WorldWideScience

Sample records for automated high throughput

  1. High throughput sample processing and automated scoring

    Directory of Open Access Journals (Sweden)

    Gunnar eBrunborg

    2014-10-01

    Full Text Available The comet assay is a sensitive and versatile method for assessing DNA damage in cells. In the traditional version of the assay, there are many manual steps involved and few samples can be treated in one experiment. High throughput modifications have been developed during recent years, and they are reviewed and discussed. These modifications include accelerated scoring of comets; other important elements that have been studied and adapted to high throughput are cultivation and manipulation of cells or tissues before and after exposure, and freezing of treated samples until comet analysis and scoring. High throughput methods save time and money but they are useful also for other reasons: large-scale experiments may be performed which are otherwise not practicable (e.g., analysis of many organs from exposed animals, and human biomonitoring studies, and automation gives more uniform sample treatment and less dependence on operator performance. The high throughput modifications now available vary largely in their versatility, capacity, complexity and costs. The bottleneck for further increase of throughput appears to be the scoring.

  2. A Fully Automated High-Throughput Zebrafish Behavioral Ototoxicity Assay.

    Science.gov (United States)

    Todd, Douglas W; Philip, Rohit C; Niihori, Maki; Ringle, Ryan A; Coyle, Kelsey R; Zehri, Sobia F; Zabala, Leanne; Mudery, Jordan A; Francis, Ross H; Rodriguez, Jeffrey J; Jacob, Abraham

    2017-08-01

    Zebrafish animal models lend themselves to behavioral assays that can facilitate rapid screening of ototoxic, otoprotective, and otoregenerative drugs. Structurally similar to human inner ear hair cells, the mechanosensory hair cells on their lateral line allow the zebrafish to sense water flow and orient head-to-current in a behavior called rheotaxis. This rheotaxis behavior deteriorates in a dose-dependent manner with increased exposure to the ototoxin cisplatin, thereby establishing itself as an excellent biomarker for anatomic damage to lateral line hair cells. Building on work by our group and others, we have built a new, fully automated high-throughput behavioral assay system that uses automated image analysis techniques to quantify rheotaxis behavior. This novel system consists of a custom-designed swimming apparatus and imaging system consisting of network-controlled Raspberry Pi microcomputers capturing infrared video. Automated analysis techniques detect individual zebrafish, compute their orientation, and quantify the rheotaxis behavior of a zebrafish test population, producing a powerful, high-throughput behavioral assay. Using our fully automated biological assay to test a standardized ototoxic dose of cisplatin against varying doses of compounds that protect or regenerate hair cells may facilitate rapid translation of candidate drugs into preclinical mammalian models of hearing loss.

  3. High-throughput mouse genotyping using robotics automation.

    Science.gov (United States)

    Linask, Kaari L; Lo, Cecilia W

    2005-02-01

    The use of mouse models is rapidly expanding in biomedical research. This has dictated the need for the rapid genotyping of mutant mouse colonies for more efficient utilization of animal holding space. We have established a high-throughput protocol for mouse genotyping using two robotics workstations: a liquid-handling robot to assemble PCR and a microfluidics electrophoresis robot for PCR product analysis. This dual-robotics setup incurs lower start-up costs than a fully automated system while still minimizing human intervention. Essential to this automation scheme is the construction of a database containing customized scripts for programming the robotics workstations. Using these scripts and the robotics systems, multiple combinations of genotyping reactions can be assembled simultaneously, allowing even complex genotyping data to be generated rapidly with consistency and accuracy. A detailed protocol, database, scripts, and additional background information are available at http://dir.nhlbi.nih.gov/labs/ldb-chd/autogene/.

  4. [Morphometry of pulmonary tissue: From manual to high throughput automation].

    Science.gov (United States)

    Sallon, C; Soulet, D; Tremblay, Y

    2017-12-01

    Weibel's research has shown that any alteration of the pulmonary structure has effects on function. This demonstration required a quantitative analysis of lung structures called morphometry. This is possible thanks to stereology, a set of methods based on principles of geometry and statistics. His work has helped to better understand the morphological harmony of the lung, which is essential for its proper functioning. An imbalance leads to pathophysiology such as chronic obstructive pulmonary disease in adults and bronchopulmonary dysplasia in neonates. It is by studying this imbalance that new therapeutic approaches can be developed. These advances are achievable only through morphometric analytical methods, which are increasingly precise and focused, in particular thanks to the high-throughput automation of these methods. This review makes a comparison between an automated method that we developed in the laboratory and semi-manual methods of morphometric analyzes. The automation of morphometric measurements is a fundamental asset in the study of pulmonary pathophysiology because it is an assurance of robustness, reproducibility and speed. This tool will thus contribute significantly to the acceleration of the race for the development of new drugs. Copyright © 2017 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  5. High-Throughput Analysis and Automation for Glycomics Studies.

    Science.gov (United States)

    Shubhakar, Archana; Reiding, Karli R; Gardner, Richard A; Spencer, Daniel I R; Fernandes, Daryl L; Wuhrer, Manfred

    This review covers advances in analytical technologies for high-throughput (HTP) glycomics. Our focus is on structural studies of glycoprotein glycosylation to support biopharmaceutical realization and the discovery of glycan biomarkers for human disease. For biopharmaceuticals, there is increasing use of glycomics in Quality by Design studies to help optimize glycan profiles of drugs with a view to improving their clinical performance. Glycomics is also used in comparability studies to ensure consistency of glycosylation both throughout product development and between biosimilars and innovator drugs. In clinical studies there is as well an expanding interest in the use of glycomics-for example in Genome Wide Association Studies-to follow changes in glycosylation patterns of biological tissues and fluids with the progress of certain diseases. These include cancers, neurodegenerative disorders and inflammatory conditions. Despite rising activity in this field, there are significant challenges in performing large scale glycomics studies. The requirement is accurate identification and quantitation of individual glycan structures. However, glycoconjugate samples are often very complex and heterogeneous and contain many diverse branched glycan structures. In this article we cover HTP sample preparation and derivatization methods, sample purification, robotization, optimized glycan profiling by UHPLC, MS and multiplexed CE, as well as hyphenated techniques and automated data analysis tools. Throughout, we summarize the advantages and challenges with each of these technologies. The issues considered include reliability of the methods for glycan identification and quantitation, sample throughput, labor intensity, and affordability for large sample numbers.

  6. High-Throughput Analysis and Automation for Glycomics Studies

    NARCIS (Netherlands)

    Shubhakar, A.; Reiding, K.R.; Gardner, R.A.; Spencer, D.I.R.; Fernandes, D.L.; Wuhrer, M.

    2015-01-01

    This review covers advances in analytical technologies for high-throughput (HTP) glycomics. Our focus is on structural studies of glycoprotein glycosylation to support biopharmaceutical realization and the discovery of glycan biomarkers for human disease. For biopharmaceuticals, there is increasing

  7. Data for automated, high-throughput microscopy analysis of intracellular bacterial colonies using spot detection

    DEFF Research Database (Denmark)

    Ernstsen, Christina Lundgaard; Login, Frédéric H.; Jensen, Helene Halkjær

    2017-01-01

    Quantification of intracellular bacterial colonies is useful in strategies directed against bacterial attachment, subsequent cellular invasion and intracellular proliferation. An automated, high-throughput microscopy-method was established to quantify the number and size of intracellular bacteria...

  8. Upscaling and automation of electrophysiology: toward high throughput screening in ion channel drug discovery

    DEFF Research Database (Denmark)

    Asmild, Margit; Oswald, Nicholas; Krzywkowski, Karen M

    2003-01-01

    by developing two lines of automated patch clamp products, a traditional pipette-based system called Apatchi-1, and a silicon chip-based system QPatch. The degree of automation spans from semi-automation (Apatchi-1) where a trained technician interacts with the system in a limited way, to a complete automation...... (QPatch 96) where the system works continuously and unattended until screening of a full compound library is completed. The performance of the systems range from medium to high throughputs....

  9. High Throughput Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Argonne?s high throughput facility provides highly automated and parallel approaches to material and materials chemistry development. The facility allows scientists...

  10. Integrated Automation of High-Throughput Screening and Reverse Phase Protein Array Sample Preparation

    DEFF Research Database (Denmark)

    Pedersen, Marlene Lemvig; Block, Ines; List, Markus

    into automated robotic high-throughput screens, which allows subsequent protein quantification. In this integrated solution, samples are directly forwarded to automated cell lysate preparation and preparation of dilution series, including reformatting to a protein spotter-compatible format after the high......-throughput screening. Tracking of huge sample numbers and data analysis from a high-content screen to RPPAs is accomplished via MIRACLE, a custom made software suite developed by us. To this end, we demonstrate that the RPPAs generated in this manner deliver reliable protein readouts and that GAPDH and TFR levels can...

  11. Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy

    DEFF Research Database (Denmark)

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H

    2017-01-01

    To target bacterial pathogens that invade and proliferate inside host cells, it is necessary to design intervention strategies directed against bacterial attachment, cellular invasion and intracellular proliferation. We present an automated microscopy-based, fast, high-throughput method for analy...

  12. A Fully Automated High-Throughput Flow Cytometry Screening System Enabling Phenotypic Drug Discovery.

    Science.gov (United States)

    Joslin, John; Gilligan, James; Anderson, Paul; Garcia, Catherine; Sharif, Orzala; Hampton, Janice; Cohen, Steven; King, Miranda; Zhou, Bin; Jiang, Shumei; Trussell, Christopher; Dunn, Robert; Fathman, John W; Snead, Jennifer L; Boitano, Anthony E; Nguyen, Tommy; Conner, Michael; Cooke, Mike; Harris, Jennifer; Ainscow, Ed; Zhou, Yingyao; Shaw, Chris; Sipes, Dan; Mainquist, James; Lesley, Scott

    2018-05-01

    The goal of high-throughput screening is to enable screening of compound libraries in an automated manner to identify quality starting points for optimization. This often involves screening a large diversity of compounds in an assay that preserves a connection to the disease pathology. Phenotypic screening is a powerful tool for drug identification, in that assays can be run without prior understanding of the target and with primary cells that closely mimic the therapeutic setting. Advanced automation and high-content imaging have enabled many complex assays, but these are still relatively slow and low throughput. To address this limitation, we have developed an automated workflow that is dedicated to processing complex phenotypic assays for flow cytometry. The system can achieve a throughput of 50,000 wells per day, resulting in a fully automated platform that enables robust phenotypic drug discovery. Over the past 5 years, this screening system has been used for a variety of drug discovery programs, across many disease areas, with many molecules advancing quickly into preclinical development and into the clinic. This report will highlight a diversity of approaches that automated flow cytometry has enabled for phenotypic drug discovery.

  13. Toward reliable and repeatable automated STEM-EDS metrology with high throughput

    Science.gov (United States)

    Zhong, Zhenxin; Donald, Jason; Dutrow, Gavin; Roller, Justin; Ugurlu, Ozan; Verheijen, Martin; Bidiuk, Oleksii

    2018-03-01

    New materials and designs in complex 3D architectures in logic and memory devices have raised complexity in S/TEM metrology. In this paper, we report about a newly developed, automated, scanning transmission electron microscopy (STEM) based, energy dispersive X-ray spectroscopy (STEM-EDS) metrology method that addresses these challenges. Different methodologies toward repeatable and efficient, automated STEM-EDS metrology with high throughput are presented: we introduce the best known auto-EDS acquisition and quantification methods for robust and reliable metrology and present how electron exposure dose impacts the EDS metrology reproducibility, either due to poor signalto-noise ratio (SNR) at low dose or due to sample modifications at high dose conditions. Finally, we discuss the limitations of the STEM-EDS metrology technique and propose strategies to optimize the process both in terms of throughput and metrology reliability.

  14. Data for automated, high-throughput microscopy analysis of intracellular bacterial colonies using spot detection.

    Science.gov (United States)

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H; Nørregaard, Rikke; Møller-Jensen, Jakob; Nejsum, Lene N

    2017-10-01

    Quantification of intracellular bacterial colonies is useful in strategies directed against bacterial attachment, subsequent cellular invasion and intracellular proliferation. An automated, high-throughput microscopy-method was established to quantify the number and size of intracellular bacterial colonies in infected host cells (Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy, Ernstsen et al., 2017 [1]). The infected cells were imaged with a 10× objective and number of intracellular bacterial colonies, their size distribution and the number of cell nuclei were automatically quantified using a spot detection-tool. The spot detection-output was exported to Excel, where data analysis was performed. In this article, micrographs and spot detection data are made available to facilitate implementation of the method.

  15. Optimizing transformations for automated, high throughput analysis of flow cytometry data.

    Science.gov (United States)

    Finak, Greg; Perez, Juan-Manuel; Weng, Andrew; Gottardo, Raphael

    2010-11-04

    In a high throughput setting, effective flow cytometry data analysis depends heavily on proper data preprocessing. While usual preprocessing steps of quality assessment, outlier removal, normalization, and gating have received considerable scrutiny from the community, the influence of data transformation on the output of high throughput analysis has been largely overlooked. Flow cytometry measurements can vary over several orders of magnitude, cell populations can have variances that depend on their mean fluorescence intensities, and may exhibit heavily-skewed distributions. Consequently, the choice of data transformation can influence the output of automated gating. An appropriate data transformation aids in data visualization and gating of cell populations across the range of data. Experience shows that the choice of transformation is data specific. Our goal here is to compare the performance of different transformations applied to flow cytometry data in the context of automated gating in a high throughput, fully automated setting. We examine the most common transformations used in flow cytometry, including the generalized hyperbolic arcsine, biexponential, linlog, and generalized Box-Cox, all within the BioConductor flowCore framework that is widely used in high throughput, automated flow cytometry data analysis. All of these transformations have adjustable parameters whose effects upon the data are non-intuitive for most users. By making some modelling assumptions about the transformed data, we develop maximum likelihood criteria to optimize parameter choice for these different transformations. We compare the performance of parameter-optimized and default-parameter (in flowCore) data transformations on real and simulated data by measuring the variation in the locations of cell populations across samples, discovered via automated gating in both the scatter and fluorescence channels. We find that parameter-optimized transformations improve visualization, reduce

  16. Optimizing transformations for automated, high throughput analysis of flow cytometry data

    Directory of Open Access Journals (Sweden)

    Weng Andrew

    2010-11-01

    Full Text Available Abstract Background In a high throughput setting, effective flow cytometry data analysis depends heavily on proper data preprocessing. While usual preprocessing steps of quality assessment, outlier removal, normalization, and gating have received considerable scrutiny from the community, the influence of data transformation on the output of high throughput analysis has been largely overlooked. Flow cytometry measurements can vary over several orders of magnitude, cell populations can have variances that depend on their mean fluorescence intensities, and may exhibit heavily-skewed distributions. Consequently, the choice of data transformation can influence the output of automated gating. An appropriate data transformation aids in data visualization and gating of cell populations across the range of data. Experience shows that the choice of transformation is data specific. Our goal here is to compare the performance of different transformations applied to flow cytometry data in the context of automated gating in a high throughput, fully automated setting. We examine the most common transformations used in flow cytometry, including the generalized hyperbolic arcsine, biexponential, linlog, and generalized Box-Cox, all within the BioConductor flowCore framework that is widely used in high throughput, automated flow cytometry data analysis. All of these transformations have adjustable parameters whose effects upon the data are non-intuitive for most users. By making some modelling assumptions about the transformed data, we develop maximum likelihood criteria to optimize parameter choice for these different transformations. Results We compare the performance of parameter-optimized and default-parameter (in flowCore data transformations on real and simulated data by measuring the variation in the locations of cell populations across samples, discovered via automated gating in both the scatter and fluorescence channels. We find that parameter

  17. Automated image alignment for 2D gel electrophoresis in a high-throughput proteomics pipeline.

    Science.gov (United States)

    Dowsey, Andrew W; Dunn, Michael J; Yang, Guang-Zhong

    2008-04-01

    The quest for high-throughput proteomics has revealed a number of challenges in recent years. Whilst substantial improvements in automated protein separation with liquid chromatography and mass spectrometry (LC/MS), aka 'shotgun' proteomics, have been achieved, large-scale open initiatives such as the Human Proteome Organization (HUPO) Brain Proteome Project have shown that maximal proteome coverage is only possible when LC/MS is complemented by 2D gel electrophoresis (2-DE) studies. Moreover, both separation methods require automated alignment and differential analysis to relieve the bioinformatics bottleneck and so make high-throughput protein biomarker discovery a reality. The purpose of this article is to describe a fully automatic image alignment framework for the integration of 2-DE into a high-throughput differential expression proteomics pipeline. The proposed method is based on robust automated image normalization (RAIN) to circumvent the drawbacks of traditional approaches. These use symbolic representation at the very early stages of the analysis, which introduces persistent errors due to inaccuracies in modelling and alignment. In RAIN, a third-order volume-invariant B-spline model is incorporated into a multi-resolution schema to correct for geometric and expression inhomogeneity at multiple scales. The normalized images can then be compared directly in the image domain for quantitative differential analysis. Through evaluation against an existing state-of-the-art method on real and synthetically warped 2D gels, the proposed analysis framework demonstrates substantial improvements in matching accuracy and differential sensitivity. High-throughput analysis is established through an accelerated GPGPU (general purpose computation on graphics cards) implementation. Supplementary material, software and images used in the validation are available at http://www.proteomegrid.org/rain/.

  18. An automated high throughput screening-compatible assay to identify regulators of stem cell neural differentiation.

    Science.gov (United States)

    Casalino, Laura; Magnani, Dario; De Falco, Sandro; Filosa, Stefania; Minchiotti, Gabriella; Patriarca, Eduardo J; De Cesare, Dario

    2012-03-01

    The use of Embryonic Stem Cells (ESCs) holds considerable promise both for drug discovery programs and the treatment of degenerative disorders in regenerative medicine approaches. Nevertheless, the successful use of ESCs is still limited by the lack of efficient control of ESC self-renewal and differentiation capabilities. In this context, the possibility to modulate ESC biological properties and to obtain homogenous populations of correctly specified cells will help developing physiologically relevant screens, designed for the identification of stem cell modulators. Here, we developed a high throughput screening-suitable ESC neural differentiation assay by exploiting the Cell(maker) robotic platform and demonstrated that neural progenies can be generated from ESCs in complete automation, with high standards of accuracy and reliability. Moreover, we performed a pilot screening providing proof of concept that this assay allows the identification of regulators of ESC neural differentiation in full automation.

  19. An Automated, High-Throughput System for GISAXS and GIWAXS Measurements of Thin Films

    Science.gov (United States)

    Schaible, Eric; Jimenez, Jessica; Church, Matthew; Lim, Eunhee; Stewart, Polite; Hexemer, Alexander

    Grazing incidence small-angle X-ray scattering (GISAXS) and grazing incidence wide-angle X-ray scattering (GIWAXS) are important techniques for characterizing thin films. In order to meet rapidly increasing demand, the SAXSWAXS beamline at the Advanced Light Source (beamline 7.3.3) has implemented a fully automated, high-throughput system to conduct SAXS, GISAXS and GIWAXS measurements. An automated robot arm transfers samples from a holding tray to a measurement stage. Intelligent software aligns each sample in turn, and measures each according to user-defined specifications. Users mail in trays of samples on individually barcoded pucks, and can download and view their data remotely. Data will be pipelined to the NERSC supercomputing facility, and will be available to users via a web portal that facilitates highly parallelized analysis.

  20. Automation of a Nile red staining assay enables high throughput quantification of microalgal lipid production.

    Science.gov (United States)

    Morschett, Holger; Wiechert, Wolfgang; Oldiges, Marco

    2016-02-09

    Within the context of microalgal lipid production for biofuels and bulk chemical applications, specialized higher throughput devices for small scale parallelized cultivation are expected to boost the time efficiency of phototrophic bioprocess development. However, the increasing number of possible experiments is directly coupled to the demand for lipid quantification protocols that enable reliably measuring large sets of samples within short time and that can deal with the reduced sample volume typically generated at screening scale. To meet these demands, a dye based assay was established using a liquid handling robot to provide reproducible high throughput quantification of lipids with minimized hands-on-time. Lipid production was monitored using the fluorescent dye Nile red with dimethyl sulfoxide as solvent facilitating dye permeation. The staining kinetics of cells at different concentrations and physiological states were investigated to successfully down-scale the assay to 96 well microtiter plates. Gravimetric calibration against a well-established extractive protocol enabled absolute quantification of intracellular lipids improving precision from ±8 to ±2 % on average. Implementation into an automated liquid handling platform allows for measuring up to 48 samples within 6.5 h, reducing hands-on-time to a third compared to manual operation. Moreover, it was shown that automation enhances accuracy and precision compared to manual preparation. It was revealed that established protocols relying on optical density or cell number for biomass adjustion prior to staining may suffer from errors due to significant changes of the cells' optical and physiological properties during cultivation. Alternatively, the biovolume was used as a measure for biomass concentration so that errors from morphological changes can be excluded. The newly established assay proved to be applicable for absolute quantification of algal lipids avoiding limitations of currently established

  1. The Stanford Automated Mounter: Enabling High-Throughput Protein Crystal Screening at SSRL

    International Nuclear Information System (INIS)

    Smith, C.A.; Cohen, A.E.

    2009-01-01

    The macromolecular crystallography experiment lends itself perfectly to high-throughput technologies. The initial steps including the expression, purification, and crystallization of protein crystals, along with some of the later steps involving data processing and structure determination have all been automated to the point where some of the last remaining bottlenecks in the process have been crystal mounting, crystal screening, and data collection. At the Stanford Synchrotron Radiation Laboratory, a National User Facility that provides extremely brilliant X-ray photon beams for use in materials science, environmental science, and structural biology research, the incorporation of advanced robotics has enabled crystals to be screened in a true high-throughput fashion, thus dramatically accelerating the final steps. Up to 288 frozen crystals can be mounted by the beamline robot (the Stanford Auto-Mounting System) and screened for diffraction quality in a matter of hours without intervention. The best quality crystals can then be remounted for the collection of complete X-ray diffraction data sets. Furthermore, the entire screening and data collection experiment can be controlled from the experimenter's home laboratory by means of advanced software tools that enable network-based control of the highly automated beamlines.

  2. OptoDyCE: Automated system for high-throughput all-optical dynamic cardiac electrophysiology

    Science.gov (United States)

    Klimas, Aleksandra; Yu, Jinzhu; Ambrosi, Christina M.; Williams, John C.; Bien, Harold; Entcheva, Emilia

    2016-02-01

    In the last two decades, market were due to cardiac toxicity, where unintended interactions with ion channels disrupt the heart's normal electrical function. Consequently, all new drugs must undergo preclinical testing for cardiac liability, adding to an already expensive and lengthy process. Recognition that proarrhythmic effects often result from drug action on multiple ion channels demonstrates a need for integrative and comprehensive measurements. Additionally, patient-specific therapies relying on emerging technologies employing stem-cell derived cardiomyocytes (e.g. induced pluripotent stem-cell-derived cardiomyocytes, iPSC-CMs) require better screening methods to become practical. However, a high-throughput, cost-effective approach for cellular cardiac electrophysiology has not been feasible. Optical techniques for manipulation and recording provide a contactless means of dynamic, high-throughput testing of cells and tissues. Here, we consider the requirements for all-optical electrophysiology for drug testing, and we implement and validate OptoDyCE, a fully automated system for all-optical cardiac electrophysiology. We demonstrate the high-throughput capabilities using multicellular samples in 96-well format by combining optogenetic actuation with simultaneous fast high-resolution optical sensing of voltage or intracellular calcium. The system can also be implemented using iPSC-CMs and other cell-types by delivery of optogenetic drivers, or through the modular use of dedicated light-sensitive somatic cells in conjunction with non-modified cells. OptoDyCE provides a truly modular and dynamic screening system, capable of fully-automated acquisition of high-content information integral for improved discovery and development of new drugs and biologics, as well as providing a means of better understanding of electrical disturbances in the heart.

  3. HT-COMET: a novel automated approach for high throughput assessment of human sperm chromatin quality

    Science.gov (United States)

    Albert, Océane; Reintsch, Wolfgang E.; Chan, Peter; Robaire, Bernard

    2016-01-01

    STUDY QUESTION Can we make the comet assay (single-cell gel electrophoresis) for human sperm a more accurate and informative high throughput assay? SUMMARY ANSWER We developed a standardized automated high throughput comet (HT-COMET) assay for human sperm that improves its accuracy and efficiency, and could be of prognostic value to patients in the fertility clinic. WHAT IS KNOWN ALREADY The comet assay involves the collection of data on sperm DNA damage at the level of the single cell, allowing the use of samples from severe oligozoospermic patients. However, this makes comet scoring a low throughput procedure that renders large cohort analyses tedious. Furthermore, the comet assay comes with an inherent vulnerability to variability. Our objective is to develop an automated high throughput comet assay for human sperm that will increase both its accuracy and efficiency. STUDY DESIGN, SIZE, DURATION The study comprised two distinct components: a HT-COMET technical optimization section based on control versus DNAse treatment analyses (n = 3–5), and a cross-sectional study on 123 men presenting to a reproductive center with sperm concentrations categorized as severe oligozoospermia, oligozoospermia or normozoospermia. PARTICIPANTS/MATERIALS, SETTING, METHODS Sperm chromatin quality was measured using the comet assay: on classic 2-well slides for software comparison; on 96-well slides for HT-COMET optimization; after exposure to various concentrations of a damage-inducing agent, DNAse, using HT-COMET; on 123 subjects with different sperm concentrations using HT-COMET. Data from the 123 subjects were correlated to classic semen quality parameters and plotted as single-cell data in individual DNA damage profiles. MAIN RESULTS AND THE ROLE OF CHANCE We have developed a standard automated HT-COMET procedure for human sperm. It includes automated scoring of comets by a fully integrated high content screening setup that compares well with the most commonly used semi

  4. An Automated High Throughput Proteolysis and Desalting Platform for Quantitative Proteomic Analysis

    Directory of Open Access Journals (Sweden)

    Albert-Baskar Arul

    2013-06-01

    Full Text Available Proteomics for biomarker validation needs high throughput instrumentation to analyze huge set of clinical samples for quantitative and reproducible analysis at a minimum time without manual experimental errors. Sample preparation, a vital step in proteomics plays a major role in identification and quantification of proteins from biological samples. Tryptic digestion a major check point in sample preparation for mass spectrometry based proteomics needs to be more accurate with rapid processing time. The present study focuses on establishing a high throughput automated online system for proteolytic digestion and desalting of proteins from biological samples quantitatively and qualitatively in a reproducible manner. The present study compares online protein digestion and desalting of BSA with conventional off-line (in-solution method and validated for real time sample for reproducibility. Proteins were identified using SEQUEST data base search engine and the data were quantified using IDEALQ software. The present study shows that the online system capable of handling high throughput samples in 96 well formats carries out protein digestion and peptide desalting efficiently in a reproducible and quantitative manner. Label free quantification showed clear increase of peptide quantities with increase in concentration with much linearity compared to off line method. Hence we would like to suggest that inclusion of this online system in proteomic pipeline will be effective in quantification of proteins in comparative proteomics were the quantification is really very crucial.

  5. A cell-based high-throughput screening assay for radiation susceptibility using automated cell counting

    International Nuclear Information System (INIS)

    Hodzic, Jasmina; Dingjan, Ilse; Maas, Mariëlle JP; Meulen-Muileman, Ida H van der; Menezes, Renee X de; Heukelom, Stan; Verheij, Marcel; Gerritsen, Winald R; Geldof, Albert A; Triest, Baukelien van; Beusechem, Victor W van

    2015-01-01

    Radiotherapy is one of the mainstays in the treatment for cancer, but its success can be limited due to inherent or acquired resistance. Mechanisms underlying radioresistance in various cancers are poorly understood and available radiosensitizers have shown only modest clinical benefit. There is thus a need to identify new targets and drugs for more effective sensitization of cancer cells to irradiation. Compound and RNA interference high-throughput screening technologies allow comprehensive enterprises to identify new agents and targets for radiosensitization. However, the gold standard assay to investigate radiosensitivity of cancer cells in vitro, the colony formation assay (CFA), is unsuitable for high-throughput screening. We developed a new high-throughput screening method for determining radiation susceptibility. Fast and uniform irradiation of batches up to 30 microplates was achieved using a Perspex container and a clinically employed linear accelerator. The readout was done by automated counting of fluorescently stained nuclei using the Acumen eX3 laser scanning cytometer. Assay performance was compared to that of the CFA and the CellTiter-Blue homogeneous uniform-well cell viability assay. The assay was validated in a whole-genome siRNA library screening setting using PC-3 prostate cancer cells. On 4 different cancer cell lines, the automated cell counting assay produced radiation dose response curves that followed a linear-quadratic equation and that exhibited a better correlation to the results of the CFA than did the cell viability assay. Moreover, the cell counting assay could be used to detect radiosensitization by silencing DNA-PKcs or by adding caffeine. In a high-throughput screening setting, using 4 Gy irradiated and control PC-3 cells, the effects of DNA-PKcs siRNA and non-targeting control siRNA could be clearly discriminated. We developed a simple assay for radiation susceptibility that can be used for high-throughput screening. This will aid

  6. The Protein Maker: an automated system for high-throughput parallel purification

    International Nuclear Information System (INIS)

    Smith, Eric R.; Begley, Darren W.; Anderson, Vanessa; Raymond, Amy C.; Haffner, Taryn E.; Robinson, John I.; Edwards, Thomas E.; Duncan, Natalie; Gerdts, Cory J.; Mixon, Mark B.; Nollert, Peter; Staker, Bart L.; Stewart, Lance J.

    2011-01-01

    The Protein Maker instrument addresses a critical bottleneck in structural genomics by allowing automated purification and buffer testing of multiple protein targets in parallel with a single instrument. Here, the use of this instrument to (i) purify multiple influenza-virus proteins in parallel for crystallization trials and (ii) identify optimal lysis-buffer conditions prior to large-scale protein purification is described. The Protein Maker is an automated purification system developed by Emerald BioSystems for high-throughput parallel purification of proteins and antibodies. This instrument allows multiple load, wash and elution buffers to be used in parallel along independent lines for up to 24 individual samples. To demonstrate its utility, its use in the purification of five recombinant PB2 C-terminal domains from various subtypes of the influenza A virus is described. Three of these constructs crystallized and one diffracted X-rays to sufficient resolution for structure determination and deposition in the Protein Data Bank. Methods for screening lysis buffers for a cytochrome P450 from a pathogenic fungus prior to upscaling expression and purification are also described. The Protein Maker has become a valuable asset within the Seattle Structural Genomics Center for Infectious Disease (SSGCID) and hence is a potentially valuable tool for a variety of high-throughput protein-purification applications

  7. Detection and quantification of intracellular bacterial colonies by automated, high-throughput microscopy.

    Science.gov (United States)

    Ernstsen, Christina L; Login, Frédéric H; Jensen, Helene H; Nørregaard, Rikke; Møller-Jensen, Jakob; Nejsum, Lene N

    2017-08-01

    To target bacterial pathogens that invade and proliferate inside host cells, it is necessary to design intervention strategies directed against bacterial attachment, cellular invasion and intracellular proliferation. We present an automated microscopy-based, fast, high-throughput method for analyzing size and number of intracellular bacterial colonies in infected tissue culture cells. Cells are seeded in 48-well plates and infected with a GFP-expressing bacterial pathogen. Following gentamicin treatment to remove extracellular pathogens, cells are fixed and cell nuclei stained. This is followed by automated microscopy and subsequent semi-automated spot detection to determine the number of intracellular bacterial colonies, their size distribution, and the average number per host cell. Multiple 48-well plates can be processed sequentially and the procedure can be completed in one working day. As a model we quantified intracellular bacterial colonies formed by uropathogenic Escherichia coli (UPEC) during infection of human kidney cells (HKC-8). Urinary tract infections caused by UPEC are among the most common bacterial infectious diseases in humans. UPEC can colonize tissues of the urinary tract and is responsible for acute, chronic, and recurrent infections. In the bladder, UPEC can form intracellular quiescent reservoirs, thought to be responsible for recurrent infections. In the kidney, UPEC can colonize renal epithelial cells and pass to the blood stream, either via epithelial cell disruption or transcellular passage, to cause sepsis. Intracellular colonies are known to be clonal, originating from single invading UPEC. In our experimental setup, we found UPEC CFT073 intracellular bacterial colonies to be heterogeneous in size and present in nearly one third of the HKC-8 cells. This high-throughput experimental format substantially reduces experimental time and enables fast screening of the intracellular bacterial load and cellular distribution of multiple

  8. Improvement of an automated protein crystal exchange system PAM for high-throughput data collection

    International Nuclear Information System (INIS)

    Hiraki, Masahiko; Yamada, Yusuke; Chavas, Leonard M. G.; Wakatsuki, Soichi; Matsugaki, Naohiro

    2013-01-01

    A special liquid-nitrogen Dewar with double capacity for the sample-exchange robot has been created at AR-NE3A at the Photon Factory, allowing continuous fully automated data collection. In this work, this new system is described and the stability of its calibration is discussed. Photon Factory Automated Mounting system (PAM) protein crystal exchange systems are available at the following Photon Factory macromolecular beamlines: BL-1A, BL-5A, BL-17A, AR-NW12A and AR-NE3A. The beamline AR-NE3A has been constructed for high-throughput macromolecular crystallography and is dedicated to structure-based drug design. The PAM liquid-nitrogen Dewar can store a maximum of three SSRL cassettes. Therefore, users have to interrupt their experiments and replace the cassettes when using four or more of them during their beam time. As a result of investigation, four or more cassettes were used in AR-NE3A alone. For continuous automated data collection, the size of the liquid-nitrogen Dewar for the AR-NE3A PAM was increased, doubling the capacity. In order to check the calibration with the new Dewar and the cassette stand, calibration experiments were repeatedly performed. Compared with the current system, the parameters of the novel system are shown to be stable

  9. Improvement of an automated protein crystal exchange system PAM for high-throughput data collection

    Energy Technology Data Exchange (ETDEWEB)

    Hiraki, Masahiko, E-mail: masahiko.hiraki@kek.jp; Yamada, Yusuke; Chavas, Leonard M. G. [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Wakatsuki, Soichi [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 69, Menlo Park, CA 94025-7015 (United States); Stanford University, Beckman Center B105, Stanford, CA 94305-5126 (United States); Matsugaki, Naohiro [High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan)

    2013-11-01

    A special liquid-nitrogen Dewar with double capacity for the sample-exchange robot has been created at AR-NE3A at the Photon Factory, allowing continuous fully automated data collection. In this work, this new system is described and the stability of its calibration is discussed. Photon Factory Automated Mounting system (PAM) protein crystal exchange systems are available at the following Photon Factory macromolecular beamlines: BL-1A, BL-5A, BL-17A, AR-NW12A and AR-NE3A. The beamline AR-NE3A has been constructed for high-throughput macromolecular crystallography and is dedicated to structure-based drug design. The PAM liquid-nitrogen Dewar can store a maximum of three SSRL cassettes. Therefore, users have to interrupt their experiments and replace the cassettes when using four or more of them during their beam time. As a result of investigation, four or more cassettes were used in AR-NE3A alone. For continuous automated data collection, the size of the liquid-nitrogen Dewar for the AR-NE3A PAM was increased, doubling the capacity. In order to check the calibration with the new Dewar and the cassette stand, calibration experiments were repeatedly performed. Compared with the current system, the parameters of the novel system are shown to be stable.

  10. High-Throughput Light Sheet Microscopy for the Automated Live Imaging of Larval Zebrafish

    Science.gov (United States)

    Baker, Ryan; Logan, Savannah; Dudley, Christopher; Parthasarathy, Raghuveer

    The zebrafish is a model organism with a variety of useful properties; it is small and optically transparent, it reproduces quickly, it is a vertebrate, and there are a large variety of transgenic animals available. Because of these properties, the zebrafish is well suited to study using a variety of optical technologies including light sheet fluorescence microscopy (LSFM), which provides high-resolution three-dimensional imaging over large fields of view. Research progress, however, is often not limited by optical techniques but instead by the number of samples one can examine over the course of an experiment, which in the case of light sheet imaging has so far been severely limited. Here we present an integrated fluidic circuit and microscope which provides rapid, automated imaging of zebrafish using several imaging modes, including LSFM, Hyperspectral Imaging, and Differential Interference Contrast Microscopy. Using this system, we show that we can increase our imaging throughput by a factor of 10 compared to previous techniques. We also show preliminary results visualizing zebrafish immune response, which is sensitive to gut microbiota composition, and which shows a strong variability between individuals that highlights the utility of high throughput imaging. National Science Foundation, Award No. DBI-1427957.

  11. Recent development in software and automation tools for high-throughput discovery bioanalysis.

    Science.gov (United States)

    Shou, Wilson Z; Zhang, Jun

    2012-05-01

    Bioanalysis with LC-MS/MS has been established as the method of choice for quantitative determination of drug candidates in biological matrices in drug discovery and development. The LC-MS/MS bioanalytical support for drug discovery, especially for early discovery, often requires high-throughput (HT) analysis of large numbers of samples (hundreds to thousands per day) generated from many structurally diverse compounds (tens to hundreds per day) with a very quick turnaround time, in order to provide important activity and liability data to move discovery projects forward. Another important consideration for discovery bioanalysis is its fit-for-purpose quality requirement depending on the particular experiments being conducted at this stage, and it is usually not as stringent as those required in bioanalysis supporting drug development. These aforementioned attributes of HT discovery bioanalysis made it an ideal candidate for using software and automation tools to eliminate manual steps, remove bottlenecks, improve efficiency and reduce turnaround time while maintaining adequate quality. In this article we will review various recent developments that facilitate automation of individual bioanalytical procedures, such as sample preparation, MS/MS method development, sample analysis and data review, as well as fully integrated software tools that manage the entire bioanalytical workflow in HT discovery bioanalysis. In addition, software tools supporting the emerging high-resolution accurate MS bioanalytical approach are also discussed.

  12. High-throughput phenotyping of plant resistance to aphids by automated video tracking.

    Science.gov (United States)

    Kloth, Karen J; Ten Broeke, Cindy Jm; Thoen, Manus Pm; Hanhart-van den Brink, Marianne; Wiegers, Gerrie L; Krips, Olga E; Noldus, Lucas Pjj; Dicke, Marcel; Jongsma, Maarten A

    2015-01-01

    Piercing-sucking insects are major vectors of plant viruses causing significant yield losses in crops. Functional genomics of plant resistance to these insects would greatly benefit from the availability of high-throughput, quantitative phenotyping methods. We have developed an automated video tracking platform that quantifies aphid feeding behaviour on leaf discs to assess the level of plant resistance. Through the analysis of aphid movement, the start and duration of plant penetrations by aphids were estimated. As a case study, video tracking confirmed the near-complete resistance of lettuce cultivar 'Corbana' against Nasonovia ribisnigri (Mosely), biotype Nr:0, and revealed quantitative resistance in Arabidopsis accession Co-2 against Myzus persicae (Sulzer). The video tracking platform was benchmarked against Electrical Penetration Graph (EPG) recordings and aphid population development assays. The use of leaf discs instead of intact plants reduced the intensity of the resistance effect in video tracking, but sufficiently replicated experiments resulted in similar conclusions as EPG recordings and aphid population assays. One video tracking platform could screen 100 samples in parallel. Automated video tracking can be used to screen large plant populations for resistance to aphids and other piercing-sucking insects.

  13. Automated degenerate PCR primer design for high-throughput sequencing improves efficiency of viral sequencing

    Directory of Open Access Journals (Sweden)

    Li Kelvin

    2012-11-01

    Full Text Available Abstract Background In a high-throughput environment, to PCR amplify and sequence a large set of viral isolates from populations that are potentially heterogeneous and continuously evolving, the use of degenerate PCR primers is an important strategy. Degenerate primers allow for the PCR amplification of a wider range of viral isolates with only one set of pre-mixed primers, thus increasing amplification success rates and minimizing the necessity for genome finishing activities. To successfully select a large set of degenerate PCR primers necessary to tile across an entire viral genome and maximize their success, this process is best performed computationally. Results We have developed a fully automated degenerate PCR primer design system that plays a key role in the J. Craig Venter Institute’s (JCVI high-throughput viral sequencing pipeline. A consensus viral genome, or a set of consensus segment sequences in the case of a segmented virus, is specified using IUPAC ambiguity codes in the consensus template sequence to represent the allelic diversity of the target population. PCR primer pairs are then selected computationally to produce a minimal amplicon set capable of tiling across the full length of the specified target region. As part of the tiling process, primer pairs are computationally screened to meet the criteria for successful PCR with one of two described amplification protocols. The actual sequencing success rates for designed primers for measles virus, mumps virus, human parainfluenza virus 1 and 3, human respiratory syncytial virus A and B and human metapneumovirus are described, where >90% of designed primer pairs were able to consistently successfully amplify >75% of the isolates. Conclusions Augmenting our previously developed and published JCVI Primer Design Pipeline, we achieved similarly high sequencing success rates with only minor software modifications. The recommended methodology for the construction of the consensus

  14. High-throughput microfluidics automated cytogenetic processing for effectively lowering biological process time and aid triage during radiation accidents

    International Nuclear Information System (INIS)

    Ramakumar, Adarsh

    2016-01-01

    Nuclear or radiation mass casualties require individual, rapid, and accurate dose-based triage of exposed subjects for cytokine therapy and supportive care, to save life. Radiation mass casualties will demand high-throughput individual diagnostic dose assessment for medical management of exposed subjects. Cytogenetic techniques are widely used for triage and definitive radiation biodosimetry. Prototype platform to demonstrate high-throughput microfluidic micro incubation to support the logistics of sample in miniaturized incubators from the site of accident to analytical labs has been developed. Efforts have been made, both at the level of developing concepts and advanced system for higher throughput in processing the samples and also implementing better and efficient methods of logistics leading to performance of lab-on-chip analyses. Automated high-throughput platform with automated feature extraction, storage, cross platform data linkage, cross platform validation and inclusion of multi-parametric biomarker approaches will provide the first generation high-throughput platform systems for effective medical management, particularly during radiation mass casualty events

  15. Automated high-throughput quantification of mitotic spindle positioning from DIC movies of Caenorhabditis embryos.

    Directory of Open Access Journals (Sweden)

    David Cluet

    Full Text Available The mitotic spindle is a microtubule-based structure that elongates to accurately segregate chromosomes during anaphase. Its position within the cell also dictates the future cell cleavage plan, thereby determining daughter cell orientation within a tissue or cell fate adoption for polarized cells. Therefore, the mitotic spindle ensures at the same time proper cell division and developmental precision. Consequently, spindle dynamics is the matter of intensive research. Among the different cellular models that have been explored, the one-cell stage C. elegans embryo has been an essential and powerful system to dissect the molecular and biophysical basis of spindle elongation and positioning. Indeed, in this large and transparent cell, spindle poles (or centrosomes can be easily detected from simple DIC microscopy by human eyes. To perform quantitative and high-throughput analysis of spindle motion, we developed a computer program ACT for Automated-Centrosome-Tracking from DIC movies of C. elegans embryos. We therefore offer an alternative to the image acquisition and processing of transgenic lines expressing fluorescent spindle markers. Consequently, experiments on large sets of cells can be performed with a simple setup using inexpensive microscopes. Moreover, analysis of any mutant or wild-type backgrounds is accessible because laborious rounds of crosses with transgenic lines become unnecessary. Last, our program allows spindle detection in other nematode species, offering the same quality of DIC images but for which techniques of transgenesis are not accessible. Thus, our program also opens the way towards a quantitative evolutionary approach of spindle dynamics. Overall, our computer program is a unique macro for the image- and movie-processing platform ImageJ. It is user-friendly and freely available under an open-source licence. ACT allows batch-wise analysis of large sets of mitosis events. Within 2 minutes, a single movie is processed

  16. Fully Automated Electro Membrane Extraction Autosampler for LC-MS Systems Allowing Soft Extractions for High-Throughput Applications

    DEFF Research Database (Denmark)

    Fuchs, David; Pedersen-Bjergaard, Stig; Jensen, Henrik

    2016-01-01

    was optimized for soft extraction of analytes and high sample throughput. Further, it was demonstrated that by flushing the EME-syringe with acidic wash buffer and reverting the applied electric potential, carry-over between samples can be reduced to below 1%. Performance of the system was characterized (RSD......, a complete analytical workflow of purification, separation, and analysis of sample could be achieved within only 5.5 min. With the developed system large sequences of samples could be analyzed in a completely automated manner. This high degree of automation makes the developed EME-autosampler a powerful tool...

  17. A high sensitivity, high throughput, automated single-cell gel electrophoresis ('Comet') DNA damage assay

    International Nuclear Information System (INIS)

    Vojnovic, B.; Barber, P.R.; Johnston, P.J.; Gregory, H.C.; Locke, R.J.

    2003-01-01

    A fully automated microscopy machine vision image capture and analysis system for the collection of data from slides of 'comets' has been developed. The novel image processing algorithms employed in delineating the 'comet head' from the 'comet tail' allow us to determine accurately very low levels of damage. In conjunction with calibrated and automated image capture methods, we are able to eliminate operator subjectivity and analyse large numbers of cells (>2500) in a short time (<1 hour). The image processing algorithm is designed to handle particularly difficult nuclei containing a high degree of structure, due to DNA clumping. We also present techniques used to extend the assay's dynamic range by removing interfering background fluorescence and to define a region of interest. If subtle biological variations are to be quantified (e.g. cell cycle dependant damage), then the use of large cell populations is dictated. Under those circumstances, the use of a fully automated system is particularly advantageous providing that the manner in which data is extracted does not introduce any inadvertent bias. In practice, it is essential that the image processing steps are geared towards the correct recognition of an acceptable cell nucleus, i.e. comet 'head'. We acknowledge the financial support of CRUK, Programme Grant C133/A1812 - SP 2195-01/02 and the US Department of Energy Low Dose Radiation Research Program grant DE-FG07-99ER62878

  18. Automated high-throughput protein purification using an ÄKTApurifier and a CETAC autosampler.

    Science.gov (United States)

    Yoo, Daniel; Provchy, Justin; Park, Cynthia; Schulz, Craig; Walker, Kenneth

    2014-05-30

    As the pace of drug discovery accelerates there is an increased focus on screening larger numbers of protein therapeutic candidates to identify those that are functionally superior and to assess manufacturability earlier in the process. Although there have been advances toward high throughput (HT) cloning and expression, protein purification is still an area where improvements can be made to conventional techniques. Current methodologies for purification often involve a tradeoff between HT automation or capacity and quality. We present an ÄKTA combined with an autosampler, the ÄKTA-AS, which has the capability of purifying up to 240 samples in two chromatographic dimensions without the need for user intervention. The ÄKTA-AS has been shown to be reliable with sample volumes between 0.5 mL and 100 mL, and the innovative use of a uniquely configured loading valve ensures reliability by efficiently removing air from the system as well as preventing sample cross contamination. Incorporation of a sample pump flush minimizes sample loss and enables recoveries ranging from the low tens of micrograms to milligram quantities of protein. In addition, when used in an affinity capture-buffer exchange format the final samples are formulated in a buffer compatible with most assays without requirement of additional downstream processing. The system is designed to capture samples in 96-well microplate format allowing for seamless integration of downstream HT analytic processes such as microfluidic or HPLC analysis. Most notably, there is minimal operator intervention to operate this system, thereby increasing efficiency, sample consistency and reducing the risk of human error. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. An Automated, High-Throughput Method for Interpreting the Tandem Mass Spectra of Glycosaminoglycans

    Science.gov (United States)

    Duan, Jiana; Jonathan Amster, I.

    2018-05-01

    The biological interactions between glycosaminoglycans (GAGs) and other biomolecules are heavily influenced by structural features of the glycan. The structure of GAGs can be assigned using tandem mass spectrometry (MS2), but analysis of these data, to date, requires manually interpretation, a slow process that presents a bottleneck to the broader deployment of this approach to solving biologically relevant problems. Automated interpretation remains a challenge, as GAG biosynthesis is not template-driven, and therefore, one cannot predict structures from genomic data, as is done with proteins. The lack of a structure database, a consequence of the non-template biosynthesis, requires a de novo approach to interpretation of the mass spectral data. We propose a model for rapid, high-throughput GAG analysis by using an approach in which candidate structures are scored for the likelihood that they would produce the features observed in the mass spectrum. To make this approach tractable, a genetic algorithm is used to greatly reduce the search-space of isomeric structures that are considered. The time required for analysis is significantly reduced compared to an approach in which every possible isomer is considered and scored. The model is coded in a software package using the MATLAB environment. This approach was tested on tandem mass spectrometry data for long-chain, moderately sulfated chondroitin sulfate oligomers that were derived from the proteoglycan bikunin. The bikunin data was previously interpreted manually. Our approach examines glycosidic fragments to localize SO3 modifications to specific residues and yields the same structures reported in literature, only much more quickly.

  20. ZebraZoom: an automated program for high-throughput behavioral analysis and categorization

    Science.gov (United States)

    Mirat, Olivier; Sternberg, Jenna R.; Severi, Kristen E.; Wyart, Claire

    2013-01-01

    The zebrafish larva stands out as an emergent model organism for translational studies involving gene or drug screening thanks to its size, genetics, and permeability. At the larval stage, locomotion occurs in short episodes punctuated by periods of rest. Although phenotyping behavior is a key component of large-scale screens, it has not yet been automated in this model system. We developed ZebraZoom, a program to automatically track larvae and identify maneuvers for many animals performing discrete movements. Our program detects each episodic movement and extracts large-scale statistics on motor patterns to produce a quantification of the locomotor repertoire. We used ZebraZoom to identify motor defects induced by a glycinergic receptor antagonist. The analysis of the blind mutant atoh7 revealed small locomotor defects associated with the mutation. Using multiclass supervised machine learning, ZebraZoom categorized all episodes of movement for each larva into one of three possible maneuvers: slow forward swim, routine turn, and escape. ZebraZoom reached 91% accuracy for categorization of stereotypical maneuvers that four independent experimenters unanimously identified. For all maneuvers in the data set, ZebraZoom agreed with four experimenters in 73.2–82.5% of cases. We modeled the series of maneuvers performed by larvae as Markov chains and observed that larvae often repeated the same maneuvers within a group. When analyzing subsequent maneuvers performed by different larvae, we found that larva–larva interactions occurred as series of escapes. Overall, ZebraZoom reached the level of precision found in manual analysis but accomplished tasks in a high-throughput format necessary for large screens. PMID:23781175

  1. An Automated High Performance Capillary Liquid Chromatography Fourier Transform Ion Cyclotron Resonance Mass Spectrometer for High-Throughput Proteomics

    International Nuclear Information System (INIS)

    Belov, Mikhail E.; Anderson, Gordon A.; Wingerd, Mark A.; Udseth, Harold R.; Tang, Keqi; Prior, David C.; Swanson, Kenneth R.; Buschbach, Michael A.; Strittmatter, Eric F.; Moore, Ronald J.; Smith, Richard D.

    2004-01-01

    We report on a fully automated 9.4 tesla Fourier transform ion resonance cyclotron (FTICR) mass spectrometer coupled to reverse-phase chromatography for high-throughput proteomic studies. Modifications made to the front-end of a commercial FTICR instrument--a dual-ESI-emitter ion source; dual-channel electrodynamic ion funnel; and collisional-cooling, selection and accumulation quadrupoles--significantly improved the sensitivity, dynamic range and mass measurement accuracy of the mass spectrometer. A high-pressure capillary liquid chromatography (LC) system was incorporated with an autosampler that enabled 24 h/day operation. A novel method for accumulating ions in the ICR cell was also developed. Unattended operation of the instrument revealed the exceptional reproducibility (1-5% deviation in elution times for peptides from a bacterial proteome), repeatability (10-20% deviation in detected abundances for peptides from the same aliquot analyzed a few weeks apart) and robustness (high-throughput operation for 5 months without downtime) of the LC/FTICR system. When combined with modulated-ion-energy gated trapping, the internal calibration of FTICR mass spectra decreased dispersion of mass measurement errors for peptide identifications in conjunction with high resolution capillary LC separations to < 5 ppm over a dynamic range for each spectrum of 10 3

  2. High-throughput and automated SAXS/USAXS experiment for industrial use at BL19B2 in SPring-8

    Energy Technology Data Exchange (ETDEWEB)

    Osaka, Keiichi, E-mail: k-osaka@spring8.or.jp; Inoue, Daisuke; Sato, Masugu; Sano, Norimichi [Industrial Application Division, Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Matsumoto, Takuya; Taniguchi, Yosuke [SPring-8 Service Co., Ltd., 1-20-5, Kouto, Shingu, Tatsuno, Hyogo 679-5165 (Japan)

    2016-07-27

    A highly automated system combining a sample transfer robot with focused SR beam has been established for small-angle and ultra small-angle X-ray scattering (SAXS/USAXS) measurement at BL19B2 for industrial use of SPring-8. High-throughput data collection system can be realized by means of X-ray beam of high photon flux density concentrated by a cylindrical mirror, and a two-dimensional pixel detector PILATUS-2M. For SAXS measurement, we can obtain high-quality data within 1 minute for one exposure using this system. The sample transfer robot has a capacity of 90 samples with a large variety of shapes. The fusion of high-throughput and robotic system has enhanced the usability of SAXS/USAXS capability for industrial application.

  3. AutoLabDB: a substantial open source database schema to support a high-throughput automated laboratory.

    Science.gov (United States)

    Sparkes, Andrew; Clare, Amanda

    2012-05-15

    Modern automated laboratories need substantial data management solutions to both store and make accessible the details of the experiments they perform. To be useful, a modern Laboratory Information Management System (LIMS) should be flexible and easily extensible to support evolving laboratory requirements, and should be based on the solid foundations of a robust, well-designed database. We have developed such a database schema to support an automated laboratory that performs experiments in systems biology and high-throughput screening. We describe the design of the database schema (AutoLabDB), detailing the main features and describing why we believe it will be relevant to LIMS manufacturers or custom builders. This database has been developed to support two large automated Robot Scientist systems over the last 5 years, where it has been used as the basis of an LIMS that helps to manage both the laboratory and all the experiment data produced.

  4. High-throughput isolation of giant viruses in liquid medium using automated flow cytometry and fluorescence staining.

    Directory of Open Access Journals (Sweden)

    Jacques Yaacoub Bou Khalil

    2016-01-01

    Full Text Available The isolation of giant viruses using amoeba co-culture is tedious and fastidious. Recently, the procedure was successfully associated with a method that detects amoebal lysis on agar plates. However, the procedure remains time-consuming and is limited to protozoa growing on agar. We present here advances for the isolation of giant viruses. A high-throughput automated method based on flow cytometry and fluorescent staining was used to detect the presence of giant viruses in liquid medium. Development was carried out with the Acanthamoeba polyphaga strain widely used in past and current co-culture experiments. The proof of concept was validated with virus suspensions: artificially contaminated samples but also environmental samples from which viruses were previously isolated. After validating the technique, and fortuitously isolating a new Mimivirus, we automated the technique on 96-well plates and tested it on clinical and environmental samples using other protozoa. This allowed us to detect more than ten strains of previously known species of giant viruses and 7 new strains of a new virus lineage. This automated high-throughput method demonstrated significant time saving, and higher sensitivity than older techniques. It thus creates the means to isolate giant viruses at high speed.

  5. A high-throughput screening system for barley/powdery mildew interactions based on automated analysis of light micrographs.

    Science.gov (United States)

    Ihlow, Alexander; Schweizer, Patrick; Seiffert, Udo

    2008-01-23

    To find candidate genes that potentially influence the susceptibility or resistance of crop plants to powdery mildew fungi, an assay system based on transient-induced gene silencing (TIGS) as well as transient over-expression in single epidermal cells of barley has been developed. However, this system relies on quantitative microscopic analysis of the barley/powdery mildew interaction and will only become a high-throughput tool of phenomics upon automation of the most time-consuming steps. We have developed a high-throughput screening system based on a motorized microscope which evaluates the specimens fully automatically. A large-scale double-blind verification of the system showed an excellent agreement of manual and automated analysis and proved the system to work dependably. Furthermore, in a series of bombardment experiments an RNAi construct targeting the Mlo gene was included, which is expected to phenocopy resistance mediated by recessive loss-of-function alleles such as mlo5. In most cases, the automated analysis system recorded a shift towards resistance upon RNAi of Mlo, thus providing proof of concept for its usefulness in detecting gene-target effects. Besides saving labor and enabling a screening of thousands of candidate genes, this system offers continuous operation of expensive laboratory equipment and provides a less subjective analysis as well as a complete and enduring documentation of the experimental raw data in terms of digital images. In general, it proves the concept of enabling available microscope hardware to handle challenging screening tasks fully automatically.

  6. High-throughput in vivo genotoxicity testing: an automated readout system for the somatic mutation and recombination test (SMART.

    Directory of Open Access Journals (Sweden)

    Benoit Lombardot

    Full Text Available Genotoxicity testing is an important component of toxicity assessment. As illustrated by the European registration, evaluation, authorization, and restriction of chemicals (REACH directive, it concerns all the chemicals used in industry. The commonly used in vivo mammalian tests appear to be ill adapted to tackle the large compound sets involved, due to throughput, cost, and ethical issues. The somatic mutation and recombination test (SMART represents a more scalable alternative, since it uses Drosophila, which develops faster and requires less infrastructure. Despite these advantages, the manual scoring of the hairs on Drosophila wings required for the SMART limits its usage. To overcome this limitation, we have developed an automated SMART readout. It consists of automated imaging, followed by an image analysis pipeline that measures individual wing genotoxicity scores. Finally, we have developed a wing score-based dose-dependency approach that can provide genotoxicity profiles. We have validated our method using 6 compounds, obtaining profiles almost identical to those obtained from manual measures, even for low-genotoxicity compounds such as urethane. The automated SMART, with its faster and more reliable readout, fulfills the need for a high-throughput in vivo test. The flexible imaging strategy we describe and the analysis tools we provide should facilitate the optimization and dissemination of our methods.

  7. Automated cleaning and pre-processing of immunoglobulin gene sequences from high-throughput sequencing

    Directory of Open Access Journals (Sweden)

    Miri eMichaeli

    2012-12-01

    Full Text Available High throughput sequencing (HTS yields tens of thousands to millions of sequences that require a large amount of pre-processing work to clean various artifacts. Such cleaning cannot be performed manually. Existing programs are not suitable for immunoglobulin (Ig genes, which are variable and often highly mutated. This paper describes Ig-HTS-Cleaner (Ig High Throughput Sequencing Cleaner, a program containing a simple cleaning procedure that successfully deals with pre-processing of Ig sequences derived from HTS, and Ig-Indel-Identifier (Ig Insertion – Deletion Identifier, a program for identifying legitimate and artifact insertions and/or deletions (indels. Our programs were designed for analyzing Ig gene sequences obtained by 454 sequencing, but they are applicable to all types of sequences and sequencing platforms. Ig-HTS-Cleaner and Ig-Indel-Identifier have been implemented in Java and saved as executable JAR files, supported on Linux and MS Windows. No special requirements are needed in order to run the programs, except for correctly constructing the input files as explained in the text. The programs' performance has been tested and validated on real and simulated data sets.

  8. An automated, high-throughput plant phenotyping system using machine learning-based plant segmentation and image analysis.

    Science.gov (United States)

    Lee, Unseok; Chang, Sungyul; Putra, Gian Anantrio; Kim, Hyoungseok; Kim, Dong Hwan

    2018-01-01

    A high-throughput plant phenotyping system automatically observes and grows many plant samples. Many plant sample images are acquired by the system to determine the characteristics of the plants (populations). Stable image acquisition and processing is very important to accurately determine the characteristics. However, hardware for acquiring plant images rapidly and stably, while minimizing plant stress, is lacking. Moreover, most software cannot adequately handle large-scale plant imaging. To address these problems, we developed a new, automated, high-throughput plant phenotyping system using simple and robust hardware, and an automated plant-imaging-analysis pipeline consisting of machine-learning-based plant segmentation. Our hardware acquires images reliably and quickly and minimizes plant stress. Furthermore, the images are processed automatically. In particular, large-scale plant-image datasets can be segmented precisely using a classifier developed using a superpixel-based machine-learning algorithm (Random Forest), and variations in plant parameters (such as area) over time can be assessed using the segmented images. We performed comparative evaluations to identify an appropriate learning algorithm for our proposed system, and tested three robust learning algorithms. We developed not only an automatic analysis pipeline but also a convenient means of plant-growth analysis that provides a learning data interface and visualization of plant growth trends. Thus, our system allows end-users such as plant biologists to analyze plant growth via large-scale plant image data easily.

  9. The Upgrade Programme for the Structural Biology beamlines at the European Synchrotron Radiation Facility - High throughput sample evaluation and automation

    Science.gov (United States)

    Theveneau, P.; Baker, R.; Barrett, R.; Beteva, A.; Bowler, M. W.; Carpentier, P.; Caserotto, H.; de Sanctis, D.; Dobias, F.; Flot, D.; Guijarro, M.; Giraud, T.; Lentini, M.; Leonard, G. A.; Mattenet, M.; McCarthy, A. A.; McSweeney, S. M.; Morawe, C.; Nanao, M.; Nurizzo, D.; Ohlsson, S.; Pernot, P.; Popov, A. N.; Round, A.; Royant, A.; Schmid, W.; Snigirev, A.; Surr, J.; Mueller-Dieckmann, C.

    2013-03-01

    Automation and advances in technology are the key elements in addressing the steadily increasing complexity of Macromolecular Crystallography (MX) experiments. Much of this complexity is due to the inter-and intra-crystal heterogeneity in diffraction quality often observed for crystals of multi-component macromolecular assemblies or membrane proteins. Such heterogeneity makes high-throughput sample evaluation an important and necessary tool for increasing the chances of a successful structure determination. The introduction at the ESRF of automatic sample changers in 2005 dramatically increased the number of samples that were tested for diffraction quality. This "first generation" of automation, coupled with advances in software aimed at optimising data collection strategies in MX, resulted in a three-fold increase in the number of crystal structures elucidated per year using data collected at the ESRF. In addition, sample evaluation can be further complemented using small angle scattering experiments on the newly constructed bioSAXS facility on BM29 and the micro-spectroscopy facility (ID29S). The construction of a second generation of automated facilities on the MASSIF (Massively Automated Sample Screening Integrated Facility) beam lines will build on these advances and should provide a paradigm shift in how MX experiments are carried out which will benefit the entire Structural Biology community.

  10. Automated high-throughput measurement of body movements and cardiac activity of Xenopus tropicalis tadpoles

    Directory of Open Access Journals (Sweden)

    Kay Eckelt

    2014-07-01

    Full Text Available Xenopus tadpoles are an emerging model for developmental, genetic and behavioral studies. A small size, optical accessibility of most of their organs, together with a close genetic and structural relationship to humans make them a convenient experimental model. However, there is only a limited toolset available to measure behavior and organ function of these animals at medium or high-throughput. Herein, we describe an imaging-based platform to quantify body and autonomic movements of Xenopus tropicalis tadpoles of advanced developmental stages. Animals alternate periods of quiescence and locomotor movements and display buccal pumping for oxygen uptake from water and rhythmic cardiac movements. We imaged up to 24 animals in parallel and automatically tracked and quantified their movements by using image analysis software. Animal trajectories, moved distances, activity time, buccal pumping rates and heart beat rates were calculated and used to characterize the effects of test compounds. We evaluated the effects of propranolol and atropine, observing a dose-dependent bradycardia and tachycardia, respectively. This imaging and analysis platform is a simple, cost-effective high-throughput in vivo assay system for genetic, toxicological or pharmacological characterizations.

  11. High throughput detection of Coxiella burnetii by real-time PCR with internal control system and automated DNA preparation

    Directory of Open Access Journals (Sweden)

    Kramme Stefanie

    2008-05-01

    Full Text Available Abstract Background Coxiella burnetii is the causative agent of Q-fever, a widespread zoonosis. Due to its high environmental stability and infectivity it is regarded as a category B biological weapon agent. In domestic animals infection remains either asymptomatic or presents as infertility or abortion. Clinical presentation in humans can range from mild flu-like illness to acute pneumonia and hepatitis. Endocarditis represents the most common form of chronic Q-fever. In humans serology is the gold standard for diagnosis but is inadequate for early case detection. In order to serve as a diagnostic tool in an eventual biological weapon attack or in local epidemics we developed a real-time 5'nuclease based PCR assay with an internal control system. To facilitate high-throughput an automated extraction procedure was evaluated. Results To determine the minimum number of copies that are detectable at 95% chance probit analysis was used. Limit of detection in blood was 2,881 copies/ml [95%CI, 2,188–4,745 copies/ml] with a manual extraction procedure and 4,235 copies/ml [95%CI, 3,143–7,428 copies/ml] with a fully automated extraction procedure, respectively. To demonstrate clinical application a total of 72 specimens of animal origin were compared with respect to manual and automated extraction. A strong correlation between both methods was observed rendering both methods suitable. Testing of 247 follow up specimens of animal origin from a local Q-fever epidemic rendered real-time PCR more sensitive than conventional PCR. Conclusion A sensitive and thoroughly evaluated real-time PCR was established. Its high-throughput mode may show a useful approach to rapidly screen samples in local outbreaks for other organisms relevant for humans or animals. Compared to a conventional PCR assay sensitivity of real-time PCR was higher after testing samples from a local Q-fever outbreak.

  12. Automated Sample Preparation for Radiogenic and Non-Traditional Metal Isotopes: Removing an Analytical Barrier for High Sample Throughput

    Science.gov (United States)

    Field, M. Paul; Romaniello, Stephen; Gordon, Gwyneth W.; Anbar, Ariel D.; Herrmann, Achim; Martinez-Boti, Miguel A.; Anagnostou, Eleni; Foster, Gavin L.

    2014-05-01

    MC-ICP-MS has dramatically improved the analytical throughput for high-precision radiogenic and non-traditional isotope ratio measurements, compared to TIMS. The generation of large data sets, however, remains hampered by tedious manual drip chromatography required for sample purification. A new, automated chromatography system reduces the laboratory bottle neck and expands the utility of high-precision isotope analyses in applications where large data sets are required: geochemistry, forensic anthropology, nuclear forensics, medical research and food authentication. We have developed protocols to automate ion exchange purification for several isotopic systems (B, Ca, Fe, Cu, Zn, Sr, Cd, Pb and U) using the new prepFAST-MC™ (ESI, Nebraska, Omaha). The system is not only inert (all-flouropolymer flow paths), but is also very flexible and can easily facilitate different resins, samples, and reagent types. When programmed, precise and accurate user defined volumes and flow rates are implemented to automatically load samples, wash the column, condition the column and elute fractions. Unattended, the automated, low-pressure ion exchange chromatography system can process up to 60 samples overnight. Excellent reproducibility, reliability, recovery, with low blank and carry over for samples in a variety of different matrices, have been demonstrated to give accurate and precise isotopic ratios within analytical error for several isotopic systems (B, Ca, Fe, Cu, Zn, Sr, Cd, Pb and U). This illustrates the potential of the new prepFAST-MC™ (ESI, Nebraska, Omaha) as a powerful tool in radiogenic and non-traditional isotope research.

  13. DockoMatic: automated peptide analog creation for high throughput virtual screening.

    Science.gov (United States)

    Jacob, Reed B; Bullock, Casey W; Andersen, Tim; McDougal, Owen M

    2011-10-01

    The purpose of this manuscript is threefold: (1) to describe an update to DockoMatic that allows the user to generate cyclic peptide analog structure files based on protein database (pdb) files, (2) to test the accuracy of the peptide analog structure generation utility, and (3) to evaluate the high throughput capacity of DockoMatic. The DockoMatic graphical user interface interfaces with the software program Treepack to create user defined peptide analogs. To validate this approach, DockoMatic produced cyclic peptide analogs were tested for three-dimensional structure consistency and binding affinity against four experimentally determined peptide structure files available in the Research Collaboratory for Structural Bioinformatics database. The peptides used to evaluate this new functionality were alpha-conotoxins ImI, PnIA, and their published analogs. Peptide analogs were generated by DockoMatic and tested for their ability to bind to X-ray crystal structure models of the acetylcholine binding protein originating from Aplysia californica. The results, consisting of more than 300 simulations, demonstrate that DockoMatic predicts the binding energy of peptide structures to within 3.5 kcal mol(-1), and the orientation of bound ligand compares to within 1.8 Å root mean square deviation for ligand structures as compared to experimental data. Evaluation of high throughput virtual screening capacity demonstrated that Dockomatic can collect, evaluate, and summarize the output of 10,000 AutoDock jobs in less than 2 hours of computational time, while 100,000 jobs requires approximately 15 hours and 1,000,000 jobs is estimated to take up to a week. Copyright © 2011 Wiley Periodicals, Inc.

  14. PLAN: a web platform for automating high-throughput BLAST searches and for managing and mining results.

    Science.gov (United States)

    He, Ji; Dai, Xinbin; Zhao, Xuechun

    2007-02-09

    BLAST searches are widely used for sequence alignment. The search results are commonly adopted for various functional and comparative genomics tasks such as annotating unknown sequences, investigating gene models and comparing two sequence sets. Advances in sequencing technologies pose challenges for high-throughput analysis of large-scale sequence data. A number of programs and hardware solutions exist for efficient BLAST searching, but there is a lack of generic software solutions for mining and personalized management of the results. Systematically reviewing the results and identifying information of interest remains tedious and time-consuming. Personal BLAST Navigator (PLAN) is a versatile web platform that helps users to carry out various personalized pre- and post-BLAST tasks, including: (1) query and target sequence database management, (2) automated high-throughput BLAST searching, (3) indexing and searching of results, (4) filtering results online, (5) managing results of personal interest in favorite categories, (6) automated sequence annotation (such as NCBI NR and ontology-based annotation). PLAN integrates, by default, the Decypher hardware-based BLAST solution provided by Active Motif Inc. with a greatly improved efficiency over conventional BLAST software. BLAST results are visualized by spreadsheets and graphs and are full-text searchable. BLAST results and sequence annotations can be exported, in part or in full, in various formats including Microsoft Excel and FASTA. Sequences and BLAST results are organized in projects, the data publication levels of which are controlled by the registered project owners. In addition, all analytical functions are provided to public users without registration. PLAN has proved a valuable addition to the community for automated high-throughput BLAST searches, and, more importantly, for knowledge discovery, management and sharing based on sequence alignment results. The PLAN web interface is platform

  15. PLAN: a web platform for automating high-throughput BLAST searches and for managing and mining results

    Directory of Open Access Journals (Sweden)

    Zhao Xuechun

    2007-02-01

    Full Text Available Abstract Background BLAST searches are widely used for sequence alignment. The search results are commonly adopted for various functional and comparative genomics tasks such as annotating unknown sequences, investigating gene models and comparing two sequence sets. Advances in sequencing technologies pose challenges for high-throughput analysis of large-scale sequence data. A number of programs and hardware solutions exist for efficient BLAST searching, but there is a lack of generic software solutions for mining and personalized management of the results. Systematically reviewing the results and identifying information of interest remains tedious and time-consuming. Results Personal BLAST Navigator (PLAN is a versatile web platform that helps users to carry out various personalized pre- and post-BLAST tasks, including: (1 query and target sequence database management, (2 automated high-throughput BLAST searching, (3 indexing and searching of results, (4 filtering results online, (5 managing results of personal interest in favorite categories, (6 automated sequence annotation (such as NCBI NR and ontology-based annotation. PLAN integrates, by default, the Decypher hardware-based BLAST solution provided by Active Motif Inc. with a greatly improved efficiency over conventional BLAST software. BLAST results are visualized by spreadsheets and graphs and are full-text searchable. BLAST results and sequence annotations can be exported, in part or in full, in various formats including Microsoft Excel and FASTA. Sequences and BLAST results are organized in projects, the data publication levels of which are controlled by the registered project owners. In addition, all analytical functions are provided to public users without registration. Conclusion PLAN has proved a valuable addition to the community for automated high-throughput BLAST searches, and, more importantly, for knowledge discovery, management and sharing based on sequence alignment results

  16. A Customizable Flow Injection System for Automated, High Throughput, and Time Sensitive Ion Mobility Spectrometry and Mass Spectrometry Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Orton, Daniel J. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; Tfaily, Malak M. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; Moore, Ronald J. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; LaMarche, Brian L. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; Zheng, Xueyun [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; Fillmore, Thomas L. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; Chu, Rosalie K. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; Weitz, Karl K. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; Monroe, Matthew E. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; Kelly, Ryan T. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; Smith, Richard D. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States; Baker, Erin S. [Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, United States

    2017-12-13

    To better understand disease conditions and environmental perturbations, multi-omic studies (i.e. proteomic, lipidomic, metabolomic, etc. analyses) are vastly increasing in popularity. In a multi-omic study, a single sample is typically extracted in multiple ways and numerous analyses are performed using different instruments. Thus, one sample becomes many analyses, making high throughput and reproducible evaluations a necessity. One way to address the numerous samples and varying instrumental conditions is to utilize a flow injection analysis (FIA) system for rapid sample injection. While some FIA systems have been created to address these challenges, many have limitations such as high consumable costs, low pressure capabilities, limited pressure monitoring and fixed flow rates. To address these limitations, we created an automated, customizable FIA system capable of operating at diverse flow rates (~50 nL/min to 500 µL/min) to accommodate low- and high-flow instrument sources. This system can also operate at varying analytical throughputs from 24 to 1200 samples per day to enable different MS analysis approaches. Applications ranging from native protein analyses to molecular library construction were performed using the FIA system. The results from these studies showed a highly robust platform, providing consistent performance over many days without carryover as long as washing buffers specific to each molecular analysis were utilized.

  17. A Customizable Flow Injection System for Automated, High Throughput, and Time Sensitive Ion Mobility Spectrometry and Mass Spectrometry Measurements.

    Science.gov (United States)

    Orton, Daniel J; Tfaily, Malak M; Moore, Ronald J; LaMarche, Brian L; Zheng, Xueyun; Fillmore, Thomas L; Chu, Rosalie K; Weitz, Karl K; Monroe, Matthew E; Kelly, Ryan T; Smith, Richard D; Baker, Erin S

    2018-01-02

    To better understand disease conditions and environmental perturbations, multiomic studies combining proteomic, lipidomic, and metabolomic analyses are vastly increasing in popularity. In a multiomic study, a single sample is typically extracted in multiple ways, and various analyses are performed using different instruments, most often based upon mass spectrometry (MS). Thus, one sample becomes many measurements, making high throughput and reproducible evaluations a necessity. One way to address the numerous samples and varying instrumental conditions is to utilize a flow injection analysis (FIA) system for rapid sample injections. While some FIA systems have been created to address these challenges, many have limitations such as costly consumables, low pressure capabilities, limited pressure monitoring, and fixed flow rates. To address these limitations, we created an automated, customizable FIA system capable of operating at a range of flow rates (∼50 nL/min to 500 μL/min) to accommodate both low- and high-flow MS ionization sources. This system also functions at varying analytical throughputs from 24 to 1200 samples per day to enable different MS analysis approaches. Applications ranging from native protein analyses to molecular library construction were performed using the FIA system, and results showed a highly robust and reproducible platform capable of providing consistent performance over many days without carryover, as long as washing buffers specific to each molecular analysis were utilized.

  18. A High Throughput, 384-Well, Semi-Automated, Hepatocyte Intrinsic Clearance Assay for Screening New Molecular Entities in Drug Discovery.

    Science.gov (United States)

    Heinle, Lance; Peterkin, Vincent; de Morais, Sonia M; Jenkins, Gary J; Badagnani, Ilaria

    2015-01-01

    A high throughput, semi-automated clearance screening assay in hepatocytes was developed allowing a scientist to generate data for 96 compounds in one week. The 384-well format assay utilizes a Thermo Multidrop Combi and an optimized LC-MS/MS method. The previously reported LCMS/ MS method reduced the analytical run time by 3-fold, down to 1.2 min injection-to-injection. The Multidrop was able to deliver hepatocytes to 384-well plates with minimal viability loss. Comparison of results from the new 384-well and historical 24-well assays yielded a correlation of 0.95. In addition, results obtained for 25 marketed drugs with various metabolism pathways had a correlation of 0.75 when compared with literature values. Precision was maintained in the new format as 8 compounds tested in ≥39 independent experiments had coefficients of variation ≤21%. The ability to predict in vivo clearances using the new stability assay format was also investigated using 22 marketed drugs and 26 AbbVie compounds. Correction of intrinsic clearance values with binding to hepatocytes (in vitro data) and plasma (in vivo data) resulted in a higher in vitro to in vivo correlation when comparing 22 marketed compounds in human (0.80 vs 0.35) and 26 AbbVie Discovery compounds in rat (0.56 vs 0.17), demonstrating the importance of correcting for binding in clearance studies. This newly developed high throughput, semi-automated clearance assay allows for rapid screening of Discovery compounds to enable Structure Activity Relationship (SAR) analysis based on high quality hepatocyte stability data in sufficient quantity and quality to drive the next round of compound synthesis.

  19. High throughput automated microbial bioreactor system used for clone selection and rapid scale-down process optimization.

    Science.gov (United States)

    Velez-Suberbie, M Lourdes; Betts, John P J; Walker, Kelly L; Robinson, Colin; Zoro, Barney; Keshavarz-Moore, Eli

    2018-01-01

    High throughput automated fermentation systems have become a useful tool in early bioprocess development. In this study, we investigated a 24 x 15 mL single use microbioreactor system, ambr 15f, designed for microbial culture. We compared the fed-batch growth and production capabilities of this system for two Escherichia coli strains, BL21 (DE3) and MC4100, and two industrially relevant molecules, hGH and scFv. In addition, different carbon sources were tested using bolus, linear or exponential feeding strategies, showing the capacity of the ambr 15f system to handle automated feeding. We used power per unit volume (P/V) as a scale criterion to compare the ambr 15f with 1 L stirred bioreactors which were previously scaled-up to 20 L with a different biological system, thus showing a potential 1,300 fold scale comparability in terms of both growth and product yield. By exposing the cells grown in the ambr 15f system to a level of shear expected in an industrial centrifuge, we determined that the cells are as robust as those from a bench scale bioreactor. These results provide evidence that the ambr 15f system is an efficient high throughput microbial system that can be used for strain and molecule selection as well as rapid scale-up. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers Biotechnol. Prog., 34:58-68, 2018. © 2017 The Authors Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.

  20. Robofurnace: A semi-automated laboratory chemical vapor deposition system for high-throughput nanomaterial synthesis and process discovery

    International Nuclear Information System (INIS)

    Oliver, C. Ryan; Westrick, William; Koehler, Jeremy; Brieland-Shoultz, Anna; Anagnostopoulos-Politis, Ilias; Cruz-Gonzalez, Tizoc; Hart, A. John

    2013-01-01

    Laboratory research and development on new materials, such as nanostructured thin films, often utilizes manual equipment such as tube furnaces due to its relatively low cost and ease of setup. However, these systems can be prone to inconsistent outcomes due to variations in standard operating procedures and limitations in performance such as heating and cooling rates restrict the parameter space that can be explored. Perhaps more importantly, maximization of research throughput and the successful and efficient translation of materials processing knowledge to production-scale systems, relies on the attainment of consistent outcomes. In response to this need, we present a semi-automated lab-scale chemical vapor deposition (CVD) furnace system, called “Robofurnace.” Robofurnace is an automated CVD system built around a standard tube furnace, which automates sample insertion and removal and uses motion of the furnace to achieve rapid heating and cooling. The system has a 10-sample magazine and motorized transfer arm, which isolates the samples from the lab atmosphere and enables highly repeatable placement of the sample within the tube. The system is designed to enable continuous operation of the CVD reactor, with asynchronous loading/unloading of samples. To demonstrate its performance, Robofurnace is used to develop a rapid CVD recipe for carbon nanotube (CNT) forest growth, achieving a 10-fold improvement in CNT forest mass density compared to a benchmark recipe using a manual tube furnace. In the long run, multiple systems like Robofurnace may be linked to share data among laboratories by methods such as Twitter. Our hope is Robofurnace and like automation will enable machine learning to optimize and discover relationships in complex material synthesis processes

  1. Robofurnace: A semi-automated laboratory chemical vapor deposition system for high-throughput nanomaterial synthesis and process discovery

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, C. Ryan; Westrick, William; Koehler, Jeremy; Brieland-Shoultz, Anna; Anagnostopoulos-Politis, Ilias; Cruz-Gonzalez, Tizoc [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Hart, A. John, E-mail: ajhart@mit.edu [Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-11-15

    Laboratory research and development on new materials, such as nanostructured thin films, often utilizes manual equipment such as tube furnaces due to its relatively low cost and ease of setup. However, these systems can be prone to inconsistent outcomes due to variations in standard operating procedures and limitations in performance such as heating and cooling rates restrict the parameter space that can be explored. Perhaps more importantly, maximization of research throughput and the successful and efficient translation of materials processing knowledge to production-scale systems, relies on the attainment of consistent outcomes. In response to this need, we present a semi-automated lab-scale chemical vapor deposition (CVD) furnace system, called “Robofurnace.” Robofurnace is an automated CVD system built around a standard tube furnace, which automates sample insertion and removal and uses motion of the furnace to achieve rapid heating and cooling. The system has a 10-sample magazine and motorized transfer arm, which isolates the samples from the lab atmosphere and enables highly repeatable placement of the sample within the tube. The system is designed to enable continuous operation of the CVD reactor, with asynchronous loading/unloading of samples. To demonstrate its performance, Robofurnace is used to develop a rapid CVD recipe for carbon nanotube (CNT) forest growth, achieving a 10-fold improvement in CNT forest mass density compared to a benchmark recipe using a manual tube furnace. In the long run, multiple systems like Robofurnace may be linked to share data among laboratories by methods such as Twitter. Our hope is Robofurnace and like automation will enable machine learning to optimize and discover relationships in complex material synthesis processes.

  2. Automation of the ELISpot assay for high-throughput detection of antigen-specific T-cell responses.

    Science.gov (United States)

    Almeida, Coral-Ann M; Roberts, Steven G; Laird, Rebecca; McKinnon, Elizabeth; Ahmed, Imran; Pfafferott, Katja; Turley, Joanne; Keane, Niamh M; Lucas, Andrew; Rushton, Ben; Chopra, Abha; Mallal, Simon; John, Mina

    2009-05-15

    The enzyme linked immunospot (ELISpot) assay is a fundamental tool in cellular immunology, providing both quantitative and qualitative information on cellular cytokine responses to defined antigens. It enables the comprehensive screening of patient derived peripheral blood mononuclear cells to reveal the antigenic restriction of T-cell responses and is an emerging technique in clinical laboratory investigation of certain infectious diseases. As with all cellular-based assays, the final results of the assay are dependent on a number of technical variables that may impact precision if not highly standardised between operators. When studies that are large scale or using multiple antigens are set up manually, these assays may be labour intensive, have many manual handling steps, are subject to data and sample integrity failure and may show large inter-operator variability. Here we describe the successful automated performance of the interferon (IFN)-gamma ELISpot assay from cell counting through to electronic capture of cytokine quantitation and present the results of a comparison between automated and manual performance of the ELISpot assay. The mean number of spot forming units enumerated by both methods for limiting dilutions of CMV, EBV and influenza (CEF)-derived peptides in six healthy individuals were highly correlated (r>0.83, pautomated system compared favourably with the manual ELISpot and further ensured electronic tracking, increased through-put and reduced turnaround time.

  3. High-Throughput Screening Enhances Kidney Organoid Differentiation from Human Pluripotent Stem Cells and Enables Automated Multidimensional Phenotyping.

    Science.gov (United States)

    Czerniecki, Stefan M; Cruz, Nelly M; Harder, Jennifer L; Menon, Rajasree; Annis, James; Otto, Edgar A; Gulieva, Ramila E; Islas, Laura V; Kim, Yong Kyun; Tran, Linh M; Martins, Timothy J; Pippin, Jeffrey W; Fu, Hongxia; Kretzler, Matthias; Shankland, Stuart J; Himmelfarb, Jonathan; Moon, Randall T; Paragas, Neal; Freedman, Benjamin S

    2018-05-15

    Organoids derived from human pluripotent stem cells are a potentially powerful tool for high-throughput screening (HTS), but the complexity of organoid cultures poses a significant challenge for miniaturization and automation. Here, we present a fully automated, HTS-compatible platform for enhanced differentiation and phenotyping of human kidney organoids. The entire 21-day protocol, from plating to differentiation to analysis, can be performed automatically by liquid-handling robots, or alternatively by manual pipetting. High-content imaging analysis reveals both dose-dependent and threshold effects during organoid differentiation. Immunofluorescence and single-cell RNA sequencing identify previously undetected parietal, interstitial, and partially differentiated compartments within organoids and define conditions that greatly expand the vascular endothelium. Chemical modulation of toxicity and disease phenotypes can be quantified for safety and efficacy prediction. Screening in gene-edited organoids in this system reveals an unexpected role for myosin in polycystic kidney disease. Organoids in HTS formats thus establish an attractive platform for multidimensional phenotypic screening. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. High Throughput Petrochronology and Sedimentary Provenance Analysis by Automated Phase Mapping and LAICPMS

    Science.gov (United States)

    Vermeesch, Pieter; Rittner, Martin; Petrou, Ethan; Omma, Jenny; Mattinson, Chris; Garzanti, Eduardo

    2017-11-01

    The first step in most geochronological studies is to extract dateable minerals from the host rock, which is time consuming, removes textural context, and increases the chance for sample cross contamination. We here present a new method to rapidly perform in situ analyses by coupling a fast scanning electron microscope (SEM) with Energy Dispersive X-ray Spectrometer (EDS) to a Laser Ablation Inductively Coupled Plasma Mass Spectrometer (LAICPMS) instrument. Given a polished hand specimen, a petrographic thin section, or a grain mount, Automated Phase Mapping (APM) by SEM/EDS produces chemical and mineralogical maps from which the X-Y coordinates of the datable minerals are extracted. These coordinates are subsequently passed on to the laser ablation system for isotopic analysis. We apply the APM + LAICPMS method to three igneous, metamorphic, and sedimentary case studies. In the first case study, a polished slab of granite from Guernsey was scanned for zircon, producing a 609 ± 8 Ma weighted mean age. The second case study investigates a paragneiss from an ultra high pressure terrane in the north Qaidam terrane (Qinghai, China). One hundred seven small (25 µm) metamorphic zircons were analyzed by LAICPMS to confirm a 419 ± 4 Ma age of peak metamorphism. The third and final case study uses APM + LAICPMS to generate a large provenance data set and trace the provenance of 25 modern sediments from Angola, documenting longshore drift of Orange River sediments over a distance of 1,500 km. These examples demonstrate that APM + LAICPMS is an efficient and cost effective way to improve the quantity and quality of geochronological data.

  5. High-throughput analysis of sulfatides in cerebrospinal fluid using automated extraction and UPLC-MS/MS.

    Science.gov (United States)

    Blomqvist, Maria; Borén, Jan; Zetterberg, Henrik; Blennow, Kaj; Månsson, Jan-Eric; Ståhlman, Marcus

    2017-07-01

    Sulfatides (STs) are a group of glycosphingolipids that are highly expressed in brain. Due to their importance for normal brain function and their potential involvement in neurological diseases, development of accurate and sensitive methods for their determination is needed. Here we describe a high-throughput oriented and quantitative method for the determination of STs in cerebrospinal fluid (CSF). The STs were extracted using a fully automated liquid/liquid extraction method and quantified using ultra-performance liquid chromatography coupled to tandem mass spectrometry. With the high sensitivity of the developed method, quantification of 20 ST species from only 100 μl of CSF was performed. Validation of the method showed that the STs were extracted with high recovery (90%) and could be determined with low inter- and intra-day variation. Our method was applied to a patient cohort of subjects with an Alzheimer's disease biomarker profile. Although the total ST levels were unaltered compared with an age-matched control group, we show that the ratio of hydroxylated/nonhydroxylated STs was increased in the patient cohort. In conclusion, we believe that the fast, sensitive, and accurate method described in this study is a powerful new tool for the determination of STs in clinical as well as preclinical settings. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  6. High-throughput automated system for statistical biosensing employing microcantilevers arrays

    DEFF Research Database (Denmark)

    Bosco, Filippo; Chen, Ching H.; Hwu, En T.

    2011-01-01

    In this paper we present a completely new and fully automated system for parallel microcantilever-based biosensing. Our platform is able to monitor simultaneously the change of resonance frequency (dynamic mode), of deflection (static mode), and of surface roughness of hundreds of cantilevers...... in a very short time over multiple biochemical reactions. We have proven that our system is capable to measure 900 independent microsensors in less than a second. Here, we report statistical biosensing results performed over a haptens-antibody assay, where complete characterization of the biochemical...

  7. Novel heparan sulfate assay by using automated high-throughput mass spectrometry: Application to monitoring and screening for mucopolysaccharidoses.

    Science.gov (United States)

    Shimada, Tsutomu; Kelly, Joan; LaMarr, William A; van Vlies, Naomi; Yasuda, Eriko; Mason, Robert W; Mackenzie, William; Kubaski, Francyne; Giugliani, Roberto; Chinen, Yasutsugu; Yamaguchi, Seiji; Suzuki, Yasuyuki; Orii, Kenji E; Fukao, Toshiyuki; Orii, Tadao; Tomatsu, Shunji

    2014-01-01

    Mucopolysaccharidoses (MPS) are caused by deficiency of one of a group of specific lysosomal enzymes, resulting in excessive accumulation of glycosaminoglycans (GAGs). We previously developed GAG assay methods using liquid chromatography tandem mass spectrometry (LC-MS/MS); however, it takes 4-5 min per sample for analysis. For the large numbers of samples in a screening program, a more rapid process is desirable. The automated high-throughput mass spectrometry (HT-MS/MS) system (RapidFire) integrates a solid phase extraction robot to concentrate and desalt samples prior to direction into the MS/MS without chromatographic separation; thereby allowing each sample to be processed within 10s (enabling screening of more than one million samples per year). The aim of this study was to develop a higher throughput system to assay heparan sulfate (HS) using HT-MS/MS, and to compare its reproducibility, sensitivity and specificity with conventional LC-MS/MS. HS levels were measured in the blood (plasma and serum) from control subjects and patients with MPS II, III, or IV and in dried blood spots (DBS) from newborn controls and patients with MPS I, II, or III. Results obtained from HT-MS/MS showed 1) that there was a strong correlation of levels of disaccharides derived from HS in the blood, between those calculated using conventional LC-MS/MS and HT-MS/MS, 2) that levels of HS in the blood were significantly elevated in patients with MPS II and III, but not in MPS IVA, 3) that the level of HS in patients with a severe form of MPS II was higher than that in an attenuated form, 4) that reduction of blood HS level was observed in MPS II patients treated with enzyme replacement therapy or hematopoietic stem cell transplantation, and 5) that levels of HS in newborn DBS were elevated in patients with MPS I, II or III, compared to those of control newborns. In conclusion, HT-MS/MS provides much higher throughput than LC-MS/MS-based methods with similar sensitivity and specificity

  8. High-throughput automated microfluidic sample preparation for accurate microbial genomics.

    Science.gov (United States)

    Kim, Soohong; De Jonghe, Joachim; Kulesa, Anthony B; Feldman, David; Vatanen, Tommi; Bhattacharyya, Roby P; Berdy, Brittany; Gomez, James; Nolan, Jill; Epstein, Slava; Blainey, Paul C

    2017-01-27

    Low-cost shotgun DNA sequencing is transforming the microbial sciences. Sequencing instruments are so effective that sample preparation is now the key limiting factor. Here, we introduce a microfluidic sample preparation platform that integrates the key steps in cells to sequence library sample preparation for up to 96 samples and reduces DNA input requirements 100-fold while maintaining or improving data quality. The general-purpose microarchitecture we demonstrate supports workflows with arbitrary numbers of reaction and clean-up or capture steps. By reducing the sample quantity requirements, we enabled low-input (∼10,000 cells) whole-genome shotgun (WGS) sequencing of Mycobacterium tuberculosis and soil micro-colonies with superior results. We also leveraged the enhanced throughput to sequence ∼400 clinical Pseudomonas aeruginosa libraries and demonstrate excellent single-nucleotide polymorphism detection performance that explained phenotypically observed antibiotic resistance. Fully-integrated lab-on-chip sample preparation overcomes technical barriers to enable broader deployment of genomics across many basic research and translational applications.

  9. Automated high-throughput flow-through real-time diagnostic system

    Science.gov (United States)

    Regan, John Frederick

    2012-10-30

    An automated real-time flow-through system capable of processing multiple samples in an asynchronous, simultaneous, and parallel fashion for nucleic acid extraction and purification, followed by assay assembly, genetic amplification, multiplex detection, analysis, and decontamination. The system is able to hold and access an unlimited number of fluorescent reagents that may be used to screen samples for the presence of specific sequences. The apparatus works by associating extracted and purified sample with a series of reagent plugs that have been formed in a flow channel and delivered to a flow-through real-time amplification detector that has a multiplicity of optical windows, to which the sample-reagent plugs are placed in an operative position. The diagnostic apparatus includes sample multi-position valves, a master sample multi-position valve, a master reagent multi-position valve, reagent multi-position valves, and an optical amplification/detection system.

  10. Automation of High-Throughput Crystal Screening and Data Collection at SSRL

    International Nuclear Information System (INIS)

    Miller, Mitchell D.; Brinen, Linda S.; Deacon, Ashley M.; Bedem, Henry van den; Wolf, Guenter; Xu Qingping; Zhang Zepu; Cohen, Aina; Ellis, Paul; McPhillips, Scott E.; McPhillips, Timothy M.; Phizackerley, R. Paul; Soltis, S. Michael

    2004-01-01

    A robotic system for auto-mounting crystals from liquid nitrogen is now operational on SSRL beamlines (Cohen et al., J. Appl. Cryst. (2002). 35, 720-726). The system uses a small industrial 4-axis robot with a custom built actuator. Once mounted, automated alignment of the sample loop to the X-ray beam readies the crystal for data collection. After data collection, samples are returned to the cassette. The beamline Dewar accommodates three compact sample cassettes (holding up to 96 samples each). During the past 4 months, the system on beamline 11-1 has been used to screen over 1000 crystals. The system has reduced both screening time and manpower. Integration of the hardware components is accomplished in the Distributed Control System architecture developed at SSRL (McPhillips et al., J. Synchrotron Rad. (2002) 9, 401-406). A crystal-screening interface has been implemented in Blu-Ice. Sample details can be uploaded from an Excel spreadsheet. The JCSG generates these spreadsheets automatically from their tracking database using standard database tools (http://www.jcsg.org). New diffraction image analysis tools are being employed to aid in extracting results. Automation also permits tele-presence. For example, samples have been changed during the night without leaving home and scientists have screened crystals 1600 miles from the beamline. The system developed on beamline 11-1 has been replicated onto 1-5, 9-1, 9-2, and 11-3 and is used by both general users and the JCSG

  11. Inertial Microfluidic Cell Stretcher (iMCS): Fully Automated, High-Throughput, and Near Real-Time Cell Mechanotyping.

    Science.gov (United States)

    Deng, Yanxiang; Davis, Steven P; Yang, Fan; Paulsen, Kevin S; Kumar, Maneesh; Sinnott DeVaux, Rebecca; Wang, Xianhui; Conklin, Douglas S; Oberai, Assad; Herschkowitz, Jason I; Chung, Aram J

    2017-07-01

    Mechanical biomarkers associated with cytoskeletal structures have been reported as powerful label-free cell state identifiers. In order to measure cell mechanical properties, traditional biophysical (e.g., atomic force microscopy, micropipette aspiration, optical stretchers) and microfluidic approaches were mainly employed; however, they critically suffer from low-throughput, low-sensitivity, and/or time-consuming and labor-intensive processes, not allowing techniques to be practically used for cell biology research applications. Here, a novel inertial microfluidic cell stretcher (iMCS) capable of characterizing large populations of single-cell deformability near real-time is presented. The platform inertially controls cell positions in microchannels and deforms cells upon collision at a T-junction with large strain. The cell elongation motions are recorded, and thousands of cell deformability information is visualized near real-time similar to traditional flow cytometry. With a full automation, the entire cell mechanotyping process runs without any human intervention, realizing a user friendly and robust operation. Through iMCS, distinct cell stiffness changes in breast cancer progression and epithelial mesenchymal transition are reported, and the use of the platform for rapid cancer drug discovery is shown as well. The platform returns large populations of single-cell quantitative mechanical properties (e.g., shear modulus) on-the-fly with high statistical significances, enabling actual usages in clinical and biophysical studies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Automation in Cytomics: A Modern RDBMS Based Platform for Image Analysis and Management in High-Throughput Screening Experiments

    NARCIS (Netherlands)

    E. Larios (Enrique); Y. Zhang (Ying); K. Yan (Kuan); Z. Di; S. LeDévédec (Sylvia); F.E. Groffen (Fabian); F.J. Verbeek

    2012-01-01

    textabstractIn cytomics bookkeeping of the data generated during lab experiments is crucial. The current approach in cytomics is to conduct High-Throughput Screening (HTS) experiments so that cells can be tested under many different experimental conditions. Given the large amount of different

  13. Enhanced throughput for infrared automated DNA sequencing

    Science.gov (United States)

    Middendorf, Lyle R.; Gartside, Bill O.; Humphrey, Pat G.; Roemer, Stephen C.; Sorensen, David R.; Steffens, David L.; Sutter, Scott L.

    1995-04-01

    Several enhancements have been developed and applied to infrared automated DNA sequencing resulting in significantly higher throughput. A 41 cm sequencing gel (31 cm well- to-read distance) combines high resolution of DNA sequencing fragments with optimized run times yielding two runs per day of 500 bases per sample. A 66 cm sequencing gel (56 cm well-to-read distance) produces sequence read lengths of up to 1000 bases for ds and ss templates using either T7 polymerase or cycle-sequencing protocols. Using a multichannel syringe to load 64 lanes allows 16 samples (compatible with 96-well format) to be visualized for each run. The 41 cm gel configuration allows 16,000 bases per day (16 samples X 500 bases/sample X 2 ten hour runs/day) to be sequenced with the advantages of infrared technology. Enhancements to internal labeling techniques using an infrared-labeled dATP molecule (Boehringer Mannheim GmbH, Penzberg, Germany; Sequenase (U.S. Biochemical) have also been made. The inclusion of glycerol in the sequencing reactions yields greatly improved results for some primer and template combinations. The inclusion of (alpha) -Thio-dNTP's in the labeling reaction increases signal intensity two- to three-fold.

  14. High throughput protein production screening

    Science.gov (United States)

    Beernink, Peter T [Walnut Creek, CA; Coleman, Matthew A [Oakland, CA; Segelke, Brent W [San Ramon, CA

    2009-09-08

    Methods, compositions, and kits for the cell-free production and analysis of proteins are provided. The invention allows for the production of proteins from prokaryotic sequences or eukaryotic sequences, including human cDNAs using PCR and IVT methods and detecting the proteins through fluorescence or immunoblot techniques. This invention can be used to identify optimized PCR and WT conditions, codon usages and mutations. The methods are readily automated and can be used for high throughput analysis of protein expression levels, interactions, and functional states.

  15. A Novel Tool for High-Throughput Screening of Granulocyte-Specific Antibodies Using the Automated Flow Cytometric Granulocyte Immunofluorescence Test (Flow-GIFT

    Directory of Open Access Journals (Sweden)

    Xuan Duc Nguyen

    2011-01-01

    Full Text Available Transfusion-related acute lung injury (TRALI is a severe complication related with blood transfusion. TRALI has usually been associated with antibodies against leukocytes. The flow cytometric granulocyte immunofluorescence test (Flow-GIFT has been introduced for routine use when investigating patients and healthy blood donors. Here we describe a novel tool in the automation of the Flow-GIFT that enables a rapid screening of blood donations. We analyzed 440 sera from healthy female blood donors for the presence of granulocyte antibodies. As positive controls, 12 sera with known antibodies against anti-HNA-1a, -b, -2a; and -3a were additionally investigated. Whole-blood samples from HNA-typed donors were collected and the test cells isolated using cell sedimentation in a Ficoll density gradient. Subsequently, leukocytes were incubated with the respective serum and binding of antibodies was detected using FITC-conjugated antihuman antibody. 7-AAD was used to exclude dead cells. Pipetting steps were automated using the Biomek NXp Multichannel Automation Workstation. All samples were prepared in the 96-deep well plates and analyzed by flow cytometry. The standard granulocyte immunofluorescence test (GIFT and granulocyte agglutination test (GAT were also performed as reference methods. Sixteen sera were positive in the automated Flow-GIFT, while five of these sera were negative in the standard GIFT (anti—HNA 3a, n = 3; anti—HNA-1b, n = 1 and GAT (anti—HNA-2a, n = 1. The automated Flow-GIFT was able to detect all granulocyte antibodies, which could be only detected in GIFT in combination with GAT. In serial dilution tests, the automated Flow-GIFT detected the antibodies at higher dilutions than the reference methods GIFT and GAT. The Flow-GIFT proved to be feasible for automation. This novel high-throughput system allows an effective antigranulocyte antibody detection in a large donor population in order to prevent TRALI due to transfusion of

  16. A novel tool for high-throughput screening of granulocyte-specific antibodies using the automated flow cytometric granulocyte immunofluorescence test (Flow-GIFT).

    Science.gov (United States)

    Nguyen, Xuan Duc; Dengler, Thomas; Schulz-Linkholt, Monika; Klüter, Harald

    2011-02-03

    Transfusion-related acute lung injury (TRALI) is a severe complication related with blood transfusion. TRALI has usually been associated with antibodies against leukocytes. The flow cytometric granulocyte immunofluorescence test (Flow-GIFT) has been introduced for routine use when investigating patients and healthy blood donors. Here we describe a novel tool in the automation of the Flow-GIFT that enables a rapid screening of blood donations. We analyzed 440 sera from healthy female blood donors for the presence of granulocyte antibodies. As positive controls, 12 sera with known antibodies against anti-HNA-1a, -b, -2a; and -3a were additionally investigated. Whole-blood samples from HNA-typed donors were collected and the test cells isolated using cell sedimentation in a Ficoll density gradient. Subsequently, leukocytes were incubated with the respective serum and binding of antibodies was detected using FITC-conjugated antihuman antibody. 7-AAD was used to exclude dead cells. Pipetting steps were automated using the Biomek NXp Multichannel Automation Workstation. All samples were prepared in the 96-deep well plates and analyzed by flow cytometry. The standard granulocyte immunofluorescence test (GIFT) and granulocyte agglutination test (GAT) were also performed as reference methods. Sixteen sera were positive in the automated Flow-GIFT, while five of these sera were negative in the standard GIFT (anti-HNA 3a, n = 3; anti-HNA-1b, n = 1) and GAT (anti-HNA-2a, n = 1). The automated Flow-GIFT was able to detect all granulocyte antibodies, which could be only detected in GIFT in combination with GAT. In serial dilution tests, the automated Flow-GIFT detected the antibodies at higher dilutions than the reference methods GIFT and GAT. The Flow-GIFT proved to be feasible for automation. This novel high-throughput system allows an effective antigranulocyte antibody detection in a large donor population in order to prevent TRALI due to transfusion of blood products.

  17. Reducing the cost of semi-automated in-gel tryptic digestion and GeLC sample preparation for high-throughput proteomics.

    Science.gov (United States)

    Ruelcke, Jayde E; Loo, Dorothy; Hill, Michelle M

    2016-10-21

    Peptide generation by trypsin digestion is typically the first step in mass spectrometry-based proteomics experiments, including 'bottom-up' discovery and targeted proteomics using multiple reaction monitoring. Manual tryptic digest and the subsequent clean-up steps can add variability even before the sample reaches the analytical platform. While specialized filter plates and tips have been designed for automated sample processing, the specialty reagents required may not be accessible or feasible due to their high cost. Here, we report a lower-cost semi-automated protocol for in-gel digestion and GeLC using standard 96-well microplates. Further cost savings were realized by re-using reagent tips with optimized sample ordering. To evaluate the methodology, we compared a simple mixture of 7 proteins and a complex cell-lysate sample. The results across three replicates showed that our semi-automated protocol had performance equal to or better than a manual in-gel digestion with respect to replicate variability and level of contamination. In this paper, we also provide the Agilent Bravo method file, which can be adapted to other liquid handlers. The simplicity, reproducibility, and cost-effectiveness of our semi-automated protocol make it ideal for routine in-gel and GeLC sample preparations, as well as high throughput processing of large clinical sample cohorts. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. The Upgrade Programme for the Structural Biology beamlines at the European Synchrotron Radiation Facility – High throughput sample evaluation and automation

    International Nuclear Information System (INIS)

    Theveneau, P; Baker, R; Barrett, R; Beteva, A; Bowler, M W; Carpentier, P; Caserotto, H; Sanctis, D de; Dobias, F; Flot, D; Guijarro, M; Giraud, T; Lentini, M; Leonard, G A; Mattenet, M; McSweeney, S M; Morawe, C; Nurizzo, D; McCarthy, A A; Nanao, M

    2013-01-01

    Automation and advances in technology are the key elements in addressing the steadily increasing complexity of Macromolecular Crystallography (MX) experiments. Much of this complexity is due to the inter-and intra-crystal heterogeneity in diffraction quality often observed for crystals of multi-component macromolecular assemblies or membrane proteins. Such heterogeneity makes high-throughput sample evaluation an important and necessary tool for increasing the chances of a successful structure determination. The introduction at the ESRF of automatic sample changers in 2005 dramatically increased the number of samples that were tested for diffraction quality. This 'first generation' of automation, coupled with advances in software aimed at optimising data collection strategies in MX, resulted in a three-fold increase in the number of crystal structures elucidated per year using data collected at the ESRF. In addition, sample evaluation can be further complemented using small angle scattering experiments on the newly constructed bioSAXS facility on BM29 and the micro-spectroscopy facility (ID29S). The construction of a second generation of automated facilities on the MASSIF (Massively Automated Sample Screening Integrated Facility) beam lines will build on these advances and should provide a paradigm shift in how MX experiments are carried out which will benefit the entire Structural Biology community.

  19. Automated profiling of individual cell-cell interactions from high-throughput time-lapse imaging microscopy in nanowell grids (TIMING).

    Science.gov (United States)

    Merouane, Amine; Rey-Villamizar, Nicolas; Lu, Yanbin; Liadi, Ivan; Romain, Gabrielle; Lu, Jennifer; Singh, Harjeet; Cooper, Laurence J N; Varadarajan, Navin; Roysam, Badrinath

    2015-10-01

    There is a need for effective automated methods for profiling dynamic cell-cell interactions with single-cell resolution from high-throughput time-lapse imaging data, especially, the interactions between immune effector cells and tumor cells in adoptive immunotherapy. Fluorescently labeled human T cells, natural killer cells (NK), and various target cells (NALM6, K562, EL4) were co-incubated on polydimethylsiloxane arrays of sub-nanoliter wells (nanowells), and imaged using multi-channel time-lapse microscopy. The proposed cell segmentation and tracking algorithms account for cell variability and exploit the nanowell confinement property to increase the yield of correctly analyzed nanowells from 45% (existing algorithms) to 98% for wells containing one effector and a single target, enabling automated quantification of cell locations, morphologies, movements, interactions, and deaths without the need for manual proofreading. Automated analysis of recordings from 12 different experiments demonstrated automated nanowell delineation accuracy >99%, automated cell segmentation accuracy >95%, and automated cell tracking accuracy of 90%, with default parameters, despite variations in illumination, staining, imaging noise, cell morphology, and cell clustering. An example analysis revealed that NK cells efficiently discriminate between live and dead targets by altering the duration of conjugation. The data also demonstrated that cytotoxic cells display higher motility than non-killers, both before and during contact. broysam@central.uh.edu or nvaradar@central.uh.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. High-throughput scoring of seed germination

    NARCIS (Netherlands)

    Ligterink, Wilco; Hilhorst, Henk W.M.

    2017-01-01

    High-throughput analysis of seed germination for phenotyping large genetic populations or mutant collections is very labor intensive and would highly benefit from an automated setup. Although very often used, the total germination percentage after a nominated period of time is not very

  1. A mobile, high-throughput semi-automated system for testing cognition in large non-primate animal models of Huntington disease.

    Science.gov (United States)

    McBride, Sebastian D; Perentos, Nicholas; Morton, A Jennifer

    2016-05-30

    For reasons of cost and ethical concerns, models of neurodegenerative disorders such as Huntington disease (HD) are currently being developed in farm animals, as an alternative to non-human primates. Developing reliable methods of testing cognitive function is essential to determining the usefulness of such models. Nevertheless, cognitive testing of farm animal species presents a unique set of challenges. The primary aims of this study were to develop and validate a mobile operant system suitable for high throughput cognitive testing of sheep. We designed a semi-automated testing system with the capability of presenting stimuli (visual, auditory) and reward at six spatial locations. Fourteen normal sheep were used to validate the system using a two-choice visual discrimination task. Four stages of training devised to acclimatise animals to the system are also presented. All sheep progressed rapidly through the training stages, over eight sessions. All sheep learned the 2CVDT and performed at least one reversal stage. The mean number of trials the sheep took to reach criterion in the first acquisition learning was 13.9±1.5 and for the reversal learning was 19.1±1.8. This is the first mobile semi-automated operant system developed for testing cognitive function in sheep. We have designed and validated an automated operant behavioural testing system suitable for high throughput cognitive testing in sheep and other medium-sized quadrupeds, such as pigs and dogs. Sheep performance in the two-choice visual discrimination task was very similar to that reported for non-human primates and strongly supports the use of farm animals as pre-clinical models for the study of neurodegenerative diseases. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Qgui: A high-throughput interface for automated setup and analysis of free energy calculations and empirical valence bond simulations in biological systems.

    Science.gov (United States)

    Isaksen, Geir Villy; Andberg, Tor Arne Heim; Åqvist, Johan; Brandsdal, Bjørn Olav

    2015-07-01

    Structural information and activity data has increased rapidly for many protein targets during the last decades. In this paper, we present a high-throughput interface (Qgui) for automated free energy and empirical valence bond (EVB) calculations that use molecular dynamics (MD) simulations for conformational sampling. Applications to ligand binding using both the linear interaction energy (LIE) method and the free energy perturbation (FEP) technique are given using the estrogen receptor (ERα) as a model system. Examples of free energy profiles obtained using the EVB method for the rate-limiting step of the enzymatic reaction catalyzed by trypsin are also shown. In addition, we present calculation of high-precision Arrhenius plots to obtain the thermodynamic activation enthalpy and entropy with Qgui from running a large number of EVB simulations. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Reduced dimensionality (3,2)D NMR experiments and their automated analysis: implications to high-throughput structural studies on proteins.

    Science.gov (United States)

    Reddy, Jithender G; Kumar, Dinesh; Hosur, Ramakrishna V

    2015-02-01

    Protein NMR spectroscopy has expanded dramatically over the last decade into a powerful tool for the study of their structure, dynamics, and interactions. The primary requirement for all such investigations is sequence-specific resonance assignment. The demand now is to obtain this information as rapidly as possible and in all types of protein systems, stable/unstable, soluble/insoluble, small/big, structured/unstructured, and so on. In this context, we introduce here two reduced dimensionality experiments – (3,2)D-hNCOcanH and (3,2)D-hNcoCAnH – which enhance the previously described 2D NMR-based assignment methods quite significantly. Both the experiments can be recorded in just about 2-3 h each and hence would be of immense value for high-throughput structural proteomics and drug discovery research. The applicability of the method has been demonstrated using alpha-helical bovine apo calbindin-D9k P43M mutant (75 aa) protein. Automated assignment of this data using AUTOBA has been presented, which enhances the utility of these experiments. The backbone resonance assignments so derived are utilized to estimate secondary structures and the backbone fold using Web-based algorithms. Taken together, we believe that the method and the protocol proposed here can be used for routine high-throughput structural studies of proteins. Copyright © 2014 John Wiley & Sons, Ltd.

  4. WebPrInSeS: automated full-length clone sequence identification and verification using high-throughput sequencing data.

    Science.gov (United States)

    Massouras, Andreas; Decouttere, Frederik; Hens, Korneel; Deplancke, Bart

    2010-07-01

    High-throughput sequencing (HTS) is revolutionizing our ability to obtain cheap, fast and reliable sequence information. Many experimental approaches are expected to benefit from the incorporation of such sequencing features in their pipeline. Consequently, software tools that facilitate such an incorporation should be of great interest. In this context, we developed WebPrInSeS, a web server tool allowing automated full-length clone sequence identification and verification using HTS data. WebPrInSeS encompasses two separate software applications. The first is WebPrInSeS-C which performs automated sequence verification of user-defined open-reading frame (ORF) clone libraries. The second is WebPrInSeS-E, which identifies positive hits in cDNA or ORF-based library screening experiments such as yeast one- or two-hybrid assays. Both tools perform de novo assembly using HTS data from any of the three major sequencing platforms. Thus, WebPrInSeS provides a highly integrated, cost-effective and efficient way to sequence-verify or identify clones of interest. WebPrInSeS is available at http://webprinses.epfl.ch/ and is open to all users.

  5. Automation and integration of polymerase chain reaction with capillary electrophoresis for high throughput genotyping and disease diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, N.

    1999-02-12

    Genotyping is to detect specific loci in the human genome. These loci provide important information for forensic testing, construction of genetic linkage maps, gene related disease diagnosis and pharmacogenetic research. Genotyping is becoming more and more popular after these loci can be easily amplified by polymerase chain reaction (PCR). Capillary electrophoresis has its unique advantages for DNA analysis due to its fast heat dissipation and ease of automation. Four projects are described in which genotyping is performed by capillary electrophoresis emphasizing different aspects. First, the author demonstrates a principle to determine the genotype based on capillary electrophoresis system. VNTR polymorphism in the human D1S80 locus was studied. Second, the separation of four short tandem repeat (STR) loci vWF, THO1, TPOX and CSF1PO (CTTv) by using poly(ethylene oxide) (PEO) was studied in achieving high resolution and preventing rehybridization of the DNA fragments. Separation under denaturing, non-denaturing conditions and at elevated temperature was discussed. Third, a 250 {micro}m i.d., 365 {micro}m o.d. fused silica capillary was used as the microreactor for PCR. Fourth, direct PCR from blood was studied to simplify the sample preparation for genotyping to minimum.

  6. Automated mini-column solid-phase extraction cleanup for high-throughput analysis of chemical contaminants in foods by low-pressure gas chromatography – tandem mass spectrometry

    Science.gov (United States)

    This study demonstrated the application of an automated high-throughput mini-cartridge solid-phase extraction (mini-SPE) cleanup for the rapid low-pressure gas chromatography – tandem mass spectrometry (LPGC-MS/MS) analysis of pesticides and environmental contaminants in QuEChERS extracts of foods. ...

  7. High-throughput screening of cellulase F mutants from multiplexed plasmid sets using an automated plate assay on a functional proteomic robotic workcell

    Directory of Open Access Journals (Sweden)

    Qureshi Nasib

    2006-05-01

    Full Text Available Abstract Background The field of plasmid-based functional proteomics requires the rapid assay of proteins expressed from plasmid libraries. Automation is essential since large sets of mutant open reading frames are being cloned for evaluation. To date no integrated automated platform is available to carry out the entire process including production of plasmid libraries, expression of cloned genes, and functional testing of expressed proteins. Results We used a functional proteomic assay in a multiplexed setting on an integrated plasmid-based robotic workcell for high-throughput screening of mutants of cellulase F, an endoglucanase from the anaerobic fungus Orpinomyces PC-2. This allowed us to identify plasmids containing optimized clones expressing mutants with improved activity at lower pH. A plasmid library of mutagenized clones of the celF gene with targeted variations in the last four codons was constructed by site-directed PCR mutagenesis and transformed into Escherichia coli. A robotic picker integrated into the workcell was used to inoculate medium in a 96-well deep well plate, combining the transformants into a multiplexed set in each well, and the plate was incubated on the workcell. Plasmids were prepared from the multiplexed culture on the liquid handler component of the workcell and used for in vitro transcription/translation. The multiplexed expressed recombinant proteins were screened for improved activity and stability in an azo-carboxymethylcellulose plate assay. The multiplexed wells containing mutants with improved activity were identified and linked back to the corresponding multiplexed cultures stored in glycerol. Spread plates were prepared from the glycerol stocks and the workcell was used to pick single colonies from the spread plates, prepare plasmid, produce recombinant protein, and assay for activity. The screening assay and subsequent deconvolution of the multiplexed wells resulted in identification of improved Cel

  8. Automation methodologies and large-scale validation for G W : Towards high-throughput G W calculations

    Science.gov (United States)

    van Setten, M. J.; Giantomassi, M.; Gonze, X.; Rignanese, G.-M.; Hautier, G.

    2017-10-01

    The search for new materials based on computational screening relies on methods that accurately predict, in an automatic manner, total energy, atomic-scale geometries, and other fundamental characteristics of materials. Many technologically important material properties directly stem from the electronic structure of a material, but the usual workhorse for total energies, namely density-functional theory, is plagued by fundamental shortcomings and errors from approximate exchange-correlation functionals in its prediction of the electronic structure. At variance, the G W method is currently the state-of-the-art ab initio approach for accurate electronic structure. It is mostly used to perturbatively correct density-functional theory results, but is, however, computationally demanding and also requires expert knowledge to give accurate results. Accordingly, it is not presently used in high-throughput screening: fully automatized algorithms for setting up the calculations and determining convergence are lacking. In this paper, we develop such a method and, as a first application, use it to validate the accuracy of G0W0 using the PBE starting point and the Godby-Needs plasmon-pole model (G0W0GN @PBE) on a set of about 80 solids. The results of the automatic convergence study utilized provide valuable insights. Indeed, we find correlations between computational parameters that can be used to further improve the automatization of G W calculations. Moreover, we find that G0W0GN @PBE shows a correlation between the PBE and the G0W0GN @PBE gaps that is much stronger than that between G W and experimental gaps. However, the G0W0GN @PBE gaps still describe the experimental gaps more accurately than a linear model based on the PBE gaps. With this paper, we hence show that G W can be made automatic and is more accurate than using an empirical correction of the PBE gap, but that, for accurate predictive results for a broad class of materials, an improved starting point or some

  9. New frontiers in Combinatorial and High-Throughput Materials and Polymer Research: 3rd DPI workshop on automated synthesis and high-throughput experimentation in Polymer and Materials Research at the Eindhoven University of Technology

    NARCIS (Netherlands)

    Adams, N.; Schubert, U.S.

    2005-01-01

    The Third International Workshop on Combinatorial and High-Throughput Materials and Polymer Research, sponsored and organized by the Dutch Polymer Institute (DPI), took place at the Eindhoven University of Technol., The Netherlands, on May 26 - 27, 2004. The workshop's purpose is two-fold: its

  10. metaBIT, an integrative and automated metagenomic pipeline for analysing microbial profiles from high-throughput sequencing shotgun data

    DEFF Research Database (Denmark)

    Louvel, Guillaume; Der Sarkissian, Clio; Hanghøj, Kristian Ebbesen

    2016-01-01

    -throughput DNA sequencing (HTS). Here, we develop metaBIT, an open-source computational pipeline automatizing routine microbial profiling of shotgun HTS data. Customizable by the user at different stringency levels, it performs robust taxonomy-based assignment and relative abundance calculation of microbial taxa......, as well as cross-sample statistical analyses of microbial diversity distributions. We demonstrate the versatility of metaBIT within a range of published HTS data sets sampled from the environment (soil and seawater) and the human body (skin and gut), but also from archaeological specimens. We present......-friendly profiling of the microbial DNA present in HTS shotgun data sets. The applications of metaBIT are vast, from monitoring of laboratory errors and contaminations, to the reconstruction of past and present microbiota, and the detection of candidate species, including pathogens....

  11. High-throughput, 384-well, LC-MS/MS CYP inhibition assay using automation, cassette-analysis technique, and streamlined data analysis.

    Science.gov (United States)

    Halladay, Jason S; Delarosa, Erlie Marie; Tran, Daniel; Wang, Leslie; Wong, Susan; Khojasteh, S Cyrus

    2011-08-01

    Here we describe a high capacity and high-throughput, automated, 384-well CYP inhibition assay using well-known HLM-based MS probes. We provide consistently robust IC(50) values at the lead optimization stage of the drug discovery process. Our method uses the Agilent Technologies/Velocity11 BioCel 1200 system, timesaving techniques for sample analysis, and streamlined data processing steps. For each experiment, we generate IC(50) values for up to 344 compounds and positive controls for five major CYP isoforms (probe substrate): CYP1A2 (phenacetin), CYP2C9 ((S)-warfarin), CYP2C19 ((S)-mephenytoin), CYP2D6 (dextromethorphan), and CYP3A4/5 (testosterone and midazolam). Each compound is incubated separately at four concentrations with each CYP probe substrate under the optimized incubation condition. Each incubation is quenched with acetonitrile containing the deuterated internal standard of the respective metabolite for each probe substrate. To minimize the number of samples to be analyzed by LC-MS/MS and reduce the amount of valuable MS runtime, we utilize timesaving techniques of cassette analysis (pooling the incubation samples at the end of each CYP probe incubation into one) and column switching (reducing the amount of MS runtime). Here we also report on the comparison of IC(50) results for five major CYP isoforms using our method compared to values reported in the literature.

  12. Fully-Automated High-Throughput NMR System for Screening of Haploid Kernels of Maize (Corn by Measurement of Oil Content.

    Directory of Open Access Journals (Sweden)

    Hongzhi Wang

    Full Text Available One of the modern crop breeding techniques uses doubled haploid plants that contain an identical pair of chromosomes in order to accelerate the breeding process. Rapid haploid identification method is critical for large-scale selections of double haploids. The conventional methods based on the color of the endosperm and embryo seeds are slow, manual and prone to error. On the other hand, there exists a significant difference between diploid and haploid seeds generated by high oil inducer, which makes it possible to use oil content to identify the haploid. This paper describes a fully-automated high-throughput NMR screening system for maize haploid kernel identification. The system is comprised of a sampler unit to select a single kernel to feed for measurement of NMR and weight, and a kernel sorter to distribute the kernel according to the measurement result. Tests of the system show a consistent accuracy of 94% with an average screening time of 4 seconds per kernel. Field test result is described and the directions for future improvement are discussed.

  13. Fully-Automated High-Throughput NMR System for Screening of Haploid Kernels of Maize (Corn) by Measurement of Oil Content

    Science.gov (United States)

    Xu, Xiaoping; Huang, Qingming; Chen, Shanshan; Yang, Peiqiang; Chen, Shaojiang; Song, Yiqiao

    2016-01-01

    One of the modern crop breeding techniques uses doubled haploid plants that contain an identical pair of chromosomes in order to accelerate the breeding process. Rapid haploid identification method is critical for large-scale selections of double haploids. The conventional methods based on the color of the endosperm and embryo seeds are slow, manual and prone to error. On the other hand, there exists a significant difference between diploid and haploid seeds generated by high oil inducer, which makes it possible to use oil content to identify the haploid. This paper describes a fully-automated high-throughput NMR screening system for maize haploid kernel identification. The system is comprised of a sampler unit to select a single kernel to feed for measurement of NMR and weight, and a kernel sorter to distribute the kernel according to the measurement result. Tests of the system show a consistent accuracy of 94% with an average screening time of 4 seconds per kernel. Field test result is described and the directions for future improvement are discussed. PMID:27454427

  14. Automated High-Throughput Genotyping for Study of Global Epidemiology of Mycobacterium tuberculosis Based on Mycobacterial Interspersed Repetitive Units

    Science.gov (United States)

    Supply, Philip; Lesjean, Sarah; Savine, Evgueni; Kremer, Kristin; van Soolingen, Dick; Locht, Camille

    2001-01-01

    Large-scale genotyping of Mycobacterium tuberculosis is especially challenging, as the current typing methods are labor-intensive and the results are difficult to compare among laboratories. Here, automated typing based on variable-number tandem repeats (VNTRs) of genetic elements named mycobacterial interspersed repetitive units (MIRUs) in 12 mammalian minisatellite-like loci of M. tuberculosis is presented. This system combines analysis of multiplex PCRs on a fluorescence-based DNA analyzer with computerized automation of the genotyping. Analysis of a blinded reference set of 90 strains from 38 countries (K. Kremer et al., J. Clin. Microbiol. 37:2607–2618, 1999) demonstrated that it is 100% reproducible, sensitive, and specific for M. tuberculosis complex isolates, a performance that has not been achieved by any other typing method tested in the same conditions. MIRU-VNTRs can be used for analysis of the global genetic diversity of M. tuberculosis complex strains at different levels of evolutionary divergence. To fully exploit the portability of this typing system, a website was set up for the analysis of M. tuberculosis MIRU-VNTR genotypes via the Internet. This opens the way for global epidemiological surveillance of tuberculosis and should lead to novel insights into the evolutionary and population genetics of this major pathogen. PMID:11574573

  15. Automated processing of label-free Raman microscope images of macrophage cells with standardized regression for high-throughput analysis.

    Science.gov (United States)

    Milewski, Robert J; Kumagai, Yutaro; Fujita, Katsumasa; Standley, Daron M; Smith, Nicholas I

    2010-11-19

    Macrophages represent the front lines of our immune system; they recognize and engulf pathogens or foreign particles thus initiating the immune response. Imaging macrophages presents unique challenges, as most optical techniques require labeling or staining of the cellular compartments in order to resolve organelles, and such stains or labels have the potential to perturb the cell, particularly in cases where incomplete information exists regarding the precise cellular reaction under observation. Label-free imaging techniques such as Raman microscopy are thus valuable tools for studying the transformations that occur in immune cells upon activation, both on the molecular and organelle levels. Due to extremely low signal levels, however, Raman microscopy requires sophisticated image processing techniques for noise reduction and signal extraction. To date, efficient, automated algorithms for resolving sub-cellular features in noisy, multi-dimensional image sets have not been explored extensively. We show that hybrid z-score normalization and standard regression (Z-LSR) can highlight the spectral differences within the cell and provide image contrast dependent on spectral content. In contrast to typical Raman imaging processing methods using multivariate analysis, such as single value decomposition (SVD), our implementation of the Z-LSR method can operate nearly in real-time. In spite of its computational simplicity, Z-LSR can automatically remove background and bias in the signal, improve the resolution of spatially distributed spectral differences and enable sub-cellular features to be resolved in Raman microscopy images of mouse macrophage cells. Significantly, the Z-LSR processed images automatically exhibited subcellular architectures whereas SVD, in general, requires human assistance in selecting the components of interest. The computational efficiency of Z-LSR enables automated resolution of sub-cellular features in large Raman microscopy data sets without

  16. Development of automated analytical systems for large throughput

    International Nuclear Information System (INIS)

    Ernst, P.C.; Hoffman, E.L.

    1982-01-01

    The need to be able to handle a large throughput of samples for neutron activation analysis has led to the development of automated counting and sample handling systems. These are coupled with available computer-assisted INAA techniques to perform a wide range of analytical services on a commercial basis. A fully automated delayed neutron counting system and a computer controlled pneumatic transfer for INAA use are described, as is a multi-detector gamma-spectroscopy system. (author)

  17. High throughput detection of Coxiella burnetii by real-time PCR with internal control system and automated DNA preparation

    OpenAIRE

    Panning, Marcus; Kilwinski, Jochen; Greiner-Fischer, Susanne; Peters, Martin; Kramme, Stefanie; Frangoulidis, Dimitrios; Meyer, Hermann; Henning, Klaus; Drosten, Christian

    2008-01-01

    Abstract Background Coxiella burnetii is the causative agent of Q-fever, a widespread zoonosis. Due to its high environmental stability and infectivity it is regarded as a category B biological weapon agent. In domestic animals infection remains either asymptomatic or presents as infertility or abortion. Clinical presentation in humans can range from mild flu-like illness to acute pneumonia and hepatitis. Endocarditis represents the most common form of chronic Q-fever. In humans serology is t...

  18. High-throughput continuous cryopump

    International Nuclear Information System (INIS)

    Foster, C.A.

    1986-01-01

    A cryopump with a unique method of regeneration which allows continuous operation at high throughput has been constructed and tested. Deuterium was pumped continuously at a throughput of 30 Torr.L/s at a speed of 2000 L/s and a compression ratio of 200. Argon was pumped at a throughput of 60 Torr.L/s at a speed of 1275 L/s. To produce continuous operation of the pump, a method of regeneration that does not thermally cycle the pump is employed. A small chamber (the ''snail'') passes over the pumping surface and removes the frost from it either by mechanical action with a scraper or by local heating. The material removed is topologically in a secondary vacuum system with low conductance into the primary vacuum; thus, the exhaust can be pumped at pressures up to an effective compression ratio determined by the ratio of the pumping speed to the leakage conductance of the snail. The pump, which is all-metal-sealed and dry and which regenerates every 60 s, would be an ideal system for pumping tritium. Potential fusion applications are for mpmp limiters, for repeating pneumatic pellet injection lines, and for the centrifuge pellet injector spin tank, all of which will require pumping tritium at high throughput. Industrial applications requiring ultraclean pumping of corrosive gases at high throughput, such as the reactive ion etch semiconductor process, may also be feasible

  19. High Throughput Transcriptomics @ USEPA (Toxicology ...

    Science.gov (United States)

    The ideal chemical testing approach will provide complete coverage of all relevant toxicological responses. It should be sensitive and specific It should identify the mechanism/mode-of-action (with dose-dependence). It should identify responses relevant to the species of interest. Responses should ideally be translated into tissue-, organ-, and organism-level effects. It must be economical and scalable. Using a High Throughput Transcriptomics platform within US EPA provides broader coverage of biological activity space and toxicological MOAs and helps fill the toxicological data gap. Slide presentation at the 2016 ToxForum on using High Throughput Transcriptomics at US EPA for broader coverage biological activity space and toxicological MOAs.

  20. High-throughput automated parallel evaluation of zinc-based catalysts for the copolymerization of CHO and CO2 to polycarbonates

    NARCIS (Netherlands)

    Meerendonk, van W.J.; Duchateau, R.; Koning, C.E.; Gruter, G.J.M.

    2004-01-01

    Copolymn. of CO2 and oxiranes using a high-pressure autoclave typically allows one expt. per reactor per day. A high-throughput parallel setup was developed and validated for the copolymn. of CO2 and cyclohxene oxide (CHO) with two b-diiminato zinc complexes. The catalyst activity is affected by

  1. Integrated automation for continuous high-throughput synthetic chromosome assembly and transformation to identify improved yeast strains for industrial production of peptide sweetener brazzein

    Science.gov (United States)

    Production and recycling of recombinant sweetener peptides in industrial biorefineries involves the evaluation of large numbers of genes and proteins. High-throughput integrated robotic molecular biology platforms that have the capacity to rapidly synthesize, clone, and express heterologous gene ope...

  2. High throughput production of mouse monoclonal antibodies using antigen microarrays

    DEFF Research Database (Denmark)

    De Masi, Federico; Chiarella, P.; Wilhelm, H.

    2005-01-01

    Recent advances in proteomics research underscore the increasing need for high-affinity monoclonal antibodies, which are still generated with lengthy, low-throughput antibody production techniques. Here we present a semi-automated, high-throughput method of hybridoma generation and identification....... Monoclonal antibodies were raised to different targets in single batch runs of 6-10 wk using multiplexed immunisations, automated fusion and cell-culture, and a novel antigen-coated microarray-screening assay. In a large-scale experiment, where eight mice were immunized with ten antigens each, we generated...

  3. High-Throughput Scoring of Seed Germination.

    Science.gov (United States)

    Ligterink, Wilco; Hilhorst, Henk W M

    2017-01-01

    High-throughput analysis of seed germination for phenotyping large genetic populations or mutant collections is very labor intensive and would highly benefit from an automated setup. Although very often used, the total germination percentage after a nominated period of time is not very informative as it lacks information about start, rate, and uniformity of germination, which are highly indicative of such traits as dormancy, stress tolerance, and seed longevity. The calculation of cumulative germination curves requires information about germination percentage at various time points. We developed the GERMINATOR package: a simple, highly cost-efficient, and flexible procedure for high-throughput automatic scoring and evaluation of germination that can be implemented without the use of complex robotics. The GERMINATOR package contains three modules: (I) design of experimental setup with various options to replicate and randomize samples; (II) automatic scoring of germination based on the color contrast between the protruding radicle and seed coat on a single image; and (III) curve fitting of cumulative germination data and the extraction, recap, and visualization of the various germination parameters. GERMINATOR is a freely available package that allows the monitoring and analysis of several thousands of germination tests, several times a day by a single person.

  4. An Automated Method for High-Throughput Screening of Arabidopsis Rosette Growth in Multi-Well Plates and Its Validation in Stress Conditions

    Czech Academy of Sciences Publication Activity Database

    De Diego, N.; Fürst, T.; Humplík, Jan; Ugena, L.; Podlešáková, K.; Spíchal, L.

    2017-01-01

    Roč. 8, OCT 4 (2017), č. článku 1702. ISSN 1664-462X R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : salt stress * chlorophyll fluorescence * salinity tolerance * plant-responses * cold-tolerance * water-deficit * thaliana * selection * platform * reveals * high-throughput screening assay * Arabidopsis * multi-well plates * rosette growth * stress conditions Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 4.298, year: 2016

  5. High throughput nonparametric probability density estimation.

    Science.gov (United States)

    Farmer, Jenny; Jacobs, Donald

    2018-01-01

    In high throughput applications, such as those found in bioinformatics and finance, it is important to determine accurate probability distribution functions despite only minimal information about data characteristics, and without using human subjectivity. Such an automated process for univariate data is implemented to achieve this goal by merging the maximum entropy method with single order statistics and maximum likelihood. The only required properties of the random variables are that they are continuous and that they are, or can be approximated as, independent and identically distributed. A quasi-log-likelihood function based on single order statistics for sampled uniform random data is used to empirically construct a sample size invariant universal scoring function. Then a probability density estimate is determined by iteratively improving trial cumulative distribution functions, where better estimates are quantified by the scoring function that identifies atypical fluctuations. This criterion resists under and over fitting data as an alternative to employing the Bayesian or Akaike information criterion. Multiple estimates for the probability density reflect uncertainties due to statistical fluctuations in random samples. Scaled quantile residual plots are also introduced as an effective diagnostic to visualize the quality of the estimated probability densities. Benchmark tests show that estimates for the probability density function (PDF) converge to the true PDF as sample size increases on particularly difficult test probability densities that include cases with discontinuities, multi-resolution scales, heavy tails, and singularities. These results indicate the method has general applicability for high throughput statistical inference.

  6. Preliminary High-Throughput Metagenome Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Dusheyko, Serge; Furman, Craig; Pangilinan, Jasmyn; Shapiro, Harris; Tu, Hank

    2007-03-26

    Metagenome data sets present a qualitatively different assembly problem than traditional single-organism whole-genome shotgun (WGS) assembly. The unique aspects of such projects include the presence of a potentially large number of distinct organisms and their representation in the data set at widely different fractions. In addition, multiple closely related strains could be present, which would be difficult to assemble separately. Failure to take these issues into account can result in poor assemblies that either jumble together different strains or which fail to yield useful results. The DOE Joint Genome Institute has sequenced a number of metagenomic projects and plans to considerably increase this number in the coming year. As a result, the JGI has a need for high-throughput tools and techniques for handling metagenome projects. We present the techniques developed to handle metagenome assemblies in a high-throughput environment. This includes a streamlined assembly wrapper, based on the JGI?s in-house WGS assembler, Jazz. It also includes the selection of sensible defaults targeted for metagenome data sets, as well as quality control automation for cleaning up the raw results. While analysis is ongoing, we will discuss preliminary assessments of the quality of the assembly results (http://fames.jgi-psf.org).

  7. High Throughput Plasma Water Treatment

    Science.gov (United States)

    Mujovic, Selman; Foster, John

    2016-10-01

    The troublesome emergence of new classes of micro-pollutants, such as pharmaceuticals and endocrine disruptors, poses challenges for conventional water treatment systems. In an effort to address these contaminants and to support water reuse in drought stricken regions, new technologies must be introduced. The interaction of water with plasma rapidly mineralizes organics by inducing advanced oxidation in addition to other chemical, physical and radiative processes. The primary barrier to the implementation of plasma-based water treatment is process volume scale up. In this work, we investigate a potentially scalable, high throughput plasma water reactor that utilizes a packed bed dielectric barrier-like geometry to maximize the plasma-water interface. Here, the water serves as the dielectric medium. High-speed imaging and emission spectroscopy are used to characterize the reactor discharges. Changes in methylene blue concentration and basic water parameters are mapped as a function of plasma treatment time. Experimental results are compared to electrostatic and plasma chemistry computations, which will provide insight into the reactor's operation so that efficiency can be assessed. Supported by NSF (CBET 1336375).

  8. High-Throughput Analysis of Enzyme Activities

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Guoxin [Iowa State Univ., Ames, IA (United States)

    2007-01-01

    High-throughput screening (HTS) techniques have been applied to many research fields nowadays. Robot microarray printing technique and automation microtiter handling technique allows HTS performing in both heterogeneous and homogeneous formats, with minimal sample required for each assay element. In this dissertation, new HTS techniques for enzyme activity analysis were developed. First, patterns of immobilized enzyme on nylon screen were detected by multiplexed capillary system. The imaging resolution is limited by the outer diameter of the capillaries. In order to get finer images, capillaries with smaller outer diameters can be used to form the imaging probe. Application of capillary electrophoresis allows separation of the product from the substrate in the reaction mixture, so that the product doesn't have to have different optical properties with the substrate. UV absorption detection allows almost universal detection for organic molecules. Thus, no modifications of either the substrate or the product molecules are necessary. This technique has the potential to be used in screening of local distribution variations of specific bio-molecules in a tissue or in screening of multiple immobilized catalysts. Another high-throughput screening technique is developed by directly monitoring the light intensity of the immobilized-catalyst surface using a scientific charge-coupled device (CCD). Briefly, the surface of enzyme microarray is focused onto a scientific CCD using an objective lens. By carefully choosing the detection wavelength, generation of product on an enzyme spot can be seen by the CCD. Analyzing the light intensity change over time on an enzyme spot can give information of reaction rate. The same microarray can be used for many times. Thus, high-throughput kinetic studies of hundreds of catalytic reactions are made possible. At last, we studied the fluorescence emission spectra of ADP and obtained the detection limits for ADP under three different

  9. Automated analysis of high-throughput B-cell sequencing data reveals a high frequency of novel immunoglobulin V gene segment alleles.

    Science.gov (United States)

    Gadala-Maria, Daniel; Yaari, Gur; Uduman, Mohamed; Kleinstein, Steven H

    2015-02-24

    Individual variation in germline and expressed B-cell immunoglobulin (Ig) repertoires has been associated with aging, disease susceptibility, and differential response to infection and vaccination. Repertoire properties can now be studied at large-scale through next-generation sequencing of rearranged Ig genes. Accurate analysis of these repertoire-sequencing (Rep-Seq) data requires identifying the germline variable (V), diversity (D), and joining (J) gene segments used by each Ig sequence. Current V(D)J assignment methods work by aligning sequences to a database of known germline V(D)J segment alleles. However, existing databases are likely to be incomplete and novel polymorphisms are hard to differentiate from the frequent occurrence of somatic hypermutations in Ig sequences. Here we develop a Tool for Ig Genotype Elucidation via Rep-Seq (TIgGER). TIgGER analyzes mutation patterns in Rep-Seq data to identify novel V segment alleles, and also constructs a personalized germline database containing the specific set of alleles carried by a subject. This information is then used to improve the initial V segment assignments from existing tools, like IMGT/HighV-QUEST. The application of TIgGER to Rep-Seq data from seven subjects identified 11 novel V segment alleles, including at least one in every subject examined. These novel alleles constituted 13% of the total number of unique alleles in these subjects, and impacted 3% of V(D)J segment assignments. These results reinforce the highly polymorphic nature of human Ig V genes, and suggest that many novel alleles remain to be discovered. The integration of TIgGER into Rep-Seq processing pipelines will increase the accuracy of V segment assignments, thus improving B-cell repertoire analyses.

  10. Reverse Phase Protein Arrays for High-throughput Toxicity Screening

    DEFF Research Database (Denmark)

    Pedersen, Marlene Lemvig; Block, Ines; List, Markus

    High-throughput screening is extensively applied for identification of drug targets and drug discovery and recently it found entry into toxicity testing. Reverse phase protein arrays (RPPAs) are used widespread for quantification of protein markers. We reasoned that RPPAs also can be utilized...... beneficially in automated high-throughput toxicity testing. An advantage of using RPPAs is that, in addition to the baseline toxicity readout, they allow testing of multiple markers of toxicity, such as inflammatory responses, which do not necessarily cumulate in cell death. We used transfection of si......RNAs with known killing effects as a model system to demonstrate that RPPA-based protein quantification can serve as substitute readout of cell viability, hereby reliably reflecting toxicity. In terms of automation, cell exposure, protein harvest, serial dilution and sample reformatting were performed using...

  11. Advances in analytical tools for high throughput strain engineering

    DEFF Research Database (Denmark)

    Marcellin, Esteban; Nielsen, Lars Keld

    2018-01-01

    The emergence of inexpensive, base-perfect genome editing is revolutionising biology. Modern industrial biotechnology exploits the advances in genome editing in combination with automation, analytics and data integration to build high-throughput automated strain engineering pipelines also known...... as biofoundries. Biofoundries replace the slow and inconsistent artisanal processes used to build microbial cell factories with an automated design–build–test cycle, considerably reducing the time needed to deliver commercially viable strains. Testing and hence learning remains relatively shallow, but recent...... advances in analytical chemistry promise to increase the depth of characterization possible. Analytics combined with models of cellular physiology in automated systems biology pipelines should enable deeper learning and hence a steeper pitch of the learning cycle. This review explores the progress...

  12. High-throughput and automated diagnosis of antimicrobial resistance using a cost-effective cellphone-based micro-plate reader

    Science.gov (United States)

    Feng, Steve; Tseng, Derek; di Carlo, Dino; Garner, Omai B.; Ozcan, Aydogan

    2016-12-01

    Routine antimicrobial susceptibility testing (AST) can prevent deaths due to bacteria and reduce the spread of multi-drug-resistance, but cannot be regularly performed in resource-limited-settings due to technological challenges, high-costs, and lack of trained professionals. We demonstrate an automated and cost-effective cellphone-based 96-well microtiter-plate (MTP) reader, capable of performing AST without the need for trained diagnosticians. Our system includes a 3D-printed smartphone attachment that holds and illuminates the MTP using a light-emitting-diode array. An inexpensive optical fiber-array enables the capture of the transmitted light of each well through the smartphone camera. A custom-designed application sends the captured image to a server to automatically determine well-turbidity, with results returned to the smartphone in ~1 minute. We tested this mobile-reader using MTPs prepared with 17 antibiotics targeting Gram-negative bacteria on clinical isolates of Klebsiella pneumoniae, containing highly-resistant antimicrobial profiles. Using 78 patient isolate test-plates, we demonstrated that our mobile-reader meets the FDA-defined AST criteria, with a well-turbidity detection accuracy of 98.21%, minimum-inhibitory-concentration accuracy of 95.12%, and a drug-susceptibility interpretation accuracy of 99.23%, with no very major errors. This mobile-reader could eliminate the need for trained diagnosticians to perform AST, reduce the cost-barrier for routine testing, and assist in spatio-temporal tracking of bacterial resistance.

  13. Automated microfluidic sample-preparation platform for high-throughput structural investigation of proteins by small-angle X-ray scattering

    DEFF Research Database (Denmark)

    Lafleur, Josiane P.; Snakenborg, Detlef; Nielsen, Søren Skou

    2011-01-01

    A new microfluidic sample-preparation system is presented for the structural investigation of proteins using small-angle X-ray scattering (SAXS) at synchrotrons. The system includes hardware and software features for precise fluidic control, sample mixing by diffusion, automated X-ray exposure...... control, UV absorbance measurements and automated data analysis. As little as 15 l of sample is required to perform a complete analysis cycle, including sample mixing, SAXS measurement, continuous UV absorbance measurements, and cleaning of the channels and X-ray cell with buffer. The complete analysis...

  14. BioXTAS RAW, a software program for high-throughput automated small-angle X-ray scattering data reduction and preliminary analysis

    DEFF Research Database (Denmark)

    Nielsen, S.S.; Toft, K.N.; Snakenborg, Detlef

    2009-01-01

    A fully open source software program for automated two-dimensional and one-dimensional data reduction and preliminary analysis of isotropic small-angle X-ray scattering (SAXS) data is presented. The program is freely distributed, following the open-source philosophy, and does not rely on any...... commercial software packages. BioXTAS RAW is a fully automated program that, via an online feature, reads raw two-dimensional SAXS detector output files and processes and plots data as the data files are created during measurement sessions. The software handles all steps in the data reduction. This includes...... mask creation, radial averaging, error bar calculation, artifact removal, normalization and q calibration. Further data reduction such as background subtraction and absolute intensity scaling is fast and easy via the graphical user interface. BioXTAS RAW also provides preliminary analysis of one...

  15. Development of scalable high throughput fermentation approaches for physiological characterisation of yeast and filamentous fungi

    DEFF Research Database (Denmark)

    Knudsen, Peter Boldsen

    producing the heterologous model polyketide, 6-methylsalicylic acid (6-MSA). An automated methodology for high throughput screening focusing on growth rates, together with a fully automated method for quantitative physiological characterisation in microtiter plates, was established for yeast. Full...

  16. High Throughput Analysis of Photocatalytic Water Purification

    NARCIS (Netherlands)

    Sobral Romao, J.I.; Baiao Barata, David; Habibovic, Pamela; Mul, Guido; Baltrusaitis, Jonas

    2014-01-01

    We present a novel high throughput photocatalyst efficiency assessment method based on 96-well microplates and UV-Vis spectroscopy. We demonstrate the reproducibility of the method using methyl orange (MO) decomposition, and compare kinetic data obtained with those provided in the literature for

  17. Advances in Automated Plankton Imaging: Enhanced Throughput, Automated Staining, and Extended Deployment Modes for Imaging FlowCytobot

    Science.gov (United States)

    Sosik, H. M.; Olson, R. J.; Brownlee, E.; Brosnahan, M.; Crockford, E. T.; Peacock, E.; Shalapyonok, A.

    2016-12-01

    Imaging FlowCytobot (IFCB) was developed to fill a need for automated identification and monitoring of nano- and microplankton, especially phytoplankton in the size range 10 200 micrometer, which are important in coastal blooms (including harmful algal blooms). IFCB uses a combination of flow cytometric and video technology to capture high resolution (1 micrometer) images of suspended particles. This proven, now commercially available, submersible instrument technology has been deployed in fixed time series locations for extended periods (months to years) and in shipboard laboratories where underway water is automatically analyzed during surveys. Building from these successes, we have now constructed and evaluated three new prototype IFCB designs that extend measurement and deployment capabilities. To improve cell counting statistics without degrading image quality, a high throughput version (IFCB-HT) incorporates in-flow acoustic focusing to non-disruptively pre-concentrate cells before the measurement area of the flow cell. To extend imaging to all heterotrophic cells (even those that do not exhibit chlorophyll fluorescence), Staining IFCB (IFCB-S) incorporates automated addition of a live-cell fluorescent stain (fluorescein diacetate) to samples before analysis. A horizontally-oriented IFCB-AV design addresses the need for spatial surveying from surface autonomous vehicles, including design features that reliably eliminate air bubbles and mitigate wave motion impacts. Laboratory evaluation and test deployments in waters near Woods Hole show the efficacy of each of these enhanced IFCB designs.

  18. High Throughput In Situ XAFS Screening of Catalysts

    International Nuclear Information System (INIS)

    Tsapatsaris, Nikolaos; Beesley, Angela M.; Weiher, Norbert; Tatton, Helen; Schroeder, Sven L. M.; Dent, Andy J.; Mosselmans, Frederick J. W.; Tromp, Moniek; Russu, Sergio; Evans, John; Harvey, Ian; Hayama, Shu

    2007-01-01

    We outline and demonstrate the feasibility of high-throughput (HT) in situ XAFS for synchrotron radiation studies. An XAS data acquisition and control system for the analysis of dynamic materials libraries under control of temperature and gaseous environments has been developed. The system is compatible with the 96-well industry standard and coupled to multi-stream quadrupole mass spectrometry (QMS) analysis of reactor effluents. An automated analytical workflow generates data quickly compared to traditional individual spectrum acquisition and analyses them in quasi-real time using an HT data analysis tool based on IFFEFIT. The system was used for the automated characterization of a library of 91 catalyst precursors containing ternary combinations of Cu, Pt, and Au on γ-Al2O3, and for the in situ characterization of Au catalysts supported on Al2O3 and TiO2

  19. High throughput imaging cytometer with acoustic focussing.

    Science.gov (United States)

    Zmijan, Robert; Jonnalagadda, Umesh S; Carugo, Dario; Kochi, Yu; Lemm, Elizabeth; Packham, Graham; Hill, Martyn; Glynne-Jones, Peter

    2015-10-31

    We demonstrate an imaging flow cytometer that uses acoustic levitation to assemble cells and other particles into a sheet structure. This technique enables a high resolution, low noise CMOS camera to capture images of thousands of cells with each frame. While ultrasonic focussing has previously been demonstrated for 1D cytometry systems, extending the technology to a planar, much higher throughput format and integrating imaging is non-trivial, and represents a significant jump forward in capability, leading to diagnostic possibilities not achievable with current systems. A galvo mirror is used to track the images of the moving cells permitting exposure times of 10 ms at frame rates of 50 fps with motion blur of only a few pixels. At 80 fps, we demonstrate a throughput of 208 000 beads per second. We investigate the factors affecting motion blur and throughput, and demonstrate the system with fluorescent beads, leukaemia cells and a chondrocyte cell line. Cells require more time to reach the acoustic focus than beads, resulting in lower throughputs; however a longer device would remove this constraint.

  20. High throughput salt separation from uranium deposits

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, S.W.; Park, K.M.; Kim, J.G.; Kim, I.T.; Park, S.B., E-mail: swkwon@kaeri.re.kr [Korea Atomic Energy Research Inst. (Korea, Republic of)

    2014-07-01

    It is very important to increase the throughput of the salt separation system owing to the high uranium content of spent nuclear fuel and high salt fraction of uranium dendrites in pyroprocessing. Multilayer porous crucible system was proposed to increase a throughput of the salt distiller in this study. An integrated sieve-crucible assembly was also investigated for the practical use of the porous crucible system. The salt evaporation behaviors were compared between the conventional nonporous crucible and the porous crucible. Two step weight reductions took place in the porous crucible, whereas the salt weight reduced only at high temperature by distillation in a nonporous crucible. The first weight reduction in the porous crucible was caused by the liquid salt penetrated out through the perforated crucible during the temperature elevation until the distillation temperature. Multilayer porous crucibles have a benefit to expand the evaporation surface area. (author)

  1. High Throughput Neuro-Imaging Informatics

    Directory of Open Access Journals (Sweden)

    Michael I Miller

    2013-12-01

    Full Text Available This paper describes neuroinformatics technologies at 1 mm anatomical scale based on high throughput 3D functional and structural imaging technologies of the human brain. The core is an abstract pipeline for converting functional and structural imagery into their high dimensional neuroinformatic representations index containing O(E3-E4 discriminating dimensions. The pipeline is based on advanced image analysis coupled to digital knowledge representations in the form of dense atlases of the human brain at gross anatomical scale. We demonstrate the integration of these high-dimensional representations with machine learning methods, which have become the mainstay of other fields of science including genomics as well as social networks. Such high throughput facilities have the potential to alter the way medical images are stored and utilized in radiological workflows. The neuroinformatics pipeline is used to examine cross-sectional and personalized analyses of neuropsychiatric illnesses in clinical applications as well as longitudinal studies. We demonstrate the use of high throughput machine learning methods for supporting (i cross-sectional image analysis to evaluate the health status of individual subjects with respect to the population data, (ii integration of image and non-image information for diagnosis and prognosis.

  2. COMPUTER APPROACHES TO WHEAT HIGH-THROUGHPUT PHENOTYPING

    Directory of Open Access Journals (Sweden)

    Afonnikov D.

    2012-08-01

    Full Text Available The growing need for rapid and accurate approaches for large-scale assessment of phenotypic characters in plants becomes more and more obvious in the studies looking into relationships between genotype and phenotype. This need is due to the advent of high throughput methods for analysis of genomes. Nowadays, any genetic experiment involves data on thousands and dozens of thousands of plants. Traditional ways of assessing most phenotypic characteristics (those with reliance on the eye, the touch, the ruler are little effective on samples of such sizes. Modern approaches seek to take advantage of automated phenotyping, which warrants a much more rapid data acquisition, higher accuracy of the assessment of phenotypic features, measurement of new parameters of these features and exclusion of human subjectivity from the process. Additionally, automation allows measurement data to be rapidly loaded into computer databases, which reduces data processing time.In this work, we present the WheatPGE information system designed to solve the problem of integration of genotypic and phenotypic data and parameters of the environment, as well as to analyze the relationships between the genotype and phenotype in wheat. The system is used to consolidate miscellaneous data on a plant for storing and processing various morphological traits and genotypes of wheat plants as well as data on various environmental factors. The system is available at www.wheatdb.org. Its potential in genetic experiments has been demonstrated in high-throughput phenotyping of wheat leaf pubescence.

  3. A robust robotic high-throughput antibody purification platform.

    Science.gov (United States)

    Schmidt, Peter M; Abdo, Michael; Butcher, Rebecca E; Yap, Min-Yin; Scotney, Pierre D; Ramunno, Melanie L; Martin-Roussety, Genevieve; Owczarek, Catherine; Hardy, Matthew P; Chen, Chao-Guang; Fabri, Louis J

    2016-07-15

    Monoclonal antibodies (mAbs) have become the fastest growing segment in the drug market with annual sales of more than 40 billion US$ in 2013. The selection of lead candidate molecules involves the generation of large repertoires of antibodies from which to choose a final therapeutic candidate. Improvements in the ability to rapidly produce and purify many antibodies in sufficient quantities reduces the lead time for selection which ultimately impacts on the speed with which an antibody may transition through the research stage and into product development. Miniaturization and automation of chromatography using micro columns (RoboColumns(®) from Atoll GmbH) coupled to an automated liquid handling instrument (ALH; Freedom EVO(®) from Tecan) has been a successful approach to establish high throughput process development platforms. Recent advances in transient gene expression (TGE) using the high-titre Expi293F™ system have enabled recombinant mAb titres of greater than 500mg/L. These relatively high protein titres reduce the volume required to generate several milligrams of individual antibodies for initial biochemical and biological downstream assays, making TGE in the Expi293F™ system ideally suited to high throughput chromatography on an ALH. The present publication describes a novel platform for purifying Expi293F™-expressed recombinant mAbs directly from cell-free culture supernatant on a Perkin Elmer JANUS-VariSpan ALH equipped with a plate shuttle device. The purification platform allows automated 2-step purification (Protein A-desalting/size exclusion chromatography) of several hundred mAbs per week. The new robotic method can purify mAbs with high recovery (>90%) at sub-milligram level with yields of up to 2mg from 4mL of cell-free culture supernatant. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. High throughput screening method for assessing heterogeneity of microorganisms

    NARCIS (Netherlands)

    Ingham, C.J.; Sprenkels, A.J.; van Hylckama Vlieg, J.E.T.; Bomer, Johan G.; de Vos, W.M.; van den Berg, Albert

    2006-01-01

    The invention relates to the field of microbiology. Provided is a method which is particularly powerful for High Throughput Screening (HTS) purposes. More specific a high throughput method for determining heterogeneity or interactions of microorganisms is provided.

  5. Application of ToxCast High-Throughput Screening and ...

    Science.gov (United States)

    Slide presentation at the SETAC annual meeting on High-Throughput Screening and Modeling Approaches to Identify Steroidogenesis Distruptors Slide presentation at the SETAC annual meeting on High-Throughput Screening and Modeling Approaches to Identify Steroidogenssis Distruptors

  6. High Throughput PBTK: Open-Source Data and Tools for ...

    Science.gov (United States)

    Presentation on High Throughput PBTK at the PBK Modelling in Risk Assessment meeting in Ispra, Italy Presentation on High Throughput PBTK at the PBK Modelling in Risk Assessment meeting in Ispra, Italy

  7. Achieving high data throughput in research networks

    International Nuclear Information System (INIS)

    Matthews, W.; Cottrell, L.

    2001-01-01

    After less than a year of operation, the BaBar experiment at SLAC has collected almost 100 million particle collision events in a database approaching 165TB. Around 20 TB of data has been exported via the Internet to the BaBar regional center at IN2P3 in Lyon, France, and around 40TB of simulated data has been imported from the Lawrence Livermore National Laboratory (LLNL). BaBar collaborators plan to double data collection each year and export a third of the data to IN2P3. So within a few years the SLAC OC3 (155 Mbps) connection will be fully utilized by file transfer to France alone. Upgrades to infrastructure is essential and detailed understanding of performance issues and the requirements for reliable high throughput transfers is critical. In this talk results from active and passive monitoring and direct measurements of throughput will be reviewed. Methods for achieving the ambitious requirements will be discussed

  8. Achieving High Data Throughput in Research Networks

    International Nuclear Information System (INIS)

    Matthews, W

    2004-01-01

    After less than a year of operation, the BaBar experiment at SLAC has collected almost 100 million particle collision events in a database approaching 165TB. Around 20 TB of data has been exported via the Internet to the BaBar regional center at IN2P3 in Lyon, France, and around 40TB of simulated data has been imported from the Lawrence Livermore National Laboratory (LLNL). BaBar collaborators plan to double data collection each year and export a third of the data to IN2P3. So within a few years the SLAC OC3 (155Mbps) connection will be fully utilized by file transfer to France alone. Upgrades to infrastructure is essential and detailed understanding of performance issues and the requirements for reliable high throughput transfers is critical. In this talk results from active and passive monitoring and direct measurements of throughput will be reviewed. Methods for achieving the ambitious requirements will be discussed

  9. Machine Learning for High-Throughput Stress Phenotyping in Plants.

    Science.gov (United States)

    Singh, Arti; Ganapathysubramanian, Baskar; Singh, Asheesh Kumar; Sarkar, Soumik

    2016-02-01

    Advances in automated and high-throughput imaging technologies have resulted in a deluge of high-resolution images and sensor data of plants. However, extracting patterns and features from this large corpus of data requires the use of machine learning (ML) tools to enable data assimilation and feature identification for stress phenotyping. Four stages of the decision cycle in plant stress phenotyping and plant breeding activities where different ML approaches can be deployed are (i) identification, (ii) classification, (iii) quantification, and (iv) prediction (ICQP). We provide here a comprehensive overview and user-friendly taxonomy of ML tools to enable the plant community to correctly and easily apply the appropriate ML tools and best-practice guidelines for various biotic and abiotic stress traits. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. High throughput experimentation for the discovery of new catalysts

    International Nuclear Information System (INIS)

    Thomson, S.; Hoffmann, C.; Johann, T.; Wolf, A.; Schmidt, H.-W.; Farrusseng, D.; Schueth, F.

    2002-01-01

    Full text: The use of combinatorial chemistry to obtain new materials has been developed extensively by the pharmaceutical and biochemical industries, but such approaches have been slow to impact on the field of heterogeneous catalysis. The reasons for this lie in with difficulties associated in the synthesis, characterisation and determination of catalytic properties of such materials. In many synthetic and catalytic reactions, the conditions used are difficult to emulate using High Throughput Experimentation (HTE). Furthermore, the ability to screen these catalysts simultaneously in real time, requires the development and/or modification of characterisation methods. Clearly, there is a need for both high throughput synthesis and screening of new and novel reactions, and we describe several new concepts that help to achieve these goals. Although such problems have impeded the development of combinatorial catalysis, the fact remains that many highly attractive processes still exist for which no suitable catalysts have been developed. The ability to decrease the tiFme needed to evaluate catalyst is therefore essential and this makes the use of high throughput techniques highly desirable. In this presentation we will describe the synthesis, catalytic testing, and novel screening methods developed at the Max Planck Institute. Automated synthesis procedures, performed by the use of a modified Gilson pipette robot, will be described, as will the development of two 16 and 49 sample fixed bed reactors and two 25 and 29 sample three phase reactors for catalytic testing. We will also present new techniques for the characterisation of catalysts and catalytic products using standard IR microscopy and infrared focal plane array detection, respectively

  11. Modeling Steroidogenesis Disruption Using High-Throughput ...

    Science.gov (United States)

    Environmental chemicals can elicit endocrine disruption by altering steroid hormone biosynthesis and metabolism (steroidogenesis) causing adverse reproductive and developmental effects. Historically, a lack of assays resulted in few chemicals having been evaluated for effects on steroidogenesis. The steroidogenic pathway is a series of hydroxylation and dehydrogenation steps carried out by CYP450 and hydroxysteroid dehydrogenase enzymes, yet the only enzyme in the pathway for which a high-throughput screening (HTS) assay has been developed is aromatase (CYP19A1), responsible for the aromatization of androgens to estrogens. Recently, the ToxCast HTS program adapted the OECD validated H295R steroidogenesis assay using human adrenocortical carcinoma cells into a high-throughput model to quantitatively assess the concentration-dependent (0.003-100 µM) effects of chemicals on 10 steroid hormones including progestagens, androgens, estrogens and glucocorticoids. These results, in combination with two CYP19A1 inhibition assays, comprise a large dataset amenable to clustering approaches supporting the identification and characterization of putative mechanisms of action (pMOA) for steroidogenesis disruption. In total, 514 chemicals were tested in all CYP19A1 and steroidogenesis assays. 216 chemicals were identified as CYP19A1 inhibitors in at least one CYP19A1 assay. 208 of these chemicals also altered hormone levels in the H295R assay, suggesting 96% sensitivity in the

  12. High-throughput ab-initio dilute solute diffusion database.

    Science.gov (United States)

    Wu, Henry; Mayeshiba, Tam; Morgan, Dane

    2016-07-19

    We demonstrate automated generation of diffusion databases from high-throughput density functional theory (DFT) calculations. A total of more than 230 dilute solute diffusion systems in Mg, Al, Cu, Ni, Pd, and Pt host lattices have been determined using multi-frequency diffusion models. We apply a correction method for solute diffusion in alloys using experimental and simulated values of host self-diffusivity. We find good agreement with experimental solute diffusion data, obtaining a weighted activation barrier RMS error of 0.176 eV when excluding magnetic solutes in non-magnetic alloys. The compiled database is the largest collection of consistently calculated ab-initio solute diffusion data in the world.

  13. High-throughput screening of ionic conductivity in polymer membranes

    International Nuclear Information System (INIS)

    Zapata, Pedro; Basak, Pratyay; Carson Meredith, J.

    2009-01-01

    Combinatorial and high-throughput techniques have been successfully used for efficient and rapid property screening in multiple fields. The use of these techniques can be an advantageous new approach to assay ionic conductivity and accelerate the development of novel materials in research areas such as fuel cells. A high-throughput ionic conductivity (HTC) apparatus is described and applied to screening candidate polymer electrolyte membranes for fuel cell applications. The device uses a miniature four-point probe for rapid, automated point-to-point AC electrochemical impedance measurements in both liquid and humid air environments. The conductivity of Nafion 112 HTC validation standards was within 1.8% of the manufacturer's specification. HTC screening of 40 novel Kynar poly(vinylidene fluoride) (PVDF)/acrylic polyelectrolyte (PE) membranes focused on varying the Kynar type (5x) and PE composition (8x) using reduced sample sizes. Two factors were found to be significant in determining the proton conducting capacity: (1) Kynar PVDF series: membranes containing a particular Kynar PVDF type exhibited statistically identical mean conductivity as other membranes containing different Kynar PVDF types that belong to the same series or family. (2) Maximum effective amount of polyelectrolyte: increments in polyelectrolyte content from 55 wt% to 60 wt% showed no statistically significant effect in increasing conductivity. In fact, some membranes experienced a reduction in conductivity.

  14. High-Throughput Process Development for Biopharmaceuticals.

    Science.gov (United States)

    Shukla, Abhinav A; Rameez, Shahid; Wolfe, Leslie S; Oien, Nathan

    2017-11-14

    The ability to conduct multiple experiments in parallel significantly reduces the time that it takes to develop a manufacturing process for a biopharmaceutical. This is particularly significant before clinical entry, because process development and manufacturing are on the "critical path" for a drug candidate to enter clinical development. High-throughput process development (HTPD) methodologies can be similarly impactful during late-stage development, both for developing the final commercial process as well as for process characterization and scale-down validation activities that form a key component of the licensure filing package. This review examines the current state of the art for HTPD methodologies as they apply to cell culture, downstream purification, and analytical techniques. In addition, we provide a vision of how HTPD activities across all of these spaces can integrate to create a rapid process development engine that can accelerate biopharmaceutical drug development. Graphical Abstract.

  15. A production throughput forecasting system in an automated hard disk drive test operation using GRNN

    Energy Technology Data Exchange (ETDEWEB)

    Samattapapong, N.; Afzulpurkar, N.

    2016-07-01

    The goal of this paper is to develop a pragmatic system of a production throughput forecasting system for an automated test operation in a hard drive manufacturing plant. The accurate forecasting result is necessary for the management team to response to any changes in the production processes and the resources allocations. In this study, we design a production throughput forecasting system in an automated test operation in hard drive manufacturing plant. In the proposed system, consists of three main stages. In the first stage, a mutual information method was adopted for selecting the relevant inputs into the forecasting model. In the second stage, a generalized regression neural network (GRNN) was implemented in the forecasting model development phase. Finally, forecasting accuracy was improved by searching the optimal smoothing parameter which selected from comparisons result among three optimization algorithms: particle swarm optimization (PSO), unrestricted search optimization (USO) and interval halving optimization (IHO). The experimental result shows that (1) the developed production throughput forecasting system using GRNN is able to provide forecasted results close to actual values, and to projected the future trends of production throughput in an automated hard disk drive test operation; (2) An IHO algorithm performed as superiority appropriate optimization method than the other two algorithms. (3) Compared with current forecasting system in manufacturing, the results show that the proposed system’s performance is superior to the current system in prediction accuracy and suitable for real-world application. The production throughput volume is a key performance index of hard disk drive manufacturing systems that need to be forecast. Because of the production throughput forecasting result is useful information for management team to respond to any changing in production processes and resources allocation. However, a practically forecasting system for

  16. A High-Throughput Biological Calorimetry Core: Steps to Startup, Run, and Maintain a Multiuser Facility.

    Science.gov (United States)

    Yennawar, Neela H; Fecko, Julia A; Showalter, Scott A; Bevilacqua, Philip C

    2016-01-01

    Many labs have conventional calorimeters where denaturation and binding experiments are setup and run one at a time. While these systems are highly informative to biopolymer folding and ligand interaction, they require considerable manual intervention for cleaning and setup. As such, the throughput for such setups is limited typically to a few runs a day. With a large number of experimental parameters to explore including different buffers, macromolecule concentrations, temperatures, ligands, mutants, controls, replicates, and instrument tests, the need for high-throughput automated calorimeters is on the rise. Lower sample volume requirements and reduced user intervention time compared to the manual instruments have improved turnover of calorimetry experiments in a high-throughput format where 25 or more runs can be conducted per day. The cost and efforts to maintain high-throughput equipment typically demands that these instruments be housed in a multiuser core facility. We describe here the steps taken to successfully start and run an automated biological calorimetry facility at Pennsylvania State University. Scientists from various departments at Penn State including Chemistry, Biochemistry and Molecular Biology, Bioengineering, Biology, Food Science, and Chemical Engineering are benefiting from this core facility. Samples studied include proteins, nucleic acids, sugars, lipids, synthetic polymers, small molecules, natural products, and virus capsids. This facility has led to higher throughput of data, which has been leveraged into grant support, attracting new faculty hire and has led to some exciting publications. © 2016 Elsevier Inc. All rights reserved.

  17. High-throughput characterization methods for lithium batteries

    Directory of Open Access Journals (Sweden)

    Yingchun Lyu

    2017-09-01

    Full Text Available The development of high-performance lithium ion batteries requires the discovery of new materials and the optimization of key components. By contrast with traditional one-by-one method, high-throughput method can synthesize and characterize a large number of compositionally varying samples, which is able to accelerate the pace of discovery, development and optimization process of materials. Because of rapid progress in thin film and automatic control technologies, thousands of compounds with different compositions could be synthesized rapidly right now, even in a single experiment. However, the lack of rapid or combinatorial characterization technologies to match with high-throughput synthesis methods, limit the application of high-throughput technology. Here, we review a series of representative high-throughput characterization methods used in lithium batteries, including high-throughput structural and electrochemical characterization methods and rapid measuring technologies based on synchrotron light sources.

  18. 20180311 - High Throughput Transcriptomics: From screening to pathways (SOT 2018)

    Science.gov (United States)

    The EPA ToxCast effort has screened thousands of chemicals across hundreds of high-throughput in vitro screening assays. The project is now leveraging high-throughput transcriptomic (HTTr) technologies to substantially expand its coverage of biological pathways. The first HTTr sc...

  19. High-throughput screening (HTS) and modeling of the retinoid ...

    Science.gov (United States)

    Presentation at the Retinoids Review 2nd workshop in Brussels, Belgium on the application of high throughput screening and model to the retinoid system Presentation at the Retinoids Review 2nd workshop in Brussels, Belgium on the application of high throughput screening and model to the retinoid system

  20. High Throughput Determinations of Critical Dosing Parameters (IVIVE workshop)

    Science.gov (United States)

    High throughput toxicokinetics (HTTK) is an approach that allows for rapid estimations of TK for hundreds of environmental chemicals. HTTK-based reverse dosimetry (i.e, reverse toxicokinetics or RTK) is used in order to convert high throughput in vitro toxicity screening (HTS) da...

  1. Evaluating High Throughput Toxicokinetics and Toxicodynamics for IVIVE (WC10)

    Science.gov (United States)

    High-throughput screening (HTS) generates in vitro data for characterizing potential chemical hazard. TK models are needed to allow in vitro to in vivo extrapolation (IVIVE) to real world situations. The U.S. EPA has created a public tool (R package “httk” for high throughput tox...

  2. AOPs and Biomarkers: Bridging High Throughput Screening ...

    Science.gov (United States)

    As high throughput screening (HTS) plays a larger role in toxicity testing, camputational toxicology has emerged as a critical component in interpreting the large volume of data produced. Computational models designed to quantify potential adverse effects based on HTS data will benefit from additional data sources that connect the magnitude of perturbation from the in vitro system to a level of concern at the organism or population level. The adverse outcome pathway (AOP) concept provides an ideal framework for combining these complementary data. Recent international efforts under the auspices of the Organization for Economic Co-operation and Development (OECD) have resulted in an AOP wiki designed to house formal descriptions of AOPs suitable for use in regulatory decision making. Recent efforts have built upon this to include an ontology describing the AOP with linkages to biological pathways, physiological terminology, and taxonomic applicability domains. Incorporation of an AOP network tool developed by the U.S. Army Corps of Engineers also allows consideration of cumulative risk from chemical and non-chemical stressors. Biomarkers are an important complement to formal AOP descriptions, particularly when dealing with susceptible subpopulations or lifestages in human health risk assessment. To address the issue of nonchemical stressors than may modify effects of criteria air pollutants, a novel method was used to integrate blood gene expression data with hema

  3. Uncertainty Quantification in High Throughput Screening ...

    Science.gov (United States)

    Using uncertainty quantification, we aim to improve the quality of modeling data from high throughput screening assays for use in risk assessment. ToxCast is a large-scale screening program that analyzes thousands of chemicals using over 800 assays representing hundreds of biochemical and cellular processes, including endocrine disruption, cytotoxicity, and zebrafish development. Over 2.6 million concentration response curves are fit to models to extract parameters related to potency and efficacy. Models built on ToxCast results are being used to rank and prioritize the toxicological risk of tested chemicals and to predict the toxicity of tens of thousands of chemicals not yet tested in vivo. However, the data size also presents challenges. When fitting the data, the choice of models, model selection strategy, and hit call criteria must reflect the need for computational efficiency and robustness, requiring hard and somewhat arbitrary cutoffs. When coupled with unavoidable noise in the experimental concentration response data, these hard cutoffs cause uncertainty in model parameters and the hit call itself. The uncertainty will then propagate through all of the models built on the data. Left unquantified, this uncertainty makes it difficult to fully interpret the data for risk assessment. We used bootstrap resampling methods to quantify the uncertainty in fitting models to the concentration response data. Bootstrap resampling determines confidence intervals for

  4. Ultraspecific probes for high throughput HLA typing

    Directory of Open Access Journals (Sweden)

    Eggers Rick

    2009-02-01

    Full Text Available Abstract Background The variations within an individual's HLA (Human Leukocyte Antigen genes have been linked to many immunological events, e.g. susceptibility to disease, response to vaccines, and the success of blood, tissue, and organ transplants. Although the microarray format has the potential to achieve high-resolution typing, this has yet to be attained due to inefficiencies of current probe design strategies. Results We present a novel three-step approach for the design of high-throughput microarray assays for HLA typing. This approach first selects sequences containing the SNPs present in all alleles of the locus of interest and next calculates the number of base changes necessary to convert a candidate probe sequences to the closest subsequence within the set of sequences that are likely to be present in the sample including the remainder of the human genome in order to identify those candidate probes which are "ultraspecific" for the allele of interest. Due to the high specificity of these sequences, it is possible that preliminary steps such as PCR amplification are no longer necessary. Lastly, the minimum number of these ultraspecific probes is selected such that the highest resolution typing can be achieved for the minimal cost of production. As an example, an array was designed and in silico results were obtained for typing of the HLA-B locus. Conclusion The assay presented here provides a higher resolution than has previously been developed and includes more alleles than previously considered. Based upon the in silico and preliminary experimental results, we believe that the proposed approach can be readily applied to any highly polymorphic gene system.

  5. Protocol: high throughput silica-based purification of RNA from Arabidopsis seedlings in a 96-well format

    OpenAIRE

    Salvo-Chirnside, Eliane; Kane, Steven; Kerr, Lorraine E

    2011-01-01

    Abstract The increasing popularity of systems-based approaches to plant research has resulted in a demand for high throughput (HTP) methods to be developed. RNA extraction from multiple samples in an experiment is a significant bottleneck in performing systems-level genomic studies. Therefore we have established a high throughput method of RNA extraction from Arabidopsis thaliana to facilitate gene expression studies in this widely used plant model. We present optimised manual and automated p...

  6. Quantitative high throughput analytics to support polysaccharide production process development.

    Science.gov (United States)

    Noyes, Aaron; Godavarti, Ranga; Titchener-Hooker, Nigel; Coffman, Jonathan; Mukhopadhyay, Tarit

    2014-05-19

    The rapid development of purification processes for polysaccharide vaccines is constrained by a lack of analytical tools current technologies for the measurement of polysaccharide recovery and process-related impurity clearance are complex, time-consuming, and generally not amenable to high throughput process development (HTPD). HTPD is envisioned to be central to the improvement of existing polysaccharide manufacturing processes through the identification of critical process parameters that potentially impact the quality attributes of the vaccine and to the development of de novo processes for clinical candidates, across the spectrum of downstream processing. The availability of a fast and automated analytics platform will expand the scope, robustness, and evolution of Design of Experiment (DOE) studies. This paper details recent advances in improving the speed, throughput, and success of in-process analytics at the micro-scale. Two methods, based on modifications of existing procedures, are described for the rapid measurement of polysaccharide titre in microplates without the need for heating steps. A simplification of a commercial endotoxin assay is also described that features a single measurement at room temperature. These assays, along with existing assays for protein and nucleic acids are qualified for deployment in the high throughput screening of polysaccharide feedstreams. Assay accuracy, precision, robustness, interference, and ease of use are assessed and described. In combination, these assays are capable of measuring the product concentration and impurity profile of a microplate of 96 samples in less than one day. This body of work relies on the evaluation of a combination of commercially available and clinically relevant polysaccharides to ensure maximum versatility and reactivity of the final assay suite. Together, these advancements reduce overall process time by up to 30-fold and significantly reduce sample volume over current practices. The

  7. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS)

    Energy Technology Data Exchange (ETDEWEB)

    Hura, Greg L.; Menon, Angeli L.; Hammel, Michal; Rambo, Robert P.; Poole II, Farris L.; Tsutakawa, Susan E.; Jenney Jr, Francis E.; Classen, Scott; Frankel, Kenneth A.; Hopkins, Robert C.; Yang, Sungjae; Scott, Joseph W.; Dillard, Bret D.; Adams, Michael W. W.; Tainer, John A.

    2009-07-20

    We present an efficient pipeline enabling high-throughput analysis of protein structure in solution with small angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling of microliter volumes, temperature and anaerobic control, rapid data collection and data analysis, and couples structural analysis with automated archiving. We subjected 50 representative proteins, mostly from Pyrococcus furiosus, to this pipeline and found that 30 were multimeric structures in solution. SAXS analysis allowed us to distinguish aggregated and unfolded proteins, define global structural parameters and oligomeric states for most samples, identify shapes and similar structures for 25 unknown structures, and determine envelopes for 41 proteins. We believe that high-throughput SAXS is an enabling technology that may change the way that structural genomics research is done.

  8. Applications of ambient mass spectrometry in high-throughput screening.

    Science.gov (United States)

    Li, Li-Ping; Feng, Bao-Sheng; Yang, Jian-Wang; Chang, Cui-Lan; Bai, Yu; Liu, Hu-Wei

    2013-06-07

    The development of rapid screening and identification techniques is of great importance for drug discovery, doping control, forensic identification, food safety and quality control. Ambient mass spectrometry (AMS) allows rapid and direct analysis of various samples in open air with little sample preparation. Recently, its applications in high-throughput screening have been in rapid progress. During the past decade, various ambient ionization techniques have been developed and applied in high-throughput screening. This review discusses typical applications of AMS, including DESI (desorption electrospray ionization), DART (direct analysis in real time), EESI (extractive electrospray ionization), etc., in high-throughput screening (HTS).

  9. High Throughput Multispectral Image Processing with Applications in Food Science.

    Directory of Open Access Journals (Sweden)

    Panagiotis Tsakanikas

    Full Text Available Recently, machine vision is gaining attention in food science as well as in food industry concerning food quality assessment and monitoring. Into the framework of implementation of Process Analytical Technology (PAT in the food industry, image processing can be used not only in estimation and even prediction of food quality but also in detection of adulteration. Towards these applications on food science, we present here a novel methodology for automated image analysis of several kinds of food products e.g. meat, vanilla crème and table olives, so as to increase objectivity, data reproducibility, low cost information extraction and faster quality assessment, without human intervention. Image processing's outcome will be propagated to the downstream analysis. The developed multispectral image processing method is based on unsupervised machine learning approach (Gaussian Mixture Models and a novel unsupervised scheme of spectral band selection for segmentation process optimization. Through the evaluation we prove its efficiency and robustness against the currently available semi-manual software, showing that the developed method is a high throughput approach appropriate for massive data extraction from food samples.

  10. Multiplexing a high-throughput liability assay to leverage efficiencies.

    Science.gov (United States)

    Herbst, John; Anthony, Monique; Stewart, Jeremy; Connors, David; Chen, Taosheng; Banks, Martyn; Petrillo, Edward W; Agler, Michele

    2009-06-01

    In order to identify potential cytochrome P-450 3A4 (drug-metabolizing enzyme) inducers at an early stage of the drug discovery process, a cell-based transactivation high-throughput luciferase reporter assay for the human pregnane X receptor (PXR) in HepG2 cells has been implemented and multiplexed with a viability end point for data interpretation, as part of a Lead Profiling portfolio of assays. As a routine part of Lead Profiling operations, assays are periodically evaluated for utility as well as for potential improvements in technology or process. We used a recent evaluation of our PXR-transactivation assay as a model for the application of Lean Thinking-based process analysis to lab-bench assay optimization and automation. This resulted in the development of a 384-well multiplexed homogeneous assay simultaneously detecting PXR transactivation and HepG2 cell cytotoxicity. In order to multiplex fluorescent and luminescent read-outs, modifications to each assay were necessary, which included optimization of multiple assay parameters such as cell density, plate type, and reagent concentrations. Subsequently, a set of compounds including known cytotoxic compounds and PXR inducers were used to validate the multiplexed assay. Results from the multiplexed assay correlate well with those from the singleplexed assay formats measuring PXR transactivation and viability separately. Implementation of the multiplexed assay for routine compound profiling provides improved data quality, sample conservation, cost savings, and resource efficiencies.

  11. High Throughput Multispectral Image Processing with Applications in Food Science.

    Science.gov (United States)

    Tsakanikas, Panagiotis; Pavlidis, Dimitris; Nychas, George-John

    2015-01-01

    Recently, machine vision is gaining attention in food science as well as in food industry concerning food quality assessment and monitoring. Into the framework of implementation of Process Analytical Technology (PAT) in the food industry, image processing can be used not only in estimation and even prediction of food quality but also in detection of adulteration. Towards these applications on food science, we present here a novel methodology for automated image analysis of several kinds of food products e.g. meat, vanilla crème and table olives, so as to increase objectivity, data reproducibility, low cost information extraction and faster quality assessment, without human intervention. Image processing's outcome will be propagated to the downstream analysis. The developed multispectral image processing method is based on unsupervised machine learning approach (Gaussian Mixture Models) and a novel unsupervised scheme of spectral band selection for segmentation process optimization. Through the evaluation we prove its efficiency and robustness against the currently available semi-manual software, showing that the developed method is a high throughput approach appropriate for massive data extraction from food samples.

  12. Efficient visualization of high-throughput targeted proteomics experiments: TAPIR.

    Science.gov (United States)

    Röst, Hannes L; Rosenberger, George; Aebersold, Ruedi; Malmström, Lars

    2015-07-15

    Targeted mass spectrometry comprises a set of powerful methods to obtain accurate and consistent protein quantification in complex samples. To fully exploit these techniques, a cross-platform and open-source software stack based on standardized data exchange formats is required. We present TAPIR, a fast and efficient Python visualization software for chromatograms and peaks identified in targeted proteomics experiments. The input formats are open, community-driven standardized data formats (mzML for raw data storage and TraML encoding the hierarchical relationships between transitions, peptides and proteins). TAPIR is scalable to proteome-wide targeted proteomics studies (as enabled by SWATH-MS), allowing researchers to visualize high-throughput datasets. The framework integrates well with existing automated analysis pipelines and can be extended beyond targeted proteomics to other types of analyses. TAPIR is available for all computing platforms under the 3-clause BSD license at https://github.com/msproteomicstools/msproteomicstools. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  13. High Throughput T Epitope Mapping and Vaccine Development

    Directory of Open Access Journals (Sweden)

    Giuseppina Li Pira

    2010-01-01

    Full Text Available Mapping of antigenic peptide sequences from proteins of relevant pathogens recognized by T helper (Th and by cytolytic T lymphocytes (CTL is crucial for vaccine development. In fact, mapping of T-cell epitopes provides useful information for the design of peptide-based vaccines and of peptide libraries to monitor specific cellular immunity in protected individuals, patients and vaccinees. Nevertheless, epitope mapping is a challenging task. In fact, large panels of overlapping peptides need to be tested with lymphocytes to identify the sequences that induce a T-cell response. Since numerous peptide panels from antigenic proteins are to be screened, lymphocytes available from human subjects are a limiting factor. To overcome this limitation, high throughput (HTP approaches based on miniaturization and automation of T-cell assays are needed. Here we consider the most recent applications of the HTP approach to T epitope mapping. The alternative or complementary use of in silico prediction and experimental epitope definition is discussed in the context of the recent literature. The currently used methods are described with special reference to the possibility of applying the HTP concept to make epitope mapping an easier procedure in terms of time, workload, reagents, cells and overall cost.

  14. High throughput screening of starch structures using carbohydrate microarrays

    DEFF Research Database (Denmark)

    Tanackovic, Vanja; Rydahl, Maja Gro; Pedersen, Henriette Lodberg

    2016-01-01

    In this study we introduce the starch-recognising carbohydrate binding module family 20 (CBM20) from Aspergillus niger for screening biological variations in starch molecular structure using high throughput carbohydrate microarray technology. Defined linear, branched and phosphorylated...

  15. MIPHENO: Data normalization for high throughput metabolic analysis.

    Science.gov (United States)

    High throughput methodologies such as microarrays, mass spectrometry and plate-based small molecule screens are increasingly used to facilitate discoveries from gene function to drug candidate identification. These large-scale experiments are typically carried out over the course...

  16. High Performance Computing Modernization Program Kerberos Throughput Test Report

    Science.gov (United States)

    2017-10-26

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/5524--17-9751 High Performance Computing Modernization Program Kerberos Throughput Test ...NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 2. REPORT TYPE1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 6. AUTHOR(S) 8. PERFORMING...PAGE 18. NUMBER OF PAGES 17. LIMITATION OF ABSTRACT High Performance Computing Modernization Program Kerberos Throughput Test Report Daniel G. Gdula* and

  17. Toward high throughput optical metamaterial assemblies.

    Science.gov (United States)

    Fontana, Jake; Ratna, Banahalli R

    2015-11-01

    Optical metamaterials have unique engineered optical properties. These properties arise from the careful organization of plasmonic elements. Transitioning these properties from laboratory experiments to functional materials may lead to disruptive technologies for controlling light. A significant issue impeding the realization of optical metamaterial devices is the need for robust and efficient assembly strategies to govern the order of the nanometer-sized elements while enabling macroscopic throughput. This mini-review critically highlights recent approaches and challenges in creating these artificial materials. As the ability to assemble optical metamaterials improves, new unforeseen opportunities may arise for revolutionary optical devices.

  18. The introduction of high-throughput experimentation methods for Suzuki-Miyaura coupling reactions in University education

    NARCIS (Netherlands)

    Hoogenboom, R.; Meier, M.A.R.; Schubert, U.S.

    2005-01-01

    Use of high-throughput experimentation is becoming common in industry. To prepare students to work with those novel techniques in their future careers, the utilization of an automated synthesis robot was integrated into an undergraduate research project. The practical course included performing a

  19. Next generation platforms for high-throughput bio-dosimetry

    International Nuclear Information System (INIS)

    Repin, Mikhail; Turner, Helen C.; Garty, Guy; Brenner, David J.

    2014-01-01

    Here the general concept of the combined use of plates and tubes in racks compatible with the American National Standards Institute/the Society for Laboratory Automation and Screening microplate formats as the next generation platforms for increasing the throughput of bio-dosimetry assays was described. These platforms can be used at different stages of bio-dosimetry assays starting from blood collection into micro-tubes organised in standardised racks and ending with the cytogenetic analysis of samples in standardised multi-well and multichannel plates. Robotically friendly platforms can be used for different bio-dosimetry assays in minimally equipped laboratories and on cost-effective automated universal biotech systems. (authors)

  20. Optical tools for high-throughput screening of abrasion resistance of combinatorial libraries of organic coatings

    Science.gov (United States)

    Potyrailo, Radislav A.; Chisholm, Bret J.; Olson, Daniel R.; Brennan, Michael J.; Molaison, Chris A.

    2002-02-01

    Design, validation, and implementation of an optical spectroscopic system for high-throughput analysis of combinatorially developed protective organic coatings are reported. Our approach replaces labor-intensive coating evaluation steps with an automated system that rapidly analyzes 8x6 arrays of coating elements that are deposited on a plastic substrate. Each coating element of the library is 10 mm in diameter and 2 to 5 micrometers thick. Performance of coatings is evaluated with respect to their resistance to wear abrasion because this parameter is one of the primary considerations in end-use applications. Upon testing, the organic coatings undergo changes that are impossible to quantitatively predict using existing knowledge. Coatings are abraded using industry-accepted abrasion test methods at single-or multiple-abrasion conditions, followed by high- throughput analysis of abrasion-induced light scatter. The developed automated system is optimized for the analysis of diffusively scattered light that corresponds to 0 to 30% haze. System precision of 0.1 to 2.5% relative standard deviation provides capability for the reliable ranking of coatings performance. While the system was implemented for high-throughput screening of combinatorially developed organic protective coatings for automotive applications, it can be applied to a variety of other applications where materials ranking can be achieved using optical spectroscopic tools.

  1. Life in the fast lane: high-throughput chemistry for lead generation and optimisation.

    Science.gov (United States)

    Hunter, D

    2001-01-01

    The pharmaceutical industry has come under increasing pressure due to regulatory restrictions on the marketing and pricing of drugs, competition, and the escalating costs of developing new drugs. These forces can be addressed by the identification of novel targets, reductions in the development time of new drugs, and increased productivity. Emphasis has been placed on identifying and validating new targets and on lead generation: the response from industry has been very evident in genomics and high throughput screening, where new technologies have been applied, usually coupled with a high degree of automation. The combination of numerous new potential biological targets and the ability to screen large numbers of compounds against many of these targets has generated the need for large diverse compound collections. To address this requirement, high-throughput chemistry has become an integral part of the drug discovery process. Copyright 2002 Wiley-Liss, Inc.

  2. Accurate Classification of Protein Subcellular Localization from High-Throughput Microscopy Images Using Deep Learning

    Directory of Open Access Journals (Sweden)

    Tanel Pärnamaa

    2017-05-01

    Full Text Available High-throughput microscopy of many single cells generates high-dimensional data that are far from straightforward to analyze. One important problem is automatically detecting the cellular compartment where a fluorescently-tagged protein resides, a task relatively simple for an experienced human, but difficult to automate on a computer. Here, we train an 11-layer neural network on data from mapping thousands of yeast proteins, achieving per cell localization classification accuracy of 91%, and per protein accuracy of 99% on held-out images. We confirm that low-level network features correspond to basic image characteristics, while deeper layers separate localization classes. Using this network as a feature calculator, we train standard classifiers that assign proteins to previously unseen compartments after observing only a small number of training examples. Our results are the most accurate subcellular localization classifications to date, and demonstrate the usefulness of deep learning for high-throughput microscopy.

  3. Accurate Classification of Protein Subcellular Localization from High-Throughput Microscopy Images Using Deep Learning.

    Science.gov (United States)

    Pärnamaa, Tanel; Parts, Leopold

    2017-05-05

    High-throughput microscopy of many single cells generates high-dimensional data that are far from straightforward to analyze. One important problem is automatically detecting the cellular compartment where a fluorescently-tagged protein resides, a task relatively simple for an experienced human, but difficult to automate on a computer. Here, we train an 11-layer neural network on data from mapping thousands of yeast proteins, achieving per cell localization classification accuracy of 91%, and per protein accuracy of 99% on held-out images. We confirm that low-level network features correspond to basic image characteristics, while deeper layers separate localization classes. Using this network as a feature calculator, we train standard classifiers that assign proteins to previously unseen compartments after observing only a small number of training examples. Our results are the most accurate subcellular localization classifications to date, and demonstrate the usefulness of deep learning for high-throughput microscopy. Copyright © 2017 Parnamaa and Parts.

  4. The high throughput biomedicine unit at the institute for molecular medicine Finland: high throughput screening meets precision medicine.

    Science.gov (United States)

    Pietiainen, Vilja; Saarela, Jani; von Schantz, Carina; Turunen, Laura; Ostling, Paivi; Wennerberg, Krister

    2014-05-01

    The High Throughput Biomedicine (HTB) unit at the Institute for Molecular Medicine Finland FIMM was established in 2010 to serve as a national and international academic screening unit providing access to state of the art instrumentation for chemical and RNAi-based high throughput screening. The initial focus of the unit was multiwell plate based chemical screening and high content microarray-based siRNA screening. However, over the first four years of operation, the unit has moved to a more flexible service platform where both chemical and siRNA screening is performed at different scales primarily in multiwell plate-based assays with a wide range of readout possibilities with a focus on ultraminiaturization to allow for affordable screening for the academic users. In addition to high throughput screening, the equipment of the unit is also used to support miniaturized, multiplexed and high throughput applications for other types of research such as genomics, sequencing and biobanking operations. Importantly, with the translational research goals at FIMM, an increasing part of the operations at the HTB unit is being focused on high throughput systems biological platforms for functional profiling of patient cells in personalized and precision medicine projects.

  5. High-throughput screening to identify inhibitors of lysine demethylases.

    Science.gov (United States)

    Gale, Molly; Yan, Qin

    2015-01-01

    Lysine demethylases (KDMs) are epigenetic regulators whose dysfunction is implicated in the pathology of many human diseases including various types of cancer, inflammation and X-linked intellectual disability. Particular demethylases have been identified as promising therapeutic targets, and tremendous efforts are being devoted toward developing suitable small-molecule inhibitors for clinical and research use. Several High-throughput screening strategies have been developed to screen for small-molecule inhibitors of KDMs, each with advantages and disadvantages in terms of time, cost, effort, reliability and sensitivity. In this Special Report, we review and evaluate the High-throughput screening methods utilized for discovery of novel small-molecule KDM inhibitors.

  6. High throughput materials research and development for lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Parker Liu

    2017-09-01

    Full Text Available Development of next generation batteries requires a breakthrough in materials. Traditional one-by-one method, which is suitable for synthesizing large number of sing-composition material, is time-consuming and costly. High throughput and combinatorial experimentation, is an effective method to synthesize and characterize huge amount of materials over a broader compositional region in a short time, which enables to greatly speed up the discovery and optimization of materials with lower cost. In this work, high throughput and combinatorial materials synthesis technologies for lithium ion battery research are discussed, and our efforts on developing such instrumentations are introduced.

  7. Towards a high throughput droplet-based agglutination assay

    KAUST Repository

    Kodzius, Rimantas; Castro, David; Foulds, Ian G.

    2013-01-01

    This work demonstrates the detection method for a high throughput droplet based agglutination assay system. Using simple hydrodynamic forces to mix and aggregate functionalized microbeads we avoid the need to use magnetic assistance or mixing structures. The concentration of our target molecules was estimated by agglutination strength, obtained through optical image analysis. Agglutination in droplets was performed with flow rates of 150 µl/min and occurred in under a minute, with potential to perform high-throughput measurements. The lowest target concentration detected in droplet microfluidics was 0.17 nM, which is three orders of magnitude more sensitive than a conventional card based agglutination assay.

  8. Towards a high throughput droplet-based agglutination assay

    KAUST Repository

    Kodzius, Rimantas

    2013-10-22

    This work demonstrates the detection method for a high throughput droplet based agglutination assay system. Using simple hydrodynamic forces to mix and aggregate functionalized microbeads we avoid the need to use magnetic assistance or mixing structures. The concentration of our target molecules was estimated by agglutination strength, obtained through optical image analysis. Agglutination in droplets was performed with flow rates of 150 µl/min and occurred in under a minute, with potential to perform high-throughput measurements. The lowest target concentration detected in droplet microfluidics was 0.17 nM, which is three orders of magnitude more sensitive than a conventional card based agglutination assay.

  9. Enzyme free cloning for high throughput gene cloning and expression

    NARCIS (Netherlands)

    de Jong, R.N.; Daniëls, M.; Kaptein, R.; Folkers, G.E.

    2006-01-01

    Structural and functional genomics initiatives significantly improved cloning methods over the past few years. Although recombinational cloning is highly efficient, its costs urged us to search for an alternative high throughput (HTP) cloning method. We implemented a modified Enzyme Free Cloning

  10. High-throughput shotgun lipidomics by quadrupole time-of-flight mass spectrometry

    DEFF Research Database (Denmark)

    Ståhlman, Marcus; Ejsing, Christer S.; Tarasov, Kirill

    2009-01-01

    Technological advances in mass spectrometry and meticulous method development have produced several shotgun lipidomic approaches capable of characterizing lipid species by direct analysis of total lipid extracts. Shotgun lipidomics by hybrid quadrupole time-of-flight mass spectrometry allows...... the absolute quantification of hundreds of molecular glycerophospholipid species, glycerolipid species, sphingolipid species and sterol lipids. Future applications in clinical cohort studies demand detailed lipid molecule information and the application of high-throughput lipidomics platforms. In this review...... we describe a novel high-throughput shotgun lipidomic platform based on 96-well robot-assisted lipid extraction, automated sample infusion by mircofluidic-based nanoelectrospray ionization, and quantitative multiple precursor ion scanning analysis on a quadrupole time-of-flight mass spectrometer...

  11. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis.

    Science.gov (United States)

    Mei, Feng; Fancy, Stephen P J; Shen, Yun-An A; Niu, Jianqin; Zhao, Chao; Presley, Bryan; Miao, Edna; Lee, Seonok; Mayoral, Sonia R; Redmond, Stephanie A; Etxeberria, Ainhoa; Xiao, Lan; Franklin, Robin J M; Green, Ari; Hauser, Stephen L; Chan, Jonah R

    2014-08-01

    Functional screening for compounds that promote remyelination represents a major hurdle in the development of rational therapeutics for multiple sclerosis. Screening for remyelination is problematic, as myelination requires the presence of axons. Standard methods do not resolve cell-autonomous effects and are not suited for high-throughput formats. Here we describe a binary indicant for myelination using micropillar arrays (BIMA). Engineered with conical dimensions, micropillars permit resolution of the extent and length of membrane wrapping from a single two-dimensional image. Confocal imaging acquired from the base to the tip of the pillars allows for detection of concentric wrapping observed as 'rings' of myelin. The platform is formatted in 96-well plates, amenable to semiautomated random acquisition and automated detection and quantification. Upon screening 1,000 bioactive molecules, we identified a cluster of antimuscarinic compounds that enhance oligodendrocyte differentiation and remyelination. Our findings demonstrate a new high-throughput screening platform for potential regenerative therapeutics in multiple sclerosis.

  12. Optimization and high-throughput screening of antimicrobial peptides.

    Science.gov (United States)

    Blondelle, Sylvie E; Lohner, Karl

    2010-01-01

    While a well-established process for lead compound discovery in for-profit companies, high-throughput screening is becoming more popular in basic and applied research settings in academia. The development of combinatorial libraries combined with easy and less expensive access to new technologies have greatly contributed to the implementation of high-throughput screening in academic laboratories. While such techniques were earlier applied to simple assays involving single targets or based on binding affinity, they have now been extended to more complex systems such as whole cell-based assays. In particular, the urgent need for new antimicrobial compounds that would overcome the rapid rise of drug-resistant microorganisms, where multiple target assays or cell-based assays are often required, has forced scientists to focus onto high-throughput technologies. Based on their existence in natural host defense systems and their different mode of action relative to commercial antibiotics, antimicrobial peptides represent a new hope in discovering novel antibiotics against multi-resistant bacteria. The ease of generating peptide libraries in different formats has allowed a rapid adaptation of high-throughput assays to the search for novel antimicrobial peptides. Similarly, the availability nowadays of high-quantity and high-quality antimicrobial peptide data has permitted the development of predictive algorithms to facilitate the optimization process. This review summarizes the various library formats that lead to de novo antimicrobial peptide sequences as well as the latest structural knowledge and optimization processes aimed at improving the peptides selectivity.

  13. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Pronk, Sander [Science for Life Lab., Stockholm (Sweden); KTH Royal Institute of Technology, Stockholm (Sweden); Pall, Szilard [Science for Life Lab., Stockholm (Sweden); KTH Royal Institute of Technology, Stockholm (Sweden); Schulz, Roland [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Larsson, Per [Univ. of Virginia, Charlottesville, VA (United States); Bjelkmar, Par [Science for Life Lab., Stockholm (Sweden); Stockholm Univ., Stockholm (Sweden); Apostolov, Rossen [Science for Life Lab., Stockholm (Sweden); KTH Royal Institute of Technology, Stockholm (Sweden); Shirts, Michael R. [Univ. of Virginia, Charlottesville, VA (United States); Smith, Jeremy C. [Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kasson, Peter M. [Univ. of Virginia, Charlottesville, VA (United States); van der Spoel, David [Science for Life Lab., Stockholm (Sweden); Uppsala Univ., Uppsala (Sweden); Hess, Berk [Science for Life Lab., Stockholm (Sweden); KTH Royal Institute of Technology, Stockholm (Sweden); Lindahl, Erik [Science for Life Lab., Stockholm (Sweden); KTH Royal Institute of Technology, Stockholm (Sweden); Stockholm Univ., Stockholm (Sweden)

    2013-02-13

    In this study, molecular simulation has historically been a low-throughput technique, but faster computers and increasing amounts of genomic and structural data are changing this by enabling large-scale automated simulation of, for instance, many conformers or mutants of biomolecules with or without a range of ligands. At the same time, advances in performance and scaling now make it possible to model complex biomolecular interaction and function in a manner directly testable by experiment. These applications share a need for fast and efficient software that can be deployed on massive scale in clusters, web servers, distributed computing or cloud resources. As a result, we present a range of new simulation algorithms and features developed during the past 4 years, leading up to the GROMACS 4.5 software package. The software now automatically handles wide classes of biomolecules, such as proteins, nucleic acids and lipids, and comes with all commonly used force fields for these molecules built-in. GROMACS supports several implicit solvent models, as well as new free-energy algorithms, and the software now uses multithreading for efficient parallelization even on low-end systems, including windows-based workstations. Together with hand-tuned assembly kernels and state-of-the-art parallelization, this provides extremely high performance and cost efficiency for high-throughput as well as massively parallel simulations.

  14. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit.

    Science.gov (United States)

    Pronk, Sander; Páll, Szilárd; Schulz, Roland; Larsson, Per; Bjelkmar, Pär; Apostolov, Rossen; Shirts, Michael R; Smith, Jeremy C; Kasson, Peter M; van der Spoel, David; Hess, Berk; Lindahl, Erik

    2013-04-01

    Molecular simulation has historically been a low-throughput technique, but faster computers and increasing amounts of genomic and structural data are changing this by enabling large-scale automated simulation of, for instance, many conformers or mutants of biomolecules with or without a range of ligands. At the same time, advances in performance and scaling now make it possible to model complex biomolecular interaction and function in a manner directly testable by experiment. These applications share a need for fast and efficient software that can be deployed on massive scale in clusters, web servers, distributed computing or cloud resources. Here, we present a range of new simulation algorithms and features developed during the past 4 years, leading up to the GROMACS 4.5 software package. The software now automatically handles wide classes of biomolecules, such as proteins, nucleic acids and lipids, and comes with all commonly used force fields for these molecules built-in. GROMACS supports several implicit solvent models, as well as new free-energy algorithms, and the software now uses multithreading for efficient parallelization even on low-end systems, including windows-based workstations. Together with hand-tuned assembly kernels and state-of-the-art parallelization, this provides extremely high performance and cost efficiency for high-throughput as well as massively parallel simulations. GROMACS is an open source and free software available from http://www.gromacs.org. Supplementary data are available at Bioinformatics online.

  15. HTTK: R Package for High-Throughput Toxicokinetics

    Science.gov (United States)

    Thousands of chemicals have been profiled by high-throughput screening programs such as ToxCast and Tox21; these chemicals are tested in part because most of them have limited or no data on hazard, exposure, or toxicokinetics. Toxicokinetic models aid in predicting tissue concent...

  16. Fun with High Throughput Toxicokinetics (CalEPA webinar)

    Science.gov (United States)

    Thousands of chemicals have been profiled by high-throughput screening (HTS) programs such as ToxCast and Tox21. These chemicals are tested in part because there are limited or no data on hazard, exposure, or toxicokinetics (TK). TK models aid in predicting tissue concentrations ...

  17. High-throughput cloning and expression in recalcitrant bacteria

    NARCIS (Netherlands)

    Geertsma, Eric R.; Poolman, Bert

    We developed a generic method for high-throughput cloning in bacteria that are less amenable to conventional DNA manipulations. The method involves ligation-independent cloning in an intermediary Escherichia coli vector, which is rapidly converted via vector-backbone exchange (VBEx) into an

  18. High-throughput bioinformatics with the Cyrille2 pipeline system.

    NARCIS (Netherlands)

    Fiers, M.W.E.J.; Burgt, van der A.; Datema, E.; Groot, de J.C.W.; Ham, van R.C.H.J.

    2008-01-01

    Background - Modern omics research involves the application of high-throughput technologies that generate vast volumes of data. These data need to be pre-processed, analyzed and integrated with existing knowledge through the use of diverse sets of software tools, models and databases. The analyses

  19. High-throughput crystal-optimization strategies in the South Paris Yeast Structural Genomics Project: one size fits all?

    Science.gov (United States)

    Leulliot, Nicolas; Trésaugues, Lionel; Bremang, Michael; Sorel, Isabelle; Ulryck, Nathalie; Graille, Marc; Aboulfath, Ilham; Poupon, Anne; Liger, Dominique; Quevillon-Cheruel, Sophie; Janin, Joël; van Tilbeurgh, Herman

    2005-06-01

    Crystallization has long been regarded as one of the major bottlenecks in high-throughput structural determination by X-ray crystallography. Structural genomics projects have addressed this issue by using robots to set up automated crystal screens using nanodrop technology. This has moved the bottleneck from obtaining the first crystal hit to obtaining diffraction-quality crystals, as crystal optimization is a notoriously slow process that is difficult to automatize. This article describes the high-throughput optimization strategies used in the Yeast Structural Genomics project, with selected successful examples.

  20. Development and operation of a high-throughput accurate-wavelength lens-based spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Bell, Ronald E., E-mail: rbell@pppl.gov [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-11-15

    A high-throughput spectrometer for the 400–820 nm wavelength range has been developed for charge exchange recombination spectroscopy or general spectroscopy. A large 2160 mm{sup −1} grating is matched with fast f/1.8 200 mm lenses, which provide stigmatic imaging. A precision optical encoder measures the grating angle with an accuracy ≤0.075 arc sec. A high quantum efficiency low-etaloning CCD detector allows operation at longer wavelengths. A patch panel allows input fibers to interface with interchangeable fiber holders that attach to a kinematic mount at the entrance slit. Computer-controlled hardware allows automated control of wavelength, timing, f-number, automated data collection, and wavelength calibration.

  1. Efficient high-throughput biological process characterization: Definitive screening design with the ambr250 bioreactor system.

    Science.gov (United States)

    Tai, Mitchell; Ly, Amanda; Leung, Inne; Nayar, Gautam

    2015-01-01

    The burgeoning pipeline for new biologic drugs has increased the need for high-throughput process characterization to efficiently use process development resources. Breakthroughs in highly automated and parallelized upstream process development have led to technologies such as the 250-mL automated mini bioreactor (ambr250™) system. Furthermore, developments in modern design of experiments (DoE) have promoted the use of definitive screening design (DSD) as an efficient method to combine factor screening and characterization. Here we utilize the 24-bioreactor ambr250™ system with 10-factor DSD to demonstrate a systematic experimental workflow to efficiently characterize an Escherichia coli (E. coli) fermentation process for recombinant protein production. The generated process model is further validated by laboratory-scale experiments and shows how the strategy is useful for quality by design (QbD) approaches to control strategies for late-stage characterization. © 2015 American Institute of Chemical Engineers.

  2. High-throughput search for caloric materials: the CaloriCool approach

    Science.gov (United States)

    Zarkevich, N. A.; Johnson, D. D.; Pecharsky, V. K.

    2018-01-01

    The high-throughput search paradigm adopted by the newly established caloric materials consortium—CaloriCool®—with the goal to substantially accelerate discovery and design of novel caloric materials is briefly discussed. We begin with describing material selection criteria based on known properties, which are then followed by heuristic fast estimates, ab initio calculations, all of which has been implemented in a set of automated computational tools and measurements. We also demonstrate how theoretical and computational methods serve as a guide for experimental efforts by considering a representative example from the field of magnetocaloric materials.

  3. High-throughput screening for bioactive components from traditional Chinese medicine.

    Science.gov (United States)

    Zhu, Yanhui; Zhang, Zhiyun; Zhang, Meng; Mais, Dale E; Wang, Ming-Wei

    2010-12-01

    Throughout the centuries, traditional Chinese medicine has been a rich resource in the development of new drugs. Modern drug discovery, which relies increasingly on automated high throughput screening and quick hit-to-lead development, however, is confronted with the challenges of the chemical complexity associated with natural products. New technologies for biological screening as well as library building are in great demand in order to meet the requirements. Here we review the developments in these techniques under the perspective of their applicability in natural product drug discovery. Methods in library building, component characterizing, biological evaluation, and other screening methods including NMR and X-ray diffraction are discussed.

  4. High-throughput telomere length quantification by FISH and its application to human population studies.

    Science.gov (United States)

    Canela, Andrés; Vera, Elsa; Klatt, Peter; Blasco, María A

    2007-03-27

    A major limitation of studies of the relevance of telomere length to cancer and age-related diseases in human populations and to the development of telomere-based therapies has been the lack of suitable high-throughput (HT) assays to measure telomere length. We have developed an automated HT quantitative telomere FISH platform, HT quantitative FISH (Q-FISH), which allows the quantification of telomere length as well as percentage of short telomeres in large human sample sets. We show here that this technique provides the accuracy and sensitivity to uncover associations between telomere length and human disease.

  5. High-throughput sequencing of forensic genetic samples using punches of FTA cards with buccal swabs.

    Science.gov (United States)

    Kampmann, Marie-Louise; Buchard, Anders; Børsting, Claus; Morling, Niels

    2016-01-01

    Here, we demonstrate that punches from buccal swab samples preserved on FTA cards can be used for high-throughput DNA sequencing, also known as massively parallel sequencing (MPS). We typed 44 reference samples with the HID-Ion AmpliSeq Identity Panel using washed 1.2 mm punches from FTA cards with buccal swabs and compared the results with those obtained with DNA extracted using the EZ1 DNA Investigator Kit. Concordant profiles were obtained for all samples. Our protocol includes simple punch, wash, and PCR steps, reducing cost and hands-on time in the laboratory. Furthermore, it facilitates automation of DNA sequencing.

  6. Zebrafish: A marvel of high-throughput biology for 21st century toxicology.

    Science.gov (United States)

    Bugel, Sean M; Tanguay, Robert L; Planchart, Antonio

    2014-09-07

    The evolutionary conservation of genomic, biochemical and developmental features between zebrafish and humans is gradually coming into focus with the end result that the zebrafish embryo model has emerged as a powerful tool for uncovering the effects of environmental exposures on a multitude of biological processes with direct relevance to human health. In this review, we highlight advances in automation, high-throughput (HT) screening, and analysis that leverage the power of the zebrafish embryo model for unparalleled advances in our understanding of how chemicals in our environment affect our health and wellbeing.

  7. High-throughput screening for novel anti-infectives using a C. elegans pathogenesis model.

    Science.gov (United States)

    Conery, Annie L; Larkins-Ford, Jonah; Ausubel, Frederick M; Kirienko, Natalia V

    2014-03-14

    In recent history, the nematode Caenorhabditis elegans has provided a compelling platform for the discovery of novel antimicrobial drugs. In this protocol, we present an automated, high-throughput C. elegans pathogenesis assay, which can be used to screen for anti-infective compounds that prevent nematodes from dying due to Pseudomonas aeruginosa. New antibiotics identified from such screens would be promising candidates for treatment of human infections, and also can be used as probe compounds to identify novel targets in microbial pathogenesis or host immunity. Copyright © 2014 John Wiley & Sons, Inc.

  8. High-throughput heterogeneous catalyst research

    Science.gov (United States)

    Turner, Howard W.; Volpe, Anthony F., Jr.; Weinberg, W. H.

    2009-06-01

    With the discovery of abundant and low cost crude oil in the early 1900's came the need to create efficient conversion processes to produce low cost fuels and basic chemicals. Enormous investment over the last century has led to the development of a set of highly efficient catalytic processes which define the modern oil refinery and which produce most of the raw materials and fuels used in modern society. Process evolution and development has led to a refining infrastructure that is both dominated and enabled by modern heterogeneous catalyst technologies. Refineries and chemical manufacturers are currently under intense pressure to improve efficiency, adapt to increasingly disadvantaged feedstocks including biomass, lower their environmental footprint, and continue to deliver their products at low cost. This pressure creates a demand for new and more robust catalyst systems and processes that can accommodate them. Traditional methods of catalyst synthesis and testing are slow and inefficient, particularly in heterogeneous systems where the structure of the active sites is typically complex and the reaction mechanism is at best ill-defined. While theoretical modeling and a growing understanding of fundamental surface science help guide the chemist in designing and synthesizing targets, even in the most well understood areas of catalysis, the parameter space that one needs to explore experimentally is vast. The result is that the chemist using traditional methods must navigate a complex and unpredictable diversity space with a limited data set to make discoveries or to optimize known systems. We describe here a mature set of synthesis and screening technologies that together form a workflow that breaks this traditional paradigm and allows for rapid and efficient heterogeneous catalyst discovery and optimization. We exemplify the power of these new technologies by describing their use in the development and commercialization of a novel catalyst for the

  9. High throughput electrophysiology: new perspectives for ion channel drug discovery

    DEFF Research Database (Denmark)

    Willumsen, Niels J; Bech, Morten; Olesen, Søren-Peter

    2003-01-01

    Proper function of ion channels is crucial for all living cells. Ion channel dysfunction may lead to a number of diseases, so-called channelopathies, and a number of common diseases, including epilepsy, arrhythmia, and type II diabetes, are primarily treated by drugs that modulate ion channels....... A cornerstone in current drug discovery is high throughput screening assays which allow examination of the activity of specific ion channels though only to a limited extent. Conventional patch clamp remains the sole technique with sufficiently high time resolution and sensitivity required for precise and direct...... characterization of ion channel properties. However, patch clamp is a slow, labor-intensive, and thus expensive, technique. New techniques combining the reliability and high information content of patch clamping with the virtues of high throughput philosophy are emerging and predicted to make a number of ion...

  10. High-Throughput Platform for Synthesis of Melamine-Formaldehyde Microcapsules.

    Science.gov (United States)

    Çakir, Seda; Bauters, Erwin; Rivero, Guadalupe; Parasote, Tom; Paul, Johan; Du Prez, Filip E

    2017-07-10

    The synthesis of microcapsules via in situ polymerization is a labor-intensive and time-consuming process, where many composition and process factors affect the microcapsule formation and its morphology. Herein, we report a novel combinatorial technique for the preparation of melamine-formaldehyde microcapsules, using a custom-made and automated high-throughput platform (HTP). After performing validation experiments for ensuring the accuracy and reproducibility of the novel platform, a design of experiment study was performed. The influence of different encapsulation parameters was investigated, such as the effect of the surfactant, surfactant type, surfactant concentration and core/shell ratio. As a result, this HTP-platform is suitable to be used for the synthesis of different types of microcapsules in an automated and controlled way, allowing the screening of different reaction parameters in a shorter time compared to the manual synthetic techniques.

  11. High-throughput screen for novel antimicrobials using a whole animal infection model.

    Science.gov (United States)

    Moy, Terence I; Conery, Annie L; Larkins-Ford, Jonah; Wu, Gang; Mazitschek, Ralph; Casadei, Gabriele; Lewis, Kim; Carpenter, Anne E; Ausubel, Frederick M

    2009-07-17

    The nematode Caenorhabditis elegans is a unique whole animal model system for identifying small molecules with in vivo anti-infective properties. C. elegans can be infected with a broad range of human pathogens, including Enterococcus faecalis, an important human nosocomial pathogen. Here, we describe an automated, high-throughput screen of 37,200 compounds and natural product extracts for those that enhance survival of C. elegans infected with E. faecalis. Using a robot to dispense live, infected animals into 384-well plates and automated microscopy and image analysis, we identified 28 compounds and extracts not previously reported to have antimicrobial properties, including six structural classes that cure infected C. elegans animals but do not affect the growth of the pathogen in vitro, thus acting by a mechanism of action distinct from antibiotics currently in clinical use.

  12. High-throughput, Highly Sensitive Analyses of Bacterial Morphogenesis Using Ultra Performance Liquid Chromatography*

    Science.gov (United States)

    Desmarais, Samantha M.; Tropini, Carolina; Miguel, Amanda; Cava, Felipe; Monds, Russell D.; de Pedro, Miguel A.; Huang, Kerwyn Casey

    2015-01-01

    The bacterial cell wall is a network of glycan strands cross-linked by short peptides (peptidoglycan); it is responsible for the mechanical integrity of the cell and shape determination. Liquid chromatography can be used to measure the abundance of the muropeptide subunits composing the cell wall. Characteristics such as the degree of cross-linking and average glycan strand length are known to vary across species. However, a systematic comparison among strains of a given species has yet to be undertaken, making it difficult to assess the origins of variability in peptidoglycan composition. We present a protocol for muropeptide analysis using ultra performance liquid chromatography (UPLC) and demonstrate that UPLC achieves resolution comparable with that of HPLC while requiring orders of magnitude less injection volume and a fraction of the elution time. We also developed a software platform to automate the identification and quantification of chromatographic peaks, which we demonstrate has improved accuracy relative to other software. This combined experimental and computational methodology revealed that peptidoglycan composition was approximately maintained across strains from three Gram-negative species despite taxonomical and morphological differences. Peptidoglycan composition and density were maintained after we systematically altered cell size in Escherichia coli using the antibiotic A22, indicating that cell shape is largely decoupled from the biochemistry of peptidoglycan synthesis. High-throughput, sensitive UPLC combined with our automated software for chromatographic analysis will accelerate the discovery of peptidoglycan composition and the molecular mechanisms of cell wall structure determination. PMID:26468288

  13. High throughput electrophysiology: new perspectives for ion channel drug discovery

    DEFF Research Database (Denmark)

    Willumsen, Niels J; Bech, Morten; Olesen, Søren-Peter

    2003-01-01

    . A cornerstone in current drug discovery is high throughput screening assays which allow examination of the activity of specific ion channels though only to a limited extent. Conventional patch clamp remains the sole technique with sufficiently high time resolution and sensitivity required for precise and direct....... The introduction of new powerful HTS electrophysiological techniques is predicted to cause a revolution in ion channel drug discovery....

  14. High throughput 16S rRNA gene amplicon sequencing

    DEFF Research Database (Denmark)

    Nierychlo, Marta; Larsen, Poul; Jørgensen, Mads Koustrup

    S rRNA gene amplicon sequencing has been developed over the past few years and is now ready to use for more comprehensive studies related to plant operation and optimization thanks to short analysis time, low cost, high throughput, and high taxonomic resolution. In this study we show how 16S r......RNA gene amplicon sequencing can be used to reveal factors of importance for the operation of full-scale nutrient removal plants related to settling problems and floc properties. Using optimized DNA extraction protocols, indexed primers and our in-house Illumina platform, we prepared multiple samples...... be correlated to the presence of the species that are regarded as “strong” and “weak” floc formers. In conclusion, 16S rRNA gene amplicon sequencing provides a high throughput approach for a rapid and cheap community profiling of activated sludge that in combination with multivariate statistics can be used...

  15. High-throughput theoretical design of lithium battery materials

    International Nuclear Information System (INIS)

    Ling Shi-Gang; Gao Jian; Xiao Rui-Juan; Chen Li-Quan

    2016-01-01

    The rapid evolution of high-throughput theoretical design schemes to discover new lithium battery materials is reviewed, including high-capacity cathodes, low-strain cathodes, anodes, solid state electrolytes, and electrolyte additives. With the development of efficient theoretical methods and inexpensive computers, high-throughput theoretical calculations have played an increasingly important role in the discovery of new materials. With the help of automatic simulation flow, many types of materials can be screened, optimized and designed from a structural database according to specific search criteria. In advanced cell technology, new materials for next generation lithium batteries are of great significance to achieve performance, and some representative criteria are: higher energy density, better safety, and faster charge/discharge speed. (topical review)

  16. A high-throughput multiplex method adapted for GMO detection.

    Science.gov (United States)

    Chaouachi, Maher; Chupeau, Gaëlle; Berard, Aurélie; McKhann, Heather; Romaniuk, Marcel; Giancola, Sandra; Laval, Valérie; Bertheau, Yves; Brunel, Dominique

    2008-12-24

    A high-throughput multiplex assay for the detection of genetically modified organisms (GMO) was developed on the basis of the existing SNPlex method designed for SNP genotyping. This SNPlex assay allows the simultaneous detection of up to 48 short DNA sequences (approximately 70 bp; "signature sequences") from taxa endogenous reference genes, from GMO constructions, screening targets, construct-specific, and event-specific targets, and finally from donor organisms. This assay avoids certain shortcomings of multiplex PCR-based methods already in widespread use for GMO detection. The assay demonstrated high specificity and sensitivity. The results suggest that this assay is reliable, flexible, and cost- and time-effective for high-throughput GMO detection.

  17. High-throughput optical system for HDES hyperspectral imager

    Science.gov (United States)

    Václavík, Jan; Melich, Radek; Pintr, Pavel; Pleštil, Jan

    2015-01-01

    Affordable, long-wave infrared hyperspectral imaging calls for use of an uncooled FPA with high-throughput optics. This paper describes the design of the optical part of a stationary hyperspectral imager in a spectral range of 7-14 um with a field of view of 20°×10°. The imager employs a push-broom method made by a scanning mirror. High throughput and a demand for simplicity and rigidity led to a fully refractive design with highly aspheric surfaces and off-axis positioning of the detector array. The design was optimized to exploit the machinability of infrared materials by the SPDT method and a simple assemblage.

  18. A high-throughput method for assessing chemical toxicity using a Caenorhabditis elegans reproduction assay

    International Nuclear Information System (INIS)

    Boyd, Windy A.; McBride, Sandra J.; Rice, Julie R.; Snyder, Daniel W.; Freedman, Jonathan H.

    2010-01-01

    The National Research Council has outlined the need for non-mammalian toxicological models to test the potential health effects of a large number of chemicals while also reducing the use of traditional animal models. The nematode Caenorhabditis elegans is an attractive alternative model because of its well-characterized and evolutionarily conserved biology, low cost, and ability to be used in high-throughput screening. A high-throughput method is described for quantifying the reproductive capacity of C. elegans exposed to chemicals for 48 h from the last larval stage (L4) to adulthood using a COPAS Biosort. Initially, the effects of exposure conditions that could influence reproduction were defined. Concentrations of DMSO vehicle ≤ 1% did not affect reproduction. Previous studies indicated that C. elegans may be influenced by exposure to low pH conditions. At pHs greater than 4.5, C. elegans reproduction was not affected; however below this pH there was a significant decrease in the number of offspring. Cadmium chloride was chosen as a model toxicant to verify that automated measurements were comparable to those of traditional observational studies. EC 50 values for cadmium for automated measurements (176-192 μM) were comparable to those previously reported for a 72-h exposure using manual counting (151 μM). The toxicity of seven test toxicants on C. elegans reproduction was highly correlative with rodent lethality suggesting that this assay may be useful in predicting the potential toxicity of chemicals in other organisms.

  19. High-throughput microfluidic mixing and multiparametric cell sorting for bioactive compound screening.

    Science.gov (United States)

    Young, Susan M; Curry, Mark S; Ransom, John T; Ballesteros, Juan A; Prossnitz, Eric R; Sklar, Larry A; Edwards, Bruce S

    2004-03-01

    HyperCyt, an automated sample handling system for flow cytometry that uses air bubbles to separate samples sequentially introduced from multiwell plates by an autosampler. In a previously documented HyperCyt configuration, air bubble separated compounds in one sample line and a continuous stream of cells in another are mixed in-line for serial flow cytometric cell response analysis. To expand capabilities for high-throughput bioactive compound screening, the authors investigated using this system configuration in combination with automated cell sorting. Peptide ligands were sampled from a 96-well plate, mixed in-line with fluo-4-loaded, formyl peptide receptor-transfected U937 cells, and screened at a rate of 3 peptide reactions per minute with approximately 10,000 cells analyzed per reaction. Cell Ca(2+) responses were detected to as little as 10(-11) M peptide with no detectable carryover between samples at up to 10(-7) M peptide. After expansion in culture, cells sort-purified from the 10% highest responders exhibited enhanced sensitivity and more sustained responses to peptide. Thus, a highly responsive cell subset was isolated under high-throughput mixing and sorting conditions in which response detection capability spanned a 1000-fold range of peptide concentration. With single-cell readout systems for protein expression libraries, this technology offers the promise of screening millions of discrete compound interactions per day.

  20. High-throughput sequence alignment using Graphics Processing Units

    Directory of Open Access Journals (Sweden)

    Trapnell Cole

    2007-12-01

    Full Text Available Abstract Background The recent availability of new, less expensive high-throughput DNA sequencing technologies has yielded a dramatic increase in the volume of sequence data that must be analyzed. These data are being generated for several purposes, including genotyping, genome resequencing, metagenomics, and de novo genome assembly projects. Sequence alignment programs such as MUMmer have proven essential for analysis of these data, but researchers will need ever faster, high-throughput alignment tools running on inexpensive hardware to keep up with new sequence technologies. Results This paper describes MUMmerGPU, an open-source high-throughput parallel pairwise local sequence alignment program that runs on commodity Graphics Processing Units (GPUs in common workstations. MUMmerGPU uses the new Compute Unified Device Architecture (CUDA from nVidia to align multiple query sequences against a single reference sequence stored as a suffix tree. By processing the queries in parallel on the highly parallel graphics card, MUMmerGPU achieves more than a 10-fold speedup over a serial CPU version of the sequence alignment kernel, and outperforms the exact alignment component of MUMmer on a high end CPU by 3.5-fold in total application time when aligning reads from recent sequencing projects using Solexa/Illumina, 454, and Sanger sequencing technologies. Conclusion MUMmerGPU is a low cost, ultra-fast sequence alignment program designed to handle the increasing volume of data produced by new, high-throughput sequencing technologies. MUMmerGPU demonstrates that even memory-intensive applications can run significantly faster on the relatively low-cost GPU than on the CPU.

  1. Modular high-throughput test stand for versatile screening of thin-film materials libraries

    International Nuclear Information System (INIS)

    Thienhaus, Sigurd; Hamann, Sven; Ludwig, Alfred

    2011-01-01

    Versatile high-throughput characterization tools are required for the development of new materials using combinatorial techniques. Here, we describe a modular, high-throughput test stand for the screening of thin-film materials libraries, which can carry out automated electrical, magnetic and magnetoresistance measurements in the temperature range of −40 to 300 °C. As a proof of concept, we measured the temperature-dependent resistance of Fe–Pd–Mn ferromagnetic shape-memory alloy materials libraries, revealing reversible martensitic transformations and the associated transformation temperatures. Magneto-optical screening measurements of a materials library identify ferromagnetic samples, whereas resistivity maps support the discovery of new phases. A distance sensor in the same setup allows stress measurements in materials libraries deposited on cantilever arrays. A combination of these methods offers a fast and reliable high-throughput characterization technology for searching for new materials. Using this approach, a composition region has been identified in the Fe–Pd–Mn system that combines ferromagnetism and martensitic transformation.

  2. Novel Acoustic Loading of a Mass Spectrometer: Toward Next-Generation High-Throughput MS Screening.

    Science.gov (United States)

    Sinclair, Ian; Stearns, Rick; Pringle, Steven; Wingfield, Jonathan; Datwani, Sammy; Hall, Eric; Ghislain, Luke; Majlof, Lars; Bachman, Martin

    2016-02-01

    High-throughput, direct measurement of substrate-to-product conversion by label-free detection, without the need for engineered substrates or secondary assays, could be considered the "holy grail" of drug discovery screening. Mass spectrometry (MS) has the potential to be part of this ultimate screening solution, but is constrained by the limitations of existing MS sample introduction modes that cannot meet the throughput requirements of high-throughput screening (HTS). Here we report data from a prototype system (Echo-MS) that uses acoustic droplet ejection (ADE) to transfer femtoliter-scale droplets in a rapid, precise, and accurate fashion directly into the MS. The acoustic source can load samples into the MS from a microtiter plate at a rate of up to three samples per second. The resulting MS signal displays a very sharp attack profile and ions are detected within 50 ms of activation of the acoustic transducer. Additionally, we show that the system is capable of generating multiply charged ion species from simple peptides and large proteins. The combination of high speed and low sample volume has significant potential within not only drug discovery, but also other areas of the industry. © 2015 Society for Laboratory Automation and Screening.

  3. A high throughput array microscope for the mechanical characterization of biomaterials

    Science.gov (United States)

    Cribb, Jeremy; Osborne, Lukas D.; Hsiao, Joe Ping-Lin; Vicci, Leandra; Meshram, Alok; O'Brien, E. Tim; Spero, Richard Chasen; Taylor, Russell; Superfine, Richard

    2015-02-01

    In the last decade, the emergence of high throughput screening has enabled the development of novel drug therapies and elucidated many complex cellular processes. Concurrently, the mechanobiology community has developed tools and methods to show that the dysregulation of biophysical properties and the biochemical mechanisms controlling those properties contribute significantly to many human diseases. Despite these advances, a complete understanding of the connection between biomechanics and disease will require advances in instrumentation that enable parallelized, high throughput assays capable of probing complex signaling pathways, studying biology in physiologically relevant conditions, and capturing specimen and mechanical heterogeneity. Traditional biophysical instruments are unable to meet this need. To address the challenge of large-scale, parallelized biophysical measurements, we have developed an automated array high-throughput microscope system that utilizes passive microbead diffusion to characterize mechanical properties of biomaterials. The instrument is capable of acquiring data on twelve-channels simultaneously, where each channel in the system can independently drive two-channel fluorescence imaging at up to 50 frames per second. We employ this system to measure the concentration-dependent apparent viscosity of hyaluronan, an essential polymer found in connective tissue and whose expression has been implicated in cancer progression.

  4. Automated solid-phase extraction-liquid chromatography-tandem mass spectrometry analysis of 6-acetylmorphine in human urine specimens: application for a high-throughput urine analysis laboratory.

    Science.gov (United States)

    Robandt, P V; Bui, H M; Scancella, J M; Klette, K L

    2010-10-01

    An automated solid-phase extraction-liquid chromatography- tandem mass spectrometry (SPE-LC-MS-MS) method using the Spark Holland Symbiosis Pharma SPE-LC coupled to a Waters Quattro Micro MS-MS was developed for the analysis of 6-acetylmorphine (6-AM) in human urine specimens. The method was linear (R² = 0.9983) to 100 ng/mL, with no carryover at 200 ng/mL. Limits of quantification and detection were found to be 2 ng/mL. Interrun precision calculated as percent coefficient of variation (%CV) and evaluated by analyzing five specimens at 10 ng/mL over nine batches (n = 45) was 3.6%. Intrarun precision evaluated from 0 to 100 ng/mL ranged from 1.0 to 4.4%CV. Other opioids (codeine, morphine, oxycodone, oxymorphone, hydromorphone, hydrocodone, and norcodeine) did not interfere in the detection, quantification, or chromatography of 6-AM or the deuterated internal standard. The quantified values for 41 authentic human urine specimens previously found to contain 6-AM by a validated gas chromatography (GC)-MS method were compared to those obtained by the SPE-LC-MS-MS method. The SPE-LC-MS-MS procedure eliminates the human factors of specimen handling, extraction, and derivatization, thereby reducing labor costs and rework resulting from human error or technique issues. The time required for extraction and analysis was reduced by approximately 50% when compared to a validated 6-AM procedure using manual SPE and GC-MS analysis.

  5. A CRISPR CASe for High-Throughput Silencing

    Directory of Open Access Journals (Sweden)

    Jacob eHeintze

    2013-10-01

    Full Text Available Manipulation of gene expression on a genome-wide level is one of the most important systematic tools in the post-genome era. Such manipulations have largely been enabled by expression cloning approaches using sequence-verified cDNA libraries, large-scale RNA interference libraries (shRNA or siRNA and zinc finger nuclease technologies. More recently, the CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated (Cas9-mediated gene editing technology has been described that holds great promise for future use of this technology in genomic manipulation. It was suggested that the CRISPR system has the potential to be used in high-throughput, large-scale loss of function screening. Here we discuss some of the challenges in engineering of CRISPR/Cas genomic libraries and some of the aspects that need to be addressed in order to use this technology on a high-throughput scale.

  6. High-Throughput Thermodynamic Modeling and Uncertainty Quantification for ICME

    Science.gov (United States)

    Otis, Richard A.; Liu, Zi-Kui

    2017-05-01

    One foundational component of the integrated computational materials engineering (ICME) and Materials Genome Initiative is the computational thermodynamics based on the calculation of phase diagrams (CALPHAD) method. The CALPHAD method pioneered by Kaufman has enabled the development of thermodynamic, atomic mobility, and molar volume databases of individual phases in the full space of temperature, composition, and sometimes pressure for technologically important multicomponent engineering materials, along with sophisticated computational tools for using the databases. In this article, our recent efforts will be presented in terms of developing new computational tools for high-throughput modeling and uncertainty quantification based on high-throughput, first-principles calculations and the CALPHAD method along with their potential propagations to downstream ICME modeling and simulations.

  7. High-throughput epitope identification for snakebite antivenom

    DEFF Research Database (Denmark)

    Engmark, Mikael; De Masi, Federico; Laustsen, Andreas Hougaard

    Insight into the epitopic recognition pattern for polyclonal antivenoms is a strong tool for accurate prediction of antivenom cross-reactivity and provides a basis for design of novel antivenoms. In this work, a high-throughput approach was applied to characterize linear epitopes in 966 individua...... toxins from pit vipers (Crotalidae) using the ICP Crotalidae antivenom. Due to an abundance of snake venom metalloproteinases and phospholipase A2s in the venoms used for production of the investigated antivenom, this study focuses on these toxin families.......Insight into the epitopic recognition pattern for polyclonal antivenoms is a strong tool for accurate prediction of antivenom cross-reactivity and provides a basis for design of novel antivenoms. In this work, a high-throughput approach was applied to characterize linear epitopes in 966 individual...

  8. CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation

    Science.gov (United States)

    2013-01-01

    The application of fluorescence microscopy in cell biology often generates a huge amount of imaging data. Automated whole cell segmentation of such data enables the detection and analysis of individual cells, where a manual delineation is often time consuming, or practically not feasible. Furthermore, compared to manual analysis, automation normally has a higher degree of reproducibility. CellSegm, the software presented in this work, is a Matlab based command line software toolbox providing an automated whole cell segmentation of images showing surface stained cells, acquired by fluorescence microscopy. It has options for both fully automated and semi-automated cell segmentation. Major algorithmic steps are: (i) smoothing, (ii) Hessian-based ridge enhancement, (iii) marker-controlled watershed segmentation, and (iv) feature-based classfication of cell candidates. Using a wide selection of image recordings and code snippets, we demonstrate that CellSegm has the ability to detect various types of surface stained cells in 3D. After detection and outlining of individual cells, the cell candidates can be subject to software based analysis, specified and programmed by the end-user, or they can be analyzed by other software tools. A segmentation of tissue samples with appropriate characteristics is also shown to be resolvable in CellSegm. The command-line interface of CellSegm facilitates scripting of the separate tools, all implemented in Matlab, offering a high degree of flexibility and tailored workflows for the end-user. The modularity and scripting capabilities of CellSegm enable automated workflows and quantitative analysis of microscopic data, suited for high-throughput image based screening. PMID:23938087

  9. Computational tools for high-throughput discovery in biology

    OpenAIRE

    Jones, Neil Christopher

    2007-01-01

    High throughput data acquisition technology has inarguably transformed the landscape of the life sciences, in part by making possible---and necessary---the computational disciplines of bioinformatics and biomedical informatics. These fields focus primarily on developing tools for analyzing data and generating hypotheses about objects in nature, and it is in this context that we address three pressing problems in the fields of the computational life sciences which each require computing capaci...

  10. Development of rapid high throughput biodosimetry tools for radiological triage

    International Nuclear Information System (INIS)

    Balajee, Adayabalam S.; Escalona, Maria; Smith, Tammy; Ryan, Terri; Dainiak, Nicholas

    2018-01-01

    Accidental or intentional radiological or nuclear (R/N) disasters constitute a major threat around the globe that can affect several tens, hundreds and thousands of humans. Currently available cytogenetic biodosimeters are time consuming and laborious to perform making them impractical for triage scenarios. Therefore, it is imperative to develop high throughput techniques which will enable timely assessment of personalized dose for making an appropriate 'life-saving' clinical decision

  11. A Functional High-Throughput Assay of Myelination in Vitro

    Science.gov (United States)

    2014-07-01

    Human induced pluripotent stem cells, hydrogels, 3D culture, electrophysiology, high-throughput assay 16. SECURITY CLASSIFICATION OF: 17...image the 3D rat dorsal root ganglion ( DRG ) cultures with sufficiently low background as to detect electrically-evoked depolarization events, as...of voltage-sensitive dyes. 8    We have made substantial progress in Task 4.1. We have fabricated neural fiber tracts from DRG explants and

  12. Intel: High Throughput Computing Collaboration: A CERN openlab / Intel collaboration

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    The Intel/CERN High Throughput Computing Collaboration studies the application of upcoming Intel technologies to the very challenging environment of the LHC trigger and data-acquisition systems. These systems will need to transport and process many terabits of data every second, in some cases with tight latency constraints. Parallelisation and tight integration of accelerators and classical CPU via Intel's OmniPath fabric are the key elements in this project.

  13. High-throughput bioinformatics with the Cyrille2 pipeline system

    Directory of Open Access Journals (Sweden)

    de Groot Joost CW

    2008-02-01

    Full Text Available Abstract Background Modern omics research involves the application of high-throughput technologies that generate vast volumes of data. These data need to be pre-processed, analyzed and integrated with existing knowledge through the use of diverse sets of software tools, models and databases. The analyses are often interdependent and chained together to form complex workflows or pipelines. Given the volume of the data used and the multitude of computational resources available, specialized pipeline software is required to make high-throughput analysis of large-scale omics datasets feasible. Results We have developed a generic pipeline system called Cyrille2. The system is modular in design and consists of three functionally distinct parts: 1 a web based, graphical user interface (GUI that enables a pipeline operator to manage the system; 2 the Scheduler, which forms the functional core of the system and which tracks what data enters the system and determines what jobs must be scheduled for execution, and; 3 the Executor, which searches for scheduled jobs and executes these on a compute cluster. Conclusion The Cyrille2 system is an extensible, modular system, implementing the stated requirements. Cyrille2 enables easy creation and execution of high throughput, flexible bioinformatics pipelines.

  14. High-Throughput Block Optical DNA Sequence Identification.

    Science.gov (United States)

    Sagar, Dodderi Manjunatha; Korshoj, Lee Erik; Hanson, Katrina Bethany; Chowdhury, Partha Pratim; Otoupal, Peter Britton; Chatterjee, Anushree; Nagpal, Prashant

    2018-01-01

    Optical techniques for molecular diagnostics or DNA sequencing generally rely on small molecule fluorescent labels, which utilize light with a wavelength of several hundred nanometers for detection. Developing a label-free optical DNA sequencing technique will require nanoscale focusing of light, a high-throughput and multiplexed identification method, and a data compression technique to rapidly identify sequences and analyze genomic heterogeneity for big datasets. Such a method should identify characteristic molecular vibrations using optical spectroscopy, especially in the "fingerprinting region" from ≈400-1400 cm -1 . Here, surface-enhanced Raman spectroscopy is used to demonstrate label-free identification of DNA nucleobases with multiplexed 3D plasmonic nanofocusing. While nanometer-scale mode volumes prevent identification of single nucleobases within a DNA sequence, the block optical technique can identify A, T, G, and C content in DNA k-mers. The content of each nucleotide in a DNA block can be a unique and high-throughput method for identifying sequences, genes, and other biomarkers as an alternative to single-letter sequencing. Additionally, coupling two complementary vibrational spectroscopy techniques (infrared and Raman) can improve block characterization. These results pave the way for developing a novel, high-throughput block optical sequencing method with lossy genomic data compression using k-mer identification from multiplexed optical data acquisition. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. High Throughput Synthesis and Screening for Agents Inhibiting Androgen Receptor Mediated Gene Transcription

    National Research Council Canada - National Science Library

    Boger, Dale L

    2005-01-01

    .... This entails the high throughput synthesis of DNA binding agents related to distamycin, their screening for binding to androgen response elements using a new high throughput DNA binding screen...

  16. High Throughput Synthesis and Screening for Agents Inhibiting Androgen Receptor Mediated Gene Transcription

    National Research Council Canada - National Science Library

    Boger, Dale

    2004-01-01

    .... This entails the high throughput synthesis of DNA binding agents related to distamycin, their screening for binding to androgen response elements using a new high throughput DNA binding screen...

  17. Dimensioning storage and computing clusters for efficient High Throughput Computing

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    Scientific experiments are producing huge amounts of data, and they continue increasing the size of their datasets and the total volume of data. These data are then processed by researchers belonging to large scientific collaborations, with the Large Hadron Collider being a good example. The focal point of Scientific Data Centres has shifted from coping efficiently with PetaByte scale storage to deliver quality data processing throughput. The dimensioning of the internal components in High Throughput Computing (HTC) data centers is of crucial importance to cope with all the activities demanded by the experiments, both the online (data acceptance) and the offline (data processing, simulation and user analysis). This requires a precise setup involving disk and tape storage services, a computing cluster and the internal networking to prevent bottlenecks, overloads and undesired slowness that lead to losses cpu cycles and batch jobs failures. In this paper we point out relevant features for running a successful s...

  18. High-throughput electrical characterization for robust overlay lithography control

    Science.gov (United States)

    Devender, Devender; Shen, Xumin; Duggan, Mark; Singh, Sunil; Rullan, Jonathan; Choo, Jae; Mehta, Sohan; Tang, Teck Jung; Reidy, Sean; Holt, Jonathan; Kim, Hyung Woo; Fox, Robert; Sohn, D. K.

    2017-03-01

    Realizing sensitive, high throughput and robust overlay measurement is a challenge in current 14nm and advanced upcoming nodes with transition to 300mm and upcoming 450mm semiconductor manufacturing, where slight deviation in overlay has significant impact on reliability and yield1). Exponentially increasing number of critical masks in multi-patterning lithoetch, litho-etch (LELE) and subsequent LELELE semiconductor processes require even tighter overlay specification2). Here, we discuss limitations of current image- and diffraction- based overlay measurement techniques to meet these stringent processing requirements due to sensitivity, throughput and low contrast3). We demonstrate a new electrical measurement based technique where resistance is measured for a macro with intentional misalignment between two layers. Overlay is quantified by a parabolic fitting model to resistance where minima and inflection points are extracted to characterize overlay control and process window, respectively. Analyses using transmission electron microscopy show good correlation between actual overlay performance and overlay obtained from fitting. Additionally, excellent correlation of overlay from electrical measurements to existing image- and diffraction- based techniques is found. We also discuss challenges of integrating electrical measurement based approach in semiconductor manufacturing from Back End of Line (BEOL) perspective. Our findings open up a new pathway for accessing simultaneous overlay as well as process window and margins from a robust, high throughput and electrical measurement approach.

  19. High Throughput WAN Data Transfer with Hadoop-based Storage

    Science.gov (United States)

    Amin, A.; Bockelman, B.; Letts, J.; Levshina, T.; Martin, T.; Pi, H.; Sfiligoi, I.; Thomas, M.; Wüerthwein, F.

    2011-12-01

    Hadoop distributed file system (HDFS) is becoming more popular in recent years as a key building block of integrated grid storage solution in the field of scientific computing. Wide Area Network (WAN) data transfer is one of the important data operations for large high energy physics experiments to manage, share and process datasets of PetaBytes scale in a highly distributed grid computing environment. In this paper, we present the experience of high throughput WAN data transfer with HDFS-based Storage Element. Two protocols, GridFTP and fast data transfer (FDT), are used to characterize the network performance of WAN data transfer.

  20. High Throughput WAN Data Transfer with Hadoop-based Storage

    International Nuclear Information System (INIS)

    Amin, A; Thomas, M; Bockelman, B; Letts, J; Martin, T; Pi, H; Sfiligoi, I; Wüerthwein, F; Levshina, T

    2011-01-01

    Hadoop distributed file system (HDFS) is becoming more popular in recent years as a key building block of integrated grid storage solution in the field of scientific computing. Wide Area Network (WAN) data transfer is one of the important data operations for large high energy physics experiments to manage, share and process datasets of PetaBytes scale in a highly distributed grid computing environment. In this paper, we present the experience of high throughput WAN data transfer with HDFS-based Storage Element. Two protocols, GridFTP and fast data transfer (FDT), are used to characterize the network performance of WAN data transfer.

  1. High-throughput full-automatic synchrotron-based tomographic microscopy

    International Nuclear Information System (INIS)

    Mader, Kevin; Marone, Federica; Hintermueller, Christoph; Mikuljan, Gordan; Isenegger, Andreas; Stampanoni, Marco

    2011-01-01

    At the TOMCAT (TOmographic Microscopy and Coherent rAdiology experimenTs) beamline of the Swiss Light Source with an energy range of 8-45 keV and voxel size from 0.37 (micro)m to 7.4 (micro)m, full tomographic datasets are typically acquired in 5 to 10 min. To exploit the speed of the system and enable high-throughput studies to be performed in a fully automatic manner, a package of automation tools has been developed. The samples are automatically exchanged, aligned, moved to the correct region of interest, and scanned. This task is accomplished through the coordination of Python scripts, a robot-based sample-exchange system, sample positioning motors and a CCD camera. The tools are suited for any samples that can be mounted on a standard SEM stub, and require no specific environmental conditions. Up to 60 samples can be analyzed at a time without user intervention. The throughput of the system is dependent on resolution, energy and sample size, but rates of four samples per hour have been achieved with 0.74 (micro)m voxel size at 17.5 keV. The maximum intervention-free scanning time is theoretically unlimited, and in practice experiments have been running unattended as long as 53 h (the average beam time allocation at TOMCAT is 48 h per user). The system is the first fully automated high-throughput tomography station: mounting samples, finding regions of interest, scanning and reconstructing can be performed without user intervention. The system also includes many features which accelerate and simplify the process of tomographic microscopy.

  2. WormScan: a technique for high-throughput phenotypic analysis of Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Mark D Mathew

    Full Text Available BACKGROUND: There are four main phenotypes that are assessed in whole organism studies of Caenorhabditis elegans; mortality, movement, fecundity and size. Procedures have been developed that focus on the digital analysis of some, but not all of these phenotypes and may be limited by expense and limited throughput. We have developed WormScan, an automated image acquisition system that allows quantitative analysis of each of these four phenotypes on standard NGM plates seeded with E. coli. This system is very easy to implement and has the capacity to be used in high-throughput analysis. METHODOLOGY/PRINCIPAL FINDINGS: Our system employs a readily available consumer grade flatbed scanner. The method uses light stimulus from the scanner rather than physical stimulus to induce movement. With two sequential scans it is possible to quantify the induced phototactic response. To demonstrate the utility of the method, we measured the phenotypic response of C. elegans to phosphine gas exposure. We found that stimulation of movement by the light of the scanner was equivalent to physical stimulation for the determination of mortality. WormScan also provided a quantitative assessment of health for the survivors. Habituation from light stimulation of continuous scans was similar to habituation caused by physical stimulus. CONCLUSIONS/SIGNIFICANCE: There are existing systems for the automated phenotypic data collection of C. elegans. The specific advantages of our method over existing systems are high-throughput assessment of a greater range of phenotypic endpoints including determination of mortality and quantification of the mobility of survivors. Our system is also inexpensive and very easy to implement. Even though we have focused on demonstrating the usefulness of WormScan in toxicology, it can be used in a wide range of additional C. elegans studies including lifespan determination, development, pathology and behavior. Moreover, we have even adapted the

  3. High-throughput selection for cellulase catalysts using chemical complementation.

    Science.gov (United States)

    Peralta-Yahya, Pamela; Carter, Brian T; Lin, Hening; Tao, Haiyan; Cornish, Virginia W

    2008-12-24

    Efficient enzymatic hydrolysis of lignocellulosic material remains one of the major bottlenecks to cost-effective conversion of biomass to ethanol. Improvement of glycosylhydrolases, however, is limited by existing medium-throughput screening technologies. Here, we report the first high-throughput selection for cellulase catalysts. This selection was developed by adapting chemical complementation to provide a growth assay for bond cleavage reactions. First, a URA3 counter selection was adapted to link chemical dimerizer activated gene transcription to cell death. Next, the URA3 counter selection was shown to detect cellulase activity based on cleavage of a tetrasaccharide chemical dimerizer substrate and decrease in expression of the toxic URA3 reporter. Finally, the utility of the cellulase selection was assessed by isolating cellulases with improved activity from a cellulase library created by family DNA shuffling. This application provides further evidence that chemical complementation can be readily adapted to detect different enzymatic activities for important chemical transformations for which no natural selection exists. Because of the large number of enzyme variants that selections can now test as compared to existing medium-throughput screens for cellulases, this assay has the potential to impact the discovery of improved cellulases and other glycosylhydrolases for biomass conversion from libraries of cellulases created by mutagenesis or obtained from natural biodiversity.

  4. Controlling high-throughput manufacturing at the nano-scale

    Science.gov (United States)

    Cooper, Khershed P.

    2013-09-01

    Interest in nano-scale manufacturing research and development is growing. The reason is to accelerate the translation of discoveries and inventions of nanoscience and nanotechnology into products that would benefit industry, economy and society. Ongoing research in nanomanufacturing is focused primarily on developing novel nanofabrication techniques for a variety of applications—materials, energy, electronics, photonics, biomedical, etc. Our goal is to foster the development of high-throughput methods of fabricating nano-enabled products. Large-area parallel processing and highspeed continuous processing are high-throughput means for mass production. An example of large-area processing is step-and-repeat nanoimprinting, by which nanostructures are reproduced again and again over a large area, such as a 12 in wafer. Roll-to-roll processing is an example of continuous processing, by which it is possible to print and imprint multi-level nanostructures and nanodevices on a moving flexible substrate. The big pay-off is high-volume production and low unit cost. However, the anticipated cost benefits can only be realized if the increased production rate is accompanied by high yields of high quality products. To ensure product quality, we need to design and construct manufacturing systems such that the processes can be closely monitored and controlled. One approach is to bring cyber-physical systems (CPS) concepts to nanomanufacturing. CPS involves the control of a physical system such as manufacturing through modeling, computation, communication and control. Such a closely coupled system will involve in-situ metrology and closed-loop control of the physical processes guided by physics-based models and driven by appropriate instrumentation, sensing and actuation. This paper will discuss these ideas in the context of controlling high-throughput manufacturing at the nano-scale.

  5. High-throughput anisotropic plasma etching of polyimide for MEMS

    International Nuclear Information System (INIS)

    Bliznetsov, Vladimir; Manickam, Anbumalar; Ranganathan, Nagarajan; Chen, Junwei

    2011-01-01

    This note describes a new high-throughput process of polyimide etching for the fabrication of MEMS devices with an organic sacrificial layer approach. Using dual frequency superimposed capacitively coupled plasma we achieved a vertical profile of polyimide with an etching rate as high as 3.5 µm min −1 . After the fabrication of vertical structures in a polyimide material, additional steps were performed to fabricate structural elements of MEMS by deposition of a SiO 2 layer and performing release etching of polyimide. (technical note)

  6. High throughput nanoimprint lithography for semiconductor memory applications

    Science.gov (United States)

    Ye, Zhengmao; Zhang, Wei; Khusnatdinov, Niyaz; Stachowiak, Tim; Irving, J. W.; Longsine, Whitney; Traub, Matthew; Fletcher, Brian; Liu, Weijun

    2017-03-01

    Imprint lithography is a promising technology for replication of nano-scale features. For semiconductor device applications, Canon deposits a low viscosity resist on a field by field basis using jetting technology. A patterned mask is lowered into the resist fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed, leaving a patterned resist on the substrate. There are two critical components to meeting throughput requirements for imprint lithography. Using a similar approach to what is already done for many deposition and etch processes, imprint stations can be clustered to enhance throughput. The FPA-1200NZ2C is a four station cluster system designed for high volume manufacturing. For a single station, throughput includes overhead, resist dispense, resist fill time (or spread time), exposure and separation. Resist exposure time and mask/wafer separation are well understood processing steps with typical durations on the order of 0.10 to 0.20 seconds. To achieve a total process throughput of 17 wafers per hour (wph) for a single station, it is necessary to complete the fluid fill step in 1.2 seconds. For a throughput of 20 wph, fill time must be reduced to only one 1.1 seconds. There are several parameters that can impact resist filling. Key parameters include resist drop volume (smaller is better), system controls (which address drop spreading after jetting), Design for Imprint or DFI (to accelerate drop spreading) and material engineering (to promote wetting between the resist and underlying adhesion layer). In addition, it is mandatory to maintain fast filling, even for edge field imprinting. In this paper, we address the improvements made in all of these parameters to first enable a 1.20 second filling process for a device like pattern and have demonstrated this capability for both full fields and edge fields. Non

  7. A semi-automated multiplex high-throughput assay for measuring IgG antibodies against Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) domains in small volumes of plasma

    DEFF Research Database (Denmark)

    Cham, Gerald K K; Kurtis, Jonathan; Lusingu, John

    2008-01-01

    -based assay was sensitive, accurate and reproducible. Four recombinant PfEMP1 proteins C17, D5, D9 and D12, selected on the basis that they showed a spread of median fluorescent intensity (MFI) values from low to high when analysed by the bead-based assay were analysed by ELISA and the results from both...... reactivity levels to twenty eight different recombinant PfEMP1 proteins were simultaneously measured using a single microliter of plasma. Thus, the assay reported here provides a useful tool for rapid and efficient quantification of antibody reactivity against PfEMP1 variants in human plasma....... of twenty nine PfEMP1 domains were PCR amplified from 3D7 genomic DNA, expressed in the Baculovirus system and purified by metal-affinity chromatography. The antibody reactivity level to the recombinant PfEMP1 proteins in human hyper-immune plasma was measured by ELISA. In parallel, these recombinant PfEMP1...

  8. Combinatorial chemoenzymatic synthesis and high-throughput screening of sialosides.

    Science.gov (United States)

    Chokhawala, Harshal A; Huang, Shengshu; Lau, Kam; Yu, Hai; Cheng, Jiansong; Thon, Vireak; Hurtado-Ziola, Nancy; Guerrero, Juan A; Varki, Ajit; Chen, Xi

    2008-09-19

    Although the vital roles of structures containing sialic acid in biomolecular recognition are well documented, limited information is available on how sialic acid structural modifications, sialyl linkages, and the underlying glycan structures affect the binding or the activity of sialic acid-recognizing proteins and related downstream biological processes. A novel combinatorial chemoenzymatic method has been developed for the highly efficient synthesis of biotinylated sialosides containing different sialic acid structures and different underlying glycans in 96-well plates from biotinylated sialyltransferase acceptors and sialic acid precursors. By transferring the reaction mixtures to NeutrAvidin-coated plates and assaying for the yields of enzymatic reactions using lectins recognizing sialyltransferase acceptors but not the sialylated products, the biotinylated sialoside products can be directly used, without purification, for high-throughput screening to quickly identify the ligand specificity of sialic acid-binding proteins. For a proof-of-principle experiment, 72 biotinylated alpha2,6-linked sialosides were synthesized in 96-well plates from 4 biotinylated sialyltransferase acceptors and 18 sialic acid precursors using a one-pot three-enzyme system. High-throughput screening assays performed in NeutrAvidin-coated microtiter plates show that whereas Sambucus nigra Lectin binds to alpha2,6-linked sialosides with high promiscuity, human Siglec-2 (CD22) is highly selective for a number of sialic acid structures and the underlying glycans in its sialoside ligands.

  9. High-throughput screening to enhance oncolytic virus immunotherapy

    Directory of Open Access Journals (Sweden)

    Allan KJ

    2016-04-01

    Full Text Available KJ Allan,1,2 David F Stojdl,1–3 SL Swift1 1Children’s Hospital of Eastern Ontario (CHEO Research Institute, 2Department of Biology, Microbiology and Immunology, 3Department of Pediatrics, University of Ottawa, Ottawa, ON, Canada Abstract: High-throughput screens can rapidly scan and capture large amounts of information across multiple biological parameters. Although many screens have been designed to uncover potential new therapeutic targets capable of crippling viruses that cause disease, there have been relatively few directed at improving the efficacy of viruses that are used to treat disease. Oncolytic viruses (OVs are biotherapeutic agents with an inherent specificity for treating malignant disease. Certain OV platforms – including those based on herpes simplex virus, reovirus, and vaccinia virus – have shown success against solid tumors in advanced clinical trials. Yet, many of these OVs have only undergone minimal engineering to solidify tumor specificity, with few extra modifications to manipulate additional factors. Several aspects of the interaction between an OV and a tumor-bearing host have clear value as targets to improve therapeutic outcomes. At the virus level, these include delivery to the tumor, infectivity, productivity, oncolysis, bystander killing, spread, and persistence. At the host level, these include engaging the immune system and manipulating the tumor microenvironment. Here, we review the chemical- and genome-based high-throughput screens that have been performed to manipulate such parameters during OV infection and analyze their impact on therapeutic efficacy. We further explore emerging themes that represent key areas of focus for future research. Keywords: oncolytic, virus, screen, high-throughput, cancer, chemical, genomic, immunotherapy

  10. AELAS: Automatic ELAStic property derivations via high-throughput first-principles computation

    Science.gov (United States)

    Zhang, S. H.; Zhang, R. F.

    2017-11-01

    The elastic properties are fundamental and important for crystalline materials as they relate to other mechanical properties, various thermodynamic qualities as well as some critical physical properties. However, a complete set of experimentally determined elastic properties is only available for a small subset of known materials, and an automatic scheme for the derivations of elastic properties that is adapted to high-throughput computation is much demanding. In this paper, we present the AELAS code, an automated program for calculating second-order elastic constants of both two-dimensional and three-dimensional single crystal materials with any symmetry, which is designed mainly for high-throughput first-principles computation. Other derivations of general elastic properties such as Young's, bulk and shear moduli as well as Poisson's ratio of polycrystal materials, Pugh ratio, Cauchy pressure, elastic anisotropy and elastic stability criterion, are also implemented in this code. The implementation of the code has been critically validated by a lot of evaluations and tests on a broad class of materials including two-dimensional and three-dimensional materials, providing its efficiency and capability for high-throughput screening of specific materials with targeted mechanical properties. Program Files doi:http://dx.doi.org/10.17632/f8fwg4j9tw.1 Licensing provisions: BSD 3-Clause Programming language: Fortran Nature of problem: To automate the calculations of second-order elastic constants and the derivations of other elastic properties for two-dimensional and three-dimensional materials with any symmetry via high-throughput first-principles computation. Solution method: The space-group number is firstly determined by the SPGLIB code [1] and the structure is then redefined to unit cell with IEEE-format [2]. Secondly, based on the determined space group number, a set of distortion modes is automatically specified and the distorted structure files are generated

  11. Application of high-throughput DNA sequencing in phytopathology.

    Science.gov (United States)

    Studholme, David J; Glover, Rachel H; Boonham, Neil

    2011-01-01

    The new sequencing technologies are already making a big impact in academic research on medically important microbes and may soon revolutionize diagnostics, epidemiology, and infection control. Plant pathology also stands to gain from exploiting these opportunities. This manuscript reviews some applications of these high-throughput sequencing methods that are relevant to phytopathology, with emphasis on the associated computational and bioinformatics challenges and their solutions. Second-generation sequencing technologies have recently been exploited in genomics of both prokaryotic and eukaryotic plant pathogens. They are also proving to be useful in diagnostics, especially with respect to viruses. Copyright © 2011 by Annual Reviews. All rights reserved.

  12. REDItools: high-throughput RNA editing detection made easy.

    Science.gov (United States)

    Picardi, Ernesto; Pesole, Graziano

    2013-07-15

    The reliable detection of RNA editing sites from massive sequencing data remains challenging and, although several methodologies have been proposed, no computational tools have been released to date. Here, we introduce REDItools a suite of python scripts to perform high-throughput investigation of RNA editing using next-generation sequencing data. REDItools are in python programming language and freely available at http://code.google.com/p/reditools/. ernesto.picardi@uniba.it or graziano.pesole@uniba.it Supplementary data are available at Bioinformatics online.

  13. High Throughput System for Plant Height and Hyperspectral Measurement

    Science.gov (United States)

    Zhao, H.; Xu, L.; Jiang, H.; Shi, S.; Chen, D.

    2018-04-01

    Hyperspectral and three-dimensional measurement can obtain the intrinsic physicochemical properties and external geometrical characteristics of objects, respectively. Currently, a variety of sensors are integrated into a system to collect spectral and morphological information in agriculture. However, previous experiments were usually performed with several commercial devices on a single platform. Inadequate registration and synchronization among instruments often resulted in mismatch between spectral and 3D information of the same target. And narrow field of view (FOV) extends the working hours in farms. Therefore, we propose a high throughput prototype that combines stereo vision and grating dispersion to simultaneously acquire hyperspectral and 3D information.

  14. A High-Throughput SU-8Microfluidic Magnetic Bead Separator

    DEFF Research Database (Denmark)

    Bu, Minqiang; Christensen, T. B.; Smistrup, Kristian

    2007-01-01

    We present a novel microfluidic magnetic bead separator based on SU-8 fabrication technique for high through-put applications. The experimental results show that magnetic beads can be captured at an efficiency of 91 % and 54 % at flow rates of 1 mL/min and 4 mL/min, respectively. Integration...... of soft magnetic elements in the chip leads to a slightly higher capturing efficiency and a more uniform distribution of captured beads over the separation chamber than the system without soft magnetic elements....

  15. Quack: A quality assurance tool for high throughput sequence data.

    Science.gov (United States)

    Thrash, Adam; Arick, Mark; Peterson, Daniel G

    2018-05-01

    The quality of data generated by high-throughput DNA sequencing tools must be rapidly assessed in order to determine how useful the data may be in making biological discoveries; higher quality data leads to more confident results and conclusions. Due to the ever-increasing size of data sets and the importance of rapid quality assessment, tools that analyze sequencing data should quickly produce easily interpretable graphics. Quack addresses these issues by generating information-dense visualizations from FASTQ files at a speed far surpassing other publicly available quality assurance tools in a manner independent of sequencing technology. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Creation of a small high-throughput screening facility.

    Science.gov (United States)

    Flak, Tod

    2009-01-01

    The creation of a high-throughput screening facility within an organization is a difficult task, requiring a substantial investment of time, money, and organizational effort. Major issues to consider include the selection of equipment, the establishment of data analysis methodologies, and the formation of a group having the necessary competencies. If done properly, it is possible to build a screening system in incremental steps, adding new pieces of equipment and data analysis modules as the need grows. Based upon our experience with the creation of a small screening service, we present some guidelines to consider in planning a screening facility.

  17. High throughput platforms for structural genomics of integral membrane proteins.

    Science.gov (United States)

    Mancia, Filippo; Love, James

    2011-08-01

    Structural genomics approaches on integral membrane proteins have been postulated for over a decade, yet specific efforts are lagging years behind their soluble counterparts. Indeed, high throughput methodologies for production and characterization of prokaryotic integral membrane proteins are only now emerging, while large-scale efforts for eukaryotic ones are still in their infancy. Presented here is a review of recent literature on actively ongoing structural genomics of membrane protein initiatives, with a focus on those aimed at implementing interesting techniques aimed at increasing our rate of success for this class of macromolecules. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Spectrophotometric Enzyme Assays for High-Throughput Screening

    Directory of Open Access Journals (Sweden)

    Jean-Louis Reymond

    2004-01-01

    Full Text Available This paper reviews high-throughput screening enzyme assays developed in our laboratory over the last ten years. These enzyme assays were initially developed for the purpose of discovering catalytic antibodies by screening cell culture supernatants, but have proved generally useful for testing enzyme activities. Examples include TLC-based screening using acridone-labeled substrates, fluorogenic assays based on the β-elimination of umbelliferone or nitrophenol, and indirect assays such as the back-titration method with adrenaline and the copper-calcein fluorescence assay for aminoacids.

  19. Correction of Microplate Data from High-Throughput Screening.

    Science.gov (United States)

    Wang, Yuhong; Huang, Ruili

    2016-01-01

    High-throughput screening (HTS) makes it possible to collect cellular response data from a large number of cell lines and small molecules in a timely and cost-effective manner. The errors and noises in the microplate-formatted data from HTS have unique characteristics, and they can be generally grouped into three categories: run-wise (temporal, multiple plates), plate-wise (background pattern, single plate), and well-wise (single well). In this chapter, we describe a systematic solution for identifying and correcting such errors and noises, mainly basing on pattern recognition and digital signal processing technologies.

  20. HIGH THROUGHPUT SYSTEM FOR PLANT HEIGHT AND HYPERSPECTRAL MEASUREMENT

    Directory of Open Access Journals (Sweden)

    H. Zhao

    2018-04-01

    Full Text Available Hyperspectral and three-dimensional measurement can obtain the intrinsic physicochemical properties and external geometrical characteristics of objects, respectively. Currently, a variety of sensors are integrated into a system to collect spectral and morphological information in agriculture. However, previous experiments were usually performed with several commercial devices on a single platform. Inadequate registration and synchronization among instruments often resulted in mismatch between spectral and 3D information of the same target. And narrow field of view (FOV extends the working hours in farms. Therefore, we propose a high throughput prototype that combines stereo vision and grating dispersion to simultaneously acquire hyperspectral and 3D information.

  1. A pocket device for high-throughput optofluidic holographic microscopy

    Science.gov (United States)

    Mandracchia, B.; Bianco, V.; Wang, Z.; Paturzo, M.; Bramanti, A.; Pioggia, G.; Ferraro, P.

    2017-06-01

    Here we introduce a compact holographic microscope embedded onboard a Lab-on-a-Chip (LoC) platform. A wavefront division interferometer is realized by writing a polymer grating onto the channel to extract a reference wave from the object wave impinging the LoC. A portion of the beam reaches the samples flowing along the channel path, carrying their information content to the recording device, while one of the diffraction orders from the grating acts as an off-axis reference wave. Polymeric micro-lenses are delivered forward the chip by Pyro-ElectroHydroDynamic (Pyro-EHD) inkjet printing techniques. Thus, all the required optical components are embedded onboard a pocket device, and fast, non-iterative, reconstruction algorithms can be used. We use our device in combination with a novel high-throughput technique, named Space-Time Digital Holography (STDH). STDH exploits the samples motion inside microfluidic channels to obtain a synthetic hologram, mapped in a hybrid space-time domain, and with intrinsic useful features. Indeed, a single Linear Sensor Array (LSA) is sufficient to build up a synthetic representation of the entire experiment (i.e. the STDH) with unlimited Field of View (FoV) along the scanning direction, independently from the magnification factor. The throughput of the imaging system is dramatically increased as STDH provides unlimited FoV, refocusable imaging of samples inside the liquid volume with no need for hologram stitching. To test our embedded STDH microscopy module, we counted, imaged and tracked in 3D with high-throughput red blood cells moving inside the channel volume under non ideal flow conditions.

  2. A high throughput mechanical screening device for cartilage tissue engineering.

    Science.gov (United States)

    Mohanraj, Bhavana; Hou, Chieh; Meloni, Gregory R; Cosgrove, Brian D; Dodge, George R; Mauck, Robert L

    2014-06-27

    Articular cartilage enables efficient and near-frictionless load transmission, but suffers from poor inherent healing capacity. As such, cartilage tissue engineering strategies have focused on mimicking both compositional and mechanical properties of native tissue in order to provide effective repair materials for the treatment of damaged or degenerated joint surfaces. However, given the large number design parameters available (e.g. cell sources, scaffold designs, and growth factors), it is difficult to conduct combinatorial experiments of engineered cartilage. This is particularly exacerbated when mechanical properties are a primary outcome, given the long time required for testing of individual samples. High throughput screening is utilized widely in the pharmaceutical industry to rapidly and cost-effectively assess the effects of thousands of compounds for therapeutic discovery. Here we adapted this approach to develop a high throughput mechanical screening (HTMS) system capable of measuring the mechanical properties of up to 48 materials simultaneously. The HTMS device was validated by testing various biomaterials and engineered cartilage constructs and by comparing the HTMS results to those derived from conventional single sample compression tests. Further evaluation showed that the HTMS system was capable of distinguishing and identifying 'hits', or factors that influence the degree of tissue maturation. Future iterations of this device will focus on reducing data variability, increasing force sensitivity and range, as well as scaling-up to even larger (96-well) formats. This HTMS device provides a novel tool for cartilage tissue engineering, freeing experimental design from the limitations of mechanical testing throughput. © 2013 Published by Elsevier Ltd.

  3. A Primer on High-Throughput Computing for Genomic Selection

    Directory of Open Access Journals (Sweden)

    Xiao-Lin eWu

    2011-02-01

    Full Text Available High-throughput computing (HTC uses computer clusters to solve advanced computational problems, with the goal of accomplishing high throughput over relatively long periods of time. In genomic selection, for example, a set of markers covering the entire genome is used to train a model based on known data, and the resulting model is used to predict the genetic merit of selection candidates. Sophisticated models are very computationally demanding and, with several traits to be evaluated sequentially, computing time is long and output is low. In this paper, we present scenarios and basic principles of how HTC can be used in genomic selection, implemented using various techniques from simple batch processing to pipelining in distributed computer clusters. Various scripting languages, such as shell scripting, Perl and R, are also very useful to devise pipelines. By pipelining, we can reduce total computing time and consequently increase throughput. In comparison to the traditional data processing pipeline residing on the central processors, performing general purpose computation on a graphics processing unit (GPU provide a new-generation approach to massive parallel computing in genomic selection. While the concept of HTC may still be new to many researchers in animal breeding, plant breeding, and genetics, HTC infrastructures have already been built in many institutions, such as the University of Wisconsin – Madison, which can be leveraged for genomic selection, in terms of central processing unit (CPU capacity, network connectivity, storage availability, and middleware connectivity. Exploring existing HTC infrastructures as well as general purpose computing environments will further expand our capability to meet increasing computing demands posed by unprecedented genomic data that we have today. We anticipate that HTC will impact genomic selection via better statistical models, faster solutions, and more competitive products (e.g., from design of

  4. High-throughput fragment screening by affinity LC-MS.

    Science.gov (United States)

    Duong-Thi, Minh-Dao; Bergström, Maria; Fex, Tomas; Isaksson, Roland; Ohlson, Sten

    2013-02-01

    Fragment screening, an emerging approach for hit finding in drug discovery, has recently been proven effective by its first approved drug, vemurafenib, for cancer treatment. Techniques such as nuclear magnetic resonance, surface plasmon resonance, and isothemal titration calorimetry, with their own pros and cons, have been employed for screening fragment libraries. As an alternative approach, screening based on high-performance liquid chromatography separation has been developed. In this work, we present weak affinity LC/MS as a method to screen fragments under high-throughput conditions. Affinity-based capillary columns with immobilized thrombin were used to screen a collection of 590 compounds from a fragment library. The collection was divided into 11 mixtures (each containing 35 to 65 fragments) and screened by MS detection. The primary screening was performed in 3500 fragments per day). Thirty hits were defined, which subsequently entered a secondary screening using an active site-blocked thrombin column for confirmation of specificity. One hit showed selective binding to thrombin with an estimated dissociation constant (K (D)) in the 0.1 mM range. This study shows that affinity LC/MS is characterized by high throughput, ease of operation, and low consumption of target and fragments, and therefore it promises to be a valuable method for fragment screening.

  5. High-throughput GPU-based LDPC decoding

    Science.gov (United States)

    Chang, Yang-Lang; Chang, Cheng-Chun; Huang, Min-Yu; Huang, Bormin

    2010-08-01

    Low-density parity-check (LDPC) code is a linear block code known to approach the Shannon limit via the iterative sum-product algorithm. LDPC codes have been adopted in most current communication systems such as DVB-S2, WiMAX, WI-FI and 10GBASE-T. LDPC for the needs of reliable and flexible communication links for a wide variety of communication standards and configurations have inspired the demand for high-performance and flexibility computing. Accordingly, finding a fast and reconfigurable developing platform for designing the high-throughput LDPC decoder has become important especially for rapidly changing communication standards and configurations. In this paper, a new graphic-processing-unit (GPU) LDPC decoding platform with the asynchronous data transfer is proposed to realize this practical implementation. Experimental results showed that the proposed GPU-based decoder achieved 271x speedup compared to its CPU-based counterpart. It can serve as a high-throughput LDPC decoder.

  6. High-throughput technology for novel SO2 oxidation catalysts

    International Nuclear Information System (INIS)

    Loskyll, Jonas; Stoewe, Klaus; Maier, Wilhelm F

    2011-01-01

    We review the state of the art and explain the need for better SO 2 oxidation catalysts for the production of sulfuric acid. A high-throughput technology has been developed for the study of potential catalysts in the oxidation of SO 2 to SO 3 . High-throughput methods are reviewed and the problems encountered with their adaptation to the corrosive conditions of SO 2 oxidation are described. We show that while emissivity-corrected infrared thermography (ecIRT) can be used for primary screening, it is prone to errors because of the large variations in the emissivity of the catalyst surface. UV-visible (UV-Vis) spectrometry was selected instead as a reliable analysis method of monitoring the SO 2 conversion. Installing plain sugar absorbents at reactor outlets proved valuable for the detection and quantitative removal of SO 3 from the product gas before the UV-Vis analysis. We also overview some elements used for prescreening and those remaining after the screening of the first catalyst generations. (topical review)

  7. Fluorescent foci quantitation for high-throughput analysis

    Directory of Open Access Journals (Sweden)

    Elena Ledesma-Fernández

    2015-06-01

    Full Text Available A number of cellular proteins localize to discrete foci within cells, for example DNA repair proteins, microtubule organizing centers, P bodies or kinetochores. It is often possible to measure the fluorescence emission from tagged proteins within these foci as a surrogate for the concentration of that specific protein. We wished to develop tools that would allow quantitation of fluorescence foci intensities in high-throughput studies. As proof of principle we have examined the kinetochore, a large multi-subunit complex that is critical for the accurate segregation of chromosomes during cell division. Kinetochore perturbations lead to aneuploidy, which is a hallmark of cancer cells. Hence, understanding kinetochore homeostasis and regulation are important for a global understanding of cell division and genome integrity. The 16 budding yeast kinetochores colocalize within the nucleus to form a single focus. Here we have created a set of freely-available tools to allow high-throughput quantitation of kinetochore foci fluorescence. We use this ‘FociQuant’ tool to compare methods of kinetochore quantitation and we show proof of principle that FociQuant can be used to identify changes in kinetochore protein levels in a mutant that affects kinetochore function. This analysis can be applied to any protein that forms discrete foci in cells.

  8. A gas trapping method for high-throughput metabolic experiments.

    Science.gov (United States)

    Krycer, James R; Diskin, Ciana; Nelson, Marin E; Zeng, Xiao-Yi; Fazakerley, Daniel J; James, David E

    2018-01-01

    Research into cellular metabolism has become more high-throughput, with typical cell-culture experiments being performed in multiwell plates (microplates). This format presents a challenge when trying to collect gaseous products, such as carbon dioxide (CO2), which requires a sealed environment and a vessel separate from the biological sample. To address this limitation, we developed a gas trapping protocol using perforated plastic lids in sealed cell-culture multiwell plates. We used this trap design to measure CO2 production from glucose and fatty acid metabolism, as well as hydrogen sulfide production from cysteine-treated cells. Our data clearly show that this gas trap can be applied to liquid and solid gas-collection media and can be used to study gaseous product generation by both adherent cells and cells in suspension. Since our gas traps can be adapted to multiwell plates of various sizes, they present a convenient, cost-effective solution that can accommodate the trend toward high-throughput measurements in metabolic research.

  9. Management of High-Throughput DNA Sequencing Projects: Alpheus.

    Science.gov (United States)

    Miller, Neil A; Kingsmore, Stephen F; Farmer, Andrew; Langley, Raymond J; Mudge, Joann; Crow, John A; Gonzalez, Alvaro J; Schilkey, Faye D; Kim, Ryan J; van Velkinburgh, Jennifer; May, Gregory D; Black, C Forrest; Myers, M Kathy; Utsey, John P; Frost, Nicholas S; Sugarbaker, David J; Bueno, Raphael; Gullans, Stephen R; Baxter, Susan M; Day, Steve W; Retzel, Ernest F

    2008-12-26

    High-throughput DNA sequencing has enabled systems biology to begin to address areas in health, agricultural and basic biological research. Concomitant with the opportunities is an absolute necessity to manage significant volumes of high-dimensional and inter-related data and analysis. Alpheus is an analysis pipeline, database and visualization software for use with massively parallel DNA sequencing technologies that feature multi-gigabase throughput characterized by relatively short reads, such as Illumina-Solexa (sequencing-by-synthesis), Roche-454 (pyrosequencing) and Applied Biosystem's SOLiD (sequencing-by-ligation). Alpheus enables alignment to reference sequence(s), detection of variants and enumeration of sequence abundance, including expression levels in transcriptome sequence. Alpheus is able to detect several types of variants, including non-synonymous and synonymous single nucleotide polymorphisms (SNPs), insertions/deletions (indels), premature stop codons, and splice isoforms. Variant detection is aided by the ability to filter variant calls based on consistency, expected allele frequency, sequence quality, coverage, and variant type in order to minimize false positives while maximizing the identification of true positives. Alpheus also enables comparisons of genes with variants between cases and controls or bulk segregant pools. Sequence-based differential expression comparisons can be developed, with data export to SAS JMP Genomics for statistical analysis.

  10. The JCSG high-throughput structural biology pipeline

    International Nuclear Information System (INIS)

    Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wooley, John; Wüthrich, Kurt; Wilson, Ian A.

    2010-01-01

    The Joint Center for Structural Genomics high-throughput structural biology pipeline has delivered more than 1000 structures to the community over the past ten years and has made a significant contribution to the overall goal of the NIH Protein Structure Initiative (PSI) of expanding structural coverage of the protein universe. The Joint Center for Structural Genomics high-throughput structural biology pipeline has delivered more than 1000 structures to the community over the past ten years. The JCSG has made a significant contribution to the overall goal of the NIH Protein Structure Initiative (PSI) of expanding structural coverage of the protein universe, as well as making substantial inroads into structural coverage of an entire organism. Targets are processed through an extensive combination of bioinformatics and biophysical analyses to efficiently characterize and optimize each target prior to selection for structure determination. The pipeline uses parallel processing methods at almost every step in the process and can adapt to a wide range of protein targets from bacterial to human. The construction, expansion and optimization of the JCSG gene-to-structure pipeline over the years have resulted in many technological and methodological advances and developments. The vast number of targets and the enormous amounts of associated data processed through the multiple stages of the experimental pipeline required the development of variety of valuable resources that, wherever feasible, have been converted to free-access web-based tools and applications

  11. High-throughput characterization for solar fuels materials discovery

    Science.gov (United States)

    Mitrovic, Slobodan; Becerra, Natalie; Cornell, Earl; Guevarra, Dan; Haber, Joel; Jin, Jian; Jones, Ryan; Kan, Kevin; Marcin, Martin; Newhouse, Paul; Soedarmadji, Edwin; Suram, Santosh; Xiang, Chengxiang; Gregoire, John; High-Throughput Experimentation Team

    2014-03-01

    In this talk I will present the status of the High-Throughput Experimentation (HTE) project of the Joint Center for Artificial Photosynthesis (JCAP). JCAP is an Energy Innovation Hub of the U.S. Department of Energy with a mandate to deliver a solar fuel generator based on an integrated photoelectrochemical cell (PEC). However, efficient and commercially viable catalysts or light absorbers for the PEC do not exist. The mission of HTE is to provide the accelerated discovery through combinatorial synthesis and rapid screening of material properties. The HTE pipeline also features high-throughput material characterization using x-ray diffraction and x-ray photoemission spectroscopy (XPS). In this talk I present the currently operating pipeline and focus on our combinatorial XPS efforts to build the largest free database of spectra from mixed-metal oxides, nitrides, sulfides and alloys. This work was performed at Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the U.S. Department of Energy under Award No. DE-SC0004993.

  12. High-throughput screening with micro-x-ray fluorescence

    International Nuclear Information System (INIS)

    Havrilla, George J.; Miller, Thomasin C.

    2005-01-01

    Micro-x-ray fluorescence (MXRF) is a useful characterization tool for high-throughput screening of combinatorial libraries. Due to the increasing threat of use of chemical warfare (CW) agents both in military actions and against civilians by terrorist extremists, there is a strong push to improve existing methods and develop means for the detection of a broad spectrum of CW agents in a minimal amount of time to increase national security. This paper describes a combinatorial high-throughput screening technique for CW receptor discovery to aid in sensor development. MXRF can screen materials for elemental composition at the mesoscale level (tens to hundreds of micrometers). The key aspect of this work is the use of commercial MXRF instrumentation coupled with the inherent heteroatom elements within the target molecules of the combinatorial reaction to provide rapid and specific identification of lead species. The method is demonstrated by screening an 11-mer oligopeptide library for selective binding of the degradation products of the nerve agent VX. The identified oligopeptides can be used as selective molecular receptors for sensor development. The MXRF screening method is nondestructive, requires minimal sample preparation or special tags for analysis, and the screening time depends on the desired sensitivity

  13. Genome-wide LORE1 retrotransposon mutagenesis and high-throughput insertion detection in Lotus japonicus

    DEFF Research Database (Denmark)

    Urbanski, Dorian Fabian; Malolepszy, Anna; Stougaard, Jens

    2012-01-01

    Insertion mutants facilitate functional analysis of genes, but for most plant species it has been difficult to identify a suitable mutagen and to establish large populations for reverse genetics. The main challenge is developing efficient high-throughput procedures for both mutagenesis and insert......Insertion mutants facilitate functional analysis of genes, but for most plant species it has been difficult to identify a suitable mutagen and to establish large populations for reverse genetics. The main challenge is developing efficient high-throughput procedures for both mutagenesis...... plants. The identified insertions showed that the endogenous LORE1 retrotransposon is well suited for insertion mutagenesis due to its homogenous gene targeting and exonic insertion preference. Since LORE1 transposition occurs in the germline, harvesting seeds from a single founder line and cultivating...... progeny generates a complete mutant population. This ease of LORE1 mutagenesis combined with the efficient FSTpoolit protocol, which exploits 2D pooling, Illumina sequencing, and automated data analysis, allows highly cost-efficient development of a comprehensive reverse genetic resource....

  14. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications

    International Nuclear Information System (INIS)

    Xu Feng; Wu Jinhui; Wang Shuqi; Gurkan, Umut Atakan; Demirci, Utkan; Durmus, Naside Gozde

    2011-01-01

    Screening for effective therapeutic agents from millions of drug candidates is costly, time consuming, and often faces concerns due to the extensive use of animals. To improve cost effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems has facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell-based drug-screening models which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell-based drug-screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds great potential to provide repeatable 3D cell-based constructs with high temporal, spatial control and versatility.

  15. Microengineering methods for cell-based microarrays and high-throughput drug-screening applications

    Energy Technology Data Exchange (ETDEWEB)

    Xu Feng; Wu Jinhui; Wang Shuqi; Gurkan, Umut Atakan; Demirci, Utkan [Department of Medicine, Demirci Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Durmus, Naside Gozde, E-mail: udemirci@rics.bwh.harvard.edu [School of Engineering and Division of Biology and Medicine, Brown University, Providence, RI (United States)

    2011-09-15

    Screening for effective therapeutic agents from millions of drug candidates is costly, time consuming, and often faces concerns due to the extensive use of animals. To improve cost effectiveness, and to minimize animal testing in pharmaceutical research, in vitro monolayer cell microarrays with multiwell plate assays have been developed. Integration of cell microarrays with microfluidic systems has facilitated automated and controlled component loading, significantly reducing the consumption of the candidate compounds and the target cells. Even though these methods significantly increased the throughput compared to conventional in vitro testing systems and in vivo animal models, the cost associated with these platforms remains prohibitively high. Besides, there is a need for three-dimensional (3D) cell-based drug-screening models which can mimic the in vivo microenvironment and the functionality of the native tissues. Here, we present the state-of-the-art microengineering approaches that can be used to develop 3D cell-based drug-screening assays. We highlight the 3D in vitro cell culture systems with live cell-based arrays, microfluidic cell culture systems, and their application to high-throughput drug screening. We conclude that among the emerging microengineering approaches, bioprinting holds great potential to provide repeatable 3D cell-based constructs with high temporal, spatial control and versatility.

  16. MetaUniDec: High-Throughput Deconvolution of Native Mass Spectra

    Science.gov (United States)

    Reid, Deseree J.; Diesing, Jessica M.; Miller, Matthew A.; Perry, Scott M.; Wales, Jessica A.; Montfort, William R.; Marty, Michael T.

    2018-04-01

    The expansion of native mass spectrometry (MS) methods for both academic and industrial applications has created a substantial need for analysis of large native MS datasets. Existing software tools are poorly suited for high-throughput deconvolution of native electrospray mass spectra from intact proteins and protein complexes. The UniDec Bayesian deconvolution algorithm is uniquely well suited for high-throughput analysis due to its speed and robustness but was previously tailored towards individual spectra. Here, we optimized UniDec for deconvolution, analysis, and visualization of large data sets. This new module, MetaUniDec, centers around a hierarchical data format 5 (HDF5) format for storing datasets that significantly improves speed, portability, and file size. It also includes code optimizations to improve speed and a new graphical user interface for visualization, interaction, and analysis of data. To demonstrate the utility of MetaUniDec, we applied the software to analyze automated collision voltage ramps with a small bacterial heme protein and large lipoprotein nanodiscs. Upon increasing collisional activation, bacterial heme-nitric oxide/oxygen binding (H-NOX) protein shows a discrete loss of bound heme, and nanodiscs show a continuous loss of lipids and charge. By using MetaUniDec to track changes in peak area or mass as a function of collision voltage, we explore the energetic profile of collisional activation in an ultra-high mass range Orbitrap mass spectrometer. [Figure not available: see fulltext.

  17. High-throughput combinatorial chemical bath deposition: The case of doping Cu (In, Ga) Se film with antimony

    Science.gov (United States)

    Yan, Zongkai; Zhang, Xiaokun; Li, Guang; Cui, Yuxing; Jiang, Zhaolian; Liu, Wen; Peng, Zhi; Xiang, Yong

    2018-01-01

    The conventional methods for designing and preparing thin film based on wet process remain a challenge due to disadvantages such as time-consuming and ineffective, which hinders the development of novel materials. Herein, we present a high-throughput combinatorial technique for continuous thin film preparation relied on chemical bath deposition (CBD). The method is ideally used to prepare high-throughput combinatorial material library with low decomposition temperatures and high water- or oxygen-sensitivity at relatively high-temperature. To check this system, a Cu(In, Ga)Se (CIGS) thin films library doped with 0-19.04 at.% of antimony (Sb) was taken as an example to evaluate the regulation of varying Sb doping concentration on the grain growth, structure, morphology and electrical properties of CIGS thin film systemically. Combined with the Energy Dispersive Spectrometer (EDS), X-ray Photoelectron Spectroscopy (XPS), automated X-ray Diffraction (XRD) for rapid screening and Localized Electrochemical Impedance Spectroscopy (LEIS), it was confirmed that this combinatorial high-throughput system could be used to identify the composition with the optimal grain orientation growth, microstructure and electrical properties systematically, through accurately monitoring the doping content and material composition. According to the characterization results, a Sb2Se3 quasi-liquid phase promoted CIGS film-growth model has been put forward. In addition to CIGS thin film reported here, the combinatorial CBD also could be applied to the high-throughput screening of other sulfide thin film material systems.

  18. Printing Proteins as Microarrays for High-Throughput Function Determination

    Science.gov (United States)

    MacBeath, Gavin; Schreiber, Stuart L.

    2000-09-01

    Systematic efforts are currently under way to construct defined sets of cloned genes for high-throughput expression and purification of recombinant proteins. To facilitate subsequent studies of protein function, we have developed miniaturized assays that accommodate extremely low sample volumes and enable the rapid, simultaneous processing of thousands of proteins. A high-precision robot designed to manufacture complementary DNA microarrays was used to spot proteins onto chemically derivatized glass slides at extremely high spatial densities. The proteins attached covalently to the slide surface yet retained their ability to interact specifically with other proteins, or with small molecules, in solution. Three applications for protein microarrays were demonstrated: screening for protein-protein interactions, identifying the substrates of protein kinases, and identifying the protein targets of small molecules.

  19. High-throughput phenotyping allows for QTL analysis of defense, symbiosis and development-related traits

    DEFF Research Database (Denmark)

    Hansen, Nina Eberhardtsen

    -throughput phenotyping of whole plants. Additionally, a system for automated confocal microscopy aiming at automated detection of infection thread formation as well as detection of lateral root and nodule primordia is being developed. The objective was to use both systems in genome wide association studies and mutant...... the analysis. Additional phenotyping of defense mutants revealed that MLO, which confers susceptibility towards Blumeria graminis in barley, is also a prime candidate for a S. trifoliorum susceptibility gene in Lotus....

  20. Adaptation to high throughput batch chromatography enhances multivariate screening.

    Science.gov (United States)

    Barker, Gregory A; Calzada, Joseph; Herzer, Sibylle; Rieble, Siegfried

    2015-09-01

    High throughput process development offers unique approaches to explore complex process design spaces with relatively low material consumption. Batch chromatography is one technique that can be used to screen chromatographic conditions in a 96-well plate. Typical batch chromatography workflows examine variations in buffer conditions or comparison of multiple resins in a given process, as opposed to the assessment of protein loading conditions in combination with other factors. A modification to the batch chromatography paradigm is described here where experimental planning, programming, and a staggered loading approach increase the multivariate space that can be explored with a liquid handling system. The iterative batch chromatography (IBC) approach is described, which treats every well in a 96-well plate as an individual experiment, wherein protein loading conditions can be varied alongside other factors such as wash and elution buffer conditions. As all of these factors are explored in the same experiment, the interactions between them are characterized and the number of follow-up confirmatory experiments is reduced. This in turn improves statistical power and throughput. Two examples of the IBC method are shown and the impact of the load conditions are assessed in combination with the other factors explored. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Dimensioning storage and computing clusters for efficient high throughput computing

    International Nuclear Information System (INIS)

    Accion, E; Bria, A; Bernabeu, G; Caubet, M; Delfino, M; Espinal, X; Merino, G; Lopez, F; Martinez, F; Planas, E

    2012-01-01

    Scientific experiments are producing huge amounts of data, and the size of their datasets and total volume of data continues increasing. These data are then processed by researchers belonging to large scientific collaborations, with the Large Hadron Collider being a good example. The focal point of scientific data centers has shifted from efficiently coping with PetaByte scale storage to deliver quality data processing throughput. The dimensioning of the internal components in High Throughput Computing (HTC) data centers is of crucial importance to cope with all the activities demanded by the experiments, both the online (data acceptance) and the offline (data processing, simulation and user analysis). This requires a precise setup involving disk and tape storage services, a computing cluster and the internal networking to prevent bottlenecks, overloads and undesired slowness that lead to losses cpu cycles and batch jobs failures. In this paper we point out relevant features for running a successful data storage and processing service in an intensive HTC environment.

  2. Robotic high-throughput purification of affinity-tagged recombinant proteins.

    Science.gov (United States)

    Wiesler, Simone C; Weinzierl, Robert O J

    2015-01-01

    Affinity purification of recombinant proteins has become the method of choice to obtain good quantities and qualities of proteins for a variety of downstream biochemical applications. While manual or FPLC-assisted purification techniques are generally time-consuming and labor-intensive, the advent of high-throughput technologies and liquid handling robotics has simplified and accelerated this process significantly. Additionally, without the human factor as a potential source of error, automated purification protocols allow for the generation of large numbers of proteins simultaneously and under directly comparable conditions. The delivered material is ideal for activity comparisons of different variants of the same protein. Here, we present our strategy for the simultaneous purification of up to 24 affinity-tagged proteins for activity measurements in biochemical assays. The protocol described is suitable for the scale typically required in individual research laboratories.

  3. Library Design-Facilitated High-Throughput Sequencing of Synthetic Peptide Libraries.

    Science.gov (United States)

    Vinogradov, Alexander A; Gates, Zachary P; Zhang, Chi; Quartararo, Anthony J; Halloran, Kathryn H; Pentelute, Bradley L

    2017-11-13

    A methodology to achieve high-throughput de novo sequencing of synthetic peptide mixtures is reported. The approach leverages shotgun nanoliquid chromatography coupled with tandem mass spectrometry-based de novo sequencing of library mixtures (up to 2000 peptides) as well as automated data analysis protocols to filter away incorrect assignments, noise, and synthetic side-products. For increasing the confidence in the sequencing results, mass spectrometry-friendly library designs were developed that enabled unambiguous decoding of up to 600 peptide sequences per hour while maintaining greater than 85% sequence identification rates in most cases. The reliability of the reported decoding strategy was additionally confirmed by matching fragmentation spectra for select authentic peptides identified from library sequencing samples. The methods reported here are directly applicable to screening techniques that yield mixtures of active compounds, including particle sorting of one-bead one-compound libraries and affinity enrichment of synthetic library mixtures performed in solution.

  4. A bead-based western for high-throughput cellular signal transduction analyses

    Science.gov (United States)

    Treindl, Fridolin; Ruprecht, Benjamin; Beiter, Yvonne; Schultz, Silke; Döttinger, Anette; Staebler, Annette; Joos, Thomas O.; Kling, Simon; Poetz, Oliver; Fehm, Tanja; Neubauer, Hans; Kuster, Bernhard; Templin, Markus F.

    2016-01-01

    Dissecting cellular signalling requires the analysis of large number of proteins. The DigiWest approach we describe here transfers the western blot to a bead-based microarray platform. By combining gel-based protein separation with immobilization on microspheres, hundreds of replicas of the initial blot are created, thus enabling the comprehensive analysis of limited material, such as cells collected by laser capture microdissection, and extending traditional western blotting to reach proteomic scales. The combination of molecular weight resolution, sensitivity and signal linearity on an automated platform enables the rapid quantification of hundreds of specific proteins and protein modifications in complex samples. This high-throughput western blot approach allowed us to identify and characterize alterations in cellular signal transduction that occur during the development of resistance to the kinase inhibitor Lapatinib, revealing major changes in the activation state of Ephrin-mediated signalling and a central role for p53-controlled processes. PMID:27659302

  5. High-Throughput Nanoindentation for Statistical and Spatial Property Determination

    Science.gov (United States)

    Hintsala, Eric D.; Hangen, Ude; Stauffer, Douglas D.

    2018-04-01

    Standard nanoindentation tests are "high throughput" compared to nearly all other mechanical tests, such as tension or compression. However, the typical rates of tens of tests per hour can be significantly improved. These higher testing rates enable otherwise impractical studies requiring several thousands of indents, such as high-resolution property mapping and detailed statistical studies. However, care must be taken to avoid systematic errors in the measurement, including choosing of the indentation depth/spacing to avoid overlap of plastic zones, pileup, and influence of neighboring microstructural features in the material being tested. Furthermore, since fast loading rates are required, the strain rate sensitivity must also be considered. A review of these effects is given, with the emphasis placed on making complimentary standard nanoindentation measurements to address these issues. Experimental applications of the technique, including mapping of welds, microstructures, and composites with varying length scales, along with studying the effect of surface roughness on nominally homogeneous specimens, will be presented.

  6. The Principals and Practice of Distributed High Throughput Computing

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The potential of Distributed Processing Systems to deliver computing capabilities with qualities ranging from high availability and reliability to easy expansion in functionality and capacity were recognized and formalized in the 1970’s. For more three decade these principals Distributed Computing guided the development of the HTCondor resource and job management system. The widely adopted suite of software tools offered by HTCondor are based on novel distributed computing technologies and are driven by the evolving needs of High Throughput scientific applications. We will review the principals that underpin our work, the distributed computing frameworks and technologies we developed and the lessons we learned from delivering effective and dependable software tools in an ever changing landscape computing technologies and needs that range today from a desktop computer to tens of thousands of cores offered by commercial clouds. About the speaker Miron Livny received a B.Sc. degree in Physics and Mat...

  7. Ethoscopes: An open platform for high-throughput ethomics.

    Directory of Open Access Journals (Sweden)

    Quentin Geissmann

    2017-10-01

    Full Text Available Here, we present the use of ethoscopes, which are machines for high-throughput analysis of behavior in Drosophila and other animals. Ethoscopes provide a software and hardware solution that is reproducible and easily scalable. They perform, in real-time, tracking and profiling of behavior by using a supervised machine learning algorithm, are able to deliver behaviorally triggered stimuli to flies in a feedback-loop mode, and are highly customizable and open source. Ethoscopes can be built easily by using 3D printing technology and rely on Raspberry Pi microcomputers and Arduino boards to provide affordable and flexible hardware. All software and construction specifications are available at http://lab.gilest.ro/ethoscope.

  8. SNP high-throughput screening in grapevine using the SNPlex™ genotyping system

    Directory of Open Access Journals (Sweden)

    Velasco Riccardo

    2008-01-01

    Full Text Available Abstract Background Until recently, only a small number of low- and mid-throughput methods have been used for single nucleotide polymorphism (SNP discovery and genotyping in grapevine (Vitis vinifera L.. However, following completion of the sequence of the highly heterozygous genome of Pinot Noir, it has been possible to identify millions of electronic SNPs (eSNPs thus providing a valuable source for high-throughput genotyping methods. Results Herein we report the first application of the SNPlex™ genotyping system in grapevine aiming at the anchoring of an eukaryotic genome. This approach combines robust SNP detection with automated assay readout and data analysis. 813 candidate eSNPs were developed from non-repetitive contigs of the assembled genome of Pinot Noir and tested in 90 progeny of Syrah × Pinot Noir cross. 563 new SNP-based markers were obtained and mapped. The efficiency rate of 69% was enhanced to 80% when multiple displacement amplification (MDA methods were used for preparation of genomic DNA for the SNPlex assay. Conclusion Unlike other SNP genotyping methods used to investigate thousands of SNPs in a few genotypes, or a few SNPs in around a thousand genotypes, the SNPlex genotyping system represents a good compromise to investigate several hundred SNPs in a hundred or more samples simultaneously. Therefore, the use of the SNPlex assay, coupled with whole genome amplification (WGA, is a good solution for future applications in well-equipped laboratories.

  9. A multi-endpoint, high-throughput study of nanomaterial toxicity in Caenorhabditis elegans

    Science.gov (United States)

    Jung, Sang-Kyu; Qu, Xiaolei; Aleman-Meza, Boanerges; Wang, Tianxiao; Riepe, Celeste; Liu, Zheng; Li, Qilin; Zhong, Weiwei

    2015-01-01

    The booming nanotech industry has raised public concerns about the environmental health and safety impact of engineered nanomaterials (ENMs). High-throughput assays are needed to obtain toxicity data for the rapidly increasing number of ENMs. Here we present a suite of high-throughput methods to study nanotoxicity in intact animals using Caenorhabditis elegans as a model. At the population level, our system measures food consumption of thousands of animals to evaluate population fitness. At the organism level, our automated system analyzes hundreds of individual animals for body length, locomotion speed, and lifespan. To demonstrate the utility of our system, we applied this technology to test the toxicity of 20 nanomaterials under four concentrations. Only fullerene nanoparticles (nC60), fullerol, TiO2, and CeO2 showed little or no toxicity. Various degrees of toxicity were detected from different forms of carbon nanotubes, graphene, carbon black, Ag, and fumed SiO2 nanoparticles. Aminofullerene and UV irradiated nC60 also showed small but significant toxicity. We further investigated the effects of nanomaterial size, shape, surface chemistry, and exposure conditions on toxicity. Our data are publicly available at the open-access nanotoxicity database www.QuantWorm.org/nano. PMID:25611253

  10. High-throughput genotyping of single nucleotide polymorphisms with rolling circle amplification

    Directory of Open Access Journals (Sweden)

    Sun Zhenyu

    2001-08-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs are the foundation of powerful complex trait and pharmacogenomic analyses. The availability of large SNP databases, however, has emphasized a need for inexpensive SNP genotyping methods of commensurate simplicity, robustness, and scalability. We describe a solution-based, microtiter plate method for SNP genotyping of human genomic DNA. The method is based upon allele discrimination by ligation of open circle probes followed by rolling circle amplification of the signal using fluorescent primers. Only the probe with a 3' base complementary to the SNP is circularized by ligation. Results SNP scoring by ligation was optimized to a 100,000 fold discrimination against probe mismatched to the SNP. The assay was used to genotype 10 SNPs from a set of 192 genomic DNA samples in a high-throughput format. Assay directly from genomic DNA eliminates the need to preamplify the target as done for many other genotyping methods. The sensitivity of the assay was demonstrated by genotyping from 1 ng of genomic DNA. We demonstrate that the assay can detect a single molecule of the circularized probe. Conclusions Compatibility with homogeneous formats and the ability to assay small amounts of genomic DNA meets the exacting requirements of automated, high-throughput SNP scoring.

  11. High-throughput volumetric reconstruction for 3D wheat plant architecture studies

    Directory of Open Access Journals (Sweden)

    Wei Fang

    2016-09-01

    Full Text Available For many tiller crops, the plant architecture (PA, including the plant fresh weight, plant height, number of tillers, tiller angle and stem diameter, significantly affects the grain yield. In this study, we propose a method based on volumetric reconstruction for high-throughput three-dimensional (3D wheat PA studies. The proposed methodology involves plant volumetric reconstruction from multiple images, plant model processing and phenotypic parameter estimation and analysis. This study was performed on 80 Triticum aestivum plants, and the results were analyzed. Comparing the automated measurements with manual measurements, the mean absolute percentage error (MAPE in the plant height and the plant fresh weight was 2.71% (1.08cm with an average plant height of 40.07cm and 10.06% (1.41g with an average plant fresh weight of 14.06g, respectively. The root mean square error (RMSE was 1.37cm and 1.79g for the plant height and plant fresh weight, respectively. The correlation coefficients were 0.95 and 0.96 for the plant height and plant fresh weight, respectively. Additionally, the proposed methodology, including plant reconstruction, model processing and trait extraction, required only approximately 20s on average per plant using parallel computing on a graphics processing unit (GPU, demonstrating that the methodology would be valuable for a high-throughput phenotyping platform.

  12. GlycoExtractor: a web-based interface for high throughput processing of HPLC-glycan data.

    Science.gov (United States)

    Artemenko, Natalia V; Campbell, Matthew P; Rudd, Pauline M

    2010-04-05

    Recently, an automated high-throughput HPLC platform has been developed that can be used to fully sequence and quantify low concentrations of N-linked sugars released from glycoproteins, supported by an experimental database (GlycoBase) and analytical tools (autoGU). However, commercial packages that support the operation of HPLC instruments and data storage lack platforms for the extraction of large volumes of data. The lack of resources and agreed formats in glycomics is now a major limiting factor that restricts the development of bioinformatic tools and automated workflows for high-throughput HPLC data analysis. GlycoExtractor is a web-based tool that interfaces with a commercial HPLC database/software solution to facilitate the extraction of large volumes of processed glycan profile data (peak number, peak areas, and glucose unit values). The tool allows the user to export a series of sample sets to a set of file formats (XML, JSON, and CSV) rather than a collection of disconnected files. This approach not only reduces the amount of manual refinement required to export data into a suitable format for data analysis but also opens the field to new approaches for high-throughput data interpretation and storage, including biomarker discovery and validation and monitoring of online bioprocessing conditions for next generation biotherapeutics.

  13. A high throughput DNA extraction method with high yield and quality

    Directory of Open Access Journals (Sweden)

    Xin Zhanguo

    2012-07-01

    Full Text Available Abstract Background Preparation of large quantity and high quality genomic DNA from a large number of plant samples is a major bottleneck for most genetic and genomic analyses, such as, genetic mapping, TILLING (Targeting Induced Local Lesion IN Genome, and next-generation sequencing directly from sheared genomic DNA. A variety of DNA preparation methods and commercial kits are available. However, they are either low throughput, low yield, or costly. Here, we describe a method for high throughput genomic DNA isolation from sorghum [Sorghum bicolor (L. Moench] leaves and dry seeds with high yield, high quality, and affordable cost. Results We developed a high throughput DNA isolation method by combining a high yield CTAB extraction method with an improved cleanup procedure based on MagAttract kit. The method yielded large quantity and high quality DNA from both lyophilized sorghum leaves and dry seeds. The DNA yield was improved by nearly 30 fold with 4 times less consumption of MagAttract beads. The method can also be used in other plant species, including cotton leaves and pine needles. Conclusion A high throughput system for DNA extraction from sorghum leaves and seeds was developed and validated. The main advantages of the method are low cost, high yield, high quality, and high throughput. One person can process two 96-well plates in a working day at a cost of $0.10 per sample of magnetic beads plus other consumables that other methods will also need.

  14. Development of a high-throughput microscale cell disruption platform for Pichia pastoris in rapid bioprocess design.

    Science.gov (United States)

    Bláha, Benjamin A F; Morris, Stephen A; Ogonah, Olotu W; Maucourant, Sophie; Crescente, Vincenzo; Rosenberg, William; Mukhopadhyay, Tarit K

    2018-01-01

    The time and cost benefits of miniaturized fermentation platforms can only be gained by employing complementary techniques facilitating high-throughput at small sample volumes. Microbial cell disruption is a major bottleneck in experimental throughput and is often restricted to large processing volumes. Moreover, for rigid yeast species, such as Pichia pastoris, no effective high-throughput disruption methods exist. The development of an automated, miniaturized, high-throughput, noncontact, scalable platform based on adaptive focused acoustics (AFA) to disrupt P. pastoris and recover intracellular heterologous protein is described. Augmented modes of AFA were established by investigating vessel designs and a novel enzymatic pretreatment step. Three different modes of AFA were studied and compared to the performance high-pressure homogenization. For each of these modes of cell disruption, response models were developed to account for five different performance criteria. Using multiple responses not only demonstrated that different operating parameters are required for different response optima, with highest product purity requiring suboptimal values for other criteria, but also allowed for AFA-based methods to mimic large-scale homogenization processes. These results demonstrate that AFA-mediated cell disruption can be used for a wide range of applications including buffer development, strain selection, fermentation process development, and whole bioprocess integration. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:130-140, 2018. © 2017 American Institute of Chemical Engineers.

  15. SUGAR: graphical user interface-based data refiner for high-throughput DNA sequencing.

    Science.gov (United States)

    Sato, Yukuto; Kojima, Kaname; Nariai, Naoki; Yamaguchi-Kabata, Yumi; Kawai, Yosuke; Takahashi, Mamoru; Mimori, Takahiro; Nagasaki, Masao

    2014-08-08

    Next-generation sequencers (NGSs) have become one of the main tools for current biology. To obtain useful insights from the NGS data, it is essential to control low-quality portions of the data affected by technical errors such as air bubbles in sequencing fluidics. We develop a software SUGAR (subtile-based GUI-assisted refiner) which can handle ultra-high-throughput data with user-friendly graphical user interface (GUI) and interactive analysis capability. The SUGAR generates high-resolution quality heatmaps of the flowcell, enabling users to find possible signals of technical errors during the sequencing. The sequencing data generated from the error-affected regions of a flowcell can be selectively removed by automated analysis or GUI-assisted operations implemented in the SUGAR. The automated data-cleaning function based on sequence read quality (Phred) scores was applied to a public whole human genome sequencing data and we proved the overall mapping quality was improved. The detailed data evaluation and cleaning enabled by SUGAR would reduce technical problems in sequence read mapping, improving subsequent variant analysis that require high-quality sequence data and mapping results. Therefore, the software will be especially useful to control the quality of variant calls to the low population cells, e.g., cancers, in a sample with technical errors of sequencing procedures.

  16. HTP-OligoDesigner: An Online Primer Design Tool for High-Throughput Gene Cloning and Site-Directed Mutagenesis.

    Science.gov (United States)

    Camilo, Cesar M; Lima, Gustavo M A; Maluf, Fernando V; Guido, Rafael V C; Polikarpov, Igor

    2016-01-01

    Following burgeoning genomic and transcriptomic sequencing data, biochemical and molecular biology groups worldwide are implementing high-throughput cloning and mutagenesis facilities in order to obtain a large number of soluble proteins for structural and functional characterization. Since manual primer design can be a time-consuming and error-generating step, particularly when working with hundreds of targets, the automation of primer design process becomes highly desirable. HTP-OligoDesigner was created to provide the scientific community with a simple and intuitive online primer design tool for both laboratory-scale and high-throughput projects of sequence-independent gene cloning and site-directed mutagenesis and a Tm calculator for quick queries.

  17. High-Throughput Next-Generation Sequencing of Polioviruses

    Science.gov (United States)

    Montmayeur, Anna M.; Schmidt, Alexander; Zhao, Kun; Magaña, Laura; Iber, Jane; Castro, Christina J.; Chen, Qi; Henderson, Elizabeth; Ramos, Edward; Shaw, Jing; Tatusov, Roman L.; Dybdahl-Sissoko, Naomi; Endegue-Zanga, Marie Claire; Adeniji, Johnson A.; Oberste, M. Steven; Burns, Cara C.

    2016-01-01

    ABSTRACT The poliovirus (PV) is currently targeted for worldwide eradication and containment. Sanger-based sequencing of the viral protein 1 (VP1) capsid region is currently the standard method for PV surveillance. However, the whole-genome sequence is sometimes needed for higher resolution global surveillance. In this study, we optimized whole-genome sequencing protocols for poliovirus isolates and FTA cards using next-generation sequencing (NGS), aiming for high sequence coverage, efficiency, and throughput. We found that DNase treatment of poliovirus RNA followed by random reverse transcription (RT), amplification, and the use of the Nextera XT DNA library preparation kit produced significantly better results than other preparations. The average viral reads per total reads, a measurement of efficiency, was as high as 84.2% ± 15.6%. PV genomes covering >99 to 100% of the reference length were obtained and validated with Sanger sequencing. A total of 52 PV genomes were generated, multiplexing as many as 64 samples in a single Illumina MiSeq run. This high-throughput, sequence-independent NGS approach facilitated the detection of a diverse range of PVs, especially for those in vaccine-derived polioviruses (VDPV), circulating VDPV, or immunodeficiency-related VDPV. In contrast to results from previous studies on other viruses, our results showed that filtration and nuclease treatment did not discernibly increase the sequencing efficiency of PV isolates. However, DNase treatment after nucleic acid extraction to remove host DNA significantly improved the sequencing results. This NGS method has been successfully implemented to generate PV genomes for molecular epidemiology of the most recent PV isolates. Additionally, the ability to obtain full PV genomes from FTA cards will aid in facilitating global poliovirus surveillance. PMID:27927929

  18. A primer on high-throughput computing for genomic selection.

    Science.gov (United States)

    Wu, Xiao-Lin; Beissinger, Timothy M; Bauck, Stewart; Woodward, Brent; Rosa, Guilherme J M; Weigel, Kent A; Gatti, Natalia de Leon; Gianola, Daniel

    2011-01-01

    High-throughput computing (HTC) uses computer clusters to solve advanced computational problems, with the goal of accomplishing high-throughput over relatively long periods of time. In genomic selection, for example, a set of markers covering the entire genome is used to train a model based on known data, and the resulting model is used to predict the genetic merit of selection candidates. Sophisticated models are very computationally demanding and, with several traits to be evaluated sequentially, computing time is long, and output is low. In this paper, we present scenarios and basic principles of how HTC can be used in genomic selection, implemented using various techniques from simple batch processing to pipelining in distributed computer clusters. Various scripting languages, such as shell scripting, Perl, and R, are also very useful to devise pipelines. By pipelining, we can reduce total computing time and consequently increase throughput. In comparison to the traditional data processing pipeline residing on the central processors, performing general-purpose computation on a graphics processing unit provide a new-generation approach to massive parallel computing in genomic selection. While the concept of HTC may still be new to many researchers in animal breeding, plant breeding, and genetics, HTC infrastructures have already been built in many institutions, such as the University of Wisconsin-Madison, which can be leveraged for genomic selection, in terms of central processing unit capacity, network connectivity, storage availability, and middleware connectivity. Exploring existing HTC infrastructures as well as general-purpose computing environments will further expand our capability to meet increasing computing demands posed by unprecedented genomic data that we have today. We anticipate that HTC will impact genomic selection via better statistical models, faster solutions, and more competitive products (e.g., from design of marker panels to realized

  19. Automated high-resolution NMR with a sample changer

    International Nuclear Information System (INIS)

    Wade, C.G.; Johnson, R.D.; Philson, S.B.; Strouse, J.; McEnroe, F.J.

    1989-01-01

    Within the past two years, it has become possible to obtain high-resolution NMR spectra using automated commercial instrumentation. Software control of all spectrometer functions has reduced most of the tedious manual operations to typing a few computer commands or even making selections from a menu. Addition of an automatic sample changer is the next natural step in improving efficiency and sample throughput; it has a significant (and even unexpected) impact on how NMR laboratories are run and how it is taught. Such an instrument makes even sophisticated experiments routine, so that people with no previous exposure to NMR can run these experiments after a training session of an hour or less. This A/C Interface examines the impact of such instrumentation on both the academic and the industrial laboratory

  20. High-Throughput Screening Using Fourier-Transform Infrared Imaging

    Directory of Open Access Journals (Sweden)

    Erdem Sasmaz

    2015-06-01

    Full Text Available Efficient parallel screening of combinatorial libraries is one of the most challenging aspects of the high-throughput (HT heterogeneous catalysis workflow. Today, a number of methods have been used in HT catalyst studies, including various optical, mass-spectrometry, and gas-chromatography techniques. Of these, rapid-scanning Fourier-transform infrared (FTIR imaging is one of the fastest and most versatile screening techniques. Here, the new design of the 16-channel HT reactor is presented and test results for its accuracy and reproducibility are shown. The performance of the system was evaluated through the oxidation of CO over commercial Pd/Al2O3 and cobalt oxide nanoparticles synthesized with different reducer-reductant molar ratios, surfactant types, metal and surfactant concentrations, synthesis temperatures, and ramp rates.

  1. High-Throughput Tools for Characterization of Antibody Epitopes

    DEFF Research Database (Denmark)

    Christiansen, Anders

    mapping. In Chapter 1, it was examined whether combining phage display, a traditional epitope mapping approach, with HTS would improve the method. The developed approach was successfully used to map Ara h 1 epitopes in sera from patients with peanut allergy. Notably, the sera represented difficult...... proliferation advantages. Finally, in Chapter 4, a different emerging technology, next-generation peptide microarrays, was applied for epitope mapping of major peanut allergens using sera from allergic patients. New developments in the peptide microarray have enabled a greatly increased throughput....... In this study, these improvements were utilized to characterize epitopes at high resolution, i.e. determine the importance of each residue for antibody binding, for all major peanut allergens. Epitope reactivity among patients often converged on known epitope hotspots, however the binding patterns were somewhat...

  2. Proposed high throughput electrorefining treatment for spent N- Reactor fuel

    International Nuclear Information System (INIS)

    Gay, E.C.; Miller, W.E.; Laidler, J.J.

    1996-01-01

    A high-throughput electrorefining process is being adapted to treat spent N-Reactor fuel for ultimate disposal in a geologic repository. Anodic dissolution tests were made with unirradiated N-Reactor fuel to determine the type of fragmentation necessary to provide fuel segments suitable for this process. Based on these tests, a conceptual design was produced of a plant-scale electrorefiner. In this design, the diameter of an electrode assembly is about 1.07 m (42 in.). Three of these assemblies in an electrorefiner would accommodate a 3-metric-ton batch of N-Reactor fuel that would be processed at a rate of 42 kg of uranium per hour

  3. High-throughput determination of RNA structure by proximity ligation.

    Science.gov (United States)

    Ramani, Vijay; Qiu, Ruolan; Shendure, Jay

    2015-09-01

    We present an unbiased method to globally resolve RNA structures through pairwise contact measurements between interacting regions. RNA proximity ligation (RPL) uses proximity ligation of native RNA followed by deep sequencing to yield chimeric reads with ligation junctions in the vicinity of structurally proximate bases. We apply RPL in both baker's yeast (Saccharomyces cerevisiae) and human cells and generate contact probability maps for ribosomal and other abundant RNAs, including yeast snoRNAs, the RNA subunit of the signal recognition particle and the yeast U2 spliceosomal RNA homolog. RPL measurements correlate with established secondary structures for these RNA molecules, including stem-loop structures and long-range pseudoknots. We anticipate that RPL will complement the current repertoire of computational and experimental approaches in enabling the high-throughput determination of secondary and tertiary RNA structures.

  4. Noise and non-linearities in high-throughput data

    International Nuclear Information System (INIS)

    Nguyen, Viet-Anh; Lió, Pietro; Koukolíková-Nicola, Zdena; Bagnoli, Franco

    2009-01-01

    High-throughput data analyses are becoming common in biology, communications, economics and sociology. The vast amounts of data are usually represented in the form of matrices and can be considered as knowledge networks. Spectra-based approaches have proved useful in extracting hidden information within such networks and for estimating missing data, but these methods are based essentially on linear assumptions. The physical models of matching, when applicable, often suggest non-linear mechanisms, that may sometimes be identified as noise. The use of non-linear models in data analysis, however, may require the introduction of many parameters, which lowers the statistical weight of the model. According to the quality of data, a simpler linear analysis may be more convenient than more complex approaches. In this paper, we show how a simple non-parametric Bayesian model may be used to explore the role of non-linearities and noise in synthetic and experimental data sets

  5. Mechanical Conversion for High-Throughput TEM Sample Preparation

    International Nuclear Information System (INIS)

    Kendrick, Anthony B; Moore, Thomas M; Zaykova-Feldman, Lyudmila

    2006-01-01

    This paper presents a novel method of direct mechanical conversion from lift-out sample to TEM sample holder. The lift-out sample is prepared in the FIB using the in-situ liftout Total Release TM method. The mechanical conversion is conducted using a mechanical press and one of a variety of TEM coupons, including coupons for both top-side and back-side thinning. The press joins a probe tip point with attached TEM sample to the sample coupon and separates the complete assembly as a 3mm diameter TEM grid, compatible with commercially available TEM sample holder rods. This mechanical conversion process lends itself well to the high through-put requirements of in-line process control and to materials characterization labs where instrument utilization and sample security are critically important

  6. Radiation metabolomics : a window to high throughput radiation biodosimetry

    International Nuclear Information System (INIS)

    Rana, Poonam

    2016-01-01

    In the event of an intentional or accidental release of ionizing radiation in a densely populated area, timely assessment and triage of the general population for radiation exposure is critical. In particular, a significant number of victims may sustain radiation injury, which increases mortality and worsens the overall prognosis of victims from radiation trauma. Availability of a high-throughput noninvasive in vivo biodosimetry tool for assessing the radiation exposure is of particular importance for timely diagnosis of radiation injury. In this study, we describe the potential NMR techniques in evaluating the radiation injury. NMR is the most versatile technique that has been extensively used in the diverse fields of science since its discovery. NMR and biomedical sciences have been going hand in hand since its application in clinical imaging as MRI and metabolic profiling of biofluids was identified. We have established an NMR based metabonomic and in vivo spectroscopy approach to analyse and identify metabolic profile to measure metabolic fingerprint for radiation exposure. NMR spectroscopy experiments were conducted on urine and serum samples collected from mice irradiated with different doses of radiation. Additionally, in vivo NMR spectroscopy was also performed in different region of brains post irradiation in animal model. A number of metabolites associated with energy metabolism, gut flora metabolites, osmolytes, amino acids and membrane metabolism were identified in serum and urine metabolome. Our results illustrated a metabolic fingerprint for radiation exposure that elucidates perturbed physiological functions. Quantitative as well as multivariate analysis/assessment of these metabolites demonstrated dose and time dependent toxicological effect. In vivo spectroscopy from brain showed radiation induced changes in hippocampus region indicating whole body radiation had striking effect on brain metabolism as well. The results of the present work lay a

  7. A bioimage informatics platform for high-throughput embryo phenotyping.

    Science.gov (United States)

    Brown, James M; Horner, Neil R; Lawson, Thomas N; Fiegel, Tanja; Greenaway, Simon; Morgan, Hugh; Ring, Natalie; Santos, Luis; Sneddon, Duncan; Teboul, Lydia; Vibert, Jennifer; Yaikhom, Gagarine; Westerberg, Henrik; Mallon, Ann-Marie

    2018-01-01

    High-throughput phenotyping is a cornerstone of numerous functional genomics projects. In recent years, imaging screens have become increasingly important in understanding gene-phenotype relationships in studies of cells, tissues and whole organisms. Three-dimensional (3D) imaging has risen to prominence in the field of developmental biology for its ability to capture whole embryo morphology and gene expression, as exemplified by the International Mouse Phenotyping Consortium (IMPC). Large volumes of image data are being acquired by multiple institutions around the world that encompass a range of modalities, proprietary software and metadata. To facilitate robust downstream analysis, images and metadata must be standardized to account for these differences. As an open scientific enterprise, making the data readily accessible is essential so that members of biomedical and clinical research communities can study the images for themselves without the need for highly specialized software or technical expertise. In this article, we present a platform of software tools that facilitate the upload, analysis and dissemination of 3D images for the IMPC. Over 750 reconstructions from 80 embryonic lethal and subviable lines have been captured to date, all of which are openly accessible at mousephenotype.org. Although designed for the IMPC, all software is available under an open-source licence for others to use and develop further. Ongoing developments aim to increase throughput and improve the analysis and dissemination of image data. Furthermore, we aim to ensure that images are searchable so that users can locate relevant images associated with genes, phenotypes or human diseases of interest. © The Author 2016. Published by Oxford University Press.

  8. A High-Throughput Antibody-Based Microarray Typing Platform

    Directory of Open Access Journals (Sweden)

    Ashan Perera

    2013-05-01

    Full Text Available Many rapid methods have been developed for screening foods for the presence of pathogenic microorganisms. Rapid methods that have the additional ability to identify microorganisms via multiplexed immunological recognition have the potential for classification or typing of microbial contaminants thus facilitating epidemiological investigations that aim to identify outbreaks and trace back the contamination to its source. This manuscript introduces a novel, high throughput typing platform that employs microarrayed multiwell plate substrates and laser-induced fluorescence of the nucleic acid intercalating dye/stain SYBR Gold for detection of antibody-captured bacteria. The aim of this study was to use this platform for comparison of different sets of antibodies raised against the same pathogens as well as demonstrate its potential effectiveness for serotyping. To that end, two sets of antibodies raised against each of the “Big Six” non-O157 Shiga toxin-producing E. coli (STEC as well as E. coli O157:H7 were array-printed into microtiter plates, and serial dilutions of the bacteria were added and subsequently detected. Though antibody specificity was not sufficient for the development of an STEC serotyping method, the STEC antibody sets performed reasonably well exhibiting that specificity increased at lower capture antibody concentrations or, conversely, at lower bacterial target concentrations. The favorable results indicated that with sufficiently selective and ideally concentrated sets of biorecognition elements (e.g., antibodies or aptamers, this high-throughput platform can be used to rapidly type microbial isolates derived from food samples within ca. 80 min of total assay time. It can also potentially be used to detect the pathogens from food enrichments and at least serve as a platform for testing antibodies.

  9. A high-throughput sample preparation method for cellular proteomics using 96-well filter plates.

    Science.gov (United States)

    Switzar, Linda; van Angeren, Jordy; Pinkse, Martijn; Kool, Jeroen; Niessen, Wilfried M A

    2013-10-01

    A high-throughput sample preparation protocol based on the use of 96-well molecular weight cutoff (MWCO) filter plates was developed for shotgun proteomics of cell lysates. All sample preparation steps, including cell lysis, buffer exchange, protein denaturation, reduction, alkylation and proteolytic digestion are performed in a 96-well plate format, making the platform extremely well suited for processing large numbers of samples and directly compatible with functional assays for cellular proteomics. In addition, the usage of a single plate for all sample preparation steps following cell lysis reduces potential samples losses and allows for automation. The MWCO filter also enables sample concentration, thereby increasing the overall sensitivity, and implementation of washing steps involving organic solvents, for example, to remove cell membranes constituents. The optimized protocol allowed for higher throughput with improved sensitivity in terms of the number of identified cellular proteins when compared to an established protocol employing gel-filtration columns. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. High Throughput Screen for Novel Antimicrobials using a Whole Animal Infection Model

    Science.gov (United States)

    Moy, Terence I.; Conery, Annie L.; Larkins-Ford, Jonah; Wu, Gang; Mazitschek, Ralph; Casadei, Gabriele; Lewis, Kim; Carpenter, Anne E.; Ausubel, Frederick M.

    2009-01-01

    The nematode Caenorhabditis elegans is a unique whole animal model system for identifying small molecules with in vivo anti-infective properties. C. elegans can be infected with a broad range of human pathogens, including Enterococcus faecalis, an important human nosocomial pathogen with a mortality rate of up to 37% that is increasingly acquiring resistance to antibiotics. Here, we describe an automated, high throughput screen of 37,200 compounds and natural product extracts for those that enhance survival of C. elegans infected with E. faecalis. The screen uses a robot to accurately dispense live, infected animals into 384-well plates, and automated microscopy and image analysis to generate quantitative, high content data. We identified 28 compounds and extracts that were not previously reported to have antimicrobial properties, including 6 structural classes that cure infected C. elegans animals but do not affect the growth of the pathogen in vitro, thus acting by a mechanism of action distinct from antibiotics currently in clinical use. Our versatile and robust screening system can be easily adapted for other whole animal assays to probe a broad range of biological processes. PMID:19572548

  11. High Resolution Melting (HRM) for High-Throughput Genotyping—Limitations and Caveats in Practical Case Studies

    Science.gov (United States)

    Słomka, Marcin; Sobalska-Kwapis, Marta; Wachulec, Monika; Bartosz, Grzegorz

    2017-01-01

    High resolution melting (HRM) is a convenient method for gene scanning as well as genotyping of individual and multiple single nucleotide polymorphisms (SNPs). This rapid, simple, closed-tube, homogenous, and cost-efficient approach has the capacity for high specificity and sensitivity, while allowing easy transition to high-throughput scale. In this paper, we provide examples from our laboratory practice of some problematic issues which can affect the performance and data analysis of HRM results, especially with regard to reference curve-based targeted genotyping. We present those examples in order of the typical experimental workflow, and discuss the crucial significance of the respective experimental errors and limitations for the quality and analysis of results. The experimental details which have a decisive impact on correct execution of a HRM genotyping experiment include type and quality of DNA source material, reproducibility of isolation method and template DNA preparation, primer and amplicon design, automation-derived preparation and pipetting inconsistencies, as well as physical limitations in melting curve distinction for alternative variants and careful selection of samples for validation by sequencing. We provide a case-by-case analysis and discussion of actual problems we encountered and solutions that should be taken into account by researchers newly attempting HRM genotyping, especially in a high-throughput setup. PMID:29099791

  12. High Resolution Melting (HRM) for High-Throughput Genotyping-Limitations and Caveats in Practical Case Studies.

    Science.gov (United States)

    Słomka, Marcin; Sobalska-Kwapis, Marta; Wachulec, Monika; Bartosz, Grzegorz; Strapagiel, Dominik

    2017-11-03

    High resolution melting (HRM) is a convenient method for gene scanning as well as genotyping of individual and multiple single nucleotide polymorphisms (SNPs). This rapid, simple, closed-tube, homogenous, and cost-efficient approach has the capacity for high specificity and sensitivity, while allowing easy transition to high-throughput scale. In this paper, we provide examples from our laboratory practice of some problematic issues which can affect the performance and data analysis of HRM results, especially with regard to reference curve-based targeted genotyping. We present those examples in order of the typical experimental workflow, and discuss the crucial significance of the respective experimental errors and limitations for the quality and analysis of results. The experimental details which have a decisive impact on correct execution of a HRM genotyping experiment include type and quality of DNA source material, reproducibility of isolation method and template DNA preparation, primer and amplicon design, automation-derived preparation and pipetting inconsistencies, as well as physical limitations in melting curve distinction for alternative variants and careful selection of samples for validation by sequencing. We provide a case-by-case analysis and discussion of actual problems we encountered and solutions that should be taken into account by researchers newly attempting HRM genotyping, especially in a high-throughput setup.

  13. High Resolution Melting (HRM for High-Throughput Genotyping—Limitations and Caveats in Practical Case Studies

    Directory of Open Access Journals (Sweden)

    Marcin Słomka

    2017-11-01

    Full Text Available High resolution melting (HRM is a convenient method for gene scanning as well as genotyping of individual and multiple single nucleotide polymorphisms (SNPs. This rapid, simple, closed-tube, homogenous, and cost-efficient approach has the capacity for high specificity and sensitivity, while allowing easy transition to high-throughput scale. In this paper, we provide examples from our laboratory practice of some problematic issues which can affect the performance and data analysis of HRM results, especially with regard to reference curve-based targeted genotyping. We present those examples in order of the typical experimental workflow, and discuss the crucial significance of the respective experimental errors and limitations for the quality and analysis of results. The experimental details which have a decisive impact on correct execution of a HRM genotyping experiment include type and quality of DNA source material, reproducibility of isolation method and template DNA preparation, primer and amplicon design, automation-derived preparation and pipetting inconsistencies, as well as physical limitations in melting curve distinction for alternative variants and careful selection of samples for validation by sequencing. We provide a case-by-case analysis and discussion of actual problems we encountered and solutions that should be taken into account by researchers newly attempting HRM genotyping, especially in a high-throughput setup.

  14. High Throughput In vivo Analysis of Plant Leaf Chemical Properties Using Hyperspectral Imaging

    Directory of Open Access Journals (Sweden)

    Piyush Pandey

    2017-08-01

    Full Text Available Image-based high-throughput plant phenotyping in greenhouse has the potential to relieve the bottleneck currently presented by phenotypic scoring which limits the throughput of gene discovery and crop improvement efforts. Numerous studies have employed automated RGB imaging to characterize biomass and growth of agronomically important crops. The objective of this study was to investigate the utility of hyperspectral imaging for quantifying chemical properties of maize and soybean plants in vivo. These properties included leaf water content, as well as concentrations of macronutrients nitrogen (N, phosphorus (P, potassium (K, magnesium (Mg, calcium (Ca, and sulfur (S, and micronutrients sodium (Na, iron (Fe, manganese (Mn, boron (B, copper (Cu, and zinc (Zn. Hyperspectral images were collected from 60 maize and 60 soybean plants, each subjected to varying levels of either water deficit or nutrient limitation stress with the goal of creating a wide range of variation in the chemical properties of plant leaves. Plants were imaged on an automated conveyor belt system using a hyperspectral imager with a spectral range from 550 to 1,700 nm. Images were processed to extract reflectance spectrum from each plant and partial least squares regression models were developed to correlate spectral data with chemical data. Among all the chemical properties investigated, water content was predicted with the highest accuracy [R2 = 0.93 and RPD (Ratio of Performance to Deviation = 3.8]. All macronutrients were also quantified satisfactorily (R2 from 0.69 to 0.92, RPD from 1.62 to 3.62, with N predicted best followed by P, K, and S. The micronutrients group showed lower prediction accuracy (R2 from 0.19 to 0.86, RPD from 1.09 to 2.69 than the macronutrient groups. Cu and Zn were best predicted, followed by Fe and Mn. Na and B were the only two properties that hyperspectral imaging was not able to quantify satisfactorily (R2 < 0.3 and RPD < 1.2. This study suggested

  15. Laboratory Information Management Software for genotyping workflows: applications in high throughput crop genotyping

    Directory of Open Access Journals (Sweden)

    Prasanth VP

    2006-08-01

    Full Text Available Abstract Background With the advances in DNA sequencer-based technologies, it has become possible to automate several steps of the genotyping process leading to increased throughput. To efficiently handle the large amounts of genotypic data generated and help with quality control, there is a strong need for a software system that can help with the tracking of samples and capture and management of data at different steps of the process. Such systems, while serving to manage the workflow precisely, also encourage good laboratory practice by standardizing protocols, recording and annotating data from every step of the workflow. Results A laboratory information management system (LIMS has been designed and implemented at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT that meets the requirements of a moderately high throughput molecular genotyping facility. The application is designed as modules and is simple to learn and use. The application leads the user through each step of the process from starting an experiment to the storing of output data from the genotype detection step with auto-binning of alleles; thus ensuring that every DNA sample is handled in an identical manner and all the necessary data are captured. The application keeps track of DNA samples and generated data. Data entry into the system is through the use of forms for file uploads. The LIMS provides functions to trace back to the electrophoresis gel files or sample source for any genotypic data and for repeating experiments. The LIMS is being presently used for the capture of high throughput SSR (simple-sequence repeat genotyping data from the legume (chickpea, groundnut and pigeonpea and cereal (sorghum and millets crops of importance in the semi-arid tropics. Conclusion A laboratory information management system is available that has been found useful in the management of microsatellite genotype data in a moderately high throughput genotyping

  16. High-throughput computational search for strengthening precipitates in alloys

    International Nuclear Information System (INIS)

    Kirklin, S.; Saal, James E.; Hegde, Vinay I.; Wolverton, C.

    2016-01-01

    The search for high-strength alloys and precipitation hardened systems has largely been accomplished through Edisonian trial and error experimentation. Here, we present a novel strategy using high-throughput computational approaches to search for promising precipitate/alloy systems. We perform density functional theory (DFT) calculations of an extremely large space of ∼200,000 potential compounds in search of effective strengthening precipitates for a variety of different alloy matrices, e.g., Fe, Al, Mg, Ni, Co, and Ti. Our search strategy involves screening phases that are likely to produce coherent precipitates (based on small lattice mismatch) and are composed of relatively common alloying elements. When combined with the Open Quantum Materials Database (OQMD), we can computationally screen for precipitates that either have a stable two-phase equilibrium with the host matrix, or are likely to precipitate as metastable phases. Our search produces (for the structure types considered) nearly all currently known high-strength precipitates in a variety of fcc, bcc, and hcp matrices, thus giving us confidence in the strategy. In addition, we predict a number of new, currently-unknown precipitate systems that should be explored experimentally as promising high-strength alloy chemistries.

  17. High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control.

    Science.gov (United States)

    Rameez, Shahid; Mostafa, Sigma S; Miller, Christopher; Shukla, Abhinav A

    2014-01-01

    Decreasing the timeframe for cell culture process development has been a key goal toward accelerating biopharmaceutical development. Advanced Microscale Bioreactors (ambr™) is an automated micro-bioreactor system with miniature single-use bioreactors with a 10-15 mL working volume controlled by an automated workstation. This system was compared to conventional bioreactor systems in terms of its performance for the production of a monoclonal antibody in a recombinant Chinese Hamster Ovary cell line. The miniaturized bioreactor system was found to produce cell culture profiles that matched across scales to 3 L, 15 L, and 200 L stirred tank bioreactors. The processes used in this article involve complex feed formulations, perturbations, and strict process control within the design space, which are in-line with processes used for commercial scale manufacturing of biopharmaceuticals. Changes to important process parameters in ambr™ resulted in predictable cell growth, viability and titer changes, which were in good agreement to data from the conventional larger scale bioreactors. ambr™ was found to successfully reproduce variations in temperature, dissolved oxygen (DO), and pH conditions similar to the larger bioreactor systems. Additionally, the miniature bioreactors were found to react well to perturbations in pH and DO through adjustments to the Proportional and Integral control loop. The data presented here demonstrates the utility of the ambr™ system as a high throughput system for cell culture process development. © 2014 American Institute of Chemical Engineers.

  18. High-throughput STR analysis for DNA database using direct PCR.

    Science.gov (United States)

    Sim, Jeong Eun; Park, Su Jeong; Lee, Han Chul; Kim, Se-Yong; Kim, Jong Yeol; Lee, Seung Hwan

    2013-07-01

    Since the Korean criminal DNA database was launched in 2010, we have focused on establishing an automated DNA database profiling system that analyzes short tandem repeat loci in a high-throughput and cost-effective manner. We established a DNA database profiling system without DNA purification using a direct PCR buffer system. The quality of direct PCR procedures was compared with that of conventional PCR system under their respective optimized conditions. The results revealed not only perfect concordance but also an excellent PCR success rate, good electropherogram quality, and an optimal intra/inter-loci peak height ratio. In particular, the proportion of DNA extraction required due to direct PCR failure could be minimized to <3%. In conclusion, the newly developed direct PCR system can be adopted for automated DNA database profiling systems to replace or supplement conventional PCR system in a time- and cost-saving manner. © 2013 American Academy of Forensic Sciences Published 2013. This article is a U.S. Government work and is in the public domain in the U.S.A.

  19. Digital imaging of root traits (DIRT): a high-throughput computing and collaboration platform for field-based root phenomics.

    Science.gov (United States)

    Das, Abhiram; Schneider, Hannah; Burridge, James; Ascanio, Ana Karine Martinez; Wojciechowski, Tobias; Topp, Christopher N; Lynch, Jonathan P; Weitz, Joshua S; Bucksch, Alexander

    2015-01-01

    Plant root systems are key drivers of plant function and yield. They are also under-explored targets to meet global food and energy demands. Many new technologies have been developed to characterize crop root system architecture (CRSA). These technologies have the potential to accelerate the progress in understanding the genetic control and environmental response of CRSA. Putting this potential into practice requires new methods and algorithms to analyze CRSA in digital images. Most prior approaches have solely focused on the estimation of root traits from images, yet no integrated platform exists that allows easy and intuitive access to trait extraction and analysis methods from images combined with storage solutions linked to metadata. Automated high-throughput phenotyping methods are increasingly used in laboratory-based efforts to link plant genotype with phenotype, whereas similar field-based studies remain predominantly manual low-throughput. Here, we present an open-source phenomics platform "DIRT", as a means to integrate scalable supercomputing architectures into field experiments and analysis pipelines. DIRT is an online platform that enables researchers to store images of plant roots, measure dicot and monocot root traits under field conditions, and share data and results within collaborative teams and the broader community. The DIRT platform seamlessly connects end-users with large-scale compute "commons" enabling the estimation and analysis of root phenotypes from field experiments of unprecedented size. DIRT is an automated high-throughput computing and collaboration platform for field based crop root phenomics. The platform is accessible at http://www.dirt.iplantcollaborative.org/ and hosted on the iPlant cyber-infrastructure using high-throughput grid computing resources of the Texas Advanced Computing Center (TACC). DIRT is a high volume central depository and high-throughput RSA trait computation platform for plant scientists working on crop roots

  20. Tiered High-Throughput Screening Approach to Identify ...

    Science.gov (United States)

    High-throughput screening (HTS) for potential thyroid–disrupting chemicals requires a system of assays to capture multiple molecular-initiating events (MIEs) that converge on perturbed thyroid hormone (TH) homeostasis. Screening for MIEs specific to TH-disrupting pathways is limited in the US EPA ToxCast screening assay portfolio. To fill one critical screening gap, the Amplex UltraRed-thyroperoxidase (AUR-TPO) assay was developed to identify chemicals that inhibit TPO, as decreased TPO activity reduces TH synthesis. The ToxCast Phase I and II chemical libraries, comprised of 1,074 unique chemicals, were initially screened using a single, high concentration to identify potential TPO inhibitors. Chemicals positive in the single concentration screen were retested in concentration-response. Due to high false positive rates typically observed with loss-of-signal assays such as AUR-TPO, we also employed two additional assays in parallel to identify possible sources of nonspecific assay signal loss, enabling stratification of roughly 300 putative TPO inhibitors based upon selective AUR-TPO activity. A cell-free luciferase inhibition assay was used to identify nonspecific enzyme inhibition among the putative TPO inhibitors, and a cytotoxicity assay using a human cell line was used to estimate the cellular tolerance limit. Additionally, the TPO inhibition activities of 150 chemicals were compared between the AUR-TPO and an orthogonal peroxidase oxidation assay using

  1. High-Throughput Screening Using Mass Spectrometry within Drug Discovery.

    Science.gov (United States)

    Rohman, Mattias; Wingfield, Jonathan

    2016-01-01

    In order to detect a biochemical analyte with a mass spectrometer (MS) it is necessary to ionize the analyte of interest. The analyte can be ionized by a number of different mechanisms, however, one common method is electrospray ionization (ESI). Droplets of analyte are sprayed through a highly charged field, the droplets pick up charge, and this is transferred to the analyte. High levels of salt in the assay buffer will potentially steal charge from the analyte and suppress the MS signal. In order to avoid this suppression of signal, salt is often removed from the sample prior to injection into the MS. Traditional ESI MS relies on liquid chromatography (LC) to remove the salt and reduce matrix effects, however, this is a lengthy process. Here we describe the use of RapidFire™ coupled to a triple-quadrupole MS for high-throughput screening. This system uses solid-phase extraction to de-salt samples prior to injection, reducing processing time such that a sample is injected into the MS ~every 10 s.

  2. High-Throughput Network Communication with NetIO

    CERN Document Server

    Schumacher, J\\"orn; The ATLAS collaboration; Vandelli, Wainer

    2016-01-01

    HPC network technologies like Infiniband, TrueScale or OmniPath provide low-latency and high-throughput communication between hosts, which makes them attractive options for data-acquisition systems in large-scale high-energy physics experiments. Like HPC networks, DAQ networks are local and include a well specified number of systems. Unfortunately traditional network communication APIs for HPC clusters like MPI or PGAS target exclusively the HPC community and are not suited well for DAQ applications. It is possible to build distributed DAQ applications using low-level system APIs like Infiniband Verbs (and this has been done), but it requires a non negligible effort and expert knowledge. On the other hand, message services like 0MQ have gained popularity in the HEP community. Such APIs allow to build distributed applications with a high-level approach and provide good performance. Unfortunately their usage usually limits developers to TCP/IP-based networks. While it is possible to operate a TCP/IP stack on to...

  3. High-Throughput Printing Process for Flexible Electronics

    Science.gov (United States)

    Hyun, Woo Jin

    Printed electronics is an emerging field for manufacturing electronic devices with low cost and minimal material waste for a variety of applications including displays, distributed sensing, smart packaging, and energy management. Moreover, its compatibility with roll-to-roll production formats and flexible substrates is desirable for continuous, high-throughput production of flexible electronics. Despite the promise, however, the roll-to-roll production of printed electronics is quite challenging due to web movement hindering accurate ink registration and high-fidelity printing. In this talk, I will present a promising strategy for roll-to-roll production using a novel printing process that we term SCALE (Self-aligned Capillarity-Assisted Lithography for Electronics). By utilizing capillarity of liquid inks on nano/micro-structured substrates, the SCALE process facilitates high-resolution and self-aligned patterning of electrically functional inks with greatly improved printing tolerance. I will show the fabrication of key building blocks (e.g. transistor, resistor, capacitor) for electronic circuits using the SCALE process on plastics.

  4. A family of E. coli expression vectors for laboratory scale and high throughput soluble protein production

    Directory of Open Access Journals (Sweden)

    Bottomley Stephen P

    2006-03-01

    Full Text Available Abstract Background In the past few years, both automated and manual high-throughput protein expression and purification has become an accessible means to rapidly screen and produce soluble proteins for structural and functional studies. However, many of the commercial vectors encoding different solubility tags require different cloning and purification steps for each vector, considerably slowing down expression screening. We have developed a set of E. coli expression vectors with different solubility tags that allow for parallel cloning from a single PCR product and can be purified using the same protocol. Results The set of E. coli expression vectors, encode for either a hexa-histidine tag or the three most commonly used solubility tags (GST, MBP, NusA and all with an N-terminal hexa-histidine sequence. The result is two-fold: the His-tag facilitates purification by immobilised metal affinity chromatography, whilst the fusion domains act primarily as solubility aids during expression, in addition to providing an optional purification step. We have also incorporated a TEV recognition sequence following the solubility tag domain, which allows for highly specific cleavage (using TEV protease of the fusion protein to yield native protein. These vectors are also designed for ligation-independent cloning and they possess a high-level expressing T7 promoter, which is suitable for auto-induction. To validate our vector system, we have cloned four different genes and also one gene into all four vectors and used small-scale expression and purification techniques. We demonstrate that the vectors are capable of high levels of expression and that efficient screening of new proteins can be readily achieved at the laboratory level. Conclusion The result is a set of four rationally designed vectors, which can be used for streamlined cloning, expression and purification of target proteins in the laboratory and have the potential for being adaptable to a high-throughput

  5. High-throughput Transcriptome analysis, CAGE and beyond

    KAUST Repository

    Kodzius, Rimantas

    2008-01-01

    1. Current research - PhD work on discovery of new allergens - Postdoctoral work on Transcriptional Start Sites a) Tag based technologies allow higher throughput b) CAGE technology to define promoters c) CAGE data analysis to understand Transcription - Wo

  6. High-throughput Transcriptome analysis, CAGE and beyond

    KAUST Repository

    Kodzius, Rimantas

    2008-11-25

    1. Current research - PhD work on discovery of new allergens - Postdoctoral work on Transcriptional Start Sites a) Tag based technologies allow higher throughput b) CAGE technology to define promoters c) CAGE data analysis to understand Transcription - Wo

  7. SNP-PHAGE – High throughput SNP discovery pipeline

    Directory of Open Access Journals (Sweden)

    Cregan Perry B

    2006-10-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs as defined here are single base sequence changes or short insertion/deletions between or within individuals of a given species. As a result of their abundance and the availability of high throughput analysis technologies SNP markers have begun to replace other traditional markers such as restriction fragment length polymorphisms (RFLPs, amplified fragment length polymorphisms (AFLPs and simple sequence repeats (SSRs or microsatellite markers for fine mapping and association studies in several species. For SNP discovery from chromatogram data, several bioinformatics programs have to be combined to generate an analysis pipeline. Results have to be stored in a relational database to facilitate interrogation through queries or to generate data for further analyses such as determination of linkage disequilibrium and identification of common haplotypes. Although these tasks are routinely performed by several groups, an integrated open source SNP discovery pipeline that can be easily adapted by new groups interested in SNP marker development is currently unavailable. Results We developed SNP-PHAGE (SNP discovery Pipeline with additional features for identification of common haplotypes within a sequence tagged site (Haplotype Analysis and GenBank (-dbSNP submissions. This tool was applied for analyzing sequence traces from diverse soybean genotypes to discover over 10,000 SNPs. This package was developed on UNIX/Linux platform, written in Perl and uses a MySQL database. Scripts to generate a user-friendly web interface are also provided with common queries for preliminary data analysis. A machine learning tool developed by this group for increasing the efficiency of SNP discovery is integrated as a part of this package as an optional feature. The SNP-PHAGE package is being made available open source at http://bfgl.anri.barc.usda.gov/ML/snp-phage/. Conclusion SNP-PHAGE provides a bioinformatics

  8. Alignment of time-resolved data from high throughput experiments.

    Science.gov (United States)

    Abidi, Nada; Franke, Raimo; Findeisen, Peter; Klawonn, Frank

    2016-12-01

    To better understand the dynamics of the underlying processes in cells, it is necessary to take measurements over a time course. Modern high-throughput technologies are often used for this purpose to measure the behavior of cell products like metabolites, peptides, proteins, [Formula: see text]RNA or mRNA at different points in time. Compared to classical time series, the number of time points is usually very limited and the measurements are taken at irregular time intervals. The main reasons for this are the costs of the experiments and the fact that the dynamic behavior usually shows a strong reaction and fast changes shortly after a stimulus and then slowly converges to a certain stable state. Another reason might simply be missing values. It is common to repeat the experiments and to have replicates in order to carry out a more reliable analysis. The ideal assumptions that the initial stimulus really started exactly at the same time for all replicates and that the replicates are perfectly synchronized are seldom satisfied. Therefore, there is a need to first adjust or align the time-resolved data before further analysis is carried out. Dynamic time warping (DTW) is considered as one of the common alignment techniques for time series data with equidistant time points. In this paper, we modified the DTW algorithm so that it can align sequences with measurements at different, non-equidistant time points with large gaps in between. This type of data is usually known as time-resolved data characterized by irregular time intervals between measurements as well as non-identical time points for different replicates. This new algorithm can be easily used to align time-resolved data from high-throughput experiments and to come across existing problems such as time scarcity and existing noise in the measurements. We propose a modified method of DTW to adapt requirements imposed by time-resolved data by use of monotone cubic interpolation splines. Our presented approach

  9. BOOGIE: Predicting Blood Groups from High Throughput Sequencing Data.

    Science.gov (United States)

    Giollo, Manuel; Minervini, Giovanni; Scalzotto, Marta; Leonardi, Emanuela; Ferrari, Carlo; Tosatto, Silvio C E

    2015-01-01

    Over the last decade, we have witnessed an incredible growth in the amount of available genotype data due to high throughput sequencing (HTS) techniques. This information may be used to predict phenotypes of medical relevance, and pave the way towards personalized medicine. Blood phenotypes (e.g. ABO and Rh) are a purely genetic trait that has been extensively studied for decades, with currently over thirty known blood groups. Given the public availability of blood group data, it is of interest to predict these phenotypes from HTS data which may translate into more accurate blood typing in clinical practice. Here we propose BOOGIE, a fast predictor for the inference of blood groups from single nucleotide variant (SNV) databases. We focus on the prediction of thirty blood groups ranging from the well known ABO and Rh, to the less studied Junior or Diego. BOOGIE correctly predicted the blood group with 94% accuracy for the Personal Genome Project whole genome profiles where good quality SNV annotation was available. Additionally, our tool produces a high quality haplotype phase, which is of interest in the context of ethnicity-specific polymorphisms or traits. The versatility and simplicity of the analysis make it easily interpretable and allow easy extension of the protocol towards other phenotypes. BOOGIE can be downloaded from URL http://protein.bio.unipd.it/download/.

  10. High Throughput Heuristics for Prioritizing Human Exposure to ...

    Science.gov (United States)

    The risk posed to human health by any of the thousands of untested anthropogenic chemicals in our environment is a function of both the potential hazard presented by the chemical, and the possibility of being exposed. Without the capacity to make quantitative, albeit uncertain, forecasts of exposure, the putative risk of adverse health effect from a chemical cannot be evaluated. We used Bayesian methodology to infer ranges of exposure intakes that are consistent with biomarkers of chemical exposures identified in urine samples from the U.S. population by the National Health and Nutrition Examination Survey (NHANES). We perform linear regression on inferred exposure for demographic subsets of NHANES demarked by age, gender, and weight using high throughput chemical descriptors gleaned from databases and chemical structure-based calculators. We find that five of these descriptors are capable of explaining roughly 50% of the variability across chemicals for all the demographic groups examined, including children aged 6-11. For the thousands of chemicals with no other source of information, this approach allows rapid and efficient prediction of average exposure intake of environmental chemicals. The methods described by this manuscript provide a highly improved methodology for HTS of human exposure to environmental chemicals. The manuscript includes a ranking of 7785 environmental chemicals with respect to potential human exposure, including most of the Tox21 in vit

  11. High-Throughput Identification of Antimicrobial Peptides from Amphibious Mudskippers

    Directory of Open Access Journals (Sweden)

    Yunhai Yi

    2017-11-01

    Full Text Available Widespread existence of antimicrobial peptides (AMPs has been reported in various animals with comprehensive biological activities, which is consistent with the important roles of AMPs as the first line of host defense system. However, no big-data-based analysis on AMPs from any fish species is available. In this study, we identified 507 AMP transcripts on the basis of our previously reported genomes and transcriptomes of two representative amphibious mudskippers, Boleophthalmus pectinirostris (BP and Periophthalmus magnuspinnatus (PM. The former is predominantly aquatic with less time out of water, while the latter is primarily terrestrial with extended periods of time on land. Within these identified AMPs, 449 sequences are novel; 15 were reported in BP previously; 48 are identically overlapped between BP and PM; 94 were validated by mass spectrometry. Moreover, most AMPs presented differential tissue transcription patterns in the two mudskippers. Interestingly, we discovered two AMPs, hemoglobin β1 and amylin, with high inhibitions on Micrococcus luteus. In conclusion, our high-throughput screening strategy based on genomic and transcriptomic data opens an efficient pathway to discover new antimicrobial peptides for ongoing development of marine drugs.

  12. High-Throughput Identification of Antimicrobial Peptides from Amphibious Mudskippers.

    Science.gov (United States)

    Yi, Yunhai; You, Xinxin; Bian, Chao; Chen, Shixi; Lv, Zhao; Qiu, Limei; Shi, Qiong

    2017-11-22

    Widespread existence of antimicrobial peptides (AMPs) has been reported in various animals with comprehensive biological activities, which is consistent with the important roles of AMPs as the first line of host defense system. However, no big-data-based analysis on AMPs from any fish species is available. In this study, we identified 507 AMP transcripts on the basis of our previously reported genomes and transcriptomes of two representative amphibious mudskippers, Boleophthalmus pectinirostris (BP) and Periophthalmus magnuspinnatus (PM). The former is predominantly aquatic with less time out of water, while the latter is primarily terrestrial with extended periods of time on land. Within these identified AMPs, 449 sequences are novel; 15 were reported in BP previously; 48 are identically overlapped between BP and PM; 94 were validated by mass spectrometry. Moreover, most AMPs presented differential tissue transcription patterns in the two mudskippers. Interestingly, we discovered two AMPs, hemoglobin β1 and amylin, with high inhibitions on Micrococcus luteus . In conclusion, our high-throughput screening strategy based on genomic and transcriptomic data opens an efficient pathway to discover new antimicrobial peptides for ongoing development of marine drugs.

  13. Using high-throughput barcode sequencing to efficiently map connectomes.

    Science.gov (United States)

    Peikon, Ian D; Kebschull, Justus M; Vagin, Vasily V; Ravens, Diana I; Sun, Yu-Chi; Brouzes, Eric; Corrêa, Ivan R; Bressan, Dario; Zador, Anthony M

    2017-07-07

    The function of a neural circuit is determined by the details of its synaptic connections. At present, the only available method for determining a neural wiring diagram with single synapse precision-a 'connectome'-is based on imaging methods that are slow, labor-intensive and expensive. Here, we present SYNseq, a method for converting the connectome into a form that can exploit the speed and low cost of modern high-throughput DNA sequencing. In SYNseq, each neuron is labeled with a unique random nucleotide sequence-an RNA 'barcode'-which is targeted to the synapse using engineered proteins. Barcodes in pre- and postsynaptic neurons are then associated through protein-protein crosslinking across the synapse, extracted from the tissue, and joined into a form suitable for sequencing. Although our failure to develop an efficient barcode joining scheme precludes the widespread application of this approach, we expect that with further development SYNseq will enable tracing of complex circuits at high speed and low cost. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Towards Prebiotic Catalytic Amyloids Using High Throughput Screening.

    Directory of Open Access Journals (Sweden)

    Michael P Friedmann

    Full Text Available Enzymes are capable of directing complex stereospecific transformations and of accelerating reaction rates many orders of magnitude. As even the simplest known enzymes comprise thousands of atoms, the question arises as to how such exquisite catalysts evolved. A logical predecessor would be shorter peptides, but they lack the defined structure and size that are apparently necessary for enzyme functions. However, some very short peptides are able to assemble into amyloids, thereby forming a well-defined tertiary structure called the cross-β-sheet, which bestows unique properties upon the peptides. We have hypothesized that amyloids could have been the catalytically active precursor to modern enzymes. To test this hypothesis, we designed an amyloid peptide library that could be screened for catalytic activity. Our approach, amenable to high-throughput methodologies, allowed us to find several peptides and peptide mixtures that form amyloids with esterase activity. These results indicate that amyloids, with their stability in a wide range of conditions and their potential as catalysts with low sequence specificity, would indeed be fitting precursors to modern enzymes. Furthermore, our approach can be efficiently expanded upon in library size, screening conditions, and target activity to yield novel amyloid catalysts with potential applications in aqueous-organic mixtures, at high temperature and in other extreme conditions that could be advantageous for industrial applications.

  15. High-throughput literature mining to support read-across ...

    Science.gov (United States)

    Building scientific confidence in the development and evaluation of read-across remains an ongoing challenge. Approaches include establishing systematic frameworks to identify sources of uncertainty and ways to address them. One source of uncertainty is related to characterizing biological similarity. Many research efforts are underway such as structuring mechanistic data in adverse outcome pathways and investigating the utility of high throughput (HT)/high content (HC) screening data. A largely untapped resource for read-across to date is the biomedical literature. This information has the potential to support read-across by facilitating the identification of valid source analogues with similar biological and toxicological profiles as well as providing the mechanistic understanding for any prediction made. A key challenge in using biomedical literature is to convert and translate its unstructured form into a computable format that can be linked to chemical structure. We developed a novel text-mining strategy to represent literature information for read across. Keywords were used to organize literature into toxicity signatures at the chemical level. These signatures were integrated with HT in vitro data and curated chemical structures. A rule-based algorithm assessed the strength of the literature relationship, providing a mechanism to rank and visualize the signature as literature ToxPIs (LitToxPIs). LitToxPIs were developed for over 6,000 chemicals for a varie

  16. Efficient production of a gene mutant cell line through integrating TALENs and high-throughput cell cloning.

    Science.gov (United States)

    Sun, Changhong; Fan, Yu; Li, Juan; Wang, Gancheng; Zhang, Hanshuo; Xi, Jianzhong Jeff

    2015-02-01

    Transcription activator-like effectors (TALEs) are becoming powerful DNA-targeting tools in a variety of mammalian cells and model organisms. However, generating a stable cell line with specific gene mutations in a simple and rapid manner remains a challenging task. Here, we report a new method to efficiently produce monoclonal cells using integrated TALE nuclease technology and a series of high-throughput cell cloning approaches. Following this method, we obtained three mTOR mutant 293T cell lines within 2 months, which included one homozygous mutant line. © 2014 Society for Laboratory Automation and Screening.

  17. Development of automatic image analysis methods for high-throughput and high-content screening

    NARCIS (Netherlands)

    Di, Zi

    2013-01-01

    This thesis focuses on the development of image analysis methods for ultra-high content analysis of high-throughput screens where cellular phenotype responses to various genetic or chemical perturbations that are under investigation. Our primary goal is to deliver efficient and robust image analysis

  18. High throughput comet assay to study genotoxicity of nanomaterials

    Directory of Open Access Journals (Sweden)

    Naouale El Yamani

    2015-06-01

    Full Text Available The unique physicochemical properties of engineered nanomaterials (NMs have accelerated their use in diverse industrial and domestic products. Although their presence in consumer products represents a major concern for public health safety, their potential impact on human health is poorly understood. There is therefore an urgent need to clarify the toxic effects of NMs and to elucidate the mechanisms involved. In view of the large number of NMs currently being used, high throughput (HTP screening technologies are clearly needed for efficient assessment of toxicity. The comet assay is the most used method in nanogenotoxicity studies and has great potential for increasing throughput as it is fast, versatile and robust; simple technical modifications of the assay make it possible to test many compounds (NMs in a single experiment. The standard gel of 70-100 μL contains thousands of cells, of which only a tiny fraction are actually scored. Reducing the gel to a volume of 5 μL, with just a few hundred cells, allows twelve gels to be set on a standard slide, or 96 as a standard 8x12 array. For the 12 gel format, standard slides precoated with agarose are placed on a metal template and gels are set on the positions marked on the template. The HTP comet assay, incorporating digestion of DNA with formamidopyrimidine DNA glycosylase (FPG to detect oxidised purines, has recently been applied to study the potential induction of genotoxicity by NMs via reactive oxygen. In the NanoTEST project we investigated the genotoxic potential of several well-characterized metal and polymeric nanoparticles with the comet assay. All in vitro studies were harmonized; i.e. NMs were from the same batch, and identical dispersion protocols, exposure time, concentration range, culture conditions, and time-courses were used. As a kidney model, Cos-1 fibroblast-like kidney cells were treated with different concentrations of iron oxide NMs, and cells embedded in minigels (12

  19. Leveraging the Power of High Performance Computing for Next Generation Sequencing Data Analysis: Tricks and Twists from a High Throughput Exome Workflow

    Science.gov (United States)

    Wonczak, Stephan; Thiele, Holger; Nieroda, Lech; Jabbari, Kamel; Borowski, Stefan; Sinha, Vishal; Gunia, Wilfried; Lang, Ulrich; Achter, Viktor; Nürnberg, Peter

    2015-01-01

    Next generation sequencing (NGS) has been a great success and is now a standard method of research in the life sciences. With this technology, dozens of whole genomes or hundreds of exomes can be sequenced in rather short time, producing huge amounts of data. Complex bioinformatics analyses are required to turn these data into scientific findings. In order to run these analyses fast, automated workflows implemented on high performance computers are state of the art. While providing sufficient compute power and storage to meet the NGS data challenge, high performance computing (HPC) systems require special care when utilized for high throughput processing. This is especially true if the HPC system is shared by different users. Here, stability, robustness and maintainability are as important for automated workflows as speed and throughput. To achieve all of these aims, dedicated solutions have to be developed. In this paper, we present the tricks and twists that we utilized in the implementation of our exome data processing workflow. It may serve as a guideline for other high throughput data analysis projects using a similar infrastructure. The code implementing our solutions is provided in the supporting information files. PMID:25942438

  20. High throughput, low set-up time reconfigurable linear feedback shift registers

    NARCIS (Netherlands)

    Nas, R.J.M.; Berkel, van C.H.

    2010-01-01

    This paper presents a hardware design for a scalable, high throughput, configurable LFSR. High throughput is achieved by producing L consecutive outputs per clock cycle with a clock cycle period that, for practical cases, increases only logarithmically with the block size L and the length of the

  1. High throughput label-free platform for statistical bio-molecular sensing

    DEFF Research Database (Denmark)

    Bosco, Filippo; Hwu, En-Te; Chen, Ching-Hsiu

    2011-01-01

    Sensors are crucial in many daily operations including security, environmental control, human diagnostics and patient monitoring. Screening and online monitoring require reliable and high-throughput sensing. We report on the demonstration of a high-throughput label-free sensor platform utilizing...

  2. Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays (SOT)

    Science.gov (United States)

    Alginate Immobilization of Metabolic Enzymes (AIME) for High-Throughput Screening Assays DE DeGroot, RS Thomas, and SO SimmonsNational Center for Computational Toxicology, US EPA, Research Triangle Park, NC USAThe EPA’s ToxCast program utilizes a wide variety of high-throughput s...

  3. Assessing the utility and limitations of high throughput virtual screening

    Directory of Open Access Journals (Sweden)

    Paul Daniel Phillips

    2016-05-01

    Full Text Available Due to low cost, speed, and unmatched ability to explore large numbers of compounds, high throughput virtual screening and molecular docking engines have become widely utilized by computational scientists. It is generally accepted that docking engines, such as AutoDock, produce reliable qualitative results for ligand-macromolecular receptor binding, and molecular docking results are commonly reported in literature in the absence of complementary wet lab experimental data. In this investigation, three variants of the sixteen amino acid peptide, α-conotoxin MII, were docked to a homology model of the a3β2-nicotinic acetylcholine receptor. DockoMatic version 2.0 was used to perform a virtual screen of each peptide ligand to the receptor for ten docking trials consisting of 100 AutoDock cycles per trial. The results were analyzed for both variation in the calculated binding energy obtained from AutoDock, and the orientation of bound peptide within the receptor. The results show that, while no clear correlation exists between consistent ligand binding pose and the calculated binding energy, AutoDock is able to determine a consistent positioning of bound peptide in the majority of trials when at least ten trials were evaluated.

  4. High throughput reaction screening using desorption electrospray ionization mass spectrometry.

    Science.gov (United States)

    Wleklinski, Michael; Loren, Bradley P; Ferreira, Christina R; Jaman, Zinia; Avramova, Larisa; Sobreira, Tiago J P; Thompson, David H; Cooks, R Graham

    2018-02-14

    We report the high throughput analysis of reaction mixture arrays using methods and data handling routines that were originally developed for biological tissue imaging. Desorption electrospray ionization (DESI) mass spectrometry (MS) is applied in a continuous on-line process at rates that approach 10 4 reactions per h at area densities of up to 1 spot per mm 2 (6144 spots per standard microtiter plate) with the sprayer moving at ca. 10 4 microns per s. Data are analyzed automatically by MS using in-house software to create ion images of selected reagents and products as intensity plots in standard array format. Amine alkylation reactions were used to optimize the system performance on PTFE membrane substrates using methanol as the DESI spray/analysis solvent. Reaction times can be screening of processes like N -alkylation and Suzuki coupling reactions as reported herein. Products and by-products were confirmed by on-line MS/MS upon rescanning of the array.

  5. High-throughput screening of chemical effects on ...

    Science.gov (United States)

    Disruption of steroidogenesis by environmental chemicals can result in altered hormone levels causing adverse reproductive and developmental effects. A high-throughput assay using H295R human adrenocortical carcinoma cells was used to evaluate the effect of 2,060 chemical samples on steroidogenesis via HPLC-MS/MS quantification of 10 steroid hormones, including progestagens, glucocorticoids, androgens, and estrogens. The study employed a three stage screening strategy. The first stage established the maximum tolerated concentration (MTC; >70% viability) per sample. The second stage quantified changes in hormone levels at the MTC while the third stage performed concentration-response (CR) on a subset of samples. At all stages, cells were pre-stimulated with 10 µM forskolin for 48 h to induce steroidogenesis followed by chemical treatment for 48 h. Of the 2,060 chemical samples evaluated, 524 samples were selected for six-point CR screening, based in part on significantly altering at least 4 hormones at the MTC. CR screening identified 232 chemical samples with concentration-dependent effects on 17β-estradiol and/or testosterone, with 411 chemical samples showing an effect on at least one hormone across the steroidogenesis pathway. Clustering of the concentration-dependent chemical-mediated steroid hormone effects grouped chemical samples into five distinct profiles generally representing putative mechanisms of action, including CYP17A1 and HSD3B inhibition. A d

  6. High throughput miniature drug-screening platform using bioprinting technology

    International Nuclear Information System (INIS)

    Rodríguez-Dévora, Jorge I; Reyna, Daniel; Xu Tao; Zhang Bimeng; Shi Zhidong

    2012-01-01

    In the pharmaceutical industry, new drugs are tested to find appropriate compounds for therapeutic purposes for contemporary diseases. Unfortunately, novel compounds emerge at expensive prices and current target evaluation processes have limited throughput, thus leading to an increase of cost and time for drug development. This work shows the development of the novel inkjet-based deposition method for assembling a miniature drug-screening platform, which can realistically and inexpensively evaluate biochemical reactions in a picoliter-scale volume at a high speed rate. As proof of concept, applying a modified Hewlett Packard model 5360 compact disc printer, green fluorescent protein expressing Escherichia coli cells along with alginate gel solution have been arrayed on a coverslip chip under a repeatable volume of 180% ± 26% picoliters per droplet; subsequently, different antibiotic droplets were patterned on the spots of cells to evaluate the inhibition of bacteria for antibiotic screening. The proposed platform was compared to the current screening process, validating its effectiveness. The viability and basic function of the printed cells were evaluated, resulting in cell viability above 98% and insignificant or no DNA damage to human kidney cells transfected. Based on the reduction of investment and compound volume used by this platform, this technique has the potential to improve the actual drug discovery process at its target evaluation stage. (paper)

  7. Use of High Throughput Screening Data in IARC Monograph ...

    Science.gov (United States)

    Purpose: Evaluation of carcinogenic mechanisms serves a critical role in IARC monograph evaluations, and can lead to “upgrade” or “downgrade” of the carcinogenicity conclusions based on human and animal evidence alone. Three recent IARC monograph Working Groups (110, 112, and 113) pioneered analysis of high throughput in vitro screening data from the U.S. Environmental Protection Agency’s ToxCast program in evaluations of carcinogenic mechanisms. Methods: For monograph 110, ToxCast assay data across multiple nuclear receptors were used to test the hypothesis that PFOA acts exclusively through the PPAR family of receptors, with activity profiles compared to several prototypical nuclear receptor-activating compounds. For monographs 112 and 113, ToxCast assays were systematically evaluated and used as an additional data stream in the overall evaluation of the mechanistic evidence. Specifically, ToxCast assays were mapped to 10 “key characteristics of carcinogens” recently identified by an IARC expert group, and chemicals’ bioactivity profiles were evaluated both in absolute terms (number of relevant assays positive for bioactivity) and relative terms (ranking with respect to other compounds evaluated by IARC, using the ToxPi methodology). Results: PFOA activates multiple nuclear receptors in addition to the PPAR family in the ToxCast assays. ToxCast assays offered substantial coverage for 5 of the 10 “key characteristics,” with the greates

  8. High Throughput Sequencing for Detection of Foodborne Pathogens

    Directory of Open Access Journals (Sweden)

    Camilla Sekse

    2017-10-01

    Full Text Available High-throughput sequencing (HTS is becoming the state-of-the-art technology for typing of microbial isolates, especially in clinical samples. Yet, its application is still in its infancy for monitoring and outbreak investigations of foods. Here we review the published literature, covering not only bacterial but also viral and Eukaryote food pathogens, to assess the status and potential of HTS implementation to inform stakeholders, improve food safety and reduce outbreak impacts. The developments in sequencing technology and bioinformatics have outpaced the capacity to analyze and interpret the sequence data. The influence of sample processing, nucleic acid extraction and purification, harmonized protocols for generation and interpretation of data, and properly annotated and curated reference databases including non-pathogenic “natural” strains are other major obstacles to the realization of the full potential of HTS in analytical food surveillance, epidemiological and outbreak investigations, and in complementing preventive approaches for the control and management of foodborne pathogens. Despite significant obstacles, the achieved progress in capacity and broadening of the application range over the last decade is impressive and unprecedented, as illustrated with the chosen examples from the literature. Large consortia, often with broad international participation, are making coordinated efforts to cope with many of the mentioned obstacles. Further rapid progress can therefore be prospected for the next decade.

  9. Advances in High Throughput Screening of Biomass Recalcitrance (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Turner, G. B.; Decker, S. R.; Tucker, M. P.; Law, C.; Doeppke, C.; Sykes, R. W.; Davis, M. F.; Ziebell, A.

    2012-06-01

    This was a poster displayed at the Symposium. Advances on previous high throughput screening of biomass recalcitrance methods have resulted in improved conversion and replicate precision. Changes in plate reactor metallurgy, improved preparation of control biomass, species-specific pretreatment conditions, and enzymatic hydrolysis parameters have reduced overall coefficients of variation to an average of 6% for sample replicates. These method changes have improved plate-to-plate variation of control biomass recalcitrance and improved confidence in sugar release differences between samples. With smaller errors plant researchers can have a higher degree of assurance more low recalcitrance candidates can be identified. Significant changes in plate reactor, control biomass preparation, pretreatment conditions and enzyme have significantly reduced sample and control replicate variability. Reactor plate metallurgy significantly impacts sugar release aluminum leaching into reaction during pretreatment degrades sugars and inhibits enzyme activity. Removal of starch and extractives significantly decreases control biomass variability. New enzyme formulations give more consistent and higher conversion levels, however required re-optimization for switchgrass. Pretreatment time and temperature (severity) should be adjusted to specific biomass types i.e. woody vs. herbaceous. Desalting of enzyme preps to remove low molecular weight stabilizers and improved conversion levels likely due to water activity impacts on enzyme structure and substrate interactions not attempted here due to need to continually desalt and validate precise enzyme concentration and activity.

  10. Probabilistic Methods for Processing High-Throughput Sequencing Signals

    DEFF Research Database (Denmark)

    Sørensen, Lasse Maretty

    High-throughput sequencing has the potential to answer many of the big questions in biology and medicine. It can be used to determine the ancestry of species, to chart complex ecosystems and to understand and diagnose disease. However, going from raw sequencing data to biological or medical insig....... By estimating the genotypes on a set of candidate variants obtained from both a standard mapping-based approach as well as de novo assemblies, we are able to find considerably more structural variation than previous studies...... for reconstructing transcript sequences from RNA sequencing data. The method is based on a novel sparse prior distribution over transcript abundances and is markedly more accurate than existing approaches. The second chapter describes a new method for calling genotypes from a fixed set of candidate variants....... The method queries the reads using a graph representation of the variants and hereby mitigates the reference-bias that characterise standard genotyping methods. In the last chapter, we apply this method to call the genotypes of 50 deeply sequencing parent-offspring trios from the GenomeDenmark project...

  11. Quantifying Nanoparticle Internalization Using a High Throughput Internalization Assay.

    Science.gov (United States)

    Mann, Sarah K; Czuba, Ewa; Selby, Laura I; Such, Georgina K; Johnston, Angus P R

    2016-10-01

    The internalization of nanoparticles into cells is critical for effective nanoparticle mediated drug delivery. To investigate the kinetics and mechanism of internalization of nanoparticles into cells we have developed a DNA molecular sensor, termed the Specific Hybridization Internalization Probe - SHIP. Self-assembling polymeric 'pHlexi' nanoparticles were functionalized with a Fluorescent Internalization Probe (FIP) and the interactions with two different cell lines (3T3 and CEM cells) were studied. The kinetics of internalization were quantified and chemical inhibitors that inhibited energy dependent endocytosis (sodium azide), dynamin dependent endocytosis (Dyngo-4a) and macropinocytosis (5-(N-ethyl-N-isopropyl) amiloride (EIPA)) were used to study the mechanism of internalization. Nanoparticle internalization kinetics were significantly faster in 3T3 cells than CEM cells. We have shown that ~90% of the nanoparticles associated with 3T3 cells were internalized, compared to only 20% of the nanoparticles associated with CEM cells. Nanoparticle uptake was via a dynamin-dependent pathway, and the nanoparticles were trafficked to lysosomal compartments once internalized. SHIP is able to distinguish between nanoparticles that are associated on the outer cell membrane from nanoparticles that are internalized. This study demonstrates the assay can be used to probe the kinetics of nanoparticle internalization and the mechanisms by which the nanoparticles are taken up by cells. This information is fundamental for engineering more effective nanoparticle delivery systems. The SHIP assay is a simple and a high-throughput technique that could have wide application in therapeutic delivery research.

  12. High-throughput screening of chemicals as functional ...

    Science.gov (United States)

    Identifying chemicals that provide a specific function within a product, yet have minimal impact on the human body or environment, is the goal of most formulation chemists and engineers practicing green chemistry. We present a methodology to identify potential chemical functional substitutes from large libraries of chemicals using machine learning based models. We collect and analyze publicly available information on the function of chemicals in consumer products or industrial processes to identify a suite of harmonized function categories suitable for modeling. We use structural and physicochemical descriptors for these chemicals to build 41 quantitative structure–use relationship (QSUR) models for harmonized function categories using random forest classification. We apply these models to screen a library of nearly 6400 chemicals with available structure information for potential functional substitutes. Using our Functional Use database (FUse), we could identify uses for 3121 chemicals; 4412 predicted functional uses had a probability of 80% or greater. We demonstrate the potential application of the models to high-throughput (HT) screening for “candidate alternatives” by merging the valid functional substitute classifications with hazard metrics developed from HT screening assays for bioactivity. A descriptor set could be obtained for 6356 Tox21 chemicals that have undergone a battery of HT in vitro bioactivity screening assays. By applying QSURs, we wer

  13. High-Throughput DNA sequencing of ancient wood.

    Science.gov (United States)

    Wagner, Stefanie; Lagane, Frédéric; Seguin-Orlando, Andaine; Schubert, Mikkel; Leroy, Thibault; Guichoux, Erwan; Chancerel, Emilie; Bech-Hebelstrup, Inger; Bernard, Vincent; Billard, Cyrille; Billaud, Yves; Bolliger, Matthias; Croutsch, Christophe; Čufar, Katarina; Eynaud, Frédérique; Heussner, Karl Uwe; Köninger, Joachim; Langenegger, Fabien; Leroy, Frédéric; Lima, Christine; Martinelli, Nicoletta; Momber, Garry; Billamboz, André; Nelle, Oliver; Palomo, Antoni; Piqué, Raquel; Ramstein, Marianne; Schweichel, Roswitha; Stäuble, Harald; Tegel, Willy; Terradas, Xavier; Verdin, Florence; Plomion, Christophe; Kremer, Antoine; Orlando, Ludovic

    2018-03-01

    Reconstructing the colonization and demographic dynamics that gave rise to extant forests is essential to forecasts of forest responses to environmental changes. Classical approaches to map how population of trees changed through space and time largely rely on pollen distribution patterns, with only a limited number of studies exploiting DNA molecules preserved in wooden tree archaeological and subfossil remains. Here, we advance such analyses by applying high-throughput (HTS) DNA sequencing to wood archaeological and subfossil material for the first time, using a comprehensive sample of 167 European white oak waterlogged remains spanning a large temporal (from 550 to 9,800 years) and geographical range across Europe. The successful characterization of the endogenous DNA and exogenous microbial DNA of 140 (~83%) samples helped the identification of environmental conditions favouring long-term DNA preservation in wood remains, and started to unveil the first trends in the DNA decay process in wood material. Additionally, the maternally inherited chloroplast haplotypes of 21 samples from three periods of forest human-induced use (Neolithic, Bronze Age and Middle Ages) were found to be consistent with those of modern populations growing in the same geographic areas. Our work paves the way for further studies aiming at using ancient DNA preserved in wood to reconstruct the micro-evolutionary response of trees to climate change and human forest management. © 2018 John Wiley & Sons Ltd.

  14. High-Throughput Combinatorial Development of High-Entropy Alloys For Light-Weight Structural Applications

    Energy Technology Data Exchange (ETDEWEB)

    Van Duren, Jeroen K [Intermolecular, Inc., San Jose, CA (United States); Koch, Carl [North Carolina State Univ., Raleigh, NC (United States); Luo, Alan [The Ohio State Univ., Columbus, OH (United States); Sample, Vivek [Arconic, Pittsburgh, PA (United States); Sachdev, Anil [General Motors, Detroit, MI (United States)

    2017-12-29

    on Al-Cr-Fe-Ni, shows compressive strain >10% and specific compressive yield strength of 229 MPa x cc/g, yet does not show ductility in tensile tests due to cleavage. When replacing Cr in Al-Cr-Fe-based 4- and 5-element LDHEA with Mn, hardness drops 2x. Combined with compression test results, including those on the ternaries Al-Cr-Fe and Al-Mn-Fe suggest that Al-Mn-Fe-based LDHEA are still worth pursuing. These initial results only represent one compressive stress-strain curve per composition without any property optimization. As such, reproducibility needs to be followed by optimization to show their full potential. When including Li, Mg, and Zn, single-phase Li-Mg-Al-Ti-Zn LDHEA has been found with a specific ultimate compressive strength of 289MPa x cc/g. Al-Ti-Mn-Zn showed a specific ultimate compressive strength of 73MPa x cc/g. These initial results after hot isostatic pressing (HIP) of the ball-milled powders represent the lower end of what is possible, since no secondary processing (e.g. extrusion) has been performed to optimize strength and ductility. Compositions for multi-phase (e.g. dual-phase) LDHEA were identified largely by automated searches through CALPHAD databases, while screening for large face-centered-cubic (FCC) volume fractions, followed by experimental verification. This resulted in several new alloys. Li-Mg-Al-Mn-Fe and Mg-Mn-Fe-Co ball-milled powders upon HIP show specific ultimate compressive strengths of 198MPa x cc/g and 45MPa x cc/g, respectively. Several malleable quarternary Al-Zn-based alloys have been found upon arc/induction melting, yet with limited specific compressive yield strength (<75 MPa x cc/g). These initial results are all without any optimization for strength and/or ductility. High-throughput experimentation allowed us to triple the existing experimental HEA database as published in the past 10 years in less than 2 years which happened at a rate 10x higher than previous methods. Furthermore, we showed that high-throughput

  15. Solid-Phase Extraction Strategies to Surmount Body Fluid Sample Complexity in High-Throughput Mass Spectrometry-Based Proteomics

    Science.gov (United States)

    Bladergroen, Marco R.; van der Burgt, Yuri E. M.

    2015-01-01

    For large-scale and standardized applications in mass spectrometry- (MS-) based proteomics automation of each step is essential. Here we present high-throughput sample preparation solutions for balancing the speed of current MS-acquisitions and the time needed for analytical workup of body fluids. The discussed workflows reduce body fluid sample complexity and apply for both bottom-up proteomics experiments and top-down protein characterization approaches. Various sample preparation methods that involve solid-phase extraction (SPE) including affinity enrichment strategies have been automated. Obtained peptide and protein fractions can be mass analyzed by direct infusion into an electrospray ionization (ESI) source or by means of matrix-assisted laser desorption ionization (MALDI) without further need of time-consuming liquid chromatography (LC) separations. PMID:25692071

  16. Solion ion source for high-efficiency, high-throughput solar cell manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Koo, John, E-mail: john-koo@amat.com; Binns, Brant; Miller, Timothy; Krause, Stephen; Skinner, Wesley; Mullin, James [Applied Materials, Inc., Varian Semiconductor Equipment Business Unit, 35 Dory Road, Gloucester, Massachusetts 01930 (United States)

    2014-02-15

    In this paper, we introduce the Solion ion source for high-throughput solar cell doping. As the source power is increased to enable higher throughput, negative effects degrade the lifetime of the plasma chamber and the extraction electrodes. In order to improve efficiency, we have explored a wide range of electron energies and determined the conditions which best suit production. To extend the lifetime of the source we have developed an in situ cleaning method using only existing hardware. With these combinations, source life-times of >200 h for phosphorous and >100 h for boron ion beams have been achieved while maintaining 1100 cell-per-hour production.

  17. High-throughput microplate technique for enzymatic hydrolysis of lignocellulosic biomass.

    Science.gov (United States)

    Chundawat, Shishir P S; Balan, Venkatesh; Dale, Bruce E

    2008-04-15

    Several factors will influence the viability of a biochemical platform for manufacturing lignocellulosic based fuels and chemicals, for example, genetically engineering energy crops, reducing pre-treatment severity, and minimizing enzyme loading. Past research on biomass conversion has focused largely on acid based pre-treatment technologies that fractionate lignin and hemicellulose from cellulose. However, for alkaline based (e.g., AFEX) and other lower severity pre-treatments it becomes critical to co-hydrolyze cellulose and hemicellulose using an optimized enzyme cocktail. Lignocellulosics are appropriate substrates to assess hydrolytic activity of enzyme mixtures compared to conventional unrealistic substrates (e.g., filter paper, chromogenic, and fluorigenic compounds) for studying synergistic hydrolysis. However, there are few, if any, high-throughput lignocellulosic digestibility analytical platforms for optimizing biomass conversion. The 96-well Biomass Conversion Research Lab (BCRL) microplate method is a high-throughput assay to study digestibility of lignocellulosic biomass as a function of biomass composition, pre-treatment severity, and enzyme composition. The most suitable method for delivering milled biomass to the microplate was through multi-pipetting slurry suspensions. A rapid bio-enzymatic, spectrophotometric assay was used to determine fermentable sugars. The entire procedure was automated using a robotic pipetting workstation. Several parameters that affect hydrolysis in the microplate were studied and optimized (i.e., particle size reduction, slurry solids concentration, glucan loading, mass transfer issues, and time period for hydrolysis). The microplate method was optimized for crystalline cellulose (Avicel) and ammonia fiber expansion (AFEX) pre-treated corn stover. Copyright 2008 Wiley Periodicals, Inc.

  18. Toward biotechnology in space: High-throughput instruments for in situ biological research beyond Earth.

    Science.gov (United States)

    Karouia, Fathi; Peyvan, Kianoosh; Pohorille, Andrew

    2017-11-15

    Space biotechnology is a nascent field aimed at applying tools of modern biology to advance our goals in space exploration. These advances rely on our ability to exploit in situ high throughput techniques for amplification and sequencing DNA, and measuring levels of RNA transcripts, proteins and metabolites in a cell. These techniques, collectively known as "omics" techniques have already revolutionized terrestrial biology. A number of on-going efforts are aimed at developing instruments to carry out "omics" research in space, in particular on board the International Space Station and small satellites. For space applications these instruments require substantial and creative reengineering that includes automation, miniaturization and ensuring that the device is resistant to conditions in space and works independently of the direction of the gravity vector. Different paths taken to meet these requirements for different "omics" instruments are the subjects of this review. The advantages and disadvantages of these instruments and technological solutions and their level of readiness for deployment in space are discussed. Considering that effects of space environments on terrestrial organisms appear to be global, it is argued that high throughput instruments are essential to advance (1) biomedical and physiological studies to control and reduce space-related stressors on living systems, (2) application of biology to life support and in situ resource utilization, (3) planetary protection, and (4) basic research about the limits on life in space. It is also argued that carrying out measurements in situ provides considerable advantages over the traditional space biology paradigm that relies on post-flight data analysis. Published by Elsevier Inc.

  19. Standardized Method for High-throughput Sterilization of Arabidopsis Seeds.

    Science.gov (United States)

    Lindsey, Benson E; Rivero, Luz; Calhoun, Chistopher S; Grotewold, Erich; Brkljacic, Jelena

    2017-10-17

    Arabidopsis thaliana (Arabidopsis) seedlings often need to be grown on sterile media. This requires prior seed sterilization to prevent the growth of microbial contaminants present on the seed surface. Currently, Arabidopsis seeds are sterilized using two distinct sterilization techniques in conditions that differ slightly between labs and have not been standardized, often resulting in only partially effective sterilization or in excessive seed mortality. Most of these methods are also not easily scalable to a large number of seed lines of diverse genotypes. As technologies for high-throughput analysis of Arabidopsis continue to proliferate, standardized techniques for sterilizing large numbers of seeds of different genotypes are becoming essential for conducting these types of experiments. The response of a number of Arabidopsis lines to two different sterilization techniques was evaluated based on seed germination rate and the level of seed contamination with microbes and other pathogens. The treatments included different concentrations of sterilizing agents and times of exposure, combined to determine optimal conditions for Arabidopsis seed sterilization. Optimized protocols have been developed for two different sterilization methods: bleach (liquid-phase) and chlorine (Cl2) gas (vapor-phase), both resulting in high seed germination rates and minimal microbial contamination. The utility of these protocols was illustrated through the testing of both wild type and mutant seeds with a range of germination potentials. Our results show that seeds can be effectively sterilized using either method without excessive seed mortality, although detrimental effects of sterilization were observed for seeds with lower than optimal germination potential. In addition, an equation was developed to enable researchers to apply the standardized chlorine gas sterilization conditions to airtight containers of different sizes. The protocols described here allow easy, efficient, and

  20. Mining Chemical Activity Status from High-Throughput Screening Assays

    KAUST Repository

    Soufan, Othman

    2015-12-14

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  1. Towards high throughput screening of electrochemical stability of battery electrolytes

    International Nuclear Information System (INIS)

    Borodin, Oleg; Olguin, Marco; Spear, Carrie E; Leiter, Kenneth W; Knap, Jaroslaw

    2015-01-01

    High throughput screening of solvents and additives with potential applications in lithium batteries is reported. The initial test set is limited to carbonate and phosphate-based compounds and focused on their electrochemical properties. Solvent stability towards first and second reduction and oxidation is reported from density functional theory (DFT) calculations performed on isolated solvents surrounded by implicit solvent. The reorganization energy is estimated from the difference between vertical and adiabatic redox energies and found to be especially important for the accurate prediction of reduction stability. A majority of tested compounds had the second reduction potential higher than the first reduction potential indicating that the second reduction reaction might play an important role in the passivation layer formation. Similarly, the second oxidation potential was smaller for a significant subset of tested molecules than the first oxidation potential. A number of potential sources of errors introduced during screening of the electrolyte electrochemical properties were examined. The formation of lithium fluoride during reduction of semifluorinated solvents such as fluoroethylene carbonate and the H-transfer during oxidation of solvents were found to shift the electrochemical potential by 1.5–2 V and could shrink the electrochemical stability window by as much as 3.5 V when such reactions are included in the screening procedure. The initial oxidation reaction of ethylene carbonate and dimethyl carbonate at the surface of the completely de-lithiated LiNi 0.5 Mn 1.5 O 4 high voltage spinel cathode was examined using DFT. Depending on the molecular orientation at the cathode surface, a carbonate molecule either exhibited deprotonation or was found bound to the transition metal via its carbonyl oxygen. (paper)

  2. Mining Chemical Activity Status from High-Throughput Screening Assays

    KAUST Repository

    Soufan, Othman; Ba Alawi, Wail; Afeef, Moataz A.; Essack, Magbubah; Rodionov, Valentin; Kalnis, Panos; Bajic, Vladimir B.

    2015-01-01

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  3. High-throughput sample adaptive offset hardware architecture for high-efficiency video coding

    Science.gov (United States)

    Zhou, Wei; Yan, Chang; Zhang, Jingzhi; Zhou, Xin

    2018-03-01

    A high-throughput hardware architecture for a sample adaptive offset (SAO) filter in the high-efficiency video coding video coding standard is presented. First, an implementation-friendly and simplified bitrate estimation method of rate-distortion cost calculation is proposed to reduce the computational complexity in the mode decision of SAO. Then, a high-throughput VLSI architecture for SAO is presented based on the proposed bitrate estimation method. Furthermore, multiparallel VLSI architecture for in-loop filters, which integrates both deblocking filter and SAO filter, is proposed. Six parallel strategies are applied in the proposed in-loop filters architecture to improve the system throughput and filtering speed. Experimental results show that the proposed in-loop filters architecture can achieve up to 48% higher throughput in comparison with prior work. The proposed architecture can reach a high-operating clock frequency of 297 MHz with TSMC 65-nm library and meet the real-time requirement of the in-loop filters for 8 K × 4 K video format at 132 fps.

  4. Protocol: high throughput silica-based purification of RNA from Arabidopsis seedlings in a 96-well format.

    Science.gov (United States)

    Salvo-Chirnside, Eliane; Kane, Steven; Kerr, Lorraine E

    2011-12-02

    The increasing popularity of systems-based approaches to plant research has resulted in a demand for high throughput (HTP) methods to be developed. RNA extraction from multiple samples in an experiment is a significant bottleneck in performing systems-level genomic studies. Therefore we have established a high throughput method of RNA extraction from Arabidopsis thaliana to facilitate gene expression studies in this widely used plant model. We present optimised manual and automated protocols for the extraction of total RNA from 9-day-old Arabidopsis seedlings in a 96 well plate format using silica membrane-based methodology. Consistent and reproducible yields of high quality RNA are isolated averaging 8.9 μg total RNA per sample (~20 mg plant tissue). The purified RNA is suitable for subsequent qPCR analysis of the expression of over 500 genes in triplicate from each sample. Using the automated procedure, 192 samples (2 × 96 well plates) can easily be fully processed (samples homogenised, RNA purified and quantified) in less than half a day. Additionally we demonstrate that plant samples can be stored in RNAlater at -20°C (but not 4°C) for 10 months prior to extraction with no significant effect on RNA yield or quality. Additionally, disrupted samples can be stored in the lysis buffer at -20°C for at least 6 months prior to completion of the extraction procedure providing a flexible sampling and storage scheme to facilitate complex time series experiments.

  5. A Simple, High-Throughput Assay for Fragile X Expanded Alleles Using Triple Repeat Primed PCR and Capillary Electrophoresis

    Science.gov (United States)

    Lyon, Elaine; Laver, Thomas; Yu, Ping; Jama, Mohamed; Young, Keith; Zoccoli, Michael; Marlowe, Natalia

    2010-01-01

    Population screening has been proposed for Fragile X syndrome to identify premutation carrier females and affected newborns. We developed a PCR-based assay capable of quickly detecting the presence or absence of an expanded FMR1 allele with high sensitivity and specificity. This assay combines a triplet repeat primed PCR with high-throughput automated capillary electrophoresis. We evaluated assay performance using archived samples sent for Fragile X diagnostic testing representing a range of Fragile X CGG-repeat expansions. Two hundred five previously genotyped samples were tested with the new assay. Data were analyzed for the presence of a trinucleotide “ladder” extending beyond 55 repeats, which was set as a cut-off to identify expanded FMR1 alleles. We identified expanded FMR1 alleles in 132 samples (59 premutation, 71 full mutation, 2 mosaics) and normal FMR1 alleles in 73 samples. We found 100% concordance with previous results from PCR and Southern blot analyses. In addition, we show feasibility of using this assay with DNA extracted from dried-blood spots. Using a single PCR combined with high-throughput fragment analysis on the automated capillary electrophoresis instrument, we developed a rapid and reproducible PCR-based laboratory assay that meets many of the requirements for a first-tier test for population screening. PMID:20431035

  6. A high throughput system for the preparation of single stranded templates grown in microculture.

    Science.gov (United States)

    Kolner, D E; Guilfoyle, R A; Smith, L M

    1994-01-01

    A high throughput system for the preparation of single stranded M13 sequencing templates is described. Supernatants from clones grown in 48-well plates are treated with a chaotropic agent to dissociate the phage coat protein. Using a semi-automated cell harvester, the free nucleic acid is bound to a glass fiber filter in the presence of chaotrope and then washed with ethanol by aspiration. Individual glass fiber discs are punched out on the cell harvester and dried briefly. The DNA samples are then eluted in water by centrifugation. The processing time from 96 microcultures to sequence quality templates is approximately 1 hr. Assuming the ability to sequence 400 bases per clone, a 0.5 megabase per day genome sequencing facility will require 6250 purified templates a week. Toward accomplishing this goal we have developed a procedure which is a modification of a method that uses a chaotropic agent and glass fiber filter (Kristensen et al., 1987). By exploiting the ability of a cell harvester to uniformly aspirate and wash 96 samples, a rapid system for high quality template preparation has been developed. Other semi-automated systems for template preparation have been developed using commercially available robotic workstations like the Biomek (Mardis and Roe, 1989). Although minimal human intervention is required, processing time is at least twice as long. Custom systems based on paramagnetic beads (Hawkins et al., 1992) produce DNA in insufficient quantity for direct sequencing and therefore require cycle sequencing. These systems require custom programing, have a fairly high initial cost and have not proven to be as fast as the method reported here.

  7. 40 CFR Table 3 to Subpart Eeee of... - Operating Limits-High Throughput Transfer Racks

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Operating Limits-High Throughput Transfer Racks 3 Table 3 to Subpart EEEE of Part 63 Protection of Environment ENVIRONMENTAL PROTECTION... Throughput Transfer Racks As stated in § 63.2346(e), you must comply with the operating limits for existing...

  8. Development and implementation of a high-throughput compound screening assay for targeting disrupted ER calcium homeostasis in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Kamran Honarnejad

    Full Text Available Disrupted intracellular calcium homeostasis is believed to occur early in the cascade of events leading to Alzheimer's disease (AD pathology. Particularly familial AD mutations linked to Presenilins result in exaggerated agonist-evoked calcium release from endoplasmic reticulum (ER. Here we report the development of a fully automated high-throughput calcium imaging assay utilizing a genetically-encoded FRET-based calcium indicator at single cell resolution for compound screening. The established high-throughput screening assay offers several advantages over conventional high-throughput calcium imaging technologies. We employed this assay for drug discovery in AD by screening compound libraries consisting of over 20,000 small molecules followed by structure-activity-relationship analysis. This led to the identification of Bepridil, a calcium channel antagonist drug in addition to four further lead structures capable of normalizing the potentiated FAD-PS1-induced calcium release from ER. Interestingly, it has recently been reported that Bepridil can reduce Aβ production by lowering BACE1 activity. Indeed, we also detected lowered Aβ, increased sAPPα and decreased sAPPβ fragment levels upon Bepridil treatment. The latter findings suggest that Bepridil may provide a multifactorial therapeutic modality for AD by simultaneously addressing multiple aspects of the disease.

  9. DAG expression: high-throughput gene expression analysis of real-time PCR data using standard curves for relative quantification.

    Directory of Open Access Journals (Sweden)

    María Ballester

    Full Text Available BACKGROUND: Real-time quantitative PCR (qPCR is still the gold-standard technique for gene-expression quantification. Recent technological advances of this method allow for the high-throughput gene-expression analysis, without the limitations of sample space and reagent used. However, non-commercial and user-friendly software for the management and analysis of these data is not available. RESULTS: The recently developed commercial microarrays allow for the drawing of standard curves of multiple assays using the same n-fold diluted samples. Data Analysis Gene (DAG Expression software has been developed to perform high-throughput gene-expression data analysis using standard curves for relative quantification and one or multiple reference genes for sample normalization. We discuss the application of DAG Expression in the analysis of data from an experiment performed with Fluidigm technology, in which 48 genes and 115 samples were measured. Furthermore, the quality of our analysis was tested and compared with other available methods. CONCLUSIONS: DAG Expression is a freely available software that permits the automated analysis and visualization of high-throughput qPCR. A detailed manual and a demo-experiment are provided within the DAG Expression software at http://www.dagexpression.com/dage.zip.

  10. Using In Vitro High-Throughput Screening Data for Predicting ...

    Science.gov (United States)

    Today there are more than 80,000 chemicals in commerce and the environment. The potential human health risks are unknown for the vast majority of these chemicals as they lack human health risk assessments, toxicity reference values and risk screening values. We aim to use computational toxicology and quantitative high throughput screening (qHTS) technologies to fill these data gaps, and begin to prioritize these chemicals for additional assessment. By coupling qHTS data with adverse outcome pathways (AOPs) we can use ontologies to make predictions about potential hazards and to identify those assays which are sufficient to infer these same hazards. Once those assays are identified, we can use bootstrap natural spline-based metaregression to integrate the evidence across multiple replicates or assays (if a combination of assays are together necessary to be sufficient). In this pilot, we demonstrate how we were able to identify that benzo[k]fluoranthene (B[k]F) may induce DNA damage and steatosis using qHTS data and two separate AOPs. We also demonstrate how bootstrap natural spline-based metaregression can be used to integrate the data across multiple assay replicates to generate a concentration-response curve. We used this analysis to calculate an internal point of departure of 0.751µM and risk-specific concentrations of 0.378µM for both 1:1,000 and 1:10,000 additive risk for B[k]F induced DNA damage based on the p53 assay. Based on the available evidence, we

  11. Towards Chip Scale Liquid Chromatography and High Throughput Immunosensing

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Jing [Iowa State Univ., Ames, IA (United States)

    2000-09-21

    This work describes several research projects aimed towards developing new instruments and novel methods for high throughput chemical and biological analysis. Approaches are taken in two directions. The first direction takes advantage of well-established semiconductor fabrication techniques and applies them to miniaturize instruments that are workhorses in analytical laboratories. Specifically, the first part of this work focused on the development of micropumps and microvalves for controlled fluid delivery. The mechanism of these micropumps and microvalves relies on the electrochemically-induced surface tension change at a mercury/electrolyte interface. A miniaturized flow injection analysis device was integrated and flow injection analyses were demonstrated. In the second part of this work, microfluidic chips were also designed, fabricated, and tested. Separations of two fluorescent dyes were demonstrated in microfabricated channels, based on an open-tubular liquid chromatography (OT LC) or an electrochemically-modulated liquid chromatography (EMLC) format. A reduction in instrument size can potentially increase analysis speed, and allow exceedingly small amounts of sample to be analyzed under diverse separation conditions. The second direction explores the surface enhanced Raman spectroscopy (SERS) as a signal transduction method for immunoassay analysis. It takes advantage of the improved detection sensitivity as a result of surface enhancement on colloidal gold, the narrow width of Raman band, and the stability of Raman scattering signals to distinguish several different species simultaneously without exploiting spatially-separated addresses on a biochip. By labeling gold nanoparticles with different Raman reporters in conjunction with different detection antibodies, a simultaneous detection of a dual-analyte immunoassay was demonstrated. Using this scheme for quantitative analysis was also studied and preliminary dose-response curves from an immunoassay of a

  12. Maximizing gain in high-throughput screening using conformal prediction.

    Science.gov (United States)

    Svensson, Fredrik; Afzal, Avid M; Norinder, Ulf; Bender, Andreas

    2018-02-21

    Iterative screening has emerged as a promising approach to increase the efficiency of screening campaigns compared to traditional high throughput approaches. By learning from a subset of the compound library, inferences on what compounds to screen next can be made by predictive models, resulting in more efficient screening. One way to evaluate screening is to consider the cost of screening compared to the gain associated with finding an active compound. In this work, we introduce a conformal predictor coupled with a gain-cost function with the aim to maximise gain in iterative screening. Using this setup we were able to show that by evaluating the predictions on the training data, very accurate predictions on what settings will produce the highest gain on the test data can be made. We evaluate the approach on 12 bioactivity datasets from PubChem training the models using 20% of the data. Depending on the settings of the gain-cost function, the settings generating the maximum gain were accurately identified in 8-10 out of the 12 datasets. Broadly, our approach can predict what strategy generates the highest gain based on the results of the cost-gain evaluation: to screen the compounds predicted to be active, to screen all the remaining data, or not to screen any additional compounds. When the algorithm indicates that the predicted active compounds should be screened, our approach also indicates what confidence level to apply in order to maximize gain. Hence, our approach facilitates decision-making and allocation of the resources where they deliver the most value by indicating in advance the likely outcome of a screening campaign.

  13. Scanning fluorescence detector for high-throughput DNA genotyping

    Science.gov (United States)

    Rusch, Terry L.; Petsinger, Jeremy; Christensen, Carl; Vaske, David A.; Brumley, Robert L., Jr.; Luckey, John A.; Weber, James L.

    1996-04-01

    A new scanning fluorescence detector (SCAFUD) was developed for high-throughput genotyping of short tandem repeat polymorphisms (STRPs). Fluorescent dyes are incorporated into relatively short DNA fragments via polymerase chain reaction (PCR) and are separated by electrophoresis in short, wide polyacrylamide gels (144 lanes with well to read distances of 14 cm). Excitation light from an argon laser with primary lines at 488 and 514 nm is introduced into the gel through a fiber optic cable, dichroic mirror, and 40X microscope objective. Emitted fluorescent light is collected confocally through a second fiber. The confocal head is translated across the bottom of the gel at 0.5 Hz. The detection unit utilizes dichroic mirrors and band pass filters to direct light with 10 - 20 nm bandwidths to four photomultiplier tubes (PMTs). PMT signals are independently amplified with variable gain and then sampled at a rate of 2500 points per scan using a computer based A/D board. LabView software (National Instruments) is used for instrument operation. Currently, three fluorescent dyes (Fam, Hex and Rox) are simultaneously detected with peak detection wavelengths of 543, 567, and 613 nm, respectively. The detection limit for fluorescein-labeled primers is about 100 attomoles. Planned SCAFUD upgrades include rearrangement of laser head geometry, use of additional excitation lasers for simultaneous detection of more dyes, and the use of detector arrays instead of individual PMTs. Extensive software has been written for automatic analysis of SCAFUD images. The software enables background subtraction, band identification, multiple- dye signal resolution, lane finding, band sizing and allele calling. Whole genome screens are currently underway to search for loci influencing such complex diseases as diabetes, asthma, and hypertension. Seven production SCAFUDs are currently in operation. Genotyping output for the coming year is projected to be about one million total genotypes (DNA

  14. Advanced high throughput MOX fuel fabrication technology and sustainable development

    International Nuclear Information System (INIS)

    Krellmann, Juergen

    2005-01-01

    The MELOX plant in the south of France together with the La Hague reprocessing plant, are part of the two industrial facilities in charge of closing the nuclear fuel cycle in France. Started up in 1995, MELOX has since accumulated a solid know-how in recycling plutonium recovered from spent uranium fuel into MOX: a fuel blend comprised of both uranium and plutonium oxides. Converting recovered Pu into a proliferation-resistant material that can readily be used to power a civil nuclear reactor, MOX fabrication offers a sustainable solution to safely take advantage of the plutonium's high energy content. Being the first large-capacity industrial facility dedicated to MOX fuel fabrication, MELOX distinguishes itself from the first generation MOX plants with high capacity (around 200 tHM versus around 40 tHM) and several unique operational features designed to improve productivity, reliability and flexibility while maintaining high safety standards. Providing an exemplary reference for high throughput MOX fabrication with 1,000 tHM produced since start-up, the unique process and technologies implemented at MELOX are currently inspiring other MOX plant construction projects (in Japan with the J-MOX plant, in the US and in Russia as part of the weapon-grade plutonium inventory reduction). Spurred by the growing international demand, MELOX has embarked upon an ambitious production development and diversification plan. Starting from an annual level of 100 tons of heavy metal (tHM), MELOX demonstrated production capacity is continuously increasing: MELOX is now aiming for a minimum of 140 tHM by the end of 2005, with the ultimate ambition of reaching the full capacity of the plant (around 200 tHM) in the near future. With regards to its activity, MELOX also remains deeply committed to sustainable development in a consolidated involvement within AREVA group. The French minister of Industry, on August 26th 2005, acknowledged the benefits of MOX fuel production at MELOX: 'In

  15. Probing biolabels for high throughput biosensing via synchrotron radiation SEIRA technique

    International Nuclear Information System (INIS)

    Hornemann, Andrea; Hoehl, Arne; Ulm, Gerhard; Beckhoff, Burkhard; Eichert, Diane; Flemig, Sabine

    2016-01-01

    Bio-diagnostic assays of high complexity rely on nanoscaled assay recognition elements that can provide unique selectivity and design-enhanced sensitivity features. High throughput performance requires the simultaneous detection of various analytes combined with appropriate bioassay components. Nanoparticle induced sensitivity enhancement, and subsequent multiplexed capability Surface-Enhanced InfraRed Absorption (SEIRA) assay formats are fitting well these purposes. SEIRA constitutes an ideal platform to isolate the vibrational signatures of targeted bioassay and active molecules. The potential of several targeted biolabels, here fluorophore-labeled antibody conjugates, chemisorbed onto low-cost biocompatible gold nano-aggregates substrates have been explored for their use in assay platforms. Dried films were analyzed by synchrotron radiation based FTIR/SEIRA spectro-microscopy and the resulting complex hyperspectral datasets were submitted to automated statistical analysis, namely Principal Components Analysis (PCA). The relationships between molecular fingerprints were put in evidence to highlight their spectral discrimination capabilities. We demonstrate that robust spectral encoding via SEIRA fingerprints opens up new opportunities for fast, reliable and multiplexed high-end screening not only in biodiagnostics but also in vitro biochemical imaging.

  16. Probing biolabels for high throughput biosensing via synchrotron radiation SEIRA technique

    Energy Technology Data Exchange (ETDEWEB)

    Hornemann, Andrea, E-mail: andrea.hornemann@ptb.de; Hoehl, Arne, E-mail: arne.hoehl@ptb.de; Ulm, Gerhard, E-mail: gerhard.ulm@ptb.de; Beckhoff, Burkhard, E-mail: burkhard.beckhoff@ptb.de [Physikalisch-Technische Bundesanstalt, Abbestr. 2-12, 10587 Berlin (Germany); Eichert, Diane, E-mail: diane.eichert@elettra.eu [Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, Area Science Park, 34149 Trieste (Italy); Flemig, Sabine, E-mail: sabine.flemig@bam.de [BAM Bundesanstalt für Materialforschung und –prüfung, Richard-Willstätter-Str.10, 12489 Berlin (Germany)

    2016-07-27

    Bio-diagnostic assays of high complexity rely on nanoscaled assay recognition elements that can provide unique selectivity and design-enhanced sensitivity features. High throughput performance requires the simultaneous detection of various analytes combined with appropriate bioassay components. Nanoparticle induced sensitivity enhancement, and subsequent multiplexed capability Surface-Enhanced InfraRed Absorption (SEIRA) assay formats are fitting well these purposes. SEIRA constitutes an ideal platform to isolate the vibrational signatures of targeted bioassay and active molecules. The potential of several targeted biolabels, here fluorophore-labeled antibody conjugates, chemisorbed onto low-cost biocompatible gold nano-aggregates substrates have been explored for their use in assay platforms. Dried films were analyzed by synchrotron radiation based FTIR/SEIRA spectro-microscopy and the resulting complex hyperspectral datasets were submitted to automated statistical analysis, namely Principal Components Analysis (PCA). The relationships between molecular fingerprints were put in evidence to highlight their spectral discrimination capabilities. We demonstrate that robust spectral encoding via SEIRA fingerprints opens up new opportunities for fast, reliable and multiplexed high-end screening not only in biodiagnostics but also in vitro biochemical imaging.

  17. Scaling up high throughput field phenotyping of corn and soy research plots using ground rovers

    Science.gov (United States)

    Peshlov, Boyan; Nakarmi, Akash; Baldwin, Steven; Essner, Scott; French, Jasenka

    2017-05-01

    Crop improvement programs require large and meticulous selection processes that effectively and accurately collect and analyze data to generate quality plant products as efficiently as possible, develop superior cropping and/or crop improvement methods. Typically, data collection for such testing is performed by field teams using hand-held instruments or manually-controlled devices. Although steps are taken to reduce error, the data collected in such manner can be unreliable due to human error and fatigue, which reduces the ability to make accurate selection decisions. Monsanto engineering teams have developed a high-clearance mobile platform (Rover) as a step towards high throughput and high accuracy phenotyping at an industrial scale. The rovers are equipped with GPS navigation, multiple cameras and sensors and on-board computers to acquire data and compute plant vigor metrics per plot. The supporting IT systems enable automatic path planning, plot identification, image and point cloud data QA/QC and near real-time analysis where results are streamed to enterprise databases for additional statistical analysis and product advancement decisions. Since the rover program was launched in North America in 2013, the number of research plots we can analyze in a growing season has expanded dramatically. This work describes some of the successes and challenges in scaling up of the rover platform for automated phenotyping to enable science at scale.

  18. High-throughput synthesis equipment applied to polymer research

    NARCIS (Netherlands)

    Hoogenboom, R.; Schubert, U.S.

    2005-01-01

    To speed up synthetic polymer research, a workflow dedicated to automated polymer synthesis and characterization was developed. The workflow consists of several synthesis robots with online and offline analytical equipment. For screening of reaction parameters and for library synthesis, robots

  19. Is high automation a dead end? Cutbacks in production overengineering

    OpenAIRE

    Lay, Gunter; Schirrmeister, Elna

    2001-01-01

    For quite some time it seemed the trend towards high automation in the wage-intensive German economy showed no signs of slowing down. However, in practice it turns out that more than a third of companies which have chosen automated solutions have not had their expectations fulfilled. Many of these companies have already made reductions in automation levels for particular subsystems. The most important reason for dissatisfaction is the lack of flexibility in highly automated systems. Flexibili...

  20. Design and construction of a first-generation high-throughput integrated robotic molecular biology platform for bioenergy applications.

    Science.gov (United States)

    Hughes, Stephen R; Butt, Tauseef R; Bartolett, Scott; Riedmuller, Steven B; Farrelly, Philip

    2011-08-01

    The molecular biological techniques for plasmid-based assembly and cloning of gene open reading frames are essential for elucidating the function of the proteins encoded by the genes. High-throughput integrated robotic molecular biology platforms that have the capacity to rapidly clone and express heterologous gene open reading frames in bacteria and yeast and to screen large numbers of expressed proteins for optimized function are an important technology for improving microbial strains for biofuel production. The process involves the production of full-length complementary DNA libraries as a source of plasmid-based clones to express the desired proteins in active form for determination of their functions. Proteins that were identified by high-throughput screening as having desired characteristics are overexpressed in microbes to enable them to perform functions that will allow more cost-effective and sustainable production of biofuels. Because the plasmid libraries are composed of several thousand unique genes, automation of the process is essential. This review describes the design and implementation of an automated integrated programmable robotic workcell capable of producing complementary DNA libraries, colony picking, isolating plasmid DNA, transforming yeast and bacteria, expressing protein, and performing appropriate functional assays. These operations will allow tailoring microbial strains to use renewable feedstocks for production of biofuels, bioderived chemicals, fertilizers, and other coproducts for profitable and sustainable biorefineries. Published by Elsevier Inc.

  1. Use of flow cytometry for high-throughput cell population estimates in fixed brain tissue

    Directory of Open Access Journals (Sweden)

    Nicole A Young

    2012-07-01

    Full Text Available The numbers and types of cells in an area of cortex define its function. Therefore it is essential to characterize the numbers and distributions of total cells in areas of the cortex, as well as to identify numbers of subclasses of neurons and glial cells. To date, the large size of the primate brain and the lack of innovation in cell counting methods have been a roadblock to obtaining high-resolution maps of cell and neuron density across the cortex in humans and non-human primates. Stereological counting methods and the isotropic fractionator are valuable tools for estimating cell numbers, but are better suited to smaller, well-defined brain structures or to cortex as a whole. In the present study, we have extended our flow-cytometry based counting method, the flow fractionator (Collins et al., 2010a, to include high-throughput total cell population estimates in homogenized cortical samples. We demonstrate that our method produces consistent, accurate and repeatable cell estimates quickly. The estimates we report are in excellent agreement with estimates for the same samples obtained using a Neubauer chamber and a fluorescence microscope. We show that our flow cytometry-based method for total cell estimation in homogenized brain tissue is more efficient and more precise than manual counting methods. The addition of automated nuclei counting to our flow fractionator method allows for a fully automated, rapid characterization of total cells and neuronal and non-neuronal populations in human and non-human primate brains, providing valuable data to further our understanding of the functional organization of normal, aging and diseased brains.

  2. Filter Paper-based Nucleic Acid Storage in High-throughput Solid Tumor Genotyping.

    Science.gov (United States)

    Stachler, Matthew; Jia, Yonghui; Sharaf, Nematullah; Wade, Jacqueline; Longtine, Janina; Garcia, Elizabeth; Sholl, Lynette M

    2015-01-01

    Molecular testing of tumors from formalin-fixed paraffin-embedded (FFPE) tissue blocks is central to clinical practice; however, it requires histology support and increases test turnaround time. Prospective fresh frozen tissue collection requires special handling, additional storage space, and may not be feasible for small specimens. Filter paper-based collection of tumor DNA reduces the need for histology support, requires little storage space, and preserves high-quality nucleic acid. We investigated the performance of tumor smears on filter paper in solid tumor genotyping, as compared with paired FFPE samples. Whatman FTA Micro Card (FTA preps) smears were prepared from 21 fresh tumor samples. A corresponding cytology smear was used to assess tumor cellularity and necrosis. DNA was isolated from FTA preps and FFPE core samples using automated methods and quantified using SYBR green dsDNA detection. Samples were genotyped for 471 mutations on a mass spectrophotometry-based platform (Sequenom). DNA concentrations from FTA preps and FFPE correlated for untreated carcinomas but not for mesenchymal tumors (Spearman σ=0.39 and σ=-0.1, respectively). Average DNA concentrations were lower from FTA preps as compared with FFPE, but DNA quality was higher with less fragmentation. Seventy-six percent of FTA preps and 86% of FFPE samples generated adequate DNA for genotyping. FTA preps tended to perform poorly for collection of DNA from pretreated carcinomas and mesenchymal neoplasms. Of the 16 paired DNA samples that were genotyped, 15 (94%) gave entirely concordant results. Filter paper-based sample preservation is a feasible alternative to FFPE for use in automated, high-throughput genotyping of carcinomas.

  3. High-throughput measurement of rice tillers using a conveyor equipped with x-ray computed tomography

    Science.gov (United States)

    Yang, Wanneng; Xu, Xiaochun; Duan, Lingfeng; Luo, Qingming; Chen, Shangbin; Zeng, Shaoqun; Liu, Qian

    2011-02-01

    Tillering is one of the most important agronomic traits because the number of shoots per plant determines panicle number, a key component of grain yield. The conventional method of counting tillers is still manual. Under the condition of mass measurement, the accuracy and efficiency could be gradually degraded along with fatigue of experienced staff. Thus, manual measurement, including counting and recording, is not only time consuming but also lack objectivity. To automate this process, we developed a high-throughput facility, dubbed high-throughput system for measuring automatically rice tillers (H-SMART), for measuring rice tillers based on a conventional x-ray computed tomography (CT) system and industrial conveyor. Each pot-grown rice plant was delivered into the CT system for scanning via the conveyor equipment. A filtered back-projection algorithm was used to reconstruct the transverse section image of the rice culms. The number of tillers was then automatically extracted by image segmentation. To evaluate the accuracy of this system, three batches of rice at different growth stages (tillering, heading, or filling) were tested, yielding absolute mean absolute errors of 0.22, 0.36, and 0.36, respectively. Subsequently, the complete machine was used under industry conditions to estimate its efficiency, which was 4320 pots per continuous 24 h workday. Thus, the H-SMART could determine the number of tillers of pot-grown rice plants, providing three advantages over the manual tillering method: absence of human disturbance, automation, and high throughput. This facility expands the application of agricultural photonics in plant phenomics.

  4. High Throughput In vivo Analysis of Plant Leaf Chemical Properties Using Hyperspectral Imaging.

    Science.gov (United States)

    Pandey, Piyush; Ge, Yufeng; Stoerger, Vincent; Schnable, James C

    2017-01-01

    Image-based high-throughput plant phenotyping in greenhouse has the potential to relieve the bottleneck currently presented by phenotypic scoring which limits the throughput of gene discovery and crop improvement efforts. Numerous studies have employed automated RGB imaging to characterize biomass and growth of agronomically important crops. The objective of this study was to investigate the utility of hyperspectral imaging for quantifying chemical properties of maize and soybean plants in vivo . These properties included leaf water content, as well as concentrations of macronutrients nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), and sulfur (S), and micronutrients sodium (Na), iron (Fe), manganese (Mn), boron (B), copper (Cu), and zinc (Zn). Hyperspectral images were collected from 60 maize and 60 soybean plants, each subjected to varying levels of either water deficit or nutrient limitation stress with the goal of creating a wide range of variation in the chemical properties of plant leaves. Plants were imaged on an automated conveyor belt system using a hyperspectral imager with a spectral range from 550 to 1,700 nm. Images were processed to extract reflectance spectrum from each plant and partial least squares regression models were developed to correlate spectral data with chemical data. Among all the chemical properties investigated, water content was predicted with the highest accuracy [ R 2 = 0.93 and RPD (Ratio of Performance to Deviation) = 3.8]. All macronutrients were also quantified satisfactorily ( R 2 from 0.69 to 0.92, RPD from 1.62 to 3.62), with N predicted best followed by P, K, and S. The micronutrients group showed lower prediction accuracy ( R 2 from 0.19 to 0.86, RPD from 1.09 to 2.69) than the macronutrient groups. Cu and Zn were best predicted, followed by Fe and Mn. Na and B were the only two properties that hyperspectral imaging was not able to quantify satisfactorily ( R 2 plant chemical traits. Future

  5. High Throughput In vivo Analysis of Plant Leaf Chemical Properties Using Hyperspectral Imaging

    Science.gov (United States)

    Pandey, Piyush; Ge, Yufeng; Stoerger, Vincent; Schnable, James C.

    2017-01-01

    Image-based high-throughput plant phenotyping in greenhouse has the potential to relieve the bottleneck currently presented by phenotypic scoring which limits the throughput of gene discovery and crop improvement efforts. Numerous studies have employed automated RGB imaging to characterize biomass and growth of agronomically important crops. The objective of this study was to investigate the utility of hyperspectral imaging for quantifying chemical properties of maize and soybean plants in vivo. These properties included leaf water content, as well as concentrations of macronutrients nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), and sulfur (S), and micronutrients sodium (Na), iron (Fe), manganese (Mn), boron (B), copper (Cu), and zinc (Zn). Hyperspectral images were collected from 60 maize and 60 soybean plants, each subjected to varying levels of either water deficit or nutrient limitation stress with the goal of creating a wide range of variation in the chemical properties of plant leaves. Plants were imaged on an automated conveyor belt system using a hyperspectral imager with a spectral range from 550 to 1,700 nm. Images were processed to extract reflectance spectrum from each plant and partial least squares regression models were developed to correlate spectral data with chemical data. Among all the chemical properties investigated, water content was predicted with the highest accuracy [R2 = 0.93 and RPD (Ratio of Performance to Deviation) = 3.8]. All macronutrients were also quantified satisfactorily (R2 from 0.69 to 0.92, RPD from 1.62 to 3.62), with N predicted best followed by P, K, and S. The micronutrients group showed lower prediction accuracy (R2 from 0.19 to 0.86, RPD from 1.09 to 2.69) than the macronutrient groups. Cu and Zn were best predicted, followed by Fe and Mn. Na and B were the only two properties that hyperspectral imaging was not able to quantify satisfactorily (R2 designing experiments to vary plant nutrients

  6. GiA Roots: software for the high throughput analysis of plant root system architecture

    Science.gov (United States)

    2012-01-01

    Background Characterizing root system architecture (RSA) is essential to understanding the development and function of vascular plants. Identifying RSA-associated genes also represents an underexplored opportunity for crop improvement. Software tools are needed to accelerate the pace at which quantitative traits of RSA are estimated from images of root networks. Results We have developed GiA Roots (General Image Analysis of Roots), a semi-automated software tool designed specifically for the high-throughput analysis of root system images. GiA Roots includes user-assisted algorithms to distinguish root from background and a fully automated pipeline that extracts dozens of root system phenotypes. Quantitative information on each phenotype, along with intermediate steps for full reproducibility, is returned to the end-user for downstream analysis. GiA Roots has a GUI front end and a command-line interface for interweaving the software into large-scale workflows. GiA Roots can also be extended to estimate novel phenotypes specified by the end-user. Conclusions We demonstrate the use of GiA Roots on a set of 2393 images of rice roots representing 12 genotypes from the species Oryza sativa. We validate trait measurements against prior analyses of this image set that demonstrated that RSA traits are likely heritable and associated with genotypic differences. Moreover, we demonstrate that GiA Roots is extensible and an end-user can add functionality so that GiA Roots can estimate novel RSA traits. In summary, we show that the software can function as an efficient tool as part of a workflow to move from large numbers of root images to downstream analysis. PMID:22834569

  7. NanoTopoChip: High-throughput nanotopographical cell instruction.

    Science.gov (United States)

    Hulshof, Frits F B; Zhao, Yiping; Vasilevich, Aliaksei; Beijer, Nick R M; de Boer, Meint; Papenburg, Bernke J; van Blitterswijk, Clemens; Stamatialis, Dimitrios; de Boer, Jan

    2017-10-15

    Surface topography is able to influence cell phenotype in numerous ways and offers opportunities to manipulate cells and tissues. In this work, we develop the Nano-TopoChip and study the cell instructive effects of nanoscale topographies. A combination of deep UV projection lithography and conventional lithography was used to fabricate a library of more than 1200 different defined nanotopographies. To illustrate the cell instructive effects of nanotopography, actin-RFP labeled U2OS osteosarcoma cells were cultured and imaged on the Nano-TopoChip. Automated image analysis shows that of many cell morphological parameters, cell spreading, cell orientation and actin morphology are mostly affected by the nanotopographies. Additionally, by using modeling, the changes of cell morphological parameters could by predicted by several feature shape parameters such as lateral size and spacing. This work overcomes the technological challenges of fabricating high quality defined nanoscale features on unprecedented large surface areas of a material relevant for tissue culture such as PS and the screening system is able to infer nanotopography - cell morphological parameter relationships. Our screening platform provides opportunities to identify and study the effect of nanotopography with beneficial properties for the culture of various cell types. The nanotopography of biomaterial surfaces can be modified to influence adhering cells with the aim to improve the performance of medical implants and tissue culture substrates. However, the necessary knowledge of the underlying mechanisms remains incomplete. One reason for this is the limited availability of high-resolution nanotopographies on relevant biomaterials, suitable to conduct systematic biological studies. The present study shows the fabrication of a library of nano-sized surface topographies with high fidelity. The potential of this library, called the 'NanoTopoChip' is shown in a proof of principle HTS study which

  8. Engineering customized TALE nucleases (TALENs) and TALE transcription factors by fast ligation-based automatable solid-phase high-throughput (FLASH) assembly.

    Science.gov (United States)

    Reyon, Deepak; Maeder, Morgan L; Khayter, Cyd; Tsai, Shengdar Q; Foley, Jonathan E; Sander, Jeffry D; Joung, J Keith

    2013-07-01

    Customized DNA-binding domains made using transcription activator-like effector (TALE) repeats are rapidly growing in importance as widely applicable research tools. TALE nucleases (TALENs), composed of an engineered array of TALE repeats fused to the FokI nuclease domain, have been used successfully for directed genome editing in various organisms and cell types. TALE transcription factors (TALE-TFs), consisting of engineered TALE repeat arrays linked to a transcriptional regulatory domain, have been used to up- or downregulate expression of endogenous genes in human cells and plants. This unit describes a detailed protocol for the recently described fast ligation-based automatable solid-phase high-throughput (FLASH) assembly method. FLASH enables automated high-throughput construction of engineered TALE repeats using an automated liquid handling robot or manually using a multichannel pipet. Using the automated approach, a single researcher can construct up to 96 DNA fragments encoding TALE repeat arrays of various lengths in a single day, and then clone these to construct sequence-verified TALEN or TALE-TF expression plasmids in a week or less. Plasmids required for FLASH are available by request from the Joung lab (http://eGenome.org). This unit also describes improvements to the Zinc Finger and TALE Targeter (ZiFiT Targeter) web server (http://ZiFiT.partners.org) that facilitate the design and construction of FLASH TALE repeat arrays in high throughput. © 2013 by John Wiley & Sons, Inc.

  9. Development of a high-throughput Candida albicans biofilm chip.

    Directory of Open Access Journals (Sweden)

    Anand Srinivasan

    2011-04-01

    Full Text Available We have developed a high-density microarray platform consisting of nano-biofilms of Candida albicans. A robotic microarrayer was used to print yeast cells of C. albicans encapsulated in a collagen matrix at a volume as low as 50 nL onto surface-modified microscope slides. Upon incubation, the cells grow into fully formed "nano-biofilms". The morphological and architectural complexity of these biofilms were evaluated by scanning electron and confocal scanning laser microscopy. The extent of biofilm formation was determined using a microarray scanner from changes in fluorescence intensities due to FUN 1 metabolic processing. This staining technique was also adapted for antifungal susceptibility testing, which demonstrated that, similar to regular biofilms, cells within the on-chip biofilms displayed elevated levels of resistance against antifungal agents (fluconazole and amphotericin B. Thus, results from structural analyses and antifungal susceptibility testing indicated that despite miniaturization, these biofilms display the typical phenotypic properties associated with the biofilm mode of growth. In its final format, the C. albicans biofilm chip (CaBChip is composed of 768 equivalent and spatially distinct nano-biofilms on a single slide; multiple chips can be printed and processed simultaneously. Compared to current methods for the formation of microbial biofilms, namely the 96-well microtiter plate model, this fungal biofilm chip has advantages in terms of miniaturization and automation, which combine to cut reagent use and analysis time, minimize labor intensive steps, and dramatically reduce assay costs. Such a chip should accelerate the antifungal drug discovery process by enabling rapid, convenient and inexpensive screening of hundreds-to-thousands of compounds simultaneously.

  10. High-throughput screening of carbohydrate-degrading enzymes using novel insoluble chromogenic substrate assay kits

    DEFF Research Database (Denmark)

    Schückel, Julia; Kracun, Stjepan Kresimir; Willats, William George Tycho

    2016-01-01

    for this is that advances in genome and transcriptome sequencing, together with associated bioinformatics tools allow for rapid identification of candidate CAZymes, but technology for determining an enzyme's biochemical characteristics has advanced more slowly. To address this technology gap, a novel high-throughput assay...... CPH and ICB substrates are provided in a 96-well high-throughput assay system. The CPH substrates can be made in four different colors, enabling them to be mixed together and thus increasing assay throughput. The protocol describes a 96-well plate assay and illustrates how this assay can be used...... for screening the activities of enzymes, enzyme cocktails, and broths....

  11. High-throughput high-volume nuclear imaging for preclinical in vivo compound screening§.

    Science.gov (United States)

    Macholl, Sven; Finucane, Ciara M; Hesterman, Jacob; Mather, Stephen J; Pauplis, Rachel; Scully, Deirdre; Sosabowski, Jane K; Jouannot, Erwan

    2017-12-01

    Preclinical single-photon emission computed tomography (SPECT)/CT imaging studies are hampered by low throughput, hence are found typically within small volume feasibility studies. Here, imaging and image analysis procedures are presented that allow profiling of a large volume of radiolabelled compounds within a reasonably short total study time. Particular emphasis was put on quality control (QC) and on fast and unbiased image analysis. 2-3 His-tagged proteins were simultaneously radiolabelled by 99m Tc-tricarbonyl methodology and injected intravenously (20 nmol/kg; 100 MBq; n = 3) into patient-derived xenograft (PDX) mouse models. Whole-body SPECT/CT images of 3 mice simultaneously were acquired 1, 4, and 24 h post-injection, extended to 48 h and/or by 0-2 h dynamic SPECT for pre-selected compounds. Organ uptake was quantified by automated multi-atlas and manual segmentations. Data were plotted automatically, quality controlled and stored on a collaborative image management platform. Ex vivo uptake data were collected semi-automatically and analysis performed as for imaging data. >500 single animal SPECT images were acquired for 25 proteins over 5 weeks, eventually generating >3500 ROI and >1000 items of tissue data. SPECT/CT images clearly visualized uptake in tumour and other tissues even at 48 h post-injection. Intersubject uptake variability was typically 13% (coefficient of variation, COV). Imaging results correlated well with ex vivo data. The large data set of tumour, background and systemic uptake/clearance data from 75 mice for 25 compounds allows identification of compounds of interest. The number of animals required was reduced considerably by longitudinal imaging compared to dissection experiments. All experimental work and analyses were accomplished within 3 months expected to be compatible with drug development programmes. QC along all workflow steps, blinding of the imaging contract research organization to compound properties and

  12. Commentary: Roles for Pathologists in a High-throughput Image Analysis Team.

    Science.gov (United States)

    Aeffner, Famke; Wilson, Kristin; Bolon, Brad; Kanaly, Suzanne; Mahrt, Charles R; Rudmann, Dan; Charles, Elaine; Young, G David

    2016-08-01

    Historically, pathologists perform manual evaluation of H&E- or immunohistochemically-stained slides, which can be subjective, inconsistent, and, at best, semiquantitative. As the complexity of staining and demand for increased precision of manual evaluation increase, the pathologist's assessment will include automated analyses (i.e., "digital pathology") to increase the accuracy, efficiency, and speed of diagnosis and hypothesis testing and as an important biomedical research and diagnostic tool. This commentary introduces the many roles for pathologists in designing and conducting high-throughput digital image analysis. Pathology review is central to the entire course of a digital pathology study, including experimental design, sample quality verification, specimen annotation, analytical algorithm development, and report preparation. The pathologist performs these roles by reviewing work undertaken by technicians and scientists with training and expertise in image analysis instruments and software. These roles require regular, face-to-face interactions between team members and the lead pathologist. Traditional pathology training is suitable preparation for entry-level participation on image analysis teams. The future of pathology is very exciting, with the expanding utilization of digital image analysis set to expand pathology roles in research and drug development with increasing and new career opportunities for pathologists. © 2016 by The Author(s) 2016.

  13. High-Throughput Quantification of Bacterial-Cell Interactions Using Virtual Colony Counts

    Directory of Open Access Journals (Sweden)

    Stefanie Hoffmann

    2018-02-01

    Full Text Available The quantification of bacteria in cell culture infection models is of paramount importance for the characterization of host-pathogen interactions and pathogenicity factors involved. The standard to enumerate bacteria in these assays is plating of a dilution series on solid agar and counting of the resulting colony forming units (CFU. In contrast, the virtual colony count (VCC method is a high-throughput compatible alternative with minimized manual input. Based on the recording of quantitative growth kinetics, VCC relates the time to reach a given absorbance threshold to the initial cell count using a series of calibration curves. Here, we adapted the VCC method using the model organism Salmonella enterica sv. Typhimurium (S. Typhimurium in combination with established cell culture-based infection models. For HeLa infections, a direct side-by-side comparison showed a good correlation of VCC with CFU counting after plating. For MDCK cells and RAW macrophages we found that VCC reproduced the expected phenotypes of different S. Typhimurium mutants. Furthermore, we demonstrated the use of VCC to test the inhibition of Salmonella invasion by the probiotic E. coli strain Nissle 1917. Taken together, VCC provides a flexible, label-free, automation-compatible methodology to quantify bacteria in in vitro infection assays.

  14. A Data Analysis Pipeline Accounting for Artifacts in Tox21 Quantitative High-Throughput Screening Assays.

    Science.gov (United States)

    Hsieh, Jui-Hua; Sedykh, Alexander; Huang, Ruili; Xia, Menghang; Tice, Raymond R

    2015-08-01

    A main goal of the U.S. Tox21 program is to profile a 10K-compound library for activity against a panel of stress-related and nuclear receptor signaling pathway assays using a quantitative high-throughput screening (qHTS) approach. However, assay artifacts, including nonreproducible signals and assay interference (e.g., autofluorescence), complicate compound activity interpretation. To address these issues, we have developed a data analysis pipeline that includes an updated signal noise-filtering/curation protocol and an assay interference flagging system. To better characterize various types of signals, we adopted a weighted version of the area under the curve (wAUC) to quantify the amount of activity across the tested concentration range in combination with the assay-dependent point-of-departure (POD) concentration. Based on the 32 Tox21 qHTS assays analyzed, we demonstrate that signal profiling using wAUC affords the best reproducibility (Pearson's r = 0.91) in comparison with the POD (0.82) only or the AC(50) (i.e., half-maximal activity concentration, 0.81). Among the activity artifacts characterized, cytotoxicity is the major confounding factor; on average, about 8% of Tox21 compounds are affected, whereas autofluorescence affects less than 0.5%. To facilitate data evaluation, we implemented two graphical user interface applications, allowing users to rapidly evaluate the in vitro activity of Tox21 compounds. © 2015 Society for Laboratory Automation and Screening.

  15. SICLE: a high-throughput tool for extracting evolutionary relationships from phylogenetic trees

    Directory of Open Access Journals (Sweden)

    Dan F. DeBlasio

    2016-08-01

    Full Text Available We present the phylogeny analysis software SICLE (Sister Clade Extractor, an easy-to-use, high-throughput tool to describe the nearest neighbors to a node of interest in a phylogenetic tree as well as the support value for the relationship. The application is a command line utility that can be embedded into a phylogenetic analysis pipeline or can be used as a subroutine within another C++ program. As a test case, we applied this new tool to the published phylome of Salinibacter ruber, a species of halophilic Bacteriodetes, identifying 13 unique sister relationships to S. ruber across the 4,589 gene phylogenies. S. ruber grouped with bacteria, most often other Bacteriodetes, in the majority of phylogenies, but 91 phylogenies showed a branch-supported sister association between S. ruber and Archaea, an evolutionarily intriguing relationship indicative of horizontal gene transfer. This test case demonstrates how SICLE makes it possible to summarize the phylogenetic information produced by automated phylogenetic pipelines to rapidly identify and quantify the possible evolutionary relationships that merit further investigation. SICLE is available for free for noncommercial use at http://eebweb.arizona.edu/sicle/.

  16. SICLE: a high-throughput tool for extracting evolutionary relationships from phylogenetic trees.

    Science.gov (United States)

    DeBlasio, Dan F; Wisecaver, Jennifer H

    2016-01-01

    We present the phylogeny analysis software SICLE (Sister Clade Extractor), an easy-to-use, high-throughput tool to describe the nearest neighbors to a node of interest in a phylogenetic tree as well as the support value for the relationship. The application is a command line utility that can be embedded into a phylogenetic analysis pipeline or can be used as a subroutine within another C++ program. As a test case, we applied this new tool to the published phylome of Salinibacter ruber, a species of halophilic Bacteriodetes, identifying 13 unique sister relationships to S. ruber across the 4,589 gene phylogenies. S. ruber grouped with bacteria, most often other Bacteriodetes, in the majority of phylogenies, but 91 phylogenies showed a branch-supported sister association between S. ruber and Archaea, an evolutionarily intriguing relationship indicative of horizontal gene transfer. This test case demonstrates how SICLE makes it possible to summarize the phylogenetic information produced by automated phylogenetic pipelines to rapidly identify and quantify the possible evolutionary relationships that merit further investigation. SICLE is available for free for noncommercial use at http://eebweb.arizona.edu/sicle/.

  17. High-throughput single-molecule force spectroscopy for membrane proteins

    Science.gov (United States)

    Bosshart, Patrick D.; Casagrande, Fabio; Frederix, Patrick L. T. M.; Ratera, Merce; Bippes, Christian A.; Müller, Daniel J.; Palacin, Manuel; Engel, Andreas; Fotiadis, Dimitrios

    2008-09-01

    Atomic force microscopy-based single-molecule force spectroscopy (SMFS) is a powerful tool for studying the mechanical properties, intermolecular and intramolecular interactions, unfolding pathways, and energy landscapes of membrane proteins. One limiting factor for the large-scale applicability of SMFS on membrane proteins is its low efficiency in data acquisition. We have developed a semi-automated high-throughput SMFS (HT-SMFS) procedure for efficient data acquisition. In addition, we present a coarse filter to efficiently extract protein unfolding events from large data sets. The HT-SMFS procedure and the coarse filter were validated using the proton pump bacteriorhodopsin (BR) from Halobacterium salinarum and the L-arginine/agmatine antiporter AdiC from the bacterium Escherichia coli. To screen for molecular interactions between AdiC and its substrates, we recorded data sets in the absence and in the presence of L-arginine, D-arginine, and agmatine. Altogether ~400 000 force-distance curves were recorded. Application of coarse filtering to this wealth of data yielded six data sets with ~200 (AdiC) and ~400 (BR) force-distance spectra in each. Importantly, the raw data for most of these data sets were acquired in one to two days, opening new perspectives for HT-SMFS applications.

  18. High-throughput single-molecule force spectroscopy for membrane proteins

    International Nuclear Information System (INIS)

    Bosshart, Patrick D; Casagrande, Fabio; Frederix, Patrick L T M; Engel, Andreas; Fotiadis, Dimitrios; Ratera, Merce; Palacin, Manuel; Bippes, Christian A; Mueller, Daniel J

    2008-01-01

    Atomic force microscopy-based single-molecule force spectroscopy (SMFS) is a powerful tool for studying the mechanical properties, intermolecular and intramolecular interactions, unfolding pathways, and energy landscapes of membrane proteins. One limiting factor for the large-scale applicability of SMFS on membrane proteins is its low efficiency in data acquisition. We have developed a semi-automated high-throughput SMFS (HT-SMFS) procedure for efficient data acquisition. In addition, we present a coarse filter to efficiently extract protein unfolding events from large data sets. The HT-SMFS procedure and the coarse filter were validated using the proton pump bacteriorhodopsin (BR) from Halobacterium salinarum and the L-arginine/agmatine antiporter AdiC from the bacterium Escherichia coli. To screen for molecular interactions between AdiC and its substrates, we recorded data sets in the absence and in the presence of L-arginine, D-arginine, and agmatine. Altogether ∼400 000 force-distance curves were recorded. Application of coarse filtering to this wealth of data yielded six data sets with ∼200 (AdiC) and ∼400 (BR) force-distance spectra in each. Importantly, the raw data for most of these data sets were acquired in one to two days, opening new perspectives for HT-SMFS applications

  19. High-throughput single-molecule force spectroscopy for membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bosshart, Patrick D; Casagrande, Fabio; Frederix, Patrick L T M; Engel, Andreas; Fotiadis, Dimitrios [M E Mueller Institute for Structural Biology, Biozentrum of the University of Basel, CH-4056 Basel (Switzerland); Ratera, Merce; Palacin, Manuel [Institute for Research in Biomedicine, Barcelona Science Park, Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona and Centro de Investigacion Biomedica en Red de Enfermedades Raras, E-08028 Barcelona (Spain); Bippes, Christian A; Mueller, Daniel J [BioTechnology Center, Technical University, Tatzberg 47, D-01307 Dresden (Germany)], E-mail: andreas.engel@unibas.ch, E-mail: dimitrios.fotiadis@mci.unibe.ch

    2008-09-24

    Atomic force microscopy-based single-molecule force spectroscopy (SMFS) is a powerful tool for studying the mechanical properties, intermolecular and intramolecular interactions, unfolding pathways, and energy landscapes of membrane proteins. One limiting factor for the large-scale applicability of SMFS on membrane proteins is its low efficiency in data acquisition. We have developed a semi-automated high-throughput SMFS (HT-SMFS) procedure for efficient data acquisition. In addition, we present a coarse filter to efficiently extract protein unfolding events from large data sets. The HT-SMFS procedure and the coarse filter were validated using the proton pump bacteriorhodopsin (BR) from Halobacterium salinarum and the L-arginine/agmatine antiporter AdiC from the bacterium Escherichia coli. To screen for molecular interactions between AdiC and its substrates, we recorded data sets in the absence and in the presence of L-arginine, D-arginine, and agmatine. Altogether {approx}400 000 force-distance curves were recorded. Application of coarse filtering to this wealth of data yielded six data sets with {approx}200 (AdiC) and {approx}400 (BR) force-distance spectra in each. Importantly, the raw data for most of these data sets were acquired in one to two days, opening new perspectives for HT-SMFS applications.

  20. High-throughput protein crystallization on the World Community Grid and the GPU

    International Nuclear Information System (INIS)

    Kotseruba, Yulia; Cumbaa, Christian A; Jurisica, Igor

    2012-01-01

    We have developed CPU and GPU versions of an automated image analysis and classification system for protein crystallization trial images from the Hauptman Woodward Institute's High-Throughput Screening lab. The analysis step computes 12,375 numerical features per image. Using these features, we have trained a classifier that distinguishes 11 different crystallization outcomes, recognizing 80% of all crystals, 94% of clear drops, 94% of precipitates. The computing requirements for this analysis system are large. The complete HWI archive of 120 million images is being processed by the donated CPU cycles on World Community Grid, with a GPU phase launching in early 2012. The main computational burden of the analysis is the measure of textural (GLCM) features within the image at multiple neighbourhoods, distances, and at multiple greyscale intensity resolutions. CPU runtime averages 4,092 seconds (single threaded) on an Intel Xeon, but only 65 seconds on an NVIDIA Tesla C2050. We report on the process of adapting the C++ code to OpenCL, optimized for multiple platforms.

  1. Filling gaps in bacterial amino acid biosynthesis pathways with high-throughput genetics.

    Directory of Open Access Journals (Sweden)

    Morgan N Price

    2018-01-01

    Full Text Available For many bacteria with sequenced genomes, we do not understand how they synthesize some amino acids. This makes it challenging to reconstruct their metabolism, and has led to speculation that bacteria might be cross-feeding amino acids. We studied heterotrophic bacteria from 10 different genera that grow without added amino acids even though an automated tool predicts that the bacteria have gaps in their amino acid synthesis pathways. Across these bacteria, there were 11 gaps in their amino acid biosynthesis pathways that we could not fill using current knowledge. Using genome-wide mutant fitness data, we identified novel enzymes that fill 9 of the 11 gaps and hence explain the biosynthesis of methionine, threonine, serine, or histidine by bacteria from six genera. We also found that the sulfate-reducing bacterium Desulfovibrio vulgaris synthesizes homocysteine (which is a precursor to methionine by using DUF39, NIL/ferredoxin, and COG2122 proteins, and that homoserine is not an intermediate in this pathway. Our results suggest that most free-living bacteria can likely make all 20 amino acids and illustrate how high-throughput genetics can uncover previously-unknown amino acid biosynthesis genes.

  2. High-throughput peptide mass fingerprinting and protein macroarray analysis using chemical printing strategies

    International Nuclear Information System (INIS)

    Sloane, A.J.; Duff, J.L.; Hopwood, F.G.; Wilson, N.L.; Smith, P.E.; Hill, C.J.; Packer, N.H.; Williams, K.L.; Gooley, A.A.; Cole, R.A.; Cooley, P.W.; Wallace, D.B.

    2001-01-01

    We describe a 'chemical printer' that uses piezoelectric pulsing for rapid and accurate microdispensing of picolitre volumes of fluid for proteomic analysis of 'protein macroarrays'. Unlike positive transfer and pin transfer systems, our printer dispenses fluid in a non-contact process that ensures that the fluid source cannot be contaminated by substrate during a printing event. We demonstrate automated delivery of enzyme and matrix solutions for on-membrane protein digestion and subsequent peptide mass fingerprinting (pmf) analysis directly from the membrane surface using matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). This approach bypasses the more commonly used multi-step procedures, thereby permitting a more rapid procedure for protein identification. We also highlight the advantage of printing different chemistries onto an individual protein spot for multiple microscale analyses. This ability is particularly useful when detailed characterisation of rare and valuable sample is required. Using a combination of PNGase F and trypsin we have mapped sites of N-glycosylation using on-membrane digestion strategies. We also demonstrate the ability to print multiple serum samples in a micro-ELISA format and rapidly screen a protein macroarray of human blood plasma for pathogen-derived antigens. We anticipate that the 'chemical printer' will be a major component of proteomic platforms for high-throughput protein identification and characterisation with widespread applications in biomedical and diagnostic discovery

  3. A method for high throughput bioelectrochemical research based on small scale microbial electrolysis cells

    KAUST Repository

    Call, Douglas F.; Logan, Bruce E.

    2011-01-01

    There is great interest in studying exoelectrogenic microorganisms, but existing methods can require expensive electrochemical equipment and specialized reactors. We developed a simple system for conducting high throughput bioelectrochemical

  4. DRABAL: novel method to mine large high-throughput screening assays using Bayesian active learning

    KAUST Repository

    Soufan, Othman; Ba Alawi, Wail; Afeef, Moataz A.; Essack, Magbubah; Kalnis, Panos; Bajic, Vladimir B.

    2016-01-01

    Mining high-throughput screening (HTS) assays is key for enhancing decisions in the area of drug repositioning and drug discovery. However, many challenges are encountered in the process of developing suitable and accurate methods

  5. Computational and statistical methods for high-throughput mass spectrometry-based PTM analysis

    DEFF Research Database (Denmark)

    Schwämmle, Veit; Vaudel, Marc

    2017-01-01

    Cell signaling and functions heavily rely on post-translational modifications (PTMs) of proteins. Their high-throughput characterization is thus of utmost interest for multiple biological and medical investigations. In combination with efficient enrichment methods, peptide mass spectrometry analy...

  6. EMBRYONIC VASCULAR DISRUPTION ADVERSE OUTCOMES: LINKING HIGH THROUGHPUT SIGNALING SIGNATURES WITH FUNCTIONAL CONSEQUENCES

    Science.gov (United States)

    Embryonic vascular disruption is an important adverse outcome pathway (AOP) given the knowledge that chemical disruption of early cardiovascular system development leads to broad prenatal defects. High throughput screening (HTS) assays provide potential building blocks for AOP d...

  7. Applications of high-throughput sequencing to chromatin structure and function in mammals

    OpenAIRE

    Dunham, Ian

    2009-01-01

    High-throughput DNA sequencing approaches have enabled direct interrogation of chromatin samples from mammalian cells. We are beginning to develop a genome-wide description of nuclear function during development, but further data collection, refinement, and integration are needed.

  8. A high throughput platform for understanding the influence of excipients on physical and chemical stability

    DEFF Research Database (Denmark)

    Raijada, Dhara; Cornett, Claus; Rantanen, Jukka

    2013-01-01

    The present study puts forward a miniaturized high-throughput platform to understand influence of excipient selection and processing on the stability of a given drug compound. Four model drugs (sodium naproxen, theophylline, amlodipine besylate and nitrofurantoin) and ten different excipients were...... for chemical degradation. The proposed high-throughput platform can be used during early drug development to simulate typical processing induced stress in a small scale and to understand possible phase transformation behaviour and influence of excipients on this....

  9. Application of high-throughput sequencing in understanding human oral microbiome related with health and disease

    OpenAIRE

    Chen, Hui; Jiang, Wen

    2014-01-01

    The oral microbiome is one of most diversity habitat in the human body and they are closely related with oral health and disease. As the technique developing,, high throughput sequencing has become a popular approach applied for oral microbial analysis. Oral bacterial profiles have been studied to explore the relationship between microbial diversity and oral diseases such as caries and periodontal disease. This review describes the application of high-throughput sequencing for characterizati...

  10. High throughput electrospinning of high-quality nanofibers via an aluminum disk spinneret

    Science.gov (United States)

    Zheng, Guokuo

    In this work, a simple and efficient needleless high throughput electrospinning process using an aluminum disk spinneret with 24 holes is described. Electrospun mats produced by this setup consisted of fine fibers (nano-sized) of the highest quality while the productivity (yield) was many times that obtained from conventional single-needle electrospinning. The goal was to produce scaled-up amounts of the same or better quality nanofibers under variable concentration, voltage, and the working distance than those produced with the single needle lab setting. The fiber mats produced were either polymer or ceramic (such as molybdenum trioxide nanofibers). Through experimentation the optimum process conditions were defined to be: 24 kilovolt, a distance to collector of 15cm. More diluted solutions resulted in smaller diameter fibers. Comparing the morphologies of the nanofibers of MoO3 produced by both the traditional and the high throughput set up it was found that they were very similar. Moreover, the nanofibers production rate is nearly 10 times than that of traditional needle electrospinning. Thus, the high throughput process has the potential to become an industrial nanomanufacturing process and the materials processed by it may be used as filtration devices, in tissue engineering, and as sensors.

  11. High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Wei; Shabbir, Faizan; Gong, Chao; Gulec, Cagatay; Pigeon, Jeremy; Shaw, Jessica; Greenbaum, Alon; Tochitsky, Sergei; Joshi, Chandrashekhar [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Ozcan, Aydogan, E-mail: ozcan@ucla.edu [Electrical Engineering Department, University of California, Los Angeles, California 90095 (United States); Bioengineering Department, University of California, Los Angeles, California 90095 (United States); California NanoSystems Institute (CNSI), University of California, Los Angeles, California 90095 (United States)

    2015-04-13

    We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processing units, we reconstruct and analyze the entire volume of a CR-39 detector within ∼1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.

  12. Two-Phase Microfluidic Systems for High Throughput Quantification of Agglutination Assays

    KAUST Repository

    Castro, David

    2018-04-01

    Lab-on-Chip, the miniaturization of the chemical and analytical lab, is an endeavor that seems to come out of science fiction yet is slowly becoming a reality. It is a multidisciplinary field that combines different areas of science and engineering. Within these areas, microfluidics is a specialized field that deals with the behavior, control and manipulation of small volumes of fluids. Agglutination assays are rapid, single-step, low-cost immunoassays that use microspheres to detect a wide variety molecules and pathogens by using a specific antigen-antibody interaction. Agglutination assays are particularly suitable for the miniaturization and automation that two-phase microfluidics can offer, a combination that can help tackle the ever pressing need of high-throughput screening for blood banks, epidemiology, food banks diagnosis of infectious diseases. In this thesis, we present a two-phase microfluidic system capable of incubating and quantifying agglutination assays. The microfluidic channel is a simple fabrication solution, using laboratory tubing. These assays are incubated by highly efficient passive mixing with a sample-to-answer time of 2.5 min, a 5-10 fold improvement over traditional agglutination assays. It has a user-friendly interface that that does not require droplet generators, in which a pipette is used to continuously insert assays on-demand, with no down-time in between experiments at 360 assays/h. System parameters are explored, using the streptavidin-biotin interaction as a model assay, with a minimum detection limit of 50 ng/mL using optical image analysis. We compare optical image analysis and light scattering as quantification methods, and demonstrate the first light scattering quantification of agglutination assays in a two-phase ow format. The application can be potentially applied to other biomarkers, which we demonstrate using C-reactive protein (CRP) assays. Using our system, we can take a commercially available CRP qualitative slide

  13. The Evolution of Chemical High-Throughput Experimentation To Address Challenging Problems in Pharmaceutical Synthesis.

    Science.gov (United States)

    Krska, Shane W; DiRocco, Daniel A; Dreher, Spencer D; Shevlin, Michael

    2017-12-19

    The structural complexity of pharmaceuticals presents a significant challenge to modern catalysis. Many published methods that work well on simple substrates often fail when attempts are made to apply them to complex drug intermediates. The use of high-throughput experimentation (HTE) techniques offers a means to overcome this fundamental challenge by facilitating the rational exploration of large arrays of catalysts and reaction conditions in a time- and material-efficient manner. Initial forays into the use of HTE in our laboratories for solving chemistry problems centered around screening of chiral precious-metal catalysts for homogeneous asymmetric hydrogenation. The success of these early efforts in developing efficient catalytic steps for late-stage development programs motivated the desire to increase the scope of this approach to encompass other high-value catalytic chemistries. Doing so, however, required significant advances in reactor and workflow design and automation to enable the effective assembly and agitation of arrays of heterogeneous reaction mixtures and retention of volatile solvents under a wide range of temperatures. Associated innovations in high-throughput analytical chemistry techniques greatly increased the efficiency and reliability of these methods. These evolved HTE techniques have been utilized extensively to develop highly innovative catalysis solutions to the most challenging problems in large-scale pharmaceutical synthesis. Starting with Pd- and Cu-catalyzed cross-coupling chemistry, subsequent efforts expanded to other valuable modern synthetic transformations such as chiral phase-transfer catalysis, photoredox catalysis, and C-H functionalization. As our experience and confidence in HTE techniques matured, we envisioned their application beyond problems in process chemistry to address the needs of medicinal chemists. Here the problem of reaction generality is felt most acutely, and HTE approaches should prove broadly enabling

  14. A high-throughput in vitro ring assay for vasoactivity using magnetic 3D bioprinting

    Science.gov (United States)

    Tseng, Hubert; Gage, Jacob A.; Haisler, William L.; Neeley, Shane K.; Shen, Tsaiwei; Hebel, Chris; Barthlow, Herbert G.; Wagoner, Matthew; Souza, Glauco R.

    2016-01-01

    Vasoactive liabilities are typically assayed using wire myography, which is limited by its high cost and low throughput. To meet the demand for higher throughput in vitro alternatives, this study introduces a magnetic 3D bioprinting-based vasoactivity assay. The principle behind this assay is the magnetic printing of vascular smooth muscle cells into 3D rings that functionally represent blood vessel segments, whose contraction can be altered by vasodilators and vasoconstrictors. A cost-effective imaging modality employing a mobile device is used to capture contraction with high throughput. The goal of this study was to validate ring contraction as a measure of vasoactivity, using a small panel of known vasoactive drugs. In vitro responses of the rings matched outcomes predicted by in vivo pharmacology, and were supported by immunohistochemistry. Altogether, this ring assay robustly models vasoactivity, which could meet the need for higher throughput in vitro alternatives. PMID:27477945

  15. NMRbot: Python scripts enable high-throughput data collection on current Bruker BioSpin NMR spectrometers.

    Science.gov (United States)

    Clos, Lawrence J; Jofre, M Fransisca; Ellinger, James J; Westler, William M; Markley, John L

    2013-06-01

    To facilitate the high-throughput acquisition of nuclear magnetic resonance (NMR) experimental data on large sets of samples, we have developed a simple and straightforward automated methodology that capitalizes on recent advances in Bruker BioSpin NMR spectrometer hardware and software. Given the daunting challenge for non-NMR experts to collect quality spectra, our goal was to increase user accessibility, provide customized functionality, and improve the consistency and reliability of resultant data. This methodology, NMRbot, is encoded in a set of scripts written in the Python programming language accessible within the Bruker BioSpin TopSpin ™ software. NMRbot improves automated data acquisition and offers novel tools for use in optimizing experimental parameters on the fly. This automated procedure has been successfully implemented for investigations in metabolomics, small-molecule library profiling, and protein-ligand titrations on four Bruker BioSpin NMR spectrometers at the National Magnetic Resonance Facility at Madison. The investigators reported benefits from ease of setup, improved spectral quality, convenient customizations, and overall time savings.

  16. High-throughput detection of prostate cancer in histological sections using probabilistic pairwise Markov models.

    Science.gov (United States)

    Monaco, James P; Tomaszewski, John E; Feldman, Michael D; Hagemann, Ian; Moradi, Mehdi; Mousavi, Parvin; Boag, Alexander; Davidson, Chris; Abolmaesumi, Purang; Madabhushi, Anant

    2010-08-01

    In this paper we present a high-throughput system for detecting regions of carcinoma of the prostate (CaP) in HSs from radical prostatectomies (RPs) using probabilistic pairwise Markov models (PPMMs), a novel type of Markov random field (MRF). At diagnostic resolution a digitized HS can contain 80Kx70K pixels - far too many for current automated Gleason grading algorithms to process. However, grading can be separated into two distinct steps: (1) detecting cancerous regions and (2) then grading these regions. The detection step does not require diagnostic resolution and can be performed much more quickly. Thus, we introduce a CaP detection system capable of analyzing an entire digitized whole-mount HS (2x1.75cm(2)) in under three minutes (on a desktop computer) while achieving a CaP detection sensitivity and specificity of 0.87 and 0.90, respectively. We obtain this high-throughput by tailoring the system to analyze the HSs at low resolution (8microm per pixel). This motivates the following algorithm: (Step 1) glands are segmented, (Step 2) the segmented glands are classified as malignant or benign, and (Step 3) the malignant glands are consolidated into continuous regions. The classification of individual glands leverages two features: gland size and the tendency for proximate glands to share the same class. The latter feature describes a spatial dependency which we model using a Markov prior. Typically, Markov priors are expressed as the product of potential functions. Unfortunately, potential functions are mathematical abstractions, and constructing priors through their selection becomes an ad hoc procedure, resulting in simplistic models such as the Potts. Addressing this problem, we introduce PPMMs which formulate priors in terms of probability density functions, allowing the creation of more sophisticated models. To demonstrate the efficacy of our CaP detection system and assess the advantages of using a PPMM prior instead of the Potts, we alternately

  17. Space Link Extension Protocol Emulation for High-Throughput, High-Latency Network Connections

    Science.gov (United States)

    Tchorowski, Nicole; Murawski, Robert

    2014-01-01

    New space missions require higher data rates and new protocols to meet these requirements. These high data rate space communication links push the limitations of not only the space communication links, but of the ground communication networks and protocols which forward user data to remote ground stations (GS) for transmission. The Consultative Committee for Space Data Systems, (CCSDS) Space Link Extension (SLE) standard protocol is one protocol that has been proposed for use by the NASA Space Network (SN) Ground Segment Sustainment (SGSS) program. New protocol implementations must be carefully tested to ensure that they provide the required functionality, especially because of the remote nature of spacecraft. The SLE protocol standard has been tested in the NASA Glenn Research Center's SCENIC Emulation Lab in order to observe its operation under realistic network delay conditions. More specifically, the delay between then NASA Integrated Services Network (NISN) and spacecraft has been emulated. The round trip time (RTT) delay for the continental NISN network has been shown to be up to 120ms; as such the SLE protocol was tested with network delays ranging from 0ms to 200ms. Both a base network condition and an SLE connection were tested with these RTT delays, and the reaction of both network tests to the delay conditions were recorded. Throughput for both of these links was set at 1.2Gbps. The results will show that, in the presence of realistic network delay, the SLE link throughput is significantly reduced while the base network throughput however remained at the 1.2Gbps specification. The decrease in SLE throughput has been attributed to the implementation's use of blocking calls. The decrease in throughput is not acceptable for high data rate links, as the link requires constant data a flow in order for spacecraft and ground radios to stay synchronized, unless significant data is queued a the ground station. In cases where queuing the data is not an option

  18. Using process-oriented interfaces for solving the automation paradox in highly automated navy vessels

    NARCIS (Netherlands)

    Diggelen, J. van; Post, W.; Rakhorst, M.; Plasmeijer, R.; Staal, W. van

    2014-01-01

    This paper describes a coherent engineering method for developing high level human machine interaction within a highly automated environment consisting of sensors, actuators, automatic situation assessors and planning devices. Our approach combines ideas from cognitive work analysis, cognitive

  19. Analysis of high-throughput sequencing and annotation strategies for phage genomes.

    Directory of Open Access Journals (Sweden)

    Matthew R Henn

    Full Text Available BACKGROUND: Bacterial viruses (phages play a critical role in shaping microbial populations as they influence both host mortality and horizontal gene transfer. As such, they have a significant impact on local and global ecosystem function and human health. Despite their importance, little is known about the genomic diversity harbored in phages, as methods to capture complete phage genomes have been hampered by the lack of knowledge about the target genomes, and difficulties in generating sufficient quantities of genomic DNA for sequencing. Of the approximately 550 phage genomes currently available in the public domain, fewer than 5% are marine phage. METHODOLOGY/PRINCIPAL FINDINGS: To advance the study of phage biology through comparative genomic approaches we used marine cyanophage as a model system. We compared DNA preparation methodologies (DNA extraction directly from either phage lysates or CsCl purified phage particles, and sequencing strategies that utilize either Sanger sequencing of a linker amplification shotgun library (LASL or of a whole genome shotgun library (WGSL, or 454 pyrosequencing methods. We demonstrate that genomic DNA sample preparation directly from a phage lysate, combined with 454 pyrosequencing, is best suited for phage genome sequencing at scale, as this method is capable of capturing complete continuous genomes with high accuracy. In addition, we describe an automated annotation informatics pipeline that delivers high-quality annotation and yields few false positives and negatives in ORF calling. CONCLUSIONS/SIGNIFICANCE: These DNA preparation, sequencing and annotation strategies enable a high-throughput approach to the burgeoning field of phage genomics.

  20. High-content live cell imaging with RNA probes: advancements in high-throughput antimalarial drug discovery

    Directory of Open Access Journals (Sweden)

    Cervantes Serena

    2009-06-01

    Full Text Available Abstract Background Malaria, a major public health issue in developing nations, is responsible for more than one million deaths a year. The most lethal species, Plasmodium falciparum, causes up to 90% of fatalities. Drug resistant strains to common therapies have emerged worldwide and recent artemisinin-based combination therapy failures hasten the need for new antimalarial drugs. Discovering novel compounds to be used as antimalarials is expedited by the use of a high-throughput screen (HTS to detect parasite growth and proliferation. Fluorescent dyes that bind to DNA have replaced expensive traditional radioisotope incorporation for HTS growth assays, but do not give additional information regarding the parasite stage affected by the drug and a better indication of the drug's mode of action. Live cell imaging with RNA dyes, which correlates with cell growth and proliferation, has been limited by the availability of successful commercial dyes. Results After screening a library of newly synthesized stryrl dyes, we discovered three RNA binding dyes that provide morphological details of live parasites. Utilizing an inverted confocal imaging platform, live cell imaging of parasites increases parasite detection, improves the spatial and temporal resolution of the parasite under drug treatments, and can resolve morphological changes in individual cells. Conclusion This simple one-step technique is suitable for automation in a microplate format for novel antimalarial compound HTS. We have developed a new P. falciparum RNA high-content imaging growth inhibition assay that is robust with time and energy efficiency.

  1. Regulatory pathway analysis by high-throughput in situ hybridization.

    Directory of Open Access Journals (Sweden)

    Axel Visel

    2007-10-01

    Full Text Available Automated in situ hybridization enables the construction of comprehensive atlases of gene expression patterns in mammals. Such atlases can become Web-searchable digital expression maps of individual genes and thus offer an entryway to elucidate genetic interactions and signaling pathways. Towards this end, an atlas housing approximately 1,000 spatial gene expression patterns of the midgestation mouse embryo was generated. Patterns were textually annotated using a controlled vocabulary comprising >90 anatomical features. Hierarchical clustering of annotations was carried out using distance scores calculated from the similarity between pairs of patterns across all anatomical structures. This process ordered hundreds of complex expression patterns into a matrix that reflects the embryonic architecture and the relatedness of patterns of expression. Clustering yielded 12 distinct groups of expression patterns. Because of the similarity of expression patterns within a group, members of each group may be components of regulatory cascades. We focused on the group containing Pax6, an evolutionary conserved transcriptional master mediator of development. Seventeen of the 82 genes in this group showed a change of expression in the developing neocortex of Pax6-deficient embryos. Electromobility shift assays were used to test for the presence of Pax6-paired domain binding sites. This led to the identification of 12 genes not previously known as potential targets of Pax6 regulation. These findings suggest that cluster analysis of annotated gene expression patterns obtained by automated in situ hybridization is a novel approach for identifying components of signaling cascades.

  2. Using high throughput experimental data and in silico models to discover alternatives to toxic chromate corrosion inhibitors

    International Nuclear Information System (INIS)

    Winkler, D.A.; Breedon, M.; White, P.; Hughes, A.E.; Sapper, E.D.; Cole, I.

    2016-01-01

    Highlights: • We screened a large library of organic compounds as replacements for toxic chromates. • High throughput automated corrosion testing was used to assess inhibitor performance. • Robust, predictive machine learning models of corrosion inhibition were developed. • Models indicated molecular features contributing to performance of organic inhibitors. • We also showed that quantum chemistry descriptors do not correlate with performance. - Abstract: Restrictions on the use of toxic chromate-based corrosion inhibitors have created important issues for the aerospace and other industries. Benign alternatives that offer similar or superior performance are needed. We used high throughput experiments to assess 100 small organic molecules as potential inhibitors of corrosion in aerospace aluminium alloys AA2024 and AA7075. We generated robust, predictive, quantitative computational models of inhibitor efficiency at two pH values using these data. The models identified molecular features of inhibitor molecules that had the greatest impact on corrosion inhibition. Models can be used to discover better corrosion inhibitors by screening libraries of organic compounds for candidates with high corrosion inhibition.

  3. Estimation of immune cell densities in immune cell conglomerates: an approach for high-throughput quantification.

    Directory of Open Access Journals (Sweden)

    Niels Halama

    2009-11-01

    Full Text Available Determining the correct number of positive immune cells in immunohistological sections of colorectal cancer and other tumor entities is emerging as an important clinical predictor and therapy selector for an individual patient. This task is usually obstructed by cell conglomerates of various sizes. We here show that at least in colorectal cancer the inclusion of immune cell conglomerates is indispensable for estimating reliable patient cell counts. Integrating virtual microscopy and image processing principally allows the high-throughput evaluation of complete tissue slides.For such large-scale systems we demonstrate a robust quantitative image processing algorithm for the reproducible quantification of cell conglomerates on CD3 positive T cells in colorectal cancer. While isolated cells (28 to 80 microm(2 are counted directly, the number of cells contained in a conglomerate is estimated by dividing the area of the conglomerate in thin tissues sections (< or =6 microm by the median area covered by an isolated T cell which we determined as 58 microm(2. We applied our algorithm to large numbers of CD3 positive T cell conglomerates and compared the results to cell counts obtained manually by two independent observers. While especially for high cell counts, the manual counting showed a deviation of up to 400 cells/mm(2 (41% variation, algorithm-determined T cell numbers generally lay in between the manually observed cell numbers but with perfect reproducibility.In summary, we recommend our approach as an objective and robust strategy for quantifying immune cell densities in immunohistological sections which can be directly implemented into automated full slide image processing systems.

  4. An Ecometric Study of Recent Microfossils using High-throughput Imaging

    Science.gov (United States)

    Elder, L. E.; Hull, P. M.; Hsiang, A. Y.; Kahanamoku, S.

    2016-02-01

    The era of Big Data has ushered in the potential to collect population level information in a manageable time frame. Taxon-free morphological trait analysis, referred to as ecometrics, can be used to examine and compare ecological dynamics between communities with entirely different species compositions. Until recently population level studies of morphology were difficult because of the time intensive task of collecting measurements. To overcome this, we implemented advances in imaging technology and created software to automate measurements. This high-throughput set of methods collects assemblage-scale data, with methods tuned to foraminiferal samples (e.g., light objects on a dark background). Methods include serial focused dark-field microscopy, custom software (Automorph) to batch process images, extract 2D and 3D shape parameters and frames, and implement landmark-free geometric morphometric analyses. Informatics pipelines were created to store, catalog and share images through the Yale Peabody Museum(YPM; peabody.yale.edu). We openly share software and images to enhance future data discovery. In less than a year we have generated over 25TB of high resolution semi 3D images for this initial study. Here, we take the first step towards developing ecometric approaches for open ocean microfossil communities with a calibration study of community shape in recent sediments. We will present an overview of the `shape' of modern planktonic foraminiferal communities from 25 Atlantic core top samples (23 sites in the North and Equatorial Atlantic; 2 sites in the South Atlantic). In total, more than 100,000 microfossils and fragments were imaged from these sites' sediment cores, an unprecedented morphometric sample set. Correlates of community shape, including diversity, temperature, and latitude, will be discussed. These methods have also been applied to images of limpets and fish teeth to date, and have the potential to be used on modern taxa to extract meaningful

  5. Highly Automated Arrival Management and Control System Suitable for Early NextGen

    Science.gov (United States)

    Swenson, Harry N.; Jung, Jaewoo

    2013-01-01

    This is a presentation of previously published work conducted in the development of the Terminal Area Precision Scheduling and Spacing (TAPSS) system. Included are concept and technical descriptions of the TAPSS system and results from human in the loop simulations conducted at Ames Research Center. The Terminal Area Precision Scheduling and Spacing system has demonstrated through research and extensive high-fidelity simulation studies to have benefits in airport arrival throughput, supporting efficient arrival descents, and enabling mixed aircraft navigation capability operations during periods of high congestion. NASA is currently porting the TAPSS system into the FAA TBFM and STARS system prototypes to ensure its ability to operate in the FAA automation Infrastructure. NASA ATM Demonstration Project is using the the TAPSS technologies to provide the ground-based automation tools to enable airborne Interval Management (IM) capabilities. NASA and the FAA have initiated a Research Transition Team to enable potential TAPSS and IM Technology Transfer.

  6. Protocol: high throughput silica-based purification of RNA from Arabidopsis seedlings in a 96-well format

    Directory of Open Access Journals (Sweden)

    Salvo-Chirnside Eliane

    2011-12-01

    Full Text Available Abstract The increasing popularity of systems-based approaches to plant research has resulted in a demand for high throughput (HTP methods to be developed. RNA extraction from multiple samples in an experiment is a significant bottleneck in performing systems-level genomic studies. Therefore we have established a high throughput method of RNA extraction from Arabidopsis thaliana to facilitate gene expression studies in this widely used plant model. We present optimised manual and automated protocols for the extraction of total RNA from 9-day-old Arabidopsis seedlings in a 96 well plate format using silica membrane-based methodology. Consistent and reproducible yields of high quality RNA are isolated averaging 8.9 μg total RNA per sample (~20 mg plant tissue. The purified RNA is suitable for subsequent qPCR analysis of the expression of over 500 genes in triplicate from each sample. Using the automated procedure, 192 samples (2 × 96 well plates can easily be fully processed (samples homogenised, RNA purified and quantified in less than half a day. Additionally we demonstrate that plant samples can be stored in RNAlater at -20°C (but not 4°C for 10 months prior to extraction with no significant effect on RNA yield or quality. Additionally, disrupted samples can be stored in the lysis buffer at -20°C for at least 6 months prior to completion of the extraction procedure providing a flexible sampling and storage scheme to facilitate complex time series experiments.

  7. A high-throughput, multi-channel photon-counting detector with picosecond timing

    CERN Document Server

    Lapington, J S; Miller, G M; Ashton, T J R; Jarron, P; Despeisse, M; Powolny, F; Howorth, J; Milnes, J

    2009-01-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchanne...

  8. Software Switching for High Throughput Data Acquisition Networks

    CERN Document Server

    AUTHOR|(CDS)2089787; Lehmann Miotto, Giovanna

    The bursty many-to-one communication pattern, typical for data acquisition systems, is particularly demanding for commodity TCP/IP and Ethernet technologies. The problem arising from this pattern is widely known in the literature as \\emph{incast} and can be observed as TCP throughput collapse. It is a result of overloading the switch buffers, when a specific node in a network requests data from multiple sources. This will become even more demanding for future upgrades of the experiments at the Large Hadron Collider at CERN. It is questionable whether commodity TCP/IP and Ethernet technologies in their current form will be still able to effectively adapt to bursty traffic without losing packets due to the scarcity of buffers in the networking hardware. This thesis provides an analysis of TCP/IP performance in data acquisition networks and presents a novel approach to incast congestion in these networks based on software-based packet forwarding. Our first contribution lies in confirming the strong analogies bet...

  9. Development of combinatorial chemistry methods for coatings: high-throughput adhesion evaluation and scale-up of combinatorial leads.

    Science.gov (United States)

    Potyrailo, Radislav A; Chisholm, Bret J; Morris, William G; Cawse, James N; Flanagan, William P; Hassib, Lamyaa; Molaison, Chris A; Ezbiansky, Karin; Medford, George; Reitz, Hariklia

    2003-01-01

    Coupling of combinatorial chemistry methods with high-throughput (HT) performance testing and measurements of resulting properties has provided a powerful set of tools for the 10-fold accelerated discovery of new high-performance coating materials for automotive applications. Our approach replaces labor-intensive steps with automated systems for evaluation of adhesion of 8 x 6 arrays of coating elements that are discretely deposited on a single 9 x 12 cm plastic substrate. Performance of coatings is evaluated with respect to their resistance to adhesion loss, because this parameter is one of the primary considerations in end-use automotive applications. Our HT adhesion evaluation provides previously unavailable capabilities of high speed and reproducibility of testing by using a robotic automation, an expanded range of types of tested coatings by using the coating tagging strategy, and an improved quantitation by using high signal-to-noise automatic imaging. Upon testing, the coatings undergo changes that are impossible to quantitatively predict using existing knowledge. Using our HT methodology, we have developed several coatings leads. These HT screening results for the best coating compositions have been validated on the traditional scales of coating formulation and adhesion loss testing. These validation results have confirmed the superb performance of combinatorially developed coatings over conventional coatings on the traditional scale.

  10. Development of a high-throughput liquid state assay for lipase activity using natural substrates and rhodamine B.

    Science.gov (United States)

    Zottig, Ximena; Meddeb-Mouelhi, Fatma; Beauregard, Marc

    2016-03-01

    A fluorescence-based assay for the determination of lipase activity using rhodamine B as an indicator, and natural substrates such as olive oil, is described. It is based on the use of a rhodamine B-natural substrate emulsion in liquid state, which is advantageous over agar plate assays. This high-throughput method is simple and rapid and can be automated, making it suitable for screening and metagenomics application. Reaction conditions such as pH and temperature can be varied and controlled. Using triolein or olive oil as a natural substrate allows monitoring of lipase activity in reaction conditions that are closer to those used in industrial settings. The described method is sensitive over a wide range of product concentrations and offers good reproducibility. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Human Leukocyte Antigen Typing Using a Knowledge Base Coupled with a High-Throughput Oligonucleotide Probe Array Analysis

    Science.gov (United States)

    Zhang, Guang Lan; Keskin, Derin B.; Lin, Hsin-Nan; Lin, Hong Huang; DeLuca, David S.; Leppanen, Scott; Milford, Edgar L.; Reinherz, Ellis L.; Brusic, Vladimir

    2014-01-01

    Human leukocyte antigens (HLA) are important biomarkers because multiple diseases, drug toxicity, and vaccine responses reveal strong HLA associations. Current clinical HLA typing is an elimination process requiring serial testing. We present an alternative in situ synthesized DNA-based microarray method that contains hundreds of thousands of probes representing a complete overlapping set covering 1,610 clinically relevant HLA class I alleles accompanied by computational tools for assigning HLA type to 4-digit resolution. Our proof-of-concept experiment included 21 blood samples, 18 cell lines, and multiple controls. The method is accurate, robust, and amenable to automation. Typing errors were restricted to homozygous samples or those with very closely related alleles from the same locus, but readily resolved by targeted DNA sequencing validation of flagged samples. High-throughput HLA typing technologies that are effective, yet inexpensive, can be used to analyze the world’s populations, benefiting both global public health and personalized health care. PMID:25505899

  12. High throughput screening of ligand binding to macromolecules using high resolution powder diffraction

    Science.gov (United States)

    Von Dreele, Robert B.; D'Amico, Kevin

    2006-10-31

    A process is provided for the high throughput screening of binding of ligands to macromolecules using high resolution powder diffraction data including producing a first sample slurry of a selected polycrystalline macromolecule material and a solvent, producing a second sample slurry of a selected polycrystalline macromolecule material, one or more ligands and the solvent, obtaining a high resolution powder diffraction pattern on each of said first sample slurry and the second sample slurry, and, comparing the high resolution powder diffraction pattern of the first sample slurry and the high resolution powder diffraction pattern of the second sample slurry whereby a difference in the high resolution powder diffraction patterns of the first sample slurry and the second sample slurry provides a positive indication for the formation of a complex between the selected polycrystalline macromolecule material and at least one of the one or more ligands.

  13. High-throughput phenotyping and genomic selection: the frontiers of crop breeding converge.

    Science.gov (United States)

    Cabrera-Bosquet, Llorenç; Crossa, José; von Zitzewitz, Jarislav; Serret, María Dolors; Araus, José Luis

    2012-05-01

    Genomic selection (GS) and high-throughput phenotyping have recently been captivating the interest of the crop breeding community from both the public and private sectors world-wide. Both approaches promise to revolutionize the prediction of complex traits, including growth, yield and adaptation to stress. Whereas high-throughput phenotyping may help to improve understanding of crop physiology, most powerful techniques for high-throughput field phenotyping are empirical rather than analytical and comparable to genomic selection. Despite the fact that the two methodological approaches represent the extremes of what is understood as the breeding process (phenotype versus genome), they both consider the targeted traits (e.g. grain yield, growth, phenology, plant adaptation to stress) as a black box instead of dissecting them as a set of secondary traits (i.e. physiological) putatively related to the target trait. Both GS and high-throughput phenotyping have in common their empirical approach enabling breeders to use genome profile or phenotype without understanding the underlying biology. This short review discusses the main aspects of both approaches and focuses on the case of genomic selection of maize flowering traits and near-infrared spectroscopy (NIRS) and plant spectral reflectance as high-throughput field phenotyping methods for complex traits such as crop growth and yield. © 2012 Institute of Botany, Chinese Academy of Sciences.

  14. High-Throughput Silencing Using the CRISPR-Cas9 System: A Review of the Benefits and Challenges.

    Science.gov (United States)

    Wade, Mark

    2015-09-01

    The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system has been seized upon with a fervor enjoyed previously by small interfering RNA (siRNA) and short hairpin RNA (shRNA) technologies and has enormous potential for high-throughput functional genomics studies. The decision to use this approach must be balanced with respect to adoption of existing platforms versus awaiting the development of more "mature" next-generation systems. Here, experience from siRNA and shRNA screening plays an important role, as issues such as targeting efficiency, pooling strategies, and off-target effects with those technologies are already framing debates in the CRISPR field. CRISPR/Cas can be exploited not only to knockout genes but also to up- or down-regulate gene transcription-in some cases in a multiplex fashion. This provides a powerful tool for studying the interaction among multiple signaling cascades in the same genetic background. Furthermore, the documented success of CRISPR/Cas-mediated gene correction (or the corollary, introduction of disease-specific mutations) provides proof of concept for the rapid generation of isogenic cell lines for high-throughput screening. In this review, the advantages and limitations of CRISPR/Cas are discussed and current and future applications are highlighted. It is envisaged that complementarities between CRISPR, siRNA, and shRNA will ensure that all three technologies remain critical to the success of future functional genomics projects. © 2015 Society for Laboratory Automation and Screening.

  15. High-throughput bioaffinity mass spectrometry for screening and identification of designer anabolic steroids in dietary supplements.

    Science.gov (United States)

    Aqai, Payam; Cevik, Ebru; Gerssen, Arjen; Haasnoot, Willem; Nielen, Michel W F

    2013-03-19

    A generic high-throughput bioaffinity liquid chromatography-mass spectrometry (BioMS) approach was developed and applied for the screening and identification of known and unknown recombinant human sex hormone-binding globulin (rhSHBG)-binding designer steroids in dietary supplements. For screening, a semi-automated competitive inhibition binding assay was combined with fast ultrahigh-performance-LC-electrospray ionization-triple-quadrupole-MS (UPLC-QqQ-MS). 17β-Testosterone-D3 was used as the stable isotope label of which the binding to rhSHBG-coated paramagnetic microbeads was inhibited by any other binding (designer) steroid. The assay was performed in a 96-well plate and combined with the fast LC-MS, 96 measurements could be performed within 4 h. The concentration-dependent inhibition of the label by steroids in buffer and dietary supplements was demonstrated. Following an adjusted bioaffinity isolation procedure, suspect extracts were injected into a chip-UPLC(NanoTile)-Q-time-of-flight-MS system for full-scan accurate mass identification. Next to known steroids, 1-testosterone was identified in three of the supplements studied and the designer steroid tetrahydrogestrinone was identified in a spiked supplement. The generic steroid-binding assay can be used for high-throughput screening of androgens, estrogens, and gestagens in dietary supplements to fight doping. When combined with chip-UPLC-MS, it is a powerful tool for early warning of unknown emerging rhSHBG bioactive designer steroids in dietary supplements.

  16. The Evolution of MALDI-TOF Mass Spectrometry toward Ultra-High-Throughput Screening: 1536-Well Format and Beyond.

    Science.gov (United States)

    Haslam, Carl; Hellicar, John; Dunn, Adrian; Fuetterer, Arne; Hardy, Neil; Marshall, Peter; Paape, Rainer; Pemberton, Michelle; Resemannand, Anja; Leveridge, Melanie

    2016-02-01

    Mass spectrometry (MS) offers a label-free, direct-detection method, in contrast to fluorescent or colorimetric methodologies. Over recent years, solid-phase extraction-based techniques, such as the Agilent RapidFire system, have emerged that are capable of analyzing samples in high-throughput screening (HTS). Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) offers an alternative for high-throughput MS detection. However, sample preparation and deposition onto the MALDI target, as well as interference from matrix ions, have been considered limitations for the use of MALDI for screening assays. Here we describe the development and validation of assays for both small-molecule and peptide analytes using MALDI-TOF coupled with nanoliter liquid handling. Using the JMJD2c histone demethylase and acetylcholinesterase as model systems, we have generated robust data in a 1536 format and also increased sample deposition to 6144 samples per target. Using these methods, we demonstrate that this technology can deliver fast sample analysis time with low sample volume, and data comparable to that of current RapidFire assays. © 2015 Society for Laboratory Automation and Screening.

  17. Development and Applications of a High Throughput Genotyping Tool for Polyploid Crops: Single Nucleotide Polymorphism (SNP Array

    Directory of Open Access Journals (Sweden)

    Qian You

    2018-02-01

    Full Text Available Polypoid species play significant roles in agriculture and food production. Many crop species are polyploid, such as potato, wheat, strawberry, and sugarcane. Genotyping has been a daunting task for genetic studies of polyploid crops, which lags far behind the diploid crop species. Single nucleotide polymorphism (SNP array is considered to be one of, high-throughput, relatively cost-efficient and automated genotyping approaches. However, there are significant challenges for SNP identification in complex, polyploid genomes, which has seriously slowed SNP discovery and array development in polyploid species. Ploidy is a significant factor impacting SNP qualities and validation rates of SNP markers in SNP arrays, which has been proven to be a very important tool for genetic studies and molecular breeding. In this review, we (1 discussed the pros and cons of SNP array in general for high throughput genotyping, (2 presented the challenges of and solutions to SNP calling in polyploid species, (3 summarized the SNP selection criteria and considerations of SNP array design for polyploid species, (4 illustrated SNP array applications in several different polyploid crop species, then (5 discussed challenges, available software, and their accuracy comparisons for genotype calling based on SNP array data in polyploids, and finally (6 provided a series of SNP array design and genotype calling recommendations. This review presents a complete overview of SNP array development and applications in polypoid crops, which will benefit the research in molecular breeding and genetics of crops with complex genomes.

  18. Spatial Mapping of Protein Abundances in the Mouse Brain by Voxelation Integrated with High-Throughput Liquid Chromatography ? Mass Spectrometry

    International Nuclear Information System (INIS)

    Petyuk, Vladislav A.; Qian, Weijun; Chin, Mark H.; Wang, Haixing H.; Livesay, Eric A.; Monroe, Matthew E.; Adkins, Joshua N.; Jaitly, Navdeep; Anderson, David J.; Camp, David G.; Smith, Desmond J.; Smith, Richard D.

    2007-01-01

    Temporally and spatially resolved mapping of protein abundance patterns within the mammalian brain is of significant interest for understanding brain function and molecular etiologies of neurodegenerative diseases; however, such imaging efforts have been greatly challenged by complexity of the proteome, throughput and sensitivity of applied analytical methodologies, and accurate quantitation of protein abundances across the brain. Here, we describe a methodology for comprehensive spatial proteome mapping that addresses these challenges by employing voxelation integrated with automated microscale sample processing, high-throughput LC system coupled with high resolution Fourier transform ion cyclotron mass spectrometer and a ''universal'' stable isotope labeled reference sample approach for robust quantitation. We applied this methodology as a proof-of-concept trial for the analysis of protein distribution within a single coronal slice of a C57BL/6J mouse brain. For relative quantitation of the protein abundances across the slice, an 18O-isotopically labeled reference sample, derived from a whole control coronal slice from another mouse, was spiked into each voxel sample and stable isotopic intensity ratios were used to obtain measures of relative protein abundances. In total, we generated maps of protein abundance patterns for 1,028 proteins. The significant agreement of the protein distributions with previously reported data supports the validity of this methodology, which opens new opportunities for studying the spatial brain proteome and its dynamics during the course of disease progression and other important biological and associated health aspects in a discovery-driven fashion

  19. Ultra-High-Throughput Screening of Natural Product Extracts to Identify Proapoptotic Inhibitors of Bcl-2 Family Proteins.

    Science.gov (United States)

    Hassig, Christian A; Zeng, Fu-Yue; Kung, Paul; Kiankarimi, Mehrak; Kim, Sylvia; Diaz, Paul W; Zhai, Dayong; Welsh, Kate; Morshedian, Shana; Su, Ying; O'Keefe, Barry; Newman, David J; Rusman, Yudi; Kaur, Harneet; Salomon, Christine E; Brown, Susan G; Baire, Beeraiah; Michel, Andrew R; Hoye, Thomas R; Francis, Subhashree; Georg, Gunda I; Walters, Michael A; Divlianska, Daniela B; Roth, Gregory P; Wright, Amy E; Reed, John C

    2014-09-01

    Antiapoptotic Bcl-2 family proteins are validated cancer targets composed of six related proteins. From a drug discovery perspective, these are challenging targets that exert their cellular functions through protein-protein interactions (PPIs). Although several isoform-selective inhibitors have been developed using structure-based design or high-throughput screening (HTS) of synthetic chemical libraries, no large-scale screen of natural product collections has been reported. A competitive displacement fluorescence polarization (FP) screen of nearly 150,000 natural product extracts was conducted against all six antiapoptotic Bcl-2 family proteins using fluorochrome-conjugated peptide ligands that mimic functionally relevant PPIs. The screens were conducted in 1536-well format and displayed satisfactory overall HTS statistics, with Z'-factor values ranging from 0.72 to 0.83 and a hit confirmation rate between 16% and 64%. Confirmed active extracts were orthogonally tested in a luminescent assay for caspase-3/7 activation in tumor cells. Active extracts were resupplied, and effort toward the isolation of pure active components was initiated through iterative bioassay-guided fractionation. Several previously described altertoxins were isolated from a microbial source, and the pure compounds demonstrate activity in both Bcl-2 FP and caspase cellular assays. The studies demonstrate the feasibility of ultra-high-throughput screening using natural product sources and highlight some of the challenges associated with this approach. © 2014 Society for Laboratory Automation and Screening.

  20. Filtering high-throughput protein-protein interaction data using a combination of genomic features

    Directory of Open Access Journals (Sweden)

    Patil Ashwini

    2005-04-01

    Full Text Available Abstract Background Protein-protein interaction data used in the creation or prediction of molecular networks is usually obtained from large scale or high-throughput experiments. This experimental data is liable to contain a large number of spurious interactions. Hence, there is a need to validate the interactions and filter out the incorrect data before using them in prediction studies. Results In this study, we use a combination of 3 genomic features – structurally known interacting Pfam domains, Gene Ontology annotations and sequence homology – as a means to assign reliability to the protein-protein interactions in Saccharomyces cerevisiae determined by high-throughput experiments. Using Bayesian network approaches, we show that protein-protein interactions from high-throughput data supported by one or more genomic features have a higher likelihood ratio and hence are more likely to be real interactions. Our method has a high sensitivity (90% and good specificity (63%. We show that 56% of the interactions from high-throughput experiments in Saccharomyces cerevisiae have high reliability. We use the method to estimate the number of true interactions in the high-throughput protein-protein interaction data sets in Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens to be 27%, 18% and 68% respectively. Our results are available for searching and downloading at http://helix.protein.osaka-u.ac.jp/htp/. Conclusion A combination of genomic features that include sequence, structure and annotation information is a good predictor of true interactions in large and noisy high-throughput data sets. The method has a very high sensitivity and good specificity and can be used to assign a likelihood ratio, corresponding to the reliability, to each interaction.

  1. High-throughput screening platform for engineered nanoparticle-mediated genotoxicity using CometChip technology.

    Science.gov (United States)

    Watson, Christa; Ge, Jing; Cohen, Joel; Pyrgiotakis, Georgios; Engelward, Bevin P; Demokritou, Philip

    2014-03-25

    The likelihood of intentional and unintentional engineered nanoparticle (ENP) exposure has dramatically increased due to the use of nanoenabled products. Indeed, ENPs have been incorporated in many useful products and have enhanced our way of life. However, there are many unanswered questions about the consequences of nanoparticle exposures, in particular, with regard to their potential to damage the genome and thus potentially promote cancer. In this study, we present a high-throughput screening assay based upon the recently developed CometChip technology, which enables evaluation of single-stranded DNA breaks, abasic sites, and alkali-sensitive sites in cells exposed to ENPs. The strategic microfabricated, 96-well design and automated processing improves efficiency, reduces processing time, and suppresses user bias in comparison to the standard comet assay. We evaluated the versatility of this assay by screening five industrially relevant ENP exposures (SiO2, ZnO, Fe2O3, Ag, and CeO2) on both suspension human lymphoblastoid (TK6) and adherent Chinese hamster ovary (H9T3) cell lines. MTT and CyQuant NF assays were employed to assess cellular viability and proliferation after ENP exposure. Exposure to ENPs at a dose range of 5, 10, and 20 μg/mL induced dose-dependent increases in DNA damage and cytotoxicity. Genotoxicity profiles of ZnO>Ag>Fe2O3>CeO2>SiO2 in TK6 cells at 4 h and Ag>Fe2O3>ZnO>CeO2>SiO2 in H9T3 cells at 24 h were observed. The presented CometChip platform enabled efficient and reliable measurement of ENP-mediated DNA damage, therefore demonstrating the efficacy of this powerful tool in nanogenotoxicity studies.

  2. Genetic profiles of cervical tumors by high-throughput sequencing for personalized medical care

    International Nuclear Information System (INIS)

    Muller, Etienne; Brault, Baptiste; Holmes, Allyson; Legros, Angelina; Jeannot, Emmanuelle; Campitelli, Maura; Rousselin, Antoine; Goardon, Nicolas; Frébourg, Thierry; Krieger, Sophie; Crouet, Hubert; Nicolas, Alain; Sastre, Xavier; Vaur, Dominique; Castéra, Laurent

    2015-01-01

    Cancer treatment is facing major evolution since the advent of targeted therapies. Building genetic profiles could predict sensitivity or resistance to these therapies and highlight disease-specific abnormalities, supporting personalized patient care. In the context of biomedical research and clinical diagnosis, our laboratory has developed an oncogenic panel comprised of 226 genes and a dedicated bioinformatic pipeline to explore somatic mutations in cervical carcinomas, using high-throughput sequencing. Twenty-nine tumors were sequenced for exons within 226 genes. The automated pipeline used includes a database and a filtration system dedicated to identifying mutations of interest and excluding false positive and germline mutations. One-hundred and seventy-six total mutational events were found among the 29 tumors. Our cervical tumor mutational landscape shows that most mutations are found in PIK3CA (E545K, E542K) and KRAS (G12D, G13D) and others in FBXW7 (R465C, R505G, R479Q). Mutations have also been found in ALK (V1149L, A1266T) and EGFR (T259M). These results showed that 48% of patients display at least one deleterious mutation in genes that have been already targeted by the Food and Drug Administration approved therapies. Considering deleterious mutations, 59% of patients could be eligible for clinical trials. Sequencing hundreds of genes in a clinical context has become feasible, in terms of time and cost. In the near future, such an analysis could be a part of a battery of examinations along the diagnosis and treatment of cancer, helping to detect sensitivity or resistance to targeted therapies and allow advancements towards personalized oncology

  3. Biophysics of cancer progression and high-throughput mechanical characterization of biomaterials

    Science.gov (United States)

    Osborne, Lukas Dylan

    Cancer metastasis involves a series of events known as the metastatic cascade. In this complex progression, cancer cells detach from the primary tumor, invade the surrounding stromal space, transmigrate the vascular system, and establish secondary tumors at distal sites. Specific mechanical phenotypes are likely adopted to enable cells to successfully navigate the mechanical environments encountered during metastasis. To examine the role of cell mechanics in cancer progression, I employed force-consistent biophysical and biochemical assays to characterize the mechanistic links between stiffness, stiffness response and cell invasion during the epithelial to mesenchymal transition (EMT). EMT is an essential physiological process, whose abnormal reactivation has been implicated in the detachment of cancer cells from epithelial tissue and their subsequent invasion into stromal tissue. I demonstrate that epithelial-state cells respond to force by evoking a stiffening response, and that after EMT, mesenchymal-state cells have reduced stiffness but also lose the ability to increase their stiffness in response to force. Using loss and gain of function studies, two proteins are established as functional connections between attenuated stiffness and stiffness response and the increased invasion capacity acquired after EMT. To enable larger scale assays to more fully explore the connection between biomechanics and cancer, I discuss the development of an automated array high throughput (AHT) microscope. The AHT system is shown to implement passive microbead rheology to accurately characterize the mechanical properties of biomaterials. Compared to manually performed mechanical characterizations, the AHT system executes experiments in two orders of magnitude less time. Finally, I use the AHT microscope to study the effect of gain of function oncogenic molecules on cell stiffness. I find evidence that our assay can identify alterations in cell stiffness due to constitutive

  4. Highly automated driving, secondary task performance, and driver state.

    Science.gov (United States)

    Merat, Natasha; Jamson, A Hamish; Lai, Frank C H; Carsten, Oliver

    2012-10-01

    A driving simulator study compared the effect of changes in workload on performance in manual and highly automated driving. Changes in driver state were also observed by examining variations in blink patterns. With the addition of a greater number of advanced driver assistance systems in vehicles, the driver's role is likely to alter in the future from an operator in manual driving to a supervisor of highly automated cars. Understanding the implications of such advancements on drivers and road safety is important. A total of 50 participants were recruited for this study and drove the simulator in both manual and highly automated mode. As well as comparing the effect of adjustments in driving-related workload on performance, the effect of a secondary Twenty Questions Task was also investigated. In the absence of the secondary task, drivers' response to critical incidents was similar in manual and highly automated driving conditions. The worst performance was observed when drivers were required to regain control of driving in the automated mode while distracted by the secondary task. Blink frequency patterns were more consistent for manual than automated driving but were generally suppressed during conditions of high workload. Highly automated driving did not have a deleterious effect on driver performance, when attention was not diverted to the distracting secondary task. As the number of systems implemented in cars increases, an understanding of the implications of such automation on drivers' situation awareness, workload, and ability to remain engaged with the driving task is important.

  5. High-Throughput Screening and Quantitation of Target Compounds in Biofluids by Coated Blade Spray-Mass Spectrometry.

    Science.gov (United States)

    Tascon, Marcos; Gómez-Ríos, Germán Augusto; Reyes-Garcés, Nathaly; Poole, Justen; Boyacı, Ezel; Pawliszyn, Janusz

    2017-08-15

    Most contemporary methods of screening and quantitating controlled substances and therapeutic drugs in biofluids typically require laborious, time-consuming, and expensive analytical workflows. In recent years, our group has worked toward developing microextraction (μe)-mass spectrometry (MS) technologies that merge all of the tedious steps of the classical methods into a simple, efficient, and low-cost methodology. Unquestionably, the automation of these technologies allows for faster sample throughput, greater reproducibility, and radically reduced analysis times. Coated blade spray (CBS) is a μe technology engineered for extracting/enriching analytes of interest in complex matrices, and it can be directly coupled with MS instruments to achieve efficient screening and quantitative analysis. In this study, we introduced CBS as a technology that can be arranged to perform either rapid diagnostics (single vial) or the high-throughput (96-well plate) analysis of biofluids. Furthermore, we demonstrate that performing 96-CBS extractions at the same time allows the total analysis time to be reduced to less than 55 s per sample. Aiming to validate the versatility of CBS, substances comprising a broad range of molecular weights, moieties, protein binding, and polarities were selected. Thus, the high-throughput (HT)-CBS technology was used for the concomitant quantitation of 18 compounds (mixture of anabolics, β-2 agonists, diuretics, stimulants, narcotics, and β-blockers) spiked in human urine and plasma samples. Excellent precision (∼2.5%), accuracy (≥90%), and linearity (R 2 ≥ 0.99) were attained for all the studied compounds, and the limits of quantitation (LOQs) were within the range of 0.1 to 10 ng·mL -1 for plasma and 0.25 to 10 ng·mL -1 for urine. The results reported in this paper confirm CBS's great potential for achieving subsixty-second analyses of target compounds in a broad range of fields such as those related to clinical diagnosis, food, the

  6. A novel high throughput assay for anthelmintic drug screening and resistance diagnosis by real-time monitoring of parasite motility.

    Directory of Open Access Journals (Sweden)

    Michael J Smout

    Full Text Available BACKGROUND: Helminth parasites cause untold morbidity and mortality to billions of people and livestock. Anthelmintic drugs are available but resistance is a problem in livestock parasites, and is a looming threat for human helminths. Testing the efficacy of available anthelmintic drugs and development of new drugs is hindered by the lack of objective high-throughput screening methods. Currently, drug effect is assessed by observing motility or development of parasites using laborious, subjective, low-throughput methods. METHODOLOGY/PRINCIPAL FINDINGS: Here we describe a novel application for a real-time cell monitoring device (xCELLigence that can simply and objectively assess anthelmintic effects by measuring parasite motility in real time in a fully automated high-throughput fashion. We quantitatively assessed motility and determined real time IC(50 values of different anthelmintic drugs against several developmental stages of major helminth pathogens of humans and livestock, including larval Haemonchus contortus and Strongyloides ratti, and adult hookworms and blood flukes. The assay enabled quantification of the onset of egg hatching in real time, and the impact of drugs on hatch rate, as well as discriminating between the effects of drugs on motility of drug-susceptible and -resistant isolates of H. contortus. CONCLUSIONS/SIGNIFICANCE: Our findings indicate that this technique will be suitable for discovery and development of new anthelmintic drugs as well as for detection of phenotypic resistance to existing drugs for the majority of helminths and other pathogens where motility is a measure of pathogen viability. The method is also amenable to use for other purposes where motility is assessed, such as gene silencing or antibody-mediated killing.

  7. High throughput screening method for identification of new lipofection reagents.

    Science.gov (United States)

    Regelin, A E; Fernholz, E; Krug, H F; Massing, U

    2001-08-01

    Lipofection, the transfer of genetic material into cells by means of cationic lipids, is of growing interest for in vitro and in vivo approaches. In order to identify ideal lipofection reagents in a HTS, we have developed an automated lipofection method for the transfer of reporter genes into cells and for determination of the lipofection results. The method has specifically been designed and optimized for 96-well microtiter plates and can successfully be carried out by a pipetting robot with accessory equipment. It consists of two separate parts: (1) pretransfection (preparation of liposomes, formation of lipoplexes, and lipoplex transfer to the cells) and (2) posttransfection (determination of the reporter enzyme activity and the protein content of the transfected cells). Individual steps of the lipofection method were specifically optimized - for example, lipoplex formation and incubation time as well as cell lysis, cell cultivating, and the reporter gene assay. The HTS method facilitates characterization of the transfection properties (efficiency and cytotoxicity) of large numbers of (cationic) lipids in various adherent cell types.

  8. High-throughput screening of small molecule libraries using SAMDI mass spectrometry.

    Science.gov (United States)

    Gurard-Levin, Zachary A; Scholle, Michael D; Eisenberg, Adam H; Mrksich, Milan

    2011-07-11

    High-throughput screening is a common strategy used to identify compounds that modulate biochemical activities, but many approaches depend on cumbersome fluorescent reporters or antibodies and often produce false-positive hits. The development of "label-free" assays addresses many of these limitations, but current approaches still lack the throughput needed for applications in drug discovery. This paper describes a high-throughput, label-free assay that combines self-assembled monolayers with mass spectrometry, in a technique called SAMDI, as a tool for screening libraries of 100,000 compounds in one day. This method is fast, has high discrimination, and is amenable to a broad range of chemical and biological applications.

  9. A Self-Reporting Photocatalyst for Online Fluorescence Monitoring of High Throughput RAFT Polymerization.

    Science.gov (United States)

    Yeow, Jonathan; Joshi, Sanket; Chapman, Robert; Boyer, Cyrille Andre Jean Marie

    2018-04-25

    Translating controlled/living radical polymerization (CLRP) from batch to the high throughput production of polymer libraries presents several challenges in terms of both polymer synthesis and characterization. Although recently there have been significant advances in the field of low volume, high throughput CLRP, techniques able to simultaneously monitor multiple polymerizations in an "online" manner have not yet been developed. Here, we report our discovery that 5,10,15,20-tetraphenyl-21H,23H-porphine zinc (ZnTPP) is a self-reporting photocatalyst that can mediate PET-RAFT polymerization as well as report on monomer conversion via changes in its fluorescence properties. This enables the use of a microplate reader to conduct high throughput "online" monitoring of PET-RAFT polymerizations performed directly in 384-well, low volume microtiter plates. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. High throughput route selection in multi-rate wireless mesh networks

    Institute of Scientific and Technical Information of China (English)

    WEI Yi-fei; GUO Xiang-li; SONG Mei; SONG Jun-de

    2008-01-01

    Most existing Ad-hoc routing protocols use the shortest path algorithm with a hop count metric to select paths. It is appropriate in single-rate wireless networks, but has a tendency to select paths containing long-distance links that have low data rates and reduced reliability in multi-rate networks. This article introduces a high throughput routing algorithm utilizing the multi-rate capability and some mesh characteristics in wireless fidelity (WiFi) mesh networks. It uses the medium access control (MAC) transmission time as the routing metric, which is estimated by the information passed up from the physical layer. When the proposed algorithm is adopted, the Ad-hoc on-demand distance vector (AODV) routing can be improved as high throughput AODV (HT-AODV). Simulation results show that HT-AODV is capable of establishing a route that has high data-rate, short end-to-end delay and great network throughput.

  11. Recent advances in quantitative high throughput and high content data analysis.

    Science.gov (United States)

    Moutsatsos, Ioannis K; Parker, Christian N

    2016-01-01

    High throughput screening has become a basic technique with which to explore biological systems. Advances in technology, including increased screening capacity, as well as methods that generate multiparametric readouts, are driving the need for improvements in the analysis of data sets derived from such screens. This article covers the recent advances in the analysis of high throughput screening data sets from arrayed samples, as well as the recent advances in the analysis of cell-by-cell data sets derived from image or flow cytometry application. Screening multiple genomic reagents targeting any given gene creates additional challenges and so methods that prioritize individual gene targets have been developed. The article reviews many of the open source data analysis methods that are now available and which are helping to define a consensus on the best practices to use when analyzing screening data. As data sets become larger, and more complex, the need for easily accessible data analysis tools will continue to grow. The presentation of such complex data sets, to facilitate quality control monitoring and interpretation of the results will require the development of novel visualizations. In addition, advanced statistical and machine learning algorithms that can help identify patterns, correlations and the best features in massive data sets will be required. The ease of use for these tools will be important, as they will need to be used iteratively by laboratory scientists to improve the outcomes of complex analyses.

  12. Applications of high-throughput clonogenic survival assays in high-LET particle microbeams

    Directory of Open Access Journals (Sweden)

    Antonios eGeorgantzoglou

    2016-01-01

    Full Text Available Charged particle therapy is increasingly becoming a valuable tool in cancer treatment, mainly due to the favorable interaction of particle radiation with matter. Its application is still limited due, in part, to lack of data regarding the radiosensitivity of certain cell lines to this radiation type, especially to high-LET particles. From the earliest days of radiation biology, the clonogenic survival assay has been used to provide radiation response data. This method produces reliable data but it is not optimized for high-throughput microbeam studies with high-LET radiation where high levels of cell killing lead to a very low probability of maintaining cells’ clonogenic potential. A new method, therefore, is proposed in this paper, which could potentially allow these experiments to be conducted in a high-throughput fashion. Cells are seeded in special polypropylene dishes and bright-field illumination provides cell visualization. Digital images are obtained and cell detection is applied based on corner detection, generating individual cell targets as x-y points. These points in the dish are then irradiated individually by a micron field size high-LET microbeam. Post-irradiation, time-lapse imaging follows cells’ response. All irradiated cells are tracked by linking trajectories in all time-frames, based on finding their nearest position. Cell divisions are detected based on cell appearance and individual cell temporary corner density. The number of divisions anticipated is low due to the high probability of cell killing from high-LET irradiation. Survival curves are produced based on cell’s capacity to divide at least 4-5 times. The process is repeated for a range of doses of radiation. Validation shows the efficiency of the proposed cell detection and tracking method in finding cell divisions.

  13. Applications of High-Throughput Clonogenic Survival Assays in High-LET Particle Microbeams.

    Science.gov (United States)

    Georgantzoglou, Antonios; Merchant, Michael J; Jeynes, Jonathan C G; Mayhead, Natalie; Punia, Natasha; Butler, Rachel E; Jena, Rajesh

    2015-01-01

    Charged particle therapy is increasingly becoming a valuable tool in cancer treatment, mainly due to the favorable interaction of particle radiation with matter. Its application is still limited due, in part, to lack of data regarding the radiosensitivity of certain cell lines to this radiation type, especially to high-linear energy transfer (LET) particles. From the earliest days of radiation biology, the clonogenic survival assay has been used to provide radiation response data. This method produces reliable data but it is not optimized for high-throughput microbeam studies with high-LET radiation where high levels of cell killing lead to a very low probability of maintaining cells' clonogenic potential. A new method, therefore, is proposed in this paper, which could potentially allow these experiments to be conducted in a high-throughput fashion. Cells are seeded in special polypropylene dishes and bright-field illumination provides cell visualization. Digital images are obtained and cell detection is applied based on corner detection, generating individual cell targets as x-y points. These points in the dish are then irradiated individually by a micron field size high-LET microbeam. Post-irradiation, time-lapse imaging follows cells' response. All irradiated cells are tracked by linking trajectories in all time-frames, based on finding their nearest position. Cell divisions are detected based on cell appearance and individual cell temporary corner density. The number of divisions anticipated is low due to the high probability of cell killing from high-LET irradiation. Survival curves are produced based on cell's capacity to divide at least four to five times. The process is repeated for a range of doses of radiation. Validation shows the efficiency of the proposed cell detection and tracking method in finding cell divisions.

  14. Development and Characterization of a High Throughput Screen to investigate the delayed Effects of Radiations Commonly Encountered in Space

    Science.gov (United States)

    Morgan, W. F.

    Astronauts based on the space station or on long-term space missions will be exposed to high Z radiations in the cosmic environment In order to evaluate the potentially deleterious effects of exposure to radiations commonly encountered in space we have developed and characterized a high throughput assay to detect mutation deletion events and or hyperrecombination in the progeny of exposed cells This assay is based on a plasmid vector containing a green fluorescence protein reporter construct We have shown that after stable transfection of the vector into human or hamster cells this construct can identify mutations specifically base changes and deletions as well as recombination events e g gene conversion or homologous recombination occurring as a result of exposure to ionizing radiation Our focus has been on those events occurring in the progeny of an irradiated cell that are potentially associated with radiation induced genomic instability rather than the more conventional assays that evaluate the direct immediate effects of radiation exposure Considerable time has been spent automating analysis of surviving colonies as a function of time after irradiation in order to determine when delayed instability is induced and the consequences of this delayed instability The assay is now automated permitting the evaluation of potentially rare events associated with low dose low dose rate radiations commonly encountered in space

  15. Repurposing a Benchtop Centrifuge for High-Throughput Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Yang, Darren; Wong, Wesley P

    2018-01-01

    We present high-throughput single-molecule manipulation using a benchtop centrifuge, overcoming limitations common in other single-molecule approaches such as high cost, low throughput, technical difficulty, and strict infrastructure requirements. An inexpensive and compact Centrifuge Force Microscope (CFM) adapted to a commercial centrifuge enables use by nonspecialists, and integration with DNA nanoswitches facilitates both reliable measurements and repeated molecular interrogation. Here, we provide detailed protocols for constructing the CFM, creating DNA nanoswitch samples, and carrying out single-molecule force measurements.

  16. Machine learning in computational biology to accelerate high-throughput protein expression

    DEFF Research Database (Denmark)

    Sastry, Anand; Monk, Jonathan M.; Tegel, Hanna

    2017-01-01

    and machine learning identifies protein properties that hinder the HPA high-throughput antibody production pipeline. We predict protein expression and solubility with accuracies of 70% and 80%, respectively, based on a subset of key properties (aromaticity, hydropathy and isoelectric point). We guide...... the selection of protein fragments based on these characteristics to optimize high-throughput experimentation. Availability and implementation: We present the machine learning workflow as a series of IPython notebooks hosted on GitHub (https://github.com/SBRG/Protein_ML). The workflow can be used as a template...

  17. Recent advances in high-throughput molecular marker identification for superficial and invasive bladder cancers

    DEFF Research Database (Denmark)

    Andersen, Lars Dyrskjøt; Zieger, Karsten; Ørntoft, Torben Falck

    2007-01-01

    individually contributed to the management of the disease. However, the development of high-throughput techniques for simultaneous assessment of a large number of markers has allowed classification of tumors into clinically relevant molecular subgroups beyond those possible by pathological classification. Here......Bladder cancer is the fifth most common neoplasm in industrialized countries. Due to frequent recurrences of the superficial form of this disease, bladder cancer ranks as one of the most common cancers. Despite the description of a large number of tumor markers for bladder cancers, none have......, we review the recent advances in high-throughput molecular marker identification for superficial and invasive bladder cancers....

  18. High throughput diffractive multi-beam femtosecond laser processing using a spatial light modulator

    Energy Technology Data Exchange (ETDEWEB)

    Kuang Zheng [Laser Group, Department of Engineering, University of Liverpool Brownlow Street, Liverpool L69 3GQ (United Kingdom)], E-mail: z.kuang@liv.ac.uk; Perrie, Walter [Laser Group, Department of Engineering, University of Liverpool Brownlow Street, Liverpool L69 3GQ (United Kingdom); Leach, Jonathan [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Sharp, Martin; Edwardson, Stuart P. [Laser Group, Department of Engineering, University of Liverpool Brownlow Street, Liverpool L69 3GQ (United Kingdom); Padgett, Miles [Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ (United Kingdom); Dearden, Geoff; Watkins, Ken G. [Laser Group, Department of Engineering, University of Liverpool Brownlow Street, Liverpool L69 3GQ (United Kingdom)

    2008-12-30

    High throughput femtosecond laser processing is demonstrated by creating multiple beams using a spatial light modulator (SLM). The diffractive multi-beam patterns are modulated in real time by computer generated holograms (CGHs), which can be calculated by appropriate algorithms. An interactive LabVIEW program is adopted to generate the relevant CGHs. Optical efficiency at this stage is shown to be {approx}50% into first order beams and real time processing has been carried out at 50 Hz refresh rate. Results obtained demonstrate high precision surface micro-structuring on silicon and Ti6Al4V with throughput gain >1 order of magnitude.

  19. Towards sensitive, high-throughput, biomolecular assays based on fluorescence lifetime

    Science.gov (United States)

    Ioanna Skilitsi, Anastasia; Turko, Timothé; Cianfarani, Damien; Barre, Sophie; Uhring, Wilfried; Hassiepen, Ulrich; Léonard, Jérémie

    2017-09-01

    Time-resolved fluorescence detection for robust sensing of biomolecular interactions is developed by implementing time-correlated single photon counting in high-throughput conditions. Droplet microfluidics is used as a promising platform for the very fast handling of low-volume samples. We illustrate the potential of this very sensitive and cost-effective technology in the context of an enzymatic activity assay based on fluorescently-labeled biomolecules. Fluorescence lifetime detection by time-correlated single photon counting is shown to enable reliable discrimination between positive and negative control samples at a throughput as high as several hundred samples per second.

  20. High-throughput investigation of polymerization kinetics by online monitoring of GPC and GC

    NARCIS (Netherlands)

    Hoogenboom, R.; Fijten, M.W.M.; Abeln, C.H.; Schubert, U.S.

    2004-01-01

    Gel permeation chromatography (GPC) and gas chromatography (GC) were successfully introduced into a high-throughput workflow. The feasibility and limitations of online GPC with a high-speed column was evaluated by measuring polystyrene standards and comparison of the results with regular offline GPC

  1. ToxCast Workflow: High-throughput screening assay data processing, analysis and management (SOT)

    Science.gov (United States)

    US EPA’s ToxCast program is generating data in high-throughput screening (HTS) and high-content screening (HCS) assays for thousands of environmental chemicals, for use in developing predictive toxicity models. Currently the ToxCast screening program includes over 1800 unique c...

  2. Rapid and high-throughput detection of highly pathogenic bacteria by Ibis PLEX-ID technology.

    Directory of Open Access Journals (Sweden)

    Daniela Jacob

    Full Text Available In this manuscript, we describe the identification of highly pathogenic bacteria using an assay coupling biothreat group-specific PCR with electrospray ionization mass spectrometry (PCR/ESI-MS run on an Ibis PLEX-ID high-throughput platform. The biothreat cluster assay identifies most of the potential bioterrorism-relevant microorganisms including Bacillus anthracis, Francisella tularensis, Yersinia pestis, Burkholderia mallei and pseudomallei, Brucella species, and Coxiella burnetii. DNA from 45 different reference materials with different formulations and different concentrations were chosen and sent to a service screening laboratory that uses the PCR/ESI-MS platform to provide a microbial identification service. The standard reference materials were produced out of a repository built up in the framework of the EU funded project "Establishment of Quality Assurances for Detection of Highly Pathogenic Bacteria of Potential Bioterrorism Risk" (EQADeBa. All samples were correctly identified at least to the genus level.

  3. Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries.

    Science.gov (United States)

    Haghighattalab, Atena; González Pérez, Lorena; Mondal, Suchismita; Singh, Daljit; Schinstock, Dale; Rutkoski, Jessica; Ortiz-Monasterio, Ivan; Singh, Ravi Prakash; Goodin, Douglas; Poland, Jesse

    2016-01-01

    Low cost unmanned aerial systems (UAS) have great potential for rapid proximal measurements of plants in agriculture. In the context of plant breeding and genetics, current approaches for phenotyping a large number of breeding lines under field conditions require substantial investments in time, cost, and labor. For field-based high-throughput phenotyping (HTP), UAS platforms can provide high-resolution measurements for small plot research, while enabling the rapid assessment of tens-of-thousands of field plots. The objective of this study was to complete a baseline assessment of the utility of UAS in assessment field trials as commonly implemented in wheat breeding programs. We developed a semi-automated image-processing pipeline to extract plot level data from UAS imagery. The image dataset was processed using a photogrammetric pipeline based on image orientation and radiometric calibration to produce orthomosaic images. We also examined the relationships between vegetation indices (VIs) extracted from high spatial resolution multispectral imagery collected with two different UAS systems (eBee Ag carrying MultiSpec 4C camera, and IRIS+ quadcopter carrying modified NIR Canon S100) and ground truth spectral data from hand-held spectroradiometer. We found good correlation between the VIs obtained from UAS platforms and ground-truth measurements and observed high broad-sense heritability for VIs. We determined radiometric calibration methods developed for satellite imagery significantly improved the precision of VIs from the UAS. We observed VIs extracted from calibrated images of Canon S100 had a significantly higher correlation to the spectroradiometer (r = 0.76) than VIs from the MultiSpec 4C camera (r = 0.64). Their correlation to spectroradiometer readings was as high as or higher than repeated measurements with the spectroradiometer per se. The approaches described here for UAS imaging and extraction of proximal sensing data enable collection of HTP

  4. High pressure inertial focusing for separating and concentrating bacteria at high throughput

    Science.gov (United States)

    Cruz, J.; Hooshmand Zadeh, S.; Graells, T.; Andersson, M.; Malmström, J.; Wu, Z. G.; Hjort, K.

    2017-08-01

    Inertial focusing is a promising microfluidic technology for concentration and separation of particles by size. However, there is a strong correlation of increased pressure with decreased particle size. Theory and experimental results for larger particles were used to scale down the phenomenon and find the conditions that focus 1 µm particles. High pressure experiments in robust glass chips were used to demonstrate the alignment. We show how the technique works for 1 µm spherical polystyrene particles and for Escherichia coli, not being harmful for the bacteria at 50 µl min-1. The potential to focus bacteria, simplicity of use and high throughput make this technology interesting for healthcare applications, where concentration and purification of a sample may be required as an initial step.

  5. A ground-up approach to High Throughput Cloud Computing in High-Energy Physics

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00245123; Ganis, Gerardo; Bagnasco, Stefano

    The thesis explores various practical approaches in making existing High Throughput computing applications common in High Energy Physics work on cloud-provided resources, as well as opening the possibility for running new applications. The work is divided into two parts: firstly we describe the work done at the computing facility hosted by INFN Torino to entirely convert former Grid resources into cloud ones, eventually running Grid use cases on top along with many others in a more flexible way. Integration and conversion problems are duly described. The second part covers the development of solutions for automatizing the orchestration of cloud workers based on the load of a batch queue and the development of HEP applications based on ROOT's PROOF that can adapt at runtime to a changing number of workers.

  6. A comparison of high-throughput techniques for assaying circadian rhythms in plants.

    Science.gov (United States)

    Tindall, Andrew J; Waller, Jade; Greenwood, Mark; Gould, Peter D; Hartwell, James; Hall, Anthony

    2015-01-01

    Over the last two decades, the development of high-throughput techniques has enabled us to probe the plant circadian clock, a key coordinator of vital biological processes, in ways previously impossible. With the circadian clock increasingly implicated in key fitness and signalling pathways, this has opened up new avenues for understanding plant development and signalling. Our tool-kit has been constantly improving through continual development and novel techniques that increase throughput, reduce costs and allow higher resolution on the cellular and subcellular levels. With circadian assays becoming more accessible and relevant than ever to researchers, in this paper we offer a review of the techniques currently available before considering the horizons in circadian investigation at ever higher throughputs and resolutions.

  7. High-throughput analysis of endogenous fruit glycosyl hydrolases using a novel chromogenic hydrogel substrate assay

    DEFF Research Database (Denmark)

    Schückel, Julia; Kracun, Stjepan Kresimir; Lausen, Thomas Frederik

    2017-01-01

    A broad range of enzyme activities can be found in a wide range of different fruits and fruiting bodies but there is a lack of methods where many samples can be handled in a high-throughput and efficient manner. In particular, plant polysaccharide degrading enzymes – glycosyl hydrolases (GHs) play...... led to a more profound understanding of the importance of GH activity and regulation, current methods for determining glycosyl hydrolase activity are lacking in throughput and fail to keep up with data output from transcriptome research. Here we present the use of a versatile, easy...

  8. High-Throughput Cancer Cell Sphere Formation for 3D Cell Culture.

    Science.gov (United States)

    Chen, Yu-Chih; Yoon, Euisik

    2017-01-01

    Three-dimensional (3D) cell culture is critical in studying cancer pathology and drug response. Though 3D cancer sphere culture can be performed in low-adherent dishes or well plates, the unregulated cell aggregation may skew the results. On contrary, microfluidic 3D culture can allow precise control of cell microenvironments, and provide higher throughput by orders of magnitude. In this chapter, we will look into engineering innovations in a microfluidic platform for high-throughput cancer cell sphere formation and review the implementation methods in detail.

  9. Insect-derived cecropins display activity against Acinetobacter baumannii in a whole-animal high-throughput Caenorhabditis elegans model.

    Science.gov (United States)

    Jayamani, Elamparithi; Rajamuthiah, Rajmohan; Larkins-Ford, Jonah; Fuchs, Beth Burgwyn; Conery, Annie L; Vilcinskas, Andreas; Ausubel, Frederick M; Mylonakis, Eleftherios

    2015-03-01

    The rise of multidrug-resistant Acinetobacter baumannii and a concomitant decrease in antibiotic treatment options warrants a search for new classes of antibacterial agents. We have found that A. baumannii is pathogenic and lethal to the model host organism Caenorhabditis elegans and have exploited this phenomenon to develop an automated, high-throughput, high-content screening assay in liquid culture that can be used to identify novel antibiotics effective against A. baumannii. The screening assay involves coincubating C. elegans with A. baumannii in 384-well plates containing potential antibacterial compounds. At the end of the incubation period, worms are stained with a dye that stains only dead animals, and images are acquired using automated microscopy and then analyzed using an automated image analysis program. This robust assay yields a Z' factor consistently greater than 0.7. In a pilot experiment to test the efficacy of the assay, we screened a small custom library of synthetic antimicrobial peptides (AMPs) that were synthesized using publicly available sequence data and/or transcriptomic data from immune-challenged insects. We identified cecropin A and 14 other cecropin or cecropin-like peptides that were able to enhance C. elegans survival in the presence of A. baumannii. Interestingly, one particular hit, BR003-cecropin A, a cationic peptide synthesized by the mosquito Aedes aegypti, showed antibiotic activity against a panel of Gram-negative bacteria and exhibited a low MIC (5 μg/ml) against A. baumannii. BR003-cecropin A causes membrane permeability in A. baumannii, which could be the underlying mechanism of its lethality. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  10. WE-E-BRE-07: High-Throughput Mapping of Proton Biologic Effect

    Energy Technology Data Exchange (ETDEWEB)

    Bronk, L; Guan, F; Kerr, M; Dinh, J; Titt, U; Mirkovic, D; Lin, S; Mohan, R; Grosshans, D [UT MD Anderson Cancer Center, Houston, TX (United States)

    2014-06-15

    Purpose: To systematically relate the relative biological effectives (RBE) of proton therapy to beam linear energy transfer (LET) and dose. Methods: Using a custom irradiation apparatus previously characterized by our group, H460 NSCLCs were irradiated using a clinical 80MeV spot scanning proton beam. Utilizing this system allowed for high-throughput clonogenic assays performed in 96-well tissue culture plates as opposed to the traditional 6-well technique. Each column in the 96-well plate received a set LET-dose combination. By altering the total number of dose repaintings, numerous dose-LET configurations were examined to effectively generate surviving fraction (SF) data over the entire Bragg peak. The clonogenic assay was performed post-irradiation using an INCell Analyzer for colony quantification. SF data were fit to the linear-quadratic model for analysis. Results: Irradiation with increasing LETs resulted in decreased cell survival largely independent of dose. A significant correlation between LET and SF was identified by two-way ANOVA and the extra sum-of-squares F test. This trend was obscured at the lower LET values in the plateau region of the Bragg peak; however, it was clear for LET values at and beyond the Bragg peak. Data fits revealed the SF at a dose of 2Gy (SF2) to be 0.48 for the lowest tested LET (1.55keV/um), 0.47 at the end of the plateau region (4.74keV/um) and 0.33 for protons at the Bragg peak (10.35keV/um). Beyond the Bragg peak we measured SF2s of 0.16 for 15.01keV/um, 0.02 for 16.79keV/um, and 0.004 for 18.06keV/um. Conclusion: We have shown that our methodology enables high-content automated screening for proton irradiations over a range of LETs. The observed decrease in cellular SF in high LET regions confirms an increased RBE of the radiation and suggests further evaluation of proton RBE values is necessary to optimize clinical outcomes. Rosalie B. Hite Graduate Fellowship in Cancer Research, NIH Program Project Grant P01CA021239.

  11. Towards high-throughput molecular detection of Plasmodium: new approaches and molecular markers

    Directory of Open Access Journals (Sweden)

    Rogier Christophe

    2009-04-01

    Full Text Available Abstract Background Several strategies are currently deployed in many countries in the tropics to strengthen malaria control toward malaria elimination. To measure the impact of any intervention, there is a need to detect malaria properly. Mostly, decisions still rely on microscopy diagnosis. But sensitive diagnosis tools enabling to deal with a large number of samples are needed. The molecular detection approach offers a much higher sensitivity, and the flexibility to be automated and upgraded. Methods Two new molecular methods were developed: dot18S, a Plasmodium-specific nested PCR based on the 18S rRNA gene followed by dot-blot detection of species by using species-specific probes and CYTB, a Plasmodium-specific nested PCR based on cytochrome b gene followed by species detection using SNP analysis. The results were compared to those obtained with microscopic examination and the "standard" 18S rRNA gene based nested PCR using species specific primers. 337 samples were diagnosed. Results Compared to the microscopy the three molecular methods were more sensitive, greatly increasing the estimated prevalence of Plasmodium infection, including P. malariae and P. ovale. A high rate of mixed infections was uncovered with about one third of the villagers infected with more than one malaria parasite species. Dot18S and CYTB sensitivity outranged the "standard" nested PCR method, CYTB being the most sensitive. As a consequence, compared to the "standard" nested PCR method for the detection of Plasmodium spp., the sensitivity of dot18S and CYTB was respectively 95.3% and 97.3%. Consistent detection of Plasmodium spp. by the three molecular methods was obtained for 83% of tested isolates. Contradictory results were mostly related to detection of Plasmodium malariae and Plasmodium ovale in mixed infections, due to an "all-or-none" detection effect at low-level parasitaemia. Conclusion A large reservoir of asymptomatic infections was uncovered using the

  12. Solid-phase cloning for high-throughput assembly of single and multiple DNA parts

    DEFF Research Database (Denmark)

    Lundqvist, Magnus; Edfors, Fredrik; Sivertsson, Åsa

    2015-01-01

    We describe solid-phase cloning (SPC) for high-throughput assembly of expression plasmids. Our method allows PCR products to be put directly into a liquid handler for capture and purification using paramagnetic streptavidin beads and conversion into constructs by subsequent cloning reactions. We ...

  13. Virtual high screening throughput and design of 14α-lanosterol ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-06

    Jul 6, 2009 ... Virtual high screening throughput and design of. 14α-lanosterol demethylase inhibitors against. Mycobacterium tuberculosis. Hildebert B. Maurice1*, Esther Tuarira1 and Kennedy Mwambete2. 1School of Pharmaceutical Sciences, Institute of Allied Health Sciences, Muhimbili University of Health and.

  14. Quantitative in vitro-to-in vivo extrapolation in a high-throughput environment

    International Nuclear Information System (INIS)

    Wetmore, Barbara A.

    2015-01-01

    High-throughput in vitro toxicity screening provides an efficient way to identify potential biological targets for environmental and industrial chemicals while conserving limited testing resources. However, reliance on the nominal chemical concentrations in these in vitro assays as an indicator of bioactivity may misrepresent potential in vivo effects of these chemicals due to differences in clearance, protein binding, bioavailability, and other pharmacokinetic factors. Development of high-throughput in vitro hepatic clearance and protein binding assays and refinement of quantitative in vitro-to-in vivo extrapolation (QIVIVE) methods have provided key tools to predict xenobiotic steady state pharmacokinetics. Using a process known as reverse dosimetry, knowledge of the chemical steady state behavior can be incorporated with HTS data to determine the external in vivo oral exposure needed to achieve internal blood concentrations equivalent to those eliciting bioactivity in the assays. These daily oral doses, known as oral equivalents, can be compared to chronic human exposure estimates to assess whether in vitro bioactivity would be expected at the dose-equivalent level of human exposure. This review will describe the use of QIVIVE methods in a high-throughput environment and the promise they hold in shaping chemical testing priorities and, potentially, high-throughput risk assessment strategies

  15. Discovery of viruses and virus-like pathogens in pistachio using high-throughput sequencing

    Science.gov (United States)

    Pistachio (Pistacia vera L.) trees from the National Clonal Germplasm Repository (NCGR) and orchards in California were surveyed for viruses and virus-like agents by high-throughput sequencing (HTS). Analyses of 60 trees including clonal UCB-1 hybrid rootstock (P. atlantica × P. integerrima) identif...

  16. High throughput deposition of hydrogenated amorphous carbon coatings on rubber with expanding thermal plasma

    NARCIS (Netherlands)

    Pei, Y.T.; Eivani, A.R.; Zaharia, T.; Kazantis, A.V.; Sanden, van de M.C.M.; De Hosson, J.T.M.

    2014-01-01

    Flexible hydrogenated amorphous carbon (a-C:H) thin film coated on rubbers has shown outstanding protection of rubber seals from friction and wear. This work concentrates on the potential advances of expanding thermal plasma (ETP) process for a high throughput deposition of a-C:H thin films in

  17. Insights into Sonogashira cross-coupling by high-throughput kinetics and descriptor modeling

    NARCIS (Netherlands)

    an der Heiden, M.R.; Plenio, H.; Immel, S.; Burello, E.; Rothenberg, G.; Hoefsloot, H.C.J.

    2008-01-01

    A method is presented for the high-throughput monitoring of reaction kinetics in homogeneous catalysis, running up to 25 coupling reactions in a single reaction vessel. This method is demonstrated and validated on the Sonogashira reaction, analyzing the kinetics for almost 500 coupling reactions.

  18. Modeling Disordered Materials with a High Throughput ab-initio Approach

    Science.gov (United States)

    2015-11-13

    Modeling Disordered Materials with a High Throughput ab - initio Approach Kesong Yang,1 Corey Oses,2 and Stefano Curtarolo3, 4 1Department of...J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54, 11169–11186 (1996

  19. High-throughput assessment of context-dependent effects of chromatin proteins

    NARCIS (Netherlands)

    Brueckner, L. (Laura); Van Arensbergen, J. (Joris); Akhtar, W. (Waseem); L. Pagie (Ludo); B. van Steensel (Bas)

    2016-01-01

    textabstractBackground: Chromatin proteins control gene activity in a concerted manner. We developed a high-throughput assay to study the effects of the local chromatin environment on the regulatory activity of a protein of interest. The assay combines a previously reported multiplexing strategy

  20. High-throughput, temperature-controlled microchannel acoustophoresis device made with rapid prototyping

    DEFF Research Database (Denmark)

    Adams, Jonathan D; Ebbesen, Christian L.; Barnkob, Rune

    2012-01-01

    -slide format using low-cost, rapid-prototyping techniques. This high-throughput acoustophoresis chip (HTAC) utilizes a temperature-stabilized, standing ultrasonic wave, which imposes differential acoustic radiation forces that can separate particles according to size, density and compressibility. The device...

  1. A high-throughput method for GMO multi-detection using a microfluidic dynamic array

    NARCIS (Netherlands)

    Brod, F.C.A.; Dijk, van J.P.; Voorhuijzen, M.M.; Dinon, A.Z.; Guimarães, L.H.S.; Scholtens, I.M.J.; Arisi, A.C.M.; Kok, E.J.

    2014-01-01

    The ever-increasing production of genetically modified crops generates a demand for high-throughput DNAbased methods for the enforcement of genetically modified organisms (GMO) labelling requirements. The application of standard real-time PCR will become increasingly costly with the growth of the

  2. Retrofit Strategies for Incorporating Xenobiotic Metabolism into High Throughput Screening Assays (EMGS)

    Science.gov (United States)

    The US EPA’s ToxCast program is designed to assess chemical perturbations of molecular and cellular endpoints using a variety of high-throughput screening (HTS) assays. However, existing HTS assays have limited or no xenobiotic metabolism which could lead to a mischaracterization...

  3. High-throughput verification of transcriptional starting sites by Deep-RACE

    DEFF Research Database (Denmark)

    Olivarius, Signe; Plessy, Charles; Carninci, Piero

    2009-01-01

    We present a high-throughput method for investigating the transcriptional starting sites of genes of interest, which we named Deep-RACE (Deep–rapid amplification of cDNA ends). Taking advantage of the latest sequencing technology, it allows the parallel analysis of multiple genes and is free...

  4. New approach for high-throughput screening of drug activity on Plasmodium liver stages.

    NARCIS (Netherlands)

    Gego, A.; Silvie, O.; Franetich, J.F.; Farhati, K.; Hannoun, L.; Luty, A.J.F.; Sauerwein, R.W.; Boucheix, C.; Rubinstein, E.; Mazier, D.

    2006-01-01

    Plasmodium liver stages represent potential targets for antimalarial prophylactic drugs. Nevertheless, there is a lack of molecules active on these stages. We have now developed a new approach for the high-throughput screening of drug activity on Plasmodium liver stages in vitro, based on an

  5. High-throughput experimentation in synthetic polymer chemistry: From RAFT and anionic polymerizations to process development

    NARCIS (Netherlands)

    Guerrero-Sanchez, C.A.; Paulus, R.M.; Fijten, M.W.M.; Mar, de la M.J.; Hoogenboom, R.; Schubert, U.S.

    2006-01-01

    The application of combinatorial and high-throughput approaches in polymer research is described. An overview of the utilized synthesis robots is given, including different parallel synthesizers and a process development robot. In addition, the application of the parallel synthesis robots to

  6. High-throughput transformation of Saccharomyces cerevisiae using liquid handling robots.

    Directory of Open Access Journals (Sweden)

    Guangbo Liu

    Full Text Available Saccharomyces cerevisiae (budding yeast is a powerful eukaryotic model organism ideally suited to high-throughput genetic analyses, which time and again has yielded insights that further our understanding of cell biology processes conserved in humans. Lithium Acetate (LiAc transformation of yeast with DNA for the purposes of exogenous protein expression (e.g., plasmids or genome mutation (e.g., gene mutation, deletion, epitope tagging is a useful and long established method. However, a reliable and optimized high throughput transformation protocol that runs almost no risk of human error has not been described in the literature. Here, we describe such a method that is broadly transferable to most liquid handling high-throughput robotic platforms, which are now commonplace in academic and industry settings. Using our optimized method, we are able to comfortably transform approximately 1200 individual strains per day, allowing complete transformation of typical genomic yeast libraries within 6 days. In addition, use of our protocol for gene knockout purposes also provides a potentially quicker, easier and more cost-effective approach to generating collections of double mutants than the popular and elegant synthetic genetic array methodology. In summary, our methodology will be of significant use to anyone interested in high throughput molecular and/or genetic analysis of yeast.

  7. High throughput "omics" approaches to assess the effects of phytochemicals in human health studies

    Czech Academy of Sciences Publication Activity Database

    Ovesná, J.; Slabý, O.; Toussaint, O.; Kodíček, M.; Maršík, Petr; Pouchová, V.; Vaněk, Tomáš

    2008-01-01

    Roč. 99, E-S1 (2008), ES127-ES134 ISSN 0007-1145 R&D Projects: GA MŠk(CZ) 1P05OC054 Institutional research plan: CEZ:AV0Z50380511 Keywords : Nutrigenomics * Phytochemicals * High throughput platforms Subject RIV: GM - Food Processing Impact factor: 2.764, year: 2008

  8. High-Throughput Dietary Exposure Predictions for Chemical Migrants from Food Packaging Materials

    Science.gov (United States)

    United States Environmental Protection Agency researchers have developed a Stochastic Human Exposure and Dose Simulation High -Throughput (SHEDS-HT) model for use in prioritization of chemicals under the ExpoCast program. In this research, new methods were implemented in SHEDS-HT...

  9. High-throughput sequencing of forensic genetic samples using punches of FTA cards with buccal swabs

    DEFF Research Database (Denmark)

    Kampmann, Marie-Louise; Buchard, Anders; Børsting, Claus

    2016-01-01

    Here, we demonstrate that punches from buccal swab samples preserved on FTA cards can be used for high-throughput DNA sequencing, also known as massively parallel sequencing (MPS). We typed 44 reference samples with the HID-Ion AmpliSeq Identity Panel using washed 1.2 mm punches from FTA cards...

  10. Defining the taxonomic domain of applicability for mammalian-based high-throughput screening assays

    Science.gov (United States)

    Cell-based high throughput screening (HTS) technologies are becoming mainstream in chemical safety evaluations. The US Environmental Protection Agency (EPA) Toxicity Forecaster (ToxCastTM) and the multi-agency Tox21 Programs have been at the forefront in advancing this science, m...

  11. High-throughput testing of terpenoid biosynthesis candidate genes using transient expression in Nicotiana benthamiana

    DEFF Research Database (Denmark)

    Bach, Søren Spanner; Bassard, Jean-Étienne André; Andersen-Ranberg, Johan

    2014-01-01

    To respond to the rapidly growing number of genes putatively involved in terpenoid metabolism, a robust high-throughput platform for functional testing is needed. An in planta expression system offers several advantages such as the capacity to produce correctly folded and active enzymes localized...

  12. High-throughput computational methods and software for quantitative trait locus (QTL) mapping

    NARCIS (Netherlands)

    Arends, Danny

    2014-01-01

    De afgelopen jaren zijn vele nieuwe technologieen zoals Tiling arrays en High throughput DNA sequencing een belangrijke rol gaan spelen binnen het onderzoeksveld van de systeem genetica. Voor onderzoekers is het extreem belangrijk om te begrijpen dat deze methodes hun manier van werken zullen gaan

  13. Evaluation of Simple and Inexpensive High-Throughput Methods for Phytic Acid Determination

    DEFF Research Database (Denmark)

    Raboy, Victor; Johnson, Amy; Bilyeu, Kristin

    2017-01-01

    High-throughput/low-cost/low-tech methods for phytic acid determination that are sufficiently accurate and reproducible would be of value in plant genetics, crop breeding and in the food and feed industries. Variants of two candidate methods, those described by Vaintraub and Lapteva (Anal Biochem...... and legume flours regardless of endogenous phytic acid levels or matrix constituents....

  14. High-throughput open source computational methods for genetics and genomics

    NARCIS (Netherlands)

    Prins, J.C.P.

    2015-01-01

    Biology is increasingly data driven by virtue of the development of high-throughput technologies, such as DNA and RNA sequencing. Computational biology and bioinformatics are scientific disciplines that cross-over between the disciplines of biology, informatics and statistics; which is clearly

  15. The protein crystallography beamline BW6 at DORIS - automatic operation and high-throughput data collection

    CERN Document Server

    Blume, H; Bourenkov, G P; Kosciesza, D; Bartunik, H D

    2001-01-01

    The wiggler beamline BW6 at DORIS has been optimized for de-novo solution of protein structures on the basis of MAD phasing. Facilities for automatic data collection, rapid data transfer and storage, and online processing have been developed which provide adequate conditions for high-throughput applications, e.g., in structural genomics.

  16. tcpl: The ToxCast Pipeline for High-Throughput Screening Data

    Science.gov (United States)

    Motivation: The large and diverse high-throughput chemical screening efforts carried out by the US EPAToxCast program requires an efficient, transparent, and reproducible data pipeline.Summary: The tcpl R package and its associated MySQL database provide a generalized platform fo...

  17. Reverse Phase Protein Arrays for High-Throughput Protein Measurements in Mammospheres

    DEFF Research Database (Denmark)

    Pedersen, Marlene Lemvig; Block, Ines; List, Markus

    Protein Array (RPPA)-based readout format integrated into robotic siRNA screening. This technique would allow post-screening high-throughput quantification of protein changes. Recently, breast cancer stem cells (BCSCs) have attracted much attention, as a tumor- and metastasis-driving subpopulation...

  18. High throughput generated micro-aggregates of chondrocytes stimulate cartilage formation in vitro and in vivo

    NARCIS (Netherlands)

    Moreira Teixeira, Liliana; Leijten, Jeroen Christianus Hermanus; Sobral, J.; Jin, R.; van Apeldoorn, Aart A.; Feijen, Jan; van Blitterswijk, Clemens; Dijkstra, Pieter J.; Karperien, Hermanus Bernardus Johannes

    2012-01-01

    Cell-based cartilage repair strategies such as matrix-induced autologous chondrocyte implantation (MACI) could be improved by enhancing cell performance. We hypothesised that micro-aggregates of chondrocytes generated in high-throughput prior to implantation in a defect could stimulate cartilaginous

  19. High efficient plastic solar cells fabricated with a high-throughput gravure printing method

    Energy Technology Data Exchange (ETDEWEB)

    Kopola, P.; Jin, H.; Tuomikoski, M.; Maaninen, A.; Hast, J. [VTT, Kaitovaeylae 1, FIN-90571 Oulu (Finland); Aernouts, T. [IMEC, Organic PhotoVoltaics, Polymer and Molecular Electronics, Kapeldreef 75, B-3001 Leuven (Belgium); Guillerez, S. [CEA-INES RDI, 50 Avenue Du Lac Leman, 73370 Le Bourget Du Lac (France)

    2010-10-15

    We report on polymer-based solar cells prepared by the high-throughput roll-to-roll gravure printing method. The engravings of the printing plate, along with process parameters like printing speed and ink properties, are studied to optimise the printability of the photoactive as well as the hole transport layer. For the hole transport layer, the focus is on testing different formulations to produce thorough wetting of the indium-tin-oxide (ITO) substrate. The challenge for the photoactive layer is to form a uniform layer with optimal nanomorphology in the poly-3-hexylthiophene (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend. This results in a power conversion efficiency of 2.8% under simulated AM1.5G solar illumination for a solar cell device with gravure-printed hole transport and a photoactive layer. (author)

  20. Evaluation of High Density Air Traffic Operations with Automation for Separation Assurance, Weather Avoidance and Schedule Conformance

    Science.gov (United States)

    Prevot, Thomas; Mercer, Joey S.; Martin, Lynne Hazel; Homola, Jeffrey R.; Cabrall, Christopher D.; Brasil, Connie L.

    2011-01-01

    In this paper we discuss the development and evaluation of our prototype technologies and procedures for far-term air traffic control operations with automation for separation assurance, weather avoidance and schedule conformance. Controller-in-the-loop simulations in the Airspace Operations Laboratory at the NASA Ames Research Center in 2010 have shown very promising results. We found the operations to provide high airspace throughput, excellent efficiency and schedule conformance. The simulation also highlighted areas for improvements: Short-term conflict situations sometimes resulted in separation violations, particularly for transitioning aircraft in complex traffic flows. The combination of heavy metering and growing weather resulted in an increased number of aircraft penetrating convective weather cells. To address these shortcomings technologies and procedures have been improved and the operations are being re-evaluated with the same scenarios. In this paper we will first describe the concept and technologies for automating separation assurance, weather avoidance, and schedule conformance. Second, the results from the 2010 simulation will be reviewed. We report human-systems integration aspects, safety and efficiency results as well as airspace throughput, workload, and operational acceptability. Next, improvements will be discussed that were made to address identified shortcomings. We conclude that, with further refinements, air traffic control operations with ground-based automated separation assurance can routinely provide currently unachievable levels of traffic throughput in the en route airspace.

  1. Innovative on board payload optical architecture for high throughput satellites

    Science.gov (United States)

    Baudet, D.; Braux, B.; Prieur, O.; Hughes, R.; Wilkinson, M.; Latunde-Dada, K.; Jahns, J.; Lohmann, U.; Fey, D.; Karafolas, N.

    2017-11-01

    For the next generation of HighThroughPut (HTP) Telecommunications Satellites, space end users' needs will result in higher link speeds and an increase in the number of channels; up to 512 channels running at 10Gbits/s. By keeping electrical interconnections based on copper, the constraints in term of power dissipation, number of electrical wires and signal integrity will become too demanding. The replacement of the electrical links by optical links is the most adapted solution as it provides high speed links with low power consumption and no EMC/EMI. But replacing all electrical links by optical links of an On Board Payload (OBP) is challenging. It is not simply a matter of replacing electrical components with optical but rather the whole concept and architecture have to be rethought to achieve a high reliability and high performance optical solution. In this context, this paper will present the concept of an Innovative OBP Optical Architecture. The optical architecture was defined to meet the critical requirements of the application: signal speed, number of channels, space reliability, power dissipation, optical signals crossing and components availability. The resulting architecture is challenging and the need for new developments is highlighted. But this innovative optically interconnected architecture will substantially outperform standard electrical ones.

  2. High-throughput antibody development and retrospective epitope mapping

    DEFF Research Database (Denmark)

    Rydahl, Maja Gro

    the binding profile - in more or less high resolution - of two small molecular probes, 11 carbohydrate binding modules and 24 monoclonal antibodies. This was made possible by combining the HTP multiplexing capacity of carbohydrate microarrays with diverse glycomic tools, to downstream characterize...

  3. CrossCheck: an open-source web tool for high-throughput screen data analysis.

    Science.gov (United States)

    Najafov, Jamil; Najafov, Ayaz

    2017-07-19

    Modern high-throughput screening methods allow researchers to generate large datasets that potentially contain important biological information. However, oftentimes, picking relevant hits from such screens and generating testable hypotheses requires training in bioinformatics and the skills to efficiently perform database mining. There are currently no tools available to general public that allow users to cross-reference their screen datasets with published screen datasets. To this end, we developed CrossCheck, an online platform for high-throughput screen data analysis. CrossCheck is a centralized database that allows effortless comparison of the user-entered list of gene symbols with 16,231 published datasets. These datasets include published data from genome-wide RNAi and CRISPR screens, interactome proteomics and phosphoproteomics screens, cancer mutation databases, low-throughput studies of major cell signaling mediators, such as kinases, E3 ubiquitin ligases and phosphatases, and gene ontological information. Moreover, CrossCheck includes a novel database of predicted protein kinase substrates, which was developed using proteome-wide consensus motif searches. CrossCheck dramatically simplifies high-throughput screen data analysis and enables researchers to dig deep into the published literature and streamline data-driven hypothesis generation. CrossCheck is freely accessible as a web-based application at http://proteinguru.com/crosscheck.

  4. Quantitative high-throughput screen identifies inhibitors of the Schistosoma mansoni redox cascade.

    Directory of Open Access Journals (Sweden)

    Anton Simeonov

    2008-01-01

    Full Text Available Schistosomiasis is a tropical disease associated with high morbidity and mortality, currently affecting over 200 million people worldwide. Praziquantel is the only drug used to treat the disease, and with its increased use the probability of developing drug resistance has grown significantly. The Schistosoma parasites can survive for up to decades in the human host due in part to a unique set of antioxidant enzymes that continuously degrade the reactive oxygen species produced by the host's innate immune response. Two principal components of this defense system have been recently identified in S. mansoni as thioredoxin/glutathione reductase (TGR and peroxiredoxin (Prx and as such these enzymes present attractive new targets for anti-schistosomiasis drug development. Inhibition of TGR/Prx activity was screened in a dual-enzyme format with reducing equivalents being transferred from NADPH to glutathione via a TGR-catalyzed reaction and then to hydrogen peroxide via a Prx-catalyzed step. A fully automated quantitative high-throughput (qHTS experiment was performed against a collection of 71,028 compounds tested as 7- to 15-point concentration series at 5 microL reaction volume in 1536-well plate format. In order to generate a robust data set and to minimize the effect of compound autofluorescence, apparent reaction rates derived from a kinetic read were utilized instead of end-point measurements. Actives identified from the screen, along with previously untested analogues, were subjected to confirmatory experiments using the screening assay and subsequently against the individual targets in secondary assays. Several novel active series were identified which inhibited TGR at a range of potencies, with IC(50s ranging from micromolar to the assay response limit ( approximately 25 nM. This is, to our knowledge, the first report of a large-scale HTS to identify lead compounds for a helminthic disease, and provides a paradigm that can be used to jump

  5. High-Throughput Tabular Data Processor - Platform independent graphical tool for processing large data sets.

    Science.gov (United States)

    Madanecki, Piotr; Bałut, Magdalena; Buckley, Patrick G; Ochocka, J Renata; Bartoszewski, Rafał; Crossman, David K; Messiaen, Ludwine M; Piotrowski, Arkadiusz

    2018-01-01

    High-throughput technologies generate considerable amount of data which often requires bioinformatic expertise to analyze. Here we present High-Throughput Tabular Data Processor (HTDP), a platform independent Java program. HTDP works on any character-delimited column data (e.g. BED, GFF, GTF, PSL, WIG, VCF) from multiple text files and supports merging, filtering and converting of data that is produced in the course of high-throughput experiments. HTDP can also utilize itemized sets of conditions from external files for complex or repetitive filtering/merging tasks. The program is intended to aid global, real-time processing of large data sets using a graphical user interface (GUI). Therefore, no prior expertise in programming, regular expression, or command line usage is required of the user. Additionally, no a priori assumptions are imposed on the internal file composition. We demonstrate the flexibility and potential of HTDP in real-life research tasks including microarray and massively parallel sequencing, i.e. identification of disease predisposing variants in the next generation sequencing data as well as comprehensive concurrent analysis of microarray and sequencing results. We also show the utility of HTDP in technical tasks including data merge, reduction and filtering with external criteria files. HTDP was developed to address functionality that is missing or rudimentary in other GUI software for processing character-delimited column data from high-throughput technologies. Flexibility, in terms of input file handling, provides long term potential functionality in high-throughput analysis pipelines, as the program is not limited by the currently existing applications and data formats. HTDP is available as the Open Source software (https://github.com/pmadanecki/htdp).

  6. Automated, High Temperature Furnace for Glovebox Operation

    International Nuclear Information System (INIS)

    Neikirk, K.

    2001-01-01

    The U.S. Department of Energy will immobilize excess plutonium in the proposed Plutonium Immobilization Plant (PIP) at the Savannah River Site (SRS) as part of a two track approach for the disposition of weapons usable plutonium. As such, the Department of Energy is funding a development and testing effort for the PIP. This effort is being performed jointly by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), and Argonne National Laboratory (ANL). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulting package and resistance heating elements located within a nuclear glovebox. Other furnaces considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment. Due to the radiation levels and contamination associated with the plutonium material, the sintering process will be fully automated and contained within nuclear material gloveboxes. As such, the furnace currently under development incorporates water and air cooling to minimize heat load to the glovebox. This paper will describe the furnace equipment and systems needed to employ a fully automated puck sintering process within nuclear gloveboxes as part of the Plutonium Immobilization Plant

  7. Adaptive sampling strategies with high-throughput molecular dynamics

    Science.gov (United States)

    Clementi, Cecilia

    Despite recent significant hardware and software developments, the complete thermodynamic and kinetic characterization of large macromolecular complexes by molecular simulations still presents significant challenges. The high dimensionality of these systems and the complexity of the associated potential energy surfaces (creating multiple metastable regions connected by high free energy barriers) does not usually allow to adequately sample the relevant regions of their configurational space by means of a single, long Molecular Dynamics (MD) trajectory. Several different approaches have been proposed to tackle this sampling problem. We focus on the development of ensemble simulation strategies, where data from a large number of weakly coupled simulations are integrated to explore the configurational landscape of a complex system more efficiently. Ensemble methods are of increasing interest as the hardware roadmap is now mostly based on increasing core counts, rather than clock speeds. The main challenge in the development of an ensemble approach for efficient sampling is in the design of strategies to adaptively distribute the trajectories over the relevant regions of the systems' configurational space, without using any a priori information on the system global properties. We will discuss the definition of smart adaptive sampling approaches that can redirect computational resources towards unexplored yet relevant regions. Our approaches are based on new developments in dimensionality reduction for high dimensional dynamical systems, and optimal redistribution of resources. NSF CHE-1152344, NSF CHE-1265929, Welch Foundation C-1570.

  8. Asleep at the automated wheel-Sleepiness and fatigue during highly automated driving.

    Science.gov (United States)

    Vogelpohl, Tobias; Kühn, Matthias; Hummel, Thomas; Vollrath, Mark

    2018-03-20

    pose a serious hazard in complex take-over situations where situation awareness is required to prepare for threats. Driver fatigue monitoring or controllable distraction through non-driving tasks could be necessary to ensure alertness and availability during highly automated driving. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. High-throughput single nucleotide polymorphism genotyping using nanofluidic Dynamic Arrays

    Directory of Open Access Journals (Sweden)

    Crenshaw Andrew

    2009-01-01

    Full Text Available Abstract Background Single nucleotide polymorphisms (SNPs have emerged as the genetic marker of choice for mapping disease loci and candidate gene association studies, because of their high density and relatively even distribution in the human genomes. There is a need for systems allowing medium multiplexing (ten to hundreds of SNPs with high throughput, which can efficiently and cost-effectively generate genotypes for a very large sample set (thousands of individuals. Methods that are flexible, fast, accurate and cost-effective are urgently needed. This is also important for those who work on high throughput genotyping in non-model systems where off-the-shelf assays are not available and a flexible platform is needed. Results We demonstrate the use of a nanofluidic Integrated Fluidic Circuit (IFC - based genotyping system for medium-throughput multiplexing known as the Dynamic Array, by genotyping 994 individual human DNA samples on 47 different SNP assays, using nanoliter volumes of reagents. Call rates of greater than 99.5% and call accuracies of greater than 99.8% were achieved from our study, which demonstrates that this is a formidable genotyping platform. The experimental set up is very simple, with a time-to-result for each sample of about 3 hours. Conclusion Our results demonstrate that the Dynamic Array is an excellent genotyping system for medium-throughput multiplexing (30-300 SNPs, which is simple to use and combines rapid throughput with excellent call rates, high concordance and low cost. The exceptional call rates and call accuracy obtained may be of particular interest to those working on validation and replication of genome- wide- association (GWA studies.

  10. Melter Throughput Enhancements for High-Iron HLW

    Energy Technology Data Exchange (ETDEWEB)

    Kruger, A. A. [Department of Energy, Office of River Protection, Richland, Washington (United States); Gan, Hoa [The Catholic University of America, Washington, DC (United States); Joseph, Innocent [The Catholic University of America, Washington, DC (United States); Pegg, Ian L. [The Catholic University of America, Washington, DC (United States); Matlack, Keith S. [The Catholic University of America, Washington, DC (United States); Chaudhuri, Malabika [The Catholic University of America, Washington, DC (United States); Kot, Wing [The Catholic University of America, Washington, DC (United States)

    2012-12-26

    This report describes work performed to develop and test new glass and feed formulations in order to increase glass melting rates in high waste loading glass formulations for HLW with high concentrations of iron. Testing was designed to identify glass and melter feed formulations that optimize waste loading and waste processing rate while meeting all processing and product quality requirements. The work included preparation and characterization of crucible melts to assess melt rate using a vertical gradient furnace system and to develop new formulations with enhanced melt rate. Testing evaluated the effects of waste loading on glass properties and the maximum waste loading that can be achieved. The results from crucible-scale testing supported subsequent DuraMelter 100 (DM100) tests designed to examine the effects of enhanced glass and feed formulations on waste processing rate and product quality. The DM100 was selected as the platform for these tests due to its extensive previous use in processing rate determination for various HLW streams and glass compositions.

  11. Ultra-High-Throughput Sample Preparation System for Lymphocyte Immunophenotyping Point-of-Care Diagnostics.

    Science.gov (United States)

    Walsh, David I; Murthy, Shashi K; Russom, Aman

    2016-10-01

    Point-of-care (POC) microfluidic devices often lack the integration of common sample preparation steps, such as preconcentration, which can limit their utility in the field. In this technology brief, we describe a system that combines the necessary sample preparation methods to perform sample-to-result analysis of large-volume (20 mL) biopsy model samples with staining of captured cells. Our platform combines centrifugal-paper microfluidic filtration and an analysis system to process large, dilute biological samples. Utilizing commercialization-friendly manufacturing methods and materials, yielding a sample throughput of 20 mL/min, and allowing for on-chip staining and imaging bring together a practical, yet powerful approach to microfluidic diagnostics of large, dilute samples. © 2016 Society for Laboratory Automation and Screening.

  12. A continuous high-throughput bioparticle sorter based on 3D traveling-wave dielectrophoresis.

    Science.gov (United States)

    Cheng, I-Fang; Froude, Victoria E; Zhu, Yingxi; Chang, Hsueh-Chia; Chang, Hsien-Chang

    2009-11-21

    We present a high throughput (maximum flow rate approximately 10 microl/min or linear velocity approximately 3 mm/s) continuous bio-particle sorter based on 3D traveling-wave dielectrophoresis (twDEP) at an optimum AC frequency of 500 kHz. The high throughput sorting is achieved with a sustained twDEP particle force normal to the continuous through-flow, which is applied over the entire chip by a single 3D electrode array. The design allows continuous fractionation of micron-sized particles into different downstream sub-channels based on differences in their twDEP mobility on both sides of the cross-over. Conventional DEP is integrated upstream to focus the particles into a single levitated queue to allow twDEP sorting by mobility difference and to minimize sedimentation and field-induced lysis. The 3D electrode array design minimizes the offsetting effect of nDEP (negative DEP with particle force towards regions with weak fields) on twDEP such that both forces increase monotonically with voltage to further increase the throughput. Effective focusing and separation of red blood cells from debris-filled heterogeneous samples are demonstrated, as well as size-based separation of poly-dispersed liposome suspensions into two distinct bands at 2.3 to 4.6 microm and 1.5 to 2.7 microm, at the highest throughput recorded in hand-held chips of 6 microl/min.

  13. 40 CFR Table 9 to Subpart Eeee of... - Continuous Compliance With Operating Limits-High Throughput Transfer Racks

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 12 2010-07-01 2010-07-01 true Continuous Compliance With Operating Limits-High Throughput Transfer Racks 9 Table 9 to Subpart EEEE of Part 63 Protection of Environment...—Continuous Compliance With Operating Limits—High Throughput Transfer Racks As stated in §§ 63.2378(a) and (b...

  14. High-throughput search for new permanent magnet materials.

    Science.gov (United States)

    Goll, D; Loeffler, R; Herbst, J; Karimi, R; Schneider, G

    2014-02-12

    The currently highest-performance Fe-Nd-B magnets show limited cost-effectiveness and lifetime due to their rare-earth (RE) content. The demand for novel hard magnetic phases with more widely available RE metals, reduced RE content or, even better, completely free of RE metals is therefore tremendous. The chances are that such materials still exist given the large number of as yet unexplored alloy systems. To discover such phases, an elaborate concept is necessary which can restrict and prioritize the search field while making use of efficient synthesis and analysis methods. It is shown that an efficient synthesis of new phases using heterogeneous non-equilibrium diffusion couples and reaction sintering is possible. Quantitative microstructure analysis of the domain pattern of the hard magnetic phases can be used to estimate the intrinsic magnetic parameters (saturation polarization from the domain contrast, anisotropy constant from the domain width, Curie temperature from the temperature dependence of the domain contrast). The probability of detecting TM-rich phases for a given system is high, therefore the approach enables one to scan through even higher component systems with one single sample. The visualization of newly occurring hard magnetic phases via their typical domain structure and the correlation existing between domain structure and intrinsic magnetic properties allows an evaluation of the industrial relevance of these novel phases.

  15. Informatics and High Throughput Screening of Thermophysical Properties

    Science.gov (United States)

    Hyers, Robert W.; Rogers, Jan R.

    2008-01-01

    The combination of computer-aided experiments with computational modeling enables a new class of powerful tools for materials research. A non-contact method for measuring density, thermal expansion, and creep of undercooled and high-temperature materials has been developed, using electrostatic levitation and optical diagnostics, including digital video. These experiments were designed to take advantage of the large volume of data (many gigabytes/experiment, terabytes/campaign) to gain additional information about the samples. For example, using sub-pixel interpolation to measure about 1000 vectors per image of the sample's surface allows the density of an axisymmetric sample to be determined to an accuracy of about 200 ppm (0.02%). A similar analysis applied to the surface shape of a rapidly rotating sample is combined with finite element modeling to determine the stress-dependence of creep in the sample in a single test. Details of the methods for both the computer-aided experiments and computational models will be discussed.

  16. Scrutinizing virus genome termini by high-throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Shasha Li

    Full Text Available Analysis of genomic terminal sequences has been a major step in studies on viral DNA replication and packaging mechanisms. However, traditional methods to study genome termini are challenging due to the time-consuming protocols and their inefficiency where critical details are lost easily. Recent advances in next generation sequencing (NGS have enabled it to be a powerful tool to study genome termini. In this study, using NGS we sequenced one iridovirus genome and twenty phage genomes and confirmed for the first time that the high frequency sequences (HFSs found in the NGS reads are indeed the terminal sequences of viral genomes. Further, we established a criterion to distinguish the type of termini and the viral packaging mode. We also obtained additional terminal details such as terminal repeats, multi-termini, asymmetric termini. With this approach, we were able to simultaneously detect details of the genome termini as well as obtain the complete sequence of bacteriophage genomes. Theoretically, this application can be further extended to analyze larger and more complicated genomes of plant and animal viruses. This study proposed a novel and efficient method for research on viral replication, packaging, terminase activity, transcription regulation, and metabolism of the host cell.

  17. Ensembler: Enabling High-Throughput Molecular Simulations at the Superfamily Scale.

    Directory of Open Access Journals (Sweden)

    Daniel L Parton

    2016-06-01

    Full Text Available The rapidly expanding body of available genomic and protein structural data provides a rich resource for understanding protein dynamics with biomolecular simulation. While computational infrastructure has grown rapidly, simulations on an omics scale are not yet widespread, primarily because software infrastructure to enable simulations at this scale has not kept pace. It should now be possible to study protein dynamics across entire (superfamilies, exploiting both available structural biology data and conformational similarities across homologous proteins. Here, we present a new tool for enabling high-throughput simulation in the genomics era. Ensembler takes any set of sequences-from a single sequence to an entire superfamily-and shepherds them through various stages of modeling and refinement to produce simulation-ready structures. This includes comparative modeling to all relevant PDB structures (which may span multiple conformational states of interest, reconstruction of missing loops, addition of missing atoms, culling of nearly identical structures, assignment of appropriate protonation states, solvation in explicit solvent, and refinement and filtering with molecular simulation to ensure stable simulation. The output of this pipeline is an ensemble of structures ready for subsequent molecular simulations using computer clusters, supercomputers, or distributed computing projects like Folding@home. Ensembler thus automates much of the time-consuming process of preparing protein models suitable for simulation, while allowing scalability up to entire superfamilies. A particular advantage of this approach can be found in the construction of kinetic models of conformational dynamics-such as Markov state models (MSMs-which benefit from a diverse array of initial configurations that span the accessible conformational states to aid sampling. We demonstrate the power of this approach by constructing models for all catalytic domains in the human

  18. High-throughput machining using high average power ultrashort pulse lasers and ultrafast polygon scanner

    Science.gov (United States)

    Schille, Joerg; Schneider, Lutz; Streek, André; Kloetzer, Sascha; Loeschner, Udo

    2016-03-01

    In this paper, high-throughput ultrashort pulse laser machining is investigated on various industrial grade metals (Aluminium, Copper, Stainless steel) and Al2O3 ceramic at unprecedented processing speeds. This is achieved by using a high pulse repetition frequency picosecond laser with maximum average output power of 270 W in conjunction with a unique, in-house developed two-axis polygon scanner. Initially, different concepts of polygon scanners are engineered and tested to find out the optimal architecture for ultrafast and precision laser beam scanning. Remarkable 1,000 m/s scan speed is achieved on the substrate, and thanks to the resulting low pulse overlap, thermal accumulation and plasma absorption effects are avoided at up to 20 MHz pulse repetition frequencies. In order to identify optimum processing conditions for efficient high-average power laser machining, the depths of cavities produced under varied parameter settings are analyzed and, from the results obtained, the characteristic removal values are specified. The maximum removal rate is achieved as high as 27.8 mm3/min for Aluminium, 21.4 mm3/min for Copper, 15.3 mm3/min for Stainless steel and 129.1 mm3/min for Al2O3 when full available laser power is irradiated at optimum pulse repetition frequency.

  19. A high-throughput, multi-channel photon-counting detector with picosecond timing

    Science.gov (United States)

    Lapington, J. S.; Fraser, G. W.; Miller, G. M.; Ashton, T. J. R.; Jarron, P.; Despeisse, M.; Powolny, F.; Howorth, J.; Milnes, J.

    2009-06-01

    High-throughput photon counting with high time resolution is a niche application area where vacuum tubes can still outperform solid-state devices. Applications in the life sciences utilizing time-resolved spectroscopies, particularly in the growing field of proteomics, will benefit greatly from performance enhancements in event timing and detector throughput. The HiContent project is a collaboration between the University of Leicester Space Research Centre, the Microelectronics Group at CERN, Photek Ltd., and end-users at the Gray Cancer Institute and the University of Manchester. The goal is to develop a detector system specifically designed for optical proteomics, capable of high content (multi-parametric) analysis at high throughput. The HiContent detector system is being developed to exploit this niche market. It combines multi-channel, high time resolution photon counting in a single miniaturized detector system with integrated electronics. The combination of enabling technologies; small pore microchannel plate devices with very high time resolution, and high-speed multi-channel ASIC electronics developed for the LHC at CERN, provides the necessary building blocks for a high-throughput detector system with up to 1024 parallel counting channels and 20 ps time resolution. We describe the detector and electronic design, discuss the current status of the HiContent project and present the results from a 64-channel prototype system. In the absence of an operational detector, we present measurements of the electronics performance using a pulse generator to simulate detector events. Event timing results from the NINO high-speed front-end ASIC captured using a fast digital oscilloscope are compared with data taken with the proposed electronic configuration