background Anesthetic sensitivity is determined by the interaction of multiple genes. Hence, a dissection of genetic contributors would be aided by precise and high throughput behavioral screens. Traditionally, anesthetic phenotyping has addressed only induction of anesthesia, evaluated with dose-response curves, while ignoring potentially important data on emergence from anesthesia. Methods We designed and built a controlled environment apparatus to permit rapid phenotyping of twenty-four mice simultaneously. We used the loss of righting reflex to indicate anesthetic-induced unconsciousness. After fitting the data to a sigmoidal dose-response curve with variable slope, we calculated the MACLORR (EC50), the Hill coefficient, and the 95% confidence intervals bracketing these values. Upon termination of the anesthetic, Emergence timeRR was determined and expressed as the mean ± standard error for each inhaled anesthetic. Results In agreement with several previously published reports we find that the MACLORR of halothane, isoflurane, and sevoflurane in 8–12 week old C57BL/6J mice is 0.79% (95% confidence interval = 0.78 – 0.79%), 0.91% (95% confidence interval = 0.90 – 0.93%), and 1.96% (95% confidence interval = 1.94 – 1.97%), respectively. Hill coefficients for halothane, isoflurane, and sevoflurane are 24.7 (95% confidence interval = 19.8 – 29.7%), 19.2 (95% confidence interval = 14.0 – 24.3%), and 33.1 (95% confidence interval = 27.3 – 38.8%), respectively. After roughly 2.5 MACLORR • hr exposures, mice take 16.00 ± 1.07, 6.19 ± 0.32, and 2.15 ± 0.12 minutes to emerge from halothane, isoflurane, and sevoflurane, respectively. Conclusion This system enabled assessment of inhaled anesthetic responsiveness with a higher precision than that previously reported. It is broadly adaptable for delivering an inhaled therapeutic (or toxin) to a population while monitoring its vital signs, motor reflexes, and providing precise control over environmental

  13. Substrate independent ATPase activity may complicate high throughput screening.

    Science.gov (United States)

    Tuntland, Micheal L; Fung, L W-M

    2016-10-01

    Inorganic phosphate release, [Pi], is often measured in an enzymatic reaction in a high throughput setting. Based on the published mechanism, we designed a protocol for our screening for inhibitors of SAICAR synthetase (PurC), and we found a gradual increase in [Pi] in positive control samples over the course of the day. Further investigation indicated that hydrolysis of ATP catalyzed by PurC, rather than substrate-related phosphate release, was responsible for a partial contribution to the signals in the control samples. Thus substrate-independent ATPase activity may complicate high throughput screening. PMID:27430931

  14. Workflow for High Throughput Screening of Gas Sensing Materials

    Directory of Open Access Journals (Sweden)

    Ulrich Simon

    2006-04-01

    Full Text Available The workflow of a high throughput screening setup for the rapid identification ofnew and improved sensor materials is presented. The polyol method was applied to preparenanoparticular metal oxides as base materials, which were functionalised by surface doping.Using multi-electrode substrates and high throughput impedance spectroscopy (HT-IS awide range of materials could be screened in a short time. Applying HT-IS in search of newselective gas sensing materials a NO2-tolerant NO sensing material with reducedsensitivities towards other test gases was identified based on iridium doped zinc oxide.Analogous behaviour was observed for iridium doped indium oxide.

  15. Towards a high throughput droplet-based agglutination assay

    KAUST Repository

    Kodzius, Rimantas

    2013-10-22

    This work demonstrates the detection method for a high throughput droplet based agglutination assay system. Using simple hydrodynamic forces to mix and aggregate functionalized microbeads we avoid the need to use magnetic assistance or mixing structures. The concentration of our target molecules was estimated by agglutination strength, obtained through optical image analysis. Agglutination in droplets was performed with flow rates of 150 µl/min and occurred in under a minute, with potential to perform high-throughput measurements. The lowest target concentration detected in droplet microfluidics was 0.17 nM, which is three orders of magnitude more sensitive than a conventional card based agglutination assay.

  16. A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay

    International Nuclear Information System (INIS)

    The National Research Council has outlined the need for non-mammalian toxicological models to test the potential health effects of a large number of chemicals while also reducing the use of traditional animal models. The nematode Caenorhabditis elegans is an attractive alternative model because of its well-characterized and evolutionarily conserved biology, low cost, and ability to be used in high-throughput screening. A high-throughput method is described for quantifying the reproductive capacity of C. elegans exposed to chemicals for 48 h from the last larval stage (L4) to adulthood using a COPAS Biosort. Initially, the effects of exposure conditions that could influence reproduction were defined. Concentrations of DMSO vehicle ≤ 1% did not affect reproduction. Previous studies indicated that C. elegans may be influenced by exposure to low pH conditions. At pHs greater than 4.5, C. elegans reproduction was not affected; however below this pH there was a significant decrease in the number of offspring. Cadmium chloride was chosen as a model toxicant to verify that automated measurements were comparable to those of traditional observational studies. EC50 values for cadmium for automated measurements (176-192 μM) were comparable to those previously reported for a 72-h exposure using manual counting (151 μM). The toxicity of seven test toxicants on C. elegans reproduction was highly correlative with rodent lethality suggesting that this assay may be useful in predicting the potential toxicity of chemicals in other organisms.

  17. A robust high throughput platform to generate functional recombinant monoclonal antibodies using rabbit B cells from peripheral blood.

    Directory of Open Access Journals (Sweden)

    Stefan Seeber

    Full Text Available We have developed a robust platform to generate and functionally characterize rabbit-derived antibodies using B cells from peripheral blood. The rapid high throughput procedure generates a diverse set of antibodies, yet requires only few animals to be immunized without the need to sacrifice them. The workflow includes (i the identification and isolation of single B cells from rabbit blood expressing IgG antibodies, (ii an elaborate short term B-cell cultivation to produce sufficient monoclonal antigen specific IgG for comprehensive phenotype screens, (iii the isolation of VH and VL coding regions via PCR from B-cell clones producing antigen specific and functional antibodies followed by the sequence determination, and (iv the recombinant expression and purification of IgG antibodies. The fully integrated and to a large degree automated platform (demonstrated in this paper using IL1RL1 immunized rabbits yielded clonal and very diverse IL1RL1-specific and functional IL1RL1-inhibiting rabbit antibodies. These functional IgGs from individual animals were obtained at a short time range after immunization and could be identified already during primary screening, thus substantially lowering the workload for the subsequent B-cell PCR workflow. Early availability of sequence information permits one to select early-on function- and sequence-diverse antibodies for further characterization. In summary, this powerful technology platform has proven to be an efficient and robust method for the rapid generation of antigen specific and functional monoclonal rabbit antibodies without sacrificing the immunized animal.

  18. Solid-Phase Extraction Strategies to Surmount Body Fluid Sample Complexity in High-Throughput Mass Spectrometry-Based Proteomics

    OpenAIRE

    Marco R. Bladergroen; van der Burgt, Yuri E. M.

    2015-01-01

    For large-scale and standardized applications in mass spectrometry- (MS-) based proteomics automation of each step is essential. Here we present high-throughput sample preparation solutions for balancing the speed of current MS-acquisitions and the time needed for analytical workup of body fluids. The discussed workflows reduce body fluid sample complexity and apply for both bottom-up proteomics experiments and top-down protein characterization approaches. Various sample preparation methods t...

  19. Development and Operation of High-throughput Accurate-wavelength Lens-based Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Ronald E

    2014-07-01

    A high-throughput spectrometer for the 400-820 nm wavelength range has been developed for charge exchange recombination spectroscopy or general spectroscopy. A large 2160 mm-1 grating is matched with fast f /1.8 200 mm lenses, which provide stigmatic imaging. A precision optical encoder measures the grating angle with an accuracy < 0.075 arc seconds. A high quantum efficiency low-etaloning CCD detector allows operation at longer wavelengths. A patch panel allows input fibers to interface with interchangeable fiber holders that attach to a kinematic mount behind the entrance slit. Computer-controlled hardware allows automated control of wavelength, timing, f-number, automated data collection, and wavelength calibration.

  20. High throughput recombinant protein production of fungal secreted proteins

    DEFF Research Database (Denmark)

    Vala, Andrea Lages Lino; Roth, Doris; Grell, Morten Nedergaard;

    2011-01-01

    high-throughput protein production system with a special focus on fungal secreted proteins. We use a ligation independent cloning to clone target genes into expression vectors for E. coli and P. pastoris and a small scale test expression to identify constructs producing soluble protein. Expressed...

  1. High-Throughput Screening for Streptomyces Antibiotic Biosynthesis Activators

    OpenAIRE

    Li CHEN; Wang, Yemin; Guo, Hang; Xu, Min; Deng, Zixin; Tao, Meifeng

    2012-01-01

    A genomic cosmid library of Streptomyces clavuligerus was constructed and transferred efficiently by conjugation to Streptomyces lividans, and 12 distinct groups of overlapping cosmid clones that activated the silent actinorhodin biosynthesis gene cluster were identified. This generally applicable high-throughput screening procedure greatly facilitates the identification of antibiotic biosynthesis activators.

  2. High Throughput Sequence Analysis for Disease Resistance in Maize

    Science.gov (United States)

    Preliminary results of a computational analysis of high throughput sequencing data from Zea mays and the fungus Aspergillus are reported. The Illumina Genome Analyzer was used to sequence RNA samples from two strains of Z. mays (Va35 and Mp313) collected over a time course as well as several specie...

  3. High throughput defect detection with multiple parallel electron beams

    NARCIS (Netherlands)

    Himbergen, H.M.P. van; Nijkerk, M.D.; Jager, P.W.H. de; Hosman, T.C.; Kruit, P.

    2007-01-01

    A new concept for high throughput defect detection with multiple parallel electron beams is described. As many as 30 000 beams can be placed on a footprint of a in.2, each beam having its own microcolumn and detection system without cross-talk. Based on the International Technology Roadmap for Semic

  4. High-throughput bioinformatics with the Cyrille2 pipeline system.

    NARCIS (Netherlands)

    Fiers, M.W.E.J.; Burgt, van der A.; Datema, E.; Groot, de J.C.W.; Ham, van R.C.H.J.

    2008-01-01

    Background - Modern omics research involves the application of high-throughput technologies that generate vast volumes of data. These data need to be pre-processed, analyzed and integrated with existing knowledge through the use of diverse sets of software tools, models and databases. The analyses a

  5. High-throughput screening, predictive modeling and computational embryology - Abstract

    Science.gov (United States)

    High-throughput screening (HTS) studies are providing a rich source of data that can be applied to chemical profiling to address sensitivity and specificity of molecular targets, biological pathways, cellular and developmental processes. EPA’s ToxCast project is testing 960 uniq...

  6. High-throughput screening, predictive modeling and computational embryology

    Science.gov (United States)

    High-throughput screening (HTS) studies are providing a rich source of data that can be applied to profile thousands of chemical compounds for biological activity and potential toxicity. EPA’s ToxCast™ project, and the broader Tox21 consortium, in addition to projects worldwide,...

  7. MIPHENO: data normalization for high throughput metabolite analysis

    Directory of Open Access Journals (Sweden)

    Bell Shannon M

    2012-01-01

    Full Text Available Abstract Background High throughput methodologies such as microarrays, mass spectrometry and plate-based small molecule screens are increasingly used to facilitate discoveries from gene function to drug candidate identification. These large-scale experiments are typically carried out over the course of months and years, often without the controls needed to compare directly across the dataset. Few methods are available to facilitate comparisons of high throughput metabolic data generated in batches where explicit in-group controls for normalization are lacking. Results Here we describe MIPHENO (Mutant Identification by Probabilistic High throughput-Enabled Normalization, an approach for post-hoc normalization of quantitative first-pass screening data in the absence of explicit in-group controls. This approach includes a quality control step and facilitates cross-experiment comparisons that decrease the false non-discovery rates, while maintaining the high accuracy needed to limit false positives in first-pass screening. Results from simulation show an improvement in both accuracy and false non-discovery rate over a range of population parameters (p -16 and a modest but significant (p -16 improvement in area under the receiver operator characteristic curve of 0.955 for MIPHENO vs 0.923 for a group-based statistic (z-score. Analysis of the high throughput phenotypic data from the Arabidopsis Chloroplast 2010 Project (http://www.plastid.msu.edu/ showed ~ 4-fold increase in the ability to detect previously described or expected phenotypes over the group based statistic. Conclusions Results demonstrate MIPHENO offers substantial benefit in improving the ability to detect putative mutant phenotypes from post-hoc analysis of large data sets. Additionally, it facilitates data interpretation and permits cross-dataset comparison where group-based controls are missing. MIPHENO is applicable to a wide range of high throughput screenings and the code is

  8. High-throughput dental biofilm growth analysis for multiparametric microenvironmental biochemical conditions using microfluidics.

    Science.gov (United States)

    Lam, Raymond H W; Cui, Xin; Guo, Weijin; Thorsen, Todd

    2016-04-26

    Dental biofilm formation is not only a precursor to tooth decay, but also induces more serious systematic health problems such as cardiovascular disease and diabetes. Understanding the conditions promoting colonization and subsequent biofilm development involving complex bacteria coaggregation is particularly important. In this paper, we report a high-throughput microfluidic 'artificial teeth' device offering controls of multiple microenvironmental factors (e.g. nutrients, growth factors, dissolved gases, and seeded cell populations) for quantitative characteristics of long-term dental bacteria growth and biofilm development. This 'artificial teeth' device contains multiple (up to 128) incubation chambers to perform parallel cultivation and analyses (e.g. biofilm thickness, viable-dead cell ratio, and spatial distribution of multiple bacterial species) of bacteria samples under a matrix of different combinations of microenvironmental factors, further revealing possible developmental mechanisms of dental biofilms. Specifically, we applied the 'artificial teeth' to investigate the growth of two key dental bacteria, Streptococci species and Fusobacterium nucleatum, in the biofilm under different dissolved gas conditions and sucrose concentrations. Together, this high-throughput microfluidic platform can provide extended applications for general biofilm research, including screening of the biofilm properties developing under combinations of specified growth parameters such as seeding bacteria populations, growth medium compositions, medium flow rates and dissolved gas levels. PMID:27045372

  9. Robust, small-scale cultivation platform for Streptomyces coelicolor

    DEFF Research Database (Denmark)

    Sohoni, Sujata Vijay; Bapat, Prashant Madhusudan; Lantz, Anna Eliasson

    2012-01-01

    production rates of antibiotics. CONCLUSION: We observed good agreement of the physiological data obtained in the developed MTP platform with bench-scale. Hence, the described MTP-based screening platform has a high potential for investigation of secondary metabolite biosynthesis in Streptomycetes and other......ABSTRACT: BACKGROUND: For fermentation process and strain improvement, where one wants to screen a large number of conditions and strains, robust and scalable high-throughput cultivation systems are crucial. Often, the time lag between bench-scale cultivations to production largely depends on...... approximate estimation of scalable physiological traits. Microtiter plate (MTP) based screening platforms have lately become an attractive alternative to shake flasks mainly because of the ease of automation. However, there are very few reports on applications for filamentous organisms; as well as efforts...

  10. High-throughput theoretical design of lithium battery materials

    Science.gov (United States)

    Shi-Gang, Ling; Jian, Gao; Rui-Juan, Xiao; Li-Quan, Chen

    2016-01-01

    The rapid evolution of high-throughput theoretical design schemes to discover new lithium battery materials is reviewed, including high-capacity cathodes, low-strain cathodes, anodes, solid state electrolytes, and electrolyte additives. With the development of efficient theoretical methods and inexpensive computers, high-throughput theoretical calculations have played an increasingly important role in the discovery of new materials. With the help of automatic simulation flow, many types of materials can be screened, optimized and designed from a structural database according to specific search criteria. In advanced cell technology, new materials for next generation lithium batteries are of great significance to achieve performance, and some representative criteria are: higher energy density, better safety, and faster charge/discharge speed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11234013 and 51172274) and the National High Technology Research and Development Program of China (Grant No. 2015AA034201).

  11. High throughput electrophysiology: new perspectives for ion channel drug discovery

    DEFF Research Database (Denmark)

    Willumsen, Niels J; Bech, Morten; Olesen, Søren-Peter;

    2003-01-01

    Proper function of ion channels is crucial for all living cells. Ion channel dysfunction may lead to a number of diseases, so-called channelopathies, and a number of common diseases, including epilepsy, arrhythmia, and type II diabetes, are primarily treated by drugs that modulate ion channels. A...... introduction of new powerful HTS electrophysiological techniques is predicted to cause a revolution in ion channel drug discovery....... cornerstone in current drug discovery is high throughput screening assays which allow examination of the activity of specific ion channels though only to a limited extent. Conventional patch clamp remains the sole technique with sufficiently high time resolution and sensitivity required for precise and direct...... characterization of ion channel properties. However, patch clamp is a slow, labor-intensive, and thus expensive, technique. New techniques combining the reliability and high information content of patch clamping with the virtues of high throughput philosophy are emerging and predicted to make a number of ion...

  12. A CRISPR CASe for High-Throughput Silencing

    Directory of Open Access Journals (Sweden)

    Jacob eHeintze

    2013-10-01

    Full Text Available Manipulation of gene expression on a genome-wide level is one of the most important systematic tools in the post-genome era. Such manipulations have largely been enabled by expression cloning approaches using sequence-verified cDNA libraries, large-scale RNA interference libraries (shRNA or siRNA and zinc finger nuclease technologies. More recently, the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated (Cas9-mediated gene editing technology has been described that holds great promise for future use of this technology in genomic manipulation. It was suggested that the CRISPR system has the potential to be used in high-throughput, large-scale loss of function screening. Here we discuss some of the challenges in engineering of CRISPR/Cas genomic libraries and some of the aspects that need to be addressed in order to use this technology on a high-throughput scale.

  13. High-Throughput Transaction Executions on Graphics Processors

    CERN Document Server

    He, Bingsheng

    2011-01-01

    OLTP (On-Line Transaction Processing) is an important business system sector in various traditional and emerging online services. Due to the increasing number of users, OLTP systems require high throughput for executing tens of thousands of transactions in a short time period. Encouraged by the recent success of GPGPU (General-Purpose computation on Graphics Processors), we propose GPUTx, an OLTP engine performing high-throughput transaction executions on the GPU for in-memory databases. Compared with existing GPGPU studies usually optimizing a single task, transaction executions require handling many small tasks concurrently. Specifically, we propose the bulk execution model to group multiple transactions into a bulk and to execute the bulk on the GPU as a single task. The transactions within the bulk are executed concurrently on the GPU. We study three basic execution strategies (one with locks and the other two lock-free), and optimize them with the GPU features including the hardware support of atomic ope...

  14. High-throughput screening for modulators of cellular contractile force

    CERN Document Server

    Park, Chan Young; Tambe, Dhananjay; Chen, Bohao; Lavoie, Tera; Dowell, Maria; Simeonov, Anton; Maloney, David J; Marinkovic, Aleksandar; Tschumperlin, Daniel J; Burger, Stephanie; Frykenberg, Matthew; Butler, James P; Stamer, W Daniel; Johnson, Mark; Solway, Julian; Fredberg, Jeffrey J; Krishnan, Ramaswamy

    2014-01-01

    When cellular contractile forces are central to pathophysiology, these forces comprise a logical target of therapy. Nevertheless, existing high-throughput screens are limited to upstream signaling intermediates with poorly defined relationship to such a physiological endpoint. Using cellular force as the target, here we screened libraries to identify novel drug candidates in the case of human airway smooth muscle cells in the context of asthma, and also in the case of Schlemm's canal endothelial cells in the context of glaucoma. This approach identified several drug candidates for both asthma and glaucoma. We attained rates of 1000 compounds per screening day, thus establishing a force-based cellular platform for high-throughput drug discovery.

  15. Human transcriptome array for high-throughput clinical studies

    OpenAIRE

    Xu, Weihong; Seok, Junhee; Mindrinos, Michael N.; Schweitzer, Anthony C.; Jiang, Hui; WILHELMY, JULIE; Clark, Tyson A.; Kapur, Karen; Xing, Yi; Faham, Malek; Storey, John D.; Moldawer, Lyle L; Ronald V Maier; Tompkins, Ronald G.; Wong, Wing Hung

    2011-01-01

    A 6.9 million-feature oligonucleotide array of the human transcriptome [Glue Grant human transcriptome (GG-H array)] has been developed for high-throughput and cost-effective analyses in clinical studies. This array allows comprehensive examination of gene expression and genome-wide identification of alternative splicing as well as detection of coding SNPs and noncoding transcripts. The performance of the array was examined and compared with mRNA sequencing (RNA-Seq) results over multiple ind...

  16. High-throughput sequence alignment using Graphics Processing Units

    Directory of Open Access Journals (Sweden)

    Trapnell Cole

    2007-12-01

    Full Text Available Abstract Background The recent availability of new, less expensive high-throughput DNA sequencing technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed. These data are being generated for several purposes, including genotyping, genome resequencing, metagenomics, and de novo genome assembly projects. Sequence alignment programs such as MUMmer have proven essential for analysis of these data, but researchers will need ever faster, high-throughput alignment tools running on inexpensive hardware to keep up with new sequence technologies. Results This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise local sequence alignment program that runs on commodity Graphics Processing Units (GPUs in common workstations. MUMmerGPU uses the new Compute Unified Device Architecture (CUDA from nVidia to align multiple query sequences against a single reference sequence stored as a suffix tree. By processing the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU by 3.5-fold in total application time when aligning reads from recent sequencing projects using Solexa/Illumina, 454, and Sanger sequencing technologies. Conclusion MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to handle the increasing volume of data produced by new, high-throughput sequencing technologies. MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster on the relatively low-cost GPU than on the CPU.

  17. SNP-PHAGE – High throughput SNP discovery pipeline

    OpenAIRE

    Cregan Perry B; Choi Ik-Young; Hyten David L; Grefenstette John J; Matukumalli Lakshmi K; Van Tassell Curtis P

    2006-01-01

    Abstract Background Single nucleotide polymorphisms (SNPs) as defined here are single base sequence changes or short insertion/deletions between or within individuals of a given species. As a result of their abundance and the availability of high throughput analysis technologies SNP markers have begun to replace other traditional markers such as restriction fragment length polymorphisms (RFLPs), amplified fragment length polymorphisms (AFLPs) and simple sequence repeats (SSRs or microsatellit...

  18. High throughput modular chambers for rapid evaluation of anesthetic sensitivity

    OpenAIRE

    Eckmann David M; Baumgardner James E; Pruckmayr Gregory; Chen Jingqiu; Sun Yi; Eckenhoff Roderic G; Kelz Max B

    2006-01-01

    Abstract Background Anesthetic sensitivity is determined by the interaction of multiple genes. Hence, a dissection of genetic contributors would be aided by precise and high throughput behavioral screens. Traditionally, anesthetic phenotyping has addressed only induction of anesthesia, evaluated with dose-response curves, while ignoring potentially important data on emergence from anesthesia. Methods We designed and built a controlled environment apparatus to permit rapid phenotyping of twent...

  19. Noise and nonlinearities in high-throughput data

    OpenAIRE

    Nguyen, Viet-Anh; Koukolikova-Nicola, Zdena; Bagnoli, Franco; Lio, Pietro

    2010-01-01

    High-throughput data analyses are becoming common in biology, communications, economics and sociology. The vast amounts of data are usually represented in the form of matrices and can be considered as knowledge networks. Spectra-based approaches have proved useful in extracting hidden information within such networks and for estimating missing data, but these methods are based essentially on linear assumptions. The physical models of matching, when applicable, often suggest non-linear mechani...

  20. Learning robust cell signalling models from high throughput proteomic data

    OpenAIRE

    Koch, Mitchell; Broom, Bradley M.; Subramanian, Devika

    2009-01-01

    We propose a framework for learning robust Bayesian network models of cell signalling from high-throughput proteomic data. We show that model averaging using Bayesian bootstrap resampling generates more robust structures than procedures that learn structures using all of the data. We also develop an algorithm for ranking the importance of network features using bootstrap resample data. We apply our algorithms to derive the T-cell signalling network from the flow cytometry data of Sachs et al....

  1. Mass spectrometry for high-throughput metabolomics analysis of urine

    OpenAIRE

    Abdelrazig, Salah M.A.

    2015-01-01

    Direct electrospray ionisation-mass spectrometry (direct ESI-MS), by omitting the chromatographic step, has great potential for application as a high-throughput approach for untargeted urine metabolomics analysis compared to liquid chromatography-mass spectrometry (LC-MS). The rapid development and technical innovations revealed in the field of ambient ionisation MS such as nanoelectrospray ionisation (nanoESI) chip-based infusion and liquid extraction surface analysis mass spectrometry (LESA...

  2. High-throughput screening for modulators of cellular contractile force

    OpenAIRE

    Park, Chan Young; Zhou, Enhua H; Tambe, Dhananjay; Chen, Bohao; Lavoie, Tera; Dowell, Maria; Simeonov, Anton; Maloney, David J.; Marinkovic, Aleksandar; Tschumperlin, Daniel J.; Burger, Stephanie; Frykenberg, Matthew; Butler, James P.; Stamer, W. Daniel; Johnson, Mark

    2014-01-01

    When cellular contractile forces are central to pathophysiology, these forces comprise a logical target of therapy. Nevertheless, existing high-throughput screens are limited to upstream signaling intermediates with poorly defined relationship to such a physiological endpoint. Using cellular force as the target, here we screened libraries to identify novel drug candidates in the case of human airway smooth muscle cells in the context of asthma, and also in the case of Schlemm's canal endothel...

  3. High-Throughput FPGA Implementation of QR Decomposition

    OpenAIRE

    Muñoz, Sergio D.; Hormigo, Javier

    2014-01-01

    This brief presents a hardware design to achieve high-throughput QR decomposition, using Givens Rotation Method. It utilizes a new two-dimensional systolic array architecture with pipelined processing elements, which are based on the COordinate Rotation DIgital Computer (CORDIC) algorithm. CORDIC computes vector rotations through shifts and additions. This approach allows a continuous computation of QR factorizations with simple hardware. A fixed-point FPGA architecture for 4 x 4 mat...

  4. Enzyme free cloning for high throughput gene cloning and expression

    OpenAIRE

    de Jong, R. N.; Daniëls, M.; Kaptein, R; Folkers, G.E.

    2006-01-01

    Structural and functional genomics initiatives significantly improved cloning methods over the past few years. Although recombinational cloning is highly efficient, its costs urged us to search for an alternative high throughput (HTP) cloning method. We implemented a modified Enzyme Free Cloning (EFC) procedure, a PCR-only method that eliminates all variables other than PCR efficiency by circumventing enzymatic treatments. We compared the cloning efficiency of EFC with that of Ligation Indepe...

  5. SSFinder: High Throughput CRISPR-Cas Target Sites Prediction Tool

    OpenAIRE

    Santosh Kumar Upadhyay; Shailesh Sharma

    2014-01-01

    Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) system facilitates targeted genome editing in organisms. Despite high demand of this system, finding a reliable tool for the determination of specific target sites in large genomic data remained challenging. Here, we report SSFinder, a python script to perform high throughput detection of specific target sites in large nucleotide datasets. The SSFinder is a user-friendly tool, compatible wit...

  6. High-Throughput Screening of Bacterial Protein Localization

    OpenAIRE

    Werner, John N.; Gitai, Zemer

    2010-01-01

    The ever-increasing number of sequenced genomes and subsequent sequence-based analysis has provided tremendous insight into cellular processes; however, the ability to experimentally manipulate this genomic information in the laboratory requires the development of new high-throughput methods. To translate this genomic information into information on protein function, molecular and cell biological techniques are required. One strategy to gain insight into protein function is to observe where e...

  7. High-throughput discovery of broad-spectrum peptide antibiotics

    OpenAIRE

    Rathinakumar, Ramesh; Wimley, William C.

    2010-01-01

    Membrane-permeabilizing peptide antibiotics are an underutilized weapon in the battle against drug-resistant microorganisms. This is true, in part, because of the bottleneck caused by the lack of explicit design principles and the paucity of simple high-throughput methods for selection. In this work, we characterize the requirements for broad-spectrum antimicrobial activity by membrane permeabilization and find that different microbial membranes have very different susceptibilities to permeab...

  8. High throughput direct end sequencing of BAC clones.

    OpenAIRE

    Kelley, J M; Field, C E; Craven, M B; Bocskai, D; Kim, U J; Rounsley, S D; Adams, M D

    1999-01-01

    Libraries constructed in bacterial artificial chromosome (BAC) vectors have become the choice for clone sets in high throughput genomic sequencing projects primarily because of their high stability. BAC libraries have been proposed as a source for minimally over-lapping clones for sequencing large genomic regions, and the use of BAC end sequences (i.e. sequences adjoining the insert sites) has been proposed as a primary means for selecting minimally overlapping clones for sequencing large gen...

  9. A Multidisciplinary Approach to High Throughput Nuclear Magnetic Resonance Spectroscopy.

    Science.gov (United States)

    Pourmodheji, Hossein; Ghafar-Zadeh, Ebrahim; Magierowski, Sebastian

    2016-01-01

    Nuclear Magnetic Resonance (NMR) is a non-contact, powerful structure-elucidation technique for biochemical analysis. NMR spectroscopy is used extensively in a variety of life science applications including drug discovery. However, existing NMR technology is limited in that it cannot run a large number of experiments simultaneously in one unit. Recent advances in micro-fabrication technologies have attracted the attention of researchers to overcome these limitations and significantly accelerate the drug discovery process by developing the next generation of high-throughput NMR spectrometers using Complementary Metal Oxide Semiconductor (CMOS). In this paper, we examine this paradigm shift and explore new design strategies for the development of the next generation of high-throughput NMR spectrometers using CMOS technology. A CMOS NMR system consists of an array of high sensitivity micro-coils integrated with interfacing radio-frequency circuits on the same chip. Herein, we first discuss the key challenges and recent advances in the field of CMOS NMR technology, and then a new design strategy is put forward for the design and implementation of highly sensitive and high-throughput CMOS NMR spectrometers. We thereafter discuss the functionality and applicability of the proposed techniques by demonstrating the results. For microelectronic researchers starting to work in the field of CMOS NMR technology, this paper serves as a tutorial with comprehensive review of state-of-the-art technologies and their performance levels. Based on these levels, the CMOS NMR approach offers unique advantages for high resolution, time-sensitive and high-throughput bimolecular analysis required in a variety of life science applications including drug discovery. PMID:27294925

  10. High-Throughput Analysis of RNA Structure and Ribonucleoprotein Assembly

    Science.gov (United States)

    McGinnis, Jennifer L.; Duncan, Caia D. S.; Weeks, Kevin M.

    2016-01-01

    RNA folds to form complex structures vital to many cellular functions. Proteins facilitate RNA folding at both the secondary and tertiary structure levels. An absolute prerequisite for understanding RNA folding and ribonucleoprotein (RNP) assembly reactions is a complete understanding of the RNA structure at each stage of the folding or assembly process. Here we provide a guide for comprehensive and high-throughput analysis of RNA secondary and tertiary structure using SHAPE and hydroxyl radical footprinting. As an example of the strong and sometimes surprising conclusions that can emerge from high-throughput analysis of RNA folding and RNP assembly, we summarize the structure of the bI3 group I intron RNA in four distinct states. Dramatic structural rearrangements occur in both secondary and tertiary structure as the RNA folds from the free state to the active, six-component, RNP complex. As high-throughput and high-resolution approaches are applied broadly to large protein-RNA complexes, other proteins previously viewed as making simple contributions to RNA folding are also likely to be found to exert multifaceted, long-range, cooperative, and non-additive effects on RNA folding. These protein-induced contributions add another level of control, and potential regulatory function, in RNP complexes. PMID:20946765

  11. High throughput biotechnology in traditional fermented food industry.

    Science.gov (United States)

    Yang, Yong; Xu, Rong-man; Song, Jia; Wang, Wei-min

    2010-11-01

    Traditional fermented food is not only the staple food for most of developing countries but also the key healthy food for developed countries. As the healthy function of these foods are gradually discovered, more and more high throughput biotechnologies are being used to promote the old and new industry. As a result, the microflora, manufacturing processes and product healthy function of these foods were pushed forward either in the respect of profundity or extensiveness nowadays. The application and progress of the high throughput biotechnologies into traditional fermented food industries were different from each other, which was reviewed and detailed by the catalogues of fermented milk products (yogurt, cheese), fermented sausages, fermented vegetables (kimchi, sauerkraut), fermented cereals (sourdough) and fermented beans (tempeh, natto). Given the further promotion by high throughput biotechnologies, the middle and/or down-stream process of traditional fermented foods would be optimized and the process of industrialization of local traditional fermented food having many functional factors but in small quantity would be accelerated. The article presents some promising patents on traditional fermented food industry. PMID:20863273

  12. High-Throughput Optical Sensing Immunoassays on Smartphone.

    Science.gov (United States)

    Wang, Li-Ju; Sun, Rongrong; Vasile, Tina; Chang, Yu-Chung; Li, Lei

    2016-08-16

    We present an optical sensing platform on a smartphone for high-throughput screening immunoassays. For the first time, a designed microprism array is utilized to achieve a one-time screening of 64 samples. To demonstrate the capability and the reliability of this optical sensing platform on smartphone, human interleukin 6 (IL-6) protein and six types of plant viruses are immunoassayed. The ability of quantification is shown by a sigmoidal dose-response curve fitting to analyze IL-6 protein. The accuracy in measuring the concentrations of IL-6 protein achieves 99.1%. On the other hand, to validate on-field immunoassays by our device, a total of 1030 samples are assayed using three immunoassay methods to detect six types of plant viruses. The accuracy is up to 96.2-99.9%; in addition, there is a high degree of agreement with lab instruments. The total cost for this high-throughput optical screening platform is ∼$50 USD. The reading time is only 2 s for 64 samples. The size is just as big as a portable hard drive. Our optical sensing platform on the smartphone offers a route toward in situ high-throughput screening immunoassays for viruses, pathogens, biomarkers, and toxins by decentralizing laboratory tests. With this mobile point-of-care optical platform, the spread of disease can be timely stopped within a very short turnaround time. PMID:27434250

  13. High-throughput bioinformatics with the Cyrille2 pipeline system

    Directory of Open Access Journals (Sweden)

    de Groot Joost CW

    2008-02-01

    Full Text Available Abstract Background Modern omics research involves the application of high-throughput technologies that generate vast volumes of data. These data need to be pre-processed, analyzed and integrated with existing knowledge through the use of diverse sets of software tools, models and databases. The analyses are often interdependent and chained together to form complex workflows or pipelines. Given the volume of the data used and the multitude of computational resources available, specialized pipeline software is required to make high-throughput analysis of large-scale omics datasets feasible. Results We have developed a generic pipeline system called Cyrille2. The system is modular in design and consists of three functionally distinct parts: 1 a web based, graphical user interface (GUI that enables a pipeline operator to manage the system; 2 the Scheduler, which forms the functional core of the system and which tracks what data enters the system and determines what jobs must be scheduled for execution, and; 3 the Executor, which searches for scheduled jobs and executes these on a compute cluster. Conclusion The Cyrille2 system is an extensible, modular system, implementing the stated requirements. Cyrille2 enables easy creation and execution of high throughput, flexible bioinformatics pipelines.

  14. Development of scalable high throughput fermentation approaches for physiological characterisation of yeast and filamentous fungi

    DEFF Research Database (Denmark)

    Knudsen, Peter Boldsen

    information. This was pursued through development and validation of small scalable microtiter based systems, for cultivating yeast and filamentous fungi, validated by comparable results from bioreactors. The experimental work was performed using Saccharomyces cerevisiae (yeast) and Aspergillus nidulans......-up to economically viable industrial processes. Accurate quantitative assessment of cellular performance is required for the evaluation of the overall suitability of a micro-organism as an industrial cell factory, ensuring that not only product, but also process parameters are optimised. With the...... increasing number of strains generated through genetic engineering programmes, the traditionally applied methods for strain characterisation, which are typically labour intensive and time consuming, have become somewhat limited due to throughput capacity. Unfortunately, most high throughput methods only...

  15. High-throughput isolation of ultra-pure plasmid DNA by a robotic system

    Directory of Open Access Journals (Sweden)

    Sindelar Georg

    2006-02-01

    Full Text Available Abstract Background With the availability of complete genomes, a systematic inventory of cellular processes becomes achievable. This requires assessing the function of all individual genes. Transfection of plasmid DNA into cell culture cells is an essential technique for this aim as it allows functional overexpression or downregulation of genes. While many robotic systems isolate plasmids for sequencing purposes, for more demanding applications such as transfections there is a shortage of robots for the high-throughput isolation of plasmid DNA. Results Here we describe a custom-made, automated device, which uses a special protocol to isolate plasmid DNAs with a purity sufficient for efficient transfections into mammalian cells. Approximately 1,600 ultra pure plasmids can be isolated in a 96-well plate format within 12 hours. As a unique feature the robot comprises the integration of a centrifuge instead of expensive columns, the use of a custom-made pipetting head with a movable gripper, especially designed shaking platforms and an acetone wash facility. Conclusion Using this robot we demonstrate how centrifugation steps with multiple precipitations, most notably through a precipitation step of SDS in isopropanol, lead to high purity plasmid DNA and make possible high-throughput transfections into mammalian cells for functional gene annotations.

  16. High-throughput functional screening using a homemade dual-glow luciferase assay.

    Science.gov (United States)

    Baker, Jessica M; Boyce, Frederick M

    2014-01-01

    We present a rapid and inexpensive high-throughput screening protocol to identify transcriptional regulators of alpha-synuclein, a gene associated with Parkinson's disease. 293T cells are transiently transfected with plasmids from an arrayed ORF expression library, together with luciferase reporter plasmids, in a one-gene-per-well microplate format. Firefly luciferase activity is assayed after 48 hr to determine the effects of each library gene upon alpha-synuclein transcription, normalized to expression from an internal control construct (a hCMV promoter directing Renilla luciferase). This protocol is facilitated by a bench-top robot enclosed in a biosafety cabinet, which performs aseptic liquid handling in 96-well format. Our automated transfection protocol is readily adaptable to high-throughput lentiviral library production or other functional screening protocols requiring triple-transfections of large numbers of unique library plasmids in conjunction with a common set of helper plasmids. We also present an inexpensive and validated alternative to commercially-available, dual luciferase reagents which employs PTC124, EDTA, and pyrophosphate to suppress firefly luciferase activity prior to measurement of Renilla luciferase. Using these methods, we screened 7,670 human genes and identified 68 regulators of alpha-synuclein. This protocol is easily modifiable to target other genes of interest. PMID:24962249

  17. High-Throughput, Motility-Based Sorter for Microswimmers and Gene Discovery Platform

    Science.gov (United States)

    Yuan, Jinzhou; Raizen, David; Bau, Haim

    2015-11-01

    Animal motility varies with genotype, disease progression, aging, and environmental conditions. In many studies, it is desirable to carry out high throughput motility-based sorting to isolate rare animals for, among other things, forward genetic screens to identify genetic pathways that regulate phenotypes of interest. Many commonly used screening processes are labor-intensive, lack sensitivity, and require extensive investigator training. Here, we describe a sensitive, high throughput, automated, motility-based method for sorting nematodes. Our method was implemented in a simple microfluidic device capable of sorting many thousands of animals per hour per module, and is amenable to parallelism. The device successfully enriched for known C. elegans motility mutants. Furthermore, using this device, we isolated low-abundance mutants capable of suppressing the somnogenic effects of the flp-13 gene, which regulates sleep-like quiescence in C. elegans. Subsequent genomic sequencing led to the identification of a flp-13-suppressor gene. This research was supported, in part, by NIH NIA Grant 5R03AG042690-02.

  18. Moderate to high throughput in vitro binding kinetics for drug discovery.

    Science.gov (United States)

    Zhang, Rumin; Barbieri, Christopher M; Garcia-Calvo, Margarita; Myers, Robert W; McLaren, David; Kavana, Michael

    2016-01-01

    This review provides a concise summary for state of the art, moderate to high throughput in vitro technologies being employed to study drug-target binding kinetics. These technologies cover a wide kinetic timescale spanning up to nine orders of magnitude from milliseconds to days. Automated stopped flow measures transient and (pre)steady state kinetics from milliseconds to seconds. For seconds to hours timescale kinetics we discuss surface plasmon resonance-based biosensor, global progress curve analysis for high throughput kinetic profiling of enzyme inhibitors and activators, and filtration plate-based radioligand or fluorescent binding assays for receptor binding kinetics. Jump dilution after pre-incubation is the preferred method for very slow kinetics lasting for days. The basic principles, best practices and simulated data for these technologies are described. Finally, the application of a universal label-free technology, liquid chromatography coupled tandem mass spectrometry (LC/MS/MS), is briefly reviewed. Select literature references are highlighted for in-depth understanding. A new reality is dawning wherein binding kinetics is an integral and routine part of mechanism of action elucidation and translational, quantitative pharmacology for drug discovery. PMID:27100706

  19. A BSL-4 high-throughput screen identifies sulfonamide inhibitors of Nipah virus.

    Science.gov (United States)

    Tigabu, Bersabeh; Rasmussen, Lynn; White, E Lucile; Tower, Nichole; Saeed, Mohammad; Bukreyev, Alexander; Rockx, Barry; LeDuc, James W; Noah, James W

    2014-04-01

    Nipah virus is a biosafety level 4 (BSL-4) pathogen that causes severe respiratory illness and encephalitis in humans. To identify novel small molecules that target Nipah virus replication as potential therapeutics, Southern Research Institute and Galveston National Laboratory jointly developed an automated high-throughput screening platform that is capable of testing 10,000 compounds per day within BSL-4 biocontainment. Using this platform, we screened a 10,080-compound library using a cell-based, high-throughput screen for compounds that inhibited the virus-induced cytopathic effect. From this pilot effort, 23 compounds were identified with EC50 values ranging from 3.9 to 20.0 μM and selectivities >10. Three sulfonamide compounds with EC50 values intervention in the viral replication cycle and for broad antiviral efficacy. Development of HTS capability under BSL-4 containment changes the paradigm for drug discovery for highly pathogenic agents because this platform can be readily modified to identify prophylactic and postexposure therapeutic candidates against other BSL-4 pathogens, particularly Ebola, Marburg, and Lassa viruses. PMID:24735442

  20. High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification

    Directory of Open Access Journals (Sweden)

    Sun Zhenyu

    2001-08-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are the foundation of powerful complex trait and pharmacogenomic analyses. The availability of large SNP databases, however, has emphasized a need for inexpensive SNP genotyping methods of commensurate simplicity, robustness, and scalability. We describe a solution-based, microtiter plate method for SNP genotyping of human genomic DNA. The method is based upon allele discrimination by ligation of open circle probes followed by rolling circle amplification of the signal using fluorescent primers. Only the probe with a 3' base complementary to the SNP is circularized by ligation. Results SNP scoring by ligation was optimized to a 100,000 fold discrimination against probe mismatched to the SNP. The assay was used to genotype 10 SNPs from a set of 192 genomic DNA samples in a high-throughput format. Assay directly from genomic DNA eliminates the need to preamplify the target as done for many other genotyping methods. The sensitivity of the assay was demonstrated by genotyping from 1 ng of genomic DNA. We demonstrate that the assay can detect a single molecule of the circularized probe. Conclusions Compatibility with homogeneous formats and the ability to assay small amounts of genomic DNA meets the exacting requirements of automated, high-throughput SNP scoring.

  1. MassCode liquid arrays as a tool for multiplexed high-throughput genetic profiling.

    Directory of Open Access Journals (Sweden)

    Gregory S Richmond

    Full Text Available Multiplexed detection assays that analyze a modest number of nucleic acid targets over large sample sets are emerging as the preferred testing approach in such applications as routine pathogen typing, outbreak monitoring, and diagnostics. However, very few DNA testing platforms have proven to offer a solution for mid-plexed analysis that is high-throughput, sensitive, and with a low cost per test. In this work, an enhanced genotyping method based on MassCode technology was devised and integrated as part of a high-throughput mid-plexing analytical system that facilitates robust qualitative differential detection of DNA targets. Samples are first analyzed using MassCode PCR (MC-PCR performed with an array of primer sets encoded with unique mass tags. Lambda exonuclease and an array of MassCode probes are then contacted with MC-PCR products for further interrogation and target sequences are specifically identified. Primer and probe hybridizations occur in homogeneous solution, a clear advantage over micro- or nanoparticle suspension arrays. The two cognate tags coupled to resultant MassCode hybrids are detected in an automated process using a benchtop single quadrupole mass spectrometer. The prospective value of using MassCode probe arrays for multiplexed bioanalysis was demonstrated after developing a 14plex proof of concept assay designed to subtype a select panel of Salmonella enterica serogroups and serovars. This MassCode system is very flexible and test panels can be customized to include more, less, or different markers.

  2. Utility of lab-on-a-chip technology for high-throughput nucleic acid and protein analysis

    DEFF Research Database (Denmark)

    Hawtin, Paul; Hardern, Ian; Wittig, Rainer;

    2005-01-01

    On-chip electrophoresis can provide size separations of nucleic acids and proteins similar to more traditional slab gel electrophoresis. Lab-on-a-chip (LoaC) systems utilize on-chip electrophoresis in conjunction with sizing calibration, sensitive detection schemes, and sophisticated data analysis...... to achieve rapid analysis times (<120 s). This work describes the utility of LoaC systems to enable and augment systems biology investigations. RNA quality, as assessed by an RNA integrity number score, is compared to existing quality control (QC) measurements. High-throughput DNA analysis of...... multiplex PCR samples is used to stratify gene sets for disease discovery. Finally, the applicability of a high-throughput LoaC system for assessing protein purification is demonstrated. The improvements in workflow processes, speed of analysis, data accuracy and reproducibility, and automated data analysis...

  3. Review of high-throughput techniques for detecting solid phase Transformation from material libraries produced by combinatorial methods

    Science.gov (United States)

    Lee, Jonathan A.

    2005-01-01

    High-throughput measurement techniques are reviewed for solid phase transformation from materials produced by combinatorial methods, which are highly efficient concepts to fabricate large variety of material libraries with different compositional gradients on a single wafer. Combinatorial methods hold high potential for reducing the time and costs associated with the development of new materials, as compared to time-consuming and labor-intensive conventional methods that test large batches of material, one- composition at a time. These high-throughput techniques can be automated to rapidly capture and analyze data, using the entire material library on a single wafer, thereby accelerating the pace of materials discovery and knowledge generation for solid phase transformations. The review covers experimental techniques that are applicable to inorganic materials such as shape memory alloys, graded materials, metal hydrides, ferric materials, semiconductors and industrial alloys.

  4. High-Throughput, Liquid-Based Genome-Wide RNAi Screening in C. elegans.

    Science.gov (United States)

    O'Reilly, Linda P; Knoerdel, Ryan R; Silverman, Gary A; Pak, Stephen C

    2016-01-01

    RNA interference (RNAi) is a process in which double-stranded RNA (dsRNA) molecules mediate the inhibition of gene expression. RNAi in C. elegans can be achieved by simply feeding animals with bacteria expressing dsRNA against the gene of interest. This "feeding" method has made it possible to conduct genome-wide RNAi experiments for the systematic knockdown and subsequent investigation of almost every single gene in the genome. Historically, these genome-scale RNAi screens have been labor and time intensive. However, recent advances in automated, high-throughput methodologies have allowed the development of more rapid and efficient screening protocols. In this report, we describe a fast and efficient, liquid-based method for genome-wide RNAi screening. PMID:27581291

  5. Solid-phase cloning for high-throughput assembly of single and multiple DNA parts

    DEFF Research Database (Denmark)

    Lundqvist, Magnus; Edfors, Fredrik; Sivertsson, Åsa;

    2015-01-01

    is needed or where multiple inserts are to be assembled. In this approach, the solid support allows for head-to-tail assembly of DNA fragments based on hybridization and polymerase fill-in. The usefulness of head-to-tail SPC was demonstrated by assembly of >150 constructs with up to four DNA parts......We describe solid-phase cloning (SPC) for high-throughput assembly of expression plasmids. Our method allows PCR products to be put directly into a liquid handler for capture and purification using paramagnetic streptavidin beads and conversion into constructs by subsequent cloning reactions. We...... present a robust automated protocol for restriction enzyme based SPC and its performance for the cloning of >60 000 unique human gene fragments into expression vectors. In addition, we report on SPC-based single-strand assembly for applications where exact control of the sequence between fragments...

  6. High-throughput screening for industrial enzyme production hosts by droplet microfluidics

    DEFF Research Database (Denmark)

    Sjostrom, Staffan L.; Bai, Yunpeng; Huang, Mingtao;

    2014-01-01

    A high-throughput method for single cell screening by microfluidic droplet sorting is applied to a whole-genome mutated yeast cell library yielding improved production hosts of secreted industrial enzymes. The sorting method is validated by enriching a yeast strain 14 times based on its α......-amylase production, close to the theoretical maximum enrichment. Furthermore, a 105 member yeast cell library is screened yielding a clone with a more than 2-fold increase in α-amylase production. The increase in enzyme production results from an improvement of the cellular functions of the production host......) with the genotype (contained in the cell) inside a droplet enables selection of single cells with improved enzyme production capacity by droplet sorting. The platform has a throughput over 300 times higher than that of the current industry standard, an automated microtiter plate screening system. At the same time...

  7. High-throughput screening of small molecule ligands targeted to live bacteria surface.

    Science.gov (United States)

    Lee, Jeong Heon; Park, Sunny; Hyun, Hoon; Bordo, Mark W; Oketokoun, Rafiou; Nasr, Khaled A; Frangioni, John V; Choi, Hak Soo

    2013-04-01

    The discovery of small molecule ligands targeted to the surface of live pathogenic bacteria would enable an entirely new class of antibiotics. We report the development and validation of a microarray-based high-throughput screening platform for bacteria that exploits 300 μm diameter chemical spots in a 1 in. × 3 in. nanolayered glass slide format. Using 24 model compounds and 4 different bacterial strains, we optimized the screening technology, including fluorophore-based optical deconvolution for automated scoring of affinity and cyan-magenta-yellow-key (CMYK) color-coding for scoring of both affinity and specificity. The latter provides a lossless, one-dimensional view of multidimensional data. By linking in silico analysis with cell binding affinity and specificity, we could also begin to identify the physicochemical factors that affect ligand performance. The technology we describe could form the foundation for developing new classes of antibiotics. PMID:23461528

  8. High-throughput Accurate-wavelength Lens-based Visible Spectrometera

    International Nuclear Information System (INIS)

    A scanning visible spectrometer has been prototyped to complement fixed-wavelength transmission grating spectrometers for charge exchange recombination spectroscopy. Fast f/1.8 200 mm commercial lenses are used with a large 2160 mm-1 grating for high throughput. A stepping-motor controlled sine drive positions the grating, which is mounted on a precision rotary table. A high-resolution optical encoder on the grating stage allows the grating angle to be measured with an absolute accuracy of 0.075 arcsec, corresponding to a wavelength error ≤ 0.005 (angstrom). At this precision, changes in grating groove density due to thermal expansion and variations in the refractive index of air are important. An automated calibration procedure determines all relevant spectrometer parameters to high accuracy. Changes in bulk grating temperature, atmospheric temperature and pressure are monitored between the time of calibration and the time of measurement to insure a persistent wavelength calibration

  9. Robotic high-throughput purification of affinity-tagged recombinant proteins.

    Science.gov (United States)

    Wiesler, Simone C; Weinzierl, Robert O J

    2015-01-01

    Affinity purification of recombinant proteins has become the method of choice to obtain good quantities and qualities of proteins for a variety of downstream biochemical applications. While manual or FPLC-assisted purification techniques are generally time-consuming and labor-intensive, the advent of high-throughput technologies and liquid handling robotics has simplified and accelerated this process significantly. Additionally, without the human factor as a potential source of error, automated purification protocols allow for the generation of large numbers of proteins simultaneously and under directly comparable conditions. The delivered material is ideal for activity comparisons of different variants of the same protein. Here, we present our strategy for the simultaneous purification of up to 24 affinity-tagged proteins for activity measurements in biochemical assays. The protocol described is suitable for the scale typically required in individual research laboratories. PMID:25749949

  10. High-throughput polarization imaging for defocus and dose inspection for production wafers

    Science.gov (United States)

    Sun, Gang; Onoichenco, Eugene; Fu, Yonghuang; Liu, Yongqiang; Amell, Ricardo; McCandless, Casey; Reddy, Rajasekar; Kumar, Gidesh; Guest, Max

    2007-03-01

    Advances in lithography create a unique challenge for process window control with defects inspection tools. As the technology moves towards smaller line widths and more complicated structures, the sensitivity requirements for some process defects become higher, such as defocus and dose defects at 50nm or lower technology nodes. Currently automated macro inspection tools are used to detect a wide range of macro defects in the litho area, such as coating defects, particles, scratches, as well as the process defects. Most tools, however, cannot satisfy the new sensitivity requirements for the process defects while maintaining their current inspection capability for other defects. Rudolph Technologies approaches this challenge by integrating a unique polarization-imaging configuration, which enhances detection of defocus and dose defects without sacrificing the existing capability to detect other types of macro defects. The improved inspection system has demonstrated high sensitivity for defocus and dose defects on production wafers at multiple process nodes at high throughput.

  11. Robotic platform for parallelized cultivation and monitoring of microbial growth parameters in microwell plates.

    Science.gov (United States)

    Knepper, Andreas; Heiser, Michael; Glauche, Florian; Neubauer, Peter

    2014-12-01

    The enormous variation possibilities of bioprocesses challenge process development to fix a commercial process with respect to costs and time. Although some cultivation systems and some devices for unit operations combine the latest technology on miniaturization, parallelization, and sensing, the degree of automation in upstream and downstream bioprocess development is still limited to single steps. We aim to face this challenge by an interdisciplinary approach to significantly shorten development times and costs. As a first step, we scaled down analytical assays to the microliter scale and created automated procedures for starting the cultivation and monitoring the optical density (OD), pH, concentrations of glucose and acetate in the culture medium, and product formation in fed-batch cultures in the 96-well format. Then, the separate measurements of pH, OD, and concentrations of acetate and glucose were combined to one method. This method enables automated process monitoring at dedicated intervals (e.g., also during the night). By this approach, we managed to increase the information content of cultivations in 96-microwell plates, thus turning them into a suitable tool for high-throughput bioprocess development. Here, we present the flowcharts as well as cultivation data of our automation approach. PMID:25208534

  12. WormScan: a technique for high-throughput phenotypic analysis of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Mark D Mathew

    Full Text Available BACKGROUND: There are four main phenotypes that are assessed in whole organism studies of Caenorhabditis elegans; mortality, movement, fecundity and size. Procedures have been developed that focus on the digital analysis of some, but not all of these phenotypes and may be limited by expense and limited throughput. We have developed WormScan, an automated image acquisition system that allows quantitative analysis of each of these four phenotypes on standard NGM plates seeded with E. coli. This system is very easy to implement and has the capacity to be used in high-throughput analysis. METHODOLOGY/PRINCIPAL FINDINGS: Our system employs a readily available consumer grade flatbed scanner. The method uses light stimulus from the scanner rather than physical stimulus to induce movement. With two sequential scans it is possible to quantify the induced phototactic response. To demonstrate the utility of the method, we measured the phenotypic response of C. elegans to phosphine gas exposure. We found that stimulation of movement by the light of the scanner was equivalent to physical stimulation for the determination of mortality. WormScan also provided a quantitative assessment of health for the survivors. Habituation from light stimulation of continuous scans was similar to habituation caused by physical stimulus. CONCLUSIONS/SIGNIFICANCE: There are existing systems for the automated phenotypic data collection of C. elegans. The specific advantages of our method over existing systems are high-throughput assessment of a greater range of phenotypic endpoints including determination of mortality and quantification of the mobility of survivors. Our system is also inexpensive and very easy to implement. Even though we have focused on demonstrating the usefulness of WormScan in toxicology, it can be used in a wide range of additional C. elegans studies including lifespan determination, development, pathology and behavior. Moreover, we have even adapted the

  13. Microfluidic droplet-based PCR instrumentation for high-throughput gene expression profiling and biomarker discovery

    Directory of Open Access Journals (Sweden)

    Christopher J. Hayes

    2015-06-01

    Full Text Available PCR is a common and often indispensable technique used in medical and biological research labs for a variety of applications. Real-time quantitative PCR (RT-qPCR has become a definitive technique for quantitating differences in gene expression levels between samples. Yet, in spite of this importance, reliable methods to quantitate nucleic acid amounts in a higher throughput remain elusive. In the following paper, a unique design to quantify gene expression levels at the nanoscale in a continuous flow system is presented. Fully automated, high-throughput, low volume amplification of deoxynucleotides (DNA in a droplet based microfluidic system is described. Unlike some conventional qPCR instrumentation that use integrated fluidic circuits or plate arrays, the instrument performs qPCR in a continuous, micro-droplet flowing process with droplet generation, distinctive reagent mixing, thermal cycling and optical detection platforms all combined on one complete instrument. Detailed experimental profiling of reactions of less than 300 nl total volume is achieved using the platform demonstrating the dynamic range to be 4 order logs and consistent instrument sensitivity. Furthermore, reduced pipetting steps by as much as 90% and a unique degree of hands-free automation makes the analytical possibilities for this instrumentation far reaching. In conclusion, a discussion of the first demonstrations of this approach to perform novel, continuous high-throughput biological screens is presented. The results generated from the instrument, when compared with commercial instrumentation, demonstrate the instrument reliability and robustness to carry out further studies of clinical significance with added throughput and economic benefits.

  14. Controlling high-throughput manufacturing at the nano-scale

    Science.gov (United States)

    Cooper, Khershed P.

    2013-09-01

    Interest in nano-scale manufacturing research and development is growing. The reason is to accelerate the translation of discoveries and inventions of nanoscience and nanotechnology into products that would benefit industry, economy and society. Ongoing research in nanomanufacturing is focused primarily on developing novel nanofabrication techniques for a variety of applications—materials, energy, electronics, photonics, biomedical, etc. Our goal is to foster the development of high-throughput methods of fabricating nano-enabled products. Large-area parallel processing and highspeed continuous processing are high-throughput means for mass production. An example of large-area processing is step-and-repeat nanoimprinting, by which nanostructures are reproduced again and again over a large area, such as a 12 in wafer. Roll-to-roll processing is an example of continuous processing, by which it is possible to print and imprint multi-level nanostructures and nanodevices on a moving flexible substrate. The big pay-off is high-volume production and low unit cost. However, the anticipated cost benefits can only be realized if the increased production rate is accompanied by high yields of high quality products. To ensure product quality, we need to design and construct manufacturing systems such that the processes can be closely monitored and controlled. One approach is to bring cyber-physical systems (CPS) concepts to nanomanufacturing. CPS involves the control of a physical system such as manufacturing through modeling, computation, communication and control. Such a closely coupled system will involve in-situ metrology and closed-loop control of the physical processes guided by physics-based models and driven by appropriate instrumentation, sensing and actuation. This paper will discuss these ideas in the context of controlling high-throughput manufacturing at the nano-scale.

  15. High-throughput microparticle separation using gradient traveling wave dielectrophoresis

    International Nuclear Information System (INIS)

    This paper describes highly efficient and high-throughput microparticle separation using gradient traveling wave dielectrophoresis (TwDEP) with a multilayered microelectrode design. Although cell separation based on dielectrophoresis is a very useful and versatile method, its throughput is less than that of a commercially available magnetic activated cell sorter (MACS). Further, in TwDEP-based cell sorters, the microdevices must have a large area to achieve high-throughput separation. However, increasing the TwDEP device area, which is critical for achieving throughput, has limitations: the resistance of microelectrodes also increases. In this study, we have successfully developed a novel gradient TwDEP chip with an extremely large area (31 × 25 mm2) using a unique multilayered bus bar design. The proposed bus bar design, which divides four ac input signals into two groups (0° and 270° phases and 90° and 180° phases), makes it possible to maintain low resistance in microelectrodes for TwDEP despite the increase in the device area. In addition, a microelectrode track design with gradually increasing gaps from 10 to 40 µm between the electrodes was introduced; as a result, the TwDEP force and negative DEP force that balance the gravitational force decrease gradually along the microelectrode track. Finally, the microparticles could be trapped at specific locations depending on their physical properties. We demonstrated the feasibility of our suggestion using latex microparticles (3 µm, 6 µm, 10 µm and 20 µm) and showed the potential of high-throughput separation with the TwDEP technique

  16. SSFinder: High Throughput CRISPR-Cas Target Sites Prediction Tool

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Upadhyay

    2014-01-01

    Full Text Available Clustered regularly interspaced short palindromic repeats (CRISPR and CRISPR-associated protein (Cas system facilitates targeted genome editing in organisms. Despite high demand of this system, finding a reliable tool for the determination of specific target sites in large genomic data remained challenging. Here, we report SSFinder, a python script to perform high throughput detection of specific target sites in large nucleotide datasets. The SSFinder is a user-friendly tool, compatible with Windows, Mac OS, and Linux operating systems, and freely available online.

  17. High Throughput WAN Data Transfer with Hadoop-based Storage

    International Nuclear Information System (INIS)

    Hadoop distributed file system (HDFS) is becoming more popular in recent years as a key building block of integrated grid storage solution in the field of scientific computing. Wide Area Network (WAN) data transfer is one of the important data operations for large high energy physics experiments to manage, share and process datasets of PetaBytes scale in a highly distributed grid computing environment. In this paper, we present the experience of high throughput WAN data transfer with HDFS-based Storage Element. Two protocols, GridFTP and fast data transfer (FDT), are used to characterize the network performance of WAN data transfer.

  18. High-throughput microtiter assay for Hoechst 33342 dye uptake

    OpenAIRE

    Seigel, Gail M.; Campbell, Lorrie M.

    2004-01-01

    Exclusion of Hoechst 33342 dye is a characteristic common to stem cells, as well as chemotherapy-resistant cancer cells. Normally, these dye-excluding cells can be sorted from enzymatically dissociated tissues with a UV cell sorter/flow cytometer. UV-flow cytometry can be expensive, time-consuming and not readily available to all laboratories. We have developed a simple, high-throughput 96-well microtiter plate assay by which cell populations can be quickly screened for Hoechst dye uptake and...

  19. Adaptive Sampling for High Throughput Data Using Similarity Measures

    Energy Technology Data Exchange (ETDEWEB)

    Bulaevskaya, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sales, A. P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-05-06

    The need for adaptive sampling arises in the context of high throughput data because the rates of data arrival are many orders of magnitude larger than the rates at which they can be analyzed. A very fast decision must therefore be made regarding the value of each incoming observation and its inclusion in the analysis. In this report we discuss one approach to adaptive sampling, based on the new data point’s similarity to the other data points being considered for inclusion. We present preliminary results for one real and one synthetic data set.

  20. An improved high throughput sequencing method for studying oomycete communities

    DEFF Research Database (Denmark)

    Sapkota, Rumakanta; Nicolaisen, Mogens

    2015-01-01

    Culture-independent studies using next generation sequencing have revolutionizedmicrobial ecology, however, oomycete ecology in soils is severely lagging behind. The aimof this study was to improve and validate standard techniques for using high throughput sequencing as a tool for studying oomyce...... usefulness of the method not only in soil DNA but also in a plant DNA background. In conclusion, we demonstrate a successful approach for pyrosequencing of oomycete communities using ITS1 as the barcode sequence with well-known primers for oomycete DNA amplification....

  1. High-throughput characterization for solar fuels materials discovery

    Science.gov (United States)

    Mitrovic, Slobodan; Becerra, Natalie; Cornell, Earl; Guevarra, Dan; Haber, Joel; Jin, Jian; Jones, Ryan; Kan, Kevin; Marcin, Martin; Newhouse, Paul; Soedarmadji, Edwin; Suram, Santosh; Xiang, Chengxiang; Gregoire, John; High-Throughput Experimentation Team

    2014-03-01

    In this talk I will present the status of the High-Throughput Experimentation (HTE) project of the Joint Center for Artificial Photosynthesis (JCAP). JCAP is an Energy Innovation Hub of the U.S. Department of Energy with a mandate to deliver a solar fuel generator based on an integrated photoelectrochemical cell (PEC). However, efficient and commercially viable catalysts or light absorbers for the PEC do not exist. The mission of HTE is to provide the accelerated discovery through combinatorial synthesis and rapid screening of material properties. The HTE pipeline also features high-throughput material characterization using x-ray diffraction and x-ray photoemission spectroscopy (XPS). In this talk I present the currently operating pipeline and focus on our combinatorial XPS efforts to build the largest free database of spectra from mixed-metal oxides, nitrides, sulfides and alloys. This work was performed at Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award No. DE-SC0004993.

  2. Human transcriptome array for high-throughput clinical studies

    Science.gov (United States)

    Xu, Weihong; Seok, Junhee; Mindrinos, Michael N.; Schweitzer, Anthony C.; Jiang, Hui; Wilhelmy, Julie; Clark, Tyson A.; Kapur, Karen; Xing, Yi; Faham, Malek; Storey, John D.; Moldawer, Lyle L.; Maier, Ronald V.; Tompkins, Ronald G.; Wong, Wing Hung; Davis, Ronald W.; Xiao, Wenzhong; Toner, Mehmet; Warren, H. Shaw; Schoenfeld, David A.; Rahme, Laurence; McDonald-Smith, Grace P.; Hayden, Douglas; Mason, Philip; Fagan, Shawn; Yu, Yong-Ming; Cobb, J. Perren; Remick, Daniel G.; Mannick, John A.; Lederer, James A.; Gamelli, Richard L.; Silver, Geoffrey M.; West, Michael A.; Shapiro, Michael B.; Smith, Richard; Camp, David G.; Qian, Weijun; Tibshirani, Rob; Lowry, Stephen; Calvano, Steven; Chaudry, Irshad; Cohen, Mitchell; Moore, Ernest E.; Johnson, Jeffrey; Baker, Henry V.; Efron, Philip A.; Balis, Ulysses G. J.; Billiar, Timothy R.; Ochoa, Juan B.; Sperry, Jason L.; Miller-Graziano, Carol L.; De, Asit K.; Bankey, Paul E.; Herndon, David N.; Finnerty, Celeste C.; Jeschke, Marc G.; Minei, Joseph P.; Arnoldo, Brett D.; Hunt, John L.; Horton, Jureta; Cobb, J. Perren; Brownstein, Bernard; Freeman, Bradley; Nathens, Avery B.; Cuschieri, Joseph; Gibran, Nicole; Klein, Matthew; O'Keefe, Grant

    2011-01-01

    A 6.9 million-feature oligonucleotide array of the human transcriptome [Glue Grant human transcriptome (GG-H array)] has been developed for high-throughput and cost-effective analyses in clinical studies. This array allows comprehensive examination of gene expression and genome-wide identification of alternative splicing as well as detection of coding SNPs and noncoding transcripts. The performance of the array was examined and compared with mRNA sequencing (RNA-Seq) results over multiple independent replicates of liver and muscle samples. Compared with RNA-Seq of 46 million uniquely mappable reads per replicate, the GG-H array is highly reproducible in estimating gene and exon abundance. Although both platforms detect similar expression changes at the gene level, the GG-H array is more sensitive at the exon level. Deeper sequencing is required to adequately cover low-abundance transcripts. The array has been implemented in a multicenter clinical program and has generated high-quality, reproducible data. Considering the clinical trial requirements of cost, sample availability, and throughput, the GG-H array has a wide range of applications. An emerging approach for large-scale clinical genomic studies is to first use RNA-Seq to the sufficient depth for the discovery of transcriptome elements relevant to the disease process followed by high-throughput and reliable screening of these elements on thousands of patient samples using custom-designed arrays. PMID:21317363

  3. High resolution hyperspectral imaging with a high throughput virtual slit

    Science.gov (United States)

    Gooding, Edward A.; Gunn, Thomas; Cenko, Andrew T.; Hajian, Arsen R.

    2016-05-01

    Hyperspectral imaging (HSI) device users often require both high spectral resolution, on the order of 1 nm, and high light-gathering power. A wide entrance slit assures reasonable étendue but degrades spectral resolution. Spectrometers built using High Throughput Virtual Slit™ (HTVS) technology optimize both parameters simultaneously. Two remote sensing use cases that require high spectral resolution are discussed. First, detection of atmospheric gases with intrinsically narrow absorption lines, such as hydrocarbon vapors or combustion exhaust gases such as NOx and CO2. Detecting exhaust gas species with high precision has become increasingly important in the light of recent events in the automobile industry. Second, distinguishing reflected daylight from emission spectra in the visible and NIR (VNIR) regions is most easily accomplished using the Fraunhofer absorption lines in solar spectra. While ground reflectance spectral features in the VNIR are generally quite broad, the Fraunhofer lines are narrow and provide a signature of intrinsic vs. extrinsic illumination. The High Throughput Virtual Slit enables higher spectral resolution than is achievable with conventional spectrometers by manipulating the beam profile in pupil space. By reshaping the instrument pupil with reflective optics, HTVS-equipped instruments create a tall, narrow image profile at the exit focal plane, typically delivering 5X or better the spectral resolution achievable with a conventional design.

  4. Methods of high throughput biophysical characterization in biopharmaceutical development.

    Science.gov (United States)

    Razinkov, Vladimir I; Treuheit, Michael J; Becker, Gerald W

    2013-03-01

    Discovery and successful development of biopharmaceutical products depend on a thorough characterization of the molecule both before and after formulation. Characterization of a formulated biotherapeutic, typically a protein or large peptide, requires a rigorous assessment of the molecule's physical stability. Stability of a biotherapeutic includes not only chemical stability, i.e., degradation of the molecule to form undesired modifications, but also structural stability, including the formation of aggregates. In this review, high throughput biophysical characterization techniques are described according to their specific applications during biopharmaceutical discovery, development and manufacturing. The methods presented here are classified according to these attributes, and include spectroscopic assays based on absorbance, polarization, intrinsic and extrinsic fluorescence, surface plasmon resonance instrumentation, calorimetric methods, dynamic and static light scattering techniques, several visible particle counting and sizing methods, new viscosity assay, based on light scattering and mass spectrometry. Several techniques presented here are already implemented in industry; but, many high throughput biophysical methods are still in the initial stages of implementation or even in the prototype stage. Each technique in this report is judged by the specific application of the method through the biopharmaceutical development process. PMID:22725690

  5. Applications of High-Throughput Nucleotide Sequencing (PhD)

    DEFF Research Database (Denmark)

    Waage, Johannes

    The recent advent of high throughput sequencing of nucleic acids (RNA and DNA) has vastly expanded research into the functional and structural biology of the genome of all living organisms (and even a few dead ones). With this enormous and exponential growth in biological data generation come equ...... (article III). For the second flavor, DNA-seq, a study presenting genome wide profiling of transcription factor CEBP/A in liver cells undergoing regeneration after partial hepatectomy (article IV) is included.......The recent advent of high throughput sequencing of nucleic acids (RNA and DNA) has vastly expanded research into the functional and structural biology of the genome of all living organisms (and even a few dead ones). With this enormous and exponential growth in biological data generation come......-sequencing, a study of the effects on alternative RNA splicing of KO of the nonsense mediated RNA decay system in Mus, using digital gene expression and a custom-built exon-exon junction mapping pipeline is presented (article I). Evolved from this work, a Bioconductor package, spliceR, for classifying...

  6. High throughput instruments, methods, and informatics for systems biology.

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Michael B.; Cowie, Jim R. (New Mexico State University, Las Cruces, NM); Van Benthem, Mark Hilary; Wylie, Brian Neil; Davidson, George S.; Haaland, David Michael; Timlin, Jerilyn Ann; Aragon, Anthony D. (University of New Mexico, Albuquerque, NM); Keenan, Michael Robert; Boyack, Kevin W.; Thomas, Edward Victor; Werner-Washburne, Margaret C. (University of New Mexico, Albuquerque, NM); Mosquera-Caro, Monica P. (University of New Mexico, Albuquerque, NM); Martinez, M. Juanita (University of New Mexico, Albuquerque, NM); Martin, Shawn Bryan; Willman, Cheryl L. (University of New Mexico, Albuquerque, NM)

    2003-12-01

    High throughput instruments and analysis techniques are required in order to make good use of the genomic sequences that have recently become available for many species, including humans. These instruments and methods must work with tens of thousands of genes simultaneously, and must be able to identify the small subsets of those genes that are implicated in the observed phenotypes, or, for instance, in responses to therapies. Microarrays represent one such high throughput method, which continue to find increasingly broad application. This project has improved microarray technology in several important areas. First, we developed the hyperspectral scanner, which has discovered and diagnosed numerous flaws in techniques broadly employed by microarray researchers. Second, we used a series of statistically designed experiments to identify and correct errors in our microarray data to dramatically improve the accuracy, precision, and repeatability of the microarray gene expression data. Third, our research developed new informatics techniques to identify genes with significantly different expression levels. Finally, natural language processing techniques were applied to improve our ability to make use of online literature annotating the important genes. In combination, this research has improved the reliability and precision of laboratory methods and instruments, while also enabling substantially faster analysis and discovery.

  7. High-throughput technology for novel SO2 oxidation catalysts

    Science.gov (United States)

    Loskyll, Jonas; Stoewe, Klaus; Maier, Wilhelm F.

    2011-10-01

    We review the state of the art and explain the need for better SO2 oxidation catalysts for the production of sulfuric acid. A high-throughput technology has been developed for the study of potential catalysts in the oxidation of SO2 to SO3. High-throughput methods are reviewed and the problems encountered with their adaptation to the corrosive conditions of SO2 oxidation are described. We show that while emissivity-corrected infrared thermography (ecIRT) can be used for primary screening, it is prone to errors because of the large variations in the emissivity of the catalyst surface. UV-visible (UV-Vis) spectrometry was selected instead as a reliable analysis method of monitoring the SO2 conversion. Installing plain sugar absorbents at reactor outlets proved valuable for the detection and quantitative removal of SO3 from the product gas before the UV-Vis analysis. We also overview some elements used for prescreening and those remaining after the screening of the first catalyst generations.

  8. Versatile protein biotinylation strategies for potential high-throughput proteomics.

    Science.gov (United States)

    Lue, Rina Y P; Chen, Grace Y J; Hu, Yi; Zhu, Qing; Yao, Shao Q

    2004-02-01

    We present intein-mediated approaches for efficient biotinylation of proteins site-specifically. The reactive C-terminal thioester generated from intein-assisted protein splicing (either in vitro or in live cells) served as an attractive and exclusive site for attaching cysteine-containing biotin. Using these novel biotinylation strategies, we were able to efficiently biotinylate many proteins from different biological sources in a potentially high-throughput, high-content fashion. Some of these proteins were subsequently immobilized, in a very simple manner, onto different avidin-functionalized solid surfaces for applications such as protein microarray and surface plasmon resonance (SPR) spectroscopy, highlighting the numerous advantages of using biotin over other tags (e.g., GST, His-tag, etc.) as the method of choice in protein purification/immobilization. In addition, our intein-mediated strategies provided critical advantages over other protein biotinylation strategies in a number of ways. For the first time, we also successfully demonstrated that intein-mediated protein biotinylation proceeded adequately inside both bacterial and mammalian living cells, as well as in a cell-free protein synthesis system. Taken together, our results indicate the versatility of these intein-mediated strategies for potential high-throughput proteomics applications. They may also serve as useful tools for various biochemical and biophysical studies of proteins both in vitro and in vivo. PMID:14746473

  9. High-throughput screening with micro-x-ray fluorescence

    International Nuclear Information System (INIS)

    Micro-x-ray fluorescence (MXRF) is a useful characterization tool for high-throughput screening of combinatorial libraries. Due to the increasing threat of use of chemical warfare (CW) agents both in military actions and against civilians by terrorist extremists, there is a strong push to improve existing methods and develop means for the detection of a broad spectrum of CW agents in a minimal amount of time to increase national security. This paper describes a combinatorial high-throughput screening technique for CW receptor discovery to aid in sensor development. MXRF can screen materials for elemental composition at the mesoscale level (tens to hundreds of micrometers). The key aspect of this work is the use of commercial MXRF instrumentation coupled with the inherent heteroatom elements within the target molecules of the combinatorial reaction to provide rapid and specific identification of lead species. The method is demonstrated by screening an 11-mer oligopeptide library for selective binding of the degradation products of the nerve agent VX. The identified oligopeptides can be used as selective molecular receptors for sensor development. The MXRF screening method is nondestructive, requires minimal sample preparation or special tags for analysis, and the screening time depends on the desired sensitivity

  10. High-throughput screening with micro-x-ray fluorescence

    Science.gov (United States)

    Havrilla, George J.; Miller, Thomasin C.

    2005-06-01

    Micro-x-ray fluorescence (MXRF) is a useful characterization tool for high-throughput screening of combinatorial libraries. Due to the increasing threat of use of chemical warfare (CW) agents both in military actions and against civilians by terrorist extremists, there is a strong push to improve existing methods and develop means for the detection of a broad spectrum of CW agents in a minimal amount of time to increase national security. This paper describes a combinatorial high-throughput screening technique for CW receptor discovery to aid in sensor development. MXRF can screen materials for elemental composition at the mesoscale level (tens to hundreds of micrometers). The key aspect of this work is the use of commercial MXRF instrumentation coupled with the inherent heteroatom elements within the target molecules of the combinatorial reaction to provide rapid and specific identification of lead species. The method is demonstrated by screening an 11-mer oligopeptide library for selective binding of the degradation products of the nerve agent VX. The identified oligopeptides can be used as selective molecular receptors for sensor development. The MXRF screening method is nondestructive, requires minimal sample preparation or special tags for analysis, and the screening time depends on the desired sensitivity.

  11. High-Throughput Screening Uncovers Novel Botulinum Neurotoxin Inhibitor Chemotypes.

    Science.gov (United States)

    Bompiani, Kristin M; Caglič, Dejan; Krutein, Michelle C; Benoni, Galit; Hrones, Morgan; Lairson, Luke L; Bian, Haiyan; Smith, Garry R; Dickerson, Tobin J

    2016-08-01

    Botulism is caused by potent and specific bacterial neurotoxins that infect host neurons and block neurotransmitter release. Treatment for botulism is limited to administration of an antitoxin within a short time window, before the toxin enters neurons. Alternatively, current botulism drug development targets the toxin light chain, which is a zinc-dependent metalloprotease that is delivered into neurons and mediates long-term pathology. Several groups have identified inhibitory small molecules, peptides, or aptamers, although no molecule has advanced to the clinic due to a lack of efficacy in advanced models. Here we used a homogeneous high-throughput enzyme assay to screen three libraries of drug-like small molecules for new chemotypes that modulate recombinant botulinum neurotoxin light chain activity. High-throughput screening of 97088 compounds identified numerous small molecules that activate or inhibit metalloprotease activity. We describe four major classes of inhibitory compounds identified, detail their structure-activity relationships, and assess their relative inhibitory potency. A previously unreported chemotype in any context of enzyme inhibition is described with potent submicromolar inhibition (Ki = 200-300 nM). Additional detailed kinetic analyses and cellular cytotoxicity assays indicate the best compound from this series is a competitive inhibitor with cytotoxicity values around 4-5 μM. Given the potency and drug-like character of these lead compounds, further studies, including cellular activity assays and DMPK analysis, are justified. PMID:27314875

  12. DAG expression: high-throughput gene expression analysis of real-time PCR data using standard curves for relative quantification.

    Directory of Open Access Journals (Sweden)

    María Ballester

    Full Text Available BACKGROUND: Real-time quantitative PCR (qPCR is still the gold-standard technique for gene-expression quantification. Recent technological advances of this method allow for the high-throughput gene-expression analysis, without the limitations of sample space and reagent used. However, non-commercial and user-friendly software for the management and analysis of these data is not available. RESULTS: The recently developed commercial microarrays allow for the drawing of standard curves of multiple assays using the same n-fold diluted samples. Data Analysis Gene (DAG Expression software has been developed to perform high-throughput gene-expression data analysis using standard curves for relative quantification and one or multiple reference genes for sample normalization. We discuss the application of DAG Expression in the analysis of data from an experiment performed with Fluidigm technology, in which 48 genes and 115 samples were measured. Furthermore, the quality of our analysis was tested and compared with other available methods. CONCLUSIONS: DAG Expression is a freely available software that permits the automated analysis and visualization of high-throughput qPCR. A detailed manual and a demo-experiment are provided within the DAG Expression software at http://www.dagexpression.com/dage.zip.

  13. High-Throughput Assay of Levansucrase Variants in Search of Feasible Catalysts for the Synthesis of Fructooligosaccharides and Levan

    Directory of Open Access Journals (Sweden)

    Karin Mardo

    2014-06-01

    Full Text Available Bacterial levansucrases polymerize fructose residues of sucrose to β-2,6 linked fructans—fructooligosaccharides (FOS and levan. While β-2,1-linked FOS are widely recognized as prebiotics, the health-related effects of β-2,6 linked FOS are scarcely studied as they are not commercially available. Levansucrase Lsc3 (Lsc-3 of Pseudomonas syringae pv. tomato has very high catalytic activity and stability making it a promising biotechnological catalyst for FOS and levan synthesis. In this study we evaluate feasibility of several high-throughput methods for screening and preliminary characterization of levansucrases using 36 Lsc3 mutants as a test panel. Heterologously expressed and purified His-tagged levansucrase variants were studied for: (1 sucrose-splitting activity; (2 FOS production; (3 ability and kinetics of levan synthesis; (4 thermostability in a Thermofluor assay. Importantly, we show that sucrose-splitting activity as well as the ability to produce FOS can both be evaluated using permeabilized levansucrase-expressing E. coli transformants as catalysts. For the first time we demonstrate the key importance of Trp109, His113, Glu146 and Glu236 for the catalysis of Lsc3. Cost-effective and high-throughput methods presented here are applicable not only in the levansucrase assay, but have a potential to be adapted for high-throughput (automated study of other enzymes.

  14. High-throughput assay of levansucrase variants in search of feasible catalysts for the synthesis of fructooligosaccharides and levan.

    Science.gov (United States)

    Mardo, Karin; Visnapuu, Triinu; Gromkova, Maria; Aasamets, Anneli; Viigand, Katrin; Vija, Heiki; Alamäe, Tiina

    2014-01-01

    Bacterial levansucrases polymerize fructose residues of sucrose to β-2,6 linked fructans-fructooligosaccharides (FOS) and levan. While β-2,1-linked FOS are widely recognized as prebiotics, the health-related effects of β-2,6 linked FOS are scarcely studied as they are not commercially available. Levansucrase Lsc3 (Lsc-3) of Pseudomonas syringae pv. tomato has very high catalytic activity and stability making it a promising biotechnological catalyst for FOS and levan synthesis. In this study we evaluate feasibility of several high-throughput methods for screening and preliminary characterization of levansucrases using 36 Lsc3 mutants as a test panel. Heterologously expressed and purified His-tagged levansucrase variants were studied for: (1) sucrose-splitting activity; (2) FOS production; (3) ability and kinetics of levan synthesis; (4) thermostability in a Thermofluor assay. Importantly, we show that sucrose-splitting activity as well as the ability to produce FOS can both be evaluated using permeabilized levansucrase-expressing E. coli transformants as catalysts. For the first time we demonstrate the key importance of Trp109, His113, Glu146 and Glu236 for the catalysis of Lsc3. Cost-effective and high-throughput methods presented here are applicable not only in the levansucrase assay, but have a potential to be adapted for high-throughput (automated) study of other enzymes. PMID:24955639

  15. A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells

    KAUST Repository

    Call, Douglas F.

    2011-07-01

    There is great interest in studying exoelectrogenic microorganisms, but existing methods can require expensive electrochemical equipment and specialized reactors. We developed a simple system for conducting high throughput bioelectrochemical research using multiple inexpensive microbial electrolysis cells (MECs) built with commercially available materials and operated using a single power source. MECs were small crimp top serum bottles (5mL) with a graphite plate anode (92m 2/m 3) and a cathode of stainless steel (SS) mesh (86m 2/m 3), graphite plate, SS wire, or platinum wire. The highest volumetric current density (240A/m 3, applied potential of 0.7V) was obtained using a SS mesh cathode and a wastewater inoculum (acetate electron donor). Parallel operated MECs (single power source) did not lead to differences in performance compared to non-parallel operated MECs, which can allow for high throughput reactor operation (>1000 reactors) using a single power supply. The utility of this method for cultivating exoelectrogenic microorganisms was demonstrated through comparison of buffer effects on pure (Geobacter sulfurreducens and Geobacter metallireducens) and mixed cultures. Mixed cultures produced current densities equal to or higher than pure cultures in the different media, and current densities for all cultures were higher using a 50mM phosphate buffer than a 30mM bicarbonate buffer. Only the mixed culture was capable of sustained current generation with a 200mM phosphate buffer. These results demonstrate the usefulness of this inexpensive method for conducting in-depth examinations of pure and mixed exoelectrogenic cultures. © 2011 Elsevier B.V.

  16. In situ near-infrared (NIR) versus high-throughput mid-infrared (MIR) spectroscopy to monitor biopharmaceutical production.

    Science.gov (United States)

    Sales, Kevin C; Rosa, Filipa; Sampaio, Pedro N; Fonseca, Luís P; Lopes, Marta B; Calado, Cecília R C

    2015-06-01

    The development of biopharmaceutical manufacturing processes presents critical constraints, with the major constraint being that living cells synthesize these molecules, presenting inherent behavior variability due to their high sensitivity to small fluctuations in the cultivation environment. To speed up the development process and to control this critical manufacturing step, it is relevant to develop high-throughput and in situ monitoring techniques, respectively. Here, high-throughput mid-infrared (MIR) spectral analysis of dehydrated cell pellets and in situ near-infrared (NIR) spectral analysis of the whole culture broth were compared to monitor plasmid production in recombinant Escherichia coli cultures. Good partial least squares (PLS) regression models were built, either based on MIR or NIR spectral data, yielding high coefficients of determination (R(2)) and low predictive errors (root mean square error, or RMSE) to estimate host cell growth, plasmid production, carbon source consumption (glucose and glycerol), and by-product acetate production and consumption. The predictive errors for biomass, plasmid, glucose, glycerol, and acetate based on MIR data were 0.7 g/L, 9 mg/L, 0.3 g/L, 0.4 g/L, and 0.4 g/L, respectively, whereas for NIR data the predictive errors obtained were 0.4 g/L, 8 mg/L, 0.3 g/L, 0.2 g/L, and 0.4 g/L, respectively. The models obtained are robust as they are valid for cultivations conducted with different media compositions and with different cultivation strategies (batch and fed-batch). Besides being conducted in situ with a sterilized fiber optic probe, NIR spectroscopy allows building PLS models for estimating plasmid, glucose, and acetate that are as accurate as those obtained from the high-throughput MIR setup, and better models for estimating biomass and glycerol, yielding a decrease in 57 and 50% of the RMSE, respectively, compared to the MIR setup. However, MIR spectroscopy could be a valid alternative in the case of optimization

  17. A high-throughput method for the detection of homoeologous gene deletions in hexaploid wheat

    Directory of Open Access Journals (Sweden)

    Li Zhongyi

    2010-11-01

    4500 M2 mutant wheat lines generated by heavy ion irradiation, we detected multiple mutants with deletions of each TaPFT1 homoeologue, and confirmed these deletions using a CAPS method. We have subsequently designed, optimized, and applied this method for the screening of homoeologous deletions of three additional wheat genes putatively involved in plant disease resistance. Conclusions We have developed a method for automated, high-throughput screening to identify deletions of individual homoeologues of a wheat gene. This method is also potentially applicable to other polyploidy plants.

  18. Dimensioning storage and computing clusters for efficient High Throughput Computing

    CERN Document Server

    CERN. Geneva

    2012-01-01

    Scientific experiments are producing huge amounts of data, and they continue increasing the size of their datasets and the total volume of data. These data are then processed by researchers belonging to large scientific collaborations, with the Large Hadron Collider being a good example. The focal point of Scientific Data Centres has shifted from coping efficiently with PetaByte scale storage to deliver quality data processing throughput. The dimensioning of the internal components in High Throughput Computing (HTC) data centers is of crucial importance to cope with all the activities demanded by the experiments, both the online (data acceptance) and the offline (data processing, simulation and user analysis). This requires a precise setup involving disk and tape storage services, a computing cluster and the internal networking to prevent bottlenecks, overloads and undesired slowness that lead to losses cpu cycles and batch jobs failures. In this paper we point out relevant features for running a successful s...

  19. Multiple-injection high-throughput gas chromatography analysis.

    Science.gov (United States)

    Schafer, Wes; Wang, Heather; Welch, Christopher J

    2016-08-01

    Multiple-injection techniques have been shown to be a simple way to perform high-throughput analysis where the entire experiment resides in a single chromatogram, simplifying the data analysis and interpretation. In this study, multiple-injection techniques are applied to gas chromatography with flame ionization detection and mass detection to significantly increase sample throughput. The unique issues of implementing a traditional "Fast" injection mode of multiple-injection techniques with gas chromatography and mass spectrometry are discussed. Stacked injections are also discussed as means to increase the throughput of longer methods where mass detection is unable to distinguish between analytes of the same mass and longer retentions are required to resolve components of interest. Multiple-injection techniques are shown to increase instrument throughput by up to 70% and to simplify data analysis, allowing hits in multiple parallel experiments to be identified easily. PMID:27292909

  20. Quantitative High-Throughput Luciferase Screening in Identifying CAR Modulators.

    Science.gov (United States)

    Lynch, Caitlin; Zhao, Jinghua; Wang, Hongbing; Xia, Menghang

    2016-01-01

    The constitutive androstane receptor (CAR, NR1I3) is responsible for the transcription of multiple drug metabolizing enzymes and transporters. There are two possible methods of activation for CAR, direct ligand binding and a ligand-independent method, which makes this a unique nuclear receptor. Both of these mechanisms require translocation of CAR from the cytoplasm into the nucleus. Interestingly, CAR is constitutively active in immortalized cell lines due to the basal nuclear location of this receptor. This creates an important challenge in most in vitro assay models because immortalized cells cannot be used without inhibiting the high basal activity. In this book chapter, we go into detail of how to perform quantitative high-throughput screens to identify hCAR1 modulators through the employment of a double stable cell line. Using this line, we are able to identify activators, as well as deactivators, of the challenging nuclear receptor, CAR. PMID:27518621

  1. Biological Processes Discovered by High-Throughput Sequencing.

    Science.gov (United States)

    Reon, Brian J; Dutta, Anindya

    2016-04-01

    Advances in DNA and RNA sequencing technologies have completely transformed the field of genomics. High-throughput sequencing (HTS) is now a widely used and accessible technology that allows scientists to sequence an entire transcriptome or genome in a timely and cost-effective manner. Application of HTS techniques has led to many key discoveries, including the identification of long noncoding RNAs, microDNAs, a family of small extrachromosomal circular DNA species, and tRNA-derived fragments, which are a group of small non-miRNAs that are derived from tRNAs. Furthermore, public sequencing repositories provide unique opportunities for laboratories to parse large sequencing databases to identify proteins and noncoding RNAs at a scale that was not possible a decade ago. Herein, we review how HTS has led to the discovery of novel nucleic acid species and uncovered new biological processes during the course. PMID:26828742

  2. Interactive Visual Analysis of High Throughput Text Streams

    Energy Technology Data Exchange (ETDEWEB)

    Steed, Chad A [ORNL; Potok, Thomas E [ORNL; Patton, Robert M [ORNL; Goodall, John R [ORNL; Maness, Christopher S [ORNL; Senter, James K [ORNL

    2012-01-01

    The scale, velocity, and dynamic nature of large scale social media systems like Twitter demand a new set of visual analytics techniques that support near real-time situational awareness. Social media systems are credited with escalating social protest during recent large scale riots. Virtual communities form rapidly in these online systems, and they occasionally foster violence and unrest which is conveyed in the users language. Techniques for analyzing broad trends over these networks or reconstructing conversations within small groups have been demonstrated in recent years, but state-of- the-art tools are inadequate at supporting near real-time analysis of these high throughput streams of unstructured information. In this paper, we present an adaptive system to discover and interactively explore these virtual networks, as well as detect sentiment, highlight change, and discover spatio- temporal patterns.

  3. Microfluidic cell chips for high-throughput drug screening.

    Science.gov (United States)

    Chi, Chun-Wei; Ahmed, Ah Rezwanuddin; Dereli-Korkut, Zeynep; Wang, Sihong

    2016-05-01

    The current state of screening methods for drug discovery is still riddled with several inefficiencies. Although some widely used high-throughput screening platforms may enhance the drug screening process, their cost and oversimplification of cell-drug interactions pose a translational difficulty. Microfluidic cell-chips resolve many issues found in conventional HTS technology, providing benefits such as reduced sample quantity and integration of 3D cell culture physically more representative of the physiological/pathological microenvironment. In this review, we introduce the advantages of microfluidic devices in drug screening, and outline the critical factors which influence device design, highlighting recent innovations and advances in the field including a summary of commercialization efforts on microfluidic cell chips. Future perspectives of microfluidic cell devices are also provided based on considerations of present technological limitations and translational barriers. PMID:27071838

  4. High resolution energy analysers for the 'High Throughput Inelastic Spectrometer'

    International Nuclear Information System (INIS)

    Calculations of energy transfer resolution and count rate for different filter materials and various high resolution energy analysers for the 'High Throughput Inelastic Spectrometer', HTIS, on the SNS, are presented. A graphite filter is shown to be complementary to the existing beryllium filter analyser, improving the energy transfer resolution for energy transfers < approximately equal to 50 meV. Narrow energy band pass analysers are shown to be limited in energy transfer resolution by variations in the scattered flight path, rather than by the intrinsic band widths. The Be/MgO difference filter provides improved energy transfer resolution and high count rates over a wide range of energy transfers, and is felt to be the most appropriate high resolution energy analyser for HTIS. (author)

  5. High-throughput sequencing of immune repertoires in multiple sclerosis.

    Science.gov (United States)

    Lossius, Andreas; Johansen, Jorunn N; Vartdal, Frode; Holmøy, Trygve

    2016-04-01

    T cells and B cells are crucial in the initiation and maintenance of multiple sclerosis (MS), and the activation of these cells is believed to be mediated through specific recognition of antigens by the T- and B-cell receptors. The antigen receptors are highly polymorphic due to recombination (T- and B-cell receptors) and mutation (B-cell receptors) of the encoding genes, which can therefore be used as fingerprints to track individual T- and B-cell clones. Such studies can shed light on mechanisms driving the immune responses and provide new insights into the pathogenesis. Here, we summarize studies that have explored the T- and B-cell receptor repertoires using earlier methodological approaches, and we focus on how high-throughput sequencing has provided new knowledge by surveying the immune repertoires in MS in even greater detail and with unprecedented depth. PMID:27081660

  6. High throughput 16S rRNA gene amplicon sequencing

    DEFF Research Database (Denmark)

    Nierychlo, Marta; Larsen, Poul; Jørgensen, Mads Koustrup;

    S rRNA gene amplicon sequencing has been developed over the past few years and is now ready to use for more comprehensive studies related to plant operation and optimization thanks to short analysis time, low cost, high throughput, and high taxonomic resolution. In this study we show how 16S r...... belonging to the phylum Chloroflexi. Based on knowledge about their ecophysiology, other control measures were introduced and the bulking problem was reduced after 2 months. Besides changes in the filament abundance and composition also other changes in the microbial community were observed that likely...... correlated with the bacterial species composition in 25 Danish full-scale WWTPs with nutrient removal. Examples of properties were SVI, filament index, floc size, floc strength, content of cations and amount of extracellular polymeric substances. Multivariate statistics provided several important insights...

  7. Proposed high throughput electrorefining treatment for spent N- Reactor fuel

    International Nuclear Information System (INIS)

    A high-throughput electrorefining process is being adapted to treat spent N-Reactor fuel for ultimate disposal in a geologic repository. Anodic dissolution tests were made with unirradiated N-Reactor fuel to determine the type of fragmentation necessary to provide fuel segments suitable for this process. Based on these tests, a conceptual design was produced of a plant-scale electrorefiner. In this design, the diameter of an electrode assembly is about 1.07 m (42 in.). Three of these assemblies in an electrorefiner would accommodate a 3-metric-ton batch of N-Reactor fuel that would be processed at a rate of 42 kg of uranium per hour

  8. UAV-based high-throughput phenotyping in legume crops

    Science.gov (United States)

    Sankaran, Sindhuja; Khot, Lav R.; Quirós, Juan; Vandemark, George J.; McGee, Rebecca J.

    2016-05-01

    In plant breeding, one of the biggest obstacles in genetic improvement is the lack of proven rapid methods for measuring plant responses in field conditions. Therefore, the major objective of this research was to evaluate the feasibility of utilizing high-throughput remote sensing technology for rapid measurement of phenotyping traits in legume crops. The plant responses of several chickpea and peas varieties to the environment were assessed with an unmanned aerial vehicle (UAV) integrated with multispectral imaging sensors. Our preliminary assessment showed that the vegetation indices are strongly correlated (p<0.05) with seed yield of legume crops. Results endorse the potential of UAS-based sensing technology to rapidly measure those phenotyping traits.

  9. The Principals and Practice of Distributed High Throughput Computing

    CERN Document Server

    CERN. Geneva

    2016-01-01

    The potential of Distributed Processing Systems to deliver computing capabilities with qualities ranging from high availability and reliability to easy expansion in functionality and capacity were recognized and formalized in the 1970’s. For more three decade these principals Distributed Computing guided the development of the HTCondor resource and job management system. The widely adopted suite of software tools offered by HTCondor are based on novel distributed computing technologies and are driven by the evolving needs of High Throughput scientific applications. We will review the principals that underpin our work, the distributed computing frameworks and technologies we developed and the lessons we learned from delivering effective and dependable software tools in an ever changing landscape computing technologies and needs that range today from a desktop computer to tens of thousands of cores offered by commercial clouds. About the speaker Miron Livny received a B.Sc. degree in Physics and Mat...

  10. High throughput substrate phage display for protease profiling.

    Science.gov (United States)

    Ratnikov, Boris; Cieplak, Piotr; Smith, Jeffrey W

    2009-01-01

    The interplay between a protease and its substrates is controlled at many different levels, including coexpression, colocalization, binding driven by ancillary contacts, and the presence of natural inhibitors. Here we focus on the most basic parameter that guides substrate recognition by a protease, the recognition specificity at the catalytic cleft. An understanding of this substrate specificity can be used to predict the putative substrates of a protease, to design protease activated imaging agents, and to initiate the design of active site inhibitors. Our group has characterized protease specificities of several matrix metalloproteinases using substrate phage display. Recently, we have adapted this method to a semiautomated platform that includes several high-throughput steps. The semiautomated platform allows one to obtain an order of magnitude more data, thus permitting precise comparisons among related proteases to define their functional distinctions. PMID:19377968

  11. High-throughput screening of binary catalysts for oxygen electroreduction

    Science.gov (United States)

    Liu, Jing Hua; Jeon, Min Ku; Woo, Seong Ihl

    2006-01-01

    A series of Pt based and non-Pt catalysts for proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC) have been evaluated towards oxygen reduction, by high-throughput optical screening. Fluorescein was first used as pH indicator for detecting pH change of the electrolyte in the vicinity of cathode caused by oxygen reduction. Arrays of catalyst spot comprised of binary catalysts and pure Pt were prepared by using robotic micro-dispenser. The analysis of fluorescence images has showed that some of Pt based catalysts including PtBi, PtCu, PtSe, PtTe and PtIr, as well as RuFe, as a non-Pt catalyst, exhibited higher activities and methanol tolerance than pure Pt. Moreover, acceptable stability of these catalysts at high potential in acid environment suits them to the requirements of cathode catalyst in PEMFC or DMFC.

  12. Novel Permanent Magnets by High-Throughput Experiments

    Science.gov (United States)

    Goll, Dagmar; Loeffler, Ralf; Herbst, Johannes; Karimi, Roman; Pflanz, Ulrich; Stein, Roland; Schneider, Gerhard

    2015-06-01

    Bulk high-throughput experiments allow the exploration of unknown alloy systems for novel permanent magnet phases. This multilevel concept is threefold. Search field prioritization is based on physical, technological, and economic aspects to identify promising systems in advance. Efficient synthesis is based on heterogeneous nonequilibrium states to scan the most interesting part of the phase diagram of one alloy system by one sample. An efficient analysis is based on the characteristic domain structure of hard magnetic phases to evaluate the magnetic properties and industrial relevance of the novel phases. The efficiency of the elaborate concept is demonstrated for the well-known ternary system Fe-Nd-B and then applied to discover novel phases for permanent magnets.

  13. High-throughput microplate technique for enzymatic hydrolysis of lignocellulosic biomass.

    Science.gov (United States)

    Chundawat, Shishir P S; Balan, Venkatesh; Dale, Bruce E

    2008-04-15

    Several factors will influence the viability of a biochemical platform for manufacturing lignocellulosic based fuels and chemicals, for example, genetically engineering energy crops, reducing pre-treatment severity, and minimizing enzyme loading. Past research on biomass conversion has focused largely on acid based pre-treatment technologies that fractionate lignin and hemicellulose from cellulose. However, for alkaline based (e.g., AFEX) and other lower severity pre-treatments it becomes critical to co-hydrolyze cellulose and hemicellulose using an optimized enzyme cocktail. Lignocellulosics are appropriate substrates to assess hydrolytic activity of enzyme mixtures compared to conventional unrealistic substrates (e.g., filter paper, chromogenic, and fluorigenic compounds) for studying synergistic hydrolysis. However, there are few, if any, high-throughput lignocellulosic digestibility analytical platforms for optimizing biomass conversion. The 96-well Biomass Conversion Research Lab (BCRL) microplate method is a high-throughput assay to study digestibility of lignocellulosic biomass as a function of biomass composition, pre-treatment severity, and enzyme composition. The most suitable method for delivering milled biomass to the microplate was through multi-pipetting slurry suspensions. A rapid bio-enzymatic, spectrophotometric assay was used to determine fermentable sugars. The entire procedure was automated using a robotic pipetting workstation. Several parameters that affect hydrolysis in the microplate were studied and optimized (i.e., particle size reduction, slurry solids concentration, glucan loading, mass transfer issues, and time period for hydrolysis). The microplate method was optimized for crystalline cellulose (Avicel) and ammonia fiber expansion (AFEX) pre-treated corn stover. PMID:18306256

  14. High throughput preparation of fly genomic DNA in 96-well format using a paint-shaker.

    Science.gov (United States)

    Lang, Michael; Nagy, Olga; Lang, Claus; Orgogozo, Virginie

    2015-07-01

    Sample homogenization is an essential step for genomic DNA extraction, with multiple downstream applications in Molecular Biology. Genotyping hundreds or thousands of samples requires an automation of this homogenization step, and high throughput homogenizer equipment currently costs 7000 euros or more. We present an apparatus for homogenization of individual Drosophila adult flies in 96-well micro-titer dishes, which was built from a small portable paint-shaker (F5 portable paint-shaker, Ushake). Single flies are disrupted in each well that contains extraction buffer and a 4-mm metal ball. Our apparatus can hold up to five 96-well micro-titer plates. Construction of the homogenizer apparatus takes about 3-4 days, and all equipment can be obtained from a home improvement store. The total material cost is approximately 700 euros including the paint-shaker. We tested the performance of our apparatus using the ZR-96 Quick-gDNA™ kit (Zymo Research) homogenization buffer and achieved nearly complete tissue homogenization after 15 minutes of shaking. PCR tests did not detect any cross contamination between samples of neighboring wells. We obtained on average 138 ng of genomic DNA per fly, and DNA quality was adequate for standard PCR applications. In principle, our tissue homogenizer can be used for isolation of DNA suitable for library production and high throughput genotyping by Multiplexed Shotgun Genotyping (MSG), as well as RNA isolation from single flies. The sample adapter can also hold and shake other items, such as centrifuge tubes (15-50 mL) or small bottles. PMID:26818699

  15. A family of E. coli expression vectors for laboratory scale and high throughput soluble protein production

    Directory of Open Access Journals (Sweden)

    Bottomley Stephen P

    2006-03-01

    Full Text Available Abstract Background In the past few years, both automated and manual high-throughput protein expression and purification has become an accessible means to rapidly screen and produce soluble proteins for structural and functional studies. However, many of the commercial vectors encoding different solubility tags require different cloning and purification steps for each vector, considerably slowing down expression screening. We have developed a set of E. coli expression vectors with different solubility tags that allow for parallel cloning from a single PCR product and can be purified using the same protocol. Results The set of E. coli expression vectors, encode for either a hexa-histidine tag or the three most commonly used solubility tags (GST, MBP, NusA and all with an N-terminal hexa-histidine sequence. The result is two-fold: the His-tag facilitates purification by immobilised metal affinity chromatography, whilst the fusion domains act primarily as solubility aids during expression, in addition to providing an optional purification step. We have also incorporated a TEV recognition sequence following the solubility tag domain, which allows for highly specific cleavage (using TEV protease of the fusion protein to yield native protein. These vectors are also designed for ligation-independent cloning and they possess a high-level expressing T7 promoter, which is suitable for auto-induction. To validate our vector system, we have cloned four different genes and also one gene into all four vectors and used small-scale expression and purification techniques. We demonstrate that the vectors are capable of high levels of expression and that efficient screening of new proteins can be readily achieved at the laboratory level. Conclusion The result is a set of four rationally designed vectors, which can be used for streamlined cloning, expression and purification of target proteins in the laboratory and have the potential for being adaptable to a high-throughput

  16. Fabrication of a hybrid plastic-silicon microfluidic device for high-throughput genotyping

    Science.gov (United States)

    Chartier, Isabelle; Sudor, J.; Fouillet, Yves; Sarrut, N.; Bory, C.; Gruss, A.

    2003-01-01

    The lab-on-a-chip approach has been increasingly present in biological research over the last ten years, high-throughput analyses being one of the promising utilization. The work presented here has consisted in developing an automated genotyping system based on a continuous flow analysis which integrates all the steps of the genotyping process (PCR, purification and sequencing). The genotyping device consists of a disposable hybrid silicon-plastic microfluidic chip, equipped with a permanent external, heating/cooling system, syringe-pumps based injection systems and on-line fluorescence detection. High throughput is obtained by performing the reaction in a continuous flow (1 reaction every 6min per channel) and in parallel (48 channels). We are presenting here the technical solutions developed to fabricate the hybrid silicon-plastic microfluidic device. It includes a polycarbonate substrate having 48 parallel grooves sealed by film lamination techniques to create the channels. Two different solutions for the sealing of the channels are compared in relation to their biocompatibility, fluidic behavior and fabrication process yield. Surface roughness of the surface of the channels is the key point of this step. Silicon fluidic chips are used for thermo-cycled reactions. A specific bonding technique has been developed to bond silicon chips onto the plastic part which ensures alignment and hermetic fluidic connexion. Surface coatings are studied to enhance the PCR biocompatibility and fluidic behavior of the two-phase liquid flow. We then demonstrate continuous operation over more than 20 hours of the component and validate PCR protocol on microliter samples in a continuous flow reaction.

  17. Model-based high-throughput design of ion exchange protein chromatography.

    Science.gov (United States)

    Khalaf, Rushd; Heymann, Julia; LeSaout, Xavier; Monard, Florence; Costioli, Matteo; Morbidelli, Massimo

    2016-08-12

    This work describes the development of a model-based high-throughput design (MHD) tool for the operating space determination of a chromatographic cation-exchange protein purification process. Based on a previously developed thermodynamic mechanistic model, the MHD tool generates a large amount of system knowledge and thereby permits minimizing the required experimental workload. In particular, each new experiment is designed to generate information needed to help refine and improve the model. Unnecessary experiments that do not increase system knowledge are avoided. Instead of aspiring to a perfectly parameterized model, the goal of this design tool is to use early model parameter estimates to find interesting experimental spaces, and to refine the model parameter estimates with each new experiment until a satisfactory set of process parameters is found. The MHD tool is split into four sections: (1) prediction, high throughput experimentation using experiments in (2) diluted conditions and (3) robotic automated liquid handling workstations (robotic workstation), and (4) operating space determination and validation. (1) Protein and resin information, in conjunction with the thermodynamic model, is used to predict protein resin capacity. (2) The predicted model parameters are refined based on gradient experiments in diluted conditions. (3) Experiments on the robotic workstation are used to further refine the model parameters. (4) The refined model is used to determine operating parameter space that allows for satisfactory purification of the protein of interest on the HPLC scale. Each section of the MHD tool is used to define the adequate experimental procedures for the next section, thus avoiding any unnecessary experimental work. We used the MHD tool to design a polishing step for two proteins, a monoclonal antibody and a fusion protein, on two chromatographic resins, in order to demonstrate it has the ability to strongly accelerate the early phases of process

  18. High-throughput screening for a moderately halophilic phenol-degrading strain and its salt tolerance response.

    Science.gov (United States)

    Lu, Zhi-Yan; Guo, Xiao-Jue; Li, Hui; Huang, Zhong-Zi; Lin, Kuang-Fei; Liu, Yong-Di

    2015-01-01

    A high-throughput screening system for moderately halophilic phenol-degrading bacteria from various habitats was developed to replace the conventional strain screening owing to its high efficiency. Bacterial enrichments were cultivated in 48 deep well microplates instead of shake flasks or tubes. Measurement of phenol concentrations was performed in 96-well microplates instead of using the conventional spectrophotometric method or high-performance liquid chromatography (HPLC). The high-throughput screening system was used to cultivate forty-three bacterial enrichments and gained a halophilic bacterial community E3 with the best phenol-degrading capability. Halomonas sp. strain 4-5 was isolated from the E3 community. Strain 4-5 was able to degrade more than 94% of the phenol (500 mg · L(-1) starting concentration) over a range of 3%-10% NaCl. Additionally, the strain accumulated the compatible solute, ectoine, with increasing salt concentrations. PCR detection of the functional genes suggested that the largest subunit of multicomponent phenol hydroxylase (LmPH) and catechol 1,2-dioxygenase (C12O) were active in the phenol degradation process. PMID:26020478

  19. High-Throughput Screening for a Moderately Halophilic Phenol-Degrading Strain and Its Salt Tolerance Response

    Directory of Open Access Journals (Sweden)

    Zhi-Yan Lu

    2015-05-01

    Full Text Available A high-throughput screening system for moderately halophilic phenol-degrading bacteria from various habitats was developed to replace the conventional strain screening owing to its high efficiency. Bacterial enrichments were cultivated in 48 deep well microplates instead of shake flasks or tubes. Measurement of phenol concentrations was performed in 96-well microplates instead of using the conventional spectrophotometric method or high-performance liquid chromatography (HPLC. The high-throughput screening system was used to cultivate forty-three bacterial enrichments and gained a halophilic bacterial community E3 with the best phenol-degrading capability. Halomonas sp. strain 4-5 was isolated from the E3 community. Strain 4-5 was able to degrade more than 94% of the phenol (500 mg·L−1 starting concentration over a range of 3%–10% NaCl. Additionally, the strain accumulated the compatible solute, ectoine, with increasing salt concentrations. PCR detection of the functional genes suggested that the largest subunit of multicomponent phenol hydroxylase (LmPH and catechol 1,2-dioxygenase (C12O were active in the phenol degradation process.

  20. High-throughput electrical measurement and microfluidic sorting of semiconductor nanowires.

    Science.gov (United States)

    Akin, Cevat; Feldman, Leonard C; Durand, Corentin; Hus, Saban M; Li, An-Ping; Hui, Ho Yee; Filler, Michael A; Yi, Jingang; Shan, Jerry W

    2016-05-24

    Existing nanowire electrical characterization tools not only are expensive and require sophisticated facilities, but are far too slow to enable statistical characterization of highly variable samples. They are also generally not compatible with further sorting and processing of nanowires. Here, we demonstrate a high-throughput, solution-based electro-orientation-spectroscopy (EOS) method, which is capable of automated electrical characterization of individual nanowires by direct optical visualization of their alignment behavior under spatially uniform electric fields of different frequencies. We demonstrate that EOS can quantitatively characterize the electrical conductivities of nanowires over a 6-order-of-magnitude range (10(-5) to 10 S m(-1), corresponding to typical carrier densities of 10(10)-10(16) cm(-3)), with different fluids used to suspend the nanowires. By implementing EOS in a simple microfluidic device, continuous electrical characterization is achieved, and the sorting of nanowires is demonstrated as a proof-of-concept. With measurement speeds two orders of magnitude faster than direct-contact methods, the automated EOS instrument enables for the first time the statistical characterization of highly variable 1D nanomaterials. PMID:27171977

  1. High-throughput measurement of rice tillers using a conveyor equipped with x-ray computed tomography

    Science.gov (United States)

    Yang, Wanneng; Xu, Xiaochun; Duan, Lingfeng; Luo, Qingming; Chen, Shangbin; Zeng, Shaoqun; Liu, Qian

    2011-02-01

    Tillering is one of the most important agronomic traits because the number of shoots per plant determines panicle number, a key component of grain yield. The conventional method of counting tillers is still manual. Under the condition of mass measurement, the accuracy and efficiency could be gradually degraded along with fatigue of experienced staff. Thus, manual measurement, including counting and recording, is not only time consuming but also lack objectivity. To automate this process, we developed a high-throughput facility, dubbed high-throughput system for measuring automatically rice tillers (H-SMART), for measuring rice tillers based on a conventional x-ray computed tomography (CT) system and industrial conveyor. Each pot-grown rice plant was delivered into the CT system for scanning via the conveyor equipment. A filtered back-projection algorithm was used to reconstruct the transverse section image of the rice culms. The number of tillers was then automatically extracted by image segmentation. To evaluate the accuracy of this system, three batches of rice at different growth stages (tillering, heading, or filling) were tested, yielding absolute mean absolute errors of 0.22, 0.36, and 0.36, respectively. Subsequently, the complete machine was used under industry conditions to estimate its efficiency, which was 4320 pots per continuous 24 h workday. Thus, the H-SMART could determine the number of tillers of pot-grown rice plants, providing three advantages over the manual tillering method: absence of human disturbance, automation, and high throughput. This facility expands the application of agricultural photonics in plant phenomics.

  2. Silicon microphysiometer for high-throughput drug screening

    Science.gov (United States)

    Verhaegen, Katarina; Baert, Christiaan; Puers, Bob; Sansen, Willy; Simaels, Jeannine; Van Driessche, Veerle; Hermans, Lou; Mertens, Robert P.

    1999-06-01

    We report on a micromachined silicon chip that is capable of providing a high-throughput functional assay based on calorimetry. A prototype twin microcalorimeter based on the Seebeck effect has been fabricated by IC technology and micromachined postprocessing techniques. A biocompatible liquid rubber membrane supports two identical 0.5 X 2 cm2 measurement chambers, situated at the cold and hot junction of a 666-junction aluminum/p+-polysilicon thermopile. The chambers can house up to 106 eukaryotic cells cultured to confluence. The advantage of the device over microcalorimeters on the market, is the integration of the measurement channels on chip, rendering microvolume reaction vessels, ranging from 10 to 600 (mu) l, in the closest possible contact with the thermopile sensor (no springs are needed). Power and temperature sensitivity of the sensor are 23 V/W and 130 mV/K, respectively. The small thermal inertia of the microchannels results in the short response time of 70 s, when filled with 50 (mu) l of water. Biological experiments were done with cultured kidney cells of Xenopus laevis (A6). The thermal equilibration time of the device is 45 min. Stimulation of transport mechanisms by reducing bath osmolality by 50% increased metabolism by 20%. Our results show that it is feasible to apply this large-area, small- volume whole-cell biosensor for drug discovery, where the binding assays that are commonly used to provide high- throughput need to be complemented with a functional assay. Solutions are brought onto the sensor by a simple pipette, making the use of an industrial microtiterplate dispenser feasible on a nx96-array of the microcalorimeter biosensor. Such an array of biosensors has been designed based on a new set of requirements as set forth by people in the field as this project moved on. The results obtained from the prototype large-area sensor were used to obtain an accurate model of the calorimeter, checked for by the simulation software ANSYS. At

  3. Parallel tools in HEVC for high-throughput processing

    Science.gov (United States)

    Zhou, Minhua; Sze, Vivienne; Budagavi, Madhukar

    2012-10-01

    HEVC (High Efficiency Video Coding) is the next-generation video coding standard being jointly developed by the ITU-T VCEG and ISO/IEC MPEG JCT-VC team. In addition to the high coding efficiency, which is expected to provide 50% more bit-rate reduction when compared to H.264/AVC, HEVC has built-in parallel processing tools to address bitrate, pixel-rate and motion estimation (ME) throughput requirements. This paper describes how CABAC, which is also used in H.264/AVC, has been redesigned for improved throughput, and how parallel merge/skip and tiles, which are new tools introduced for HEVC, enable high-throughput processing. CABAC has data dependencies which make it difficult to parallelize and thus limit its throughput. The prediction error/residual, represented as quantized transform coefficients, accounts for the majority of the CABAC workload. Various improvements have been made to the context selection and scans in transform coefficient coding that enable CABAC in HEVC to potentially achieve higher throughput and increased coding gains relative to H.264/AVC. The merge/skip mode is a coding efficiency enhancement tool in HEVC; the parallel merge/skip breaks dependency between the regular and merge/skip ME, which provides flexibility for high throughput and high efficiency HEVC encoder designs. For ultra high definition (UHD) video, such as 4kx2k and 8kx4k resolutions, low-latency and real-time processing may be beyond the capability of a single core codec. Tiles are an effective tool which enables pixel-rate balancing among the cores to achieve parallel processing with a throughput scalable implementation of multi-core UHD video codec. With the evenly divided tiles, a multi-core video codec can be realized by simply replicating single core codec and adding a tile boundary processing core on top of that. These tools illustrate that accounting for implementation cost when designing video coding algorithms can enable higher processing speed and reduce

  4. High throughput optoelectronic smart pixel systems using diffractive optics

    Science.gov (United States)

    Chen, Chih-Hao

    1999-12-01

    Recent developments in digital video, multimedia technology and data networks have greatly increased the demand for high bandwidth communication channels and high throughput data processing. Electronics is particularly suited for switching, amplification and logic functions, while optics is more suitable for interconnections and communications with lower energy and crosstalk. In this research, we present the design, testing, integration and demonstration of several optoelectronic smart pixel devices and system architectures. These systems integrate electronic switching/processing capability with parallel optical interconnections to provide high throughput network communication and pipeline data processing. The Smart Pixel Array Cellular Logic processor (SPARCL) is designed in 0.8 m m CMOS and hybrid integrated with Multiple-Quantum-Well (MQW) devices for pipeline image processing. The Smart Pixel Network Interface (SAPIENT) is designed in 0.6 m m GaAs and monolithically integrated with LEDs to implement a highly parallel optical interconnection network. The Translucent Smart Pixel Array (TRANSPAR) design is implemented in two different versions. The first version, TRANSPAR-MQW, is designed in 0.5 m m CMOS and flip-chip integrated with MQW devices to provide 2-D pipeline processing and translucent networking using the Carrier- Sense-MultipleAccess/Collision-Detection (CSMA/CD) protocol. The other version, TRANSPAR-VM, is designed in 1.2 m m CMOS and discretely integrated with VCSEL-MSM (Vertical-Cavity-Surface- Emitting-Laser and Metal-Semiconductor-Metal detectors) chips and driver/receiver chips on a printed circuit board. The TRANSPAR-VM provides an option of using the token ring network protocol in addition to the embedded functions of TRANSPAR-MQW. These optoelectronic smart pixel systems also require micro-optics devices to provide high resolution, high quality optical interconnections and external source arrays. In this research, we describe an innovative

  5. High-Throughput Procedure for Tick Surveys of Tick-Borne Encephalitis Virus and Its Application in a National Surveillance Study in Switzerland▿

    OpenAIRE

    Gäumann, Rahel; Mühlemann, Kathrin; Strasser, Marc; Beuret, Christian M.

    2010-01-01

    Tick-borne encephalitis (TBE), a viral infection of the central nervous system, is endemic in many Eurasian countries. In Switzerland, TBE risk areas have been characterized by geographic mapping of clinical cases. Since mass vaccination should significantly decrease the number of TBE cases, alternative methods for exposure risk assessment are required. We established a new PCR-based test for the detection of TBE virus (TBEV) in ticks. The protocol involves an automated, high-throughput nucle...

  6. A pre-validation trial - testing genotoxicity of several chemicals using standard, medium- and high-throughput comet formats.

    Directory of Open Access Journals (Sweden)

    Kristine Bjerve Gutzkow

    2015-06-01

    Results obtained with the three systems (standard, medium- and high-throughput were essentially the same. The 96-minigel format was analysed with the fully automated scoring system IMSTAR and comparable results were achieved with the semi-automated scoring system from Perceptives. The known genotoxic chemicals MNU, B(aP, 4-NQO and cyclophosphamide showed little consistent sign of genotoxicity at concentrations causing limited cytotoxicity. D-mannitol and Triton X-100 were, as expected, non-genotoxic (though Triton X-100, at high concentrations, caused DNA breaks as an apparent secondary effect of cytotoxicity. Etoposide and bleomycin gave significant increase in DNA strand break at borderline cytotoxic concentrations. The limitation of the assay to detect damaged bases by known genotoxins may be overcome by incorporating a DNA repair enzyme, such as formamidopyrimidine-DNA-glycosylase (FPG, to convert damaged bases into breaks as shown by Azqueta A et al., Mutagenesis vol. 28 no. 3 pp. 271–277, 2013 .

  7. Assessing the utility and limitations of high throughput virtual screening

    Directory of Open Access Journals (Sweden)

    Paul Daniel Phillips

    2016-05-01

    Full Text Available Due to low cost, speed, and unmatched ability to explore large numbers of compounds, high throughput virtual screening and molecular docking engines have become widely utilized by computational scientists. It is generally accepted that docking engines, such as AutoDock, produce reliable qualitative results for ligand-macromolecular receptor binding, and molecular docking results are commonly reported in literature in the absence of complementary wet lab experimental data. In this investigation, three variants of the sixteen amino acid peptide, α-conotoxin MII, were docked to a homology model of the a3β2-nicotinic acetylcholine receptor. DockoMatic version 2.0 was used to perform a virtual screen of each peptide ligand to the receptor for ten docking trials consisting of 100 AutoDock cycles per trial. The results were analyzed for both variation in the calculated binding energy obtained from AutoDock, and the orientation of bound peptide within the receptor. The results show that, while no clear correlation exists between consistent ligand binding pose and the calculated binding energy, AutoDock is able to determine a consistent positioning of bound peptide in the majority of trials when at least ten trials were evaluated.

  8. A microfluidic, high throughput protein crystal growth method for microgravity.

    Directory of Open Access Journals (Sweden)

    Carl W Carruthers

    Full Text Available The attenuation of sedimentation and convection in microgravity can sometimes decrease irregularities formed during macromolecular crystal growth. Current terrestrial protein crystal growth (PCG capabilities are very different than those used during the Shuttle era and that are currently on the International Space Station (ISS. The focus of this experiment was to demonstrate the use of a commercial off-the-shelf, high throughput, PCG method in microgravity. Using Protein BioSolutions' microfluidic Plug Maker™/CrystalCard™ system, we tested the ability to grow crystals of the regulator of glucose metabolism and adipogenesis: peroxisome proliferator-activated receptor gamma (apo-hPPAR-γ LBD, as well as several PCG standards. Overall, we sent 25 CrystalCards™ to the ISS, containing ~10,000 individual microgravity PCG experiments in a 3U NanoRacks NanoLab (1U = 10(3 cm.. After 70 days on the ISS, our samples were returned with 16 of 25 (64% microgravity cards having crystals, compared to 12 of 25 (48% of the ground controls. Encouragingly, there were more apo-hPPAR-γ LBD crystals in the microgravity PCG cards than the 1g controls. These positive results hope to introduce the use of the PCG standard of low sample volume and large experimental density to the microgravity environment and provide new opportunities for macromolecular samples that may crystallize poorly in standard laboratories.

  9. High throughput cryopreservation of 140,000 Physcomitrella patens mutants.

    Science.gov (United States)

    Schulte, J; Reski, R

    2004-01-01

    A high throughput protocol was established to preserve 140,000 mutants of a moss, Physcomitrella patens, a model plant for functional genomics studies, over liquid nitrogen. Regarding the reliable long-term storage of diverse mutant phenotypes, as well as time and cost effectiveness, each working step was optimized: 1) plant preparation, 2) freezing regime, cryogenic conditions, 3) regrowth after thawing. A prerequisite for maximum regrowth was a 1-week preculture of chopped plant material on a supplemented medium prior to freezing. Cryo vials as preculture vessels resulted in identical regrowth rates, compared to petri dishes. The cryo vial type had a significant influence on regrowth rates. A cooling rate of - 1 degrees C/min down to - 35 degrees C with a 10 min holding time before transferring plants to - 152 degrees C was the most suitable freezing regime. This protocol allows a cryopreservation of 1100 plants during a 5-day working week, practicable by one person. For more than 650 cryopreserved mutants a maximum regrowth rate of 100 % was obtained, independently of mutant phenotypes. PMID:15045662

  10. High throughput LSPR and SERS analysis of aminoglycoside antibiotics.

    Science.gov (United States)

    McKeating, Kristy S; Couture, Maxime; Dinel, Marie-Pier; Garneau-Tsodikova, Sylvie; Masson, Jean-Francois

    2016-08-15

    Aminoglycoside antibiotics are used in the treatment of infections caused by Gram-negative bacteria, and are often dispensed only in severe cases due to their adverse side effects. Patients undergoing treatment with these antibiotics are therefore commonly subjected to therapeutic drug monitoring (TDM) to ensure a safe and effective personalised dosage. The ability to detect these antibiotics in a rapid and sensitive manner in human fluids is therefore of the utmost importance in order to provide effective monitoring of these drugs, which could potentially allow for a more widespread use of this class of antibiotics. Herein, we report on the detection of various aminoglycosides, by exploiting their ability to aggregate gold nanoparticles. The number and position of the amino groups of aminoglycoside antibiotics controlled the aggregation process. We investigated the complementary techniques of surface enhanced Raman spectroscopy (SERS) and localized surface plasmon resonance (LSPR) for dual detection of these aminoglycoside antibiotics and performed an in-depth study of the feasibility of carrying out TDM of tobramycin using a platform amenable to high throughput analysis. Herein, we also demonstrate dual detection of tobramycin using both LSPR and SERS in a single platform and within the clinically relevant concentration range needed for TDM of this particular aminoglycoside. Additionally we provide evidence that tobramycin can be detected in spiked human serum using only functionalised nanoparticles and SERS analysis. PMID:27412506

  11. High Throughput Profiling of Molecular Shapes in Crystals

    Science.gov (United States)

    Spackman, Peter R.; Thomas, Sajesh P.; Jayatilaka, Dylan

    2016-02-01

    Molecular shape is important in both crystallisation and supramolecular assembly, yet its role is not completely understood. We present a computationally efficient scheme to describe and classify the molecular shapes in crystals. The method involves rotation invariant description of Hirshfeld surfaces in terms of of spherical harmonic functions. Hirshfeld surfaces represent the boundaries of a molecule in the crystalline environment, and are widely used to visualise and interpret crystalline interactions. The spherical harmonic description of molecular shapes are compared and classified by means of principal component analysis and cluster analysis. When applied to a series of metals, the method results in a clear classification based on their lattice type. When applied to around 300 crystal structures comprising of series of substituted benzenes, naphthalenes and phenylbenzamide it shows the capacity to classify structures based on chemical scaffolds, chemical isosterism, and conformational similarity. The computational efficiency of the method is demonstrated with an application to over 14 thousand crystal structures. High throughput screening of molecular shapes and interaction surfaces in the Cambridge Structural Database (CSD) using this method has direct applications in drug discovery, supramolecular chemistry and materials design.

  12. Hydrodynamic Cell Trapping for High Throughput Single-Cell Applications

    Directory of Open Access Journals (Sweden)

    Amin Abbaszadeh Banaeiyan

    2013-12-01

    Full Text Available The possibility to conduct complete cell assays under a precisely controlled environment while consuming minor amounts of chemicals and precious drugs have made microfluidics an interesting candidate for quantitative single-cell studies. Here, we present an application-specific microfluidic device, cellcomb, capable of conducting high-throughput single-cell experiments. The system employs pure hydrodynamic forces for easy cell trapping and is readily fabricated in polydimethylsiloxane (PDMS using soft lithography techniques. The cell-trapping array consists of V-shaped pockets designed to accommodate up to six Saccharomyces cerevisiae (yeast cells with the average diameter of 4 μm. We used this platform to monitor the impact of flow rate modulation on the arsenite (As(III uptake in yeast. Redistribution of a green fluorescent protein (GFP-tagged version of the heat shock protein Hsp104 was followed over time as read out. Results showed a clear reverse correlation between the arsenite uptake and three different adjusted low = 25 nL min−1, moderate = 50 nL min−1, and high = 100 nL min−1 flow rates. We consider the presented device as the first building block of a future integrated application-specific cell-trapping array that can be used to conduct complete single cell experiments on different cell types.

  13. High-Throughput Preparation of New Photoactive Nanocomposites.

    Science.gov (United States)

    Conterosito, Eleonora; Benesperi, Iacopo; Toson, Valentina; Saccone, Davide; Barbero, Nadia; Palin, Luca; Barolo, Claudia; Gianotti, Valentina; Milanesio, Marco

    2016-06-01

    New low-cost photoactive hybrid materials based on organic luminescent molecules inserted into hydrotalcite (layered double hydroxides; LDH) were produced, which exploit the high-throughput liquid-assisted grinding (LAG) method. These materials are conceived for applications in dye-sensitized solar cells (DSSCs) as a co-absorbers and in silicon photovoltaic (PV) panels to improve their efficiency as they are able to emit where PV modules show the maximum efficiency. A molecule that shows a large Stokes' shift was designed, synthesized, and intercalated into LDH. Two dyes already used in DSSCs were also intercalated to produce two new nanocomposites. LDH intercalation allows the stability of organic dyes to be improved and their direct use in polymer melt blending. The prepared nanocomposites absorb sunlight from UV to visible and emit from blue to near-IR and thus can be exploited for light-energy management. Finally one nanocomposite was dispersed by melt blending into a poly(methyl methacrylate)-block-poly(n-butyl acrylate) copolymer to obtain a photoactive film. PMID:27137753

  14. A reproducible, high throughput method for fabricating fibrin gels

    Directory of Open Access Journals (Sweden)

    Murphy Kaitlin C

    2012-08-01

    Full Text Available Abstract Background Fibrin gels are a promising biomaterial for tissue engineering. However, current fabrication methods are time intensive with inherent variation. There is a pressing need to develop new and consistent approaches for producing fibrin-based hydrogels for examination. Findings We developed a high throughput method for creating fibrin gels using molds fabricated from polydimethylsiloxane (PDMS. Fibrin gels were produced by adding solutions of fibrinogen and thrombin to cylindrical defects in a PDMS sheet. Undisturbed gels were collected by removing the sheet, and fibrin gels were characterized. The characteristics of resulting gels were compared to published data by measuring compressive stiffness and osteogenic response of entrapped human mesenchymal stem cells (MSCs. Gels exhibited compressive moduli nearly identical to our previously reported fabrication method. Trends in alkaline phosphatase activity, an early marker of osteogenic differentiation in MSCs, were also consistent with previous data. Conclusions These findings demonstrate a streamlined approach to fibrin gel production that drastically reduces the time required to make fibrin gels, while also reducing variability between gel batches. This fabrication technique provides a valuable tool for generating large numbers of gels in a cost-effective manner.

  15. Advances in High Throughput Screening of Biomass Recalcitrance (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Turner, G. B.; Decker, S. R.; Tucker, M. P.; Law, C.; Doeppke, C.; Sykes, R. W.; Davis, M. F.; Ziebell, A.

    2012-06-01

    This was a poster displayed at the Symposium. Advances on previous high throughput screening of biomass recalcitrance methods have resulted in improved conversion and replicate precision. Changes in plate reactor metallurgy, improved preparation of control biomass, species-specific pretreatment conditions, and enzymatic hydrolysis parameters have reduced overall coefficients of variation to an average of 6% for sample replicates. These method changes have improved plate-to-plate variation of control biomass recalcitrance and improved confidence in sugar release differences between samples. With smaller errors plant researchers can have a higher degree of assurance more low recalcitrance candidates can be identified. Significant changes in plate reactor, control biomass preparation, pretreatment conditions and enzyme have significantly reduced sample and control replicate variability. Reactor plate metallurgy significantly impacts sugar release aluminum leaching into reaction during pretreatment degrades sugars and inhibits enzyme activity. Removal of starch and extractives significantly decreases control biomass variability. New enzyme formulations give more consistent and higher conversion levels, however required re-optimization for switchgrass. Pretreatment time and temperature (severity) should be adjusted to specific biomass types i.e. woody vs. herbaceous. Desalting of enzyme preps to remove low molecular weight stabilizers and improved conversion levels likely due to water activity impacts on enzyme structure and substrate interactions not attempted here due to need to continually desalt and validate precise enzyme concentration and activity.

  16. High-throughput analysis of protein-DNA binding affinity.

    Science.gov (United States)

    Franco-Zorrilla, José M; Solano, Roberto

    2014-01-01

    Sequence-specific protein-DNA interactions mediate most regulatory processes underlying gene expression, such as transcriptional regulation by transcription factors (TFs) or chromatin organization. Current knowledge about DNA-binding specificities of TFs is based mostly on low- to medium-throughput methodologies that are time-consuming and often fail to identify DNA motifs recognized by a TF with lower affinity but retaining biological relevance. The use of protein-binding microarrays (PBMs) offers a high-throughput alternative for the identification of protein-DNA specificities. PBM consists in an array of pseudorandomized DNA sequences that are optimized to include all the possible 10- or 11-mer DNA sequences, allowing the determination of binding specificities of most eukaryotic TFs. PBMs that can be synthesized by several manufacturing companies as single-stranded DNA are converted into double-stranded in a simple primer extension reaction. The protein of interest fused to an epitope tag is then incubated onto the PBM, and specific DNA-protein complexes are revealed in a series of immunological reactions coupled to a fluorophore. After scanning and quantifying PBMs, specific DNA motifs recognized by the protein are identified with ready-to-use scripts, generating comprehensive but accessible information about the DNA-binding specificity of the protein. This chapter describes detailed procedures for preparation of double-stranded PBMs, incubation with recombinant protein, and detection of protein-DNA complexes. Finally, we outline some cues for evaluating the biological role of DNA motifs obtained in vitro. PMID:24057393

  17. Probabilistic Assessment of High-Throughput Wireless Sensor Networks

    Science.gov (United States)

    Kim, Robin E.; Mechitov, Kirill; Sim, Sung-Han; Spencer, Billie F.; Song, Junho

    2016-01-01

    Structural health monitoring (SHM) using wireless smart sensors (WSS) has the potential to provide rich information on the state of a structure. However, because of their distributed nature, maintaining highly robust and reliable networks can be challenging. Assessing WSS network communication quality before and after finalizing a deployment is critical to achieve a successful WSS network for SHM purposes. Early studies on WSS network reliability mostly used temporal signal indicators, composed of a smaller number of packets, to assess the network reliability. However, because the WSS networks for SHM purpose often require high data throughput, i.e., a larger number of packets are delivered within the communication, such an approach is not sufficient. Instead, in this study, a model that can assess, probabilistically, the long-term performance of the network is proposed. The proposed model is based on readily-available measured data sets that represent communication quality during high-throughput data transfer. Then, an empirical limit-state function is determined, which is further used to estimate the probability of network communication failure. Monte Carlo simulation is adopted in this paper and applied to a small and a full-bridge wireless networks. By performing the proposed analysis in complex sensor networks, an optimized sensor topology can be achieved. PMID:27258270

  18. Probabilistic Assessment of High-Throughput Wireless Sensor Networks.

    Science.gov (United States)

    Kim, Robin E; Mechitov, Kirill; Sim, Sung-Han; Spencer, Billie F; Song, Junho

    2016-01-01

    Structural health monitoring (SHM) using wireless smart sensors (WSS) has the potential to provide rich information on the state of a structure. However, because of their distributed nature, maintaining highly robust and reliable networks can be challenging. Assessing WSS network communication quality before and after finalizing a deployment is critical to achieve a successful WSS network for SHM purposes. Early studies on WSS network reliability mostly used temporal signal indicators, composed of a smaller number of packets, to assess the network reliability. However, because the WSS networks for SHM purpose often require high data throughput, i.e., a larger number of packets are delivered within the communication, such an approach is not sufficient. Instead, in this study, a model that can assess, probabilistically, the long-term performance of the network is proposed. The proposed model is based on readily-available measured data sets that represent communication quality during high-throughput data transfer. Then, an empirical limit-state function is determined, which is further used to estimate the probability of network communication failure. Monte Carlo simulation is adopted in this paper and applied to a small and a full-bridge wireless networks. By performing the proposed analysis in complex sensor networks, an optimized sensor topology can be achieved. PMID:27258270

  19. Adaptation to high throughput batch chromatography enhances multivariate screening.

    Science.gov (United States)

    Barker, Gregory A; Calzada, Joseph; Herzer, Sibylle; Rieble, Siegfried

    2015-09-01

    High throughput process development offers unique approaches to explore complex process design spaces with relatively low material consumption. Batch chromatography is one technique that can be used to screen chromatographic conditions in a 96-well plate. Typical batch chromatography workflows examine variations in buffer conditions or comparison of multiple resins in a given process, as opposed to the assessment of protein loading conditions in combination with other factors. A modification to the batch chromatography paradigm is described here where experimental planning, programming, and a staggered loading approach increase the multivariate space that can be explored with a liquid handling system. The iterative batch chromatography (IBC) approach is described, which treats every well in a 96-well plate as an individual experiment, wherein protein loading conditions can be varied alongside other factors such as wash and elution buffer conditions. As all of these factors are explored in the same experiment, the interactions between them are characterized and the number of follow-up confirmatory experiments is reduced. This in turn improves statistical power and throughput. Two examples of the IBC method are shown and the impact of the load conditions are assessed in combination with the other factors explored. PMID:25914370

  20. High throughput micro-well generation of hepatocyte micro-aggregates for tissue engineering.

    Directory of Open Access Journals (Sweden)

    Elien Gevaert

    Full Text Available The main challenge in hepatic tissue engineering is the fast dedifferentiation of primary hepatocytes in vitro. One successful approach to maintain hepatocyte phenotype on the longer term is the cultivation of cells as aggregates. This paper demonstrates the use of an agarose micro-well chip for the high throughput generation of hepatocyte aggregates, uniform in size. In our study we observed that aggregation of hepatocytes had a beneficial effect on the expression of certain hepatocyte specific markers. Moreover we observed that the beneficial effect was dependent on the aggregate dimensions, indicating that aggregate parameters should be carefully considered. In a second part of the study, the selected aggregates were immobilized by encapsulation in methacrylamide-modified gelatin. Phenotype evaluations revealed that a stable hepatocyte phenotype could be maintained during 21 days when encapsulated in the hydrogel. In conclusion we have demonstrated the beneficial use of micro-well chips for hepatocyte aggregation and the size-dependent effects on hepatocyte phenotype. We also pointed out that methacrylamide-modified gelatin is suitable for the encapsulation of these aggregates.

  1. Scanning fluorescence detector for high-throughput DNA genotyping

    Science.gov (United States)

    Rusch, Terry L.; Petsinger, Jeremy; Christensen, Carl; Vaske, David A.; Brumley, Robert L., Jr.; Luckey, John A.; Weber, James L.

    1996-04-01

    A new scanning fluorescence detector (SCAFUD) was developed for high-throughput genotyping of short tandem repeat polymorphisms (STRPs). Fluorescent dyes are incorporated into relatively short DNA fragments via polymerase chain reaction (PCR) and are separated by electrophoresis in short, wide polyacrylamide gels (144 lanes with well to read distances of 14 cm). Excitation light from an argon laser with primary lines at 488 and 514 nm is introduced into the gel through a fiber optic cable, dichroic mirror, and 40X microscope objective. Emitted fluorescent light is collected confocally through a second fiber. The confocal head is translated across the bottom of the gel at 0.5 Hz. The detection unit utilizes dichroic mirrors and band pass filters to direct light with 10 - 20 nm bandwidths to four photomultiplier tubes (PMTs). PMT signals are independently amplified with variable gain and then sampled at a rate of 2500 points per scan using a computer based A/D board. LabView software (National Instruments) is used for instrument operation. Currently, three fluorescent dyes (Fam, Hex and Rox) are simultaneously detected with peak detection wavelengths of 543, 567, and 613 nm, respectively. The detection limit for fluorescein-labeled primers is about 100 attomoles. Planned SCAFUD upgrades include rearrangement of laser head geometry, use of additional excitation lasers for simultaneous detection of more dyes, and the use of detector arrays instead of individual PMTs. Extensive software has been written for automatic analysis of SCAFUD images. The software enables background subtraction, band identification, multiple- dye signal resolution, lane finding, band sizing and allele calling. Whole genome screens are currently underway to search for loci influencing such complex diseases as diabetes, asthma, and hypertension. Seven production SCAFUDs are currently in operation. Genotyping output for the coming year is projected to be about one million total genotypes (DNA

  2. Towards Chip Scale Liquid Chromatography and High Throughput Immunosensing

    Energy Technology Data Exchange (ETDEWEB)

    Ni, J.

    2000-09-21

    This work describes several research projects aimed towards developing new instruments and novel methods for high throughput chemical and biological analysis. Approaches are taken in two directions. The first direction takes advantage of well-established semiconductor fabrication techniques and applies them to miniaturize instruments that are workhorses in analytical laboratories. Specifically, the first part of this work focused on the development of micropumps and microvalves for controlled fluid delivery. The mechanism of these micropumps and microvalves relies on the electrochemically-induced surface tension change at a mercury/electrolyte interface. A miniaturized flow injection analysis device was integrated and flow injection analyses were demonstrated. In the second part of this work, microfluidic chips were also designed, fabricated, and tested. Separations of two fluorescent dyes were demonstrated in microfabricated channels, based on an open-tubular liquid chromatography (OT LC) or an electrochemically-modulated liquid chromatography (EMLC) format. A reduction in instrument size can potentially increase analysis speed, and allow exceedingly small amounts of sample to be analyzed under diverse separation conditions. The second direction explores the surface enhanced Raman spectroscopy (SERS) as a signal transduction method for immunoassay analysis. It takes advantage of the improved detection sensitivity as a result of surface enhancement on colloidal gold, the narrow width of Raman band, and the stability of Raman scattering signals to distinguish several different species simultaneously without exploiting spatially-separated addresses on a biochip. By labeling gold nanoparticles with different Raman reporters in conjunction with different detection antibodies, a simultaneous detection of a dual-analyte immunoassay was demonstrated. Using this scheme for quantitative analysis was also studied and preliminary dose-response curves from an immunoassay of a

  3. Mining Chemical Activity Status from High-Throughput Screening Assays

    KAUST Repository

    Soufan, Othman

    2015-12-14

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  4. High-Throughput Neuroimaging-Genetics Computational Infrastructure

    Directory of Open Access Journals (Sweden)

    Ivo D Dinov

    2014-04-01

    Full Text Available Many contemporary neuroscientific investigations face significant challenges in terms of data management, computational processing, data mining and results interpretation. These four pillars define the core infrastructure necessary to plan, organize, orchestrate, validate and disseminate novel scientific methods, computational resources and translational healthcare findings. Data management includes protocols for data acquisition, archival, query, transfer, retrieval and aggregation. Computational processing involves the necessary software, hardware and networking infrastructure required to handle large amounts of heterogeneous neuroimaging, genetics, clinical and phenotypic data and meta-data. In this manuscript we describe the novel high-throughput neuroimaging-genetics computational infrastructure available at the Institute for Neuroimaging and Informatics (INI and the Laboratory of Neuro Imaging (LONI at University of Southern California (USC. INI and LONI include ultra-high-field and standard-field MRI brain scanners along with an imaging-genetics database for storing the complete provenance of the raw and derived data and meta-data. A unique feature of this architecture is the Pipeline environment, which integrates the data management, processing, transfer and visualization. Through its client-server architecture, the Pipeline environment provides a graphical user interface for designing, executing, monitoring validating, and disseminating of complex protocols that utilize diverse suites of software tools and web-services. These pipeline workflows are represented as portable XML objects which transfer the execution instructions and user specifications from the client user machine to remote pipeline servers for distributed computing. Using Alzheimer’s and Parkinson’s data, we provide several examples of translational applications using this infrastructure.

  5. High-throughput flow cytometry data normalization for clinical trials.

    Science.gov (United States)

    Finak, Greg; Jiang, Wenxin; Krouse, Kevin; Wei, Chungwen; Sanz, Ignacio; Phippard, Deborah; Asare, Adam; De Rosa, Stephen C; Self, Steve; Gottardo, Raphael

    2014-03-01

    Flow cytometry datasets from clinical trials generate very large datasets and are usually highly standardized, focusing on endpoints that are well defined apriori. Staining variability of individual makers is not uncommon and complicates manual gating, requiring the analyst to adapt gates for each sample, which is unwieldy for large datasets. It can lead to unreliable measurements, especially if a template-gating approach is used without further correction to the gates. In this article, a computational framework is presented for normalizing the fluorescence intensity of multiple markers in specific cell populations across samples that is suitable for high-throughput processing of large clinical trial datasets. Previous approaches to normalization have been global and applied to all cells or data with debris removed. They provided no mechanism to handle specific cell subsets. This approach integrates tightly with the gating process so that normalization is performed during gating and is local to the specific cell subsets exhibiting variability. This improves peak alignment and the performance of the algorithm. The performance of this algorithm is demonstrated on two clinical trial datasets from the HIV Vaccine Trials Network (HVTN) and the Immune Tolerance Network (ITN). In the ITN data set we show that local normalization combined with template gating can account for sample-to-sample variability as effectively as manual gating. In the HVTN dataset, it is shown that local normalization mitigates false-positive vaccine response calls in an intracellular cytokine staining assay. In both datasets, local normalization performs better than global normalization. The normalization framework allows the use of template gates even in the presence of sample-to-sample staining variability, mitigates the subjectivity and bias of manual gating, and decreases the time necessary to analyze large datasets. PMID:24382714

  6. High-throughput neuroimaging-genetics computational infrastructure.

    Science.gov (United States)

    Dinov, Ivo D; Petrosyan, Petros; Liu, Zhizhong; Eggert, Paul; Hobel, Sam; Vespa, Paul; Woo Moon, Seok; Van Horn, John D; Franco, Joseph; Toga, Arthur W

    2014-01-01

    Many contemporary neuroscientific investigations face significant challenges in terms of data management, computational processing, data mining, and results interpretation. These four pillars define the core infrastructure necessary to plan, organize, orchestrate, validate, and disseminate novel scientific methods, computational resources, and translational healthcare findings. Data management includes protocols for data acquisition, archival, query, transfer, retrieval, and aggregation. Computational processing involves the necessary software, hardware, and networking infrastructure required to handle large amounts of heterogeneous neuroimaging, genetics, clinical, and phenotypic data and meta-data. Data mining refers to the process of automatically extracting data features, characteristics and associations, which are not readily visible by human exploration of the raw dataset. Result interpretation includes scientific visualization, community validation of findings and reproducible findings. In this manuscript we describe the novel high-throughput neuroimaging-genetics computational infrastructure available at the Institute for Neuroimaging and Informatics (INI) and the Laboratory of Neuro Imaging (LONI) at University of Southern California (USC). INI and LONI include ultra-high-field and standard-field MRI brain scanners along with an imaging-genetics database for storing the complete provenance of the raw and derived data and meta-data. In addition, the institute provides a large number of software tools for image and shape analysis, mathematical modeling, genomic sequence processing, and scientific visualization. A unique feature of this architecture is the Pipeline environment, which integrates the data management, processing, transfer, and visualization. Through its client-server architecture, the Pipeline environment provides a graphical user interface for designing, executing, monitoring validating, and disseminating of complex protocols that utilize

  7. Towards high throughput screening of electrochemical stability of battery electrolytes

    Science.gov (United States)

    Borodin, Oleg; Olguin, Marco; Spear, Carrie E.; Leiter, Kenneth W.; Knap, Jaroslaw

    2015-09-01

    High throughput screening of solvents and additives with potential applications in lithium batteries is reported. The initial test set is limited to carbonate and phosphate-based compounds and focused on their electrochemical properties. Solvent stability towards first and second reduction and oxidation is reported from density functional theory (DFT) calculations performed on isolated solvents surrounded by implicit solvent. The reorganization energy is estimated from the difference between vertical and adiabatic redox energies and found to be especially important for the accurate prediction of reduction stability. A majority of tested compounds had the second reduction potential higher than the first reduction potential indicating that the second reduction reaction might play an important role in the passivation layer formation. Similarly, the second oxidation potential was smaller for a significant subset of tested molecules than the first oxidation potential. A number of potential sources of errors introduced during screening of the electrolyte electrochemical properties were examined. The formation of lithium fluoride during reduction of semifluorinated solvents such as fluoroethylene carbonate and the H-transfer during oxidation of solvents were found to shift the electrochemical potential by 1.5-2 V and could shrink the electrochemical stability window by as much as 3.5 V when such reactions are included in the screening procedure. The initial oxidation reaction of ethylene carbonate and dimethyl carbonate at the surface of the completely de-lithiated LiNi0.5Mn1.5O4 high voltage spinel cathode was examined using DFT. Depending on the molecular orientation at the cathode surface, a carbonate molecule either exhibited deprotonation or was found bound to the transition metal via its carbonyl oxygen.

  8. High-throughput microfluidic line scan imaging for cytological characterization

    Science.gov (United States)

    Hutcheson, Joshua A.; Powless, Amy J.; Majid, Aneeka A.; Claycomb, Adair; Fritsch, Ingrid; Balachandran, Kartik; Muldoon, Timothy J.

    2015-03-01

    Imaging cells in a microfluidic chamber with an area scan camera is difficult due to motion blur and data loss during frame readout causing discontinuity of data acquisition as cells move at relatively high speeds through the chamber. We have developed a method to continuously acquire high-resolution images of cells in motion through a microfluidics chamber using a high-speed line scan camera. The sensor acquires images in a line-by-line fashion in order to continuously image moving objects without motion blur. The optical setup comprises an epi-illuminated microscope with a 40X oil immersion, 1.4 NA objective and a 150 mm tube lens focused on a microfluidic channel. Samples containing suspended cells fluorescently stained with 0.01% (w/v) proflavine in saline are introduced into the microfluidics chamber via a syringe pump; illumination is provided by a blue LED (455 nm). Images were taken of samples at the focal plane using an ELiiXA+ 8k/4k monochrome line-scan camera at a line rate of up to 40 kHz. The system's line rate and fluid velocity are tightly controlled to reduce image distortion and are validated using fluorescent microspheres. Image acquisition was controlled via MATLAB's Image Acquisition toolbox. Data sets comprise discrete images of every detectable cell which may be subsequently mined for morphological statistics and definable features by a custom texture analysis algorithm. This high-throughput screening method, comparable to cell counting by flow cytometry, provided efficient examination including counting, classification, and differentiation of saliva, blood, and cultured human cancer cells.

  9. Yeast-Based High-Throughput Screens to Identify Novel Compounds Active against Brugia malayi.

    Directory of Open Access Journals (Sweden)

    Elizabeth Bilsland

    2016-01-01

    that we can extend our efforts to the construction of strains with further filarial targets (in particular for those species that cannot be cultivated in the laboratory, and perform high-throughput drug screens to identify specific inhibitors of the parasite enzymes. By establishing synergistic collaborations with researchers working directly on different parasitic worms, we aim to aid antihelmintic drug development for both human and veterinary infections.

  10. Multipurpose high-throughput filtering microarrays (HiFi) for DNA and protein assays.

    Science.gov (United States)

    Le Goff, Gaelle C; Desmet, Cloé; Brès, Jean-Charles; Rigal, Dominique; Blum, Loïc J; Marquette, Christophe A

    2010-12-15

    We are reporting here a low cost colorimetric device for high-throughput multiplexed blood group genotyping and allergy diagnosis, displayed as an automated 96-well microtiter plate format. A porous polymeric membrane sealed at the bottom of each well accounts for the sensor support. For each sensing unit, a 6×6 matrix of specific probes is spotted on the external surface of the membrane resulting in 5 mm(2) microarrays. Thanks to the membrane porosity, reagents dispensed into the well can be eliminated through vacuum soaking. This unusual design drastically reduces the assay background signal. The system was first validated on robust models composed of either two complementary oligonucleotide sequences or one allergen/specific rabbit IgG pair. The quality of both oligonucleotide and protein immobilisation on the membrane substrate was then demonstrated together with the capacity to use the arrayed biomolecules as probes for the quantitative detection of specific targets (respectively complementary oligonucleotide and specific antibody). On the basis of these good results, two multiplex assays were developed for crude biological samples testing, focussing on two human in vitro diagnosis applications: a hybridisation assay for multiplex blood group genotyping and a multiparametric immunoassay for allergy diagnosis. In both cases, the transfer to crude biological samples testing was successful i.e. high signal to noise ratio of the stained membranes, reproducibility and good correlation with results obtained using routine testing procedures. PMID:20663657

  11. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications

    Energy Technology Data Exchange (ETDEWEB)

    Xu Feng; Wu Jinhui; Wang Shuqi; Gurkan, Umut Atakan; Demirci, Utkan [Department of Medicine, Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Durmus, Naside Gozde, E-mail: udemirci@rics.bwh.harvard.edu [School of Engineering and Division of Biology and Medicine, Brown University, Providence, RI (United States)

    2011-09-15

    Screening for effective therapeutic agents from millions of drug candidates is costly, time consuming, and often faces concerns due to the extensive use of animals. To improve cost effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems has facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell-based drug-screening models which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell-based drug-screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds great potential to provide repeatable 3D cell-based constructs with high temporal, spatial control and versatility.

  12. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications

    International Nuclear Information System (INIS)

    Screening for effective therapeutic agents from millions of drug candidates is costly, time consuming, and often faces concerns due to the extensive use of animals. To improve cost effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems has facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell-based drug-screening models which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell-based drug-screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds great potential to provide repeatable 3D cell-based constructs with high temporal, spatial control and versatility.

  13. High-throughput high-resolution microscopic slide digitization for pathology

    Science.gov (United States)

    Beckstead, Jeffrey A.; Dawson, Robert; Feineigle, Patricia A.; Gilbertson, John, Jr.; Hauser, Christopher; McVaugh, Timothy; Palmieri, Francesco; Sholehvar, David; Wetzel, Arthur

    2003-07-01

    Pathologist study tissue samples to determine the presence and nature of diseases. Morphology is a critical component to identifying cellular and tissue structures and the functional changes produced by disease. Technical advances in the field of pathology have primarily been in the areas of tissue preparation and the staining process that enhances the pathologist's identification of these structures. Pathologist's primary tool for diagnosis has remained the same for over a century--the optical microscope. Radiology has made tremendous advances with digitization and the ease of exchange and image analysis that comes with digital data and today's computer technology. Pathology is primed to enter the digital era as well. The major hurdles to wide spread acceptance of conversion to digital pathological imaging have been image resolution, scanner throughput, image file size and image display rates. InterScope Technologies, Inc. has developed a high-throughput, high-resolution microscopic slide digitization system that is well suited for pathological examination and diagnosis. This system is fully automated, captures at 0.3 μm per pixel, and can capture a slide in under 3 minutes, and has the potential to capture much faster. This paper will present the technical challenges associated with digital pathological imaging and how InterScope has addressed these challenges in the development of their digital scanner.

  14. Commentary: Roles for Pathologists in a High-throughput Image Analysis Team.

    Science.gov (United States)

    Aeffner, Famke; Wilson, Kristin; Bolon, Brad; Kanaly, Suzanne; Mahrt, Charles R; Rudmann, Dan; Charles, Elaine; Young, G David

    2016-08-01

    Historically, pathologists perform manual evaluation of H&E- or immunohistochemically-stained slides, which can be subjective, inconsistent, and, at best, semiquantitative. As the complexity of staining and demand for increased precision of manual evaluation increase, the pathologist's assessment will include automated analyses (i.e., "digital pathology") to increase the accuracy, efficiency, and speed of diagnosis and hypothesis testing and as an important biomedical research and diagnostic tool. This commentary introduces the many roles for pathologists in designing and conducting high-throughput digital image analysis. Pathology review is central to the entire course of a digital pathology study, including experimental design, sample quality verification, specimen annotation, analytical algorithm development, and report preparation. The pathologist performs these roles by reviewing work undertaken by technicians and scientists with training and expertise in image analysis instruments and software. These roles require regular, face-to-face interactions between team members and the lead pathologist. Traditional pathology training is suitable preparation for entry-level participation on image analysis teams. The future of pathology is very exciting, with the expanding utilization of digital image analysis set to expand pathology roles in research and drug development with increasing and new career opportunities for pathologists. PMID:27343178

  15. High-throughput mass finger printing and Lewis blood group assignment of human milk oligosaccharides.

    Science.gov (United States)

    Blank, Dennis; Gebhardt, Sabine; Maass, Kai; Lochnit, Günter; Dotz, Viktoria; Blank, Jennifer; Geyer, Rudolf; Kunz, Clemens

    2011-11-01

    The structural diversity of human milk oligosaccharides (HMOs) strongly depends on the Lewis (Le) blood group status of the donor which allows a classification of these glycans into three different groups. Starting from 50 μL of human milk, a new high-throughput, standardized, and widely automated mass spectrometric approach has been established which can be used for correlation of HMO structures with the respective Lewis blood groups on the basis of mass profiles of the entire mixture of glycans together with selected fragment ion spectra. For this purpose, the relative abundance of diagnostically relevant compositional species, such as Hex(2)Fuc(2) and Hex(3)HexNAc(1)Fuc(2), as well as the relative intensities of characteristic fragment ions obtained thereof are of key importance. For each Lewis blood group, i.e., Le(a-b+), Le(a+b-), and Le(a-b-), specific mass profile and fragment ion patterns could be thus verified. The described statistically proven classification of the derived glycan patterns may be a valuable tool for analysis and comparison of large sets of milk samples in metabolic studies. Furthermore, the outlined protocol may be used for rapid screening in clinical studies and quality control of milk samples donated to milk banks. PMID:21898157

  16. Caenorhabditis elegans MPP+ model of Parkinson's disease for high-throughput drug screenings.

    Science.gov (United States)

    Braungart, Evelyn; Gerlach, Manfred; Riederer, Peter; Baumeister, Ralf; Hoener, Marius C

    2004-01-01

    The neurotoxin MPTP and its active metabolite MPP+ cause Parkinson's disease (PD)-like symptoms in vertebrates by selectively destroying dopaminergic neurons in the substantia nigra. MPTP/MPP+ models have been established in rodents to screen for pharmacologically active compounds. In addition to being costly and time consuming, these animal models are not suitable for large scale testings using compound libraries. We present a novel MPP+-based model for high-throughput screenings using the nematode Caenorhabditis elegans. Incubation of C. elegans with MPTP or its active metabolite MPP+ resulted in strong symptomatic defects including reduced mobility and increased lethality, and is correlated with a specific degeneration of the dopaminergic neurons. The phenotypic consequences of MPTP/MPP+ treatments were recorded using automated hardware and software for quantification. Incubation of C. elegans with a variety of pharmacologically active components used in PD treatment reduced the MPP+-induced defects. Our data suggest that the C. elegans MPTP/MPP+ model can be used for the quantitative evaluation of anti-PD drugs. PMID:16908987

  17. High-throughput protein crystallization on the World Community Grid and the GPU

    International Nuclear Information System (INIS)

    We have developed CPU and GPU versions of an automated image analysis and classification system for protein crystallization trial images from the Hauptman Woodward Institute's High-Throughput Screening lab. The analysis step computes 12,375 numerical features per image. Using these features, we have trained a classifier that distinguishes 11 different crystallization outcomes, recognizing 80% of all crystals, 94% of clear drops, 94% of precipitates. The computing requirements for this analysis system are large. The complete HWI archive of 120 million images is being processed by the donated CPU cycles on World Community Grid, with a GPU phase launching in early 2012. The main computational burden of the analysis is the measure of textural (GLCM) features within the image at multiple neighbourhoods, distances, and at multiple greyscale intensity resolutions. CPU runtime averages 4,092 seconds (single threaded) on an Intel Xeon, but only 65 seconds on an NVIDIA Tesla C2050. We report on the process of adapting the C++ code to OpenCL, optimized for multiple platforms.

  18. High-throughput peptide mass fingerprinting and protein macroarray analysis using chemical printing strategies

    International Nuclear Information System (INIS)

    We describe a 'chemical printer' that uses piezoelectric pulsing for rapid and accurate microdispensing of picolitre volumes of fluid for proteomic analysis of 'protein macroarrays'. Unlike positive transfer and pin transfer systems, our printer dispenses fluid in a non-contact process that ensures that the fluid source cannot be contaminated by substrate during a printing event. We demonstrate automated delivery of enzyme and matrix solutions for on-membrane protein digestion and subsequent peptide mass fingerprinting (pmf) analysis directly from the membrane surface using matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). This approach bypasses the more commonly used multi-step procedures, thereby permitting a more rapid procedure for protein identification. We also highlight the advantage of printing different chemistries onto an individual protein spot for multiple microscale analyses. This ability is particularly useful when detailed characterisation of rare and valuable sample is required. Using a combination of PNGase F and trypsin we have mapped sites of N-glycosylation using on-membrane digestion strategies. We also demonstrate the ability to print multiple serum samples in a micro-ELISA format and rapidly screen a protein macroarray of human blood plasma for pathogen-derived antigens. We anticipate that the 'chemical printer' will be a major component of proteomic platforms for high-throughput protein identification and characterisation with widespread applications in biomedical and diagnostic discovery

  19. High-throughput single-molecule force spectroscopy for membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bosshart, Patrick D; Casagrande, Fabio; Frederix, Patrick L T M; Engel, Andreas; Fotiadis, Dimitrios [M E Mueller Institute for Structural Biology, Biozentrum of the University of Basel, CH-4056 Basel (Switzerland); Ratera, Merce; Palacin, Manuel [Institute for Research in Biomedicine, Barcelona Science Park, Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona and Centro de Investigacion Biomedica en Red de Enfermedades Raras, E-08028 Barcelona (Spain); Bippes, Christian A; Mueller, Daniel J [BioTechnology Center, Technical University, Tatzberg 47, D-01307 Dresden (Germany)], E-mail: andreas.engel@unibas.ch, E-mail: dimitrios.fotiadis@mci.unibe.ch

    2008-09-24

    Atomic force microscopy-based single-molecule force spectroscopy (SMFS) is a powerful tool for studying the mechanical properties, intermolecular and intramolecular interactions, unfolding pathways, and energy landscapes of membrane proteins. One limiting factor for the large-scale applicability of SMFS on membrane proteins is its low efficiency in data acquisition. We have developed a semi-automated high-throughput SMFS (HT-SMFS) procedure for efficient data acquisition. In addition, we present a coarse filter to efficiently extract protein unfolding events from large data sets. The HT-SMFS procedure and the coarse filter were validated using the proton pump bacteriorhodopsin (BR) from Halobacterium salinarum and the L-arginine/agmatine antiporter AdiC from the bacterium Escherichia coli. To screen for molecular interactions between AdiC and its substrates, we recorded data sets in the absence and in the presence of L-arginine, D-arginine, and agmatine. Altogether {approx}400 000 force-distance curves were recorded. Application of coarse filtering to this wealth of data yielded six data sets with {approx}200 (AdiC) and {approx}400 (BR) force-distance spectra in each. Importantly, the raw data for most of these data sets were acquired in one to two days, opening new perspectives for HT-SMFS applications.

  20. High-throughput microfluidics and ultrafast optics for in vivo compound/genetic discoveries

    Science.gov (United States)

    Rohde, Christopher B.; Gilleland, Cody; Samara, Chrysanthi; Yanik, M. Fatih

    2010-02-01

    Therapeutic treatment of spinal cord injuries, brain trauma, stroke, and neurodegenerative diseases will greatly benefit from the discovery of compounds that enhance neuronal regeneration following injury. We previously demonstrated the use of femtosecond laser microsurgery to induce precise and reproducible neural injury in C. elegans, and have developed microfluidic on-chip technologies that allow automated and rapid manipulation, orientation, and non-invasive immobilization of animals for sub-cellular resolution two-photon imaging and femtosecond-laser nanosurgery. These technologies include microfluidic whole-animal sorters, as well as integrated chips containing multiple addressable incubation chambers for exposure of individual animals to compounds and sub-cellular time-lapse imaging of hundreds of animals on a single chip. Our technologies can be used for a variety of highly sophisticated in vivo high-throughput compound and genetic screens, and we performed the first in vivo screen in C. elegans for compounds enhancing neuronal regrowth following femtosecond microsurgery. The compounds identified interact with a wide variety of cellular targets, such as cytoskeletal components, vesicle trafficking, and protein kinases that enhance neuronal regeneration.

  1. Reconciling Phylogeny and Function During Plant Litter Decomposition by High-Throughput Functional Metagenomics

    Science.gov (United States)

    Nyyssonen, M.; Weihe, C.; Goulden, M.; Treseder, K. K.; Martiny, J.; Martiny, A.; Allison, S. D.; Brodie, E. L.

    2012-12-01

    Integrating information on microbial diversity and functionality with ecosystem processes may be critical to predicting how ecosystems respond to environmental change. While theoretical models can be used to link microbial processes to environmental responses and rates, accurate predictions of ecosystem functioning would benefit from detailed information on microbial community composition and function. In this study, our aim was to identify functional traits involved in plant litter decomposition, a model process for carbon cycling, from decomposing plant litter. The overall goal is then to link these traits with individual microbial taxa and use this information to build predictive trait-based models of ecosystem responses to global change. In order to identify activities involved in plant litter decomposition we used automated high-throughput assays for functional screening of metagenomic fosmid libraries prepared from decomposing plant litter. Litter was collected over 15 month period from a global change field experiment undergoing rainfall and nitrogen manipulations. We identified over 600 cellulose, hemicellulose, chitin and starch hydrolyzing clones following screening of over 300,000 clones. The frequency of positive clones was ten times lower during dry season but no significant differences in hit rates were observed between different treatments. The positive clones were shotgun sequenced on the Illumina sequencing platform and the identified hydrolytic genes were shown to represent variety bacterial taxonomic groups including Proteobacteria and Bacteroidetes.

  2. Oufti: an integrated software package for high-accuracy, high-throughput quantitative microscopy analysis.

    Science.gov (United States)

    Paintdakhi, Ahmad; Parry, Bradley; Campos, Manuel; Irnov, Irnov; Elf, Johan; Surovtsev, Ivan; Jacobs-Wagner, Christine

    2016-02-01

    With the realization that bacteria display phenotypic variability among cells and exhibit complex subcellular organization critical for cellular function and behavior, microscopy has re-emerged as a primary tool in bacterial research during the last decade. However, the bottleneck in today's single-cell studies is quantitative image analysis of cells and fluorescent signals. Here, we address current limitations through the development of Oufti, a stand-alone, open-source software package for automated measurements of microbial cells and fluorescence signals from microscopy images. Oufti provides computational solutions for tracking touching cells in confluent samples, handles various cell morphologies, offers algorithms for quantitative analysis of both diffraction and non-diffraction-limited fluorescence signals and is scalable for high-throughput analysis of massive datasets, all with subpixel precision. All functionalities are integrated in a single package. The graphical user interface, which includes interactive modules for segmentation, image analysis and post-processing analysis, makes the software broadly accessible to users irrespective of their computational skills. PMID:26538279

  3. Recent advances in high-throughput molecular marker identification for superficial and invasive bladder cancers

    DEFF Research Database (Denmark)

    Andersen, Lars Dyrskjøt; Zieger, Karsten; Ørntoft, Torben Falck

    2007-01-01

    individually contributed to the management of the disease. However, the development of high-throughput techniques for simultaneous assessment of a large number of markers has allowed classification of tumors into clinically relevant molecular subgroups beyond those possible by pathological classification. Here......, we review the recent advances in high-throughput molecular marker identification for superficial and invasive bladder cancers....

  4. Optimization of high-throughput nanomaterial developmental toxicity testing in zebrafish embryos

    Science.gov (United States)

    Nanomaterial (NM) developmental toxicities are largely unknown. With an extensive variety of NMs available, high-throughput screening methods may be of value for initial characterization of potential hazard. We optimized a zebrafish embryo test as an in vivo high-throughput assay...

  5. High throughput determination of cleaning solutions to prevent the fouling of an anion exchange resin.

    Science.gov (United States)

    Elich, Thomas; Iskra, Timothy; Daniels, William; Morrison, Christopher J

    2016-06-01

    Effective cleaning of chromatography resin is required to prevent fouling and maximize the number of processing cycles which can be achieved. Optimization of resin cleaning procedures, however, can lead to prohibitive material, labor, and time requirements, even when using milliliter scale chromatography columns. In this work, high throughput (HT) techniques were used to evaluate cleaning agents for a monoclonal antibody (mAb) polishing step utilizing Fractogel(®) EMD TMAE HiCap (M) anion exchange (AEX) resin. For this particular mAb feed stream, the AEX resin could not be fully restored with traditional NaCl and NaOH cleaning solutions, resulting in a loss of impurity capacity with resin cycling. Miniaturized microliter scale chromatography columns and an automated liquid handling system (LHS) were employed to evaluate various experimental cleaning conditions. Cleaning agents were monitored for their ability to maintain resin impurity capacity over multiple processing cycles by analyzing the flowthrough material for turbidity and high molecular weight (HMW) content. HT experiments indicated that a 167 mM acetic acid strip solution followed by a 0.5 M NaOH, 2 M NaCl sanitization provided approximately 90% cleaning improvement over solutions containing solely NaCl and/or NaOH. Results from the microliter scale HT experiments were confirmed in subsequent evaluations at the milliliter scale. These results identify cleaning agents which may restore resin performance for applications involving fouling species in ion exchange systems. In addition, this work demonstrates the use of miniaturized columns operated with an automated LHS for HT evaluation of chromatographic cleaning procedures, effectively decreasing material requirements while simultaneously increasing throughput. Biotechnol. Bioeng. 2016;113: 1251-1259. © 2015 Wiley Periodicals, Inc. PMID:26552005

  6. High-throughput metal susceptibility testing of microbial biofilms

    Directory of Open Access Journals (Sweden)

    Turner Raymond J

    2005-10-01

    Full Text Available Abstract Background Microbial biofilms exist all over the natural world, a distribution that is paralleled by metal cations and oxyanions. Despite this reality, very few studies have examined how biofilms withstand exposure to these toxic compounds. This article describes a batch culture technique for biofilm and planktonic cell metal susceptibility testing using the MBEC assay. This device is compatible with standard 96-well microtiter plate technology. As part of this method, a two part, metal specific neutralization protocol is summarized. This procedure minimizes residual biological toxicity arising from the carry-over of metals from challenge to recovery media. Neutralization consists of treating cultures with a chemical compound known to react with or to chelate the metal. Treated cultures are plated onto rich agar to allow metal complexes to diffuse into the recovery medium while bacteria remain on top to recover. Two difficulties associated with metal susceptibility testing were the focus of two applications of this technique. First, assays were calibrated to allow comparisons of the susceptibility of different organisms to metals. Second, the effects of exposure time and growth medium composition on the susceptibility of E. coli JM109 biofilms to metals were investigated. Results This high-throughput method generated 96-statistically equivalent biofilms in a single device and thus allowed for comparative and combinatorial experiments of media, microbial strains, exposure times and metals. By adjusting growth conditions, it was possible to examine biofilms of different microorganisms that had similar cell densities. In one example, Pseudomonas aeruginosa ATCC 27853 was up to 80 times more resistant to heavy metalloid oxyanions than Escherichia coli TG1. Further, biofilms were up to 133 times more tolerant to tellurite (TeO32- than corresponding planktonic cultures. Regardless of the growth medium, the tolerance of biofilm and planktonic

  7. Emerging high throughput analyses of cyanobacterial toxins and toxic cyanobacteria.

    Science.gov (United States)

    Sivonen, Kaarina

    2008-01-01

    The common occurrence of toxic cyanobacteria causes problems for health of animals and human beings. More research and good monitoring systems are needed to protect water users. It is important to have rapid, reliable and accurate analysis i.e. high throughput methods to identify the toxins as well as toxin producers in the environment. Excellent methods, such as ELISA already exist to analyse cyanobacterial hepatotoxins and saxitoxins, and PPIA for microcystins and nodularins. The LC/MS method can be fast in identifying the toxicants in the samples. Further development of this area should resolve the problems with sampling and sample preparation, which still are the bottlenecks of rapid analyses. In addition, the availability of reliable reference materials and standards should be resolved. Molecular detection methods are now routine in clinical and criminal laboratories and may also become important in environmental diagnostics. One prerequisite for the development of molecular analysis is that pure cultures of the producer organisms are available for identification of the biosynthetic genes responsible for toxin production and for proper testing of the diagnostic methods. Good methods are already available for the microcystin and nodularin-producing cyanobacteria such as conventional PCR, quantitative real-time PCR and microarrays/DNA chips. The DNA-chip technology offers an attractive monitoring system for toxic and non-toxic cyanobacteria. Only with these new technologies (PCR + DNA-chips) will we be able to study toxic cyanobacteria populations in situ and the effects of environmental factors on the occurrence and proliferation of especially toxic cyanobacteria. This is likely to yield important information for mitigation purposes. Further development of these methods should include all cyanobacterial biodiversity, including all toxin producers and primers/probes to detect producers of neurotoxins, cylindrospermopsins etc. (genes are unknown). The on

  8. Advanced high throughput MOX fuel fabrication technology and sustainable development

    International Nuclear Information System (INIS)

    The MELOX plant in the south of France together with the La Hague reprocessing plant, are part of the two industrial facilities in charge of closing the nuclear fuel cycle in France. Started up in 1995, MELOX has since accumulated a solid know-how in recycling plutonium recovered from spent uranium fuel into MOX: a fuel blend comprised of both uranium and plutonium oxides. Converting recovered Pu into a proliferation-resistant material that can readily be used to power a civil nuclear reactor, MOX fabrication offers a sustainable solution to safely take advantage of the plutonium's high energy content. Being the first large-capacity industrial facility dedicated to MOX fuel fabrication, MELOX distinguishes itself from the first generation MOX plants with high capacity (around 200 tHM versus around 40 tHM) and several unique operational features designed to improve productivity, reliability and flexibility while maintaining high safety standards. Providing an exemplary reference for high throughput MOX fabrication with 1,000 tHM produced since start-up, the unique process and technologies implemented at MELOX are currently inspiring other MOX plant construction projects (in Japan with the J-MOX plant, in the US and in Russia as part of the weapon-grade plutonium inventory reduction). Spurred by the growing international demand, MELOX has embarked upon an ambitious production development and diversification plan. Starting from an annual level of 100 tons of heavy metal (tHM), MELOX demonstrated production capacity is continuously increasing: MELOX is now aiming for a minimum of 140 tHM by the end of 2005, with the ultimate ambition of reaching the full capacity of the plant (around 200 tHM) in the near future. With regards to its activity, MELOX also remains deeply committed to sustainable development in a consolidated involvement within AREVA group. The French minister of Industry, on August 26th 2005, acknowledged the benefits of MOX fuel production at MELOX: 'In

  9. High Throughput Multispectral Image Processing with Applications in Food Science

    OpenAIRE

    Tsakanikas, Panagiotis; Pavlidis, Dimitris; Nychas, George-John

    2015-01-01

    Recently, machine vision is gaining attention in food science as well as in food industry concerning food quality assessment and monitoring. Into the framework of implementation of Process Analytical Technology (PAT) in the food industry, image processing can be used not only in estimation and even prediction of food quality but also in detection of adulteration. Towards these applications on food science, we present here a novel methodology for automated image analysis of several kinds of fo...

  10. Large Scale Library Generation for High Throughput Sequencing

    OpenAIRE

    Borgström, Erik; Lundin, Sverker; Lundeberg, Joakim

    2011-01-01

    Background Large efforts have recently been made to automate the sample preparation protocols for massively parallel sequencing in order to match the increasing instrument throughput. Still, the size selection through agarose gel electrophoresis separation is a labor-intensive bottleneck of these protocols. Methodology/Principal Findings In this study a method for automatic library preparation and size selection on a liquid handling robot is presented. The method utilizes selective precipitat...

  11. High-throughput measurements of thermochromic behavior in V(1-x)Nb(x)O(2) combinatorial thin film libraries.

    Science.gov (United States)

    Barron, S C; Gorham, J M; Patel, M P; Green, M L

    2014-10-13

    We describe a high-throughput characterization of near-infrared thermochromism in V1-xNbxO2 combinatorial thin film libraries. The oxide thin film library was prepared with a VO2 crystal structure and a continuous gradient in composition with Nb concentrations in the range of less than 1% to 45%. The thermochromic phase transition from monoclinic to tetragonal was characterized by the accompanying change in near-infrared reflectance. With increasing Nb substitution, the transition temperature was depressed from 65 to 35 °C, as desirable for smart window applications. However, the magnitude of the reflectance change across the thermochromic transition was also reduced with increasing Nb film content. Data collection, handling, and analysis supporting thermochromic characterization were fully automated to achieve high throughput. Using this system, in 14 h, temperature-dependent infrared reflectances were measured at 165 arbitrary locations on a thin film combinatorial library; these measurements were analyzed for thermochromic transitions in minutes. PMID:25180465

  12. High-throughput bioaffinity mass spectrometry for screening and identification of designer anabolic steroids in dietary supplements.

    Science.gov (United States)

    Aqai, Payam; Cevik, Ebru; Gerssen, Arjen; Haasnoot, Willem; Nielen, Michel W F

    2013-03-19

    A generic high-throughput bioaffinity liquid chromatography-mass spectrometry (BioMS) approach was developed and applied for the screening and identification of known and unknown recombinant human sex hormone-binding globulin (rhSHBG)-binding designer steroids in dietary supplements. For screening, a semi-automated competitive inhibition binding assay was combined with fast ultrahigh-performance-LC-electrospray ionization-triple-quadrupole-MS (UPLC-QqQ-MS). 17β-Testosterone-D3 was used as the stable isotope label of which the binding to rhSHBG-coated paramagnetic microbeads was inhibited by any other binding (designer) steroid. The assay was performed in a 96-well plate and combined with the fast LC-MS, 96 measurements could be performed within 4 h. The concentration-dependent inhibition of the label by steroids in buffer and dietary supplements was demonstrated. Following an adjusted bioaffinity isolation procedure, suspect extracts were injected into a chip-UPLC(NanoTile)-Q-time-of-flight-MS system for full-scan accurate mass identification. Next to known steroids, 1-testosterone was identified in three of the supplements studied and the designer steroid tetrahydrogestrinone was identified in a spiked supplement. The generic steroid-binding assay can be used for high-throughput screening of androgens, estrogens, and gestagens in dietary supplements to fight doping. When combined with chip-UPLC-MS, it is a powerful tool for early warning of unknown emerging rhSHBG bioactive designer steroids in dietary supplements. PMID:23419079

  13. High-throughput phenotypic profiling of gene-environment interactions by quantitative growth curve analysis in Saccharomyces cerevisiae.

    Science.gov (United States)

    Weiss, Andrew; Delproposto, James; Giroux, Craig N

    2004-04-01

    Cell-based assays are widely used in high-throughput screening to determine the effects of toxicants and drugs on their biological targets. To enable a functional genomics modeling of gene-environment interactions, quantitative assays are required both for gene expression and for the phenotypic responses to environmental challenge. To address this need, we describe an automated high-throughput methodology that provides phenotypic profiling of the cellular responses to environmental stress in Saccharomyces cerevisiae. Standardized assay conditions enable the use of a single metric value to quantify yeast microculture growth curves. This assay format allows precise control of both genetic and environmental determinants of the cellular responses to oxidative stress, a common mechanism of environmental insult. These yeast-cell-based assays are validated with hydrogen peroxide, a simple direct-acting oxidant. Phenotypic profiling of the oxidative stress response of a yap1 mutant strain demonstrates the mechanistic analysis of genetic susceptibility to oxidative stress. As a proof of concept for analysis of more complex gene-environment interactions, we describe a combinatorial assay design for phenotypic profiling of the cellular responses to tert-butyl hydroperoxide, a complex oxidant that is actively metabolized by its target cells. Thus, the yeast microculture assay format supports comprehensive applications in toxicogenomics. PMID:15033507

  14. Pre-amplification in the context of high-throughput qPCR gene expression experiment

    OpenAIRE

    Korenková, Vlasta; Scott, Justin; Novosadová, Vendula; Jindřichová, Marie; Langerová, Lucie; Švec, David; Šídová, Monika; Sjöback, Robert

    2015-01-01

    Background With the introduction of the first high-throughput qPCR instrument on the market it became possible to perform thousands of reactions in a single run compared to the previous hundreds. In the high-throughput reaction, only limited volumes of highly concentrated cDNA or DNA samples can be added. This necessity can be solved by pre-amplification, which became a part of the high-throughput experimental workflow. Here, we focused our attention on the limits of the specific target pre-a...

  15. High-throughput detection method for influenza virus.

    Science.gov (United States)

    Kumar, Pawan; Bartoszek, Allison E; Moran, Thomas M; Gorski, Jack; Bhattacharyya, Sanjib; Navidad, Jose F; Thakar, Monica S; Malarkannan, Subramaniam

    2012-01-01

    Influenza virus is a respiratory pathogen that causes a high degree of morbidity and mortality every year in multiple parts of the world. Therefore, precise diagnosis of the infecting strain and rapid high-throughput screening of vast numbers of clinical samples is paramount to control the spread of pandemic infections. Current clinical diagnoses of influenza infections are based on serologic testing, polymerase chain reaction, direct specimen immunofluorescence and cell culture (1,2). Here, we report the development of a novel diagnostic technique used to detect live influenza viruses. We used the mouse-adapted human A/PR/8/34 (PR8, H1N1) virus (3) to test the efficacy of this technique using MDCK cells (4). MDCK cells (10(4) or 5 x 10(3) per well) were cultured in 96- or 384-well plates, infected with PR8 and viral proteins were detected using anti-M2 followed by an IR dye-conjugated secondary antibody. M2 (5) and hemagglutinin (1) are two major marker proteins used in many different diagnostic assays. Employing IR-dye-conjugated secondary antibodies minimized the autofluorescence associated with other fluorescent dyes. The use of anti-M2 antibody allowed us to use the antigen-specific fluorescence intensity as a direct metric of viral quantity. To enumerate the fluorescence intensity, we used the LI-COR Odyssey-based IR scanner. This system uses two channel laser-based IR detections to identify fluorophores and differentiate them from background noise. The first channel excites at 680 nm and emits at 700 nm to help quantify the background. The second channel detects fluorophores that excite at 780 nm and emit at 800 nm. Scanning of PR8-infected MDCK cells in the IR scanner indicated a viral titer-dependent bright fluorescence. A positive correlation of fluorescence intensity to virus titer starting from 10(2)-10(5) PFU could be consistently observed. Minimal but detectable positivity consistently seen with 10(2)-10(3) PFU PR8 viral titers demonstrated the high

  16. RGB picture vegetation indexes for High-Throughput Phenotyping Platforms (HTPPs)

    Science.gov (United States)

    Kefauver, Shawn C.; El-Haddad, George; Vergara-Diaz, Omar; Araus, José Luis

    2015-10-01

    Extreme and abnormal weather events, as well as the more gradual meteorological changes associated with climate change, often coincide with not only increased abiotic risks (such as increases in temperature and decreases in precipitation), but also increased biotic risks due to environmental conditions that favor the rapid spread of crop pests and diseases. Durum wheat is by extension the most cultivated cereal in the south and east margins of the Mediterranean Basin. It is of strategic importance for Mediterranean agriculture to develop new varieties of durum wheat with greater production potential, better adaptation to increasingly adverse environmental conditions (drought) and better grain quality. Similarly, maize is the top staple crop for low-income populations in Sub-Saharan Africa and is currently suffering from the appearance of new diseases, which, together with increased abiotic stresses from climate change, are challenging the very sustainability of African societies. Current constraints in field phenotyping remain a major bottleneck for future breeding advances, but RGB-based High-Throughput Phenotyping Platforms (HTPPs) have shown promise for rapidly developing both disease-resistant and weather-resilient crops. RGB cameras have proven costeffective in studies assessing the effect of abiotic stresses, but have yet to be fully exploited to phenotype disease resistance. Recent analyses of durum wheat in Spain have shown RGB vegetation indexes to outperform multispectral indexes such as NDVI consistently in disease and yield prediction. Towards HTTP development for breeding maize disease resistance, some of the same RGB picture vegetation indexes outperformed NDVI (Normalized Difference Vegetation Index), with R2 values up to 0.65, compared to 0.56 for NDVI. . Specifically, hue, a*, u*, and Green Area (GA), as produced by FIJI and BreedPix open source software, performed similar to or better than NDVI in predicting yield and disease severity conditions

  17. Advancing gut microbiome research using cultivation

    DEFF Research Database (Denmark)

    Sommer, Morten OA

    2015-01-01

    Culture-independent approaches have driven the field of microbiome research and illuminated intricate relationships between the gut microbiota and human health. However, definitively associating phenotypes to specific strains or elucidating physiological interactions is challenging for metagenomic...... approaches. Recently a number of new approaches to gut microbiota cultivation have emerged through the integration of high-throughput phylogenetic mapping and new simplified cultivation methods. These methodologies are described along with their potential use within microbiome research. Deployment of novel...

  18. Cellular toxicity (High-Throughput Cellular Assays for Modeling Toxicity in the Fish Reproductive System)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The purpose of this project is to adapt cellular in vitro assay systems of the rainbow trout pituitary, liver and ovary for high-throughput screening (HTS) of...

  19. Wide Throttling, High Throughput Hall Thruster for Science and Exploration Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to Topic S3.04 "Propulsion Systems," Busek Co. Inc. will develop a high throughput Hall effect thruster with a nominal peak power of 1-kW and wide...

  20. Wide Throttling, High Throughput Hall Thruster for Science and Exploration Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In response to Topic S3-04 "Propulsion Systems," Busek proposes to develop a high throughput Hall effect thruster with a nominal peak power of 1-kW and wide...

  1. High throughput screening of perfumery raw materials for antimicrobial properties.

    Science.gov (United States)

    Rey, Sylvain; Anziani, Pauline; Seyfried, Markus

    2014-01-01

    A microdilution protocol was developed and automated using a liquid handling station, allowing the determination of minimum inhibitory concentrations (MIC) of hydrophobic raw materials commonly used in the perfume industry (essential oils and synthetic chemicals). Tests were performed in 96-well microtiter plates against standard bacterial test strains and skin isolates involved in underarm malodor. The comparison with data previously reported in the literature indicated that the protocol was suitable, yielding MIC values that were in general agreement with those derived from manual test methods. For the majority of active test compounds, results showed a pronounced difference in susceptibility pattern between the Gram-positive and Gram-negative test strains used in this study. For a group of acyclic aliphatic aldehydes, a structure-activity relationship depending on the chain length was found. PMID:24628279

  2. Genetic profiles of cervical tumors by high-throughput sequencing for personalized medical care

    International Nuclear Information System (INIS)

    Cancer treatment is facing major evolution since the advent of targeted therapies. Building genetic profiles could predict sensitivity or resistance to these therapies and highlight disease-specific abnormalities, supporting personalized patient care. In the context of biomedical research and clinical diagnosis, our laboratory has developed an oncogenic panel comprised of 226 genes and a dedicated bioinformatic pipeline to explore somatic mutations in cervical carcinomas, using high-throughput sequencing. Twenty-nine tumors were sequenced for exons within 226 genes. The automated pipeline used includes a database and a filtration system dedicated to identifying mutations of interest and excluding false positive and germline mutations. One-hundred and seventy-six total mutational events were found among the 29 tumors. Our cervical tumor mutational landscape shows that most mutations are found in PIK3CA (E545K, E542K) and KRAS (G12D, G13D) and others in FBXW7 (R465C, R505G, R479Q). Mutations have also been found in ALK (V1149L, A1266T) and EGFR (T259M). These results showed that 48% of patients display at least one deleterious mutation in genes that have been already targeted by the Food and Drug Administration approved therapies. Considering deleterious mutations, 59% of patients could be eligible for clinical trials. Sequencing hundreds of genes in a clinical context has become feasible, in terms of time and cost. In the near future, such an analysis could be a part of a battery of examinations along the diagnosis and treatment of cancer, helping to detect sensitivity or resistance to targeted therapies and allow advancements towards personalized oncology

  3. Estimation of immune cell densities in immune cell conglomerates: an approach for high-throughput quantification.

    Directory of Open Access Journals (Sweden)

    Niels Halama

    Full Text Available BACKGROUND: Determining the correct number of positive immune cells in immunohistological sections of colorectal cancer and other tumor entities is emerging as an important clinical predictor and therapy selector for an individual patient. This task is usually obstructed by cell conglomerates of various sizes. We here show that at least in colorectal cancer the inclusion of immune cell conglomerates is indispensable for estimating reliable patient cell counts. Integrating virtual microscopy and image processing principally allows the high-throughput evaluation of complete tissue slides. METHODOLOGY/PRINCIPAL FINDINGS: For such large-scale systems we demonstrate a robust quantitative image processing algorithm for the reproducible quantification of cell conglomerates on CD3 positive T cells in colorectal cancer. While isolated cells (28 to 80 microm(2 are counted directly, the number of cells contained in a conglomerate is estimated by dividing the area of the conglomerate in thin tissues sections (< or =6 microm by the median area covered by an isolated T cell which we determined as 58 microm(2. We applied our algorithm to large numbers of CD3 positive T cell conglomerates and compared the results to cell counts obtained manually by two independent observers. While especially for high cell counts, the manual counting showed a deviation of up to 400 cells/mm(2 (41% variation, algorithm-determined T cell numbers generally lay in between the manually observed cell numbers but with perfect reproducibility. CONCLUSION: In summary, we recommend our approach as an objective and robust strategy for quantifying immune cell densities in immunohistological sections which can be directly implemented into automated full slide image processing systems.

  4. A high-throughput screening assay to identify bacterial antagonists against Fusarium verticillioides.

    Science.gov (United States)

    Figueroa-López, Alejandro Miguel; Cordero-Ramírez, Jesús Damián; Quiroz-Figueroa, Francisco Roberto; Maldonado-Mendoza, Ignacio Eduardo

    2014-07-01

    A high-throughput antagonistic assay was developed to screen for bacterial isolates capable of controlling the maize fungal phytopathogen Fusarium verticillioides. This assay combines a straightforward methodology, in which the fungus is challenged with bacterial isolates in liquid medium, with a novel approach that uses the plant lectin wheat germ agglutinin (WGA) coupled to a fluorophore (Alexa-Fluor® 488) under the commercial name of WGA, Alexa Fluor® 488 conjugate. The assay is performed in a 96-well plate format, which reduces the required laboratory space and streamlines quantitation and automation of the process, making it fast and accurate. The basis of our assay is that fungal biomass can be assessed by WGA, Alexa Fluor® 488 conjugate staining, which recognizes the chitin in the fungal cell wall and thus permits the identification of potential antagonistic bacteria that inhibit fungal growth. This principle was validated by chitin-competition binding assays against WGA, Alexa Fluor® 488 conjugate; confocal laser microscopy confirmed that the fluorescent WGA, Alexa Fluor® 488 conjugate binds to the chitin of the fungal cell wall. The majority of bacterial isolates did not bind to the WGA, Alexa Fluor® 488 conjugate. Furthermore, including washing steps significantly reduced any bacterial staining to background levels, even in the rare cases where bacterial isolates were capable of binding to WGA. Confirmatory conventional agar plate antagonistic assays were also conducted to validate our technique. We are now successfully employing this large-scale antagonistic assay as a pre-screening step for potential fungal antagonists in extensive bacteria collections (on the order of thousands of isolates). PMID:23787812

  5. Scalable High Throughput Selection From Phage-displayed Synthetic Antibody Libraries

    Science.gov (United States)

    Miersch, Shane; Li, Zhijian; Hanna, Rachel; McLaughlin, Megan E.; Hornsby, Michael; Matsuguchi, Tet; Paduch, Marcin; Sääf, Annika; Wells, Jim; Koide, Shohei; Kossiakoff, Anthony; Sidhu, Sachdev S.

    2015-01-01

    The demand for antibodies that fulfill the needs of both basic and clinical research applications is high and will dramatically increase in the future. However, it is apparent that traditional monoclonal technologies are not alone up to this task. This has led to the development of alternate methods to satisfy the demand for high quality and renewable affinity reagents to all accessible elements of the proteome. Toward this end, high throughput methods for conducting selections from phage-displayed synthetic antibody libraries have been devised for applications involving diverse antigens and optimized for rapid throughput and success. Herein, a protocol is described in detail that illustrates with video demonstration the parallel selection of Fab-phage clones from high diversity libraries against hundreds of targets using either a manual 96 channel liquid handler or automated robotics system. Using this protocol, a single user can generate hundreds of antigens, select antibodies to them in parallel and validate antibody binding within 6-8 weeks. Highlighted are: i) a viable antigen format, ii) pre-selection antigen characterization, iii) critical steps that influence the selection of specific and high affinity clones, and iv) ways of monitoring selection effectiveness and early stage antibody clone characterization. With this approach, we have obtained synthetic antibody fragments (Fabs) to many target classes including single-pass membrane receptors, secreted protein hormones, and multi-domain intracellular proteins. These fragments are readily converted to full-length antibodies and have been validated to exhibit high affinity and specificity. Further, they have been demonstrated to be functional in a variety of standard immunoassays including Western blotting, ELISA, cellular immunofluorescence, immunoprecipitation and related assays. This methodology will accelerate antibody discovery and ultimately bring us closer to realizing the goal of generating renewable

  6. A high-throughput sequencing test for diagnosing inherited bleeding, thrombotic, and platelet disorders.

    Science.gov (United States)

    Simeoni, Ilenia; Stephens, Jonathan C; Hu, Fengyuan; Deevi, Sri V V; Megy, Karyn; Bariana, Tadbir K; Lentaigne, Claire; Schulman, Sol; Sivapalaratnam, Suthesh; Vries, Minka J A; Westbury, Sarah K; Greene, Daniel; Papadia, Sofia; Alessi, Marie-Christine; Attwood, Antony P; Ballmaier, Matthias; Baynam, Gareth; Bermejo, Emilse; Bertoli, Marta; Bray, Paul F; Bury, Loredana; Cattaneo, Marco; Collins, Peter; Daugherty, Louise C; Favier, Rémi; French, Deborah L; Furie, Bruce; Gattens, Michael; Germeshausen, Manuela; Ghevaert, Cedric; Goodeve, Anne C; Guerrero, Jose A; Hampshire, Daniel J; Hart, Daniel P; Heemskerk, Johan W M; Henskens, Yvonne M C; Hill, Marian; Hogg, Nancy; Jolley, Jennifer D; Kahr, Walter H; Kelly, Anne M; Kerr, Ron; Kostadima, Myrto; Kunishima, Shinji; Lambert, Michele P; Liesner, Ri; López, José A; Mapeta, Rutendo P; Mathias, Mary; Millar, Carolyn M; Nathwani, Amit; Neerman-Arbez, Marguerite; Nurden, Alan T; Nurden, Paquita; Othman, Maha; Peerlinck, Kathelijne; Perry, David J; Poudel, Pawan; Reitsma, Pieter; Rondina, Matthew T; Smethurst, Peter A; Stevenson, William; Szkotak, Artur; Tuna, Salih; van Geet, Christel; Whitehorn, Deborah; Wilcox, David A; Zhang, Bin; Revel-Vilk, Shoshana; Gresele, Paolo; Bellissimo, Daniel B; Penkett, Christopher J; Laffan, Michael A; Mumford, Andrew D; Rendon, Augusto; Gomez, Keith; Freson, Kathleen; Ouwehand, Willem H; Turro, Ernest

    2016-06-01

    Inherited bleeding, thrombotic, and platelet disorders (BPDs) are diseases that affect ∼300 individuals per million births. With the exception of hemophilia and von Willebrand disease patients, a molecular analysis for patients with a BPD is often unavailable. Many specialized tests are usually required to reach a putative diagnosis and they are typically performed in a step-wise manner to control costs. This approach causes delays and a conclusive molecular diagnosis is often never reached, which can compromise treatment and impede rapid identification of affected relatives. To address this unmet diagnostic need, we designed a high-throughput sequencing platform targeting 63 genes relevant for BPDs. The platform can call single nucleotide variants, short insertions/deletions, and large copy number variants (though not inversions) which are subjected to automated filtering for diagnostic prioritization, resulting in an average of 5.34 candidate variants per individual. We sequenced 159 and 137 samples, respectively, from cases with and without previously known causal variants. Among the latter group, 61 cases had clinical and laboratory phenotypes indicative of a particular molecular etiology, whereas the remainder had an a priori highly uncertain etiology. All previously detected variants were recapitulated and, when the etiology was suspected but unknown or uncertain, a molecular diagnosis was reached in 56 of 61 and only 8 of 76 cases, respectively. The latter category highlights the need for further research into novel causes of BPDs. The ThromboGenomics platform thus provides an affordable DNA-based test to diagnose patients suspected of having a known inherited BPD. PMID:27084890

  7. Analysis of high-throughput sequencing and annotation strategies for phage genomes.

    Directory of Open Access Journals (Sweden)

    Matthew R Henn

    Full Text Available BACKGROUND: Bacterial viruses (phages play a critical role in shaping microbial populations as they influence both host mortality and horizontal gene transfer. As such, they have a significant impact on local and global ecosystem function and human health. Despite their importance, little is known about the genomic diversity harbored in phages, as methods to capture complete phage genomes have been hampered by the lack of knowledge about the target genomes, and difficulties in generating sufficient quantities of genomic DNA for sequencing. Of the approximately 550 phage genomes currently available in the public domain, fewer than 5% are marine phage. METHODOLOGY/PRINCIPAL FINDINGS: To advance the study of phage biology through comparative genomic approaches we used marine cyanophage as a model system. We compared DNA preparation methodologies (DNA extraction directly from either phage lysates or CsCl purified phage particles, and sequencing strategies that utilize either Sanger sequencing of a linker amplification shotgun library (LASL or of a whole genome shotgun library (WGSL, or 454 pyrosequencing methods. We demonstrate that genomic DNA sample preparation directly from a phage lysate, combined with 454 pyrosequencing, is best suited for phage genome sequencing at scale, as this method is capable of capturing complete continuous genomes with high accuracy. In addition, we describe an automated annotation informatics pipeline that delivers high-quality annotation and yields few false positives and negatives in ORF calling. CONCLUSIONS/SIGNIFICANCE: These DNA preparation, sequencing and annotation strategies enable a high-throughput approach to the burgeoning field of phage genomics.

  8. A synchronous Gigabit Ethernet protocol stack for high-throughput UDP/IP applications

    OpenAIRE

    Födisch, P.; Lange, B.; Sandmann, J; Büchner, A; Enghardt, W.; Kaever, P.

    2015-01-01

    State of the art detector readout electronics require high-throughput data acquisition (DAQ) systems. In many applications, e. g. for medical imaging, the front-end electronics are set up as separate modules in a distributed DAQ. A standardized interface between the modules and a central data unit is essential. The requirements on such an interface are varied, but demand almost always a high throughput of data. Beyond this challenge, a Gigabit Ethernet interface is predestined for the broad r...

  9. Comprehensive Analysis of RNA-Protein Interactions by High Throughput Sequencing-RNA Affinity Profiling

    OpenAIRE

    Tome, Jacob M.; Ozer, Abdullah; Pagano, John M.; Gheba, Dan; Schroth, Gary P.; Lis, John T.

    2014-01-01

    RNA-protein interactions have critical roles in gene regulation. However, high-throughput methods to quantitatively analyze these interactions are lacking. We adapted an Illumina GAIIx sequencer to make several million such measurements with a High-Throughput Sequencing – RNA Affinity Profiling (HiTS-RAP) assay. Millions of cDNAs are sequenced, bound by the E. coli replication terminator protein Tus, and transcribed in situ, whereupon Tus halts transcription leaving RNA stably attached to its...

  10. Adapting Cell-Based Assays to the High Throughput Screening Platform: Problems Encountered and Lessons Learned

    OpenAIRE

    Maddox, Clinton B; Rasmussen, Lynn; White, E. Lucile

    2008-01-01

    In recent years, cell-based phenotypic assays have emerged as an effective and robust addition to the array of assay technologies available for drug discovery in the high throughput screening arena. Previously, biochemical target-based assays have been the technology of choice. With the emergence of stem cells as a basis for a new screening technology, it is important to keep in mind the lessons that have been learned from the adaptation of existing stable cell lines onto the high throughput ...

  11. High-Throughput Electrophoretic Mobility Shift Assays for Quantitative Analysis of Molecular Binding Reactions

    OpenAIRE

    Pan, Yuchen; Duncombe, Todd A.; Kellenberger, Colleen A.; Hammond, Ming C.; Herr, Amy E.

    2014-01-01

    We describe a platform for high-throughput electrophoretic mobility shift assays (EMSAs) for identification and characterization of molecular binding reactions. A photopatterned free-standing polyacrylamide gel array comprised of 8 mm-scale polyacrylamide gel strips acts as a chassis for 96 concurrent EMSAs. The high-throughput EMSAs was employed to assess binding of the Vc2 cyclic-di-GMP riboswitch to its ligand. In optimizing the riboswitch EMSAs on the free-standing polyacrylamide gel arra...

  12. Application of high-throughput sequencing in understanding human oral microbiome related with health and disease

    OpenAIRE

    Chen, Hui; Jiang, Wen

    2014-01-01

    The oral microbiome is one of most diversity habitat in the human body and they are closely related with oral health and disease. As the technique developing, high-throughput sequencing has become a popular approach applied for oral microbial analysis. Oral bacterial profiles have been studied to explore the relationship between microbial diversity and oral diseases such as caries and periodontal disease. This review describes the application of high-throughput sequencing for characterization...

  13. Droplet microfluidic technology for single-cell high-throughput screening

    OpenAIRE

    Brouzes, Eric; Medkova, Martina; Savenelli, Neal; Marran, Dave; Twardowski, Mariusz; Hutchison, J. Brian; Rothberg, Jonathan M.; Link, Darren R; Perrimon, Norbert; Samuels, Michael L

    2009-01-01

    We present a droplet-based microfluidic technology that enables high-throughput screening of single mammalian cells. This integrated platform allows for the encapsulation of single cells and reagents in independent aqueous microdroplets (1 pL to 10 nL volumes) dispersed in an immiscible carrier oil and enables the digital manipulation of these reactors at a very high-throughput. Here, we validate a full droplet screening workflow by conducting a droplet-based cytotoxicity screen. To perform t...

  14. Evaluation of a Pooled Strategy for High-Throughput Sequencing of Cosmid Clones from Metagenomic Libraries

    OpenAIRE

    Lam, Kathy N.; Hall, Michael W.; Engel, Katja; Vey, Gregory; Cheng, Jiujun; Neufeld, Josh D.; Charles, Trevor C.

    2014-01-01

    High-throughput sequencing methods have been instrumental in the growing field of metagenomics, with technological improvements enabling greater throughput at decreased costs. Nonetheless, the economy of high-throughput sequencing cannot be fully leveraged in the subdiscipline of functional metagenomics. In this area of research, environmental DNA is typically cloned to generate large-insert libraries from which individual clones are isolated, based on specific activities of interest. Sequenc...

  15. Clinical application of high-throughput genomic technologies for treatment selection in breast cancer

    OpenAIRE

    Hansen, Aaron R.; Bedard, Philippe L.

    2013-01-01

    Large-scale collaborative initiatives using next-generation DNA sequencing and other high-throughput technologies have begun to characterize the genomic landscape of breast cancer. These landmark studies have identified infrequent driver mutations that are potential targets for therapeutic intervention with approved or investigational drug treatments, among other important discoveries. Recently, many institutions have launched molecular screening programs that apply high-throughput genomic te...

  16. Design and Application of a Novel High-throughput Screening Technique for 1-Deoxynojirimycin

    OpenAIRE

    Jiang, Peixia; Mu, Shanshan; Li, Heng; Li, Youhai; Feng, Congmin; Jin, Jian-Ming; Tang, Shuang-Yan

    2015-01-01

    High-throughput screening techniques for small molecules can find intensive applications in the studies of biosynthesis of these molecules. A sensitive, rapid and cost-effective technique that allows high-throughput screening of endogenous production of the natural iminosugar 1-deoxynojirimycin (1-DNJ), an α-glucosidase inhibitor relevant to the pharmaceutical industry, was developed in this study, based on the inhibitory effects of 1-DNJ on the activity of the β-glycosidase LacS from Sulfolo...

  17. High-throughput synthesis and characterization of BiMoVOX materials

    OpenAIRE

    Russu, Sergio; Tromp, Moniek; Tsapatsaris, Nikolaos; Beesley, Angela M.; Schroeder, Sven L M; Weller, Mark T.; Evans, John

    2007-01-01

    The high throughput synthesis and characterization of a particular family of ceramic materials, bismuth molybdenum vanadium oxides (BiMoVOX), suitable as inorganic yellow pigments and low temperature oxidation catalysts, is described. Samples, synthesized by calcination and peroxo sol-gel methods, are characterized by X-ray powder diffraction, UV-visible and XAFS spectroscopy. A combined high-throughput XRD/XAFS study of a 54 samples array, with simultaneous refinement of data of ...

  18. A cell-based high-throughput screening assay for radiation susceptibility using automated cell counting

    NARCIS (Netherlands)

    Hodzic, J.; Dingjan, I.; Maas, M.J.M.; Meulen-Muileman, I.H. van der; Menezes, R.X. de; Heukelom, S.; Verheij, M.; Gerritsen, W.R.; Geldof, A.A.; Triest, B. van; Beusechem, V.W. van

    2015-01-01

    BACKGROUND: Radiotherapy is one of the mainstays in the treatment for cancer, but its success can be limited due to inherent or acquired resistance. Mechanisms underlying radioresistance in various cancers are poorly understood and available radiosensitizers have shown only modest clinical benefit.

  19. High throughput automated chromatin immunoprecipitation as a platform for drug screening and antibody validation†,‡

    OpenAIRE

    Wu, Angela R.; Tiara L A Kawahara; Rapicavoli, Nicole A; van Riggelen, Jan; Shroff, Emelyn H.; Xu, Liwen; Felsher, Dean W.; Chang, Howard Y.; Quake, Stephen R.

    2012-01-01

    Chromatin immunoprecipitation (ChIP) is an assay for interrogating protein–DNA interactions that is increasingly being used for drug target discovery and screening applications. Currently the complexity of the protocol and the amount of hands-on time required for this assay limits its use to low throughput applications; furthermore, variability in antibody quality poses an additional obstacle in scaling up ChIP for large scale screening purposes. To address these challenges, we report HTChIP,...

  20. Automated high-throughput infusion ESI-MS with direct coupling to a microtiter plate

    Czech Academy of Sciences Publication Activity Database

    Felten, C.; Foret, František; Minarik, M.; Goetzinger, W.; Karger, B. L.

    2001-01-01

    Roč. 73, č. 7 (2001), s. 1449-1454. ISSN 0003-2700 Institutional research plan: CEZ:AV0Z4031919 Keywords : electrospray * mass-spectrometry Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.532, year: 2001

  1. Upscaling and automation of electrophysiology: toward high throughput screening in ion channel drug discovery

    DEFF Research Database (Denmark)

    Asmild, Margit; Oswald, Nicholas; Krzywkowski, Karen M;

    2003-01-01

    Effective screening of large compound libraries in ion channel drug discovery requires the development of new electrophysiological techniques with substantially increased throughputs compared to the conventional patch clamp technique. Sophion Bioscience is aiming to meet this challenge by...

  2. Integrated Automation of High-Throughput Screening and Reverse Phase Protein Array Sample Preparation

    DEFF Research Database (Denmark)

    Pedersen, Marlene Lemvig; Block, Ines; List, Markus; Christiansen, Helle; Schmidt, Steffen; Mollenhauer, Jan

    multiplexing readouts, but this has a natural limitation. High-content screening via image acquisition and analysis allows multiplexing of few parameters, but is connected to substantial time consumption and complex logistics. We report on integration of Reverse Phase Protein Arrays (RPPA)-based readouts into...

  3. NMRbot: Python scripts enable high-throughput data collection on current Bruker BioSpin NMR spectrometers.

    Science.gov (United States)

    Clos, Lawrence J; Jofre, M Fransisca; Ellinger, James J; Westler, William M; Markley, John L

    2013-06-01

    To facilitate the high-throughput acquisition of nuclear magnetic resonance (NMR) experimental data on large sets of samples, we have developed a simple and straightforward automated methodology that capitalizes on recent advances in Bruker BioSpin NMR spectrometer hardware and software. Given the daunting challenge for non-NMR experts to collect quality spectra, our goal was to increase user accessibility, provide customized functionality, and improve the consistency and reliability of resultant data. This methodology, NMRbot, is encoded in a set of scripts written in the Python programming language accessible within the Bruker BioSpin TopSpin™ software. NMRbot improves automated data acquisition and offers novel tools for use in optimizing experimental parameters on the fly. This automated procedure has been successfully implemented for investigations in metabolomics, small-molecule library profiling, and protein-ligand titrations on four Bruker BioSpin NMR spectrometers at the National Magnetic Resonance Facility at Madison. The investigators reported benefits from ease of setup, improved spectral quality, convenient customizations, and overall time savings. PMID:23678341

  4. Ultra-Fast Sample Preparation for High-Throughput Proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Ferrer, Daniel; Hixson, Kim K.; Belov, Mikhail E.; Smith, Richard D.

    2011-06-21

    Sample preparation oftentimes can be the Achilles Heel of any analytical process and in the field of proteomics, preparing samples for mass spectrometric analysis is no exception. Current goals, concerning proteomic sample preparation on a large scale, include efforts toward improving reproducibility, reducing the time of processing and ultimately the automation of the entire workflow. This chapter reviews an array of recent approaches applied to bottom-up proteomics sample preparation to reduce the processing time down from hours to minutes. The current state-of-the-art in the field uses different energy inputs like microwave, ultrasound or pressure to perform the four basic steps in sample preparation: protein extraction, denaturation, reduction and alkylation, and digestion. No single energy input for enhancement of proteome sample preparation has become the universal gold standard. Instead, a combination of different energy inputs tend to produce the best results. This chapter further describes the future trends in the field such as the hyphenation of sample preparation with downstream detection and analysis systems. Finally, a detailed protocol describing the combined use of both pressure cycling technology and ultrasonic energy inputs to hasten proteomic sample preparation is presented.

  5. Development of a high-throughput Candida albicans biofilm chip.

    Directory of Open Access Journals (Sweden)

    Anand Srinivasan

    Full Text Available We have developed a high-density microarray platform consisting of nano-biofilms of Candida albicans. A robotic microarrayer was used to print yeast cells of C. albicans encapsulated in a collagen matrix at a volume as low as 50 nL onto surface-modified microscope slides. Upon incubation, the cells grow into fully formed "nano-biofilms". The morphological and architectural complexity of these biofilms were evaluated by scanning electron and confocal scanning laser microscopy. The extent of biofilm formation was determined using a microarray scanner from changes in fluorescence intensities due to FUN 1 metabolic processing. This staining technique was also adapted for antifungal susceptibility testing, which demonstrated that, similar to regular biofilms, cells within the on-chip biofilms displayed elevated levels of resistance against antifungal agents (fluconazole and amphotericin B. Thus, results from structural analyses and antifungal susceptibility testing indicated that despite miniaturization, these biofilms display the typical phenotypic properties associated with the biofilm mode of growth. In its final format, the C. albicans biofilm chip (CaBChip is composed of 768 equivalent and spatially distinct nano-biofilms on a single slide; multiple chips can be printed and processed simultaneously. Compared to current methods for the formation of microbial biofilms, namely the 96-well microtiter plate model, this fungal biofilm chip has advantages in terms of miniaturization and automation, which combine to cut reagent use and analysis time, minimize labor intensive steps, and dramatically reduce assay costs. Such a chip should accelerate the antifungal drug discovery process by enabling rapid, convenient and inexpensive screening of hundreds-to-thousands of compounds simultaneously.

  6. MicroRNA from Moringa oleifera: Identification by High Throughput Sequencing and Their Potential Contribution to Plant Medicinal Value.

    Science.gov (United States)

    Pirrò, Stefano; Zanella, Letizia; Kenzo, Maurice; Montesano, Carla; Minutolo, Antonella; Potestà, Marina; Sobze, Martin Sanou; Canini, Antonella; Cirilli, Marco; Muleo, Rosario; Colizzi, Vittorio; Galgani, Andrea

    2016-01-01

    Moringa oleifera is a widespread plant with substantial nutritional and medicinal value. We postulated that microRNAs (miRNAs), which are endogenous, noncoding small RNAs regulating gene expression at the post-transcriptional level, might contribute to the medicinal properties of plants of this species after ingestion into human body, regulating human gene expression. However, the knowledge is scarce about miRNA in Moringa. Furthermore, in order to test the hypothesis on the pharmacological potential properties of miRNA, we conducted a high-throughput sequencing analysis using the Illumina platform. A total of 31,290,964 raw reads were produced from a library of small RNA isolated from M. oleifera seeds. We identified 94 conserved and two novel miRNAs that were validated by qRT-PCR assays. Results from qRT-PCR trials conducted on the expression of 20 Moringa miRNA showed that are conserved across multiple plant species as determined by their detection in tissue of other common crop plants. In silico analyses predicted target genes for the conserved miRNA that in turn allowed to relate the miRNAs to the regulation of physiological processes. Some of the predicted plant miRNAs have functional homology to their mammalian counterparts and regulated human genes when they were transfected into cell lines. To our knowledge, this is the first report of discovering M. oleifera miRNAs based on high-throughput sequencing and bioinformatics analysis and we provided new insight into a potential cross-species control of human gene expression. The widespread cultivation and consumption of M. oleifera, for nutritional and medicinal purposes, brings humans into close contact with products and extracts of this plant species. The potential for miRNA transfer should be evaluated as one possible mechanism of action to account for beneficial properties of this valuable species. PMID:26930203

  7. Establishing a high throughput method for medium optimization – a case study using Streptomyces lividans as host for production of heterologous protein

    DEFF Research Database (Denmark)

    Rattleff, Stig; Thykaer, Jette; Lantz, Anna Eliasson

    2012-01-01

    Actinomycetes are widely known for production of antibiotics, though as hosts for heterologous protein expression they show great potential which should be further developed. Streptomyces lividans is especially interesting due to very low endogenous protease activity and the capability to secrete...... this study a potential high throughput method was tested for optimizing medium composition, with respect to nitrogen, to improve heterologous protein production in S. lividans, using mRFP as a model protein. A large number of nitrogen sources were tested in an initial, highly automated, screen...

  8. High throughput chromatography strategies for potential use in the formal process characterization of a monoclonal antibody.

    Science.gov (United States)

    Petroff, Matthew G; Bao, Haiying; Welsh, John P; van Beuningen-de Vaan, Miranda; Pollard, Jennifer M; Roush, David J; Kandula, Sunitha; Machielsen, Peter; Tugcu, Nihal; Linden, Thomas O

    2016-06-01

    High throughput experimental strategies are central to the rapid optimization of biologics purification processes. In this work, we extend common high throughput technologies towards the characterization of a multi-column chromatography process for a monoclonal antibody (mAb). Scale-down strategies were first evaluated by comparing breakthrough, retention, and performance (yields and clearance of aggregates and host cell protein) across miniature and lab scale columns. The process operating space was then evaluated using several integrated formats, with batch experimentation to define process testing ranges, miniature columns to evaluate the operating space, and comparison to traditional scale columns to establish scale-up correlations and verify the determined operating space. When compared to an independent characterization study at traditional lab column scale, the high throughput approach identified the same control parameters and similar process sensitivity. Importantly, the high throughput approach significantly decreased time and material needs while improving prediction robustness. Miniature columns and manufacturing scale centerpoint data comparisons support the validity of this approach, making the high throughput strategy an attractive and appropriate scale-down tool for the formal characterization of biotherapeutic processes in the future if regulatory acceptance of the miniature column data can be achieved. Biotechnol. Bioeng. 2016;113: 1273-1283. © 2015 Wiley Periodicals, Inc. PMID:26639315

  9. Application of parallel liquid chromatography/mass spectrometry for high throughput microsomal stability screening of compound libraries.

    Science.gov (United States)

    Xu, Rongda; Nemes, Csaba; Jenkins, Kelly M; Rourick, Robyn A; Kassel, Daniel B; Liu, Charles Z C

    2002-02-01

    Solution-phase and solid-phase parallel synthesis and high throughput screening have enabled biologically active and selective compounds to be identified at an unprecedented rate. The challenge has been to convert these hits into viable development candidates. To accelerate the conversion of these hits into lead development candidates, early assessment of the physicochemical and pharmacological properties of these compounds is being made. In particular, in vitro absorption, distribution, metabolism, and elimination (ADME) assays are being conducted at earlier and earlier stages of discovery with the goal of reducing the attrition rate of these potential drug candidates as they progress through development. In this report, we present an eight-channel parallel liquid chromatography/mass spectrometry (LC/MS) system in combination with custom Visual Basic and Applescript automated data processing applications for high throughput early ADME. The parallel LC/MS system was configured with one set of gradient LC pumps and an eight-channel multiple probe autosampler. The flow was split equivalently into eight streams before the multiple probe autosampler and recombined after the eight columns and just prior to the mass spectrometer ion source. The system was tested for column-to-column variation and for reproducibility over a 17 h period (approximately 500 injections per column). The variations in retention time and peak area were determined to be less than 2 and 10%, respectively, in both tests. The parallel LC/MS system described permits time-course microsomal incubations (t(o), t5, t15, t30) to be measured in triplicate and enables estimations of t 1/2 microsomal stability. The parallel LC/MS system is capable of analyzing up to 240 samples per hour and permits the complete profiling up to two microtiter plates of compounds per day (i.e., 176 test substrate compounds + sixteen controls). PMID:11841071

  10. SpliceMiner: a high-throughput database implementation of the NCBI Evidence Viewer for microarray splice variant analysis

    Directory of Open Access Journals (Sweden)

    Liu Hongfang

    2007-03-01

    Full Text Available Abstract Background There are many fewer genes in the human genome than there are expressed transcripts. Alternative splicing is the reason. Alternatively spliced transcripts are often specific to tissue type, developmental stage, environmental condition, or disease state. Accurate analysis of microarray expression data and design of new arrays for alternative splicing require assessment of probes at the sequence and exon levels. Description SpliceMiner is a web interface for querying Evidence Viewer Database (EVDB. EVDB is a comprehensive, non-redundant compendium of splice variant data for human genes. We constructed EVDB as a queryable implementation of the NCBI Evidence Viewer (EV. EVDB is based on data obtained from NCBI Entrez Gene and EV. The automated EVDB build process uses only complete coding sequences, which may or may not include partial or complete 5' and 3' UTRs, and filters redundant splice variants. Unlike EV, which supports only one-at-a-time queries, SpliceMiner supports high-throughput batch queries and provides results in an easily parsable format. SpliceMiner maps probes to splice variants, effectively delineating the variants identified by a probe. Conclusion EVDB can be queried by gene symbol, genomic coordinates, or probe sequence via a user-friendly web-based tool we call SpliceMiner (http://discover.nci.nih.gov/spliceminer. The EVDB/SpliceMiner combination provides an interface with human splice variant information and, going beyond the very valuable NCBI Evidence Viewer, supports fluent, high-throughput analysis. Integration of EVDB information into microarray analysis and design pipelines has the potential to improve the analysis and bioinformatic interpretation of gene expression data, for both batch and interactive processing. For example, whenever a gene expression value is recognized as important or appears anomalous in a microarray experiment, the interactive mode of SpliceMiner can be used quickly and easily to

  11. An automated workflow for enhancing microbial bioprocess optimization on a novel microbioreactor platform

    Directory of Open Access Journals (Sweden)

    Rohe Peter

    2012-10-01

    Full Text Available Abstract Background High-throughput methods are widely-used for strain screening effectively resulting in binary information regarding high or low productivity. Nevertheless achieving quantitative and scalable parameters for fast bioprocess development is much more challenging, especially for heterologous protein production. Here, the nature of the foreign protein makes it impossible to predict the, e.g. best expression construct, secretion signal peptide, inductor concentration, induction time, temperature and substrate feed rate in fed-batch operation to name only a few. Therefore, a high number of systematic experiments are necessary to elucidate the best conditions for heterologous expression of each new protein of interest. Results To increase the throughput in bioprocess development, we used a microtiter plate based cultivation system (Biolector which was fully integrated into a liquid-handling platform enclosed in laminar airflow housing. This automated cultivation platform was used for optimization of the secretory production of a cutinase from Fusarium solani pisi with Corynebacterium glutamicum. The online monitoring of biomass, dissolved oxygen and pH in each of the microtiter plate wells enables to trigger sampling or dosing events with the pipetting robot used for a reliable selection of best performing cutinase producers. In addition to this, further automated methods like media optimization and induction profiling were developed and validated. All biological and bioprocess parameters were exclusively optimized at microtiter plate scale and showed perfect scalable results to 1 L and 20 L stirred tank bioreactor scale. Conclusions The optimization of heterologous protein expression in microbial systems currently requires extensive testing of biological and bioprocess engineering parameters. This can be efficiently boosted by using a microtiter plate cultivation setup embedded into a liquid-handling system, providing more throughput

  12. Development of combinatorial chemistry methods for coatings: high-throughput weathering evaluation and scale-up of combinatorial leads.

    Science.gov (United States)

    Potyrailo, Radislav A; Ezbiansky, Karin; Chisholm, Bret J; Morris, William G; Cawse, James N; Hassib, Lamyaa; Medford, George; Reitz, Hariklia

    2005-01-01

    Combinatorial screening of materials formulations followed by the scale-up of combinatorial leads has been applied for the development of high-performance coating materials for automotive applications. We replaced labor-intensive coating formulation, testing, and measurement with a "combinatorial factory" that includes robotic formulation of coatings, their deposition as 48 coatings on a 9x12-cm plastic substrate, accelerated performance testing, and automated spectroscopic and image analysis of resulting performance. This high-throughput (HT) performance testing and measurement of the resulting properties provided a powerful set of tools for the 10-fold accelerated discovery of these coating materials. Performance of coatings is evaluated with respect to their weathering, because this parameter is one of the primary considerations in end-use automotive applications. Our HT screening strategy provides previously unavailable capabilities of (1) high speed and reproducibility of testing by using robotic automation and (2) improved quantification by using optical spectroscopic analysis of discoloration of coating-substrate structure and automatic imaging of the integrity loss of coatings. Upon testing, the coatings undergo changes that are impossible to quantitatively predict using existing knowledge. Using our HT methodology, we have developed several cost-competitive coatings leads that match the performance of more costly coatings. These HT screening results for the best coating compositions have been validated on the traditional scales of coating formulation and weathering testing. These validation results have confirmed the improved weathering performance of combinatorially developed coatings over conventional coatings on the traditional scale. PMID:15762746

  13. PALM and STORM: Into large fields and high-throughput microscopy with sCMOS detectors.

    Science.gov (United States)

    Almada, Pedro; Culley, Siân; Henriques, Ricardo

    2015-10-15

    Single Molecule Localization Microscopy (SMLM) techniques such as Photo-Activation Localization Microscopy (PALM) and Stochastic Optical Reconstruction Microscopy (STORM) enable fluorescence microscopy super-resolution: the overcoming of the resolution barrier imposed by the diffraction of light. These techniques are based on acquiring hundreds or thousands of images of single molecules, locating them and reconstructing a higher-resolution image from the high-precision localizations. These methods generally imply a considerable trade-off between imaging speed and resolution, limiting their applicability to high-throughput workflows. Recent advancements in scientific Complementary Metal-Oxide Semiconductor (sCMOS) camera sensors and localization algorithms reduce the temporal requirements for SMLM, pushing it toward high-throughput microscopy. Here we outline the decisions researchers face when considering how to adapt hardware on a new system for sCMOS sensors with high-throughput in mind. PMID:26079924

  14. Three-Dimensional Spheroid Cell Culture Model for Target Identification Utilizing High-Throughput RNAi Screens.

    Science.gov (United States)

    Iles, LaKesla R; Bartholomeusz, Geoffrey A

    2016-01-01

    The intrinsic limitations of 2D monolayer cell culture models have prompted the development of 3D cell culture model systems for in vitro studies. Multicellular tumor spheroid (MCTS) models closely simulate the pathophysiological milieu of solid tumors and are providing new insights into tumor biology as well as differentiation, tissue organization, and homeostasis. They are straightforward to apply in high-throughput screens and there is a great need for the development of reliable and robust 3D spheroid-based assays for high-throughput RNAi screening for target identification and cell signaling studies highlighting their potential in cancer research and treatment. In this chapter we describe a stringent standard operating procedure for the use of MCTS for high-throughput RNAi screens. PMID:27581289

  15. Recent Progress Using High-throughput Sequencing Technologies in Plant Molecular Breeding

    Institute of Scientific and Technical Information of China (English)

    Qiang Gao; Guidong Yue; Wenqi Li; Junyi Wang; Jiaohui Xu; Ye Yin

    2012-01-01

    High-throughput sequencing is a revolutionary technological innovation in DNA sequencing.This technology has an ultra-low cost per base of sequencing and an overwhelmingly high data output.High-throughput sequencing has brought novel research methods and solutions to the research fields of genomics and post-genomics.Furthermore,this technology is leading to a new molecular breeding revolution that has landmark significance for scientific research and enables us to launch multi-level,multifaceted,and multi-extent studies in the fields of crop genetics,genomics,and crop breeding.In this paper,we review progress in the application of high-throughput sequencing technologies to plant molecular breeding studies.

  16. Fully Automated On-Chip Imaging Flow Cytometry System with Disposable Contamination-Free Plastic Re-Cultivation Chip

    Directory of Open Access Journals (Sweden)

    Tomoyuki Kaneko

    2011-06-01

    Full Text Available We have developed a novel imaging cytometry system using a poly(methyl methacrylate (PMMA based microfluidic chip. The system was contamination-free, because sample suspensions contacted only with a flammable PMMA chip and no other component of the system. The transparency and low-fluorescence of PMMA was suitable for microscopic imaging of cells flowing through microchannels on the chip. Sample particles flowing through microchannels on the chip were discriminated by an image-recognition unit with a high-speed camera in real time at the rate of 200 event/s, e.g., microparticles 2.5 μm and 3.0 μm in diameter were differentiated with an error rate of less than 2%. Desired cells were separated automatically from other cells by electrophoretic or dielectrophoretic force one by one with a separation efficiency of 90%. Cells in suspension with fluorescent dye were separated using the same kind of microfluidic chip. Sample of 5 μL with 1 × 106 particle/mL was processed within 40 min. Separated cells could be cultured on the microfluidic chip without contamination. The whole operation of sample handling was automated using 3D micropipetting system. These results showed that the novel imaging flow cytometry system is practically applicable for biological research and clinical diagnostics.

  17. Filtering high-throughput protein-protein interaction data using a combination of genomic features

    Directory of Open Access Journals (Sweden)

    Patil Ashwini

    2005-04-01

    Full Text Available Abstract Background Protein-protein interaction data used in the creation or prediction of molecular networks is usually obtained from large scale or high-throughput experiments. This experimental data is liable to contain a large number of spurious interactions. Hence, there is a need to validate the interactions and filter out the incorrect data before using them in prediction studies. Results In this study, we use a combination of 3 genomic features – structurally known interacting Pfam domains, Gene Ontology annotations and sequence homology – as a means to assign reliability to the protein-protein interactions in Saccharomyces cerevisiae determined by high-throughput experiments. Using Bayesian network approaches, we show that protein-protein interactions from high-throughput data supported by one or more genomic features have a higher likelihood ratio and hence are more likely to be real interactions. Our method has a high sensitivity (90% and good specificity (63%. We show that 56% of the interactions from high-throughput experiments in Saccharomyces cerevisiae have high reliability. We use the method to estimate the number of true interactions in the high-throughput protein-protein interaction data sets in Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens to be 27%, 18% and 68% respectively. Our results are available for searching and downloading at http://helix.protein.osaka-u.ac.jp/htp/. Conclusion A combination of genomic features that include sequence, structure and annotation information is a good predictor of true interactions in large and noisy high-throughput data sets. The method has a very high sensitivity and good specificity and can be used to assign a likelihood ratio, corresponding to the reliability, to each interaction.

  18. Multiple Microfermentor Battery: a Versatile Tool for Use with Automated Parallel Cultures of Microorganisms Producing Recombinant Proteins and for Optimization of Cultivation Protocols

    OpenAIRE

    Frachon, Emmanuel; Bondet, Vincent; Munier-Lehmann, Hélène; Bellalou, Jacques

    2006-01-01

    A multiple microfermentor battery was designed for high-throughput recombinant protein production in Escherichia coli. This novel system comprises eight aerated glass reactors with a working volume of 80 ml and a moving external optical sensor for measuring optical densities at 600 nm (OD600) ranging from 0.05 to 100 online. Each reactor can be fitted with miniature probes to monitor temperature, dissolved oxygen (DO), and pH. Independent temperature regulation for each vessel is obtained wit...

  19. WE-E-BRE-07: High-Throughput Mapping of Proton Biologic Effect

    Energy Technology Data Exchange (ETDEWEB)

    Bronk, L; Guan, F; Kerr, M; Dinh, J; Titt, U; Mirkovic, D; Lin, S; Mohan, R; Grosshans, D [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    Purpose: To systematically relate the relative biological effectives (RBE) of proton therapy to beam linear energy transfer (LET) and dose. Methods: Using a custom irradiation apparatus previously characterized by our group, H460 NSCLCs were irradiated using a clinical 80MeV spot scanning proton beam. Utilizing this system allowed for high-throughput clonogenic assays performed in 96-well tissue culture plates as opposed to the traditional 6-well technique. Each column in the 96-well plate received a set LET-dose combination. By altering the total number of dose repaintings, numerous dose-LET configurations were examined to effectively generate surviving fraction (SF) data over the entire Bragg peak. The clonogenic assay was performed post-irradiation using an INCell Analyzer for colony quantification. SF data were fit to the linear-quadratic model for analysis. Results: Irradiation with increasing LETs resulted in decreased cell survival largely independent of dose. A significant correlation between LET and SF was identified by two-way ANOVA and the extra sum-of-squares F test. This trend was obscured at the lower LET values in the plateau region of the Bragg peak; however, it was clear for LET values at and beyond the Bragg peak. Data fits revealed the SF at a dose of 2Gy (SF2) to be 0.48 for the lowest tested LET (1.55keV/um), 0.47 at the end of the plateau region (4.74keV/um) and 0.33 for protons at the Bragg peak (10.35keV/um). Beyond the Bragg peak we measured SF2s of 0.16 for 15.01keV/um, 0.02 for 16.79keV/um, and 0.004 for 18.06keV/um. Conclusion: We have shown that our methodology enables high-content automated screening for proton irradiations over a range of LETs. The observed decrease in cellular SF in high LET regions confirms an increased RBE of the radiation and suggests further evaluation of proton RBE values is necessary to optimize clinical outcomes. Rosalie B. Hite Graduate Fellowship in Cancer Research, NIH Program Project Grant P01CA021239.

  20. Ensembler: Enabling High-Throughput Molecular Simulations at the Superfamily Scale.

    Directory of Open Access Journals (Sweden)

    Daniel L Parton

    2016-06-01

    Full Text Available The rapidly expanding body of available genomic and protein structural data provides a rich resource for understanding protein dynamics with biomolecular simulation. While computational infrastructure has grown rapidly, simulations on an omics scale are not yet widespread, primarily because software infrastructure to enable simulations at this scale has not kept pace. It should now be possible to study protein dynamics across entire (superfamilies, exploiting both available structural biology data and conformational similarities across homologous proteins. Here, we present a new tool for enabling high-throughput simulation in the genomics era. Ensembler takes any set of sequences-from a single sequence to an entire superfamily-and shepherds them through various stages of modeling and refinement to produce simulation-ready structures. This includes comparative modeling to all relevant PDB structures (which may span multiple conformational states of interest, reconstruction of missing loops, addition of missing atoms, culling of nearly identical structures, assignment of appropriate protonation states, solvation in explicit solvent, and refinement and filtering with molecular simulation to ensure stable simulation. The output of this pipeline is an ensemble of structures ready for subsequent molecular simulations using computer clusters, supercomputers, or distributed computing projects like Folding@home. Ensembler thus automates much of the time-consuming process of preparing protein models suitable for simulation, while allowing scalability up to entire superfamilies. A particular advantage of this approach can be found in the construction of kinetic models of conformational dynamics-such as Markov state models (MSMs-which benefit from a diverse array of initial configurations that span the accessible conformational states to aid sampling. We demonstrate the power of this approach by constructing models for all catalytic domains in the human

  1. Ensembler: Enabling High-Throughput Molecular Simulations at the Superfamily Scale.

    Science.gov (United States)

    Parton, Daniel L; Grinaway, Patrick B; Hanson, Sonya M; Beauchamp, Kyle A; Chodera, John D

    2016-06-01

    The rapidly expanding body of available genomic and protein structural data provides a rich resource for understanding protein dynamics with biomolecular simulation. While computational infrastructure has grown rapidly, simulations on an omics scale are not yet widespread, primarily because software infrastructure to enable simulations at this scale has not kept pace. It should now be possible to study protein dynamics across entire (super)families, exploiting both available structural biology data and conformational similarities across homologous proteins. Here, we present a new tool for enabling high-throughput simulation in the genomics era. Ensembler takes any set of sequences-from a single sequence to an entire superfamily-and shepherds them through various stages of modeling and refinement to produce simulation-ready structures. This includes comparative modeling to all relevant PDB structures (which may span multiple conformational states of interest), reconstruction of missing loops, addition of missing atoms, culling of nearly identical structures, assignment of appropriate protonation states, solvation in explicit solvent, and refinement and filtering with molecular simulation to ensure stable simulation. The output of this pipeline is an ensemble of structures ready for subsequent molecular simulations using computer clusters, supercomputers, or distributed computing projects like Folding@home. Ensembler thus automates much of the time-consuming process of preparing protein models suitable for simulation, while allowing scalability up to entire superfamilies. A particular advantage of this approach can be found in the construction of kinetic models of conformational dynamics-such as Markov state models (MSMs)-which benefit from a diverse array of initial configurations that span the accessible conformational states to aid sampling. We demonstrate the power of this approach by constructing models for all catalytic domains in the human tyrosine kinase

  2. Quantitative high-throughput screen identifies inhibitors of the Schistosoma mansoni redox cascade.

    Directory of Open Access Journals (Sweden)

    Anton Simeonov

    Full Text Available Schistosomiasis is a tropical disease associated with high morbidity and mortality, currently affecting over 200 million people worldwide. Praziquantel is the only drug used to treat the disease, and with its increased use the probability of developing drug resistance has grown significantly. The Schistosoma parasites can survive for up to decades in the human host due in part to a unique set of antioxidant enzymes that continuously degrade the reactive oxygen species produced by the host's innate immune response. Two principal components of this defense system have been recently identified in S. mansoni as thioredoxin/glutathione reductase (TGR and peroxiredoxin (Prx and as such these enzymes present attractive new targets for anti-schistosomiasis drug development. Inhibition of TGR/Prx activity was screened in a dual-enzyme format with reducing equivalents being transferred from NADPH to glutathione via a TGR-catalyzed reaction and then to hydrogen peroxide via a Prx-catalyzed step. A fully automated quantitative high-throughput (qHTS experiment was performed against a collection of 71,028 compounds tested as 7- to 15-point concentration series at 5 microL reaction volume in 1536-well plate format. In order to generate a robust data set and to minimize the effect of compound autofluorescence, apparent reaction rates derived from a kinetic read were utilized instead of end-point measurements. Actives identified from the screen, along with previously untested analogues, were subjected to confirmatory experiments using the screening assay and subsequently against the individual targets in secondary assays. Several novel active series were identified which inhibited TGR at a range of potencies, with IC(50s ranging from micromolar to the assay response limit ( approximately 25 nM. This is, to our knowledge, the first report of a large-scale HTS to identify lead compounds for a helminthic disease, and provides a paradigm that can be used to jump

  3. High-throughput exposure modeling to support prioritization of chemicals in personal care products

    DEFF Research Database (Denmark)

    Csiszar, Susan A.; Ernstoff, Alexi; Fantke, Peter;

    2016-01-01

    We demonstrate the application of a high-throughput modeling framework to estimate exposure to chemicals used in personal care products (PCPs). As a basis for estimating exposure, we use the product intake fraction (PiF), defined as the mass of chemical taken by an individual or population per mass...... highest intakes were associated with body lotion. Bioactive doses derived from high-throughput in vitro toxicity data were combined with the estimated PiFs to demonstrate an approach to estimate bioactive equivalent chemical content and to screen chemicals for risk....

  4. A cell-free protein synthesis system for high-throughput proteomics

    OpenAIRE

    Sawasaki, Tatsuya; Ogasawara, Tomio; Morishita, Ryo; Endo, Yaeta

    2002-01-01

    We report a cell-free system for the high-throughput synthesis and screening of gene products. The system, based on the eukaryotic translation apparatus of wheat seeds, has significant advantages over other commonly used cell-free expression systems. To maximize the yield and throughput of the system, we optimized the mRNA UTRs, designed an expression vector for large-scale protein production, and developed a new strategy to construct PCR-generated DNAs for high-throughput production of many ...

  5. Statistical challenges in the detection of mutation and variation using high throughput sequencing

    OpenAIRE

    Pfeifer, Susanne; McVean, Gilean

    2012-01-01

    The aim of this thesis is to obtain a better understanding of mutation rates within as well as between the genomes of humans and chimpanzees using data generated by high throughput sequencers. I will start with a review of the field and an overview of the technologies and protocols used to generate and analyse high throughput sequencing data. I apply some of the discussed techniques to show that there is evidence of a selective advantage of pathogenic de novo mutations in the Fibroblast Growt...

  6. Multiplexing spheroid volume, resazurin and acid phosphatase viability assays for high-throughput screening of tumour spheroids and stem cell neurospheres.

    Directory of Open Access Journals (Sweden)

    Delyan P Ivanov

    Full Text Available Three-dimensional cell culture has many advantages over monolayer cultures, and spheroids have been hailed as the best current representation of small avascular tumours in vitro. However their adoption in regular screening programs has been hindered by uneven culture growth, poor reproducibility and lack of high-throughput analysis methods for 3D. The objective of this study was to develop a method for a quick and reliable anticancer drug screen in 3D for tumour and human foetal brain tissue in order to investigate drug effectiveness and selective cytotoxic effects. Commercially available ultra-low attachment 96-well round-bottom plates were employed to culture spheroids in a rapid, reproducible manner amenable to automation. A set of three mechanistically different methods for spheroid health assessment (Spheroid volume, metabolic activity and acid phosphatase enzyme activity were validated against cell numbers in healthy and drug-treated spheroids. An automated open-source ImageJ macro was developed to enable high-throughput volume measurements. Although spheroid volume determination was superior to the other assays, multiplexing it with resazurin reduction and phosphatase activity produced a richer picture of spheroid condition. The ability to distinguish between effects on malignant and the proliferating component of normal brain was tested using etoposide on UW228-3 medulloblastoma cell line and human neural stem cells. At levels below 10 µM etoposide exhibited higher toxicity towards proliferating stem cells, whereas at concentrations above 10 µM the tumour spheroids were affected to a greater extent. The high-throughput assay procedures use ready-made plates, open-source software and are compatible with standard plate readers, therefore offering high predictive power with substantial savings in time and money.

  7. Hydrogel Based 3-Dimensional (3D System for Toxicity and High-Throughput (HTP Analysis for Cultured Murine Ovarian Follicles.

    Directory of Open Access Journals (Sweden)

    Hong Zhou

    Full Text Available Various toxicants, drugs and their metabolites carry potential ovarian toxicity. Ovarian follicles, the functional unit of the ovary, are susceptible to this type of damage at all stages of their development. However, despite of the large scale of potential negative impacts, assays that study ovarian toxicity are limited. Exposure of cultured ovarian follicles to toxicants of interest served as an important tool for evaluation of toxic effects for decades. Mouse follicles cultured on the bottom of a culture dish continue to serve an important approach for mechanistic studies. In this paper, we demonstrated the usefulness of a hydrogel based 3-dimensional (3D mouse ovarian follicle culture as a tool to study ovarian toxicity in a different setup. The 3D in vitro culture, based on fibrin alginate interpenetrating network (FA-IPN, preserves the architecture of the ovarian follicle and physiological structure-function relationship. We applied the novel 3D high-throughput (HTP in vitro ovarian follicle culture system to study the ovotoxic effects of an anti-cancer drug, Doxorobucin (DXR. The fibrin component in the system is degraded by plasmin and appears as a clear circle around the encapsulated follicle. The degradation area of the follicle is strongly correlated with follicle survival and growth. To analyze fibrin degradation in a high throughput manner, we created a custom MATLAB® code that converts brightfield micrographs of follicles encapsulated in FA-IPN to binary images, followed by image analysis. We did not observe any significant difference between manually processed images to the automated MATLAB® method, thereby confirming that the automated program is suitable to measure fibrin degradation to evaluate follicle health. The cultured follicles were treated with DXR at concentrations ranging from 0.005 nM to 200 nM, corresponding to the therapeutic plasma levels of DXR in patients. Follicles treated with DXR demonstrated decreased

  8. The Power of High-Throughput Experimentation in Homogeneous Catalysis Research for Fine Chemicals

    NARCIS (Netherlands)

    Vries, Johannes G. de; Vries, André H.M. de

    2003-01-01

    The use of high-throughput experimentation (HTE) in homogeneous catalysis research for the production of fine chemicals is an important breakthrough. Whereas in the past stoichiometric chemistry was often preferred because of time-to-market constraints, HTE allows catalytic solutions to be found wit

  9. Improved detection of artifactual viral minority variants in high-throughput sequencing data

    NARCIS (Netherlands)

    M.R.A. Welkers (Matthijs); M. Jonges (Marcel); R.E. Jeeninga (Rienk); M.P.G. Koopmans D.V.M. (Marion); M.D. de Jong (Menno)

    2015-01-01

    textabstractHigh-throughput sequencing (HTS) of viral samples provides important information on the presence of viral minority variants. However, detection and accurate quantification is limited by the capacity to distinguish biological from artificial variation. In this study, errors related to the

  10. Improved detection of artifactual viral minority variants in high-throughput sequencing data

    NARCIS (Netherlands)

    M.R.A. Welkers (Matthijs); M. Jonges (Marcel); R.E. Jeeninga (Rienk); M.P.G. Koopmans D.V.M. (Marion); M.D. de Jong (Menno)

    2014-01-01

    textabstractHigh-throughput sequencing (HTS) of viral samples provides important information on the presence of viral minority variants. However, detection and accurate quantification is limited by the capacity to distinguish biological from artificial variation. In this study, errors related to the

  11. A perspective on high throughput analysis of pesticide residues in foods

    Institute of Scientific and Technical Information of China (English)

    Kai ZHANG; Jon W WONG; Perry G WANG

    2011-01-01

    The screening of pesticide residues plays a vital role in food safety. Applications of high throughput analytical procedures are desirable for screening a large number of pesticides and food samples in a time-effi- cient and cost-effective manner. This review discusses how sample throughput of pesticide analysis could be improved with an emphasis on sample preparation, instrumentation and data analysis.

  12. New approach for high-throughput screening of drug activity on Plasmodium liver stages.

    NARCIS (Netherlands)

    Gego, A.; Silvie, O.; Franetich, J.F.; Farhati, K.; Hannoun, L.; Luty, A.J.F.; Sauerwein, R.W.; Boucheix, C.; Rubinstein, E.; Mazier, D.

    2006-01-01

    Plasmodium liver stages represent potential targets for antimalarial prophylactic drugs. Nevertheless, there is a lack of molecules active on these stages. We have now developed a new approach for the high-throughput screening of drug activity on Plasmodium liver stages in vitro, based on an infrare

  13. Roche genome sequencer FLX based high-throughput sequencing of ancient DNA

    DEFF Research Database (Denmark)

    Alquezar-Planas, David E; Fordyce, Sarah Louise

    2012-01-01

    Since the development of so-called "next generation" high-throughput sequencing in 2005, this technology has been applied to a variety of fields. Such applications include disease studies, evolutionary investigations, and ancient DNA. Each application requires a specialized protocol to ensure tha...

  14. High Resolution Genotyping of Campylobacter Using PCR and High-Throughput Mass Spectrometry

    Science.gov (United States)

    In this work we report a high throughput mass spectrometry-based technique for rapid high resolution strain identification of Campylobacter jejuni. This method readily distinguishes C. jejuni from C. coli, has comparable resolving power to multi-locus sequence typing (MLST), is applicable to mixtur...

  15. High-Throughput Bubble Screening Method for Combinatorial Discovery of Electrocatalysts for Water Splitting

    OpenAIRE

    Xiang, Chengxiang; Suram, Santosh K.; Haber, Joel A.; Guevarra, Dan W.; Soedarmadji, Ed; Jin, Jian; Gregoire, John M.

    2014-01-01

    Combinatorial synthesis and screening for discovery of electrocatalysts has received increasing attention, particularly for energy-related technologies. High-throughput discovery strategies typically employ a fast, reliable initial screening technique that is able to identify active catalyst composition regions. Traditional electrochemical characterization via current–voltage measurements is inherently throughput-limited, as such measurements are most readily performed by serial screening. Pa...

  16. The protein crystallography beamline BW6 at DORIS - automatic operation and high-throughput data collection

    International Nuclear Information System (INIS)

    The wiggler beamline BW6 at DORIS has been optimized for de-novo solution of protein structures on the basis of MAD phasing. Facilities for automatic data collection, rapid data transfer and storage, and online processing have been developed which provide adequate conditions for high-throughput applications, e.g., in structural genomics

  17. An integrated framework for discovery and genotyping of genomic variants from high-throughput sequencing experiments

    NARCIS (Netherlands)

    Duitama, Jorge; Quintero, Juan Camilo; Cruz, Daniel Felipe; Quintero, Constanza; Hubmann, Georg; Foulquié-Moreno, Maria R.; Verstrepen, Kevin J.; Thevelein, Johan M.; Tohme, Joe

    2014-01-01

    Recent advances in high-throughput sequencing (HTS) technologies and computing capacity have produced unprecedented amounts of genomic data that have unraveled the genetics of phenotypic variability in several species. However, operating and integrating current software tools for data analysis still

  18. High-throughput analysis of the impact of antibiotics on the human intestinal microbiota composition

    NARCIS (Netherlands)

    Ladirat, S.E.; Schols, H.A.; Nauta, A.; Schoterman, M.H.C.; Keijser, B.J.F.; Montijn, R.C.; Gruppen, H.; Schuren, F.H.J.

    2013-01-01

    Antibiotic treatments can lead to a disruption of the human microbiota. In this in-vitro study, the impact of antibiotics on adult intestinal microbiota was monitored in a new high-throughput approach: a fermentation screening-platform was coupled with a phylogenetic microarray analysis (Intestinal-

  19. High throughput "omics" approaches to assess the effects of phytochemicals in human health studies

    Czech Academy of Sciences Publication Activity Database

    Ovesná, J.; Slabý, O.; Toussaint, O.; Kodíček, M.; Maršík, Petr; Pouchová, V.; Vaněk, Tomáš

    2008-01-01

    Roč. 99, E-S1 (2008), ES127-ES134. ISSN 0007-1145 R&D Projects: GA MŠk(CZ) 1P05OC054 Institutional research plan: CEZ:AV0Z50380511 Keywords : Nutrigenomics * Phytochemicals * High throughput platforms Subject RIV: GM - Food Processing Impact factor: 2.764, year: 2008

  20. High-throughput Raman chemical imaging for rapid evaluation of food safety and quality

    Science.gov (United States)

    High-throughput macro-scale Raman chemical imaging was realized on a newly developed line-scan hyperspectral system. The system utilizes a custom-designed 785 nm line laser with maximum power of 5 W as an excitation source. A 24 cm × 1 mm excitation line is normally projected on the sample surface u...

  1. High-throughput fluorescence assay of cytochrome P450 3A4

    OpenAIRE

    Cheng, Qian; Guengerich, F. Peter

    2013-01-01

    Microtiter plate-based fluorescence assays allow rapid measurement of the catalytic activities of cytochrome P450 oxygenases (P450s). We describe a high-throughput fluorescence assay of P450 3A4, one of the key enzymes involved in xenobiotic metabolism. The assay involves the oxidative debenzylation of 7-hydroxy-4-trifluoromethyl coumarin, producing an increase in fluorescence.

  2. A high throughput electron lithography system using a field emission gun

    International Nuclear Information System (INIS)

    This paper discusses production quantities of GaAs FET's and MMIC's in demand for satellite communications and defense applications. Device requirements are enumerated and development of a high throughput submicron and nanometric lithography system based on a field emission electron gun is described. The authors present the system and performance characteristics of this machine and offers results from a recent installation

  3. A high-throughput O-glycopeptide discovery platform for seromic profiling

    DEFF Research Database (Denmark)

    Blixt, Ola; Cló, Emiliano; Nudelman, Aaron Samuel;

    2010-01-01

    -reactive hydrogel-coated microarray glass surface, allowing high-throughput display of large numbers of glycopeptides. Utilizing a repertoire of recombinant glycosyltransferases enabled further diversification of the array libraries in situ and display of a new level of potential biomarker candidates for...

  4. High-throughput screening assays for antibacterial and antifungal activities of Lactobacillus species.

    Science.gov (United States)

    Inglin, Raffael C; Stevens, Marc J A; Meile, Lukas; Lacroix, Christophe; Meile, Leo

    2015-07-01

    We describe high-throughput screening techniques to rapidly detect either antimicrobial activity, using an agar-well diffusion assay in microtiter plates, or antifungal activity using an agar-spot assay in 24-well plates. 504 Lactobacillus isolates were screened with minimal laboratory equipment and screening rates of 2000-5000 individual antimicrobial interactions. PMID:25937247

  5. Thawing the Landscape of the Era of High Throughput: Signs of Spring?

    Science.gov (United States)

    Brady, Donald W

    2015-09-01

    In his latest book, Dr. Kenneth Ludmerer examines the history of graduate medical education (GME) in the United States, including its "era of high throughput" during which residents admitted more patients for shorter periods of time as hospitals focused on decreasing length of stay secondary to prospective payment reform. The author of this Commentary considers the implications of the era of high throughput and how the U.S. health care system must change to address its lasting effects.The era of high throughput initially had incomplete penetrance across the health care system landscape and a variable effect on GME. Trainees were variably aware of the financial forces bearing down on the health care system. Over time, the pervasiveness of the financial pressures and managed care became more complete, and the ubiquity of information through the Internet and social media ensured that residents became more acutely aware of how the changes to the health care system were affecting their education. There is now an opportunity for GME to be the nidus for ushering in an era of cost consciousness focused on patient needs and higher-quality GME rather than on the financial pressures that characterized the era of high throughput. PMID:26164641

  6. A High-Throughput MALDI-TOF Mass Spectrometry-Based Assay of Chitinase Activity

    Science.gov (United States)

    A high-throughput MALDI-TOF mass spectrometric assay is described for assay of chitolytic enzyme activity. The assay uses unmodified chitin oligosaccharide substrates, and is readily achievable on a microliter scale (2 µL total volume, containing 2 µg of substrate and 1 ng of protein). The speed a...

  7. High-throughput verification of transcriptional starting sites by Deep-RACE

    DEFF Research Database (Denmark)

    Olivarius, Signe; Plessy, Charles; Carninci, Piero

    2009-01-01

    We present a high-throughput method for investigating the transcriptional starting sites of genes of interest, which we named Deep-RACE (Deep–rapid amplification of cDNA ends). Taking advantage of the latest sequencing technology, it allows the parallel analysis of multiple genes and is free of...

  8. A high throughput DNA extraction method with high yield and quality

    Directory of Open Access Journals (Sweden)

    Xin Zhanguo

    2012-07-01

    Full Text Available Abstract Background Preparation of large quantity and high quality genomic DNA from a large number of plant samples is a major bottleneck for most genetic and genomic analyses, such as, genetic mapping, TILLING (Targeting Induced Local Lesion IN Genome, and next-generation sequencing directly from sheared genomic DNA. A variety of DNA preparation methods and commercial kits are available. However, they are either low throughput, low yield, or costly. Here, we describe a method for high throughput genomic DNA isolation from sorghum [Sorghum bicolor (L. Moench] leaves and dry seeds with high yield, high quality, and affordable cost. Results We developed a high throughput DNA isolation method by combining a high yield CTAB extraction method with an improved cleanup procedure based on MagAttract kit. The method yielded large quantity and high quality DNA from both lyophilized sorghum leaves and dry seeds. The DNA yield was improved by nearly 30 fold with 4 times less consumption of MagAttract beads. The method can also be used in other plant species, including cotton leaves and pine needles. Conclusion A high throughput system for DNA extraction from sorghum leaves and seeds was developed and validated. The main advantages of the method are low cost, high yield, high quality, and high throughput. One person can process two 96-well plates in a working day at a cost of $0.10 per sample of magnetic beads plus other consumables that other methods will also need.

  9. Complementing high-throughput X-ray powder diffraction data with quantum-chemical calculations

    DEFF Research Database (Denmark)

    Naelapaa, Kaisa; van de Streek, Jacco; Rantanen, Jukka;

    2012-01-01

    single crystals or bulk samples of sufficient quantity to carry out high-quality X-ray diffraction measurements. This process could be made more efficient by a robust procedure for crystal structure determination directly from high-throughput X-ray powder diffraction (XRPD) data. Quantum...

  10. High-Throughput Dietary Exposure Predictions for Chemical Migrants from Food Packaging Materials

    Science.gov (United States)

    United States Environmental Protection Agency researchers have developed a Stochastic Human Exposure and Dose Simulation High -Throughput (SHEDS-HT) model for use in prioritization of chemicals under the ExpoCast program. In this research, new methods were implemented in SHEDS-HT...

  11. High-throughput open source computational methods for genetics and genomics

    NARCIS (Netherlands)

    Prins, J.C.P.

    2015-01-01

    Biology is increasingly data driven by virtue of the development of high-throughput technologies, such as DNA and RNA sequencing. Computational biology and bioinformatics are scientific disciplines that cross-over between the disciplines of biology, informatics and statistics; which is clearly refle

  12. Development of a thyroperoxidase inhibition assay for high-throughput screening

    Science.gov (United States)

    High-throughput screening (HTPS) assays to detect inhibitors of thyroperoxidase (TPO), the enzymatic catalyst for thyroid hormone (TH) synthesis, are not currently available. Herein we describe the development of a HTPS TPO inhibition assay. Rat thyroid microsomes and a fluores...

  13. High-Throughput Growth Prediction for Lactuca sativa L. Seedlings Using Chlorophyll Fluorescence in a Plant Factory with Artificial Lighting

    Science.gov (United States)

    Moriyuki, Shogo; Fukuda, Hirokazu

    2016-01-01

    Poorly grown plants that result from differences in individuals lead to large profit losses for plant factories that use large electric power sources for cultivation. Thus, identifying and culling the low-grade plants at an early stage, using so-called seedlings diagnosis technology, plays an important role in avoiding large losses in plant factories. In this study, we developed a high-throughput diagnosis system using the measurement of chlorophyll fluorescence (CF) in a commercial large-scale plant factory, which produces about 5000 lettuce plants every day. At an early stage (6 days after sowing), a CF image of 7200 seedlings was captured every 4 h on the final greening day by a high-sensitivity CCD camera and an automatic transferring machine, and biological indices were extracted. Using machine learning, plant growth can be predicted with a high degree of accuracy based on biological indices including leaf size, amount of CF, and circadian rhythms in CF. Growth prediction was improved by addition of temporal information on CF. The present data also provide new insights into the relationships between growth and temporal information regulated by the inherent biological clock.

  14. Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials

    Science.gov (United States)

    Green, Martin L.; Takeuchi, Ichiro; Hattrick-Simpers, Jason R.

    2013-06-01

    High throughput (combinatorial) materials science methodology is a relatively new research paradigm that offers the promise of rapid and efficient materials screening, optimization, and discovery. The paradigm started in the pharmaceutical industry but was rapidly adopted to accelerate materials research in a wide variety of areas. High throughput experiments are characterized by synthesis of a "library" sample that contains the materials variation of interest (typically composition), and rapid and localized measurement schemes that result in massive data sets. Because the data are collected at the same time on the same "library" sample, they can be highly uniform with respect to fixed processing parameters. This article critically reviews the literature pertaining to applications of combinatorial materials science for electronic, magnetic, optical, and energy-related materials. It is expected that high throughput methodologies will facilitate commercialization of novel materials for these critically important applications. Despite the overwhelming evidence presented in this paper that high throughput studies can effectively inform commercial practice, in our perception, it remains an underutilized research and development tool. Part of this perception may be due to the inaccessibility of proprietary industrial research and development practices, but clearly the initial cost and availability of high throughput laboratory equipment plays a role. Combinatorial materials science has traditionally been focused on materials discovery, screening, and optimization to combat the extremely high cost and long development times for new materials and their introduction into commerce. Going forward, combinatorial materials science will also be driven by other needs such as materials substitution and experimental verification of materials properties predicted by modeling and simulation, which have recently received much attention with the advent of the Materials Genome

  15. High-throughput screening identifies idarubicin as a preferential inhibitor of smooth muscle versus endothelial cell proliferation.

    Directory of Open Access Journals (Sweden)

    Shakti A Goel

    Full Text Available Intimal hyperplasia is the cause of the recurrent occlusive vascular disease (restenosis. Drugs currently used to treat restenosis effectively inhibit smooth muscle cell (SMC proliferation, but also inhibit the growth of the protective luminal endothelial cell (EC lining, leading to thrombosis. To identify compounds that selectively inhibit SMC versus EC proliferation, we have developed a high-throughput screening (HTS format using human cells and have employed this to screen a multiple compound collection (NIH Clinical Collection. We developed an automated, accurate proliferation assay in 96-well plates using human aortic SMCs and ECs. Using this HTS format we screened a 447-drug NIH Clinical Library. We identified 11 compounds that inhibited SMC proliferation greater than 50%, among which idarubicin exhibited a unique feature of preferentially inhibiting SMC versus EC proliferation. Concentration-response analysis revealed this differential effect most evident over an ∼10 nM-5 µM window. In vivo testing of idarubicin in a rat carotid injury model at 14 days revealed an 80% reduction of intimal hyperplasia and a 45% increase of lumen size with no significant effect on re-endothelialization. Taken together, we have established a HTS assay of human vascular cell proliferation, and identified idarubicin as a selective inhibitor of SMC versus EC proliferation both in vitro and in vivo. Screening of larger and more diverse compound libraries may lead to the discovery of next-generation therapeutics that can inhibit intima hyperplasia without impairing re-endothelialization.

  16. Improved high-throughput virus neutralisation assay for antibody estimation against pandemic and seasonal influenza strains from 2009 to 2011.

    Science.gov (United States)

    Terletskaia-Ladwig, Elena; Meier, Silvia; Enders, Martin

    2013-05-01

    An automatable focus-reduction neutralisation test (AFRNT) for detecting influenza neutralising antibodies in serum was developed. The assay used immunoperoxidase staining and automated foci counting with AID Diagnostika ViruSpot software. Human serum samples (n=108) were collected before and after vaccination with Pandemrix or Begrivac and were tested by AFRNT and a haemagglutination inhibition assay (HI) using seasonal and pandemic influenza vaccine strains from 2009 to 2011. Much attention has been given to the factors that influence detection of neutralising titre, such as viral quantification and the use of receptor destroying enzyme (RDE) for serum treatment. Foci counting enabled precise virus quantification and the development of a highly sensitive assay. Pre-treatment of the human sera with RDE significantly reduced the neutralising titres against all strains, with the exception of the seasonal H1N1 (2009/2010) strain. An HI titre of 1:40, which is associated with a 50% clinical protection against influenza, was equivalent to an AFRNT titre of 1:100-1:200. In conclusion, the AFRNT is rapid, highly sensitive, and fully automatable; therefore, this test is perfectly suitable for the high-throughput detection of influenza-neutralising antibodies. PMID:23518398

  17. Development of a simplified and standardized protocol with potential for high-throughput for sperm cryopreservation in zebrafish Danio rerio.

    Science.gov (United States)

    Yang, Huiping; Carmichael, Carrie; Varga, Zoltan M; Tiersch, Terrence R

    2007-07-15

    Sperm cryopreservation offers potential for long-term storage of genetic resources. However, the current protocols for zebrafish Danio rerio are cumbersome and poorly reproducible. Our objective was to facilitate adoption of cryopreservation by streamlining methods from sperm collection through thawing and use. First, sperm activation was evaluated, and motility was completely inhibited when osmolality of the extender was >/=295-300mOsmol/kg. To evaluate cryoprotectant toxicity, sperm were incubated with dimethyl sulfoxide (DMSO), N,N-dimethyl acetamide (DMA), methanol, or glycerol at 5, 10, and 15% concentrations. Based on motility, DMSO, DMA, and methanol (range, 10 to 60%) and 78+/-10% (50 to 90%) (P=0.0001), and fertilization was 6+/-6% (0 to 18%) and 33+/-20% (5 to 81%) (P=0.0001). These values were positively related with body condition factor. Overall, this study simplified and standardized sperm cryopreservation, and established a protocol using French straws as a freezing container and an extender without powdered milk. This protocol can be readily adapted for high-throughput application using automated equipment, and motility and fertility comparable to previous reports were obtained. Male variability and sperm quality remain important considerations for future work, especially in mutant and inbred lines. PMID:17544099

  18. Human Leukocyte Antigen Typing Using a Knowledge Base Coupled with a High Throughput Oligonucleotide Probe Array Analysis

    Directory of Open Access Journals (Sweden)

    Vladimir eBrusic

    2014-11-01

    Full Text Available Human leukocyte antigens (HLA are important biomarkers since multiple diseases, drug toxicity, and vaccine responses reveal strong HLA associations. Current clinical HLA typing is an elimination process requiring serial testing. We present an alternative an in situ synthesized DNA-based microarray method that contains hundreds of thousands of probes representing a complete overlapping set covering 1,610 clinically relevant HLA class I alleles accompanied by computational tools for assigning HLA type to 4-digit resolution. Our proof-of-concept experiment included 21 blood samples, 18 cell lines, and multiple controls. The method is accurate, robust, and amenable to automation. Typing errors were restricted to homozygous samples or those with very closely related alleles from the same locus, but readily resolved by targeted DNA sequencing validation of flagged samples. High-throughput HLA typing technologies that are effective, yet inexpensive, can be used to analyze the world’s populations, benefiting both global public health and personalized health care.

  19. Parallel high-throughput screening of polymer vectors for nonviral gene delivery: evaluation of structure-property relationships of transfection.

    Science.gov (United States)

    Rinkenauer, Alexandra C; Vollrath, Antje; Schallon, Anja; Tauhardt, Lutz; Kempe, Kristian; Schubert, Stephanie; Fischer, Dagmar; Schubert, Ulrich S

    2013-09-01

    In recent years, "high-throughput" (HT) has turned into a keyword in polymer research. In this study, we present a novel HT workflow for the investigation of cationic polymers for gene delivery applications. For this purpose, various poly(ethylene imine)s (PEI) were used as representative vectors and investigated via HT-assays in a 96-well plate format, starting from polyplex preparation up to the examination of the transfection process. In detail, automated polyplex preparation, complex size determination, DNA binding affinity, polyplex stability, cytotoxicity, and transfection efficiency were performed in the well plate format. With standard techniques, investigation of the biological properties of polymers is quite time-consuming, so only a limited number of materials and conditions (such as pH, buffer composition, and concentration) can be examined. The approach described here allows many different polymers and parameters to be tested for transfection properties and cytotoxicity, giving faster insights into structure-activity relationships for biological activity. PMID:23886244

  20. Contamination-controlled high-throughput whole genome sequencing for influenza A viruses using the MiSeq sequencer.

    Science.gov (United States)

    Lee, Hong Kai; Lee, Chun Kiat; Tang, Julian Wei-Tze; Loh, Tze Ping; Koay, Evelyn Siew-Chuan

    2016-01-01

    Accurate full-length genomic sequences are important for viral phylogenetic studies. We developed a targeted high-throughput whole genome sequencing (HT-WGS) method for influenza A viruses, which utilized an enzymatic cleavage-based approach, the Nextera XT DNA library preparation kit, for library preparation. The entire library preparation workflow was adapted for the Sentosa SX101, a liquid handling platform, to automate this labor-intensive step. As the enzymatic cleavage-based approach generates low coverage reads at both ends of the cleaved products, we corrected this loss of sequencing coverage at the termini by introducing modified primers during the targeted amplification step to generate full-length influenza A sequences with even coverage across the whole genome. Another challenge of targeted HTS is the risk of specimen-to-specimen cross-contamination during the library preparation step that results in the calling of false-positive minority variants. We included an in-run, negative system control to capture contamination reads that may be generated during the liquid handling procedures. The upper limits of 99.99% prediction intervals of the contamination rate were adopted as cut-off values of contamination reads. Here, 148 influenza A/H3N2 samples were sequenced using the HTS protocol and were compared against a Sanger-based sequencing method. Our data showed that the rate of specimen-to-specimen cross-contamination was highly significant in HTS. PMID:27624998

  1. High-content live cell imaging with RNA probes: advancements in high-throughput antimalarial drug discovery

    Science.gov (United States)

    Cervantes, Serena; Prudhomme, Jacques; Carter, David; Gopi, Krishna G; Li, Qian; Chang, Young-Tae; Le Roch, Karine G

    2009-01-01

    Background Malaria, a major public health issue in developing nations, is responsible for more than one million deaths a year. The most lethal species, Plasmodium falciparum, causes up to 90% of fatalities. Drug resistant strains to common therapies have emerged worldwide and recent artemisinin-based combination therapy failures hasten the need for new antimalarial drugs. Discovering novel compounds to be used as antimalarials is expedited by the use of a high-throughput screen (HTS) to detect parasite growth and proliferation. Fluorescent dyes that bind to DNA have replaced expensive traditional radioisotope incorporation for HTS growth assays, but do not give additional information regarding the parasite stage affected by the drug and a better indication of the drug's mode of action. Live cell imaging with RNA dyes, which correlates with cell growth and proliferation, has been limited by the availability of successful commercial dyes. Results After screening a library of newly synthesized stryrl dyes, we discovered three RNA binding dyes that provide morphological details of live parasites. Utilizing an inverted confocal imaging platform, live cell imaging of parasites increases parasite detection, improves the spatial and temporal resolution of the parasite under drug treatments, and can resolve morphological changes in individual cells. Conclusion This simple one-step technique is suitable for automation in a microplate format for novel antimalarial compound HTS. We have developed a new P. falciparum RNA high-content imaging growth inhibition assay that is robust with time and energy efficiency. PMID:19515257

  2. Polymerase chain reaction-hybridization method using urease gene sequences for high-throughput Ureaplasma urealyticum and Ureaplasma parvum detection and differentiation.

    Science.gov (United States)

    Xu, Chen; Zhang, Nan; Huo, Qianyu; Chen, Minghui; Wang, Rengfeng; Liu, Zhili; Li, Xue; Liu, Yunde; Bao, Huijing

    2016-04-15

    In this article, we discuss the polymerase chain reaction (PCR)-hybridization assay that we developed for high-throughput simultaneous detection and differentiation of Ureaplasma urealyticum and Ureaplasma parvum using one set of primers and two specific DNA probes based on urease gene nucleotide sequence differences. First, U. urealyticum and U. parvum DNA samples were specifically amplified using one set of biotin-labeled primers. Furthermore, amine-modified DNA probes, which can specifically react with U. urealyticum or U. parvum DNA, were covalently immobilized to a DNA-BIND plate surface. The plate was then incubated with the PCR products to facilitate sequence-specific DNA binding. Horseradish peroxidase-streptavidin conjugation and a colorimetric assay were used. Based on the results, the PCR-hybridization assay we developed can specifically differentiate U. urealyticum and U. parvum with high sensitivity (95%) compared with cultivation (72.5%). Hence, this study demonstrates a new method for high-throughput simultaneous differentiation and detection of U. urealyticum and U. parvum with high sensitivity. Based on these observations, the PCR-hybridization assay developed in this study is ideal for detecting and discriminating U. urealyticum and U. parvum in clinical applications. PMID:26853743

  3. A sensitive high throughput ELISA for human eosinophil peroxidase: a specific assay to quantify eosinophil degranulation from patient-derived sources.

    Science.gov (United States)

    Ochkur, Sergei I; Kim, John Dongil; Protheroe, Cheryl A; Colbert, Dana; Condjella, Rachel M; Bersoux, Sophie; Helmers, Richard A; Moqbel, Redwan; Lacy, Paige; Kelly, Elizabeth A; Jarjour, Nizar N; Kern, Robert; Peters, Anju; Schleimer, Robert P; Furuta, Glenn T; Nair, Parameswaran; Lee, James J; Lee, Nancy A

    2012-10-31

    Quantitative high throughput assays of eosinophil-mediated activities in fluid samples from patients in a clinical setting have been limited to ELISA assessments for the presence of the prominent granule ribonucleases, ECP and EDN. However, the demonstration that these ribonucleases are expressed by leukocytes other than eosinophils, as well as cells of non-hematopoietic origin, limits the usefulness of these assays. Two novel monoclonal antibodies recognizing eosinophil peroxidase (EPX) were used to develop an eosinophil-specific and sensitive sandwich ELISA. The sensitivity of this EPX-based ELISA was shown to be similar to that of the commercially available ELISA kits for ECP and EDN. More importantly, evidence is also presented confirming that among these granule protein detection options, EPX-based ELISA is the only eosinophil-specific assay. The utility of this high throughput assay to detect released EPX was shown in ex vivo degranulation studies with isolated human eosinophils. In addition, EPX-based ELISA was used to detect and quantify eosinophil degranulation in several in vivo patient settings, including bronchoalveolar lavage fluid obtained following segmental allergen challenge of subjects with allergic asthma, induced sputum derived from respiratory subjects following hypotonic saline inhalation, and nasal lavage of chronic rhinosinusitis patients. This unique EPX-based ELISA thus provides an eosinophil-specific assay that is sensitive, reproducible, and quantitative. In addition, this assay is adaptable to high throughput formats (e.g., automated assays utilizing microtiter plates) using the diverse patient fluid samples typically available in research and clinical settings. PMID:22750539

  4. X-CHIP: an integrated platform for high-throughput protein crystallization and on-the-chip X-ray diffraction data collection

    International Nuclear Information System (INIS)

    The X-CHIP (X-ray Crystallography High-throughput Integrated Platform) is a novel microchip that has been developed to combine multiple steps of the crystallographic pipeline from crystallization to diffraction data collection on a single device to streamline the entire process. The X-CHIP (X-ray Crystallization High-throughput Integrated Platform) is a novel microchip that has been developed to combine multiple steps of the crystallographic pipeline from crystallization to diffraction data collection on a single device to streamline the entire process. The system has been designed for crystallization condition screening, visual crystal inspection, initial X-ray screening and data collection in a high-throughput fashion. X-ray diffraction data acquisition can be performed directly on-the-chip at room temperature using an in situ approach. The capabilities of the chip eliminate the necessity for manual crystal handling and cryoprotection of crystal samples, while allowing data collection from multiple crystals in the same drop. This technology would be especially beneficial for projects with large volumes of data, such as protein-complex studies and fragment-based screening. The platform employs hydrophilic and hydrophobic concentric ring surfaces on a miniature plate transparent to visible light and X-rays to create a well defined and stable microbatch crystallization environment. The results of crystallization and data-collection experiments demonstrate that high-quality well diffracting crystals can be grown and high-resolution diffraction data sets can be collected using this technology. Furthermore, the quality of a single-wavelength anomalous dispersion data set collected with the X-CHIP at room temperature was sufficient to generate interpretable electron-density maps. This technology is highly resource-efficient owing to the use of nanolitre-scale drop volumes. It does not require any modification for most in-house and synchrotron beamline systems and offers

  5. High-throughput characterization of film thickness in thin film materials libraries by digital holographic microscopy

    International Nuclear Information System (INIS)

    A high-throughput characterization technique based on digital holography for mapping film thickness in thin-film materials libraries was developed. Digital holographic microscopy is used for fully automatic measurements of the thickness of patterned films with nanometer resolution. The method has several significant advantages over conventional stylus profilometry: it is contactless and fast, substrate bending is compensated, and the experimental setup is simple. Patterned films prepared by different combinatorial thin-film approaches were characterized to investigate and demonstrate this method. The results show that this technique is valuable for the quick, reliable and high-throughput determination of the film thickness distribution in combinatorial materials research. Importantly, it can also be applied to thin films that have been structured by shadow masking.

  6. High-throughput tri-colour flow cytometry technique to assess Plasmodium falciparum parasitaemia in bioassays

    DEFF Research Database (Denmark)

    Tiendrebeogo, Regis W; Adu, Bright; Singh, Susheel K;

    2014-01-01

    BACKGROUND: Unbiased flow cytometry-based methods have become the technique of choice in many laboratories for high-throughput, accurate assessments of malaria parasites in bioassays. A method to quantify live parasites based on mitotracker red CMXRos was recently described but consistent...... distinction of early ring stages of Plasmodium falciparum from uninfected red blood cells (uRBC) remains a challenge. METHODS: Here, a high-throughput, three-parameter (tri-colour) flow cytometry technique based on mitotracker red dye, the nucleic acid dye coriphosphine O (CPO) and the leucocyte marker CD45......-colour technique is rapid, cost effective and robust with comparable sensitivity to microscopy and capable of discriminating between live and dead and/or compromised parasites. Staining for CD45 improved parasitaemia estimates in ADCI assay since high numbers of leucocytes interfered with the accurate...

  7. A High Throughput MAC Protocol for Wireless Sensor Networks in Surveillance Applications

    Directory of Open Access Journals (Sweden)

    Jian-hua WANG

    2013-09-01

    Full Text Available Monitoring a given environment is a kind of major applications in wireless sensor networks. These WSNs should often meet special requirements, such as high throughput support, service differentiation support and energy efficiency. However, related works always emphasis on one or two of them, and hardly consider comprehensively. In this paper, we propose a new-style MAC protocol, which based on the above-mentioned factors. Cluster-based multi-hop scheduling and priority-aware schedule switching are crucial technologies in the MAC protocol. Moreover, idle listening energy consumption is reduced by using a synchronized duty cycle. Experiments show that the proposed strategy achieves our goals. The energy consumption of the radio module is reduced while high throughput is provided.

  8. Fully automatized high-throughput enzyme library screening using a robotic platform.

    Science.gov (United States)

    Dörr, Mark; Fibinger, Michael P C; Last, Daniel; Schmidt, Sandy; Santos-Aberturas, Javier; Böttcher, Dominique; Hummel, Anke; Vickers, Clare; Voss, Moritz; Bornscheuer, Uwe T

    2016-07-01

    A fully automatized robotic platform has been established to facilitate high-throughput screening for protein engineering purposes. This platform enables proper monitoring and control of growth conditions in the microtiter plate format to ensure precise enzyme production for the interrogation of enzyme mutant libraries, protein stability tests and multiple assay screenings. The performance of this system has been exemplified for four enzyme classes important for biocatalysis such as Baeyer-Villiger monooxygenase, transaminase, dehalogenase and acylase in the high-throughput screening of various mutant libraries. This allowed the identification of novel enzyme variants in a sophisticated and highly reliable manner. Furthermore, the detailed optimization protocols should enable other researchers to adapt and improve their methods. Biotechnol. Bioeng. 2016;113: 1421-1432. © 2016 Wiley Periodicals, Inc. PMID:26724475

  9. High-throughput miniaturized microfluidic microscopy with radially parallelized channel geometry.

    Science.gov (United States)

    Jagannadh, Veerendra Kalyan; Bhat, Bindu Prabhath; Nirupa Julius, Lourdes Albina; Gorthi, Sai Siva

    2016-03-01

    In this article, we present a novel approach to throughput enhancement in miniaturized microfluidic microscopy systems. Using the presented approach, we demonstrate an inexpensive yet high-throughput analytical instrument. Using the high-throughput analytical instrument, we have been able to achieve about 125,880 cells per minute (more than one hundred and twenty five thousand cells per minute), even while employing cost-effective low frame rate cameras (120 fps). The throughput achieved here is a notable progression in the field of diagnostics as it enables rapid quantitative testing and analysis. We demonstrate the applicability of the instrument to point-of-care diagnostics, by performing blood cell counting. We report a comparative analysis between the counts (in cells per μl) obtained from our instrument, with that of a commercially available hematology analyzer. PMID:26781098

  10. High throughput route selection in multi-rate wireless mesh networks

    Institute of Scientific and Technical Information of China (English)

    WEI Yi-fei; GUO Xiang-li; SONG Mei; SONG Jun-de

    2008-01-01

    Most existing Ad-hoc routing protocols use the shortest path algorithm with a hop count metric to select paths. It is appropriate in single-rate wireless networks, but has a tendency to select paths containing long-distance links that have low data rates and reduced reliability in multi-rate networks. This article introduces a high throughput routing algorithm utilizing the multi-rate capability and some mesh characteristics in wireless fidelity (WiFi) mesh networks. It uses the medium access control (MAC) transmission time as the routing metric, which is estimated by the information passed up from the physical layer. When the proposed algorithm is adopted, the Ad-hoc on-demand distance vector (AODV) routing can be improved as high throughput AODV (HT-AODV). Simulation results show that HT-AODV is capable of establishing a route that has high data-rate, short end-to-end delay and great network throughput.

  11. Computational high-throughput screening of fluid permeability in heterogeneous fiber materials.

    Science.gov (United States)

    Röding, Magnus; Schuster, Erich; Logg, Katarina; Lundman, Malin; Bergström, Per; Hanson, Charlotta; Gebäck, Tobias; Lorén, Niklas

    2016-07-20

    We explore computational high-throughput screening as a design strategy for heterogeneous, isotropic fiber materials. Fluid permeability, a key property in the design of soft porous materials, is systematically studied using a multi-scale lattice Boltzmann framework. After characterizing microscopic permeability as a function of solid volume fraction in the microstructure, we perform high-throughput computational screening of in excess of 35 000 macrostructures consisting of a continuous bulk interrupted by spherical/elliptical domains with either lower or higher microscopic permeability (hence with two distinct microscopic solid volume fractions and therefore two distinct microscopic permeabilities) to assess which parameters determine macroscopic permeability for a fixed average solid volume fraction. We conclude that the fractions of bulk and domains and the distribution of solid volume fraction between them are the primary determinants of macroscopic permeability, and that a substantial increase in permeability compared to the corresponding homogenous material is attainable. PMID:27367292

  12. High-throughput screening for ionic liquids dissolving (ligno-)cellulose.

    Science.gov (United States)

    Zavrel, Michael; Bross, Daniela; Funke, Matthias; Büchs, Jochen; Spiess, Antje C

    2009-05-01

    The recalcitrance of lignocellulosic biomass poses a major challenge for its sustainable and cost-effective utilization. Therefore, an efficient pretreatment is decisive for processes based on lignocellulose. A green and energy-efficient pretreatment could be the dissolution of lignocellulose in ionic liquids. Several ionic liquids were identified earlier which are capable to dissolve (ligno-)cellulose. However, due to their multitude and high costs, a high-throughput screening on small scale is essential for the determination of the most efficient ionic liquid. In this contribution two high-throughput systems are presented based on extinction or scattered light measurements. Quasi-continuous dissolution profiles allow a direct comparison of up to 96 ionic liquids per experiment in terms of their dissolution kinetics. The screening results indicate that among the ionic liquids tested EMIM Ac is the most efficient for dissolving cellulose. Moreover, it was observed that AMIM Cl is the most effective ionic liquid for dissolving wood chips. PMID:19157872

  13. Multiple and high-throughput droplet reactions via combination of microsampling technique and microfluidic chip

    KAUST Repository

    Wu, Jinbo

    2012-11-20

    Microdroplets offer unique compartments for accommodating a large number of chemical and biological reactions in tiny volume with precise control. A major concern in droplet-based microfluidics is the difficulty to address droplets individually and achieve high throughput at the same time. Here, we have combined an improved cartridge sampling technique with a microfluidic chip to perform droplet screenings and aggressive reaction with minimal (nanoliter-scale) reagent consumption. The droplet composition, distance, volume (nanoliter to subnanoliter scale), number, and sequence could be precisely and digitally programmed through the improved sampling technique, while sample evaporation and cross-contamination are effectively eliminated. Our combined device provides a simple model to utilize multiple droplets for various reactions with low reagent consumption and high throughput. © 2012 American Chemical Society.

  14. High-Throughput CRISPR Typing of Mycobacterium tuberculosis Complex and Salmonella enterica Serotype Typhimurium.

    Science.gov (United States)

    Sola, Christophe; Abadia, Edgar; Le Hello, Simon; Weill, François-Xavier

    2015-01-01

    Spoligotyping was developed almost 18 years ago and still remains a popular first-lane genotyping technique to identify and subtype Mycobacterium tuberculosis complex (MTC) clinical isolates at a phylogeographic level. For other pathogens, such as Salmonella enterica, recent studies suggest that specifically designed spoligotyping techniques could be interesting for public health purposes. Spoligotyping was in its original format a reverse line-blot hybridization method using capture probes designed on "spacers" and attached to a membrane's surface and a PCR product obtained from clustered regularly interspaced short palindromic repeats (CRISPRs). Cowan et al. and Fabre et al. were the first to propose a high-throughput Spoligotyping method based on microbeads for MTC and S. enterica serotype Typhimurium, respectively. The main advantages of the high-throughput Spoligotyping techniques we describe here are their low cost, their robustness, and the existence (at least for MTC) of very large databases that allow comparisons between spoligotypes from anywhere. PMID:25981468

  15. A high-throughput, multi-channel photon-counting detector with picosecond timing

    CERN Document Server

    Lapington, J S; Miller, G M; Ashton, T J R; Jarron, P; Despeisse, M; Powolny, F; Howorth, J; Milnes, J

    2009-01-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchanne...

  16. High Throughput Screening Identifies Novel Lead Compounds with Activity against Larval, Juvenile and Adult Schistosoma mansoni.

    Science.gov (United States)

    Mansour, Nuha R; Paveley, Ross; Gardner, J Mark F; Bell, Andrew S; Parkinson, Tanya; Bickle, Quentin

    2016-04-01

    An estimated 600 million people are affected by the helminth disease schistosomiasis caused by parasites of the genus Schistosoma. There is currently only one drug recommended for treating schistosomiasis, praziquantel (PZQ), which is effective against adult worms but not against the juvenile stage. In an attempt to identify improved drugs for treating the disease, we have carried out high throughput screening of a number of small molecule libraries with the aim of identifying lead compounds with balanced activity against all life stages of Schistosoma. A total of almost 300,000 compounds were screened using a high throughput assay based on motility of worm larvae and image analysis of assay plates. Hits were screened against juvenile and adult worms to identify broadly active compounds and against a mammalian cell line to assess cytotoxicity. A number of compounds were identified as promising leads for further chemical optimization. PMID:27128493

  17. High-throughput sequencing for detection of subpopulations of bacteria not previously associated with artisanal cheeses.

    Science.gov (United States)

    Quigley, Lisa; O'Sullivan, Orla; Beresford, Tom P; Ross, R Paul; Fitzgerald, Gerald F; Cotter, Paul D

    2012-08-01

    Here, high-throughput sequencing was employed to reveal the highly diverse bacterial populations present in 62 Irish artisanal cheeses and, in some cases, associated cheese rinds. Using this approach, we revealed the presence of several genera not previously associated with cheese, including Faecalibacterium, Prevotella, and Helcococcus and, for the first time, detected the presence of Arthrobacter and Brachybacterium in goats' milk cheese. Our analysis confirmed many previously observed patterns, such as the dominance of typical cheese bacteria, the fact that the microbiota of raw and pasteurized milk cheeses differ, and that the level of cheese maturation has a significant influence on Lactobacillus populations. It was also noted that cheeses containing adjunct ingredients had lower proportions of Lactococcus species. It is thus apparent that high-throughput sequencing-based investigations can provide valuable insights into the microbial populations of artisanal foods. PMID:22685131

  18. High-Throughput Synthesis of Diverse Compound Collections for Lead Discovery and Optimization.

    Science.gov (United States)

    Rademacher, C; Seeberger, P H

    2016-01-01

    Small-molecule intervention of protein function is one central dogma of drug discovery. The generation of small-molecule libraries fuels the discovery pipeline at many stages and thereby resembles a key aspect of this endeavor. High-throughput synthesis is a major source for compound libraries utilized in academia and industry, seeking new chemical modulators of pharmacological targets. Here, we discuss the crucial factors of library design strategies from the perspective of synthetic chemistry, giving a brief historic background and a summary of current approaches. Simple measures of success of a high-throughput synthesis such as quantity or diversity have long been discarded and replaced by more integrated measures. Case studies are presented and put into context to highlight the cross-connectivity of the various stages of the drug discovery process. PMID:26330259

  19. High-throughput characterization of film thickness in thin film materials libraries by digital holographic microscopy

    Directory of Open Access Journals (Sweden)

    Yiu Wai Lai, Michael Krause, Alan Savan, Sigurd Thienhaus, Nektarios Koukourakis, Martin R Hofmann and Alfred Ludwig

    2011-01-01

    Full Text Available A high-throughput characterization technique based on digital holography for mapping film thickness in thin-film materials libraries was developed. Digital holographic microscopy is used for fully automatic measurements of the thickness of patterned films with nanometer resolution. The method has several significant advantages over conventional stylus profilometry: it is contactless and fast, substrate bending is compensated, and the experimental setup is simple. Patterned films prepared by different combinatorial thin-film approaches were characterized to investigate and demonstrate this method. The results show that this technique is valuable for the quick, reliable and high-throughput determination of the film thickness distribution in combinatorial materials research. Importantly, it can also be applied to thin films that have been structured by shadow masking.

  20. Macro-to-micro structural proteomics: native source proteins for high-throughput crystallization.

    Directory of Open Access Journals (Sweden)

    Monica Totir

    Full Text Available Structural biology and structural genomics projects routinely rely on recombinantly expressed proteins, but many proteins and complexes are difficult to obtain by this approach. We investigated native source proteins for high-throughput protein crystallography applications. The Escherichia coli proteome was fractionated, purified, crystallized, and structurally characterized. Macro-scale fermentation and fractionation were used to subdivide the soluble proteome into 408 unique fractions of which 295 fractions yielded crystals in microfluidic crystallization chips. Of the 295 crystals, 152 were selected for optimization, diffraction screening, and data collection. Twenty-three structures were determined, four of which were novel. This study demonstrates the utility of native source proteins for high-throughput crystallography.

  1. ROCS: receiver operating characteristic surface for class-skewed high-throughput data.

    Directory of Open Access Journals (Sweden)

    Tianwei Yu

    Full Text Available The receiver operating characteristic (ROC curve is an important tool to gauge the performance of classifiers. In certain situations of high-throughput data analysis, the data is heavily class-skewed, i.e. most features tested belong to the true negative class. In such cases, only a small portion of the ROC curve is relevant in practical terms, rendering the ROC curve and its area under the curve (AUC insufficient for the purpose of judging classifier performance. Here we define an ROC surface (ROCS using true positive rate (TPR, false positive rate (FPR, and true discovery rate (TDR. The ROC surface, together with the associated quantities, volume under the surface (VUS and FDR-controlled area under the ROC curve (FCAUC, provide a useful approach for gauging classifier performance on class-skewed high-throughput data. The implementation as an R package is available at http://userwww.service.emory.edu/~tyu8/ROCS/.

  2. Lognormality and oscillations in the coverage of high-throughput transcriptomic data towards gene ends

    International Nuclear Information System (INIS)

    High-throughput transcriptomics experiments have reached the stage where the count of the number of reads alignable to a given position can be treated as an almost-continuous signal. This allows us to ask questions of biophysical/biotechnical nature, but which may still have biological implications. Here we show that when sequencing RNA fragments from one end, as is the case on most platforms, an oscillation in the read count is observed at the other end. We further show that these oscillations can be well described by Kolmogorov’s 1941 broken stick model. We investigate how the model can be used to improve predictions of gene ends (3′ transcript ends), but conclude that with present data the improvement is only marginal. The results highlight subtle effects in high-throughput transcriptomics experiments which do not have a biological origin, but which may still be used to obtain biological information. (paper)

  3. Label-Free Surface Enhanced Raman Scattering Approach for High-Throughput Screening of Biocatalysts.

    Science.gov (United States)

    Westley, Chloe; Xu, Yun; Carnell, Andrew J; Turner, Nicholas J; Goodacre, Royston

    2016-06-01

    Biocatalyst discovery and directed evolution are central to many pharmaceutical research programs, yet the lack of robust high-throughput screening methods for large libraries of enzyme variants generated (typically 10(6)-10(8)) has hampered progress and slowed enzyme optimization. We have developed a label-free generally applicable approach based on Raman spectroscopy which results in significant reductions in acquisition times (>30-fold). Surface enhanced Raman scattering (SERS) is employed to monitor the enzyme-catalyzed conversion by xanthine oxidase of hypoxanthine to xanthine to uric acid. This approach measures the substrates and products directly and does not require chromogenic substrates or lengthy chromatography, was successfully benchmarked against HPLC, and shows high levels of accuracy and reproducibility. Furthermore, we demonstrate that this SERS approach has utility in monitoring enzyme inhibition illustrating additional medical significance to this high-throughput screening method. PMID:27132981

  4. Evaluation of high-throughput assays for in vitro drug susceptibility testing of Tritrichomonas foetus trophozoites.

    Science.gov (United States)

    Bader, Chris; Jesudoss Chelladurai, Jeba; Thompson, Kylie; Hall, Cindy; Carlson, Steve A; Brewer, Matthew T

    2016-06-15

    Tritrichomonas foetus is a sexually transmitted protozoan parasite that causes abortions in cattle and results in severe economic losses. In the United States, there are no safe and effective treatments for this parasite and infected animals are typically culled. In order to expedite drug discovery efforts, we investigated in vitro trophozoite killing assays amenable to high-throughput screening in 96 well plate formats. We evaluated the reduction of resorufin, incorporation of propidium iodide, and a luminescence-based ATP detection assay. Of these methods, reduction of resorufin was found to be the most reliable predictor of trophozoite concentrations. We further validated this method by conducting dose-response experiments suitable for calculation of EC50 values for two established compounds with known activity against trophozoites in vitro, namely, metronidazole and ronidazole. Our results demonstrate that the resorufin method is suitable for high-throughput screening and could be used to enhance efforts targeting new treatments for bovine trichomoniasis. PMID:27198774

  5. MPIC: a high-throughput analytical method for multiple DNA targets.

    Science.gov (United States)

    Guo, Jinchao; Yang, Litao; Chen, Lili; Morisset, Dany; Li, Xiang; Pan, Liangwen; Zhang, Dabing

    2011-03-01

    We describe the development of a novel combined approach for high-throughput analysis of multiple DNA targets based on multiplex Microdroplet PCR Implemented Capillary gel electrophoresis (MPIC), a two-step PCR amplification strategy. In the first step, the multiple target DNAs are preamplified using bipartite primers attached with universal tail sequences on their 5'-ends. Then, the preamplified templates are compartmentalized individually in the microdroplet of the PCR system, and multiple targets can be amplified in parallel, employing primers targeting their universal sequences. Subsequently, the resulting multiple products are analyzed by capillary gel electrophoresis (CGE). Using genetically modified organism (GMO) analysis as a model, 24 DNA targets can be simultaneously detected with a relative limit of detection of 0.1% (w/w) and absolute limit of detection of 39 target DNA copies. The described system provides a promising alternative for high-throughput analysis of multiple DNA targets. PMID:21291179

  6. A High-Throughput Microfluidic Platform for Mammalian Cell Transfection and Culturing.

    Science.gov (United States)

    Woodruff, Kristina; Maerkl, Sebastian J

    2016-01-01

    Mammalian synthetic biology could be augmented through the development of high-throughput microfluidic systems that integrate cellular transfection, culturing, and imaging. We created a microfluidic chip that cultures cells and implements 280 independent transfections at up to 99% efficiency. The chip can perform co-transfections, in which the number of cells expressing each protein and the average protein expression level can be precisely tuned as a function of input DNA concentration and synthetic gene circuits can be optimized on chip. We co-transfected four plasmids to test a histidine kinase signaling pathway and mapped the dose dependence of this network on the level of one of its constituents. The chip is readily integrated with high-content imaging, enabling the evaluation of cellular behavior and protein expression dynamics over time. These features make the transfection chip applicable to high-throughput mammalian protein and synthetic biology studies. PMID:27030663

  7. High-Throughput Synthesis and Characterization of BiMoVOX Materials

    International Nuclear Information System (INIS)

    The high throughput synthesis and characterization of a particular family of ceramic materials, bismuth molybdenum vanadium oxides (BiMoVOX), suitable as inorganic yellow pigments and low temperature oxidation catalysts, is described. Samples, synthesized by calcination and peroxo sol-gel methods, are characterized by X-ray powder diffraction, UV-visible and XAFS spectroscopy. A combined high-throughput XRD/XAFS study of a 54 samples array, with simultaneous refinement of data of both techniques, has been performed. Molybdenum doping of bismuth vanadate results in a phase transition from monoclinic BiVO4 to tetragonal Bi(V,Mo)O4, both of scheelite type. Both central metals, V5+ and Mo6+, remain in a tetrahedral coordination. UV/visible spectroscopy identifies a linear blue shift as a function of Mo6+ amount

  8. High-throughput and single-cell imaging of NF-κB oscillations using monoclonal cell lines

    Directory of Open Access Journals (Sweden)

    Machuy Nikolaus

    2010-03-01

    Full Text Available Abstract Background The nuclear factor-κB (NF-κB family of transcription factors plays a role in a wide range of cellular processes including the immune response and cellular growth. In addition, deregulation of the NF-κB system has been associated with a number of disease states, including cancer. Therefore, insight into the regulation of NF-κB activation has crucial medical relevance, holding promise for novel drug target discovery. Transcription of NF-κB-induced genes is regulated by differential dynamics of single NF-κB subunits, but only a few methods are currently being applied to study dynamics. In particular, while oscillations of NF-κB activation have been observed in response to the cytokine tumor necrosis factor α (TNFα, little is known about the occurrence of oscillations in response to bacterial infections. Results To quantitatively assess NF-κB dynamics we generated human and murine monoclonal cell lines that stably express the NF-κB subunit p65 fused to GFP. Furthermore, a high-throughput assay based on automated microscopy coupled to image analysis to quantify p65-nuclear translocation was established. Using this assay, we demonstrate a stimulus- and cell line-specific temporal control of p65 translocation, revealing, for the first time, oscillations of p65 translocation in response to bacterial infection. Oscillations were detected at the single-cell level using real-time microscopy as well as at the population level using high-throughput image analysis. In addition, mathematical modeling of NF-κB dynamics during bacterial infections predicted masking of oscillations on the population level in asynchronous activations, which was experimentally confirmed. Conclusions Taken together, this simple and cost effective assay constitutes an integrated approach to infer the dynamics of NF-κB kinetics in single cells and cell populations. Using a single system, novel factors modulating NF-κB can be identified and analyzed

  9. Mutation scanning using MUT-MAP, a high-throughput, microfluidic chip-based, multi-analyte panel.

    Directory of Open Access Journals (Sweden)

    Rajesh Patel

    Full Text Available Targeted anticancer therapies rely on the identification of patient subgroups most likely to respond to treatment. Predictive biomarkers play a key role in patient selection, while diagnostic and prognostic biomarkers expand our understanding of tumor biology, suggest treatment combinations, and facilitate discovery of novel drug targets. We have developed a high-throughput microfluidics method for mutation detection (MUT-MAP, mutation multi-analyte panel based on TaqMan or allele-specific PCR (AS-PCR assays. We analyzed a set of 71 mutations across six genes of therapeutic interest. The six-gene mutation panel was designed to detect the most common mutations in the EGFR, KRAS, PIK3CA, NRAS, BRAF, and AKT1 oncogenes. The DNA was preamplified using custom-designed primer sets before the TaqMan/AS-PCR assays were carried out using the Biomark microfluidics system (Fluidigm; South San Francisco, CA. A cross-reactivity analysis enabled the generation of a robust automated mutation-calling algorithm which was then validated in a series of 51 cell lines and 33 FFPE clinical samples. All detected mutations were confirmed by other means. Sample input titrations confirmed the assay sensitivity with as little as 2 ng gDNA, and demonstrated excellent inter- and intra-chip reproducibility. Parallel analysis of 92 clinical trial samples was carried out using 2-100 ng genomic DNA (gDNA, allowing the simultaneous detection of multiple mutations. DNA prepared from both fresh frozen and formalin-fixed, paraffin-embedded (FFPE samples were used, and the analysis was routinely completed in 2-3 days: traditional assays require 0.5-1 µg high-quality DNA, and take significantly longer to analyze. This assay can detect a wide range of mutations in therapeutically relevant genes from very small amounts of sample DNA. As such, the mutation assay developed is a valuable tool for high-throughput biomarker discovery and validation in personalized medicine and cancer drug

  10. High-Throughput Sequencing—The Key to Rapid Biodiversity Assessment of Marine Metazoa?

    OpenAIRE

    Inga Mohrbeck; Raupach, Michael J.; Pedro Martínez Arbizu; Thomas Knebelsberger; Silke Laakmann

    2015-01-01

    The applications of traditional morphological and molecular methods for species identification are greatly restricted by processing speed and on a regional or greater scale are generally considered unfeasible. In this context, high-throughput sequencing, or metagenetics, has been proposed as an efficient tool to document biodiversity. Here we evaluated the effectiveness of 454 pyrosequencing in marine metazoan community analysis using the 18S rDNA: V1-V2 region. Multiplex pyrosequencing of th...

  11. High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide

    OpenAIRE

    Bae, Hyeonhu; Park, Minwoo; Jang, Byungryul; Kang, Yura; Park, Jinwoo; Lee, Hosik; Chung, Haegeun; Chung, ChiHye; Hong, Suklyun; Kwon, Yongkyung; Yakobson, Boris I.; Lee, Hoonkyung

    2016-01-01

    Nanostructured materials, such as zeolites and metal-organic frameworks, have been considered to capture CO2. However, their application has been limited largely because they exhibit poor selectivity for flue gases and low capture capacity under low pressures. We perform a high-throughput screening for selective CO2 capture from flue gases by using first principles thermodynamics. We find that elements with empty d orbitals selectively attract CO2 from gaseous mixtures under low CO2 pressures...

  12. High-throughput screening of metal-porphyrin-like graphenes for selective capture of carbon dioxide

    OpenAIRE

    Hyeonhu Bae; Minwoo Park; Byungryul Jang; Yura Kang; Jinwoo Park; Hosik Lee; Haegeun Chung; ChiHye Chung; Suklyun Hong; Yongkyung Kwon; Yakobson, Boris I.; Hoonkyung Lee

    2016-01-01

    Nano-materials, such as metal-organic frameworks, have been considered to capture CO$_2$. However, their application has been limited largely because they exhibit poor selectivity for flue gases and low capture capacity under low pressures. We perform a high-throughput screening for selective CO$_2$ capture from flue gases by using first principles thermodynamics. We find that elements with empty d orbitals selectively attract CO$_2$ from gaseous mixtures under low CO$_2$ pressures at 300 K a...

  13. Development of Microfluidic Systems Enabling High-Throughput Single-Cell Protein Characterization

    OpenAIRE

    Beiyuan Fan; Xiufeng Li; Deyong Chen; Hongshang Peng; Junbo Wang; Jian Chen

    2016-01-01

    This article reviews recent developments in microfluidic systems enabling high-throughput characterization of single-cell proteins. Four key perspectives of microfluidic platforms are included in this review: (1) microfluidic fluorescent flow cytometry; (2) droplet based microfluidic flow cytometry; (3) large-array micro wells (microengraving); and (4) large-array micro chambers (barcode microchips). We examine the advantages and limitations of each technique and discuss future research oppor...

  14. New Approach for High-Throughput Screening of Drug Activity on Plasmodium Liver Stages

    OpenAIRE

    Gego, Audrey; Silvie, Olivier; Franetich, Jean-François; Farhati, Khemaïs; Hannoun, Laurent; Luty, Adrian J. F.; Robert W Sauerwein; Boucheix, Claude; Rubinstein, Eric; Mazier, Dominique

    2006-01-01

    Plasmodium liver stages represent potential targets for antimalarial prophylactic drugs. Nevertheless, there is a lack of molecules active on these stages. We have now developed a new approach for the high-throughput screening of drug activity on Plasmodium liver stages in vitro, based on an infrared fluorescence scanning system. This method allowed us to count automatically and rapidly Plasmodium-infected hepatocytes, using different hepatic cells and different Plasmodium species, including ...

  15. A high throughput (>90%), large compensation range, single-prism femtosecond pulse compressor

    OpenAIRE

    Kong, Lingjie; Cui, Meng

    2013-01-01

    We demonstrate a high throughput, large compensation range, single-prism femtosecond pulse compressor, using a single prism and two roof mirrors. The compressor has zero angular dispersion, zero spatial dispersion, zero pulse-front tilt, and unity magnification. The high efficiency is achieved by adopting two roof mirrors as the retroreflectors. We experimentally achieved ~ -14500 fs2 group delay dispersion (GDD) with 30 cm of prism tip-roof mirror prism separation, and ~90.7% system throughp...

  16. Biases during DNA extraction of activated sludge samples revealed by high throughput sequencing

    OpenAIRE

    Guo, Feng; Zhang, Tong

    2012-01-01

    Standardization of DNA extraction is a fundamental issue of fidelity and comparability in investigations of environmental microbial communities. Commercial kits for soil or feces are often adopted for studies of activated sludge because of a lack of specific kits, but they have never been evaluated regarding their effectiveness and potential biases based on high throughput sequencing. In this study, seven common DNA extraction kits were evaluated, based on not only yield/purity but also seque...

  17. A high-throughput core sampling device for the evaluation of maize stalk composition

    OpenAIRE

    Muttoni German; Johnson James M; Santoro Nicholas; Rhiner Craig J; von Mogel Karl J; Kaeppler Shawn M; de Leon Natalia

    2012-01-01

    Abstract Background A major challenge in the identification and development of superior feedstocks for the production of second generation biofuels is the rapid assessment of biomass composition in a large number of samples. Currently, highly accurate and precise robotic analysis systems are available for the evaluation of biomass composition, on a large number of samples, with a variety of pretreatments. However, the lack of an inexpensive and high-throughput process for large scale sampling...

  18. Design and Synthesis of an Artificial Pulmonary Pleura for High Throughput Studies in Acellular Human Lungs

    OpenAIRE

    Wagner, Darcy E; Fenn, Spencer L.; Bonenfant, Nicholas R.; Marks, Elliot R.; Borg, Zachary; Saunders, Patrick; Oldinski, Rachael A.; Weiss, Daniel J

    2014-01-01

    Whole organ decellularization of complex organs, such as lungs, presents a unique opportunity for use of acellular scaffolds for ex vivo tissue engineering or for studying cell-extracellular matrix interactions ex vivo. A growing body of literature investigating decellularizing and recellularizing rodent lungs has provided important proof of concept models and rodent lungs are readily available for high throughput studies. In contrast, comparable progress in large animal and human lungs has b...

  19. Inertio-elastic focusing of bioparticles in microchannels at high throughput

    OpenAIRE

    Lim, Eugene J.; Ober, Thomas J.; Edd, Jon F; Desai, Salil P.; Neal, Douglas; Bong, Ki Wan; Doyle, Patrick S.; McKinley, Gareth H.; Toner, Mehmet

    2014-01-01

    Controlled manipulation of particles from very large volumes of fluid at high throughput is critical for many biomedical, environmental and industrial applications. One promising approach is to use microfluidic technologies that rely on fluid inertia or elasticity to drive lateral migration of particles to stable equilibrium positions in a microchannel. Here, we report on a hydrodynamic approach that enables deterministic focusing of beads, mammalian cells and anisotropic hydrogel particles i...

  20. Rapid Detection and Identification of Infectious Pathogens Based on High-throughput Sequencing

    OpenAIRE

    Pei-Xiang Ni; Xin Ding; Yin-Xin Zhang; Xue Yao; Rui-Xue Sun; Peng Wang; Yan-Ping Gong; Jia-Li Zhou; Dong-Fang Li; Hong-Long Wu; Xin Yi; Ling Yang; Yun Long

    2015-01-01

    Background: The dilemma of pathogens identification in patients with unidentified clinical symptoms such as fever of unknown origin exists, which not only poses a challenge to both the diagnostic and therapeutic process by itself, but also to expert physicians. Methods: In this report, we have attempted to increase the awareness of unidentified pathogens by developing a method to investigate hitherto unidentified infectious pathogens based on unbiased high-throughput sequencing. Resul...

  1. Quantitative microtiter fibronectin fibrillogenesis assay: use in high throughput screening for identification of inhibitor compounds

    OpenAIRE

    Tomasini-Johansson, Bianca R.; Johnson, Ian A.; Hoffmann, F. Michael; Mosher, Deane F.

    2012-01-01

    Fibronectin (FN) is a plasma glycoprotein that circulates in the near micromolar concentration range and is deposited along with locally produced FN in the extracellular matrices of many tissues. Control of FN deposition is tightly controlled by cells. Agents that modulate FN assembly may be useful therapeutically in conditions characterized by excessive FN deposition, such as fibrosis, inflammatory diseases, and malignancies. To identify such agents by high throughput screening (HTS), we dev...

  2. Combinatorial Method/High Throughput Strategies for Hydrogel Optimization in Tissue Engineering Applications

    OpenAIRE

    Smith Callahan, Laura A.

    2016-01-01

    Combinatorial method/high throughput strategies, which have long been used in the pharmaceutical industry, have recently been applied to hydrogel optimization for tissue engineering applications. Although many combinatorial methods have been developed, few are suitable for use in tissue engineering hydrogel optimization. Currently, only three approaches (design of experiment, arrays and continuous gradients) have been utilized. This review highlights recent work with each approach. The benefi...

  3. Evaluation of Nanofluidics Technology for High-Throughput SNP Genotyping in a Clinical Setting

    OpenAIRE

    Chan, Maurice; Chan, Mei Wen; Loh, Ting Wei; Law, Hai Yang; Yoon, Chui Sheun; Than, Sint Sint; Chua, Jia Mei; Wong, Chow Yin; Yong, Wei Sean; Yap, Yoon Sim; Ho, Gay Hui; Ang, Peter; Lee, Ann Siew Gek

    2011-01-01

    The current need for high-throughput genotyping platforms for targeted validation of disease-associated single nucleotide polymorphisms (SNPs) motivated us to evaluate a novel nanofluidics platform for genotyping DNA extracted from peripheral blood and buccal wash samples. SNP genotyping was performed using a Fluidigm 48.48 Dynamic Array biochip on the BioMark polymerase chain reaction platform and results were compared against standard TaqMan assays and DNA sequencing. Pilot runs using these...

  4. SNP HiTLink: a high-throughput linkage analysis system employing dense SNP data

    OpenAIRE

    Kuwano Ryozo; Miyashita Akinori; Goto Jun; Takahashi Yuji; Date Hidetoshi; Nakahara Yasuo; Fukuda Yoko; Adachi Hiroki; Nakamura Eiji; Tsuji Shoji

    2009-01-01

    Abstract Background During this recent decade, microarray-based single nucleotide polymorphism (SNP) data are becoming more widely used as markers for linkage analysis in the identification of loci for disease-associated genes. Although microarray-based SNP analyses have markedly reduced genotyping time and cost compared with microsatellite-based analyses, applying these enormous data to linkage analysis programs is a time-consuming step, thus, necessitating a high-throughput platform. Result...

  5. Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis

    OpenAIRE

    Haber, Joel A.; Cai, Yun; Jung, Suho; Xiang, Chengxiang; Mitrovic, Slobodan; Jin, Jian; Bell, Alexis T.; Gregoire, John M.

    2014-01-01

    We report a new Ce-rich family of active oxygen evolution reaction (OER) catalysts composed of earth abundant elements, discovered using high-throughput methods. High resolution inkjet printing was used to produce 5456 discrete oxide compositions containing the elements nickel, iron, cobalt and cerium. The catalytic performance of each of these compositions was measured under conditions applicable to distributed solar fuels generation using a three-electrode scanning drop electrochemical cell...

  6. Development of a High-Throughput Functional Screen Using Nanowell-Assisted Cell Patterning.

    Science.gov (United States)

    Ozkumur, Ayca Yalcin; Goods, Brittany A; Love, J Christopher

    2015-09-01

    Living-cell-based screens can facilitate lead discovery of functional therapeutics of interest. A versatile and scalable method is reported that uses dense arrays of nanowells for imparting defined patterns on monolayers of cells. It is shown that this approach can coordinate a multi-component biological assay by designing and implementing a high-throughput, functional nanoliter-scale neutralization assay to identify neutralizing antibodies against HIV. PMID:26121321

  7. High-throughput exploration of alloying as design strategy for thermoelectrics

    OpenAIRE

    Bhattacharya, Sandip; Madsen, Georg K. H.

    2015-01-01

    We explore a material design strategy to optimize the thermoelectric power factor. The approach is based on screening the band structure changes upon a controlled volume change. The methodology is applied to the binary silicides and germanides. We first confirm the effect in antifluorite Mg2Si and Mg2Ge where an increased power factor by alloying with Mg2Sn is experimentally established. Within a high-throughput formalism we identify six previously unreported binaries that exhibit an improvem...

  8. Patterning cell using Si-stencil for high-throughput assay

    KAUST Repository

    Wu, Jinbo

    2011-01-01

    In this communication, we report a newly developed cell pattering methodology by a silicon-based stencil, which exhibited advantages such as easy handling, reusability, hydrophilic surface and mature fabrication technologies. Cell arrays obtained by this method were used to investigate cell growth under a temperature gradient, which demonstrated the possibility of studying cell behavior in a high-throughput assay. This journal is © The Royal Society of Chemistry 2011.

  9. A bioinformatics framework for management and analysis of high throughput CGH microarray projects

    OpenAIRE

    Morris, J A

    2012-01-01

    High throughput experimental techniques have revolutionised biological research; these techniques enable researchers, in an unbiased fashion to survey entire biological systems such as all the somatic mutations in a tumour in a single experiment. Due to the often complex informatics demands of these techniques, robust computational solutions are required to ensure high quality reproducible results are generated. The challenge of this thesis was to develop such a computational solution for the...

  10. Novel Antibacterial Targets and Compounds Revealed by a High-Throughput Cell Wall Reporter Assay

    OpenAIRE

    Nayar, Asha S.; Dougherty, Thomas J.; Ferguson, Keith E.; Granger, Brett A.; McWilliams, Lisa; Stacey, Clare; Leach, Lindsey J.; Narita, Shin-ichiro; Tokuda, Hajime; Miller, Alita A.; Brown, Dean G.; McLeod, Sarah M.

    2015-01-01

    A high-throughput phenotypic screen based on a Citrobacter freundii AmpC reporter expressed in Escherichia coli was executed to discover novel inhibitors of bacterial cell wall synthesis, an attractive, well-validated target for antibiotic intervention. Here we describe the discovery and characterization of sulfonyl piperazine and pyrazole compounds, each with novel mechanisms of action. E. coli mutants resistant to these compounds display no cross-resistance to antibiotics of other classes. ...

  11. SPIM-fluid: open source light-sheet based platform for high-throughput imaging.

    Science.gov (United States)

    Gualda, Emilio J; Pereira, Hugo; Vale, Tiago; Estrada, Marta Falcão; Brito, Catarina; Moreno, Nuno

    2015-11-01

    Light sheet fluorescence microscopy has recently emerged as the technique of choice for obtaining high quality 3D images of whole organisms/embryos with low photodamage and fast acquisition rates. Here we present an open source unified implementation based on Arduino and Micromanager, which is capable of operating Light Sheet Microscopes for automatized 3D high-throughput imaging on three-dimensional cell cultures and model organisms like zebrafish, oriented to massive drug screening. PMID:26601007

  12. High Throughput Single-cell and Multiple-cell Micro-encapsulation

    OpenAIRE

    Lagus, Todd P.; Edd, Jon F.

    2012-01-01

    Microfluidic encapsulation methods have been previously utilized to capture cells in picoliter-scale aqueous, monodisperse drops, providing confinement from a bulk fluid environment with applications in high throughput screening, cytometry, and mass spectrometry. We describe a method to not only encapsulate single cells, but to repeatedly capture a set number of cells (here we demonstrate one- and two-cell encapsulation) to study both isolation and the interactions between cells in groups of ...

  13. Versatile synthesis of probes for high-throughput enzyme activity screening

    OpenAIRE

    de Rond, Tristan; Peralta-Yahya, Pamela; Cheng, Xiaoliang; Northen, Trent R.; Keasling, Jay D.

    2013-01-01

    Mass spectrometry based technologies are promising as generalizable high-throughput assays for enzymatic activity. In one such technology, a specialized enzyme substrate probe is presented to a biological mixture potentially exhibiting enzymatic activity, followed by an in situ enrichment step using fluorous interactions and nanostructure-initiator mass spectrometry. This technology, known as Nimzyme, shows great potential but is limited by the need to synthesize custom substrate analogs. We ...

  14. Progress in high-throughput assays of MGMT and APE1 activities in cell extracts

    OpenAIRE

    Georgiadis, Panagiotis; Polychronaki, Nektaria; Kyrtopoulos, Soterios A.

    2012-01-01

    DNA repair activity is of interest as a potential biomarker of individual susceptibility to genotoxic agents. In view of the current trend for exploitation of large cohorts in molecular epidemiology projects, there is a pressing need for the development of phenotypic DNA repair assays that are high-throughput, very sensitive, inexpensive and reliable. Towards this goal we have developed and validated two phenotypic assays for the measurement of two DNA repair enzymes in cell extracts: (1) O(6...

  15. Microfabricated magnetic sifter for high-throughput and high-gradient magnetic separation

    OpenAIRE

    Earhart, Christopher M.; Wilson, Robert J.; White, Robert L.; Pourmand, Nader; Wang, Shan X.

    2009-01-01

    A microfabricated magnetic sifter has been designed and fabricated for applications in biological sample preparation. The device enables high-throughput, high-gradient magnetic separation of magnetic nanoparticles by utilizing columnar fluid flow through a dense array (~5000/mm2) of micropatterned slots in a magnetically soft membrane. The potential of the sifter for separation of magnetic nanoparticles conjugated with capture antibodies is demonstrated through quantitative separation experim...

  16. High-throughput nucleotide sequence analysis of diverse bacterial communities in leachates of decomposing pig carcasses

    OpenAIRE

    Seung Hak Yang; Joung Soo Lim; Modabber Ahmed Khan; Bong Soo Kim; Dong Yoon Choi; Eun Young Lee; Hee Kwon Ahn

    2015-01-01

    The leachate generated by the decomposition of animal carcass has been implicated as an environmental contaminant surrounding the burial site. High-throughput nucleotide sequencing was conducted to investigate the bacterial communities in leachates from the decomposition of pig carcasses. We acquired 51,230 reads from six different samples (1, 2, 3, 4, 6 and 14 week-old carcasses) and found that sequences representing the phylum Firmicutes predominated. The diversity of bacterial 16S rRNA gen...

  17. High Throughput Fluorometric Technique for Assessment of Macrophage Phagocytosis and Actin Polymerization

    OpenAIRE

    Ninković, Jana; Roy, Sabita

    2014-01-01

    The goal of fluorometric analysis is to serve as an efficient, cost effective, high throughput method of analyzing phagocytosis and other cellular processes. This technique can be used on a variety of cell types, both adherent and non-adherent, to examine a variety of cellular properties. When studying phagocytosis, fluorometric technique utilizes phagocytic cell types such as macrophages, and fluorescently labeled opsonized particles whose fluorescence can be extinguished in the presence of ...

  18. High Cycle Fatigue of Al and Cu Thin Films by a Novel High-Throughput Method

    OpenAIRE

    Burger, Sofie

    2013-01-01

    In the last two decades, the reliability of small electronic devices used in automotive or consumer electronics gained researchers attention. Thus, there is the need to understand the fatigue properties and damage mechanisms of thin films. In this thesis a novel high-throughput testing method for thin films on Si substrate is presented. The specialty of this method is to test one sample at different strain amplitudes at the same time and measure an entire lifetime curve with only one experiment.

  19. High-throughput single nucleotide polymorphism genotyping using nanofluidic Dynamic Arrays

    OpenAIRE

    Crenshaw Andrew; Hutchinson Amy; Hicks Belynda; Yeager Meredith; Berndt Sonja; Huang Wen-Yi; Hayes Richard; Chanock Stephen; Wang Jun; Lin Min; Jones Robert; Ramakrishnan Ramesh

    2009-01-01

    Abstract Background Single nucleotide polymorphisms (SNPs) have emerged as the genetic marker of choice for mapping disease loci and candidate gene association studies, because of their high density and relatively even distribution in the human genomes. There is a need for systems allowing medium multiplexing (ten to hundreds of SNPs) with high throughput, which can efficiently and cost-effectively generate genotypes for a very large sample set (thousands of individuals). Methods that are fle...

  20. Differential Scanning Fluorimetry provides high throughput data on silk protein transitions

    OpenAIRE

    Vollrath, Fritz; Hawkins, Nick; Porter, David; Holland, Chris; Boulet-Audet, Maxime

    2014-01-01

    Here we present a set of measurements using Differential Scanning Fluorimetry (DSF) as an inexpensive, high throughput screening method to investigate the folding of silk protein molecules as they abandon their first native melt conformation, dehydrate and denature into their final solid filament conformation. Our first data and analyses comparing silks from spiders, mulberry and wild silkworms as well as reconstituted ‘silk' fibroin show that DSF can provide valuable insights into details of...

  1. Experimentally Validated Novel Inhibitors of Helicobacter pylori Phosphopantetheine Adenylyltransferase Discovered by Virtual High-Throughput Screening

    OpenAIRE

    Chao-Sheng Cheng; Kai-Fan Jia; Ting Chen; Shun-Ya Chang; Ming-Shen Lin; Hsien-Sheng Yin

    2013-01-01

    Helicobacter pylori is a major etiologic agent associated with the development and maintenance of human gastritis. The goal of this study was to develop novel antibiotics against H. pylori , and we thus targeted H. pylori phosphopantetheine adenylyltransferase (HpPPAT). PPAT catalyzes the penultimate step in coenzyme A biosynthesis. Its inactivation effectively prevents bacterial viability, making it an attractive target for antibacterial drug discovery. We employed virtual high-throughput sc...

  2. Combined Catalysis and Optical Screening for High Throughput Discovery of Solar Fuels Catalysts

    OpenAIRE

    Gregoire, J. M.; Xiang, C.(Central China Normal University, Wuhan, China); Mitrovic, S.; Liu, X; Marcin, M.; Cornell, E. W.; Fan, J; Jin, Jian

    2013-01-01

    Considerable research and development efforts are being devoted to the efficient generation of solar fuels. A solar fuels device couples a solar photoabsorber with catalysts to convert solar energy to chemical energy via reactions such as oxygen evolution (water splitting). Widespread deployment of this technology hinges upon discovery of new materials through efforts such as the high throughput screening of oxygen evolution catalysts, as discussed in this manuscript. We derive an ex...

  3. A High-Throughput Random Access Protocol for Multiuser MIMO Systems

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2008-05-01

    Full Text Available We propose a high-throughput random access protocol for 2×2 multiuser multiple-input multiple-output (MIMO systems. The cross-layer mechanism utilizes the packets combining technique to exploit the advantages of both spatial multiplexing and multipacket reception. Analytical result indicates that the proposed scheme achieves 0.669 per spatial degree of freedom in stable throughput, which is much higher than those in the existed studies.

  4. On the optimal trimming of high-throughput mRNA sequence data

    OpenAIRE

    MacManes, Matthew D

    2014-01-01

    The widespread and rapid adoption of high-throughput sequencing technologies has afforded researchers the opportunity to gain a deep understanding of genome level processes that underlie evolutionary change, and perhaps more importantly, the links between genotype and phenotype. In particular, researchers interested in functional biology and adaptation have used these technologies to sequence mRNA transcriptomes of specific tissues, which in turn are often compared to other tissues, or other ...

  5. ‘Shotgun DNA synthesis’ for the high-throughput construction of large DNA molecules

    OpenAIRE

    Kim, Hwangbeom; Han, Hyojun; Ahn, Jinwoo; Lee, Joongoo; Cho, Namjin; Jang, Hoon; Kim, Hyoki; Kwon, Sunghoon; Bang, Duhee

    2012-01-01

    We developed a highly scalable ‘shotgun’ DNA synthesis technology by utilizing microchip oligonucleotides, shotgun assembly and next-generation sequencing technology. A pool of microchip oligonucleotides targeting a penicillin biosynthetic gene cluster were assembled into numerous random fragments, and tagged with 20 bp degenerate barcode primer pairs. An optimal set of error-free fragments were identified by high-throughput DNA sequencing, selectively amplified using the barcode sequences, a...

  6. Screensaver: an open source lab information management system (LIMS) for high throughput screening facilities

    OpenAIRE

    Nale Jennifer; Rudnicki Stewart; Rudnicki Katrina; Chiang Su L; Wrobel David; Erickson Sean D; Sullivan John P; Tolopko Andrew N; Selfors Laura M; Greenhouse Dara; Muhlich Jeremy L; Shamu Caroline E

    2010-01-01

    Abstract Background Shared-usage high throughput screening (HTS) facilities are becoming more common in academe as large-scale small molecule and genome-scale RNAi screening strategies are adopted for basic research purposes. These shared facilities require a unique informatics infrastructure that must not only provide access to and analysis of screening data, but must also manage the administrative and technical challenges associated with conducting numerous, interleaved screening efforts ru...

  7. High-throughput sequencing of frozen and paraffin-embedded tumor and normal tissue

    OpenAIRE

    Kerick, M; Timmermann, B; Schweiger, M.

    2010-01-01

    Until now high-throughput sequencing of tumor samples relied on DNA isolated from fresh frozen tissues, the preparation of which, however, is relatively laborious. The use of preserved material, i.e. from tissue banks, could help to avoid this limitation and would enable the reanalysis of diverse clinical trials. So far we have shown that formalin-fixed paraffin-embedded (FFPE) tissue samples can be used for genomic re-sequencing processes. FFPE samples are amply available from surgical tumor...

  8. Classification of 3D Multicellular Organization in Phase Microscopy for High Throughput Screening of Therapeutic Targets*

    OpenAIRE

    Chang, Hang; Parvin, Bahram

    2015-01-01

    The current trend in high throughput screening is the utilization of more complex model systems that mimic both structural and functional properties of cellular processes in vivo. In this context, 3D cell culture models have emerged as effective systems to study tumor initiation and cancer behavior, where colony organization represents distinct phenotypic signatures that enable differentiation of cancer cells in culture using phase imaging and in the absence of clinical markers. If the colony...

  9. High throughput screening of particle conditioning operations: I. System design and method development.

    Science.gov (United States)

    Noyes, Aaron; Huffman, Ben; Godavarti, Ranga; Titchener-Hooker, Nigel; Coffman, Jonathan; Sunasara, Khurram; Mukhopadhyay, Tarit

    2015-08-01

    The biotech industry is under increasing pressure to decrease both time to market and development costs. Simultaneously, regulators are expecting increased process understanding. High throughput process development (HTPD) employs small volumes, parallel processing, and high throughput analytics to reduce development costs and speed the development of novel therapeutics. As such, HTPD is increasingly viewed as integral to improving developmental productivity and deepening process understanding. Particle conditioning steps such as precipitation and flocculation may be used to aid the recovery and purification of biological products. In this first part of two articles, we describe an ultra scale-down system (USD) for high throughput particle conditioning (HTPC) composed of off-the-shelf components. The apparatus is comprised of a temperature-controlled microplate with magnetically driven stirrers and integrated with a Tecan liquid handling robot. With this system, 96 individual reaction conditions can be evaluated in parallel, including downstream centrifugal clarification. A comprehensive suite of high throughput analytics enables measurement of product titer, product quality, impurity clearance, clarification efficiency, and particle characterization. HTPC at the 1 mL scale was evaluated with fermentation broth containing a vaccine polysaccharide. The response profile was compared with the Pilot-scale performance of a non-geometrically similar, 3 L reactor. An engineering characterization of the reactors and scale-up context examines theoretical considerations for comparing this USD system with larger scale stirred reactors. In the second paper, we will explore application of this system to industrially relevant vaccines and test different scale-up heuristics. PMID:25728932

  10. Geochip: A high throughput genomic tool for linking community structure to functions

    Energy Technology Data Exchange (ETDEWEB)

    Van Nostrand, Joy D.; Liang, Yuting; He, Zhili; Li, Guanghe; Zhou, Jizhong

    2009-01-30

    GeoChip is a comprehensive functional gene array that targets key functional genes involved in the geochemical cycling of N, C, and P, sulfate reduction, metal resistance and reduction, and contaminant degradation. Studies have shown the GeoChip to be a sensitive, specific, and high-throughput tool for microbial community analysis that has the power to link geochemical processes with microbial community structure. However, several challenges remain regarding the development and applications of microarrays for microbial community analysis.

  11. A computational framework for boosting confidence in high-throughput protein-protein interaction datasets

    OpenAIRE

    Hosur, R.; Peng, J.; A Vinayagam; Stelzl, U.; Xu, J.; Perrimon, N; Bienkowska, J.; Berger, B.

    2012-01-01

    Improving the quality and coverage of the protein interactome is of tantamount importance for biomedical research, particularly given the various sources of uncertainty in high-throughput techniques. We introduce a structure-based framework, Coev2Net, for computing a single confidence score that addresses both false-positive and false-negative rates. Coev2Net is easily applied to thousands of binary protein interactions and has superior predictive performance over existing methods. We experim...

  12. Development of an Optimized Medium, Strain and High-Throughput Culturing Methods for Methylobacterium extorquens

    OpenAIRE

    Delaney, Nigel Francis; Kaczmarek, Maria E.; Ward, Lewis M.; Swanson, Paige Kathleen; Lee, Ming-Chun; Marx, Christopher J

    2013-01-01

    Methylobacterium extorquens strains are the best-studied methylotrophic model system, and their metabolism of single carbon compounds has been studied for over 50 years. Here we develop a new system for high-throughput batch culture of M. extorquens in microtiter plates by jointly optimizing the properties of the organism, the growth media and the culturing system. After removing cellulose synthase genes in M. extorquens strains AM1 and PA1 to prevent biofilm formation, we found that currentl...

  13. High-throughput sequencing, characterization and detection of new and conserved cucumber miRNAs

    OpenAIRE

    Martínez, Germán; Forment, Javier; Llave, César; Pallás Benet, Vicente; Gómez, Gustavo

    2011-01-01

    [EN] Micro RNAS (miRNAs) are a class of endogenous small non coding RNAs involved in the post-transcriptional regulation of gene expression. In plants, a great number of conserved and specific miRNAs, mainly arising from model species, have been identified to date. However less is known about the diversity of these regulatory RNAs in vegetal species with agricultural and/or horticultural importance. Here we report a combined approach of bioinformatics prediction, high-throughput sequencing da...

  14. Bioinformatics of Cancer ncRNA in High Throughput Sequencing: Present State and Challenges

    OpenAIRE

    Jorge, Natasha Andressa Nogueira; Ferreira, Carlos Gil; Passetti, Fabio

    2012-01-01

    The numerous genome sequencing projects produced unprecedented amount of data providing significant information to the discovery of novel non-coding RNA (ncRNA). Several ncRNAs have been described to control gene expression and display important role during cell differentiation and homeostasis. In the last decade, high throughput methods in conjunction with approaches in bioinformatics have been used to identify, classify, and evaluate the expression of hundreds of ncRNA in normal and patholo...

  15. Fluorescence-based high-throughput screening of dicer cleavage activity

    Czech Academy of Sciences Publication Activity Database

    Podolská, Kateřina; Sedlák, David; Bartůněk, Petr; Svoboda, Petr

    2014-01-01

    Roč. 19, č. 3 (2014), s. 417-426. ISSN 1087-0571 R&D Projects: GA ČR GA13-29531S; GA MŠk(CZ) LC06077; GA MŠk LM2011022 Grant ostatní: EMBO(DE) 1483 Institutional support: RVO:68378050 Keywords : Dicer * siRNA * high-throughput screening Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.423, year: 2014

  16. Applications of high-throughput genome and transcriptome analysis in human disease

    OpenAIRE

    Inkeles, Megan So

    2014-01-01

    The development of gene expression profiling technology has enabled the high-throughput discovery of the genes and pathways that underlie disease pathophysiology and phenotype. This work analyzes microarray and RNA sequencing data to identify genes and functional pathways associated with human diseases. In the first part, gene expression profiles derived from pancreatic ductal adenocarcinoma tumors are correlated to patient disease free survival time in order to find genes that confer a pro...

  17. Evolutionary Dynamics of Retrotransposons Assessed by High-Throughput Sequencing in Wild Relatives of Wheat

    OpenAIRE

    Senerchia, Natacha; Wicker, Thomas; Felber, François; Parisod, Christian

    2013-01-01

    Transposable elements (TEs) represent a major fraction of plant genomes and drive their evolution. An improved understanding of genome evolution requires the dynamics of a large number of TE families to be considered. We put forward an approach bypassing the required step of a complete reference genome to assess the evolutionary trajectories of high copy number TE families from genome snapshot with high-throughput sequencing. Low coverage sequencing of the complex genomes of Aegilops cylindri...

  18. High-throughput sequencing offers insight into mechanisms of resource partitioning in cryptic bat species

    OpenAIRE

    Razgour, Orly; Clare, Elizabeth L.; Zeale, Matt R. K.; Hanmer, Julia; Schnell, Ida Baerholm; Rasmussen, Morten; Gilbert, Thomas P.; Jones, Gareth

    2011-01-01

    Sympatric cryptic species, characterized by low morphological differentiation, pose a challenge to understanding the role of interspecific competition in structuring ecological communities. We used traditional (morphological) and novel molecular methods of diet analysis to study the diet of two cryptic bat species that are sympatric in southern England (Plecotus austriacus and P. auritus) (Fig. 1). Using Roche FLX 454 (Roche, Basel, CH) high-throughput sequencing (HTS) and uniquely tagged gen...

  19. Melanin-Based High-Throughput Screen for l-Tyrosine Production in Escherichia coli▿

    OpenAIRE

    Santos, Christine Nicole S.; Stephanopoulos, Gregory

    2007-01-01

    We present the development of a simple, high-throughput screen for identifying bacterial strains capable of l-tyrosine production. Through the introduction of a heterologous gene encoding a tyrosinase, we were able to link l-tyrosine production in Escherichia coli with the synthesis of the black and diffusible pigment melanin. Although melanin was initially produced only at low levels in morpholinepropanesulfonic acid (MOPS) minimal medium, phosphate supplementation was found to be sufficient...

  20. Miniaturized droplets-based microarray of chemical and biological high-throughput tests

    OpenAIRE

    Neto, Ana I.; Correia, Clara R.; Custódio, Catarina A.; Mano, J.F

    2013-01-01

    Publicado em "Journal of Tissue Engineering and Regenerative Medicine, vol. 7, supp. 1 (2013) The development of high-throughput and combinatorial technologies is helping to speed up research that is applicable in many areas of chemistry, engineering and biology. We propose a simple, versatile high-efficient and new superhydrophobic platform, which permits to arrange of quasi-spherical aqueous-based droplets with the capability to support and monitor a series of chemical/biolog...

  1. The Autism Sequencing Consortium: Large scale, high throughput sequencing in autism spectrum disorders

    OpenAIRE

    Buxbaum, J D; Daly, M. J.; Devlin, B; Lehner, T.; Roeder, K.; State, M.W.

    2012-01-01

    Research during the past decade has seen significant progress toward a model for the genetic architecture of autism spectrum disorders (ASD), with gene discovery accelerating as the characterization of genomic variation has become increasingly comprehensive. At the same time this research has highlighted ongoing challenges. Here we address the enormous impact of high throughput sequencing (HTS) on ASD gene discovery, outline a consensus view for leveraging this technology, and describe a larg...

  2. High-throughput screening for industrial enzyme production hosts by droplet microfluidics

    OpenAIRE

    Sjostrom, Staffan L.; Bai, Yunpeng; Huang, Mingtao; Liu, Zihe; Nielsen, Jens; Jönsson, Håkan; Svahn, Helene Andersson

    2014-01-01

    A high-throughput method for single cell screening by microfluidic droplet sorting is applied to a whole-genome mutated yeast cell library yielding improved production hosts of secreted industrial enzymes. The sorting method is validated by enriching a yeast strain 14 times based on its α-amylase production, close to the theoretical maximum enrichment. Furthermore, a 105 member yeast cell library is screened yielding a clone with a more than 2-fold increase in α-amylase production. The increa...

  3. Computational Analysis of High-Throughput Sequencing Data in Cardiac Disease and Skeletal Muscle Development

    OpenAIRE

    Bansal, Vikas

    2016-01-01

    The advent of the high-throughput sequencing (HTS) technology has greatly accelerated research in life sciences. Due to its low cost and high efficiency, it is nowadays commonly used to answer various biological questions. In general, in HTS, the sequence of millions of DNA fragments is determined in parallel and these fragments can in turn be generated using different sequencing methods. With the rapid advancement of HTS technologies, their applications seem almost endless, for example it is...

  4. Environmental surveillance and monitoring-The next frontiers for high-throughput toxicology.

    Science.gov (United States)

    Schroeder, Anthony L; Ankley, Gerald T; Houck, Keith A; Villeneuve, Daniel L

    2016-03-01

    High-throughput toxicity testing technologies along with the World Wide Web are revolutionizing both generation of and access to data regarding the biological activities that chemicals can elicit when they interact with specific proteins, genes, or other targets in the body of an organism. To date, however, most of the focus has been on the application of such data to assessment of individual chemicals. The authors suggest that environmental surveillance and monitoring represent the next frontiers for high-throughput toxicity testing. Resources already exist in curated databases of chemical-biological interactions, including highly standardized quantitative dose-response data generated from nascent high-throughput toxicity testing programs such as ToxCast and Tox21, to link chemicals detected through environmental analytical chemistry to known biological activities. The emergence of the adverse outcome pathway framework and the associated knowledge base for linking molecular-level or pathway-level perturbations of biological systems to adverse outcomes traditionally considered in risk assessment and regulatory decision-making through a series of measurable biological changes provides a critical link between activity and hazard. Furthermore, environmental samples can be directly analyzed via high-throughput toxicity testing platforms to provide an unprecedented breadth of biological activity characterization that integrates the effects of all compounds present in a mixture, whether known or not. Novel application of these chemical-biological interaction data provides an opportunity to transform scientific characterization of potential hazards associated with exposure to complex mixtures of environmental contaminants. Environ Toxicol Chem 2016;35:513-525. © 2016 SETAC. PMID:26923854

  5. A high-throughput method for quantifying metabolically active yeast cells

    OpenAIRE

    Nandy, Subir Kumar; Knudsen, Peter Boldsen; Rosenkjær, Alexander; Eliasson Lantz, Anna; Thykær, Jette; Workman, Mhairi

    2015-01-01

    By redesigning the established methylene blue reduction test for bacteria and yeast, we present a cheap and efficient methodology for quantitative physiology of eukaryotic cells applicable for high-throughput systems. Validation of themethod in fermenters and highthroughput systems proved equivalent, displaying reduction curves that interrelated directly with CFU counts. For growth rate estimation, the methylene blue reduction test (MBRT) proved superior, since the discriminatory nature of th...

  6. Identification of Adiponectin Receptor Agonist Utilizing a Fluorescence Polarization Based High Throughput Assay

    OpenAIRE

    Yiyi Sun; Zhihe Zang; Ling Zhong; Min Wu; Qing Su; Xiurong Gao; Wang Zan; Dong Lin; Yan Zhao; Zhonglin Zhang

    2013-01-01

    Adiponectin, the adipose-derived hormone, plays an important role in the suppression of metabolic disorders that can result in type 2 diabetes, obesity, and atherosclerosis. It has been shown that up-regulation of adiponectin or adiponectin receptor has a number of therapeutic benefits. Given that it is hard to convert the full size adiponectin protein into a viable drug, adiponectin receptor agonists could be designed or identified using high-throughput screening. Here, we report on the deve...

  7. DHPLC technology for high-throughput detection of mutations in a durum wheat TILLING population

    OpenAIRE

    Colasuonno, Pasqualina; Incerti, Ornella; Lozito, Maria Luisa; Simeone, Rosanna; Gadaleta, Agata; Blanco, Antonio

    2016-01-01

    Background Durum wheat (Triticum turgidum L.) is a cereal crop widely grown in the Mediterranean regions; the amber grain is mainly used for the production of pasta, couscous and typical breads. Single nucleotide polymorphism (SNP) detection technologies and high-throughput mutation induction represent a new challenge in wheat breeding to identify allelic variation in large populations. The TILLING strategy makes use of traditional chemical mutagenesis followed by screening for single base mi...

  8. Novel Phenotypic Fluorescent Three-Dimensional Platforms for High-throughput Drug Screening and Personalized Chemotherapy

    OpenAIRE

    Fang, Changge; Avis, Ingalill; Salomon, David; Cuttitta, Frank

    2013-01-01

    We have developed novel phenotypic fluorescent three-dimensional co-culture platforms that efficiently and economically screen anti-angiogenic/anti-metastatic drugs on a high-throughput scale. Individual cell populations can be identified and isolated for protein/gene expression profiling studies and cellular movement/interactions can be tracked by time-lapse cinematography. More importantly, these platforms closely parallel the in vivo angiogenic and metastatic outcomes of a given tumor xeno...

  9. High-throughput spatial light modulation two-photon microscopy for fast functional imaging

    OpenAIRE

    Pozzi, Paolo; Gandolfi, Daniela; Tognolina, Marialuisa; Chirico, Giuseppe; Mapelli, Jonathan; D’Angelo, Egidio

    2015-01-01

    The optical monitoring of multiple single neuron activities requires high-throughput parallel acquisition of signals at millisecond temporal resolution. To this aim, holographic two-photon microscopy (2PM) based on spatial light modulators (SLMs) has been developed in combination with standard laser scanning microscopes. This requires complex coordinate transformations for the generation of holographic patterns illuminating the points of interest. We present a simpler and fully digital setup ...

  10. Recent Advances in Nanobiotechnology and High-Throughput Molecular Techniques for Systems Biomedicine

    OpenAIRE

    Kim, Eung-Sam; Ahn, Eun Hyun; Chung, Euiheon; Kim, Deok-Ho

    2013-01-01

    Nanotechnology-based tools are beginning to emerge as promising platforms for quantitative high-throughput analysis of live cells and tissues. Despite unprecedented progress made over the last decade, a challenge still lies in integrating emerging nanotechnology-based tools into macroscopic biomedical apparatuses for practical purposes in biomedical sciences. In this review, we discuss the recent advances and limitations in the analysis and control of mechanical, biochemical, fluidic, and opt...

  11. DVB-S2X-enabled precoding for high throughput satellite systems

    OpenAIRE

    Arapoglou, Pantelis-Daniel; Ginesi, Alberto; Cioni, Stefano; Erl, Stefan; Clazzer, Federico; Andrenacci, Stefano; Vanelli-Coralli, Alessandro

    2015-01-01

    Multi-user multiple-input multiple-output (MU-MIMO) has allowed recent releases of terrestrial long-term evolution standards to achieve significant improvements in terms of offered system capacity. The publication of the DVB-S2X standard and particularly of its novel superframe structure is a key enabler for applying similar interference management techniques –such as precoding– to multibeam high throughput satellite (HTS) systems. This paper presents results from the European Space Agency-fu...

  12. DVB-S2x Enabled Precoding for High Throughput Satellite Systems

    OpenAIRE

    Arapoglou, Pantelis-Daniel; Ginesi, Alberto; Cioni, Stefano; Erl, Stefan; Clazzer, Federico; Andrenacci, Stefano; Vanelli-Coralli, Alessandro

    2015-01-01

    Multi-user Multiple-Input Multiple-Output (MU-MIMO) has allowed recent releases of terrestrial LTE standards to achieve significant improvements in terms of offered system capacity. The publications of the DVB-S2x standard and particularly of its novel superframe structure is a key enabler for applying similar interference management techniques -such as precoding- to multibeam High Throughput Satellite (HTS) systems. This paper presents results resulting from European Space Agency (ESA) funde...

  13. High-throughput block turbo decoding: from full-parallel architecture to FPGA prototyping

    OpenAIRE

    Leroux, Camille; Jego, Christophe; ADDE, Patrick; JEZEQUEL, Michel

    2009-01-01

    Ultra high-speed block turbo decoder architectures meet the demand for even higher data rates and open up new opportunities for the next generations of communication systems such as fiber optic transmissions. This paper presents the implementation, onto an FPGA device of an ultra high throughput block turbo code decoder. An innovative architecture of a block turbo decoder which enables the memory blocks between all half-iterations to be removed is presented. A complexity analysis of the eleme...

  14. Bioinformatics Tools for Mass Spectrometry-Based High-Throughput Quantitative Proteomics Platforms

    OpenAIRE

    Nefedov, Alexey V.; Gilski, Miroslaw J.; Sadygov, Rovshan G.

    2011-01-01

    Determining global proteome changes is important for advancing a systems biology view of cellular processes and for discovering biomarkers. Liquid chromatography, coupled to mass spectrometry, has been widely used as a proteomics technique for discovering differentially expressed proteins in biological samples. However, although a large number of high-throughput studies have identified differentially regulated proteins, only a small fraction of these results have been reproduced and independe...

  15. A versatile toolkit for high throughput functional genomics with Trichoderma reesei

    OpenAIRE

    Schuster André; Bruno Kenneth S; Collett James R; Baker Scott E; Seiboth Bernhard; Kubicek Christian P; Schmoll Monika

    2012-01-01

    Abstract Background The ascomycete fungus, Trichoderma reesei (anamorph of Hypocrea jecorina), represents a biotechnological workhorse and is currently one of the most proficient cellulase producers. While strain improvement was traditionally accomplished by random mutagenesis, a detailed understanding of cellulase regulation can only be gained using recombinant technologies. Results Aiming at high efficiency and high throughput methods, we present here a construction kit for gene knock out i...

  16. A new fungal large subunit ribosomal RNA primer for high-throughput sequencing surveys.

    Science.gov (United States)

    Mueller, Rebecca C; Gallegos-Graves, La Verne; Kuske, Cheryl R

    2016-02-01

    The inclusion of phylogenetic metrics in community ecology has provided insights into important ecological processes, particularly when combined with high-throughput sequencing methods; however, these approaches have not been widely used in studies of fungal communities relative to other microbial groups. Two obstacles have been considered: (1) the internal transcribed spacer (ITS) region has limited utility for constructing phylogenies and (2) most PCR primers that target the large subunit (LSU) ribosomal unit generate amplicons that exceed current limits of high-throughput sequencing platforms. We designed and tested a PCR primer (LR22R) to target approximately 300-400 bp region of the D2 hypervariable region of the fungal LSU for use with the Illumina MiSeq platform. Both in silico and empirical analyses showed that the LR22R-LR3 pair captured a broad range of fungal taxonomic groups with a small fraction of non-fungal groups. Phylogenetic placement of publically available LSU D2 sequences showed broad agreement with taxonomic classification. Comparisons of the LSU D2 and the ITS2 ribosomal regions from environmental samples and known communities showed similar discriminatory abilities of the two primer sets. Together, these findings show that the LR22R-LR3 primer pair has utility for phylogenetic analyses of fungal communities using high-throughput sequencing methods. PMID:26656064

  17. A human cDNA library for high-throughput protein expression screening.

    Science.gov (United States)

    Büssow, K; Nordhoff, E; Lübbert, C; Lehrach, H; Walter, G

    2000-04-01

    We have constructed a human fetal brain cDNA library in an Escherichia coli expression vector for high-throughput screening of recombinant human proteins. Using robot technology, the library was arrayed in microtiter plates and gridded onto high-density filter membranes. Putative expression clones were detected on the filters using an antibody against the N-terminal sequence RGS-His(6) of fusion proteins. Positive clones were rearrayed into a new sublibrary, and 96 randomly chosen clones were analyzed. Expression products were analyzed by SDS-PAGE, affinity purification, matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry, and the determined protein masses were compared to masses predicted from DNA sequencing data. It was found that 66% of these clones contained inserts in a correct reading frame. Sixty-four percent of the correct reading frame clones comprised the complete coding sequence of a human protein. High-throughput microtiter plate methods were developed for protein expression, extraction, purification, and mass spectrometric analyses. An enzyme assay for glyceraldehyde-3-phosphate dehydrogenase activity in native extracts was adapted to the microtiter plate format. Our data indicate that high-throughput screening of an arrayed protein expression library is an economical way of generating large numbers of clones producing recombinant human proteins for structural and functional analyses. PMID:10777659

  18. A synchronous Gigabit Ethernet protocol stack for high-throughput UDP/IP applications

    International Nuclear Information System (INIS)

    State of the art detector readout electronics require high-throughput data acquisition (DAQ) systems. In many applications, e. g. for medical imaging, the front-end electronics are set up as separate modules in a distributed DAQ. A standardized interface between the modules and a central data unit is essential. The requirements on such an interface are varied, but demand almost always a high throughput of data. Beyond this challenge, a Gigabit Ethernet interface is predestined for the broad requirements of Systems-on-a-Chip (SoC) up to large-scale DAQ systems. We have implemented an embedded protocol stack for a Field Programmable Gate Array (FPGA) capable of high-throughput data transmission and clock synchronization. A versatile stack architecture for the User Datagram Protocol (UDP) and Internet Control Message Protocol (ICMP) over Internet Protocol (IP) such as Address Resolution Protocol (ARP) as well as Precision Time Protocol (PTP) is presented. With a point-to-point connection to a host in a MicroTCA system we achieved the theoretical maximum data throughput limited by UDP both for 1000BASE-T and 1000BASE-KX links. Furthermore, we show that the random jitter of a synchronous clock over a 1000BASE-T link for a PTP application is below 60 ps

  19. A synchronous Gigabit Ethernet protocol stack for high-throughput UDP/IP applications

    Science.gov (United States)

    Födisch, P.; Lange, B.; Sandmann, J.; Büchner, A.; Enghardt, W.; Kaever, P.

    2016-01-01

    State of the art detector readout electronics require high-throughput data acquisition (DAQ) systems. In many applications, e. g. for medical imaging, the front-end electronics are set up as separate modules in a distributed DAQ. A standardized interface between the modules and a central data unit is essential. The requirements on such an interface are varied, but demand almost always a high throughput of data. Beyond this challenge, a Gigabit Ethernet interface is predestined for the broad requirements of Systems-on-a-Chip (SoC) up to large-scale DAQ systems. We have implemented an embedded protocol stack for a Field Programmable Gate Array (FPGA) capable of high-throughput data transmission and clock synchronization. A versatile stack architecture for the User Datagram Protocol (UDP) and Internet Control Message Protocol (ICMP) over Internet Protocol (IP) such as Address Resolution Protocol (ARP) as well as Precision Time Protocol (PTP) is presented. With a point-to-point connection to a host in a MicroTCA system we achieved the theoretical maximum data throughput limited by UDP both for 1000BASE-T and 1000BASE-KX links. Furthermore, we show that the random jitter of a synchronous clock over a 1000BASE-T link for a PTP application is below 60 ps.

  20. A synchronous Gigabit Ethernet protocol stack for high-throughput UDP/IP applications

    CERN Document Server

    Födisch, P; Sandmann, J; Büchner, A; Enghardt, W; Kaever, P

    2015-01-01

    State of the art detector readout electronics require high-throughput data acquisition (DAQ) systems. In many applications, e. g. for medical imaging, the front-end electronics are set up as separate modules in a distributed DAQ. A standardized interface between the modules and a central data unit is essential. The requirements on such an interface are varied, but demand almost always a high throughput of data. Beyond this challenge, a Gigabit Ethernet interface is predestined for the broad requirements of Systems-on-a-Chip (SoC) up to large-scale DAQ systems. We have implemented an embedded protocol stack for a Field Programmable Gate Array (FPGA) capable of high-throughput data transmission and clock synchronization. A versatile stack architecture for the User Datagram Protocol (UDP) and Internet Control Message Protocol (ICMP) over Internet Protocol (IP) such as Address Resolution Protocol (ARP) as well as Precision Time Protocol (PTP) is presented. With a point-to-point connection to a host in a MicroTCA ...