WorldWideScience

Sample records for automated eukaryotic gene

  1. Automated Eukaryotic Gene Structure Annotation Using EVidenceModeler and the Program to Assemble Spliced Alignments

    Energy Technology Data Exchange (ETDEWEB)

    Haas, B J; Salzberg, S L; Zhu, W; Pertea, M; Allen, J E; Orvis, J; White, O; Buell, C R; Wortman, J R

    2007-12-10

    EVidenceModeler (EVM) is presented as an automated eukaryotic gene structure annotation tool that reports eukaryotic gene structures as a weighted consensus of all available evidence. EVM, when combined with the Program to Assemble Spliced Alignments (PASA), yields a comprehensive, configurable annotation system that predicts protein-coding genes and alternatively spliced isoforms. Our experiments on both rice and human genome sequences demonstrate that EVM produces automated gene structure annotation approaching the quality of manual curation.

  2. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes

    DEFF Research Database (Denmark)

    Alsmark, Cecilia; Foster, Peter G; Sicheritz-Pontén, Thomas

    2013-01-01

    BACKGROUND: The influence of lateral gene transfer on gene origins and biology in eukaryotes is poorly understood compared with those of prokaryotes. A number of independent investigations focusing on specific genes, individual genomes, or specific functional categories from various eukaryotes have...... indicated that lateral gene transfer does indeed affect eukaryotic genomes. However, the lack of common methodology and criteria in these studies makes it difficult to assess the general importance and influence of lateral gene transfer on eukaryotic genome evolution. RESULTS: We used a phylogenomic...... are conserved among lineages, the genes making up those pathways can have very different origins in different eukaryotes. Thus, from the perspective of the effects of lateral gene transfer on individual gene ancestries in different lineages, eukaryotic metabolism appears to be chimeric....

  3. Endosymbiotic gene transfer from prokaryotic pangenomes: Inherited chimerism in eukaryotes.

    Science.gov (United States)

    Ku, Chuan; Nelson-Sathi, Shijulal; Roettger, Mayo; Garg, Sriram; Hazkani-Covo, Einat; Martin, William F

    2015-08-18

    Endosymbiotic theory in eukaryotic-cell evolution rests upon a foundation of three cornerstone partners--the plastid (a cyanobacterium), the mitochondrion (a proteobacterium), and its host (an archaeon)--and carries a corollary that, over time, the majority of genes once present in the organelle genomes were relinquished to the chromosomes of the host (endosymbiotic gene transfer). However, notwithstanding eukaryote-specific gene inventions, single-gene phylogenies have never traced eukaryotic genes to three single prokaryotic sources, an issue that hinges crucially upon factors influencing phylogenetic inference. In the age of genomes, single-gene trees, once used to test the predictions of endosymbiotic theory, now spawn new theories that stand to eventually replace endosymbiotic theory with descriptive, gene tree-based variants featuring supernumerary symbionts: prokaryotic partners distinct from the cornerstone trio and whose existence is inferred solely from single-gene trees. We reason that the endosymbiotic ancestors of mitochondria and chloroplasts brought into the eukaryotic--and plant and algal--lineage a genome-sized sample of genes from the proteobacterial and cyanobacterial pangenomes of their respective day and that, even if molecular phylogeny were artifact-free, sampling prokaryotic pangenomes through endosymbiotic gene transfer would lead to inherited chimerism. Recombination in prokaryotes (transduction, conjugation, transformation) differs from recombination in eukaryotes (sex). Prokaryotic recombination leads to pangenomes, and eukaryotic recombination leads to vertical inheritance. Viewed from the perspective of endosymbiotic theory, the critical transition at the eukaryote origin that allowed escape from Muller's ratchet--the origin of eukaryotic recombination, or sex--might have required surprisingly little evolutionary innovation.

  4. Exploring the behavior of small eukaryotic gene networks

    NARCIS (Netherlands)

    Bruggeman, F.J.; Oancea, I.; van Driel, R.

    2008-01-01

    Analysis of the genome organization of higher eukaryotes indicates that it contains many clusters of functionally related genes. In these clusters, the activity of a single gene is regulated hierarchically at a local gene-level and a global cluster-level. Whether a single gene can be activated by a

  5. An Evolutionary Network of Genes Present in the Eukaryote Common Ancestor Polls Genomes on Eukaryotic and Mitochondrial Origin

    OpenAIRE

    Thiergart, Thorsten; Landan, Giddy; Schenk, Marc; Dagan, Tal; Martin, William F.

    2012-01-01

    To test the predictions of competing and mutually exclusive hypotheses for the origin of eukaryotes, we identified from a sample of 27 sequenced eukaryotic and 994 sequenced prokaryotic genomes 571 genes that were present in the eukaryote common ancestor and that have homologues among eubacterial and archaebacterial genomes. Maximum-likelihood trees identified the prokaryotic genomes that most frequently contained genes branching as the sister to the eukaryotic nuclear homologues. Among the a...

  6. Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes

    Directory of Open Access Journals (Sweden)

    Melkonian Michael

    2008-07-01

    Full Text Available Abstract Background Chlamydiae are obligate intracellular bacteria of protists, invertebrates and vertebrates, but have not been found to date in photosynthetic eukaryotes (algae and embryophytes. Genes of putative chlamydial origin, however, are present in significant numbers in sequenced genomes of photosynthetic eukaryotes. It has been suggested that such genes were acquired by an ancient horizontal gene transfer from Chlamydiae to the ancestor of photosynthetic eukaryotes. To further test this hypothesis, an extensive search for proteins of chlamydial origin was performed using several recently sequenced algal genomes and EST databases, and the proteins subjected to phylogenetic analyses. Results A total of 39 proteins of chlamydial origin were retrieved from the photosynthetic eukaryotes analyzed and their identity verified through phylogenetic analyses. The distribution of the chlamydial proteins among four groups of photosynthetic eukaryotes (Viridiplantae, Rhodoplantae, Glaucoplantae, Bacillariophyta was complex suggesting multiple acquisitions and losses. Evidence is presented that all except one of the chlamydial genes originated from an ancient endosymbiosis of a chlamydial bacterium into the ancestor of the Plantae before their divergence into Viridiplantae, Rhodoplantae and Glaucoplantae, i.e. more than 1.1 BYA. The chlamydial proteins subsequently spread through secondary plastid endosymbioses to other eukaryotes. Of 20 chlamydial proteins recovered from the genomes of two Bacillariophyta, 10 were of rhodoplant, and 10 of viridiplant origin suggesting that they were acquired by two different secondary endosymbioses. Phylogenetic analyses of concatenated sequences demonstrated that the viridiplant secondary endosymbiosis likely occurred before the divergence of Chlorophyta and Streptophyta. Conclusion We identified 39 proteins of chlamydial origin in photosynthetic eukaryotes signaling an ancient invasion of the ancestor of the

  7. An Evolutionary Network of Genes Present in the Eukaryote Common Ancestor Polls Genomes on Eukaryotic and Mitochondrial Origin

    Science.gov (United States)

    Thiergart, Thorsten; Landan, Giddy; Schenk, Marc; Dagan, Tal; Martin, William F.

    2012-01-01

    To test the predictions of competing and mutually exclusive hypotheses for the origin of eukaryotes, we identified from a sample of 27 sequenced eukaryotic and 994 sequenced prokaryotic genomes 571 genes that were present in the eukaryote common ancestor and that have homologues among eubacterial and archaebacterial genomes. Maximum-likelihood trees identified the prokaryotic genomes that most frequently contained genes branching as the sister to the eukaryotic nuclear homologues. Among the archaebacteria, euryarchaeote genomes most frequently harbored the sister to the eukaryotic nuclear gene, whereas among eubacteria, the α-proteobacteria were most frequently represented within the sister group. Only 3 genes out of 571 gave a 3-domain tree. Homologues from α-proteobacterial genomes that branched as the sister to nuclear genes were found more frequently in genomes of facultatively anaerobic members of the rhiozobiales and rhodospirilliales than in obligate intracellular ricketttsial parasites. Following α-proteobacteria, the most frequent eubacterial sister lineages were γ-proteobacteria, δ-proteobacteria, and firmicutes, which were also the prokaryote genomes least frequently found as monophyletic groups in our trees. Although all 22 higher prokaryotic taxa sampled (crenarchaeotes, γ-proteobacteria, spirochaetes, chlamydias, etc.) harbor genes that branch as the sister to homologues present in the eukaryotic common ancestor, that is not evidence of 22 different prokaryotic cells participating at eukaryote origins because prokaryotic “lineages” have laterally acquired genes for more than 1.5 billion years since eukaryote origins. The data underscore the archaebacterial (host) nature of the eukaryotic informational genes and the eubacterial (mitochondrial) nature of eukaryotic energy metabolism. The network linking genes of the eukaryote ancestor to contemporary homologues distributed across prokaryotic genomes elucidates eukaryote gene origins in a

  8. Noise minimization in eukaryotic gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, Hunter B.; Hirsh, Aaron E.; Giaever, Guri; Kumm, Jochen; Eisen, Michael B.

    2004-01-15

    All organisms have elaborate mechanisms to control rates of protein production. However, protein production is also subject to stochastic fluctuations, or noise. Several recent studies in Saccharomyces cerevisiae and Escherichia coli have investigated the relationship between transcription and translation rates and stochastic fluctuations in protein levels, or more generally, how such randomness is a function of intrinsic and extrinsic factors. However, the fundamental question of whether stochasticity in protein expression is generally biologically relevant has not been addressed, and it remains unknown whether random noise in the protein production rate of most genes significantly affects the fitness of any organism. We propose that organisms should be particularly sensitive to variation in the protein levels of two classes of genes: genes whose deletion is lethal to the organism and genes that encode subunits of multiprotein complexes. Using an experimentally verified model of stochastic gene expression in S. cerevisiae, we estimate the noise in protein production for nearly every yeast gene, and confirm our prediction that the production of essential and complex-forming proteins involves lower levels of noise than does the production of most other genes. Our results support the hypothesis that noise in gene expression is a biologically important variable, is generally detrimental to organismal fitness, and is subject to natural selection.

  9. Automatic generation of gene finders for eukaryotic species

    DEFF Research Database (Denmark)

    Terkelsen, Kasper Munch; Krogh, A.

    2006-01-01

    Background The number of sequenced eukaryotic genomes is rapidly increasing. This means that over time it will be hard to keep supplying customised gene finders for each genome. This calls for procedures to automatically generate species-specific gene finders and to re-train them as the quantity...... length distributions. The performance of each individual gene predictor on each individual genome is comparable to the best of the manually optimised species-specific gene finders. It is shown that species-specific gene finders are superior to gene finders trained on other species....

  10. Eukaryote-to-eukaryote gene transfer gives rise to genome mosaicism in euglenids

    Directory of Open Access Journals (Sweden)

    Weber Andreas PM

    2011-04-01

    Full Text Available Abstract Background Euglenophytes are a group of photosynthetic flagellates possessing a plastid derived from a green algal endosymbiont, which was incorporated into an ancestral host cell via secondary endosymbiosis. However, the impact of endosymbiosis on the euglenophyte nuclear genome is not fully understood due to its complex nature as a 'hybrid' of a non-photosynthetic host cell and a secondary endosymbiont. Results We analyzed an EST dataset of the model euglenophyte Euglena gracilis using a gene mining program designed to detect laterally transferred genes. We found E. gracilis genes showing affinity not only with green algae, from which the secondary plastid in euglenophytes evolved, but also red algae and/or secondary algae containing red algal-derived plastids. Phylogenetic analyses of these 'red lineage' genes suggest that E. gracilis acquired at least 14 genes via eukaryote-to-eukaryote lateral gene transfer from algal sources other than the green algal endosymbiont that gave rise to its current plastid. We constructed an EST library of the aplastidic euglenid Peranema trichophorum, which is a eukaryovorous relative of euglenophytes, and also identified 'red lineage' genes in its genome. Conclusions Our data show genome mosaicism in E. gracilis and P. trichophorum. One possible explanation for the presence of these genes in these organisms is that some or all of them were independently acquired by lateral gene transfer and contributed to the successful integration and functioning of the green algal endosymbiont as a secondary plastid. Alternative hypotheses include the presence of a phagocytosed alga as the single source of those genes, or a cryptic tertiary endosymbiont harboring secondary plastid of red algal origin, which the eukaryovorous ancestor of euglenophytes had acquired prior to the secondary endosymbiosis of a green alga.

  11. Patterns of intron gain and conservation in eukaryotic genes

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2007-10-01

    Full Text Available Abstract Background: The presence of introns in protein-coding genes is a universal feature of eukaryotic genome organization, and the genes of multicellular eukaryotes, typically, contain multiple introns, a substantial fraction of which share position in distant taxa, such as plants and animals. Depending on the methods and data sets used, researchers have reached opposite conclusions on the causes of the high fraction of shared introns in orthologous genes from distant eukaryotes. Some studies conclude that shared intron positions reflect, almost entirely, a remarkable evolutionary conservation, whereas others attribute it to parallel gain of introns. To resolve these contradictions, it is crucial to analyze the evolution of introns by using a model that minimally relies on arbitrary assumptions. Results: We developed a probabilistic model of evolution that allows for variability of intron gain and loss rates over branches of the phylogenetic tree, individual genes, and individual sites. Applying this model to an extended set of conserved eukaryotic genes, we find that parallel gain, on average, accounts for only ~8% of the shared intron positions. However, the distribution of parallel gains over the phylogenetic tree of eukaryotes is highly non-uniform. There are, practically, no parallel gains in closely related lineages, whereas for distant lineages, such as animals and plants, parallel gains appear to contribute up to 20% of the shared intron positions. In accord with these findings, we estimated that ancestral introns have a high probability to be retained in extant genomes, and conversely, that a substantial fraction of extant introns have retained their positions since the early stages of eukaryotic evolution. In addition, the density of sites that are available for intron insertion is estimated to be, approximately, one in seven basepairs. Conclusion: We obtained robust estimates of the contribution of parallel gain to the observed

  12. Mechanisms of heat-shock gene activation in higher eukaryotes

    International Nuclear Information System (INIS)

    Bienz, M.; Pelham, H.R.B.

    1987-01-01

    Heat-shock genes are activated under conditions of heat shock or other environmental stresses. This gene activation is rapid and reversible, resulting in a transition from hardly detectable levels of transcription to extremely high transcription rates causing heat-shock proteins (HSP) to accumulate to high levels. In this review, the components of the heat-shock gene activation systems, including the cis-acting elements and the trans-acting factors, are considered. Data on how these components act together to result in transcription activation and how multiple controls are achieved are summarized. Finally, the questions of how the cell detects the environmental stimulus and translates it into gene activation and how the functions of the gene products relate to this process are addressed. The article focuses on heat-shock gene activation in higher eukaryotes. Only those aspects of heat-shock genes and proteins which are relevant to the question of gene activation are included

  13. Evolution of glutamate dehydrogenase genes: evidence for lateral gene transfer within and between prokaryotes and eukaryotes

    Directory of Open Access Journals (Sweden)

    Roger Andrew J

    2003-06-01

    Full Text Available Abstract Background Lateral gene transfer can introduce genes with novel functions into genomes or replace genes with functionally similar orthologs or paralogs. Here we present a study of the occurrence of the latter gene replacement phenomenon in the four gene families encoding different classes of glutamate dehydrogenase (GDH, to evaluate and compare the patterns and rates of lateral gene transfer (LGT in prokaryotes and eukaryotes. Results We extend the taxon sampling of gdh genes with nine new eukaryotic sequences and examine the phylogenetic distribution pattern of the various GDH classes in combination with maximum likelihood phylogenetic analyses. The distribution pattern analyses indicate that LGT has played a significant role in the evolution of the four gdh gene families. Indeed, a number of gene transfer events are identified by phylogenetic analyses, including numerous prokaryotic intra-domain transfers, some prokaryotic inter-domain transfers and several inter-domain transfers between prokaryotes and microbial eukaryotes (protists. Conclusion LGT has apparently affected eukaryotes and prokaryotes to a similar extent within the gdh gene families. In the absence of indications that the evolution of the gdh gene families is radically different from other families, these results suggest that gene transfer might be an important evolutionary mechanism in microbial eukaryote genome evolution.

  14. Eukaryotic snoRNAs: a paradigm for gene expression flexibility.

    Science.gov (United States)

    Dieci, Giorgio; Preti, Milena; Montanini, Barbara

    2009-08-01

    Small nucleolar RNAs (snoRNAs) are one of the most ancient and numerous families of non-protein-coding RNAs (ncRNAs). The main function of snoRNAs - to guide site-specific rRNA modification - is the same in Archaea and all eukaryotic lineages. In contrast, as revealed by recent genomic and RNomic studies, their genomic organization and expression strategies are the most varied. Seemingly snoRNA coding units have adopted, in the course of evolution, all the possible ways of being transcribed, thus providing a unique paradigm of gene expression flexibility. By focusing on representative fungal, plant and animal genomes, we review here all the documented types of snoRNA gene organization and expression, and we provide a comprehensive account of snoRNA expressional freedom by precisely estimating the frequency, in each genome, of each type of genomic organization. We finally discuss the relevance of snoRNA genomic studies for our general understanding of ncRNA family evolution and expression in eukaryotes.

  15. Evolutionary Origins of the Eukaryotic Shikimate Pathway: Gene Fusions, Horizontal Gene Transfer, and Endosymbiotic Replacements†

    Science.gov (United States)

    Richards, Thomas A.; Dacks, Joel B.; Campbell, Samantha A.; Blanchard, Jeffrey L.; Foster, Peter G.; McLeod, Rima; Roberts, Craig W.

    2006-01-01

    Currently the shikimate pathway is reported as a metabolic feature of prokaryotes, ascomycete fungi, apicomplexans, and plants. The plant shikimate pathway enzymes have similarities to prokaryote homologues and are largely active in chloroplasts, suggesting ancestry from the plastid progenitor genome. Toxoplasma gondii, which also possesses an alga-derived plastid organelle, encodes a shikimate pathway with similarities to ascomycete genes, including a five-enzyme pentafunctional arom. These data suggests that the shikimate pathway and the pentafunctional arom either had an ancient origin in the eukaryotes or was conveyed by eukaryote-to-eukaryote horizontal gene transfer (HGT). We expand sampling and analyses of the shikimate pathway genes to include the oomycetes, ciliates, diatoms, basidiomycetes, zygomycetes, and the green and red algae. Sequencing of cDNA from Tetrahymena thermophila confirmed the presence of a pentafused arom, as in fungi and T. gondii. Phylogenies and taxon distribution suggest that the arom gene fusion event may be an ancient eukaryotic innovation. Conversely, the Plantae lineage (represented here by both Viridaeplantae and the red algae) acquired different prokaryotic genes for all seven steps of the shikimate pathway. Two of the phylogenies suggest a derivation of the Plantae genes from the cyanobacterial plastid progenitor genome, but if the full Plantae pathway was originally of cyanobacterial origin, then the five other shikimate pathway genes were obtained from a minimum of two other eubacterial genomes. Thus, the phylogenies demonstrate both separate HGTs and shared derived HGTs within the Plantae clade either by primary HGT transfer or secondarily via the plastid progenitor genome. The shared derived characters support the holophyly of the Plantae lineage and a single ancestral primary plastid endosymbiosis. Our analyses also pinpoints a minimum of 50 gene/domain loss events, demonstrating that loss and replacement events have been

  16. Widespread horizontal gene transfer from double-stranded RNA viruses to eukaryotic nuclear genomes.

    Science.gov (United States)

    Liu, Huiquan; Fu, Yanping; Jiang, Daohong; Li, Guoqing; Xie, Jiatao; Cheng, Jiasen; Peng, Youliang; Ghabrial, Said A; Yi, Xianhong

    2010-11-01

    Horizontal gene transfer commonly occurs from cells to viruses but rarely occurs from viruses to their host cells, with the exception of retroviruses and some DNA viruses. However, extensive sequence similarity searches in public genome databases for various organisms showed that the capsid protein and RNA-dependent RNA polymerase genes from totiviruses and partitiviruses have widespread homologs in the nuclear genomes of eukaryotic organisms, including plants, arthropods, fungi, nematodes, and protozoa. PCR amplification and sequencing as well as comparative evidence of junction coverage between virus and host sequences support the conclusion that these viral homologs are real and occur in eukaryotic genomes. Sequence comparison and phylogenetic analysis suggest that these genes were likely transferred horizontally from viruses to eukaryotic genomes. Furthermore, we present evidence showing that some of the transferred genes are conserved and expressed in eukaryotic organisms and suggesting that these viral genes are also functional in the recipient genomes. Our findings imply that horizontal transfer of double-stranded RNA viral genes is widespread among eukaryotes and may give rise to functionally important new genes, thus entailing that RNA viruses may play significant roles in the evolution of eukaryotes.

  17. Expression of the lysostaphin gene of Staphylococcus simulans in a eukaryotic system.

    OpenAIRE

    Williamson, C M; Bramley, A J; Lax, A J

    1994-01-01

    The lysostaphin gene of Staphylococcus simulans was cloned into Escherichia coli. The 5' end of the gene was modified to include a eukaryotic start codon, the Kozak expression start site consensus sequence, and an enzyme site to facilitate manipulation of the gene. Transcription of the modified gene in vitro yielded an RNA transcript which, when added to a rabbit reticulocyte cell-free translation system, directed the synthesis of several products. The largest product, migrating at approximat...

  18. PhyloPat: phylogenetic pattern analysis of eukaryotic genes

    NARCIS (Netherlands)

    Hulsen, T.; Vlieg, J. de; Groenen, P.M.

    2006-01-01

    BACKGROUND: Phylogenetic patterns show the presence or absence of certain genes or proteins in a set of species. They can also be used to determine sets of genes or proteins that occur only in certain evolutionary branches. Phylogenetic patterns analysis has routinely been applied to protein

  19. A tree of life based on ninety-eight expressed genes conserved across diverse eukaryotic species.

    Directory of Open Access Journals (Sweden)

    Pawan Kumar Jayaswal

    Full Text Available Rapid advances in DNA sequencing technologies have resulted in the accumulation of large data sets in the public domain, facilitating comparative studies to provide novel insights into the evolution of life. Phylogenetic studies across the eukaryotic taxa have been reported but on the basis of a limited number of genes. Here we present a genome-wide analysis across different plant, fungal, protist, and animal species, with reference to the 36,002 expressed genes of the rice genome. Our analysis revealed 9831 genes unique to rice and 98 genes conserved across all 49 eukaryotic species analysed. The 98 genes conserved across diverse eukaryotes mostly exhibited binding and catalytic activities and shared common sequence motifs; and hence appeared to have a common origin. The 98 conserved genes belonged to 22 functional gene families including 26S protease, actin, ADP-ribosylation factor, ATP synthase, casein kinase, DEAD-box protein, DnaK, elongation factor 2, glyceraldehyde 3-phosphate, phosphatase 2A, ras-related protein, Ser/Thr protein phosphatase family protein, tubulin, ubiquitin and others. The consensus Bayesian eukaryotic tree of life developed in this study demonstrated widely separated clades of plants, fungi, and animals. Musa acuminata provided an evolutionary link between monocotyledons and dicotyledons, and Salpingoeca rosetta provided an evolutionary link between fungi and animals, which indicating that protozoan species are close relatives of fungi and animals. The divergence times for 1176 species pairs were estimated accurately by integrating fossil information with synonymous substitution rates in the comprehensive set of 98 genes. The present study provides valuable insight into the evolution of eukaryotes.

  20. PhyloPat: phylogenetic pattern analysis of eukaryotic genes

    Directory of Open Access Journals (Sweden)

    de Vlieg Jacob

    2006-09-01

    Full Text Available Abstract Background Phylogenetic patterns show the presence or absence of certain genes or proteins in a set of species. They can also be used to determine sets of genes or proteins that occur only in certain evolutionary branches. Phylogenetic patterns analysis has routinely been applied to protein databases such as COG and OrthoMCL, but not upon gene databases. Here we present a tool named PhyloPat which allows the complete Ensembl gene database to be queried using phylogenetic patterns. Description PhyloPat is an easy-to-use webserver, which can be used to query the orthologies of all complete genomes within the EnsMart database using phylogenetic patterns. This enables the determination of sets of genes that occur only in certain evolutionary branches or even single species. We found in total 446,825 genes and 3,164,088 orthologous relationships within the EnsMart v40 database. We used a single linkage clustering algorithm to create 147,922 phylogenetic lineages, using every one of the orthologies provided by Ensembl. PhyloPat provides the possibility of querying with either binary phylogenetic patterns (created by checkboxes or regular expressions. Specific branches of a phylogenetic tree of the 21 included species can be selected to create a branch-specific phylogenetic pattern. Users can also input a list of Ensembl or EMBL IDs to check which phylogenetic lineage any gene belongs to. The output can be saved in HTML, Excel or plain text format for further analysis. A link to the FatiGO web interface has been incorporated in the HTML output, creating easy access to functional information. Finally, lists of omnipresent, polypresent and oligopresent genes have been included. Conclusion PhyloPat is the first tool to combine complete genome information with phylogenetic pattern querying. Since we used the orthologies generated by the accurate pipeline of Ensembl, the obtained phylogenetic lineages are reliable. The completeness and reliability

  1. Gene flow and biological conflict systems in the origin and evolution of eukaryotes

    Directory of Open Access Journals (Sweden)

    L eAravind

    2012-06-01

    Full Text Available The endosymbiotic origin of eukaryotes brought together two disparate genomes in the cell. Additionally, eukaryotic natural history has included other endosymbiotic events, phagotrophic consumption of organisms, and intimate interactions with viruses and endoparasites. These phenomena facilitated large-scale lateral gene transfer and biological conflicts. We synthesize information from nearly two decades of genomics to illustrate how the interplay between lateral gene transfer and biological conflicts has impacted the emergence of new adaptations in eukaryotes. Using apicomplexans as example, we illustrate how lateral transfer from animals has contributed to unique parasite-host interfaces comprised of adhesion- and O-linked glycosylation-related domains. Adaptations, emerging due to intense selection for diversity in the molecular participants in organismal and genomic conflicts, being dispersed by lateral transfer, were subsequently exapted for eukaryote-specific innovations. We illustrate this using examples relating to eukaryotic chromatin, RNAi and RNA-processing systems, signaling pathways, apoptosis and immunity. We highlight the major contributions from catalytic domains of bacterial toxin-systems to the origin of signaling enzymes (e.g. ADP-ribosylation and small-molecule messenger synthesis, mutagenic enzymes for immune receptor diversification and RNA-processing. Similarly, we discuss contributions of bacterial antibiotic/siderophore synthesis systems and intra-genomic and intra-cellular selfish elements (e.g. restriction-modification, mobile elements and lysogenic phages in the emergence of chromatin remodeling/modifying enzymes and RNA-based regulation. We develop the concept that biological conflict systems served as evolutionary nurseries for innovations in the protein world, which were delivered to eukaryotes via lateral gene flow to spur key evolutionary innovations all the way from nucleogenesis to lineage-specific adaptations

  2. Distribution Associated with Stochastic Processes of Gene Expression in a Single Eukaryotic Cell

    Directory of Open Access Journals (Sweden)

    Kuznetsov Vladimir A

    2001-01-01

    Full Text Available The ability to simultaneously measure mRNA abundance for large number of genes has revolutionized biological research by allowing statistical analysis of global gene-expression data. Large-scale gene-expression data sets have been analyzed in order to identify the probability distributions of gene expression levels (or transcript copy numbers in eukaryotic cells. Determining such function(s may provide a theoretical basis for accurately counting all expressed genes in a given cell and for understanding gene expression control. Using the gene-expression libraries derived from yeast cells and from different human cell tissues we found that all observed gene expression levels data appear to follow a Pareto-like skewed frequency distribution. We produced a the skewed probability function, called the Binomial Differential distribution, that accounts for many rarely transcribed genes in a single cell. We also developed a novel method for estimating and removing major experimental errors and redundancies from the Serial Analysis Gene Expression (SAGE data sets. We successfully applied this method to the yeast transcriptome. A "basal" random transcription mechanism for all protein-coding genes in every eukaryotic cell type is predicted.

  3. Exploring repetitive DNA landscapes using REPCLASS, a tool that automates the classification of transposable elements in eukaryotic genomes.

    Science.gov (United States)

    Feschotte, Cédric; Keswani, Umeshkumar; Ranganathan, Nirmal; Guibotsy, Marcel L; Levine, David

    2009-07-23

    Eukaryotic genomes contain large amount of repetitive DNA, most of which is derived from transposable elements (TEs). Progress has been made to develop computational tools for ab initio identification of repeat families, but there is an urgent need to develop tools to automate the annotation of TEs in genome sequences. Here we introduce REPCLASS, a tool that automates the classification of TE sequences. Using control repeat libraries, we show that the program can classify accurately virtually any known TE types. Combining REPCLASS to ab initio repeat finding in the genomes of Caenorhabditis elegans and Drosophila melanogaster allowed us to recover the contrasting TE landscape characteristic of these species. Unexpectedly, REPCLASS also uncovered several novel TE families in both genomes, augmenting the TE repertoire of these model species. When applied to the genomes of distant Caenorhabditis and Drosophila species, the approach revealed a remarkable conservation of TE composition profile within each genus, despite substantial interspecific covariations in genome size and in the number of TEs and TE families. Lastly, we applied REPCLASS to analyze 10 fungal genomes from a wide taxonomic range, most of which have not been analyzed for TE content previously. The results showed that TE diversity varies widely across the fungi "kingdom" and appears to positively correlate with genome size, in particular for DNA transposons. Together, these data validate REPCLASS as a powerful tool to explore the repetitive DNA landscapes of eukaryotes and to shed light onto the evolutionary forces shaping TE diversity and genome architecture.

  4. An overabundance of phase 0 introns immediately after the start codon in eukaryotic genes

    Directory of Open Access Journals (Sweden)

    Wernersson Rasmus

    2006-10-01

    Full Text Available Abstract Background A knowledge of the positions of introns in eukaryotic genes is important for understanding the evolution of introns. Despite this, there has been relatively little focus on the distribution of intron positions in genes. Results In proteins with signal peptides, there is an overabundance of phase 1 introns around the region of the signal peptide cleavage site. This has been described before. But in proteins without signal peptides, a novel phenomenon is observed: There is a sharp peak of phase 0 intron positions immediately following the start codon, i.e. between codons 1 and 2. This effect is seen in a wide range of eukaryotes: Vertebrates, arthropods, fungi, and flowering plants. Proteins carrying this start codon intron are found to comprise a special class of relatively short, lysine-rich and conserved proteins with an overrepresentation of ribosomal proteins. In addition, there is a peak of phase 0 introns at position 5 in Drosophila genes with signal peptides, predominantly representing cuticle proteins. Conclusion There is an overabundance of phase 0 introns immediately after the start codon in eukaryotic genes, which has been described before only for human ribosomal proteins. We give a detailed description of these start codon introns and the proteins that contain them.

  5. An overabundance of phase 0 introns immediately after the start codon in eukaryotic genes.

    Science.gov (United States)

    Nielsen, Henrik; Wernersson, Rasmus

    2006-10-11

    A knowledge of the positions of introns in eukaryotic genes is important for understanding the evolution of introns. Despite this, there has been relatively little focus on the distribution of intron positions in genes. In proteins with signal peptides, there is an overabundance of phase 1 introns around the region of the signal peptide cleavage site. This has been described before. But in proteins without signal peptides, a novel phenomenon is observed: There is a sharp peak of phase 0 intron positions immediately following the start codon, i.e. between codons 1 and 2. This effect is seen in a wide range of eukaryotes: Vertebrates, arthropods, fungi, and flowering plants. Proteins carrying this start codon intron are found to comprise a special class of relatively short, lysine-rich and conserved proteins with an overrepresentation of ribosomal proteins. In addition, there is a peak of phase 0 introns at position 5 in Drosophila genes with signal peptides, predominantly representing cuticle proteins. There is an overabundance of phase 0 introns immediately after the start codon in eukaryotic genes, which has been described before only for human ribosomal proteins. We give a detailed description of these start codon introns and the proteins that contain them.

  6. The structure and function of tRNA genes of higher eukaryotes.

    Science.gov (United States)

    Kubli, E

    1981-01-15

    The most recent findings concerning the structure and function of tRNA genes of higher eukaryotes are discussed in an exemplary way. The tRNA genes of higher organisms are either dispersed or clustered at different sites of the genome. Clusters contain tRNA genes oriented in both directions and on both strands of the DNA with spacers of various length inbetween. Some genes contain intervening sequences close to the 3' side of the anticodon. The primary transcription product possesses a 5' leader and a 3' trailer sequence which are removed by several maturation steps in a strict temporal and spacial order. Internal transcription control regions (promotors) are located at the 5' and 3' ends of the mature tRNA coding section of the tRNA gene. External sequences modulating the efficiency of the expression are present at the immediate 5' ends of the genes. Transfer RNA genes are located nonrandomly in the nucleosomes.

  7. [Expression of interferon alpha family gene of Chinese marmot in eukaryotic and prokaryotic cells].

    Science.gov (United States)

    Lu, Yin-ping; Wang, Bao-ju; Huang, Hong-ping; Tian, Yong-jun; Yang, Yan; Dong, Ji-hua; Lu, Meng-ji; Yang, Dong-liang

    2006-02-01

    To investigate the function of interferon alpha (IFNalpha) in a Chinese marmot model of hepatitis B, we expressed the Chinese marmot (Marmota himalayana) IFNalpha family gene (IFNA) in eukaryotic cells and prokaryotic cells. Eukaryotic and prokaryotic expression plasmids harboring Chinese marmot interferon alpha gene with different genotypes were generated using molecular cloning technology. We detected the biological activity of all expression products by viral protection assay, and analyzed their differences and species restriction of the biological activity. The Chinese marmot functional genotype IFNalpha was expressed in the baby hamster kidney (BHK) cell line, and these products protected WH12/6 cells challenged by encephalomyocarditis virus (EMCV). The Chinese marmot IFN-alpha5 also expressed in E. Coli induced by IPTG, and purified fusion protein had antiviral biological activity. The biologic activity displayed differences among different subtype IFNalpha, and it had strict species restriction. The IFNalpha family gene of the Chinese marmot can be expressed in both eukaryotic and prokaryotic cells, and the expression products show antiviral activity in a protection assay. This study provides, for the first time, evidence that IFNalpha from the Chinese marmot has an antiviral function in vitro and can be used to improve the efficacy of current therapies for HBV infection in our Chinese marmot model.

  8. Differential gene expression in Giardia lamblia under oxidative stress: significance in eukaryotic evolution.

    Science.gov (United States)

    Raj, Dibyendu; Ghosh, Esha; Mukherjee, Avik K; Nozaki, Tomoyoshi; Ganguly, Sandipan

    2014-02-10

    Giardia lamblia is a unicellular, early branching eukaryote causing giardiasis, one of the most common human enteric diseases. Giardia, a microaerophilic protozoan parasite has to build up mechanisms to protect themselves against oxidative stress within the human gut (oxygen concentration 60 μM) to establish its pathogenesis. G. lamblia is devoid of the conventional mechanisms of the oxidative stress management system, including superoxide dismutase, catalase, peroxidase, and glutathione cycling, which are present in most eukaryotes. NADH oxidase is a major component of the electron transport chain of G. lamblia, which in concurrence with disulfide reductase, protects oxygen-labile proteins such as pyruvate: ferredoxin oxidoreductase against oxidative stress by sustaining a reduced intracellular environment. It also contains the arginine dihydrolase pathway, which occurs in a number of anaerobic prokaryotes, includes substrate level phosphorylation and adequately active to make a major contribution to ATP production. To study differential gene expression under three types of oxidative stress, a Giardia genomic DNA array was constructed and hybridized with labeled cDNA of cells with or without stress. The transcriptomic data has been analyzed and further validated using real time PCR. We identified that out of 9216 genes represented on the array, more than 200 genes encoded proteins with functions in metabolism, oxidative stress management, signaling, reproduction and cell division, programmed cell death and cytoskeleton. We recognized genes modulated by at least ≥ 2 fold at a significant time point in response to oxidative stress. The study has highlighted the genes that are differentially expressed during the three experimental conditions which regulate the stress management pathway differently to achieve redox homeostasis. Identification of some unique genes in oxidative stress regulation may help in new drug designing for this common enteric parasite prone to

  9. Microsatellites in the Eukaryotic DNA Mismatch Repair Genes as Modulators of Evolutionary Mutation Rate

    Science.gov (United States)

    Chang, Dong Kyung; Metzgar, David; Wills, Christopher; Boland, C. Richard

    2003-01-01

    All "minor" components of the human DNA mismatch repair (MMR) system-MSH3, MSH6, PMS2, and the recently discovered MLH3-contain mononucleotide microsatellites in their coding sequences. This intriguing finding contrasts with the situation found in the major components of the DNA MMR system-MSH2 and MLH1-and, in fact, most human genes. Although eukaryotic genomes are rich in microsatellites, non-triplet microsatellites are rare in coding regions. The recurring presence of exonal mononucleotide repeat sequences within a single family of human genes would therefore be considered exceptional.

  10. Phylogenetic analysis of the core histone doublet and DNA topo II genes of Marseilleviridae: evidence of proto-eukaryotic provenance.

    Science.gov (United States)

    Erives, Albert J

    2017-11-28

    While the genomes of eukaryotes and Archaea both encode the histone-fold domain, only eukaryotes encode the core histone paralogs H2A, H2B, H3, and H4. With DNA, these core histones assemble into the nucleosomal octamer underlying eukaryotic chromatin. Importantly, core histones for H2A and H3 are maintained as neofunctionalized paralogs adapted for general bulk chromatin (canonical H2 and H3) or specialized chromatin (H2A.Z enriched at gene promoters and cenH3s enriched at centromeres). In this context, the identification of core histone-like "doublets" in the cytoplasmic replication factories of the Marseilleviridae (MV) is a novel finding with possible relevance to understanding the origin of eukaryotic chromatin. Here, we analyze and compare the core histone doublet genes from all known MV genomes as well as other MV genes relevant to the origin of the eukaryotic replisome. Using different phylogenetic approaches, we show that MV histone domains encode obligate H2B-H2A and H4-H3 dimers of possible proto-eukaryotic origin. MV core histone moieties form sister clades to each of the four eukaryotic clades of canonical and variant core histones. This suggests that MV core histone moieties diverged prior to eukaryotic neofunctionalizations associated with paired linear chromosomes and variant histone octamer assembly. We also show that MV genomes encode a proto-eukaryotic DNA topoisomerase II enzyme that forms a sister clade to eukaryotes. This is a relevant finding given that DNA topo II influences histone deposition and chromatin compaction and is the second most abundant nuclear protein after histones. The combined domain architecture and phylogenomic analyses presented here suggest that a primitive origin for MV histone genes is a more parsimonious explanation than horizontal gene transfers + gene fusions + sufficient divergence to eliminate relatedness to eukaryotic neofunctionalizations within the H2A and H3 clades without loss of relatedness to each of

  11. CASSIS and SMIPS: promoter-based prediction of secondary metabolite gene clusters in eukaryotic genomes.

    Science.gov (United States)

    Wolf, Thomas; Shelest, Vladimir; Nath, Neetika; Shelest, Ekaterina

    2016-04-15

    Secondary metabolites (SM) are structurally diverse natural products of high pharmaceutical importance. Genes involved in their biosynthesis are often organized in clusters, i.e., are co-localized and co-expressed. In silico cluster prediction in eukaryotic genomes remains problematic mainly due to the high variability of the clusters' content and lack of other distinguishing sequence features. We present Cluster Assignment by Islands of Sites (CASSIS), a method for SM cluster prediction in eukaryotic genomes, and Secondary Metabolites by InterProScan (SMIPS), a tool for genome-wide detection of SM key enzymes ('anchor' genes): polyketide synthases, non-ribosomal peptide synthetases and dimethylallyl tryptophan synthases. Unlike other tools based on protein similarity, CASSIS exploits the idea of co-regulation of the cluster genes, which assumes the existence of common regulatory patterns in the cluster promoters. The method searches for 'islands' of enriched cluster-specific motifs in the vicinity of anchor genes. It was validated in a series of cross-validation experiments and showed high sensitivity and specificity. CASSIS and SMIPS are freely available at https://sbi.hki-jena.de/cassis thomas.wolf@leibniz-hki.de or ekaterina.shelest@leibniz-hki.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  12. Patterns of Transcript Abundance of Eukaryotic Biogeochemically-Relevant Genes in the Amazon River Plume.

    Science.gov (United States)

    Zielinski, Brian L; Allen, Andrew E; Carpenter, Edward J; Coles, Victoria J; Crump, Byron C; Doherty, Mary; Foster, Rachel A; Goes, Joaquim I; Gomes, Helga R; Hood, Raleigh R; McCrow, John P; Montoya, Joseph P; Moustafa, Ahmed; Satinsky, Brandon M; Sharma, Shalabh; Smith, Christa B; Yager, Patricia L; Paul, John H

    2016-01-01

    The Amazon River has the largest discharge of all rivers on Earth, and its complex plume system fuels a wide array of biogeochemical processes, across a large area of the western tropical North Atlantic. The plume thus stimulates microbial processes affecting carbon sequestration and nutrient cycles at a global scale. Chromosomal gene expression patterns of the 2.0 to 156 μm size-fraction eukaryotic microbial community were investigated in the Amazon River Plume, generating a robust dataset (more than 100 million mRNA sequences) that depicts the metabolic capabilities and interactions among the eukaryotic microbes. Combining classical oceanographic field measurements with metatranscriptomics yielded characterization of the hydrographic conditions simultaneous with a quantification of transcriptional activity and identity of the community. We highlight the patterns of eukaryotic gene expression for 31 biogeochemically significant gene targets hypothesized to be valuable within forecasting models. An advantage to this targeted approach is that the database of reference sequences used to identify the target genes was selectively constructed and highly curated optimizing taxonomic coverage, throughput, and the accuracy of annotations. A coastal diatom bloom highly expressed nitrate transporters and carbonic anhydrase presumably to support high growth rates and enhance uptake of low levels of dissolved nitrate and CO2. Diatom-diazotroph association (DDA: diatoms with nitrogen fixing symbionts) blooms were common when surface salinity was mesohaline and dissolved nitrate concentrations were below detection, and hence did not show evidence of nitrate utilization, suggesting they relied on ammonium transporters to aquire recently fixed nitrogen. These DDA blooms in the outer plume had rapid turnover of the photosystem D1 protein presumably caused by photodegradation under increased light penetration in clearer waters, and increased expression of silicon transporters as

  13. Patterns of Transcript Abundance of Eukaryotic Biogeochemically-Relevant Genes in the Amazon River Plume.

    Directory of Open Access Journals (Sweden)

    Brian L Zielinski

    Full Text Available The Amazon River has the largest discharge of all rivers on Earth, and its complex plume system fuels a wide array of biogeochemical processes, across a large area of the western tropical North Atlantic. The plume thus stimulates microbial processes affecting carbon sequestration and nutrient cycles at a global scale. Chromosomal gene expression patterns of the 2.0 to 156 μm size-fraction eukaryotic microbial community were investigated in the Amazon River Plume, generating a robust dataset (more than 100 million mRNA sequences that depicts the metabolic capabilities and interactions among the eukaryotic microbes. Combining classical oceanographic field measurements with metatranscriptomics yielded characterization of the hydrographic conditions simultaneous with a quantification of transcriptional activity and identity of the community. We highlight the patterns of eukaryotic gene expression for 31 biogeochemically significant gene targets hypothesized to be valuable within forecasting models. An advantage to this targeted approach is that the database of reference sequences used to identify the target genes was selectively constructed and highly curated optimizing taxonomic coverage, throughput, and the accuracy of annotations. A coastal diatom bloom highly expressed nitrate transporters and carbonic anhydrase presumably to support high growth rates and enhance uptake of low levels of dissolved nitrate and CO2. Diatom-diazotroph association (DDA: diatoms with nitrogen fixing symbionts blooms were common when surface salinity was mesohaline and dissolved nitrate concentrations were below detection, and hence did not show evidence of nitrate utilization, suggesting they relied on ammonium transporters to aquire recently fixed nitrogen. These DDA blooms in the outer plume had rapid turnover of the photosystem D1 protein presumably caused by photodegradation under increased light penetration in clearer waters, and increased expression of silicon

  14. Patterns of Transcript Abundance of Eukaryotic Biogeochemically-Relevant Genes in the Amazon River Plume

    Science.gov (United States)

    Allen, Andrew E.; Carpenter, Edward J.; Coles, Victoria J.; Crump, Byron C.; Doherty, Mary; Foster, Rachel A.; Goes, Joaquim I.; Gomes, Helga R.; Hood, Raleigh R.; McCrow, John P.; Montoya, Joseph P.; Moustafa, Ahmed; Satinsky, Brandon M.; Sharma, Shalabh; Smith, Christa B.; Yager, Patricia L.; Paul, John H.

    2016-01-01

    The Amazon River has the largest discharge of all rivers on Earth, and its complex plume system fuels a wide array of biogeochemical processes, across a large area of the western tropical North Atlantic. The plume thus stimulates microbial processes affecting carbon sequestration and nutrient cycles at a global scale. Chromosomal gene expression patterns of the 2.0 to 156 μm size-fraction eukaryotic microbial community were investigated in the Amazon River Plume, generating a robust dataset (more than 100 million mRNA sequences) that depicts the metabolic capabilities and interactions among the eukaryotic microbes. Combining classical oceanographic field measurements with metatranscriptomics yielded characterization of the hydrographic conditions simultaneous with a quantification of transcriptional activity and identity of the community. We highlight the patterns of eukaryotic gene expression for 31 biogeochemically significant gene targets hypothesized to be valuable within forecasting models. An advantage to this targeted approach is that the database of reference sequences used to identify the target genes was selectively constructed and highly curated optimizing taxonomic coverage, throughput, and the accuracy of annotations. A coastal diatom bloom highly expressed nitrate transporters and carbonic anhydrase presumably to support high growth rates and enhance uptake of low levels of dissolved nitrate and CO2. Diatom-diazotroph association (DDA: diatoms with nitrogen fixing symbionts) blooms were common when surface salinity was mesohaline and dissolved nitrate concentrations were below detection, and hence did not show evidence of nitrate utilization, suggesting they relied on ammonium transporters to aquire recently fixed nitrogen. These DDA blooms in the outer plume had rapid turnover of the photosystem D1 protein presumably caused by photodegradation under increased light penetration in clearer waters, and increased expression of silicon transporters as

  15. A Metastate HMM with Application to Gene Structure Identification in Eukaryotes

    Directory of Open Access Journals (Sweden)

    Winters-Hilt Stephen

    2010-01-01

    Full Text Available We introduce a generalized-clique hidden Markov model (HMM and apply it to gene finding in eukaryotes (C. elegans. We demonstrate a HMM structure identification platform that is novel and robustly-performing in a number of ways. The generalized clique HMM begins by enlarging the primitive hidden states associated with the individual base labels (as exon, intron, or junk to substrings of primitive hidden states, or footprint states, having a minimal length greater than the footprint state length. The emissions are likewise expanded to higher order in the fundamental joint probability that is the basis of the generalized-clique, or "metastate", HMM. We then consider application to eukaryotic gene finding and show how such a metastate HMM improves the strength of coding/noncoding-transition contributions to gene-structure identification. We will describe situations where the coding/noncoding-transition modeling can effectively recapture the exon and intron heavy tail distribution modeling capability as well as manage the exon-start needle-in-the-haystack problem. In analysis of the C. elegans genome we show that the sensitivity and specificity (SN,SP results for both the individual-state and full-exon predictions are greatly enhanced over the standard HMM when using the generalized-clique HMM.

  16. Preferential duplication of intermodular hub genes: an evolutionary signature in eukaryotes genome networks.

    Directory of Open Access Journals (Sweden)

    Ricardo M Ferreira

    Full Text Available Whole genome protein-protein association networks are not random and their topological properties stem from genome evolution mechanisms. In fact, more connected, but less clustered proteins are related to genes that, in general, present more paralogs as compared to other genes, indicating frequent previous gene duplication episodes. On the other hand, genes related to conserved biological functions present few or no paralogs and yield proteins that are highly connected and clustered. These general network characteristics must have an evolutionary explanation. Considering data from STRING database, we present here experimental evidence that, more than not being scale free, protein degree distributions of organisms present an increased probability for high degree nodes. Furthermore, based on this experimental evidence, we propose a simulation model for genome evolution, where genes in a network are either acquired de novo using a preferential attachment rule, or duplicated with a probability that linearly grows with gene degree and decreases with its clustering coefficient. For the first time a model yields results that simultaneously describe different topological distributions. Also, this model correctly predicts that, to produce protein-protein association networks with number of links and number of nodes in the observed range for Eukaryotes, it is necessary 90% of gene duplication and 10% of de novo gene acquisition. This scenario implies a universal mechanism for genome evolution.

  17. Establishment of the methods for searching eukaryotic gene cis-regulatory modules.

    Science.gov (United States)

    Zhong, Dong; Zhang, Zhen-shu; Liu, Yu-hu; Zheng, Guo-qing; Liu, Xiao-yi; Lu, Yang; Zhao, Gui-jun; Xu, An-long

    2004-02-01

    On the basis of the knowledge of eukaryotic gene regulation, we modified the method in three aspects: (1) Searching the cis-regulatory modules (CRM) according Fasta or Blast sequence with multiple sequence and low E value, followed by mutual scoring of these sequence with Smith-Waterman algorithms and finally by clustering analysis; (2) Searching the transcription factor-binding site using International Union of Pure and Applied Chemistry, Position-Weight Matrix(PWM) and Dyed method; (3) Designing and implementation of data analysis based on the software in Windows 2000 and UNIX using object-oriented technology. The results of analysis of the major histocompatibility complex gene family show that this procedure may accurately locate the regions that contain some of the CRMs.

  18. An ensemble classifier for eukaryotic protein subcellular location prediction using gene ontology categories and amino acid hydrophobicity.

    Directory of Open Access Journals (Sweden)

    Liqi Li

    Full Text Available With the rapid increase of protein sequences in the post-genomic age, it is challenging to develop accurate and automated methods for reliably and quickly predicting their subcellular localizations. Till now, many efforts have been tried, but most of which used only a single algorithm. In this paper, we proposed an ensemble classifier of KNN (k-nearest neighbor and SVM (support vector machine algorithms to predict the subcellular localization of eukaryotic proteins based on a voting system. The overall prediction accuracies by the one-versus-one strategy are 78.17%, 89.94% and 75.55% for three benchmark datasets of eukaryotic proteins. The improved prediction accuracies reveal that GO annotations and hydrophobicity of amino acids help to predict subcellular locations of eukaryotic proteins.

  19. Discovery of PPi-type Phosphoenolpyruvate Carboxykinase Genes in Eukaryotes and Bacteria*

    Science.gov (United States)

    Chiba, Yoko; Kamikawa, Ryoma; Nakada-Tsukui, Kumiko; Saito-Nakano, Yumiko; Nozaki, Tomoyoshi

    2015-01-01

    Phosphoenolpyruvate carboxykinase (PEPCK) is one of the pivotal enzymes that regulates the carbon flow of the central metabolism by fixing CO2 to phosphoenolpyruvate (PEP) to produce oxaloacetate or vice versa. Whereas ATP- and GTP-type PEPCKs have been well studied, and their protein identities are established, inorganic pyrophosphate (PPi)-type PEPCK (PPi-PEPCK) is poorly characterized. Despite extensive enzymological studies, its protein identity and encoding gene remain unknown. In this study, PPi-PEPCK has been identified for the first time from a eukaryotic human parasite, Entamoeba histolytica, by conventional purification and mass spectrometric identification of the native enzyme, followed by demonstration of its enzymatic activity. A homolog of the amebic PPi-PEPCK from an anaerobic bacterium Propionibacterium freudenreichii subsp. shermanii also exhibited PPi-PEPCK activity. The primary structure of PPi-PEPCK has no similarity to the functional homologs ATP/GTP-PEPCKs and PEP carboxylase, strongly suggesting that PPi-PEPCK arose independently from the other functional homologues and very likely has unique catalytic sites. PPi-PEPCK homologs were found in a variety of bacteria and some eukaryotes but not in archaea. The molecular identification of this long forgotten enzyme shows us the diversity and functional redundancy of enzymes involved in the central metabolism and can help us to understand the central metabolism more deeply. PMID:26269598

  20. Discovery of PPi-type Phosphoenolpyruvate Carboxykinase Genes in Eukaryotes and Bacteria.

    Science.gov (United States)

    Chiba, Yoko; Kamikawa, Ryoma; Nakada-Tsukui, Kumiko; Saito-Nakano, Yumiko; Nozaki, Tomoyoshi

    2015-09-25

    Phosphoenolpyruvate carboxykinase (PEPCK) is one of the pivotal enzymes that regulates the carbon flow of the central metabolism by fixing CO2 to phosphoenolpyruvate (PEP) to produce oxaloacetate or vice versa. Whereas ATP- and GTP-type PEPCKs have been well studied, and their protein identities are established, inorganic pyrophosphate (PPi)-type PEPCK (PPi-PEPCK) is poorly characterized. Despite extensive enzymological studies, its protein identity and encoding gene remain unknown. In this study, PPi-PEPCK has been identified for the first time from a eukaryotic human parasite, Entamoeba histolytica, by conventional purification and mass spectrometric identification of the native enzyme, followed by demonstration of its enzymatic activity. A homolog of the amebic PPi-PEPCK from an anaerobic bacterium Propionibacterium freudenreichii subsp. shermanii also exhibited PPi-PEPCK activity. The primary structure of PPi-PEPCK has no similarity to the functional homologs ATP/GTP-PEPCKs and PEP carboxylase, strongly suggesting that PPi-PEPCK arose independently from the other functional homologues and very likely has unique catalytic sites. PPi-PEPCK homologs were found in a variety of bacteria and some eukaryotes but not in archaea. The molecular identification of this long forgotten enzyme shows us the diversity and functional redundancy of enzymes involved in the central metabolism and can help us to understand the central metabolism more deeply. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. [Expression of target gene in eukaryotic cells driven by prokaryotic T7 promoter and its RNA polymerase].

    Science.gov (United States)

    Yuan, Zhi-Gang; Zhang, Jin-Ping; Chu, Yi-Wei; Wang, Ying; Xu, Wei; Xiong, Si-Dong

    2005-03-01

    To enhance the efficiency of the expression of target gene in eukaryotic cells, one of the strongest prokaryotic expression systems, the T7 RNA polymerase and T7 promoter, was introduced into eukaryotic cells. A duel-plasmid gene expression system of T7 bacteriophage components was developed; one containing the T7 phage RNA polymerase gene under the control of eukaryotic promoter CMV (pCMV-T7pol) and the other (pT7IRES) containing the T7 promoter and T7 terminator as well as EMCV IRES. To test the feasibility of this plasmid system for eukaryotic expression, hepatitis B virus envelop HBV preS2/S was used to construct pT7IRES-HBs. The target genes were expressed efficiently by the eukaryonized prokaryotic expression system in a variety of the cells indicating C2C12, SP2/0, NIH3T3 and BALB/c 3T3, suggesting the potential applications of the expression system in gene therapy and gene immunization.

  2. Evidence that the intra-amoebal Legionella drancourtii acquired a sterol reductase gene from eukaryotes

    Directory of Open Access Journals (Sweden)

    Fournier Pierre-Edouard

    2009-03-01

    Full Text Available Abstract Background Free-living amoebae serve as a natural reservoir for some bacteria that have evolved into «amoeba-resistant» bacteria. Among these, some are strictly intra-amoebal, such as Candidatus "Protochlamydia amoebophila" (Candidatus "P. amoebophila", whose genomic sequence is available. We sequenced the genome of Legionella drancourtii (L. drancourtii, another recently described intra-amoebal bacterium. By comparing these two genomes with those of their closely related species, we were able to study the genetic characteristics specific to their amoebal lifestyle. Findings We identified a sterol delta-7 reductase-encoding gene common to these two bacteria and absent in their relatives. This gene encodes an enzyme which catalyses the last step of cholesterol biosynthesis in eukaryotes, and is probably functional within L. drancourtii since it is transcribed. The phylogenetic analysis of this protein suggests that it was acquired horizontally by a few bacteria from viridiplantae. This gene was also found in the Acanthamoeba polyphaga Mimivirus genome, a virus that grows in amoebae and possesses the largest viral genome known to date. Conclusion L. drancourtii acquired a sterol delta-7 reductase-encoding gene of viridiplantae origin. The most parsimonious hypothesis is that this gene was initially acquired by a Chlamydiales ancestor parasite of plants. Subsequently, its descendents transmitted this gene in amoebae to other intra-amoebal microorganisms, including L. drancourtii and Coxiella burnetii. The role of the sterol delta-7 reductase in prokaryotes is as yet unknown but we speculate that it is involved in host cholesterol parasitism.

  3. AS3MT-mediated tolerance to arsenic evolved by multiple independent horizontal gene transfers from bacteria to eukaryotes

    DEFF Research Database (Denmark)

    Palmgren, Michael Broberg; Engström, Karin; Hallström, Björn M

    2017-01-01

    the evolutionary origin of AS3MT and assessed the ability of different genotypes to produce methylated arsenic metabolites. Phylogenetic analysis suggests that multiple, independent horizontal gene transfers between different bacteria, and from bacteria to eukaryotes, increased tolerance to environmental arsenic...

  4. Gene Ontology consistent protein function prediction: the FALCON algorithm applied to six eukaryotic genomes.

    Science.gov (United States)

    Kourmpetis, Yiannis Ai; van Dijk, Aalt Dj; Ter Braak, Cajo Jf

    2013-03-27

    : Gene Ontology (GO) is a hierarchical vocabulary for the description of biological functions and locations, often employed by computational methods for protein function prediction. Due to the structure of GO, function predictions can be self- contradictory. For example, a protein may be predicted to belong to a detailed functional class, but not in a broader class that, due to the vocabulary structure, includes the predicted one.We present a novel discrete optimization algorithm called Functional Annotation with Labeling CONsistency (FALCON) that resolves such contradictions. The GO is modeled as a discrete Bayesian Network. For any given input of GO term membership probabilities, the algorithm returns the most probable GO term assignments that are in accordance with the Gene Ontology structure. The optimization is done using the Differential Evolution algorithm. Performance is evaluated on simulated and also real data from Arabidopsis thaliana showing improvement compared to related approaches. We finally applied the FALCON algorithm to obtain genome-wide function predictions for six eukaryotic species based on data provided by the CAFA (Critical Assessment of Function Annotation) project.

  5. Expression of conjoined genes: another mechanism for gene regulation in eukaryotes.

    Directory of Open Access Journals (Sweden)

    Tulika Prakash

    Full Text Available From the ENCODE project, it is realized that almost every base of the entire human genome is transcribed. One class of transcripts resulting from this arises from the conjoined gene, which is formed by combining the exons of two or more distinct (parent genes lying on the same strand of a chromosome. Only a very limited number of such genes are known, and the definition and terminologies used for them are highly variable in the public databases. In this work, we have computationally identified and manually curated 751 conjoined genes (CGs in the human genome that are supported by at least one mRNA or EST sequence available in the NCBI database. 353 representative CGs, of which 291 (82% could be confirmed, were subjected to experimental validation using RT-PCR and sequencing methods. We speculate that these genes are arising out of novel functional requirements and are not merely artifacts of transcription, since more than 70% of them are conserved in other vertebrate genomes. The unique splicing patterns exhibited by CGs reveal their possible roles in protein evolution or gene regulation. Novel CGs, for which no transcript is available, could be identified in 80% of randomly selected potential CG forming regions, indicating that their formation is a routine process. Formation of CGs is not only limited to human, as we have also identified 270 CGs in mouse and 227 in drosophila using our approach. Additionally, we propose a novel mechanism for the formation of CGs. Finally, we developed a database, ConjoinG, which contains detailed information about all the CGs (800 in total identified in the human genome. In summary, our findings reveal new insights about the functionality of CGs in terms of another possible mechanism for gene regulation and genomic evolution and the mechanism leading to their formation.

  6. Functional and evolutionary analysis of alternatively spliced genes is consistent with an early eukaryotic origin of alternative splicing

    DEFF Research Database (Denmark)

    Irimia, Manuel; Rukov, Jakob Lewin; Penny, David

    2007-01-01

    , and may therefore predate multicellularity, is still unknown. To better understand the origin and evolution of alternative splicing and its usage in diverse organisms, we studied alternative splicing in 12 eukaryotic species, comparing rates of alternative splicing across genes of different functional...... classes, cellular locations, intron/exon structures and evolutionary origins. RESULTS: For each species, we find that genes from most functional categories are alternatively spliced. Ancient genes (shared between animals, fungi and plants) show high levels of alternative splicing. Genes with products...

  7. topIb, a phylogenetic hallmark gene of Thaumarchaeota encodes a functional eukaryote-like topoisomerase IB.

    Science.gov (United States)

    Dahmane, Narimane; Gadelle, Danièle; Delmas, Stéphane; Criscuolo, Alexis; Eberhard, Stephan; Desnoues, Nicole; Collin, Sylvie; Zhang, Hongliang; Pommier, Yves; Forterre, Patrick; Sezonov, Guennadi

    2016-04-07

    Type IB DNA topoisomerases can eliminate torsional stresses produced during replication and transcription. These enzymes are found in all eukaryotes and a short version is present in some bacteria and viruses. Among prokaryotes, the long eukaryotic version is only observed in archaea of the phylum Thaumarchaeota. However, the activities and the roles of these topoisomerases have remained an open question. Here, we demonstrate that all available thaumarchaeal genomes contain a topoisomerase IB gene that defines a monophyletic group closely related to the eukaryotic enzymes. We show that the topIB gene is expressed in the model thaumarchaeon Nitrososphaera viennensis and we purified the recombinant enzyme from the uncultivated thaumarchaeon Candidatus Caldiarchaeum subterraneum. This enzyme is active in vitro at high temperature, making it the first thermophilic topoisomerase IB characterized so far. We have compared this archaeal type IB enzyme to its human mitochondrial and nuclear counterparts. The archaeal enzyme relaxes both negatively and positively supercoiled DNA like the eukaryotic enzymes. However, its pattern of DNA cleavage specificity is different and it is resistant to camptothecins (CPTs) and non-CPT Top1 inhibitors, LMP744 and lamellarin D. This newly described thermostable topoisomerases IB should be a promising new model for evolutionary, mechanistic and structural studies. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Characterization of Greenbeard Genes Involved in Long-Distance Kind Discrimination in a Microbial Eukaryote.

    Science.gov (United States)

    Heller, Jens; Zhao, Jiuhai; Rosenfield, Gabriel; Kowbel, David J; Gladieux, Pierre; Glass, N Louise

    2016-04-01

    Microorganisms are capable of communication and cooperation to perform social activities. Cooperation can be enforced using kind discrimination mechanisms in which individuals preferentially help or punish others, depending on genetic relatedness only at certain loci. In the filamentous fungus Neurospora crassa, genetically identical asexual spores (germlings) communicate and fuse in a highly regulated process, which is associated with fitness benefits during colony establishment. Recognition and chemotropic interactions between isogenic germlings requires oscillation of the mitogen-activated protein kinase (MAPK) signal transduction protein complex (NRC-1, MEK-2, MAK-2, and the scaffold protein HAM-5) to specialized cell fusion structures termed conidial anastomosis tubes. Using a population of 110 wild N. crassa isolates, we investigated germling fusion between genetically unrelated individuals and discovered that chemotropic interactions are regulated by kind discrimination. Distinct communication groups were identified, in which germlings within one communication group interacted at high frequency, while germlings from different communication groups avoided each other. Bulk segregant analysis followed by whole genome resequencing identified three linked genes (doc-1, doc-2, and doc-3), which were associated with communication group phenotype. Alleles at doc-1, doc-2, and doc-3 fell into five haplotypes that showed transspecies polymorphism. Swapping doc-1 and doc-2 alleles from different communication group strains was necessary and sufficient to confer communication group affiliation. During chemotropic interactions, DOC-1 oscillated with MAK-2 to the tips of conidial anastomosis tubes, while DOC-2 was statically localized to the plasma membrane. Our data indicate that doc-1, doc-2, and doc-3 function as "greenbeard" genes, involved in mediating long-distance kind recognition that involves actively searching for one's own type, resulting in cooperation between

  9. [Cloning and eukaryotic expression of HIV-1B gp120 genes from a patient with AIDS dementia complex].

    Science.gov (United States)

    Zhao, Li; Yan, Yu-Fen; Li, Jing; Pu, Shuang-Shuang; Wang, Zhi-Yu; Wen, Hong-Ling; Song, Yan-Yan; Xu, Hong-Zhi

    2012-04-01

    To clone and express the HIV-1B gp120 genes isolated at different organizations from a patient died of AIDS dementia complex (ADC) in eukaryotic cells. Using the genomic DNA isolated from peripheral lymphnodes, choroid plexus and occipital white matter from a patient died of ADC as the template, HIV-1B gp120 gene was amplified with PCR. After sequenced, HIV-1B gp120 was inserted into pcDNA3.1 (+) and recombinant expressing vector gp120/pcDNA3.1 (+) was constructed succeffuly confirming with sequencing. Then expressing vector was transfected into eukaryotic cells U87 using liposome transfection and expression of HIV-1B gp120 gene was assayed with indirect immunofluorescence. HIV-1B gp120 genes isolated from peripheral lymphnodes, choroid plexus and occipital white matter of the ADC patient were successfully cloned and recombinant expressing vector gp120/pcDNA3; 1 (+) could express envelope glycoprotein HIV-1B gp120 in U87 cells. All the HIV-1B gp120 gene isolated at the different organizations of the same ADC patient could express in U87 cells, which may supply a valuable basis for studying the neurotoxicity and neurotoxic mechanism of HIV-1 gp120 protein.

  10. Construction and expression of eukaryotic expression vectors of full-length, amino-terminus and carboxyl-terminus Raf gene

    Directory of Open Access Journals (Sweden)

    Zhuomin WANG

    2008-06-01

    Full Text Available Background and objective Raf is a key molecule in the Ras-Raf-MEK-ERK signal transduction pathway and is highly activated in different human carcinomas. However, its biological functions and regulation mechanisms are still unclear. The aims of this study were to construct eukaryotic expression vectors with Raf full encoding region, truncated amino-terminus and carboxyl-terminus, respectively. Methods Eukaryotic expression vectors of pCMV-Tag2b-Raf-1, pCMV-Tag2b-N-Raf and pCMV-Tag2b-C-Raf were constructed by gene recombination technique and confirmed by restriction enzyme analysis and DNA sequencing. Furthermore, the expression of these fusion proteins was detected by western blot in transient transfected 293T cells. Results The sequences and open reading frames of these three vectors were completely consistent with experimental design. All target proteins can be detected in 293T cells. Conclusion Eukaryotic expression vectors of pCMV-Tag2b-Raf-1, pCMV-Tag2b-N-Raf and pCMV-Tag2b-C-Raf were successfully constructed and can be expressed in 293T cells.

  11. Eukaryotic origins

    OpenAIRE

    Lake, James A.

    2015-01-01

    The origin of the eukaryotes is a fundamental scientific question that for over 30 years has generated a spirited debate between the competing Archaea (or three domains) tree and the eocyte tree. As eukaryotes ourselves, humans have a personal interest in our origins. Eukaryotes contain their defining organelle, the nucleus, after which they are named. They have a complex evolutionary history, over time acquiring multiple organelles, including mitochondria, chloroplasts, smooth and rough endo...

  12. Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes

    Science.gov (United States)

    Capelson, Maya; Liang, Yun; Schulte, Roberta; Mair, William; Wagner, Ulrich; Hetzer, Martin W.

    2010-01-01

    Nuclear pore complexes have recently been shown to play roles in gene activation, however their potential involvement in metazoan transcription remains unclear. Here we show that the nucleoporins Sec13, Nup98 and Nup88, as well as a group of FG-repeat nucleoporins, bind to the Drosophila genome at functionally distinct loci that often do not represent NE contact sites. While Nup88 localizes to silent loci, Sec13, Nup98 and a subset of FG-repeat nucleoporins bind to developmentally regulated genes undergoing transcription induction. Strikingly, RNAi-mediated knockdown of intranuclear Sec13 and Nup98 specifically inhibits transcription of their target genes and prevents efficient reactivation of transcription after heat shock, suggesting an essential role of NPC components in regulating complex gene expression programs of multicellular organisms. PMID:20144761

  13. Plastid 16S rRNA gene diversity among eukaryotic picophytoplankton sorted by flow cytometry from the South Pacific Ocean.

    Directory of Open Access Journals (Sweden)

    Xiao Li Shi

    Full Text Available The genetic diversity of photosynthetic picoeukaryotes was investigated in the South East Pacific Ocean. Genetic libraries of the plastid 16S rRNA gene were constructed on picoeukaryote populations sorted by flow cytometry, using two different primer sets, OXY107F/OXY1313R commonly used to amplify oxygenic organisms, and PLA491F/OXY1313R, biased towards plastids of marine algae. Surprisingly, the two sets revealed quite different photosynthetic picoeukaryote diversity patterns, which were moreover different from what we previously reported using the 18S rRNA nuclear gene as a marker. The first 16S primer set revealed many sequences related to Pelagophyceae and Dictyochophyceae, the second 16S primer set was heavily biased toward Prymnesiophyceae, while 18S sequences were dominated by Prasinophyceae, Chrysophyceae and Haptophyta. Primer mismatches with major algal lineages is probably one reason behind this discrepancy. However, other reasons, such as DNA accessibility or gene copy numbers, may be also critical. Based on plastid 16S rRNA gene sequences, the structure of photosynthetic picoeukaryotes varied along the BIOSOPE transect vertically and horizontally. In oligotrophic regions, Pelagophyceae, Chrysophyceae, and Prymnesiophyceae dominated. Pelagophyceae were prevalent at the DCM depth and Chrysophyceae at the surface. In mesotrophic regions Pelagophyceae were still important but Chlorophyta contribution increased. Phylogenetic analysis revealed a new clade of Prasinophyceae (clade 16S-IX, which seems to be restricted to hyper-oligotrophic stations. Our data suggest that a single gene marker, even as widely used as 18S rRNA, provides a biased view of eukaryotic communities and that the use of several markers is necessary to obtain a complete image.

  14. Structural and dynamic characterization of eukaryotic gene regulatory protein domains in solution

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Andrew Loyd [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1996-05-01

    Solution NMR was primarily used to characterize structure and dynamics in two different eukaryotic protein systems: the δ-Al-ε activation domain from c-jun and the Drosophila RNA-binding protein Sex-lethal. The second system is the Drosophila Sex-lethal (Sxl) protein, an RNA-binding protein which is the ``master switch`` in sex determination. Sxl contains two adjacent RNA-binding domains (RBDs) of the RNP consensus-type. The NMR spectrum of the second RBD (Sxl-RBD2) was assigned using multidimensional heteronuclear NMR, and an intermediate-resolution family of structures was calculated from primarily NOE distance restraints. The overall fold was determined to be similar to other RBDs: a βαβ-βαβ pattern of secondary structure, with the two helices packed against a 4-stranded anti-parallel β-sheet. In addition 15N T1, T2, and 15N/1H NOE relaxation measurements were carried out to characterize the backbone dynamics of Sxl-RBD2 in solution. RNA corresponding to the polypyrimidine tract of transformer pre-mRNA was generated and titrated into 3 different Sxl-RBD protein constructs. Combining Sxl-RBD1+2 (bht RBDs) with this RNA formed a specific, high affinity protein/RNA complex that is amenable to further NMR characterization. The backbone 1H, 13C, and 15N resonances of Sxl-RBD1+2 were assigned using a triple-resonance approach, and 15N relaxation experiments were carried out to characterize the backbone dynamics of this complex. The changes in chemical shift in Sxl-RBD1+2 upon binding RNA are observed using Sxl-RBD2 as a substitute for unbound Sxl-RBD1+2. This allowed the binding interface to be qualitatively mapped for the second domain.

  15. Gene Ontology consistent protein function prediction: the FALCON algorithm applied to six eukaryotic genomes

    NARCIS (Netherlands)

    Kourmpetis, Y.A.I.; Dijk, van A.D.J.; Braak, ter C.J.F.

    2013-01-01

    Gene Ontology (GO) is a hierarchical vocabulary for the description of biological functions and locations, often employed by computational methods for protein function prediction. Due to the structure of GO, function predictions can be self- contradictory. For example, a protein may be predicted to

  16. Split-Doa10: a naturally split polytopic eukaryotic membrane protein generated by fission of a nuclear gene.

    Directory of Open Access Journals (Sweden)

    Elisabeth Stuerner

    Full Text Available Large polytopic membrane proteins often derive from duplication and fusion of genes for smaller proteins. The reverse process, splitting of a membrane protein by gene fission, is rare and has been studied mainly with artificially split proteins. Fragments of a split membrane protein may associate and reconstitute the function of the larger protein. Most examples of naturally split membrane proteins are from bacteria or eukaryotic organelles, and their exact history is usually poorly understood. Here, we describe a nuclear-encoded split membrane protein, split-Doa10, in the yeast Kluyveromyces lactis. In most species, Doa10 is encoded as a single polypeptide with 12-16 transmembrane helices (TMs, but split-KlDoa10 is encoded as two fragments, with the split occurring between TM2 and TM3. The two fragments assemble into an active ubiquitin-protein ligase. The K. lactis DOA10 locus has two ORFs separated by a 508-bp intervening sequence (IVS. A promoter within the IVS drives expression of the C-terminal KlDoa10 fragment. At least four additional Kluyveromyces species contain an IVS in the DOA10 locus, in contrast to even closely related genera, allowing dating of the fission event to the base of the genus. The upstream Kluyveromyces Doa10 fragment with its N-terminal RING-CH and two TMs resembles many metazoan MARCH (Membrane-Associated RING-CH and related viral RING-CH proteins, suggesting that gene splitting may have contributed to MARCH enzyme diversification. Split-Doa10 is the first unequivocal case of a split membrane protein where fission occurred in a nuclear-encoded gene. Such a split may allow divergent functions for the individual protein segments.

  17. Interactome and Gene Ontology provide congruent yet subtly different views of a eukaryotic cell

    Directory of Open Access Journals (Sweden)

    Marín Ignacio

    2009-07-01

    Full Text Available Abstract Background The characterization of the global functional structure of a cell is a major goal in bioinformatics and systems biology. Gene Ontology (GO and the protein-protein interaction network offer alternative views of that structure. Results This study presents a comparison of the global structures of the Gene Ontology and the interactome of Saccharomyces cerevisiae. Sensitive, unsupervised methods of clustering applied to a large fraction of the proteome led to establish a GO-interactome correlation value of +0.47 for a general dataset that contains both high and low-confidence interactions and +0.58 for a smaller, high-confidence dataset. Conclusion The structures of the yeast cell deduced from GO and interactome are substantially congruent. However, some significant differences were also detected, which may contribute to a better understanding of cell function and also to a refinement of the current ontologies.

  18. [Construction of A eukaryotic expression vector carrying the iNOS gene and its effect on A549 lung cancer cells].

    Science.gov (United States)

    Ye, Sujuan; Yang, Weihan; Wang, Yu; Ou, Wenjing; Ma, Qingping; Zhu, Wen

    2012-05-01

    The iNOS gene is associated with NO-mediated antitumor effects. The aims of this study are to construct a eukaryotic expression plasmid that carries the iNOS gene and to detect the expression levels and antitumor effects of the iNOS gene on A549 lung cancer cells. A DNA fragment of the human iNOS coding sequence was amplified using reverse transcription polymerase chain reaction (RT-PCR). The DNA fragment was subsequently cloned into the multiple cloning sites of the eukaryotic expression vector pVAX. The recombinant plasmid was confirmed using restriction enzyme treatment, PCR, and sequencing and was then transfected into A549 lung cancer cells. The expression of the iNOS gene in the A549 lung cancer cells after transfection was verified by RT-PCR and Western blot analysis. The effects of iNOS on cell apoptosis, proliferation, and migration were identified by staining with Hoechst 3235, an MTT assay, and a scratch assay, respectively. The results of the restriction enzyme digestion, PCR, and sequencing verified the successful construction of the eukaryotic expression plasmid pVAX-iNOS. The iNOS gene expression level was increased in the transfected A549 cells. Further experiments also showed increased cell apoptosis among the A549 lung cancer cells transfected with pVAX-iNOS. Meanwhile, the proliferation and migration of A549 cells were significantly inhibited by the enhanced iNOS gene expression. The recombinant eukaryotic expression vector pVAX-iNOS was successfully constructed and transfected into A549 cells. The enhanced iNOS gene expression significantly promoted cell apoptosis, whereas the proliferation and migration of A549 cells were inhibited. These findings contribute to the development of novel and effective gene therapies for lung cancer.

  19. Construction of a recombinant eukaryotic human ZHX1 gene expression plasmid and the role of ZHX1 in hepatocellular carcinoma.

    Science.gov (United States)

    Wang, Jianping; Liu, Dejie; Liang, Xiaohong; Gao, Lifen; Yue, Xuetian; Yang, Yang; Ma, Chunhong; Liu, Jun

    2013-11-01

    The zinc-fingers and homeoboxes protein 1 (ZHX1) consists of 873 amino acid residues, is localized in the cell nucleus and appears to act as a transcriptional repressor. Previous studies have shown that ZHX1 interacts with nuclear factor Y subunit α (NF-YA), DNA methyltransferases (DNMT) 3B and ZHX2, all of which are involved in tumorigenesis. However, the exact role of ZHX1 in tumorigenesis remains unknown. The aim of the current study was to construct a recombinant eukaryotic expression plasmid containing the human ZHX1 (hZHX1) gene and to investigate the biological activities of ZHX1 in hepatocellular carcinoma (HCC). Reverse transcription-polymerase chain reaction (RT‑PCR) was used to amplify the N- and C-terminal fragments (ZHX1‑N and ZHX1‑C, respectively) of the hZHX1 gene. The two PCR fragments were cloned into the pEASY-T1 vector and subcloned into the pcDNA3 plasmid to generate a recombinant pcDNA3‑ZHX1 plasmid. Following identification by enzyme digestion and DNA sequencing, the recombinant pcDNA3‑ZHX1 plasmid was transfected into SMMC-7721 cells. The level of ZHX1 expression was detected by RT-PCR and western blot analysis. Cell growth curve assays were used to evaluate the effect of ZHX1 on cell proliferation. Moreover, the differential expression of ZHX1 between cancer and adjacent cirrhotic liver tissue was investigated by quantitative PCR (qPCR). Enzyme digestion and DNA sequencing confirmed the successful construction of the recombinant plasmid, pcDNA3‑ZHX1. qPCR and western blot analysis demonstrated that ZHX1 was efficiently expressed in SMMC-7721 cells and overexpression of ZHX1 may inhibit the proliferation of SMMC-7721 cells. In addition, reduced ZHX1 expression is widespread among cancer tissues from HCC patients. In conclusion, a recombinant eukaryotic expression plasmid, pcDNA3‑ZHX1, was successfully constructed. In addition, the current results indicate that a low expression of ZHX1 may be responsible for hepatocarcinogenesis.

  20. GWATCH: a web platform for automated gene association discovery analysis

    Science.gov (United States)

    2014-01-01

    Background As genome-wide sequence analyses for complex human disease determinants are expanding, it is increasingly necessary to develop strategies to promote discovery and validation of potential disease-gene associations. Findings Here we present a dynamic web-based platform – GWATCH – that automates and facilitates four steps in genetic epidemiological discovery: 1) Rapid gene association search and discovery analysis of large genome-wide datasets; 2) Expanded visual display of gene associations for genome-wide variants (SNPs, indels, CNVs), including Manhattan plots, 2D and 3D snapshots of any gene region, and a dynamic genome browser illustrating gene association chromosomal regions; 3) Real-time validation/replication of candidate or putative genes suggested from other sources, limiting Bonferroni genome-wide association study (GWAS) penalties; 4) Open data release and sharing by eliminating privacy constraints (The National Human Genome Research Institute (NHGRI) Institutional Review Board (IRB), informed consent, The Health Insurance Portability and Accountability Act (HIPAA) of 1996 etc.) on unabridged results, which allows for open access comparative and meta-analysis. Conclusions GWATCH is suitable for both GWAS and whole genome sequence association datasets. We illustrate the utility of GWATCH with three large genome-wide association studies for HIV-AIDS resistance genes screened in large multicenter cohorts; however, association datasets from any study can be uploaded and analyzed by GWATCH. PMID:25374661

  1. [Construction of eukaryotic recombinant vector and expression in COS7 cell of LipL32-HlyX fusion gene from Leptospira serovar Lai].

    Science.gov (United States)

    Huang, Bi; Bao, Lang; Zhong, Qi; Zhang, Huidong; Zhang, Ying

    2009-04-01

    This study was conducted to construct eukaryotic recombinant vector of LipL32-HlyX fusion gene from Leptospira serovar Lai and express it in mammalian cell. Both of LipL32 gene and HlyX gene were amplified from Leptospira strain O17 genomic DNA by PCR. Then with the two genes as template, LipL32-HlyX fusion gene was obtained by SOE PCR (gene splicing by overlap extension PCR). The fusion gene was then cloned into pcDNA3.1 by restriction nuclease digestion. Having been transformed into E. coli DH5alpha, the recombiant plasmid was identified by restriction nuclease digestion, PCR analysis and sequencing. The recombinant plasmid was then transfected into COS7 cell whose expression was detected by RT-PCR and Western blotting analysis. RT-PCR amplified a fragment about 2000 bp and Western blotting analysis found a specific band about 75 KD which was consistent with the expected fusion protein size. In conclusion, the successful construction of eukaryotic recombinant vector containing LipL32-HlyX fusion gene and the effective expression in mammalian have laid a foundation for the application of Leptospira DNA vaccine.

  2. Automated, Miniaturized Instrument for Measuring Gene Expression in Space

    Science.gov (United States)

    Pohorille, A.; Peyvan, K.; Danley, D.; Ricco, A. J.

    2010-01-01

    To facilitate astrobiological studies on the survival and adaptation of microorganisms and mixed microbial cultures to space environment, we have been developing a fully automated, miniaturized system for measuring their gene expression on small spacecraft. This low-cost, multi-purpose instrument represents a major scientific and technological advancement in our ability to study the impact of the space environment on biological systems by providing data on cellular metabolism and regulation orders of magnitude richer than what is currently available. The system supports growth of the organism, lyse it to release the expressed RNA, label the RNA, read the expression levels of a large number of genes by microarray analysis of labeled RNA and transmit the measurements to Earth. To measure gene expression we use microarray technology developed by CombiMatrix, which is based on electrochemical reactions on arrays of electrodes on a semiconductor substrate. Since the electrical integrity of the microarray remains intact after probe synthesis, the circuitry can be employed to sense nucleic acid binding at each electrode. CombiMatrix arrays can be sectored to allow multiple samples per chip. In addition, a single array can be used for several assays. The array has been integrated into an automated microfluidic cartridge that uses flexible reagent blisters and pinch pumping to move liquid reagents between chambers. The proposed instrument will help to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment, develop effective countermeasures against these effects, and test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration. The instrument is suitable for small satellite platforms, which provide frequent, low cost access to space. It can be also used on any other platform in space

  3. FFPred 2.0: improved homology-independent prediction of gene ontology terms for eukaryotic protein sequences.

    Directory of Open Access Journals (Sweden)

    Federico Minneci

    Full Text Available To understand fully cell behaviour, biologists are making progress towards cataloguing the functional elements in the human genome and characterising their roles across a variety of tissues and conditions. Yet, functional information - either experimentally validated or computationally inferred by similarity - remains completely missing for approximately 30% of human proteins. FFPred was initially developed to bridge this gap by targeting sequences with distant or no homologues of known function and by exploiting clear patterns of intrinsic disorder associated with particular molecular activities and biological processes. Here, we present an updated and improved version, which builds on larger datasets of protein sequences and annotations, and uses updated component feature predictors as well as revised training procedures. FFPred 2.0 includes support vector regression models for the prediction of 442 Gene Ontology (GO terms, which largely expand the coverage of the ontology and of the biological process category in particular. The GO term list mainly revolves around macromolecular interactions and their role in regulatory, signalling, developmental and metabolic processes. Benchmarking experiments on newly annotated proteins show that FFPred 2.0 provides more accurate functional assignments than its predecessor and the ProtFun server do; also, its assignments can complement information obtained using BLAST-based transfer of annotations, improving especially prediction in the biological process category. Furthermore, FFPred 2.0 can be used to annotate proteins belonging to several eukaryotic organisms with a limited decrease in prediction quality. We illustrate all these points through the use of both precision-recall plots and of the COGIC scores, which we recently proposed as an alternative numerical evaluation measure of function prediction accuracy.

  4. Comparative genomic analysis reveals a diverse repertoire of genes involved in prokaryote-eukaryote interactions within the Pseudovibrio genus.

    Directory of Open Access Journals (Sweden)

    Stefano eRomano

    2016-03-01

    Full Text Available Strains of the Pseudovibrio genus have been detected worldwide, mainly as part of bacterial communities associated with marine invertebrates, particularly sponges. This recurrent association has been considered as an indication of a symbiotic relationship between these microbes and their host. Until recently, the availability of only two genomes, belonging to closely related strains, has limited the knowledge on the genomic and physiological features of the genus to a single phylogenetic lineage.Here we present 10 newly sequenced genomes of Pseudovibrio strains isolated from marine sponges from the west coast of Ireland, and including the other two publicly available genomes we performed an extensive comparative genomic analysis. Homogeneity was apparent in terms of both the orthologous genes and the metabolic features shared amongst the 12 strains. At the genomic level, a key physiological difference observed amongst the isolates was the presence only in strain P. axinellae AD2 of genes encoding proteins involved in assimilatory nitrate reduction, which was then proved experimentally. We then focused on studying those systems known to be involved in the interactions with eukaryotic and prokaryotic cells. This analysis revealed that the genus harbors a large diversity of toxin-like proteins, secretion systems and their potential effectors. Their distribution in the genus was not always consistent with the phylogenetic relationship of the strains. Finally, our analyses identified new genomic islands encoding potential toxin-immunity systems, previously unknown in the genus.Our analyses shed new light on the Pseudovibrio genus, indicating a large diversity of both metabolic features and systems for interacting with the host. The diversity in both distribution and abundance of these systems amongst the strains underlines how metabolically and phylogenetically similar bacteria may use different strategies to interact with the host and find a niche

  5. Comparative Genomic Analysis Reveals a Diverse Repertoire of Genes Involved in Prokaryote-Eukaryote Interactions within the Pseudovibrio Genus.

    Science.gov (United States)

    Romano, Stefano; Fernàndez-Guerra, Antonio; Reen, F Jerry; Glöckner, Frank O; Crowley, Susan P; O'Sullivan, Orla; Cotter, Paul D; Adams, Claire; Dobson, Alan D W; O'Gara, Fergal

    2016-01-01

    Strains of the Pseudovibrio genus have been detected worldwide, mainly as part of bacterial communities associated with marine invertebrates, particularly sponges. This recurrent association has been considered as an indication of a symbiotic relationship between these microbes and their host. Until recently, the availability of only two genomes, belonging to closely related strains, has limited the knowledge on the genomic and physiological features of the genus to a single phylogenetic lineage. Here we present 10 newly sequenced genomes of Pseudovibrio strains isolated from marine sponges from the west coast of Ireland, and including the other two publicly available genomes we performed an extensive comparative genomic analysis. Homogeneity was apparent in terms of both the orthologous genes and the metabolic features shared amongst the 12 strains. At the genomic level, a key physiological difference observed amongst the isolates was the presence only in strain P. axinellae AD2 of genes encoding proteins involved in assimilatory nitrate reduction, which was then proved experimentally. We then focused on studying those systems known to be involved in the interactions with eukaryotic and prokaryotic cells. This analysis revealed that the genus harbors a large diversity of toxin-like proteins, secretion systems and their potential effectors. Their distribution in the genus was not always consistent with the phylogenetic relationship of the strains. Finally, our analyses identified new genomic islands encoding potential toxin-immunity systems, previously unknown in the genus. Our analyses shed new light on the Pseudovibrio genus, indicating a large diversity of both metabolic features and systems for interacting with the host. The diversity in both distribution and abundance of these systems amongst the strains underlines how metabolically and phylogenetically similar bacteria may use different strategies to interact with the host and find a niche within its

  6. GOPET: A tool for automated predictions of Gene Ontology terms

    Directory of Open Access Journals (Sweden)

    Glatting Karl-Heinz

    2006-03-01

    Full Text Available Abstract Background Vast progress in sequencing projects has called for annotation on a large scale. A Number of methods have been developed to address this challenging task. These methods, however, either apply to specific subsets, or their predictions are not formalised, or they do not provide precise confidence values for their predictions. Description We recently established a learning system for automated annotation, trained with a broad variety of different organisms to predict the standardised annotation terms from Gene Ontology (GO. Now, this method has been made available to the public via our web-service GOPET (Gene Ontology term Prediction and Evaluation Tool. It supplies annotation for sequences of any organism. For each predicted term an appropriate confidence value is provided. The basic method had been developed for predicting molecular function GO-terms. It is now expanded to predict biological process terms. This web service is available via http://genius.embnet.dkfz-heidelberg.de/menu/biounit/open-husar Conclusion Our web service gives experimental researchers as well as the bioinformatics community a valuable sequence annotation device. Additionally, GOPET also provides less significant annotation data which may serve as an extended discovery platform for the user.

  7. A genomic survey of the fish parasite Spironucleus salmonicida indicates genomic plasticity among diplomonads and significant lateral gene transfer in eukaryote genome evolution

    Directory of Open Access Journals (Sweden)

    Logsdon John M

    2007-02-01

    Full Text Available Abstract Background Comparative genomic studies of the mitochondrion-lacking protist group Diplomonadida (diplomonads has been lacking, although Giardia lamblia has been intensively studied. We have performed a sequence survey project resulting in 2341 expressed sequence tags (EST corresponding to 853 unique clones, 5275 genome survey sequences (GSS, and eleven finished contigs from the diplomonad fish parasite Spironucleus salmonicida (previously described as S. barkhanus. Results The analyses revealed a compact genome with few, if any, introns and very short 3' untranslated regions. Strikingly different patterns of codon usage were observed in genes corresponding to frequently sampled ESTs versus genes poorly sampled, indicating that translational selection is influencing the codon usage of highly expressed genes. Rigorous phylogenomic analyses identified 84 genes – mostly encoding metabolic proteins – that have been acquired by diplomonads or their relatively close ancestors via lateral gene transfer (LGT. Although most acquisitions were from prokaryotes, more than a dozen represent likely transfers of genes between eukaryotic lineages. Many genes that provide novel insights into the genetic basis of the biology and pathogenicity of this parasitic protist were identified including 149 that putatively encode variant-surface cysteine-rich proteins which are candidate virulence factors. A number of genomic properties that distinguish S. salmonicida from its human parasitic relative G. lamblia were identified such as nineteen putative lineage-specific gene acquisitions, distinct mutational biases and codon usage and distinct polyadenylation signals. Conclusion Our results highlight the power of comparative genomic studies to yield insights into the biology of parasitic protists and the evolution of their genomes, and suggest that genetic exchange between distantly-related protist lineages may be occurring at an appreciable rate in eukaryote

  8. Automated Identification of Core Regulatory Genes in Human Gene Regulatory Networks.

    Directory of Open Access Journals (Sweden)

    Vipin Narang

    Full Text Available Human gene regulatory networks (GRN can be difficult to interpret due to a tangle of edges interconnecting thousands of genes. We constructed a general human GRN from extensive transcription factor and microRNA target data obtained from public databases. In a subnetwork of this GRN that is active during estrogen stimulation of MCF-7 breast cancer cells, we benchmarked automated algorithms for identifying core regulatory genes (transcription factors and microRNAs. Among these algorithms, we identified K-core decomposition, pagerank and betweenness centrality algorithms as the most effective for discovering core regulatory genes in the network evaluated based on previously known roles of these genes in MCF-7 biology as well as in their ability to explain the up or down expression status of up to 70% of the remaining genes. Finally, we validated the use of K-core algorithm for organizing the GRN in an easier to interpret layered hierarchy where more influential regulatory genes percolate towards the inner layers. The integrated human gene and miRNA network and software used in this study are provided as supplementary materials (S1 Data accompanying this manuscript.

  9. An extended phylogenetic analysis reveals ancient origin of "non-green" phosphoribulokinase genes from two lineages of "green" secondary photosynthetic eukaryotes: Euglenophyta and Chlorarachniophyta

    Directory of Open Access Journals (Sweden)

    Sekimoto Hiroyuki

    2011-09-01

    Full Text Available Abstract Background Euglenophyta and Chlorarachniophyta are groups of photosynthetic eukaryotes harboring secondary plastids of distinct green algal origins. Although previous phylogenetic analyses of genes encoding Calvin cycle enzymes demonstrated the presence of genes apparently not derived from green algal endosymbionts in the nuclear genomes of Euglena gracilis (Euglenophyta and Bigelowiella natans (Chlorarachniophyta, the origins of these "non-green" genes in "green" secondary phototrophs were unclear due to the limited taxon sampling. Results Here, we sequenced five new phosphoribulokinase (PRK genes (from one euglenophyte, two chlorarachniophytes, and two glaucophytes and performed an extended phylogenetic analysis of the genes based on a phylum-wide taxon sampling from various photosynthetic eukaryotes. Our phylogenetic analyses demonstrated that the PRK sequences form two genera of Euglenophyta formed a robust monophyletic group within a large clade including stramenopiles, haptophytes and a cryptophyte, and three genera of Chlorarachniophyta were placed within the red algal clade. These "non-green" affiliations were supported by the taxon-specific insertion/deletion sequences in the PRK alignment, especially between euglenophytes and stramenopiles. In addition, phylogenetic analysis of another Calvin cycle enzyme, plastid-targeted sedoheptulose-bisphosphatase (SBP, showed that the SBP sequences from two genera of Chlorarachniophyta were positioned within a red algal clade. Conclusions Our results suggest that PRK genes may have been transferred from a "stramenopile" ancestor to Euglenophyta and from a "red algal" ancestor to Chlorarachniophyta before radiation of extant taxa of these two "green" secondary phototrophs. The presence of two of key Calvin cycle enzymes, PRK and SBP, of red algal origins in Chlorarachniophyta indicate that the contribution of "non-green" algae to the plastid proteome in the "green" secondary phototrophs is

  10. Production and characterization of novel recombinant adeno-associated virus replicative-form genomes: a eukaryotic source of DNA for gene transfer.

    Directory of Open Access Journals (Sweden)

    Lina Li

    Full Text Available Conventional non-viral gene transfer uses bacterial plasmid DNA containing antibiotic resistance genes, cis-acting bacterial sequence elements, and prokaryotic methylation patterns that may adversely affect transgene expression and vector stability in vivo. Here, we describe novel replicative forms of a eukaryotic vector DNA that consist solely of an expression cassette flanked by adeno-associated virus (AAV inverted terminal repeats. Extensive structural analyses revealed that this AAV-derived vector DNA consists of linear, duplex molecules with covalently closed ends (termed closed-ended, linear duplex, or "CELiD", DNA. CELiD vectors, produced in Sf9 insect cells, require AAV rep gene expression for amplification. Amounts of CELiD DNA produced from insect cell lines stably transfected with an ITR-flanked transgene exceeded 60 mg per 5 × 10(9 Sf9 cells, and 1-15 mg from a comparable number of parental Sf9 cells in which the transgene was introduced via recombinant baculovirus infection. In mice, systemically delivered CELiD DNA resulted in long-term, stable transgene expression in the liver. CELiD vectors represent a novel eukaryotic alternative to bacterial plasmid DNA.

  11. Overexpression of a eukaryotic glutathione reductase gene from Brassica campestris improved resistance to oxidative stress in Escherichia coli

    International Nuclear Information System (INIS)

    Yoon, Ho-Sung; Lee, In-Ae; Lee, Hyoshin; Lee, Byung-Hyun; Jo, Jinki

    2005-01-01

    Glutathione reductase (GR) plays an essential role in a cell's defense against reactive oxygen metabolites by sustaining the reduced status of an important antioxidant glutathione. We constructed a recombinant plasmid based on the expression vector pET-18a that overexpresses a eukaryotic GR from Brassica campestris (BcGR) in Escherichia coli. For comparative analyses, E. coli GR (EcGR) was also subcloned in the same manner. The transformed E. coli with the recombinant constructs accumulated a high level of GR transcripts upon IPTG induction. Also, Western blot analysis showed overproduction of the BcGR protein in a soluble fraction of the transformed E. coli extract. When treated with oxidative stress generating reagents such as paraquat, salicylic acid, and cadmium, the BcGR overproducing E. coli exhibited a higher level of growth and survival rate than the control E. coli strain, but it was not as high as the E. coli strain transformed with the inducible EcGR. The translated amino acid sequences of BcGR and EcGR share 37.3% identity but all the functionally known important residues are conserved. It appears that eukaryotic BcGR functions in a prokaryotic system by providing protection against oxidative damages in E. coli

  12. Expression of acyl-lipid Delta12-desaturase gene in prokaryotic and eukaryotic cells and its effect on cold stress tolerance of potato.

    Science.gov (United States)

    Amiri, Reza Maali; Yur'eva, Natalia O; Shimshilashvili, Khristina R; Goldenkova-Pavlova, Irina V; Pchelkin, Vasiliy P; Kuznitsova, Elmira I; Tsydendambaev, Vladimir D; Trunova, Tamara I; Los, Dmitry A; Jouzani, Gholamreza Salehi; Nosov, Alexander M

    2010-03-01

    We report the expression profile of acyl-lipid Delta12-desaturase (desA) gene from Synechocystis sp. PCC6803 and its effect on cell membrane lipid composition and cold tolerance in prokaryotic (Escherichia coli) and eukaryotic (Solanum tuberosum) cells. For this purpose, a hybrid of desA and reporter gene encoding thermostable lichenase (licBM3) was constructed and used to transform these cells. The expression of this hybrid gene was measured using qualitative (Petri dish test, electrophoregram and zymogram) and quantitative methods (spectrometry and gas liquid chromatography assays). The maximum level of linoleic acid in the bacterial cells containing hybrid gene was 1.9% of total fatty acids. Cold stress tolerance assays using plant damage index and growth parameters showed that cold tolerance was enhanced in primary transgenic lines because of increased unsaturated fatty acid concentration in their lipids. The greatest content of 18:2 and 18:3 fatty acids in primary transgenic plants was observed for lines 2 (73%) and 3 (41%). Finally, our results showed that desaturase could enhance tolerance to cold stress in potato, and desaturase and lichenase retain their functionality in the structure of the hybrid protein where the enzymatic activity of target gene product was higher than in the case of reporter lichenase gene absence in the construction.

  13. Arabinogalactan proteins have deep roots in eukaryotes: identification of genes and epitopes in brown algae and their role in Fucus serratus embryo development.

    Science.gov (United States)

    Hervé, Cécile; Siméon, Amandine; Jam, Murielle; Cassin, Andrew; Johnson, Kim L; Salmeán, Armando A; Willats, William G T; Doblin, Monika S; Bacic, Antony; Kloareg, Bernard

    2016-03-01

    Arabinogalactan proteins (AGPs) are highly glycosylated, hydroxyproline-rich proteins found at the cell surface of plants, where they play key roles in developmental processes. Brown algae are marine, multicellular, photosynthetic eukaryotes. They belong to the phylum Stramenopiles, which is unrelated to land plants and green algae (Chloroplastida). Brown algae share common evolutionary features with other multicellular organisms, including a carbohydrate-rich cell wall. They differ markedly from plants in their cell wall composition, and AGPs have not been reported in brown algae. Here we investigated the presence of chimeric AGP-like core proteins in this lineage. We report that the genome sequence of the brown algal model Ectocarpus siliculosus encodes AGP protein backbone motifs, in a gene context that differs considerably from what is known in land plants. We showed the occurrence of AGP glycan epitopes in a range of brown algal cell wall extracts. We demonstrated that these chimeric AGP-like core proteins are developmentally regulated in embryos of the order Fucales and showed that AGP loss of function seriously impairs the course of early embryogenesis. Our findings shine a new light on the role of AGPs in cell wall sensing and raise questions about the origin and evolution of AGPs in eukaryotes. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  14. PAT-seq: a method to study the integration of 3′-UTR dynamics with gene expression in the eukaryotic transcriptome

    Science.gov (United States)

    Harrison, Paul F.; Powell, David R.; Clancy, Jennifer L.; Preiss, Thomas; Boag, Peter R.; Traven, Ana; Seemann, Torsten; Beilharz, Traude H.

    2015-01-01

    A major objective of systems biology is to quantitatively integrate multiple parameters from genome-wide measurements. To integrate gene expression with dynamics in poly(A) tail length and adenylation site, we developed a targeted next-generation sequencing approach, Poly(A)-Test RNA-sequencing. PAT-seq returns (i) digital gene expression, (ii) polyadenylation site/s, and (iii) the polyadenylation-state within and between eukaryotic transcriptomes. PAT-seq differs from previous 3′ focused RNA-seq methods in that it depends strictly on 3′ adenylation within total RNA samples and that the full-native poly(A) tail is included in the sequencing libraries. Here, total RNA samples from budding yeast cells were analyzed to identify the intersect between adenylation state and gene expression in response to loss of the major cytoplasmic deadenylase Ccr4. Furthermore, concordant changes to gene expression and adenylation-state were demonstrated in the classic Crabtree–Warburg metabolic shift. Because all polyadenylated RNA is interrogated by the approach, alternative adenylation sites, noncoding RNA and RNA-decay intermediates were also identified. Most important, the PAT-seq approach uses standard sequencing procedures, supports significant multiplexing, and thus replication and rigorous statistical analyses can for the first time be brought to the measure of 3′-UTR dynamics genome wide. PMID:26092945

  15. Eukaryotic diversity in historical soil samples

    NARCIS (Netherlands)

    Moon-van der Staay, S.Y.; Tzeneva, V.A.; Staay, van der G.W.M.; Vos, de W.M.; Smidt, H.; Hackstein, J.H.P.

    2006-01-01

    The eukaryotic biodiversity in historical air-dried samples of Dutch agricultural soil has been assessed by random sequencing of an 18S rRNA gene library and by denaturing gradient gel electrophoresis. Representatives of nearly all taxa of eukaryotic soil microbes could be identified, demonstrating

  16. [Construction of Eukaryotic Expression Vector of siRNA Specific for BCR/ABL Fusion Gene and Its Effects on K562 Cells].

    Science.gov (United States)

    Li, Ming; Wang, Bao-Lin; Wang, Li-Na; Xi, Ya-Ming

    2016-12-01

    To construct eukaryotic expression vector of siRNA specific for BCR/ABL and to investigate the effect of recombinant plasmid on BCR/ABL and P210 protein expression in K562 cells. siRNA(small interfering RNA)was designed according to the Tuschl's principle of Ai-based medicine, and was converted into cDNA coding expression of shRNA(small hairpin RNAs)of siRNA for BCR/ABL fusion gene. The cDNA was synthesized and inserted into plasmid pTER. The pTER117 and pTER363 of recombinant plasmid being eukaryotic expression vector was controlled by the H1 promoter of RNA polymerase III, and identified by the restriction map and the sequence analysis. The recombinant plasmid did not only have the screening resisting antibiotics, its expression but also are induced by tetracycline (tet). After steadily transfection into K562 cells by Lipofectamine, their positive mono-cell clones being resistant to Zeocin were isolated. TaqMan real-time quantitative RT-PCR (RQ-PCR) and Western blot respectively detected expression of BCR/ABL mRNA and P210 protein. Trypaum blue dying was used to analyze the proliferation of K562 cells. Cell apoptosis was observed by flow cytometer. the recombinant plasmid was steadily transfected into K562 cells by Lipofectamine 2000, Their positive mono-cell clones being resistant to Zeocin were isolated. The proliferation of K562 cells were remarkably inhibited by the recombinant plasmid induced gene expression by tetracycline. Tetracycline induced its expression for 48 h and 72 h. pTER117, pTER363 decreased the mRNA level of BCR/ABL 90%, 82% and 91.5%, 84%, respectively, P210 protein were almost measured in K562 cells. FCM analysis showed that the recombinant plasmid induced apoptosis in K562 cells, the apoptosis rate were respectively 34.4%, 58.1% in K562 cells treated by pTER117 for 48 h and 72 h, apoptosis rate were 31.8%, 54.6% by pTER363, but the control groups did not show these effects on K562 cells. The siRNA eukaryotic expression vector against BCR

  17. RNA interference-mediated silencing of eukaryotic translation initiation factor 3, subunit B (EIF3B) gene expression inhibits proliferation of colon cancer cells.

    Science.gov (United States)

    Wang, Zheng; Chen, Jinxian; Sun, Jianhua; Cui, Zhe; Wu, Hui

    2012-06-26

    A key factor underlying the control of the cellular growth, size and proliferation involves the regulation of the total protein synthesis. Most often, the initial stages of mRNA translation are rate limiting, which involves a group of eukaryotic translation initiation factors (EIFs). Research advances focused on the inhibition of their expression and activity hold the key to the initiation and progression of tumor and tumor prognosis. We performed RNA interference (RNAi) with the lentivirus vector system to silence the EIF3B gene using the colon cancer cell strain SW1116. The negative control included the normal target cells infected with the negative control virus whereas the knockdown cells included the normal target cells transfected with the RNAi target virus. We tested the inhibition resulting from the decreased expression of EIF3B gene on the proliferation rate of SW1116 cells, including the cell cycle, apoptosis and clonability. Compared with the negative control, the impact of EIF3B gene expression in SW1116 cells on the levels of mRNA and protein in the knockdown group, was significantly inhibited (P cell proliferation rate and clonability were also significantly inhibited (P cells in the G1 phase (P cells.

  18. Automated discovery of functional generality of human gene expression programs.

    Directory of Open Access Journals (Sweden)

    Georg K Gerber

    2007-08-01

    Full Text Available An important research problem in computational biology is the identification of expression programs, sets of co-expressed genes orchestrating normal or pathological processes, and the characterization of the functional breadth of these programs. The use of human expression data compendia for discovery of such programs presents several challenges including cellular inhomogeneity within samples, genetic and environmental variation across samples, uncertainty in the numbers of programs and sample populations, and temporal behavior. We developed GeneProgram, a new unsupervised computational framework based on Hierarchical Dirichlet Processes that addresses each of the above challenges. GeneProgram uses expression data to simultaneously organize tissues into groups and genes into overlapping programs with consistent temporal behavior, to produce maps of expression programs, which are sorted by generality scores that exploit the automatically learned groupings. Using synthetic and real gene expression data, we showed that GeneProgram outperformed several popular expression analysis methods. We applied GeneProgram to a compendium of 62 short time-series gene expression datasets exploring the responses of human cells to infectious agents and immune-modulating molecules. GeneProgram produced a map of 104 expression programs, a substantial number of which were significantly enriched for genes involved in key signaling pathways and/or bound by NF-kappaB transcription factors in genome-wide experiments. Further, GeneProgram discovered expression programs that appear to implicate surprising signaling pathways or receptor types in the response to infection, including Wnt signaling and neurotransmitter receptors. We believe the discovered map of expression programs involved in the response to infection will be useful for guiding future biological experiments; genes from programs with low generality scores might serve as new drug targets that exhibit minimal

  19. Analysis of Porphyra membrane transporters demonstrates gene transfer among photosynthetic eukaryotes and numerous sodium-coupled transport systems.

    Science.gov (United States)

    Chan, Cheong Xin; Zäuner, Simone; Wheeler, Glen; Grossman, Arthur R; Prochnik, Simon E; Blouin, Nicolas A; Zhuang, Yunyun; Benning, Christoph; Berg, Gry Mine; Yarish, Charles; Eriksen, Renée L; Klein, Anita S; Lin, Senjie; Levine, Ira; Brawley, Susan H; Bhattacharya, Debashish

    2012-04-01

    Membrane transporters play a central role in many cellular processes that rely on the movement of ions and organic molecules between the environment and the cell, and between cellular compartments. Transporters have been well characterized in plants and green algae, but little is known about transporters or their evolutionary histories in the red algae. Here we examined 482 expressed sequence tag contigs that encode putative membrane transporters in the economically important red seaweed Porphyra (Bangiophyceae, Rhodophyta). These contigs are part of a comprehensive transcriptome dataset from Porphyra umbilicalis and Porphyra purpurea. Using phylogenomics, we identified 30 trees that support the expected monophyly of red and green algae/plants (i.e. the Plantae hypothesis) and 19 expressed sequence tag contigs that show evidence of endosymbiotic/horizontal gene transfer involving stramenopiles. The majority (77%) of analyzed contigs encode transporters with unresolved phylogenies, demonstrating the difficulty in resolving the evolutionary history of genes. We observed molecular features of many sodium-coupled transport systems in marine algae, and the potential for coregulation of Porphyra transporter genes that are associated with fatty acid biosynthesis and intracellular lipid trafficking. Although both the tissue-specific and subcellular locations of the encoded proteins require further investigation, our study provides red algal gene candidates associated with transport functions and novel insights into the biology and evolution of these transporters.

  20. Gene Expression Measurement Module (GEMM) - a fully automated, miniaturized instrument for measuring gene expression in space

    Science.gov (United States)

    Karouia, Fathi; Ricco, Antonio; Pohorille, Andrew; Peyvan, Kianoosh

    2012-07-01

    The capability to measure gene expression on board spacecrafts opens the doors to a large number of experiments on the influence of space environment on biological systems that will profoundly impact our ability to conduct safe and effective space travel, and might also shed light on terrestrial physiology or biological function and human disease and aging processes. Measurements of gene expression will help us to understand adaptation of terrestrial life to conditions beyond the planet of origin, identify deleterious effects of the space environment on a wide range of organisms from microbes to humans, develop effective countermeasures against these effects, determine metabolic basis of microbial pathogenicity and drug resistance, test our ability to sustain and grow in space organisms that can be used for life support and in situ resource utilization during long-duration space exploration, and monitor both the spacecraft environment and crew health. These and other applications hold significant potential for discoveries in space biology, biotechnology and medicine. Accordingly, supported by funding from the NASA Astrobiology Science and Technology Instrument Development Program, we are developing a fully automated, miniaturized, integrated fluidic system for small spacecraft capable of in-situ measuring microbial expression of thousands of genes from multiple samples. The instrument will be capable of (1) lysing bacterial cell walls, (2) extracting and purifying RNA released from cells, (3) hybridizing it on a microarray and (4) providing electrochemical readout, all in a microfluidics cartridge. The prototype under development is suitable for deployment on nanosatellite platforms developed by the NASA Small Spacecraft Office. The first target application is to cultivate and measure gene expression of the photosynthetic bacterium Synechococcus elongatus, i.e. a cyanobacterium known to exhibit remarkable metabolic diversity and resilience to adverse conditions

  1. CpLEA5, the Late Embryogenesis Abundant Protein Gene from Chimonanthus praecox, Possesses Low Temperature and Osmotic Resistances in Prokaryote and Eukaryotes

    Directory of Open Access Journals (Sweden)

    Yiling Liu

    2015-11-01

    Full Text Available Plants synthesize and accumulate a series of stress-resistance proteins to protect normal physiological activities under adverse conditions. Chimonanthus praecox which blooms in freezing weather accumulates late embryogenesis abundant proteins (LEAs in flowers, but C. praecox LEAs are little reported. Here, we report a group of five LEA genes of C. praecox (CpLEA5, KT727031. Prokaryotic-expressed CpLEA5 was employed in Escherichia coli to investigate bioactivities and membrane permeability at low-temperature. In comparison with the vacant strains, CpLEA5-containing strains survived in a 20% higher rate; and the degree of cell membrane damage in CpLEA5-containing strains was 55% of that of the vacant strains according to a conductivity test, revealing the low-temperature resistance of CpLEA5 in bacteria. CpLEA5 was also expressed in Pichia pastoris. Interestingly, besides low-temperature resistance, CpLEA5 conferred high resistance to salt and alkali in CpLEA5 overexpressing yeast. The CpLEA5 gene was transferred into Arabidopsis thaliana to also demonstrate CpLEA5 actions in plants. As expected, the transgenic lines were more resistant against low-temperature and drought while compared with the wild type. Taken together, CpLEA5-conferred resistances to several conditions in prokaryote and eukaryotes could have great value as a genetic technology to enhance osmotic stress and low-temperature tolerance.

  2. Experimental Examination of EFL and MATX Eukaryotic Horizontal Gene Transfers: Coexistence of Mutually Exclusive Transcripts Predates Functional Rescue

    Czech Academy of Sciences Publication Activity Database

    Szabová, J.; Růžička, Petr; Verner, Zdeněk; Hampl, V.; Lukeš, Julius

    2011-01-01

    Roč. 28, č. 8 (2011), s. 2371-2378 ISSN 0737-4038 R&D Projects: GA ČR GA204/09/1667; GA MŠk 2B06129 Grant - others:GA ČR(CZ) GAP506/11/1320 Program:GA Institutional research plan: CEZ:AV0Z60220518 Keywords : EFL * MATX * horizontal gene transfer * functional rescue * RNAi * Trypanosoma Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.550, year: 2011

  3. An Automated Bayesian Framework for Integrative Gene Expression Analysis and Predictive Medicine

    OpenAIRE

    Parikh, Neena; Zollanvari, Amin; Alterovitz, Gil

    2012-01-01

    Motivation: This work constructs a closed loop Bayesian Network framework for predictive medicine via integrative analysis of publicly available gene expression findings pertaining to various diseases. Results: An automated pipeline was successfully constructed. Integrative models were made based on gene expression data obtained from GEO experiments relating to four different diseases using Bayesian statistical methods. Many of these models demonstrated a high level of accuracy and predictive...

  4. GenePublisher: automated analysis of DNA microarray data

    DEFF Research Database (Denmark)

    Knudsen, Steen; Workman, Christopher; Sicheritz-Ponten, T.

    2003-01-01

    , statistical analysis and visualization of the data. The results are run against databases of signal transduction pathways, metabolic pathways and promoter sequences in order to extract more information. The results of the entire analysis are summarized in report form and returned to the user.......GenePublisher, a system for automatic analysis of data from DNA microarray experiments, has been implemented with a web interface at http://www.cbs.dtu.dk/services/GenePublisher. Raw data are uploaded to the server together with aspecification of the data. The server performs normalization...

  5. Genetic control of chromosome instability in Aspergillus nidulans as a means for gene amplification in eukaryotic microorganisms

    International Nuclear Information System (INIS)

    Parag, Y.; Roper, J.A.

    1975-01-01

    A haploid strain of Aspergillus nidulans carrying I-II duplication homozygous for the leaky mutation adE20 shows improved growth on minimal medium. The duplication, though more stable than disomics, still shows instability. Several methods were used for detecting genetic control of improved stability. a) visual selection, using a duplicated strain which is very unstable due to UV sensitivity, (adE20, biAl/dp yA2; uvsB). One stable strain showed a deletion (or a lethal mutation) distal to biA on the segment at the original position (on chromosome I). This deletion reduces crossing-over frequency detween the two homologous segments. As the deletion of the non-translated segment (yellow sectors) must be preceded by crossing-over, the above reduces the frequency of yellow sectors. A deletion of the translocated segment (green sectors) results in non-viability due to the deletion, and such sectors do not appear. The net result is a stable duplication involving only 12 C.O. units carrying the gene in concern. b) Suppressors of UV sensitivity (su-uvsB) were attempted using the above uvs duplicated strain. Phenotypic revertants were easily obtained, but all were back mutations at the uvsB locus. c) Mutations for UV resistance higher than that of the wild type were not obtained, in spite of the strong selective pressure inserted. d) Recombination deficient mutations (rec), six altogether, all uvs + , did not have any effect on stability. (orig.) [de

  6. Automation of ALK gene rearrangement testing with fluorescence in situ hybridization (FISH): a feasibility study.

    Science.gov (United States)

    Zwaenepoel, Karen; Merkle, Dennis; Cabillic, Florian; Berg, Erica; Belaud-Rotureau, Marc-Antoine; Grazioli, Vittorio; Herelle, Olga; Hummel, Michael; Le Calve, Michele; Lenze, Dido; Mende, Stefanie; Pauwels, Patrick; Quilichini, Benoit; Repetti, Elena

    2015-02-01

    In the past several years we have observed a significant increase in our understanding of molecular mechanisms that drive lung cancer. Specifically in the non-small cell lung cancer sub-types, ALK gene rearrangements represent a sub-group of tumors that are targetable by the tyrosine kinase inhibitor Crizotinib, resulting in significant reductions in tumor burden. Phase II and III clinical trials were performed using an ALK break-apart FISH probe kit, making FISH the gold standard for identifying ALK rearrangements in patients. FISH is often considered a labor and cost intensive molecular technique, and in this study we aimed to demonstrate feasibility for automation of ALK FISH testing, to improve laboratory workflow and ease of testing. This involved automation of the pre-treatment steps of the ALK assay using various protocols on the VP 2000 instrument, and facilitating automated scanning of the fluorescent FISH specimens for simplified enumeration on various backend scanning and analysis systems. The results indicated that ALK FISH can be automated. Significantly, both the Ikoniscope and BioView system of automated FISH scanning and analysis systems provided a robust analysis algorithm to define ALK rearrangements. In addition, the BioView system facilitated consultation of difficult cases via the internet. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Automated DNA mutation detection using universal conditions direct sequencing: application to ten muscular dystrophy genes

    Directory of Open Access Journals (Sweden)

    Wu Bai-Lin

    2009-10-01

    Full Text Available Abstract Background One of the most common and efficient methods for detecting mutations in genes is PCR amplification followed by direct sequencing. Until recently, the process of designing PCR assays has been to focus on individual assay parameters rather than concentrating on matching conditions for a set of assays. Primers for each individual assay were selected based on location and sequence concerns. The two primer sequences were then iteratively adjusted to make the individual assays work properly. This generally resulted in groups of assays with different annealing temperatures that required the use of multiple thermal cyclers or multiple passes in a single thermal cycler making diagnostic testing time-consuming, laborious and expensive. These factors have severely hampered diagnostic testing services, leaving many families without an answer for the exact cause of a familial genetic disease. A search of GeneTests for sequencing analysis of the entire coding sequence for genes that are known to cause muscular dystrophies returns only a small list of laboratories that perform comprehensive gene panels. The hypothesis for the study was that a complete set of universal assays can be designed to amplify and sequence any gene or family of genes using computer aided design tools. If true, this would allow automation and optimization of the mutation detection process resulting in reduced cost and increased throughput. Results An automated process has been developed for the detection of deletions, duplications/insertions and point mutations in any gene or family of genes and has been applied to ten genes known to bear mutations that cause muscular dystrophy: DMD; CAV3; CAPN3; FKRP; TRIM32; LMNA; SGCA; SGCB; SGCG; SGCD. Using this process, mutations have been found in five DMD patients and four LGMD patients (one in the FKRP gene, one in the CAV3 gene, and two likely causative heterozygous pairs of variations in the CAPN3 gene of two other

  8. Automated DNA mutation detection using universal conditions direct sequencing: application to ten muscular dystrophy genes.

    Science.gov (United States)

    Bennett, Richard R; Schneider, Hal E; Estrella, Elicia; Burgess, Stephanie; Cheng, Andrew S; Barrett, Caitlin; Lip, Va; Lai, Poh San; Shen, Yiping; Wu, Bai-Lin; Darras, Basil T; Beggs, Alan H; Kunkel, Louis M

    2009-10-18

    One of the most common and efficient methods for detecting mutations in genes is PCR amplification followed by direct sequencing. Until recently, the process of designing PCR assays has been to focus on individual assay parameters rather than concentrating on matching conditions for a set of assays. Primers for each individual assay were selected based on location and sequence concerns. The two primer sequences were then iteratively adjusted to make the individual assays work properly. This generally resulted in groups of assays with different annealing temperatures that required the use of multiple thermal cyclers or multiple passes in a single thermal cycler making diagnostic testing time-consuming, laborious and expensive.These factors have severely hampered diagnostic testing services, leaving many families without an answer for the exact cause of a familial genetic disease. A search of GeneTests for sequencing analysis of the entire coding sequence for genes that are known to cause muscular dystrophies returns only a small list of laboratories that perform comprehensive gene panels.The hypothesis for the study was that a complete set of universal assays can be designed to amplify and sequence any gene or family of genes using computer aided design tools. If true, this would allow automation and optimization of the mutation detection process resulting in reduced cost and increased throughput. An automated process has been developed for the detection of deletions, duplications/insertions and point mutations in any gene or family of genes and has been applied to ten genes known to bear mutations that cause muscular dystrophy: DMD; CAV3; CAPN3; FKRP; TRIM32; LMNA; SGCA; SGCB; SGCG; SGCD. Using this process, mutations have been found in five DMD patients and four LGMD patients (one in the FKRP gene, one in the CAV3 gene, and two likely causative heterozygous pairs of variations in the CAPN3 gene of two other patients). Methods and assay sequences are reported in

  9. Autophagy in unicellular eukaryotes

    NARCIS (Netherlands)

    Kiel, J.A.K.W.

    2010-01-01

    Cells need a constant supply of precursors to enable the production of macromolecules to sustain growth and survival. Unlike metazoans, unicellular eukaryotes depend exclusively on the extracellular medium for this supply. When environmental nutrients become depleted, existing cytoplasmic components

  10. Automating gene library synthesis by structure-based combinatorial protein engineering: examples from plant sesquiterpene synthases.

    Science.gov (United States)

    Dokarry, Melissa; Laurendon, Caroline; O'Maille, Paul E

    2012-01-01

    Structure-based combinatorial protein engineering (SCOPE) is a homology-independent recombination method to create multiple crossover gene libraries by assembling defined combinations of structural elements ranging from single mutations to domains of protein structure. SCOPE was originally inspired by DNA shuffling, which mimics recombination during meiosis, where mutations from parental genes are "shuffled" to create novel combinations in the resulting progeny. DNA shuffling utilizes sequence identity between parental genes to mediate template-switching events (the annealing and extension of one parental gene fragment on another) in PCR reassembly reactions to generate crossovers and hence recombination between parental genes. In light of the conservation of protein structure and degeneracy of sequence, SCOPE was developed to enable the "shuffling" of distantly related genes with no requirement for sequence identity. The central principle involves the use of oligonucleotides to encode for crossover regions to choreograph template-switching events during PCR assembly of gene fragments to create chimeric genes. This approach was initially developed to create libraries of hybrid DNA polymerases from distantly related parents, and later developed to create a combinatorial mutant library of sesquiterpene synthases to explore the catalytic landscapes underlying the functional divergence of related enzymes. This chapter presents a simplified protocol of SCOPE that can be integrated with different mutagenesis techniques and is suitable for automation by liquid-handling robots. Two examples are presented to illustrate the application of SCOPE to create gene libraries using plant sesquiterpene synthases as the model system. In the first example, we outline how to create an active-site library as a series of complex mixtures of diverse mutants. In the second example, we outline how to create a focused library as an array of individual clones to distil minimal combinations of

  11. The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility

    Energy Technology Data Exchange (ETDEWEB)

    Fritz-Laylin, Lillian K.; Prochnik, Simon E.; Ginger, Michael L.; Dacks, Joel; Carpenter, Meredith L.; Field, Mark C.; Kuo, Alan; Paredez, Alex; Chapman, Jarrod; Pham, Jonathan; Shu, Shengqiang; Neupane, Rochak; Cipriano, Michael; Mancuso, Joel; Tu, Hank; Salamov, Asaf; Lindquist, Erika; Shapiro, Harris; Lucas, Susan; Grigoriev, Igor V.; Cande, W. Zacheus; Fulton, Chandler; Rokhsar, Daniel S.; Dawson, Scott C.

    2010-03-01

    Genome sequences of diverse free-living protists are essential for understanding eukaryotic evolution and molecular and cell biology. The free-living amoeboflagellate Naegleria gruberi belongs to a varied and ubiquitous protist clade (Heterolobosea) that diverged from other eukaryotic lineages over a billion years ago. Analysis of the 15,727 protein-coding genes encoded by Naegleria's 41 Mb nuclear genome indicates a capacity for both aerobic respiration and anaerobic metabolism with concomitant hydrogen production, with fundamental implications for the evolution of organelle metabolism. The Naegleria genome facilitates substantially broader phylogenomic comparisons of free-living eukaryotes than previously possible, allowing us to identify thousands of genes likely present in the pan-eukaryotic ancestor, with 40% likely eukaryotic inventions. Moreover, we construct a comprehensive catalog of amoeboid-motility genes. The Naegleria genome, analyzed in the context of other protists, reveals a remarkably complex ancestral eukaryote with a rich repertoire of cytoskeletal, sexual, signaling, and metabolic modules.

  12. Broadly sampled multigene trees of eukaryotes

    Directory of Open Access Journals (Sweden)

    Logsdon John M

    2008-01-01

    Full Text Available Abstract Background Our understanding of the eukaryotic tree of life and the tremendous diversity of microbial eukaryotes is in flux as additional genes and diverse taxa are sampled for molecular analyses. Despite instability in many analyses, there is an increasing trend to classify eukaryotic diversity into six major supergroups: the 'Amoebozoa', 'Chromalveolata', 'Excavata', 'Opisthokonta', 'Plantae', and 'Rhizaria'. Previous molecular analyses have often suffered from either a broad taxon sampling using only single-gene data or have used multigene data with a limited sample of taxa. This study has two major aims: (1 to place taxa represented by 72 sequences, 61 of which have not been characterized previously, onto a well-sampled multigene genealogy, and (2 to evaluate the support for the six putative supergroups using two taxon-rich data sets and a variety of phylogenetic approaches. Results The inferred trees reveal strong support for many clades that also have defining ultrastructural or molecular characters. In contrast, we find limited to no support for most of the putative supergroups as only the 'Opisthokonta' receive strong support in our analyses. The supergroup 'Amoebozoa' has only moderate support, whereas the 'Chromalveolata', 'Excavata', 'Plantae', and 'Rhizaria' receive very limited or no support. Conclusion Our analytical approach substantiates the power of increased taxon sampling in placing diverse eukaryotic lineages within well-supported clades. At the same time, this study indicates that the six supergroup hypothesis of higher-level eukaryotic classification is likely premature. The use of a taxon-rich data set with 105 lineages, which still includes only a small fraction of the diversity of microbial eukaryotes, fails to resolve deeper phylogenetic relationships and reveals no support for four of the six proposed supergroups. Our analyses provide a point of departure for future taxon- and gene-rich analyses of the

  13. Comparative genomics and evolution of eukaryotic phospholipidbiosynthesis

    Energy Technology Data Exchange (ETDEWEB)

    Lykidis, Athanasios

    2006-12-01

    Phospholipid biosynthetic enzymes produce diverse molecular structures and are often present in multiple forms encoded by different genes. This work utilizes comparative genomics and phylogenetics for exploring the distribution, structure and evolution of phospholipid biosynthetic genes and pathways in 26 eukaryotic genomes. Although the basic structure of the pathways was formed early in eukaryotic evolution, the emerging picture indicates that individual enzyme families followed unique evolutionary courses. For example, choline and ethanolamine kinases and cytidylyltransferases emerged in ancestral eukaryotes, whereas, multiple forms of the corresponding phosphatidyltransferases evolved mainly in a lineage specific manner. Furthermore, several unicellular eukaryotes maintain bacterial-type enzymes and reactions for the synthesis of phosphatidylglycerol and cardiolipin. Also, base-exchange phosphatidylserine synthases are widespread and ancestral enzymes. The multiplicity of phospholipid biosynthetic enzymes has been largely generated by gene expansion in a lineage specific manner. Thus, these observations suggest that phospholipid biosynthesis has been an actively evolving system. Finally, comparative genomic analysis indicates the existence of novel phosphatidyltransferases and provides a candidate for the uncharacterized eukaryotic phosphatidylglycerol phosphate phosphatase.

  14. plantiSMASH: automated identification, annotation and expression analysis of plant biosynthetic gene clusters

    DEFF Research Database (Denmark)

    Kautsar, Satria A.; Suarez Duran, Hernando G.; Blin, Kai

    2017-01-01

    in specific genomic loci: biosynthetic gene clusters (BGCs). Here, we introduce plantiSMASH, a versatile online analysis platform that automates the identification of candidate plant BGCs. Moreover, it allows integration of transcriptomic data to prioritize candidate BGCs based on the coexpression patterns......Plant specialized metabolites are chemically highly diverse, play key roles in host-microbe interactions, have important nutritional value in crops and are frequently applied as medicines. It has recently become clear that plant biosynthetic pathway-encoding genes are sometimes densely clustered...... of predicted biosynthetic enzyme-coding genes, and facilitates comparative genomic analysis to study the evolutionary conservation of each cluster. Applied on 48 high-quality plant genomes, plantiSMASH identifies a rich diversity of candidate plant BGCs. These results will guide further experimental...

  15. Transfer of DNA from Bacteria to Eukaryotes

    Directory of Open Access Journals (Sweden)

    Benoît Lacroix

    2016-07-01

    Full Text Available Historically, the members of the Agrobacterium genus have been considered the only bacterial species naturally able to transfer and integrate DNA into the genomes of their eukaryotic hosts. Yet, increasing evidence suggests that this ability to genetically transform eukaryotic host cells might be more widespread in the bacterial world. Indeed, analyses of accumulating genomic data reveal cases of horizontal gene transfer from bacteria to eukaryotes and suggest that it represents a significant force in adaptive evolution of eukaryotic species. Specifically, recent reports indicate that bacteria other than Agrobacterium, such as Bartonella henselae (a zoonotic pathogen, Rhizobium etli (a plant-symbiotic bacterium related to Agrobacterium, or even Escherichia coli, have the ability to genetically transform their host cells under laboratory conditions. This DNA transfer relies on type IV secretion systems (T4SSs, the molecular machines that transport macromolecules during conjugative plasmid transfer and also during transport of proteins and/or DNA to the eukaryotic recipient cells. In this review article, we explore the extent of possible transfer of genetic information from bacteria to eukaryotic cells as well as the evolutionary implications and potential applications of this transfer.

  16. GSMA: Gene Set Matrix Analysis, An Automated Method for Rapid Hypothesis Testing of Gene Expression Data

    Directory of Open Access Journals (Sweden)

    Chris Cheadle

    2007-01-01

    Full Text Available Background: Microarray technology has become highly valuable for identifying complex global changes in gene expression patterns. The assignment of functional information to these complex patterns remains a challenging task in effectively interpreting data and correlating results from across experiments, projects and laboratories. Methods which allow the rapid and robust evaluation of multiple functional hypotheses increase the power of individual researchers to data mine gene expression data more efficiently.Results: We have developed (gene set matrix analysis GSMA as a useful method for the rapid testing of group-wise up- or downregulation of gene expression simultaneously for multiple lists of genes (gene sets against entire distributions of gene expression changes (datasets for single or multiple experiments. The utility of GSMA lies in its flexibility to rapidly poll gene sets related by known biological function or as designated solely by the end-user against large numbers of datasets simultaneously.Conclusions: GSMA provides a simple and straightforward method for hypothesis testing in which genes are tested by groups across multiple datasets for patterns of expression enrichment.

  17. Eukaryotic Cell Panorama

    Science.gov (United States)

    Goodsell, David S.

    2011-01-01

    Diverse biological data may be used to create illustrations of molecules in their cellular context. This report describes the scientific results that support an illustration of a eukaryotic cell, enlarged by one million times to show the distribution and arrangement of macromolecules. The panoramic cross section includes eight panels that extend…

  18. Eukaryotic membrane protein overproduction in Lactococcus lactis

    NARCIS (Netherlands)

    Kunji, Edmund R.S.; Chan, Ka Wai; Slotboom, Dirk Jan; Floyd, Suzanne; O’Connor, Rosemary; Monné, Magnus

    2005-01-01

    Eukaryotic membrane proteins play many vital roles in the cell and are important drug targets. Approximately 25% of all genes identified in the genome are known to encode membrane proteins, but the vast majority have no assigned function. Although the generation of structures of soluble proteins has

  19. AZuRE, a scalable system for automated term disambiguation of gene and protein names.

    Science.gov (United States)

    Podowski, Raf M; Cleary, John G; Goncharoff, Nicholas T; Amoutzias, Gregory; Hayes, William S

    2004-01-01

    Researchers, hindered by a lack of standard gene and protein-naming conventions, endure long, sometimes fruitless, literature searches. A system is described which is able to automatically assign gene names to their LocusLink ID (LLID) in previously unseen MEDLINE abstracts. The system is based on supervised learning and builds a model for each LLID. The training sets for all LLIDs are extracted automatically from MEDLINE references in the LocusLink and SwissProt databases. A validation was done of the performance for all 20,546 human genes with LLIDs. Of these, 7,344 produced good quality models (F-measure > 0.7, nearly 60% of which were > 0.9) and 13,202 did not, mainly due to insufficient numbers of known document references. A hand validation of MEDLINE documents for a set of 66 genes agreed well with the system's internal accuracy assessment. It is concluded that it is possible to achieve high quality gene disambiguation using scaleable automated techniques.

  20. Precambrian Skeletonized Microbial Eukaryotes

    Science.gov (United States)

    Lipps, Jere H.

    2017-04-01

    Skeletal heterotrophic eukaryotes are mostly absent from the Precambrian, although algal eukaryotes appear about 2.2 billion years ago. Tintinnids, radiolaria and foraminifera have molecular origins well back into the Precambrian yet no representatives of these groups are known with certainty in that time. These data infer times of the last common ancestors, not the appearance of true representatives of these groups which may well have diversified or not been preserved since those splits. Previous reports of these groups in the Precambrian are misinterpretations of other objects in the fossil record. Reported tintinnids at 1600 mya from China are metamorphic shards or mineral artifacts, the many specimens from 635-715 mya in Mongolia may be eukaryotes but they are not tintinnids, and the putative tintinnids at 580 mya in the Doushantou formation of China are diagenetic alterations of well-known acritarchs. The oldest supposed foraminiferan is Titanotheca from 550 to 565 mya rocks in South America and Africa is based on the occurrence of rutile in the tests and in a few modern agglutinated foraminifera, as well as the agglutinated tests. Neither of these nor the morphology are characteristic of foraminifera; hence these fossils remain as indeterminate microfossils. Platysolenites, an agglutinated tube identical to the modern foraminiferan Bathysiphon, occurs in the latest Neoproterozoic in Russia, Canada, and the USA (California). Some of the larger fossils occurring in typical Ediacaran (late Neoproterozoic) assemblages may be xenophyophorids (very large foraminifera), but the comparison is disputed and flawed. Radiolaria, on occasion, have been reported in the Precambrian, but the earliest known clearly identifiable ones are in the Cambrian. The only certain Precambrian heterotrophic skeletal eukaryotes (thecamoebians) occur in fresh-water rocks at about 750 mya. Skeletonized radiolaria and foraminifera appear sparsely in the Cambrian and radiate in the Ordovician

  1. A case study for effects of operational taxonomic units from intracellular endoparasites and ciliates on the eukaryotic phylogeny: phylogenetic position of the haptophyta in analyses of multiple slowly evolving genes.

    Directory of Open Access Journals (Sweden)

    Hisayoshi Nozaki

    Full Text Available Recent multigene phylogenetic analyses have contributed much to our understanding of eukaryotic phylogeny. However, the phylogenetic positions of various lineages within the eukaryotes have remained unresolved or in conflict between different phylogenetic studies. These phylogenetic ambiguities might have resulted from mixtures or integration from various factors including limited taxon sampling, missing data in the alignment, saturations of rapidly evolving genes, mixed analyses of short- and long-branched operational taxonomic units (OTUs, intracellular endoparasite and ciliate OTUs with unusual substitution etc. In order to evaluate the effects from intracellular endoparasite and ciliate OTUs co-analyzed on the eukaryotic phylogeny and simplify the results, we here used two different sets of data matrices of multiple slowly evolving genes with small amounts of missing data and examined the phylogenetic position of the secondary photosynthetic chromalveolates Haptophyta, one of the most abundant groups of oceanic phytoplankton and significant primary producers. In both sets, a robust sister relationship between Haptophyta and SAR (stramenopiles, alveolates, rhizarians, or SA [stramenopiles and alveolates] was resolved when intracellular endoparasite/ciliate OTUs were excluded, but not in their presence. Based on comparisons of character optimizations on a fixed tree (with a clade composed of haptophytes and SAR or SA, disruption of the monophyly between haptophytes and SAR (or SA in the presence of intracellular endoparasite/ciliate OTUs can be considered to be a result of multiple evolutionary reversals of character positions that supported the synapomorphy of the haptophyte and SAR (or SA clade in the absence of intracellular endoparasite/ciliate OTUs.

  2. The COG database: an updated version includes eukaryotes

    Directory of Open Access Journals (Sweden)

    Sverdlov Alexander V

    2003-09-01

    Full Text Available Abstract Background The availability of multiple, essentially complete genome sequences of prokaryotes and eukaryotes spurred both the demand and the opportunity for the construction of an evolutionary classification of genes from these genomes. Such a classification system based on orthologous relationships between genes appears to be a natural framework for comparative genomics and should facilitate both functional annotation of genomes and large-scale evolutionary studies. Results We describe here a major update of the previously developed system for delineation of Clusters of Orthologous Groups of proteins (COGs from the sequenced genomes of prokaryotes and unicellular eukaryotes and the construction of clusters of predicted orthologs for 7 eukaryotic genomes, which we named KOGs after eukaryotic orthologous groups. The COG collection currently consists of 138,458 proteins, which form 4873 COGs and comprise 75% of the 185,505 (predicted proteins encoded in 66 genomes of unicellular organisms. The eukaryotic orthologous groups (KOGs include proteins from 7 eukaryotic genomes: three animals (the nematode Caenorhabditis elegans, the fruit fly Drosophila melanogaster and Homo sapiens, one plant, Arabidopsis thaliana, two fungi (Saccharomyces cerevisiae and Schizosaccharomyces pombe, and the intracellular microsporidian parasite Encephalitozoon cuniculi. The current KOG set consists of 4852 clusters of orthologs, which include 59,838 proteins, or ~54% of the analyzed eukaryotic 110,655 gene products. Compared to the coverage of the prokaryotic genomes with COGs, a considerably smaller fraction of eukaryotic genes could be included into the KOGs; addition of new eukaryotic genomes is expected to result in substantial increase in the coverage of eukaryotic genomes with KOGs. Examination of the phyletic patterns of KOGs reveals a conserved core represented in all analyzed species and consisting of ~20% of the KOG set. This conserved portion of the

  3. Mapping of brain activity by automated volume analysis of immediate early genes

    Science.gov (United States)

    Renier, Nicolas; Adams, Eliza L.; Kirst, Christoph; Wu, Zhuhao; Azevedo, Ricardo; Kohl, Johannes; Autry, Anita E.; Kadiri, Lolahon; Venkataraju, Kannan Umadevi; Zhou, Yu; Wang, Victoria X.; Tang, Cheuk Y.; Olsen, Olav; Dulac, Catherine; Osten, Pavel; Tessier-Lavigne, Marc

    2016-01-01

    Summary Understanding how neural information is processed in physiological and pathological states would benefit from precise detection, localization and quantification of the activity of all neurons across the entire brain, which has not to date been achieved in the mammalian brain. We introduce a pipeline for high speed acquisition of brain activity at cellular resolution through profiling immediate early gene expression using immunostaining and light-sheet fluorescence imaging, followed by automated mapping and analysis of activity by an open-source software program we term ClearMap. We validate the pipeline first by analysis of brain regions activated in response to Haloperidol. Next, we report new cortical regions downstream of whisker-evoked sensory processing during active exploration. Lastly, we combine activity mapping with axon tracing to uncover new brain regions differentially activated during parenting behavior. This pipeline is widely applicable to different experimental paradigms, including animal species for which transgenic activity reporters are not readily available. PMID:27238021

  4. PFP/ESG: automated protein function prediction servers enhanced with Gene Ontology visualization tool.

    Science.gov (United States)

    Khan, Ishita K; Wei, Qing; Chitale, Meghana; Kihara, Daisuke

    2015-01-15

    Protein function prediction (PFP) is an automated function prediction method that predicts Gene Ontology (GO) annotations for a protein sequence using distantly related sequences and contextual associations of GO terms. Extended similarity group (ESG) is another GO prediction algorithm that makes predictions based on iterative sequence database searches. Here, we provide interactive web servers for the PFP and ESG algorithms that are equipped with an effective visualization of the GO predictions in a hierarchical topology. PFP/ESG servers are freely available at http://kiharalab.org/web/pfp.php and http://kiharalab.org/web/esg.php, or access both at http://kiharalab.org/pfp_esg.php. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    International Nuclear Information System (INIS)

    Koonin, Eugene V.; Dolja, Valerian V.; Krupovic, Mart

    2015-01-01

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources

  6. Origins and evolution of viruses of eukaryotes: The ultimate modularity

    Energy Technology Data Exchange (ETDEWEB)

    Koonin, Eugene V., E-mail: koonin@ncbi.nlm.nih.gov [National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 (United States); Dolja, Valerian V., E-mail: doljav@science.oregonstate.edu [Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331 (United States); Krupovic, Mart, E-mail: krupovic@pasteur.fr [Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Department of Microbiology, Paris 75015 (France)

    2015-05-15

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order “Megavirales” that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources

  7. Natural history of eukaryotic DNA methylation systems.

    Science.gov (United States)

    Iyer, Lakshminarayan M; Abhiman, Saraswathi; Aravind, L

    2011-01-01

    Methylation of cytosines and adenines in DNA is a widespread epigenetic mark in both prokaryotes and eukaryotes. In eukaryotes, it has a profound influence on chromatin structure and dynamics. Recent advances in genomics and biochemistry have considerably elucidated the functions and provenance of these DNA modifications. DNA methylases appear to have emerged first in bacterial restriction-modification (R-M) systems from ancient RNA-modifying enzymes, in transitions that involved acquisition of novel catalytic residues and DNA-recognition features. DNA adenine methylases appear to have been acquired by ciliates, heterolobosean amoeboflagellates, and certain chlorophyte algae. Six distinct clades of cytosine methylases, including the DNMT1, DNMT2, and DNMT3 clades, were acquired by eukaryotes through independent lateral transfer of their precursors from bacteria or bacteriophages. In addition to these, multiple adenine and cytosine methylases were acquired by several families of eukaryotic transposons. In eukaryotes, the DNA-methylase module was often combined with distinct modified and unmodified peptide recognition domains and other modules mediating specialized interactions, for example, the RFD module of DNMT1 which contains a permuted Sm domain linked to a helix-turn-helix domain. In eukaryotes, the evolution of DNA methylases appears to have proceeded in parallel to the elaboration of histone-modifying enzymes and the RNAi system, with functions related to counter-viral and counter-transposon defense, and regulation of DNA repair and differential gene expression being their primary ancestral functions. Diverse DNA demethylation systems that utilize base-excision repair via DNA glycosylases and cytosine deaminases appear to have emerged in multiple eukaryotic lineages. Comparative genomics suggests that the link between cytosine methylation and DNA glycosylases probably emerged first in a novel R-M system in bacteria. Recent studies suggest that the 5mC is not

  8. Automated Analysis of Protein Expression and Gene Amplification within the Same Cells of Paraffin-Embedded Tumour Tissue

    Directory of Open Access Journals (Sweden)

    Timo Gaiser

    2010-01-01

    Full Text Available Background: The simultaneous detection of protein expression and gene copy number changes in patient samples, like paraffin-embedded tissue sections, is challenging since the procedures of immunohistochemistry (IHC and Fluorescence in situ Hybridization (FISH negatively influence each other which often results in suboptimal staining. Therefore, we developed a novel automated algorithm based on relocation which allows subsequent detection of protein content and gene copy number changes within the same cell.

  9. Endosymbiotic theories for eukaryote origin

    Science.gov (United States)

    Martin, William F.; Garg, Sriram; Zimorski, Verena

    2015-01-01

    For over 100 years, endosymbiotic theories have figured in thoughts about the differences between prokaryotic and eukaryotic cells. More than 20 different versions of endosymbiotic theory have been presented in the literature to explain the origin of eukaryotes and their mitochondria. Very few of those models account for eukaryotic anaerobes. The role of energy and the energetic constraints that prokaryotic cell organization placed on evolutionary innovation in cell history has recently come to bear on endosymbiotic theory. Only cells that possessed mitochondria had the bioenergetic means to attain eukaryotic cell complexity, which is why there are no true intermediates in the prokaryote-to-eukaryote transition. Current versions of endosymbiotic theory have it that the host was an archaeon (an archaebacterium), not a eukaryote. Hence the evolutionary history and biology of archaea increasingly comes to bear on eukaryotic origins, more than ever before. Here, we have compiled a survey of endosymbiotic theories for the origin of eukaryotes and mitochondria, and for the origin of the eukaryotic nucleus, summarizing the essentials of each and contrasting some of their predictions to the observations. A new aspect of endosymbiosis in eukaryote evolution comes into focus from these considerations: the host for the origin of plastids was a facultative anaerobe. PMID:26323761

  10. Endosymbiotic theories for eukaryote origin.

    Science.gov (United States)

    Martin, William F; Garg, Sriram; Zimorski, Verena

    2015-09-26

    For over 100 years, endosymbiotic theories have figured in thoughts about the differences between prokaryotic and eukaryotic cells. More than 20 different versions of endosymbiotic theory have been presented in the literature to explain the origin of eukaryotes and their mitochondria. Very few of those models account for eukaryotic anaerobes. The role of energy and the energetic constraints that prokaryotic cell organization placed on evolutionary innovation in cell history has recently come to bear on endosymbiotic theory. Only cells that possessed mitochondria had the bioenergetic means to attain eukaryotic cell complexity, which is why there are no true intermediates in the prokaryote-to-eukaryote transition. Current versions of endosymbiotic theory have it that the host was an archaeon (an archaebacterium), not a eukaryote. Hence the evolutionary history and biology of archaea increasingly comes to bear on eukaryotic origins, more than ever before. Here, we have compiled a survey of endosymbiotic theories for the origin of eukaryotes and mitochondria, and for the origin of the eukaryotic nucleus, summarizing the essentials of each and contrasting some of their predictions to the observations. A new aspect of endosymbiosis in eukaryote evolution comes into focus from these considerations: the host for the origin of plastids was a facultative anaerobe. © 2015 The Authors.

  11. Automated Extraction Of Associations Between Methylated Genes and Diseases From Biomedical Literature

    KAUST Repository

    Bin Res, Arwa A.

    2012-12-01

    Associations between methylated genes and diseases have been investigated in several studies, and it is critical to have such information available for better understanding of diseases and clinical decisions. However, such information is scattered in a large number of electronic publications and it is difficult to manually search for it. Therefore, the goal of the project is to develop a machine learning model that can efficiently extract such information. Twelve machine learning algorithms were applied and compared in application to this problem based on three approaches that involve: document-term frequency matrices, position weight matrices, and a hybrid approach that uses the combination of the previous two. The best results we obtained by the hybrid approach with a random forest model that, in a 10-fold cross-validation, achieved F-score and accuracy of nearly 85% and 84%, respectively. On a completely separate testing set, F-score and accuracy of 89% and 88%, respectively, were obtained. Based on this model, we developed a tool that automates extraction of associations between methylated genes and diseases from electronic text. Our study contributed an efficient method for extracting specific types of associations from free text and the methodology developed here can be extended to other similar association extraction problems.

  12. Origins and evolution of viruses of eukaryotes: The ultimate modularity.

    Science.gov (United States)

    Koonin, Eugene V; Dolja, Valerian V; Krupovic, Mart

    2015-05-01

    Viruses and other selfish genetic elements are dominant entities in the biosphere, with respect to both physical abundance and genetic diversity. Various selfish elements parasitize on all cellular life forms. The relative abundances of different classes of viruses are dramatically different between prokaryotes and eukaryotes. In prokaryotes, the great majority of viruses possess double-stranded (ds) DNA genomes, with a substantial minority of single-stranded (ss) DNA viruses and only limited presence of RNA viruses. In contrast, in eukaryotes, RNA viruses account for the majority of the virome diversity although ssDNA and dsDNA viruses are common as well. Phylogenomic analysis yields tangible clues for the origins of major classes of eukaryotic viruses and in particular their likely roots in prokaryotes. Specifically, the ancestral genome of positive-strand RNA viruses of eukaryotes might have been assembled de novo from genes derived from prokaryotic retroelements and bacteria although a primordial origin of this class of viruses cannot be ruled out. Different groups of double-stranded RNA viruses derive either from dsRNA bacteriophages or from positive-strand RNA viruses. The eukaryotic ssDNA viruses apparently evolved via a fusion of genes from prokaryotic rolling circle-replicating plasmids and positive-strand RNA viruses. Different families of eukaryotic dsDNA viruses appear to have originated from specific groups of bacteriophages on at least two independent occasions. Polintons, the largest known eukaryotic transposons, predicted to also form virus particles, most likely, were the evolutionary intermediates between bacterial tectiviruses and several groups of eukaryotic dsDNA viruses including the proposed order "Megavirales" that unites diverse families of large and giant viruses. Strikingly, evolution of all classes of eukaryotic viruses appears to have involved fusion between structural and replicative gene modules derived from different sources along

  13. Energetics and genetics across the prokaryote-eukaryote divide

    Science.gov (United States)

    2011-01-01

    Background All complex life on Earth is eukaryotic. All eukaryotic cells share a common ancestor that arose just once in four billion years of evolution. Prokaryotes show no tendency to evolve greater morphological complexity, despite their metabolic virtuosity. Here I argue that the eukaryotic cell originated in a unique prokaryotic endosymbiosis, a singular event that transformed the selection pressures acting on both host and endosymbiont. Results The reductive evolution and specialisation of endosymbionts to mitochondria resulted in an extreme genomic asymmetry, in which the residual mitochondrial genomes enabled the expansion of bioenergetic membranes over several orders of magnitude, overcoming the energetic constraints on prokaryotic genome size, and permitting the host cell genome to expand (in principle) over 200,000-fold. This energetic transformation was permissive, not prescriptive; I suggest that the actual increase in early eukaryotic genome size was driven by a heavy early bombardment of genes and introns from the endosymbiont to the host cell, producing a high mutation rate. Unlike prokaryotes, with lower mutation rates and heavy selection pressure to lose genes, early eukaryotes without genome-size limitations could mask mutations by cell fusion and genome duplication, as in allopolyploidy, giving rise to a proto-sexual cell cycle. The side effect was that a large number of shared eukaryotic basal traits accumulated in the same population, a sexual eukaryotic common ancestor, radically different to any known prokaryote. Conclusions The combination of massive bioenergetic expansion, release from genome-size constraints, and high mutation rate favoured a protosexual cell cycle and the accumulation of eukaryotic traits. These factors explain the unique origin of eukaryotes, the absence of true evolutionary intermediates, and the evolution of sex in eukaryotes but not prokaryotes. Reviewers This article was reviewed by: Eugene Koonin, William Martin

  14. Construction of eukaryotic plant expression vector with the SAG12 promoter and the leaf senescence-related IPT gene and its genetic transformation in rice

    International Nuclear Information System (INIS)

    Cai, P.; Qian, Q.; Kang, Z.; Zhang, Z.

    2012-01-01

    A pair of primers was designed according to the sequences published by GenBank to amplify the isopentenyl transferase gene (IPT gene) of the plasmid in Agrobacterium tumefaciens (strain C58). The 5 '-untranslated sequence of the senescence-associated SAG12 gene of Arabidopsis was isolated by the polymerase chain reaction (PCR). In addition, we constructed the plant-expression vectors (pBI121-IPT and pCAMBIA1301-SAG12-IPT), which were regulated by the SAG12 promoter and the IPT gene. The plant-expression vector was used to transform the embryos of rice cultivar Zhonghua 16 with the help of the A. tumefaciens system. Plantlets were regenerated in vitro by selection on medium containing hygromycin. PCR amplification showed that the target gene was successfully integrated into the transformed plants. (author)

  15. Expanding the eukaryotic genetic code

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2017-02-28

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  16. Expanding the eukaryotic genetic code

    Science.gov (United States)

    Chin, Jason W.; Cropp, T. Ashton; Anderson, J. Christopher; Schultz, Peter G.

    2013-01-22

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  17. Origins of eukaryotic sexual reproduction.

    Science.gov (United States)

    Goodenough, Ursula; Heitman, Joseph

    2014-03-01

    Sexual reproduction is a nearly universal feature of eukaryotic organisms. Given its ubiquity and shared core features, sex is thought to have arisen once in the last common ancestor to all eukaryotes. Using the perspectives of molecular genetics and cell biology, we consider documented and hypothetical scenarios for the instantiation and evolution of meiosis, fertilization, sex determination, uniparental inheritance of organelle genomes, and speciation.

  18. Eukaryotic DNA Replicases

    KAUST Repository

    Zaher, Manal S.

    2014-11-21

    The current model of the eukaryotic DNA replication fork includes three replicative DNA polymerases, polymerase α/primase complex (Pol α), polymerase δ (Pol δ), and polymerase ε (Pol ε). The primase synthesizes 8–12 nucleotide RNA primers that are extended by the DNA polymerization activity of Pol α into 30–35 nucleotide RNA-DNA primers. Replication factor C (RFC) opens the polymerase clamp-like processivity factor, proliferating cell nuclear antigen (PCNA), and loads it onto the primer-template. Pol δ utilizes PCNA to mediate highly processive DNA synthesis, while Pol ε has intrinsic high processivity that is modestly stimulated by PCNA. Pol ε replicates the leading strand and Pol δ replicates the lagging strand in a division of labor that is not strict. The three polymerases are comprised of multiple subunits and share unifying features in their large catalytic and B subunits. The remaining subunits are evolutionarily not related and perform diverse functions. The catalytic subunits are members of family B, which are distinguished by their larger sizes due to inserts in their N- and C-terminal regions. The sizes of these inserts vary among the three polymerases, and their functions remain largely unknown. Strikingly, the quaternary structures of Pol α, Pol δ, and Pol ε are arranged similarly. The catalytic subunits adopt a globular structure that is linked via its conserved C-terminal region to the B subunit. The remaining subunits are linked to the catalytic and B subunits in a highly flexible manner.

  19. [Selection and construction of cell line stably expressing survivin gene in lower level through eukaryotic plasmid vector of shRNA].

    Science.gov (United States)

    Wang, Wen-Xia; Sun, Shan-Zhen; Song, Ying

    2008-06-01

    To construct a short hairpin RNA(shRNA) interference expression plasmid vector of survivin gene, transfect tongue squamous cell carcinoma line Tca8113 which expressed survivin gene in a high level, and choose the cells whose survivin gene were suppressed significantly. Two pairs of oligonucleotide sequences specific for survivin gene were designed and synthesized, and cloned into pSilencer-2.1U6-neo plasmid. The recombinant plasmids (named PS1 and PS2) were amplified in Ecoli. DH5alpha was identified by restriction digestion, PCR and sequencing. The vectors were transfected into Tca8113 cells with lipofectamine 2000. After selection with G418, the stable cell clones were attained. Survivn expression was assayed with real-time quantitative PCR and Western blotting. SAS8.0 software package was used for Student t test. Two vectors were constructed successfully and stable cell clones with PS1 or PS2 plasmid were obtained. As compared with those of control, survivin expression of transfected cell with PS1 or PS2 in mRNA level was significantly suppressed (P<0.05). In protein level, only those of transfected cell with PS2 was significantly suppressed (P<0.01). The shRNA interference expression plasmid vectors of survivin gene are successfully constructed, and Tca8113 cells which express survivin gene in a stable lower level are attained, which enable us to carry out further research on gene therapy of oral squamous cell carcinoma. Supported by National Natural Science Foundation of China (Grant No.30572056).

  20. Cloning of Dense Granular (GRA 7 Gene of Toxoplasma gondii into pTZ57RT Vectors for Sub-Cloning in Prokaryotic and Eukaryotic Plasmids

    Directory of Open Access Journals (Sweden)

    Zahra Arab-Mazar

    2014-11-01

    Full Text Available Background: Serological assay based on dense granular (GRA proteins of Toxoplasma gondii (T. gondii is actually the most popular laboratory diagnostic tool to detection of toxoplasmosis. We aimed to construct a recombinant GRA7-pTZ57RT plasmid vectors that it is suitable for sub-cloning and GRA7 protein production.Materials and Methods: Souris mice were used for maintaining of T. gondii tachyzoites by serial intraperitoneal passage. The tachyzoites’ DNA was extracted, and the GRA7 gene was amplified by PCR. The purified DNA was inserted into pTZ57RT cloning vectors, and then transformed into TOP10 competent cells. Finally, cloning and transformation were confirmed by restriction enzymatic digestion and gene sequencing.Results: Agarose gel electrophoresis analysis on PCR products of genomic DNA, revealed 726 bp bands that were equal to the GRA7 gene. Both white (recombinant and blue (non-recombinant colonies appeared on ampicillin-LB agar. Results of enzymatic digestion and gene sequencing confirmed successful cloning and transformation procedures.Conclusion: The GRA7 gene of T. gondii was cloned into pTZ57RT plasmid, which is suggested to be further used as DNA vaccine or sub-cloned for production of recombinant GRA7 protein.

  1. MicroRNAs Form Triplexes with Double Stranded DNA at Sequence-Specific Binding Sites; a Eukaryotic Mechanism via which microRNAs Could Directly Alter Gene Expression.

    Directory of Open Access Journals (Sweden)

    Steven W Paugh

    2016-02-01

    Full Text Available MicroRNAs are important regulators of gene expression, acting primarily by binding to sequence-specific locations on already transcribed messenger RNAs (mRNA and typically down-regulating their stability or translation. Recent studies indicate that microRNAs may also play a role in up-regulating mRNA transcription levels, although a definitive mechanism has not been established. Double-helical DNA is capable of forming triple-helical structures through Hoogsteen and reverse Hoogsteen interactions in the major groove of the duplex, and we show physical evidence (i.e., NMR, FRET, SPR that purine or pyrimidine-rich microRNAs of appropriate length and sequence form triple-helical structures with purine-rich sequences of duplex DNA, and identify microRNA sequences that favor triplex formation. We developed an algorithm (Trident to search genome-wide for potential triplex-forming sites and show that several mammalian and non-mammalian genomes are enriched for strong microRNA triplex binding sites. We show that those genes containing sequences favoring microRNA triplex formation are markedly enriched (3.3 fold, p<2.2 × 10(-16 for genes whose expression is positively correlated with expression of microRNAs targeting triplex binding sequences. This work has thus revealed a new mechanism by which microRNAs could interact with gene promoter regions to modify gene transcription.

  2. Construction of Eukaryotic Expression Vector with mBD1-mBD3 Fusion Genes and Exploring Its Activity against Influenza A Virus

    Directory of Open Access Journals (Sweden)

    Wanyi Li

    2014-03-01

    Full Text Available Influenza (flu pandemics have exhibited a great threat to human health throughout history. With the emergence of drug-resistant strains of influenza A virus (IAV, it is necessary to look for new agents for treatment and transmission prevention of the flu. Defensins are small (2–6 kDa cationic peptides known for their broad-spectrum antimicrobial activity. Beta-defensins (β-defensins are mainly produced by barrier epithelial cells and play an important role in attacking microbe invasion by epithelium. In this study, we focused on the anti-influenza A virus activity of mouse β-defensin 1 (mBD1 and β defensin-3 (mBD3 by synthesizing their fusion peptide with standard recombinant methods. The eukaryotic expression vectors pcDNA3.1(+/mBD1-mBD3 were constructed successfully by overlap-PCR and transfected into Madin-Darby canine kidney (MDCK cells. The MDCK cells transfected by pcDNA3.1(+/mBD1-mBD3 were obtained by G418 screening, and the mBD1-mBD3 stable expression pattern was confirmed in MDCK cells by RT-PCR and immunofluorescence assay. The acquired stable transfected MDCK cells were infected with IAV (A/PR/8/34, H1N1, 0.1 MOI subsequently and the virus titers in cell culture supernatants were analyzed by TCID50 72 h later. The TCID50 titer of the experimental group was clearly lower than that of the control group (p < 0.001. Furthermore, BALB/C mice were injected with liposome-encapsulated pcDNA3.1(+/mBD1-mBD3 through muscle and then challenged with the A/PR/8/34 virus. Results showed the survival rate of 100% and lung index inhibitory rate of 32.6% in pcDNA3.1(+/mBD1-mBD3group; the TCID50 titer of lung homogenates was clearly lower than that of the control group (p < 0.001. This study demonstrates that mBD1-mBD3 expressed by the recombinant plasmid pcDNA3.1(+/mBD1-mBD3 could inhibit influenza A virus replication both in vitro and in vivo. These observations suggested that the recombinant mBD1-mBD3 might be developed into an agent for

  3. Analysis of Porphyra Membrane Transporters Demonstrates Gene Transfer among Photosynthetic Eukaryotes and Numerous Sodium-Coupled Transport Systems1[C][W][OA

    Science.gov (United States)

    Chan, Cheong Xin; Zäuner, Simone; Wheeler, Glen; Grossman, Arthur R.; Prochnik, Simon E.; Blouin, Nicolas A.; Zhuang, Yunyun; Benning, Christoph; Berg, Gry Mine; Yarish, Charles; Eriksen, Renée L.; Klein, Anita S.; Lin, Senjie; Levine, Ira; Brawley, Susan H.; Bhattacharya, Debashish

    2012-01-01

    Membrane transporters play a central role in many cellular processes that rely on the movement of ions and organic molecules between the environment and the cell, and between cellular compartments. Transporters have been well characterized in plants and green algae, but little is known about transporters or their evolutionary histories in the red algae. Here we examined 482 expressed sequence tag contigs that encode putative membrane transporters in the economically important red seaweed Porphyra (Bangiophyceae, Rhodophyta). These contigs are part of a comprehensive transcriptome dataset from Porphyra umbilicalis and Porphyra purpurea. Using phylogenomics, we identified 30 trees that support the expected monophyly of red and green algae/plants (i.e. the Plantae hypothesis) and 19 expressed sequence tag contigs that show evidence of endosymbiotic/horizontal gene transfer involving stramenopiles. The majority (77%) of analyzed contigs encode transporters with unresolved phylogenies, demonstrating the difficulty in resolving the evolutionary history of genes. We observed molecular features of many sodium-coupled transport systems in marine algae, and the potential for coregulation of Porphyra transporter genes that are associated with fatty acid biosynthesis and intracellular lipid trafficking. Although both the tissue-specific and subcellular locations of the encoded proteins require further investigation, our study provides red algal gene candidates associated with transport functions and novel insights into the biology and evolution of these transporters. PMID:22337920

  4. Sistema automático de detección y etiquetado de caras en imágenes

    OpenAIRE

    Herrero Vez, Tamara

    2010-01-01

    En este proyecto se presenta un sistema automático de detección y etiquetado de imágenes estáticas. Detectar rostros en fotografías es un problema en pleno auge en el campo de la visión por ordenador y son muchas las aplicaciones prácticas que se tienen en la actualidad, videoconferencia, vigilancia, control de acceso, etc. Además el etiquetado de fotos es un recurso muy necesitado en Internet, donde la cantidad de imágenes crece exponencialmente y es una necesidad cada vez mayor el poder cla...

  5. Eukaryotic-Type Serine/Threonine Protein Kinase StkP Is a Global Regulator of Gene Expression in Streptococcus pneumoniae

    Czech Academy of Sciences Publication Activity Database

    Přenosilová, Lenka; Nováková, Linda; Basler, Marek; Branny, Pavel

    2007-01-01

    Roč. 189, č. 11 (2007), s. 4168-4179 ISSN 0021-9193 R&D Projects: GA ČR GP204/07/P082; GA ČR GA204/02/1423; GA MZe 1G46068 Institutional research plan: CEZ:AV0Z50200510 Keywords : protein kinase * streptococus pneumoniae * gene expression Subject RIV: EE - Microbiology, Virology Impact factor: 4.013, year: 2007

  6. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.

    Science.gov (United States)

    Wijffels, René H; Kruse, Olaf; Hellingwerf, Klaas J

    2013-06-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments. Cyanobacteria are promising host organisms for the production of small molecules that can be secreted such as ethanol, butanol, fatty acids and other organic acids. Eukaryotic microalgae are interesting for products for which cellular storage is important such as proteins, lipids, starch and alkanes. For the development of new and promising lines of production, strains of both cyanobacteria and eukaryotic microalgae have to be improved. Transformation systems have been much better developed in cyanobacteria. However, several products would be preferably produced with eukaryotic microalgae. In the case of cyanobacteria a synthetic-systems biology approach has a great potential to exploit cyanobacteria as cell factories. For eukaryotic microalgae transformation systems need to be further developed. A promising strategy is transformation of heterologous (prokaryotic and eukaryotic) genes in established eukaryotic hosts such as Chlamydomonas reinhardtii. Experimental outdoor pilots under containment for the production of genetically modified cyanobacteria and microalgae are in progress. For full scale production risks of release of genetically modified organisms need to be assessed. Copyright © 2013. Published by Elsevier Ltd.

  7. Eukaryotic checkpoints are absent in the cell division cycle of ...

    Indian Academy of Sciences (India)

    It has also been shown that although this organism contains sequence homologs of genes which are known to control the cell cycle of most eukaryotes, these genes may be structurally altered and their equivalent function yet to be demonstrated in amoeba. The available information suggests that surveillance mechanisms ...

  8. A eukaryotic-acquired gene by a biotrophic phytopathogen allows prolonged survival on the host by counteracting the shut-down of plant photosynthesis

    KAUST Repository

    Garavaglia, Betiana S.

    2010-01-28

    Xanthomonas citri pv. citri, the bacteria responsible for citrus canker posses a biological active plant natriuretic peptide (PNP)-like protein, not present in any other bacteria. PNPs are a class of extracellular, systemically mobile peptides that elicit a number of plant responses important in homeostasis and growth. Previously, we showed that a Xanthomonas citri pv. citri mutant lacking the PNP-like protein XacPNP produced more necrotic lesions in citrus leaves than wild type infections and suggested a role for XacPNP in the regulation of host homeostasis. Here we have analyzed the proteome modifications observed in citrus leaves infected with the wild type and XacPNP deletion mutant bacteria. While both of them cause downregulation of enzymes related to photosynthesis as well as chloroplastic ribosomal proteins, proteins related to defense responses are up-regulated. However, leaves infiltrated with the XacPNP deletion mutant show a more pronounced decrease in photosynthetic proteins while no reduction in defense related proteins as compared to the wild-type pathogen. This suggests that XacPNP serves the pathogen to maintain host photosynthetic efficiency during pathogenesis. The results from the proteomics analyses are consistent with our chlorophyll fluorescence data and transcript analyses of defense genes that show a more marked reduction in photosynthesis in the mutant but no difference in the induction of genes diagnostic for biotic-stress responses. We therefore conclude that XacPNP counteracts the shut-down of host photosynthesis during infection and in that way maintains the tissue in better conditions, suggesting that the pathogen has adapted a host gene to modify its natural host and render it a better reservoir for prolonged bacterial survival and thus for further colonization. 2010 Garavaglia et al.

  9. Construction of a eukaryotic expression plasmid of Humanin.

    Science.gov (United States)

    Luo, Ben-yan; Chen, Xiang-ming; Tang, Min; Chen, Feng; Chen, Zhi

    2005-01-01

    To construct a eukaryotic expression plasmid pcDNA3.1(-)-Humanin. The recombinant plasmid pGEMEX-1-Humanin was digested with restriction endonucleases BamH I and Hind III and the Humanin gene fragments, about 100 bp length, were obtained. Then the Humanin gene fragments were inserted into eukaryotic expression vector pcDNA3.1(-) and the recombinant plasmids pcDNA3.1(-)-Humanin were identified by sequencing. Recombinant plasmid DNA successfully produced a band which had the same size as that of the Humanin positive control. The sequence of recombinant plasmids accorded with the Humnain gene sequence. A eukaryotic expression plasmid of Humanin was successfully constructed.

  10. Construction of a eukaryotic expression plasmid of Humanin*

    Science.gov (United States)

    Luo, Ben-yan; Chen, Xiang-ming; Tang, Min; Chen, Feng; Chen, Zhi

    2005-01-01

    Objective: To construct a eukaryotic expression plasmid pcDNA3.1(-)-Humanin. Methods: The recombinant plasmid pGEMEX-1-Humanin was digested with restriction endonucleases BamH I and Hind III and the Humanin gene fragments, about 100 bp length, were obtained. Then the Humanin gene fragments were inserted into eukaryotic expression vector pcDNA3.1(-) and the recombinant plasmids pcDNA3.1(-)-Humanin were identified by sequencing. Results: Recombinant plasmid DNA successfully produced a band which had the same size as that of the Humanin positive control. The sequence of recombinant plasmids accorded with the Humnain gene sequence. Conclusions: A eukaryotic expression plasmid of Humanin was successfully constructed. PMID:15593385

  11. Soil eukaryotic functional diversity, a metatranscriptomic approach.

    Science.gov (United States)

    Bailly, Julie; Fraissinet-Tachet, Laurence; Verner, Marie-Christine; Debaud, Jean-Claude; Lemaire, Marc; Wésolowski-Louvel, Micheline; Marmeisse, Roland

    2007-11-01

    To appreciate the functional diversity of communities of soil eukaryotic micro-organisms we evaluated an experimental approach based on the construction and screening of a cDNA library using polyadenylated mRNA extracted from a forest soil. Such a library contains genes that are expressed by each of the different organisms forming the community and represents its metatranscriptome. The diversity of the organisms that contributed to this library was evaluated by sequencing a portion of the 18S rDNA gene amplified from either soil DNA or reverse-transcribed RNA. More than 70% of the sequences were from fungi and unicellular eukaryotes (protists) while the other most represented group was the metazoa. Calculation of richness estimators suggested that more than 180 species could be present in the soil samples studied. Sequencing of 119 cDNA identified genes with no homologues in databases (32%) and genes coding proteins involved in different biochemical and cellular processes. Surprisingly, the taxonomic distribution of the cDNA and of the 18S rDNA genes did not coincide, with a marked under-representation of the protists among the cDNA. Specific genes from such an environmental cDNA library could be isolated by expression in a heterologous microbial host, Saccharomyces cerevisiae. This is illustrated by the functional complementation of a histidine auxotrophic yeast mutant by two cDNA originating possibly from an ascomycete and a basidiomycete fungal species. Study of the metatranscriptome has the potential to uncover adaptations of whole microbial communities to local environmental conditions. It also gives access to an abundant source of genes of biotechnological interest.

  12. Eukaryotic transcription factors

    DEFF Research Database (Denmark)

    Staby, Lasse; O'Shea, Charlotte; Willemoës, Martin

    2017-01-01

    Gene-specific transcription factors (TFs) are key regulatory components of signaling pathways, controlling, for example, cell growth, development, and stress responses. Their biological functions are determined by their molecular structures, as exemplified by their structured DNA-binding domains...... them to participate in large interactomes, how they use only a few hydrophobic residues, short sequence motifs, prestructured motifs, and coupled folding and binding for their interactions with co-activators, and how their accessibility to post-translational modification affects their interactions...

  13. Expression of eukaryotic polypeptides in chloroplasts

    Energy Technology Data Exchange (ETDEWEB)

    Mayfield, Stephen P

    2013-06-04

    The present invention relates to a gene expression system in eukaryotic and prokaryotic cells, preferably plant cells and intact plants. In particular, the invention relates to an expression system having a RB47 binding site upstream of a translation initiation site for regulation of translation mediated by binding of RB47 protein, a member of the poly(A) binding protein family. Regulation is further effected by RB60, a protein disulfide isomerase. The expression system is capable of functioning in the nuclear/cytoplasm of cells and in the chloroplast of plants. Translation regulation of a desired molecule is enhanced approximately 100 fold over that obtained without RB47 binding site activation.

  14. Construction of a eukaryotic expression plasmid of Humanin*

    OpenAIRE

    Luo, Ben-yan; Chen, Xiang-ming; Tang, Min; Chen, Feng; Chen, Zhi

    2004-01-01

    Objective: To construct a eukaryotic expression plasmid pcDNA3.1(-)-Humanin. Methods: The recombinant plasmid pGEMEX-1-Humanin was digested with restriction endonucleases BamH I and Hind III and the Humanin gene fragments, about 100 bp length, were obtained. Then the Humanin gene fragments were inserted into eukaryotic expression vector pcDNA3.1(-) and the recombinant plasmids pcDNA3.1(-)-Humanin were identified by sequencing. Results: Recombinant plasmid DNA successfully produced a band whic...

  15. A probabilistic approach for automated discovery of perturbed genes using expression data from microarray or RNA-Seq.

    Science.gov (United States)

    Sundaramurthy, Gopinath; Eghbalnia, Hamid R

    2015-12-01

    In complex diseases, alterations of multiple molecular and cellular components in response to perturbations are indicative of disease physiology. While expression level of genes from high-throughput analysis can vary among patients, the common path among disease progression suggests that the underlying cellular sub-processes involving associated genes follow similar fates. Motivated by the interconnected nature of sub-processes, we have developed an automated methodology that combines ideas from biological networks, statistical models, and game theory, to probe connected cellular processes. The core concept in our approach uses probability of change (POC) to indicate the probability that a gene's expression level has changed between two conditions. POC facilitates the definition of change at the neighborhood, pathway, and network levels and enables evaluation of the influence of diseases on the expression. The 'connected' disease-related genes (DRG) identified display coherent and concomitant differential expression levels along paths. RNA-Seq and microarray breast cancer subtyping expression data sets were used to identify DRG between subtypes. A machine-learning algorithm was trained for subtype discrimination using the DRG, and the training yielded a set of biomarkers. The discriminative power of the biomarkers was tested using an unseen data set. Biomarkers identified overlaps with disease-specific identified genes, and we were able to classify disease subtypes with 100% and 80% agreement with PAM50, for microarray and RNA-Seq data set respectively. We present an automated probabilistic approach that offers unbiased and reproducible results, thus complementing existing methods in DRG and biomarker discovery for complex diseases. Copyright © 2015. Published by Elsevier Ltd.

  16. Correlation of the UV-induced mutational spectra and the DNA damage distribution of the human HPRT gene: Automating the analysis

    International Nuclear Information System (INIS)

    Kotturi, G.; Erfle, H.; Koop, B.F.; Boer, J.G. de; Glickman, B.W.

    1994-01-01

    Automated DNA sequencers can be readily adapted for various types of sequence-based nucleic acid analysis: more recently it was determined the distribution of UV photoproducts in the E. coli laci gene using techniques developed for automated fluorescence-based analysis. We have been working to improve the automated approach of damage distribution. Our current method is more rigorous. We have new software that integrates the area under the individual peaks, rather than measuring the height of the curve. In addition, we now employ an internal standard. The analysis can also be partially automated. Detection limits for both major types of UV-photoproducts (cyclobutane dimers and pyrimidine (6-4) pyrimidone photoproducts) are reported. The UV-induced damage distribution in the hprt gene is compared to the mutational spectra in human and rodents cells

  17. DNA mismatch repair and its many roles in eukaryotic cells.

    Science.gov (United States)

    Liu, Dekang; Keijzers, Guido; Rasmussen, Lene Juel

    2017-07-01

    DNA mismatch repair (MMR) is an important DNA repair pathway that plays critical roles in DNA replication fidelity, mutation avoidance and genome stability, all of which contribute significantly to the viability of cells and organisms. MMR is widely-used as a diagnostic biomarker for human cancers in the clinic, and as a biomarker of cancer susceptibility in animal model systems. Prokaryotic MMR is well-characterized at the molecular and mechanistic level; however, MMR is considerably more complex in eukaryotic cells than in prokaryotic cells, and in recent years, it has become evident that MMR plays novel roles in eukaryotic cells, several of which are not yet well-defined or understood. Many MMR-deficient human cancer cells lack mutations in known human MMR genes, which strongly suggests that essential eukaryotic MMR components/cofactors remain unidentified and uncharacterized. Furthermore, the mechanism by which the eukaryotic MMR machinery discriminates between the parental (template) and the daughter (nascent) DNA strand is incompletely understood and how cells choose between the EXO1-dependent and the EXO1-independent subpathways of MMR is not known. This review summarizes recent literature on eukaryotic MMR, with emphasis on the diverse cellular roles of eukaryotic MMR proteins, the mechanism of strand discrimination and cross-talk/interactions between and co-regulation of MMR and other DNA repair pathways in eukaryotic cells. The main conclusion of the review is that MMR proteins contribute to genome stability through their ability to recognize and promote an appropriate cellular response to aberrant DNA structures, especially when they arise during DNA replication. Although the molecular mechanism of MMR in the eukaryotic cell is still not completely understood, increased used of single-molecule analyses in the future may yield new insight into these unsolved questions. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Evolution of DNA replication protein complexes in eukaryotes and Archaea.

    Directory of Open Access Journals (Sweden)

    Nicholas Chia

    Full Text Available BACKGROUND: The replication of DNA in Archaea and eukaryotes requires several ancillary complexes, including proliferating cell nuclear antigen (PCNA, replication factor C (RFC, and the minichromosome maintenance (MCM complex. Bacterial DNA replication utilizes comparable proteins, but these are distantly related phylogenetically to their archaeal and eukaryotic counterparts at best. METHODOLOGY/PRINCIPAL FINDINGS: While the structures of each of the complexes do not differ significantly between the archaeal and eukaryotic versions thereof, the evolutionary dynamic in the two cases does. The number of subunits in each complex is constant across all taxa. However, they vary subtly with regard to composition. In some taxa the subunits are all identical in sequence, while in others some are homologous rather than identical. In the case of eukaryotes, there is no phylogenetic variation in the makeup of each complex-all appear to derive from a common eukaryotic ancestor. This is not the case in Archaea, where the relationship between the subunits within each complex varies taxon-to-taxon. We have performed a detailed phylogenetic analysis of these relationships in order to better understand the gene duplications and divergences that gave rise to the homologous subunits in Archaea. CONCLUSION/SIGNIFICANCE: This domain level difference in evolution suggests that different forces have driven the evolution of DNA replication proteins in each of these two domains. In addition, the phylogenies of all three gene families support the distinctiveness of the proposed archaeal phylum Thaumarchaeota.

  19. Eukaryotic checkpoints are absent in the cell division cycle of ...

    Indian Academy of Sciences (India)

    Unknown

    are known to control the cell cycle of most eukaryotes, these genes may be structurally altered and their equiva- lent function yet to be ... points controlling the cell division of these organisms? Is the cell division cycle of these organisms ..... mitotic-phase inhibitor and may become a useful tool for studies on the relationship ...

  20. Molecular typing of fecal eukaryotic microbiota of human infants and ...

    Indian Academy of Sciences (India)

    The micro-eukaryotic diversity from the human gut was investigated using universal primers directed towards 18S rRNA gene, fecal samples being the source of DNA. The subjects in this study included two breast-fed and two formula-milk-fed infants and their mothers. The study revealed that the infants did not seem to ...

  1. Phylogenomic analysis of the cystatin superfamily in eukaryotes and prokaryotes

    Directory of Open Access Journals (Sweden)

    Turk Vito

    2009-11-01

    Full Text Available Abstract Background The cystatin superfamily comprises cysteine protease inhibitors that play key regulatory roles in protein degradation processes. Although they have been the subject of many studies, little is known about their genesis, evolution and functional diversification. Our aim has been to obtain a comprehensive insight into their origin, distribution, diversity, evolution and classification in Eukaryota, Bacteria and Archaea. Results We have identified in silico the full complement of the cystatin superfamily in more than 2100 prokaryotic and eukaryotic genomes. The analysis of numerous eukaryotic genomes has provided strong evidence for the emergence of this superfamily in the ancestor of eukaryotes. The progenitor of this superfamily was most probably intracellular and lacked a signal peptide and disulfide bridges, much like the extant Giardia cystatin. A primordial gene duplication produced two ancestral eukaryotic lineages, cystatins and stefins. While stefins remain encoded by a single or a small number of genes throughout the eukaryotes, the cystatins have undergone a more complex and dynamic evolution through numerous gene and domain duplications. In the cystatin superfamily we discovered twenty vertebrate-specific and three angiosperm-specific orthologous families, indicating that functional diversification has occurred only in multicellular eukaryotes. In vertebrate orthologous families, the prevailing trends were loss of the ancestral inhibitory activity and acquisition of novel functions in innate immunity. Bacterial cystatins and stefins may be emergency inhibitors that enable survival of bacteria in the host, defending them from the host's proteolytic activity. Conclusion This study challenges the current view on the classification, origin and evolution of the cystatin superfamily and provides valuable insights into their functional diversification. The findings of this comprehensive study provide guides for future

  2. Automation of gene assignments to metabolic pathways using high-throughput expression data

    Directory of Open Access Journals (Sweden)

    Yona Golan

    2005-08-01

    Full Text Available Abstract Background Accurate assignment of genes to pathways is essential in order to understand the functional role of genes and to map the existing pathways in a given genome. Existing algorithms predict pathways by extrapolating experimental data in one organism to other organisms for which this data is not available. However, current systems classify all genes that belong to a specific EC family to all the pathways that contain the corresponding enzymatic reaction, and thus introduce ambiguity. Results Here we describe an algorithm for assignment of genes to cellular pathways that addresses this problem by selectively assigning specific genes to pathways. Our algorithm uses the set of experimentally elucidated metabolic pathways from MetaCyc, together with statistical models of enzyme families and expression data to assign genes to enzyme families and pathways by optimizing correlated co-expression, while minimizing conflicts due to shared assignments among pathways. Our algorithm also identifies alternative ("backup" genes and addresses the multi-domain nature of proteins. We apply our model to assign genes to pathways in the Yeast genome and compare the results for genes that were assigned experimentally. Our assignments are consistent with the experimentally verified assignments and reflect characteristic properties of cellular pathways. Conclusion We present an algorithm for automatic assignment of genes to metabolic pathways. The algorithm utilizes expression data and reduces the ambiguity that characterizes assignments that are based only on EC numbers.

  3. RNA Export through the NPC in Eukaryotes.

    Science.gov (United States)

    Okamura, Masumi; Inose, Haruko; Masuda, Seiji

    2015-03-20

    In eukaryotic cells, RNAs are transcribed in the nucleus and exported to the cytoplasm through the nuclear pore complex. The RNA molecules that are exported from the nucleus into the cytoplasm include messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), micro RNAs (miRNAs), and viral mRNAs. Each RNA is transported by a specific nuclear export receptor. It is believed that most of the mRNAs are exported by Nxf1 (Mex67 in yeast), whereas rRNAs, snRNAs, and a certain subset of mRNAs are exported in a Crm1/Xpo1-dependent manner. tRNAs and miRNAs are exported by Xpot and Xpo5. However, multiple export receptors are involved in the export of some RNAs, such as 60S ribosomal subunit. In addition to these export receptors, some adapter proteins are required to export RNAs. The RNA export system of eukaryotic cells is also used by several types of RNA virus that depend on the machineries of the host cell in the nucleus for replication of their genome, therefore this review describes the RNA export system of two representative viruses. We also discuss the NPC anchoring-dependent mRNA export factors that directly recruit specific genes to the NPC.

  4. Gonococcal attachment to eukaryotic cells

    Energy Technology Data Exchange (ETDEWEB)

    James, J.F.; Lammel, C.J.; Draper, D.L.; Brown, D.A.; Sweet, R.L.; Brooks, G.F.

    The attachment of Neisseria gonorrhoeae to eukaryotic cells grown in tissue culture was analyzed by use of light and electron microscopy and by labeling of the bacteria with (/sup 3/H)- and (/sup 14/C)adenine. Isogenic piliated and nonpiliated N. gonorrhoeae from opaque and transparent colonies were studied. The results of light microscopy studies showed that the gonococci attached to cells of human origin, including Flow 2000, HeLa 229, and HEp 2. Studies using radiolabeled gonococci gave comparable results. Piliated N. gonorrhoeae usually attached in larger numbers than nonpiliated organisms, and those from opaque colonies attached more often than isogenic variants from transparent colonies. Day-to-day variation in rate of attachment was observed. Scanning electron microscopy studies showed the gonococcal attachment to be specific for microvilli of the host cells. It is concluded that more N. gonorrhoeae from opaque colonies, as compared with isogenic variants from transparent colonies, attach to eukaryotic cells grown in tissue culture.

  5. Eukaryotic vs. prokaryotic chemosensory systems.

    Science.gov (United States)

    Sbarbati, Andrea; Merigo, Flavia; Osculati, Francesco

    2010-04-01

    In the last decades, microbiologists demonstrated that microorganisms possess chemosensory capabilities and communicate with each other via chemical signals. In parallel, it was demonstrated that solitary eukaryotic chemosensory cells are diffusely located on the mucosae of digestive and respiratory apparatuses. It is now evident that on the mucosal surfaces of vertebrates, two chemoreceptorial systems (i.e. eukaryotic and prokaryotic) coexist in a common microenvironment. To date, it is not known if the two chemosensory systems reciprocally interact and compete for detection of chemical cues. This appears to be a fruitful field of study and future researches must consider that the mucosal epithelia possess more chemosensory capabilities than previously supposed. (c) 2009 Elsevier Masson SAS. All rights reserved.

  6. DNA mismatch repair and its many roles in eukaryotic cells

    DEFF Research Database (Denmark)

    Liu, Dekang; Keijzers, Guido; Rasmussen, Lene Juel

    2017-01-01

    in the clinic, and as a biomarker of cancer susceptibility in animal model systems. Prokaryotic MMR is well-characterized at the molecular and mechanistic level; however, MMR is considerably more complex in eukaryotic cells than in prokaryotic cells, and in recent years, it has become evident that MMR plays......DNA mismatch repair (MMR) is an important DNA repair pathway that plays critical roles in DNA replication fidelity, mutation avoidance and genome stability, all of which contribute significantly to the viability of cells and organisms. MMR is widely-used as a diagnostic biomarker for human cancers...... novel roles in eukaryotic cells, several of which are not yet well-defined or understood. Many MMR-deficient human cancer cells lack mutations in known human MMR genes, which strongly suggests that essential eukaryotic MMR components/cofactors remain unidentified and uncharacterized. Furthermore...

  7. Defensins: antifungal lessons from eukaryotes

    Directory of Open Access Journals (Sweden)

    Patrícia M. Silva

    2014-03-01

    Full Text Available Over the last years, antimicrobial peptides (AMPs have been the focus of intense research towards the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantæ and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components are presented. Additionally, recent works on antifungal defensins structure, activity and citotoxicity are also reviewed.

  8. Arabinogalactan proteins have deep roots in eukaryotes

    DEFF Research Database (Denmark)

    Hervé, Cécile; Siméon, Amandine; Jam, Murielle

    2016-01-01

    Arabinogalactan proteins (AGPs) are highly glycosylated, hydroxyproline-rich proteins found at the cell surface of plants, where they play key roles in developmental processes. Brown algae are marine, multicellular, photosynthetic eukaryotes. They belong to the phylum Stramenopiles, which...... is unrelated to land plants and green algae (Chloroplastida). Brown algae share common evolutionary features with other multicellular organisms, including a carbohydrate-rich cell wall. They differ markedly from plants in their cell wall composition, and AGPs have not been reported in brown algae. Here we...... investigated the presence of chimeric AGP-like core proteins in this lineage. We report that the genome sequence of the brown algal model Ectocarpus siliculosus encodes AGP protein backbone motifs, in a gene context that differs considerably from what is known in land plants. We showed the occurrence of AGP...

  9. Heavy metal whole-cell biosensors using eukaryotic microorganisms: an updated critical review.

    Directory of Open Access Journals (Sweden)

    Juan-Carlos eGutierrez

    2015-02-01

    Full Text Available This review analyzes the advantages and disadvantages of using eukaryotic microorganisms to design whole-cell biosensors (WCBs for monitoring environmental heavy metal pollution in soil or aquatic habitats. Basic considerations for designing an eukaryotic WCB are also shown. A comparative analysis of the promoter genes used to design whole-cell biosensors is carried out, and the sensitivity and reproducibility of the main reporter genes used is also reviewed. Three main eukaryotic taxonomic groups are considered: yeasts, microalgae and ciliated protozoa. Models that have been widely analyzed as potential WCBs are the Saccharomyces cerevisiae model among yeasts, the Tetrahymena thermophila model for ciliates and Chlamydomonas model for microalgae. The advantages and disadvantages of each microbial group are discussed, and a ranking of sensitivity to the same type of metal pollutant from reported eukaryotic WCBs is also shown. General conclusions and possible future developments of eukaryotic WCBs are reported.

  10. Automated brightfield dual-color in situ hybridization for detection of mouse double minute 2 gene amplification in sarcomas.

    Science.gov (United States)

    Zhang, Wenjun; McElhinny, Abigail; Nielsen, Alma; Wang, Maria; Miller, Melanie; Singh, Shalini; Rueger, Ruediger; Rubin, Brian P; Wang, Zhen; Tubbs, Raymond R; Nagle, Raymond B; Roche, Pat; Wu, Ping; Pestic-Dragovich, Lidija

    2011-01-01

    The human homolog of the mouse double minute 2 (MDM2) oncogene is amplified in about 20% of sarcomas. The measurement of the MDM2 amplification can aid in classification and may provide a predictive value for recently formulated therapies targeting MDM2. We have developed and validated an automated bright field dual-color in situ hybridization application to detect MDM2 gene amplification. A repeat-depleted MDM2 probe was constructed to target the MDM2 gene region at 12q15. A chromosome 12-specific probe (CHR12) was generated from a pα12H8 plasmid. The in situ hybridization assay was developed by using a dinitrophenyl-labeled MDM2 probe and a digoxigenin-labeled CHR12 probe on the Ventana Medical Systems' automated slide-staining platforms. The specificity of the MDM2 and CHR12 probes was shown on metaphase spreads and further validated against controls, including normal human tonsil and known MDM2-amplified samples. The assay performance was evaluated on a cohort of 100 formalin-fixed, paraffin-embedded specimens by using a conventional bright field microscope. Simultaneous hybridization and signal detection for MDM2 and CHR12 showed that both DNA targets were present in the same cells. One hundred soft tissue specimens were stained for MDM2 and CHR12. Although 26 of 29 lipomas were nonamplified and eusomic, MDM2 amplification was noted in 78% of atypical lipomatous tumors or well-differentiated liposarcomas. Five of 6 dedifferentiated liposarcoma cases were amplified for MDM2. MDM2 amplification was observed in 1 of 8 osteosarcomas; 3 showed CHR12 aneusomy. MDM2 amplification was present in 1 of 4 chondrosarcomas. Nine of 10 synovial sarcomas displayed no evidence of MDM2 amplification in most tumor cells. In pleomorphic sarcoma, not otherwise specified (pleomorphic malignant fibrous histiocytoma), MDM2 was amplified in 38% of cases, whereas 92% were aneusomic for CHR12. One alveolar rhabdomyosarcoma and 2 embryonal rhabdomyosarcomas displayed low-level aneusomy

  11. Gene Ontology Terms and Automated Annotation for Energy-Related Microbial Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Biswarup [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Tyler, Brett M. [Oregon State Univ., Corvallis, OR (United States); Setubal, Joao [Univ. of Sao Paulo (Brazil); Murali, T. M. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2017-11-03

    Gene Ontology (GO) is one of the more widely used functional ontologies for describing gene functions at various levels. The project developed 660 GO terms for describing energy-related microbial processes and filled the known gaps in this area of the GO system, and then used these terms to describe functions of 179 genes to showcase the utilities of the new resources. It hosted a series of workshops and made presentations at key meetings to inform and train scientific community members on these terms and to receive inputs from them for the GO term generation efforts. The project has developed a website for storing and displaying the resources (http://www.mengo.biochem.vt.edu/). The outcome of the project was further disseminated through peer-reviewed publications and poster and seminar presentations.

  12. Alternatives to vitamin B1 uptake revealed with discovery of riboswitches in multiple marine eukaryotic lineages

    OpenAIRE

    McRose, Darcy; Guo, Jian; Monier, Adam; Sudek, Sebastian; Wilken, Susanne; Yan, Shuangchun; Mock, Thomas; Archibald, John M; Begley, Tadhg P; Reyes-Prieto, Adrian; Worden, Alexandra Z

    2014-01-01

    Vitamin B1 (thiamine pyrophosphate, TPP) is essential to all life but scarce in ocean surface waters. In many bacteria and a few eukaryotic groups thiamine biosynthesis genes are controlled by metabolite-sensing mRNA-based gene regulators known as riboswitches. Using available genome sequences and transcriptomes generated from ecologically important marine phytoplankton, we identified 31 new eukaryotic riboswitches. These were found in alveolate, cryptophyte, haptophyte and rhizarian phytopla...

  13. Eukaryotic beta-alanine synthases are functionally related but have a high degree of structural diversity

    DEFF Research Database (Denmark)

    Gojkovic, Zoran; Sandrini, Michael; Piskur, Jure

    2001-01-01

    activity was used to clone analogous genes from different eukaryotes. Putative PYD3 sequences from the yeast S. kluyveri, the slime mold Dictyostelium discoideum, and the fruit fly Drosophila melanogaster complemented the pyd3 defect. When the S. kluyveri PYD3 gene was expressed in S. cerevisiae, which has......-carbamyl-beta -alanine, but not by uracil. This wrork establishes S. kluyveri as a model organism for studying pyrimidine degradation and beta -alanine production in eukaryotes....

  14. MutaNET: a tool for automated analysis of genomic mutations in gene regulatory networks.

    Science.gov (United States)

    Hollander, Markus; Hamed, Mohamed; Helms, Volkhard; Neininger, Kerstin

    2018-03-01

    Mutations in genomic key elements can influence gene expression and function in various ways, and hence greatly contribute to the phenotype. We developed MutaNET to score the impact of individual mutations on gene regulation and function of a given genome. MutaNET performs statistical analyses of mutations in different genomic regions. The tool also incorporates the mutations in a provided gene regulatory network to estimate their global impact. The integration of a next-generation sequencing pipeline enables calling mutations prior to the analyses. As application example, we used MutaNET to analyze the impact of mutations in antibiotic resistance (AR) genes and their potential effect on AR of bacterial strains. MutaNET is freely available at https://sourceforge.net/projects/mutanet/. It is implemented in Python and supported on Mac OS X, Linux and MS Windows. Step-by-step instructions are available at http://service.bioinformatik.uni-saarland.de/mutanet/. volkhard.helms@bioinformatik.uni-saarland.de. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  15. Phylogenetic analysis of P5 P-type ATPases, a eukaryotic lineage of secretory pathway pumps

    DEFF Research Database (Denmark)

    Møller, Annette; Asp, Torben; Holm, Preben Bach

    2008-01-01

    Eukaryotes encompass a remarkable variety of organisms and unresolved lineages. Different phylogenetic analyses have lead to conflicting conclusions as to the origin and associations between lineages and species. In this work, we investigated evolutionary relationship of a family of cation pumps...... exclusive for the secretory pathway of eukaryotes by combining the identification of lineage-specific genes with phylogenetic evolution of common genes. Sequences of P5 ATPases, which are regarded to be cation pumps in the endoplasmic reticulum (ER), were identified in all eukaryotic lineages but not in any...... far, while P5B ATPases appear to be lost in three eukaryotic lineages; excavates, entamoebas and land plants. A lineage-specific gene expansion of up to four different P5B ATPases is seen in animals....

  16. On the Archaeal Origins of Eukaryotes and the Challenges of Inferring Phenotype from Genotype.

    Science.gov (United States)

    Dey, Gautam; Thattai, Mukund; Baum, Buzz

    2016-07-01

    If eukaryotes arose through a merger between archaea and bacteria, what did the first true eukaryotic cell look like? A major step toward an answer came with the discovery of Lokiarchaeum, an archaeon whose genome encodes small GTPases related to those used by eukaryotes to regulate membrane traffic. Although 'Loki' cells have yet to be seen, their existence has prompted the suggestion that the archaeal ancestor of eukaryotes engulfed the future mitochondrion by phagocytosis. We propose instead that the archaeal ancestor was a relatively simple cell, and that eukaryotic cellular organization arose as the result of a gradual transfer of bacterial genes and membranes driven by an ever-closer symbiotic partnership between a bacterium and an archaeon. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Horizontal transfer of bacterial polyphosphate kinases to eukaryotes: implications for the ice age and land colonisation.

    Science.gov (United States)

    Whitehead, Michael P; Hooley, Paul; W Brown, Michael R

    2013-06-05

    Studies of online database(s) showed that convincing examples of eukaryote PPKs derived from bacteria type PPK1 and PPK2 enzymes are rare and currently confined to a few simple eukaryotes. These enzymes probably represent several separate horizontal transfer events. Retention of such sequences may be an advantage for tolerance to stresses such as desiccation or nutrient depletion for simple eukaryotes that lack more sophisticated adaptations available to multicellular organisms. We propose that the acquisition of encoding sequences for these enzymes by horizontal transfer enhanced the ability of early plants to colonise the land. The improved ability to sequester and release inorganic phosphate for carbon fixation by photosynthetic algae in the ocean may have accelerated or even triggered global glaciation events. There is some evidence for DNA sequences encoding PPKs in a wider range of eukaryotes, notably some invertebrates, though it is unclear that these represent functional genes.Polyphosphate (poly P) is found in all cells, carrying out a wide range of essential roles. Studied mainly in prokaryotes, the enzymes responsible for synthesis of poly P in eukaryotes (polyphosphate kinases PPKs) are not well understood. The best characterised enzyme from bacteria known to catalyse the formation of high molecular weight polyphosphate from ATP is PPK1 which shows some structural similarity to phospholipase D. A second bacterial PPK (PPK2) resembles thymidylate kinase. Recent reports have suggested a widespread distribution of these bacteria type enzymes in eukaryotes. On - line databases show evidence for the presence of genes encoding PPK1 in only a limited number of eukaryotes. These include the photosynthetic eukaryotes Ostreococcus tauri, O. lucimarinus, Porphyra yezoensis, Cyanidioschyzon merolae and the moss Physcomitrella patens, as well as the amoeboid symbiont Capsaspora owczarzaki and the non-photosynthetic eukaryotes Dictyostelium (3 species

  18. Starting the protein synthesis machine: eukaryotic translation initiation.

    Science.gov (United States)

    Preiss, Thomas; W Hentze, Matthias

    2003-12-01

    The final assembly of the protein synthesis machinery occurs during translation initiation. This delicate process involves both ends of eukaryotic messenger RNAs as well as multiple sequential protein-RNA and protein-protein interactions. As is expected from its critical position in the gene expression pathway between the transcriptome and the proteome, translation initiation is a selective and highly regulated process. This synopsis summarises the current status of the field and identifies intriguing open questions. Copyright 2003 Wiley Periodicals, Inc.

  19. Computational gene mapping to analyze continuous automated physiologic monitoring data in neuro-trauma intensive care.

    Science.gov (United States)

    Stein, Deborah M; Hu, Peter F; Chen, Hegang H; Yang, Shiming; Stansbury, Lynn G; Scalea, Thomas M

    2012-08-01

    We asked whether the advanced machine learning applications used in microarray gene profiling could assess critical thresholds in the massive databases generated by continuous electronic physiologic vital signs (VS) monitoring in the neuro-trauma intensive care unit. We used Class Prediction Analysis to predict binary outcomes (life/death, good/bad Extended Glasgow Outcome Score, etc.) based on data accrued within 12, 24, 48, and 72 hours after admission to the neuro-trauma intensive care unit. Univariate analyses selected "features," discriminator VS segments or "genes," in each individual's data set. Prediction models using these selected features were then constructed using six different statistical modeling techniques to predict outcome for other individuals in the sample cohort based on the selected features of each individual then cross-validated with a leave-one-out method. We gleaned complete sets of 588 VS monitoring segment features for each of four periods and outcomes from 52 of 60 patients with severe traumatic brain injury who met study inclusion criteria. Overall, intracranial pressures and blood pressures over time (e.g., intracranial pressure >20 mm Hg for 20 minutes) provided the best discrimination for outcomes. Modeling performed best in the first 12 hours of care and for mortality. The mean number of selected features included 76 predicting 14-day hospital stay in that period, 11 predicting mortality, and 4 predicting 3-month Extended Glasgow Outcome Score. Four of the six techniques constructed models that correctly identified mortality by 12 hours 75% of the time or higher. Our results suggest that valid prediction models after severe traumatic brain injury can be constructed using gene mapping techniques to analyze large data sets from conventional electronic monitoring data, but that this methodology needs validation in larger data sets, and that additional unstructured learning techniques may also prove useful.

  20. RNase MRP and the RNA processing cascade in the eukaryotic ancestor.

    Science.gov (United States)

    Woodhams, Michael D; Stadler, Peter F; Penny, David; Collins, Lesley J

    2007-02-08

    Within eukaryotes there is a complex cascade of RNA-based macromolecules that process other RNA molecules, especially mRNA, tRNA and rRNA. An example is RNase MRP processing ribosomal RNA (rRNA) in ribosome biogenesis. One hypothesis is that this complexity was present early in eukaryotic evolution; an alternative is that an initial simpler network later gained complexity by gene duplication in lineages that led to animals, fungi and plants. Recently there has been a rapid increase in support for the complexity-early theory because the vast majority of these RNA-processing reactions are found throughout eukaryotes, and thus were likely to be present in the last common ancestor of living eukaryotes, herein called the Eukaryotic Ancestor. We present an overview of the RNA processing cascade in the Eukaryotic Ancestor and investigate in particular, RNase MRP which was previously thought to have evolved later in eukaryotes due to its apparent limited distribution in fungi and animals and plants. Recent publications, as well as our own genomic searches, find previously unknown RNase MRP RNAs, indicating that RNase MRP has a wide distribution in eukaryotes. Combining secondary structure and promoter region analysis of RNAs for RNase MRP, along with analysis of the target substrate (rRNA), allows us to discuss this distribution in the light of eukaryotic evolution. We conclude that RNase MRP can now be placed in the RNA-processing cascade of the Eukaryotic Ancestor, highlighting the complexity of RNA-processing in early eukaryotes. Promoter analyses of MRP-RNA suggest that regulation of the critical processes of rRNA cleavage can vary, showing that even these key cellular processes (for which we expect high conservation) show some species-specific variability. We present our consensus MRP-RNA secondary structure as a useful model for further searches.

  1. Automated cleaning and pre-processing of immunoglobulin gene sequences from high-throughput sequencing

    Directory of Open Access Journals (Sweden)

    Miri eMichaeli

    2012-12-01

    Full Text Available High throughput sequencing (HTS yields tens of thousands to millions of sequences that require a large amount of pre-processing work to clean various artifacts. Such cleaning cannot be performed manually. Existing programs are not suitable for immunoglobulin (Ig genes, which are variable and often highly mutated. This paper describes Ig-HTS-Cleaner (Ig High Throughput Sequencing Cleaner, a program containing a simple cleaning procedure that successfully deals with pre-processing of Ig sequences derived from HTS, and Ig-Indel-Identifier (Ig Insertion – Deletion Identifier, a program for identifying legitimate and artifact insertions and/or deletions (indels. Our programs were designed for analyzing Ig gene sequences obtained by 454 sequencing, but they are applicable to all types of sequences and sequencing platforms. Ig-HTS-Cleaner and Ig-Indel-Identifier have been implemented in Java and saved as executable JAR files, supported on Linux and MS Windows. No special requirements are needed in order to run the programs, except for correctly constructing the input files as explained in the text. The programs' performance has been tested and validated on real and simulated data sets.

  2. Mutation Profile of B-Raf Gene Analyzed by fully Automated System and Clinical Features in Japanese Melanoma Patients.

    Science.gov (United States)

    Ide, Masaru; Koba, Shinichi; Sueoka-Aragane, Naoko; Sato, Akemi; Nagano, Yuri; Inoue, Takuya; Misago, Noriyuki; Narisawa, Yutaka; Kimura, Shinya; Sueoka, Eisaburo

    2017-01-01

    BRAF gene mutations have been observed in 30-50 % of malignant melanoma patients. Recent development of therapeutic intervention using BRAF inhibitors requires an accurate and rapid detection system for BRAF mutations. In addition, the clinical characteristics of the melanoma associated with BRAF mutations in Japanese patients have not been investigated on a large scale evaluation. We recently established quenching probe system (QP) for detection of an activating BRAF mutation, V600E and evaluated 113 melanoma samples diagnosed in Saga University Hospital from 1982 to 2011. The QP system includes fully automated genotyping, based on analysis of the probe DNA melting curve, which binds the target mutated site using a fluorescent guanine quenched probe. BRAF mutations were detected in 54 of 115 (47 %) including 51 of V600E and 3 of V600 K in Japanese melanoma cases. Among clinical subtypes of melanoma, nodular melanoma showed high frequency (12 of 15; 80 %) of mutation followed by superficial spreading melanoma (13 of 26; 50 %). The QP system is a simple and sensitive method to determine BRAF V600E mutation, and will be useful tool for patient-oriented therapy with BRAF inhibitors.

  3. Eelgrass Leaf Surface Microbiomes Are Locally Variable and Highly Correlated with Epibiotic Eukaryotes

    Directory of Open Access Journals (Sweden)

    Mia M. Bengtsson

    2017-07-01

    Full Text Available Eelgrass (Zostera marina is a marine foundation species essential for coastal ecosystem services around the northern hemisphere. Like all macroscopic organisms, it possesses a microbiome (here defined as an associated prokaryotic community which may play critical roles in modulating the interaction of eelgrass with its environment. For example, its leaf surface microbiome could inhibit or attract eukaryotic epibionts which may overgrow the eelgrass leading to reduced primary productivity and subsequent eelgrass meadow decline. We used amplicon sequencing of the 16S and 18S rRNA genes of prokaryotes and eukaryotes to assess the leaf surface microbiome (prokaryotes as well as eukaryotic epibionts in- and outside lagoons on the German Baltic Sea coast. Prokaryote microbiomes varied substantially both between sites inside lagoons and between open coastal and lagoon sites. Water depth, leaf area and biofilm chlorophyll a concentration explained a large amount of variation in both prokaryotic and eukaryotic community composition. The prokaryotic microbiome and eukaryotic epibiont communities were highly correlated, and network analysis revealed disproportionate co-occurrence between a limited number of eukaryotic taxa and several bacterial taxa. This suggests that eelgrass leaf surfaces are home to a mosaic of microbiomes of several epibiotic eukaryotes, in addition to the microbiome of the eelgrass itself. Our findings thereby underline that eukaryotic diversity should be taken into account in order to explain prokaryotic microbiome assembly and dynamics in aquatic environments.

  4. Myosin repertoire expansion coincides with eukaryotic diversification in the Mesoproterozoic era.

    Science.gov (United States)

    Kollmar, Martin; Mühlhausen, Stefanie

    2017-09-04

    The last eukaryotic common ancestor already had an amazingly complex cell possessing genomic and cellular features such as spliceosomal introns, mitochondria, cilia-dependent motility, and a cytoskeleton together with several intracellular transport systems. In contrast to the microtubule-based dyneins and kinesins, the actin-filament associated myosins are considerably divergent in extant eukaryotes and a unifying picture of their evolution has not yet emerged. Here, we manually assembled and annotated 7852 myosins from 929 eukaryotes providing an unprecedented dense sequence and taxonomic sampling. For classification we complemented phylogenetic analyses with gene structure comparisons resulting in 79 distinct myosin classes. The intron pattern analysis and the taxonomic distribution of the classes suggest two myosins in the last eukaryotic common ancestor, a class-1 prototype and another myosin, which is most likely the ancestor of all other myosin classes. The sparse distribution of class-2 and class-4 myosins outside their major lineages contradicts their presence in the last eukaryotic common ancestor but instead strongly suggests early eukaryote-eukaryote horizontal gene transfer. By correlating the evolution of myosin diversity with the history of Earth we found that myosin innovation occurred in independent major "burst" events in the major eukaryotic lineages. Most myosin inventions happened in the Mesoproterozoic era. In the late Neoproterozoic era, a process of extensive independent myosin loss began simultaneously with further eukaryotic diversification. Since the Cambrian explosion, myosin repertoire expansion is driven by lineage- and species-specific gene and genome duplications leading to subfunctionalization and fine-tuning of myosin functions.

  5. Construction of sized eukaryotic cDNA libraries using low input of total environmental metatranscriptomic RNA.

    Science.gov (United States)

    Yadav, Rajiv Kumar; Barbi, Florian; Ziller, Antoine; Luis, Patricia; Marmeisse, Roland; Reddy, M Sudhakara; Fraissinet-Tachet, Laurence

    2014-09-03

    Construction of high quality cDNA libraries from the usually low amounts of eukaryotic mRNA extracted from environmental samples is essential in functional metatranscriptomics for the selection of functional, full-length genes encoding proteins of interest. Many of the inserts in libraries constructed by standard methods are represented by truncated cDNAs due to premature stoppage of reverse transcriptase activity and preferential cloning of short cDNAs. We report here a simple and cost effective technique for preparation of sized eukaryotic cDNA libraries from as low as three microgram of total soil RNA dominated by ribosomal and bacterial RNA. cDNAs synthesized by a template switching approach were size-fractionated by two dimensional agarose gel electrophoresis prior to PCR amplification and cloning. Effective size selection was demonstrated by PCR amplification of conserved gene families specific of each size class. Libraries of more than one million independent inserts whose sizes ranged between one and four kb were thus produced. Up to 80% of the insert sequences were homologous to eukaryotic gene sequences present in public databases. A simple and cost effective technique has been developed to construct sized eukaryotic cDNA libraries from environmental samples. This technique will facilitate expression cloning of environmental eukaryotic genes and contribute to a better understanding of basic biological and/or ecological processes carried out by eukaryotic microbial communities.

  6. Internalization of a polysialic acid-binding Escherichia coli bacteriophage into eukaryotic neuroblastoma cells.

    Science.gov (United States)

    Lehti, Timo A; Pajunen, Maria I; Skog, Maria S; Finne, Jukka

    2017-12-04

    Eukaryotic organisms are continuously exposed to bacteriophages, which are efficient gene transfer agents in bacteria. However, bacteriophages are considered not to pass the eukaryotic cell membrane and enter nonphagocytic cells. Here we report the binding and penetration of Escherichia coli PK1A2 bacteriophage into live eukaryotic neuroblastoma cells in vitro. The phage interacts with cell surface polysialic acid, which shares structural similarity with the bacterial phage receptor. Using fluorescence and electron microscopy, we show that phages are internalized via the endolysosomal route and persist inside the human cells up to one day without affecting cell viability. Phage capsid integrity is lost in lysosomes, and the phage DNA is eventually degraded. We did not detect the entry of phage DNA into the nucleus; however, we speculate that this might occur as a rare event, and propose that this potential mechanism could explain prokaryote-eukaryote gene flow.

  7. Sulfate assimilation in eukaryotes: fusions, relocations and lateral transfers

    Directory of Open Access Journals (Sweden)

    Durnford Dion G

    2008-02-01

    Full Text Available Abstract Background The sulfate assimilation pathway is present in photosynthetic organisms, fungi, and many bacteria, providing reduced sulfur for the synthesis of cysteine and methionine and a range of other metabolites. In photosynthetic eukaryotes sulfate is reduced in the plastids whereas in aplastidic eukaryotes the pathway is cytosolic. The only known exception is Euglena gracilis, where the pathway is localized in mitochondria. To obtain an insight into the evolution of the sulfate assimilation pathway in eukaryotes and relationships of the differently compartmentalized isoforms we determined the locations of the pathway in lineages for which this was unknown and performed detailed phylogenetic analyses of three enzymes involved in sulfate reduction: ATP sulfurylase (ATPS, adenosine 5'-phosphosulfate reductase (APR and sulfite reductase (SiR. Results The inheritance of ATPS, APR and the related 3'-phosphoadenosine 5'-phosphosulfate reductase (PAPR are remarkable, with multiple origins in the lineages that comprise the opisthokonts, different isoforms in chlorophytes and streptophytes, gene fusions with other enzymes of the pathway, evidence a eukaryote to prokaryote lateral gene transfer, changes in substrate specificity and two reversals of cellular location of host- and endosymbiont-originating enzymes. We also found that the ATPS and APR active in the mitochondria of Euglena were inherited from its secondary, green algal plastid. Conclusion Our results reveal a complex history for the enzymes of the sulfate assimilation pathway. Whilst they shed light on the origin of some characterised novelties, such as a recently described novel isoform of APR from Bryophytes and the origin of the pathway active in the mitochondria of Euglenids, the many distinct and novel isoforms identified here represent an excellent resource for detailed biochemical studies of the enzyme structure/function relationships.

  8. The eukaryotic fossil record in deep time

    Science.gov (United States)

    Butterfield, N.

    2011-12-01

    Eukaryotic organisms are defining constituents of the Phanerozoic biosphere, but they also extend well back into the Proterozoic record, primarily in the form of microscopic body fossils. Criteria for identifying pre-Ediacaran eukaryotes include large cell size, morphologically complex cell walls and/or the recognition of diagnostically eukaryotic cell division patterns. The oldest unambiguous eukaryote currently on record is an acanthomorphic acritarch (Tappania) from the Palaeoproterozoic Semri Group of central India. Older candidate eukaryotes are difficult to distinguish from giant bacteria, prokaryotic colonies or diagenetic artefacts. In younger Meso- and Neoproterozoic strata, the challenge is to recognize particular grades and clades of eukaryotes, and to document their macro-evolutionary expression. Distinctive unicellular forms include mid-Neoproterozoic testate amoebae and phosphate biomineralizing 'scale-microfossils' comparable to an extant green alga. There is also a significant record of seaweeds, possible fungi and problematica from this interval, documenting multiple independent experiments in eukaryotic multicellularity. Taxonomically resolved forms include a bangiacean red alga and probable vaucheriacean chromalveolate algae from the late Mesoproterozoic, and populations of hydrodictyacean and siphonocladalean green algae of mid Neoproterozoic age. Despite this phylogenetic breadth, however, or arguments from molecular clocks, there is no convincing evidence for pre-Ediacaran metazoans or metaphytes. The conspicuously incomplete nature of the Proterozoic record makes it difficult to resolve larger-scale ecological and evolutionary patterns. Even so, both body fossils and biomarker data point to a pre-Ediacaran biosphere dominated overwhelming by prokaryotes. Contemporaneous eukaryotes appear to be limited to conspicuously shallow water environments, and exhibit fundamentally lower levels of morphological diversity and evolutionary turnover than

  9. Precise Editing at DNA Replication Forks Enables Multiplex Genome Engineering in Eukaryotes.

    Science.gov (United States)

    Barbieri, Edward M; Muir, Paul; Akhuetie-Oni, Benjamin O; Yellman, Christopher M; Isaacs, Farren J

    2017-11-30

    We describe a multiplex genome engineering technology in Saccharomyces cerevisiae based on annealing synthetic oligonucleotides at the lagging strand of DNA replication. The mechanism is independent of Rad51-directed homologous recombination and avoids the creation of double-strand DNA breaks, enabling precise chromosome modifications at single base-pair resolution with an efficiency of >40%, without unintended mutagenic changes at the targeted genetic loci. We observed the simultaneous incorporation of up to 12 oligonucleotides with as many as 60 targeted mutations in one transformation. Iterative transformations of a complex pool of oligonucleotides rapidly produced large combinatorial genomic diversity >10 5 . This method was used to diversify a heterologous β-carotene biosynthetic pathway that produced genetic variants with precise mutations in promoters, genes, and terminators, leading to altered carotenoid levels. Our approach of engineering the conserved processes of DNA replication, repair, and recombination could be automated and establishes a general strategy for multiplex combinatorial genome engineering in eukaryotes. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell.

    Science.gov (United States)

    Martijn, Joran; Ettema, Thijs J G

    2013-02-01

    The evolutionary origin of the eukaryotic cell represents an enigmatic, yet largely incomplete, puzzle. Several mutually incompatible scenarios have been proposed to explain how the eukaryotic domain of life could have emerged. To date, convincing evidence for these scenarios in the form of intermediate stages of the proposed eukaryogenesis trajectories is lacking, presenting the emergence of the complex features of the eukaryotic cell as an evolutionary deus ex machina. However, recent advances in the field of phylogenomics have started to lend support for a model that places a cellular fusion event at the basis of the origin of eukaryotes (symbiogenesis), involving the merger of an as yet unknown archaeal lineage that most probably belongs to the recently proposed 'TACK superphylum' (comprising Thaumarchaeota, Aigarchaeota, Crenarchaeota and Korarchaeota) with an alphaproteobacterium (the protomitochondrion). Interestingly, an increasing number of so-called ESPs (eukaryotic signature proteins) is being discovered in recently sequenced archaeal genomes, indicating that the archaeal ancestor of the eukaryotic cell might have been more eukaryotic in nature than presumed previously, and might, for example, have comprised primitive phagocytotic capabilities. In the present paper, we review the evolutionary transition from archaeon to eukaryote, and propose a new model for the emergence of the eukaryotic cell, the 'PhAT (phagocytosing archaeon theory)', which explains the emergence of the cellular and genomic features of eukaryotes in the light of a transiently complex phagocytosing archaeon.

  11. CGMIM: Automated text-mining of Online Mendelian Inheritance in Man (OMIM to identify genetically-associated cancers and candidate genes

    Directory of Open Access Journals (Sweden)

    Jones Steven

    2005-03-01

    Full Text Available Abstract Background Online Mendelian Inheritance in Man (OMIM is a computerized database of information about genes and heritable traits in human populations, based on information reported in the scientific literature. Our objective was to establish an automated text-mining system for OMIM that will identify genetically-related cancers and cancer-related genes. We developed the computer program CGMIM to search for entries in OMIM that are related to one or more cancer types. We performed manual searches of OMIM to verify the program results. Results In the OMIM database on September 30, 2004, CGMIM identified 1943 genes related to cancer. BRCA2 (OMIM *164757, BRAF (OMIM *164757 and CDKN2A (OMIM *600160 were each related to 14 types of cancer. There were 45 genes related to cancer of the esophagus, 121 genes related to cancer of the stomach, and 21 genes related to both. Analysis of CGMIM results indicate that fewer than three gene entries in OMIM should mention both, and the more than seven-fold discrepancy suggests cancers of the esophagus and stomach are more genetically related than current literature suggests. Conclusion CGMIM identifies genetically-related cancers and cancer-related genes. In several ways, cancers with shared genetic etiology are anticipated to lead to further etiologic hypotheses and advances regarding environmental agents. CGMIM results are posted monthly and the source code can be obtained free of charge from the BC Cancer Research Centre website http://www.bccrc.ca/ccr/CGMIM.

  12. Automated Enrichment, Transduction, and Expansion of Clinical-Scale CD62L+ T Cells for Manufacturing of Gene Therapy Medicinal Products

    Science.gov (United States)

    Priesner, Christoph; Aleksandrova, Krasimira; Esser, Ruth; Mockel-Tenbrinck, Nadine; Leise, Jana; Drechsel, Katharina; Marburger, Michael; Quaiser, Andrea; Goudeva, Lilia; Arseniev, Lubomir; Kaiser, Andrew D.; Glienke, Wolfgang; Koehl, Ulrike

    2016-01-01

    Multiple clinical studies have demonstrated that adaptive immunotherapy using redirected T cells against advanced cancer has led to promising results with improved patient survival. The continuously increasing interest in those advanced gene therapy medicinal products (GTMPs) leads to a manufacturing challenge regarding automation, process robustness, and cell storage. Therefore, this study addresses the proof of principle in clinical-scale selection, stimulation, transduction, and expansion of T cells using the automated closed CliniMACS® Prodigy system. Naïve and central memory T cells from apheresis products were first immunomagnetically enriched using anti-CD62L magnetic beads and further processed freshly (n = 3) or split for cryopreservation and processed after thawing (n = 1). Starting with 0.5 × 108 purified CD3+ T cells, three mock runs and one run including transduction with green fluorescent protein (GFP)-containing vector resulted in a median final cell product of 16 × 108 T cells (32-fold expansion) up to harvesting after 2 weeks. Expression of CD62L was downregulated on T cells after thawing, which led to the decision to purify CD62L+CD3+ T cells freshly with cryopreservation thereafter. Most important in the split product, a very similar expansion curve was reached comparing the overall freshly CD62L selected cells with those after thawing, which could be demonstrated in the T cell subpopulations as well by showing a nearly identical conversion of the CD4/CD8 ratio. In the GFP run, the transduction efficacy was 83%. In-process control also demonstrated sufficient glucose levels during automated feeding and medium removal. The robustness of the process and the constant quality of the final product in a closed and automated system give rise to improve harmonized manufacturing protocols for engineered T cells in future gene therapy studies. PMID:27562135

  13. Nucleoporin Nup98: a gatekeeper in the eukaryotic kingdoms.

    Science.gov (United States)

    Iwamoto, Masaaki; Asakawa, Haruhiko; Hiraoka, Yasushi; Haraguchi, Tokuko

    2010-06-01

    The nucleoporin Nup98 is an essential component of the nuclear pore complex. This peripheral nucleoporin with its Gly-Leu-Phe-Gly (GLFG) repeat domain contributes to nuclear-cytoplasmic trafficking, including mRNA export. In addition, accumulating studies indicate that Nup98 plays roles in several important biological events such as gene expression, mitotic checkpoint, and pathogenesis. Nup98 is well conserved among organisms belonging to the fungi and animal kingdoms. These kingdoms belong to the eukaryotic supergroup Opisthokonta. However, there is considerable diversity in the Nup98 orthologs expressed in organisms belonging to other eukaryotic supergroups. Intriguingly, in ciliates, a unicellular organism having two functionally distinct nuclei, GLFG-Nup98 is present in one of the nuclei and a distinct Nup98 ortholog is present in the other nucleus, and these different Nup98s participate in a nucleus-selective transport mechanism. In this review, we focus on Nup98 function and discuss how this nucleoporin has evolved in eukaryotic kingdoms.

  14. Eukaryotic and prokaryotic promoter prediction using hybrid approach.

    Science.gov (United States)

    Lin, Hao; Li, Qian-Zhong

    2011-06-01

    Promoters are modular DNA structures containing complex regulatory elements required for gene transcription initiation. Hence, the identification of promoters using machine learning approach is very important for improving genome annotation and understanding transcriptional regulation. In recent years, many methods have been proposed for the prediction of eukaryotic and prokaryotic promoters. However, the performances of these methods are still far from being satisfactory. In this article, we develop a hybrid approach (called IPMD) that combines position correlation score function and increment of diversity with modified Mahalanobis Discriminant to predict eukaryotic and prokaryotic promoters. By applying the proposed method to Drosophila melanogaster, Homo sapiens, Caenorhabditis elegans, Escherichia coli, and Bacillus subtilis promoter sequences, we achieve the sensitivities and specificities of 90.6 and 97.4% for D. melanogaster, 88.1 and 94.1% for H. sapiens, 83.3 and 95.2% for C. elegans, 84.9 and 91.4% for E. coli, as well as 80.4 and 91.3% for B. subtilis. The high accuracies indicate that the IPMD is an efficient method for the identification of eukaryotic and prokaryotic promoters. This approach can also be extended to predict other species promoters.

  15. diArk – a resource for eukaryotic genome research

    Directory of Open Access Journals (Sweden)

    Kollmar Martin

    2007-04-01

    Full Text Available Abstract Background The number of completed eukaryotic genome sequences and cDNA projects has increased exponentially in the past few years although most of them have not been published yet. In addition, many microarray analyses yielded thousands of sequenced EST and cDNA clones. For the researcher interested in single gene analyses (from a phylogenetic, a structural biology or other perspective it is therefore important to have up-to-date knowledge about the various resources providing primary data. Description The database is built around 3 central tables: species, sequencing projects and publications. The species table contains commonly and alternatively used scientific names, common names and the complete taxonomic information. For projects the sequence type and links to species project web-sites and species homepages are stored. All publications are linked to projects. The web-interface provides comprehensive search modules with detailed options and three different views of the selected data. We have especially focused on developing an elaborate taxonomic tree search tool that allows the user to instantaneously identify e.g. the closest relative to the organism of interest. Conclusion We have developed a database, called diArk, to store, organize, and present the most relevant information about completed genome projects and EST/cDNA data from eukaryotes. Currently, diArk provides information about 415 eukaryotes, 823 sequencing projects, and 248 publications.

  16. Bacterial and eukaryotic systems collide in the three Rs of Methanococcus.

    Science.gov (United States)

    Parker, Richard P; Walters, Alison D; Chong, James P J

    2011-01-01

    Methanococcus maripaludis S2 is a methanogenic archaeon with a well-developed genetic system. Its mesophilic nature offers a simple system in which to perform complementation using bacterial and eukaryotic genes. Although information-processing systems in archaea are generally more similar to those in eukaryotes than those in bacteria, the order Methanococcales has a unique complement of DNA replication proteins, with multiple MCM (minichromosome maintenance) proteins and no obvious originbinding protein. A search for homologues of recombination and repair proteins in M. maripaludis has revealed a mixture of bacterial, eukaryotic and some archaeal-specific homologues. Some repair pathways appear to be completely absent, but it is possible that archaeal-specific proteins could carry out these functions. The replication, recombination and repair systems in M. maripaludis are an interesting mixture of eukaryotic and bacterial homologues and could provide a system for uncovering novel interactions between proteins from different domains of life.

  17. Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Alan; Grigoriev, Igor

    2009-04-17

    Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentous ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.

  18. Comparative radiobiology of genetic loci of eukaryots as the basis of the general theory of mutations

    International Nuclear Information System (INIS)

    Aleksandrov, I.D.

    1983-01-01

    One of the fundamental problems of modern molecular cellular radiobiology is to reveal general and peculiar processes of the formation of gene mutations and chromosome aberrations in each stage of their formation in the irradiated genome of the higher eukaryots. The solution of the problems depends on the development of research within the framework of comparative radiobiology of genetic loci of the higher eukaryots that makes it possible to study quantitative regularities in the formation of gene (point) mutations and chromosome aberrations in one object and in the same experiment

  19. Use of prokaryotic transcriptional activators as metabolite biosensors in eukaryotic cells

    DEFF Research Database (Denmark)

    2018-01-01

    The present invention relates to the use of transcriptional activators from prokaryotic organisms for use in eukaryotic cells, such as yeast as sensors of intracellular and extracellular accumulation of a ligand or metabolite specifically activating this transcriptional activator in a eukaryot......, such as yeast cell, such as a cell engineered to produce this ligand. The transcriptional activator controls a promoter upstream of one or more gene, which may include e.g. a reporter gene that may be a fluorescence marker, such as luciferase, green fluorescent protein or a gnee encoding antibiotic resistance....

  20. Phylogenetic diversity and in situ detection of eukaryotes in anaerobic sludge digesters.

    Directory of Open Access Journals (Sweden)

    Miri Matsubayashi

    Full Text Available Eukaryotic communities in aerobic wastewater treatment processes are well characterized, but little is known about them in anaerobic processes. In this study, abundance, diversity and morphology of eukaryotes in anaerobic sludge digesters were investigated by quantitative real-time PCR (qPCR, 18S rRNA gene clone library construction and catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH. Samples were taken from four different anaerobic sludge digesters in Japan. Results of qPCR of rRNA genes revealed that Eukarya accounted from 0.1% to 1.4% of the total number of microbial rRNA gene copy numbers. The phylogenetic affiliations of a total of 251 clones were Fungi, Alveolata, Viridiplantae, Amoebozoa, Rhizaria, Stramenopiles and Metazoa. Eighty-five percent of the clones showed less than 97.0% sequence identity to described eukaryotes, indicating most of the eukaryotes in anaerobic sludge digesters are largely unknown. Clones belonging to the uncultured lineage LKM11 in Cryptomycota of Fungi were most abundant in anaerobic sludge, which accounted for 50% of the total clones. The most dominant OTU in each library belonged to either the LKM11 lineage or the uncultured lineage A31 in Alveolata. Principal coordinate analysis indicated that the eukaryotic and prokaryotic community structures were related. The detection of anaerobic eukaryotes, including the members of the LKM11 and A31 lineages in anaerobic sludge digesters, by CARD-FISH revealed their sizes in the range of 2-8 μm. The diverse and uncultured eukaryotes in the LKM11 and the A31 lineages are common and ecologically relevant members in anaerobic sludge digester.

  1. Transcription factor IID in the Archaea: sequences in the Thermococcus celer genome would encode a product closely related to the TATA-binding protein of eukaryotes

    Science.gov (United States)

    Marsh, T. L.; Reich, C. I.; Whitelock, R. B.; Olsen, G. J.; Woese, C. R. (Principal Investigator)

    1994-01-01

    The first step in transcription initiation in eukaryotes is mediated by the TATA-binding protein, a subunit of the transcription factor IID complex. We have cloned and sequenced the gene for a presumptive homolog of this eukaryotic protein from Thermococcus celer, a member of the Archaea (formerly archaebacteria). The protein encoded by the archaeal gene is a tandem repeat of a conserved domain, corresponding to the repeated domain in its eukaryotic counterparts. Molecular phylogenetic analyses of the two halves of the repeat are consistent with the duplication occurring before the divergence of the archael and eukaryotic domains. In conjunction with previous observations of similarity in RNA polymerase subunit composition and sequences and the finding of a transcription factor IIB-like sequence in Pyrococcus woesei (a relative of T. celer) it appears that major features of the eukaryotic transcription apparatus were well-established before the origin of eukaryotic cellular organization. The divergence between the two halves of the archael protein is less than that between the halves of the individual eukaryotic sequences, indicating that the average rate of sequence change in the archael protein has been less than in its eukaryotic counterparts. To the extent that this lower rate applies to the genome as a whole, a clearer picture of the early genes (and gene families) that gave rise to present-day genomes is more apt to emerge from the study of sequences from the Archaea than from the corresponding sequences from eukaryotes.

  2. Phylogenomic study indicates widespread lateral gene transfer in Entamoeba and suggests a past intimate relationship with parabasalids.

    Science.gov (United States)

    Grant, Jessica R; Katz, Laura A

    2014-09-01

    Lateral gene transfer (LGT) has impacted the evolutionary history of eukaryotes, though to a lesser extent than in bacteria and archaea. Detecting LGT and distinguishing it from single gene tree artifacts is difficult, particularly when considering very ancient events (i.e., over hundreds of millions of years). Here, we use two independent lines of evidence--a taxon-rich phylogenetic approach and an assessment of the patterns of gene presence/absence--to evaluate the extent of LGT in the parasitic amoebozoan genus Entamoeba. Previous work has suggested that a number of genes in the genome of Entamoeba spp. were acquired by LGT. Our approach, using an automated phylogenomic pipeline to build taxon-rich gene trees, suggests that LGT is more extensive than previously thought. Our analyses reveal that genes have frequently entered the Entamoeba genome via nonvertical events, including at least 116 genes acquired directly from bacteria or archaea, plus an additional 22 genes in which Entamoeba plus one other eukaryote are nested among bacteria and/or archaea. These genes may make good candidates for novel therapeutics, as drugs targeting these genes are less likely to impact the human host. Although we recognize the challenges of inferring intradomain transfers given systematic errors in gene trees, we find 109 genes supporting LGT from a eukaryote to Entamoeba spp., and 178 genes unique to Entamoeba spp. and one other eukaryotic taxon (i.e., presence/absence data). Inspection of these intradomain LGTs provide evidence of a common sister relationship between genes of Entamoeba (Amoebozoa) and parabasalids (Excavata). We speculate that this indicates a past close relationship (e.g., symbiosis) between ancestors of these extant lineages. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Communities of microbial eukaryotes in the mammalian gut within the context of environmental eukaryotic diversity

    Energy Technology Data Exchange (ETDEWEB)

    Parfrey, Laura Wegener; Walters, William A.; Lauber, Christian L.; Clemente, Jose C.; Berg-Lyons, Donna; Teiling, Clotilde; Kodira, Chinnappa; Mohiuddin, Mohammed; Brunelle, Julie; Driscoll, Mark; Fierer, Noah; Gilbert, Jack A.; Knight, Rob

    2014-06-19

    Eukaryotic microbes (protists) residing in the vertebrate gut influence host health and disease, but their diversity and distribution in healthy hosts is poorly understood. Protists found in the gut are typically considered parasites, but many are commensal and some are beneficial. Further, the hygiene hypothesis predicts that association with our co-evolved microbial symbionts may be important to overall health. It is therefore imperative that we understand the normal diversity of our eukaryotic gut microbiota to test for such effects and avoid eliminating commensal organisms. We assembled a dataset of healthy individuals from two populations, one with traditional, agrarian lifestyles and a second with modern, westernized lifestyles, and characterized the human eukaryotic microbiota via high-throughput sequencing. To place the human gut microbiota within a broader context our dataset also includes gut samples from diverse mammals and samples from other aquatic and terrestrial environments. We curated the SILVA ribosomal database to reflect current knowledge of eukaryotic taxonomy and employ it as a phylogenetic framework to compare eukaryotic diversity across environment. We show that adults from the non-western population harbor a diverse community of protists, and diversity in the human gut is comparable to that in other mammals. However, the eukaryotic microbiota of the western population appears depauperate. The distribution of symbionts found in mammals reflects both host phylogeny and diet. Eukaryotic microbiota in the gut are less diverse and more patchily distributed than bacteria. More broadly, we show that eukaryotic communities in the gut are less diverse than in aquatic and terrestrial habitats, and few taxa are shared across habitat types, and diversity patterns of eukaryotes are correlated with those observed for bacteria. These results outline the distribution and diversity of microbial eukaryotic communities in the mammalian gut and across

  4. Comprehensive comparative analysis of kinesins in photosynthetic eukaryotes

    Directory of Open Access Journals (Sweden)

    Reddy Anireddy SN

    2006-01-01

    Full Text Available Abstract Background Kinesins, a superfamily of molecular motors, use microtubules as tracks and transport diverse cellular cargoes. All kinesins contain a highly conserved ~350 amino acid motor domain. Previous analysis of the completed genome sequence of one flowering plant (Arabidopsis has resulted in identification of 61 kinesins. The recent completion of genome sequencing of several photosynthetic and non-photosynthetic eukaryotes that belong to divergent lineages offers a unique opportunity to conduct a comprehensive comparative analysis of kinesins in plant and non-plant systems and infer their evolutionary relationships. Results We used the kinesin motor domain to identify kinesins in the completed genome sequences of 19 species, including 13 newly sequenced genomes. Among the newly analyzed genomes, six represent photosynthetic eukaryotes. A total of 529 kinesins was used to perform comprehensive analysis of kinesins and to construct gene trees using the Bayesian and parsimony approaches. The previously recognized 14 families of kinesins are resolved as distinct lineages in our inferred gene tree. At least three of the 14 kinesin families are not represented in flowering plants. Chlamydomonas, a green alga that is part of the lineage that includes land plants, has at least nine of the 14 known kinesin families. Seven of ten families present in flowering plants are represented in Chlamydomonas, indicating that these families were retained in both the flowering-plant and green algae lineages. Conclusion The increase in the number of kinesins in flowering plants is due to vast expansion of the Kinesin-14 and Kinesin-7 families. The Kinesin-14 family, which typically contains a C-terminal motor, has many plant kinesins that have the motor domain at the N terminus, in the middle, or the C terminus. Several domains in kinesins are present exclusively either in plant or animal lineages. Addition of novel domains to kinesins in lineage

  5. Reproduction, symbiosis, and the eukaryotic cell

    Science.gov (United States)

    Godfrey-Smith, Peter

    2015-01-01

    This paper develops a conceptual framework for addressing questions about reproduction, individuality, and the units of selection in symbiotic associations, with special attention to the origin of the eukaryotic cell. Three kinds of reproduction are distinguished, and a possible evolutionary sequence giving rise to a mitochondrion-containing eukaryotic cell from an endosymbiotic partnership is analyzed as a series of transitions between each of the three forms of reproduction. The sequence of changes seen in this “egalitarian” evolutionary transition is compared with those that apply in “fraternal” transitions, such as the evolution of multicellularity in animals. PMID:26286983

  6. BEACON: automated tool for Bacterial GEnome Annotation ComparisON

    KAUST Repository

    Kalkatawi, Manal M.

    2015-08-18

    Background Genome annotation is one way of summarizing the existing knowledge about genomic characteristics of an organism. There has been an increased interest during the last several decades in computer-based structural and functional genome annotation. Many methods for this purpose have been developed for eukaryotes and prokaryotes. Our study focuses on comparison of functional annotations of prokaryotic genomes. To the best of our knowledge there is no fully automated system for detailed comparison of functional genome annotations generated by different annotation methods (AMs). Results The presence of many AMs and development of new ones introduce needs to: a/ compare different annotations for a single genome, and b/ generate annotation by combining individual ones. To address these issues we developed an Automated Tool for Bacterial GEnome Annotation ComparisON (BEACON) that benefits both AM developers and annotation analysers. BEACON provides detailed comparison of gene function annotations of prokaryotic genomes obtained by different AMs and generates extended annotations through combination of individual ones. For the illustration of BEACON’s utility, we provide a comparison analysis of multiple different annotations generated for four genomes and show on these examples that the extended annotation can increase the number of genes annotated by putative functions up to 27 %, while the number of genes without any function assignment is reduced. Conclusions We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/

  7. BEACON: automated tool for Bacterial GEnome Annotation ComparisON.

    Science.gov (United States)

    Kalkatawi, Manal; Alam, Intikhab; Bajic, Vladimir B

    2015-08-18

    Genome annotation is one way of summarizing the existing knowledge about genomic characteristics of an organism. There has been an increased interest during the last several decades in computer-based structural and functional genome annotation. Many methods for this purpose have been developed for eukaryotes and prokaryotes. Our study focuses on comparison of functional annotations of prokaryotic genomes. To the best of our knowledge there is no fully automated system for detailed comparison of functional genome annotations generated by different annotation methods (AMs). The presence of many AMs and development of new ones introduce needs to: a/ compare different annotations for a single genome, and b/ generate annotation by combining individual ones. To address these issues we developed an Automated Tool for Bacterial GEnome Annotation ComparisON (BEACON) that benefits both AM developers and annotation analysers. BEACON provides detailed comparison of gene function annotations of prokaryotic genomes obtained by different AMs and generates extended annotations through combination of individual ones. For the illustration of BEACON's utility, we provide a comparison analysis of multiple different annotations generated for four genomes and show on these examples that the extended annotation can increase the number of genes annotated by putative functions up to 27%, while the number of genes without any function assignment is reduced. We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/ .

  8. Repair of DNA DSB in higher eukaryotes

    International Nuclear Information System (INIS)

    Wang, H.; Perrault, A.R.; Takeda, Y.; Iliakis, G.

    2003-01-01

    Cells of higher eukaryotes process within minutes double strand breaks (DSBs) in their genome using a NHEJ apparatus that engages DNA-PKcs, Ku, DNA ligase IV, XRCC4, and other as of yet unidentified factors. Although chemical inhibition, or mutation, in any of these factors delays processing, cells ultimately remove the majority of DNA DSBs using an alternative pathway operating with slower kinetics. This alternative pathway is active in mutants deficient in genes of the RAD52 epistasis group. We proposed, therefore, that it reflects an alternative form of NHEJ that operates as a backup (B-NHEJ) to the DNA-PK- dependent (D-NHEJ) pathway, rather than homology directed repair of DSBs. We studied the role of Ku and DNA-PKcs in the coordination of these pathways using as a model end joining of restriction endonuclease linearized plasmid DNA in whole cell extracts. Efficient error-free endjoining observed in such in-vitro reactions is strongly inhibited by anti-Ku antibodies. The inhibition requires DNA-PKcs, despite that fact that Ku efficiently binds DNA ends in the presence of antibodies, or in the absence of DNA-PKcs. Strong inhibition of DNA endjoining is also mediated by wortmannin, an inhibitor of DNA-PKcs, in the presence but not in the absence of Ku, and this inhibition can be rescued by pre-incubating the reaction with double stranded oligonucleotides. The results are compatible with a role of Ku in directing endjoining to a DNA-PK dependent pathway, mediated by efficient end binding and productive interactions with DNA-PKcs. On the other hand, efficient end joining is observed in extracts of cells lacking DNA-PKcs, as well as in Ku-depleted extracts sugggesting the operation of alternative pathways. Extracts depleted of Ku and DNA-PKcs rejoin blunt ends, as well as homologous ends with 3' or 5' protruding single strands with similar efficiency, but addition of Ku suppresses joining of blunt ends and homologous ends with 3' overhangs. We propose that the

  9. DNA structural features of eukaryotic TATA-containing and TATA-less promoters.

    Science.gov (United States)

    Yella, Venkata Rajesh; Bansal, Manju

    2017-03-01

    Eukaryotic genes can be broadly classified as TATA-containing and TATA-less based on the presence of TATA box in their promoters. Experiments on both classes of genes have revealed a disparity in the regulation of gene expression and cellular functions between the two classes. In this study, we report characteristic differences in promoter sequences and associated structural properties of the two categories of genes in six different eukaryotes. We have analyzed three structural features, DNA duplex stability, bendability, and curvature along with the distribution of A-tracts, G-quadruplex motifs, and CpG islands. The structural feature analyses reveal that while the two classes of gene promoters are distinctly different from each other, the properties are also distinguishable across the six organisms.

  10. Eukaryotic acquisition of a bacterial operon

    Science.gov (United States)

    The yeast Saccharomyces cerevisiae is one of the champions of basic biomedical research due to its compact eukaryotic genome and ease of experimental manipulation. Despite these immense strengths, its impact on understanding the genetic basis of natural phenotypic variation has been limited by strai...

  11. The origin of the eukaryotic cell

    Science.gov (United States)

    Hartman, H.

    1984-01-01

    The endosymbiotic hypothesis for the origin of the eukaryotic cell has been applied to the origin of the mitochondria and chloroplasts. However as has been pointed out by Mereschowsky in 1905, it should also be applied to the nucleus as well. If the nucleus, mitochondria and chloroplasts are endosymbionts, then it is likely that the organism that did the engulfing was not a DNA-based organism. In fact, it is useful to postulate that this organism was a primitive RNA-based organism. This hypothesis would explain the preponderance of RNA viruses found in eukaryotic cells. The centriole and basal body do not have a double membrane or DNA. Like all MTOCs (microtubule organising centres), they have a structural or morphic RNA implicated in their formation. This would argue for their origin in the early RNA-based organism rather than in an endosymbiotic event involving bacteria. Finally, the eukaryotic cell uses RNA in ways quite unlike bacteria, thus pointing to a greater emphasis of RNA in both control and structure in the cell. The origin of the eukaryotic cell may tell us why it rather than its prokaryotic relative evolved into the metazoans who are reading this paper.

  12. Evidence for a Minimal Eukaryotic Phosphoproteome?

    NARCIS (Netherlands)

    Diks, Sander H.; Parikh, Kaushal; van der Sijde, Marijke; Joore, Jos; Ritsema, Tita; Peppelenbosch, Maikel P.

    2007-01-01

    Background. Reversible phosphorylation catalysed by kinases is probably the most important regulatory mechanism in eukaryotes. Methodology/Principal Findings. We studied the in vitro phosphorylation of peptide arrays exhibiting the majority of PhosphoBase-deposited protein sequences, by factors in

  13. Proton-pumping rhodopsins are abundantly expressed by microbial eukaryotes in a high-Arctic fjord.

    Science.gov (United States)

    Vader, Anna; Laughinghouse, Haywood D; Griffiths, Colin; Jakobsen, Kjetill S; Gabrielsen, Tove M

    2018-02-01

    Proton-pumping rhodopsins provide an alternative pathway to photosynthesis by which solar energy can enter the marine food web. Rhodopsin genes are widely found in marine bacteria, also in the Arctic, and were recently reported from several eukaryotic lineages. So far, little is known about rhodopsin expression in Arctic eukaryotes. In this study, we used metatranscriptomics and 18S rDNA tag sequencing to examine the mid-summer function and composition of marine protists (size 0.45-10 µm) in the high-Arctic Billefjorden (Spitsbergen), especially focussing on the expression of microbial proton-pumping rhodopsins. Rhodopsin transcripts were highly abundant, at a level similar to that of genes involved in photosynthesis. Phylogenetic analyses placed the environmental rhodopsins within disparate eukaryotic lineages, including dinoflagellates, stramenopiles, haptophytes and cryptophytes. Sequence comparison indicated the presence of several functional types, including xanthorhodopsins and a eukaryotic clade of proteorhodopsin. Transcripts belonging to the proteorhodopsin clade were also abundant in published metatranscriptomes from other oceanic regions, suggesting a global distribution. The diversity and abundance of rhodopsins show that these light-driven proton pumps play an important role in Arctic microbial eukaryotes. Understanding this role is imperative to predicting the future of the Arctic marine ecosystem faced by a changing light climate due to diminishing sea-ice. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  14. Detección automática de NEOs en imágenes CCD utilizando la transformada de Hough

    Science.gov (United States)

    Ruétalo, M.; Tancredi, G.

    El interés y la dedicación por los objetos que se acercan a la órbita de la Tierra (NEOs) ha aumentado considerablemente en los últimos años, tanto que se han iniciado varias campañas de búsqueda sistemática para aumentar la población identificada de éstos. El uso de placas fotográficas e identificación visual está siendo sustituído, progresivamente, por el uso de cámaras CCD y paquetes de detección automática de los objetos en las imágenes digitales. Una parte muy importante para la implementación exitosa de un programa automatizado de detección de este tipo es el desarrollo de algoritmos capaces de identificar objetos de baja relación señal-ruido y con requerimientos computacionales no elevados. En el presente trabajo proponemos la utilización de la transformada de Hough (utilizada en algunas áreas de visión artificial) para detectar automáticamente trazas, aproximadamente rectilíneas y de baja relación señal-ruido, en imágenes CCD. Desarrollamos una primera implementación de un algoritmo basado en ésta y lo probamos con una serie de imágenes reales conteniendo trazas con picos de señales de entre ~1 σ y ~3 σ por encima del nivel del ruido de fondo. El algoritmo detecta, sin inconvenientes, la mayoría de los casos y en tiempos razonablemente adecuados.

  15. GEGEINTOOL: A Computer-Based Tool for Automated Analysis of Gene-Gene Interactions in Large Epidemiological Studies in Cardiovascular Genomics

    Directory of Open Access Journals (Sweden)

    Oscar Coltell

    2013-06-01

    Full Text Available Current methods of data analysis of gene-gene interactions in complex diseases, after taking into account environmental factors using traditional approaches, are inefficient. High-throughput methods of analysis in large scale studies including thousands of subjects and hundreds of SNPs should be implemented. We developed an integrative computer tool, GEGEINTOOL (GEne- GEne INTeraction tOOL, for large-scale analysis of gene-gene interactions, in human studies of complex diseases including a large number of subjects, SNPs, as well as environmental factors. That resource uses standard statistical packages (SPSS, etc. to build and fit the gene-gene interaction models by means of syntax scripts in predicting one or more continuous or dichotomic phenotypes. Codominant, dominant and recessive genetic interaction models including control for covariates are automatically created for each SNP in order to test the best model. From the standard outputs, GEGEINTOOL extracts a selected set of parameters (regression coefficients, p-values, adjusted means, etc., and groups them in a single MS Excel Spreadsheet. The tool allows editing the set of filter parameters, filtering the selected results depending on p-values, as well as plotting the selected gene-gene interactions to check consistency. In conclusion, GEGEINTOOL is a useful and friendly tool for exploring and identifying gene-gene interactions in complex diseases.

  16. Sistema de adquisición automática de imágenes para microscopio óptico

    OpenAIRE

    Said David Pertuz Arroyo; Héctor Reneé Ibañez Grandas

    2007-01-01

    En este artículo se presenta un estudio sobre algunas funciones para la estimación del grado relativo de enfoque de una imagen. Se propone la modificación de algunas de las funciones estudiadas para mejorar su desempeño y se desarrolla un algoritmo de búsqueda de foco para llevar a cabo enfoque automático en microscopio óptico. Se hace la implementación del algoritmo de búsqueda en un microscopio con platina motorizada en el eje Z, para obtener una total automatización del e...

  17. A Functional, Genome-wide Evaluation of Liposensitive Yeast Identifies the “ARE2 Required for Viability” (ARV1) Gene Product as a Major Component of Eukaryotic Fatty Acid Resistance*

    Science.gov (United States)

    Ruggles, Kelly V.; Garbarino, Jeanne; Liu, Ying; Moon, James; Schneider, Kerry; Henneberry, Annette; Billheimer, Jeff; Millar, John S.; Marchadier, Dawn; Valasek, Mark A.; Joblin-Mills, Aidan; Gulati, Sonia; Munkacsi, Andrew B.; Repa, Joyce J.; Rader, Dan; Sturley, Stephen L.

    2014-01-01

    The toxic subcellular accumulation of lipids predisposes several human metabolic syndromes, including obesity, type 2 diabetes, and some forms of neurodegeneration. To identify pathways that prevent lipid-induced cell death, we performed a genome-wide fatty acid sensitivity screen in Saccharomyces cerevisiae. We identified 167 yeast mutants as sensitive to 0.5 mm palmitoleate, 45% of which define pathways that were conserved in humans. 63 lesions also impacted the status of the lipid droplet; however, this was not correlated to the degree of fatty acid sensitivity. The most liposensitive yeast strain arose due to deletion of the “ARE2 required for viability” (ARV1) gene, encoding an evolutionarily conserved, potential lipid transporter that localizes to the endoplasmic reticulum membrane. Down-regulation of mammalian ARV1 in MIN6 pancreatic β-cells or HEK293 cells resulted in decreased neutral lipid synthesis, increased fatty acid sensitivity, and lipoapoptosis. Conversely, elevated expression of human ARV1 in HEK293 cells or mouse liver significantly increased triglyceride mass and lipid droplet number. The ARV1-induced hepatic triglyceride accumulation was accompanied by up-regulation of DGAT1, a triglyceride synthesis gene, and the fatty acid transporter, CD36. Furthermore, ARV1 was identified as a transcriptional of the protein peroxisome proliferator-activated receptor α (PPARα), a key regulator of lipid homeostasis whose transcriptional targets include DGAT1 and CD36. These results implicate ARV1 as a protective factor in lipotoxic diseases due to modulation of fatty acid metabolism. In conclusion, a lipotoxicity-based genetic screen in a model microorganism has identified 75 human genes that may play key roles in neutral lipid metabolism and disease. PMID:24273168

  18. A functional, genome-wide evaluation of liposensitive yeast identifies the "ARE2 required for viability" (ARV1) gene product as a major component of eukaryotic fatty acid resistance.

    Science.gov (United States)

    Ruggles, Kelly V; Garbarino, Jeanne; Liu, Ying; Moon, James; Schneider, Kerry; Henneberry, Annette; Billheimer, Jeff; Millar, John S; Marchadier, Dawn; Valasek, Mark A; Joblin-Mills, Aidan; Gulati, Sonia; Munkacsi, Andrew B; Repa, Joyce J; Rader, Dan; Sturley, Stephen L

    2014-02-14

    The toxic subcellular accumulation of lipids predisposes several human metabolic syndromes, including obesity, type 2 diabetes, and some forms of neurodegeneration. To identify pathways that prevent lipid-induced cell death, we performed a genome-wide fatty acid sensitivity screen in Saccharomyces cerevisiae. We identified 167 yeast mutants as sensitive to 0.5 mm palmitoleate, 45% of which define pathways that were conserved in humans. 63 lesions also impacted the status of the lipid droplet; however, this was not correlated to the degree of fatty acid sensitivity. The most liposensitive yeast strain arose due to deletion of the "ARE2 required for viability" (ARV1) gene, encoding an evolutionarily conserved, potential lipid transporter that localizes to the endoplasmic reticulum membrane. Down-regulation of mammalian ARV1 in MIN6 pancreatic β-cells or HEK293 cells resulted in decreased neutral lipid synthesis, increased fatty acid sensitivity, and lipoapoptosis. Conversely, elevated expression of human ARV1 in HEK293 cells or mouse liver significantly increased triglyceride mass and lipid droplet number. The ARV1-induced hepatic triglyceride accumulation was accompanied by up-regulation of DGAT1, a triglyceride synthesis gene, and the fatty acid transporter, CD36. Furthermore, ARV1 was identified as a transcriptional of the protein peroxisome proliferator-activated receptor α (PPARα), a key regulator of lipid homeostasis whose transcriptional targets include DGAT1 and CD36. These results implicate ARV1 as a protective factor in lipotoxic diseases due to modulation of fatty acid metabolism. In conclusion, a lipotoxicity-based genetic screen in a model microorganism has identified 75 human genes that may play key roles in neutral lipid metabolism and disease.

  19. Generic eukaryotic core promoter prediction using structural features of DNA.

    Science.gov (United States)

    Abeel, Thomas; Saeys, Yvan; Bonnet, Eric; Rouzé, Pierre; Van de Peer, Yves

    2008-02-01

    Despite many recent efforts, in silico identification of promoter regions is still in its infancy. However, the accurate identification and delineation of promoter regions is important for several reasons, such as improving genome annotation and devising experiments to study and understand transcriptional regulation. Current methods to identify the core region of promoters require large amounts of high-quality training data and often behave like black box models that output predictions that are difficult to interpret. Here, we present a novel approach for predicting promoters in whole-genome sequences by using large-scale structural properties of DNA. Our technique requires no training, is applicable to many eukaryotic genomes, and performs extremely well in comparison with the best available promoter prediction programs. Moreover, it is fast, simple in design, and has no size constraints, and the results are easily interpretable. We compared our approach with 14 current state-of-the-art implementations using human gene and transcription start site data and analyzed the ENCODE region in more detail. We also validated our method on 12 additional eukaryotic genomes, including vertebrates, invertebrates, plants, fungi, and protists.

  20. Characterization of an eukaryotic peptide deformylase from Plasmodium falciparum.

    Science.gov (United States)

    Bracchi-Ricard, V; Nguyen, K T; Zhou, Y; Rajagopalan, P T; Chakrabarti, D; Pei, D

    2001-12-15

    Ribosomal protein synthesis in eubacteria and eukaryotic organelles initiates with an N-formylmethionyl-tRNA(i), resulting in N-terminal formylation of all nascent polypeptides. Peptide deformylase (PDF) catalyzes the subsequent removal of the N-terminal formyl group from the majority of bacterial proteins. Until recently, PDF has been thought as an enzyme unique to the bacterial kingdom. Searches of the genomic DNA databases identified several genes that encode proteins of high sequence homology to bacterial PDF from eukaryotic organisms. The cDNA encoding Plasmodium falciparum PDF (PfPDF) has been cloned and overexpressed in Escherichia coli. The recombinant protein is catalytically active in deformylating N-formylated peptides, shares many of the properties of bacterial PDF, and is inhibited by specific PDF inhibitors. Western blot analysis indicated expression of mature PfPDF in trophozoite, schizont, and segmenter stages of intraerythrocytic development. These results provide strong evidence that a functional PDF is present in P. falciparum. In addition, PDF inhibitors inhibited the growth of P. falciparum in the intraerythrocytic culture. (c)2001 Elsevier Science.

  1. Towards New Antifolates Targeting Eukaryotic Opportunistic Infections

    Energy Technology Data Exchange (ETDEWEB)

    Liu, J.; Bolstad, D; Bolstad, E; Wright, D; Anderson, A

    2009-01-01

    Trimethoprim, an antifolate commonly prescribed in combination with sulfamethoxazole, potently inhibits several prokaryotic species of dihydrofolate reductase (DHFR). However, several eukaryotic pathogenic organisms are resistant to trimethoprim, preventing its effective use as a therapeutic for those infections. We have been building a program to reengineer trimethoprim to more potently and selectively inhibit eukaryotic species of DHFR as a viable strategy for new drug discovery targeting several opportunistic pathogens. We have developed a series of compounds that exhibit potent and selective inhibition of DHFR from the parasitic protozoa Cryptosporidium and Toxoplasma as well as the fungus Candida glabrata. A comparison of the structures of DHFR from the fungal species Candida glabrata and Pneumocystis suggests that the compounds may also potently inhibit Pneumocystis DHFR.

  2. Rolling-circle transposons in eukaryotes.

    Science.gov (United States)

    Kapitonov, V V; Jurka, J

    2001-07-17

    All eukaryotic DNA transposons reported so far belong to a single category of elements transposed by the so-called "cut-and-paste" mechanism. Here, we report a previously unknown category of eukaryotic DNA transposons, Helitron, which transpose by rolling-circle replication. Autonomous Helitrons encode a 5'-to-3' DNA helicase and nuclease/ligase similar to those encoded by known rolling-circle replicons. Helitron-like transposons have conservative 5'-TC and CTRR-3' termini and do not have terminal inverted repeats. They contain 16- to 20-bp hairpins separated by 10--12 nucleotides from the 3'-end and transpose precisely between the 5'-A and T-3', with no modifications of the AT target sites. Together with their multiple diverged nonautonomous descendants, Helitrons constitute approximately 2% of both the Arabidopsis thaliana and Caenorhabditis elegans genomes and also colonize the Oriza sativa genome. Sequence conservation suggests that Helitrons continue to be transposed.

  3. Eukaryotic algal phytochromes span the visible spectrum

    OpenAIRE

    Rockwell, Nathan C.; Duanmu, Deqiang; Martin, Shelley S.; Bachy, Charles; Price, Dana C.; Bhattacharya, Debashish; Worden, Alexandra Z.; Lagarias, J. Clark

    2014-01-01

    Photosynthetic organisms exploit photosensory proteins to respond to changing light conditions. In land plants, phytochromes use the ratio of red to far-red light to detect shading by neighboring plants, leading to changes in growth and development. Light conditions can be more variable for algae because of the wavelength-dependent attenuation of light by water and because of ocean mixing. We studied phytochromes from taxonomically diverse eukaryotic algae from groups considered important for...

  4. Automated pangenomic analysis in target selection for PCR detection and identification of bacteria by use of ssGeneFinder Webserver and its application to Salmonella enterica serovar Typhi

    OpenAIRE

    Yuen, KY; Wu, AKL; Woo, PCY; Ho, CC; Lau, SKP; Tse, CWS

    2012-01-01

    With the advent of high-throughput DNA sequencing, more than 4,000 bacterial genomes have been sequenced and are publicly available. We report a user-friendly web platform, ssGeneFinder Webserver (http://147.8.74.24/ssGeneFinder/), which is updated weekly for the automated pangenomic selection of specific targets for direct PCR detection and the identification of clinically important bacteria without the need of gene sequencing. To apply the ssGeneFinder Webserver for identifying specific tar...

  5. Genome-wide Purification of Extrachromosomal Circular DNA from Eukaryotic Cells

    DEFF Research Database (Denmark)

    Møller, Henrik D.; Bojsen, Rasmus Kenneth; Tachibana, Chris

    2016-01-01

    Extrachromosomal circular DNAs (eccDNAs) are common genetic elements in Saccharomyces cerevisiae and are reported in other eukaryotes as well. EccDNAs contribute to genetic variation among somatic cells in multicellular organisms and to evolution of unicellular eukaryotes. Sensitive methods...... for detecting eccDNA are needed to clarify how these elements affect genome stability and how environmental and biological factors induce their formation in eukaryotic cells. This video presents a sensitive eccDNA-purification method called Circle-Seq. The method encompasses column purification of circular DNA...... DNA. Validation of the Circle-Seq method on three S. cerevisiae CEN.PK populations of 10(10) cells detected hundreds of eccDNA profiles in sizes larger than 1 kilobase. Repeated findings of ASP3-1, COS111, CUP1, RSC30, HXT6, HXT7 genes on circular DNA in both S288c and CEN.PK suggests that DNA...

  6. Functional capacity of Shiga-toxin promoter sequences in eukaryotic cells.

    Science.gov (United States)

    Bentancor, Leticia V; Bilen, Marcos F; Mejías, María P; Fernández-Brando, Romina J; Panek, Cecilia A; Ramos, Maria V; Fernández, Gabriela C; Isturiz, Martín; Ghiringhelli, Pablo D; Palermo, Marina S

    2013-01-01

    Shiga toxins (Stx) are the main virulence factors in enterohemorrhagic Escherichia coli (EHEC) infections, causing diarrhea and hemolytic uremic syndrome (HUS). The genes encoding for Shiga toxin-2 (Stx2) are located in a bacteriophage. The toxin is formed by a single A subunit and five B subunits, each of which has its own promoter sequence. We have previously reported the expression of the B subunit within the eukaryotic environment, probably driven by their own promoter. The aim of this work was to evaluate the ability of the eukaryotic machinery to recognize stx2 sequences as eukaryotic-like promoters. Vero cells were transfected with a plasmid encoding Stx2 under its own promoter. The cytotoxic effect on these cells was similar to that observed upon incubation with purified Stx2. In addition, we showed that Stx2 expression in Stx2-insensitive BHK eukaryotic cells induced drastic morphological and cytoskeletal changes. In order to directly evaluate the capacity of the wild promoter sequences of the A and B subunits to drive protein expression in mammalian cells, GFP was cloned under eukaryotic-like putative promoter sequences. GFP expression was observed in 293T cells transfected with these constructions. These results show a novel and alternative way to synthesize Stx2 that could contribute to the global understanding of EHEC infections with immediate impact on the development of treatments or vaccines against HUS.

  7. Comparative genomics of eukaryotic small nucleolar RNAs reveals deep evolutionary ancestry amidst ongoing intragenomic mobility

    Directory of Open Access Journals (Sweden)

    Hoeppner Marc P

    2012-09-01

    Full Text Available Abstract Background Small nucleolar (snoRNAs are required for posttranscriptional processing and modification of ribosomal, spliceosomal and messenger RNAs. Their presence in both eukaryotes and archaea indicates that snoRNAs are evolutionarily ancient. The location of some snoRNAs within the introns of ribosomal protein genes has been suggested to belie an RNA world origin, with the exons of the earliest protein-coding genes having evolved around snoRNAs after the advent of templated protein synthesis. Alternatively, this intronic location may reflect more recent selection for coexpression of snoRNAs and ribosomal components, ensuring rRNA modification by snoRNAs during ribosome synthesis. To gain insight into the evolutionary origins of this genetic organization, we examined the antiquity of snoRNA families and the stability of their genomic location across 44 eukaryote genomes. Results We report that dozens of snoRNA families are traceable to the Last Eukaryotic Common Ancestor (LECA, but find only weak similarities between the oldest eukaryotic snoRNAs and archaeal snoRNA-like genes. Moreover, many of these LECA snoRNAs are located within the introns of host genes independently traceable to the LECA. Comparative genomic analyses reveal the intronic location of LECA snoRNAs is not ancestral however, suggesting the pattern we observe is the result of ongoing intragenomic mobility. Analysis of human transcriptome data indicates that the primary requirement for hosting intronic snoRNAs is a broad expression profile. Consistent with ongoing mobility across broadly-expressed genes, we report a case of recent migration of a non-LECA snoRNA from the intron of a ubiquitously expressed non-LECA host gene into the introns of two LECA genes during the evolution of primates. Conclusions Our analyses show that snoRNAs were a well-established family of RNAs at the time when eukaryotes began to diversify. While many are intronic, this association is not

  8. Mitochondria, the Cell Cycle, and the Origin of Sex via a Syncytial Eukaryote Common Ancestor.

    Science.gov (United States)

    Garg, Sriram G; Martin, William F

    2016-07-02

    Theories for the origin of sex traditionally start with an asexual mitosing cell and add recombination, thereby deriving meiosis from mitosis. Though sex was clearly present in the eukaryote common ancestor, the order of events linking the origin of sex and the origin of mitosis is unknown. Here, we present an evolutionary inference for the origin of sex starting with a bacterial ancestor of mitochondria in the cytosol of its archaeal host. We posit that symbiotic association led to the origin of mitochondria and gene transfer to host's genome, generating a nucleus and a dedicated translational compartment, the eukaryotic cytosol, in which-by virtue of mitochondria-metabolic energy was not limiting. Spontaneous protein aggregation (monomer polymerization) and Adenosine Tri-phosphate (ATP)-dependent macromolecular movement in the cytosol thereby became selectable, giving rise to continuous microtubule-dependent chromosome separation (reduction division). We propose that eukaryotic chromosome division arose in a filamentous, syncytial, multinucleated ancestor, in which nuclei with insufficient chromosome numbers could complement each other through mRNA in the cytosol and generate new chromosome combinations through karyogamy. A syncytial (or coenocytic, a synonym) eukaryote ancestor, or Coeca, would account for the observation that the process of eukaryotic chromosome separation is more conserved than the process of eukaryotic cell division. The first progeny of such a syncytial ancestor were likely equivalent to meiospores, released into the environment by the host's vesicle secretion machinery. The natural ability of archaea (the host) to fuse and recombine brought forth reciprocal recombination among fusing (syngamy and karyogamy) progeny-sex-in an ancestrally meiotic cell cycle, from which the simpler haploid and diploid mitotic cell cycles arose. The origin of eukaryotes was the origin of vertical lineage inheritance, and sex was required to keep vertically

  9. Translation in giant viruses: a unique mixture of bacterial and eukaryotic termination schemes.

    Directory of Open Access Journals (Sweden)

    Sandra Jeudy

    Full Text Available Mimivirus and Megavirus are the best characterized representatives of an expanding new family of giant viruses infecting Acanthamoeba. Their most distinctive features, megabase-sized genomes carried in particles of size comparable to that of small bacteria, fill the gap between the viral and cellular worlds. These giant viruses are also uniquely equipped with genes coding for central components of the translation apparatus. The presence of those genes, thought to be hallmarks of cellular organisms, revived fundamental interrogations on the evolutionary origin of these viruses and the link they might have with the emergence of eukaryotes. In this work, we focused on the Mimivirus-encoded translation termination factor gene, the detailed primary structure of which was elucidated using computational and experimental approaches. We demonstrated that the translation of this protein proceeds through two internal stop codons via two distinct recoding events: a frameshift and a readthrough, the combined occurrence of which is unique to these viruses. Unexpectedly, the viral gene carries an autoregulatory mechanism exclusively encountered in bacterial termination factors, though the viral sequence is related to the eukaryotic/archaeal class-I release factors. This finding is a hint that the virally-encoded translation functions may not be strictly redundant with the one provided by the host. Lastly, the perplexing occurrence of a bacterial-like regulatory mechanism in a eukaryotic/archaeal homologous gene is yet another oddity brought about by the study of giant viruses.

  10. Eukaryotic diversity in late Pleistocene marine sediments around a shallow methane hydrate deposit in the Japan Sea.

    Science.gov (United States)

    Kouduka, M; Tanabe, A S; Yamamoto, S; Yanagawa, K; Nakamura, Y; Akiba, F; Tomaru, H; Toju, H; Suzuki, Y

    2017-09-01

    Marine sediments contain eukaryotic DNA deposited from overlying water columns. However, a large proportion of deposited eukaryotic DNA is aerobically biodegraded in shallow marine sediments. Cold seep sediments are often anaerobic near the sediment-water interface, so eukaryotic DNA in such sediments is expected to be preserved. We investigated deeply buried marine sediments in the Japan Sea, where a methane hydrate deposit is associated with cold seeps. Quantitative PCR analysis revealed the reproducible recovery of eukaryotic DNA in marine sediments at depths up to 31.0 m in the vicinity of the methane hydrate deposit. In contrast, the reproducible recovery of eukaryotic DNA was limited to a shallow depth (8.3 m) in marine sediments not adjacent to the methane hydrate deposit in the same area. Pyrosequencing of an 18S rRNA gene variable region generated 1,276-3,307 reads per sample, which was sufficient to cover the biodiversity based on rarefaction curves. Phylogenetic analysis revealed that most of the eukaryotic DNA originated from radiolarian genera of the class Chaunacanthida, which have SrSO 4 skeletons, the sea grass genus Zostera, and the seaweed genus Sargassum. Eukaryotic DNA originating from other planktonic fauna and land plants was also detected. Diatom sequences closely related to Thalassiosira spp., indicative of cold climates, were obtained from sediments deposited during the last glacial period (MIS-2). Plant sequences of the genera Alnus, Micromonas, and Ulmus were found in sediments deposited during the warm interstadial period (MIS-3). These results suggest the long-term persistence of eukaryotic DNA from terrestrial and aquatic sources in marine sediments associated with cold seeps, and that the genetic information from eukaryotic DNA from deeply buried marine sediments associated with cold seeps can be used to reconstruct environments and ecosystems from the past. © 2017 John Wiley & Sons Ltd.

  11. Eukaryotic resistance to fluoride toxicity mediated by a widespread family of fluoride export proteins

    Science.gov (United States)

    Li, Sanshu; Smith, Kathryn D.; Davis, Jared H.; Gordon, Patricia B.; Breaker, Ronald R.; Strobel, Scott A.

    2013-01-01

    Fluorine is an abundant element and is toxic to organisms from bacteria to humans, but the mechanisms by which eukaryotes resist fluoride toxicity are unknown. The Escherichia coli gene crcB was recently shown to be regulated by a fluoride-responsive riboswitch, implicating it in fluoride response. There are >8,000 crcB homologs across all domains of life, indicating that it has an important role in biology. Here we demonstrate that eukaryotic homologs [renamed FEX (fluoride exporter)] function in fluoride export. FEX KOs in three eukaryotic model organisms, Neurospora crassa, Saccharomyces cerevisiae, and Candida albicans, are highly sensitized to fluoride (>200-fold) but not to other halides. Some of these KO strains are unable to grow in fluoride concentrations found in tap water. Using the radioactive isotope of fluoride, 18F, we developed an assay to measure the intracellular fluoride concentration and show that the FEX deletion strains accumulate fluoride in excess of the external concentration, providing direct evidence of FEX function in fluoride efflux. In addition, they are more sensitive to lower pH in the presence of fluoride. These results demonstrate that eukaryotic FEX genes encode a previously unrecognized class of fluoride exporter necessary for survival in standard environmental conditions. PMID:24173035

  12. Prokaryotes versus Eukaryotes: Who is hosting whom?

    Directory of Open Access Journals (Sweden)

    Guillermo eTellez

    2014-10-01

    Full Text Available Microorganisms represent the largest component of biodiversity in our world. For millions of years, prokaryotic microorganisms have functioned as a major selective force shaping eukaryotic evolution. Microbes that live inside and on animals outnumber the animals’ actual somatic and germ cells by an estimated 10-fold. Collectively, the intestinal microbiome represents a ‘forgotten organ’, functioning as an organ inside another that can execute many physiological responsibilities. The nature of primitive eukaryotes was drastically changed due to the association with symbiotic prokaryotes facilitating mutual coevolution of host and microbe. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. From termites and honey bees to ruminants and mammals, depending on novel biochemistries provided by the prokaryotic microbiome, the association helps to metabolize several nutrients that the host cannot digest and converting these into useful end products (such as short chain fatty acids, a process which has huge impact on the biology and homeostasis of metazoans. More importantly, in a direct and/or indirect way, the intestinal microbiota influences the assembly of gut-associated lymphoid tissue, helps to educate immune system, affects the integrity of the intestinal mucosal barrier, modulates proliferation and differentiation of its epithelial lineages, regulates angiogenesis, and modifies the activity of enteric as well as the central nervous system,. Despite these important effects, the mechanisms by which the gut microbial community influences the host’s biology remains almost entirely unknown. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification between prokaryotes and eukaryotes which encourage us to postulate: Who is

  13. Probing eukaryotic cell mechanics via mesoscopic simulations

    Science.gov (United States)

    Pivkin, Igor V.; Lykov, Kirill; Nematbakhsh, Yasaman; Shang, Menglin; Lim, Chwee Teck

    2017-11-01

    We developed a new mesoscopic particle based eukaryotic cell model which takes into account cell membrane, cytoskeleton and nucleus. The breast epithelial cells were used in our studies. To estimate the viscoelastic properties of cells and to calibrate the computational model, we performed micropipette aspiration experiments. The model was then validated using data from microfluidic experiments. Using the validated model, we probed contributions of sub-cellular components to whole cell mechanics in micropipette aspiration and microfluidics experiments. We believe that the new model will allow to study in silico numerous problems in the context of cell biomechanics in flows in complex domains, such as capillary networks and microfluidic devices.

  14. Library Automation

    OpenAIRE

    Dhakne, B. N.; Giri, V. V; Waghmode, S. S.

    2010-01-01

    New technologies library provides several new materials, media and mode of storing and communicating the information. Library Automation reduces the drudgery of repeated manual efforts in library routine. By use of library automation collection, Storage, Administration, Processing, Preservation and communication etc.

  15. Searching for the role of protein phosphatases in eukaryotic microorganisms

    Directory of Open Access Journals (Sweden)

    da-Silva A.M.

    1999-01-01

    Full Text Available Preference for specific protein substrates together with differential sensitivity to activators and inhibitors has allowed classification of serine/threonine protein phosphatases (PPs into four major types designated types 1, 2A, 2B and 2C (PP1, PP2A, PP2B and PP2C, respectively. Comparison of sequences within their catalytic domains has indicated that PP1, PP2A and PP2B are members of the same gene family named PPP. On the other hand, the type 2C enzyme does not share sequence homology with the PPP members and thus represents another gene family, known as PPM. In this report we briefly summarize some of our studies about the role of serine/threonine phosphatases in growth and differentiation of three different eukaryotic models: Blastocladiella emersonii, Neurospora crassa and Dictyostelium discoideum. Our observations suggest that PP2C is the major phosphatase responsible for dephosphorylation of amidotransferase, an enzyme that controls cell wall synthesis during Blastocladiella emersonii zoospore germination. We also report the existence of a novel acid- and thermo-stable protein purified from Neurospora crassa mycelia, which specifically inhibits the PP1 activity of this fungus and mammals. Finally, we comment on our recent results demonstrating that Dictyostelium discoideum expresses a gene that codes for PP1, although this activity has never been demonstrated biochemically in this organism.

  16. Asgard archaea illuminate the origin of eukaryotic cellular complexity.

    Science.gov (United States)

    Zaremba-Niedzwiedzka, Katarzyna; Caceres, Eva F; Saw, Jimmy H; Bäckström, Disa; Juzokaite, Lina; Vancaester, Emmelien; Seitz, Kiley W; Anantharaman, Karthik; Starnawski, Piotr; Kjeldsen, Kasper U; Stott, Matthew B; Nunoura, Takuro; Banfield, Jillian F; Schramm, Andreas; Baker, Brett J; Spang, Anja; Ettema, Thijs J G

    2017-01-19

    The origin and cellular complexity of eukaryotes represent a major enigma in biology. Current data support scenarios in which an archaeal host cell and an alphaproteobacterial (mitochondrial) endosymbiont merged together, resulting in the first eukaryotic cell. The host cell is related to Lokiarchaeota, an archaeal phylum with many eukaryotic features. The emergence of the structural complexity that characterizes eukaryotic cells remains unclear. Here we describe the 'Asgard' superphylum, a group of uncultivated archaea that, as well as Lokiarchaeota, includes Thor-, Odin- and Heimdallarchaeota. Asgard archaea affiliate with eukaryotes in phylogenomic analyses, and their genomes are enriched for proteins formerly considered specific to eukaryotes. Notably, thorarchaeal genomes encode several homologues of eukaryotic membrane-trafficking machinery components, including Sec23/24 and TRAPP domains. Furthermore, we identify thorarchaeal proteins with similar features to eukaryotic coat proteins involved in vesicle biogenesis. Our results expand the known repertoire of 'eukaryote-specific' proteins in Archaea, indicating that the archaeal host cell already contained many key components that govern eukaryotic cellular complexity.

  17. The reduced kinome of Ostreococcus tauri: core eukaryotic signalling components in a tractable model species.

    Science.gov (United States)

    Hindle, Matthew M; Martin, Sarah F; Noordally, Zeenat B; van Ooijen, Gerben; Barrios-Llerena, Martin E; Simpson, T Ian; Le Bihan, Thierry; Millar, Andrew J

    2014-08-02

    The current knowledge of eukaryote signalling originates from phenotypically diverse organisms. There is a pressing need to identify conserved signalling components among eukaryotes, which will lead to the transfer of knowledge across kingdoms. Two useful properties of a eukaryote model for signalling are (1) reduced signalling complexity, and (2) conservation of signalling components. The alga Ostreococcus tauri is described as the smallest free-living eukaryote. With less than 8,000 genes, it represents a highly constrained genomic palette. Our survey revealed 133 protein kinases and 34 protein phosphatases (1.7% and 0.4% of the proteome). We conducted phosphoproteomic experiments and constructed domain structures and phylogenies for the catalytic protein-kinases. For each of the major kinases families we review the completeness and divergence of O. tauri representatives in comparison to the well-studied kinomes of the laboratory models Arabidopsis thaliana and Saccharomyces cerevisiae, and of Homo sapiens. Many kinase clades in O. tauri were reduced to a single member, in preference to the loss of family diversity, whereas TKL and ABC1 clades were expanded. We also identified kinases that have been lost in A. thaliana but retained in O. tauri. For three, contrasting eukaryotic pathways - TOR, MAPK, and the circadian clock - we established the subset of conserved components and demonstrate conserved sites of substrate phosphorylation and kinase motifs. We conclude that O. tauri satisfies our two central requirements. Several of its kinases are more closely related to H. sapiens orthologs than S. cerevisiae is to H. sapiens. The greatly reduced kinome of O. tauri is therefore a suitable model for signalling in free-living eukaryotes.

  18. Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Dominique Colinet

    2007-12-01

    Full Text Available Inactivation of host Rho GTPases is a widespread strategy employed by bacterial pathogens to manipulate mammalian cellular functions and avoid immune defenses. Some bacterial toxins mimic eukaryotic Rho GTPase-activating proteins (GAPs to inactivate mammalian GTPases, probably as a result of evolutionary convergence. An intriguing question remains whether eukaryotic pathogens or parasites may use endogenous GAPs as immune-suppressive toxins to target the same key genes as bacterial pathogens. Interestingly, a RhoGAP domain-containing protein, LbGAP, was recently characterized from the parasitoid wasp Leptopilina boulardi, and shown to protect parasitoid eggs from the immune response of Drosophila host larvae. We demonstrate here that LbGAP has structural characteristics of eukaryotic RhoGAPs but that it acts similarly to bacterial RhoGAP toxins in mammals. First, we show by immunocytochemistry that LbGAP enters Drosophila immune cells, plasmatocytes and lamellocytes, and that morphological changes in lamellocytes are correlated with the quantity of LbGAP they contain. Demonstration that LbGAP displays a GAP activity and specifically interacts with the active, GTP-bound form of the two Drosophila Rho GTPases Rac1 and Rac2, both required for successful encapsulation of Leptopilina eggs, was then achieved using biochemical tests, yeast two-hybrid analysis, and GST pull-down assays. In addition, we show that the overall structure of LbGAP is similar to that of eukaryotic RhoGAP domains, and we identify distinct residues involved in its interaction with Rac GTPases. Altogether, these results show that eukaryotic parasites can use endogenous RhoGAPs as virulence factors and that despite their differences in sequence and structure, eukaryotic and bacterial RhoGAP toxins are similarly used to target the same immune pathways in insects and mammals.

  19. Phosphorylation Stoichiometries of Human Eukaryotic Initiation Factors

    Directory of Open Access Journals (Sweden)

    Armann Andaya

    2014-06-01

    Full Text Available Eukaryotic translation initiation factors are the principal molecular effectors regulating the process converting nucleic acid to functional protein. Commonly referred to as eIFs (eukaryotic initiation factors, this suite of proteins is comprised of at least 25 individual subunits that function in a coordinated, regulated, manner during mRNA translation. Multiple facets of eIF regulation have yet to be elucidated; however, many of the necessary protein factors are phosphorylated. Herein, we have isolated, identified and quantified phosphosites from eIF2, eIF3, and eIF4G generated from log phase grown HeLa cell lysates. Our investigation is the first study to globally quantify eIF phosphosites and illustrates differences in abundance of phosphorylation between the residues of each factor. Thus, identification of those phosphosites that exhibit either high or low levels of phosphorylation under log phase growing conditions may aid researchers to concentrate their investigative efforts to specific phosphosites that potentially harbor important regulatory mechanisms germane to mRNA translation.

  20. Consistent mutational paths predict eukaryotic thermostability

    Directory of Open Access Journals (Sweden)

    van Noort Vera

    2013-01-01

    Full Text Available Abstract Background Proteomes of thermophilic prokaryotes have been instrumental in structural biology and successfully exploited in biotechnology, however many proteins required for eukaryotic cell function are absent from bacteria or archaea. With Chaetomium thermophilum, Thielavia terrestris and Thielavia heterothallica three genome sequences of thermophilic eukaryotes have been published. Results Studying the genomes and proteomes of these thermophilic fungi, we found common strategies of thermal adaptation across the different kingdoms of Life, including amino acid biases and a reduced genome size. A phylogenetics-guided comparison of thermophilic proteomes with those of other, mesophilic Sordariomycetes revealed consistent amino acid substitutions associated to thermophily that were also present in an independent lineage of thermophilic fungi. The most consistent pattern is the substitution of lysine by arginine, which we could find in almost all lineages but has not been extensively used in protein stability engineering. By exploiting mutational paths towards the thermophiles, we could predict particular amino acid residues in individual proteins that contribute to thermostability and validated some of them experimentally. By determining the three-dimensional structure of an exemplar protein from C. thermophilum (Arx1, we could also characterise the molecular consequences of some of these mutations. Conclusions The comparative analysis of these three genomes not only enhances our understanding of the evolution of thermophily, but also provides new ways to engineer protein stability.

  1. Eukaryotic and Prokaryotic Cytoskeletons: Structure and Mechanics

    Science.gov (United States)

    Gopinathan, Ajay

    2013-03-01

    The eukaryotic cytoskeleton is an assembly of filamentous proteins and a host of associated proteins that collectively serve functional needs ranging from spatial organization and transport to the production and transmission of forces. These systems can exhibit a wide variety of non-equilibrium, self-assembled phases depending on context and function. While much recent progress has been made in understanding the self-organization, rheology and nonlinear mechanical properties of such active systems, in this talk, we will concentrate on some emerging aspects of cytoskeletal physics that are promising. One such aspect is the influence of cytoskeletal network topology and its dynamics on both active and passive intracellular transport. Another aspect we will highlight is the interplay between chirality of filaments, their elasticity and their interactions with the membrane that can lead to novel conformational states with functional implications. Finally we will consider homologs of cytoskeletal proteins in bacteria, which are involved in templating cell growth, segregating genetic material and force production, which we will discuss with particular reference to contractile forces during cell division. These prokaryotic structures function in remarkably similar yet fascinatingly different ways from their eukaryotic counterparts and can enrich our understanding of cytoskeletal functioning as a whole.

  2. Cell cycle control across the eukaryotic kingdom.

    Science.gov (United States)

    Harashima, Hirofumi; Dissmeyer, Nico; Schnittger, Arp

    2013-07-01

    Almost two billion years of evolution have generated a vast and amazing variety of eukaryotic life with approximately 8.7 million extant species. Growth and reproduction of all of these organisms depend on faithful duplication and distribution of their chromosomes to the newly forming daughter cells in a process called the cell cycle. However, most of what is known today about cell cycle control comes from a few model species that belong to the unikonts; that is, to only one of five 'supergroups' that comprise the eukaryotic kingdom. Recently, analyzing species from distantly related clades is providing insights into general principles of cell cycle regulation and shedding light on its evolution. Here, referring to animal and fungal as opposed to non-unikont systems, especially flowering plants from the archaeplastid supergroup, we compare the conservation of central cell cycle regulator functions, the structure of network topologies, and the evolutionary dynamics of substrates of core cell cycle kinases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Process automation

    International Nuclear Information System (INIS)

    Moser, D.R.

    1986-01-01

    Process automation technology has been pursued in the chemical processing industries and to a very limited extent in nuclear fuel reprocessing. Its effective use has been restricted in the past by the lack of diverse and reliable process instrumentation and the unavailability of sophisticated software designed for process control. The Integrated Equipment Test (IET) facility was developed by the Consolidated Fuel Reprocessing Program (CFRP) in part to demonstrate new concepts for control of advanced nuclear fuel reprocessing plants. A demonstration of fuel reprocessing equipment automation using advanced instrumentation and a modern, microprocessor-based control system is nearing completion in the facility. This facility provides for the synergistic testing of all chemical process features of a prototypical fuel reprocessing plant that can be attained with unirradiated uranium-bearing feed materials. The unique equipment and mission of the IET facility make it an ideal test bed for automation studies. This effort will provide for the demonstration of the plant automation concept and for the development of techniques for similar applications in a full-scale plant. A set of preliminary recommendations for implementing process automation has been compiled. Some of these concepts are not generally recognized or accepted. The automation work now under way in the IET facility should be useful to others in helping avoid costly mistakes because of the underutilization or misapplication of process automation. 6 figs

  4. The Gene Ontology of eukaryotic cilia and flagella

    NARCIS (Netherlands)

    Roncaglia, P.; Dam, T.J.P. van; Christie, K.R.; Nacheva, L.; Toedt, G.; Huynen, M.A.; Huntley, R.P.; Gibson, T.J.; Lomax, J.

    2017-01-01

    Background: Recent research into ciliary structure and function provides important insights into inherited diseases termed ciliopathies and other cilia-related disorders. This wealth of knowledge needs to be translated into a computational representation to be fully exploitable by the research

  5. A 3D Hydrodynamic Model for Cytokinesis of Eukaryotic Cells

    Science.gov (United States)

    2014-08-01

    called cytokinesis. For eukaryotic cells , cell division is a much more complicated process than the division of prokaryotic cells . Despite of extensive...2014 2. REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE A 3D Hydrodynamic Model for Cytokinesis of Eukaryotic Cells ...stage of the mitotic cycle of eukaryotic cells , cytokinesis ensues where a parent cell replicates its nucleus with the necessary genetical substances

  6. DNA Mismatch Repair in Eukaryotes and Bacteria

    Directory of Open Access Journals (Sweden)

    Kenji Fukui

    2010-01-01

    Full Text Available DNA mismatch repair (MMR corrects mismatched base pairs mainly caused by DNA replication errors. The fundamental mechanisms and proteins involved in the early reactions of MMR are highly conserved in almost all organisms ranging from bacteria to human. The significance of this repair system is also indicated by the fact that defects in MMR cause human hereditary nonpolyposis colon cancers as well as sporadic tumors. To date, 2 types of MMRs are known: the human type and Escherichia coli type. The basic features of the former system are expected to be universal among the vast majority of organisms including most bacteria. Here, I review the molecular mechanisms of eukaryotic and bacterial MMR, emphasizing on the similarities between them.

  7. Protein splicing and its evolution in eukaryotes

    Directory of Open Access Journals (Sweden)

    Starokadomskyy P. L.

    2010-02-01

    Full Text Available Inteins, or protein introns, are parts of protein sequences that are post-translationally excised, their flanking regions (exteins being spliced together. This process was called protein splicing. Originally inteins were found in prokaryotic or unicellular eukaryotic organisms. But the general principles of post-translation protein rearrangement are evolving yielding different post-translation modification of proteins in multicellular organisms. For clarity, these non-intein mediated events call either protein rearrangements or protein editing. The most intriguing example of protein editing is proteasome-mediated splicing of antigens in vertebrates that may play important role in antigen presentation. Other examples of protein rearrangements are maturation of Hg-proteins (critical receptors in embryogenesis as well as maturation of several metabolic enzymes. Despite a lack of experimental data we try to analyze some intriguing examples of protein splicing evolution.

  8. Bacterial proteins pinpoint a single eukaryotic root

    Czech Academy of Sciences Publication Activity Database

    Derelle, R.; Torruella, G.; Klimeš, V.; Brinkmann, H.; Kim, E.; Vlček, Čestmír; Lang, B.F.; Eliáš, M.

    2015-01-01

    Roč. 112, č. 7 (2015), E693-E699 ISSN 0027-8424 R&D Projects: GA ČR GA13-24983S Grant - others:GA MŠk(CZ) ED2.1.00/03.0100; Howard Hughes Medical Institute International Early Career Scientist Program(US) 55007424; Spanish Ministry of Economy and Competitiveness, European Molecular Biology Organization Young Investigator Program(ES) BFU2012-31329; Spanish Ministry of Economy and Competitiveness, "Centro de Excelencia Severo Ochoa" - European Regional Development Fund(ES) Sev-2012-0208, BES-2013-064004 Institutional support: RVO:68378050 Keywords : eukaryote phylogeny * phylogenomics * Opimoda * Diphoda * LECA Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.423, year: 2015

  9. Balanced Codon Usage Optimizes Eukaryotic Translational Efficiency

    Science.gov (United States)

    Qian, Wenfeng; Yang, Jian-Rong; Pearson, Nathaniel M.; Maclean, Calum; Zhang, Jianzhi

    2012-01-01

    Cellular efficiency in protein translation is an important fitness determinant in rapidly growing organisms. It is widely believed that synonymous codons are translated with unequal speeds and that translational efficiency is maximized by the exclusive use of rapidly translated codons. Here we estimate the in vivo translational speeds of all sense codons from the budding yeast Saccharomyces cerevisiae. Surprisingly, preferentially used codons are not translated faster than unpreferred ones. We hypothesize that this phenomenon is a result of codon usage in proportion to cognate tRNA concentrations, the optimal strategy in enhancing translational efficiency under tRNA shortage. Our predicted codon–tRNA balance is indeed observed from all model eukaryotes examined, and its impact on translational efficiency is further validated experimentally. Our study reveals a previously unsuspected mechanism by which unequal codon usage increases translational efficiency, demonstrates widespread natural selection for translational efficiency, and offers new strategies to improve synthetic biology. PMID:22479199

  10. Construction of sized eukaryotic cDNA libraries using low input of total environmental metatranscriptomic RNA

    OpenAIRE

    Yadav, Rajiv Kumar; Barbi, Florian; Ziller, Antoine; Luis, Patricia; Marmeisse, Roland; Reddy, M Sudhakara; Fraissinet-Tachet, Laurence

    2014-01-01

    Background: Construction of high quality cDNA libraries from the usually low amounts of eukaryotic mRNA extracted from environmental samples is essential in functional metatranscriptomics for the selection of functional, full-length genes encoding proteins of interest. Many of the inserts in libraries constructed by standard methods are represented by truncated cDNAs due to premature stoppage of reverse transcriptase activity and preferential cloning of short cDNAs. Results: We report here a ...

  11. High Genetic Diversity and Novelty in Eukaryotic Plankton Assemblages Inhabiting Saline Lakes in the Qaidam Basin

    Science.gov (United States)

    Wang, Jiali; Wang, Fang; Chu, Limin; Wang, Hao; Zhong, Zhiping; Liu, Zhipei; Gao, Jianyong; Duan, Hairong

    2014-01-01

    Saline lakes are intriguing ecosystems harboring extremely productive microbial communities in spite of their extreme environmental conditions. We performed a comprehensive analysis of the genetic diversity (18S rRNA gene) of the planktonic microbial eukaryotes (nano- and picoeukaryotes) in six different inland saline lakes located in the Qaidam Basin. The novelty level are high, with about 11.23% of the whole dataset showing Basin are also dominated by Holozoa group, accounting for 26.65% of the total number of sequence reads. Notably, Chlorophyta group are only found in high abundance in Lake Gasikule (28.00%), whereas less represented in other hypersaline lakes such as Gahai (0.50%) and Xiaochaidan (1.15%). Further analysis show that the compositions of planktonic eukaryotic assemblages are also most variable between different sampling sites in the same lake. Out of the parameters, four show significant correlation to this CCA: altitude, calcium, sodium and potassium concentrations. Overall, this study shows important gaps in the current knowledge about planktonic microbial eukaryotes inhabiting Qaidam Basin (hyper) saline water bodies. The identified diversity and novelty patterns among eukaryotic plankton assemblages in saline lake are of great importance for understanding and interpreting their ecology and evolution. PMID:25401703

  12. How and why DNA barcodes underestimate the diversity of microbial eukaryotes.

    Directory of Open Access Journals (Sweden)

    Gwenael Piganeau

    Full Text Available BACKGROUND: Because many picoplanktonic eukaryotic species cannot currently be maintained in culture, direct sequencing of PCR-amplified 18S ribosomal gene DNA fragments from filtered sea-water has been successfully used to investigate the astounding diversity of these organisms. The recognition of many novel planktonic organisms is thus based solely on their 18S rDNA sequence. However, a species delimited by its 18S rDNA sequence might contain many cryptic species, which are highly differentiated in their protein coding sequences. PRINCIPAL FINDINGS: Here, we investigate the issue of species identification from one gene to the whole genome sequence. Using 52 whole genome DNA sequences, we estimated the global genetic divergence in protein coding genes between organisms from different lineages and compared this to their ribosomal gene sequence divergences. We show that this relationship between proteome divergence and 18S divergence is lineage dependent. Unicellular lineages have especially low 18S divergences relative to their protein sequence divergences, suggesting that 18S ribosomal genes are too conservative to assess planktonic eukaryotic diversity. We provide an explanation for this lineage dependency, which suggests that most species with large effective population sizes will show far less divergence in 18S than protein coding sequences. CONCLUSIONS: There is therefore a trade-off between using genes that are easy to amplify in all species, but which by their nature are highly conserved and underestimate the true number of species, and using genes that give a better description of the number of species, but which are more difficult to amplify. We have shown that this trade-off differs between unicellular and multicellular organisms as a likely consequence of differences in effective population sizes. We anticipate that biodiversity of microbial eukaryotic species is underestimated and that numerous "cryptic species" will become

  13. Supplementary Material for: BEACON: automated tool for Bacterial GEnome Annotation ComparisON

    KAUST Repository

    Kalkatawi, Manal M.

    2015-01-01

    Abstract Background Genome annotation is one way of summarizing the existing knowledge about genomic characteristics of an organism. There has been an increased interest during the last several decades in computer-based structural and functional genome annotation. Many methods for this purpose have been developed for eukaryotes and prokaryotes. Our study focuses on comparison of functional annotations of prokaryotic genomes. To the best of our knowledge there is no fully automated system for detailed comparison of functional genome annotations generated by different annotation methods (AMs). Results The presence of many AMs and development of new ones introduce needs to: a/ compare different annotations for a single genome, and b/ generate annotation by combining individual ones. To address these issues we developed an Automated Tool for Bacterial GEnome Annotation ComparisON (BEACON) that benefits both AM developers and annotation analysers. BEACON provides detailed comparison of gene function annotations of prokaryotic genomes obtained by different AMs and generates extended annotations through combination of individual ones. For the illustration of BEACONâ s utility, we provide a comparison analysis of multiple different annotations generated for four genomes and show on these examples that the extended annotation can increase the number of genes annotated by putative functions up to 27 %, while the number of genes without any function assignment is reduced. Conclusions We developed BEACON, a fast tool for an automated and a systematic comparison of different annotations of single genomes. The extended annotation assigns putative functions to many genes with unknown functions. BEACON is available under GNU General Public License version 3.0 and is accessible at: http://www.cbrc.kaust.edu.sa/BEACON/ .

  14. Eukaryotic checkpoints are absent in the cell division cycle of ...

    Indian Academy of Sciences (India)

    Unknown

    checkpoints' which are known to regulate the eukaryotic cell cycle may be absent or altered in. E. histolytica. [Banerjee S, Das S and Lohia A 2002 Eukaryotic checkpoints are absent in the cell division cycle of Entamoeba histolytica; J. Biosci. (Suppl.

  15. Optimal eukaryotic 18S and universal 16S/18S ribosomal RNA primers and their application in a study of symbiosis.

    Directory of Open Access Journals (Sweden)

    Yong Wang

    Full Text Available Eukaryotic 18S ribosomal RNA (rRNA gene primers that feature a wide coverage are critical in detecting the composition of eukaryotic microscopic organisms in ecosystems. Here, we predicted 18S rRNA primers based on consecutive conserved sites and evaluated their coverage efficiency and scope of application to different eukaryotic groups. After evaluation, eight of them were considered as qualified 18S primers based on coverage rate. Next, we examined common conserved regions in prokaryotic 16S and eukaryotic 18S rRNA sequences to design 16S/18S universal primers. Three 16S/18S candidate primers, U515, U1390 and U1492, were then considered to be suitable for simultaneous amplification of the rRNA sequences in three domains. Eukaryotic 18S and prokaryotic 16S rRNA genes in a sponge were amplified simultaneously using universal primers U515 and U1390, and the subsequent sorting of pyrosequenced reads revealed some distinctive communities in different parts of the sample. The real difference in biodiversity between prokaryotic and eukaryotic symbionts could be discerned as the dissimilarity between OTUs was increased from 0.005 to 0.1. A network of the communities in external and internal parts of the sponge illustrated the co-variation of some unique microbes in certain parts of the sponge, suggesting that the universal primers are useful in simultaneous detection of prokaryotic and eukaryotic microbial communities.

  16. MetWAMer: eukaryotic translation initiation site prediction

    Directory of Open Access Journals (Sweden)

    Brendel Volker

    2008-09-01

    Full Text Available Abstract Background Translation initiation site (TIS identification is an important aspect of the gene annotation process, requisite for the accurate delineation of protein sequences from transcript data. We have developed the MetWAMer package for TIS prediction in eukaryotic open reading frames of non-viral origin. MetWAMer can be used as a stand-alone, third-party tool for post-processing gene structure annotations generated by external computational programs and/or pipelines, or directly integrated into gene structure prediction software implementations. Results MetWAMer currently implements five distinct methods for TIS prediction, the most accurate of which is a routine that combines weighted, signal-based translation initiation site scores and the contrast in coding potential of sequences flanking TISs using a perceptron. Also, our program implements clustering capabilities through use of the k-medoids algorithm, thereby enabling cluster-specific TIS parameter utilization. In practice, our static weight array matrix-based indexing method for parameter set lookup can be used with good results in data sets exhibiting moderate levels of 5'-complete coverage. Conclusion We demonstrate that improvements in statistically-based models for TIS prediction can be achieved by taking the class of each potential start-methionine into account pending certain testing conditions, and that our perceptron-based model is suitable for the TIS identification task. MetWAMer represents a well-documented, extensible, and freely available software system that can be readily re-trained for differing target applications and/or extended with existing and novel TIS prediction methods, to support further research efforts in this area.

  17. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions.

    Science.gov (United States)

    Hesketh, Andy; Vergnano, Marta; Wan, Chris; Oliver, Stephen G

    2017-07-25

    We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP), cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA) and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR) inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection. IMPORTANCE During infections, pathogenic bacteria can release nucleotides into the cells of their eukaryotic hosts. These nucleotides are recognized as signals that contribute to the initiation of defensive immune responses that help the infected

  18. Evolution of the 2'-5'-Oligoadenylate Synthetase family in eukaryotes and bacteria

    DEFF Research Database (Denmark)

    Kjær, Karina Hansen; Poulsen, Jesper Buchhave; Reitamm, Tonu

    2009-01-01

    system. In view of these observations, we have pursued the idea that OAS genes could be present in other metazoans and in unicellular organisms as well. We have identified a number of OAS1 genes in annelids, mollusks, a cnidarian, chordates, and unicellular eukaryotes and also found a family of proteins......The 2′-5′-oligoadenylate synthetase (OAS) belongs to a nucleotidyl transferase family that includes poly(A) polymerases and CCA-adding enzymes. In mammals and birds, the OAS functions in the interferon system but it is also present in an active form in sponges, which are devoid of the interferon...

  19. Eukaryotic versus prokaryotic marine picoplankton ecology.

    Science.gov (United States)

    Massana, Ramon; Logares, Ramiro

    2013-05-01

    Marine microorganisms contribute markedly to global biomass and ecosystem function. They include a diverse collection of organisms differing in cell size and in evolutionary history. In particular, microbes within the picoplankton are similar in size but belong to two drastically different cellular plans, the prokaryotes and the eukaryotes. Compared with larger organisms, prokaryotes and picoeukaryotes share ecological features, such as high specific activity, large and constant abundances, and high dispersal potential. Still, there are some aspects where their different cell organization influences their ecological performance. First, prokaryotes have a huge metabolic versatility and are involved in all biogeochemical cycles, whereas picoeukaryotes are metabolically less flexible but can exploit diverse predatory life strategies due to their phagocytic capacity. Second, sexual reproduction is absent in prokaryotes but may be present in picoeukaryotes, thus determining different evolutionary diversification dynamics and making species limits clearer in picoeukaryotes. Finally, it is plausible that picoeukaryotes are less flexible to enter a reversible state of low metabolic activity, thus picoeukaryote assemblages may have fewer rare species and may be less resilient to environmental change. In summary, lumping together pico-sized microbes may be convenient for some ecological studies, but it is also important to keep in mind their differences. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  20. Do lipids shape the eukaryotic cell cycle?

    Science.gov (United States)

    Furse, Samuel; Shearman, Gemma C

    2018-01-01

    Successful passage through the cell cycle presents a number of structural challenges to the cell. Inceptive studies carried out in the last five years have produced clear evidence of modulations in the lipid profile (sometimes referred to as the lipidome) of eukaryotes as a function of the cell cycle. This mounting body of evidence indicates that lipids play key roles in the structural transformations seen across the cycle. The accumulation of this evidence coincides with a revolution in our understanding of how lipid composition regulates a plethora of biological processes ranging from protein activity through to cellular signalling and membrane compartmentalisation. In this review, we discuss evidence from biological, chemical and physical studies of the lipid fraction across the cell cycle that demonstrate that lipids are well-developed cellular components at the heart of the biological machinery responsible for managing progress through the cell cycle. Furthermore, we discuss the mechanisms by which this careful control is exercised. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  1. Alternative Eukaryotic Expression Systems for the Production of Proteins and Protein Complexes.

    Science.gov (United States)

    Gómez, Sara; López-Estepa, Miguel; Fernández, Francisco J; Suárez, Teresa; Vega, M Cristina

    2016-01-01

    Besides the most established expression hosts, several eukaryotic microorganisms and filamentous fungi have also been successfully used as platforms for the production of foreign proteins. Filamentous fungi and Dictyostelium discoideum are two prominent examples. Filamentous fungi, typically Aspergillus and Trichoderma, are usually employed for the industrial production of enzymes and secondary metabolites for food processing, pharmaceutical drugs production, and textile and paper applications, with multiple products already accepted for their commercialization. The low cost of culture medium components, high secretion capability directly to the extracellular medium, and the intrinsic ability to produce post-translational modifications similar to the mammalian type, have promoted this group as successful hosts for the expression of proteins, including examples from phylogenetically distant groups: humans proteins such as IL-2, IL-6 or epithelial growth factor; α-galactosidase from plants; or endoglucanase from Cellulomonas fimi, among others. D. discoideum is a social amoeba that can be used as an expression platform for a variety of proteins, which has been extensively illustrated for cytoskeletal proteins. New vectors for heterologous expression in D. discoideum have been recently developed that might increase the usefulness of this system and expand the range of protein classes that can be tackled. Continuous developments are ongoing to improve strains, promoters, production and downstream processes for filamentous fungi, D. discoideum, and other alternative eukaryotic hosts. Either for the overexpression of individual genes, or in the coexpression of multiples genes, this chapter illustrates the enormous possibilities offered by these groups of eukaryotic organisms.

  2. Visualizing Patterns of Marine Eukaryotic Diversity from Metabarcoding Data Using QIIME.

    Science.gov (United States)

    Leray, Matthieu; Knowlton, Nancy

    2016-01-01

    PCR amplification followed by deep sequencing of homologous gene regions is increasingly used to characterize the diversity and taxonomic composition of marine eukaryotic communities. This approach may generate millions of sequences for hundreds of samples simultaneously. Therefore, tools that researchers can use to visualize complex patterns of diversity for these massive datasets are essential. Efforts by microbiologists to understand the Earth and human microbiomes using high-throughput sequencing of the 16S rRNA gene has led to the development of several user-friendly, open-source software packages that can be similarly used to analyze eukaryotic datasets. Quantitative Insights Into Microbial Ecology (QIIME) offers some of the most helpful data visualization tools. Here, we describe functionalities to import OTU tables generated with any molecular marker (e.g., 18S, COI, ITS) and associated metadata into QIIME. We then present a range of analytical tools implemented within QIIME that can be used to obtain insights about patterns of alpha and beta diversity for marine eukaryotes.

  3. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications

    Directory of Open Access Journals (Sweden)

    Chew Chieng Yeo

    2016-02-01

    Full Text Available Toxin-antitoxin (TA systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.

  4. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications.

    Science.gov (United States)

    Yeo, Chew Chieng; Abu Bakar, Fauziah; Chan, Wai Ting; Espinosa, Manuel; Harikrishna, Jennifer Ann

    2016-02-19

    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.

  5. Automated External Defibrillator

    Science.gov (United States)

    ... To Health Topics / Automated External Defibrillator Automated External Defibrillator Also known as What Is An automated external ... in survival. Training To Use an Automated External Defibrillator Learning how to use an AED and taking ...

  6. The Big Bang of picorna-like virus evolution antedates the radiation of eukaryotic supergroups.

    Science.gov (United States)

    Koonin, Eugene V; Wolf, Yuri I; Nagasaki, Keizo; Dolja, Valerian V

    2008-12-01

    The recent discovery of RNA viruses in diverse unicellular eukaryotes and developments in evolutionary genomics have provided the means for addressing the origin of eukaryotic RNA viruses. The phylogenetic analyses of RNA polymerases and helicases presented in this Analysis article reveal close evolutionary relationships between RNA viruses infecting hosts from the Chromalveolate and Excavate supergroups and distinct families of picorna-like viruses of plants and animals. Thus, diversification of picorna-like viruses probably occurred in a 'Big Bang' concomitant with key events of eukaryogenesis. The origins of the conserved genes of picorna-like viruses are traced to likely ancestors including bacterial group II retroelements, the family of HtrA proteases and DNA bacteriophages.

  7. Cloning and Study of Expression of Helicobacter Pylori FlaAGene in Eukaryotic System

    Directory of Open Access Journals (Sweden)

    Motaram Sadeghi

    2017-07-01

    Full Text Available Background: Helicobacter pylori is the most common bacterium causing chronic infections worldwide.Expression of flagella and bacterial motility are very important incolonization and virulence. FlaA geneis one of theflagellin-encoding genes that play the key role in the colonization and bacterial motility and it has a significant impact in immunization. The aim of this study wasto design, construction and the evaluation of the Helicobacter pylori flaA gene expression in eukaryotic cells. MaterialandMethods: In this experimental study, genomic DNA was purified from the Helicobacter pylori standard strain and flaA gene was amplified and isolated by PCR method with use of the specific primers. Then, this gene was cloned into pTZ vector by T/A cloning technique. In order to flaA gene expression and generation of final construct, the flaA gene was removed from pTZ plasmid and sub-cloned into the pcDNA3.1 (- expression vector. The pcDNA3.1 (--flaA construct was transformed into CHO cells by electroporation, and flaA eukaryotic gene expression was studied on SDS-PAGE. Results: The results showed that flaA gene PCR product was cloned into pTZ vector and amplified in Escherichia coli TOP10F strain. Also the enzymatic digestion and sequencing showed that the pcDNA3.1 (--flaA was performed. Finally, the evaluation of the Helicobacter pyloriflaA gene expression in CHO cells showed that the generated gene construct can expressed the flaA product in eukaryotic system, successfully. Conclusion: Given that the pcDNA3.1 (--flaA as a final construct is able to express the flaA protein of the Helicobacterpylori in animal cells. Flagellin protein is one of the important antigens of the bacteriumSo we can properly say that gene pcDNA3.1(--flaA consteuct is an appropriate candidate for use in the field of gene vaccines against Helicobacter pylori and in future researches can be used to check the immunization in laboratory animals. 

  8. Library Automation.

    Science.gov (United States)

    Husby, Ole

    1990-01-01

    The challenges and potential benefits of automating university libraries are reviewed, with special attention given to cooperative systems. Aspects discussed include database size, the role of the university computer center, storage modes, multi-institutional systems, resource sharing, cooperative system management, networking, and intelligent…

  9. Genomic and experimental evidence suggests that Verrucomicrobium spinosum interacts with eukaryotes

    Directory of Open Access Journals (Sweden)

    Michelle eSait

    2011-10-01

    Full Text Available Our knowledge of pathogens and symbionts is heavily biased towards phyla containing species that are straightforward to isolate in pure culture. Novel bacterial phyla are often represented by a handful of strains, and the number of species interacting with eukaryotes is likely underestimated. Identification of predicted pathogenesis and symbiosis determinants such as the Type III Secretion System (T3SS in the genomes of ‘free-living’ bacteria suggests that these microbes participate in uncharacterized interactions with eukaryotes. Our study aimed to test this hypothesis on Verrucomicrobium spinosum (phylum Verrucomicrobia and to begin characterization of its predicted T3SS. We showed the putative T3SS structural genes to be transcriptionally active, and that expression of predicted effector proteins was toxic to yeast in an established functional screen. Our results suggest that the predicted T3SS genes of V. spinosum could encode a functional T3SS, although further work is needed to determine whether V. spinosum produces a T3SS injectisome that delivers the predicted effectors. In the absence of a known eukaryotic host, we made use of invertebrate infection models. The injection or feeding of V. spinosum to Drosophila melanogaster and Caenorhabiditis elegans, respectively, was shown to result in increased mortality rates relative to controls, a phenomenon exaggerated in C. elegans mutants hypersensitive to pathogen infection. This finding, although not conclusively demonstrating pathogenesis, suggests that V. spinosum is capable of pathogenic activity towards an invertebrate host. Symbiotic interactions with a natural host provide an alternative explanation for the results seen in the invertebrate models. Further work is needed to determine whether V. spinosum can establish and maintain interactions with eukaryotic species found in its natural habitat, and whether the predicted T3SS is directly involved in pathogenic or symbiotic activity.

  10. Different polyamine pathways from bacteria have replaced eukaryotic spermidine biosynthesis in ciliates Tetrahymena thermophila and Paramecium tetaurelia.

    Science.gov (United States)

    Li, Bin; Kim, Sok Ho; Zhang, Yang; Hanfrey, Colin C; Elliott, Katherine A; Ealick, Steven E; Michael, Anthony J

    2015-09-01

    The polyamine spermidine is absolutely required for growth and cell proliferation in eukaryotes, due to its role in post-translational modification of essential translation elongation factor eIF5A, mediated by deoxyhypusine synthase. We have found that free-living ciliates Tetrahymena and Paramecium lost the eukaryotic genes encoding spermidine biosynthesis: S-adenosylmethionine decarboxylase (AdoMetDC) and spermidine synthase (SpdSyn). In Tetrahymena, they were replaced by a gene encoding a fusion protein of bacterial AdoMetDC and SpdSyn, present as three copies. In Paramecium, a bacterial homospermidine synthase replaced the eukaryotic genes. Individual AdoMetDC-SpdSyn fusion protein paralogues from Tetrahymena exhibit undetectable AdoMetDC activity; however, when two paralogous fusion proteins are mixed, AdoMetDC activity is restored and spermidine is synthesized. Structural modelling indicates a functional active site is reconstituted by sharing critical residues from two defective protomers across the heteromer interface. Paramecium was found to accumulate homospermidine, suggesting it replaces spermidine for growth. To test this concept, a budding yeast spermidine auxotrophic strain was found to grow almost normally with homospermidine instead of spermidine. Biosynthesis of spermidine analogue aminopropylcadaverine, but not exogenously provided norspermidine, correlated with some growth. Finally, we found that diverse single-celled eukaryotic parasites and multicellular metazoan Schistosoma worms have lost the spermidine biosynthetic pathway but retain deoxyhypusine synthase. © 2015 John Wiley & Sons Ltd.

  11. HIV-1 Replication and the Cellular Eukaryotic Translation Apparatus

    Directory of Open Access Journals (Sweden)

    Santiago Guerrero

    2015-01-01

    Full Text Available Eukaryotic translation is a complex process composed of three main steps: initiation, elongation, and termination. During infections by RNA- and DNA-viruses, the eukaryotic translation machinery is used to assure optimal viral protein synthesis. Human immunodeficiency virus type I (HIV-1 uses several non-canonical pathways to translate its own proteins, such as leaky scanning, frameshifting, shunt, and cap-independent mechanisms. Moreover, HIV-1 modulates the host translation machinery by targeting key translation factors and overcomes different cellular obstacles that affect protein translation. In this review, we describe how HIV-1 proteins target several components of the eukaryotic translation machinery, which consequently improves viral translation and replication.

  12. Eukaryotic plankton diversity in the sunlit ocean

    Czech Academy of Sciences Publication Activity Database

    de Vargas, C.; Audic, S.; Henry, N.; Decelle, J.; Mahé, F.; Logares, R.; Lara, E.; Berney, C.; Le Bescot, N.; Probert, I.; Carmichael, M.; Poulain, J.; Romac, S.; Colin, S.; Aury, J.-M.; Bittner, L.; Chaffron, S.; Dunthorn, M.; Engelen, S.; Flegontova, Olga; Guidi, L.; Horák, Aleš; Jaillon, O.; Lima-Mendez, G.; Lukeš, Julius

    2015-01-01

    Roč. 348, č. 6237 (2015), UNSP 1261605 ISSN 0036-8075 Institutional support: RVO:60077344 Keywords : ribosomal RNA gene * protistan diversity * extreme diversity Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 34.661, year: 2015

  13. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae.

    NARCIS (Netherlands)

    Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J.

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments. Cyanobacteria are promising host organisms

  14. Eukaryotic TPP riboswitch regulation of alternative splicing involving long-distance base pairing.

    Science.gov (United States)

    Li, Sanshu; Breaker, Ronald R

    2013-03-01

    Thiamin pyrophosphate (TPP) riboswitches are found in organisms from all three domains of life. Examples in bacteria commonly repress gene expression by terminating transcription or by blocking ribosome binding, whereas most eukaryotic TPP riboswitches are predicted to regulate gene expression by modulating RNA splicing. Given the widespread distribution of eukaryotic TPP riboswitches and the diversity of their locations in precursor messenger RNAs (pre-mRNAs), we sought to examine the mechanism of alternative splicing regulation by a fungal TPP riboswitch from Neurospora crassa, which is mostly located in a large intron separating protein-coding exons. Our data reveal that this riboswitch uses a long-distance (∼530-nt separation) base-pairing interaction to regulate alternative splicing. Specifically, a portion of the TPP-binding aptamer can form a base-paired structure with a conserved sequence element (α) located near a 5' splice site, which greatly increases use of this 5' splice site and promotes gene expression. Comparative sequence analyses indicate that many fungal species carry a TPP riboswitch with similar intron architecture, and therefore the homologous genes in these fungi are likely to use the same mechanism. Our findings expand the scope of genetic control mechanisms relying on long-range RNA interactions to include riboswitches.

  15. Novel core promoter elements and a cognate transcription factor in the divergent unicellular eukaryote Trichomonas vaginalis.

    Science.gov (United States)

    Smith, Alias J; Chudnovsky, Lorissa; Simoes-Barbosa, Augusto; Delgadillo-Correa, Maria G; Jonsson, Zophonias O; Wohlschlegel, James A; Johnson, Patricia J

    2011-04-01

    A highly conserved DNA initiator (Inr) element has been the only core promoter element described in the divergent unicellular eukaryote Trichomonas vaginalis, although genome analyses reveal that only ∼75% of protein-coding genes appear to contain an Inr. In search of another core promoter element(s), a nonredundant database containing 5' untranslated regions of expressed T. vaginalis genes was searched for overrepresented DNA motifs and known eukaryotic core promoter elements. In addition to identifying the Inr, two elements that lack sequence similarity to the known protein-coding gene core promoter, motif 3 (M3) and motif 5 (M5), were identified. Mutational and functional analyses demonstrate that both are novel core promoter elements. M3 [(A/G/T)(A/G)C(G/C)G(T/C)T(T/A/G)] resembles a Myb recognition element (MRE) and is bound specifically by a unique protein with a Myb-like DNA binding domain. The M5 element (CCTTT) overlaps the transcription start site and replaces the Inr as an alternative, gene-specific initiator element. Transcription specifically initiates at the second cytosine within M5, in contrast to characteristic initiation by RNA polymerase II at an adenosine. In promoters that combine M3 with either M5 or Inr, transcription initiation is regulated by the M3 motif.

  16. Novel Core Promoter Elements and a Cognate Transcription Factor in the Divergent Unicellular Eukaryote Trichomonas vaginalis▿

    Science.gov (United States)

    Smith, Alias J.; Chudnovsky, Lorissa; Simoes-Barbosa, Augusto; Delgadillo-Correa, Maria G.; Jonsson, Zophonias O.; Wohlschlegel, James A.; Johnson, Patricia J.

    2011-01-01

    A highly conserved DNA initiator (Inr) element has been the only core promoter element described in the divergent unicellular eukaryote Trichomonas vaginalis, although genome analyses reveal that only ∼75% of protein-coding genes appear to contain an Inr. In search of another core promoter element(s), a nonredundant database containing 5′ untranslated regions of expressed T. vaginalis genes was searched for overrepresented DNA motifs and known eukaryotic core promoter elements. In addition to identifying the Inr, two elements that lack sequence similarity to the known protein-coding gene core promoter, motif 3 (M3) and motif 5 (M5), were identified. Mutational and functional analyses demonstrate that both are novel core promoter elements. M3 [(A/G/T)(A/G)C(G/C)G(T/C)T(T/A/G)] resembles a Myb recognition element (MRE) and is bound specifically by a unique protein with a Myb-like DNA binding domain. The M5 element (CCTTT) overlaps the transcription start site and replaces the Inr as an alternative, gene-specific initiator element. Transcription specifically initiates at the second cytosine within M5, in contrast to characteristic initiation by RNA polymerase II at an adenosine. In promoters that combine M3 with either M5 or Inr, transcription initiation is regulated by the M3 motif. PMID:21245378

  17. On the Diversification of the Translation Apparatus across Eukaryotes

    Directory of Open Access Journals (Sweden)

    Greco Hernández

    2012-01-01

    Full Text Available Diversity is one of the most remarkable features of living organisms. Current assessments of eukaryote biodiversity reaches 1.5 million species, but the true figure could be several times that number. Diversity is ingrained in all stages and echelons of life, namely, the occupancy of ecological niches, behavioral patterns, body plans and organismal complexity, as well as metabolic needs and genetics. In this review, we will discuss that diversity also exists in a key biochemical process, translation, across eukaryotes. Translation is a fundamental process for all forms of life, and the basic components and mechanisms of translation in eukaryotes have been largely established upon the study of traditional, so-called model organisms. By using modern genome-wide, high-throughput technologies, recent studies of many nonmodel eukaryotes have unveiled a surprising diversity in the configuration of the translation apparatus across eukaryotes, showing that this apparatus is far from being evolutionarily static. For some of the components of this machinery, functional differences between different species have also been found. The recent research reviewed in this article highlights the molecular and functional diversification the translational machinery has undergone during eukaryotic evolution. A better understanding of all aspects of organismal diversity is key to a more profound knowledge of life.

  18. Single Cell Genomics and Transcriptomics for Unicellular Eukaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Ciobanu, Doina; Clum, Alicia; Singh, Vasanth; Salamov, Asaf; Han, James; Copeland, Alex; Grigoriev, Igor; James, Timothy; Singer, Steven; Woyke, Tanja; Malmstrom, Rex; Cheng, Jan-Fang

    2014-03-14

    Despite their small size, unicellular eukaryotes have complex genomes with a high degree of plasticity that allow them to adapt quickly to environmental changes. Unicellular eukaryotes live with prokaryotes and higher eukaryotes, frequently in symbiotic or parasitic niches. To this day their contribution to the dynamics of the environmental communities remains to be understood. Unfortunately, the vast majority of eukaryotic microorganisms are either uncultured or unculturable, making genome sequencing impossible using traditional approaches. We have developed an approach to isolate unicellular eukaryotes of interest from environmental samples, and to sequence and analyze their genomes and transcriptomes. We have tested our methods with six species: an uncharacterized protist from cellulose-enriched compost identified as Platyophrya, a close relative of P. vorax; the fungus Metschnikowia bicuspidate, a parasite of water flea Daphnia; the mycoparasitic fungi Piptocephalis cylindrospora, a parasite of Cokeromyces and Mucor; Caulochytrium protosteloides, a parasite of Sordaria; Rozella allomycis, a parasite of the water mold Allomyces; and the microalgae Chlamydomonas reinhardtii. Here, we present the four components of our approach: pre-sequencing methods, sequence analysis for single cell genome assembly, sequence analysis of single cell transcriptomes, and genome annotation. This technology has the potential to uncover the complexity of single cell eukaryotes and their role in the environmental samples.

  19. An Evolutionary Framework for Understanding the Origin of Eukaryotes.

    Science.gov (United States)

    Blackstone, Neil W

    2016-04-27

    Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real-the endosymbiosis that led to the mitochondrion is often described as "non-Darwinian" because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious-all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes.

  20. An Evolutionary Framework for Understanding the Origin of Eukaryotes

    Directory of Open Access Journals (Sweden)

    Neil W. Blackstone

    2016-04-01

    Full Text Available Two major obstacles hinder the application of evolutionary theory to the origin of eukaryotes. The first is more apparent than real—the endosymbiosis that led to the mitochondrion is often described as “non-Darwinian” because it deviates from the incremental evolution championed by the modern synthesis. Nevertheless, endosymbiosis can be accommodated by a multi-level generalization of evolutionary theory, which Darwin himself pioneered. The second obstacle is more serious—all of the major features of eukaryotes were likely present in the last eukaryotic common ancestor thus rendering comparative methods ineffective. In addition to a multi-level theory, the development of rigorous, sequence-based phylogenetic and comparative methods represents the greatest achievement of modern evolutionary theory. Nevertheless, the rapid evolution of major features in the eukaryotic stem group requires the consideration of an alternative framework. Such a framework, based on the contingent nature of these evolutionary events, is developed and illustrated with three examples: the putative intron proliferation leading to the nucleus and the cell cycle; conflict and cooperation in the origin of eukaryotic bioenergetics; and the inter-relationship between aerobic metabolism, sterol synthesis, membranes, and sex. The modern synthesis thus provides sufficient scope to develop an evolutionary framework to understand the origin of eukaryotes.

  1. Evolution and function of eukaryotic-like proteins from sponge symbionts.

    Science.gov (United States)

    Reynolds, David; Thomas, Torsten

    2016-10-01

    Sponges (Porifera) are ancient metazoans that harbour diverse microorganisms, whose symbiotic interactions are essential for the host's health and function. Although symbiosis between bacteria and sponges are ubiquitous, the molecular mechanisms that control these associations are largely unknown. Recent (meta-) genomic analyses discovered an abundance of genes encoding for eukaryotic-like proteins (ELPs) in bacterial symbionts from different sponge species. ELPs belonging to the ankyrin repeat (AR) class from a bacterial symbiont of the sponge Cymbastela concentrica were subsequently found to modulate amoebal phagocytosis. This might be a molecular mechanism, by which symbionts can control their interaction with the sponge. In this study, we investigated the evolution and function of ELPs from other classes and from symbionts found in other sponges to better understand the importance of ELPs for bacteria-eukaryote interactions. Phylogenetic analyses showed that all of the nine ELPs investigated were most closely related to proteins found either in eukaryotes or in bacteria that can live in association with eukaryotes. ELPs were then recombinantly expressed in Escherichia coli and exposed to the amoeba Acanthamoeba castellanii, which is functionally analogous to phagocytic cells in sponges. Phagocytosis assays with E. coli containing three ELP classes (AR, TPR-SEL1 and NHL) showed a significantly higher percentage of amoeba containing bacteria and average number of intracellular bacteria per amoeba when compared to negative controls. The result that various classes of ELPs found in symbionts of different sponges can modulate phagocytosis indicates that they have a broader function in mediating bacteria-sponge interactions. © 2016 John Wiley & Sons Ltd.

  2. Rethinking the evolution of eukaryotic metabolism: novel cellular partitioning of enzymes in stramenopiles links serine biosynthesis to glycolysis in mitochondria.

    Science.gov (United States)

    Abrahamian, Melania; Kagda, Meenakshi; Ah-Fong, Audrey M V; Judelson, Howard S

    2017-12-04

    An important feature of eukaryotic evolution is metabolic compartmentalization, in which certain pathways are restricted to the cytosol or specific organelles. Glycolysis in eukaryotes is described as a cytosolic process. The universality of this canon has been challenged by recent genome data that suggest that some glycolytic enzymes made by stramenopiles bear mitochondrial targeting peptides. Mining of oomycete, diatom, and brown algal genomes indicates that stramenopiles encode two forms of enzymes for the second half of glycolysis, one with and the other without mitochondrial targeting peptides. The predicted mitochondrial targeting was confirmed by using fluorescent tags to localize phosphoglycerate kinase, phosphoglycerate mutase, and pyruvate kinase in Phytophthora infestans, the oomycete that causes potato blight. A genome-wide search for other enzymes with atypical mitochondrial locations identified phosphoglycerate dehydrogenase, phosphoserine aminotransferase, and phosphoserine phosphatase, which form a pathway for generating serine from the glycolytic intermediate 3-phosphoglycerate. Fluorescent tags confirmed the delivery of these serine biosynthetic enzymes to P. infestans mitochondria. A cytosolic form of this serine biosynthetic pathway, which occurs in most eukaryotes, is missing from oomycetes and most other stramenopiles. The glycolysis and serine metabolism pathways of oomycetes appear to be mosaics of enzymes with different ancestries. While some of the noncanonical oomycete mitochondrial enzymes have the closest affinity in phylogenetic analyses with proteins from other stramenopiles, others cluster with bacterial, plant, or animal proteins. The genes encoding the mitochondrial phosphoglycerate kinase and serine-forming enzymes are physically linked on oomycete chromosomes, which suggests a shared origin. Stramenopile metabolism appears to have been shaped through the acquisition of genes by descent and lateral or endosymbiotic gene transfer

  3. [Construction and expression of eukaryotic expression plasmid pcDNA3.1-smac].

    Science.gov (United States)

    Qin, Si-da; Ren, Hong; Li, Xiao-Jun; Yang, Cheng-Cheng; Yang, Bin; Zhang, Xiang-Zhong; Li, Shi-Sen; Hu, Li-Juan

    2011-02-01

    To construct the eukaryotic expression vector of human gene Smac pcDNA3.1-Smac and express it in the lung adenocarcinoma A549 cells. The Smac was amplified from human testis tissue by reverse transcriptase polymerase chain reaction (RT-PCR). Then recombined eukaryotic expression vector pcDNA3.1-Smac was constructed. After the reconbinant plasmid was proved to be constructed correctly by endonucleases digesting and DNA sequencing, we trasfected it into lung adenocarcinama cells A549 through liposome inducing. The expression of Smac in transfectant A549 was detected by RT-PCR and Western blot. And the cell growth inhibition ratio after trasfection was detected by MTT. The amplified fragment by PCR was coincident with the anticipated result, and its sequence was in concordance with that published on GenBank.Therefore, the gene Smac was cloned successfully, and the recombinant plasmid pcDNA3.1-Smac was also constructed successfully. Both on the mRNA level and the protein level, the expression of Smac gene was increased obviously in the transfected A549 detected by RT-PCR and Western blot respectively. The cell growth inhibition ratio in the group transfected pcDNA3.1-Smac was significantly higher compared with the pcDNA3.1 group after 72 hours. The recombinant eukaryotic expression vector pcDNA3.1-Smac was constructed, and it could be obviously expressed in lung adenocarcinoma cells A549. It is also proven that Smac has the function of growth inhibition.

  4. Automation in biological crystallization.

    Science.gov (United States)

    Stewart, Patrick Shaw; Mueller-Dieckmann, Jochen

    2014-06-01

    Crystallization remains the bottleneck in the crystallographic process leading from a gene to a three-dimensional model of the encoded protein or RNA. Automation of the individual steps of a crystallization experiment, from the preparation of crystallization cocktails for initial or optimization screens to the imaging of the experiments, has been the response to address this issue. Today, large high-throughput crystallization facilities, many of them open to the general user community, are capable of setting up thousands of crystallization trials per day. It is thus possible to test multiple constructs of each target for their ability to form crystals on a production-line basis. This has improved success rates and made crystallization much more convenient. High-throughput crystallization, however, cannot relieve users of the task of producing samples of high quality. Moreover, the time gained from eliminating manual preparations must now be invested in the careful evaluation of the increased number of experiments. The latter requires a sophisticated data and laboratory information-management system. A review of the current state of automation at the individual steps of crystallization with specific attention to the automation of optimization is given.

  5. A conserved cell growth cycle can account for the environmental stress responses of divergent eukaryotes

    Science.gov (United States)

    Slavov, Nikolai; Airoldi, Edoardo M.; van Oudenaarden, Alexander; Botstein, David

    2012-01-01

    The respiratory metabolic cycle in budding yeast (Saccharomyces cerevisiae) consists of two phases that are most simply defined phenomenologically: low oxygen consumption (LOC) and high oxygen consumption (HOC). Each phase is associated with the periodic expression of thousands of genes, producing oscillating patterns of gene expression found in synchronized cultures and in single cells of slowly growing unsynchronized cultures. Systematic variation in the durations of the HOC and LOC phases can account quantitatively for well-studied transcriptional responses to growth rate differences. Here we show that a similar mechanism—transitions from the HOC phase to the LOC phase—can account for much of the common environmental stress response (ESR) and for the cross-protection by a preliminary heat stress (or slow growth rate) to subsequent lethal heat stress. Similar to the budding yeast metabolic cycle, we suggest that a metabolic cycle, coupled in a similar way to the ESR, in the distantly related fission yeast, Schizosaccharomyces pombe, and in humans can explain gene expression and respiratory patterns observed in these eukaryotes. Although metabolic cycling is associated with the G0/G1 phase of the cell division cycle of slowly growing budding yeast, transcriptional cycling was detected in the G2 phase of the division cycle in fission yeast, consistent with the idea that respiratory metabolic cycling occurs during the phases of the cell division cycle associated with mass accumulation in these divergent eukaryotes. PMID:22456505

  6. A comparative study of protein synthesis in in vitro systems: from the prokaryotic reconstituted to the eukaryotic extract-based.

    Science.gov (United States)

    Hillebrecht, Jason R; Chong, Shaorong

    2008-07-29

    Cell-free protein synthesis is not only a rapid and high throughput technology to obtain proteins from their genes, but also provides an in vitro platform to study protein translation and folding. A detailed comparison of in vitro protein synthesis in different cell-free systems may provide insights to their biological differences and guidelines for their applications. Protein synthesis was investigated in vitro in a reconstituted prokaryotic system, a S30 extract-based system and a eukaryotic system. Compared to the S30 system, protein synthesis in the reconstituted system resulted in a reduced yield, and was more cold-sensitive. Supplementing the reconstituted system with fractions from a size-exclusion separation of the S30 extract significantly increased the yield and activity, to a level close to that of the S30 system. Though protein synthesis in both prokaryotic and eukaryotic systems showed no significant differences for eukaryotic reporter proteins, drastic differences were observed when an artificial fusion protein was synthesized in vitro. The prokaryotic systems failed to synthesize and correctly fold a significant amount of the full-length fusion protein, even when supplemented with the eukaryotic lysate. The active full-length fusion protein was synthesized only in the eukaryotic system. The reconstituted bacterial system is sufficient but not efficient in protein synthesis. The S30 system by comparison contains additional cellular factors capable of enhancing protein translation and folding. The eukaryotic translation machinery may have evolved from its prokaryotic counterpart in order to translate more complex (difficult-to-translate) templates into active proteins.

  7. A Eukaryote without a Mitochondrial Organelle

    Czech Academy of Sciences Publication Activity Database

    Karnkowska, A.; Vacek, V.; Zubáčová, Z.; Treitli, S.C.; Petrzelkova, R.; Eme, L.; Novák, L.; Žárský, V.; Barlow, L.D.; Herman, E.K.; Soukal, P.; Hroudová, Miluše; Doležal, P.; Stairs, C.W.; Roger, A. J.; Eliaš, M.; Dacks, J.B.; Vlček, Čestmír; Hampl, V.

    2016-01-01

    Roč. 26, č. 10 (2016), s. 1274-1284 ISSN 0960-9822 R&D Projects: GA MŠk(CZ) LQ1604; GA MŠk(CZ) ED1.1.00/02.0109; GA ČR GAP506/12/1010 Institutional support: RVO:68378050 Keywords : arginine dihydrolase pathway * tail-anchored proteins * fe-s cluster * trichomonas-vaginalis * entamoeba-histolytica * giardia-intestinalis * tritrichomonas-fetus * genome annotation * energy-metabolism * gene-transfer Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Developmental biology Impact factor: 8.851, year: 2016

  8. Crystal structure of eukaryotic ribosome and its complexes with inhibitors

    Science.gov (United States)

    Yusupova, Gulnara; Yusupov, Marat

    2017-01-01

    A high-resolution structure of the eukaryotic ribosome has been determined and has led to increased interest in studying protein biosynthesis and regulation of biosynthesis in cells. The functional complexes of the ribosome crystals obtained from bacteria and yeast have permitted researchers to identify the precise residue positions in different states of ribosome function. This knowledge, together with electron microscopy studies, enhances our understanding of how basic ribosome processes, including mRNA decoding, peptide bond formation, mRNA, and tRNA translocation and cotranslational transport of the nascent peptide, are regulated. In this review, we discuss the crystal structure of the entire 80S ribosome from yeast, which reveals its eukaryotic-specific features, and application of X-ray crystallography of the 80S ribosome for investigation of the binding mode for distinct compounds known to inhibit or modulate the protein-translation function of the ribosome. We also refer to a challenging aspect of the structural study of ribosomes, from higher eukaryotes, where the structures of major distinctive features of higher eukaryote ribosome—the high-eukaryote–specific long ribosomal RNA segments (about 1MDa)—remain unresolved. Presently, the structures of the major part of these high-eukaryotic expansion ribosomal RNA segments still remain unresolved. This article is part of the themed issue ‘Perspectives on the ribosome’. PMID:28138070

  9. Energide-cell body as smallest unit of eukaryotic life.

    Science.gov (United States)

    Baluška, František; Lyons, Sherrie

    2018-02-21

    The evolutionary origin of the eukaryotic nucleus is obscure and controversial. Currently preferred are autogenic concepts; ideas of a symbiotic origin are mostly discarded and forgotten. Here we briefly discuss these issues and propose a new version of the symbiotic and archaeal origin of the eukaryotic nucleus. The nucleus of eukaryotic cells forms via its perinuclear microtubules, the primary eukaryotic unit known also as the Energide-cell body. As for all other endosymbiotic organelles, new Energides are generated only from other Energides. While the Energide cannot be generated de novo, it can use its secretory apparatus to generate de novo the cell periphery apparatus. We suggest that Virchow's tenet Omnis cellula e cellula should be updated as Omnis Energide e Energide to reflect the status of the Energide as the primary unit of the eukaryotic cell, and life. In addition, the plasma membrane provides feedback to the Energide and renders it protection via the plasma membrane-derived endosomal network. New discoveries suggest archaeal origins of both the Energide and its host cell.

  10. Autonomous Systems: Habitat Automation

    Data.gov (United States)

    National Aeronautics and Space Administration — The Habitat Automation Project Element within the Autonomous Systems Project is developing software to automate the automation of habitats and other spacecraft. This...

  11. An Automation Planning Primer.

    Science.gov (United States)

    Paynter, Marion

    1988-01-01

    This brief planning guide for library automation incorporates needs assessment and evaluation of options to meet those needs. A bibliography of materials on automation planning and software reviews, library software directories, and library automation journals is included. (CLB)

  12. Comparative genome analysis across a kingdom of eukaryotic organisms: specialization and diversification in the fungi.

    Science.gov (United States)

    Cornell, Michael J; Alam, Intikhab; Soanes, Darren M; Wong, Han Min; Hedeler, Cornelia; Paton, Norman W; Rattray, Magnus; Hubbard, Simon J; Talbot, Nicholas J; Oliver, Stephen G

    2007-12-01

    The recent proliferation of genome sequencing in diverse fungal species has provided the first opportunity for comparative genome analysis across a eukaryotic kingdom. Here, we report a comparative study of 34 complete fungal genome sequences, representing a broad diversity of Ascomycete, Basidiomycete, and Zygomycete species. We have clustered all predicted protein-encoding gene sequences from these species to provide a means of investigating gene innovations, gene family expansions, protein family diversification, and the conservation of essential gene functions-empirically determined in Saccharomyces cerevisiae-among the fungi. The results are presented with reference to a phylogeny of the 34 fungal species, based on 29 universally conserved protein-encoding gene sequences. We contrast this phylogeny with one based on gene presence and absence and show that, while the two phylogenies are largely in agreement, there are differences in the positioning of some species. We have investigated levels of gene duplication and demonstrate that this varies greatly between fungal species, although there are instances of coduplication in distantly related fungi. We have also investigated the extent of orthology for protein families and demonstrate unexpectedly high levels of diversity among genes involved in lipid metabolism. These analyses have been collated in the e-Fungi data warehouse, providing an online resource for comparative genomic analysis of the fungi.

  13. Automated Budget System -

    Data.gov (United States)

    Department of Transportation — The Automated Budget System (ABS) automates management and planning of the Mike Monroney Aeronautical Center (MMAC) budget by providing enhanced capability to plan,...

  14. Genome-wide analysis of eukaryote thaumatin-like proteins (TLPs with an emphasis on poplar

    Directory of Open Access Journals (Sweden)

    Duplessis Sébastien

    2011-02-01

    Full Text Available Abstract Background Plant inducible immunity includes the accumulation of a set of defense proteins during infection called pathogenesis-related (PR proteins, which are grouped into families termed PR-1 to PR-17. The PR-5 family is composed of thaumatin-like proteins (TLPs, which are responsive to biotic and abiotic stress and are widely studied in plants. TLPs were also recently discovered in fungi and animals. In the poplar genome, TLPs are over-represented compared with annual species and their transcripts strongly accumulate during stress conditions. Results Our analysis of the poplar TLP family suggests that the expansion of this gene family was followed by diversification, as differences in expression patterns and predicted properties correlate with phylogeny. In particular, we identified a clade of poplar TLPs that cluster to a single 350 kb locus of chromosome I and that are up-regulated by poplar leaf rust infection. A wider phylogenetic analysis of eukaryote TLPs - including plant, animal and fungi sequences - shows that TLP gene content and diversity increased markedly during land plant evolution. Mapping the reported functions of characterized TLPs to the eukaryote phylogenetic tree showed that antifungal or glycan-lytic properties are widespread across eukaryote phylogeny, suggesting that these properties are shared by most TLPs and are likely associated with the presence of a conserved acidic cleft in their 3D structure. Also, we established an exhaustive catalog of TLPs with atypical architectures such as small-TLPs, TLP-kinases and small-TLP-kinases, which have potentially developed alternative functions (such as putative receptor kinases for pathogen sensing and signaling. Conclusion Our study, based on the most recent plant genome sequences, provides evidence for TLP gene family diversification during land plant evolution. We have shown that the diverse functions described for TLPs are not restricted to specific clades but seem

  15. Interaction of tRNA with Eukaryotic Ribosome

    Directory of Open Access Journals (Sweden)

    Dmitri Graifer

    2015-03-01

    Full Text Available This paper is a review of currently available data concerning interactions of tRNAs with the eukaryotic ribosome at various stages of translation. These data include the results obtained by means of cryo-electron microscopy and X-ray crystallography applied to various model ribosomal complexes, site-directed cross-linking with the use of tRNA derivatives bearing chemically or photochemically reactive groups in the CCA-terminal fragment and chemical probing of 28S rRNA in the region of the peptidyl transferase center. Similarities and differences in the interactions of tRNAs with prokaryotic and eukaryotic ribosomes are discussed with concomitant consideration of the extent of resemblance between molecular mechanisms of translation in eukaryotes and bacteria.

  16. Unraveling adaptation in eukaryotic pathways: lessons from protocells.

    Directory of Open Access Journals (Sweden)

    Giovanna De Palo

    2013-10-01

    Full Text Available Eukaryotic adaptation pathways operate within wide-ranging environmental conditions without stimulus saturation. Despite numerous differences in the adaptation mechanisms employed by bacteria and eukaryotes, all require energy consumption. Here, we present two minimal models showing that expenditure of energy by the cell is not essential for adaptation. Both models share important features with large eukaryotic cells: they employ small diffusible molecules and involve receptor subunits resembling highly conserved G-protein cascades. Analyzing the drawbacks of these models helps us understand the benefits of energy consumption, in terms of adjustability of response and adaptation times as well as separation of cell-external sensing and cell-internal signaling. Our work thus sheds new light on the evolution of adaptation mechanisms in complex systems.

  17. Nitrate storage and dissimilatory nitrate reduction by eukaryotic microbes

    DEFF Research Database (Denmark)

    Kamp, Anja; Høgslund, Signe; Risgaard-Petersen, Nils

    2015-01-01

    The microbial nitrogen cycle is one of the most complex and environmentally important element cycles on Earth and has long been thought to be mediated exclusively by prokaryotic microbes. Rather recently, it was discovered that certain eukaryotic microbes are able to store nitrate intracellularly...... and use it for dissimilatory nitrate reduction in the absence of oxygen. The paradigm shift that this entailed is ecologically significant because the eukaryotes in question comprise global players like diatoms, foraminifers, and fungi. This review article provides an unprecedented overview of nitrate...... storage and dissimilatory nitrate reduction by diverse marine eukaryotes placed into an eco-physiological context. The advantage of intracellular nitrate storage for anaerobic energy conservation in oxygen-depleted habitats is explained and the life style enabled by this metabolic trait is described...

  18. Automation 2017

    CERN Document Server

    Zieliński, Cezary; Kaliczyńska, Małgorzata

    2017-01-01

    This book consists of papers presented at Automation 2017, an international conference held in Warsaw from March 15 to 17, 2017. It discusses research findings associated with the concepts behind INDUSTRY 4.0, with a focus on offering a better understanding of and promoting participation in the Fourth Industrial Revolution. Each chapter presents a detailed analysis of a specific technical problem, in most cases followed by a numerical analysis, simulation and description of the results of implementing the solution in a real-world context. The theoretical results, practical solutions and guidelines presented are valuable for both researchers working in the area of engineering sciences and practitioners looking for solutions to industrial problems. .

  19. Marketing automation

    Directory of Open Access Journals (Sweden)

    TODOR Raluca Dania

    2017-01-01

    Full Text Available The automation of the marketing process seems to be nowadays, the only solution to face the major changes brought by the fast evolution of technology and the continuous increase in supply and demand. In order to achieve the desired marketing results, businessis have to employ digital marketing and communication services. These services are efficient and measurable thanks to the marketing technology used to track, score and implement each campaign. Due to the technical progress, the marketing fragmentation, demand for customized products and services on one side and the need to achieve constructive dialogue with the customers, immediate and flexible response and the necessity to measure the investments and the results on the other side, the classical marketing approached had changed continue to improve substantially.

  20. An optimized approach for annotation of large eukaryotic genomic sequences using genetic algorithm.

    Science.gov (United States)

    Chowdhury, Biswanath; Garai, Arnav; Garai, Gautam

    2017-10-24

    Detection of important functional and/or structural elements and identification of their positions in a large eukaryotic genomic sequence are an active research area. Gene is an important functional and structural unit of DNA. The computation of gene prediction is, therefore, very essential for detailed genome annotation. In this paper, we propose a new gene prediction technique based on Genetic Algorithm (GA) to determine the optimal positions of exons of a gene in a chromosome or genome. The correct identification of the coding and non-coding regions is difficult and computationally demanding. The proposed genetic-based method, named Gene Prediction with Genetic Algorithm (GPGA), reduces this problem by searching only one exon at a time instead of all exons along with its introns. This representation carries a significant advantage in that it breaks the entire gene-finding problem into a number of smaller sub-problems, thereby reducing the computational complexity. We tested the performance of the GPGA with existing benchmark datasets and compared the results with well-known and relevant techniques. The comparison shows the better or comparable performance of the proposed method. We also used GPGA for annotating the human chromosome 21 (HS21) using cross-species comparisons with the mouse orthologs. It was noted that the GPGA predicted true genes with better accuracy than other well-known approaches.

  1. Identification of genes in anonymous DNA sequences. Annual performance report, February 1, 1991--January 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Fields, C.A.

    1996-06-01

    The objective of this project is the development of practical software to automate the identification of genes in anonymous DNA sequences from the human, and other higher eukaryotic genomes. A software system for automated sequence analysis, gm (gene modeler) has been designed, implemented, tested, and distributed to several dozen laboratories worldwide. A significantly faster, more robust, and more flexible version of this software, gm 2.0 has now been completed, and is being tested by operational use to analyze human cosmid sequence data. A range of efforts to further understand the features of eukaryoyic gene sequences are also underway. This progress report also contains papers coming out of the project including the following: gm: a Tool for Exploratory Analysis of DNA Sequence Data; The Human THE-LTR(O) and MstII Interspersed Repeats are subfamilies of a single widely distruted highly variable repeat family; Information contents and dinucleotide compostions of plant intron sequences vary with evolutionary origin; Splicing signals in Drosophila: intron size, information content, and consensus sequences; Integration of automated sequence analysis into mapping and sequencing projects; Software for the C. elegans genome project.

  2. Bacterial-like PPP protein phosphatases: novel sequence alterations in pathogenic eukaryotes and peculiar features of bacterial sequence similarity.

    Science.gov (United States)

    Kerk, David; Uhrig, R Glen; Moorhead, Greg B

    2013-01-01

    Reversible phosphorylation is a widespread modification affecting the great majority of eukaryotic cellular proteins, and whose effects influence nearly every cellular function. Protein phosphatases are increasingly recognized as exquisitely regulated contributors to these changes. The PPP (phosphoprotein phosphatase) family comprises enzymes, which catalyze dephosphorylation at serine and threonine residues. Nearly a decade ago, "bacterial-like" enzymes were recognized with similarity to proteins from various bacterial sources: SLPs (Shewanella-like phosphatases), RLPHs (Rhizobiales-like phosphatases), and ALPHs (ApaH-like phosphatases). A recent article from our laboratory appearing in Plant Physiology characterizes their extensive organismal distribution, abundance in plant species, predicted subcellular localization, motif organization, and sequence evolution. One salient observation is the distinct evolutionary trajectory followed by SLP genes and proteins in photosynthetic eukaryotes vs. animal and plant pathogens derived from photosynthetic ancestors. We present here a closer look at sequence data that emphasizes the distinctiveness of pathogen SLP proteins and that suggests that they might represent novel drug targets. A second observation in our original report was the high degree of similarity between the bacterial-like PPPs of eukaryotes and closely related proteins of the "eukaryotic-like" phyla Myxococcales and Planctomycetes. We here reflect on the possible implications of these observations and their importance for future research.

  3. The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Blanc, Guillaume; Agarkova, Irina; Grimwood, Jane; Kuo, Alan; Brueggeman, Andrew; Dunigan, David D.; Gurnon, James; Ladunga, Istvan; Lindquist, Erika; Lucas, Susan; Pangilinan, Jasmyn; Proschold, Thomas; Salamov, Asaf; Schmutz, Jeremy; Weeks, Donald; Tamada, Takashi; Lomsadze, Alexandre; Borodovsky, Mark; Claverie, Jean-Michel; Grigoriev, Igor V.; Van Etten, James L.

    2012-02-13

    Background Little is known about the mechanisms of adaptation of life to the extreme environmental conditions encountered in polar regions. Here we present the genome sequence of a unicellular green alga from the division chlorophyta, Coccomyxa subellipsoidea C-169, which we will hereafter refer to as C-169. This is the first eukaryotic microorganism from a polar environment to have its genome sequenced. Results The 48.8 Mb genome contained in 20 chromosomes exhibits significant synteny conservation with the chromosomes of its relatives Chlorella variabilis and Chlamydomonas reinhardtii. The order of the genes is highly reshuffled within synteny blocks, suggesting that intra-chromosomal rearrangements were more prevalent than inter-chromosomal rearrangements. Remarkably, Zepp retrotransposons occur in clusters of nested elements with strictly one cluster per chromosome probably residing at the centromere. Several protein families overrepresented in C. subellipsoidae include proteins involved in lipid metabolism, transporters, cellulose synthases and short alcohol dehydrogenases. Conversely, C-169 lacks proteins that exist in all other sequenced chlorophytes, including components of the glycosyl phosphatidyl inositol anchoring system, pyruvate phosphate dikinase and the photosystem 1 reaction center subunit N (PsaN). Conclusions We suggest that some of these gene losses and gains could have contributed to adaptation to low temperatures. Comparison of these genomic features with the adaptive strategies of psychrophilic microbes suggests that prokaryotes and eukaryotes followed comparable evolutionary routes to adapt to cold environments.

  4. Protein N-myristoylation in Escherichia coli: Reconstitution of a eukaryotic protein modification in bacteria

    International Nuclear Information System (INIS)

    Duronio, R.J.; Jackson-Machelski, E.; Heuckeroth, R.O.; Gordon, J.I.; Olins, P.O.; Devine, C.S.; Yonemoto, W.; Slice, L.W.; Taylor, S.S.

    1990-01-01

    Protein N-myristoylation refers to the covalent attachment of a myristoyl group (C14:0), via amide linkage, to the NH 2 -terminal glycine residue of certain cellular and viral proteins. Myristoyl-CoA:protein N-myristoyltransferase (NMT) catalyzes this cotranslational modification. The authors have developed a system for studying the substrate requirements and biological effects of protein N-myristoylation as well as NMT structure-activity relationships. Expression of the yeast NMT1 gene in Escherichia coli, a bacterium that has no endogenous NMT activity, results in production of the intact 53-kDa NMT polypeptide as well as a truncated polypeptide derived from proteolytic removal of its NH 2 -terminal 39 amino acids. By using a dual plasmid system, N-myristoylation of a mammalian protein was reconstituted in E. coli by simultaneous expression of the yeast NMT1 gene and a murine cDNA encoding the catalytic (C) subunit of cAMP-dependent protein kinase (PK-A). A major advantage of the bacterial system over eukaryotic systems is the absence of endogenous NMT and substrates, providing a more straightforward way of preparing myristoylated, analog-substituted, and nonmyristoylated forms of a given protein for comparison of their structural and functional properties. The experimental system may prove useful for recapitulating other eukaryotic protein modifications in E. coli so that structure-activity relationships of modifying enzymes and their substrates can be more readily assessed

  5. Eukaryotic tRNAs fingerprint invertebrates vis-à-vis vertebrates.

    Science.gov (United States)

    Mitra, Sanga; Das, Pijush; Samadder, Arpa; Das, Smarajit; Betai, Rupal; Chakrabarti, Jayprokas

    2015-01-01

    During translation, aminoacyl-tRNA synthetases recognize the identities of the tRNAs to charge them with their respective amino acids. The conserved identities of 58,244 eukaryotic tRNAs of 24 invertebrates and 45 vertebrates in genomic tRNA database were analyzed and their novel features extracted. The internal promoter sequences, namely, A-Box and B-Box, were investigated and evidence gathered that the intervention of optional nucleotides at 17a and 17b correlated with the optimal length of the A-Box. The presence of canonical transcription terminator sequences at the immediate vicinity of tRNA genes was ventured. Even though non-canonical introns had been reported in red alga, green alga, and nucleomorph so far, fairly motivating evidence of their existence emerged in tRNA genes of other eukaryotes. Non-canonical introns were seen to interfere with the internal promoters in two cases, questioning their transcription fidelity. In a first of its kind, phylogenetic constructs based on tRNA molecules delineated and built the trees of the vast and diverse invertebrates and vertebrates. Finally, two tRNA models representing the invertebrates and the vertebrates were drawn, by isolating the dominant consensus in the positional fluctuations of nucleotide compositions.

  6. Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen Giardia lamblia

    Energy Technology Data Exchange (ETDEWEB)

    Larson, Eric T.; Kim, Jessica E.; Napuli, Alberto J.; Verlinde, Christophe L. M. J.; Fan, Erkang; Zucker, Frank H.; Van Voorhis, Wesley C.; Buckner, Frederick S.; Hol, Wim G. J.; Merritt, Ethan A., E-mail: merritt@u.washington.edu [Medical Structural Genomics of Pathogenic Protozoa, (United States); University of Washington, Seattle, WA 98195 (United States)

    2012-09-01

    The structure of Giardia prolyl-tRNA synthetase cocrystallized with proline and ATP shows evidence for half-of-the-sites activity, leading to a corresponding mixture of reaction substrates and product (prolyl-AMP) in the two active sites of the dimer. The genome of the human intestinal parasite Giardia lamblia contains only a single aminoacyl-tRNA synthetase gene for each amino acid. The Giardia prolyl-tRNA synthetase gene product was originally misidentified as a dual-specificity Pro/Cys enzyme, in part owing to its unexpectedly high off-target activation of cysteine, but is now believed to be a normal representative of the class of archaeal/eukaryotic prolyl-tRNA synthetases. The 2.2 Å resolution crystal structure of the G. lamblia enzyme presented here is thus the first structure determination of a prolyl-tRNA synthetase from a eukaryote. The relative occupancies of substrate (proline) and product (prolyl-AMP) in the active site are consistent with half-of-the-sites reactivity, as is the observed biphasic thermal denaturation curve for the protein in the presence of proline and MgATP. However, no corresponding induced asymmetry is evident in the structure of the protein. No thermal stabilization is observed in the presence of cysteine and ATP. The implied low affinity for the off-target activation product cysteinyl-AMP suggests that translational fidelity in Giardia is aided by the rapid release of misactivated cysteine.

  7. Structure of the prolyl-tRNA synthetase from the eukaryotic pathogen Giardia lamblia

    International Nuclear Information System (INIS)

    Larson, Eric T.; Kim, Jessica E.; Napuli, Alberto J.; Verlinde, Christophe L. M. J.; Fan, Erkang; Zucker, Frank H.; Van Voorhis, Wesley C.; Buckner, Frederick S.; Hol, Wim G. J.; Merritt, Ethan A.

    2012-01-01

    The structure of Giardia prolyl-tRNA synthetase cocrystallized with proline and ATP shows evidence for half-of-the-sites activity, leading to a corresponding mixture of reaction substrates and product (prolyl-AMP) in the two active sites of the dimer. The genome of the human intestinal parasite Giardia lamblia contains only a single aminoacyl-tRNA synthetase gene for each amino acid. The Giardia prolyl-tRNA synthetase gene product was originally misidentified as a dual-specificity Pro/Cys enzyme, in part owing to its unexpectedly high off-target activation of cysteine, but is now believed to be a normal representative of the class of archaeal/eukaryotic prolyl-tRNA synthetases. The 2.2 Å resolution crystal structure of the G. lamblia enzyme presented here is thus the first structure determination of a prolyl-tRNA synthetase from a eukaryote. The relative occupancies of substrate (proline) and product (prolyl-AMP) in the active site are consistent with half-of-the-sites reactivity, as is the observed biphasic thermal denaturation curve for the protein in the presence of proline and MgATP. However, no corresponding induced asymmetry is evident in the structure of the protein. No thermal stabilization is observed in the presence of cysteine and ATP. The implied low affinity for the off-target activation product cysteinyl-AMP suggests that translational fidelity in Giardia is aided by the rapid release of misactivated cysteine

  8. Automated pangenomic analysis in target selection for PCR detection and identification of bacteria by use of ssGeneFinder Webserver and its application to Salmonella enterica serovar Typhi.

    Science.gov (United States)

    Ho, Chi-Chun; Wu, Alan K L; Tse, Cindy W S; Yuen, Kwok-Yung; Lau, Susanna K P; Woo, Patrick C Y

    2012-06-01

    With the advent of high-throughput DNA sequencing, more than 4,000 bacterial genomes have been sequenced and are publicly available. We report a user-friendly web platform, ssGeneFinder Webserver (http://147.8.74.24/ssGeneFinder/), which is updated weekly for the automated pangenomic selection of specific targets for direct PCR detection and the identification of clinically important bacteria without the need of gene sequencing. To apply the ssGeneFinder Webserver for identifying specific targets for Salmonella enterica serovar Typhi, we analyzed 11 S. Typhi genomes, generated two specific targets, and validated them using 40 S. Typhi, 110 non-Typhi Salmonella serovars (serovar Paratyphi A, n = 4; Paratyphi B, n = 1; Typhimurium, n = 5; Enteritidis, n = 12; non-Paratyphi group A, n = 6; non-Paratyphi group B, n = 29; non-Paratyphi group C, n = 12; non-Typhi group D, n = 35; group E and others, n = 6), 115 Enterobacteriaceae isolates (Escherichia, n = 78; Shigella, n = 2; Klebsiella, n = 13; Enterobacter, n = 9; others, n = 13), and 66 human stool samples that were culture negative for S. Typhi. Both targets successfully detected all typical and atypical S. Typhi isolates, including an H1-j flagellin gene mutant, an aflagellated mutant which reacted with 2O Salmonella antiserum, and the Vi-negative attenuated vaccine strain Ty21a. No false positive was detected from any of the bacterial isolates and stool samples. DNA sequencing confirmed the identity of all positive amplicons. The PCR assays have detection limits as low as 100 CFU per reaction and were tested using spiked stool samples. Using a pangenomic approach, ssGeneFinder Webserver generated targets specific to S. Typhi. These and other validated targets should be applicable to the identification and direct PCR detection of bacterial pathogens from uncultured, mixed, and environmental samples.

  9. Both Automation and Paper.

    Science.gov (United States)

    Purcell, Royal

    1988-01-01

    Discusses the concept of a paperless society and the current situation in library automation. Various applications of automation and telecommunications are addressed, and future library automation is considered. Automation at the Monroe County Public Library in Bloomington, Indiana, is described as an example. (MES)

  10. Heat degradation of eukaryotic and bacterial DNA: an experimental model for paleomicrobiology

    Directory of Open Access Journals (Sweden)

    Nguyen-Hieu Tung

    2012-09-01

    Full Text Available Abstract Background Theoretical models suggest that DNA degradation would sharply limit the PCR-based detection of both eukaryotic and prokaryotic DNA within ancient specimens. However, the relative extent of decay of eukaryote and prokaryote DNA over time is a matter of debate. In this study, the murine macrophage cell line J774, alone or infected with Mycobacterium smegmatis bacteria, were killed after exposure to 90°C dry heat for intervals ranging from 1 to 48 h in order to compare eukaryotic cells, extracellular bacteria and intracellular bacteria. The sizes of the resulting mycobacterial rpoB and murine rpb2 homologous gene fragments were then determined by real-time PCR and fluorescent probing. Findings The cycle threshold (Ct values of PCR-amplified DNA fragments from J774 cells and the M. smegmatis negative controls (without heat exposure varied from 26–33 for the J774 rpb2 gene fragments and from 24–29 for M. smegmatis rpoB fragments. After 90°C dry heat incubation for up to 48 h, the Ct values of test samples increased relative to those of the controls for each amplicon size. For each dry heat exposure time, the Ct values of the 146-149-bp fragments were lower than those of 746-747-bp fragments. During the 4- to 24-h dry heat incubation, the non-infected J774 cell DNA was degraded into 597-bp rpb2 fragments. After 48 h, however, only 450-bp rpb2 fragments of both non-infected and infected J774 cells could be amplified. In contrast, the 746-bp rpoB fragments of M. smegmatis DNA could be amplified after the 48-h dry heat exposure in all experiments. Infected and non-infected J774 cell DNA was degraded more rapidly than M. smegmatis DNA after dry heat exposure (ANOVA test, p  Conclusion In this study, mycobacterial DNA was more resistant to dry-heat stress than eukaryotic DNA. Therefore, the detection of large, experimental, ancient mycobacterial DNA fragments is a suitable approach for paleomicrobiological studies.

  11. The biology of eukaryotic promoter prediction - a review

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Chauvin, Yves

    1999-01-01

    Computational prediction of eukaryotic promoters from the nucleotide sequence is one of the most attractive problems in sequence analysis today, but it is also a very difficult one. Thus, current methods predict in the order of one promoter per kilobase in human DNA, while the average distance...

  12. An algorithm for detecting eukaryotic sequences in metagenomic ...

    Indian Academy of Sciences (India)

    a BLAST search of all these sequences against a database containing sequences of a host genome (e.g. human genome) will take enormous amount of time and computing resources. In this article, we present a novel alignment-free algorithm, called Eu-Detect, that can detect eukaryotic sequences in metagenomic data ...

  13. An algorithm for detecting eukaryotic sequences in metagenomic ...

    Indian Academy of Sciences (India)

    species but also from accidental contamination from the genome of eukaryotic host cells. The latter scenario generally occurs in the case of host-associated metagenomes, e.g. microbes living in human gut. In such cases, one needs to identify and remove contaminating host DNA sequences, since the latter sequences will ...

  14. Recognition of extremophilic archaeal viruses by eukaryotic cells

    DEFF Research Database (Denmark)

    Uldahl, Kristine Buch; Wu, Linping; Hall, Arnaldur

    2016-01-01

    Viruses from the third domain of life, Archaea, exhibit unusual features including extreme stability that allow their survival in harsh environments. In addition, these species have never been reported to integrate into human or any other eukaryotic genomes, and could thus serve for exploration...

  15. Tracking Eukaryotic Production and Burial Through Time with Zinc Isotopes

    Science.gov (United States)

    Tang, T. Y. S.; Planavsky, N.; Owens, J. D.; Love, G. D.; Lyons, T.; Peterson, L. C.; Knoll, A. H.; Dupont, C. L.; Reinhard, C.; Zumberge, A.

    2015-12-01

    Zinc is an important, often co-limiting nutrient for eukaryotes in the oceans today. Given the importance of Zn in the modern oceans, we developed a Zn isotope approach to track the extent of Zn limitation and eukaryotic production through Earth's history. Specifically, we use the isotopic systematics of the pyrite (δ66Znpyr), rock extracts (bitumen) and kerogen pyrolysate (δ66Znorg) within euxinic black shales. We show that δ66Znpyr of euxinic core-top muds from the Cariaco basin capture the global deep seawater signature, validating its use as a seawater proxy. Additionally, we propose that Δ66Znpyr-org can be used to track surface water zinc bioavailability. Detailed studies of short-lived oceanic anoxic events such as Cretaceous OAE2, which punctuate an otherwise dominantly oxic Phanerozoic world, exhibit dramatic shifts in seawater δ66Zn and organic bound zinc. Such perturbations are consistent with the demise of eukaryotes under a nitrogen stressed regime, in which cyanobacteria carry the competitive advantage. Contradictory to previous models, however, our data suggest that zinc remained largely bioavailable throughout these anoxic intervals despite significant drawdown of the global reservoir. The framework developed from studies of the modern, Cenozoic, and Mesozoic can be used to track the Precambrian evolution of the marine Zn cycle and the rise of eukaryotic algae to ecological dominance.

  16. The emerging roles of inositol pyrophosphates in eukaryotic cell ...

    Indian Academy of Sciences (India)

    These energy-rich small molecules are present in all eukaryotic cells, from yeast to mammals, and are involved in a wide range of cellular functions including apoptosis, vesicle trafficking, DNA repair, osmoregulation, phosphate homeostasis, insulin sensitivity, immune signalling, cell cycle regulation, and ribosome ...

  17. Eu-Detect: An algorithm for detecting eukaryotic sequences in ...

    Indian Academy of Sciences (India)

    Plots depicting the classification accuracy of Eu-Detect with various combinations of. 'cumulative sequence count' (40K, 50K, 60K, 70K, 80K) and 'coverage threshold' (20%, 30%, 40%, 50%, 60%, 70%,. 80%). While blue bars represent Eu-Detect's average classification accuracy with eukaryotic data sets, red bars represent.

  18. Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment.

    Science.gov (United States)

    Edgcomb, Virginia P; Kysela, David T; Teske, Andreas; de Vera Gomez, Alvin; Sogin, Mitchell L

    2002-05-28

    Molecular microbial ecology studies have revealed remarkable prokaryotic diversity in extreme hydrothermal marine environments. There are no comparable reports of culture-independent surveys of eukaryotic life in warm, anoxic marine sediments. By using sequence comparisons of PCR-amplified small subunit ribosomal RNAs, we characterized eukaryotic diversity in hydrothermal vent environments of Guaymas Basin in the Gulf of California. Many sequences from these anoxic sediments and the overlaying seawater represent previously uncharacterized protists, including early branching eukaryotic lineages or extended diversity within described taxa. At least two mechanisms, with overlapping consequences, account for the eukaryotic community structure of this environment. The adaptation to anoxic environments is evidenced by specific affinity of environmental sequences to aerotolerant anaerobic species in molecular trees. This pattern is superimposed against a background of widely distributed aerophilic and aerotolerant protists, some of which may migrate into and survive in the sediment whereas others (e.g., phototrophs) are simply deposited by sedimentary processes. In contrast, bacterial populations in these sediments are primarily characteristic of anoxic, reduced, hydrocarbon-rich sedimentary habitats.

  19. Geminin: a major DNA replication safeguard in higher eukaryotes

    DEFF Research Database (Denmark)

    Melixetian, Marina; Helin, Kristian

    2004-01-01

    Eukaryotes have evolved multiple mechanisms to restrict DNA replication to once per cell cycle. These mechanisms prevent relicensing of origins of replication after initiation of DNA replication in S phase until the end of mitosis. Most of our knowledge of mechanisms controlling prereplication...

  20. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae

    NARCIS (Netherlands)

    Wijffels, R.H.; Kruse, O.; Hellingwerf, K.J.

    2013-01-01

    Both cyanobacteria and eukaryotic microalgae are promising organisms for sustainable production of bulk products such as food, feed, materials, chemicals and fuels. In this review we will summarize the potential and current biotechnological developments.Cyanobacteria are promising host organisms for

  1. Monitoring disulfide bond formation in the eukaryotic cytosol

    DEFF Research Database (Denmark)

    Østergaard, Henrik; Tachibana, Christine; Winther, Jakob R.

    2004-01-01

    Glutathione is the most abundant low molecular weight thiol in the eukaryotic cytosol. The compartment-specific ratio and absolute concentrations of reduced and oxidized glutathione (GSH and GSSG, respectively) are, however, not easily determined. Here, we present a glutathione-specific green...

  2. An inside-out origin for the eukaryotic cell.

    Science.gov (United States)

    Baum, David A; Baum, Buzz

    2014-10-28

    Although the origin of the eukaryotic cell has long been recognized as the single most profound change in cellular organization during the evolution of life on earth, this transition remains poorly understood. Models have always assumed that the nucleus and endomembrane system evolved within the cytoplasm of a prokaryotic cell. Drawing on diverse aspects of cell biology and phylogenetic data, we invert the traditional interpretation of eukaryotic cell evolution. We propose that an ancestral prokaryotic cell, homologous to the modern-day nucleus, extruded membrane-bound blebs beyond its cell wall. These blebs functioned to facilitate material exchange with ectosymbiotic proto-mitochondria. The cytoplasm was then formed through the expansion of blebs around proto-mitochondria, with continuous spaces between the blebs giving rise to the endoplasmic reticulum, which later evolved into the eukaryotic secretory system. Further bleb-fusion steps yielded a continuous plasma membrane, which served to isolate the endoplasmic reticulum from the environment. The inside-out theory is consistent with diverse kinds of data and provides an alternative framework by which to explore and understand the dynamic organization of modern eukaryotic cells. It also helps to explain a number of previously enigmatic features of cell biology, including the autonomy of nuclei in syncytia and the subcellular localization of protein N-glycosylation, and makes many predictions, including a novel mechanism of interphase nuclear pore insertion.

  3. Uncoupling of Sister Replisomes during Eukaryotic DNA Replication

    NARCIS (Netherlands)

    Yardimci, Hasan; Loveland, Anna B.; Habuchi, Satoshi; van Oijen, Antoine M.; Walter, Johannes C.

    2010-01-01

    The duplication of eukaryotic genomes involves the replication of DNA from multiple origins of replication. In S phase, two sister replisomes assemble at each active origin, and they replicate DNA in opposite directions. Little is known about the functional relationship between sister replisomes.

  4. Eu-Detect: An algorithm for detecting eukaryotic sequences in ...

    Indian Academy of Sciences (India)

    Supplementary figure 1. Plots depicting the classification accuracy of Eu-Detect with various combinations of. 'cumulative sequence count' (40K, 50K, 60K, 70K, 80K) and 'coverage threshold' (20%, 30%, 40%, 50%, 60%, 70%,. 80%). While blue bars represent Eu-Detect's average classification accuracy with eukaryotic ...

  5. Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes

    NARCIS (Netherlands)

    Rujano, Maria A.; Bosveld, Floris; Salomons, Florian A.; Dijk, Freark; van Waarde, Maria A. W. H.; van der Want, Johannes J. L.; de Vos, Rob A. I.; Brunt, Ewout R.; Sibon, Ody C. M.; Kampinga, Harm H.

    2006-01-01

    Disease-associated misfolded proteins or proteins damaged due to cellular stress are generally disposed via the cellular protein quality-control system. However, under saturating conditions, misfolded proteins will aggregate. In higher eukaryotes, these aggregates can be transported to accumulate in

  6. Genetic diversity of planktonic eukaryotes in high mountain lakes (Central Pyrenees, Spain).

    Science.gov (United States)

    Triadó-Margarit, Xavier; Casamayor, Emilio O

    2012-09-01

    The genetic diversity of planktonic eukaryotic microorganisms (size range 3-40 µm) inhabiting 11 alpine lakes of the Central Pyrenees (Spain) was analysed by cloning and sequencing of the 18S rRNA gene. The selected lakes covered a wide range of environmental conditions representative of the regional landscape heterogeneity. Overall, we obtained 953 sequences (averaged length 750 bp) that were grouped in 343 representative OTUs (98% identity). The genetic richness was high, and the 18S rRNA gene sequences spread within nine high-rank taxonomic groups and grouped in 26 eukaryal classes. Most of the sequences affiliated with Stramenopiles (> 55% of total sequences, mostly Chrysophyceae), Cryptophyta and Alveolata (15% each). Three groups had relative abundance biodiversity. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  7. The Interplay between the RNA Decay and Translation Machinery in Eukaryotes.

    Science.gov (United States)

    Heck, Adam M; Wilusz, Jeffrey

    2018-01-08

    RNA decay plays a major role in regulating gene expression and is tightly networked with other aspects of gene expression to effectively coordinate post-transcriptional regulation. The goal of this work is to provide an overview of the major factors and pathways of general messenger RNA (mRNA) decay in eukaryotic cells, and then discuss the effective interplay of this cytoplasmic process with the protein synthesis machinery. Given the transcript-specific and fluid nature of mRNA stability in response to changing cellular conditions, understanding the fundamental networking between RNA decay and translation will provide a foundation for a complete mechanistic understanding of this important aspect of cell biology. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.

  8. Gene

    Data.gov (United States)

    U.S. Department of Health & Human Services — Gene integrates information from a wide range of species. A record may include nomenclature, Reference Sequences (RefSeqs), maps, pathways, variations, phenotypes,...

  9. Microbial Community Patterns Associated with Automated Teller Machine Keypads in New York City.

    Science.gov (United States)

    Bik, Holly M; Maritz, Julia M; Luong, Albert; Shin, Hakdong; Dominguez-Bello, Maria Gloria; Carlton, Jane M

    2016-01-01

    In densely populated urban environments, the distribution of microbes and the drivers of microbial community assemblages are not well understood. In sprawling metropolitan habitats, the "urban microbiome" may represent a mix of human-associated and environmental taxa. Here we carried out a baseline study of automated teller machine (ATM) keypads in New York City (NYC). Our goal was to describe the biodiversity and biogeography of both prokaryotic and eukaryotic microbes in an urban setting while assessing the potential source of microbial assemblages on ATM keypads. Microbial swab samples were collected from three boroughs (Manhattan, Queens, and Brooklyn) during June and July 2014, followed by generation of Illumina MiSeq datasets for bacterial (16S rRNA) and eukaryotic (18S rRNA) marker genes. Downstream analysis was carried out in the QIIME pipeline, in conjunction with neighborhood metadata (ethnicity, population, age groups) from the NYC Open Data portal. Neither the 16S nor 18S rRNA datasets showed any clustering patterns related to geography or neighborhood demographics. Bacterial assemblages on ATM keypads were dominated by taxonomic groups known to be associated with human skin communities ( Actinobacteria , Bacteroides , Firmicutes , and Proteobacteria ), although SourceTracker analysis was unable to identify the source habitat for the majority of taxa. Eukaryotic assemblages were dominated by fungal taxa as well as by a low-diversity protist community containing both free-living and potentially pathogenic taxa ( Toxoplasma , Trichomonas ). Our results suggest that ATM keypads amalgamate microbial assemblages from different sources, including the human microbiome, eukaryotic food species, and potentially novel extremophilic taxa adapted to air or surfaces in the built environment. DNA obtained from ATM keypads may thus provide a record of both human behavior and environmental sources of microbes. IMPORTANCE Automated teller machine (ATM) keypads represent

  10. Aminoglycoside interactions and impacts on the eukaryotic ribosome

    Science.gov (United States)

    Prokhorova, Irina; Altman, Roger B.; Djumagulov, Muminjon; Shrestha, Jaya P.; Urzhumtsev, Alexandre; Ferguson, Angelica; Chang, Cheng-Wei Tom; Yusupov, Marat; Blanchard, Scott C.; Yusupova, Gulnara

    2017-01-01

    Aminoglycosides are chemically diverse, broad-spectrum antibiotics that target functional centers within the bacterial ribosome to impact all four principle stages (initiation, elongation, termination, and recycling) of the translation mechanism. The propensity of aminoglycosides to induce miscoding errors that suppress the termination of protein synthesis supports their potential as therapeutic interventions in human diseases associated with premature termination codons (PTCs). However, the sites of interaction of aminoglycosides with the eukaryotic ribosome and their modes of action in eukaryotic translation remain largely unexplored. Here, we use the combination of X-ray crystallography and single-molecule FRET analysis to reveal the interactions of distinct classes of aminoglycosides with the 80S eukaryotic ribosome. Crystal structures of the 80S ribosome in complex with paromomycin, geneticin (G418), gentamicin, and TC007, solved at 3.3- to 3.7-Å resolution, reveal multiple aminoglycoside-binding sites within the large and small subunits, wherein the 6′-hydroxyl substituent in ring I serves as a key determinant of binding to the canonical eukaryotic ribosomal decoding center. Multivalent binding interactions with the human ribosome are also evidenced through their capacity to affect large-scale conformational dynamics within the pretranslocation complex that contribute to multiple aspects of the translation mechanism. The distinct impacts of the aminoglycosides examined suggest that their chemical composition and distinct modes of interaction with the ribosome influence PTC read-through efficiency. These findings provide structural and functional insights into aminoglycoside-induced impacts on the eukaryotic ribosome and implicate pleiotropic mechanisms of action beyond decoding. PMID:29208708

  11. Eukaryotic microorganisms in cold environments. Examples from Pyrenean glaciers

    Directory of Open Access Journals (Sweden)

    Laura eGarcia-Descalzo

    2013-03-01

    Full Text Available Little is known about the viability of eukaryotic microorganisms preserved in icy regions. Here we report on the diversity of microbial eukaryotes in ice samples derived from four Pyrenean glaciers. The species composition of eukaryotic communities in these glaciers is unknown mostly because of the presence of a multi-year ice cap, and it is not clear whether they harbor the same populations. The recent deglaciation of these areas is allowing an easy access to glacial layers that correspond to the Little Ice Age although some isolated deposits are attributed to previous glacial cycles. In this study, we use molecular 18S rRNA-based approaches to characterize some of the microbial eukaryotic populations associated with Pyrenean glaciers. Firstly, we performed a chemical and microscopical characterization of ice samples. Secondly, molecular analyses revealed interesting protist genetic diversity in glaciers. In order to understand the microbial composition of the ice samples the eukaryotic communities resident in the glacial samples were examined by amplifying community DNA and constructing clone libraries with 18S rRNA primers. After removal of potential chimeric sequences and derreplication of identical sequences, phylogenetic analysis demonstrated that several different protists could be identified. Protist diversity was more phylum rich in Aneto and Monte Perdido glaciers. The dominant taxonomic groups across all samples (> 1 % of all sequences were Viridiplantae and Rhizaria. Significant variations in relative abundances of protist phyla between higher and lower glaciers were observed. At the genus level, significant differences were also recorded for the dominant genera Chloromonas, Raphidonema , Heteromita , Koliella and Bodomorpha. In addition, protist community structure showed significant differences between glaciers. The relative abundances of protist groups at different taxonomic levels correlated with the altitude and area of glaciers

  12. Eukaryotic microorganisms in cold environments: examples from Pyrenean glaciers

    Science.gov (United States)

    García-Descalzo, Laura; García-López, Eva; Postigo, Marina; Baquero, Fernando; Alcazar, Alberto; Cid, Cristina

    2013-01-01

    Little is known about the viability of eukaryotic microorganisms preserved in icy regions. Here we report on the diversity of microbial eukaryotes in ice samples derived from four Pyrenean glaciers. The species composition of eukaryotic communities in these glaciers is unknown mostly because of the presence of a multi-year ice cap, and it is not clear whether they harbor the same populations. The recent deglaciation of these areas is allowing an easy access to glacial layers that correspond to the “Little Ice Age” although some isolated deposits are attributed to previous glacial cycles. In this study, we use molecular 18S rRNA-based approaches to characterize some of the microbial eukaryotic populations associated with Pyrenean glaciers. Firstly, we performed a chemical and microscopical characterization of ice samples. Secondly, molecular analyses revealed interesting protist genetic diversity in glaciers. In order to understand the microbial composition of the ice samples the eukaryotic communities resident in the glacial samples were examined by amplifying community DNA and constructing clone libraries with 18S rRNA primers. After removal of potential chimeric sequences and dereplication of identical sequences, phylogenetic analysis demonstrated that several different protists could be identified. Protist diversity was more phylum rich in Aneto and Monte Perdido glaciers. The dominant taxonomic groups across all samples (>1% of all sequences) were Viridiplantae and Rhizaria. Significant variations in relative abundances of protist phyla between higher and lower glaciers were observed. At the genus level, significant differences were also recorded for the dominant genera Chloromonas, Raphidonema, Heteromita, Koliella, and Bodomorpha. In addition, protist community structure showed significant differences between glaciers. The relative abundances of protist groups at different taxonomic levels correlated with the altitude and area of glaciers and with pH of

  13. The Oxytricha trifallax macronuclear genome: a complex eukaryotic genome with 16,000 tiny chromosomes.

    Directory of Open Access Journals (Sweden)

    Estienne C Swart

    Full Text Available The macronuclear genome of the ciliate Oxytricha trifallax displays an extreme and unique eukaryotic genome architecture with extensive genomic variation. During sexual genome development, the expressed, somatic macronuclear genome is whittled down to the genic portion of a small fraction (∼5% of its precursor "silent" germline micronuclear genome by a process of "unscrambling" and fragmentation. The tiny macronuclear "nanochromosomes" typically encode single, protein-coding genes (a small portion, 10%, encode 2-8 genes, have minimal noncoding regions, and are differentially amplified to an average of ∼2,000 copies. We report the high-quality genome assembly of ∼16,000 complete nanochromosomes (∼50 Mb haploid genome size that vary from 469 bp to 66 kb long (mean ∼3.2 kb and encode ∼18,500 genes. Alternative DNA fragmentation processes ∼10% of the nanochromosomes into multiple isoforms that usually encode complete genes. Nucleotide diversity in the macronucleus is very high (SNP heterozygosity is ∼4.0%, suggesting that Oxytricha trifallax may have one of the largest known effective population sizes of eukaryotes. Comparison to other ciliates with nonscrambled genomes and long macronuclear chromosomes (on the order of 100 kb suggests several candidate proteins that could be involved in genome rearrangement, including domesticated MULE and IS1595-like DDE transposases. The assembly of the highly fragmented Oxytricha macronuclear genome is the first completed genome with such an unusual architecture. This genome sequence provides tantalizing glimpses into novel molecular biology and evolution. For example, Oxytricha maintains tens of millions of telomeres per cell and has also evolved an intriguing expansion of telomere end-binding proteins. In conjunction with the micronuclear genome in progress, the O. trifallax macronuclear genome will provide an invaluable resource for investigating programmed genome rearrangements, complementing

  14. Bacterial Signaling Nucleotides Inhibit Yeast Cell Growth by Impacting Mitochondrial and Other Specifically Eukaryotic Functions

    Directory of Open Access Journals (Sweden)

    Andy Hesketh

    2017-07-01

    Full Text Available We have engineered Saccharomyces cerevisiae to inducibly synthesize the prokaryotic signaling nucleotides cyclic di-GMP (cdiGMP, cdiAMP, and ppGpp in order to characterize the range of effects these nucleotides exert on eukaryotic cell function during bacterial pathogenesis. Synthetic genetic array (SGA and transcriptome analyses indicated that, while these compounds elicit some common reactions in yeast, there are also complex and distinctive responses to each of the three nucleotides. All three are capable of inhibiting eukaryotic cell growth, with the guanine nucleotides exhibiting stronger effects than cdiAMP. Mutations compromising mitochondrial function and chromatin remodeling show negative epistatic interactions with all three nucleotides. In contrast, certain mutations that cause defects in chromatin modification and ribosomal protein function show positive epistasis, alleviating growth inhibition by at least two of the three nucleotides. Uniquely, cdiGMP is lethal both to cells growing by respiration on acetate and to obligately fermentative petite mutants. cdiGMP is also synthetically lethal with the ribonucleotide reductase (RNR inhibitor hydroxyurea. Heterologous expression of the human ppGpp hydrolase Mesh1p prevented the accumulation of ppGpp in the engineered yeast and restored cell growth. Extensive in vivo interactions between bacterial signaling molecules and eukaryotic gene function occur, resulting in outcomes ranging from growth inhibition to death. cdiGMP functions through a mechanism that must be compensated by unhindered RNR activity or by functionally competent mitochondria. Mesh1p may be required for abrogating the damaging effects of ppGpp in human cells subjected to bacterial infection.

  15. How MCM loading and spreading specify eukaryotic DNA replication initiation sites [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Olivier Hyrien

    2016-08-01

    Full Text Available DNA replication origins strikingly differ between eukaryotic species and cell types. Origins are localized and can be highly efficient in budding yeast, are randomly located in early fly and frog embryos, which do not transcribe their genomes, and are clustered in broad (10-100 kb non-transcribed zones, frequently abutting transcribed genes, in mammalian cells. Nonetheless, in all cases, origins are established during the G1-phase of the cell cycle by the loading of double hexamers of the Mcm 2-7 proteins (MCM DHs, the core of the replicative helicase. MCM DH activation in S-phase leads to origin unwinding, polymerase recruitment, and initiation of bidirectional DNA synthesis. Although MCM DHs are initially loaded at sites defined by the binding of the origin recognition complex (ORC, they ultimately bind chromatin in much greater numbers than ORC and only a fraction are activated in any one S-phase. Data suggest that the multiplicity and functional redundancy of MCM DHs provide robustness to the replication process and affect replication time and that MCM DHs can slide along the DNA and spread over large distances around the ORC. Recent studies further show that MCM DHs are displaced along the DNA by collision with transcription complexes but remain functional for initiation after displacement. Therefore, eukaryotic DNA replication relies on intrinsically mobile and flexible origins, a strategy fundamentally different from bacteria but conserved from yeast to human. These properties of MCM DHs likely contribute to the establishment of broad, intergenic replication initiation zones in higher eukaryotes.

  16. A set of ligation-independent in vitro translation vectors for eukaryotic protein production

    Directory of Open Access Journals (Sweden)

    Endo Yaeta

    2008-03-01

    Full Text Available Abstract Background The last decade has brought the renaissance of protein studies and accelerated the development of high-throughput methods in all aspects of proteomics. Presently, most protein synthesis systems exploit the capacity of living cells to translate proteins, but their application is limited by several factors. A more flexible alternative protein production method is the cell-free in vitro protein translation. Currently available in vitro translation systems are suitable for high-throughput robotic protein production, fulfilling the requirements of proteomics studies. Wheat germ extract based in vitro translation system is likely the most promising method, since numerous eukaryotic proteins can be cost-efficiently synthesized in their native folded form. Although currently available vectors for wheat embryo in vitro translation systems ensure high productivity, they do not meet the requirements of state-of-the-art proteomics. Target genes have to be inserted using restriction endonucleases and the plasmids do not encode cleavable affinity purification tags. Results We designed four ligation independent cloning (LIC vectors for wheat germ extract based in vitro protein translation. In these constructs, the RNA transcription is driven by T7 or SP6 phage polymerase and two TEV protease cleavable affinity tags can be added to aid protein purification. To evaluate our improved vectors, a plant mitogen activated protein kinase was cloned in all four constructs. Purification of this eukaryotic protein kinase demonstrated that all constructs functioned as intended: insertion of PCR fragment by LIC worked efficiently, affinity purification of translated proteins by GST-Sepharose or MagneHis particles resulted in high purity kinase, and the affinity tags could efficiently be removed under different reaction conditions. Furthermore, high in vitro kinase activity testified of proper folding of the purified protein. Conclusion Four newly

  17. [Expression of human Jagged-1 protein on eukaryotic cells and establishment of stable transfectant cell line].

    Science.gov (United States)

    Gan, Zhi-Hua; Chen, Yu; Yan, Hua; Wang, Kan-Kan

    2010-08-01

    Jagged-1 protein is one of the ligands belonging to Notch signaling pathway. Notch signaling pathway is one of the major signaling pathways mediated by contact between cells and plays an important role to regulate the process of proliferation and differentiation of hematopoietic cells in the hematopoietic microenvironment. To study the biological effect after the combination of receptor and ligand in Notch signaling pathway and the mechanism of Notch signaling pathway in bone marrow stromal cells mediated-drug resistance, a NIH-3T3 cell line over-expressing Jagged-1 protein was constructed for further research purposes. A full coding region of Jagged-1 gene was cloned and inserted into eukaryotic expression plasmid to construct pEGFP-IRES2-Jagged-1 eukaryotic expression vector, then transfected into NIH-3T3 cell line, a mammalian cells. As a result Western blot analysis confirmed that the transfectant NIH-3T3 cells highly expressed Jagged-1 protein and flow cytometry analysis confirmed that the NIH-3T3-pEGFP-IRES2-Jagged-1 cell line over-expressed Jagged-1 protein was monoclonal after screened by selective medium and limiting dilution analysis. It is concluded that the pEGFP-IRES2-Jagged-1 eukaryotic expression vector and a stable transfectant monoclonal NIH-3T3 cell line are successfully established. The construction of the stable transfectant monoclonal NIH-3T3 cell line which overexpressed Jagged-1 protein, provides the conditions to further study the mechanism of the bone marrow stromal cell-mediated drug resistance and to discover the new drug targets.

  18. Eukaryotic elongation factor 2 kinase regulates the cold stress response by slowing translation elongation.

    Science.gov (United States)

    Knight, John R P; Bastide, Amandine; Roobol, Anne; Roobol, Jo; Jackson, Thomas J; Utami, Wahyu; Barrett, David A; Smales, C Mark; Willis, Anne E

    2015-01-15

    Cells respond to external stress conditions by controlling gene expression, a process which occurs rapidly via post-transcriptional regulation at the level of protein synthesis. Global control of translation is mediated by modification of translation factors to allow reprogramming of the translatome and synthesis of specific proteins that are required for stress protection or initiation of apoptosis. In the present study, we have investigated how global protein synthesis rates are regulated upon mild cooling. We demonstrate that although there are changes to the factors that control initiation, including phosphorylation of eukaryotic translation initiation factor 2 (eIF2) on the α-subunit, the reduction in the global translation rate is mediated by regulation of elongation via phosphorylation of eukaryotic elongation factor 2 (eEF2) by its specific kinase, eEF2K (eukaryotic elongation factor 2 kinase). The AMP/ATP ratio increases following cooling, consistent with a reduction in metabolic rates, giving rise to activation of AMPK (5'-AMP-activated protein kinase), which is upstream of eEF2K. However, our data show that the major trigger for activation of eEF2K upon mild cooling is the release of Ca2+ ions from the endoplasmic reticulum (ER) and, importantly, that it is possible to restore protein synthesis rates in cooled cells by inhibition of this pathway at multiple points. As cooling has both therapeutic and industrial applications, our data provide important new insights into how the cellular responses to this stress are regulated, opening up new possibilities to modulate these responses for medical or industrial use at physiological or cooler temperatures.

  19. Eukaryotes dominate new production in the Sargasso Sea

    Science.gov (United States)

    Fawcett, S. E.; Lomas, M. W.; Ward, B. B.; Casey, J. R.; Sigman, D. M.

    2010-12-01

    The vast subtropical ocean gyres are considered unproductive “deserts” due to the extremely low concentrations of essential nutrients in their sunlit surface waters. Because of intense upper ocean stratification, phytoplankton growth in the subtropical gyres is limited by the slow supply of nitrate from below, and is assumed to be supported predominantly by “regenerated” nitrogen (N): ammonium and other reduced N sources recycled in surface waters. The phytoplankton assemblage of the subtropical Sargasso Sea is dominated by the prokaryotic cyanobacteria, Prochlorococcus and Synechococcus, which occur in very high cell numbers compared to the rarer, and usually larger, eukaryotic algae. Coupling flow cytometry and a new high-sensitivity method for N isotope analysis, we measure the 15N/14N of major phytoplankton taxa and other biologically distinct particle populations collected from the surface waters of the Sargasso Sea during the stratified summer period. We find that the cyanobacteria and eukaryotic phytoplankton show distinct N isotope signatures, indicating that they utilize different sources of N for growth. Prochlorococcus and Synechococcus have a uniformly low 15N/14N, consistent with the expectation that these phytoplankton rely on regenerated N. However, the 15N/14N of eukaryotic phytoplankton is higher and more variable, with a mean 15N/14N comparable to the new nitrate supply from below, indicating that eukaryotes dominate the consumption of this nitrate and rely on it for more than half of their N requirement. Using our measured 15N/14N values for the various sorted autotrophic populations, we calculate eukaryote-specific summer f-ratios of 0.6-0.67 and total community summer f-ratios of 0.15-0.23. These values are higher than those based on comparison of primary production and sediment-trap derived organic carbon (C) export, and agree well with annual f-ratio estimates implied by geochemical tracers. The high 15N/14N of eukaryotic biomass can

  20. Artificial OFF-Riboswitches That Downregulate Internal Ribosome Entry without Hybridization Switches in a Eukaryotic Cell-Free Translation System.

    Science.gov (United States)

    Ogawa, Atsushi; Masuoka, Hiroki; Ota, Tsubasa

    2017-09-15

    We constructed novel artificial riboswitches that function in a eukaryotic translation system (wheat germ extract), by rationally implanting an in vitro-selected aptamer into the intergenic internal ribosome entry site (IRES) of Plautia stali intestine virus. These eukaryotic OFF-riboswitches (OFF-eRSs) ligand-dose-dependently downregulate IRES-mediated translation without hybridization switches, which typical riboswitches utilize for gene regulation. The hybridization-switch-free mechanism not only allows for easy design but also requires less energy for regulation, resulting in a higher switching efficiency than hybridization-switch-based OFF-eRSs provide. In addition, even a small ligand such as theophylline can induce satisfactory repression, in contrast to other types of OFF-eRSs that modulate the 5' cap-dependent canonical translation. Because our proposed hybridization-switch-free OFF-eRSs are based on a versatile IRES that functions well in many types of eukaryotic translation systems, they would be widely usable elements for synthetic gene circuits in both cell-free and cell-based synthetic biology.

  1. Tripartite species interaction: eukaryotic hosts suffer more from phage susceptible than from phage resistant bacteria.

    Science.gov (United States)

    Wendling, Carolin C; Piecyk, Agnes; Refardt, Dominik; Chibani, Cynthia; Hertel, Robert; Liesegang, Heiko; Bunk, Boyke; Overmann, Jörg; Roth, Olivia

    2017-04-11

    Evolutionary shifts in bacterial virulence are often associated with a third biological player, for instance temperate phages, that can act as hyperparasites. By integrating as prophages into the bacterial genome they can contribute accessory genes, which can enhance the fitness of their prokaryotic carrier (lysogenic conversion). Hyperparasitic influence in tripartite biotic interactions has so far been largely neglected in empirical host-parasite studies due to their inherent complexity. Here we experimentally address whether bacterial resistance to phages and bacterial harm to eukaryotic hosts is linked using a natural tri-partite system with bacteria of the genus Vibrio, temperate vibriophages and the pipefish Syngnathus typhle. We induced prophages from all bacterial isolates and constructed a three-fold replicated, fully reciprocal 75 × 75 phage-bacteria infection matrix. According to their resistance to phages, bacteria could be grouped into three distinct categories: highly susceptible (HS-bacteria), intermediate susceptible (IS-bacteria), and resistant (R-bacteria). We experimentally challenged pipefish with three selected bacterial isolates from each of the three categories and determined the amount of viable Vibrio counts from infected pipefish and the expression of pipefish immune genes. While the amount of viable Vibrio counts did not differ between bacterial groups, we observed a significant difference in relative gene expression between pipefish infected with phage susceptible and phage resistant bacteria. These findings suggest that bacteria with a phage-susceptible phenotype are more harmful against a eukaryotic host, and support the importance of hyperparasitism and the need for an integrative view across more than two levels when studying host-parasite evolution.

  2. Extracellular DNA amplicon sequencing reveals high levels of benthic eukaryotic diversity in the central Red Sea

    KAUST Repository

    Pearman, John K.

    2015-11-01

    The present study aims to characterize the benthic eukaryotic biodiversity patterns at a coarse taxonomic level in three areas of the central Red Sea (a lagoon, an offshore area in Thuwal and a shallow coastal area near Jeddah) based on extracellular DNA. High-throughput amplicon sequencing targeting the V9 region of the 18S rRNA gene was undertaken for 32 sediment samples. High levels of alpha-diversity were detected with 16,089 operational taxonomic units (OTUs) being identified. The majority of the OTUs were assigned to Metazoa (29.2%), Alveolata (22.4%) and Stramenopiles (17.8%). Stramenopiles (Diatomea) and Alveolata (Ciliophora) were frequent in a lagoon and in shallower coastal stations, whereas metazoans (Arthropoda: Maxillopoda) were dominant in deeper offshore stations. Only 24.6% of total OTUs were shared among all areas. Beta-diversity was generally lower between the lagoon and Jeddah (nearshore) than between either of those and the offshore area, suggesting a nearshore–offshore biodiversity gradient. The current approach allowed for a broad-range of benthic eukaryotic biodiversity to be analysed with significantly less labour than would be required by other traditional taxonomic approaches. Our findings suggest that next generation sequencing techniques have the potential to provide a fast and standardised screening of benthic biodiversity at large spatial and temporal scales.

  3. Replication and transcription on a collision course: eukaryotic regulation mechanisms and implications for DNA stability.

    Directory of Open Access Journals (Sweden)

    Alessandra eBrambati

    2015-04-01

    Full Text Available DNA replication and transcription are vital cellular processes during which the genetic information is copied into complementary DNA and RNA molecules. Highly complex machineries required for DNA and RNA synthesis compete for the same DNA template, therefore being on a collision course. Unscheduled replication-transcription clashes alter the gene transcription program and generate replication stress, reducing fork speed. Molecular pathways and mechanisms that minimize the conflict between replication and transcription have been extensively characterized in prokaryotic cells and recently identified also in eukaryotes. A pathological outcome of replication-transcription collisions is the formation of stable RNA:DNA hybrids in molecular structures called R-loops. Growing evidence suggests that R-loop accumulation promotes both genetic and epigenetic instability, thus severely affecting genome functionality. In the present review, we summarize the current knowledge related to replication and transcription conflicts in eukaryotes, their consequences on genome instability and the pathways involved in their resolution. These findings are relevant to clarify the molecular basis of cancer and neurodegenerative diseases.

  4. Complex multicellular functions at a unicellular eukaryote level: Learning, memory, and immunity.

    Science.gov (United States)

    Csaba, György

    2017-06-01

    According to experimental data, eukaryote unicellulars are able to learn, have immunity and memory. Learning is carried out in a very primitive form, and the memory is not neural but an epigenetic one. However, this epigenetic memory, which is well justified by the presence and manifestation of hormonal imprinting, is strong and permanent in the life of cell and also in its progenies. This memory is epigenetically executed by the alteration and fixation of methylation pattern of genes without changes in base sequences. The immunity of unicellulars is based on self/non-self discrimination, which leads to the destruction of non-self invaders and utilization of them as nourishment (by phagocytosis). The tools of learning, memory, and immunity of unicellulars are uniformly found in plasma membrane receptors, which formed under the effect of dynamic receptor pattern generation, suggested by Koch et al., and this is the basis of hormonal imprinting, by which the encounter between a chemical substance and the cell is specifically memorized. The receptors and imprinting are also used in the later steps of evolution up to mammals (including man) in each mentioned functions. This means that learning, memory, and immunity can be deduced to a unicellular eukaryote level.

  5. Bio-chemo-mechanical models for nuclear deformation in adherent eukaryotic cells.

    Science.gov (United States)

    Nava, Michele M; Raimondi, Manuela T; Pietrabissa, Riccardo

    2014-10-01

    Adherent eukaryotic cells are subjected to a broad variety of extracellular and intracellular stimuli regulating their behaviour. These stimuli can be either purely chemical, for example soluble factors binding to the cell membrane, or mechano-chemical, for example integrin-based adhesion complexes stretching the cell cytoskeleton. Here, we focus on mechano-chemical stimuli such as extracellular forces (interstitial flow, pressurization) and intracellular forces (due to cell adhesion), which may combine generating stress-strain states in the cytoskeleton. These states are transferred to the nucleus to influence the transcription of specific genes, likely by changing the chromatin organization and by altering the permeability of the nuclear membrane. While there exists increasing experimental evidence of the mechanosensing role of the cell nucleus, both the underlying molecular mechanisms involved, and the nuclear structural behaviour in response to forces, are still poorly understood. Here, we review the existing literature on computational models developed to investigate the chemo-mechanical behaviour of adherent eukaryotic cells. We analyse two main classes of models of single-cell mechanics, based either on the discrete or on the continuum approaches. We focus on the bio-chemo-mechanical model and modelling techniques accounting for the nuclear body. The modelling techniques are discussed highlighting their ability in predicting cytoskeletal contractility states and nuclear stress-strain states.

  6. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae

    Science.gov (United States)

    2013-01-01

    green algae and higher plants. Protein domain structures and expression analyses in green alga H. pluvialis indicate that various chy genes are in different manners response to light. The knowledge of evolution of chy genes in photosynthetic eukaryotes provided information of gene cloning and functional investigation of chy genes in algae in the future. PMID:23834441

  7. Re-evaluating the green versus red signal in eukaryotes with secondary plastid of red algal origin

    KAUST Repository

    Burki, Fabien

    2012-05-16

    The transition from endosymbiont to organelle in eukaryotic cells involves the transfer of significant numbers of genes to the host genomes, a process known as endosymbiotic gene transfer (EGT). In the case of plastid organelles, EGTs have been shown to leave a footprint in the nuclear genome that can be indicative of ancient photosynthetic activity in present-day plastid-lacking organisms, or even hint at the existence of cryptic plastids. Here,we evaluated the impact of EGTon eukaryote genomes by reanalyzing the recently published EST dataset for Chromera velia, an interesting test case of a photosynthetic alga closely related to apicomplexan parasites. Previously, 513 genes were reported to originate from red and green algae in a 1:1 ratio. In contrast, by manually inspecting newly generated trees indicating putative algal ancestry, we recovered only 51 genes congruent with EGT, of which 23 and 9 were of red and green algal origin, respectively,whereas 19 were ambiguous regarding the algal provenance.Our approach also uncovered 109 genes that branched within a monocot angiosperm clade, most likely representing a contamination. We emphasize the lack of congruence and the subjectivity resulting from independent phylogenomic screens for EGT, which appear to call for extreme caution when drawing conclusions for major evolutionary events. 2012 The Author(s).

  8. Transcription Through Chromatin - Dynamic Organization of Genes

    Indian Academy of Sciences (India)

    In this article, we discuss the dynamic organization of eukaryotic genes into chromatin. Remodeling of chromatin confers it the ability for dynamic change. Remodeling is essential for transcriptional regulation, the first step of gene expression. Chromatin Structure and Gene Expression. Transcription is the first step of gene ...

  9. Metal ion transport in eukaryotic microorganisms: insights from Saccharomyces cerevisiae.

    Science.gov (United States)

    Eide, D J

    2000-01-01

    Metal ions such as iron, copper, manganese, and zinc are essential nutrients for all eukaryotic microorganisms. Therefore, these organisms possess efficient uptake mechanisms to obtain these nutrients from their extracellular environment. Metal ions must also be transported into intracellular organelles where they function as catalytic and structural cofactors for compartmentalized enzymes. Thus, intracellular transport mechanisms are also present. When present in high levels, metal ions can also be toxic, so their uptake and intracellular transport is tightly regulated at both transcriptional and post-transcriptional levels to limit metal ion overaccumulation and facilitate storage and sequestration. Remarkable molecular insight into these processes has come from recent studies of the yeast Saccharomyces cerevisiae. This organism, which is the primary subject of this chapter, serves as a useful paradigm to understand metal ion metabolism in other eukaryotic microbes.

  10. [Advance of heterologous expression study of eukaryote-origin laccases].

    Science.gov (United States)

    Ning, Na; Tan, Huijun; Sun, Xinxin; Ni, Jinfeng

    2017-04-25

    Laccases are enzymes belonging to the group of multi-copper oxidases. These enzymes are widely distributed in insects, plants, fungi and bacteria. In general, laccases can oxidize an exceptionally high number of substrates, so they have broad applications in textile, pulp, food and the degradation of lignin. However, low yield, low activity and thermo-instability of laccase in nature limit the application of laccase. High efficient heterologous expression of the protein is an effective way for solving this problem. Here, we summarize the research advances of heterologous expression of eukaryote-origin laccases. We focus on the overexpression of eukaryote-origin laccases using different expression system and the method for improving the production yield and enzyme activity in yeast cells. Information provided in this review would be helpful for researchers in the field.

  11. Anionic lipids and the maintenance of membrane electrostatics in eukaryotes.

    Science.gov (United States)

    Platre, Matthieu Pierre; Jaillais, Yvon

    2017-02-01

    A wide range of signaling processes occurs at the cell surface through the reversible association of proteins from the cytosol to the plasma membrane. Some low abundant lipids are enriched at the membrane of specific compartments and thereby contribute to the identity of cell organelles by acting as biochemical landmarks. Lipids also influence membrane biophysical properties, which emerge as an important feature in specifying cellular territories. Such parameters are crucial for signal transduction and include lipid packing, membrane curvature and electrostatics. In particular, membrane electrostatics specifies the identity of the plasma membrane inner leaflet. Membrane surface charges are carried by anionic phospholipids, however the exact nature of the lipid(s) that powers the plasma membrane electrostatic field varies among eukaryotes and has been hotly debated during the last decade. Herein, we discuss the role of anionic lipids in setting up plasma membrane electrostatics and we compare similarities and differences that were found in different eukaryotic cells.

  12. Extreme Diversity of Diplonemid Eukaryotes in the Ocean

    Czech Academy of Sciences Publication Activity Database

    Flegontova, Olga; Flegontov, Pavel; Malviya, S.; Audic, S.; Wincker, P.; de Vargas, C.; Bowler, C.; Lukeš, Julius; Horák, Aleš

    2016-01-01

    Roč. 26, č. 22 (2016), s. 3060-3065 ISSN 0960-9822 R&D Projects: GA ČR GPP506/12/P931; GA ČR(CZ) GA14-23986S Institutional support: RVO:60077344 Keywords : virus-sized particles * microbial eukaryotes * sea-floor * phytoplankton * communities * euglenozoa * dispersal * ecosystem Subject RIV: EG - Zoology Impact factor: 8.851, year: 2016

  13. Eukaryotic transcriptomics in silico: Optimizing cDNA-AFLP efficiency

    Directory of Open Access Journals (Sweden)

    Wüst Christian

    2009-11-01

    Full Text Available Abstract Background Complementary-DNA based amplified fragment length polymorphism (cDNA-AFLP is a commonly used tool for assessing the genetic regulation of traits through the correlation of trait expression with cDNA expression profiles. In spite of the frequent application of this method, studies on the optimization of the cDNA-AFLP assay design are rare and have typically been taxonomically restricted. Here, we model cDNA-AFLPs on all 92 eukaryotic species for which cDNA pools are currently available, using all combinations of eight restriction enzymes standard in cDNA-AFLP screens. Results In silco simulations reveal that cDNA pool coverage is largely determined by the choice of individual restriction enzymes and that, through the choice of optimal enzyme combinations, coverage can be increased from Conclusion The insights gained from in silico screening of cDNA-AFLPs from a broad sampling of eukaryotes provide a set of guidelines that should help to substantially increase the efficiency of future cDNA-AFLP experiments in eukaryotes. In silico simulations also suggest a novel use of cDNA-AFLP screens to determine the number of transcripts expressed in a target tissue, an application that should be invaluable as next-generation sequencing technologies are adapted for differential display.

  14. The prokaryote-to-eukaryote transition reflected in the evolution of the V/F/A-ATPase catalytic and proteolipid subunits

    Science.gov (United States)

    Hilario, E.; Gogarten, J. P.

    1998-01-01

    Changes in the primary and quarternary structure of vacuolar and archaeal type ATPases that accompany the prokaryote-to-eukaryote transition are analyzed. The gene encoding the vacuolar-type proteolipid of the V-ATPase from Giardia lamblia is reported. Giardia has a typical vacuolar ATPase as observed from the common motifs shared between its proteolipid subunit and other eukaryotic vacuolar ATPases, suggesting that the former enzyme works as a hydrolase in this primitive eukaryote. The phylogenetic analyses of the V-ATPase catalytic subunit and the front and back halves of the proteolipid subunit placed Giardia as the deepest branch within the eukaryotes. Our phylogenetic analysis indicated that at least two independent duplication and fusion events gave rise to the larger proteolipid type found in eukaryotes and in Methanococcus. The spatial distribution of the conserved residues among the vacuolar-type proteolipids suggest a zipper-type interaction among the transmembrane helices and surrounding subunits of the V-ATPase complex. Important residues involved in the function of the F-ATP synthase proteolipid have been replaced during evolution in the V-proteolipid, but in some cases retained in the archaeal A-ATPase. Their possible implication in the evolution of V/F/A-ATPases is discussed.

  15. Autonomy and Automation

    Science.gov (United States)

    Shively, Jay

    2017-01-01

    A significant level of debate and confusion has surrounded the meaning of the terms autonomy and automation. Automation is a multi-dimensional concept, and we propose that Remotely Piloted Aircraft Systems (RPAS) automation should be described with reference to the specific system and task that has been automated, the context in which the automation functions, and other relevant dimensions. In this paper, we present definitions of automation, pilot in the loop, pilot on the loop and pilot out of the loop. We further propose that in future, the International Civil Aviation Organization (ICAO) RPAS Panel avoids the use of the terms autonomy and autonomous when referring to automated systems on board RPA. Work Group 7 proposes to develop, in consultation with other workgroups, a taxonomy of Levels of Automation for RPAS.

  16. An automated swimming respirometer

    DEFF Research Database (Denmark)

    STEFFENSEN, JF; JOHANSEN, K; BUSHNELL, PG

    1984-01-01

    An automated respirometer is described that can be used for computerized respirometry of trout and sharks.......An automated respirometer is described that can be used for computerized respirometry of trout and sharks....

  17. Configuration Management Automation (CMA) -

    Data.gov (United States)

    Department of Transportation — Configuration Management Automation (CMA) will provide an automated, integrated enterprise solution to support CM of FAA NAS and Non-NAS assets and investments. CMA...

  18. Origin of phagotrophic eukaryotes as social cheaters in microbial biofilms

    Directory of Open Access Journals (Sweden)

    Jékely Gáspár

    2007-01-01

    Full Text Available Abstract Background The origin of eukaryotic cells was one of the most dramatic evolutionary transitions in the history of life. It is generally assumed that eukaryotes evolved later then prokaryotes by the transformation or fusion of prokaryotic lineages. However, as yet there is no consensus regarding the nature of the prokaryotic group(s ancestral to eukaryotes. Regardless of this, a hardly debatable fundamental novel characteristic of the last eukaryotic common ancestor was the ability to exploit prokaryotic biomass by the ingestion of entire cells, i.e. phagocytosis. The recent advances in our understanding of the social life of prokaryotes may help to explain the origin of this form of total exploitation. Presentation of the hypothesis Here I propose that eukaryotic cells originated in a social environment, a differentiated microbial mat or biofilm that was maintained by the cooperative action of its members. Cooperation was costly (e.g. the production of developmental signals or an extracellular matrix but yielded benefits that increased the overall fitness of the social group. I propose that eukaryotes originated as selfish cheaters that enjoyed the benefits of social aggregation but did not contribute to it themselves. The cheaters later evolved into predators that lysed other cells and eventually became professional phagotrophs. During several cycles of social aggregation and dispersal the number of cheaters was contained by a chicken game situation, i.e. reproductive success of cheaters was high when they were in low abundance but was reduced when they were over-represented. Radical changes in cell structure, including the loss of the rigid prokaryotic cell wall and the development of endomembranes, allowed the protoeukaryotes to avoid cheater control and to exploit nutrients more efficiently. Cellular changes were buffered by both the social benefits and the protective physico-chemical milieu of the interior of biofilms. Symbiosis

  19. Automation in College Libraries.

    Science.gov (United States)

    Werking, Richard Hume

    1991-01-01

    Reports the results of a survey of the "Bowdoin List" group of liberal arts colleges. The survey obtained information about (1) automation modules in place and when they had been installed; (2) financing of automation and its impacts on the library budgets; and (3) library director's views on library automation and the nature of the…

  20. Metabarcoding improves detection of eukaryotes from early biofouling communities: implications for pest monitoring and pathway management.

    Science.gov (United States)

    Zaiko, Anastasija; Schimanski, Kate; Pochon, Xavier; Hopkins, Grant A; Goldstien, Sharyn; Floerl, Oliver; Wood, Susanna A

    2016-07-01

    In this experimental study the patterns in early marine biofouling communities and possible implications for surveillance and environmental management were explored using metabarcoding, viz. 18S ribosomal RNA gene barcoding in combination with high-throughput sequencing. The community structure of eukaryotic assemblages and the patterns of initial succession were assessed from settlement plates deployed in a busy port for one, five and 15 days. The metabarcoding results were verified with traditional morphological identification of taxa from selected experimental plates. Metabarcoding analysis identified > 400 taxa at a comparatively low taxonomic level and morphological analysis resulted in the detection of 25 taxa at varying levels of resolution. Despite the differences in resolution, data from both methods were consistent at high taxonomic levels and similar patterns in community shifts were observed. A high percentage of sequences belonging to genera known to contain non-indigenous species (NIS) were detected after exposure for only one day.

  1. Protein knockouts in living eukaryotes using deGradFP and green fluorescent protein fusion targets.

    Science.gov (United States)

    Caussinus, Emmanuel; Kanca, Oguz; Affolter, Markus

    2013-09-24

    This unit describes deGradFP (degrade Green Fluorescent Protein), an easy-to-implement protein knockout method applicable in any eukaryotic genetic system. Depleting a protein in order to study its function in a living organism is usually achieved at the gene level (genetic mutations) or at the RNA level (RNA interference and morpholinos). However, any system that acts upstream of the proteic level depends on the turnover rate of the existing target protein, which can be extremely slow. In contrast, deGradFP is a fast method that directly depletes GFP fusion proteins. In particular, deGradFP is able to counteract maternal effects in embryos and causes early and fast onset loss-of-function phenotypes of maternally contributed proteins. Copyright © 2013 John Wiley & Sons, Inc.

  2. Eukaryotic evolutionary transitions are associated with extreme codon bias in functionally-related proteins.

    Directory of Open Access Journals (Sweden)

    Nicholas J Hudson

    Full Text Available Codon bias in the genome of an organism influences its phenome by changing the speed and efficiency of mRNA translation and hence protein abundance. We hypothesized that differences in codon bias, either between-species differences in orthologous genes, or within-species differences between genes, may play an evolutionary role. To explore this hypothesis, we compared the genome-wide codon bias in six species that occupy vital positions in the Eukaryotic Tree of Life. We acquired the entire protein coding sequences for these organisms, computed the codon bias for all genes in each organism and explored the output for relationships between codon bias and protein function, both within- and between-lineages. We discovered five notable coordinated patterns, with extreme codon bias most pronounced in traits considered highly characteristic of a given lineage. Firstly, the Homo sapiens genome had stronger codon bias for DNA-binding transcription factors than the Saccharomyces cerevisiae genome, whereas the opposite was true for ribosomal proteins--perhaps underscoring transcriptional regulation in the origin of complexity. Secondly, both mammalian species examined possessed extreme codon bias in genes relating to hair--a tissue unique to mammals. Thirdly, Arabidopsis thaliana showed extreme codon bias in genes implicated in cell wall formation and chloroplast function--which are unique to plants. Fourthly, Gallus gallus possessed strong codon bias in a subset of genes encoding mitochondrial proteins--perhaps reflecting the enhanced bioenergetic efficiency in birds that co-evolved with flight. And lastly, the G. gallus genome had extreme codon bias for the Ciliary Neurotrophic Factor--which may help to explain their spontaneous recovery from deafness. We propose that extreme codon bias in groups of genes that encode functionally related proteins has a pathway-level energetic explanation.

  3. Leucine-Rich repeat receptor kinases are sporadically distributed in eukaryotic genomes

    Directory of Open Access Journals (Sweden)

    Diévart Anne

    2011-12-01

    Full Text Available Abstract Background Plant leucine-rich repeat receptor-like kinases (LRR-RLKs are receptor kinases that contain LRRs in their extracellular domain. In the last 15 years, many research groups have demonstrated major roles played by LRR-RLKs in plants during almost all developmental processes throughout the life of the plant and in defense/resistance against a large range of pathogens. Recently, a breakthrough has been made in this field that challenges the dogma of the specificity of plant LRR-RLKs. Results We analyzed ~1000 complete genomes and show that LRR-RK genes have now been identified in 8 non-plant genomes. We performed an exhaustive phylogenetic analysis of all of these receptors, revealing that all of the LRR-containing receptor subfamilies form lineage-specific clades. Our results suggest that the association of LRRs with RKs appeared independently at least four times in eukaryotic evolutionary history. Moreover, the molecular evolutionary history of the LRR-RKs found in oomycetes is reminiscent of the pattern observed in plants: expansion with amplification/deletion and evolution of the domain organization leading to the functional diversification of members of the gene family. Finally, the expression data suggest that oomycete LRR-RKs may play a role in several stages of the oomycete life cycle. Conclusions In view of the key roles that LRR-RLKs play throughout the entire lifetime of plants and plant-environment interactions, the emergence and expansion of this type of receptor in several phyla along the evolution of eukaryotes, and particularly in oomycete genomes, questions their intrinsic functions in mimicry and/or in the coevolution of receptors between hosts and pathogens.

  4. Circadian clock regulation of mRNA translation through eukaryotic elongation factor eEF-2

    Science.gov (United States)

    Caster, Stephen Z.; Castillo, Kathrina; Sachs, Matthew S.; Bell-Pedersen, Deborah

    2016-01-01

    The circadian clock has a profound effect on gene regulation, controlling rhythmic transcript accumulation for up to half of expressed genes in eukaryotes. Evidence also exists for clock control of mRNA translation, but the extent and mechanisms for this regulation are not known. In Neurospora crassa, the circadian clock generates daily rhythms in the activation of conserved mitogen-activated protein kinase (MAPK) pathways when cells are grown in constant conditions, including rhythmic activation of the well-characterized p38 osmosensing (OS) MAPK pathway. Rhythmic phosphorylation of the MAPK OS-2 (P-OS-2) leads to temporal control of downstream targets of OS-2. We show that osmotic stress in N. crassa induced the phosphorylation of a eukaryotic elongation factor-2 (eEF-2) kinase, radiation sensitivity complementing kinase-2 (RCK-2), and that RCK-2 is necessary for high-level phosphorylation of eEF-2, a key regulator of translation elongation. The levels of phosphorylated RCK-2 and phosphorylated eEF-2 cycle in abundance in wild-type cells but not in cells deleted for OS-2 or the core clock component FREQUENCY (FRQ). Translation extracts from cells grown in constant conditions show decreased translational activity in the late subjective morning, coincident with the peak in eEF-2 phosphorylation, and rhythmic translation of glutathione S-transferase (GST-3) from constitutive mRNA levels in vivo is dependent on circadian regulation of eEF-2 activity. In contrast, rhythms in phosphorylated eEF-2 levels are not necessary for rhythms in accumulation of the clock protein FRQ, indicating that clock control of eEF-2 activity promotes rhythmic translation of specific mRNAs. PMID:27506798

  5. Application of high-resolution capillary array electrophoresis with automated fraction collection for GeneCalling analysis of the yeast genomic DNA

    Czech Academy of Sciences Publication Activity Database

    Berka, J.; Ruiz-Martinez, M. C.; Hammond, R.; Minarik, M.; Foret, František; Sosic, Z.; Klepárník, Karel; Karger, B. L.

    2003-01-01

    Roč. 24, č. 4 (2003), s. 639-647 ISSN 0173-0835 R&D Projects: GA ČR GA203/00/0772; GA ČR GA303/00/0928 Institutional research plan: CEZ:AV0Z4031919 Keywords : capillary array * fraction collection * gene expression profiling Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.040, year: 2003

  6. Origin and evolution of the self-organizing cytoskeleton in the network of eukaryotic organelles.

    Science.gov (United States)

    Jékely, Gáspár

    2014-09-02

    The eukaryotic cytoskeleton evolved from prokaryotic cytomotive filaments. Prokaryotic filament systems show bewildering structural and dynamic complexity and, in many aspects, prefigure the self-organizing properties of the eukaryotic cytoskeleton. Here, the dynamic properties of the prokaryotic and eukaryotic cytoskeleton are compared, and how these relate to function and evolution of organellar networks is discussed. The evolution of new aspects of filament dynamics in eukaryotes, including severing and branching, and the advent of molecular motors converted the eukaryotic cytoskeleton into a self-organizing "active gel," the dynamics of which can only be described with computational models. Advances in modeling and comparative genomics hold promise of a better understanding of the evolution of the self-organizing cytoskeleton in early eukaryotes, and its role in the evolution of novel eukaryotic functions, such as amoeboid motility, mitosis, and ciliary swimming. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  7. Automation in Clinical Microbiology

    Science.gov (United States)

    Ledeboer, Nathan A.

    2013-01-01

    Historically, the trend toward automation in clinical pathology laboratories has largely bypassed the clinical microbiology laboratory. In this article, we review the historical impediments to automation in the microbiology laboratory and offer insight into the reasons why we believe that we are on the cusp of a dramatic change that will sweep a wave of automation into clinical microbiology laboratories. We review the currently available specimen-processing instruments as well as the total laboratory automation solutions. Lastly, we outline the types of studies that will need to be performed to fully assess the benefits of automation in microbiology laboratories. PMID:23515547

  8. Automation of industrial bioprocesses.

    Science.gov (United States)

    Beyeler, W; DaPra, E; Schneider, K

    2000-01-01

    The dramatic development of new electronic devices within the last 25 years has had a substantial influence on the control and automation of industrial bioprocesses. Within this short period of time the method of controlling industrial bioprocesses has changed completely. In this paper, the authors will use a practical approach focusing on the industrial applications of automation systems. From the early attempts to use computers for the automation of biotechnological processes up to the modern process automation systems some milestones are highlighted. Special attention is given to the influence of Standards and Guidelines on the development of automation systems.

  9. The Evolution of the GPCR Signaling System in Eukaryotes: Modularity, Conservation, and the Transition to Metazoan Multicellularity

    Science.gov (United States)

    de Mendoza, Alex; Sebé-Pedrós, Arnau; Ruiz-Trillo, Iñaki

    2014-01-01

    The G-protein-coupled receptor (GPCR) signaling system is one of the main signaling pathways in eukaryotes. Here, we analyze the evolutionary history of all its components, from receptors to regulators, to gain a broad picture of its system-level evolution. Using eukaryotic genomes covering most lineages sampled to date, we find that the various components of the GPCR signaling pathway evolved independently, highlighting the modular nature of this system. Our data show that some GPCR families, G proteins, and regulators of G proteins diversified through lineage-specific diversifications and recurrent domain shuffling. Moreover, most of the gene families involved in the GPCR signaling system were already present in the last common ancestor of eukaryotes. Furthermore, we show that the unicellular ancestor of Metazoa already had most of the cytoplasmic components of the GPCR signaling system, including, remarkably, all the G protein alpha subunits, which are typical of metazoans. Thus, we show how the transition to multicellularity involved conservation of the signaling transduction machinery, as well as a burst of receptor diversification to cope with the new multicellular necessities. PMID:24567306

  10. UTRdb and UTRsite: a collection of sequences and regulatory motifs of the untranslated regions of eukaryotic mRNAs

    Science.gov (United States)

    Mignone, Flavio; Grillo, Giorgio; Licciulli, Flavio; Iacono, Michele; Liuni, Sabino; Kersey, Paul J.; Duarte, Jorge; Saccone, Cecilia; Pesole, Graziano

    2005-01-01

    The 5′ and 3′ untranslated regions of eukaryotic mRNAs play crucial roles in the post-transcriptional regulation of gene expression through the modulation of nucleo-cytoplasmic mRNA transport, translation efficiency, subcellular localization and message stability. UTRdb is a curated database of 5′ and 3′ untranslated sequences of eukaryotic mRNAs, derived from several sources of primary data. Experimentally validated functional motifs are annotated (and also collated as the UTRsite database) and cross-links to genomic and protein data are provided. The integration of UTRdb with genomic and protein data has allowed the implementation of a powerful retrieval resource for the selection and extraction of UTR subsets based on their genomic coordinates and/or features of the protein encoded by the relevant mRNA (e.g. GO term, PFAM domain, etc.). All internet resources implemented for retrieval and functional analysis of 5′ and 3′ untranslated regions of eukaryotic mRNAs are accessible at http://www.ba.itb.cnr.it/UTR/. PMID:15608165

  11. Comparative expression of wild-type and highly soluble mutant His103Leu of hydroxynitrile lyase from Manihot esculenta in prokaryotic and eukaryotic expression systems.

    Science.gov (United States)

    Dadashipour, Mohammad; Fukuta, Yasuhisa; Asano, Yasuhisa

    2011-05-01

    Low protein solubility and inclusion body formation represent big challenges in production of recombinant proteins in Escherichia coli. We have recently reported functional expression of hydroxynitrile lyase from Manihot esculenta, MeHNL, in E. coli with high in vivo solubility and activity using directed evolution. As a part of attempts to clarify the mechanism of this phenomenon, we have described the possibility of expression of the highly active and soluble mutant MeHNL-His103Leu as well as wild-type enzyme in several expression systems. Methylotrophic yeast Pichia pastoris, protozoan host Leishmania tarentolae and two cell-free translations, including an E. coli lysate (WakoPURE system) and wheat germ translation system were used to compare expression profiles of the genes. Two distinguishable protein expression patterns were observed in prokaryotic and eukaryotic-based systems. The wild-type and mutant enzyme showed high activity for both genes (up to 10 U/ml) in eukaryotic hosts P. pastoris and L. tarentolae, while those of E. coli exhibited about 1 and 15 U/ml, respectively. The different activity level in prokaryotic systems but the same level among the eukaryotic hosts indicate the phenomenon is specific to the E. coli system. Both the wild-type and mutant enzymes were functionally expressed in eukaryotic systems, probably using the folding assistants such as chaperones. Properties of expression systems used in this study were precisely compared, too. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Interaction of Low Temperature Plasmas with Prokaryotic and Eukaryotic Cells

    Science.gov (United States)

    Laroussi, Mounir

    2008-10-01

    Due to promising possibilities for their use in medical applications such as wound healing, surface modification of biocompatible materials, and the sterilization of reusable heat-sensitive medical instruments, low temperature plasmas and plasma jets are making big strides as a technology that can potentially be used in medicine^1-2. At this stage of research, fundamental questions about the effects of plasma on prokaryotic and eukaryotic cells are still not completely answered. An in-depth understanding of the pathway whereby cold plasma interact with biological cells is necessary before real applications can emerge. In this paper, first an overview of non-equilibrium plasma sources (both low and high pressures) will be presented. Secondly, the effects of plasma on bacterial cells will be discussed. Here, the roles of the various plasma agents in the inactivation process will be outlined. In particular, the effects of UV and that of various reactive species (O3, O, OH) are highlighted. Thirdly, preliminary findings on the effects of plasma on few types of eukaryotic cells will be presented. How plasma affects eukaryotic cells, such as mammalian cells, is very important in applications where the viability/preservation of the cells could be an issue (such as in wound treatment). Another interesting aspect is the triggering of apoptosis (programmed cell death). Some investigators have claimed that plasma is able to induce apoptosis in some types of cancer cells. If successfully replicated, this can open up a novel method of cancer treatment. In this talk however, I will briefly focus more on the wound healing potential of cold plasmas. ^1E. A. Blakely, K. A. Bjornstad, J. E. Galvin, O. R. Monteiro, and I. G. Brown, ``Selective Neuron Growth on Ion Implanted and Plasma Deposited Surfaces'', In Proc. IEEE Int. Conf. Plasma Sci., (2002), p. 253. ^2M. Laroussi, ``Non-thermal Decontamination of Biological Media by Atmospheric Pressure Plasmas: Review, Analysis, and

  13. Rationales and Approaches for Studying Metabolism in Eukaryotic Microalgae

    Directory of Open Access Journals (Sweden)

    Daniel Veyel

    2014-04-01

    Full Text Available The generation of efficient production strains is essential for the use of eukaryotic microalgae for biofuel production. Systems biology approaches including metabolite profiling on promising microalgal strains, will provide a better understanding of their metabolic networks, which is crucial for metabolic engineering efforts. Chlamydomonas reinhardtii represents a suited model system for this purpose. We give an overview to genetically amenable microalgal strains with the potential for biofuel production and provide a critical review of currently used protocols for metabolite profiling on Chlamydomonas. We provide our own experimental data to underpin the validity of the conclusions drawn.

  14. Geminin: a major DNA replication safeguard in higher eukaryotes

    DEFF Research Database (Denmark)

    Melixetian, Marina; Helin, Kristian

    2004-01-01

    Eukaryotes have evolved multiple mechanisms to restrict DNA replication to once per cell cycle. These mechanisms prevent relicensing of origins of replication after initiation of DNA replication in S phase until the end of mitosis. Most of our knowledge of mechanisms controlling prereplication...... complex (preRC) formation are based on studies from yeast and Xenopus, while much less is known for mammalian cells. Here we discuss our recent data demonstrating that Geminin is required for preventing rereplication in human normal and cancer cells....

  15. Localization of checkpoint and repair proteins in eukaryotes

    DEFF Research Database (Denmark)

    Lisby, Michael; Rothstein, Rodney

    2005-01-01

    In eukaryotes, the cellular response to DNA damage depends on the type of DNA structure being recognized by the checkpoint and repair machinery. DNA ends and single-stranded DNA are hallmarks of double-strand breaks and replication stress. These two structures are recognized by distinct sets...... of proteins, which are reorganized into a focal assembly at the lesion. Moreover, the composition of these foci is coordinated with cell cycle progression, reflecting the favoring of end-joining in the G1 phase and homologous recombination in S and G2. The assembly of proteins at sites of DNA damage...... focusing on budding yeast and mammalian cells....

  16. DNA resection in eukaryotes: deciding how to fix the break.

    Science.gov (United States)

    Huertas, Pablo

    2010-01-01

    DNA double-strand breaks are repaired by different mechanisms, including homologous recombination and nonhomologous end-joining. DNA-end resection, the first step in recombination, is a key step that contributes to the choice of DSB repair. Resection, an evolutionarily conserved process that generates single-stranded DNA, is linked to checkpoint activation and is critical for survival. Failure to regulate and execute this process results in defective recombination and can contribute to human disease. Here I review recent findings on the mechanisms of resection in eukaryotes, from yeast to vertebrates, provide insights into the regulatory strategies that control it, and highlight the consequences of both its impairment and its deregulation.

  17. Computación evolutiva y aprendizaje automático para la inferencia, modelado y simulación de redes regulatorias de genes

    OpenAIRE

    Carballido, Jessica Andrea; Ponzoni, Ignacio; Gallo, Cristian Andrés

    2009-01-01

    Los alcances principales de esta línea de I/D consisten en diseñar técnicas computacionales que asistan a expertos en bioinformática en la obtención de nuevos conocimientos sobre el funcionamiento de los mecanismos de regulación existentes a nivel molecular en los organismos biológicos. Más específicamente, se busca desarrollar sistemas de software que asistan en la reconstrucción (o descubrimiento) de la estructura relacional presente en las redes regulatorias de genes.

  18. A possible mechanism for exonuclease 1-independent eukaryotic mismatch repair

    Science.gov (United States)

    Kadyrov, Farid A.; Genschel, Jochen; Fang, Yanan; Penland, Elisabeth; Edelmann, Winfried; Modrich, Paul

    2009-01-01

    Mismatch repair contributes to genetic stability, and inactivation of the mammalian pathway leads to tumor development. Mismatch correction occurs by an excision-repair mechanism and has been shown to depend on the 5′ to 3′ hydrolytic activity exonuclease 1 (Exo1) in eukaryotic cells. However, genetic and biochemical studies have indicated that one or more Exo1-independent modes of mismatch repair also exist. We have analyzed repair of nicked circular heteroduplex DNA in extracts of Exo1-deficient mouse embryo fibroblast cells. Exo1-independent repair under these conditions is MutLα-dependent and requires functional integrity of the MutLα endonuclease metal-binding motif. In contrast to the Exo1-dependent reaction, we have been unable to detect a gapped excision intermediate in Exo1-deficient extracts when repair DNA synthesis is blocked. A possible explanation for this finding has been provided by analysis of a purified system comprised of MutSα, MutLα, replication factor C, proliferating cell nuclear antigen, replication protein A, and DNA polymerase δ that supports Exo1-independent repair in vitro. Repair in this system depends on MutLα incision of the nicked heteroduplex strand and dNTP-dependent synthesis-driven displacement of a DNA segment spanning the mismatch. Such a mechanism may account, at least in part, for the Exo1-independent repair that occurs in eukaryotic cells, and hence the modest cancer predisposition of Exo1-deficient mammalian cells. PMID:19420220

  19. Eukaryotic Replisome Components Cooperate to Process Histones During Chromosome Replication

    Directory of Open Access Journals (Sweden)

    Magdalena Foltman

    2013-03-01

    Full Text Available DNA unwinding at eukaryotic replication forks displaces parental histones, which must be redeposited onto nascent DNA in order to preserve chromatin structure. By screening systematically for replisome components that pick up histones released from chromatin into a yeast cell extract, we found that the Mcm2 helicase subunit binds histones cooperatively with the FACT (facilitiates chromatin transcription complex, which helps to re-establish chromatin during transcription. FACT does not associate with the Mcm2-7 helicase at replication origins during G1 phase but is subsequently incorporated into the replisome progression complex independently of histone binding and uniquely among histone chaperones. The amino terminal tail of Mcm2 binds histones via a conserved motif that is dispensable for DNA synthesis per se but helps preserve subtelomeric chromatin, retain the 2 micron minichromosome, and support growth in the absence of Ctf18-RFC. Our data indicate that the eukaryotic replication and transcription machineries use analogous assemblies of multiple chaperones to preserve chromatin integrity.

  20. In silico ionomics segregates parasitic from free-living eukaryotes.

    Science.gov (United States)

    Greganova, Eva; Steinmann, Michael; Mäser, Pascal; Fankhauser, Niklaus

    2013-01-01

    Ion transporters are fundamental to life. Due to their ancient origin and conservation in sequence, ion transporters are also particularly well suited for comparative genomics of distantly related species. Here, we perform genome-wide ion transporter profiling as a basis for comparative genomics of eukaryotes. From a given predicted proteome, we identify all bona fide ion channels, ion porters, and ion pumps. Concentrating on unicellular eukaryotes (n = 37), we demonstrate that clustering of species according to their repertoire of ion transporters segregates obligate endoparasites (n = 23) on the one hand, from free-living species and facultative parasites (n = 14) on the other hand. This surprising finding indicates strong convergent evolution of the parasites regarding the acquisition and homeostasis of inorganic ions. Random forest classification identifies transporters of ammonia, plus transporters of iron and other transition metals, as the most informative for distinguishing the obligate parasites. Thus, in silico ionomics further underscores the importance of iron in infection biology and suggests access to host sources of nitrogen and transition metals to be selective forces in the evolution of parasitism. This finding is in agreement with the phenomenon of iron withholding as a primordial antimicrobial strategy of infected mammals.

  1. Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense.

    Directory of Open Access Journals (Sweden)

    Carsten Matz

    Full Text Available Many plants and animals are defended from predation or herbivory by inhibitory secondary metabolites, which in the marine environment are very common among sessile organisms. Among bacteria, where there is the greatest metabolic potential, little is known about chemical defenses against bacterivorous consumers. An emerging hypothesis is that sessile bacterial communities organized as biofilms serve as bacterial refuge from predation. By testing growth and survival of two common bacterivorous nanoflagellates, we find evidence that chemically mediated resistance against protozoan predators is common among biofilm populations in a diverse set of marine bacteria. Using bioassay-guided chemical and genetic analysis, we identified one of the most effective antiprotozoal compounds as violacein, an alkaloid that we demonstrate is produced predominately within biofilm cells. Nanomolar concentrations of violacein inhibit protozoan feeding by inducing a conserved eukaryotic cell death program. Such biofilm-specific chemical defenses could contribute to the successful persistence of biofilm bacteria in various environments and provide the ecological and evolutionary context for a number of eukaryote-targeting bacterial metabolites.

  2. A selectable bifunctional beta-galactosidase::phleomycin-resistance fusion protein as a potential marker for eukaryotic cells.

    Science.gov (United States)

    Baron, M; Reynes, J P; Stassi, D; Tiraby, G

    1992-05-15

    The Sh ble gene, conferring phleomycin resistance (PhR), was fused in frame to both the 3' and 5' ends of the Escherichia coli lacZ gene. The bifunctionality of the resulting 130-kDa hybrid proteins was demonstrated in E. coli and in the fungus, Tolypocladium geodes. PhR transformants of both organisms could be selected for. All transformants from E. coli and most from T. geodes displayed beta Gal activity. In the fungal host, higher transformation frequencies and greater levels of beta Gal activity were observed in clones harboring the lacZ::Sh ble fusion, as compared to the Sh ble::lacZ configuration. This system appears to be a potentially useful tool for the direct selection of transformants, and the evaluation of gene expression and regulation in a wide variety of prokaryotic and eukaryotic hosts.

  3. Automation systems for radioimmunoassay

    International Nuclear Information System (INIS)

    Yamasaki, Paul

    1974-01-01

    The application of automation systems for radioimmunoassay (RIA) was discussed. Automated systems could be useful in the second step, of the four basic processes in the course of RIA, i.e., preparation of sample for reaction. There were two types of instrumentation, a semi-automatic pipete, and a fully automated pipete station, both providing for fast and accurate dispensing of the reagent or for the diluting of sample with reagent. Illustrations of the instruments were shown. (Mukohata, S.)

  4. Automated stopcock actuator

    OpenAIRE

    Vandehey, N. T.; O\\'Neil, J. P.

    2015-01-01

    Introduction We have developed a low-cost stopcock valve actuator for radiochemistry automation built using a stepper motor and an Arduino, an open-source single-board microcontroller. The con-troller hardware can be programmed to run by serial communication or via two 5–24 V digital lines for simple integration into any automation control system. This valve actuator allows for automated use of a single, disposable stopcock, providing a number of advantages over stopcock manifold systems ...

  5. Automated Analysis of Accountability

    DEFF Research Database (Denmark)

    Bruni, Alessandro; Giustolisi, Rosario; Schürmann, Carsten

    2017-01-01

    that are amenable to automated verification. Our definitions are general enough to be applied to different classes of protocols and different automated security verification tools. Furthermore, we point out formally the relation between verifiability and accountability. We validate our definitions...... with the automatic verification of three protocols: a secure exam protocol, Google’s Certificate Transparency, and an improved version of Bingo Voting. We find through automated verification that all three protocols satisfy verifiability while only the first two protocols meet accountability....

  6. Effect of environmental variables on eukaryotic microbial community structure of land-fast Arctic sea ice.

    Science.gov (United States)

    Eddie, Brian; Juhl, Andrew; Krembs, Christopher; Baysinger, Charles; Neuer, Susanne

    2010-03-01

    Sea ice microbial community structure affects carbon and nutrient cycling in polar seas, but its susceptibility to changing environmental conditions is not well understood. We studied the eukaryotic microbial community in sea ice cores recovered near Point Barrow, AK in May 2006 by documenting the composition of the community in relation to vertical depth within the cores, as well as light availability (mainly as variable snow cover) and nutrient concentrations. We applied a combination of epifluorescence microscopy, denaturing gradient gel electrophoresis and clone libraries of a section of the 18S rRNA gene in order to compare the community structure of the major eukaryotic microbial phylotypes in the ice. We find that the community composition of the sea ice is more affected by the depth horizon in the ice than by light availability, although there are significant differences in the abundance of some groups between light regimes. Epifluorescence microscopy shows a shift from predominantly heterotrophic life styles in the upper ice to autotrophy prevailing in the bottom ice. This is supported by the statistical analysis of the similarity between the samples based on the denaturing gradient gel electrophoresis banding patterns, which shows a clear difference between upper and lower ice sections with respect to phylotypes and their proportional abundance. Clone libraries constructed using diatom-specific primers confirm the high diversity of diatoms in the sea ice, and support the microscopic counts. Evidence of protistan grazing upon diatoms was also found in lower sections of the core, with implications for carbon and nutrient recycling in the ice.

  7. Pyrosequencing assessment of prokaryotic and eukaryotic diversity in biofilm communities from a French river.

    Science.gov (United States)

    Bricheux, Geneviève; Morin, Loïc; Le Moal, Gwenaël; Coffe, Gérard; Balestrino, Damien; Charbonnel, Nicolas; Bohatier, Jacques; Forestier, Christiane

    2013-06-01

    Despite the recent and significant increase in the study of aquatic microbial communities, little is known about the microbial diversity of complex ecosystems such as running waters. This study investigated the biodiversity of biofilm communities formed in a river with 454 Sequencing™. This river has the particularity of integrating both organic and microbiological pollution, as receiver of agricultural pollution in its upstream catchment area and urban pollution through discharges of the wastewater treatment plant of the town of Billom. Different regions of the small subunit (SSU) ribosomal RNA gene were targeted using nine pairs of primers, either universal or specific for bacteria, eukarya, or archaea. Our aim was to characterize the widest range of rDNA sequences using different sets of polymerase chain reaction (PCR) primers. A first look at reads abundance revealed that a large majority (47-48%) were rare sequences (<5 copies). Prokaryotic phyla represented the species richness, and eukaryotic phyla accounted for a small part. Among the prokaryotic phyla, Proteobacteria (beta and alpha) predominated, followed by Bacteroidetes together with a large number of nonaffiliated bacterial sequences. Bacillariophyta plastids were abundant. The remaining bacterial phyla, Verrucomicrobia and Cyanobacteria, made up the rest of the bulk biodiversity. The most abundant eukaryotic phyla were annelid worms, followed by Diatoms, and Chlorophytes. These latter phyla attest to the abundance of plastids and the importance of photosynthetic activity for the biofilm. These findings highlight the existence and plasticity of multiple trophic levels within these complex biological systems. © 2013 The Authors. Microbiology Open published by John Wiley & Sons Ltd.

  8. Management Planning for Workplace Automation.

    Science.gov (United States)

    McDole, Thomas L.

    Several factors must be considered when implementing office automation. Included among these are whether or not to automate at all, the effects of automation on employees, requirements imposed by automation on the physical environment, effects of automation on the total organization, and effects on clientele. The reasons behind the success or…

  9. Laboratory Automation and Middleware.

    Science.gov (United States)

    Riben, Michael

    2015-06-01

    The practice of surgical pathology is under constant pressure to deliver the highest quality of service, reduce errors, increase throughput, and decrease turnaround time while at the same time dealing with an aging workforce, increasing financial constraints, and economic uncertainty. Although not able to implement total laboratory automation, great progress continues to be made in workstation automation in all areas of the pathology laboratory. This report highlights the benefits and challenges of pathology automation, reviews middleware and its use to facilitate automation, and reviews the progress so far in the anatomic pathology laboratory. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Automated cloning methods.; TOPICAL

    International Nuclear Information System (INIS)

    Collart, F.

    2001-01-01

    Argonne has developed a series of automated protocols to generate bacterial expression clones by using a robotic system designed to be used in procedures associated with molecular biology. The system provides plate storage, temperature control from 4 to 37 C at various locations, and Biomek and Multimek pipetting stations. The automated system consists of a robot that transports sources from the active station on the automation system. Protocols for the automated generation of bacterial expression clones can be grouped into three categories (Figure 1). Fragment generation protocols are initiated on day one of the expression cloning procedure and encompass those protocols involved in generating purified coding region (PCR)

  11. Complacency and Automation Bias in the Use of Imperfect Automation.

    Science.gov (United States)

    Wickens, Christopher D; Clegg, Benjamin A; Vieane, Alex Z; Sebok, Angelia L

    2015-08-01

    We examine the effects of two different kinds of decision-aiding automation errors on human-automation interaction (HAI), occurring at the first failure following repeated exposure to correctly functioning automation. The two errors are incorrect advice, triggering the automation bias, and missing advice, reflecting complacency. Contrasts between analogous automation errors in alerting systems, rather than decision aiding, have revealed that alerting false alarms are more problematic to HAI than alerting misses are. Prior research in decision aiding, although contrasting the two aiding errors (incorrect vs. missing), has confounded error expectancy. Participants performed an environmental process control simulation with and without decision aiding. For those with the aid, automation dependence was created through several trials of perfect aiding performance, and an unexpected automation error was then imposed in which automation was either gone (one group) or wrong (a second group). A control group received no automation support. The correct aid supported faster and more accurate diagnosis and lower workload. The aid failure degraded all three variables, but "automation wrong" had a much greater effect on accuracy, reflecting the automation bias, than did "automation gone," reflecting the impact of complacency. Some complacency was manifested for automation gone, by a longer latency and more modest reduction in accuracy. Automation wrong, creating the automation bias, appears to be a more problematic form of automation error than automation gone, reflecting complacency. Decision-aiding automation should indicate its lower degree of confidence in uncertain environments to avoid the automation bias. © 2015, Human Factors and Ergonomics Society.

  12. Automated update, revision, and quality control of the maize genome annotations using MAKER-P improves the B73 RefGen_v3 gene models and identifies new genes

    Science.gov (United States)

    The large size and relative complexity of many plant genomes make creation, quality control, and dissemination of high-quality gene structure annotations challenging. In response, we have developed MAKER-P, a fast and easy-to-use genome annotation engine for plants. Here, we report the use of MAKER-...

  13. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees.

    Science.gov (United States)

    Llorens, Carlos; Muñoz-Pomer, Alfonso; Bernad, Lucia; Botella, Hector; Moya, Andrés

    2009-11-02

    Sequencing projects have allowed diverse retroviruses and LTR retrotransposons from different eukaryotic organisms to be characterized. It is known that retroviruses and other retro-transcribing viruses evolve from LTR retrotransposons and that this whole system clusters into five families: Ty3/Gypsy, Retroviridae, Ty1/Copia, Bel/Pao and Caulimoviridae. Phylogenetic analyses usually show that these split into multiple distinct lineages but what is yet to be understood is how deep evolution occurred in this system. We combined phylogenetic and graph analyses to investigate the history of LTR retroelements both as a tree and as a network. We used 268 non-redundant LTR retroelements, many of them introduced for the first time in this work, to elucidate all possible LTR retroelement phylogenetic patterns. These were superimposed over the tree of eukaryotes to investigate the dynamics of the system, at distinct evolutionary times. Next, we investigated phenotypic features such as duplication and variability of amino acid motifs, and several differences in genomic ORF organization. Using this information we characterized eight reticulate evolution markers to construct phenotypic network models. The evolutionary history of LTR retroelements can be traced as a time-evolving network that depends on phylogenetic patterns, epigenetic host-factors and phenotypic plasticity. The Ty1/Copia and the Ty3/Gypsy families represent the oldest patterns in this network that we found mimics eukaryotic macroevolution. The emergence of the Bel/Pao, Retroviridae and Caulimoviridae families in this network can be related with distinct inflations of the Ty3/Gypsy family, at distinct evolutionary times. This suggests that Ty3/Gypsy ancestors diversified much more than their Ty1/Copia counterparts, at distinct geological eras. Consistent with the principle of preferential attachment, the connectivities among phenotypic markers, taken as network-represented combinations, are power

  14. Network dynamics of eukaryotic LTR retroelements beyond phylogenetic trees

    Directory of Open Access Journals (Sweden)

    Bernad Lucia

    2009-11-01

    Full Text Available Abstract Background Sequencing projects have allowed diverse retroviruses and LTR retrotransposons from different eukaryotic organisms to be characterized. It is known that retroviruses and other retro-transcribing viruses evolve from LTR retrotransposons and that this whole system clusters into five families: Ty3/Gypsy, Retroviridae, Ty1/Copia, Bel/Pao and Caulimoviridae. Phylogenetic analyses usually show that these split into multiple distinct lineages but what is yet to be understood is how deep evolution occurred in this system. Results We combined phylogenetic and graph analyses to investigate the history of LTR retroelements both as a tree and as a network. We used 268 non-redundant LTR retroelements, many of them introduced for the first time in this work, to elucidate all possible LTR retroelement phylogenetic patterns. These were superimposed over the tree of eukaryotes to investigate the dynamics of the system, at distinct evolutionary times. Next, we investigated phenotypic features such as duplication and variability of amino acid motifs, and several differences in genomic ORF organization. Using this information we characterized eight reticulate evolution markers to construct phenotypic network models. Conclusion The evolutionary history of LTR retroelements can be traced as a time-evolving network that depends on phylogenetic patterns, epigenetic host-factors and phenotypic plasticity. The Ty1/Copia and the Ty3/Gypsy families represent the oldest patterns in this network that we found mimics eukaryotic macroevolution. The emergence of the Bel/Pao, Retroviridae and Caulimoviridae families in this network can be related with distinct inflations of the Ty3/Gypsy family, at distinct evolutionary times. This suggests that Ty3/Gypsy ancestors diversified much more than their Ty1/Copia counterparts, at distinct geological eras. Consistent with the principle of preferential attachment, the connectivities among phenotypic markers, taken as

  15. Biological processing of dinuclear ruthenium complexes in eukaryotic cells.

    Science.gov (United States)

    Li, Xin; Heimann, Kirsten; Dinh, Xuyen Thi; Keene, F Richard; Collins, J Grant

    2016-10-20

    The biological processing - mechanism of cellular uptake, effects on the cytoplasmic and mitochondrial membranes, intracellular sites of localisation and induction of reactive oxygen species - of two dinuclear polypyridylruthenium(ii) complexes has been examined in three eukaryotic cells lines. Flow cytometry was used to determine the uptake of [{Ru(phen)2}2{μ-bb12}](4+) (Rubb12) and [Ru(phen)2(μ-bb7)Ru(tpy)Cl](3+) {Rubb7-Cl, where phen = 1,10-phenanthroline, tpy = 2,2':6',2''-terpyridine and bbn = bis[4(4'-methyl-2,2'-bipyridyl)]-1,n-alkane} in baby hamster kidney (BHK), human embryonic kidney (HEK-293) and liver carcinoma (HepG2) cell lines. The results demonstrated that the major uptake mechanism for Rubb12 and Rubb7-Cl was active transport, although with a significant contribution from carrier-assisted diffusion for Rubb12 and passive diffusion for Rubb7-Cl. Flow cytometry coupled with Annexin V/TO-PRO-3 double-staining was used to compare cell death by membrane damage or apoptosis. Rubb12 induced significant direct membrane damage, particularly with HepG2 cells, while Rubb7-Cl caused considerably less membrane damage but induced greater levels of apoptosis. Confocal microscopy, coupled with JC-1 assays, demonstrated that Rubb12 depolarises the mitochondrial membrane, whereas Rubb7-Cl had a much smaller affect. Cellular localisation experiments indicated that Rubb12 did not accumulate in the mitochondria, whereas significant mitochondrial accumulation was observed for Rubb7-Cl. The effect of Rubb12 and Rubb7-Cl on intracellular superoxide dismutase activity showed that the ruthenium complexes could induce cell death via a reactive oxygen species-mediated pathway. The results of this study demonstrate that Rubb12 predominantly kills eukaryotic cells by damaging the cytoplasmic membrane. As this dinuclear ruthenium complex has been previously shown to exhibit greater toxicity towards bacteria than eukaryotic cells, the results of the present study suggest that

  16. AGAPE (Automated Genome Analysis PipelinE for pan-genome analysis of Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Giltae Song

    Full Text Available The characterization and public release of genome sequences from thousands of organisms is expanding the scope for genetic variation studies. However, understanding the phenotypic consequences of genetic variation remains a challenge in eukaryotes due to the complexity of the genotype-phenotype map. One approach to this is the intensive study of model systems for which diverse sources of information can be accumulated and integrated. Saccharomyces cerevisiae is an extensively studied model organism, with well-known protein functions and thoroughly curated phenotype data. To develop and expand the available resources linking genomic variation with function in yeast, we aim to model the pan-genome of S. cerevisiae. To initiate the yeast pan-genome, we newly sequenced or re-sequenced the genomes of 25 strains that are commonly used in the yeast research community using advanced sequencing technology at high quality. We also developed a pipeline for automated pan-genome analysis, which integrates the steps of assembly, annotation, and variation calling. To assign strain-specific functional annotations, we identified genes that were not present in the reference genome. We classified these according to their presence or absence across strains and characterized each group of genes with known functional and phenotypic features. The functional roles of novel genes not found in the reference genome and associated with strains or groups of strains appear to be consistent with anticipated adaptations in specific lineages. As more S. cerevisiae strain genomes are released, our analysis can be used to collate genome data and relate it to lineage-specific patterns of genome evolution. Our new tool set will enhance our understanding of genomic and functional evolution in S. cerevisiae, and will be available to the yeast genetics and molecular biology community.

  17. An Interactive Exercise To Learn Eukaryotic Cell Structure and Organelle Function.

    Science.gov (United States)

    Klionsky, Daniel J.; Tomashek, John J.

    1999-01-01

    Describes a cooperative, interactive problem-solving exercise for studying eukaryotic cell structure and function. Highlights the dynamic aspects of movement through the cell. Contains 15 references. (WRM)

  18. Ancient photosynthetic eukaryote biofilms in an Atacama Desert coastal cave

    Science.gov (United States)

    Azua-Bustos, A.; Gonzalez-Silva, C.; Mancilla, R.A.; Salas, L.; Palma, R.E.; Wynne, J.J.; McKay, C.P.; Vicuna, R.

    2009-01-01

    Caves offer a stable and protected environment from harsh and changing outside prevailing conditions. Hence, they represent an interesting habitat for studying life in extreme environments. Here, we report the presence of a member of the ancient eukaryote red algae Cyanidium group in a coastal cave of the hyperarid Atacama Desert. This microorganism was found to form a seemingly monospecific biofilm growing under extremely low photon flux levels. Our work suggests that this species, Cyanidium sp. Atacama, is a new member of a recently proposed novel monophyletic lineage of mesophilic "cave" Cyanidium sp., distinct from the remaining three other lineages which are all thermo-acidophilic. The cave described in this work may represent an evolutionary island for life in the midst of the Atacama Desert. ?? Springer Science + Business Media, LLC 2009.

  19. Eukaryotic Mismatch Repair in Relation to DNA Replication

    Science.gov (United States)

    Erie, Dorothy A.

    2017-01-01

    Three processes act in series to accurately replicate the eukaryotic nuclear genome. The major replicative DNA polymerases strongly prevent mismatch formation, occasional mismatches that do form are proofread during replication, and rare mismatches that escape proofreading are corrected by mismatch repair (MMR). This review focuses on MMR in light of increasing knowledge about nuclear DNA replication enzymology and the rate and specificity with which mismatches are generated during leading- and lagging-strand replication. We consider differences in MMR efficiency in relation to mismatch recognition, signaling to direct MMR to the nascent strand, mismatch removal, and the timing of MMR. These studies are refining our understanding of relationships between generating and repairing replication errors to achieve accurate replication of both DNA strands of the nuclear genome. PMID:26436461

  20. Eukaryotic and prokaryotic microbial communities during microalgal biomass production.

    Science.gov (United States)

    Lakaniemi, Aino-Maija; Hulatt, Chris J; Wakeman, Kathryn D; Thomas, David N; Puhakka, Jaakko A

    2012-11-01

    Eukaryotic and bacterial communities were characterized and quantified in microalgal photobioreactor cultures of freshwater Chlorella vulgaris and marine Dunaliella tertiolecta. The microalgae exhibited good growth, whilst both cultures contained diverse bacterial communities. Both cultures included Proteobacteria and Bacteroidetes, while C. vulgaris cultures also contained Actinobacteria. The bacterial genera present in the cultures were different due to different growth medium salinities and possibly different extracellular products. Bacterial community profiles were relatively stable in D. tertiolecta cultures but not in C. vulgaris cultures likely due to presence of ciliates (Colpoda sp.) in the latter. The presence of ciliates did not, however, cause decrease in total number of C. vulgaris or bacteria during 14 days of cultivation. Quantitative PCR (qPCR) reliably showed relative microalgal and bacterial cell numbers in the batch cultures with stable microbial communities, but was not effective when bacterial communities varied. Raw culture samples were successfully used as qPCR templates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Pi sensing and signalling: from prokaryotic to eukaryotic cells.

    Science.gov (United States)

    Qi, Wanjun; Baldwin, Stephen A; Muench, Stephen P; Baker, Alison

    2016-06-15

    Phosphorus is one of the most important macronutrients and is indispensable for all organisms as a critical structural component as well as participating in intracellular signalling and energy metabolism. Sensing and signalling of phosphate (Pi) has been extensively studied and is well understood in single-cellular organisms like bacteria (Escherichia coli) and Saccharomyces cerevisiae In comparison, the mechanism of Pi regulation in plants is less well understood despite recent advances in this area. In most soils the available Pi limits crop yield, therefore a clearer understanding of the molecular basis underlying Pi sensing and signalling is of great importance for the development of plants with improved Pi use efficiency. This mini-review compares some of the main Pi regulation pathways in prokaryotic and eukaryotic cells and identifies similarities and differences among different organisms, as well as providing some insight into future research. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  2. Eukaryotic promoter prediction based on relative entropy and positional information.

    Science.gov (United States)

    Wu, Shuanhu; Xie, Xudong; Liew, Alan Wee-Chung; Yan, Hong

    2007-04-01

    The eukaryotic promoter prediction is one of the most important problems in DNA sequence analysis, but also a very difficult one. Although a number of algorithms have been proposed, their performances are still limited by low sensitivities and high false positives. We present a method for improving the performance of promoter regions prediction. We focus on the selection of most effective features for different functional regions in DNA sequences. Our feature selection algorithm is based on relative entropy or Kullback-Leibler divergence, and a system combined with position-specific information for promoter regions prediction is developed. The results of testing on large genomic sequences and comparisons with the PromoterInspector and Dragon Promoter Finder show that our algorithm is efficient with higher sensitivity and specificity in predicting promoter regions.

  3. Substrate protein recognition mechanism of archaeal and eukaryotic chaperonins.

    Science.gov (United States)

    Shrestha, Pooja; Jayasinghe, Manori; Stan, George

    2009-03-01

    Chaperonins are double ring-shaped biological nanomachines that assist protein folding. Spectacular conformational changes take place within each chaperonin ring using energy derived from ATP hydrolysis. These changes result in transitions from the open to the closed ring. Substrate proteins bind to the open ring and are encapsulated within the closed ring cavity. We focus on the substrate protein recognition mechanism of archaeal and eukaryotic chaperonins. We predict substrate protein binding sites using structural and bioinformatic analyses of functional states during the chaperonin cycle. Based on large changes in solvent accessible surface area and contact maps we glean the functional role of chaperonin amino acids. During the transition between open to closed chaperonin ring, the largest change in accessible surface area of amino acids is found in helical protrusion and two helices located at the cavity opening. Our calculations suggest that the helical protrusion and two helices constitute the substrate protein binding site.

  4. A general strategy to construct small molecule biosensors in eukaryotes.

    Science.gov (United States)

    Feng, Justin; Jester, Benjamin W; Tinberg, Christine E; Mandell, Daniel J; Antunes, Mauricio S; Chari, Raj; Morey, Kevin J; Rios, Xavier; Medford, June I; Church, George M; Fields, Stanley; Baker, David

    2015-12-29

    Biosensors for small molecules can be used in applications that range from metabolic engineering to orthogonal control of transcription. Here, we produce biosensors based on a ligand-binding domain (LBD) by using a method that, in principle, can be applied to any target molecule. The LBD is fused to either a fluorescent protein or a transcriptional activator and is destabilized by mutation such that the fusion accumulates only in cells containing the target ligand. We illustrate the power of this method by developing biosensors for digoxin and progesterone. Addition of ligand to yeast, mammalian, or plant cells expressing a biosensor activates transcription with a dynamic range of up to ~100-fold. We use the biosensors to improve the biotransformation of pregnenolone to progesterone in yeast and to regulate CRISPR activity in mammalian cells. This work provides a general methodology to develop biosensors for a broad range of molecules in eukaryotes.

  5. Crystal structures of two eukaryotic nucleases involved in RNA metabolism

    DEFF Research Database (Denmark)

    Jonstrup, Anette Thyssen; Midtgaard, Søren Fuglsang; Van, Lan Bich

    specific transcripts. Here, we present the crystal structure of the S. pombe Pop2p protein to 1.4 Å resolution. The high resolution structure provides a clear picture of the active site architecture. Structural alignment of single nucleotides and poly(A)-oligonucleotides from earlier co-crystal structures...... form the 3'-end of mRNA, is normally the first and also rate-limiting step in cellular mRNA degradation and therefore a key process in the control of eukaryotic mRNA turnover. Since Ccr4p is believed to be the main deadenylase the precise role of Pop2p in the complex is less clear. Nevertheless, Pop2p...

  6. Saccharomyces cerevisiae: a versatile eukaryotic system in virology

    Directory of Open Access Journals (Sweden)

    Breinig Tanja

    2007-10-01

    Full Text Available Abstract The yeast Saccharomyces cerevisiae is a well-established model system for understanding fundamental cellular processes relevant to higher eukaryotic organisms. Less known is its value for virus research, an area in which Saccharomyces cerevisiae has proven to be very fruitful as well. The present review will discuss the main achievements of yeast-based studies in basic and applied virus research. These include the analysis of the function of individual proteins from important pathogenic viruses, the elucidation of key processes in viral replication through the development of systems that allow the replication of higher eukayotic viruses in yeast, and the use of yeast in antiviral drug development and vaccine production.

  7. Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes.

    Directory of Open Access Journals (Sweden)

    María A Rujano

    2006-12-01

    Full Text Available Disease-associated misfolded proteins or proteins damaged due to cellular stress are generally disposed via the cellular protein quality-control system. However, under saturating conditions, misfolded proteins will aggregate. In higher eukaryotes, these aggregates can be transported to accumulate in aggresomes at the microtubule organizing center. The fate of cells that contain aggresomes is currently unknown. Here we report that cells that have formed aggresomes can undergo normal mitosis. As a result, the aggregated proteins are asymmetrically distributed to one of the daughter cells, leaving the other daughter free of accumulated protein damage. Using both epithelial crypts of the small intestine of patients with a protein folding disease and Drosophila melanogaster neural precursor cells as models, we found that the inheritance of protein aggregates during mitosis occurs with a fixed polarity indicative of a mechanism to preserve the long-lived progeny.

  8. The Role of Eukaryotic and Prokaryotic ABC Transporter Family in Failure of Chemotherapy.

    Science.gov (United States)

    El-Awady, Raafat; Saleh, Ekram; Hashim, Amna; Soliman, Nehal; Dallah, Alaa; Elrasheed, Azza; Elakraa, Ghada

    2016-01-01

    Over the years chemotherapy failure has been a vital research topic as researchers have been striving to discover reasons behind it. The extensive studies carried out on chemotherapeutic agents confirm that resistance to chemotherapy is a major reason for treatment failure. "Resistance to chemotherapy," however, is a comprehensive phrase that refers to a variety of different mechanisms in which ATP-binding cassette (ABC) mediated efflux dominates. The ABC is one of the largest gene superfamily of transporters among both eukaryotes and prokaryotes; it represents a variety of genes that code for proteins, which perform countless functions, including drug efflux - a natural process that protects cells from foreign chemicals. Up to date, chemotherapy failure due to ABC drug efflux is an active research topic that continuously provides further evidence on multiple drug resistance (MDR), aiding scientists in tackling and overcoming this issue. This review focuses on drug resistance by ABC efflux transporters in human, viral, parasitic, fungal and bacterial cells and highlights the importance of the MDR permeability glycoprotein being the mutual ABC transporter among all studied organisms. Current developments and future directions to overcome this problem are also discussed.

  9. An Asymmetrically Balanced Organization of Kinases versus Phosphatases across Eukaryotes Determines Their Distinct Impacts.

    Directory of Open Access Journals (Sweden)

    Ilan Smoly

    2017-01-01

    Full Text Available Protein phosphorylation underlies cellular response pathways across eukaryotes and is governed by the opposing actions of phosphorylating kinases and de-phosphorylating phosphatases. While kinases and phosphatases have been extensively studied, their organization and the mechanisms by which they balance each other are not well understood. To address these questions we performed quantitative analyses of large-scale 'omics' datasets from yeast, fly, plant, mouse and human. We uncovered an asymmetric balance of a previously-hidden scale: Each organism contained many different kinase genes, and these were balanced by a small set of highly abundant phosphatase proteins. Kinases were much more responsive to perturbations at the gene and protein levels. In addition, kinases had diverse scales of phenotypic impact when manipulated. Phosphatases, in contrast, were stable, highly robust and flatly organized, with rather uniform impact downstream. We validated aspects of this organization experimentally in nematode, and supported additional aspects by theoretic analysis of the dynamics of protein phosphorylation. Our analyses explain the empirical bias in the protein phosphorylation field toward characterization and therapeutic targeting of kinases at the expense of phosphatases. We show quantitatively and broadly that this is not only a historical bias, but stems from wide-ranging differences in their organization and impact. The asymmetric balance between these opposing regulators of protein phosphorylation is also common to opposing regulators of two other post-translational modification systems, suggesting its fundamental value.

  10. HSV usurps eukaryotic initiation factor 3 subunit M for viral protein translation: novel prevention target.

    Directory of Open Access Journals (Sweden)

    Natalia Cheshenko

    2010-07-01

    Full Text Available Prevention of genital herpes is a global health priority. B5, a recently identified ubiquitous human protein, was proposed as a candidate HSV entry receptor. The current studies explored its role in HSV infection. Viral plaque formation was reduced by approximately 90% in human cells transfected with small interfering RNA targeting B5 or nectin-1, an established entry receptor. However, the mechanisms were distinct. Silencing of nectin-1 prevented intracellular delivery of viral capsids, nuclear transport of a viral tegument protein, and release of calcium stores required for entry. In contrast, B5 silencing had no effect on these markers of entry, but inhibited viral protein translation. Specifically, viral immediate early genes, ICP0 and ICP4, were transcribed, polyadenylated and transported from the nucleus to the cytoplasm, but the viral transcripts did not associate with ribosomes or polysomes in B5-silenced cells. In contrast, immediate early gene viral transcripts were detected in polysome fractions isolated from control cells. These findings are consistent with sequencing studies demonstrating that B5 is eukaryotic initiation factor 3 subunit m (eIF3m. Although B5 silencing altered the polysome profile of cells, silencing had little effect on cellular RNA or protein expression and was not cytotoxic, suggesting that this subunit is not essential for host cellular protein synthesis. Together these results demonstrate that B5 plays a major role in the initiation of HSV protein translation and could provide a novel target for strategies to prevent primary and recurrent herpetic disease.

  11. Analysis of genomic sequence motifs for deciphering transcription factor binding and transcriptional regulation in eukaryotic cells

    Directory of Open Access Journals (Sweden)

    Valentina eBoeva

    2016-02-01

    Full Text Available Eukaryotic genomes contain a variety of structured patterns: repetitive elements, binding sites of DNA and RNA associated proteins, splice sites and so on. Often, these structured patterns can be formalized as motifs and described using a proper mathematical model such as position weight matrix and IUPAC consensus. Two key tasks are typically carried out for motifs in the context of the analysis of genomic sequences. These are: identification in a set of DNA regions of over-represented motifs from a particular motif database, and de novo discovery of over-represented motifs. Here we describe existing methodology to perform these two tasks for motifs characterizing transcription factor binding. When applied to the output of ChIP-seq and ChIP-exo experiments, or to promoter regions of co-modulated genes, motif analysis techniques allow for the prediction of transcription factor binding events and enable identification of transcriptional regulators and co-regulators. The usefulness of motif analysis is further exemplified in this review by how motif discovery improves peak calling in ChIP-seq and ChIP-exo experiments and, when coupled with information on gene expression, allows insights into physical mechanisms of transcriptional modulation.

  12. Shock Wave-Induced Damage and Poration in Eukaryotic Cell Membranes.

    Science.gov (United States)

    López-Marín, Luz M; Millán-Chiu, Blanca E; Castaño-González, Karen; Aceves, Carmen; Fernández, Francisco; Varela-Echavarría, Alfredo; Loske, Achim M

    2017-02-01

    Shock waves are known to permeabilize eukaryotic cell membranes, which may be a powerful tool for a variety of drug delivery applications. However, the mechanisms involved in shock wave-mediated membrane permeabilization are still poorly understood. In this study, the effects on both the permeability and the ultrastructural features of two human cell lineages were investigated after the application of underwater shock waves in vitro. Scanning Electron Microscopy of cells derived from a human embryo kidney (HEK)-293 and Michigan Cancer Foundation (MCF)-7 cells, an immortalized culture derived from human breast adenocarcinoma, showed a small amount of microvilli (as compared to control cells), the presence of hole-like structures, and a decrease in cell size after shock wave exposure. Interestingly, these effects were accompanied by the permeabilization of acid and macromolecular dyes and gene transfection. Trypan blue exclusion assays indicated that cell membranes were porated during shock wave treatment but resealed after a few seconds. Deformations of the cell membrane lasted for at least 5 min, allowing their observation in fixed cells. For each cell line, different shock wave parameters were needed to achieve cell membrane poration. This difference was correlated to successful gene transfection by shock waves. Our results demonstrate, for the first time, that shock waves induce transient micro- and submicrosized deformations at the cell membrane, leading to cell transfection and cell survival. They also indicate that ultrastructural analyses of cell surfaces may constitute a useful way to match the use of shock waves to different cells and settings.

  13. Eukaryotic Initiation Factor 6, an evolutionarily conserved regulator of ribosome biogenesis and protein translation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jianjun [Harvard University; Jin, Zhaoqing [ORNL; Yang, Xiaohan [ORNL; Li, Jian-Feng [Harvard University; Chen, Jay [ORNL

    2011-01-01

    We recently identified Receptor for Activated C Kinase 1 (RACK1) as one of the molecular links between abscisic acid (ABA) signaling and its regulation on protein translation. Moreover, we identified Eukaryotic Initiation Factor 6 (eIF6) as an interacting partner of RACK1. Because the interaction between RACK1 and eIF6 in mammalian cells is known to regulate the ribosome assembly step of protein translation initiation, it was hypothesized that the same process of protein translation in Arabidopsis is also regulated by RACK1 and eIF6. In this article, we analyzed the amino acid sequences of eIF6 in different species from different lineages and discovered some intriguing differences in protein phosphorylation sites that may contribute to its action in ribosome assembly and biogenesis. In addition, we discovered that, distinct from non-plant organisms in which eIF6 is encoded by a single gene, all sequenced plant genomes contain two or more copies of eIF6 genes. While one copy of plant eIF6 is expressed ubiquitously and might possess the conserved function in ribosome biogenesis and protein translation, the other copy seems to be only expressed in specific organs and therefore may have gained some new functions. We proposed some important studies that may help us better understand the function of eIF6 in plants.

  14. Eukaryotic and prokaryotic contributions to colonic hydrogen sulfide synthesis.

    Science.gov (United States)

    Flannigan, Kyle L; McCoy, Kathy D; Wallace, John L

    2011-07-01

    Hydrogen sulfide (H(2)S) is an important modulator of many aspects of digestive function, both in health and disease. Colonic tissue H(2)S synthesis increases markedly during injury and inflammation and appears to contribute to resolution. Some of the bacteria residing in the colon can also produce H(2)S. The extent to which bacterial H(2)S synthesis contributes to what is measured as colonic H(2)S synthesis is not clear. Using conventional and germ-free mice, we have delineated the eukaryotic vs. prokaryotic contributions to colonic H(2)S synthesis, both in healthy and colitic mice. Colonic tissue H(2)S production is entirely dependent on the presence of the cofactor pyridoxal 5'-phosphate (vitamin B(6)), while bacterial H(2)S synthesis appears to occur independent of this cofactor. As expected, approximately one-half of the H(2)S produced by feces is derived from eukaryotic cells. While colonic H(2)S synthesis is markedly increased when the tissue is inflamed, and, in proportion to the extent of inflammation, fecal H(2)S synthesis does not change and tissue granulocytes do not appear to be the source of the elevated H(2)S production. Rats fed a B vitamin-deficient diet for 6 wk exhibited significantly diminished colonic H(2)S synthesis, but fecal H(2)S synthesis was not different from that of rats on the control diet. Our results demonstrate that H(2)S production by colonic bacteria does not contribute significantly to what is measured as colonic tissue H(2)S production, using the acetate trapping assay system employed in this study.

  15. Synthesis of eukaryotic lipid biomarkers in the bacterial domain

    Science.gov (United States)

    Welander, P. V.; Banta, A. B.; Lee, A. K.; Wei, J. H.

    2017-12-01

    Lipid biomarkers are organic molecules preserved in sediments and sedimentary rocks that can function as geological proxies for certain microbial taxa or for specific environmental conditions. These molecular fossils provide a link between organisms and their environments in both modern and ancient settings and have afforded significant insight into ancient climatic events, mass extinctions, and various evolutionary transitions throughout Earth's history. However, the proper interpretation of lipid biomarkers is dependent on a broad understanding of their diagenetic precursors in modern systems. This includes understanding the taphonomic transformations that these molecules undergo, their biosynthetic pathways, and the ecological conditions that affect their cellular production. In this study, we focus on one group of lipid biomarkers - the sterols. These are polycyclic isoprenoidal lipids that have a high preservation potential and play a critical role in the physiology of most eukaryotes. However, the synthesis and function of these lipids in the bacterial domain has not been fully explored. Here we utilize a combination of bioinformatics, microbial genetics, and biochemistry to demonstrate that bacterial sterol producers are more prevalent in environmental metagenomic samples than in the genomic databases of cultured organisms and to identify novel proteins required to synthesize and modify sterols in bacteria. These proteins represent a distinct pathway for sterol synthesis exclusive to bacteria and indicate that sterol synthesis in bacteria may have evolved independently of eukaryotic sterol biosynthesis. Taken together, these results demonstrate how studies in extant bacteria can provide insight into the biological sources and the biosynthetic pathways of specific lipid biomarkers and in turn may allow for more robust interpretation of biomarker signatures.

  16. BC047440 antisense eukaryotic expression vectors inhibited HepG2 cell proliferation and suppressed xenograft tumorigenicity

    International Nuclear Information System (INIS)

    Lu, Zheng; Ping, Liang; JianBo, Zhou; XiaoBing, Huang; Yu, Wen; Zheng, Wang; Jing, Li

    2012-01-01

    The biological functions of the BC047440 gene highly expressed by hepatocellular carcinoma (HCC) are unknown. The objective of this study was to reconstruct antisense eukaryotic expression vectors of the gene for inhibiting HepG 2 cell proliferation and suppressing their xenograft tumorigenicity. The full-length BC047440 cDNA was cloned from human primary HCC by RT-PCR. BC047440 gene fragments were ligated with pMD18-T simple vectors and subsequent pcDNA3.1(+) plasmids to construct the recombinant antisense eukaryotic vector pcDNA3.1(+)BC047440AS. The endogenous BC047440 mRNA abundance in target gene-transfected, vector-transfected and naive HepG 2 cells was semiquantitatively analyzed by RT-PCR and cell proliferation was measured by the MTT assay. Cell cycle distribution and apoptosis were profiled by flow cytometry. The in vivo xenograft experiment was performed on nude mice to examine the effects of antisense vector on tumorigenicity. BC047440 cDNA fragments were reversely inserted into pcDNA3.1(+) plasmids. The antisense vector significantly reduced the endogenous BC047440 mRNA abundance by 41% in HepG 2 cells and inhibited their proliferation in vitro (P < 0.01). More cells were arrested by the antisense vector at the G 1 phase in an apoptosis-independent manner (P = 0.014). Additionally, transfection with pcDNA3.1(+) BC047440AS significantly reduced the xenograft tumorigenicity in nude mice. As a novel cell cycle regulator associated with HCC, the BC047440 gene was involved in cell proliferation in vitro and xenograft tumorigenicity in vivo through apoptosis-independent mechanisms

  17. Automated System Marketplace 1994.

    Science.gov (United States)

    Griffiths, Jose-Marie; Kertis, Kimberly

    1994-01-01

    Reports results of the 1994 Automated System Marketplace survey based on responses from 60 vendors. Highlights include changes in the library automation marketplace; estimated library systems revenues; minicomputer and microcomputer-based systems; marketplace trends; global markets and mergers; research needs; new purchase processes; and profiles…

  18. Automation benefits BWR customers

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    A description is given of the increasing use of automation at General Electric's Wilmington fuel fabrication plant. Computerised systems and automated equipment perform a large number of inspections, inventory and process operations, and new advanced systems are being continuously introduced to reduce operator errors and expand product reliability margins. (U.K.)

  19. Automate functional testing

    Directory of Open Access Journals (Sweden)

    Ramesh Kalindri

    2014-06-01

    Full Text Available Currently, software engineers are increasingly turning to the option of automating functional tests, but not always have successful in this endeavor. Reasons range from low planning until over cost in the process. Some principles that can guide teams in automating these tests are described in this article.

  20. Automation in Warehouse Development

    NARCIS (Netherlands)

    Hamberg, R.; Verriet, J.

    2012-01-01

    The warehouses of the future will come in a variety of forms, but with a few common ingredients. Firstly, human operational handling of items in warehouses is increasingly being replaced by automated item handling. Extended warehouse automation counteracts the scarcity of human operators and

  1. Identity Management Processes Automation

    Directory of Open Access Journals (Sweden)

    A. Y. Lavrukhin

    2010-03-01

    Full Text Available Implementation of identity management systems consists of two main parts, consulting and automation. The consulting part includes development of a role model and identity management processes description. The automation part is based on the results of consulting part. This article describes the most important aspects of IdM implementation.

  2. Work and Programmable Automation.

    Science.gov (United States)

    DeVore, Paul W.

    A new industrial era based on electronics and the microprocessor has arrived, an era that is being called intelligent automation. Intelligent automation, in the form of robots, replaces workers, and the new products, using microelectronic devices, require significantly less labor to produce than the goods they replace. The microprocessor thus…

  3. Library Automation in Pakistan.

    Science.gov (United States)

    Haider, Syed Jalaluddin

    1998-01-01

    Examines the state of library automation in Pakistan. Discusses early developments; financial support by the Netherlands Library Development Project (Pakistan); lack of automated systems in college/university and public libraries; usage by specialist libraries; efforts by private-sector libraries and the National Library in Pakistan; commonly used…

  4. Library Automation Style Guide.

    Science.gov (United States)

    Gaylord Bros., Liverpool, NY.

    This library automation style guide lists specific terms and names often used in the library automation industry. The terms and/or acronyms are listed alphabetically and each is followed by a brief definition. The guide refers to the "Chicago Manual of Style" for general rules, and a notes section is included for the convenience of individual…

  5. Planning for Office Automation.

    Science.gov (United States)

    Sherron, Gene T.

    1982-01-01

    The steps taken toward office automation by the University of Maryland are described. Office automation is defined and some types of word processing systems are described. Policies developed in the writing of a campus plan are listed, followed by a section on procedures adopted to implement the plan. (Author/MLW)

  6. The Automated Office.

    Science.gov (United States)

    Naclerio, Nick

    1979-01-01

    Clerical personnel may be able to climb career ladders as a result of office automation and expanded job opportunities in the word processing area. Suggests opportunities in an automated office system and lists books and periodicals on word processing for counselors and teachers. (MF)

  7. Automating the Small Library.

    Science.gov (United States)

    Skapura, Robert

    1987-01-01

    Discusses the use of microcomputers for automating school libraries, both for entire systems and for specific library tasks. Highlights include available library management software, newsletters that evaluate software, constructing an evaluation matrix, steps to consider in library automation, and a brief discussion of computerized card catalogs.…

  8. Advances in inspection automation

    Science.gov (United States)

    Weber, Walter H.; Mair, H. Douglas; Jansen, Dion; Lombardi, Luciano

    2013-01-01

    This new session at QNDE reflects the growing interest in inspection automation. Our paper describes a newly developed platform that makes the complex NDE automation possible without the need for software programmers. Inspection tasks that are tedious, error-prone or impossible for humans to perform can now be automated using a form of drag and drop visual scripting. Our work attempts to rectify the problem that NDE is not keeping pace with the rest of factory automation. Outside of NDE, robots routinely and autonomously machine parts, assemble components, weld structures and report progress to corporate databases. By contrast, components arriving in the NDT department typically require manual part handling, calibrations and analysis. The automation examples in this paper cover the development of robotic thickness gauging and the use of adaptive contour following on the NRU reactor inspection at Chalk River.

  9. Automated model building

    CERN Document Server

    Caferra, Ricardo; Peltier, Nicholas

    2004-01-01

    This is the first book on automated model building, a discipline of automated deduction that is of growing importance Although models and their construction are important per se, automated model building has appeared as a natural enrichment of automated deduction, especially in the attempt to capture the human way of reasoning The book provides an historical overview of the field of automated deduction, and presents the foundations of different existing approaches to model construction, in particular those developed by the authors Finite and infinite model building techniques are presented The main emphasis is on calculi-based methods, and relevant practical results are provided The book is of interest to researchers and graduate students in computer science, computational logic and artificial intelligence It can also be used as a textbook in advanced undergraduate courses

  10. Automation in Warehouse Development

    CERN Document Server

    Verriet, Jacques

    2012-01-01

    The warehouses of the future will come in a variety of forms, but with a few common ingredients. Firstly, human operational handling of items in warehouses is increasingly being replaced by automated item handling. Extended warehouse automation counteracts the scarcity of human operators and supports the quality of picking processes. Secondly, the development of models to simulate and analyse warehouse designs and their components facilitates the challenging task of developing warehouses that take into account each customer’s individual requirements and logistic processes. Automation in Warehouse Development addresses both types of automation from the innovative perspective of applied science. In particular, it describes the outcomes of the Falcon project, a joint endeavour by a consortium of industrial and academic partners. The results include a model-based approach to automate warehouse control design, analysis models for warehouse design, concepts for robotic item handling and computer vision, and auton...

  11. Automation in Immunohematology

    Directory of Open Access Journals (Sweden)

    Meenu Bajpai

    2012-01-01

    Full Text Available There have been rapid technological advances in blood banking in South Asian region over the past decade with an increasing emphasis on quality and safety of blood products. The conventional test tube technique has given way to newer techniques such as column agglutination technique, solid phase red cell adherence assay, and erythrocyte-magnetized technique. These new technologies are adaptable to automation and major manufacturers in this field have come up with semi and fully automated equipments for immunohematology tests in the blood bank. Automation improves the objectivity and reproducibility of tests. It reduces human errors in patient identification and transcription errors. Documentation and traceability of tests, reagents and processes and archiving of results is another major advantage of automation. Shifting from manual methods to automation is a major undertaking for any transfusion service to provide quality patient care with lesser turnaround time for their ever increasing workload. This article discusses the various issues involved in the process.

  12. Construction of rat beta defensin-2 eukaryotic expression vector and expression in the transfected rat corneal epithelial cell

    Directory of Open Access Journals (Sweden)

    Jing Dan

    2017-03-01

    Full Text Available AIM: To construct a recombinant eukaryotic expression vector of rat beta defensin-2(rBD-2, transfect it into the rat corneal epithelial cells with lipofection, determine the expression of target gene in the transfected cells, and discuss the potentiality of recombinant plasmid expressed in corneal epithelial cells, hoping to provide an experimental foundation for further study on the antimicrobial activity of rBD-2 in vitro and in vivo and to assess the probability of defensins as a new application for infectious corneal diseases in the future. METHODS: The synthetic rBD-2 DNA fragment was inserted between the XhoI and BamHI restriction enzyme cutting sites of eukaryotic expression vector pIRES2-ZsGreen1 to construct the recombinant plasmid pIRES2-ZsGreen1-rBD-2, then transformed it into E.coli DH5α, positive clones were screened by kanamycin and identified with restriction endonucleases and sequencing analysis. Transfection into the rat corneal epithelial cells was performed by lipofection. Then the experiment was divided into three groups: rat corneal epithelial cell was transfected with the recombinant plasmid pIRES2- ZsGreen1-rBD-2, rat corneal epithelial cell was transfected with the empty plasmid pIRES2-ZsGreen1 and the non-transfected group. The inverted fluorescence microscope was used to observe the transfection process. At last, the level of rBD-2 mRNA expressed in the transfected cells and the control groups are compared by the real-time fluoresence relative quantitative PCR. RESULTS: The recombinant eukaryotic expression vector of pIRES2-ZsGreen1-rBD-2 was successfully constructed. The level of rBD-2 mRNA in transfected cells was significantly higher than that in control groups through the real-time fluorescence relative quantitative PCR. CONCLUSION: The recombinant eukaryotic expression vector pIRES2-ZsGreen1-rBD-2 could be transfected into rat corneal epithelial cells, and exogenous rBD-2 gene could be transcripted into mRNA in

  13. Bright-field in situ hybridization for HER2 gene amplification in breast cancer using tissue microarrays: correlation between chromogenic (CISH) and automated silver-enhanced (SISH) methods with patient outcome.

    Science.gov (United States)

    Francis, Glenn D; Jones, Mark A; Beadle, Geoffrey F; Stein, Sandra R

    2009-06-01

    HER2 gene amplification or overexpression occurs in 15% to 25% of breast cancers and has implications for treatment and prognosis. The most commonly used methods for HER2 testing are fluorescence in situ hybridization (FISH) and immunohistochemistry. FISH is considered to be the reference standard and more accurately predicts response to trastuzumab, but is technically demanding, expensive, and requires specialized equipment. In situ hybridization is required to be eligible for adjuvant treatment with trastuzumab in Australia. Bright-field in situ hybridization is an alternative to FISH and uses a combination of in situ methodology and a peroxidase-mediated chromogenic substrate such as diaminobenzidine [chromogenic in situ hybridization (CISH)] or multimer technology coupled with enzyme metallography [silver-enhanced in situ hybridization (SISH)] to create a marker visible under bright-field microscopy. CISH was introduced into diagnostic testing in Australia in October 2006. SISH methodology is a more recent introduction into the testing repertoire. An evaluation of CISH and SISH performance to assess patient outcome were performed using tissue microarrays. Tissue microarrays were constructed in duplicate using material from 593 patients with invasive breast carcinoma and assessed using CISH and SISH. Gene amplification was assessed using the American Society of Clinical Oncology/College of American Pathologists guideline and Australian HER2 Advisory Board criteria (single probe: diploid, 1 to 2.5 copies/nucleus; polysomy >2.5 to 4 copies/nucleus; equivocal, >4 to 6 copies/nucleus; low-level amplification, >6 to 10 copies/nucleus and high-level amplification >10 copies/nucleus; dual probe HER2/CHR17 ratio: nonamplified 2.2). Results were informative for 337 tissue cores comprising 230 patient samples. Concordance rates were 96% for HER2 single probe CISH and SISH and 95.5% for single probe CISH and dual probe HER2/CHR17 SISH. Both bright-field methods correlated

  14. Sex is a ubiquitous, ancient, and inherent attribute of eukaryotic life

    NARCIS (Netherlands)

    Speijer, Dave; Lukeš, Julius; Eliáš, Marek

    2015-01-01

    Sexual reproduction and clonality in eukaryotes are mostly seen as exclusive, the latter being rather exceptional. This view might be biased by focusing almost exclusively on metazoans. We analyze and discuss reproduction in the context of extant eukaryotic diversity, paying special attention to

  15. Systematic review automation technologies

    Science.gov (United States)

    2014-01-01

    Systematic reviews, a cornerstone of evidence-based medicine, are not produced quickly enough to support clinical practice. The cost of production, availability of the requisite expertise and timeliness are often quoted as major contributors for the delay. This detailed survey of the state of the art of information systems designed to support or automate individual tasks in the systematic review, and in particular systematic reviews of randomized controlled clinical trials, reveals trends that see the convergence of several parallel research projects. We surveyed literature describing informatics systems that support or automate the processes of systematic review or each of the tasks of the systematic review. Several projects focus on automating, simplifying and/or streamlining specific tasks of the systematic review. Some tasks are already fully automated while others are still largely manual. In this review, we describe each task and the effect that its automation would have on the entire systematic review process, summarize the existing information system support for each task, and highlight where further research is needed for realizing automation for the task. Integration of the systems that automate systematic review tasks may lead to a revised systematic review workflow. We envisage the optimized workflow will lead to system in which each systematic review is described as a computer program that automatically retrieves relevant trials, appraises them, extracts and synthesizes data, evaluates the risk of bias, performs meta-analysis calculations, and produces a report in real time. PMID:25005128

  16. On-Site School Library Automation: Automation Anywhere with Laptops.

    Science.gov (United States)

    Gunn, Holly; Oxner, June

    2000-01-01

    Four years after the Halifax Regional School Board was formed through amalgamation, over 75% of its school libraries were automated. On-site automation with laptops was a quicker, more efficient way of automating than sending a shelf list to the Technical Services Department. The Eastern Shore School Library Automation Project was a successful…

  17. The Roles and Evolutionary Patterns of Intronless Genes in Deuterostomes

    Directory of Open Access Journals (Sweden)

    Ming Zou

    2011-01-01

    Full Text Available Genes without introns are a characteristic feature of prokaryotes, but there are still a number of intronless genes in eukaryotes. To study these eukaryotic genes that have prokaryotic architecture could help to understand the evolutionary patterns of related genes and genomes. Our analyses revealed a number of intronless genes that reside in 6 deuterostomes (sea urchin, sea squirt, zebrafish, chicken, platypus, and human. We also determined the conservation for each intronless gene in archaea, bacteria, fungi, plants, metazoans, and other eukaryotes. Proportions of intronless genes that are inherited from the common ancestor of archaea, bacteria, and eukaryotes in these species were consistent with their phylogenetic positions, with more proportions of ancient intronless genes residing in more primitive species. In these species, intronless genes belong to different cellular roles and gene ontology (GO categories, and some of these functions are very basic. Part of intronless genes is derived from other intronless genes or multiexon genes in each species. In conclusion, we showed that a varying number and proportion of intronless genes reside in these 6 deuterostomes, and some of them function importantly. These genes are good candidates for subsequent functional and evolutionary analyses specifically.

  18. Automated electron microprobe

    International Nuclear Information System (INIS)

    Thompson, K.A.; Walker, L.R.

    1986-01-01

    The Plant Laboratory at the Oak Ridge Y-12 Plant has recently obtained a Cameca MBX electron microprobe with a Tracor Northern TN5500 automation system. This allows full stage and spectrometer automation and digital beam control. The capabilities of the system include qualitative and quantitative elemental microanalysis for all elements above and including boron in atomic number, high- and low-magnification imaging and processing, elemental mapping and enhancement, and particle size, shape, and composition analyses. Very low magnification, quantitative elemental mapping using stage control (which is of particular interest) has been accomplished along with automated size, shape, and composition analysis over a large relative area

  19. Operational proof of automation

    International Nuclear Information System (INIS)

    Jaerschky, R.; Reifenhaeuser, R.; Schlicht, K.

    1976-01-01

    Automation of the power plant process may imply quite a number of problems. The automation of dynamic operations requires complicated programmes often interfering in several branched areas. This reduces clarity for the operating and maintenance staff, whilst increasing the possibilities of errors. The synthesis and the organization of standardized equipment have proved very successful. The possibilities offered by this kind of automation for improving the operation of power plants will only sufficiently and correctly be turned to profit, however, if the application of these technics of equipment is further improved and if its volume is tallied with a definite etc. (orig.) [de

  20. Chef infrastructure automation cookbook

    CERN Document Server

    Marschall, Matthias

    2013-01-01

    Chef Infrastructure Automation Cookbook contains practical recipes on everything you will need to automate your infrastructure using Chef. The book is packed with illustrated code examples to automate your server and cloud infrastructure.The book first shows you the simplest way to achieve a certain task. Then it explains every step in detail, so that you can build your knowledge about how things work. Eventually, the book shows you additional things to consider for each approach. That way, you can learn step-by-step and build profound knowledge on how to go about your configuration management

  1. High Throughput, Real-time, Dual-readout Testing of Intracellular Antimicrobial Activity and Eukaryotic Cell Cytotoxicity.

    Science.gov (United States)

    Chiaraviglio, Lucius; Kang, Yoon-Suk; Kirby, James E

    2016-11-16

    Traditional measures of intracellular antimicrobial activity and eukaryotic cell cytotoxicity rely on endpoint assays. Such endpoint assays require several additional experimental steps prior to readout, such as cell lysis, colony forming unit determination, or reagent addition. When performing thousands of assays, for example, during high-throughput screening, the downstream effort required for these types of assays is considerable. Therefore, to facilitate high-throughput antimicrobial discovery, we developed a real-time assay to simultaneously identify inhibitors of intracellular bacterial growth and assess eukaryotic cell cytotoxicity. Specifically, real-time intracellular bacterial growth detection was enabled by marking bacterial screening strains with either a bacterial lux operon (1 st generation assay) or fluorescent protein reporters (2 nd generation, orthogonal assay). A non-toxic, cell membrane-impermeant, nucleic acid-binding dye was also added during initial infection of macrophages. These dyes are excluded from viable cells. However, non-viable host cells lose membrane integrity permitting entry and fluorescent labeling of nuclear DNA (deoxyribonucleic acid). Notably, DNA binding is associated with a large increase in fluorescent quantum yield that provides a solution-based readout of host cell death. We have used this combined assay to perform a high-throughput screen in microplate format, and to assess intracellular growth and cytotoxicity by microscopy. Notably, antimicrobials may demonstrate synergy in which the combined effect of two or more antimicrobials when applied together is greater than when applied separately. Testing for in vitro synergy against intracellular pathogens is normally a prodigious task as combinatorial permutations of antibiotics at different concentrations must be assessed. However, we found that our real-time assay combined with automated, digital dispensing technology permitted facile synergy testing. Using these

  2. Nitrogen fixation in eukaryotes – New models for symbiosis

    Directory of Open Access Journals (Sweden)

    Lockhart Peter

    2007-04-01

    Full Text Available Abstract Background Nitrogen, a component of many bio-molecules, is essential for growth and development of all organisms. Most nitrogen exists in the atmosphere, and utilisation of this source is important as a means of avoiding nitrogen starvation. However, the ability to fix atmospheric nitrogen via the nitrogenase enzyme complex is restricted to some bacteria. Eukaryotic organisms are only able to obtain fixed nitrogen through their symbiotic interactions with nitrogen-fixing prokaryotes. These symbioses involve a variety of host organisms, including animals, plants, fungi and protists. Results We have compared the morphological, physiological and molecular characteristics of nitrogen fixing symbiotic associations of bacteria and their diverse hosts. Special features of the interaction, e.g. vertical transmission of symbionts, grade of dependency of partners and physiological modifications have been considered in terms of extent of co-evolution and adaptation. Our findings are that, despite many adaptations enabling a beneficial partnership, most symbioses for molecular nitrogen fixation involve facultative interactions. However, some interactions, among them endosymbioses between cyanobacteria and diatoms, show characteristics that reveal a more obligate status of co-evolution. Conclusion Our review emphasises that molecular nitrogen fixation, a driving force for interactions and co-evolution of different species, is a widespread phenomenon involving many different organisms and ecosystems. The diverse grades of symbioses, ranging from loose associations to highly specific intracellular interactions, might themselves reflect the range of potential evolutionary fates for symbiotic partnerships. These include the extreme evolutionary modifications and adaptations that have accompanied the formation of organelles in eukaryotic cells: plastids and mitochondria. However, age and extensive adaptation of plastids and mitochondria complicate the

  3. Soil eukaryotic microorganism succession as affected by continuous cropping of peanut--pathogenic and beneficial fungi were selected.

    Directory of Open Access Journals (Sweden)

    Mingna Chen

    Full Text Available Peanut is an important oil crop worldwide and shows considerable adaptability but growth and yield are negatively affected by continuous cropping. Soil micro-organisms are efficient bio-indicators of soil quality and plant health and are critical to the sustainability of soil-based ecosystem function and to successful plant growth. In this study, 18S rRNA gene clone library analyses were employed to study the succession progress of soil eukaryotic micro-organisms under continuous peanut cultivation. Eight libraries were constructed for peanut over three continuous cropping cycles and its representative growth stages. Cluster analyses indicated that soil micro-eukaryotic assemblages obtained from the same peanut cropping cycle were similar, regardless of growth period. Six eukaryotic groups were found and fungi predominated in all libraries. The fungal populations showed significant dynamic change and overall diversity increased over time under continuous peanut cropping. The abundance and/or diversity of clones affiliated with Eurotiales, Hypocreales, Glomerales, Orbiliales, Mucorales and Tremellales showed an increasing trend with continuous cropping but clones affiliated with Agaricales, Cantharellales, Pezizales and Pyxidiophorales decreased in abundance and/or diversity over time. The current data, along with data from previous studies, demonstrated that the soil microbial community was affected by continuous cropping, in particular, the pathogenic and beneficial fungi that were positively selected over time, which is commonplace in agro-ecosystems. The trend towards an increase in fungal pathogens and simplification of the beneficial fungal community could be important factors contributing to the decline in peanut growth and yield over many years of continuous cropping.

  4. On the age of eukaryotes: evaluating evidence from fossils and molecular clocks.

    Science.gov (United States)

    Eme, Laura; Sharpe, Susan C; Brown, Matthew W; Roger, Andrew J

    2014-08-01

    Our understanding of the phylogenetic relationships among eukaryotic lineages has improved dramatically over the few past decades thanks to the development of sophisticated phylogenetic methods and models of evolution, in combination with the increasing availability of sequence data for a variety of eukaryotic lineages. Concurrently, efforts have been made to infer the age of major evolutionary events along the tree of eukaryotes using fossil-calibrated molecular clock-based methods. Here, we review the progress and pitfalls in estimating the age of the last eukaryotic common ancestor (LECA) and major lineages. After reviewing previous attempts to date deep eukaryote divergences, we present the results of a Bayesian relaxed-molecular clock analysis of a large dataset (159 proteins, 85 taxa) using 19 fossil calibrations. We show that for major eukaryote groups estimated dates of divergence, as well as their credible intervals, are heavily influenced by the relaxed molecular clock models and methods used, and by the nature and treatment of fossil calibrations. Whereas the estimated age of LECA varied widely, ranging from 1007 (943-1102) Ma to 1898 (1655-2094) Ma, all analyses suggested that the eukaryotic supergroups subsequently diverged rapidly (i.e., within 300 Ma of LECA). The extreme variability of these and previously published analyses preclude definitive conclusions regarding the age of major eukaryote clades at this time. As more reliable fossil data on eukaryotes from the Proterozoic become available and improvements are made in relaxed molecular clock modeling, we may be able to date the age of extant eukaryotes more precisely. Copyright © 2014 Cold Spring Harbor Laboratory Press; all rights reserved.

  5. Eukaryotic community diversity and spatial variation during drinking water production (by seawater desalination) and distribution in a full-scale network

    KAUST Repository

    Belila, Abdelaziz

    2016-12-01

    Eukaryotic microorganisms are naturally present in many water resources and can enter, grow and colonize water treatment and transport systems, including reservoirs, pipes and premise plumbing. In this study, we explored the eukaryotic microbial community structure in water during the (i) production of drinking water in a seawater desalination plant and (ii) transport of the drinking water in the distribution network. The desalination plant treatment involved pre-treatment (e.g. spruce filters), reverse osmosis (RO) membrane filtration and post-treatment steps (e.g. remineralization). 454 pyrosequencing analysis of the 18S rRNA gene revealed a highly diverse (35 phyla) and spatially variable eukaryotic community during water treatment and distribution. The desalination plant feed water contained a typical marine picoeukaryotic community dominated by Stramenopiles, Alveolates and Porifera. In the desalination plant Ascomycota was the most dominant phylum (15.5% relative abundance), followed by Alveolata (11.9%), unclassified fungi clade (10.9%) and Porifera (10.7%). In the drinking water distribution network, an uncultured fungi phylum was the major group (44.0%), followed by Chordata (17.0%), Ascomycota (11.0%) and Arthropoda (8.0%). Fungi constituted 40% of the total eukaryotic community in the treatment plant and the distribution network and their taxonomic composition was dominated by an uncultured fungi clade (55%). Comparing the plant effluent to the network samples, 84 OTUs (2.1%) formed the core eukaryotic community while 35 (8.4%) and 299 (71.5%) constituted unique OTUs in the produced water at the plant and combined tap water samples from the network, respectively. RO membrane filtration treatment significantly changed the water eukaryotic community composition and structure, highlighting the fact that (i) RO produced water is not sterile and (ii) the microbial community in the final tap water is influenced by the downstream distribution system. The study

  6. The current state of eukaryotic DNA base damage and repair.

    Science.gov (United States)

    Bauer, Nicholas C; Corbett, Anita H; Doetsch, Paul W

    2015-12-02

    DNA damage is a natural hazard of life. The most common DNA lesions are base, sugar, and single-strand break damage resulting from oxidation, alkylation, deamination, and spontaneous hydrolysis. If left unrepaired, such lesions can become fixed in the genome as permanent mutations. Thus, evolution has led to the creation of several highly conserved, partially redundant pathways to repair or mitigate the effects of DNA base damage. The biochemical mechanisms of these pathways have been well characterized and the impact of this work was recently highlighted by the selection of Tomas Lindahl, Aziz Sancar and Paul Modrich as the recipients of the 2015 Nobel Prize in Chemistry for their seminal work in defining DNA repair pathways. However, how these repair pathways are regulated and interconnected is still being elucidated. This review focuses on the classical base excision repair and strand incision pathways in eukaryotes, considering both Saccharomyces cerevisiae and humans, and extends to some important questions and challenges facing the field of DNA base damage repair. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. MCM Paradox: Abundance of Eukaryotic Replicative Helicases and Genomic Integrity

    Directory of Open Access Journals (Sweden)

    Mitali Das

    2014-01-01

    Full Text Available As a crucial component of DNA replication licensing system, minichromosome maintenance (MCM 2–7 complex acts as the eukaryotic DNA replicative helicase. The six related MCM proteins form a heterohexamer and bind with ORC, CDC6, and Cdt1 to form the prereplication complex. Although the MCMs are well known as replicative helicases, their overabundance and distribution patterns on chromatin present a paradox called the “MCM paradox.” Several approaches had been taken to solve the MCM paradox and describe the purpose of excess MCMs distributed beyond the replication origins. Alternative functions of these MCMs rather than a helicase had also been proposed. This review focuses on several models and concepts generated to solve the MCM paradox coinciding with their helicase function and provides insight into the concept that excess MCMs are meant for licensing dormant origins as a backup during replication stress. Finally, we extend our view towards the effect of alteration of MCM level. Though an excess MCM constituent is needed for normal cells to withstand stress, there must be a delineation of the threshold level in normal and malignant cells. This review also outlooks the future prospects to better understand the MCM biology.

  8. The prokaryote-eukaryote dichotomy: meanings and mythology.

    Science.gov (United States)

    Sapp, Jan

    2005-06-01

    Drawing on documents both published and archival, this paper explains how the prokaryote-eukaryote dichotomy of the 1960s was constructed, the purposes it served, and what it implied in terms of classification and phylogeny. In doing so, I first show how the concept was attributed to Edouard Chatton and the context in which he introduced the terms. Following, I examine the context in which the terms were reintroduced into biology in 1962 by Roger Stanier and C. B. van Niel. I study the discourse over the subsequent decade to understand how the organizational dichotomy took on the form of a natural classification as the kingdom Monera or superkingdom Procaryotae. Stanier and van Niel admitted that, in regard to constructing a natural classification of bacteria, structural characteristics were no more useful than physiological properties. They repeatedly denied that bacterial phylogenetics was possible. I thus examine the great historical irony that the "prokaryote," in both its organizational and phylogenetic senses, was defined (negatively) on the basis of structure. Finally, we see how phylogenetic research based on 16S rRNA led by Carl Woese and his collaborators confronted the prokaryote concept while moving microbiology to the center of evolutionary biology.

  9. Eukaryotic LYR Proteins Interact with Mitochondrial Protein Complexes

    Directory of Open Access Journals (Sweden)

    Heike Angerer

    2015-02-01

    Full Text Available In eukaryotic cells, mitochondria host ancient essential bioenergetic and biosynthetic pathways. LYR (leucine/tyrosine/arginine motif proteins (LYRMs of the Complex1_LYR-like superfamily interact with protein complexes of bacterial origin. Many LYR proteins function as extra subunits (LYRM3 and LYRM6 or novel assembly factors (LYRM7, LYRM8, ACN9 and FMC1 of the oxidative phosphorylation (OXPHOS core complexes. Structural insights into complex I accessory subunits LYRM6 and LYRM3 have been provided by analyses of EM and X-ray structures of complex I from bovine and the yeast Yarrowia lipolytica, respectively. Combined structural and biochemical studies revealed that LYRM6 resides at the matrix arm close to the ubiquinone reduction site. For LYRM3, a position at the distal proton-pumping membrane arm facing the matrix space is suggested. Both LYRMs are supposed to anchor an acyl-carrier protein (ACPM independently to complex I. The function of this duplicated protein interaction of ACPM with respiratory complex I is still unknown. Analysis of protein-protein interaction screens, genetic analyses and predicted multi-domain LYRMs offer further clues on an interaction network and adaptor-like function of LYR proteins in mitochondria.

  10. The Superoxide Reductase from the Early Diverging Eukaryote Giardia Intestinalis

    International Nuclear Information System (INIS)

    Cabelli, D.E.; Testa, F.; Mastronicola, D.; Bordi, E.; Pucillo, L.P.; Sarti, P.; Saraiva, L.M.; Giuffre, A.; Teixeira, M.

    2011-01-01

    Unlike superoxide dismutases (SODs), superoxidereductases (SORs) eliminate superoxide anion (O 2 # sm b ullet# - ) not through its dismutation, but via reduction to hydrogen peroxide (H 2 O 2 ) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SOR Gi ) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry. The protein, isolated in the reduced state, after oxidation by superoxide or hexachloroiridate(IV), yields a resting species (T final ) with Fe 3+ ligated to glutamate or hydroxide depending on pH (apparent pK a = 8.7). Although showing negligible SOD activity, reduced SOR Gi reacts with O 2 # sm b ullet# - with a pH-independent second-order rate constant k 1 = 1.0 x 10 9 M -1 s -1 and yields the ferric-(hydro)peroxo intermediate T 1 ; this in turn rapidly decays to the T final state with pH-dependent rates, without populating other detectable intermediates. Immunoblotting assays show that SOR Gi is expressed in the disease-causing trophozoite of Giardia. We propose that the superoxide-scavenging activity of SOR in Giardia may promote the survival of this air-sensitive parasite in the fairly aerobic proximal human small intestine during infection.

  11. Break induced replication in eukaryotes: mechanisms, functions, and consequences.

    Science.gov (United States)

    Sakofsky, Cynthia J; Malkova, Anna

    2017-08-01

    Break-induced replication (BIR) is an important pathway specializing in repair of one-ended double-strand DNA breaks (DSBs). This type of DSB break typically arises at collapsed replication forks or at eroded telomeres. BIR initiates by invasion of a broken DNA end into a homologous template followed by initiation of DNA synthesis that can proceed for hundreds of kilobases. This synthesis is drastically different from S-phase replication in that instead of a replication fork, BIR proceeds via a migrating bubble and is associated with conservative inheritance of newly synthesized DNA. This unusual mode of DNA replication is responsible for frequent genetic instabilities associated with BIR, including hyper-mutagenesis, which can lead to the formation of mutation clusters, extensive loss of heterozygosity, chromosomal translocations, copy-number variations and complex genomic rearrangements. In addition to budding yeast experimental systems that were initially employed to investigate eukaryotic BIR, recent studies in different organisms including humans, have provided multiple examples of BIR initiated within different cellular contexts, including collapsed replication fork and telomere maintenance in the absence of telomerase. In addition, significant progress has been made towards understanding microhomology-mediated BIR (MMBIR) that can promote complex chromosomal rearrangements, including those associated with cancer and those leading to a number of neurological disorders in humans.

  12. Automation Interface Design Development

    Data.gov (United States)

    National Aeronautics and Space Administration — Our research makes its contributions at two levels. At one level, we addressed the problems of interaction between humans and computers/automation in a particular...

  13. Automated Vehicles Symposium 2014

    CERN Document Server

    Beiker, Sven; Road Vehicle Automation 2

    2015-01-01

    This paper collection is the second volume of the LNMOB series on Road Vehicle Automation. The book contains a comprehensive review of current technical, socio-economic, and legal perspectives written by experts coming from public authorities, companies and universities in the U.S., Europe and Japan. It originates from the Automated Vehicle Symposium 2014, which was jointly organized by the Association for Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Burlingame, CA, in July 2014. The contributions discuss the challenges arising from the integration of highly automated and self-driving vehicles into the transportation system, with a focus on human factors and different deployment scenarios. This book is an indispensable source of information for academic researchers, industrial engineers, and policy makers interested in the topic of road vehicle automation.

  14. Fixed automated spray technology.

    Science.gov (United States)

    2011-04-19

    This research project evaluated the construction and performance of Boschungs Fixed Automated : Spray Technology (FAST) system. The FAST system automatically sprays de-icing material on : the bridge when icing conditions are about to occur. The FA...

  15. Automated Vehicles Symposium 2015

    CERN Document Server

    Beiker, Sven

    2016-01-01

    This edited book comprises papers about the impacts, benefits and challenges of connected and automated cars. It is the third volume of the LNMOB series dealing with Road Vehicle Automation. The book comprises contributions from researchers, industry practitioners and policy makers, covering perspectives from the U.S., Europe and Japan. It is based on the Automated Vehicles Symposium 2015 which was jointly organized by the Association of Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Ann Arbor, Michigan, in July 2015. The topical spectrum includes, but is not limited to, public sector activities, human factors, ethical and business aspects, energy and technological perspectives, vehicle systems and transportation infrastructure. This book is an indispensable source of information for academic researchers, industrial engineers and policy makers interested in the topic of road vehicle automation.

  16. Automation synthesis modules review

    International Nuclear Information System (INIS)

    Boschi, S.; Lodi, F.; Malizia, C.; Cicoria, G.; Marengo, M.

    2013-01-01

    The introduction of 68 Ga labelled tracers has changed the diagnostic approach to neuroendocrine tumours and the availability of a reliable, long-lived 68 Ge/ 68 Ga generator has been at the bases of the development of 68 Ga radiopharmacy. The huge increase in clinical demand, the impact of regulatory issues and a careful radioprotection of the operators have boosted for extensive automation of the production process. The development of automated systems for 68 Ga radiochemistry, different engineering and software strategies and post-processing of the eluate were discussed along with impact of automation with regulations. - Highlights: ► Generators availability and robust chemistry boosted for the huge diffusion of 68Ga radiopharmaceuticals. ► Different technological approaches for 68Ga radiopharmaceuticals will be discussed. ► Generator eluate post processing and evolution to cassette based systems were the major issues in automation. ► Impact of regulations on the technological development will be also considered

  17. Disassembly automation automated systems with cognitive abilities

    CERN Document Server

    Vongbunyong, Supachai

    2015-01-01

    This book presents a number of aspects to be considered in the development of disassembly automation, including the mechanical system, vision system and intelligent planner. The implementation of cognitive robotics increases the flexibility and degree of autonomy of the disassembly system. Disassembly, as a step in the treatment of end-of-life products, can allow the recovery of embodied value left within disposed products, as well as the appropriate separation of potentially-hazardous components. In the end-of-life treatment industry, disassembly has largely been limited to manual labor, which is expensive in developed countries. Automation is one possible solution for economic feasibility. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  18. Strategies for the production of difficult-to-express full-length eukaryotic proteins using microbial cell factories: production of human alpha-galactosidase A.

    Science.gov (United States)

    Unzueta, Ugutz; Vázquez, Felicitas; Accardi, Giulia; Mendoza, Rosa; Toledo-Rubio, Verónica; Giuliani, Maria; Sannino, Filomena; Parrilli, Ermenegilda; Abasolo, Ibane; Schwartz, Simo; Tutino, Maria L; Villaverde, Antonio; Corchero, José L; Ferrer-Miralles, Neus

    2015-07-01

    Obtaining high levels of pure proteins remains the main bottleneck of many scientific and biotechnological studies. Among all the available recombinant expression systems, Escherichia coli facilitates gene expression by its relative simplicity, inexpensive and fast cultivation, well-known genetics and the large number of tools available for its biotechnological application. However, recombinant expression in E. coli is not always a straightforward procedure and major obstacles are encountered when producing many eukaryotic proteins and especially membrane proteins, linked to missing posttranslational modifications, proteolysis and aggregation. In this context, many conventional and unconventional eukaryotic hosts are under exploration and development, but in some cases linked to complex culture media or processes. In this context, alternative bacterial systems able to overcome some of the limitations posed by E. coli keeping the simplicity of prokaryotic manipulation are currently emerging as convenient hosts for protein production. We have comparatively produced a "difficult-to-express" human protein, the lysosomal enzyme alpha-galactosidase A (hGLA) in E. coli and in the psychrophilic bacterium Pseudoalteromonas haloplanktis TAC125 cells (P. haloplanktis TAC125). While in E. coli the production of active hGLA was unreachable due to proteolytic instability and/or protein misfolding, the expression of hGLA gene in P. haloplanktis TAC125 allows obtaining active enzyme. These results are discussed in the context of emerging bacterial systems for protein production that represent appealing alternatives to the regular use of E. coli and also of more complex eukaryotic systems.

  19. [Construction of γ-synuclein eukaryotic expression vector and its effect on invasion and metastasis of colon cancer cell line SW1116 in vitro].

    Science.gov (United States)

    Ye, Qing; Huang, Feng; Zheng, Qiuhong; Wang, Xiaoying; Xu, Yangmei; Gong, Fusheng; Huang, Lijie

    2014-01-01

    To construct γ-synuclein gene eukaryotic expression vector, and to study its effect on the invasion of colon cancer cell line SW1116 and the adhesion between SW1116 and human umbilical vein endothelial cells(HUVECs) in vitro. Total RNA was extracted from colon cancer cell line HT29 and the cDNA of γ-synuclein was amplified using RT-PCR. The digested fragment of cDNA coding sequence was linked to the eukaryotic expression vector pEGFP-C1 containing the GFP gene. After identification by sequence analysis, the recombinant plasmid was transfected into colon cancer cell line SW1116 via lipofectamine. The stable cell line was selected with G-418. The invasion in vitro was tested by Transwell invasion chamber assay. HUVECs were previously seeded onto 96-well plates before SW1116 cells seeded, and fluorescence intensity of GFP was detected to represent the amount of adhesion cells by ELISA. Human γ-synuclein eukaryotic expression vector was successfully constructed, which was stably expressed in SW1116 cells and could translate the GFP-γ-synuclein protein in vitro. γ-synuclein facilitated SW1116 cell passing through matrigel and filter membrane(198.4±20.7 vs. 98.8±13.2, Pcells to HUVECs(3.08±0.36 vs. 1.22±0.21, Pcell SW1116 potentiality of invasion and metastasis in vitro.

  20. Automated Lattice Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Monahan, Christopher

    2014-11-01

    I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.

  1. Automated ISMS control auditability

    OpenAIRE

    Suomu, Mikko

    2015-01-01

    This thesis focuses on researching a possible reference model for automated ISMS’s (Information Security Management System) technical control auditability. The main objective was to develop a generic framework for automated compliance status monitoring of the ISO27001:2013 standard which could be re‐used in any ISMS system. The framework was tested with Proof of Concept (PoC) empirical research in a test infrastructure which simulates the framework target deployment environment. To fulfi...

  2. Marketing automation supporting sales

    OpenAIRE

    Sandell, Niko

    2016-01-01

    The past couple of decades has been a time of major changes in marketing. Digitalization has become a permanent part of marketing and at the same time enabled efficient collection of data. Personalization and customization of content are playing a crucial role in marketing when new customers are acquired. This has also created a need for automation to facilitate the distribution of targeted content. As a result of successful marketing automation more information of the customers is gathered ...

  3. Automated security management

    CERN Document Server

    Al-Shaer, Ehab; Xie, Geoffrey

    2013-01-01

    In this contributed volume, leading international researchers explore configuration modeling and checking, vulnerability and risk assessment, configuration analysis, and diagnostics and discovery. The authors equip readers to understand automated security management systems and techniques that increase overall network assurability and usability. These constantly changing networks defend against cyber attacks by integrating hundreds of security devices such as firewalls, IPSec gateways, IDS/IPS, authentication servers, authorization/RBAC servers, and crypto systems. Automated Security Managemen

  4. Automated lattice data generation

    Directory of Open Access Journals (Sweden)

    Ayyar Venkitesh

    2018-01-01

    Full Text Available The process of generating ensembles of gauge configurations (and measuring various observables over them can be tedious and error-prone when done “by hand”. In practice, most of this procedure can be automated with the use of a workflow manager. We discuss how this automation can be accomplished using Taxi, a minimal Python-based workflow manager built for generating lattice data. We present a case study demonstrating this technology.

  5. GAS41, a highly conserved protein in eukaryotic nuclei, binds to NuMA.

    Science.gov (United States)

    Harborth, J; Weber, K; Osborn, M

    2000-10-13

    The yeast two-hybrid system was used to identify binding partners of NuMA, a component of the nuclear matrix in interphase cells. By using the C-terminal half of NuMA as bait, a human cDNA sequence coding for a 223-amino acid protein with a non-helical N-terminal domain and a C-terminal alpha-helical portion was identified and fully sequenced. It was identical to GAS41, a sequence amplified in human gliomas. The sequence of the homologous Drosophila protein was established, and the alignment for GAS41 from nine different species showed that GAS41 is a general eukaryotic protein found in species as diverse as Arabidopsis, Drosophila, Caenorhabditis elegans, yeast, and man. Northern blot analysis showed a single transcript in eight human tissues. A polyclonal antibody to GAS41 showed a dotted staining pattern in interphase nuclei and a uniform distribution in mitotic cells. A GFP-GAS41 fusion protein displayed equivalent patterns. In vitro GAS41 bound to the C-terminal part of the rod region of NuMA, as shown by dot overlay and by surface plasmon resonance measurements. The K(d) of the complex was 2 x 10(-)(7) m. GAS41 is related to the AF-9 and ENL proteins, which are putative transcription factors found as fusion proteins in some acute leukemias. The NuMA/GAS41 interaction may provide a link between nuclear structure and gene expression.

  6. Invasion of Eukaryotic Cells by Legionella Pneumophila: A Common Strategy for all Hosts?

    Directory of Open Access Journals (Sweden)

    Paul S Hoffman

    1997-01-01

    Full Text Available Legionella pneumophila is an environmental micro-organism capable of producing an acute lobar pneumonia, commonly referred to as Legionnaires’ disease, in susceptible humans. Legionellae are ubiquitous in aquatic environments, where they survive in biofilms or intracellularly in various protozoans. Susceptible humans become infected by breathing aerosols laden with the bacteria. The target cell for human infection is the alveolar macrophage, in which the bacteria abrogate phagolysosomal fusion. The remarkable ability of L pneumophila to infect a wide range of eukaryotic cells suggests a common strategy that exploits very fundamental cellular processes. The bacteria enter host cells via coiling phagocytosis and quickly subvert organelle trafficking events, leading to formation of a replicative phagosome in which the bacteria multiply. Vegetative growth continues for 8 to 10 h, after which the bacteria develop into a short, highly motile form called the ‘mature form’. The mature form exhibits a thickening of the cell wall, stains red with the Gimenez stain, and is between 10 and 100 times more infectious than agar-grown bacteria. Following host cell lysis, the released bacteria infect other host cells, in which the mature form differentiates into a Gimenez-negative vegetative form, and the cycle begins anew. Virulence of L pneumophila is considered to be multifactorial, and there is growing evidence for both stage specific and sequential gene expression. Thus, L pneumophila may be a good model system for dissecting events associated with the host-parasite interactions.

  7. The eukaryotic enzyme Bds1 is an alkyl but not an aryl sulfohydrolase.

    Science.gov (United States)

    Waddell, Grace L; Gilmer, Caroline R; Taylor, Nicholas G; Reveral, John Randolf S; Forconi, Marcello; Fox, Jennifer L

    2017-09-16

    The eukaryotic enzyme Bds1 in Saccharomyces cerevisiae is a metallo-β-lactamase-related enzyme evolutionarily originating from bacterial horizontal gene transfer that serves an unknown biological role. Previously, Bds1 was reported to be an alkyl and aryl sulfatase. However, we demonstrate here that Bds1 acts on primary alkyl sulfates (of 6-12 carbon atoms) but not the aryl sulfates p-nitrophenyl sulfate and p-nitrocatechol sulfate. The apparent catalytic rate constant for hydrolysis of the substrate 1-hexyl sulfate by Bds1 is over 100 times lower than that of the reaction catalyzed by its bacterial homolog SdsA1. We show that Bds1 shares a catalytic mechanism with SdsA1 in which the carbon atom of the sulfate ester is the subject of nucleophilic attack, rather than the sulfur atom, resulting in C-O bond lysis. In contrast to SdsA1 and another bacterial homolog with selectivity for secondary alkyl sulfates named Pisa1, Bds1 does not show any substantial activity towards secondary alkyl sulfates. Neither Bds1 nor SdsA1 have any significant activity towards a branched primary alkyl sulfate, primary and secondary steroid sulfates, or phosphate diesters. Therefore, the enzymes homologous to SdsA1 that have been identified and characterized thus far vary in their selectivity towards primary and secondary alkyl sulfates but do not exhibit aryl sulfatase activity. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta).

    Science.gov (United States)

    Brawley, Susan H; Blouin, Nicolas A; Ficko-Blean, Elizabeth; Wheeler, Glen L; Lohr, Martin; Goodson, Holly V; Jenkins, Jerry W; Blaby-Haas, Crysten E; Helliwell, Katherine E; Chan, Cheong Xin; Marriage, Tara N; Bhattacharya, Debashish; Klein, Anita S; Badis, Yacine; Brodie, Juliet; Cao, Yuanyu; Collén, Jonas; Dittami, Simon M; Gachon, Claire M M; Green, Beverley R; Karpowicz, Steven J; Kim, Jay W; Kudahl, Ulrich Johan; Lin, Senjie; Michel, Gurvan; Mittag, Maria; Olson, Bradley J S C; Pangilinan, Jasmyn L; Peng, Yi; Qiu, Huan; Shu, Shengqiang; Singer, John T; Smith, Alison G; Sprecher, Brittany N; Wagner, Volker; Wang, Wenfei; Wang, Zhi-Yong; Yan, Juying; Yarish, Charles; Zäuner-Riek, Simone; Zhuang, Yunyun; Zou, Yong; Lindquist, Erika A; Grimwood, Jane; Barry, Kerrie W; Rokhsar, Daniel S; Schmutz, Jeremy; Stiller, John W; Grossman, Arthur R; Prochnik, Simon E

    2017-08-01

    Porphyra umbilicalis (laver) belongs to an ancient group of red algae (Bangiophyceae), is harvested for human food, and thrives in the harsh conditions of the upper intertidal zone. Here we present the 87.7-Mbp haploid Porphyra genome (65.8% G + C content, 13,125 gene loci) and elucidate traits that inform our understanding of the biology of red algae as one of the few multicellular eukaryotic lineages. Novel features of the Porphyra genome shared by other red algae relate to the cytoskeleton, calcium signaling, the cell cycle, and stress-tolerance mechanisms including photoprotection. Cytoskeletal motor proteins in Porphyra are restricted to a small set of kinesins that appear to be the only universal cytoskeletal motors within the red algae. Dynein motors are absent, and most red algae, including Porphyra , lack myosin. This surprisingly minimal cytoskeleton offers a potential explanation for why red algal cells and multicellular structures are more limited in size than in most multicellular lineages. Additional discoveries further relating to the stress tolerance of bangiophytes include ancestral enzymes for sulfation of the hydrophilic galactan-rich cell wall, evidence for mannan synthesis that originated before the divergence of green and red algae, and a high capacity for nutrient uptake. Our analyses provide a comprehensive understanding of the red algae, which are both commercially important and have played a major role in the evolution of other algal groups through secondary endosymbioses.

  9. The independent prokaryotic origins of eukaryotic fructose-1, 6-bisphosphatase and sedoheptulose-1, 7-bisphosphatase and the implications of their origins for the evolution of eukaryotic Calvin cycle

    Directory of Open Access Journals (Sweden)

    Jiang Yong-Hai

    2012-10-01

    Full Text Available Abstract Background In the Calvin cycle of eubacteria, the dephosphorylations of both fructose-1, 6-bisphosphate (FBP and sedoheptulose-1, 7-bisphosphate (SBP are catalyzed by the same bifunctional enzyme: fructose-1, 6-bisphosphatase/sedoheptulose-1, 7-bisphosphatase (F/SBPase, while in that of eukaryotic chloroplasts by two distinct enzymes: chloroplastic fructose-1, 6-bisphosphatase (FBPase and sedoheptulose-1, 7-bisphosphatase (SBPase, respectively. It was proposed that these two eukaryotic enzymes arose from the divergence of a common ancestral eubacterial bifunctional F/SBPase of mitochondrial origin. However, no specific affinity between SBPase and eubacterial FBPase or F/SBPase can be observed in the previous phylogenetic analyses, and it is hard to explain why SBPase and/or F/SBPase are/is absent from most extant nonphotosynthetic eukaryotes according to this scenario. Results Domain analysis indicated that eubacterial F/SBPase of two different resources contain distinct domains: proteobacterial F/SBPases contain typical FBPase domain, while cyanobacterial F/SBPases possess FBPase_glpX domain. Therefore, like prokaryotic FBPase, eubacterial F/SBPase can also be divided into two evolutionarily distant classes (Class I and II. Phylogenetic analysis based on a much larger taxonomic sampling than previous work revealed that all eukaryotic SBPase cluster together and form a close sister group to the clade of epsilon-proteobacterial Class I FBPase which are gluconeogenesis-specific enzymes, while all eukaryotic chloroplast FBPase group together with eukaryotic cytosolic FBPase and form another distinct clade which then groups with the Class I FBPase of diverse eubacteria. Motif analysis of these enzymes also supports these phylogenetic correlations. Conclusions There are two evolutionarily distant classes of eubacterial bifunctional F/SBPase. Eukaryotic FBPase and SBPase do not diverge from either of them but have two independent origins

  10. Efficient Production of γ-GABA Using Recombinant E. coli Expressing Glutamate Decarboxylase (GAD) Derived from Eukaryote Saccharomyces cerevisiae.

    Science.gov (United States)

    Xiong, Qiang; Xu, Zheng; Xu, Lu; Yao, Zhong; Li, Sha; Xu, Hong

    2017-12-01

    γ-Aminobutyric acid (γ-GABA) is a non-proteinogenic amino acid, which acts as a major regulator in the central nervous system. Glutamate decarboxylase (namely GAD, EC 4.1.1.15) is known to be an ideal enzyme for γ-GABA production using L-glutamic acid as substrate. In this study, we cloned and expressed GAD gene from eukaryote Saccharomyces cerevisiae (ScGAD) in E. coli BL21(DE3). This enzyme was further purified and its optimal reaction temperature and pH were 37 °C and pH 4.2, respectively. The cofactor of ScGAD was verified to be either pyridoxal 5'-phosphate (PLP) or pyridoxal hydrochloride. The optimal concentration of either cofactor was 50 mg/L. The optimal medium for E. coli-ScGAD cultivation and expression were 10 g/L lactose, 5 g/L glycerol, 20 g/L yeast extract, and 10 g/L sodium chloride, resulting in an activity of 55 U/mL medium, three times higher than that of using Luria-Bertani (LB) medium. The maximal concentration of γ-GABA was 245 g/L whereas L-glutamic acid was near completely converted. These findings provided us a good example for bio-production of γ-GABA using recombinant E. coli expressing a GAD enzyme derived from eukaryote.

  11. Rubisco in marine symbiotic dinoflagellates: form II enzymes in eukaryotic oxygenic phototrophs encoded by a nuclear multigene family.

    Science.gov (United States)

    Rowan, R; Whitney, S M; Fowler, A; Yellowlees, D

    1996-03-01

    Genes encoding ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) were cloned from dinoflagellate symbionts (Symbiodinium spp) of the giant clam Tridacna gigas and characterized. Strikingly, Symbiodinium Rubisco is completely different from other eukaryotic (form I) Rubiscos: it is a form II enzyme that is approximately 65% identical to Rubisco from Rhodospirillum rubrum (Rubisco forms I and II are approximately 25 to 30% identical); it is nuclear encoded by a multigene family; and the predominantly expressed Rubisco is encoded as a precursor polyprotein. One clone appears to contain a predominantly expressed Rubisco locus (rbcA), as determined by RNA gel blot analysis of Symbiodinium RNA and sequencing of purified Rubisco protein. Another contains an enigmatic locus (rbcG) that exhibits an unprecedented pattern of amino acid replacement but does not appear to be a pseudogene. The expression of rbcG has not been analyzed; it was detected only in the minor of two taxa of Symbiodinium that occur together in T. gigas. This study confirms and describes a previously unrecognized branch of Rubisco's evolution: a eukaryotic form II enzyme that participates in oxygenic photosynthesis and is encoded by a diverse, nuclear multigene family.

  12. Quantitative prediction of shrimp disease incidence via the profiles of gut eukaryotic microbiota.

    Science.gov (United States)

    Xiong, Jinbo; Yu, Weina; Dai, Wenfang; Zhang, Jinjie; Qiu, Qiongfen; Ou, Changrong

    2018-04-01

    One common notion is emerging that gut eukaryotes are commensal or beneficial, rather than detrimental. To date, however, surprisingly few studies have been taken to discern the factors that govern the assembly of gut eukaryotes, despite growing interest in the dysbiosis of gut microbiota-disease relationship. Herein, we firstly explored how the gut eukaryotic microbiotas were assembled over shrimp postlarval to adult stages and a disease progression. The gut eukaryotic communities changed markedly as healthy shrimp aged, and converged toward an adult-microbiota configuration. However, the adult-like stability was distorted by disease exacerbation. A null model untangled that the deterministic processes that governed the gut eukaryotic assembly tended to be more important over healthy shrimp development, whereas this trend was inverted as the disease progressed. After ruling out the baseline of gut eukaryotes over shrimp ages, we identified disease-discriminatory taxa (species level afforded the highest accuracy of prediction) that characteristic of shrimp health status. The profiles of these taxa contributed an overall 92.4% accuracy in predicting shrimp health status. Notably, this model can accurately diagnose the onset of shrimp disease. Interspecies interaction analysis depicted how the disease-discriminatory taxa interacted with one another in sustaining shrimp health. Taken together, our findings offer novel insights into the underlying ecological processes that govern the assembly of gut eukaryotes over shrimp postlarval to adult stages and a disease progression. Intriguingly, the established model can quantitatively and accurately predict the incidences of shrimp disease.

  13. Repertory of eukaryotes (eukaryome) in the human gastrointestinal tract: taxonomy and detection methods.

    Science.gov (United States)

    Hamad, I; Raoult, D; Bittar, F

    2016-01-01

    Eukaryotes are an important component of the human gut, and their relationship with the human host varies from parasitic to commensal. Understanding the diversity of human intestinal eukaryotes has important significance for human health. In the past few decades, most of the multitudes of techniques that are involved in the diagnosis of the eukaryotic population in the human intestinal tract were confined to pathological and parasitological aspects that mainly rely on traditionally based methods. However, development of culture-independent molecular techniques comprised of direct DNA extraction from faeces followed by sequencing, offer new opportunities to estimate the occurrence of eukaryotes in the human gut by providing data on the entire eukaryotic community, particularly not-yet-cultured or fastidious organisms. Further broad surveys of the eukaryotic communities in the gut based on high throughput tools such as next generation sequencing might lead to uncovering the real diversity of these ubiquitous organisms in the human intestinal tract and discovering the unrecognized roles of these eukaryotes in modulating the host immune system and inducing changes in host gut physiology and ecosystem. © 2015 John Wiley & Sons Ltd.

  14. Universal distribution of mutational effects on protein stability, uncoupling of protein robustness from sequence evolution and distinct evolutionary modes of prokaryotic and eukaryotic proteins

    Science.gov (United States)

    Faure, Guilhem; Koonin, Eugene V.

    2015-05-01

    Robustness to destabilizing effects of mutations is thought of as a key factor of protein evolution. The connections between two measures of robustness, the relative core size and the computationally estimated effect of mutations on protein stability (ΔΔG), protein abundance and the selection pressure on protein-coding genes (dN/dS) were analyzed for the organisms with a large number of available protein structures including four eukaryotes, two bacteria and one archaeon. The distribution of the effects of mutations in the core on protein stability is universal and indistinguishable in eukaryotes and bacteria, centered at slightly destabilizing amino acid replacements, and with a heavy tail of more strongly destabilizing replacements. The distribution of mutational effects in the hyperthermophilic archaeon Thermococcus gammatolerans is significantly shifted toward strongly destabilizing replacements which is indicative of stronger constraints that are imposed on proteins in hyperthermophiles. The median effect of mutations is strongly, positively correlated with the relative core size, in evidence of the congruence between the two measures of protein robustness. However, both measures show only limited correlations to the expression level and selection pressure on protein-coding genes. Thus, the degree of robustness reflected in the universal distribution of mutational effects appears to be a fundamental, ancient feature of globular protein folds whereas the observed variations are largely neutral and uncoupled from short term protein evolution. A weak anticorrelation between protein core size and selection pressure is observed only for surface residues in prokaryotes but a stronger anticorrelation is observed for all residues in eukaryotic proteins. This substantial difference between proteins of prokaryotes and eukaryotes is likely to stem from the demonstrable higher compactness of prokaryotic proteins.

  15. Plant plasma membrane-bound staphylococcal-like DNases as a novel class of eukaryotic nucleases

    Directory of Open Access Journals (Sweden)

    Leśniewicz Krzysztof

    2012-10-01

    Full Text Available Abstract Background The activity of degradative nucleases responsible for genomic DNA digestion has been observed in all kingdoms of life. It is believed that the main function of DNA degradation occurring during plant programmed cell death is redistribution of nucleic acid derived products such as nitrogen, phosphorus and nucleotide bases. Plant degradative nucleases that have been studied so far belong mainly to the S1-type family and were identified in cellular compartments containing nucleic acids or in the organelles where they are stored before final application. However, the explanation of how degraded DNA components are exported from the dying cells for further reutilization remains open. Results Bioinformatic and experimental data presented in this paper indicate that two Arabidopsis staphylococcal-like nucleases, named CAN1 and CAN2, are anchored to the cell membrane via N-terminal myristoylation and palmitoylation modifications. Both proteins possess a unique hybrid structure in their catalytic domain consisting of staphylococcal nuclease-like and tRNA synthetase anticodon binding-like motifs. They are neutral, Ca2+-dependent nucleaces showing a different specificity toward the ssDNA, dsDNA and RNA substrates. A study of microarray experiments and endogenous nuclease activity revealed that expression of CAN1 gene correlates with different forms of programmed cell death, while the CAN2 gene is constitutively expressed. Conclusions In this paper we present evidence showing that two plant staphylococcal-like nucleases belong to a new, as yet unidentified class of eukaryotic nucleases, characterized by unique plasma membrane localization. The identification of this class of nucleases indicates that plant cells possess additional, so far uncharacterized, mechanisms responsible for DNA and RNA degradation. The potential functions of these nucleases in relation to their unique intracellular location are discussed.

  16. Phagosome maturation in unicellular eukaryote Paramecium: the presence of RILP, Rab7 and LAMP-2 homologues.

    Science.gov (United States)

    Wyroba, E; Surmacz, L; Osinska, M; Wiejak, J

    2007-01-01

    Phagosome maturation is a complex process enabling degradation of internalised particles. Our data obtained at the gene, protein and cellular level indicate that the set of components involved in this process and known up to now in mammalian cells is functioning in unicellular eukaryote. Rab7-interacting partners: homologues of its effector RILP (Rab-interacting lysosomal protein) and LAMP-2 (lysosomal membrane protein 2) as well as alpha7 subunit of the 26S proteasome were revealed in Paramecium phagolysosomal compartment. We identified the gene/transcript fragments encoding RILP-related proteins (RILP1 and RILP2) in Paramecium by PCR/RT-PCR and sequencing. The deduced amino acid sequences of RILP1 and RILP2 show 60.5% and 58.3% similarity, respectively, to the region involved in regulating of lysosomal morphology and dynein-dynactin recruitment of human RILP. RILP colocalised with Rab7 in Paramecium lysosomes and at phagolysosomal membrane during phagocytosis of both the latex beads and bacteria. In the same compartment LAMP-2 was present and its expression during latex internalisation was 2.5-fold higher than in the control when P2 protein fractions (100,000 x g) of equal load were quantified by immunoblotting. LAMP-2 cross-reacting polypeptide of approximately106 kDa was glycosylated as shown by fluorescent and Western analysis of the same blot preceded by PNGase F treatment. The alpha7 subunit of 26S proteasome was detected close to the phagosomal membrane in the small vesicles, in some of which it colocalised with Rab7. Immunoblotting confirmed presence of RILP-related polypeptide and a7 subunit of 26S proteasome in Paramecium protein fractions. These results suggest that Rab7, RILP and LAMP-2 may be involved in phagosome maturation in Paramecium.

  17. Eukaryotic initiation factor 3C silencing inhibits cell proliferation and promotes apoptosis in human glioma.

    Science.gov (United States)

    Hao, Jinmin; Wang, Zhiming; Wang, Yaowu; Liang, Zhaohui; Zhang, Xin; Zhao, Zongmao; Jiao, Baohua

    2015-06-01

    Eukaryotic initiation factor 3, subunit c (eIF3c), an oncogene overexpressed in human cancers, plays an important role in cell tumorigenesis and proliferation. However, studies assessing its function in gliomas are scarce. The present study evaluated for the first time, the role of eIF3c in gliomas. Immunohistochemistry was carried out to assess eIF3c expression in 95 human glioma samples and normal brain tissues. Then, the eIF3c mRNA levels were detected in tumor and normal brain specimens by quantitative RT-PCR. In addition, eIF3c mRNA levels were assessed in four glioma cell lines (U87, U251, A172 and U373) by semi-quantitative RT-PCR. The RNA interference (RNAi) technology was employed to knock down the eIF3c gene in the U251 cells. Western blot analysis, BrdU assay and flow cytometry were used to measure eIF3c protein levels, cell proliferation, cell apoptosis and cell cycle, respectively. The eIF3c protein was overexpressed in the human glioma specimens. In agreement, the eIF3c mRNA expression levels were significantly higher in the human glioma tissues compared with the normal brain samples (Pcell lines. Silencing the eIF3c gene in the U251 cells by RNAi significantly suppressed cell proliferation (Pcell number (Pcells were significantly increased (P<0.01) after eIF3c knockdown. These findings suggest that eIF3c is overexpressed in human gliomas and essential for their proliferation and survival. Therefore, inhibiting eIF3c expression may constitute an effective therapy for human glioma.

  18. Phagosome maturation in unicellular eukaryote Paramecium: the presence of RILP, Rab7 and LAMP-2 homologues

    Directory of Open Access Journals (Sweden)

    E Wyroba

    2009-08-01

    Full Text Available Phagosome maturation is a complex process enabling degradation of internalised particles. Our data obtained at the gene, protein and cellular level indicate that the set of components involved in this process and known up to now in mammalian cells is functioning in unicellular eukaryote. Rab7-interacting partners: homologues of its effector RILP (Rab-interacting lysosomal protein and LAMP-2 (lysosomal membrane protein 2 as well as a7 subunit of the 26S proteasome were revealed in Paramecium phagolysosomal compartment. We identified the gene/transcript fragments encoding RILP-related proteins (RILP1 and RILP2 in Paramecium by PCR/RT-PCR and sequencing. The deduced amino acid sequences of RILP1 and RILP2 show 60.5% and 58.3% similarity, respectively, to the region involved in regulating of lysosomal morphology and dynein-dynactin recruitment of human RILP. RILP colocalised with Rab7 in Paramecium lysosomes and at phagolysosomal membrane during phagocytosis of both the latex beads and bacteria. In the same compartment LAMP-2 was present and its expression during latex internalisation was 2.5-fold higher than in the control when P2 protein fractions (100 000 x g of equal load were quantified by immunoblotting. LAMP-2 crossreacting polypeptide of ~106 kDa was glycosylated as shown by fluorescent and Western analysis of the same blot preceded by PNGase F treatment. The a7 subunit of 26S proteasome was detected close to the phagosomal membrane in the small vesicles, in some of which it colocalised with Rab7. Immunoblotting confirmed presence of RILPrelated polypeptide and a7 subunit of 26S proteasome in Paramecium protein fractions. These results suggest that Rab7, RILP and LAMP-2 may be involved in phagosome maturation in Paramecium.

  19. Innate immune evasion mediated by the Ambystoma tigrinum virus eukaryotic translation initiation factor 2alpha homologue.

    Science.gov (United States)

    Jancovich, James K; Jacobs, Bertram L

    2011-05-01

    Ranaviruses (family Iridoviridae, genus Ranavirus) are large, double-stranded DNA (dsDNA) viruses whose replication is restricted to ectothermic vertebrates. Many highly pathogenic members of the genus Ranavirus encode a homologue of the eukaryotic translation initiation factor 2α (eIF2α). Data in a heterologous vaccinia virus system suggest that the Ambystoma tigrinum virus (ATV) eIF2α homologue (vIF2αH; open reading frame [ORF] 57R) is involved in evading the host innate immune response by degrading the interferon-inducible, dsRNA-activated protein kinase, PKR. To test this hypothesis directly, the ATV vIF2αH gene (ORF 57R) was deleted by homologous recombination, and a selectable marker was inserted in its place. The ATVΔ57R virus has a small plaque phenotype and is 8-fold more sensitive to interferon than wild-type ATV (wtATV). Infection of fish cells with the ATVΔ57R virus leads to eIF2α phosphorylation, in contrast to infection with wtATV, which actively inhibits eIF2α phosphorylation. The inability of ATVΔ57R to prevent phosphorylation of eIF2α correlates with degradation of fish PKZ, an interferon-inducible enzyme that is closely related to mammalian PKR. In addition, salamanders infected with ATVΔ57R displayed an increased time to death compared to that of wtATV-infected salamanders. Therefore, in a biologically relevant system, the ATV vIF2αH gene acts as an innate immune evasion factor, thereby enhancing virus pathogenesis.

  20. Structural and biomechanical basis of mitochondrial movement in eukaryotic cells

    Directory of Open Access Journals (Sweden)

    Wu M

    2013-10-01

    Full Text Available Min Wu,1 Aruna Kalyanasundaram,2 Jie Zhu1 1Laboratory of Biomechanics and Engineering, Institute of Biophysics, College of Science, Northwest A&F University, Yangling, Shaanxi, People's Republic of China; 2College of Pharmacology, University of Illinois at Chicago, Chicago, IL, USA Abstract: Mitochondria serve as energy-producing organelles in eukaryotic cells. In addition to providing the energy supply for cells, the mitochondria are also involved in other processes, such as proliferation, differentiation, information transfer, and apoptosis, and play an important role in regulation of cell growth and the cell cycle. In order to achieve these functions, the mitochondria need to move to the corresponding location. Therefore, mitochondrial movement has a crucial role in normal physiologic activity, and any mitochondrial movement disorder will cause irreparable damage to the organism. For example, recent studies have shown that abnormal movement of the mitochondria is likely to be the reason for Charcot–Marie–Tooth disease, amyotrophic lateral sclerosis, Alzheimer's disease, Huntington's disease, Parkinson's disease, and schizophrenia. So, in the cell, especially in the particular polarized cell, the appropriate distribution of mitochondria is crucial to the function and survival of the cell. Mitochondrial movement is mainly associated with the cytoskeleton and related proteins. However, those components play different roles according to cell type. In this paper, we summarize the structural basis of mitochondrial movement, including microtubules, actin filaments, motor proteins, and adaptin, and review studies of the biomechanical mechanisms of mitochondrial movement in different types of cells. Keywords: mitochondrial movement, microtubules, actin filaments, motor proteins, adaptin

  1. The Superoxide Reductase from the Early Diverging Eukaryote Giardia Intestinalis

    Energy Technology Data Exchange (ETDEWEB)

    Cabelli, D.E.; Testa, F.; Mastronicola, D.; Bordi, E.; Pucillo, L.P.; Sarti, P.; Saraiva, L.M.; Giuffre, A.; Teixeira, M.

    2011-10-15

    Unlike superoxide dismutases (SODs), superoxidereductases (SORs) eliminate superoxide anion (O{sub 2}{sup {sm_bullet}-}) not through its dismutation, but via reduction to hydrogen peroxide (H{sub 2}O{sub 2}) in the presence of an electron donor. The microaerobic protist Giardia intestinalis, responsible for a common intestinal disease in humans, though lacking SOD and other canonical reactive oxygen species-detoxifying systems, is among the very few eukaryotes encoding a SOR yet identified. In this study, the recombinant SOR from Giardia (SOR{sub Gi}) was purified and characterized by pulse radiolysis and stopped-flow spectrophotometry. The protein, isolated in the reduced state, after oxidation by superoxide or hexachloroiridate(IV), yields a resting species (T{sub final}) with Fe{sup 3+} ligated to glutamate or hydroxide depending on pH (apparent pK{sub a} = 8.7). Although showing negligible SOD activity, reduced SOR{sub Gi} reacts with O{sub 2}{sup {sm_bullet}-} with a pH-independent second-order rate constant k{sub 1} = 1.0 x 10{sup 9} M{sup -1} s{sup -1} and yields the ferric-(hydro)peroxo intermediate T{sub 1}; this in turn rapidly decays to the T{sub final} state with pH-dependent rates, without populating other detectable intermediates. Immunoblotting assays show that SOR{sub Gi} is expressed in the disease-causing trophozoite of Giardia. We propose that the superoxide-scavenging activity of SOR in Giardia may promote the survival of this air-sensitive parasite in the fairly aerobic proximal human small intestine during infection.

  2. Long SAGE analysis of genes differentially expressed in the midgut ...

    African Journals Online (AJOL)

    USER

    purified using an Oligotex® Messenger ribonucleic acid (mRNA) Midi kit (Qiagen .... to the GO terms. The number of genes is the number of times the GO term is used to annotate genes in the cluster. The left-hand shows its proportion in total genes with GO terms ...... Eukaryotic translation initiation factor 5A. LOC693075.

  3. Glycosyltransferase family 43 is also found in early eukaryotes and has three subfamilies in Charophycean green algae.

    Directory of Open Access Journals (Sweden)

    Rahil Taujale

    Full Text Available The glycosyltransferase family 43 (GT43 has been suggested to be involved in the synthesis of xylans in plant cell walls and proteoglycans in animals. Very recently GT43 family was also found in Charophycean green algae (CGA, the closest relatives of extant land plants. Here we present evidence that non-plant and non-animal early eukaryotes such as fungi, Haptophyceae, Choanoflagellida, Ichthyosporea and Haptophyceae also have GT43-like genes, which are phylogenetically close to animal GT43 genes. By mining RNA sequencing data (RNA-Seq of selected plants, we showed that CGA have evolved three major groups of GT43 genes, one orthologous to IRX14 (IRREGULAR XYLEM14, one orthologous to IRX9/IRX9L and the third one ancestral to all land plant GT43 genes. We confirmed that land plant GT43 has two major clades A and B, while in angiosperms, clade A further evolved into three subclades and the expression and motif pattern of A3 (containing IRX9 are fairly different from the other two clades likely due to rapid evolution. Our in-depth sequence analysis contributed to our overall understanding of the early evolution of GT43 family and could serve as an example for the study of other plant cell wall-related enzyme families.

  4. Meeting Report: Minutes from EMBO: Ten Years of Comparative Genomics of Eukaryotic Microorganisms

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Julius; López-García, P.; Louis, E.; Boekhout, T.

    2016-01-01

    Roč. 167, č. 3 (2016), s. 217-221 ISSN 1434-4610 Institutional support: RVO:60077344 Keywords : protist * eukaryotic microorganisms * genomics Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.794, year: 2016

  5. Non-coding RNA regulation in pathogenic bacteria located inside eukaryotic cells

    NARCIS (Netherlands)

    Ortega, Alvaro D.; Quereda, Juan J; Pucciarelli, M Graciela; García-del Portillo, Francisco

    2014-01-01

    Intracellular bacterial pathogens have evolved distinct lifestyles inside eukaryotic cells. Some pathogens coexist with the infected cell in an obligate intracellular state, whereas others transit between the extracellular and intracellular environment. Adaptation to these intracellular lifestyles

  6. Automating the CMS DAQ

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, G.; et al.

    2014-01-01

    We present the automation mechanisms that have been added to the Data Acquisition and Run Control systems of the Compact Muon Solenoid (CMS) experiment during Run 1 of the LHC, ranging from the automation of routine tasks to automatic error recovery and context-sensitive guidance to the operator. These mechanisms helped CMS to maintain a data taking efficiency above 90% and to even improve it to 95% towards the end of Run 1, despite an increase in the occurrence of single-event upsets in sub-detector electronics at high LHC luminosity.

  7. Control and automation systems

    International Nuclear Information System (INIS)

    Schmidt, R.; Zillich, H.

    1986-01-01

    A survey is given of the development of control and automation systems for energy uses. General remarks about control and automation schemes are followed by a description of modern process control systems along with process control processes as such. After discussing the particular process control requirements of nuclear power plants the paper deals with the reliability and availability of process control systems and refers to computerized simulation processes. The subsequent paragraphs are dedicated to descriptions of the operating floor, ergonomic conditions, existing systems, flue gas desulfurization systems, the electromagnetic influences on digital circuits as well as of light wave uses. (HAG) [de

  8. Automated nuclear materials accounting

    International Nuclear Information System (INIS)

    Pacak, P.; Moravec, J.

    1982-01-01

    An automated state system of accounting for nuclear materials data was established in Czechoslovakia in 1979. A file was compiled of 12 programs in the PL/1 language. The file is divided into four groups according to logical associations, namely programs for data input and checking, programs for handling the basic data file, programs for report outputs in the form of worksheets and magnetic tape records, and programs for book inventory listing, document inventory handling and materials balance listing. A similar automated system of nuclear fuel inventory for a light water reactor was introduced for internal purposes in the Institute of Nuclear Research (UJV). (H.S.)

  9. The Evolutionary History of MAPL (Mitochondria-Associated Protein Ligase and Other Eukaryotic BAM/GIDE Domain Proteins.

    Directory of Open Access Journals (Sweden)

    Jeremy G Wideman

    Full Text Available MAPL (mitochondria-associated protein ligase, also called MULAN/GIDE/MUL1 is a multifunctional mitochondrial outer membrane protein found in human cells that contains a unique BAM (beside a membrane domain and a C-terminal RING-finger domain. MAPL has been implicated in several processes that occur in animal cells such as NF-kB activation, innate immunity and antiviral signaling, suppression of PINK1/parkin defects, mitophagy in skeletal muscle, and caspase-dependent apoptosis. Previous studies demonstrated that the BAM domain is present in diverse organisms in which most of these processes do not occur, including plants, archaea, and bacteria. Thus the conserved function of MAPL and its BAM domain remains an open question. In order to gain insight into its conserved function, we investigated the evolutionary origins of MAPL by searching for homologues in predicted proteomes of diverse eukaryotes. We show that MAPL proteins with a conserved BAM-RING architecture are present in most animals, protists closely related to animals, a single species of fungus, and several multicellular plants and related green algae. Phylogenetic analysis demonstrated that eukaryotic MAPL proteins originate from a common ancestor and not from independent horizontal gene transfers from bacteria. We also determined that two independent duplications of MAPL occurred, one at the base of multicellular plants and another at the base of vertebrates. Although no other eukaryote genome examined contained a verifiable MAPL orthologue, BAM domain-containing proteins were identified in the protists Bigelowiella natans and Ectocarpus siliculosis. Phylogenetic analyses demonstrated that these proteins are more closely related to prokaryotic BAM proteins and therefore likely arose from independent horizontal gene transfers from bacteria. We conclude that MAPL proteins with BAM-RING architectures have been present in the holozoan and viridiplantae lineages since their very beginnings

  10. The genomic underpinnings of eukaryotic virus taxonomy: creating a sequence-based framework for family-level virus classification.

    Science.gov (United States)

    Aiewsakun, Pakorn; Simmonds, Peter

    2018-02-20

    The International Committee on Taxonomy of Viruses (ICTV) classifies viruses into families, genera and species and provides a regulated system for their nomenclature that is universally used in virus descriptions. Virus taxonomic assignments have traditionally been based upon virus phenotypic properties such as host range, virion morphology and replication mechanisms, particularly at family level. However, gene sequence comparisons provide a clearer guide to their evolutionary relationships and provide the only information that may guide the incorporation of viruses detected in environmental (metagenomic) studies that lack any phenotypic data. The current study sought to determine whether the existing virus taxonomy could be reproduced by examination of genetic relationships through the extraction of protein-coding gene signatures and genome organisational features. We found large-scale consistency between genetic relationships and taxonomic assignments for viruses of all genome configurations and genome sizes. The analysis pipeline that we have called 'Genome Relationships Applied to Virus Taxonomy' (GRAViTy) was highly effective at reproducing the current assignments of viruses at family level as well as inter-family groupings into orders. Its ability to correctly differentiate assigned viruses from unassigned viruses, and classify them into the correct taxonomic group, was evaluated by threefold cross-validation technique. This predicted family membership of eukaryotic viruses with close to 100% accuracy and specificity potentially enabling the algorithm to predict assignments for the vast corpus of metagenomic sequences consistently with ICTV taxonomy rules. In an evaluation run of GRAViTy, over one half (460/921) of (near)-complete genome sequences from several large published metagenomic eukaryotic virus datasets were assigned to 127 novel family-level groupings. If corroborated by other analysis methods, these would potentially more than double the number of

  11. Dynamic Evolution of Nitric Oxide Detoxifying Flavohemoglobins, a Family of Single-Protein Metabolic Modules in Bacteria and Eukaryotes.

    Science.gov (United States)

    Wisecaver, Jennifer H; Alexander, William G; King, Sean B; Hittinger, Chris Todd; Rokas, Antonis

    2016-08-01

    Due to their functional independence, proteins that comprise standalone metabolic units, which we name single-protein metabolic modules, may be particularly prone to gene duplication (GD) and horizontal gene transfer (HGT). Flavohemoglobins (flavoHbs) are prime examples of single-protein metabolic modules, detoxifying nitric oxide (NO), a ubiquitous toxin whose antimicrobial properties many life forms exploit, to nitrate, a common source of nitrogen for organisms. FlavoHbs appear widespread in bacteria and have been identified in a handful of microbial eukaryotes, but how the distribution of this ecologically and biomedically important protein family evolved remains unknown. Reconstruction of the evolutionary history of 3,318 flavoHb protein sequences covering the family's known diversity showed evidence of recurrent HGT at multiple evolutionary scales including intrabacterial HGT, as well as HGT from bacteria to eukaryotes. One of the most striking examples of HGT is the acquisition of a flavoHb by the dandruff- and eczema-causing fungus Malassezia from Corynebacterium Actinobacteria, a transfer that growth experiments show is capable of mediating NO resistance in fungi. Other flavoHbs arose via GD; for example, many filamentous fungi possess two flavoHbs that are differentially targeted to the cytosol and mitochondria, likely conferring protection against external and internal sources of NO, respectively. Because single-protein metabolic modules such as flavoHb function independently, readily undergo GD and HGT, and are frequently involved in organismal defense and competition, we suggest that they represent "plug-and-play" proteins for ecological arms races. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. A Review of Computational Intelligence Methods for Eukaryotic Promoter Prediction.

    Science.gov (United States)

    Singh, Shailendra; Kaur, Sukhbir; Goel, Neelam

    2015-01-01

    In past decades, prediction of genes in DNA sequences has attracted the attention of many researchers but due to its complex structure it is extremely intricate to correctly locate its position. A large number of regulatory regions are present in DNA that helps in transcription of a gene. Promoter is one such region and to find its location is a challenging problem. Various computational methods for promoter prediction have been developed over the past few years. This paper reviews these promoter prediction methods. Several difficulties and pitfalls encountered by these methods are also detailed, along with future research directions.

  13. Altering user' acceptance of automation through prior automation exposure.

    Science.gov (United States)

    Bekier, Marek; Molesworth, Brett R C

    2017-06-01

    Air navigation service providers worldwide see increased use of automation as one solution to overcome the capacity constraints imbedded in the present air traffic management (ATM) system. However, increased use of automation within any system is dependent on user acceptance. The present research sought to determine if the point at which an individual is no longer willing to accept or cooperate with automation can be manipulated. Forty participants underwent training on a computer-based air traffic control programme, followed by two ATM exercises (order counterbalanced), one with and one without the aid of automation. Results revealed after exposure to a task with automation assistance, user acceptance of high(er) levels of automation ('tipping point') decreased; suggesting it is indeed possible to alter automation acceptance. Practitioner Summary: This paper investigates whether the point at which a user of automation rejects automation (i.e. 'tipping point') is constant or can be manipulated. The results revealed after exposure to a task with automation assistance, user acceptance of high(er) levels of automation decreased; suggesting it is possible to alter automation acceptance.

  14. Why did eukaryotes evolve only once? Genetic and energetic aspects of conflict and conflict mediation.

    Science.gov (United States)

    Blackstone, Neil W

    2013-07-19

    According to multi-level theory, evolutionary transitions require mediating conflicts between lower-level units in favour of the higher-level unit. By this view, the origin of eukaryotes and the origin of multicellularity would seem largely equivalent. Yet, eukaryotes evolved only once in the history of life, whereas multicellular eukaryotes have evolved many times. Examining conflicts between evolutionary units and mechanisms that mediate these conflicts can illuminate these differences. Energy-converting endosymbionts that allow eukaryotes to transcend surface-to-volume constraints also can allocate energy into their own selfish replication. This principal conflict in the origin of eukaryotes can be mediated by genetic or energetic mechanisms. Genome transfer diminishes the heritable variation of the symbiont, but requires the de novo evolution of the protein-import apparatus and was opposed by selection for selfish symbionts. By contrast, metabolic signalling is a shared primitive feature of all cells. Redox state of the cytosol is an emergent feature that cannot be subverted by an individual symbiont. Hypothetical scenarios illustrate how metabolic regulation may have mediated the conflicts inherent at different stages in the origin of eukaryotes. Aspects of metabolic regulation may have subsequently been coopted from within-cell to between-cell pathways, allowing multicellularity to emerge repeatedly.

  15. Patterns of kinesin evolution reveal a complex ancestral eukaryote with a multifunctional cytoskeleton

    Directory of Open Access Journals (Sweden)

    Richards Thomas A

    2010-04-01

    Full Text Available Abstract Background The genesis of the eukaryotes was a pivotal event in evolution and was accompanied by the acquisition of numerous new cellular features including compartmentalization by cytoplasmic organelles, mitosis and meiosis, and ciliary motility. Essential for the development of these features was the tubulin cytoskeleton and associated motors. It is therefore possible to map ancient cell evolution by reconstructing the evolutionary history of motor proteins. Here, we have used the kinesin motor repertoire of 45 extant eukaryotes to infer the ancestral state of this superfamily in the last common eukaryotic ancestor (LCEA. Results We bioinformatically identified 1624 putative kinesin proteins, determined their protein domain architectures and calculated a comprehensive Bayesian phylogeny for the kinesin superfamily with statistical support. These data enabled us to define 51 anciently-derived kinesin paralogs (including three new kinesin families and 105 domain architectures. We then mapped these characters across eukaryotes, accounting for secondary loss within established eukaryotic groupings, and alternative tree topologies. Conclusions We show that a minimum of 11 kinesin families and 3 protein domain architectures were present in the LCEA. This demonstrates that the microtubule-based cytoskeleton of the LCEA was surprisingly highly developed in terms of kinesin motor types, but that domain architectures have been extensively modified during the diversification of the eukaryotes. Our analysis provides molecular evidence for the existence of several key cellular functions in the LCEA, and shows that a large proportion of motor family diversity and cellular complexity had already arisen in this ancient cell.

  16. Helicobacter pylori Evolution: Lineage- Specific Adaptations in Homologs of Eukaryotic Sel1-Like Genes

    OpenAIRE

    Ogura, Masako; Perez, J. Christian; Mittl, Peer R. E; Lee, Hae-Kyung; Dailide, Geidrius; Tan, Shumin; Ito, Yoshiyuki; Secka, Ousman; Dailidiene, Daiva; Putty, Kalyani; Berg, Douglas E; Kalia, Awdhesh

    2007-01-01

    Geographic partitioning is postulated to foster divergence of Helicobacter pylori populations as an adaptive response to local differences in predominant host physiology. H. pylori's ability to establish persistent infection despite host inflammatory responses likely involves active management of host defenses using bacterial proteins that may themselves be targets for adaptive evolution. Sequenced H. pylori genomes encode a family of eight or nine secreted proteins containing repeat motifs t...

  17. SigHunt: horizontal gene transfer finder optimized for eukaryotic genomes

    Czech Academy of Sciences Publication Activity Database

    Jaron, K. S.; Moravec, J. C.; Martínková, Natália

    2014-01-01

    Roč. 30, č. 8 (2014), s. 1081-1086 ISSN 1367-4803 R&D Projects: GA ČR(CZ) GAP506/12/1064 Institutional support: RVO:68081766 Keywords : fungus Aspergillus fumigatus * Cryptosporidium parvum * sequence * evolution * identification * islands * ecology Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.981, year: 2014

  18. Idaho: Library Automation and Connectivity.

    Science.gov (United States)

    Bolles, Charles

    1996-01-01

    Provides an overview of the development of cooperative library automation and connectivity in Idaho, including telecommunications capacity, library networks, the Internet, and the role of the state library. Information on six shared automation systems in Idaho is included. (LRW)

  19. Functional and phylogenetic evidence of a bacterial origin for the first enzyme in sphingolipid biosynthesis in a phylum of eukaryotic protozoan parasites.

    Science.gov (United States)

    Mina, John G; Thye, Julie K; Alqaisi, Amjed Q I; Bird, Louise E; Dods, Robert H; Grøftehauge, Morten K; Mosely, Jackie A; Pratt, Steven; Shams-Eldin, Hosam; Schwarz, Ralph T; Pohl, Ehmke; Denny, Paul W

    2017-07-21

    Toxoplasma gondii is an obligate, intracellular eukaryotic apicomplexan protozoan parasite that can cause fetal damage and abortion in both animals and humans. Sphingolipids are essential and ubiquitous components of eukaryotic membranes that are both synthesized and scavenged by the Apicomplexa. Here we report the identification, isolation, and analyses of the Toxoplasma serine palmitoyltransferase, an enzyme catalyzing the first and rate-limiting step in sphingolipid biosynthesis: the condensation of serine and palmitoyl-CoA. In all eukaryotes analyzed to date, serine palmitoyltransferase is a highly conserved heterodimeric enzyme complex. However, biochemical and structural analyses demonstrated the apicomplexan orthologue to be a functional, homodimeric serine palmitoyltransferase localized to the endoplasmic reticulum. Furthermore, phylogenetic studies indicated that it was evolutionarily related to the prokaryotic serine palmitoyltransferase, identified in the Sphingomonadaceae as a soluble homodimeric enzyme. Therefore this enzyme, conserved throughout the Apicomplexa, is likely to have been obtained via lateral gene transfer from a prokaryote. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Eukaryotic translation initiation factor 5A of wheat: Identification ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-18

    . The available literature indi- cated that the expression of eIF5A was temporal and spatial difference and suppressing eIF5A activation causes pleiotropic effects. Transcript analysis reveals that two tobacco eIF5A genes ...

  1. Searching for eukaryotic life preserved in Antarctic permafrost

    DEFF Research Database (Denmark)

    Zucconi, L.; Selbmann, L.; Buzzini, P.

    2012-01-01

    , Cordyceps, Rhizopus and yeasts to the genera Cryptococcus and Sporidiobolus. All the strains can be defined as mesophilic psychrotolerant. The molecular analyses revealed that these fungal genotypes do not deviate from the global gene pool of fungi commonly spreading worldwide at present, but possible...

  2. Automated HAZOP revisited

    DEFF Research Database (Denmark)

    Taylor, J. R.

    2017-01-01

    Hazard and operability analysis (HAZOP) has developed from a tentative approach to hazard identification for process plants in the early 1970s to an almost universally accepted approach today, and a central technique of safety engineering. Techniques for automated HAZOP analysis were developed...

  3. Automated data model evaluation

    International Nuclear Information System (INIS)

    Kazi, Zoltan; Kazi, Ljubica; Radulovic, Biljana

    2012-01-01

    Modeling process is essential phase within information systems development and implementation. This paper presents methods and techniques for analysis and evaluation of data model correctness. Recent methodologies and development results regarding automation of the process of model correctness analysis and relations with ontology tools has been presented. Key words: Database modeling, Data model correctness, Evaluation

  4. Automated Vehicle Monitoring System

    OpenAIRE

    Wibowo, Agustinus Deddy Arief; Heriansyah, Rudi

    2014-01-01

    An automated vehicle monitoring system is proposed in this paper. The surveillance system is based on image processing techniques such as background subtraction, colour balancing, chain code based shape detection, and blob. The proposed system will detect any human's head as appeared at the side mirrors. The detected head will be tracked and recorded for further action.

  5. Automated Accounting. Instructor Guide.

    Science.gov (United States)

    Moses, Duane R.

    This curriculum guide was developed to assist business instructors using Dac Easy Accounting College Edition Version 2.0 software in their accounting programs. The module consists of four units containing assignment sheets and job sheets designed to enable students to master competencies identified in the area of automated accounting. The first…

  6. Mechatronic Design Automation

    DEFF Research Database (Denmark)

    Fan, Zhun

    successfully design analogue filters, vibration absorbers, micro-electro-mechanical systems, and vehicle suspension systems, all in an automatic or semi-automatic way. It also investigates the very important issue of co-designing plant-structures and dynamic controllers in automated design of Mechatronic...

  7. Protokoller til Home Automation

    DEFF Research Database (Denmark)

    Kjær, Kristian Ellebæk

    2008-01-01

    computer, der kan skifte mellem foruddefinerede indstillinger. Nogle gange kan computeren fjernstyres over internettet, så man kan se hjemmets status fra en computer eller måske endda fra en mobiltelefon. Mens nævnte anvendelser er klassiske indenfor home automation, er yderligere funktionalitet dukket op...

  8. Automated Water Extraction Index

    DEFF Research Database (Denmark)

    Feyisa, Gudina Legese; Meilby, Henrik; Fensholt, Rasmus

    2014-01-01

    of various sorts of environmental noise and at the same time offers a stable threshold value. Thus we introduced a new Automated Water Extraction Index (AWEI) improving classification accuracy in areas that include shadow and dark surfaces that other classification methods often fail to classify correctly...

  9. Myths in test automation

    Directory of Open Access Journals (Sweden)

    Jazmine Francis

    2015-01-01

    Full Text Available Myths in automation of software testing is an issue of discussion that echoes about the areas of service in validation of software industry. Probably, the first though that appears in knowledgeable reader would be Why this old topic again? What's New to discuss the matter? But, for the first time everyone agrees that undoubtedly automation testing today is not today what it used to be ten or fifteen years ago, because it has evolved in scope and magnitude. What began as a simple linear scripts for web applications today has a complex architecture and a hybrid framework to facilitate the implementation of testing applications developed with various platforms and technologies. Undoubtedly automation has advanced, but so did the myths associated with it. The change in perspective and knowledge of people on automation has altered the terrain. This article reflects the points of views and experience of the author in what has to do with the transformation of the original myths in new versions, and how they are derived; also provides his thoughts on the new generation of myths.

  10. Driver Psychology during Automated Platooning

    NARCIS (Netherlands)

    Heikoop, D.D.

    2017-01-01

    With the rapid increase in vehicle automation technology, the call for understanding how humans behave while driving in an automated vehicle becomes more urgent. Vehicles that have automated systems such as Lane Keeping Assist (LKA) or Adaptive Cruise Control (ACC) not only support drivers in their

  11. New role for Cdc14 phosphatase: localization to basal bodies in the oomycete phytophthora and its evolutionary coinheritance with eukaryotic flagella.

    Science.gov (United States)

    Ah-Fong, Audrey M V; Judelson, Howard S

    2011-02-14

    Cdc14 protein phosphatases are well known for regulating the eukaryotic cell cycle, particularly during mitosis. Here we reveal a distinctly new role for Cdc14 based on studies of the microbial eukaryote Phytophthora infestans, the Irish potato famine agent. While Cdc14 is transcribed constitutively in yeast and animal cells, the P. infestans ortholog is expressed exclusively in spore stages of the life cycle and not in vegetative hyphae where the bulk of mitosis takes place. PiCdc14 expression is first detected in nuclei at sporulation, and during zoospore formation the protein accumulates at the basal body, which is the site from which flagella develop. The association of PiCdc14 with basal bodies was supported by co-localization studies with the DIP13 basal body protein and flagellar β-tubulin, and by demonstrating the enrichment of PiCdc14 in purified flagella-basal body complexes. Overexpressing PiCdc14 did not cause defects in growth or mitosis in hyphae, but interfered with cytoplasmic partitioning during zoosporogenesis. This cytokinetic defect might relate to its ability to bind microtubules, which was shown using an in vitro cosedimentation assay. The use of gene silencing to reveal the precise function of PiCdc14 in flagella is not possible since we showed previously that silencing prevents the formation of the precursor stage, sporangia. Nevertheless, the association of Cdc14 with flagella and basal bodies is consistent with their phylogenetic distribution in eukaryotes, as species that lack the ability to produce flagella generally also lack Cdc14. An ancestral role of Cdc14 in the flagellar stage of eukaryotes is thereby proposed.

  12. New role for Cdc14 phosphatase: localization to basal bodies in the oomycete phytophthora and its evolutionary coinheritance with eukaryotic flagella.

    Directory of Open Access Journals (Sweden)

    Audrey M V Ah-Fong

    Full Text Available Cdc14 protein phosphatases are well known for regulating the eukaryotic cell cycle, particularly during mitosis. Here we reveal a distinctly new role for Cdc14 based on studies of the microbial eukaryote Phytophthora infestans, the Irish potato famine agent. While Cdc14 is transcribed constitutively in yeast and animal cells, the P. infestans ortholog is expressed exclusively in spore stages of the life cycle and not in vegetative hyphae where the bulk of mitosis takes place. PiCdc14 expression is first detected in nuclei at sporulation, and during zoospore formation the protein accumulates at the basal body, which is the site from which flagella develop. The association of PiCdc14 with basal bodies was supported by co-localization studies with the DIP13 basal body protein and flagellar β-tubulin, and by demonstrating the enrichment of PiCdc14 in purified flagella-basal body complexes. Overexpressing PiCdc14 did not cause defects in growth or mitosis in hyphae, but interfered with cytoplasmic partitioning during zoosporogenesis. This cytokinetic defect might relate to its ability to bind microtubules, which was shown using an in vitro cosedimentation assay. The use of gene silencing to reveal the precise function of PiCdc14 in flagella is not possible since we showed previously that silencing prevents the formation of the precursor stage, sporangia. Nevertheless, the association of Cdc14 with flagella and basal bodies is consistent with their phylogenetic distribution in eukaryotes, as species that lack the ability to produce flagella generally also lack Cdc14. An ancestral role of Cdc14 in the flagellar stage of eukaryotes is thereby proposed.

  13. C-terminal motif prediction in eukaryotic proteomes using comparative genomics and statistical over-representation across protein families

    Directory of Open Access Journals (Sweden)

    Cutler Sean R

    2007-06-01

    Full Text Available Abstract Background The carboxy termini of proteins are a frequent site of activity for a variety of biologically important functions, ranging from post-translational modification to protein targeting. Several short peptide motifs involved in protein sorting roles and dependent upon their proximity to the C-terminus for proper function have already been characterized. As a limited number of such motifs have been identified, the potential exists for genome-wide statistical analysis and comparative genomics to reveal novel peptide signatures functioning in a C-terminal dependent manner. We have applied a novel methodology to the prediction of C-terminal-anchored peptide motifs involving a simple z-statistic and several techniques for improving the signal-to-noise ratio. Results We examined the statistical over-representation of position-specific C-terminal tripeptides in 7 eukaryotic proteomes. Sequence randomization models and simple-sequence masking were applied to the successful reduction of background noise. Similarly, as C-terminal homology among members of large protein families may artificially inflate tripeptide counts in an irrelevant and obfuscating manner, gene-family clustering was performed prior to the analysis in order to assess tripeptide over-representation across protein families as opposed to across all proteins. Finally, comparative genomics was used to identify tripeptides significantly occurring in multiple species. This approach has been able to predict, to our knowledge, all C-terminally anchored targeting motifs present in the literature. These include the PTS1 peroxisomal targeting signal (SKL*, the ER-retention signal (K/HDEL*, the ER-retrieval signal for membrane bound proteins (KKxx*, the prenylation signal (CC* and the CaaX box prenylation motif. In addition to a high statistical over-representation of these known motifs, a collection of significant tripeptides with a high propensity for biological function exists

  14. Flooding Duration Affects the Structure of Terrestrial and Aquatic Microbial Eukaryotic Communities.

    Science.gov (United States)

    Röhl, Oliver; Graupner, Nadine; Peršoh, Derek; Kemler, Martin; Mittelbach, Moritz; Boenigk, Jens; Begerow, Dominik

    2017-10-12

    The increasing number and duration of inundations is reported to be a consequence of climate change and may severely compromise non-adapted macroorganisms. The effect of flooding events on terrestrial and aquatic microbial communities is, however, less well understood. They may respond to the changed abiotic properties of their native habitat, and the native community may change due to the introduction of alien species. We designed an experiment to investigate the effect of five different flooding durations on the terrestrial and aquatic communities of eukaryotic microorganism, using the AquaFlow mesocosms. With amplicon sequencing of the small subunit (SSU) and internal transcribed spacer (ITS) rRNA gene regions, we analyzed community compositions directly before and after flooding. Subsequently, they were monitored for another 28 days, to determine the sustainability of community changes. Our results revealed a temporary increase in similarity between terrestrial and aquatic communities according to OTU composition (operational taxonomic unit, serves as a proxy for species). Increased similarity was mainly caused by the transmission of OTUs from water to soil. A minority of these were able to persist in soil until the end of the experiment. By contrast, the vast majority of soil OTUs was not transmitted to water. Flooding duration affected the community structure (abundance) more than composition (occurrence). Terrestrial communities responded immediately to flooding and the flooding duration influenced the community changes. Independent from flooding duration, all terrestrial communities recovered largely after flooding, indicating a remarkable resilience to the applied disturbances. Aquatic communities responded immediately to the applied inundations too. At the end of the experiment, they grouped according to the applied flooding duration and the amount of ammonium and chloride that leached from the soil. This indicates a sustained long-term response of the

  15. Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks

    Science.gov (United States)

    Umarov, Ramzan Kh.

    2017-01-01

    Accurate computational identification of promoters remains a challenge as these key DNA regulatory regions have variable structures composed of functional motifs that provide gene-specific initiation of transcription. In this paper we utilize Convolutional Neural Networks (CNN) to analyze sequence characteristics of prokaryotic and eukaryotic promoters and build their predictive models. We trained a similar CNN architecture on promoters of five distant organisms: human, mouse, plant (Arabidopsis), and two bacteria (Escherichia coli and Bacillus subtilis). We found that CNN trained on sigma70 subclass of Escherichia coli promoter gives an excellent classification of promoters and non-promoter sequences (Sn = 0.90, Sp = 0.96, CC = 0.84). The Bacillus subtilis promoters identification CNN model achieves Sn = 0.91, Sp = 0.95, and CC = 0.86. For human, mouse and Arabidopsis promoters we employed CNNs for identification of two well-known promoter classes (TATA and non-TATA promoters). CNN models nicely recognize these complex functional regions. For human promoters Sn/Sp/CC accuracy of prediction reached 0.95/0.98/0,90 on TATA and 0.90/0.98/0.89 for non-TATA promoter sequences, respectively. For Arabidopsis we observed Sn/Sp/CC 0.95/0.97/0.91 (TATA) and 0.94/0.94/0.86 (non-TATA) promoters. Thus, the developed CNN models, implemented in CNNProm program, demonstrated the ability of deep learning approach to grasp complex promoter sequence characteristics and achieve significantly higher accuracy compared to the previously developed promoter prediction programs. We also propose random substitution procedure to discover positionally conserved promoter functional elements. As the suggested approach does not require knowledge of any specific promoter features, it can be easily extended to identify promoters and other complex functional regions in sequences of many other and especially newly sequenced genomes. The CNNProm program is available to run at web server http

  16. Recognition of prokaryotic and eukaryotic promoters using convolutional deep learning neural networks

    KAUST Repository

    Umarov, Ramzan

    2017-02-03

    Accurate computational identification of promoters remains a challenge as these key DNA regulatory regions have variable structures composed of functional motifs that provide gene-specific initiation of transcription. In this paper we utilize Convolutional Neural Networks (CNN) to analyze sequence characteristics of prokaryotic and eukaryotic promoters and build their predictive models. We trained a similar CNN architecture on promoters of five distant organisms: human, mouse, plant (Arabidopsis), and two bacteria (Escherichia coli and Bacillus subtilis). We found that CNN trained on sigma70 subclass of Escherichia coli promoter gives an excellent classification of promoters and non-promoter sequences (Sn = 0.90, Sp = 0.96, CC = 0.84). The Bacillus subtilis promoters identification CNN model achieves Sn = 0.91, Sp = 0.95, and CC = 0.86. For human, mouse and Arabidopsis promoters we employed CNNs for identification of two well-known promoter classes (TATA and non-TATA promoters). CNN models nicely recognize these complex functional regions. For human promoters Sn/Sp/CC accuracy of prediction reached 0.95/0.98/0,90 on TATA and 0.90/0.98/0.89 for non-TATA promoter sequences, respectively. For Arabidopsis we observed Sn/Sp/CC 0.95/0.97/0.91 (TATA) and 0.94/0.94/0.86 (non-TATA) promoters. Thus, the developed CNN models, implemented in CNNProm program, demonstrated the ability of deep learning approach to grasp complex promoter sequence characteristics and achieve significantly higher accuracy compared to the previously developed promoter prediction programs. We also propose random substitution procedure to discover positionally conserved promoter functional elements. As the suggested approach does not require knowledge of any specific promoter features, it can be easily extended to identify promoters and other complex functional regions in sequences of many other and especially newly sequenced genomes. The CNNProm program is available to run at web server http://www.softberry.com.

  17. Widespread of horizontal gene transfer in the human genome

    OpenAIRE

    Huang, Wenze; Tsai, Lillian; Li, Yulong; Hua, Nan; Sun, Chen; Wei, Chaochun

    2017-01-01

    Background A fundamental concept in biology is that heritable material is passed from parents to offspring, a process called vertical gene transfer. An alternative mechanism of gene acquisition is through horizontal gene transfer (HGT), which involves movement of genetic materials between different species. Horizontal gene transfer has been found prevalent in prokaryotes but very rare in eukaryote. In this paper, we investigate horizontal gene transfer in the human genome. Results From the pa...

  18. A novel nucleolar G-protein conserved in eukaryotes.

    Science.gov (United States)

    Park, J H; Jensen, B C; Kifer, C T; Parsons, M

    2001-01-01

    We describe here a novel, evolutionarily conserved set of predicted G-proteins. The founding member of this family, TbNOG1, was identified in a two-hybrid screen as a protein that interacts with NOPP44/46, a nucleolar phosphoprotein of Trypanosoma brucei. The biological relevance of the interaction was verified by co-localization and co-immunoprecipitation. TbNOG1 localized to the trypanosome nucleolus and interacted with domains of NOPP44/46 that are found in several other nucleolar proteins. Genes encoding proteins highly related to TbNOG1 are present in yeast and metazoa, and related G domains are found in bacteria. We show that NOG1 proteins in humans and Saccharomyces cerevisae are also nucleolar. The S. cerevisae NOG1 gene is essential for cell viability, and mutations in the predicted G motifs abrogate function. Together these data suggest that NOG1 may play an important role in nucleolar functions. The GTP-binding region of TbNOG1 is similar to those of Obg and DRG proteins, which, together with NOG, form a newly recognized family of G-proteins, herein named ODN. The ODN family differs significantly from other G-protein families, and shows several diagnostic sequence characteristics. All organisms appear to possess an ODN gene, pointing to the biological significance of this family of G-proteins.

  19. Metabarcoding analysis of eukaryotic microbiota in the gut of HIV-infected patients.

    Science.gov (United States)

    Hamad, Ibrahim; Abou Abdallah, Rita; Ravaux, Isabelle; Mokhtari, Saadia; Tissot-Dupont, Hervé; Michelle, Caroline; Stein, Andreas; Lagier, Jean-Christophe; Raoult, Didier; Bittar, Fadi

    2018-01-01

    Research on the relationship between changes in the gut microbiota and human disease, including AIDS, is a growing field. However, studies on the eukaryotic component of the intestinal microbiota have just begun and have not yet been conducted in HIV-infected patients. Moreover, eukaryotic community profiling is influenced by the use of different methodologies at each step of culture-independent techniques. Herein, initially, four DNA extraction protocols were compared to test the efficiency of each method in recovering eukaryotic DNA from fecal samples. Our results revealed that recovering eukaryotic components from fecal samples differs significantly among DNA extraction methods. Subsequently, the composition of the intestinal eukaryotic microbiota was evaluated in HIV-infected patients and healthy volunteers through clone sequencing, high-throughput sequencing of nuclear ribosomal internal transcribed spacers 1 (ITS1) and 2 (ITS2) amplicons and real-time PCRs. Our results revealed that not only richness (Chao-1 index) and alpha diversity (Shannon diversity) differ between HIV-infected patients and healthy volunteers, depending on the molecular strategy used, but also the global eukaryotic community composition, with little overlapping taxa found between techniques. Moreover, our results based on cloning libraries and ITS1/ITS2 metabarcoding sequencing showed significant differences in fungal composition between HIV-infected patients and healthy volunteers, but without distinct clusters separating the two groups. Malassezia restricta was significantly more prevalent in fecal samples of HIV-infected patients, according to cloning libraries, whereas operational taxonomic units (OTUs) belonging to Candida albicans and Candida tropicalis were significantly more abundant in fecal samples of HIV-infected patients compared to healthy subjects in both ITS subregions. Finally, real-time PCR showed the presence of Microsporidia, Giardia lamblia, Blastocystis and

  20. Metabarcoding analysis of eukaryotic microbiota in the gut of HIV-infected patients.

    Directory of Open Access Journals (Sweden)

    Ibrahim Hamad

    Full Text Available Research on the relationship between changes in the gut microbiota and human disease, including AIDS, is a growing field. However, studies on the eukaryotic component of the intestinal microbiota have just begun and have not yet been conducted in HIV-infected patients. Moreover, eukaryotic community profiling is influenced by the use of different methodologies at each step of culture-independent techniques. Herein, initially, four DNA extraction protocols were compared to test the efficiency of each method in recovering eukaryotic DNA from fecal samples. Our results revealed that recovering eukaryotic components from fecal samples differs significantly among DNA extraction methods. Subsequently, the composition of the intestinal eukaryotic microbiota was evaluated in HIV-infected patients and healthy volunteers through clone sequencing, high-throughput sequencing of nuclear ribosomal internal transcribed spacers 1 (ITS1 and 2 (ITS2 amplicons and real-time PCRs. Our results revealed that not only richness (Chao-1 index and alpha diversity (Shannon diversity differ between HIV-infected patients and healthy volunteers, depending on the molecular strategy used, but also the global eukaryotic community composition, with little overlapping taxa found between techniques. Moreover, our results based on cloning libraries and ITS1/ITS2 metabarcoding sequencing showed significant differences in fungal composition between HIV-infected patients and healthy volunteers, but without distinct clusters separating the two groups. Malassezia restricta was significantly more prevalent in fecal samples of HIV-infected patients, according to cloning libraries, whereas operational taxonomic units (OTUs belonging to Candida albicans and Candida tropicalis were significantly more abundant in fecal samples of HIV-infected patients compared to healthy subjects in both ITS subregions. Finally, real-time PCR showed the presence of Microsporidia, Giardia lamblia, Blastocystis